Science.gov

Sample records for alkaliphilic bacterium bacillus

  1. Draft Genome Sequence of Bacillus pseudalcaliphilus PN-137T (DSM 8725), an Alkaliphilic Halotolerant Bacterium Isolated from Garden Soils.

    PubMed

    Wang, Jie-Ping; Liu, Bo; Liu, Guo-Hong; Xiao, Rong-Feng; Zheng, Xue-Fang; Shi, Huai; Ge, Ci-Bin

    2015-01-01

    Bacillus pseudalcaliphilus PN-137(T) (DSM 8725) is a Gram-positive, spore-forming, alkaliphilic, and halotolerant bacterium. Here, we report the 4.49-Mb genome sequence of B. pseudalcaliphilus PN-137(T), which will accelerate the application of this alkaliphile and provide useful information for genomic taxonomy and phylogenomics of Bacillus-like bacteria.

  2. Global Microarray Analysis of Alkaliphilic Halotolerant Bacterium Bacillus sp. N16-5 Salt Stress Adaptation

    PubMed Central

    Yin, Liang; Xue, Yanfen; Ma, Yanhe

    2015-01-01

    The alkaliphilic halotolerant bacterium Bacillus sp. N16-5 is often exposed to salt stress in its natural habitats. In this study, we used one-colour microarrays to investigate adaptive responses of Bacillus sp. N16-5 transcriptome to long-term growth at different salinity levels (0%, 2%, 8%, and 15% NaCl) and to a sudden salt increase from 0% to 8% NaCl. The common strategies used by bacteria to survive and grow at high salt conditions, such as K+ uptake, Na+ efflux, and the accumulation of organic compatible solutes (glycine betaine and ectoine), were observed in Bacillus sp. N16-5. The genes of SigB regulon involved in general stress responses and chaperone-encoding genes were also induced by high salt concentration. Moreover, the genes regulating swarming ability and the composition of the cytoplasmic membrane and cell wall were also differentially expressed. The genes involved in iron uptake were down-regulated, whereas the iron homeostasis regulator Fur was up-regulated, suggesting that Fur may play a role in the salt adaption of Bacillus sp. N16-5. In summary, we present a comprehensive gene expression profiling of alkaliphilic Bacillus sp. N16-5 cells exposed to high salt stress, which would help elucidate the mechanisms underlying alkaliphilic Bacillus spp. survival in and adaptation to salt stress. PMID:26030352

  3. Global Microarray Analysis of Alkaliphilic Halotolerant Bacterium Bacillus sp. N16-5 Salt Stress Adaptation.

    PubMed

    Yin, Liang; Xue, Yanfen; Ma, Yanhe

    2015-01-01

    The alkaliphilic halotolerant bacterium Bacillus sp. N16-5 is often exposed to salt stress in its natural habitats. In this study, we used one-colour microarrays to investigate adaptive responses of Bacillus sp. N16-5 transcriptome to long-term growth at different salinity levels (0%, 2%, 8%, and 15% NaCl) and to a sudden salt increase from 0% to 8% NaCl. The common strategies used by bacteria to survive and grow at high salt conditions, such as K+ uptake, Na+ efflux, and the accumulation of organic compatible solutes (glycine betaine and ectoine), were observed in Bacillus sp. N16-5. The genes of SigB regulon involved in general stress responses and chaperone-encoding genes were also induced by high salt concentration. Moreover, the genes regulating swarming ability and the composition of the cytoplasmic membrane and cell wall were also differentially expressed. The genes involved in iron uptake were down-regulated, whereas the iron homeostasis regulator Fur was up-regulated, suggesting that Fur may play a role in the salt adaption of Bacillus sp. N16-5. In summary, we present a comprehensive gene expression profiling of alkaliphilic Bacillus sp. N16-5 cells exposed to high salt stress, which would help elucidate the mechanisms underlying alkaliphilic Bacillus spp. survival in and adaptation to salt stress.

  4. Bacillus daliensis sp. nov., an alkaliphilic, Gram-positive bacterium isolated from a soda lake.

    PubMed

    Zhai, Lei; Liao, Tingting; Xue, Yanfen; Ma, Yanhe

    2012-04-01

    A Gram-positive, alkaliphilic bacterium, designated strain DLS13T, was isolated from Dali Lake in Inner Mongolia Autonomous Region, China. The isolate was able to grow at pH 7.5-11.0 (optimum at pH 9), in 0-8 % (w/v) NaCl (optimum at 2 %, w/v) and at 10-45 °C (optimum at 30 °C). Cells of the isolate were facultatively anaerobic, spore-forming rods with peritrichous flagella. The predominant isoprenoid quinone was MK-7 and its cell wall peptidoglycan contained meso-diaminopimelic acid. The major polar lipids consisted of phosphatidylglycerol, diphosphatidylglycerol and phosphatidylethanolamine. The major cellular fatty acids were anteiso-C15:0, anteiso-C17:0 and iso-C15:0. The genomic DNA G+C content of the isolate was 43.9 mol%. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain DLS13T was a member of the genus Bacillus and most closely related to Bacillus saliphilus DSM 15402T (96.9 % similarity). The DNA-DNA relatedness value between strain DLS13T and B. saliphilus DSM 15402T was 38.7±1.9 %. Comparative analysis of genotypic and phenotypic features indicated that strain DLS13T represents a novel species of the genus Bacillus, for which the name Bacillus daliensis sp. nov. is proposed; the type strain is DLS13T (=CGMCC 1.10369T=JCM 17097T=NBRC 107572T).

  5. Bacillus ligniniphilus sp. nov., an alkaliphilic and halotolerant bacterium isolated from sediments of the South China Sea.

    PubMed

    Zhu, Daochen; Tanabe, Shoko-Hosoi; Xie, Changxiao; Honda, Daiske; Sun, Jianzhong; Ai, Lianzhong

    2014-05-01

    An alkaliphilic and halotolerant Gram-stain-positive bacterium, which was isolated from sediment samples from the South China Sea, was subjected to a taxonomic study. The isolate, strain L1T, grew well at a wide range of temperatures and pH values, 10.0-45.0 °C and pH 6-11, with optima at 30 °C and pH 9.0, respectively. The growth of strain L1T occurred at total salt concentrations of 0-10% (w/v) with an optimum at 2% (w/v). Phylogenetic analysis based on 16S rRNA sequence comparison indicated that the isolate represented a member of the genus Bacillus. The strains most closely related to strain L1T were Bacillus nanhaiisediminis JCM 16507T, Bacillus halodurans DSM 497T and Bacillus pseudofirmus DSM 8715T, with 16S rRNA similarities of 96.5%, 95.9% and 95.7%, respectively. DNA-DNA hybridization of strain L1T with the type strains of the most closely related species, B. nanhaiisediminis JCM 16507T, B. halodurans DSM 497T and B. pseudofirmus DSM 8715T, showed reassociation values of about 21.7%, 14.3% and 13.9%, respectively. The DNA G+C content of strain L1T was 40.76 mol%. The predominant isoprenoid quinone was menaquinone 7 (MK-7). The cell-wall peptidoglycan contained meso-diaminopimelic acid as the diagnostic diamino acid. The predominant cellular fatty acids of strain L1T were iso-C14 : 0 and anteiso-C15:0. The major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylglycerol. Based on the phenotypic and phylogenetic characteristics, it is proposed that strain L1T (=JCM 18543T=DSM 26145T) should be classified as the type strain of Bacillus ligniniphilus sp. nov.

  6. Bacillus alkalicola sp. nov., an alkaliphilic, gram-positive bacterium isolated from Zhabuye Lake in Tibet, China.

    PubMed

    Zhai, Lei; Ma, Yiwei; Xue, Yanfen; Ma, Yanhe

    2014-09-01

    A Gram-positive, alkaliphilic bacterium, designated strain Zby6(T), was isolated from Zhabuye Lake in Tibet, China. The strain was able to grow at pH 8.0-11.0 (optimum at pH 10.0), in 0-8 % (w/v) NaCl (optimum at 3 %, w/v) and at 10-45 °C (optimum at 37 °C). Cells of the isolate were facultatively anaerobic and spore-forming rods with polar flagellum. The predominant isoprenoid quinone was MK-7, and its cell wall peptidoglycan contained meso-diaminopimelic acid. The major cellular fatty acids were iso-C(15:0), C(16:0) and anteiso-C(15:0). The major polar lipids consisted of phosphatidylglycerol, diphosphatidylglycerol, and phosphatidylethanolamine. The genomic DNA G+C content of the isolate was 38.9 mol%. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain Zby6(T) was a member of the genus Bacillus and most closely related to Bacillus cellulosilyticus DSM 2522(T) (97.7 % similarity). The DNA-DNA relatedness value between strain Zby6(T) and B. cellulosilyticus DSM 2522(T) was 59.2 ± 1.8 %. Comparative analysis of genotypic and phenotypic features indicated that strain Zby6(T) represents a novel species of the genus Bacillus, for which the name Bacillus alkalicola sp. nov. is proposed; the type strain is Zby6(T) (=CGMCC 1.10368(T) = JCM 17098(T) = NBRC 107743(T)).

  7. Bacillus daqingensis sp. nov., a halophilic, alkaliphilic bacterium isolated from saline-sodic soil in Daqing, China.

    PubMed

    Wang, Shuang; Sun, Lei; Wei, Dan; Zhou, Baoku; Zhang, Junzheng; Gu, Xuejia; Zhang, Lei; Liu, Ying; Li, Yidan; Guo, Wei; Jiang, Shuang; Pan, Yaqing; Wang, Yufeng

    2014-07-01

    An alkaliphilic, moderately halophilic, bacterium, designated strain X10-1(T), was isolated from saline-alkaline soil in Daqing, Heilongjiang Province, China. Strain X10-1(T) was determined to be a Gram-positive aerobe with rod-shaped cells. The isolate was catalase-positive, oxidase-negative, non-motile, and capable of growth at salinities of 0-16% (w/v) NaCl (optimum, 3%). The pH range for growth was 7.5-11.0 (optimum, pH 10.0). The genomic DNA G+C content was 47.7 mol%. Its major isoprenoid quinone was MK-7 and its cellular fatty acid profile mainly consisted of anteiso-C15:0, anteiso-C17:0, iso-C15:0, C16:0, and iso-C16:0. The peptidoglycan contained meso-diaminopimelic acid as the diagnostic diamino acid. The predominant polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, and phosphatidylglycerol. Phylogenetic analysis based on 16S rRNA gene sequences showed that X10-1(T) is a member of the genus Bacillus, being most closely related to B. saliphilus DSM15402(T) (97.8% similarity) and B. agaradhaerens DSM 8721(T) (96.2%). DNA-DNA relatedness to the type strains of these species was less than 40%. On the basis of the phylogenetic, physiological, and biochemical data, strain X10-1(T) represents a novel species of the genus Bacillus, for which the name Bacillus daqingensis sp. nov. is proposed. The type strain is X10-1(T) (=NBRC 109404(T) = CGMCC 1.12295(T)). PMID:24879344

  8. Bacillus lindianensis sp. nov., a novel alkaliphilic and moderately halotolerant bacterium isolated from saline and alkaline soils.

    PubMed

    Dou, Guiming; Liu, Hongcan; He, Wei; Ma, Yuchao

    2016-01-01

    Two alkaliphilic and halotolerant Gram-stain positive, rod-shaped and endospore-forming bacteria, designated strains 12-3(T) and 12-4, were isolated from saline and alkaline soils collected in Lindian county, Heilongjiang province, China. Both strains were observed to grow well at a wide range of temperature and pH values, 10-45 °C and pH 8-12, with optimal growth at 37 °C and pH 9.0, respectively. Growth of the two strains was found to occur at total salt concentrations of 0-12 % (w/v), with an optimum at 4 % (w/v). The G+C contents of the genomic DNA of strains 12-3(T) and 12-4 were determined to be 42.7 and 42.4 mol%, respectively, and the major cellular fatty acids were identified as anteiso-C15:0 and anteiso-C17:0. In isolate 12-3(T), meso-diaminopimelic acid was found to be the diagnostic diamino acid of the cell wall peptidoglycan; diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylglycerol were identified as the major cellular polar lipids; and menaquinone-7 was identified as the predominant isoprenoid quinone. Strains 12-3(T) and 12-4 share very close 16S rRNA gene sequence similarity (99.74 %) and their DNA-DNA relatedness was 95.3 ± 0.63 %, meaning that the two strains can be considered to belong to the same species. 16S rRNA gene sequence-based phylogenetic analysis revealed strains 12-3(T) and 12-4 exhibit high similarities to Bacillus pseudofirmus DSM 8715(T) (98.7 %), Bacillus marmarensis DSM 21297(T) (97.2 %) and Bacillus nanhaiisediminis CGMCC 1.10116(T) (97.1 and 97.0 %, respectively). DNA-DNA hybridization values between isolate 12-3(T) and the type strains of closely related Bacillus species were below 30 %. On the basis of the polyphasic evidence presented, strains 12-3(T) and 12-4 are considered to represent a novel species of the genus Bacillus, for which the name Bacillus lindianensis sp. nov. is proposed. The type strain is 12-3(T) (DSM 26864(T) = CGMCC 1.12717(T)). PMID:26604103

  9. Aerobic biodegradation of Azo dye by Bacillus cohnii MTCC 3616; an obligately alkaliphilic bacterium and toxicity evaluation of metabolites by different bioassay systems.

    PubMed

    Prasad, A S Arun; Rao, K V Bhaskara

    2013-08-01

    An obligate alkaliphilic bacterium Bacillus cohnii MTCC 3616 aerobically decolorized a textile azo dye Direct Red-22 (5,000 mg l⁻¹) with 95 % efficiency at 37 °C and pH 9 in 4 h under static conditions. The decolorization of Direct Red-22 (DR-22) was possible through a broad pH (7-11), temperature (10-45 °C), salinity (1-7 %), and dye concentration (5-10 g l⁻¹) range. Decolorization of dye was assessed by UV-vis spectrophotometer with reduction of peak intensity at 549 nm (λ(max)). Biodegradation of dye was analyzed by Fourier transform infrared spectroscopy (FTIR) and high-performance liquid chromatography (HPLC). The FTIR spectrum revealed that B. cohnii specifically targeted azo bond (N=N) at 1,614.42 cm⁻¹ to break down Direct Red-22. Formation of metabolites with different retention times in HPLC analysis further confirmed the degradation of dye. The phytotoxicity test with 5,000 mg l⁻¹ of untreated dye showed 80 % germination inhibition in Vigna mungo, 70 % in Sorghum bicolor and 80 % in Vigna radiata. No germination inhibition was noticed in all three plants by DR-22 metabolites at 5,000 mg l⁻¹. Biotoxicity test with Artemia salina proved the lethality of the azo dye at LC₅₀ of 4 and 8 % for degraded metabolites by causing death of its nauplii compared to its less toxic-degraded metabolites. Bioaccumulation of dye was observed in the mid-gut of A. salina. The cytogenotoxicity assay on the meristematic root tip cells of Allium cepa further confirmed the cytotoxic nature of azo dye (DR-22) with decrease in mitotic index (0.5 % at 500 ppm) and increase in aberrant index (4.56 %) over 4-h exposure period. Genotoxic damages (lagging chromosome, metaphase cluster, chromosome bridges, and dye accumulation in cytoplasm) were noticed at different stages of cell cycle. The degraded metabolites had negligible cytotoxic and genotoxic effects.

  10. A Streamlined Strategy for Biohydrogen Production with an Alkaliphilic Bacterium

    SciTech Connect

    Elias, Dwayne A; Wall, Judy D.; Mormile, Dr. Melanie R.; Begemann, Matthew B

    2012-01-01

    Biofuels are anticipated to enable a shift from fossil fuels for renewable transportation and manufacturing fuels, with biohydrogen considered attractive since it could offer the largest reduction of global carbon budgets. Currently, biohydrogen production remains inefficient and heavily fossil fuel-dependent. However, bacteria using alkali-treated biomass could streamline biofuel production while reducing costs and fossil fuel needs. An alkaliphilic bacterium, Halanaerobium strain sapolanicus, is described that is capable of biohydrogen production at levels rivaling neutrophilic strains, but at pH 11 and hypersaline conditions. H. sapolanicus ferments a variety of 5- and 6- carbon sugars derived from hemicellulose and cellulose including cellobiose, and forms the end products hydrogen and acetate. Further, it can also produce biohydrogen from switchgrass and straw pretreated at temperatures far lower than any previously reported and in solutions compatible with growth. Hence, this bacterium can potentially increase the efficiency and efficacy of biohydrogen production from renewable biomass resources.

  11. Directed Evolution and Structural Analysis of Alkaline Pectate Lyase from the Alkaliphilic Bacterium Bacillus sp. Strain N16-5 To Improve Its Thermostability for Efficient Ramie Degumming

    PubMed Central

    Zhou, Cheng; Ye, Jintong; Xue, Yanfen

    2015-01-01

    Thermostable alkaline pectate lyases have potential applications in the textile industry as an alternative to chemical-based ramie degumming processes. In particular, the alkaline pectate lyase from Bacillus sp. strain N16-5 (BspPelA) has potential for enzymatic ramie degumming because of its high specific activity under extremely alkaline conditions without the requirement for additional Ca2+. However, BspPelA displays poor thermostability and is inactive after incubation at 50°C for only 30 min. Here, directed evolution was used to improve the thermostability of BspPelA for efficient and stable degumming. After two rounds of error-prone PCR and screening of >12,000 mutants, 10 mutants with improved thermostability were obtained. Sequence analysis and site-directed mutagenesis revealed that single E124I, T178A, and S271G substitutions were responsible for improving thermostability. Structural and molecular dynamic simulation analysis indicated that the formation of a hydrophobic cluster and new H-bond networks was the key factor contributing to the improvement in thermostability with these three substitutions. The most thermostable combined mutant, EAET, exhibited a 140-fold increase in the t50 (time at which the enzyme loses 50% of its initial activity) value at 50°C, accompanied by an 84.3% decrease in activity compared with that of wild-type BspPelA, while the most advantageous combined mutant, EA, exhibited a 24-fold increase in the t50 value at 50°C, with a 23.3% increase in activity. Ramie degumming with the EA mutant was more efficient than that with wild-type BspPelA. Collectively, our results suggest that the EA mutant, exhibiting remarkable improvements in thermostability and activity, has the potential for applications in ramie degumming in the textile industry. PMID:26070675

  12. Sustainable biorefining in wastewater by engineered extreme alkaliphile Bacillus marmarensis

    PubMed Central

    Wernick, David G.; Pontrelli, Sammy P.; Pollock, Alexander W.; Liao, James C.

    2016-01-01

    Contamination susceptibility, water usage, and inability to utilize 5-carbon sugars and disaccharides are among the major obstacles in industrialization of sustainable biorefining. Extremophilic thermophiles and acidophiles are being researched to combat these problems, but organisms which answer all the above problems have yet to emerge. Here, we present engineering of the unexplored, extreme alkaliphile Bacillus marmarensis as a platform for new bioprocesses which meet all these challenges. With a newly developed transformation protocol and genetic tools, along with optimized RBSs and antisense RNA, we engineered B. marmarensis to produce ethanol at titers of 38 g/l and 65% yields from glucose in unsterilized media. Furthermore, ethanol titers and yields of 12 g/l and 50%, respectively, were produced from cellobiose and xylose in unsterilized seawater and algal-contaminated wastewater. As such, B. marmarensis presents a promising approach for the contamination-resistant biorefining of a wide range of carbohydrates in unsterilized, non-potable seawater. PMID:26831574

  13. Sustainable biorefining in wastewater by engineered extreme alkaliphile Bacillus marmarensis.

    PubMed

    Wernick, David G; Pontrelli, Sammy P; Pollock, Alexander W; Liao, James C

    2016-01-01

    Contamination susceptibility, water usage, and inability to utilize 5-carbon sugars and disaccharides are among the major obstacles in industrialization of sustainable biorefining. Extremophilic thermophiles and acidophiles are being researched to combat these problems, but organisms which answer all the above problems have yet to emerge. Here, we present engineering of the unexplored, extreme alkaliphile Bacillus marmarensis as a platform for new bioprocesses which meet all these challenges. With a newly developed transformation protocol and genetic tools, along with optimized RBSs and antisense RNA, we engineered B. marmarensis to produce ethanol at titers of 38 g/l and 65% yields from glucose in unsterilized media. Furthermore, ethanol titers and yields of 12 g/l and 50%, respectively, were produced from cellobiose and xylose in unsterilized seawater and algal-contaminated wastewater. As such, B. marmarensis presents a promising approach for the contamination-resistant biorefining of a wide range of carbohydrates in unsterilized, non-potable seawater. PMID:26831574

  14. Investigations of Iron Minerals Formed by Dissimilatory Alkaliphilic Bacterium with 57Fe Mössbauer Spectroscopy

    NASA Astrophysics Data System (ADS)

    Chistyakova, N. I.; Rusakov, V. S.; Shapkin, A. A.; Zhilina, T. N.; Zavarzina, D. G.; Lančok, A.; Kohout, J.

    2010-07-01

    Anaerobic alkaliphilic bacterium of Geoalkalibacter ferrihydriticus type (strain Z-0531), isolated from a bottom sediment sample from the weakly mineralized soda Lake Khadyn, have been analyzed. The strain uses the amorphous Fe(III)-hydroxide (AFH) as an electron acceptor and acetate CH3COO- as an electron donor. Mössbauer investigations of solid phase samples obtained during the process of the bacterium growth were carried out at room temperature, 77.8 K, 4.2 K without and with the presence of an external magnetic field (6 T) applied perpendicular to the γ-bebam.

  15. Investigations of Iron Minerals Formed by Dissimilatory Alkaliphilic Bacterium with {sup 57}Fe Moessbauer Spectroscopy

    SciTech Connect

    Chistyakova, N. I.; Rusakov, V. S.; Shapkin, A. A.; Zhilina, T. N.; Zavarzina, D. G.; Kohout, J.

    2010-07-13

    Anaerobic alkaliphilic bacterium of Geoalkalibacter ferrihydriticus type (strain Z-0531), isolated from a bottom sediment sample from the weakly mineralized soda Lake Khadyn, have been analyzed. The strain uses the amorphous Fe(III)-hydroxide (AFH) as an electron acceptor and acetate CH{sub 3}COO{sup -} as an electron donor. Moessbauer investigations of solid phase samples obtained during the process of the bacterium growth were carried out at room temperature, 77.8 K, 4.2 K without and with the presence of an external magnetic field (6 T) applied perpendicular to the {gamma}-bebam.

  16. A Streamlined Strategy for Biohydrogen Production with Halanaerobium hydrogeniformans, an Alkaliphilic Bacterium.

    PubMed

    Begemann, Matthew B; Mormile, Melanie R; Sitton, Oliver C; Wall, Judy D; Elias, Dwayne A

    2012-01-01

    Biofuels are anticipated to enable a shift from fossil fuels for renewable transportation and manufacturing fuels, with biohydrogen considered attractive since it could offer the largest reduction of global carbon budgets. Currently, lignocellulosic biohydrogen production remains inefficient with pretreatments that are heavily fossil fuel-dependent. However, bacteria using alkali-treated biomass could streamline biofuel production while reducing costs and fossil fuel needs. An alkaliphilic bacterium, Halanaerobiumhydrogeniformans, is described that is capable of biohydrogen production at levels rivaling neutrophilic strains, but at pH 11 and hypersaline conditions. H. hydrogeniformans ferments a variety of 5- and 6-carbon sugars derived from hemicellulose and cellulose including cellobiose, and forms the end products hydrogen, acetate, and formate. Further, it can also produce biohydrogen from switchgrass and straw pretreated at temperatures far lower than any previously reported and in solutions compatible with growth. Hence, this bacterium can potentially increase the efficiency and efficacy of biohydrogen production from renewable biomass resources.

  17. A Streamlined Strategy for Biohydrogen Production with Halanaerobium hydrogeniformans, an Alkaliphilic Bacterium

    PubMed Central

    Begemann, Matthew B.; Mormile, Melanie R.; Sitton, Oliver C.; Wall, Judy D.; Elias, Dwayne A.

    2012-01-01

    Biofuels are anticipated to enable a shift from fossil fuels for renewable transportation and manufacturing fuels, with biohydrogen considered attractive since it could offer the largest reduction of global carbon budgets. Currently, lignocellulosic biohydrogen production remains inefficient with pretreatments that are heavily fossil fuel-dependent. However, bacteria using alkali-treated biomass could streamline biofuel production while reducing costs and fossil fuel needs. An alkaliphilic bacterium, Halanaerobium hydrogeniformans, is described that is capable of biohydrogen production at levels rivaling neutrophilic strains, but at pH 11 and hypersaline conditions. H. hydrogeniformans ferments a variety of 5- and 6-carbon sugars derived from hemicellulose and cellulose including cellobiose, and forms the end products hydrogen, acetate, and formate. Further, it can also produce biohydrogen from switchgrass and straw pretreated at temperatures far lower than any previously reported and in solutions compatible with growth. Hence, this bacterium can potentially increase the efficiency and efficacy of biohydrogen production from renewable biomass resources. PMID:22509174

  18. Bacillus oshimensis sp. nov., a moderately halophilic, non-motile alkaliphile.

    PubMed

    Yumoto, Isao; Hirota, Kikue; Goto, Toshitaka; Nodasaka, Yoshinobu; Nakajima, Kenji

    2005-03-01

    A halophilic and halotolerant, facultatively alkaliphilic strain, K11(T), was isolated from soil obtained from Oshyamanbe, Oshima, Hokkaido, Japan. The isolate grew at pH 7-10. It was non-motile, Gram-positive and aerobic. Cells comprised straight rods and produced ellipsoidal spores. The isolate grew in 0-20 % NaCl, with optimum growth at 7 % NaCl, and hydrolysed casein, gelatin, starch, DNA and Tweens 20, 40, 60 and 80. The major isoprenoid quinone was menaquinone-7, and the cellular fatty acid profile consisted of significant amounts of C(15) branched-chain acids, iso C(15 : 0) and anteiso C(15 : 0). Phylogenetic analysis based on 16S rRNA gene sequencing indicated that strain K11(T) was a member of group 6 [Nielsen et al., FEMS Microbiol Lett 117 (1994), 61-66] (alkaliphiles) of the genus Bacillus. DNA-DNA hybridization revealed a low relatedness (14 %) of the isolate to its closest phylogenetic neighbour, Bacillus clausii. On the basis of phenotypic and chemotaxonomic characteristics, phylogenetic data and DNA-DNA relatedness data, it was concluded that K11(T) (=JCM 12663(T)=NCIMB 14023(T)) merits classification as the type strain of a novel species, for which the name Bacillus oshimensis sp. nov. is proposed. PMID:15774684

  19. Desulfonatronum Thiodismutans sp. nov., a Novel Alkaliphilic, Sulfate-reducing Bacterium Capable of Lithoautotrophic Growth

    NASA Technical Reports Server (NTRS)

    Pikuta, Elena V.; Hoover, Richard B.; Bej, Asim K.; Marsic, Damien; Whitman, William B.; Cleland, David; Krader, Paul

    2003-01-01

    A novel alkaliphilic, sulfate-reducing bacterium, strain MLF1(sup T), was isolated from sediments of soda Mono Lake, California. Gram-negative vibrio-shaped cells were observed, which were 0.6-0.7 x 1.2-2.7 microns in size, motile by a single polar flagellum and occurred singly, in pairs or as short spirilla. Growth was observed at 15-48 C (optimum, 37 C), > 1-7 % NaCI, w/v (optimum, 3%) and pH 8.0-10.0 (optimum, 9.5). The novel isolate is strictly alkaliphilic, requires a high concentration of carbonate in the growth medium and is obligately anaerobic and catalase-negative. As electron donors, strain MLF1(sup T) uses hydrogen, formate and ethanol. Sulfate, sulfite and thiosulfate (but not sulfur or nitrate) can be used as electron acceptors. The novel isolate is a lithoheterotroph and a facultative lithoautotroph that is able to grow on hydrogen without an organic source of carbon. Strain MLF1(sup T) is resistant to kanamycin and gentamicin, but sensitive to chloramphenicol and tetracycline. The DNA G+C content is 63.0 mol% (HPLC). DNA-DNA hybridization with the most closely related species, Desulfonatronum lacustre Z-7951(sup T), exhibited 51 % homology. Also, the genome size (1.6 x 10(exp 9) Da) and T(sub m) value of the genomic DNA (71 +/- 2 C) for strain MLF1(sup T) were significantly different from the genome size (2.1 x 10(exp 9) Da) and T(sub m) value (63 +/- 2 C) for Desulfonatronum lacustre Z-7951(sup T). On the basis of physiological and molecular properties, the isolate was considered to be a novel species of the genus Desulfonatronum, for which the name Desulfonatronum thiodismutans sp. nov. is proposed (the type strain is MLF1(sup T) = ATCC BAA-395(sup T) = DSM 14708(sup T)).

  20. Alkaline Anaerobic Respiration: Isolation and Characterization of a Novel Alkaliphilic and Metal-Reducing Bacterium

    PubMed Central

    Ye, Qi; Roh, Yul; Carroll, Susan L.; Blair, Benjamin; Zhou, Jizhong; Zhang, Chuanlun L.; Fields, Matthew W.

    2004-01-01

    Iron-reducing enrichments were obtained from leachate ponds at the U.S. Borax Company in Boron, Calif. Based on partial small-subunit (SSU) rRNA gene sequences (approximately 500 nucleotides), six isolates shared 98.9% nucleotide identity. As a representative, the isolate QYMF was selected for further analysis. QYMF could be grown with Fe(III)-citrate, Fe(III)-EDTA, Co(III)-EDTA, or Cr(VI) as electron acceptors, and yeast extract and lactate could serve as electron donors. Growth during iron reduction occurred over the pH range of 7.5 to 11.0 (optimum, pH 9.5), a sodium chloride range of 0 to 80 g/liter (optimum, 20 g/liter), and a temperature range of 4 to 45°C (optimum, approximately 35°C), and iron precipitates were formed. QYMF was a strict anaerobe that could be grown in the presence of borax, and the cells were straight rods that produced endospores. Sodium chloride and yeast extract stimulated growth. Phylogenetic analysis of the SSU rRNA gene indicated that the bacterium was a low-G+C gram-positive microorganism and had 96 and 92% nucleotide identity with Alkaliphilus transvaalensis and Alkaliphilus crotonatoxidans, respectively. The major phospholipid fatty acids were 14:1, 16:1ω7c, and 16:0, which were different from those of other alkaliphiles but similar to those of reported iron-reducing bacteria. The results demonstrated that the isolate might represent a novel metal-reducing alkaliphilic species. The name Alkaliphilus metalliredigens sp. nov. is proposed. The isolation and activity of metal-reducing bacteria from borax-contaminated leachate ponds suggest that bioremediation of metal-contaminated alkaline environments may be feasible and have implications for alkaline anaerobic respiration. PMID:15345448

  1. Enzymatic Properties of an Alkaline and Chelator Resistant alpha-amylase from the Alkaliphilic Bacillus sp. Isolate L1711

    NASA Technical Reports Server (NTRS)

    Bernhardsdotter, Eva C. M. J.; Pusey, Marc L.; Ng, Joseph D.; Garriott, Owen K.

    2004-01-01

    An alkaliphilic amylase producing bacterium, Bacillus sp. strain L 711, was selected among 13 soda lakes isolates. When grown at pH 10.5 and 37 C, strain L711 produced multiple forms of amylases in the culture broth. One of these, BAA, was purified from the culture supernatant by QAE column chromatography and preparative native gel electrophoresis. The molecular weight of BAA was determined to be 51 kDa by denaturing gel electrophoresis. The pH optima for activity below and above 40 C were 9.5 - 10.0 and 7.0 - 7.5 respectively. BAA was stable in the pH range 6-11 and was completely inactivated at 55 C. The thermostability was not increased in the presence of Ca(2+). The enzyme was strongly inhibited by Ca(2+), Zn(2+), Mg(2+), Mn(2+), Ba(2+) and Cu(2+), whereas the presence of Na(+), Co(2+) and EDTA (10 mM) enhanced enzymatic activity. The K(sub m), and specific activity of BAA on soluble starch were 1.9 mg/ml and 18.5 U/mg respectively. The main end products of hydrolysis were maltotetraose, maltose and glucose.

  2. A comparative genomic analysis of the alkalitolerant soil bacterium Bacillus lehensis G1.

    PubMed

    Noor, Yusuf Muhammad; Samsulrizal, Nurul Hidayah; Jema'on, Noor Azah; Low, Kheng Oon; Ramli, Aizi Nor Mazila; Alias, Noor Izawati; Damis, Siti Intan Rosdianah; Fuzi, Siti Fatimah Zaharah Mohd; Isa, Mohd Noor Mat; Murad, Abdul Munir Abdul; Raih, Mohd Firdaus Mohd; Bakar, Farah Diba Abu; Najimudin, Nazalan; Mahadi, Nor Muhammad; Illias, Rosli Md

    2014-07-25

    Bacillus lehensis G1 is a Gram-positive, moderately alkalitolerant bacterium isolated from soil samples. B. lehensis produces cyclodextrin glucanotransferase (CGTase), an enzyme that has enabled the extensive use of cyclodextrin in foodstuffs, chemicals, and pharmaceuticals. The genome sequence of B. lehensis G1 consists of a single circular 3.99 Mb chromosome containing 4017 protein-coding sequences (CDSs), of which 2818 (70.15%) have assigned biological roles, 936 (23.30%) have conserved domains with unknown functions, and 263 (6.55%) have no match with any protein database. Bacillus clausii KSM-K16 was established as the closest relative to B. lehensis G1 based on gene content similarity and 16S rRNA phylogenetic analysis. A total of 2820 proteins from B. lehensis G1 were found to have orthologues in B. clausii, including sodium-proton antiporters, transport proteins, and proteins involved in ATP synthesis. A comparative analysis of these proteins and those in B. clausii and other alkaliphilic Bacillus species was carried out to investigate their contributions towards the alkalitolerance of the microorganism. The similarities and differences in alkalitolerance-related genes among alkalitolerant/alkaliphilic Bacillus species highlight the complex mechanism of pH homeostasis. The B. lehensis G1 genome was also mined for proteins and enzymes with potential viability for industrial and commercial purposes. PMID:24811681

  3. The respiratory chains of four strains of the alkaliphilic Bacillus clausii.

    PubMed

    Abbrescia, A; Martino, P L; Panelli, D; Sardanelli, A M; Papa, S; Alifano, P; Palese, L L; Gaballo, A

    2014-01-01

    A comparative analysis of terminal respiratory enzymes has been performed on four strains of Bacillus clausii used for preparation of a European probiotic. These four strains originated most probably from a common ancestor through early selection of stable clones for industrial propagation. They exhibit a low level of intra-specific diversity and a high degree of genomic conservation, making them an attractive model to study the different bioenergetics behaviors of alkaliphilic bacilli. The analysis of the different bioenergetics responses has been carried out revealing striking differences among the strains. Two out of the four strains have shown a functional redundancy of the terminal part of the respiratory chain. The biochemical data correlate with the expression level of the mRNA of cytochrome c oxidase and quinol oxidase genes (heme-copper type). The consequences of these different bioenergetics behaviors are also discussed. PMID:25161879

  4. The respiratory chains of four strains of the alkaliphilic Bacillus clausii

    PubMed Central

    Abbrescia, A.; Martino, P.L.; Panelli, D.; Sardanelli, A.M.; Papa, S.; Alifano, P.; Palese, L.L.; Gaballo, A.

    2014-01-01

    A comparative analysis of terminal respiratory enzymes has been performed on four strains of Bacillus clausii used for preparation of a European probiotic. These four strains originated most probably from a common ancestor through early selection of stable clones for industrial propagation. They exhibit a low level of intra-specific diversity and a high degree of genomic conservation, making them an attractive model to study the different bioenergetics behaviors of alkaliphilic bacilli. The analysis of the different bioenergetics responses has been carried out revealing striking differences among the strains. Two out of the four strains have shown a functional redundancy of the terminal part of the respiratory chain. The biochemical data correlate with the expression level of the mRNA of cytochrome c oxidase and quinol oxidase genes (heme-copper type). The consequences of these different bioenergetics behaviors are also discussed. PMID:25161879

  5. Ionic selectivity and thermal adaptations within the voltage-gated sodium channel family of alkaliphilic Bacillus.

    PubMed

    DeCaen, Paul G; Takahashi, Yuka; Krulwich, Terry A; Ito, Masahiro; Clapham, David E

    2014-01-01

    Entry and extrusion of cations are essential processes in living cells. In alkaliphilic prokaryotes, high external pH activates voltage-gated sodium channels (Nav), which allows Na(+) to enter and be used as substrate for cation/proton antiporters responsible for cytoplasmic pH homeostasis. Here, we describe a new member of the prokaryotic voltage-gated Na(+) channel family (NsvBa; Non-selective voltage-gated, Bacillus alcalophilus) that is nonselective among Na(+), Ca(2+) and K(+) ions. Mutations in NsvBa can convert the nonselective filter into one that discriminates for Na(+) or divalent cations. Gain-of-function experiments demonstrate the portability of ion selectivity with filter mutations to other Bacillus Nav channels. Increasing pH and temperature shifts their activation threshold towards their native resting membrane potential. Furthermore, we find drugs that target Bacillus Nav channels also block the growth of the bacteria. This work identifies some of the adaptations to achieve ion discrimination and gating in Bacillus Nav channels. PMID:25385530

  6. Compatibility of alkaline xylanases from an alkaliphilic Bacillus NCL (87-6-10) with commercial detergents and proteases.

    PubMed

    Kamal Kumar, B; Balakrishnan, H; Rele, M V

    2004-02-01

    Alkaline xylanases from alkaliphilic Bacillus strains NCL (87-6-10) and Sam III were compared with the commercial xylanases Pulpzyme HC and Biopulp for their compatibility with detergents and proteases for laundry applications. Among the four xylanases evaluated, the enzyme from the alkaliphilic Bacillus strain NCL (87-6-10) was the most compatible. The enzyme retained its full activity (40 degrees C for 1 h) in the presence of detergents, whereas Pulpzyme HC and Sam III showed only 30% and 50% of their initial activity, respectively. Biopulp, though stable to detergents, had only marginal activity (5%)at pH 10. However, all four enzymes retained significant activity (80%) for 60 min in the presence of the proteases Alcalase and Conidiobolus protease. Supplementation of the enzyme enhanced the cleaning ability of the detergents.

  7. Alkaliphilus transvaalensis gen. nov., sp. nov., an extremely alkaliphilic bacterium isolated from a deep South African gold mine

    SciTech Connect

    Takai, Ken; Moser, Duane P.; Onstott, Tullis C.; Spoelstra, N; Pfiffner, Susan M.; Dohnalkova, Alice; Fredrickson, Jim K.

    2001-07-01

    A novel extreme alkaliphile was isolated from a mine water containment dam at 3.2 km bellow land surface in an ultra-deep gold mine near Carletonville, South Africa. The cells of this bacterium were straight to slightly curved rods, motile by flagella and formed endospores, Growth was observed over the temperature range 20-50 degreesC (optimum 40 degreesC; 45 min doubling time) and ph range 8.5-12.5 (optimum pH 10.0). The novel isolate, one of the most alkaliphilic micro-organisms yet described, was a strictly anaerobic chemo-organotroph capable of utilizing proteinaceous substrates such as yeast extract, peptone. tryptone and casein, Elemental sulfur, thiosulfate or fumarate, when included as accessory electron acceptors, improved growth. The G+C content of genomic DNA was 36.4 mol%, Phylogenetic analysis based on the 16S rDNA sequence indicated that the isolate is a member of cluster XI within the low G+C Cram-positive bacteria, but only distantly related to previously described members. On the basis of physiological and molecular properties, the isolate represents a novel species, for which the name Alkaliphilus transvaalensis gen. nov., sp. nov. is proposed (type strain SAGM1(T)= JCM 10712(T)= ATCC 700919(T)). The mechanism of generation of the highly alkaline microbial habitat and the possible source of the alkaliphile are discussed.

  8. Highly thermostable and alkaline α-amylase from a halotolerant-alkaliphilic Bacillus sp. AB68

    PubMed Central

    Aygan, Ashabil; Arikan, Burhan; Korkmaz, Hatice; Dinçer, Sadik; Çolak, Ömer

    2008-01-01

    An alkaliphilic and highly thermostable α-amylase producing Bacillus sp. was isolated from Van soda lake. Enzyme synthesis occurred at temperatures between 25°C and 40°C. Analysis of the enzyme by SDS-PAGE revealed a single band which was estimated to be 66 kDa. The enzyme was active in a broad temperature range, between 20°C and 90°C, with an optimum at 50°C; and maximum activity was at pH 10.5. The enzyme was almost completely stable up to 80°C with a remaining activity over 90% after 30 min pre-incubation. Thermostability was not increased in the presence of Ca2+. An average of 75% and 60°C of remaining activity was observed when the enzyme was incubated between pH 5 and 9 for 1 h and for 2 h, respectively. The activity of the enzyme was inhibited by SDS and EDTA by 38% and 34%, respectively. PMID:24031264

  9. Desulfonatronum paiuteum sp. nov.: A New Alkaliphilic, Sulfate-Reducing Bacterium, Isolated from Soda Mono Lake, California

    NASA Technical Reports Server (NTRS)

    Pikuta, Elena; Hoover, Richard B.; Marsic, Damien; Whitman, William; Cleland, David; Krader, Paul; Six, N. Frank (Technical Monitor)

    2002-01-01

    A novel alkaliphilic, sulfate reducing bacterium strain MLF1(sup T) was isolated from sediments of soda Mono Lake, California. Gram-negative vibrion cells, motile by singular polar flagellum, with sizes 0.5 - 0.6x 1.2 - 2.0 micron occurred singly, in pairs or short spirilla. Growth was observed over the temperature range of +15 C to +48 C (optimum +37 C), NaCl concentration range is greater than 1 - 7 %, wt/vol (optimum 3 %, wt/vol) and pH range 7.8 - 10.5 (optimum pH 9.0 - 9.4). The novel isolate is strictly alkaliphilic, requires high carbonate concentration in medium, obligately anaerobic and catalase negative. As electron donors strain MLF1(sup T) uses hydrogen, formate, ethanol. Sulfate, sulfite, and thiosulfate (but not sulfur or nitrate) can be used as electron acceptors. The sole end product of growth on formate was H2S. Strain MLF1(sup T) is resistant to kanamycin and gentamycin, but sensitive to chloramphenicol and tetracycline. Na2MoO4 inhibits growth of strain MLF1(sup T). The sum of G+C in DNA is 63.1 mol% (by HPLC method). On the basis of physiological and molecular properties, the isolate was considered as novel species of genus Desulfonatronum; and the name Desulfonatronum paiuteum sp. nov., is proposed (type strain MLF1(sup T) = ATCC BAA-395(sup T) = DSMZ 14708(sup T).

  10. Bacillus neizhouensis sp. nov., a halophilic marine bacterium isolated from a sea anemone.

    PubMed

    Chen, Yi-Guang; Zhang, Yu-Qin; Wang, Yong-Xia; Liu, Zhi-Xiong; Klenk, Hans-Peter; Xiao, Huai-Dong; Tang, Shu-Kun; Cui, Xiao-Long; Li, Wen-Jun

    2009-12-01

    A novel Gram-stain-positive, slightly halophilic, facultatively alkaliphilic, non-motile, catalase- and oxidase-positive, endospore-forming, rod-shaped, aerobic bacterium, strain JSM 071004(T), was isolated from a sea anemone collected from Neizhou Bay in the South China Sea. Growth occurred with 0.5-10 % (w/v) total salts (optimum 2-4 %) and at pH 6.5-10.0 (optimum pH 8.5) and 4-30 degrees C (optimum 25 degrees C). meso-Diaminopimelic acid was present in the cell-wall peptidoglycan. The predominant respiratory quinone was menaquinone 7 (MK-7) and the polar lipids consisted of diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. The major cellular fatty acids were anteiso-C(15 : 0) and iso-C(15 : 0). The genomic DNA G+C content was 39.8 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain JSM 071004(T) belongs to the genus Bacillus, being related most closely to the type strain of Bacillus agaradhaerens (sequence similarity 97.3 %), followed by the type strains of Bacillus cellulosilyticus (96.2 %), Bacillus clarkii (96.1 %) and Bacillus polygoni (96.0 %). The combination of phylogenetic analysis, DNA-DNA hybridization, phenotypic characteristics and chemotaxonomic data support the proposal that strain JSM 071004(T) represents a novel species of the genus Bacillus, for which the name Bacillus neizhouensis sp. nov. is proposed, with JSM 071004(T) (=CCTCC AB 207161(T) =DSM 19794(T) =KCTC 13187(T)) as the type strain.

  11. Enzymatic Properties of an Alkaline and Chelator Resistant Proportional to alpha-Amylase from the Alkaliphilic Bacillus sp. Isolate L1711

    NASA Technical Reports Server (NTRS)

    Bernhardsdotter, Eva C. M. J.; Pusey, Marc L.; Ng, Joseph D.; Garriott, Owen K.

    2004-01-01

    An alkaliphilic amylase producing bacterium, Bacillus sp. strain L1711, was selected among 13 soda lakes isolates. When grown at pH 10.5 and 370 C, strain L1711 produced multiple forms of amylases in the culture broth. One of these, BAA, was purified from the culture supernatant by QAE column chromatography and preparative native gel electrophoresis. The molecular weight of BAA was determined to be 51 kDa by denaturing gel electrophoresis. The pH optima for activity below and above 40 C were 9.5-10.0 and 7.0-7.5 respectively. BAA was stable in the pH range 6-11 and was completely inactivated at 55?C. The thermostability was not increased in the presence of Ca(2+). The enzyme was strongly inhibited by Ca(2+), Zn(2+), Mg(2+), Mn(2+), Ba(2+) and Cu(2+), whereas the presence of Na(+), Co2+ and EDTA (10 mM) enhanced enzymatic activity. The K(sub m) and specific activity of BAA on soluble starch were 1.9 mg/ml and 18.5 U/mg respectively. The main end products of hydrolysis were maltotetraose, maltose and glucose .

  12. Anditalea andensis ANESC-ST - An Alkaliphilic Halotolerant Bacterium Capable of Electricity Generation under Alkaline-Saline Conditions

    PubMed Central

    Shi, Wei; Wang, Victor Bochuan; Zhao, Cui-E; Zhang, Qichun; Loo, Say Chye Joachim; Yang, Liang; Xu, Chenjie

    2015-01-01

    A great challenge in wastewater bioremediation is the sustained activity of viable microorganisms, which can contribute to the breakdown of waste contaminants, especially in alkaline pH conditions. Identification of extremophiles with bioremediation capability can improve the efficiency of wastewater treatment. Here, we report the discovery of an electrochemically active alkaliphilic halotolerant bacterium, Anditalea andensis ANESC-ST (=CICC10485T=NCCB 100412T), which is capable of generating bioelectricity in alkaline–saline conditions. A. andensis ANESC-ST was shown to grow in alkaline conditions between pH 7.0–11.0 and also under high salt condition (up to 4 wt% NaCl). Electrical output was further demonstrated in microbial fuel cells (MFCs) with an average current density of ~0.5 µA/cm2, even under the harsh condition of 4 wt% NaCl and pH 9.0. Subsequent introduction of secreted extracellular metabolites into MFCs inoculated with Escherichia coli or Pseudomonas aeruginosa yielded enhanced electrical output. The ability of A. andensis ANESC-ST to generate energy under alkaline–saline conditions points towards a solution for bioelectricity recovery from alkaline–saline wastewater. This is the first report of A.andensis ANESC-ST producing bioelectricity at high salt concentration and pH. PMID:26171779

  13. Anditalea andensis ANESC-ST--An Alkaliphilic Halotolerant Bacterium Capable of Electricity Generation under Alkaline-Saline Conditions.

    PubMed

    Shi, Wei; Wang, Victor Bochuan; Zhao, Cui-E; Zhang, Qichun; Loo, Say Chye Joachim; Yang, Liang; Xu, Chenjie

    2015-01-01

    A great challenge in wastewater bioremediation is the sustained activity of viable microorganisms, which can contribute to the breakdown of waste contaminants, especially in alkaline pH conditions. Identification of extremophiles with bioremediation capability can improve the efficiency of wastewater treatment. Here, we report the discovery of an electrochemically active alkaliphilic halotolerant bacterium, Anditalea andensis ANESC-ST (=CICC10485T=NCCB 100412T), which is capable of generating bioelectricity in alkaline-saline conditions. A. andensis ANESC-ST was shown to grow in alkaline conditions between pH 7.0-11.0 and also under high salt condition (up to 4 wt% NaCl). Electrical output was further demonstrated in microbial fuel cells (MFCs) with an average current density of ~0.5 µA/cm2, even under the harsh condition of 4 wt% NaCl and pH 9.0. Subsequent introduction of secreted extracellular metabolites into MFCs inoculated with Escherichia coli or Pseudomonas aeruginosa yielded enhanced electrical output. The ability of A. andensis ANESC-ST to generate energy under alkaline-saline conditions points towards a solution for bioelectricity recovery from alkaline-saline wastewater. This is the first report of A.andensis ANESC-ST producing bioelectricity at high salt concentration and pH.

  14. Bacillus patagoniensis sp. nov., a novel alkalitolerant bacterium from the rhizosphere of Atriplex lampa in Patagonia, Argentina.

    PubMed

    Olivera, Nelda; Siñeriz, Faustino; Breccia, Javier D

    2005-01-01

    A Gram-positive, rod-shaped, spore-forming bacterium (PAT 05T) was isolated from the rhizosphere of the perennial shrub Atriplex lampa in north-eastern Patagonia, Argentina. Its overall biochemical and physiological characteristics indicated that this strain should be placed in the alkaliphilic Bacillus group. Strain PAT 05T grew at pH 7-10 (optimum pH 8), but not at pH 6. Its DNA G+C content was 39.7 mol%. Sequence analysis of the 16S rRNA gene of PAT 05T revealed the closest match (99.6 % similarity) with Bacillus sp. DSM 8714. The highest level of DNA-DNA relatedness (88.6 %) was also found with this strain. On the basis of 16S rRNA gene sequence similarity and phylogenetic analysis, G+C content and DNA-DNA hybridization data, strain PAT 05T is related at the species level to Bacillus sp. DSM 8714, a member of a group referred as phenon 4a by Nielsen et al. [Nielsen, P., Fritze, D. & Priest, F. G. (1995). Microbiology 141, 1745-1761], which still lacks taxonomic standing. These results support the proposal of strain PAT 05T (=DSM 16117T=ATCC BAA-965T) as the type strain of Bacillus patagoniensis sp. nov. PMID:15653916

  15. Bacillus patagoniensis sp. nov., a novel alkalitolerant bacterium from the rhizosphere of Atriplex lampa in Patagonia, Argentina.

    PubMed

    Olivera, Nelda; Siñeriz, Faustino; Breccia, Javier D

    2005-01-01

    A Gram-positive, rod-shaped, spore-forming bacterium (PAT 05T) was isolated from the rhizosphere of the perennial shrub Atriplex lampa in north-eastern Patagonia, Argentina. Its overall biochemical and physiological characteristics indicated that this strain should be placed in the alkaliphilic Bacillus group. Strain PAT 05T grew at pH 7-10 (optimum pH 8), but not at pH 6. Its DNA G+C content was 39.7 mol%. Sequence analysis of the 16S rRNA gene of PAT 05T revealed the closest match (99.6 % similarity) with Bacillus sp. DSM 8714. The highest level of DNA-DNA relatedness (88.6 %) was also found with this strain. On the basis of 16S rRNA gene sequence similarity and phylogenetic analysis, G+C content and DNA-DNA hybridization data, strain PAT 05T is related at the species level to Bacillus sp. DSM 8714, a member of a group referred as phenon 4a by Nielsen et al. [Nielsen, P., Fritze, D. & Priest, F. G. (1995). Microbiology 141, 1745-1761], which still lacks taxonomic standing. These results support the proposal of strain PAT 05T (=DSM 16117T=ATCC BAA-965T) as the type strain of Bacillus patagoniensis sp. nov.

  16. The c-ring stoichiometry of ATP synthase is adapted to cell physiological requirements of alkaliphilic Bacillus pseudofirmus OF4.

    PubMed

    Preiss, Laura; Klyszejko, Adriana L; Hicks, David B; Liu, Jun; Fackelmayer, Oliver J; Yildiz, Özkan; Krulwich, Terry A; Meier, Thomas

    2013-05-01

    The c-rings of ATP synthases consist of individual c-subunits, all of which harbor a conserved motif of repetitive glycine residues (GxGxGxG) important for tight transmembrane α-helix packing. The c-ring stoichiometry determines the number of ions transferred during enzyme operation and has a direct impact on the ion-to-ATP ratio, a cornerstone parameter of cell bioenergetics. In the extreme alkaliphile Bacillus pseudofirmus OF4, the glycine motif is replaced by AxAxAxA. We performed a structural study on two mutants with alanine-to-glycine changes using atomic force microscopy and X-ray crystallography, and found that mutants form smaller c12 rings compared with the WT c13. The molar growth yields of B. pseudofirmus OF4 cells on malate further revealed that the c12 mutants have a considerably reduced capacity to grow on limiting malate at high pH. Our results demonstrate that the mutant ATP synthases with either c12 or c13 can support ATP synthesis, and also underscore the critical importance of an alanine motif with c13 ring stoichiometry for optimal growth at pH >10. The data indicate a direct connection between the precisely adapted ATP synthase c-ring stoichiometry and its ion-to-ATP ratio on cell physiology, and also demonstrate the bioenergetic challenges and evolutionary adaptation strategies of extremophiles.

  17. Effects of genetic modifications and fermentation conditions on 2,3-butanediol production by alkaliphilic Bacillus subtilis.

    PubMed

    Białkowska, Aneta M; Jędrzejczak-Krzepkowska, Marzena; Gromek, Ewa; Krysiak, Joanna; Sikora, Barbara; Kalinowska, Halina; Kubik, Celina; Schütt, Fokko; Turkiewicz, Marianna

    2016-03-01

    Two recombinants of alkaliphilic Bacillus subtilis LOCK 1086, constructed via different strategies such as cloning the gene encoding bacterial hemoglobin from Vitreoscilla stercoraria (vhb) and overexpression of the gene encoding acetoin reductase/2,3-butanediol dehydrogenase (bdhA) from B. subtilis LOCK 1086, did not produce more 2,3-butanediol (2,3-BD) than the parental strain. In batch fermentations, this strain synthesized 9.46 g/L in 24 h and 12.80 g/L 2,3-BD in 46 h from sugar beet molasses and an apple pomace hydrolysate, respectively. 2,3-BD production by B. subtilis LOCK 1086 was significantly enhanced in fed-batch fermentations. The highest 2,3-BD concentration (75.73 g/L in 114 h, productivity of 0.66 g/L × h) was obtained in the sugar beet molasses-based medium with four feedings with glucose. In a medium based on the apple pomace hydrolysate with three feedings with sucrose, B. subtilis LOCK 1086 produced up to 51.53 g/L 2,3-BD (in 120 h, productivity of 0.43 g/L × h). PMID:26590588

  18. Sodium-Dependent Glutamate Uptake by an Alkaliphilic, Thermophilic Bacillus Strain, TA2.A1

    PubMed Central

    Peddie, Catherine J.; Cook, Gregory M.; Morgan, Hugh W.

    1999-01-01

    A strain of Bacillus designated TA2.A1, isolated from a thermal spring in Te Aroha, New Zealand, grew optimally at pH 9.2 and 70°C. Bacillus strain TA2.A1 utilized glutamate as a sole carbon and energy source for growth, and sodium chloride (>5 mM) was an obligate requirement for growth. Growth on glutamate was inhibited by monensin and amiloride, both inhibitors that collapse the sodium gradient (ΔpNa) across the cell membrane. N,N-Dicyclohexylcarbodiimide inhibited the growth of Bacillus strain TA2.A1, suggesting that an F1F0-ATPase (H type) was being used to generate cellular ATP needed for anabolic reactions. Vanadate, an inhibitor of V-type ATPases, did not affect the growth of Bacillus strain TA2.A1. Glutamate transport by Bacillus strain TA2.A1 could be driven by an artificial membrane potential (ΔΨ), but only when sodium was present. In the absence of sodium, the rate of ΔΨ-driven glutamate uptake was fourfold lower. No glutamate transport was observed in the presence of ΔpNa alone (i.e., no ΔΨ). Glutamate uptake was specifically inhibited by monensin, and the Km for sodium was 5.6 mM. The Hill plot had a slope of approximately 1, suggesting that sodium binding was noncooperative and that the glutamate transporter had a single binding site for sodium. Glutamate transport was not affected by the protonophore carbonyl cyanide m-chlorophenylhydrazone, suggesting that the transmembrane pH gradient was not required for glutamate transport. The rate of glutamate transport increased with increasing glutamate concentration; the Km for glutamate was 2.90 μM, and the Vmax was 0.7 nmol · min−1 mg of protein. Glutamate transport was specifically inhibited by glutamate analogues. PMID:10322019

  19. Optimization of medium composition for the production of alkaline beta-mannanase by alkaliphilic Bacillus sp. N16-5 using response surface methodology.

    PubMed

    Lin, Shan-shan; Dou, Wen-fang; Xu, Hong-yu; Li, Hua-zhong; Xu, Zheng-hong; Ma, Yan-he

    2007-07-01

    In this work, a 2(2) factorial design was employed combining with response surface methodology (RSM) to optimize the medium compositions for the production of alkaline beta-mannanase by alkaliphilic Bacillus sp. N16-5 isolated previously from sediment of Wudunur Soda Lake in Inner Mongolia, China. The central composite design (CCD) used for the analysis of treatment combinations showed that a second-order polynomial regression model was in good agreement with experimental results, with R (2) = 0.9829 (P < 0.05). The maximum activity was obtained at NaCl concentration (84.4 g l(-1)) and sodium glutamate (3.11 g l(-1)) and a high medium pH around 10.0. Under such conditions, the activity of alkaline beta-mannanase achieved 310.1 U/ml in the scale of 5-l fermenter, which was increased nearly twice compared with the original. Through optimization, the substrates shifted from the expensive substrates, such as locust bean gum and peptone, to the inexpensive ones such as konjac powder, soymeal, and sodium glutamate. The experiment results also suggested that the environmental conditions of high salinity and high alkalinity, as well as the inducer substrates, play very important roles in the production of the alkaline beta-mannanase by alkaliphilic Bacillus sp. N16-5. PMID:17361429

  20. Sequence analysis, cloning and over-expression of an endoxylanase from the alkaliphilic Bacillus halodurans.

    PubMed

    Martínez, M Alejandra; Delgado, Osvaldo D; Baigorí, Mario D; Siñeriz, Faustino

    2005-04-01

    The BhMIR32 xyn11A gene, encoding an extracellular endoxylanase of potential interest in bio-bleaching applications, was amplified from Bacillus halodurans MIR32 genomic DNA. The protein encoded is an endo-1,4-beta-xylanase belonging to family 11 of glycosyl hydrolases. Its nucleotide sequence was analysed and the mature peptide was subcloned into pET22b(+) expression vector. The enzyme was over-expressed in a high density Escherichia coli culture as a soluble and active protein, and purified in a single step by immobilised metal ion affinity chromatography with a specific activity of 3073 IU mg-1. PMID:15973487

  1. Application of enzymatic apple pomace hydrolysate to production of 2,3-butanediol by alkaliphilic Bacillus licheniformis NCIMB 8059.

    PubMed

    Białkowska, Aneta M; Gromek, Ewa; Krysiak, Joanna; Sikora, Barbara; Kalinowska, Halina; Jędrzejczak-Krzepkowska, Marzena; Kubik, Celina; Lang, Siegmund; Schütt, Fokko; Turkiewicz, Marianna

    2015-12-01

    2,3-Butanediol (2,3-BD) synthesis by a nonpathogenic bacterium Bacillus licheniformis NCIMB 8059 from enzymatic hydrolysate of depectinized apple pomace and its blend with glucose was studied. In shake flasks, the maximum diol concentration in fed-batch fermentations was 113 g/L (in 163 h, from the hydrolysate, feedings with glucose) while in batch processes it was around 27 g/L (in 32 h, from the hydrolysate and glucose blend). Fed-batch fermentations in the 0.75 and 30 L fermenters yielded 87.71 g/L 2,3-BD in 160 h, and 72.39 g/L 2,3-BD in 94 h, respectively (from the hydrolysate and glucose blend, feedings with glucose). The hydrolysate of apple pomace, which was for the first time used for microbial 2,3-BD production is not only a source of sugars but also essential minerals. PMID:26445877

  2. Production of Alkaline Protease by Solvent-Tolerant Alkaliphilic Bacillus circulans MTCC 7942 Isolated from Hydrocarbon Contaminated Habitat: Process Parameters Optimization

    PubMed Central

    Patil, Ulhas; Chaudhari, Ambalal

    2013-01-01

    In the present investigation, a newly isolated organic solvent-tolerant and alkaliphilic bacterial strain was reported from a hydrocarbon (gasoline and diesel) contaminated soil collected from the petrol station, Shirpur (India). The strain was identified as Bacillus circulans MTCC 7942, based on phenotype, biochemical, and phylogenetic analysis of 16S rRNA gene sequence. The capability of Bacillus circulans to secrete an extracellular, thermostable, alkaline protease and grow in the presence of organic solvents was explored. Bacillus circulans produced maximum alkaline protease (412 U/mL) in optimized medium (g/L): soybean meal, 15; starch, 10; KH2PO4, 1; MgSO4·7H2O, 0.05; CaCl2, 1; Na2CO3, 8; pH 10.0 at 37°C and 100 rpm. The competence of strain to grow in various organic solvents—n-octane, dodecane, n-decane, N,N-dimethylformamide, n-hexane, and dimethyl sulfoxide, establishes its potential as solvent-stable protease source for the possible applications in nonaqueous reactions and fine chemical synthesis. PMID:25937965

  3. Characterization of Alkaliphilus hydrothermalis sp. nov., a novel alkaliphilic anaerobic bacterium, isolated from a carbonaceous chimney of the Prony hydrothermal field, New Caledonia.

    PubMed

    Ben Aissa, Fatma; Postec, Anne; Erauso, Gaël; Payri, Claude; Pelletier, Bernard; Hamdi, Moktar; Fardeau, Marie-Laure; Ollivier, Bernard

    2015-01-01

    A novel anaerobic, alkaliphilic, Gram-positive staining bacterium was isolated from a hydrothermal chimney in the Prony Bay, New Caledonia. This strain designated FatMR1(T) grew at temperatures from 20 to 55 °C (optimum 37 °C) and at pH between 7.5 and 10.5 (optimum 8.8-9). NaCl is not required for growth (optimum 0.2-0.5%), but is tolerated up to 3%. Sulfate, thiosulfate, elemental sulfur, sulfite, nitrate and nitrite are not used as terminal electron acceptors. Strain FatMR1(T) fermented pyruvate, yeast extract, peptone and biotrypcase and used fructose as the only sugar. The main fermentation products from fructose and proteinaceous compounds (e.g. peptone and biotrypcase) were acetate, H2 and CO2. Crotonate was disproportionated to acetate and butyrate. The predominant cellular fatty acids were C14:0 and C16:0. The G + C content of the genomic DNA was 37.1 mol%. On the basis of phylogenetic, genetic, and physiological properties, strain FatMR1(T) (=DSM 25890(T), =JCM 18390(T)) belonging to the phylum Firmicutes, class Clostridia, order Clostridiales, is proposed as a novel species of the genus Alkaliphilus, A. hydrothermalis sp. nov. PMID:25319677

  4. Characterization of Alkaliphilus hydrothermalis sp. nov., a novel alkaliphilic anaerobic bacterium, isolated from a carbonaceous chimney of the Prony hydrothermal field, New Caledonia.

    PubMed

    Ben Aissa, Fatma; Postec, Anne; Erauso, Gaël; Payri, Claude; Pelletier, Bernard; Hamdi, Moktar; Fardeau, Marie-Laure; Ollivier, Bernard

    2015-01-01

    A novel anaerobic, alkaliphilic, Gram-positive staining bacterium was isolated from a hydrothermal chimney in the Prony Bay, New Caledonia. This strain designated FatMR1(T) grew at temperatures from 20 to 55 °C (optimum 37 °C) and at pH between 7.5 and 10.5 (optimum 8.8-9). NaCl is not required for growth (optimum 0.2-0.5%), but is tolerated up to 3%. Sulfate, thiosulfate, elemental sulfur, sulfite, nitrate and nitrite are not used as terminal electron acceptors. Strain FatMR1(T) fermented pyruvate, yeast extract, peptone and biotrypcase and used fructose as the only sugar. The main fermentation products from fructose and proteinaceous compounds (e.g. peptone and biotrypcase) were acetate, H2 and CO2. Crotonate was disproportionated to acetate and butyrate. The predominant cellular fatty acids were C14:0 and C16:0. The G + C content of the genomic DNA was 37.1 mol%. On the basis of phylogenetic, genetic, and physiological properties, strain FatMR1(T) (=DSM 25890(T), =JCM 18390(T)) belonging to the phylum Firmicutes, class Clostridia, order Clostridiales, is proposed as a novel species of the genus Alkaliphilus, A. hydrothermalis sp. nov.

  5. Humic substance-mediated reduction of iron(III) oxides and degradation of 2,4-D by an alkaliphilic bacterium, Corynebacterium humireducens MFC-5

    PubMed Central

    Wu, Chun-yuan; Zhuang, Li; Zhou, Shun-gui; Yuan, Yong; Yuan, Tian; Li, Fang-bai

    2013-01-01

    With the use of an alkaliphilic bacterium, Corynebacterium humireducens MFC-5, this study investigated the reduction of goethite (α-FeOOH) and degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) mediated by different humic substances (humics) and quinones in alkaline conditions (pH of 9.0). The results indicated that (i) using sucrose as the electron donor, the strain MFC-5 was capable of reducing anthraquinone-2,6-disulfonic acid (AQDS), anthraquinone-2-disulfonic acid (AQS), anthraquinone-2-carboxylic acid (AQC), humic acid (HA) and fulvic acid (FA), and its reducing capability ranked as AQC > AQS > AQDS > FA > HA; (ii) the anaerobic reduction of α-FeOOH and 2,4-D by the strain was insignificant, while the reductions were greatly enhanced by the addition of quinones/humics serving as redox mediators; (iii) the Fe(III) reduction rate was positively related to the content of quinone functional groups and the electron-accepting capacities (EAC) of quinones/humics based on fourier-transform infrared spectroscopy (FT-IR) and electrochemical analyses; however, such a relationship was not found in 2,4-D degradation probably because quinone reduction was not the rate-limiting step of quinone-mediated reduction of 2,4-D. Using the example of α-FeOOH and 2,4-D, this study well demonstrated the important role of humics reduction on the Fe(III)/Fe(II) biogeochemical cycle and chlorinated organic compounds degradation in alkaline reducing environments. Funding Information This study was supported by the National Natural Science Foundation of China (Nos 41101211, 31070460, 41101477), and The Project Sponsored by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry. PMID:23217085

  6. Optimization and purification of mannanase produced by an alkaliphilic-thermotolerant Bacillus cereus N1 isolated from Bani Salama Lake in Wadi El-Natron

    PubMed Central

    El-Sharouny, Ebaa Ebrahim; El-Toukhy, Nabil M.K.; El-Sersy, Nermeen Ahmed; El-Gayar, Abeer Abd El-Aal

    2015-01-01

    An alkaliphilic-thermotolerant Bacillus cereus N1 isolated from Bani Salama Lake, Wadi El-Natron, Egypt, was proved to produce mannanase enzyme. Optimization of the fermentation medium components using Plackett–Burman design was applied. Glucose and inoculum size were found to be the most significant factors enhancing the production of the enzyme. On applying optimized medium in the fermentation process, an enzyme productivity of 42.2 UmL−1 was achieved with 6.4 fold increase compared to the basal one. Mannanase was also extracted and purified using chromatography such as ion-exchange chromatographic and gel filtration methods. It was indicated that, the mannanase activity extracted and purified from the isolate B. cereus N1 was reduced to 321.6 U (about 36% of the whole mannanase in the culture filtrate) in comparison with the initial mannanase activity (900 U) and the total protein content reduced to 52 mg (the initial total protein content was 220 mg). However, the specific activity for the mannanase from B. cereus N1 at the end of the purification steps was found to be about 628 Umg−1 compared to 4.2 Umg−1 at the initial culture filtrate. It was also indicated that the mannanase enzyme was purified almost 149-fold. PMID:26019646

  7. Chimaereicella alkaliphila gen. nov., sp. nov., a Gram-negative alkaliphilic bacterium isolated from a nonsaline alkaline groundwater.

    PubMed

    Tiago, Igor; Mendes, Vítor; Pires, Carlos; Morais, Paula V; Veríssimo, António

    2006-03-01

    A Gram-negative bacterium designated AC-74(T) was isolated from a highly alkaline groundwater environment (pH 11.4). This organism formed rod-shaped cells, is strictly aerobic, catalase and oxidase positive, tolerates up to 3.0% NaCl, has an optimum growth temperature of 30 degrees C, but no growth occurs at 10 or 40 degrees C, and an optimum pH value of 8.0, but no growth occurs at pH 7.0 or 11.3. The predominant fatty acids are iso-15:0, iso-17:1 omega9c and 16:1 omega7c and or iso-15:2OH. The G+C content of DNA was 43.5mol%. The phylogenetic analyses of the sequences of the 16s RNA genes indicated that strain AC-74(T) belongs to the family "Flexibacteriaceae" and is phylogenetically equidistant ( approximately 94.5%) from the majority of the species of the genus Algoriphagus and from the genus Hongiella. Based on the phylogenetic analyses and distinct phenotypic characteristics, we are of the opinion that strain AC-74(T), represents a new species of the novel genus for which we propose the name Chimaereicella alkaliphila gen. nov., sp. nov.

  8. Anditalea andensis gen. nov., sp. nov., an alkaliphilic, halotolerant bacterium isolated from extreme alkali-saline soil.

    PubMed

    Shi, Wei; Takano, Tetsuo; Liu, Shenkui

    2012-11-01

    A novel alkalophilic salt-tolerant rod-shaped bacterium, designated ANESC-S(T), was isolated from an extremely alkali-saline soil in the rural area of Anda city in northeast China. Taxonomic study using a polyphasic approach revealed that this non-motile, orange colony-forming microbe was Gram-negative and obligately aerobic. Optimal growth of strain ANESC-S(T) was achieved in the presence of NaCl with a concentration range of 0.5 to 4 % and pH between 7.5 and 9.2, and at temperatures ranging from 10 to 37 °C. Phylogenetic analysis of 16S rRNA sequences showed that of strain ANESC-S(T) is most homologous to Mongoliicoccus roseus MIM28(T) and Litoribacter ruber YIM CH208(T) with sequence similarity of 95.1 and 93.2 %, respectively. The genomic DNA G+C content of strain ANESC-S(T) was determined to be 39.1 mol%. The main isoprenoid quinone in ANESC-S(T) was found to be menaquinone-7. The main fatty acids were found to be iso-C(15:0) (27.5 %), iso-C(17:0)3-OH (14.0 %), anteiso-C(15:0) (9.8 %), summed feature 9 (iso-C(17:1)ω9c and/or 10-methyl C(16:0) 10.6 %) and summed feature 3 (C(16:1)w7c/C(16:1)w6c, 9.78 %). Based on the phenotypic, chemotaxonomic and phylogenetic data, strain ANESC-S(T) is considered to represent a new genus and species classified into the order Cytophagales, for which the name Anditalea andensis gen. nov., sp. nov. is proposed. The type strain is ANESC-S(T) (=CICC 10485(T) = NCCB 100412(T)).

  9. Draft Genome Sequence of Bacillus alcalophilus AV1934, a Classic Alkaliphile Isolated from Human Feces in 1934.

    PubMed

    Attie, Oliver; Jayaprakash, Anitha; Shah, Hardik; Paulsen, Ian T; Morino, Masato; Takahashi, Yuka; Narumi, Issay; Sachidanandam, Ravi; Satoh, Katsuya; Ito, Masahiro; Krulwich, Terry A

    2014-01-01

    Bacillus alcalophilus AV1934, isolated from human feces, was described in 1934 before microbiome studies and recent indications of novel potassium ion coupling to motility in this extremophile. Here, we report draft sequences that will facilitate an examination of whether that coupling is part of a larger cycle of potassium ion-coupled transporters. PMID:25395643

  10. Detergent-, solvent- and salt-compatible thermoactive alkaline serine protease from halotolerant alkaliphilic Bacillus sp. NPST-AK15: purification and characterization.

    PubMed

    Ibrahim, Abdelnasser S S; Al-Salamah, Ali A; El-Badawi, Yahya B; El-Tayeb, Mohamed A; Antranikian, Garabed

    2015-09-01

    Alkaline protease produced by the halotolerant alkaliphilic Bacillus sp. strain NPST-AK15 was purified to homogeneity by the combination of ammonium sulfate precipitation, anion-exchange and gel permeation chromatography. The purified enzyme was a monomeric protein with an estimated molecular weight of 32 kDa. NPST-AK15 protease was highly active and stable over a wide pH range, with a maximal activity at pH 10.5. The enzyme showed optimum activity at 60 °C and was stable at 30-50 °C for at least 1 h. Thermal stability of the purified protease was substantially improved by CaCl2 (1.1- to 6.6-fold). The K m, V max and k cat values for the enzyme were 2.5 mg ml(-1), 42.5 µM min(-1) mg(-1), and 392.46 × 10(3) min(-1), respectively. NPST-AK15 protease activity was strongly inhibited by PMSF, suggesting that the enzyme is a serine protease. The enzyme was highly stable in NaCl up to 20 % (w/v). Moreover, the purified enzyme was stable in several organic solvents such as diethyl ether, benzene, toluene, and chloroform. In addition, it showed high stability and compatibility with a wide range of surfactants and commercial detergents and was slightly activated by hydrogen peroxide. These features of NPST-AK15 protease make this enzyme a promising candidate for application in the laundry and pharmaceutical industries.

  11. Bacillus lehensis sp. nov., an alkalitolerant bacterium isolated from soil.

    PubMed

    Ghosh, A; Bhardwaj, M; Satyanarayana, T; Khurana, M; Mayilraj, S; Jain, R K

    2007-02-01

    A Gram-positive, endospore-forming, alkalitolerant bacterial strain, designated MLB2T, was isolated from soil from Leh, India, and was subjected to a polyphasic taxonomic study. The strain exhibited phenotypic properties that included chemotaxonomic characteristics consistent with its classification in the genus Bacillus. Growth was observed at pH 7.0-11.0, but not at pH 6.0. The DNA G+C content was 41.4 mol%. The highest level of 16S rRNA gene sequence similarity was with Bacillus oshimensis JCM 12663T (98.8 %). However, DNA-DNA hybridization experiments indicated low levels of genomic relatedness with the type strains of B. oshimensis (62 %), Bacillus patagoniensis (55 %), Bacillus clausii (51 %) and Bacillus gibsonii (34 %), the species with which strain MLB2T formed a coherent cluster (based on the results of the phylogenetic analysis). On the basis of the phenotypic characteristics and genotypic distinctiveness of strain MLB2T, it should be classified within a novel species of Bacillus, for which the name Bacillus lehensis sp. nov. is proposed. The type strain is MLB2T (=MTCC 7633T=JCM 13820T). PMID:17267957

  12. Draft Genome Sequence of a Bacillus Bacterium from the Atacama Desert Wetlands Metagenome

    PubMed Central

    Vilo, Claudia; Galetovic, Alexandra; Araya, Jorge E.; Dong, Qunfeng

    2015-01-01

    We report here the draft genome sequence of a Bacillus bacterium isolated from the microflora of Nostoc colonies grown at the Andean wetlands in northern Chile. We consider this genome sequence to be a molecular tool for exploring microbial relationships and adaptation strategies to the prevailing extreme conditions at the Atacama Desert. PMID:26294639

  13. The Respiratory Chain of Alkaliphilic Bacteria

    SciTech Connect

    Terry Ann Krulwich

    2008-01-29

    Alkaliphilic bacteria that grow at extremely high pH are confronted by particular bioenergetic problems in carrying out oxidative phosphorylation. This project focused on the properties and adaptations of the respiratory chain. The respiratory chain as a whole, the redox poises of its components and several individual complexes of the respiratory chain of alkaliphilic Bacillus pseudofirmus OF4 have been characterized as part of this project and, importantly, this project has helped support the development of genetic tools that make B. pseudofirmus OF4 the most genetically tractable and, hence, most bioenergetically characterized extreme alkaliphile. Evidence has been obtained for a pivotal role of the cca3-type terminal oxidase in oxidative phosphorylation, especially at high pH and motifs that may be relevant to that special role have been identified.

  14. Bacillus marcorestinctum sp. nov., a Novel Soil Acylhomoserine Lactone Quorum-Sensing Signal Quenching Bacterium

    PubMed Central

    Han, Yan; Chen, Fang; Li, Nuo; Zhu, Bo; Li, Xianzhen

    2010-01-01

    A Gram-positive, facultatively anaerobic, endospore-forming and rod-shaped bacterium was isolated from soil samples and designated strain LQQ. This organism strongly quenches the acylhomoserine lactone quorum-sensing signal. The LQQ strain exhibits phenotypic characteristics consistent with its classification in the genus Bacillus. It is positive in catalase and no special growth factor is needed. It uses glucose as sole carbon source. The DNA G + C content is 39.8 mol %. The closest relatives based on the 16S rRNA gene sequence are Bacillus anthracis, Bacillus thuringiensis, and Brevibacillus brevis (syn. Bacillus brevis) with the similarity of 96.5%. The DNA–DNA hybridization data indicates a low level of genomic relatedness with the relative type strains of Bacillus thuringiensis (6.1%), Bacillus anthracis (10.5%) and Brevibacillus brevis (8.7%). On the basis of the phenotypic and phylogenetic data together with the genomic distinctiveness, the LQQ strain represents a novel species of the genus Bacillus, for which the name Bacillus marcorestinctum sp. nov. is proposed. The type strain is LQQT. PMID:20386651

  15. Sorbitol counteracts temperature- and chemical-induced denaturation of a recombinant α-amylase from alkaliphilic Bacillus sp. TS-23.

    PubMed

    Chi, Meng-Chun; Wu, Tai-Jung; Chen, Hsing-Ling; Lo, Huei-Fen; Lin, Long-Liu

    2012-12-01

    Enzymes are highly complex systems with a substantial degree of structural variability in their folded state. In the presence of cosolvents, fluctuations among vast numbers of folded and unfolded conformations occur via many different pathways; alternatively, certain conformations can be stabilized or destabilized. To understand the contribution of osmolytes to the stabilization of structural changes and enzymatic activity of a truncated Bacillus sp. TS-23 α-amylase (BACΔNC), we monitored amylolytic activity, circular dichroism, and fluorescence as a function of osmolytes. In the presence of trimethylamine N-oxide (TMAO) and sorbitol, BACΔNC activity was retained significantly at elevated temperatures. As compared to the control, the secondary structures of this enzyme were essentially conserved upon the addition of these two kinds of osmolytes. Fluorescence results revealed that the temperature-induced conformational change of BACΔNC was prevented by TMAO and sorbitol. However, glycerol did not provide profound protection against thermal denaturation of the enzyme. Sorbitol was further found to counteract guanidine hydrochloride- and SDS-induced denaturation of BACΔNC. Thus, some well-known naturally occurring osmolytes make a dominant contribution to the stabilization of BACΔNC.

  16. Alkaline protease production, extraction and characterization from alkaliphilic Bacillus licheniformis KBDL4: a Lonar soda lake isolate.

    PubMed

    Pathak, Anupama P; Deshmukh, Kshipra B

    2012-08-01

    A bacterium producing an alkaline protease was isolated from the Lonar soda lake, Buldhana district (19 degrees 58' N; 76 degrees 31' E), Maharashtra, India. The most appropriate medium for the growth and protease production was composed of (g/L): casein 10; yeast extract 4; KH2PO4 0.5, K2HPO4 0.5 and CaCl2 0.5. The enzyme showed maximum activity with and without 5 mM Ca2+ at 70 and 60 degrees C, respectively. The enzyme retained 40 and 82% of its initial activity after heating for 60 min at 60 degrees C, in absence and presence of 5 mM CaCl2 respectively. The enzyme remained active and stable at pH 8-12, with an optimum at pH 10. The enzyme showed stability towards non-ionic and anionic surfactants, and oxidizing agents. It also showed excellent stability and compatibility with commonly used laundry detergents. Wash performance analysis revealed that enzyme could effectively remove blood stains. It also showed decomposition of gelatinous coating on X- ray film.

  17. Alkaline protease production, extraction and characterization from alkaliphilic Bacillus licheniformis KBDL4: a Lonar soda lake isolate.

    PubMed

    Pathak, Anupama P; Deshmukh, Kshipra B

    2012-08-01

    A bacterium producing an alkaline protease was isolated from the Lonar soda lake, Buldhana district (19 degrees 58' N; 76 degrees 31' E), Maharashtra, India. The most appropriate medium for the growth and protease production was composed of (g/L): casein 10; yeast extract 4; KH2PO4 0.5, K2HPO4 0.5 and CaCl2 0.5. The enzyme showed maximum activity with and without 5 mM Ca2+ at 70 and 60 degrees C, respectively. The enzyme retained 40 and 82% of its initial activity after heating for 60 min at 60 degrees C, in absence and presence of 5 mM CaCl2 respectively. The enzyme remained active and stable at pH 8-12, with an optimum at pH 10. The enzyme showed stability towards non-ionic and anionic surfactants, and oxidizing agents. It also showed excellent stability and compatibility with commonly used laundry detergents. Wash performance analysis revealed that enzyme could effectively remove blood stains. It also showed decomposition of gelatinous coating on X- ray film. PMID:23016494

  18. Bacillus shacheensis sp. nov., a moderately halophilic bacterium isolated from a saline-alkali soil.

    PubMed

    Lei, Zuchao; Qiu, Peng; Ye, Renyuan; Tian, Jiewei; Liu, Yang; Wang, Lei; Tang, Shu-Kun; Li, Wen-Jun; Tian, Yongqiang

    2014-01-01

    A moderately halophilic bacterium, strain HNA-14(T), was isolated from a saline-alkali soil sample collected in Shache County, Xinjiang Province. On the basis of the polyphasic taxonomic data, the isolate was considered to be a member of the genus Bacillus. The organism grew optimally at 30 °C and pH 8.0. It was moderately halophilic and its optimum growth occurred at 5-10% NaCl. The diamino acid found in the cell-wall peptidoglycan was meso-diaminopimelic acid and the predominant menaquinone was MK-7. The major cellular fatty acids were anteiso-C15:0 and iso-C15:0 and the polar lipid profile consisted of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol, phosphatidylinositol mannosides and two unknown phospholipids. The G+C content of the genomic DNA was 48.6 mol%. Strain HNA-14(T) exhibited a low 16S rRNA gene sequence similarity of 96% with its nearest neighbors [Bacillus clausii KSM-K16 (96.5%), Bacillus xiaoxiensis DSM 21943(T)(96.2%), Bacillus clausii DSM 8716(T) (96.1%), Bacillus patagoniensis PAT05(T) (96.1%), Bacillus lehensis MLB-2(T) (96.0%), Bacillus oshimensis K11(T) (95.9%) and Bacillus hunanensis DSM 23008(T) (95.8%)] and the phenotypic characteristics indicate that strain HNA-14(T) can be distinguished from them. Therefore, a novel species of the genus Bacillus, Bacillus shacheensis sp. nov. (type strain, HNA-14(T) = KCTC 33145 = DSM 26902) is proposed. PMID:25008165

  19. Keratinolytic activities of alkaliphilic Bacillus sp. MBRL 575 from a novel habitat, limestone deposit site in Manipur, India.

    PubMed

    Kshetri, Pintubala; Ningthoujam, Debananda S

    2016-01-01

    Microbial degradation of keratinous wastes is preferred over physicochemical methods as the latter is costlier and not eco-friendly. Novel habitats are promising for discovery of new microbial strains. Towards discovery of novel keratinolytic bacteria, screening of bacterial strains from a novel limestone habitat in Hundung, Manipur, India was done and a promising isolate, MBRL 575, was found to degrade native chicken feather efficiently. It could grow over a broad pH range (Langeveld et al. in J Infect Dis 188:1782-1789, 2003; Park and Son in Microbiol Res 164:478-485, 2009; Zaghloul et al. in Biodegradation 22:111-128, 2011; Takami et al. in Biosci Biotechnol Biochem 56:1667-1669, 1992; Riffel et al. in J Biotechnol 128:693-703, 2007; Wang et al. in Bioresour Technol 99:5679-5686, 2008) and in presence of 0-15 % NaCl. Based on phenotypic characterization and 16S rRNA gene sequence analysis, the new keratinolytic limestone isolate was identified as Bacillus sp. MBRL 575. It produced 305 ± 12 U/ml keratinase and liberated 120 ± 5.5 mg of soluble peptides and 158 ± 4 mg of amino acids per gram of feather after 48 h of incubation at 30 °C in chicken feather medium. The strain could also degrade feathers of other species besides chicken. The cell-free enzyme was also able to degrade feather. Citrate and soybean meal were found to be the best carbon and nitrogen supplements for enhanced enzyme, soluble peptide and amino acid production. In addition to keratinolytic activity, MBRL 575 also exhibited antagonistic activity against two major rice fungal pathogens, Rhizoctonia oryzae-sativae (65 %) and Rhizoctonia solani (58 %). PMID:27247891

  20. Complete Genome Sequence of a thermotolerant sporogenic lactic acid bacterium, Bacillus coagulans strain 36D1

    SciTech Connect

    Xie, Gary; Dalin, Eileen; Tice, Hope; Chertkov, Olga; Land, Miriam L

    2011-01-01

    Bacillus coagulans is a ubiquitous soil bacterium that grows at 50-55 C and pH 5.0 and fer-ments various sugars that constitute plant biomass to L (+)-lactic acid. The ability of this sporogenic lactic acid bacterium to grow at 50-55 C and pH 5.0 makes this organism an attractive microbial biocatalyst for production of optically pure lactic acid at industrial scale not only from glucose derived from cellulose but also from xylose, a major constituent of hemi-cellulose. This bacterium is also considered as a potential probiotic. Complete genome squence of a representative strain, B. coagulans strain 36D1, is presented and discussed.

  1. Complete Genome Sequence of a thermotolerant sporogenic lactic acid bacterium, Bacillus coagulans strain 36D1

    SciTech Connect

    Rhee, Mun Su; Moritz, Brelan E.; Xie, Gary; Glavina Del Rio, Tijana; Dalin, Eileen; Tice, Hope; Bruce, David; Goodwin, Lynne A.; Chertkov, Olga; Brettin, Thomas S; Han, Cliff; Detter, J. Chris; Pitluck, Sam; Land, Miriam L; Patel, Milind; Ou, Mark; Harbrucker, Roberta; Ingram, Lonnie O.; Shanmugam, Keelnathan T.

    2011-01-01

    Bacillus coagulans is a ubiquitous soil bacterium that grows at 50-55 C and pH 5.0 and fer- ments various sugars that constitute plant biomass to L (+)-lactic acid. The ability of this spo- rogenic lactic acid bacterium to grow at 50-55 C and pH 5.0 makes this organism an attrac- tive microbial biocatalyst for production of optically pure lactic acid at industrial scale not only from glucose derived from cellulose but also from xylose, a major constituent of hemi- cellulose. This bacterium is also considered as a potential probiotic. Complete genome se- quence of a representative strain, B. coagulans strain 36D1, is presented and discussed.

  2. Complete Genome Sequence of a thermotolerant sporogenic lactic acid bacterium, Bacillus coagulans strain 36D1

    PubMed Central

    Rhee, Mun Su; Moritz, Brélan E.; Xie, Gary; Glavina del Rio, T.; Dalin, E.; Tice, H.; Bruce, D.; Goodwin, L.; Chertkov, O.; Brettin, T.; Han, C.; Detter, C.; Pitluck, S.; Land, Miriam L.; Patel, Milind; Ou, Mark; Harbrucker, Roberta; Ingram, Lonnie O.; Shanmugam, K. T.

    2011-01-01

    Bacillus coagulans is a ubiquitous soil bacterium that grows at 50-55 °C and pH 5.0 and ferments various sugars that constitute plant biomass to L (+)-lactic acid. The ability of this sporogenic lactic acid bacterium to grow at 50-55 °C and pH 5.0 makes this organism an attractive microbial biocatalyst for production of optically pure lactic acid at industrial scale not only from glucose derived from cellulose but also from xylose, a major constituent of hemicellulose. This bacterium is also considered as a potential probiotic. Complete genome sequence of a representative strain, B. coagulans strain 36D1, is presented and discussed. PMID:22675583

  3. Genome Sequence of the Boron-Tolerant and -Requiring Bacterium Bacillus boroniphilus

    PubMed Central

    Çöl, Bekir; Özkeserli, Zeynep; Kumar, Dibyendu; Özdağ, Hilal

    2014-01-01

    Bacillus boroniphilus is a highly boron-tolerant bacterium that also requires this element for its growth. The complete genome sequence of B. boroniphilus was determined by a combination of shotgun sequencing and paired-end sequencing using 454 pyrosequencing technology. A total of 84,872,624 reads from shotgun sequencing and a total of 194,092,510 reads from paired-end sequencing were assembled using Newbler 2.3. The estimated size of the draft genome is 5.2 Mb. PMID:24385571

  4. Whole genome shotgun sequence of Bacillus amyloliquefaciens TF28, a biocontrol entophytic bacterium.

    PubMed

    Zhang, Shumei; Jiang, Wei; Li, Jing; Meng, Liqiang; Cao, Xu; Hu, Jihua; Liu, Yushuai; Chen, Jingyu; Sha, Changqing

    2016-01-01

    Bacillus amyloliquefaciens TF28 is a biocontrol endophytic bacterium that is capable of inhibition of a broad range of plant pathogenic fungi. The strain has the potential to be developed into a biocontrol agent for use in agriculture. Here we report the whole-genome shotgun sequence of the strain. The genome size of B. amyloliquefaciens TF28 is 3,987,635 bp which consists of 3754 protein-coding genes, 65 tandem repeat sequences, 47 minisatellite DNA, 2 microsatellite DNA, 63 tRNA, 7rRNA, 6 sRNA, 3 prophage and CRISPR domains. PMID:27688836

  5. Bacillus thermotolerans sp. nov., a thermophilic bacterium capable of reducing humus.

    PubMed

    Yang, Guiqin; Zhou, Xuemei; Zhou, Shungui; Yang, Dehui; Wang, Yueqiang; Wang, Dingmei

    2013-10-01

    A novel thermotolerant bacterium, designated SgZ-8(T), was isolated from a compost sample. Cells were non-motile, endospore-forming, Gram-staining positive, oxidase-negative and catalase-positive. The isolate was able to grow at 20-65 °C (optimum 50 °C) and pH 6.0-9.0 (optimum 6.5-7.0), and tolerate up to 9.0 % NaCl (w/v) under aerobic conditions. Anaerobic growth occurred with anthraquinone-2,6-disulphonate (AQDS), fumarate and NO3(-) as electron acceptors. Phylogenetic analysis based on the16S rRNA and gyrB genes grouped strain SgZ-8(T) into the genus Bacillus, with the highest similarity to Bacillus badius JCM 12228(T) (96.2 % for 16S rRNA gene sequence and 83.5 % for gyrB gene sequence) among all recognized species in the genus Bacillus. The G+C content of the genomic DNA was 49.3 mol%. The major isoprenoid quinone was menaquinone 7 (MK-7) and the polar lipids consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and an unidentified phospholipid. The major cellular fatty acid was iso-C16 : 0. On the basis of its phenotypic and phylogenetic properties, chemotaxonomic analysis and the results of physiological and biochemical tests, strain SgZ-8(T) ( = CCTCC AB 2012108(T) = KACC 16706(T)) was designated the type strain of a novel species of the genus Bacillus, for which the name Bacillus thermotolerans sp. nov. is proposed.

  6. Biogenesis of antibacterial silver nanoparticles using the endophytic bacterium Bacillus cereus isolated from Garcinia xanthochymus

    PubMed Central

    Sunkar, Swetha; Nachiyar, C Valli

    2012-01-01

    Objective To synthesize the ecofriendly nanoparticles, which is viewed as an alternative to the chemical method which initiated the use of microbes like bacteria and fungi in their synthesis. Methods The current study uses the endophytic bacterium Bacillus cereus isolated from the Garcinia xanthochymus to synthesize the silver nanoparticles (AgNPs). The AgNPs were synthesized by reduction of silver nitrate solution by the endophytic bacterium after incubation for 3-5 d at room temperature. The synthesis was initially observed by colour change from pale white to brown which was confirmed by UV-Vis spectroscopy. The AgNPs were further characterized using FTIR, SEM-EDX and TEM analyses. Results The synthesized nanoparticles were found to be spherical with the size in the range of 20-40 nm which showed a slight aggregation. The energy-dispersive spectra of the nanoparticle dispersion confirmed the presence of elemental silver. The AgNPs were found to have antibacterial activity against a few pathogenic bacteria like Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Salmonella typhi and Klebsiella pneumoniae. Conclusions The endophytic bacteria identified as Bacillus cereus was able to synthesize silver nanoparticles with potential antibacterial activity. PMID:23593575

  7. Draft Genome Sequence of Bacillus licheniformis Strain GB2, a Hydrocarbon-Degrading and Plant Growth-Promoting Soil Bacterium

    PubMed Central

    Gkorezis, Panagiotis; Van Hamme, Jonathan; Bottos, Eric; Thijs, Sofie; Balseiro-Romero, Maria; Monterroso, Carmela; Kidd, Petra Suzan; Rineau, Francois; Weyens, Nele; Sillen, Wouter

    2016-01-01

    We report the 4.39 Mb draft genome of Bacillus licheniformis GB2, a hydrocarbonoclastic Gram-positive bacterium of the family Bacillaceae, isolated from diesel-contaminated soil at the Ford Motor Company site in Genk, Belgium. Strain GB2 is an effective plant-growth promoter useful for diesel fuel remediation applications based on plant-bacterium associations. PMID:27340073

  8. Decolourization of 4-Chloro-2-Nitrophenol by a Soil Bacterium, Bacillus subtilis RKJ 700

    PubMed Central

    Arora, Pankaj Kumar

    2012-01-01

    A 4-Chloro-2-nitrophenol (4C2NP) decolourizing strain RKJ 700 was isolated from soil collected from a pesticide contaminated site of India and identified as Bacillus subtilis on the basis of the 16S rRNA gene sequence analysis. Bacillus subtilis RKJ 700 decolourized 4C2NP up to concentration of 1.5 mM in the presence of additional carbon source. The degradation pathway of 4C2NP was studied and 4-chloro-2-aminophenol, 4-chloro-2-acetaminophenol and 5-chloro-2-methylbenzoxazole (5C2MBZ) were identified as metabolites by high performance liquid chromatography and gas chromatography-mass spectrometry. Resting cell studies showed that Bacillus subtilis RKJ 700 depleted 4C2NP completely with stoichiometric formation of 5C2MBZ. This is the first report of (i) the degradation of 4C2NP at high concentration (1.5 mM) and, (ii) the formation of 5C2MBZ by a soil bacterium. PMID:23251673

  9. Degradation of polyester polyurethane by a newly isolated soil bacterium, Bacillus subtilis strain MZA-75.

    PubMed

    Shah, Ziaullah; Krumholz, Lee; Aktas, Deniz Fulya; Hasan, Fariha; Khattak, Mutiullah; Shah, Aamer Ali

    2013-11-01

    A polyurethane (PU) degrading bacterial strain MZA-75 was isolated from soil through enrichment technique. The bacterium was identified through 16S rRNA gene sequencing, the phylogenetic analysis indicated the strain MZA-75 belonged to genus Bacillus having maximum similarity with Bacillus subtilis strain JBE0016. The degradation of PU films by strain MZA-75 in mineral salt medium (MSM) was analyzed by scanning electron microscopy (SEM), fourier transform infra-red spectroscopy (FT-IR) and gel permeation chromatography (GPC). SEM revealed the appearance of widespread cracks on the surface. FTIR spectrum showed decrease in ester functional group. Increase in polydispersity index was observed in GPC, which indicates chain scission as a result of microbial treatment. CO2 evolution and cell growth increased when PU was used as carbon source in MSM in Sturm test. Increase in both cell associated and extracellular esterases was observed in the presence of PU indicated by p-Nitrophenyl acetate (pNPA) hydrolysis assay. Analysis of cell free supernatant by gas chromatography-mass spectrometry (GC-MS) revealed that 1,4-butanediol and adipic acid monomers were produced. Bacillus subtilis strain MZA-75 can degrade the soft segment of polyester polyurethane, unfortunately no information about the fate of hard segment could be obtained. Growth of strain MZA-75 in the presence of these metabolites indicated mineralization of ester hydrolysis products into CO2 and H2O. PMID:23536219

  10. A heavy metal tolerant novel bacterium, Bacillus malikii sp. nov., isolated from tannery effluent wastewater.

    PubMed

    Abbas, Saira; Ahmed, Iftikhar; Kudo, Takuji; Iqbal, Muhammad; Lee, Yong-Jae; Fujiwara, Toru; Ohkuma, Moriya

    2015-12-01

    The taxonomic position of a Gram-stain positive and heavy metal tolerant bacterium, designated strain NCCP-662(T), was investigated by polyphasic characterisation. Cells of strain NCCP-662(T) were observed to be rod to filamentous shaped, motile and strictly aerobic, and to grow at 10-50 °C (optimum 30-37 °C) and at pH range of 6-10 (optimum pH 7-8). The strain was found to be able to tolerate 0-12 % NaCl (w/v) and heavy metals (Cr 1200 ppm, Pb 1800 ppm and Cu 1200 ppm) in tryptic soya agar medium. The phylogenetic analysis based on the 16S rRNA gene sequence of strain NCCP-662(T) showed that it belongs to the genus Bacillus and showed high sequence similarity (98.2 and 98.0 %, respectively) with the type strains of Bacillus niabensis 4T19(T) and Bacillus halosaccharovorans E33(T). The chemotaxonomic data showed that the major quinone is MK-7; the predominant cellular fatty acids are anteiso-C15 :0, iso-C14:0, iso-C16:0 and C16:0 and iso-C15:0; the major polar lipids are diphosphatidylglycerol, phosphatidylglycerol along with several unidentified glycolipids, phospholipids and polar lipids. The DNA G+C content was determined to be 36.9 mol%. These data also support the affiliation of strain NCCP-662(T) with the genus Bacillus. The level of DNA-DNA relatedness between strain NCCP-662(T) and B. niabensis JCM 16399(T) was 20.5 ± 0.5 %. On the basis of physiological and biochemical characteristics, phylogenetic analyses and DNA-DNA hybridization data, strain NCCP-662(T) can be clearly differentiated from the validly named Bacillus species and thus represents a new species, for which the name Bacillus malikii sp. nov. is proposed with the type strain NCCP-662(T) (= LMG 28369(T) = DSM 29005(T) = JCM 30192(T)). PMID:26362330

  11. Characterization and a point mutational approach of a psychrophilic lipase from an arctic bacterium, Bacillus pumilus.

    PubMed

    Wi, Ah Ram; Jeon, Sung-Jong; Kim, Sunghui; Park, Ha Ju; Kim, Dockyu; Han, Se Jong; Yim, Joung Han; Kim, Han-Woo

    2014-06-01

    A bacterium with lipolytic activity was isolated from the Chukchi Sea within the Arctic Ocean. The lipase BpL5 from the isolate, Bacillus pumilus ArcL5, belongs to subfamily 4 of lipase family I. The optimum pH and temperature of the recombinant enzyme BpL5, as expressed in Escherichia coli, were 9.0 and 20 °C, respectively. The enzyme retained 85 % of its activity at 5 °C. There was a significant difference between temperatures for maximal activity (20 °C) and for protein denaturation (approx. 45 °C). The enzyme preferred middle-chain (C8) p-nitrophenyl substrates. Two mutants, S139A and S139Y, were rationally designed based on the 3D-structure model, and their activities were compared with that of the wild type. The both mutants showed significantly improved activity against tricaprylin.

  12. Biodegradation of nitrobenzene in a lysogeny broth medium by a novel halophilic bacterium Bacillus licheniformis.

    PubMed

    Li, Tian; Deng, Xinping; Wang, Jinjun; Chen, Yucheng; He, Lin; Sun, Yuchuan; Song, Caixia; Zhou, Zhifeng

    2014-12-15

    The Bacillus licheniformis strain YX2, a novel nitrobenzene-degrading halophilic bacterium, was isolated from active sludge obtained from a pesticide factory. Strain YX2 can withstand highly acidic and alkaline conditions and high temperatures. Degradation of nitrobenzene (200mgL(-1)) by YX2 exceeded 70% after 72h in lysogeny broth medium (pH 4-9). Under optimal degradation conditions (33°C, pH 7 in LB medium) YX2 degraded 50, 100, 200, and 600mgL(-1) nitrobenzene within 36, 36, 72, and 156h, respectively. Even in the presence of benzene, phenol or aniline, strain YX2 efficiently degraded nitrobenzene. Furthermore, strain YX2 completely degraded 600mgL(-1) nitrobenzene in 7% NaCl (w/w). Thus, our data show that strain YX2 may have promise for removing nitrobenzene from complex wastewaters with high salinity and variable pH.

  13. Two-Dimensional Gel Electrophoresis Analyses of pH-Dependent Protein Expression in Facultatively Alkaliphilic Bacillus pseudofirmus OF4 Lead to Characterization of an S-Layer Protein with a Role in Alkaliphily

    PubMed Central

    Gilmour, Raymond; Messner, Paul; Guffanti, Arthur A.; Kent, Rebecca; Scheberl, Andrea; Kendrick, Nancy; Krulwich, Terry Ann

    2000-01-01

    The large majority of proteins of alkaliphilic Bacillus pseudofirmus OF4 grown at pH 7.5 and 10.5, as studied by two-dimensional gel electrophoresis analyses, did not exhibit significant pH-dependent variation. A new surface layer protein (SlpA) was identified in these studies. Although the prominence of some apparent breakdown products of SlpA in gels from pH 10.5-grown cells led to discovery of the alkaliphile S-layer, the largest and major SlpA forms were present in large amounts in gels from pH 7.5-grown cells as well. slpA RNA abundance was, moreover, unchanged by growth pH. SlpA was similar in size to homologues from nonalkaliphiles but contained fewer Arg and Lys residues. An slpA mutant strain (RG21) lacked an exterior S-layer that was identified in the wild type by electron microscopy. Electrophoretic analysis of whole-cell extracts further indicated the absence of a 90-kDa band in the mutant. This band was prominent in wild-type extracts from both pH 7.5- and 10.5-grown cells. The wild type grew with a shorter lag phase than RG21 at either pH 10.5 or 11 and under either Na+-replete or suboptimal Na+ concentrations. The extent of the adaptation deficit increased with pH elevation and suboptimal Na+. By contrast, the mutant grew with a shorter lag and faster growth rate than the wild type at pH 7.5 under Na+-replete and suboptimal Na+ conditions, respectively. Logarithmically growing cells of the two strains exhibited no significant differences in growth rate, cytoplasmic pH regulation, starch utilization, motility, Na+-dependent transport of α-aminoisobutyric acid, or H+-dependent synthesis of ATP. However, the capacity for Na+-dependent pH homeostasis was diminished in RG21 upon a sudden upward shift of external pH from 8.5 to 10.5. The energy cost of retaining the SlpA layer at near-neutral pH is apparently adverse, but the constitutive presence of SlpA enhances the capacity of the extremophile to adjust to high pH. PMID:11029415

  14. Isolation, identification and characteristics of an endophytic quinclorac degrading bacterium Bacillus megaterium Q3.

    PubMed

    Liu, Min; Luo, Kun; Wang, Yunsheng; Zeng, Aiping; Zhou, Xiaomao; Luo, Feng; Bai, Lianyang

    2014-01-01

    In this study, we isolated an endophytic quinclorac-degrading bacterium strain Q3 from the root of tobacco grown in quinclorac contaminated soil. Based on morphological characteristics, Biolog identification, and 16S rDNA sequence analysis, we identified strain Q3 as Bacillus megaterium. We investigated the effects of temperature, pH, inoculation size, and initial quinclorac concentration on growth and degrading efficiency of Q3. Under the optimal degrading condition, Q3 could degrade 93% of quinclorac from the initial concentration of 20 mg/L in seven days. We analyzed the degradation products of quinclorac using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The major degradation products by Q3 were different from those of previously identified quinclorac degrading strains, which suggests that Q3 may employ new pathways for quinclorac degradation. Our indoor pot experiments demonstrated that Q3 can effectively alleviate the quinclorac phytotoxicity in tobacco. As the first endophytic microbial that is capable of degrading quinclorac, Q3 can be a good bioremediation bacterium for quinclorac phytotoxicity.

  15. Isolation, identification and characteristics of an endophytic quinclorac degrading bacterium Bacillus megaterium Q3.

    PubMed

    Liu, Min; Luo, Kun; Wang, Yunsheng; Zeng, Aiping; Zhou, Xiaomao; Luo, Feng; Bai, Lianyang

    2014-01-01

    In this study, we isolated an endophytic quinclorac-degrading bacterium strain Q3 from the root of tobacco grown in quinclorac contaminated soil. Based on morphological characteristics, Biolog identification, and 16S rDNA sequence analysis, we identified strain Q3 as Bacillus megaterium. We investigated the effects of temperature, pH, inoculation size, and initial quinclorac concentration on growth and degrading efficiency of Q3. Under the optimal degrading condition, Q3 could degrade 93% of quinclorac from the initial concentration of 20 mg/L in seven days. We analyzed the degradation products of quinclorac using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The major degradation products by Q3 were different from those of previously identified quinclorac degrading strains, which suggests that Q3 may employ new pathways for quinclorac degradation. Our indoor pot experiments demonstrated that Q3 can effectively alleviate the quinclorac phytotoxicity in tobacco. As the first endophytic microbial that is capable of degrading quinclorac, Q3 can be a good bioremediation bacterium for quinclorac phytotoxicity. PMID:25244184

  16. Isolation, Identification and Characteristics of an Endophytic Quinclorac Degrading Bacterium Bacillus megaterium Q3

    PubMed Central

    Wang, Yunsheng; Zeng, Aiping; Zhou, Xiaomao; Luo, Feng; Bai, Lianyang

    2014-01-01

    In this study, we isolated an endophytic quinclorac-degrading bacterium strain Q3 from the root of tobacco grown in quinclorac contaminated soil. Based on morphological characteristics, Biolog identification, and 16S rDNA sequence analysis, we identified strain Q3 as Bacillus megaterium. We investigated the effects of temperature, pH, inoculation size, and initial quinclorac concentration on growth and degrading efficiency of Q3. Under the optimal degrading condition, Q3 could degrade 93% of quinclorac from the initial concentration of 20 mg/L in seven days. We analyzed the degradation products of quinclorac using liquid chromatography–tandem mass spectrometry (LC-MS/MS). The major degradation products by Q3 were different from those of previously identified quinclorac degrading strains, which suggests that Q3 may employ new pathways for quinclorac degradation. Our indoor pot experiments demonstrated that Q3 can effectively alleviate the quinclorac phytotoxicity in tobacco. As the first endophytic microbial that is capable of degrading quinclorac, Q3 can be a good bioremediation bacterium for quinclorac phytotoxicity. PMID:25244184

  17. Bacillus nitroreducens sp. nov., a humus-reducing bacterium isolated from a compost.

    PubMed

    Guo, Junhui; Wang, Yue Qiang; Yang, Guiqin; Chen, Yunqi; Zhou, Shungui; Zhao, Yong; Zhuang, Li

    2016-05-01

    A Gram-staining-positive, facultative anaerobic, motile and rod-shaped bacterium, designated GSS08(T), was isolated from a windrow compost pile and characterized by means of a polyphasic approach. Growth occurred with 0-4 % (w/v) NaCl (optimum 1 %), at pH 6.5-9.5 (optimum pH 7.5) and at 20-45 °C (optimum 37 °C). Anaerobic growth occurred with anthraquinone-2,6-disulphonate, fumarate and NO3 (-) as electron acceptor. The main respiratory quinone was MK-7. The predominant polar lipids were diphosphatidylglycerol and phosphatidylethanolamine. The major fatty acids (>5 %) were iso-C15:0 (43.1 %), anteiso-C15:0 (27.4 %) and iso-C16:0 (8.3 %). The DNA G + C content was 39.6 mol%. The phylogenetic analysis based on 16S rRNA gene sequences revealed that strain GSS08(T) formed a phyletic lineage with the type strain of Bacillus humi DSM 16318(T) with a high sequence similarity of 97.5 %, but it displayed low sequence similarity with other valid species in the genus Bacillus (<96.0 %). The DNA-DNA relatedness between strains GSS08(T) and B. humi DSM 16318(T) was 50.8 %. The results of phenotypic, chemotaxonomic and genotypic analyses clearly indicated that strain GSS08(T) represents a novel species, for which the name Bacillus nitroreducens sp. nov. is proposed. The type strain is GSS08(T) (=KCTC 33699(T) = MCCC 1K01091(T)).

  18. A Comparative biochemical study on two marine endophytes, Bacterium SRCnm and Bacillus sp. JS, Isolated from red sea algae.

    PubMed

    Ahmed, Eman Fadl; Hassan, Hossam Mokhtar; Rateb, Mostafa Ezzat; Abdel-Wahab, Noha; Sameer, Somayah; Aly Taie, Hanan Anwar; Abdel-Hameed, Mohammed Sayed; Hammouda, Ola

    2016-01-01

    Two marine endophytic bacteria were isolated from the Red Sea algae; a red alga; Acanthophora dendroides and the brown alga Sargassum sabrepandum. The isolates were identified based on their 16SrRNA sequences as Bacterium SRCnm and Bacillus sp. JS. The objective of this study was to investigate the potential anti-microbial and antioxidant activities of the extracts of the isolated bacteria grown in different nutrient conditions. Compared to amoxicillin (25μg/disk) and erythromycin (15μg/disk), the extracts of Bacterium SRCn min media II, III, IV and V were potent inhibitors of the gram-positive bacterium Sarcina maxima even at low concentrations. Also, the multidrug resistant Staphylococcus aureus(MRSA) was more sensitive to the metabolites produced in medium (II) of the same endophyte than erythromycin (15μg/disk). A moderate activity of the Bacillus sp. JS extracts of media I and II was obtained against the same pathogen. The total compounds (500ug/ml) of both isolated endophytes showed moderate antioxidant activities (48.9% and 46.1%, respectively). LC/MS analysis of the bacterial extracts was carried out to investigate the likely natural products produced. Cyclo(D-cis-Hyp-L-Leu), dihydrosphingosine and 2-Amino-1,3-hexadecanediol were identified in the fermentation medium of Bacterium SRCnm, whereas cyclo (D-Pro-L-Tyr) and cyclo (L-Leu-L-Pro) were the suggested compounds of Bacillus sp. JS. PMID:26826831

  19. A Pathway Closely Related to the d-Tagatose Pathway of Gram-Negative Enterobacteria Identified in the Gram-Positive Bacterium Bacillus licheniformis

    PubMed Central

    Van der Heiden, Edwige; Lebrun, Sarah; Freichels, Régine; Brans, Alain; Vastenavond, Christian M.; Galleni, Moreno; Joris, Bernard

    2013-01-01

    We report the first identification of a gene cluster involved in d-tagatose catabolism in Bacillus licheniformis. The pathway is closely related to the d-tagatose pathway of the Gram-negative bacterium Klebsiella oxytoca, in contrast to the d-tagatose 6-phosphate pathway described in the Gram-positive bacterium Staphylococcus aureus. PMID:23524682

  20. Photoinhibition of Phaeocystis globosa resulting from oxidative stress induced by a marine algicidal bacterium Bacillus sp. LP-10.

    PubMed

    Guan, Chengwei; Guo, Xiaoyun; Li, Yi; Zhang, Huajun; Lei, Xueqian; Cai, Guanjing; Guo, Jiajia; Yu, Zhiming; Zheng, Tianling

    2015-01-01

    Harmful algal blooms caused by Phaeocystis globosa have resulted in staggering losses to coastal countries because of their world-wide distribution. Bacteria have been studied for years to control the blooms of harmful alga, however, the action mechanism of them against harmful algal cells is still not well defined. Here, a previously isolated algicidal bacterium Bacillus sp. LP-10 was used to elucidate the potential mechanism involved in the dysfunction of P. globosa algal cells at physiological and molecular levels. Our results showed Bacillus sp. LP-10 induced an obvious rise of reactive oxygen species (ROS), which was supposed to be major reason for algal cell death. Meanwhile, the results revealed a significant decrease of photosynthetic physiological indexes and apparent down-regulated of photosynthesis-related genes (psbA and rbcS) and protein (PSII reaction center protein D1), after treated by Bacillus sp. LP-10 filtrates, suggesting photoinhibition occurred in the algal cells. Furthermore, our results indicated that light played important roles in the algal cell death. Our work demonstrated that the major lethal reason of P. globosa cells treated by the algicidal bacterium was the photoinhibition resulted from oxidative stress induced by Bacillus sp. LP-10. PMID:26601700

  1. Photoinhibition of Phaeocystis globosa resulting from oxidative stress induced by a marine algicidal bacterium Bacillus sp. LP-10.

    PubMed

    Guan, Chengwei; Guo, Xiaoyun; Li, Yi; Zhang, Huajun; Lei, Xueqian; Cai, Guanjing; Guo, Jiajia; Yu, Zhiming; Zheng, Tianling

    2015-11-25

    Harmful algal blooms caused by Phaeocystis globosa have resulted in staggering losses to coastal countries because of their world-wide distribution. Bacteria have been studied for years to control the blooms of harmful alga, however, the action mechanism of them against harmful algal cells is still not well defined. Here, a previously isolated algicidal bacterium Bacillus sp. LP-10 was used to elucidate the potential mechanism involved in the dysfunction of P. globosa algal cells at physiological and molecular levels. Our results showed Bacillus sp. LP-10 induced an obvious rise of reactive oxygen species (ROS), which was supposed to be major reason for algal cell death. Meanwhile, the results revealed a significant decrease of photosynthetic physiological indexes and apparent down-regulated of photosynthesis-related genes (psbA and rbcS) and protein (PSII reaction center protein D1), after treated by Bacillus sp. LP-10 filtrates, suggesting photoinhibition occurred in the algal cells. Furthermore, our results indicated that light played important roles in the algal cell death. Our work demonstrated that the major lethal reason of P. globosa cells treated by the algicidal bacterium was the photoinhibition resulted from oxidative stress induced by Bacillus sp. LP-10.

  2. Photoinhibition of Phaeocystis globosa resulting from oxidative stress induced by a marine algicidal bacterium Bacillus sp. LP-10

    PubMed Central

    Guan, Chengwei; Guo, Xiaoyun; Li, Yi; Zhang, Huajun; Lei, Xueqian; Cai, Guanjing; Guo, Jiajia; Yu, Zhiming; Zheng, Tianling

    2015-01-01

    Harmful algal blooms caused by Phaeocystis globosa have resulted in staggering losses to coastal countries because of their world-wide distribution. Bacteria have been studied for years to control the blooms of harmful alga, however, the action mechanism of them against harmful algal cells is still not well defined. Here, a previously isolated algicidal bacterium Bacillus sp. LP-10 was used to elucidate the potential mechanism involved in the dysfunction of P. globosa algal cells at physiological and molecular levels. Our results showed Bacillus sp. LP-10 induced an obvious rise of reactive oxygen species (ROS), which was supposed to be major reason for algal cell death. Meanwhile, the results revealed a significant decrease of photosynthetic physiological indexes and apparent down-regulated of photosynthesis-related genes (psbA and rbcS) and protein (PSII reaction center protein D1), after treated by Bacillus sp. LP-10 filtrates, suggesting photoinhibition occurred in the algal cells. Furthermore, our results indicated that light played important roles in the algal cell death. Our work demonstrated that the major lethal reason of P. globosa cells treated by the algicidal bacterium was the photoinhibition resulted from oxidative stress induced by Bacillus sp. LP-10. PMID:26601700

  3. Rapid Aggregation of Biofuel-Producing Algae by the Bacterium Bacillus sp. Strain RP1137

    PubMed Central

    Powell, Ryan J.

    2013-01-01

    Algal biofuels represent one of the most promising means of sustainably replacing liquid fuels. However, significant challenges remain before alga-based fuels become competitive with fossil fuels. One of the largest challenges is the ability to harvest the algae in an economical and low-energy manner. In this article, we describe the isolation of a bacterial strain, Bacillus sp. strain RP1137, which can rapidly aggregate several algae that are candidates for biofuel production, including a Nannochloropsis sp. This bacterium aggregates algae in a pH-dependent and reversible manner and retains its aggregation ability after paraformaldehyde fixation, opening the possibility for reuse of the cells. The optimal ratio of bacteria to algae is described, as is the robustness of aggregation at different salinities and temperatures. Aggregation is dependent on the presence of calcium or magnesium ions. The efficiency of aggregation of Nannochloropsis oceanica IMET1 is between 70 and 95% and is comparable to that obtained by other means of harvest; however, the rate of harvest is fast, with aggregates forming in 30 s. PMID:23892750

  4. Augmenting iron accumulation in cassava by the beneficial soil bacterium Bacillus subtilis (GBO3).

    PubMed

    Freitas, Mônica A; Medeiros, Flavio H V; Carvalho, Samuel P; Guilherme, Luiz R G; Teixeira, William D; Zhang, Huiming; Paré, Paul W

    2015-01-01

    Cassava (Manihot esculenta), a major staple food in the developing world, provides a basic carbohydrate diet for over half a billion people living in the tropics. Despite the iron abundance in most soils, cassava provides insufficient iron for humans as the edible roots contain 3-12 times less iron than other traditional food crops such as wheat, maize, and rice. With the recent identification that the beneficial soil bacterium Bacillus subtilis (strain GB03) activates iron acquisition machinery to increase metal ion assimilation in Arabidopsis, the question arises as to whether this plant-growth promoting rhizobacterium also augments iron assimilation to increase endogenous iron levels in cassava. Biochemical analyses reveal that shoot-propagated cassava with GB03-inoculation exhibit elevated iron accumulation after 140 days of plant growth as determined by X-ray microanalysis and total foliar iron analysis. Growth promotion and increased photosynthetic efficiency were also observed for greenhouse-grown plants with GB03-exposure. These results demonstrate the potential of microbes to increase iron accumulation in an important agricultural crop and is consistent with idea that microbial signaling can regulate plant photosynthesis. PMID:26300897

  5. Rapid aggregation of biofuel-producing algae by the bacterium Bacillus sp. strain RP1137.

    PubMed

    Powell, Ryan J; Hill, Russell T

    2013-10-01

    Algal biofuels represent one of the most promising means of sustainably replacing liquid fuels. However, significant challenges remain before alga-based fuels become competitive with fossil fuels. One of the largest challenges is the ability to harvest the algae in an economical and low-energy manner. In this article, we describe the isolation of a bacterial strain, Bacillus sp. strain RP1137, which can rapidly aggregate several algae that are candidates for biofuel production, including a Nannochloropsis sp. This bacterium aggregates algae in a pH-dependent and reversible manner and retains its aggregation ability after paraformaldehyde fixation, opening the possibility for reuse of the cells. The optimal ratio of bacteria to algae is described, as is the robustness of aggregation at different salinities and temperatures. Aggregation is dependent on the presence of calcium or magnesium ions. The efficiency of aggregation of Nannochloropsis oceanica IMET1 is between 70 and 95% and is comparable to that obtained by other means of harvest; however, the rate of harvest is fast, with aggregates forming in 30 s.

  6. Antioxidant and DNA Damage Protecting Activity of Exopolysaccharides from the Endophytic Bacterium Bacillus cereus SZ1.

    PubMed

    Zheng, Li Ping; Zou, Tin; Ma, Yan Jun; Wang, Jian Wen; Zhang, Yu Qing

    2016-01-01

    An endophytic bacterium was isolated from the Chinese medicinal plant Artemisia annua L. The phylogenetic and physiological characterization indicated that the isolate, strain SZ-1, was Bacillus cereus. The endophyte could produce an exopolysaccharide (EPS) at 46 mg/L. The 1,1-diphenyl-2-picrylhydracyl (DPPH) radical scavenging activity of the EPS reached more than 50% at 3-5 mg/mL. The EPS was also effective in scavenging superoxide radical in a concentration dependent fashion with an EC50 value of 2.6 mg/mL. The corresponding EC50 for scavenging hydroxyl radical was 3.1 mg/mL. Moreover, phenanthroline-copper complex-mediated chemiluminescent emission of DNA damage was both inhibited and delayed by EPS. The EPS at 0.7-1.7 mg/mL also protected supercoiled DNA strands in plasmid pBR322 against scission induced by Fenton-mediated hydroxyl radical. The preincubation of PC12 cells with the EPS prior to H₂O₂ exposure increased the cell survival and glutathione (GSH) level and catalase (CAT) activities, and decreased the level of malondialdehyde (MDA) and lactate dehydrogenase (LDH) activity in a dose-dependent manner, suggesting a pronounced protective effect against H₂O₂-induced cytotoxicity. Our study indicated that the EPS could be useful for preventing oxidative DNA damage and cellular oxidation in pharmaceutical and food industries. PMID:26861269

  7. Antagonistic action of the bacterium Bacillus licheniformis M-4 toward the amoeba Naegleria fowleri.

    PubMed

    Cordovilla, P; Valdivia, E; Gonzalez-Segura, A; Galvez, A; Martinez-Bueno, M; Maqueda, M

    1993-01-01

    Free-living amoebae belonging to the species Naegleria fowleri are known to be the etiological agents for a form of fulminant meningoencephalitis that is generally fatal (primary amoebic meningoencephalitis). In a broad bacterial screening from soil and water we have isolated three strains (M-4, D-13 and A-12) belonging to the species Bacillus licheniformis that have remarkable amoebicidal activity against Naegleria sp. and also against different Gram-positive and Gram-negative bacteria. Physical-chemical characteristics, partial purification and biological activities of a substance produced by the M-4 strain have been investigated. This substance (m-4) is stable at high temperature (up to 100 degrees C) and extremes of pH (2.5-9.5) and also at -20 degrees C for months. Its production is greatly influenced by oxygenation of the cultures and is probably related to the sporulation process of the bacterium. Scanning electron microscope observations reveal that amoebae are lysed after a few minutes contact with m-4.

  8. A Novel Manno-Oligosaccharide Binding Protein Identified in Alkaliphilic Bacillus sp. N16-5 Is Involved in Mannan Utilization

    PubMed Central

    Song, Yajian; Li, Jinshan; Meng, Shan; Yin, Liang; Xue, Yanfen; Ma, Yanhe

    2016-01-01

    ManH, a novel substrate-binding protein of an ABC transporter, was identified from the mannan utilization gene cluster of Bacillus sp. N16-5. We cloned, overexpressed, and purified ManH and measured its binding affinity to different substrates by isothermal titration calorimetry. ManH binds to mannotriose, mannotetraose, mannopentose, and galactosyl-mannotriose with dissociation constants in the micromolar range. Deletion of manH led to decreased growth ability of the strain when cultivated in medium with manno-oligosaccharides or mannan as the carbon source. ManH belongs to a manno-oligosaccharide transporter and plays an important role in mannan utilization by Bacillus sp. N16-5. PMID:26978267

  9. Alkaliphilic Bacteria with Impact on Industrial Applications, Concepts of Early Life Forms, and Bioenergetics of ATP Synthesis.

    PubMed

    Preiss, Laura; Hicks, David B; Suzuki, Shino; Meier, Thomas; Krulwich, Terry Ann

    2015-01-01

    Alkaliphilic bacteria typically grow well at pH 9, with the most extremophilic strains growing up to pH values as high as pH 12-13. Interest in extreme alkaliphiles arises because they are sources of useful, stable enzymes, and the cells themselves can be used for biotechnological and other applications at high pH. In addition, alkaline hydrothermal vents represent an early evolutionary niche for alkaliphiles and novel extreme alkaliphiles have also recently been found in alkaline serpentinizing sites. A third focus of interest in alkaliphiles is the challenge raised by the use of proton-coupled ATP synthases for oxidative phosphorylation by non-fermentative alkaliphiles. This creates a problem with respect to tenets of the chemiosmotic model that remains the core model for the bioenergetics of oxidative phosphorylation. Each of these facets of alkaliphilic bacteria will be discussed with a focus on extremely alkaliphilic Bacillus strains. These alkaliphilic bacteria have provided a cogent experimental system to probe adaptations that enable their growth and oxidative phosphorylation at high pH. Adaptations are clearly needed to enable secreted or partially exposed enzymes or protein complexes to function at the high external pH. Also, alkaliphiles must maintain a cytoplasmic pH that is significantly lower than the pH of the outside medium. This protects cytoplasmic components from an external pH that is alkaline enough to impair their stability or function. However, the pH gradient across the cytoplasmic membrane, with its orientation of more acidic inside than outside, is in the reverse of the productive orientation for bioenergetic work. The reversed gradient reduces the trans-membrane proton-motive force available to energize ATP synthesis. Multiple strategies are hypothesized to be involved in enabling alkaliphiles to circumvent the challenge of a low bulk proton-motive force energizing proton-coupled ATP synthesis at high pH.

  10. Alkaliphilic Bacteria with Impact on Industrial Applications, Concepts of Early Life Forms, and Bioenergetics of ATP Synthesis

    PubMed Central

    Preiss, Laura; Hicks, David B.; Suzuki, Shino; Meier, Thomas; Krulwich, Terry Ann

    2015-01-01

    Alkaliphilic bacteria typically grow well at pH 9, with the most extremophilic strains growing up to pH values as high as pH 12–13. Interest in extreme alkaliphiles arises because they are sources of useful, stable enzymes, and the cells themselves can be used for biotechnological and other applications at high pH. In addition, alkaline hydrothermal vents represent an early evolutionary niche for alkaliphiles and novel extreme alkaliphiles have also recently been found in alkaline serpentinizing sites. A third focus of interest in alkaliphiles is the challenge raised by the use of proton-coupled ATP synthases for oxidative phosphorylation by non-fermentative alkaliphiles. This creates a problem with respect to tenets of the chemiosmotic model that remains the core model for the bioenergetics of oxidative phosphorylation. Each of these facets of alkaliphilic bacteria will be discussed with a focus on extremely alkaliphilic Bacillus strains. These alkaliphilic bacteria have provided a cogent experimental system to probe adaptations that enable their growth and oxidative phosphorylation at high pH. Adaptations are clearly needed to enable secreted or partially exposed enzymes or protein complexes to function at the high external pH. Also, alkaliphiles must maintain a cytoplasmic pH that is significantly lower than the pH of the outside medium. This protects cytoplasmic components from an external pH that is alkaline enough to impair their stability or function. However, the pH gradient across the cytoplasmic membrane, with its orientation of more acidic inside than outside, is in the reverse of the productive orientation for bioenergetic work. The reversed gradient reduces the trans-membrane proton-motive force available to energize ATP synthesis. Multiple strategies are hypothesized to be involved in enabling alkaliphiles to circumvent the challenge of a low bulk proton-motive force energizing proton-coupled ATP synthesis at high pH. PMID:26090360

  11. Alkaliphilic Bacteria with Impact on Industrial Applications, Concepts of Early Life Forms, and Bioenergetics of ATP Synthesis.

    PubMed

    Preiss, Laura; Hicks, David B; Suzuki, Shino; Meier, Thomas; Krulwich, Terry Ann

    2015-01-01

    Alkaliphilic bacteria typically grow well at pH 9, with the most extremophilic strains growing up to pH values as high as pH 12-13. Interest in extreme alkaliphiles arises because they are sources of useful, stable enzymes, and the cells themselves can be used for biotechnological and other applications at high pH. In addition, alkaline hydrothermal vents represent an early evolutionary niche for alkaliphiles and novel extreme alkaliphiles have also recently been found in alkaline serpentinizing sites. A third focus of interest in alkaliphiles is the challenge raised by the use of proton-coupled ATP synthases for oxidative phosphorylation by non-fermentative alkaliphiles. This creates a problem with respect to tenets of the chemiosmotic model that remains the core model for the bioenergetics of oxidative phosphorylation. Each of these facets of alkaliphilic bacteria will be discussed with a focus on extremely alkaliphilic Bacillus strains. These alkaliphilic bacteria have provided a cogent experimental system to probe adaptations that enable their growth and oxidative phosphorylation at high pH. Adaptations are clearly needed to enable secreted or partially exposed enzymes or protein complexes to function at the high external pH. Also, alkaliphiles must maintain a cytoplasmic pH that is significantly lower than the pH of the outside medium. This protects cytoplasmic components from an external pH that is alkaline enough to impair their stability or function. However, the pH gradient across the cytoplasmic membrane, with its orientation of more acidic inside than outside, is in the reverse of the productive orientation for bioenergetic work. The reversed gradient reduces the trans-membrane proton-motive force available to energize ATP synthesis. Multiple strategies are hypothesized to be involved in enabling alkaliphiles to circumvent the challenge of a low bulk proton-motive force energizing proton-coupled ATP synthesis at high pH. PMID:26090360

  12. Draft genome sequence of Bacillus okhensis Kh10-101T, a halo-alkali tolerant bacterium from Indian saltpan.

    PubMed

    Krishna, Pilla Sankara; Sreenivas, Ara; Singh, Deepak Kumar; Shivaji, Sisinthy; Prakash, Jogadhenu S S

    2015-12-01

    We report the 4.86-Mb draft genome sequence of Bacillus okhensis strain Kh10-101T, a halo-alkali tolerant rod shaped bacterium isolated from a salt pan near port of Okha, India. This bacterium is a potential model to study the molecular response of bacteria to salt as well as alkaline stress, as it thrives under both high salt and high pH conditions. The draft genome consist of 4,865,284 bp with 38.2% G + C, 4952 predicted CDS, 157 tRNAs and 8 rRNAs. Sequence was deposited at DDBJ/EMBL/GenBank under the project accession JRJU00000000. PMID:26697400

  13. A new 24-membered lactone and a new polyene delta-lactone from the marine bacterium Bacillus marinus.

    PubMed

    Xue, Chunmei; Tian, Li; Xu, Minjuan; Deng, Zhiwei; Lin, Wenhan

    2008-11-01

    A new 24-membered macrolide macrolactin T (1), and a new polyene delta-lactone macrolactin U (2), along with macrolactins A, B, D, O, and S, were isolated from the cultured broth of the bacterium Bacillus marinus, which was isolated from Suaeda salsa collected in the coastline of Bohai Sea of China. The structures of 1 and 2 were elucidated on the basis of extensive spectroscopic data analyses. The inhibitory activity of macrolactins T, B and D against fungi Pyricularia oryzae and Alternaria solani, and bacteria Staphylococcus aureus is reported. PMID:19168981

  14. Optimization of Chromium Removal by the Indigenous Bacterium Bacillus spp. REP02 Using the Response Surface Methodology

    PubMed Central

    Venil, C. K.; Mohan, V.; Lakshmanaperumalsamy, P.; Yerima, M. B.

    2011-01-01

    An indigenous bacterium, Bacillus REP02, was isolated from locally sourced chromium electroplating industrial effluents. Response surface methodology was employed to optimize the five critical medium parameters responsible for higher % Cr2+ removal by the bacterium Bacillus REP02. A three-level Box-Behnken factorial design was used to optimize K2HPO4, yeast extract, MgSO4, NH4NO3, and dextrose for Cr2+ removal. A coefficient of determination (R2) value (0.93), model F-value (3.92) and its low P-value (F < 0.0008) along with lower value of coefficient of variation (5.39) indicated the fitness of response surface quadratic model during the present study. At optimum parameters of K2HPO4 (0.6 g L−1), yeast extract (5.5 g L−1), MgSO4 (0.04 g L−1), NH4NO3 (0.20 g L−1), and dextrose (12.50 g L−1), the model predicted 98.86% Cr2+ removal, and experimentally, 99.08% Cr2+ removal was found. PMID:23724315

  15. Selective inhibition of toxic cyanobacteria by β-carboline-containing bacterium Bacillus flexus isolated from Saudi freshwaters.

    PubMed

    Alamri, Saad A; Mohamed, Zakaria A

    2013-10-01

    A bacterial strain SSZ01 isolated from a eutrophic lake in Saudi Arabia dominated by cyanobacterial blooms, showed an antialgal activity against cyanobacteria species. Based on the analysis of the 16S rDNA gene sequence, the isolated strain (SSZ01) most likely belonged to the genus Bacillus with a 99% similarity to Bacillus flexus strain EMGA5. The thin layer chromatography (TLC) analysis of the ethyl acetate extract of this bacterium revealed that this strain can produce harmine and norharmane compared to different β-carboline analog standards. Harmine and norharmane were also detected in considerable amounts in bacterial growth medium, indicating a potential excretion of these compounds into the aquatic environment. The crude extract of Bacillus flexus as well as pure materials of harmine and norharmane inhibited the growth of tested species of cyanobacteria. However, the bacterial crude extract has a higher toxicity against tested species of cyanobacteria than harmine and norharmane. In addition, harmine was more toxic to cyanobacteria than norharmane. On the other hand, neither pure compounds of harmine and norharmane nor crude bacterial extract showed any antialgal activity against tested species of green algae. The results of the present study suggest that B. flexus SSZ01 or its crude extract containing harmine and norharmane could be a candidate for the selective control of cyanobacterial blooms without affecting other algal species. PMID:24235872

  16. Isolation and physiological characterization of Bacillus clausii SKAL-16 isolated from wastewater.

    PubMed

    Lee, Sung Hun; Park, Doo Hyun

    2008-12-01

    An alkaliphilic bacterium, Bacillus clausii SKAL-16, was isolated from soil that had been contaminated with vegetable oil. The optimal pH and general pH range for bacterial growth was 8, and 7 to 10, respectively. The bacterium could grow on tributyrin and glycerol, but could not grow on acetate and butyrate. The SKAL-16 strain excreted butyric acid during growth on tributyrin, and selectively ingested glycerol during growth on a mixture of butyric acid and glycerol. The SKAL-16 generated intracellular lipase, but did not produce esterase and extracellular lipase. The DNA fragment amplified with the chromosomal DNA of SKAL-16 and primers designed on the basis of the esterase-coding gene of Bacillus clausii KSM-K16 was not identical with the esterase-coding gene contained in the GenBank database. Pyruvate dehydrogenase, isocitrate dehydrogenase, and malate dehydrogenase activities were detected in the cellfree extract (crude enzyme). PMID:19131692

  17. Genome sequence of the aerobic bacterium Bacillus sp. strain FJAT-13831.

    PubMed

    Liu, Guohong; Liu, Bo; Lin, Naiquan; Tang, Weiqi; Tang, Jianyang; Lin, Yingzhi

    2012-12-01

    Bacillus sp. strain FJAT-13831 was isolated from the no. 1 pit soil of Emperor Qin's Terracotta Warriors in Xi'an City, People's Republic of China. The isolate showed a close relationship to the Bacillus cereus group. The draft genome sequence of Bacillus sp. FJAT-13831 was 4,425,198 bp in size and consisted of 5,567 genes (protein-coding sequences [CDS]) with an average length of 782 bp and a G+C value of 36.36%.

  18. Genome Sequence of the Aerobic Bacterium Bacillus sp. Strain FJAT-13831

    PubMed Central

    Liu, Guohong; Lin, Naiquan; Tang, Weiqi; Tang, Jianyang; Lin, Yingzhi

    2012-01-01

    Bacillus sp. strain FJAT-13831 was isolated from the no. 1 pit soil of Emperor Qin's Terracotta Warriors in Xi'an City, People's Republic of China. The isolate showed a close relationship to the Bacillus cereus group. The draft genome sequence of Bacillus sp. FJAT-13831 was 4,425,198 bp in size and consisted of 5,567 genes (protein-coding sequences [CDS]) with an average length of 782 bp and a G+C value of 36.36%. PMID:23144388

  19. Bacillus rigiliprofundi sp. nov., an endospore-forming, Mn-oxidizing, moderately halophilic bacterium isolated from deep subseafloor basaltic crust.

    PubMed

    Sylvan, Jason B; Hoffman, Colleen L; Momper, Lily M; Toner, Brandy M; Amend, Jan P; Edwards, Katrina J

    2015-06-01

    A facultatively anaerobic bacterium, designated strain 1MBB1T, was isolated from basaltic breccia collected from 341 m below the seafloor by seafloor drilling of Rigil Guyot during Integrated Ocean Drilling Program Expedition 330. The cells were straight rods, 0.5 μm wide and 1-3 μm long, that occurred singly and in chains. Strain 1MBB1T stained Gram-positive. Catalase and oxidase were produced. The isolate grew optimally at 30 °C and pH 7.5, and could grow with up to 12 % (w/v) NaCl. The DNA G+C content was 40.5 mol%. The major cellular fatty acids were C16:1ω11c (26.5 %), anteiso-C15:0 (19.5 %), C16:0 (18.7 %) and iso-C15:0 (10.4 %), and the cell-wall diamino acid was meso-diaminopimelic acid. Endospores of strain 1MBB1T oxidized Mn(II) to Mn(IV), and siderophore production by vegetative cells was positive. Phylogenetic analysis of the 16S rRNA gene indicated that strain 1MBB1T was a member of the family Bacillaceae, with Bacillus foraminis CV53T and Bacillus novalis LMG 21837T being the closest phylogenetic neighbours (96.5 and 96.2 % similarity, respectively). This is the first novel species described from deep subseafloor basaltic crust. On the basis of our polyphasic analysis, we conclude that strain 1MBB1T represents a novel species of the genus Bacillus, for which we propose the name Bacillus rigiliprofundi sp. nov. The type strain is 1MBB1T ( = NCMA B78T = LMG 28275T). PMID:25813363

  20. Complete Genome Sequence of Bacillus pumilus PDSLzg-1, a Hydrocarbon-Degrading Bacterium Isolated from Oil-Contaminated Soil in China

    PubMed Central

    Hao, Kun; Li, Hongna; Li, Feng

    2016-01-01

    Bacillus pumilus strain PDSLzg-1, an efficient hydrocarbon-degrading bacterium, was isolated from oil-contaminated soil. Here, we present the complete sequence of its circular chromosome and circular plasmid. The genomic information is essential for the study of degradation of oil by B. pumilus PDSLzg-1.

  1. Draft Genome Sequence of Bacillus sp. Strain NSP2.1, a Nonhalophilic Bacterium Isolated from the Salt Marsh of the Great Rann of Kutch, India

    PubMed Central

    Pal, Kamal Krishna; Sherathia, Dharmesh; Dalsania, Trupti; Savsani, Kinjal; Patel, Ilaxi; Sukhadiya, Bhoomika; Mandaliya, Mona; Thomas, Manesh; Ghorai, Sucheta; Vanpariya, Sejal; Rupapara, Rupal; Rawal, Priya; Saxena, Anil Kumar

    2013-01-01

    The 5.52-Mbp draft genome sequence of Bacillus sp. strain NSP2.1, a nonhalophilic bacterium isolated from the salt marsh of the Great Rann of Kutch, India, is reported here. An analysis of the genome of this organism will facilitate the understanding of its survival in the salt marsh. PMID:24158559

  2. Draft Genome Sequence of Bacillus sp. Strain NSP9.1, a Moderately Halophilic Bacterium Isolated from the Salt Marsh of the Great Rann of Kutch, India

    PubMed Central

    Pal, Kamal Krishna; Sherathia, Dharmesh; Dalsania, Trupti; Savsani, Kinjal; Patel, Ilaxi; Thomas, Manesh; Ghorai, Sucheta; Vanpariya, Sejal; Rupapara, Rupal; Rawal, Priya; Sukhadiya, Bhoomika; Mandaliya, Mona; Saxena, Anil Kumar

    2013-01-01

    We report the 4.52-Mbp draft genome sequence of Bacillus sp. strain NSP9.1, a moderately halophilic bacterium isolated from the salt marsh of the Great Rann of Kutch, India. Analysis of the genome of this organism will lead to a better understanding of the genes and metabolic pathways involved in imparting osmotolerance. PMID:24115550

  3. Bacillus radicibacter sp. nov., a new bacterium isolated from root nodule of Oxytropis ochrocephala Bunge.

    PubMed

    Wei, Xiu Li; Lin, Yan Bing; Xu, Lin; Han, Meng Sha; Dong, Dan Hong; Chen, Wei Min; Wang, Li; Wei, Ge Hong

    2015-10-01

    A Gram-positive, facultative anaerobic, rod-shaped, and endospore-forming strain, designated 53-2(T) was isolated from the root nodule of Oxytropis ochrocephala Bunge growing on Qilian mountain, China. The strain can grow at pH 7.0-8.0, 10-50 °C and tolerate up to 11% NaCl. Optimal growth occurred at pH 7.2 and 37 °C. The result of BLASTn search based on 16S rRNA gene sequence revealed that strain 53-2(T) , being closest related to Bacillus acidicola 105-2(T) , possessed remote similarity (less than 95.64%) to the species within genus Bacillus. The DNA G + C content was 37.8%. Chemotaxonomic data (major quinone is MK-7; major polar lipids are diphosphatidylglycerol, phosphatidylglycerol, unknown phospholipid, and aminoglycophospholipid; fatty acids are anteiso-C15: 0 , iso-C15:0 and anteiso-C17: 0 ) supported the affiliation of the isolate to the genus Bacillus. On the basis of physiological, phylogenetic, and biochemical properties, strain 53-2(T) represents a novel species within genus Bacillus, for which the name Bacillus radicibacter is proposed. The type strain is 53-2(T) (=DSM27302(T) =ACCC06115(T) =CCNWQLS5(T) ).

  4. Growth of hydroxyapatite on the cellular membrane of the bacterium Bacillus thuringiensis for the preparation of hybrid biomaterials.

    PubMed

    Cervantes, Eric Reyes; Torres, Maykel González; Muñoz, Susana Vargas; Rosas, Efraín Rubio; Vázquez, Candelario; Talavera, Rogelio Rodríguez

    2016-01-01

    This study aimed to grow hydroxyapatite (HAp) crystals on the cellular wall of the Gram-positive bacterium Bacillus thuringiensis using a bio-mimetic method. Several strains were phenotypically and genotypically characterized using multilocus sequence typing (MLST) gene markers to differentiate the strains and confirm the identity of the isolated species to guarantee that the selected species was not harmful to human health or the environment. Three of the analyzed strains were selected because they exhibited the best nucleation and growth of HAp on the bacterial surface. This innovative method to grow HAp crystals on a cellular membrane helps to elucidate the mechanisms by which osseous tissue is formed in nature. The optimum concentration for the simulated physiological fluid (SPF) was 1.5×. The hybrid materials were characterized by optical microscopy, atomic force microscopy (AFM), scanning electron microscopy (SEM), X-ray powder diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). PMID:26478352

  5. A New Diketopiperazine, Cyclo(D-trans-Hyp-L-Leu) from a Kenyan Bacterium Bacillus licheniformis LB 8CT.

    PubMed

    Lee, Seoung Rak; Beemelmanns, Christine; Tsuma, Leah M M; Clardy, Jon; Cao, Shugeng; Kim, Ki Hyun

    2016-04-01

    Bacterially-produced small molecules demonstrate a wide range of structural and functional diversity. A new diketopiperazine, cyclo(D-trans-Hyp-L-Leu) (1), and five other known diketopiperazines (2-6), were isolated and purified from the fermented broth of a Kenyan bacterium Bacillus licheniformis LB 8CT. The structure of 1 was elucidated by a combination of extensive spectroscopic analyses, including 2D NMR and HR-MS, and the absolute configuration was determined by a combination of NOESY analysis and Marfey's method. The known compounds were identified as cyclo(D-cis-Hyp-L-Leu) (2), cyclo(D-cis-Hyp-L-Phe) (3), cyclo(D-Pro-L-Tyr) (4), cyclo-(D-Trp-L-Leu) (5), and cyclo(L-Tyr-Gly) (6) by comparison of their spectroscopic and physical data with reported values. Compounds 1-6 were tested for antifungal and antimicrobial properties.

  6. Characterization of a salt-tolerant bacterium Bacillus sp. from a membrane bioreactor for saline wastewater treatment.

    PubMed

    Zhang, Xiaohui; Gao, Jie; Zhao, Fangbo; Zhao, Yuanyuan; Li, Zhanshuang

    2014-06-01

    High salt concentrations can cause plasmolysis and loss of activity of cells, but the salt-tolerant bacterium can endure the high salt concentrations in wastewater. In this research 7 salt-tolerant bacteria, which could survive in dry powder products and could degrade organic contaminants in saline wastewater, were isolated from a membrane bioreactor. The strain NY6 which showed the fastest growth rate, best property for organic matter degradation and could survive in dry powder more than 3 months was selected and characterized. It was classified as Bacillus aerius based on the analysis of the morphological and physiological properties as well as the 16S rRNA sequence and Neigh borjoining tree. The strain NY6 could survive in the salinity up to 6% and the optimal growth salinity is 2%; it belongs to a slightly halophilic bacterium. The capability of its dry powder products for COD removal was 800 mg COD/(g·day) in synthesized saline wastewater with salinity of 2%. According to salt-tolerant mechanism research, when the salinity was below 2%, the stain NY6 absorbed K(+) and Na(+) to maintain osmotic equilibrium, and when the salinity was above 2%, the NY6 kept its life by producing a large amount of spores. PMID:25079850

  7. Bacillus beringensis sp. nov., a psychrotolerant bacterium isolated from the Bering Sea.

    PubMed

    Yu, Yong; Li, Hui-Rong; Zeng, Yin-Xin; Chen, Bo

    2011-03-01

    Psychrotolerant Bacillus-like strains BR035(T) and BR011 were isolated from seawater of the Bering Sea and were characterized by means of a polyphasic approach. Phylogenetic analysis based on 16S rRNA gene sequences revealed that these strains were related to the members of the genus Bacillus and had the highest 16S rRNA gene sequence similarity with Bacillus korlensis ZLC-26(T). DNA-DNA hybridization experiments confirmed that strains BR035(T) and BR011 belonged to the same species and were distinct from their closest relatives. The cells were Gram-positive, rods, motile, spore-forming and psychrotolerant. The temperature range for growth was 4-42°C. The main respiratory quinone was MK-7. The polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, an unknown aminolipid and two unknown phospholipids. The major cellular fatty acids were iso-C15:0, anteiso-C15:0, iso-C14:0 and C16:1ω7c alcohol. The diagnostic diamino acid in the cell-wall peptidoglycan was meso-diaminopimelic acid. The genomic DNA G + C content was 37.6-37.8 mol%. On the basis of the phenotypic characteristics, phylogenetic analysis and DNA-DNA relatedness data, a novel species Bacillus beringensis is proposed and the type strain is BR035(T) (=CGMCC 1.9126(T)=DSM 22571(T)).

  8. Complete genome sequence of Bacillus sp. YP1, a polyethylene-degrading bacterium from waxworm's gut.

    PubMed

    Yang, Yu; Chen, Jianwei; Wu, Wei-Min; Zhao, Jiao; Yang, Jun

    2015-04-20

    Bacillus sp. strain YP1, isolated from the gut of waxworm (the larvae of Plodia interpunctella) which ate polyethylene (PE) plastic, is capable of degrading PE and utilizing PE as sole carbon source. Here we report the complete genome sequence of strain YP1, which is relevant to polyethylene depolymerization and biodegradation.

  9. Characterization and Potential Applications of a Selenium Nanoparticle Producing and Nitrate Reducing Bacterium Bacillus oryziterrae sp. nov.

    PubMed Central

    Bao, Peng; Xiao, Ke-Qing; Wang, Hui-Jiao; Xu, Hao; Xu, Peng-Peng; Jia, Yan; Häggblom, Max M.; Zhu, Yong-Guan

    2016-01-01

    A novel nitrate- and selenite reducing bacterium strain ZYKT was isolated from a rice paddy soil in Dehong, Yunnan, China. Strain ZYKT is a facultative anaerobe and grows in up to 150, 000 ppm O2. The comparative genomics analysis of strain ZYKT implies that it shares more orthologues with B. subtilis subsp. subtilis NCIB 3610T (ANIm values, 85.4–86.7%) than with B. azotoformans NBRC 15712T (ANIm values, 84.4–84.7%), although B. azotoformans NBRC 15712T (96.3% 16S rRNA gene sequence similarity) is the closest Bacillus species according to 16S rRNA gene comparison. The major cellular fatty acids of strain ZYKT were iso-C14:0 (17.8%), iso-C15:0 (17.8%), and C16:0 (32.0%). The polar lipid profile consisted of phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol and an unidentified aminophospholipid. Based on physiological, biochemical and genotypic properties, the strain was considered to represent a novel species of the genus Bacillus, for which the name Bacillus oryziterrae sp. nov. is proposed. The type strain is ZYKT (=DSM 26460T =CGMCC 1.5179T). Strain ZYKT can reduce nitrate to nitrite and ammonium and possesses metabolic genes for nitrate reduction including nar, nap and nrf. Biogenic selenium nanoparticles of strain ZYKT show a narrow size distribution and agree with the gaussian distribution. These selenium nanoparticles show significant dose-dependent inhibition of the lung cancer cell line H157, which suggests potential for application in cancer therapy. PMID:27677458

  10. Characterization and Potential Applications of a Selenium Nanoparticle Producing and Nitrate Reducing Bacterium Bacillus oryziterrae sp. nov.

    NASA Astrophysics Data System (ADS)

    Bao, Peng; Xiao, Ke-Qing; Wang, Hui-Jiao; Xu, Hao; Xu, Peng-Peng; Jia, Yan; Häggblom, Max M.; Zhu, Yong-Guan

    2016-09-01

    A novel nitrate- and selenite reducing bacterium strain ZYKT was isolated from a rice paddy soil in Dehong, Yunnan, China. Strain ZYKT is a facultative anaerobe and grows in up to 150, 000 ppm O2. The comparative genomics analysis of strain ZYKT implies that it shares more orthologues with B. subtilis subsp. subtilis NCIB 3610T (ANIm values, 85.4–86.7%) than with B. azotoformans NBRC 15712T (ANIm values, 84.4–84.7%), although B. azotoformans NBRC 15712T (96.3% 16S rRNA gene sequence similarity) is the closest Bacillus species according to 16S rRNA gene comparison. The major cellular fatty acids of strain ZYKT were iso-C14:0 (17.8%), iso-C15:0 (17.8%), and C16:0 (32.0%). The polar lipid profile consisted of phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol and an unidentified aminophospholipid. Based on physiological, biochemical and genotypic properties, the strain was considered to represent a novel species of the genus Bacillus, for which the name Bacillus oryziterrae sp. nov. is proposed. The type strain is ZYKT (=DSM 26460T =CGMCC 1.5179T). Strain ZYKT can reduce nitrate to nitrite and ammonium and possesses metabolic genes for nitrate reduction including nar, nap and nrf. Biogenic selenium nanoparticles of strain ZYKT show a narrow size distribution and agree with the gaussian distribution. These selenium nanoparticles show significant dose-dependent inhibition of the lung cancer cell line H157, which suggests potential for application in cancer therapy.

  11. Bacillus caseinilyticus sp. nov., an alkali- and thermotolerant bacterium isolated from a soda lake.

    PubMed

    Vishnuvardhan Reddy, Sultanpuram; Thirumala, Mothe; Farooq, Mohammed

    2015-08-01

    A novel Gram-stain-positive, rod-shaped, motile, endospore-forming and proteolytic bacterial strain, SPT, was isolated from Lonar soda lake, in India. On the basis of 16S rRNA gene sequence analysis it was identified as belonging to the class Firmibacteria and was most closely related to Bacillus cellulosilyticus DSM 2522T (96.7%) and other members of the genus Bacillus ( < 95.9%). Strain SPT was catalase- and oxidase-positive. The cell-wall peptidoglycan of strain SPT contained meso-diaminopimelic acid. Polar lipids included diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, three phospholipids, two aminolipids and two unknown lipids. The predominant isoprenoid quinone was MK-7. Anteiso-C15 : 0 (26.8%) was the predominant fatty acid and significant proportions (>5%) of iso-C15 : 0 (20.9%), C16 : 1ω7c alcohol (6.3%), iso-C16 : 0 (6.3%) and anteiso-C17 : 0 (5.3  %) were also detected in strain SPT. The DNA G+C content of strain SPT was 38.9 mol%. The results of phylogenetic, chemotaxonomic and biochemical tests allowed a clear differentiation of strain SPT from all other members of the genus Bacillus. Strain SPT represents a novel member of the genus Bacillus, for which the name Bacilluscaseinilyticus sp. nov. is proposed. The type strain is SPT ( = MCC 2612T = JCM 30246T).

  12. Bacillus oceani sp. nov., a new slightly halophilic bacterium, isolated from a deep sea sediment environment.

    PubMed

    Liu, Yu-Juan; Long, Li-Juan; Huang, Xiao-Fang; You, Zhi-Qing; Wang, Fa-Zuo; Li, Jie; Kim, Chang-Jin; Tian, Xin-Peng; Zhang, Si

    2013-11-01

    A strictly aerobic, Gram-stain positive, slightly halophilic strain, designated SCSIO 04524(T), was isolated from a deep sea sediment sample collected from the northern South China Sea at a depth of 3415 m. The isolate slightly embedded into the medium after 72 h incubation at 30 °C. Growth was found to occur on media with 0-10 % NaCl but extremely weak growth occurred without supplying NaCl. The predominant menaquinone was determined to be MK-7. The major cellular fatty acid identified was iso-C15:0. The diagnostic polar lipids were determined to be diphosphatidylglycerol, phosphatidyl methylethanolamine, phosphatidylethanolamine and phosphatidylglycerol. The genomic DNA G+C content was determined to be 38 mol%. 16S rRNA gene sequences analysis showed that this strain had the highest similarities with Bacillus carboniphilus JCM 9731(T) (94.7 %) and Bacillus endophyticus 2DT(T) (94.3 %). Phylogenetic analysis revealed that strain SCSIO 04524(T) formed a distinct lineage with Bacillus chungangensis CAU 348(T) and B. carboniphilus JCM 9731(T). Physiological characteristics including utilization of sole nitrogen and carbon sources, and chemotaxonomic properties of cellular fatty acids and polar lipids could readily distinguish strain SCSIO 04524(T) from its most closely related species. Based on this polyphasic taxonomic data, a new species, Bacillus oceani sp. nov., is proposed, with the type strain SCSIO 04524(T) (=DSM 26213(T) = KCTC 33077(T)).

  13. Bacillus rhizosphaerae sp. nov., an novel diazotrophic bacterium isolated from sugarcane rhizosphere soil.

    PubMed

    Madhaiyan, Munusamy; Poonguzhali, Selvaraj; Lee, Jung-Sook; Lee, Keun-Chul; Hari, Kuppusamy

    2011-10-01

    A Gram-positive, non-pigmented, rod-shaped, diazotrophic bacterial strain, designated SC-N012(T), was isolated from rhizosphere soil of sugarcane and was subjected to a polyphasic taxonomic study. The strain exhibited phenotypic properties that included chemotaxonomic characteristics consistent with its classification in the genus Bacillus. Sequence analysis of the 16S rRNA gene of SC-N012(T) revealed the closest match (98.9% pair wise similarity) with Bacillus clausii DSM 8716(T). However, DNA-DNA hybridization experiments indicated low levels of genomic relatedness (32%) with this strain. The major components of the fatty acid profile are iso-C(15:0), anteiso-C(15:0), iso-C(17:0) and anteiso-C(17:0). The diagnostic cell-wall diamino acid was meso-diaminopimelic acid. The G+C content of the genomic DNA is 43.0 mol%. The lipids present in strain SC-N012(T) are diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylglycerol and two unknown phospholipids. Their predominant respiratory quinone was MK-7. Studies of DNA-DNA relatedness, morphological, physiological and chemotaxonomic analyses and phylogenetic data based on 16S rRNA gene sequencing allowed strain SC-N012(T) to be described as members of novel species of the genus Bacillus, for which the name Bacillus rhizosphaerae sp. nov. is proposed. The type strain is SC-N012(T) (=DSM 21911(T) = NCCB 100267(T)). PMID:21671194

  14. Directed natural product biosynthesis gene cluster capture and expression in the model bacterium Bacillus subtilis.

    PubMed

    Li, Yongxin; Li, Zhongrui; Yamanaka, Kazuya; Xu, Ying; Zhang, Weipeng; Vlamakis, Hera; Kolter, Roberto; Moore, Bradley S; Qian, Pei-Yuan

    2015-03-24

    Bacilli are ubiquitous low G+C environmental Gram-positive bacteria that produce a wide assortment of specialized small molecules. Although their natural product biosynthetic potential is high, robust molecular tools to support the heterologous expression of large biosynthetic gene clusters in Bacillus hosts are rare. Herein we adapt transformation-associated recombination (TAR) in yeast to design a single genomic capture and expression vector for antibiotic production in Bacillus subtilis. After validating this direct cloning "plug-and-play" approach with surfactin, we genetically interrogated amicoumacin biosynthetic gene cluster from the marine isolate Bacillus subtilis 1779. Its heterologous expression allowed us to explore an unusual maturation process involving the N-acyl-asparagine pro-drug intermediates preamicoumacins, which are hydrolyzed by the asparagine-specific peptidase into the active component amicoumacin A. This work represents the first direct cloning based heterologous expression of natural products in the model organism B. subtilis and paves the way to the development of future genome mining efforts in this genus.

  15. Directed natural product biosynthesis gene cluster capture and expression in the model bacterium Bacillus subtilis

    NASA Astrophysics Data System (ADS)

    Li, Yongxin; Li, Zhongrui; Yamanaka, Kazuya; Xu, Ying; Zhang, Weipeng; Vlamakis, Hera; Kolter, Roberto; Moore, Bradley S.; Qian, Pei-Yuan

    2015-03-01

    Bacilli are ubiquitous low G+C environmental Gram-positive bacteria that produce a wide assortment of specialized small molecules. Although their natural product biosynthetic potential is high, robust molecular tools to support the heterologous expression of large biosynthetic gene clusters in Bacillus hosts are rare. Herein we adapt transformation-associated recombination (TAR) in yeast to design a single genomic capture and expression vector for antibiotic production in Bacillus subtilis. After validating this direct cloning ``plug-and-play'' approach with surfactin, we genetically interrogated amicoumacin biosynthetic gene cluster from the marine isolate Bacillus subtilis 1779. Its heterologous expression allowed us to explore an unusual maturation process involving the N-acyl-asparagine pro-drug intermediates preamicoumacins, which are hydrolyzed by the asparagine-specific peptidase into the active component amicoumacin A. This work represents the first direct cloning based heterologous expression of natural products in the model organism B. subtilis and paves the way to the development of future genome mining efforts in this genus.

  16. Bacillus sp. strain DJ-1, potent arsenic hypertolerant bacterium isolated from the industrial effluent of India.

    PubMed

    Joshi, Dhaval N; Flora, S J S; Kalia, Kiran

    2009-07-30

    Arsenic hypertolerant bacterial cells were isolated from the common industrial effluent treatment plant, Vapi, India. Strain DJ-1 sustaining 400 mM, As (V) out of 16 bacterial strains was identified as Bacillus sp. strain DJ-1 through 16S rRNA ribotyping. The maximum arsenic accumulation of 9.8+/-0.5 mg g(-1) (dry weight) was observed during stationary phase of growth. Intracellular compartmentalization has shown 80% of arsenic accumulation in cytoplasm. The lack of arsC gene and arsenate reductase activity indicated that Bacillus sp. strain DJ-1 may lack classical ars operon and detoxification may be mediated through some novel mechanism. The arsenite binding protein was purified by affinity chromatography and characterized as DNA protection during starvation (DPS) protein by electrospray ionization mass spectrometry. The induction of DPS showed the adaptation of bacteria in arsenic stress condition and/or in detoxification mechanism, relies on its ability to bind with arsenic. These results indicate the hypertolerance with higher intracellular accumulation of arsenic by Bacillus sp. strain DJ-1, which could be mediated by DPS protein thus signifying this organism is a potential candidate for the removal of arsenic from industrial wastewater, which needs further study.

  17. Directed natural product biosynthesis gene cluster capture and expression in the model bacterium Bacillus subtilis

    PubMed Central

    Li, Yongxin; Li, Zhongrui; Yamanaka, Kazuya; Xu, Ying; Zhang, Weipeng; Vlamakis, Hera; Kolter, Roberto; Moore, Bradley S.; Qian, Pei-Yuan

    2015-01-01

    Bacilli are ubiquitous low G+C environmental Gram-positive bacteria that produce a wide assortment of specialized small molecules. Although their natural product biosynthetic potential is high, robust molecular tools to support the heterologous expression of large biosynthetic gene clusters in Bacillus hosts are rare. Herein we adapt transformation-associated recombination (TAR) in yeast to design a single genomic capture and expression vector for antibiotic production in Bacillus subtilis. After validating this direct cloning “plug-and-play” approach with surfactin, we genetically interrogated amicoumacin biosynthetic gene cluster from the marine isolate Bacillus subtilis 1779. Its heterologous expression allowed us to explore an unusual maturation process involving the N-acyl-asparagine pro-drug intermediates preamicoumacins, which are hydrolyzed by the asparagine-specific peptidase into the active component amicoumacin A. This work represents the first direct cloning based heterologous expression of natural products in the model organism B. subtilis and paves the way to the development of future genome mining efforts in this genus. PMID:25807046

  18. Bacillus oleivorans sp. nov., a diesel oil-degrading and solvent-tolerant bacterium.

    PubMed

    Azmatunnisa, M; Rahul, K; Subhash, Y; Sasikala, Ch; Ramana, Ch V

    2015-04-01

    Two Gram-stain-positive, diesel oil-degrading, solvent-tolerant, aerobic, endospore-forming, rod-shaped bacteria were isolated from a contaminated laboratory plate. Based on 16S rRNA gene sequence analysis, strains JC228(T) and JC279 were identified as belonging to the genus Bacillus within the family Bacillaceae of the phylum Firmicutes and were found to be most closely related to Bacillus carboniphilus JCM 9731(T) (98.1% 16S rRNA gene sequence similarity) and shared <96.0% 16S rRNA gene sequence similarity with other members of the genus Bacillus . The DNA-DNA hybridization value between the two strains was 88±2%. Strain JC228(T) showed 23.4±1% reassociation (based on DNA-DNA hybridization) with B. carboniphilus LMG 18001(T). The DNA G+C content of strains JC228(T) and JC279 was 39 and 38.4 mol%, respectively. Both strains were positive for catalase and oxidase activities, and negative for hydrolysis of starch and Tween 80. Strains JC228(T) and JC279 grew chemoorganoheterotrophically with optimum growth at pH 7 (range pH 7-9.5) and 35 °C (range 25-40 °C). Diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol and an unidentified phospholipid (PL2) were the major polar lipids. Major cellular fatty acids were iso-C(15 : 0), anteiso-C(15 : 0), iso-C(17 : 0) and C(16 : 0). Whole-cell hydrolysates contained l-alanine, d-alanine, d-glutamic acid and meso-diaminopimelic acid. Both strains utilized diesel oil as sole carbon and energy source. The results of physiological, biochemical, chemotaxonomic and molecular analyses allowed clear differentiation of strains JC228(T) and JC279 from their closest phylogenetic neighbours. Therefore strains JC228(T) and JC279 represent a novel species of the genus Bacillus , for which the name Bacillus oleivorans sp. nov. is proposed. The type strain is JC228(T) ( = LMG 28084(T) = CCTCC AB 2013353(T)).

  19. Cellulomonas bogoriensis sp. nov., an alkaliphilic cellulomonad.

    PubMed

    Jones, Brian E; Grant, William D; Duckworth, A W; Schumann, Peter; Weiss, Norbert; Stackebrandt, Erko

    2005-07-01

    An alkaliphilic, slightly halotolerant, chemo-organotrophic, Gram-positive, rod-shaped bacterium, strain 69B4(T), was isolated from the sediment of the littoral zone of Lake Bogoria, Kenya. Phylogenetically, it is a member of the genus Cellulomonas, showing less than 97.5 % sequence similarity to the type strains of other Cellulomonas species. The highest level of similarity, albeit moderate, was found with respect to Cellulomonas cellasea DSM 20118(T). Chemotaxonomic properties confirm the 16S rRNA gene-based generic affiliation, i.e. a DNA G+C content of 71.5 mol%, anteiso-C(15:0) and C(16:0) as the major fatty acids, MK-9(H(4)) as the major isoprenoid quinone, a peptidoglycan containing L-ornithine as the diamino acid and D-aspartic acid in the interpeptide bridge and phosphatidylglycerol as the only identified main polar lipid. The strain is aerobic to facultatively anaerobic, being capable of growth under strictly anaerobic conditions. Optimal growth occurs between pH values 9.0 and 10.0. On the basis of its distinct phylogenetic position and metabolic properties, strain 69B4(T) represents a novel species of the genus Cellulomonas, for which the name Cellulomonas bogoriensis sp. nov. is proposed. The type strain is 69B4(T) (=DSM 16987(T)=CIP 108683(T)).

  20. Characterization and site-directed mutagenesis of an α-galactosidase from the deep-sea bacterium Bacillus megaterium.

    PubMed

    Xu, Haibo; Qin, Yongjun; Huang, Zongqing; Liu, Ziduo

    2014-03-01

    A novel gene (BmelA) (1323bp) encoding an α-galactosidase of 440 amino acids was cloned from the deep-sea bacterium Bacillus megaterium and the protein was expressed in Escherichia coli BL21 (DE3) with an estimated molecular mass of about 45 kDa by SDS-PAGE. The enzyme belongs to glycoside hydrolase family 4, with the highest identity (74%) to α-galactosidase Mel4A from Bacillus halodurans among the characterized α-galactosidases. The recombinant BmelA displayed its maximum activity at 35 °C and pH 8.5-9.0 in 50 mM Tris-HCl buffer, and could hydrolyze different substrates with the Km values against p-nitrophenyl-α-D-galactopyranoside (pNP-α-Gal), raffinose and stachyose being 1.02±0.02, 2.24±0.11 and 3.42±0.17 mM, respectively. Besides, 4 mutants (I38 V, I38A, I38F and Q84A) were obtained by site-directed mutagenesis based on molecular modeling and sequence alignment. The kinetic analysis indicated that mutants I38 V and I38A exhibited a 1.7- and 1.4-fold increase over the wild type enzyme in catalytic efficiency (k(cat)/K(m)) against pNP-α-Gal, respectively, while mutant I38F showed a 3.5-fold decrease against pNP-α-Gal and mutant Q84A almost completely lost its activity. All the results suggest that I38 and Q84 sites play a vital role in enzyme activity probably due to their steric and polar effects on the predicted "tunnel" structure and NAD+ binding to the enzyme.

  1. Bacterial treatment of alkaline cement kiln dust using Bacillus halodurans strain KG1

    PubMed Central

    Kunal; Rajor, Anita; Siddique, Rafat

    2016-01-01

    This study was conducted to isolate an acid-producing, alkaliphilic bacterium to reduce the alkalinity of cement industry waste (cement kiln dust). Gram-positive isolate KG1 grew well at pH values of 6–12, temperatures of 28–50 °C, and NaCl concentrations of 0–16% and thus was further screened for its potential to reduce the pH of an alkaline medium. Phenotypic characteristics of the KG1 isolate were consistent with those of the genus Bacillus, and the highest level of 16S rRNA gene sequence similarity was found with Bacillus halodurans strain DSM 497 (94.7%). On the basis of its phenotypic characteristics and genotypic distinctiveness from other phylogenetic neighbors belonging to alkaliphilic Bacillus species, the isolated strain was designated B. halodurans strain KG1, with GenBank accession number JQ307184 (= NCIM 5439). Isolate KG1 reduced the alkalinity (by 83.64%) and the chloride content (by 86.96%) of cement kiln dust and showed a potential to be used in the cement industry for a variety of applications. PMID:26887220

  2. Bacterial treatment of alkaline cement kiln dust using Bacillus halodurans strain KG1.

    PubMed

    Kunal; Rajor, Anita; Siddique, Rafat

    2016-01-01

    This study was conducted to isolate an acid-producing, alkaliphilic bacterium to reduce the alkalinity of cement industry waste (cement kiln dust). Gram-positive isolate KG1 grew well at pH values of 6-12, temperatures of 28-50°C, and NaCl concentrations of 0-16% and thus was further screened for its potential to reduce the pH of an alkaline medium. Phenotypic characteristics of the KG1 isolate were consistent with those of the genus Bacillus, and the highest level of 16S rRNA gene sequence similarity was found with Bacillus halodurans strain DSM 497 (94.7%). On the basis of its phenotypic characteristics and genotypic distinctiveness from other phylogenetic neighbors belonging to alkaliphilic Bacillus species, the isolated strain was designated B. halodurans strain KG1, with GenBank accession number JQ307184 (= NCIM 5439). Isolate KG1 reduced the alkalinity (by 83.64%) and the chloride content (by 86.96%) of cement kiln dust and showed a potential to be used in the cement industry for a variety of applications.

  3. Bacterial treatment of alkaline cement kiln dust using Bacillus halodurans strain KG1.

    PubMed

    Kunal; Rajor, Anita; Siddique, Rafat

    2016-01-01

    This study was conducted to isolate an acid-producing, alkaliphilic bacterium to reduce the alkalinity of cement industry waste (cement kiln dust). Gram-positive isolate KG1 grew well at pH values of 6-12, temperatures of 28-50°C, and NaCl concentrations of 0-16% and thus was further screened for its potential to reduce the pH of an alkaline medium. Phenotypic characteristics of the KG1 isolate were consistent with those of the genus Bacillus, and the highest level of 16S rRNA gene sequence similarity was found with Bacillus halodurans strain DSM 497 (94.7%). On the basis of its phenotypic characteristics and genotypic distinctiveness from other phylogenetic neighbors belonging to alkaliphilic Bacillus species, the isolated strain was designated B. halodurans strain KG1, with GenBank accession number JQ307184 (= NCIM 5439). Isolate KG1 reduced the alkalinity (by 83.64%) and the chloride content (by 86.96%) of cement kiln dust and showed a potential to be used in the cement industry for a variety of applications. PMID:26887220

  4. Bacillus amyloliquefaciens G1: A Potential Antagonistic Bacterium against Eel-Pathogenic Aeromonas hydrophila

    PubMed Central

    Cao, Haipeng; He, Shan; Wei, Ruopeng; Diong, Marek; Lu, Liqun

    2011-01-01

    Recent studies have revealed that the use of probiotics is an alternative to control marine aeromonas. However, few probiotics are available against Aeromonas hydrophila infections in eels. In the present study, a potential antagonistic strain G1 against the eel-pathogenic A. hydrophila was isolated from sediment underlying brackish water. Its extracellular products with antibacterial activities were shown to be stable under wide range of pH, temperature, and proteinase K. It was initially identified as Bacillus amyloliquefaciens using API identification kits and confirmed to be B. amyloliquefaciens strain (GenBank accession number DQ422953) by phylogenetic analysis. In addition, it was shown to be safe for mammalians, had a wide anti-A. hydrophila spectrum, and exhibited significant effects on inhibiting the growth of the eel-pathogenic A. hydrophila both in vitro and in vivo. To the best of our knowledge, this is the first report on a promising antagonistic Bacillus amyloliquefaciens strain from brackish water sediment against eel-pathogenic A. hydrophila. PMID:21754944

  5. Isolation and identification of chemical constituents from the bacterium Bacillus sp. and their nematicidal activities.

    PubMed

    Zeng, Liming; Jin, Hui; Lu, Dengxue; Yang, Xiaoyan; Pan, Le; Cui, Haiyan; He, Xiaofeng; Qiu, Hongdeng; Qin, Bo

    2015-10-01

    A strain SMrs28 was isolated from the rhizosphere soil of a toxic plant Stellera chamaejasme and identified as Bacillus sp. on the basis of morphological and partial 16S rRNA gene sequence analysis. The crude extract of SMrs28 fermentation broth showed strong nematocidal activities in preliminary test. To define the active nematocidal metabolites of SMrs28, a novel compound (1), 4-oxabicyclo[3.2.2]nona-1(7), 5,8-triene, along with five known compounds (2-6), were isolated from the strain by various column chromatographic techniques and characterized on the basis of spectroscopic analysis. Results of the in vitro nematicidal tests showed that the metabolites presented different levels of activity at certain exposure conditions. Compounds (1-3) displayed LC50 values of 904.12, 451.26, 232.98 µg/ml and 1594.0, 366.62, 206.38 µg/ml against Bursaphelenchus xylophilus and Ditylenchus destructor at 72 h, respectively. This is the first report of the nematicidal activity of the compounds as constituents of Bacillus sp.. Our findings help to find potential chemical structures to develop nematicides from microbial source for the management of nematode-infected plant diseases.

  6. Draft Genome Sequence of Bacillus marisflavi TF-11T (JCM 11544), a Carotenoid-Producing Bacterium Isolated from Seawater from a Tidal Flat in the Yellow Sea

    PubMed Central

    Wang, Jie-ping; Liu, Guo-hong; Chen, De-ju; Chen, Qian-qian; Zhu, Yu-jing; Chen, Zheng; Che, Jian-mei

    2015-01-01

    Bacillus marisflavi TF-11T (JCM 11544) is a Gram-positive, spore-forming, and carotenoid-producing bacterium isolated from seawater from a tidal flat in the Yellow Sea. Here, we report the first draft genome sequence of B. marisflavi TF-11T, which comprises 4.31 Mb in 11 scaffolds with a G+C content of 48.57%. PMID:26659687

  7. Plant-Microbe Communication Enhances Auxin Biosynthesis by a Root-Associated Bacterium, Bacillus amyloliquefaciens SQR9.

    PubMed

    Liu, Yunpeng; Chen, Lin; Zhang, Nan; Li, Zunfeng; Zhang, Guishan; Xu, Yu; Shen, Qirong; Zhang, Ruifu

    2016-04-01

    Mechanisms by which beneficial rhizobacteria promote plant growth include tryptophan-dependent indole-3-acetic acid (IAA) synthesis. The abundance of tryptophan in the rhizosphere, however, may influence the level of benefit provided by IAA-producing rhizobacteria. This study examined the cucumber-Bacillus amyloliquefaciens SQR9 system and found that SQR9, a bacterium previously shown to enhance the growth of cucumber, increased root secretion of tryptophan by three- to fourfold. Using a split-root system, SQR9 colonization of roots in one chamber not only increased tryptophan secretion from the noninoculated roots but also increased the expression of the cucumber tryptophan transport gene but not the anthranilate synthesis gene in those roots. The increased tryptophan in isolated rhizosphere exudates was sufficient to support increased IAA production by SQR9. Moreover, SQR9 colonization of roots in one chamber in the split-root system resulted in sufficient tryptophan production by the other roots to upregulate SQR9 IAA biosynthesis genes, including a 27-fold increase in the indole-3-acetonitrilase gene yhcX during subsequent colonization of those roots. Deletion of yhcX eliminated SQR9-mediated increases in root surface area, likely by reducing IAA-stimulated lateral root growth. This study demonstrates a chemical dialogue between B. amyloliquefaciens and cucumber in which this communication contributes to bacteria-mediated plant-growth enhancement.

  8. Identification and cloning of a gene encoding dichloromethane dehalogenase from a methylotrophic bacterium, Bacillus circulans WZ-12 CCTCC M 207006.

    PubMed

    Wu, Shijin; Zhang, Huaxing; Yu, Xiang; Chen, Jianmeng

    2009-10-01

    The gene dehalA encoding a novel dichloromethane dehalogenases (DehalA), has been cloned from Bacillus circulans WZ-12 CCTCC M 207006. The open reading frame of dehalA, spanning 864 bp, encoded a 288-amino acid protein that showed 85.76% identity to the dichloromethane dehalogenases of Hyphomicrobium sp. GJ21 with several commonly conserved sequences. These sequences could not be found in putative dichloromethane (DCM) dehalogenases reported from other bacteria and fungi. DehalA was expressed in Escherichia coli BL21 (DE3) from a pET28b(+) expression system and purified. The subunit molecular mass of the recombinant DehalA as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis was approximately 33 kDa. Subsequent enzymatic characterization revealed that DehalA was most active in a acidic pH range at 30 degrees , which was quite different from that observed from a facultative bacterium dichloromethane dehalogenases of Methylophilus sp. strain DM11. The Michaelis-Menten constant of DCM dehalogenase was markedly lower than that of standard DCM dehalogenases. PMID:19277720

  9. Laboratory-scale continuous reactor for soluble selenium removal using selenate-reducing bacterium, Bacillus sp. SF-1.

    PubMed

    Fujita, Masanori; Ike, Michihiko; Kashiwa, Masami; Hashimoto, Ryoko; Soda, Satoshi

    2002-12-30

    A model continuous flow bioreactor (volume 0.5 L) was constructed for removing toxic soluble selenium (selenate/selenite) of high concentrations using a selenate-reducing bacterium, Bacillus sp. SF-1, which transforms selenate into elemental selenium via selenite for anaerobic respiration. Model wastewater contained 41.8 mg-Se/L selenate and excess lactate as the carbon and energy source; the bioreactor was operated as an anoxic, completely mixed chemostat with cell retention time between 2.2-95.2 h. At short cell retention times selenate was removed by the bioreactor, but accumulation of selenite was observed. At long cell retention times soluble selenium, both selenate and selenite, was successfully reduced into nontoxic elemental selenium. A simple mathematical model is proposed to evaluate Se reduction ability of strain SF-1. First-order kinetic constants for selenate and selenite reduction were estimated to be 2.9 x 10(-11) L/cells/h and 5.5 x 10(-13) L/cells/h, respectively. The yield of the bacterial cells by selenate reduction was estimated to be 2.2 x 10(9) cells/mg-Se.

  10. Plant-Microbe Communication Enhances Auxin Biosynthesis by a Root-Associated Bacterium, Bacillus amyloliquefaciens SQR9.

    PubMed

    Liu, Yunpeng; Chen, Lin; Zhang, Nan; Li, Zunfeng; Zhang, Guishan; Xu, Yu; Shen, Qirong; Zhang, Ruifu

    2016-04-01

    Mechanisms by which beneficial rhizobacteria promote plant growth include tryptophan-dependent indole-3-acetic acid (IAA) synthesis. The abundance of tryptophan in the rhizosphere, however, may influence the level of benefit provided by IAA-producing rhizobacteria. This study examined the cucumber-Bacillus amyloliquefaciens SQR9 system and found that SQR9, a bacterium previously shown to enhance the growth of cucumber, increased root secretion of tryptophan by three- to fourfold. Using a split-root system, SQR9 colonization of roots in one chamber not only increased tryptophan secretion from the noninoculated roots but also increased the expression of the cucumber tryptophan transport gene but not the anthranilate synthesis gene in those roots. The increased tryptophan in isolated rhizosphere exudates was sufficient to support increased IAA production by SQR9. Moreover, SQR9 colonization of roots in one chamber in the split-root system resulted in sufficient tryptophan production by the other roots to upregulate SQR9 IAA biosynthesis genes, including a 27-fold increase in the indole-3-acetonitrilase gene yhcX during subsequent colonization of those roots. Deletion of yhcX eliminated SQR9-mediated increases in root surface area, likely by reducing IAA-stimulated lateral root growth. This study demonstrates a chemical dialogue between B. amyloliquefaciens and cucumber in which this communication contributes to bacteria-mediated plant-growth enhancement. PMID:26808445

  11. Alkalispirochaeta cellulosivorans gen. nov., sp. nov., a cellulose-hydrolysing, alkaliphilic, halotolerant bacterium isolated from the gut of a wood-eating cockroach (Cryptocercus punctulatus), and reclassification of four species of Spirochaeta as new combinations within Alkalispirochaeta gen. nov.

    PubMed

    Sravanthi, T; Tushar, L; Sasikala, Ch; Ramana, Ch V

    2016-04-01

    An obligately anaerobic spirochaete designated strain JC227T was isolated from the gut of a wood-eating cockroach, Cryptocercus punctulatus (Scudder), from the Rann of Kutch, Gujarat, India. Strain JC227T was Gram-stain-negative, mesophilic, halotolerant and alkaliphilic. Based on 16S rRNA gene sequence analysis, strain JC227T belongs to the genus Spirochaeta, with Spirochaeta sphaeroplastigenens JC133T (99.51%), S. odontotermitis JC202T (99.30%), S. alkalica Z-7491T (99.10%), S. americana (98.54%) and other members of the genus Spirochaeta (<92.7%) as its closest phylogenetic neighbours. However, DNA-DNA hybridization between strain JC227T and S. sphaeroplastigenens JC133T, S. odontotermitis JC202T, S. alkalica DSM 8900T and S. americana DSM 14872T was 62±2, 63, 58±2 and 48±4 %, respectively. Strain JC227T contained phosphatidylglycerol, diphosphatidylglycerol, an unidentified glycolipid and six unidentified lipids. Summed feature C18:1ω7c/C18:1ω6c was the predominant cellular fatty acid, with significant proportions of C16:0, C14:0, C12:0, C15:1ω6c, C16:1ω5c, C16:1ω6c/C16:1ω7c and C17:0 2-OH. The DNA G+C content of strain JC227T was 55.5 mol%. On the basis of physiological, biochemical, chemotaxonomic (including metabolomic) and genomic differences from previously described taxa, strain JC227T can be differentiated from members of the genus Spirochaeta and represents a novel species of a new genus, for which the name Alkalispirochaeta cellulosivorans gen. nov., sp. nov. is proposed. The type strain of Alkalispirochaeta cellulosivorans is JC227T (=KCTC 15343T=NBRC 110105T). We also propose the reclassification of Spirochaeta sphaeroplastigenens, Spirochaeta odontotermitis, Spirochaeta alkalica and Spirochaeta americana as Alkalispirochaeta sphaeroplastigenens comb. nov. (type strain JC133T=KCTC 15220T=NBRC 109056T), Alkalispirochaeta odontotermitis comb. nov. (type strain JC202T=KCTC 15324T=NBRC 110104T), Alkalispirochaeta alkalica comb. nov. (type

  12. The characteristics of a novel heterotrophic nitrification-aerobic denitrification bacterium, Bacillus methylotrophicus strain L7.

    PubMed

    Zhang, Qing-Ling; Liu, Ying; Ai, Guo-Min; Miao, Li-Li; Zheng, Hai-Yan; Liu, Zhi-Pei

    2012-03-01

    Bacillus methylotrophicus strain L7, exhibited efficient heterotrophic nitrification-aerobic denitrification ability, with maximum NH(4)(+)-N and NO(2)(-)-N removal rate of 51.58 mg/L/d and 5.81 mg/L/d, respectively. Strain L7 showed different gaseous emitting patterns from those strains ever described. When (15)NH(4)Cl, or Na(15)NO(2), or K(15)NO(3) was used, results of GC-MS indicated that N(2)O was emitted as the intermediate of heterotrophic nitrification or aerobic denitrification, while GC-IRMS results showed that N(2) was produced as end product when nitrite was used. Single factor experiments suggested that the optimal conditions for heterotrophic nitrification were sodium succinate as carbon source, C/N 6, pH 7-8, 0 g/L NaCl, 37 °C and a wide range of NH(4)(+)-N from 80 to 1000 mg/L. Orthogonal tests showed that the optimal conditions for aerobic denitrification were C/N 20, pH 7-8, 10 g/L NaCl and DO 4.82 mg/L (shaking speed 50 r/min) when nitrite was served as substrate.

  13. Characteristics of recombinant α-carbonic anhydrase of polyextremophilic bacterium Bacillus halodurans TSLV1.

    PubMed

    Faridi, Shazia; Satyanarayana, T

    2016-08-01

    Carbonic anhydrase (CA) is a biocatalyst that catalyzes the hydration of CO2 to bicarbonate and protons, thus useful in mitigating green house effect by sequestering CO2 from various point sources. An alkalistable and moderately thermostable α- carbonic anhydrase encoding gene (BhCA) from Bacillus halodurans TSLV1 has been cloned and expressed in Escherichia coli. A 31.4-fold enhancement in CA production was achieved due to cloning and expression in E. coli. About 50% of the CA produced was secreted when recombinant E. coli with BhCA-pET22b was cultivated in a medium with EDTA and lysozyme because of the efficient pelB leader sequence. rBhCA is a ∼75kDa homodimeric protein with a Tm of 72°C and T1/2 values of 66 and 24min at 50 and 60°C, respectively. SDM analysis revealed that H137, H139, H156 and H110 present in the active site play an important role in catalysis. Mineralization of CO2 using rBhCA led to the accelerated precipitation of CaCO3 in calcite form. rBhCA also functions as an efficient virtual peroxidase when Zn(2+) is substituted with Mn(2+). PMID:27174908

  14. Respiratory chain of the alkalophilic bacterium Bacillus firmus RAB and its non-alkalophilic mutant derivative.

    PubMed

    Kitada, M; Lewis, R J; Krulwich, T A

    1983-04-01

    The membrane-bound respiratory chain components of alkalophilic Bacillus firmus RAB were studied by difference spectroscopy and oxidation-reduction potentiometric titrations. Cytochromes with the following midpoint potentials were identified at pH 9.0: a-type cytochromes, +110 and +210 mV; b-type cytochromes, +20, -120, -280, and -400 mV; and cytochrome c, +60 mV. Only the higher-potential cytochrome a showed an upward shift in midpoint potential when titrated at pH 7.0. Parallel studies of a non-alkalophilic mutant derivative of B. firmus RAB, strain RABN, revealed the presence of only one species each of a-, b-, and c-type cytochromes which exhibited midpoint potentials of +110, -150, and +160 mV, respectively, at pH 7.0. Membranes of both strains were found to contain menaquinone. At pH 9.0, NADH caused the reduction of essentially all of the cytochromes that were seen in fully reduced preparations of wild-type B. firmus RAB membranes. By contrast, at pH 7.0, NADH failed to appreciably reduce the b-type cytochromes. These findings may relate to our recent proposal that an inadequacy in energy transduction (production of a proton motive force) by the alkalophilic respiratory chain at pH 7.0 is what precludes the growth of B. firmus RAB at a neutral pH.

  15. Respiratory chain of the alkalophilic bacterium Bacillus firmus RAB and its non-alkalophilic mutant derivative

    SciTech Connect

    Kitada, M.; Lewis, R.J.; Krulwich, T.A.

    1983-04-01

    The membrane-bound respiratory chain components of alkalophilic Bacillus firmus RAB were studied by difference spectroscopy and oxidation-reduction potentiometric titrations. Cytochromes with the following midpoint potentials were identified at pH 9.0: a-type cytochromes, +110 and +210 mV; b-type cytochromes, +20, -120, -280, and -400 mV; and cytochrome c, +60 mV. Only the higher-potential cytochrome a showed an upward shift in midpoint potential when titrated at pH 7.0. Parallel studies of a non-alkalophilic mutant derivate of B. firmus RAB, strain RABN, revealed the presence of only one species each of a-, b-, and c-type cytochromes which exhibited midpoint potentials of +110, -150, and +160 mV, respectively, at pH 7.0. Membranes of both strains were found to contain menaquinone. At pH 9.0, NADH caused the reduction of essentially all of the cytochromes that were seen in fully reduced preparations of wild-type B. firmus RAB membranes. By contrast, at pH 7.0, NADH failed to appreciably reduce the b-type cytochromes. These findings may relate to our recent proposal that an inadequacy in energy transduction (production of a proton motive force) by the alkalophilic respiratory chain at pH 7.0 is what precludes the growth of B. firmus RAB at a neutral pH. 13 references, 7 figures.

  16. Isolation, identification and characterization of a glyphosate-degrading bacterium, Bacillus cereus CB4, from soil.

    PubMed

    Fan, Jieyu; Yang, Guoxia; Zhao, Haoyu; Shi, Guanying; Geng, Yucong; Hou, Taiping; Tao, Ke

    2012-01-01

    A bacterial strain named CB4, with highly effective glyphosate degradation capability, was isolated from soil after enrichment. On the basis of the Biolog omniLog identification system (Biolog) and 16S ribosomal RNA (rRNA) gene sequencing methods, strain CB4 was identified as Bacillus cereus. Further experiments were carried out to optimize the growth of strain CB4 and the glyphosate degradation activity by high performance liquid chromatography (HPLC). The optimal conditions were found as follows: initial pH 6.0, incubation temperature 35°C, glyphosate concentration 6 g L(-1), inoculation amount 5% and incubation time 5 days. Under the optimal conditions, stain CB4 utilized 94.47% of glyphosate. This is the first report on B. cereus with a capacity to utilize herbicide glyphosate, and it can degrade glyphosate concentrations up to 12 g L(-1). Metabolization of glyphosate by strain B. cereus CB4 was studied. Results indicated that two concurrent pathways were capable of degrading glyphosate to AMPA, glyoxylate, sarcosine, glycine and formaldehyde as products. Glyphosate breakdown in B. cereus CB4 was achieved by the C-P lyase activity and the glyphosate oxidoreductase activity. PMID:22990486

  17. Isolation and characterization of a furfural-degrading bacterium Bacillus cereus sp. strain DS1.

    PubMed

    Zheng, Dan; Bao, Jianguo; Lu, Jueming; Gao, Chunlei

    2015-02-01

    Furfural was found to be the main organic pollutant in the wastewater coming from the Diosgenin factory. This substance is derived from acidic pentosan in Dioscorea zingiberensis and is also found in a variety of agricultural byproducts, including corncobs, oat, wheat bran, and sawdust. It is regarded as a toxicant and an inhibitor to the growth of microorganism in both sewage disposal and biological fermentation. A furfural-degrading strain (DS1) was isolated from activated sludge of wastewater treatment plant in a diosgenin factory by continuous enrichment culture. The strain was identified as Bacillus cereus based on morphological, physiological tests, as well as on 16S rDNA sequence and Biolog analyses. The capacity of this strain to grow on a mineral salt medium, utilizing furfural as the sole carbon and energy source to degrade furfural, was investigated in this study. Under the condition of pH 9.0, temperature 35 °C, with rotating speed of 150 rpm, and an inoculum of 6 %, the strain showed that the furfural degradation capacity reaches 35 % in 7 days, as measured by high-performance liquid chromatography. The addition of inorganic carbon sources could bring down the biodegradation efficiency of the furfural. The strain DS1 showed better furfural removal capacity, as compared to other inorganic carbon sources in the media. Furthermore, a furfural concentration of as high as 4,000 mg L(-1) was tolerated by the culture. The capacity to degrade furfural was demonstrated for the first time by using the genus B. cereus. This study suggests the possible application in biodegradation strategies.

  18. Fractionation of Natural Organic Matter Upon Adsorption to the Bacterium, Bacillus subtilis

    NASA Astrophysics Data System (ADS)

    Manecki, M.; Maurice, P. A.; Fein, J. B.

    2001-12-01

    High pressure size exclusion chromatography (HPSEC) was used to measure changes in molecular weight distribution and average molecular weight upon adsorption of fulvic acid onto Bacillus subtilis at pH 3-7. The FA was an XAD-8 extract from a stream in the New Jersey Pine Barrens (USA), and had a weight average molecular weight of 1890 Da. Adsorption of aqueous FA onto B.subtilis was relatively fast, with steady state attained within 2 hours. An adsorption isotherm at pH 4.5 revealed a strong affinity of FA for the B.subtilis surface. The maximum adsorption capacity of a 20g bacteria/L suspension was greater than 9 mg C/L of FA at pH 4.5. Adsorption of FA onto B.subtilis was strongly pH dependent, increasing markedly with decreasing pH over the pH range 3-7. Comparison of HPSEC analysis of control (FA not reacted with bacteria) versus reacted samples showed that in all experiments, the weight average molecular weight (Mw) of FA remaining in solution decreased by several hundred Da. The observed decrease in solution Mw upon adsorption indicated that the higher molecular weight FA components adsorbed preferentially to the bacterial surfaces, at all studied pH values (3-7). Additionally, there was a low molecular weight FA fraction that did not adsorb, even at low pH. Our results suggest that hydrophobic interactions may be important for FA sorption to B.subtilis and that low molecular weight, more hydrophilic components may thus be less likely to adsorb than higher molecular weight, more hydrophobic components.

  19. Spectral characterization of a pteridine derivative from cyanide-utilizing bacterium Bacillus subtilis - JN989651.

    PubMed

    Durairaju Nisshanthini, S; Teresa Infanta S, Antony K; Raja, Duraisamy Senthil; Natarajan, Karuppannan; Palaniswamy, M; Angayarkanni, Jayaraman

    2015-04-01

    Soil and water samples were collected from various regions of SIPCOT and nearby Vanappadi Lake, Ranipet, Tamilnadu, India. Based on their colony morphology and their stability during subculturing, 72 bacteria were isolated, of which 14 isolates were actinomycetes. Preliminary selection was carried out to exploit the ability of the microorganisms to utilize sodium cyanate as nitrogen source. Those organisms that were able to utilize cyanate were subjected to secondary screening viz., utilization of sodium cyanide as the nitrogen source. The oxygenolytic cleavage of cyanide is dependent on cyanide monooxygenase which obligately requires pterin cofactor for its activity. Based on this, the organisms capable of utilizing sodium cyanide were tested for the presence of pterin. Thin layer chromatography (TLC) of the cell extracts using n-butanol: 5 N glacial acetic acid (4:1) revealed that 10 out of 12 organisms that were able to utilize cyanide had the pterin-related blue fluorescent compound in the cell extract. The cell extracts of these 10 organisms were subjected to high performance thin layer chromatography (HPTLC) for further confirmation using a pterin standard. Based on the incubation period, cell biomass yield, peak height and area, strain VPW3 was selected and was identified as Bacillus subtilis. The Rf value of the cell extract was 0.73 which was consistent with the 0.74 Rf value of the pterin standard when scanned at 254 nm. The compound was extracted and purified by preparative High Performance Liquid Chromatography (HPLC). Characterization of the compound was performed by ultraviolet spectrum, fluorescence spectrum, Electrospray Ionization-Mass Spectrometry (ESI-MS), and Nuclear Magnetic Resonance spectroscopy (NMR). The compound is proposed to be 6-propionyl pterin (2-amino-6-propionyl-3H-pteridin-4-one).

  20. Isolation and characterization of a furfural-degrading bacterium Bacillus cereus sp. strain DS1.

    PubMed

    Zheng, Dan; Bao, Jianguo; Lu, Jueming; Gao, Chunlei

    2015-02-01

    Furfural was found to be the main organic pollutant in the wastewater coming from the Diosgenin factory. This substance is derived from acidic pentosan in Dioscorea zingiberensis and is also found in a variety of agricultural byproducts, including corncobs, oat, wheat bran, and sawdust. It is regarded as a toxicant and an inhibitor to the growth of microorganism in both sewage disposal and biological fermentation. A furfural-degrading strain (DS1) was isolated from activated sludge of wastewater treatment plant in a diosgenin factory by continuous enrichment culture. The strain was identified as Bacillus cereus based on morphological, physiological tests, as well as on 16S rDNA sequence and Biolog analyses. The capacity of this strain to grow on a mineral salt medium, utilizing furfural as the sole carbon and energy source to degrade furfural, was investigated in this study. Under the condition of pH 9.0, temperature 35 °C, with rotating speed of 150 rpm, and an inoculum of 6 %, the strain showed that the furfural degradation capacity reaches 35 % in 7 days, as measured by high-performance liquid chromatography. The addition of inorganic carbon sources could bring down the biodegradation efficiency of the furfural. The strain DS1 showed better furfural removal capacity, as compared to other inorganic carbon sources in the media. Furthermore, a furfural concentration of as high as 4,000 mg L(-1) was tolerated by the culture. The capacity to degrade furfural was demonstrated for the first time by using the genus B. cereus. This study suggests the possible application in biodegradation strategies. PMID:25274411

  1. Bacillus mesophilus sp. nov., an alginate-degrading bacterium isolated from a soil sample collected from an abandoned marine solar saltern.

    PubMed

    Zhou, Yan-Xia; Liu, Guo-Hong; Liu, Bo; Chen, Guan-Jun; Du, Zong-Jun

    2016-07-01

    A novel Gram-stain positive, endospore-forming bacterium, designated SA4(T), was isolated from a soil sample collected from an abandoned marine solar saltern at Wendeng, Shandong Province, PR China. Cells were observed to be rod shaped, alginase positive, catalase positive and motile. The strain was found to grow at temperatures ranging from 15 to 40 °C (optimum 35 °C), and pH 5.0-11.0 (optimum pH 8.0) with 0-7.0 % (w/v) NaCl concentration (optimum NaCl 3.0 %). Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain SA4(T) belongs to the genus Bacillus and exhibits 16S rRNA gene sequence similarities of 96.6, 96.5, 96.3 and 96.2 % with Bacillus horikoshii DSM 8719(T), Bacillus acidicola 105-2(T), Bacillus shackletonii LMG 18435(T) and Bacillus pocheonensis Gsoil 420(T), respectively. The menaquinone was identified as MK-7 and the major polar lipids were identified as diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. The major fatty acids detected were anteiso-C15:0 (22.3 %), iso-C15:0 (22.6 %), iso-C16:0 (14.8 %) and iso-C14:0 (14.7 %). The DNA G+C content was determined to be 42.4 mol %. Phenotypic, chemotaxonomic and genotypic properties clearly indicated that isolate SA4(T) represents a novel species within the genus Bacillus, for which the name Bacillus mesophius sp. nov. is proposed. The type strain is SA4(T) (=DSM 101000(T)=CCTCC AB 2015209(T)).

  2. Induction of defense response against Rhizoctonia solani in cucumber plants by endophytic bacterium Bacillus thuringiensis GS1.

    PubMed

    Seo, Dong-Jun; Nguyen, Dang-Minh-Chanh; Song, Yong-Su; Jung, Woo-Jin

    2012-03-01

    An endophytic bacterium, Bacillus thuringiensis GS1, was isolated from bracken (Pteridium aquilinum) and found to have maximal production of chitinase (4.3 units/ml) at 5 days after culture. This study investigated the ability of B. thuringiensis GS1 to induce resistance to Rhizoctonia solani KACC 40111 (RS) in cucumber plants. Chitinase activity was greatest in RS-treated plants at 4 days. beta-1,3- Glucanase activity was highest in GS1-treated plants at 5 days. Guaiacol peroxidase (GPOD) activity increased continuously in all treated plants for 5 days. Ascorbate peroxidase (APX) activity in RS-treated plants was increased 1.5-fold compared with the control at 4 days. Polyphenol oxidase (PPO) activity in RS-treated plants was increased 1.5-fold compared with the control at 3 days. At 5 days after treatment, activity staining revealed three bands with chitinase activity (Ch1, Ch2, and Ch3) on SDSPAGE of cucumber plants treated with GS1+RS, whereas only one band was observed for RS-treated plants (Ch2). One GPOD isozyme (Gp1) was also observed in response to treatment with RS and GS1+RS at 4 days. One APX band (Ap2) was present on the native-PAGE gel of the control, and GS1- and GS1+RS-treated plants at 1 day. PPO bands (Po1 and Po2) from RS- and GS1+RS-treated plants were stronger than in the control and GS1-treated plants upon native-PAGE at 5 days. Taken together, these results indicate that the induction of PR proteins and defense-related enzymes by B. thuringiensis GS1 might have suppressed the damping-off caused by R. solani KACC 40111 in cucumber plants.

  3. Novel alkalistable α-carbonic anhydrase from the polyextremophilic bacterium Bacillus halodurans: characteristics and applicability in flue gas CO2 sequestration.

    PubMed

    Faridi, Shazia; Satyanarayana, T

    2016-08-01

    The emissions of CO2 into the atmosphere have been constantly rising due to anthropogenic activities, which have led to global warming and climate change. Among various methods proposed for mitigating CO2 levels in the atmosphere, carbonic anhydrase (CA)-mediated carbon sequestration represents a greener and safer approach to capture and convert it into stable mineral carbonates. Despite the fact that CA is an extremely efficient metalloenzyme that catalyzes the hydration of CO2 (CO2 + H2O ↔ HCO3 (-) + H(+)) with a kcat of ∼10(6) s(-1), a thermostable, and alkalistable CA is desirable for the process to take place efficiently. The purified CA from alkaliphilic, moderately thermophilic, and halotolerant Bacillus halodurans TSLV1 (BhCA) is a homodimeric enzyme with a subunit molecular mass of ~37 kDa with stability in a broad pH range between 6.0 and 11.0. It has a moderate thermostability with a T1/2 of 24.0 ± 1.0 min at 60 °C. Based on the sensitivity of CA to specific inhibitors, BhCA is an α-CA; this has been confirmed by nucleotide/amino acid sequence analysis. This has a unique property of stimulation by SO4 (2-), and it remains unaffected by SO3 (2-), NOx, and most other components present in the flue gas. BhCA is highly efficient in accelerating the mineralization of CO2 as compared to commercial bovine carbonic anhydrase (BCA) and is also efficient in the sequestration of CO2 from the exhaust of petrol driven car, thus, a useful biocatalyst for sequestering CO2 from flue gas. PMID:27102616

  4. Studies on the toxicity of an aqueous suspension of C60 nanoparticles using a bacterium (gen. Bacillus) and an aquatic plant (Lemna gibba) as in vitro model systems.

    PubMed

    Santos, Sandra M A; Dinis, Augusto M; Rodrigues, David M F; Peixoto, Francisco; Videira, Romeu A; Jurado, Amália S

    2013-10-15

    The increasing use of C60 nanoparticles and the diversity of their applications in industry and medicine has led to their production in a large scale. C60 release into wastewaters and the possible accumulation in the environment has raised concerns about their ecotoxicological impact. In the present study, an aqueous suspension of C60 nanoparticles was prepared and its potential toxicity studied in laboratory, using a bacterium (Bacillus stearothermophilus) and an aquatic plant (Lemna gibba) as model systems. C60 nanoparticles inhibited the growth of L. gibba, in contrast to that of the bacterium. Consistently, the ultrastructure and respiratory activity of bacterial cells were not affected by C60, but the contents of chlorophylls a and b and chloroplast oxygen production decreased considerably in L. gibba. Altogether, our results suggest that C60 aqueous dispersions must be viewed as an environmental pollutant, potentially endangering the equilibrium of aquatic ecosystems. PMID:24084257

  5. Bacillus coagulans

    MedlinePlus

    ... and infection due to the ulcer-causing bacterium Helicobacter pylori. Some people use Bacillus coagulans to prevent respiratory ... with of potentially harmful bacteria in the intestine. Helicobacter pylori infection. Which causes stomach ulcers. Inflammatory bowel disease ( ...

  6. Bacillus nanhaiensis sp. nov., isolated from an oyster.

    PubMed

    Chen, Yi-Guang; Zhang, Li; Zhang, Yu-Qin; He, Jian-Wu; Klenk, Hans-Peter; Tang, Shu-Kun; Zhang, You-Xiang; Li, Wen-Jun

    2011-04-01

    A novel Gram-stain-positive, slightly halophilic, facultatively alkaliphilic, catalase-positive, oxidase-negative, endospore-forming, motile, rod-shaped, aerobic bacterium, designated strain JSM 082006(T), was isolated from an oyster collected from Naozhou Island in the South China Sea. The isolate grew in 0-18 % (w/v) NaCl (optimum, 0.5-4.0 %), at pH 6.0-10.5 (optimum, pH 8.0) and at 15-45 °C (optimum, 30 °C). meso-Diaminopimelic acid was present in the cell-wall peptidoglycan. The major cellular fatty acids were anteiso-C(15 : 0), iso-C(15 : 0) and C(16 : 0). Strain JSM 082006(T) contained MK-7 as the predominant respiratory quinone and diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine as the major polar lipids. The genomic DNA G+C content was 40.2 mol%. Phylogenetic analysis based on 16S rRNA gene sequence comparisons revealed that strain JSM 082006(T) should be assigned to the genus Bacillus and that it was most closely related to the type strains of Bacillus barbaricus (sequence similarity 99.1 %) and Bacillus arsenicus (97.5 %), followed by those of Bacillus rigui (96.6 %) and Bacillus solisalsi (96.1 %). Phylogenetic analysis, DNA-DNA relatedness values, phenotypic characteristics and chemotaxonomic data support the view that strain JSM 082006(T) represents a novel species of the genus Bacillus, for which the name Bacillus nanhaiensis sp. nov. is proposed; the type strain is JSM 082006(T) ( = DSM 23009(T)  = KCTC 13712(T)).

  7. Regulation of the tryptophan biosynthetic genes in Bacillus halodurans: common elements but different strategies than those used by Bacillus subtilis.

    PubMed

    Szigeti, Reka; Milescu, Mirela; Gollnick, Paul

    2004-02-01

    In Bacillus subtilis, an RNA binding protein called TRAP regulates both transcription and translation of the tryptophan biosynthetic genes. Bacillus halodurans is an alkaliphilic Bacillus species that grows at high pHs. Previous studies of this bacterium have focused on mechanisms of adaptation for growth in alkaline environments. We have characterized the regulation of the tryptophan biosynthetic genes in B. halodurans and compared it to that in B. subtilis. B. halodurans encodes a TRAP protein with 71% sequence identity to the B. subtilis protein. Expression of anthranilate synthetase, the first enzyme in the pathway to tryptophan, is regulated significantly less in B. halodurans than in B. subtilis. Examination of the control of the B. halodurans trpEDCFBA operon both in vivo and in vitro shows that only transcription is regulated, whereas in B. subtilis both transcription of the operon and translation of trpE are controlled. The attenuation mechanism that controls transcription in B. halodurans is similar to that in B. subtilis, but there are some differences in the predicted RNA secondary structures in the B. halodurans trp leader region, including the presence of a potential anti-antiterminator structure. Translation of trpG, which is within the folate operon in both bacilli, is regulated similarly in the two species. PMID:14729709

  8. Preparative isolation and purification of macrolactin antibiotics from marine bacterium Bacillus amyloliquefaciens using high-speed counter-current chromatography in stepwise elution mode.

    PubMed

    He, Shan; Wang, Hongqiang; Yan, Xiaojun; Zhu, Peng; Chen, Juanjuan; Yang, Rui

    2013-01-11

    Preparative high-speed counter-current chromatography (HSCCC) was successfully applied to the isolation and purification of two macrolactin antibiotics from marine bacterium Bacillus amyloliquefaciens for the first time using stepwise elution with a pair of two-phase solvent systems composed of n-hexane-ethyl acetate-methanol-water at (1:4:1:4, v/v) and (3:4:3:4, v/v). The preparative HSCCC separation was performed on 300 mg of crude sample yielding macrolactin B (22.7 mg) and macrolactin A (40.4 mg) in a one-step separation, with purities over 95% as determined by HPLC. The structures of these compounds were identified by MS, (1)H NMR and (13)C NMR. Our results demonstrated that HSCCC was an efficient technique to separate marine antibiotics, which provide an approach to solve the problem of their sample availability for drug development.

  9. Platinum and rhenium extraction from a spent refinery catalyst using Bacillus megaterium as a cyanogenic bacterium: statistical modeling and process optimization.

    PubMed

    Motaghed, M; Mousavi, S M; Rastegar, S O; Shojaosadati, S A

    2014-11-01

    The present study evaluated the potential of Bacillus megaterium as a cyanogenic bacterium to produce cyanide for solubilization of platinum and rhenium from a spent refinery catalyst. Response surface methodology was applied to study the effects and interaction between two main effective parameters including initial glycine concentration and pulp density. Maximum Pt and Re recovery was obtained 15.7% and 98%, respectively, under optimum conditions of 12.8 g/l initial glycine concentration and 4% (w/v) pulp density after 7 days. Increasing the free cyanide concentration to 3.6 mg/l, varying the pH from 6.7 to 9, and increasing the dissolved oxygen from 2 to 5mg/l demonstrated the growth characteristics of B. megaterium during bioleaching process. The modified shrinking core model was used to determine the rate limiting step of the process. It was found that diffusion through the product layer is the rate controlling step.

  10. Efficient colonization of plant roots by the plant growth promoting bacterium Bacillus amyloliquefaciens FZB42, engineered to express green fluorescent protein.

    PubMed

    Fan, Ben; Chen, Xiao Hua; Budiharjo, Anto; Bleiss, Wilfrid; Vater, Joachim; Borriss, Rainer

    2011-02-20

    A single copy of the gfp gene linked with the P(spac) promoter and flanked by the terminal FZB42 amyE sequences was stably integrated into the chromosome of plant growth promoting bacterium Bacillus amyloliquefaciens FZB42 via homologous recombination. A spontaneous mutant, FB01mut, emitting bright fluorescence was detected among the transformants and found suitable for colonization experiments performed with Zea mays, Arabidopsis thaliana and Lemna minor. Real-time RT-PCR revealed that FB01mut expressed 2.5 times more of the gfp transcript than the original GFP-labeled strain. Confocal laser scanning microscopy of plant roots infected with gfp+ tagged FZB42 revealed that the bacterium behaves different in colonizing surfaces of plant roots of different species. In contrast to maize, FZB42 colonized preferentially root tips when colonizing Arabidopsis. FZB42 colonized heavily Lemna fronds and roots by forming biofilms consisting of extracellular matrix and cells with altered morphology. Surfactin, but no other lipopeptide or polyketide synthesized by FZB42 under laboratory conditions, was detected in extracts of Lemna plantlets colonized by FZB42. Due to its stable and long-lasting emission of bright fluorescence without antibiotic pressure FB01mut is an excellent tool for studying plant colonization under competitive, environmental conditions.

  11. Uncoupling and Toxic Action of Alkyltriphenylphosphonium Cations on Mitochondria and the Bacterium Bacillus subtilis as a Function of Alkyl Chain Length.

    PubMed

    Khailova, L S; Nazarov, P A; Sumbatyan, N V; Korshunova, G A; Rokitskaya, T I; Dedukhova, V I; Antonenko, Yu N; Skulachev, V P

    2015-12-01

    A series of permeating cations based on alkyl derivatives of triphenylphosphonium (C(n)-TPP(+)) containing linear hydrocarbon chains (butyl, octyl, decyl, and dodecyl) was investigated in systems of isolated mitochondria, bacteria, and liposomes. In contrast to some derivatives (esters) of rhodamine-19, wherein butyl rhodamine possessed the maximum activity, in the case of C(n)-TPP a stimulatory effect on mitochondrial respiration steadily increased with growing length of the alkyl radical. Tetraphenylphosphonium and butyl-TPP(+) at a dose of several hundred micromoles exhibited an uncoupling effect, which might be related to interaction between C(n)-TPP(+) and endogenous fatty acids and induction of their own cyclic transfer, resulting in transport of protons across the mitochondrial membrane. Such a mechanism was investigated by measuring efflux of carboxyfluorescein from liposomes influenced by C(n)-TPP(+). Experiments with bacteria demonstrated that dodecyl-TPP(+), decyl-TPP(+), and octyl-TPP(+) similarly to quinone-containing analog (SkQ1) inhibited growth of the Gram-positive bacterium Bacillus subtilis, wherein the inhibitory effect was upregulated with growing lipophilicity. These cations did not display toxic effect on growth of the Gram-negative bacterium Escherichia coli. It is assumed that the difference in toxic action on various bacterial species might be related to different permeability of bacterial coats for the examined triphenylphosphonium cations. PMID:26638684

  12. Halotolerant, alkaliphilic urease-producing bacteria from different climate zones and their application for biocementation of sand.

    PubMed

    Stabnikov, Viktor; Chu, Jian; Jian, Chu; Ivanov, Volodymyr; Li, Yishan

    2013-08-01

    Microbially induced calcium carbonate precipitation (MICP) is a phenomenon based on urease activity of halotolerant and alkaliphilic microorganisms that can be used for the soil bioclogging and biocementation in geotechnical engineering. However, enrichment cultures produced from indigenous soil bacteria cannot be used for large-scale MICP because their urease activity decreased with the rate about 5 % per one generation. To ensure stability of urease activity in biocement, halotolerant and alkaliphilic strains of urease-producing bacteria for soil biocementation were isolated from either sandy soil or high salinity water in different climate zones. The strain Bacillus sp. VUK5, isolated from soil in Ukraine (continental climate), was phylogenetically close in identity (99 % of 16S rRNA gene sequence) to the strain of Bacillus sp. VS1 isolated from beach sand in Singapore (tropical rainforest climate), as well as to the strains of Bacillus sp. isolated by other researchers in Ghent, Belgium (maritime temperate climate) and Yogyakarta, Indonesia (tropical rainforest climate). Both strains Bacillus sp. VS1 and VUK5 had maximum specific growth rate of 0.09/h and maximum urease activities of 6.2 and 8.8 mM of hydrolysed urea/min, respectively. The halotolerant and alkaliphilic strain of urease-producing bacteria isolated from water of the saline lake Dead Sea in Jordan was presented by Gram-positive cocci close to the species Staphylococcus succinus. However, the strains of this species could be hemolytic and toxigenic, therefore only representatives of alkaliphilic Bacillus sp. were used for the biocementation studies. Unconfined compressive strengths for dry biocemented sand samples after six batch treatments with strains VS1and VUK5 were 765 and 845 kPa, respectively. The content of precipitated calcium and the strength of dry biocemented sand at permeability equals to 1 % of initial value were 12.4 g Ca/kg of dry sand and 454 kPa, respectively, in case of

  13. Halotolerant, alkaliphilic urease-producing bacteria from different climate zones and their application for biocementation of sand.

    PubMed

    Stabnikov, Viktor; Chu, Jian; Jian, Chu; Ivanov, Volodymyr; Li, Yishan

    2013-08-01

    Microbially induced calcium carbonate precipitation (MICP) is a phenomenon based on urease activity of halotolerant and alkaliphilic microorganisms that can be used for the soil bioclogging and biocementation in geotechnical engineering. However, enrichment cultures produced from indigenous soil bacteria cannot be used for large-scale MICP because their urease activity decreased with the rate about 5 % per one generation. To ensure stability of urease activity in biocement, halotolerant and alkaliphilic strains of urease-producing bacteria for soil biocementation were isolated from either sandy soil or high salinity water in different climate zones. The strain Bacillus sp. VUK5, isolated from soil in Ukraine (continental climate), was phylogenetically close in identity (99 % of 16S rRNA gene sequence) to the strain of Bacillus sp. VS1 isolated from beach sand in Singapore (tropical rainforest climate), as well as to the strains of Bacillus sp. isolated by other researchers in Ghent, Belgium (maritime temperate climate) and Yogyakarta, Indonesia (tropical rainforest climate). Both strains Bacillus sp. VS1 and VUK5 had maximum specific growth rate of 0.09/h and maximum urease activities of 6.2 and 8.8 mM of hydrolysed urea/min, respectively. The halotolerant and alkaliphilic strain of urease-producing bacteria isolated from water of the saline lake Dead Sea in Jordan was presented by Gram-positive cocci close to the species Staphylococcus succinus. However, the strains of this species could be hemolytic and toxigenic, therefore only representatives of alkaliphilic Bacillus sp. were used for the biocementation studies. Unconfined compressive strengths for dry biocemented sand samples after six batch treatments with strains VS1and VUK5 were 765 and 845 kPa, respectively. The content of precipitated calcium and the strength of dry biocemented sand at permeability equals to 1 % of initial value were 12.4 g Ca/kg of dry sand and 454 kPa, respectively, in case of

  14. Genome sequence of the anaerobic bacterium Bacillus sp. strain ZYK, a selenite and nitrate reducer from paddy soil.

    PubMed

    Bao, Peng; Su, Jian-Qiang; Hu, Zheng-Yi; Häggblom, Max M; Zhu, Yong-Guan

    2014-06-15

    Bacillus sp. strain ZYK, a member of the phylum Firmicutes, is of interest for its ability to reduce nitrate and selenite and for its resistance to arsenic under anaerobic conditions. Here we describe some key features of this organism, together with the complete genome sequence and annotation. The 3,575,797 bp long chromosome with its 3,454 protein-coding and 70 RNA genes, and the information gained from its sequence will be relevant to the elucidation of microbially-mediated transformations of nitrogen, selenium and arsenic in paddy soil. PMID:25197451

  15. Reuse of red seaweed waste by a novel bacterium, Bacillus sp. SYR4 isolated from a sandbar.

    PubMed

    Kang, Soyeon; Kim, Joong Kyun

    2015-01-01

    A potent bacterial strain was isolated from a sandbar and identified as Bacillus sp. SYR4 for the reuse of red seaweed waste. The isolate possessed both agarase and carrageenase activities. The optimal pH and temperature for the degradation of both agar and carrageenan by the isolate were found to be pH 7.5 and 30 °C, respectively. The effects of cations on cell growth and degradation ability of the isolate were significant in comparison with controls. The isolate produced 0.27 and 0.29 g l(-1) of reducing sugars from 1 g l(-1) of agar and carrageenan, respectively. When the isolate was cultivated in red seaweed powder medium for 10 days, the yield of reducing sugars was 24 %. As a result, the eco-friendly reuse of red seaweed waste by this isolate appears to be feasible for the production of reducing sugars and could be a valuable resource. To the best of our knowledge, this is the first study to directly demonstrate the ability of Bacillus sp. SYR4 to degrade both agar and carrageenan.

  16. Bacillus pumilus ES4: candidate plant growth-promoting bacterium to enhance establishment of plants in mine tailings

    PubMed Central

    de-Bashan, Luz E.; Hernandez, Juan-Pablo; Bashan, Yoav; Maier, Raina

    2014-01-01

    Three plant growth-promoting bacteria (PGPB; Bacillus pumilus ES4, B. pumilus RIZO1, and Azospirillum brasilense Cd) were tested for their ability to enhance plant growth and development of the native Sonoran Desert shrub quailbush (Atriplex lentiformis) and for their effect on the native bacterial community in moderately acidic, high-metal content (AHMT) and in neutral, low metal content natural tailings (NLMT) in controlled greenhouse experiments. Inoculation of quailbush with all three PGPB significantly enhanced plant growth parameters, such as germination, root length, dry weight of shoots and roots, and root/shoot ratio in both types of tailings. The effect of inoculation on the indigenous bacterial community by the most successful PGPB Bacillus pumilus ES4 was evaluated by denaturating gradient gel electrophoresis (PCR-DGGE) fingerprinting and root colonization was followed by specific fluorescent in situ hybridization (FISH). Inoculation with this strain significantly changed the bacterial community over a period of 60 days. FISH analysis showed that the preferred site of colonization was the root tips and root elongation area. This study shows that inoculation of native perennial plants with PGPB can be used for developing technologies for phytostabilizing mine tailings. PMID:25009362

  17. Isolation of a halophilic bacterium, Bacillus sp. strain NY-6 for organic contaminants removal in saline wastewater on ship

    NASA Astrophysics Data System (ADS)

    Gao, Jie; Yu, Zhenjiang; Zhang, Xiaohui; Zhao, Dan; Zhao, Fangbo

    2013-06-01

    The objective of this research was to examine if certain strains of Bacillus bacteria, could survive in dry powder products and if so, could the bacteria degrade organic contaminants in saline wastewater on a ship. As part of the study, we isolated 7 domesticated strains named NY1, NY2,..., and NY7, the strain NY6 showed to have the best performance for organic matter degradation and could survive in dry powder more than 3 months. NY6 was identified as Bacillus aerius, based on the morphological and physic-chemical properties. Its optimal growth conditions were as follows: salinity was 2%; temperature was 37°C; pH was in 6.5-7.0; best ratio of C: N: P was 100:5:1. The capability of its dry powder for Chemical Oxygen Demand (COD) removal was 800mg COD/g in synthesized marine wastewater with 2% salinity. The spores in the dry powder were 1.972×108 g -1.

  18. Bacillus toyonensis strain AEMREG6, a bacterium isolated from South African marine environment sediment samples produces a glycoprotein bioflocculant.

    PubMed

    Okaiyeto, Kunle; Nwodo, Uchechukwu U; Mabinya, Leonard V; Okoh, Anthony I

    2015-01-01

    A bioflocculant-producing bacteria, isolated from sediment samples of a marine environment in the Eastern Cape Province of South Africa demonstrated a flocculating activity above 60% for kaolin clay suspension. Analysis of the 16S ribosomal deoxyribonucleic acid (rDNA) nucleotide sequence of the isolate in the GenBank database showed 99% similarity to Bacillus toyonensis strain BCT-7112 and it was deposited in the GenBank as Bacillus toyonensis strain AEMREG6 with accession number KP406731. The bacteria produced a bioflocculant (REG-6) optimally in the presence of glucose and NH4NO3 as the sole carbon and nitrogen source, respectively, initial medium pH of 5 and Ca2+ as the cation of choice. Chemical analysis showed that purified REG-6 was a glycoprotein mainly composed of polysaccharide (77.8%) and protein (11.5%). It was thermally stable and had strong flocculating activity against kaolin suspension over a wide range of pH values (3-11) with a relatively low dosage requirement of 0.1 mg/mL in the presence of Mn2+. Fourier transform infrared spectroscopy (FTIR) revealed the presence of hydroxyl, carboxyl and amide groups preferred for flocculation. Scanning electron microscopy (SEM) revealed that bridging was the main flocculation mechanism of REG-6. The outstanding flocculating performance of REG-6 holds great potential to replace the hazardous chemical flocculants currently used in water treatment. PMID:25806549

  19. Bacillus nanhaiisediminis sp. nov., an alkalitolerant member of Bacillus rRNA group 6.

    PubMed

    Zhang, Jianli; Wang, Jiewei; Song, Fei; Fang, Caiyuan; Xin, Yuhua; Zhang, Yabo

    2011-05-01

    A Gram-stain-positive, rod-shaped bacterium, designated strain NH3(T), was isolated from a sediment sample from the South China Sea and was subjected to a polyphasic taxonomic study. The isolate grew optimally at 37 °C and pH 9. Strain NH3(T) had cell-wall peptidoglycan based on meso-diaminopimelic acid and MK-7 as the predominant menaquinone. The cellular fatty acid profile included significant amounts of iso-C(15 : 0) and iso-C(14 : 0). The major polar lipids were phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol. The DNA G+C content of strain NH3(T) was 40.3 mol%. Phylogenetic analysis of the 16S rRNA gene sequence revealed that strain NH3(T) was a member of rRNA group 6 of the genus Bacillus, which includes alkalitolerant, alkaliphilic and halotolerant species. The closest phylogenetic relatives were Bacillus akibai 1139(T) (96.82 % 16S rRNA gene sequence similarity), B. pseudofirmus DSM 8715(T) (96.76 %), B. okhensis Kh10-101(T) (96.76 %) and B. alkalidiazotrophicus MS 6(T) (96.47 %). Strain NH3(T) could be distinguished from these phylogenetically close neighbours based on a number of phenotypic properties. On the basis of phenotypic and chemotaxonomic characteristics and phylogenetic data, we conclude that strain NH3(T) ( = CGMCC 1.10116(T)  = JCM 16507(T)) merits classification as the type strain of a novel species, for which the name Bacillus nanhaiisediminis sp. nov. is proposed.

  20. New role for DCR-1/dicer in Caenorhabditis elegans innate immunity against the highly virulent bacterium Bacillus thuringiensis DB27.

    PubMed

    Iatsenko, Igor; Sinha, Amit; Rödelsperger, Christian; Sommer, Ralf J

    2013-10-01

    Bacillus thuringiensis produces toxins that target invertebrates, including Caenorhabditis elegans. Virulence of Bacillus strains is often highly specific, such that B. thuringiensis strain DB27 is highly pathogenic to C. elegans but shows no virulence for another model nematode, Pristionchus pacificus. To uncover the underlying mechanisms of the differential responses of the two nematodes to B. thuringiensis DB27 and to reveal the C. elegans defense mechanisms against this pathogen, we conducted a genetic screen for C. elegans mutants resistant to B. thuringiensis DB27. Here, we describe a B. thuringiensis DB27-resistant C. elegans mutant that is identical to nasp-1, which encodes the C. elegans homolog of the nuclear-autoantigenic-sperm protein. Gene expression analysis indicated a substantial overlap between the genes downregulated in the nasp-1 mutant and targets of C. elegans dcr-1/Dicer, suggesting that dcr-1 is repressed in nasp-1 mutants, which was confirmed by quantitative PCR. Consistent with this, the nasp-1 mutant exhibits RNA interference (RNAi) deficiency and reduced longevity similar to those of a dcr-1 mutant. Building on these surprising findings, we further explored a potential role for dcr-1 in C. elegans innate immunity. We show that dcr-1 mutant alleles deficient in microRNA (miRNA) processing, but not those deficient only in RNAi, are resistant to B. thuringiensis DB27. Furthermore, dcr-1 overexpression rescues the nasp-1 mutant's resistance, suggesting that repression of dcr-1 determines the nasp-1 mutant's resistance. Additionally, we identified the collagen-encoding gene col-92 as one of the downstream effectors of nasp-1 that play an important role in resistance to DB27. Taken together, these results uncover a previously unknown role for DCR-1/Dicer in C. elegans antibacterial immunity that is largely associated with miRNA processing.

  1. A metallo-β-lactamase is responsible for the degradation of ceftiofur by the bovine intestinal bacterium Bacillus cereus P41.

    PubMed

    Erickson, Bruce D; Elkins, Christopher A; Mullis, Lisa B; Heinze, Thomas M; Wagner, R Doug; Cerniglia, Carl E

    2014-08-27

    Ceftiofur is a highly effective veterinary cephalosporin, yet it is rapidly degraded by bacteria in the gut. The goal of this work was to directly determine the mechanism of ceftiofur degradation by the bovine intestinal isolate Bacillus cereus P41. B. cereus P41 was isolated from the feces of a cow that had not been treated with cephalosporins, and was found to rapidly degrade ceftiofur in culture. Analysis of spent culture media by HPLC/UV and HPLC/MS revealed one major metabolite of ceftiofur, with a negative ion m/z of 127. Comparison of ceftiofur, ceftriaxone, and cefpodoxime degradation suggested that the major stable ceftiofur metabolite was the thiofuroic acid group eliminated from the C-3 position of the drug after hydrolysis by β-lactamase. Genomic DNA from B. cereus P41 was cloned into Escherichia coli, and the transformants were screened for growth in the presence of ceftiofur. DNA sequencing of the plasmid pHSG299-BC-3 insert revealed the presence of a gene encoding a metallo-β-lactamase. Incubation of ceftiofur with either the E. coli transformant or a commercial B. cereus metallo-β-lactamase showed degradation of the drug and formation of the same major metabolite produced by B. cereus P41. These data demonstrate that a metallo-β-lactamase plays a major role in the degradation of ceftiofur by the bovine intestinal bacterium B. cereus P41.

  2. A sequential statistical approach towards an optimized production of a broad spectrum bacteriocin substance from a soil bacterium Bacillus sp. YAS 1 strain.

    PubMed

    Embaby, Amira M; Heshmat, Yasmin; Hussein, Ahmed; Marey, Heba S

    2014-01-01

    Bacteriocins, ribosomally synthesized antimicrobial peptides, display potential applications in agriculture, medicine, and industry. The present study highlights integral statistical optimization and partial characterization of a bacteriocin substance from a soil bacterium taxonomically affiliated as Bacillus sp. YAS 1 after biochemical and molecular identifications. A sequential statistical approach (Plackett-Burman and Box-Behnken) was employed to optimize bacteriocin (BAC YAS 1) production. Using optimal levels of three key determinants (yeast extract (0.48% (w/v), incubation time (62 hrs), and agitation speed (207 rpm)) in peptone yeast beef based production medium resulted in 1.6-fold enhancement in BAC YAS 1 level (470 AU/mL arbitrary units against Erwinia amylovora). BAC YAS 1 showed activity over a wide range of pH (1-13) and temperature (45-80 °C). A wide spectrum antimicrobial activity of BAC YAS 1 against the human pathogens (Clostridium perfringens, Staphylococcus epidermidis, Campylobacter jejuni, Enterobacter aerogenes, Enterococcus sp., Proteus sp., Klebsiella sp., and Salmonella typhimurium), the plant pathogen (E. amylovora), and the food spoiler (Listeria innocua) was demonstrated. On top and above, BAC YAS 1 showed no antimicrobial activity towards lactic acid bacteria (Lactobacillus bulgaricus, L. casei, L. lactis, and L. reuteri). Promising characteristics of BAC YAS 1 prompt its commercialization for efficient utilization in several industries. PMID:25614886

  3. Indirect Oxidation of Co(II) in the Presence of the Marine Mn(II)-Oxidizing Bacterium Bacillus Sp. Strain SG-1

    SciTech Connect

    Murray, K.J.; Webb, S.M.; Bargar, J.R.; Tebo, B.M.; /Scripps Inst. Oceanography /SLAC, SSRL /Oregon Health Sci. U.

    2009-04-29

    Cobalt(II) oxidation in aquatic environments has been shown to be linked to Mn(II) oxidation, a process primarily mediated by bacteria. This work examines the oxidation of Co(II) by the spore-forming marine Mn(II)-oxidizing bacterium Bacillus sp. strain SG-1, which enzymatically catalyzes the formation of reactive nanoparticulate Mn(IV) oxides. Preparations of these spores were incubated with radiotracers and various amounts of Co(II) and Mn(II), and the rates of Mn(II) and Co(II) oxidation were measured. Inhibition of Mn(II) oxidation by Co(II) and inhibition of Co(II) oxidation by Mn(II) were both found to be competitive. However, from both radiotracer experiments and X-ray spectroscopic measurements, no Co(II) oxidation occurred in the complete absence of Mn(II), suggesting that the Co(II) oxidation observed in these cultures is indirect and that a previous report of enzymatic Co(II) oxidation may have been due to very low levels of contaminating Mn. Our results indicate that the mechanism by which SG-1 oxidizes Co(II) is through the production of the reactive nanoparticulate Mn oxide.

  4. Antibacterial activity of antagonistic bacterium Bacillus subtilis DJM-51 against phytopathogenic Clavibacter michiganense subsp. michiganense ATCC 7429 in vitro.

    PubMed

    Jung, W J; Mabood, F; Souleimanov, A; Whyte, L G; Niederberger, T D; Smith, D L

    2014-12-01

    To investigate antibacterial activity against the tomato pathogen Clavibacter michiganense subsp. michiganense ATCC 7429 (Cmm ATCC 7429), Bacillus subtilis DJM-51 was isolated from rhizosphere soil. For isolation of bacteria, samples were taken from rhizosphere soil. The isolate, DJA-51, had strong antagonistic ability against Tomato pathogen Cmm ATCC 7429 on nutrient-broth yeast extract agar (NBYA) as indicated by inhibition zones around colonies. On the basis of the nucleotide sequence of a conserved segment of the 16S rRNA gene, the bacterium has been identified as B. subtilis DJM-51. The growth of Cmm ATCC 7429 on NBYA plates was inhibited by culture broth of B. subtilis DJM-51 including cells, by the supernatant of culture broth of B. subtilis DJM-51, and by the liquid material resulting from butanol extract of bacterial cultures. The OD value in co-culture mixture was lower than the control throughout the entire incubation period. Antibiotics obtained from B. subtilis DJM-51 inhibited the growth of Tomato pathogen Cmm ATCC 7429. These results provide potentially information about the protection of tomato from pathogen Cmm ATCC 7429 under greenhouse conditions in Quebec.

  5. Discovery of Novel Cell Wall-Active Compounds Using PywaC, a Sensitive Reporter of Cell Wall Stress, in the Model Gram-Positive Bacterium Bacillus subtilis

    PubMed Central

    Czarny, T. L.; Perri, A. L.; French, S.

    2014-01-01

    The emergence of antibiotic resistance in recent years has radically reduced the clinical efficacy of many antibacterial treatments and now poses a significant threat to public health. One of the earliest studied well-validated targets for antimicrobial discovery is the bacterial cell wall. The essential nature of this pathway, its conservation among bacterial pathogens, and its absence in human biology have made cell wall synthesis an attractive pathway for new antibiotic drug discovery. Herein, we describe a highly sensitive screening methodology for identifying chemical agents that perturb cell wall synthesis, using the model of the Gram-positive bacterium Bacillus subtilis. We report on a cell-based pilot screen of 26,000 small molecules to look for cell wall-active chemicals in real time using an autonomous luminescence gene cluster driven by the promoter of ywaC, which encodes a guanosine tetra(penta)phosphate synthetase that is expressed under cell wall stress. The promoter-reporter system was generally much more sensitive than growth inhibition testing and responded almost exclusively to cell wall-active antibiotics. Follow-up testing of the compounds from the pilot screen with secondary assays to verify the mechanism of action led to the discovery of 9 novel cell wall-active compounds. PMID:24687489

  6. A Sequential Statistical Approach towards an Optimized Production of a Broad Spectrum Bacteriocin Substance from a Soil Bacterium Bacillus sp. YAS 1 Strain

    PubMed Central

    Embaby, Amira M.; Heshmat, Yasmin; Hussein, Ahmed; Marey, Heba S.

    2014-01-01

    Bacteriocins, ribosomally synthesized antimicrobial peptides, display potential applications in agriculture, medicine, and industry. The present study highlights integral statistical optimization and partial characterization of a bacteriocin substance from a soil bacterium taxonomically affiliated as Bacillus sp. YAS 1 after biochemical and molecular identifications. A sequential statistical approach (Plackett-Burman and Box-Behnken) was employed to optimize bacteriocin (BAC YAS 1) production. Using optimal levels of three key determinants (yeast extract (0.48% (w/v), incubation time (62 hrs), and agitation speed (207 rpm)) in peptone yeast beef based production medium resulted in 1.6-fold enhancement in BAC YAS 1 level (470 AU/mL arbitrary units against Erwinia amylovora). BAC YAS 1 showed activity over a wide range of pH (1–13) and temperature (45–80°C). A wide spectrum antimicrobial activity of BAC YAS 1 against the human pathogens (Clostridium perfringens, Staphylococcus epidermidis, Campylobacter jejuni, Enterobacter aerogenes, Enterococcus sp., Proteus sp., Klebsiella sp., and Salmonella typhimurium), the plant pathogen (E. amylovora), and the food spoiler (Listeria innocua) was demonstrated. On top and above, BAC YAS 1 showed no antimicrobial activity towards lactic acid bacteria (Lactobacillus bulgaricus, L. casei, L. lactis, and L. reuteri). Promising characteristics of BAC YAS 1 prompt its commercialization for efficient utilization in several industries. PMID:25614886

  7. A native plant growth promoting bacterium, Bacillus sp. B55, rescues growth performance of an ethylene-insensitive plant genotype in nature

    PubMed Central

    Meldau, Dorothea G.; Long, Hoang H.; Baldwin, Ian T.

    2012-01-01

    Many plants have intimate relationships with soil microbes, which improve the plant’s growth and fitness through a variety of mechanisms. Bacillus sp. isolates are natural root-associated bacteria, isolated from Nicotiana attenuata plant roots growing in native soils. A particular isolate B55, was found to have dramatic plant growth promotion (PGP) effects on wild type (WT) and transgenic plants impaired in ethylene (ET) perception (35S-etr1), the genotype from which this bacterium was first isolated. B55 not only improves N. attenuata growth under in vitro, glasshouse, and field conditions, but it also “rescues” many of the deleterious phenotypes associated with ET insensitivity. Most notably, B55 dramatically increases the growth and survival of 35S-etr1 plants under field conditions. To our knowledge, this is the first demonstration of a PGP effect in a native plant–microbe association under natural conditions. Our study demonstrates that this facultative mutualistic plant–microbe interaction should be viewed as part of the plant’s extended phenotype. Possible modalities of recruitment and mechanisms of PGP are discussed. PMID:22701461

  8. A sequential statistical approach towards an optimized production of a broad spectrum bacteriocin substance from a soil bacterium Bacillus sp. YAS 1 strain.

    PubMed

    Embaby, Amira M; Heshmat, Yasmin; Hussein, Ahmed; Marey, Heba S

    2014-01-01

    Bacteriocins, ribosomally synthesized antimicrobial peptides, display potential applications in agriculture, medicine, and industry. The present study highlights integral statistical optimization and partial characterization of a bacteriocin substance from a soil bacterium taxonomically affiliated as Bacillus sp. YAS 1 after biochemical and molecular identifications. A sequential statistical approach (Plackett-Burman and Box-Behnken) was employed to optimize bacteriocin (BAC YAS 1) production. Using optimal levels of three key determinants (yeast extract (0.48% (w/v), incubation time (62 hrs), and agitation speed (207 rpm)) in peptone yeast beef based production medium resulted in 1.6-fold enhancement in BAC YAS 1 level (470 AU/mL arbitrary units against Erwinia amylovora). BAC YAS 1 showed activity over a wide range of pH (1-13) and temperature (45-80 °C). A wide spectrum antimicrobial activity of BAC YAS 1 against the human pathogens (Clostridium perfringens, Staphylococcus epidermidis, Campylobacter jejuni, Enterobacter aerogenes, Enterococcus sp., Proteus sp., Klebsiella sp., and Salmonella typhimurium), the plant pathogen (E. amylovora), and the food spoiler (Listeria innocua) was demonstrated. On top and above, BAC YAS 1 showed no antimicrobial activity towards lactic acid bacteria (Lactobacillus bulgaricus, L. casei, L. lactis, and L. reuteri). Promising characteristics of BAC YAS 1 prompt its commercialization for efficient utilization in several industries.

  9. Antibacterial activity of antagonistic bacterium Bacillus subtilis DJM-51 against phytopathogenic Clavibacter michiganense subsp. michiganense ATCC 7429 in vitro.

    PubMed

    Jung, W J; Mabood, F; Souleimanov, A; Whyte, L G; Niederberger, T D; Smith, D L

    2014-12-01

    To investigate antibacterial activity against the tomato pathogen Clavibacter michiganense subsp. michiganense ATCC 7429 (Cmm ATCC 7429), Bacillus subtilis DJM-51 was isolated from rhizosphere soil. For isolation of bacteria, samples were taken from rhizosphere soil. The isolate, DJA-51, had strong antagonistic ability against Tomato pathogen Cmm ATCC 7429 on nutrient-broth yeast extract agar (NBYA) as indicated by inhibition zones around colonies. On the basis of the nucleotide sequence of a conserved segment of the 16S rRNA gene, the bacterium has been identified as B. subtilis DJM-51. The growth of Cmm ATCC 7429 on NBYA plates was inhibited by culture broth of B. subtilis DJM-51 including cells, by the supernatant of culture broth of B. subtilis DJM-51, and by the liquid material resulting from butanol extract of bacterial cultures. The OD value in co-culture mixture was lower than the control throughout the entire incubation period. Antibiotics obtained from B. subtilis DJM-51 inhibited the growth of Tomato pathogen Cmm ATCC 7429. These results provide potentially information about the protection of tomato from pathogen Cmm ATCC 7429 under greenhouse conditions in Quebec. PMID:25457795

  10. Coping with the cold: the cold shock response in the Gram-positive soil bacterium Bacillus subtilis.

    PubMed Central

    Weber, Michael H W; Marahiel, Mohamed A

    2002-01-01

    All organisms examined to date, respond to a sudden change in environmental temperature with a specific cascade of adaptation reactions that, in some cases, have been identified and monitored at the molecular level. According to the type of temperature change, this response has been termed heat shock response (HSR) or cold shock response (CSR). During the HSR, a specialized sigma factor has been shown to play a central regulatory role in controlling expression of genes predominantly required to cope with heat-induced alteration of protein conformation. In contrast, after cold shock, nucleic acid structure and proteins interacting with the biological information molecules DNA and RNA appear to play a major cellular role. Currently, no cold-specific sigma factor has been identified. Therefore, unlike the HSR, the CSR appears to be organized as a complex stimulon rather than resembling a regulon. This review has been designed to draw a refined picture of our current understanding of the CSR in Bacillus subtilis. Important processes such as temperature sensing, membrane adaptation, modification of the translation apparatus, as well as nucleoid reorganization and some metabolic aspects, are discussed in brief. Special emphasis is placed on recent findings concerning the nucleic acid binding cold shock proteins, which play a fundamental role, not only during cold shock adaptation but also under optimal growth conditions. PMID:12171653

  11. Coping with the cold: the cold shock response in the Gram-positive soil bacterium Bacillus subtilis.

    PubMed

    Weber, Michael H W; Marahiel, Mohamed A

    2002-07-29

    All organisms examined to date, respond to a sudden change in environmental temperature with a specific cascade of adaptation reactions that, in some cases, have been identified and monitored at the molecular level. According to the type of temperature change, this response has been termed heat shock response (HSR) or cold shock response (CSR). During the HSR, a specialized sigma factor has been shown to play a central regulatory role in controlling expression of genes predominantly required to cope with heat-induced alteration of protein conformation. In contrast, after cold shock, nucleic acid structure and proteins interacting with the biological information molecules DNA and RNA appear to play a major cellular role. Currently, no cold-specific sigma factor has been identified. Therefore, unlike the HSR, the CSR appears to be organized as a complex stimulon rather than resembling a regulon. This review has been designed to draw a refined picture of our current understanding of the CSR in Bacillus subtilis. Important processes such as temperature sensing, membrane adaptation, modification of the translation apparatus, as well as nucleoid reorganization and some metabolic aspects, are discussed in brief. Special emphasis is placed on recent findings concerning the nucleic acid binding cold shock proteins, which play a fundamental role, not only during cold shock adaptation but also under optimal growth conditions.

  12. Some unique features of alkaliphilic anaerobes

    NASA Astrophysics Data System (ADS)

    Roof, Erin; Pikuta, Elena; Otto, Christopher; Williams, George; Hoover, Richard

    2013-09-01

    This article explores two topics involving the examination of four strains of alkaliphilic anaerobes. The first topic was dedicated to detection of the ability of microorganisms to metabolize alternative chirality substrates. Two saccharolytic anaerobic bacteria were chosen for the first experiment: Anaerovirgula multivorans strain SCAT, which is gram positive and spore-forming; and Spirochaeta dissipatitropha, strain ASpC2T, which is gram negative. It was found that both checked sugarlytics were able to use L-ribose and L-arabinose, as growth substrates. The second part was concerned of study a chemolithotrophy in two halo-alkaliphilic sulfate reducing bacteria: Desulfonatornum thiodismutans strain MLF1T and Desulfonatronum lacustre strain Z-7951T. The experiments with lithotrophs had demonstrated that strain MLF1T was capable to grow without any organic source of carbon, while strain Z-7951T had required at least 2 mM sodium acetate for growth. Anaerobic technique was used for preparation of the growth media and maintenance of these bacterial cultures. Standard methods for Gram, spore, and flagella staining were applied for characterization of cytomorphology. In this article, the results of the experiments performed on cytological, physiological, and biochemical levels are presented and discussed.

  13. Inhibitory efficacy of cyclo(L-leucyl-L-prolyl) from mangrove rhizosphere bacterium-Bacillus amyloliquefaciens (MMS-50) toward cariogenic properties of Streptococcus mutans.

    PubMed

    Gowrishankar, Shanmugaraj; Poornima, Balan; Pandian, Shunmugiah Karutha

    2014-05-01

    Since Streptococcus mutans is the principal etiologic agent causing dental caries, by encompassing an array of unique virulence traits, emerging treatment strategies that specifically target the virulence of this pathogen may be promising as alternative approaches compared to conventional antibiotic therapy. In this perspective, we investigated chloroform extract of cell-free culture supernatant from mangrove rhizosphere bacterium Bacillus amyloliquefaciens (MMS-50) in terms of anticariogenic properties of S. mutans, without suppressing its viability. Crude chloroform extract of MMS-50 was subjected to column and high performance liquid chromatographic techniques to obtain the active fraction (AF), and MMS-50 AF was used for all further assays. GC-MS and FT-IR were carried out to identify the major components present in MMS-50 AF. Comparative gene expression analysis of some biofilm-forming and virulence genes (vicR, comDE, gtfC, and gbpB) was done by real-time PCR. Cyclo(L-leucyl-L-prolyl) was found to be the chief compound in MMS-50 AF responsible for bioactivity. The minimum and maximum inhibitory concentrations of MMS-50 AF against S. mutans were found to be 100 and 250 μg/mL, respectively. Anti-virulence assays performed using below-sub-MIC levels of MMS-50 AF (30 μg/mL) resulted in significant reduction in adherence (68%), acid production, acid tolerance, glucan synthesis (32%), biofilm formation (53.5%) and cell surface hydrophobicity, all devoid of affecting its viability. The micrographs of CLSM and SEM further confirmed the antibiofilm and anti-virulence efficacies of MMS-50 AF. Expression data showed significant reduction in expression of all studied virulence genes. Thus, the current study unveils the anticariogenic potential of cyclo(L-leucyl-L-prolyl) from B. amyloliquefaciens, as well as its suitability as a novel and alternative anticariogenic agent against dental caries.

  14. Inhibitory efficacy of cyclo(L-leucyl-L-prolyl) from mangrove rhizosphere bacterium-Bacillus amyloliquefaciens (MMS-50) toward cariogenic properties of Streptococcus mutans.

    PubMed

    Gowrishankar, Shanmugaraj; Poornima, Balan; Pandian, Shunmugiah Karutha

    2014-05-01

    Since Streptococcus mutans is the principal etiologic agent causing dental caries, by encompassing an array of unique virulence traits, emerging treatment strategies that specifically target the virulence of this pathogen may be promising as alternative approaches compared to conventional antibiotic therapy. In this perspective, we investigated chloroform extract of cell-free culture supernatant from mangrove rhizosphere bacterium Bacillus amyloliquefaciens (MMS-50) in terms of anticariogenic properties of S. mutans, without suppressing its viability. Crude chloroform extract of MMS-50 was subjected to column and high performance liquid chromatographic techniques to obtain the active fraction (AF), and MMS-50 AF was used for all further assays. GC-MS and FT-IR were carried out to identify the major components present in MMS-50 AF. Comparative gene expression analysis of some biofilm-forming and virulence genes (vicR, comDE, gtfC, and gbpB) was done by real-time PCR. Cyclo(L-leucyl-L-prolyl) was found to be the chief compound in MMS-50 AF responsible for bioactivity. The minimum and maximum inhibitory concentrations of MMS-50 AF against S. mutans were found to be 100 and 250 μg/mL, respectively. Anti-virulence assays performed using below-sub-MIC levels of MMS-50 AF (30 μg/mL) resulted in significant reduction in adherence (68%), acid production, acid tolerance, glucan synthesis (32%), biofilm formation (53.5%) and cell surface hydrophobicity, all devoid of affecting its viability. The micrographs of CLSM and SEM further confirmed the antibiofilm and anti-virulence efficacies of MMS-50 AF. Expression data showed significant reduction in expression of all studied virulence genes. Thus, the current study unveils the anticariogenic potential of cyclo(L-leucyl-L-prolyl) from B. amyloliquefaciens, as well as its suitability as a novel and alternative anticariogenic agent against dental caries. PMID:24698790

  15. Bioenergetics and the role of soluble cytochromes C for alkaline adaptation in gram-negative alkaliphilic Pseudomonas.

    PubMed

    Matsuno, T; Yumoto, I

    2015-01-01

    Very few studies have been conducted on alkaline adaptation of Gram-negative alkaliphiles. The reversed difference of H(+) concentration across the membrane will make energy production considerably difficult for Gram-negative as well as Gram-positive bacteria. Cells of the alkaliphilic Gram-negative bacterium Pseudomonas alcaliphila AL15-21(T) grown at pH 10 under low-aeration intensity have a soluble cytochrome c content that is 3.6-fold higher than that of the cells grown at pH 7 under high-aeration intensity. Cytochrome c-552 content was higher (64% in all soluble cytochromes c) than those of cytochrome c-554 and cytochrome c-551. In the cytochrome c-552-dificient mutant grown at pH 10 under low-aeration intensity showed a marked decrease in μ max⁡ [h(-1)] (40%) and maximum cell turbidity (25%) relative to those of the wild type. Considering the high electron-retaining abilities of the three soluble cytochromes c, the deteriorations in the growth of the cytochrome c-552-deficient mutant could be caused by the soluble cytochromes c acting as electron storages in the periplasmic space of the bacterium. These electron-retaining cytochromes c may play a role as electron and H(+) condenser, which facilitate terminal oxidation at high pH under air-limited conditions, which is difficult to respire owing to less oxygen and less H(+).

  16. Bioenergetics and the Role of Soluble Cytochromes c for Alkaline Adaptation in Gram-Negative Alkaliphilic Pseudomonas

    PubMed Central

    Matsuno, T.; Yumoto, I.

    2015-01-01

    Very few studies have been conducted on alkaline adaptation of Gram-negative alkaliphiles. The reversed difference of H+ concentration across the membrane will make energy production considerably difficult for Gram-negative as well as Gram-positive bacteria. Cells of the alkaliphilic Gram-negative bacterium Pseudomonas alcaliphila AL15-21T grown at pH 10 under low-aeration intensity have a soluble cytochrome c content that is 3.6-fold higher than that of the cells grown at pH 7 under high-aeration intensity. Cytochrome c-552 content was higher (64% in all soluble cytochromes c) than those of cytochrome c-554 and cytochrome c-551. In the cytochrome c-552-dificient mutant grown at pH 10 under low-aeration intensity showed a marked decrease in μmax⁡ [h−1] (40%) and maximum cell turbidity (25%) relative to those of the wild type. Considering the high electron-retaining abilities of the three soluble cytochromes c, the deteriorations in the growth of the cytochrome c-552-deficient mutant could be caused by the soluble cytochromes c acting as electron storages in the periplasmic space of the bacterium. These electron-retaining cytochromes c may play a role as electron and H+ condenser, which facilitate terminal oxidation at high pH under air-limited conditions, which is difficult to respire owing to less oxygen and less H+. PMID:25705691

  17. Bacillus oryzicola sp. nov., an Endophytic Bacterium Isolated from the Roots of Rice with Antimicrobial, Plant Growth Promoting, and Systemic Resistance Inducing Activities in Rice

    PubMed Central

    Chung, Eu Jin; Hossain, Mohammad Tofajjal; Khan, Ajmal; Kim, Kyung Hyun; Jeon, Che Ok; Chung, Young Ryun

    2015-01-01

    Biological control of major rice diseases has been attempted in several rice-growing countries in Asia during the last few decades and its application using antagonistic bacteria has proved to be somewhat successful for controlling various fungal diseases in field trials. Two novel endophytic Bacillus species, designated strains YC7007 and YC7010T, with anti-microbial, plant growth-promoting, and systemic resistance-inducing activities were isolated from the roots of rice in paddy fields at Jinju, Korea, and their multifunctional activities were analyzed. Strain YC7007 inhibited mycelial growth of major rice fungal pathogens strongly in vitro. Bacterial blight and panicle blight caused by Xanthomonas oryzae pv. oryzae (KACC 10208) and Burkholderia glumae (KACC 44022), respectively, were also suppressed effectively by drenching a bacterial suspension (107 cfu/ml) of strain YC7007 on the rhizosphere of rice. Additionally, strain YC7007 promoted the growth of rice seedlings with higher germination rates and more tillers than the untreated control. The taxonomic position of the strains was also investigated. Phylogenetic analyses based on 16S rRNA gene sequences indicated that both strains belong to the genus Bacillus, with high similarity to the closely related strains, Bacillus siamensis KACC 15859T (99.67%), Bacillus methylotrophicus KACC 13105T (99.65%), Bacillus amyloliquefaciens subsp. plantarum KACC 17177T (99.60%), and Bacillus tequilensis KACC 15944T (99.45%). The DNA-DNA relatedness value between strain YC7010T and the most closely related strain, B. siamensis KACC 15859T was 50.4±3.5%, but it was 91.5±11.0% between two strains YC7007 and YC7010T, indicating the same species. The major fatty acids of two strains were anteiso-C15:0 and iso C15:0. Both strains contained MK-7 as a major respiratory quinone system. The G+C contents of the genomic DNA of two strains were 50.5 mol% and 51.2 mol%, respectively. Based on these polyphasic studies, the two strains YC

  18. Draft Genome Sequence of Bacillus licheniformis CG-B52, a Highly Virulent Bacterium of Pacific White Shrimp (Litopenaeus vannamei), Isolated from a Colombian Caribbean Aquaculture Outbreak

    PubMed Central

    Gálvez, Eric J. C.; Carrillo-Castro, Katerine; Zárate, Lina; Güiza, Linda; Pieper, Dietmar H.; García-Bonilla, Erika; Salazar, Marcela

    2016-01-01

    Bacillus licheniformis strain CG-B52 was isolated as the etiological agent producing a self-limited outbreak of high mortalities in commercial Litopenaeus vannamei culture ponds on the Colombian Caribbean coast in 2005. Here, we report its draft genome and three novel extrachromosomal elements that it harbors. PMID:27174263

  19. Fermentibacillus polygoni gen. nov., sp. nov., an alkaliphile that reduces indigo dye.

    PubMed

    Hirota, Kikue; Aino, Kenichi; Yumoto, Isao

    2016-06-01

    Facultatively alkaliphilic strains, designated as strains IEB3T and IEB14, were isolated as indigo-reducing strains from a fermented Polygonum indigo (Polygonum tinctorium Lour) liquor sample prepared in our laboratory using a medium containing an indigo fermentation liquor as a sole substrate. The 16S rRNA gene sequence phylogeny and similarity suggested that strains IEB3T and IEB14 exhibit distinctive positions among the members of the genus Bacillus, and their closest neighbour was Bacillus nanhaiisediminis NH3T (similarity: 97.4 %) among the species with validly published names. The 16S rRNA sequence of strain IEB3Twas identical to that of strain IEB14. The cells of the isolates stained Gram-positive and were facultatively anaerobic, straight rods that were motile by a pair of subpolar flagella. Strains IEB3T and IEB14 grew at temperatures between 12 and 40 °C with optimum growth at 30‒33 °C and in the range of pH 7.5-12. Menaquinone-7 (MK-7) was detected as the major isoprenoid quinone. The DNA G+C contents of strains IEB3T and IEB14 were 49.1 and 49.9 mol%, respectively. The whole-cell fatty acid profile mainly (>10 %) consisted of iso-C14:0, iso-C15:0 and anteiso-C15:0. DNA-DNA hybridization revealed a low relatedness value between strain IEB3T and the phylogenetically most closely related species, Bacillus nanhaiisediminis JCM 16507T (<7 % ). On the basis of phenotypic and chemotaxonomic characteristics and phylogenetic data, the isolates represent a novel species within a novel genus, for which the name Fermentibacillus polygoni gen. nov., sp. nov. is proposed. The type strain is IEB3T (=JCM 30817T=NCIMB 14984T). PMID:26971318

  20. Role of two amino acid residues' insertion on thermal stability of thermophilic α-amylase AMY121 from a deep sea bacterium Bacillus sp. SCSIO 15121.

    PubMed

    Li, Lizhen; Yang, Jian; Li, Jie; Long, Lijuan; Xiao, Yunzhu; Tian, Xinpeng; Wang, Fazuo; Zhang, Si

    2015-05-01

    α-Amylases from Bacillus licheniformis (BLA) and Bacillus amyloliquefaciens (BAA) are both important industrial enzymes with high similarity in structure but significant differences in thermostability. The mechanisms underlying this discrepancy are still poorly understood. Here, we investigated the role of two amino acids' insertion on the thermostability of these two group amylases. A newly obtained thermophilic amylase AMY121 was found much closer to BLA in both primary structure and enzymological properties. Two amino acids' insertion widespread among BAA group α-amylases was identified as one of the key factors leading to the thermostability differences, since thermostability of insertion mutants (AMY121-EG and AMY121-AA) from AMY121 significantly decreased, while that of deletion mutant from BAA increased. Moreover, we proposed that conformational disturbance caused by insertion mutation might weaken the calcium-binding affinity and consequently decrease the enzyme thermostability.

  1. Draft Genome Sequence of the Entomopathogenic Bacterium Bacillus pumilus 15.1, a Strain Highly Toxic to the Mediterranean Fruit Fly Ceratitis capitata

    PubMed Central

    García-Ramón, Diana C.; Palma, Leopoldo; Berry, Colin; Osuna, Antonio

    2015-01-01

    We present the draft whole-genome sequence of the entomopathogenic Bacillus pumilus 15.1 strain that consists of 3,795,691 bp and 3,776 predicted protein-coding genes. This genome sequence provides the basis for understanding the potential mechanism behind the toxicity and virulence of B. pumilus 15.1 against the Mediterranean fruit fly. PMID:26404596

  2. Matrix Assisted Laser Desorption Ionization Mass Spectrometric Analysis of Bacillus anthracis: From Fingerprint Analysis of the Bacterium to Quantification of its Toxins in Clinical Samples

    NASA Astrophysics Data System (ADS)

    Woolfitt, Adrian R.; Boyer, Anne E.; Quinn, Conrad P.; Hoffmaster, Alex R.; Kozel, Thomas R.; de, Barun K.; Gallegos, Maribel; Moura, Hercules; Pirkle, James L.; Barr, John R.

    A range of mass spectrometry-based techniques have been used to identify, characterize and differentiate Bacillus anthracis, both in culture for forensic applications and for diagnosis during infection. This range of techniques could usefully be considered to exist as a continuum, based on the degrees of specificity involved. We show two examples here, a whole-organism fingerprinting method and a high-specificity assay for one unique protein, anthrax lethal factor.

  3. Expression of the Bacillus subtilis sacB gene leads to sucrose sensitivity in the gram-positive bacterium Corynebacterium glutamicum but not in Streptomyces lividans.

    PubMed Central

    Jäger, W; Schäfer, A; Pühler, A; Labes, G; Wohlleben, W

    1992-01-01

    The expression of the structural gene (sacB) encoding Bacillus subtilis levansucrase in two gram-positive soil bacteria, Corynebacterium glutamicum ATCC 13032 and Streptomyces lividans 1326, was investigated. sacB expression in the presence of sucrose is lethal to C. glutamicum but not to S. lividans. While S. lividans secretes levansucrase into the medium, we could show that the enzyme is retained by C. glutamicum cells. Our results imply that the sacB gene can be used as a positive selection system in coryneform bacteria. PMID:1644774

  4. Application of alkaliphilic biofilm-forming bacteria to improve compressive strength of cement-sand mortar.

    PubMed

    Park, Sung-Jin; Chun, Woo-Young; Kim, Wha-Jung; Ghim, Sa-Youl

    2012-03-01

    The application of microorganisms in the field of construction material is rapidly increasing worldwide; however, almost all studies that were investigated were bacterial sources with mineral-producing activity and not with organic substances. The difference in the efficiency of using bacteria as an organic agent is that it could improve the durability of cement material. This study aimed to assess the use of biofilm-forming microorganisms as binding agents to increase the compressive strength of cement-sand material. We isolated 13 alkaliphilic biofilmforming bacteria (ABB) from a cement tetrapod block in the West Sea, Korea. Using 16S RNA sequence analysis, the ABB were partially identified as Bacillus algicola KNUC501 and Exiguobacterium marinum KNUC513. KNUC513 was selected for further study following analysis of pH and biofilm formation. Cement-sand mortar cubes containing KNUC513 exhibited greater compressive strength than mineral-forming bacteria (Sporosarcina pasteurii and Arthrobacter crystallopoietes KNUC403). To determine the biofilm effect, Dnase I was used to suppress the biofilm formation of KNUC513. Field emission scanning electron microscopy image revealed the direct involvement of organic-inorganic substance in cement-sand mortar.

  5. Construction of a Rapid Feather-Degrading Bacterium by Overexpression of a Highly Efficient Alkaline Keratinase in Its Parent Strain Bacillus amyloliquefaciens K11.

    PubMed

    Yang, Lian; Wang, Hui; Lv, Yi; Bai, Yingguo; Luo, Huiying; Shi, Pengjun; Huang, Huoqing; Yao, Bin

    2016-01-13

    Keratinase is essential to degrade the main feather component, keratin, and is of importance for wide industrial applications. In this study, Bacillus amyloliquefaciens strain K11 was found to have significant feather-degrading capacity (completely degraded whole feathers within 24 h). The keratinase encoding gene, kerK, was expressed in Bacillus subtilis SCK6. The purified recombinant KerK showed optimal activity at 50 °C and pH 11.0 and degraded whole feathers within 0.5 h in the presence of DTT. The recombinant plasmids harboring kerK were extracted from B. subtilis SCK6 and transformed into B. amyloliquefaciens K11. As a result, the recombinant B. amyloliquefaciens K11 exhibited enhanced feather-degrading capacity with shortened reaction time within 12 h and increased keratinolytic activity (1500 U/mL) by 6-fold. This efficient and rapid feather-degrading character makes the recombinant strain of B. amyloliquefaciens K11 have potential for applications in feather meal preparation and waste feather disposal.

  6. Thermophilic biofiltration of H2S and isolation of a thermophilic and heterotrophic H2S-degrading bacterium, Bacillus sp. TSO3.

    PubMed

    Ryu, Hee-Wook; Yoo, Sun-Kyung; Choi, Jung Min; Cho, Kyung-Suk; Cha, Daniel K

    2009-08-30

    Thermophilic biofiltration of H(2)S-containing gas was studied at 60 degrees C using polyurethane (PU) cubes and as a packing material and compost as a source of thermophilic microorganisms. The performance of biofilter was enhanced by pH control and addition of yeast extract (YE). With YE supplement and pH control, H(2)S removal efficiency remained above 95% up to an inlet concentration of 950 ppmv at a space velocity (SV) of 50h(-1) (residence time=1.2 min). H(2)S removal efficiency strongly correlated with the inverse of H(2)S inlet concentrations and gas flow rates. Thermophilic, sulfur-oxidizing bacteria, TSO3, were isolated from the biofilter and identified as Bacillus sp., which had high similarity value (99%) with Bacillus thermoleovorans. The isolate TSO3 was able to degrade H(2)S without a lag period at 60 degrees C in liquid cultures as well as in the biofilter. High H(2)S removal efficiencies were sustained with a periodic addition of YE. This study demonstrated that an application of thermophilic microorganism for a treatment of hot gases may be an economically attractive option since expensive pre-cooling of gases to accommodate mesophilic processes is not required.

  7. Modeling the acid-base properties of bacterial surfaces: A combined spectroscopic and potentiometric study of the gram-positive bacterium Bacillus subtilis.

    PubMed

    Leone, Laura; Ferri, Diego; Manfredi, Carla; Persson, Per; Shchukarev, Andrei; Sjöberg, Staffan; Loring, John

    2007-09-15

    In this study, macroscopic and spectroscopic data were combined to develop a surface complexation model that describes the acid-base properties of Bacillus subtilis. The bacteria were freeze-dried and then resuspended in 0.1 M NaCl ionic medium. Macroscopic measurements included potentiometric acid-base titrations and electrophoretic mobility measurements. In addition, ATR-FTIR spectra of wet pastes from suspensions of Bacillus subtilis at different pH values were collected. The least-squares program MAGPIE was used to generate a surface complexation model that takes into account the presence of three acid-base sites on the surface: tripple bond COOH, tripple bond NH+, and tripple bond PO-, which were identified previously by XPS measurements. Both potentiometric titration data and ATR-FTIR spectra were used quantitatively, and electrostatic effects at the charged bacterial surface were accounted for using the constant capacitance model. The model was calculated using two different approaches: in the first one XPS data were used to constrain the ratio of the total concentrations of all three surface sites. The capacitance of the double layer, the total buffer capacity, and the deprotonation constants of the tripple bond NH+, tripple bond POH, and tripple bond COOH species were determined in the fit. A second approach is presented in which the ratio determined by XPS of the total concentrations of tripple bond NH+ to tripple bond PO- sites is relaxed. The total concentration of tripple bond PO- sites was determined in the fit, while the deprotonation constant for tripple bond POH was manually varied until the minimization led to a model which predicted an isoelectric point that resulted in consistency with electrophoretic mobility data. The model explains well the buffering capacity of Bacillus subtilis suspensions in a wide pH range (between pH=3 and pH=9) which is of considerable environmental interest. In particular, a similar quantitative use of the IR data

  8. In vitro and in vivo antibiofilm potential of 2,4-Di-tert-butylphenol from seaweed surface associated bacterium Bacillus subtilis against group A streptococcus.

    PubMed

    Viszwapriya, Dharmaprakash; Prithika, Udayakumar; Deebika, Sundaresan; Balamurugan, Krishnaswamy; Pandian, Shunmugiah Karutha

    2016-10-01

    Biofilm formation of Group A Streptococcus (GAS) is recognized as an important virulent determinant. The present study reports the antibiofilm potential of seaweed (Gracilaria gracilis) surface associated Bacillus subtilis against GAS. Purification revealed 2,4-Di-tert-butyl-phenol (DTBP) as the active principle. DTBP exhibited a dose dependent antibiofilm activity against GAS (SF370 & six different clinical M serotypes). Microscopic analysis revealed changes in cell surface architecture and reduced thickness upon DTBP treatment. Results of extracellular polymeric substance quantification, microbial adhesion to hydrocarbon assay and fourier transform infrared spectroscopic analysis suggested that DTBP probably interferes with the initial adhesion stage of biofilm formation cascade. Reduction in hyaluronic acid synthesis goes in unison with blood survival assay wherein, increased susceptibility to phagocytosis was observed. In vivo studies using Caenorhabditis elegans manifested the reduction in adherence and virulence, which prompts further investigation of the potential of DTBP for the treatment of GAS infections. PMID:27524650

  9. Generation of xylooligosaccharides from microwave irradiated agroresidues using recombinant thermo-alkali-stable endoxylanase of the polyextremophilic bacterium Bacillus halodurans expressed in Pichia pastoris.

    PubMed

    Kumar, Vikash; Satyanarayana, T

    2015-03-01

    The recombinant Pichia pastoris harboring the endoxylanase gene (TSEV1xyl) of Bacillus halodurans TSEV1 yielded a high titer of extracellular xylanase (502±23 U ml(-1)) on induction with methanol. The purified recombinant xylanase (TSEV1xyl) displayed optimal activity at 80°C and pH 9.0. The glycosylated recombinant xylanase exhibited higher thermostability (T1/2 of 45 min at 80°C) than the native enzyme (T1/2 of 35 min at 80°C). The agroresidues subjected to pretreatment (soaking in alkali followed by microwave irradiation) liberated xylooligosaccharides (XOS) upon hydrolysis with the recombinant xylanase. The removal of unhydrolyzed agroresidues, xylanase and xylose from the hydrolysate by two-step ultrafiltration led to the purification of XOS as confirmed by TLC as well as HPLC analysis.

  10. On the binding of BODIPY-GTP by the photosensory protein YtvA from the common soil bacterium Bacillus subtilis.

    PubMed

    Nakasone, Yusuke; Hellingwerf, Klaas J

    2011-01-01

    The YtvA protein, which is one of the proteins that comprises the network carrying out the signal transfer inducing the general stress response in Bacillus subtilis, is composed of an N-terminal LOV domain (that binds a flavin [FMN]) and a C-terminal STAS domain. This latter domain shows sequence features typical for a nucleotide (NTP) binding protein. It has been proposed (FEBS Lett., 580 [2006], 3818) that BODIPY-GTP can be used as a reporter for nucleotide binding to this site and that activation of the LOV domain by blue light is reflected in an alteration of the BODIPY-GTP fluorescence. Here we confirm that BODIPY-GTP indeed binds to YtvA, but rather nonspecifically, and not limited to the STAS domain. Blue-light modulation of fluorescence emission of YtvA-bound BODIPY-GTP is observed both in the full-length YtvA protein and in a truncated protein composed of the LOV-domain plus the LOV-STAS linker region (YtvA(1-147)) as a light-induced decrease in fluorescence emission. The isolated LOV domain (i.e. without the linker region) does not show such BODIPY-GTP fluorescence changes. Dialysis experiments have confirmed the blue-light-induced release of BODIPY-GTP from YtvA. PMID:21388385

  11. Gageopeptins A and B, new inhibitors of zoospore motility of the phytopathogen Phytophthora capsici from a marine-derived bacterium Bacillus sp. 109GGC020.

    PubMed

    Tareq, Fakir Shahidullah; Hasan, Choudhury M; Lee, Hyi-Seung; Lee, Yeon-Ju; Lee, Jong Seok; Surovy, Musrat Zahan; Islam, Md Tofazzal; Shin, Hee Jae

    2015-08-15

    The motility of zoospores is critical in the disease cycles of the peronosporomycetes that cause devastating diseases in plants, fishes, vertebrates, and microbes. In the course of screening for secondary metabolites regulating the motility of zoospores of Phytophthora capsici, we discovered two new inhibitors from the ethyl acetate extract of the fermentation broth of a marine-derived strain Bacillus sp. 109GGC020. The structures of these novel metabolites were elucidated as new cyclic lipopeptides and named gageopeptins A (1) and B (2) by spectroscopic analyses including high resolution MS and extensive 1D and 2D NMR. The stereoconfigurations of 1 and 2 were assigned based on the chemical derivatization studies and reviews of the literature data. Although compounds 1 and 2 impaired the motility of zoospores of P. capsici in dose- and time-dependent manners, compound 1 (IC50 = 1 μg/ml) was an approximately 400-fold stronger motility inhibitor than 2 (IC50 = 400 μg/ml). Interestingly, the zoospores halted by compound 1 were subsequently lysed at higher concentrations (IC50 = 50 μg/ml). Compounds 1 and 2 were also tested against some bacteria and fungi by broth dilution assay, and exhibited moderate antibacterial and good antifungal activities.

  12. Halotolerant, acid-alkali stable, chelator resistant and raw starch digesting α-amylase from a marine bacterium Bacillus subtilis S8-18.

    PubMed

    Kalpana, Balu Jancy; Pandian, Shunmugiah Karutha

    2014-08-01

    A halotolerant α-amylase having the ability of digesting the insoluble raw starches was characterized from Bacillus subtilis S8-18, a marine sediment isolate from Palk Bay region. The electrophoresis techniques unveiled that the α-amylase was indeed a monomer with a molecular weight of 57 kDa. The optimum temperature and pH for the enzyme activity were 60 °C and 6.0 respectively. The enzyme was highly stable for 24 h over a wide range of pH from 4.0 to 12.0 by showing 84-94% activity. Interestingly, by retaining 72% activity even after 24 h, the enzyme also showed tolerance towards 28% NaCl. The α-amylase retained a minimum of 93% residual activity in 1 mM concentration for the selected divalent metal ions. The enzyme was found to be chelator resistant as it remained unaffected by 1 mM of EDTA and exhibited 96% activity even at 5 mM concentration. Furthermore, though 1% SDS caused remarkable reduction (68%) in amylase activity, the enzyme showed tolerance towards other detergents (1% of Triton-X and Tween 80) with 85% activity. Additionally, the α-amylase enzyme is capable of hydrolyzing the insoluble raw starch substrates which was evident from the scanning electron microscopic (SEM) and spectrophotometric analyses.

  13. Isolation of an organic solvent-tolerant bacterium Bacillus licheniformis PAL05 that is able to secrete solvent-stable lipase.

    PubMed

    Anbu, Periasamy; Hur, Byung Ki

    2014-01-01

    In this study, seven lipase-producing bacterial strains were isolated from salt-enriched and cattle farm soil samples after incubation in toluene- and benzene-enriched media. One strain (PAL05) showed significantly greater lipase activity on spirit blue agar medium and stability in organic solvents. The positive strain (PAL05) was identified as Bacillus licheniformis by 16S rRNA gene sequencing. Lipase production was optimized in a medium containing glycerol as the carbon source and Tween 80 as an inducer (0.5% glycerol+0.5% Tween 80) at pH 8.0 and a temperature of 30 °C. In addition, the enzyme was moderately halotolerant as it exhibited increased activity in the presence of 2.5% NaCl. Optimized conditions increased the lipase production threefold. Crude lipase retained its activity for 14 days of incubation in the presence of various organic solvents at a level of 25% and 50%. The enzyme was stable at 25% in most solvents; some of the solvents such as hexane, benzene, and ethanol actually stimulated enzyme activity. The organic solvent stability of the lipase produced by the strain PAL05 enables the enzyme to be used as a potential biocatalyst for ester synthesis and other applications in nonaqueous conditions. PMID:24397298

  14. Thermophilic and alkaliphilic Actinobacteria: biology and potential applications

    PubMed Central

    Shivlata, L.; Satyanarayana, Tulasi

    2015-01-01

    Microbes belonging to the phylum Actinobacteria are prolific sources of antibiotics, clinically useful bioactive compounds and industrially important enzymes. The focus of the current review is on the diversity and potential applications of thermophilic and alkaliphilic actinobacteria, which are highly diverse in their taxonomy and morphology with a variety of adaptations for surviving and thriving in hostile environments. The specific metabolic pathways in these actinobacteria are activated for elaborating pharmaceutically, agriculturally, and biotechnologically relevant biomolecules/bioactive compounds, which find multifarious applications. PMID:26441937

  15. Molecular mechanism of PdxR – a transcriptional activator involved in the regulation of vitamin B6 biosynthesis in the probiotic bacterium Bacillus clausii.

    PubMed

    Tramonti, Angela; Fiascarelli, Alessio; Milano, Teresa; di Salvo, Martino L; Nogués, Isabel; Pascarella, Stefano; Contestabile, Roberto

    2015-08-01

    Pyridoxal 5'-phosphate (PLP), the well-known active form of vitamin B6 , is an essential enzyme cofactor involved in a large number of metabolic processes. PLP levels need to be finely tuned in response to cell requirements; however, little is known about the regulation of PLP biosynthesis and recycling pathways. The transcriptional regulator PdxR activates transcription of the pdxST genes encoding PLP synthase. It is characterized by an N-terminal helix-turn-helix motif that binds DNA and an effector-binding C-terminal domain homologous to PLP-dependent enzymes. Although it is known that PLP acts as an anti-activator, the mechanism of action of PdxR is unknown. In the present study, we analyzed the biochemical and DNA-binding properties of PdxR from the probiotic Bacillus clausii. Spectroscopic measurements showed that PLP is the only B6 vitamer that acts as an effector molecule of PdxR. Binding of PLP to PdxR determines a protein conformational change, as detected by gel filtration chromatography and limited proteolysis experiments. We showed that two direct repeats and one inverted repeat are present in the DNA promoter region and PdxR is able to bind DNA fragments containing any combination of two of them. However, when PLP binds to PdxR, it modifies the DNA-binding properties of the protein, making it selective for inverted repeats. A molecular mechanism is proposed in which the two different DNA binding modalities of PdxR determined by the presence or absence of PLP are responsible for the control of pdxST transcription. PMID:26059598

  16. Bacillus thuringiensis

    PubMed Central

    Ibrahim, Mohamed A; Griko, Natalya; Junker, Matthew

    2010-01-01

    Bacillus thuringiensis (Bt) is a unique bacterium in that it shares a common place with a number of chemical compounds which are used commercially to control insects important to agriculture and public health. Although other bacteria, including B. popilliae and B. sphaericus, are used as microbial insecticides, their spectrum of insecticidal activity is quite limited compared to Bt. Importantly, Bt is safe for humans and is the most widely used environmentally compatible biopesticide worldwide. Furthermore, insecticidal Bt genes have been incorporated into several major crops, rendering them insect resistant, and thus providing a model for genetic engineering in agriculture. This review highlights what the authors consider the most relevant issues and topics pertaining to the genomics and proteomics of Bt. At least one of the authors (L.A.B.) has spent most of his professional life studying different aspects of this bacterium with the goal in mind of determining the mechanism(s) by which it kills insects. The other authors have a much shorter experience with Bt but their intellect and personal insight have greatly enriched our understanding of what makes Bt distinctive in the microbial world. Obviously, there is personal interest and bias reflected in this article notwithstanding oversight of a number of published studies. This review contains some material not published elsewhere although several ideas and concepts were developed from a broad base of scientific literature up to 2010. PMID:21327125

  17. The Intracellular pH of Clostridium paradoxum, an Anaerobic, Alkaliphilic, and Thermophilic Bacterium

    PubMed Central

    Cook, G. M.; Russell, J. B.; Reichert, A.; Wiegel, J.

    1996-01-01

    When the extracellular pH was increased from 7.6 to 9.8, Clostridium paradoxum, a novel alkalithermophile, increased its pH gradient across the cell membrane ((Delta)pH, pH(infin) - pH(infout)) by as much as 1.3 U. At higher pH values (>10.0), the (Delta)pH and membrane potential ((Delta)(psi)) eventually declined, and the intracellular pH increased significantly. Growth ceased when the extracellular pH was greater than 10.2 and the intracellular pH increased to above 9.8. The membrane potential increased to 110 (plusmn) 8.6 mV at pH 9.1, but the total proton motive force ((Delta)p) declined from about 65 mV at pH 7.6 to 25 mV at pH 9.8. Between the extracellular pH of 8.0 and 10.3, the intracellular ATP concentration was around 1 mM and decreased at lower and higher pH values concomitantly with a decrease in growth rate. PMID:16535469

  18. Methanohalophilus zhilinae sp. nov., an alkaliphilic, halophilic, methylotrophic methanogen

    NASA Technical Reports Server (NTRS)

    Mathrani, I. M.; Boone, D. R.; Mah, R. A.; Fox, G. E.; Lau, P. P.

    1988-01-01

    Methanohalophilus zhilinae, a new alkaliphilic, halophilic, methylotrophic species of methanogenic bacteria, is described. Strain WeN5T (T = type strain) from Bosa Lake of the Wadi el Natrun in Egypt was designated the type strain and was further characterized. This strain was nonmotile, able to catabolize dimethylsulfide, and able to grow in medium with a methyl group-containing substrate (such as methanol or trimethylamine) as the sole organic compound added. Sulfide (21 mM) inhibited cultures growing on trimethylamine. The antibiotic susceptibility pattern of strain WeN5T was typical of the pattern for archaeobacteria, and the guanine-plus-cytosine content of the deoxyribonucleic acid was 38 mol%. Characterization of the 16S ribosomal ribonucleic acid sequence indicated that strain WeN5T is phylogenetically distinct from members of previously described genera other than Methanohalophilus and supported the partition of halophilic methanogens into their own genus.

  19. Streptomyces sodiiphilus sp. nov., a novel alkaliphilic actinomycete.

    PubMed

    Li, Wen-Jun; Zhang, Yong-Guang; Zhang, Yu-Qin; Tang, Shu-Kun; Xu, Ping; Xu, Li-Hua; Jiang, Cheng-Lin

    2005-05-01

    An alkaliphilic actinomycete, strain YIM 80305(T), which was isolated from a muddy sample in Chaka salt lake, Qinghai Province of China, was characterized using a polyphasic approach. The isolate produced light-yellow substrate and yellow-white aerial mycelia on most tested media. Optimum pH for growth was 9.0-10.0 with scant growth at pH 7.0. Results showed that strain YIM 80305(T) was obligately Na(+)-dependent, and showed sensitivity to K(+). The DNA G + C content was 70.5 mol%. 16S rRNA gene sequence analysis together with these characteristics consistently assigned strain YIM 80305(T) to the genus Streptomyces. It formed a distinct clade based on analyses of the almost-complete and 120-nucleotide variable gamma region of the 16S rRNA gene. It could be differentiated by phenotypic and genotypic analysis from all the Streptomyces species whose names have been validly published. On the basis of polyphasic evidence, Streptomyces sodiiphilus sp. nov. is proposed. The type strain is YIM 80305(T) (= CCTCC AA 203015(T) = CIP 107975(T)).

  20. Tindallia Californiensis sp. nov.: A New Halo-Alkaliphilic Primary Anaerobe, Isolated from Meromictic soda Mono Lake in California and the Correction of Diagnosis for Genus Tindallia

    NASA Technical Reports Server (NTRS)

    Pikuta, Elena; Marsic, Damien; Hoover, Richard B.; Kevbrin, Vadim; Whitman, William B.; Krader, Paul; Cleland, Dave; Six, N. Frank (Technical Monitor)

    2002-01-01

    A novel extremely halo-alkaliphilic, bacterium strain APO (sup T) was isolated from sediments of the athalassic, meromictic, soda Mono Lake in California. Gram positive, spore-forming, slightly curved rods with sizes 0.6-0.7x 2.5-4.0 micrometers which occur singly, in pairs or short curved chains. Cells, are motile by singular subcentral flagellum. Strain APO (sup T) is mesophilic: growth was observed over the temperature range of +10 C to +48 C (optimum +37 C), NaCl concentration range 1-20 %, wt/vol (optimum 3-5%, wt/vol) and pH range 8.0-11.0 (optimum pH 9.5). The novel isolate is strictly halo-alkaliphilic, requires sodium chloride in medium, obligately anaerobic and catalase-negative. Strain APO (sup T) is organo-heterotroph with fermentative type of metabolism, and uses as substrates: peptone, badotryptone, casamino acids, yeast extract, L-serine, L-lysine, L-histidine, L-arginine, and pyruvate. The main end products of growth on peptone medium were: lactate, acetate, propionate, and ethanol. Strain APO (sup T) is resistant to kanamycin, but sensitive to chloramphenicol, tetracycline, and gentamycin. The sum of G+C in DNA is 44.4 mol% (by HPLC method). On the bait of physiological and molecular properties, the isolate was considered as novel species of genus Tindallia; and the name Tindallia californiensis sp. nov., is proposed for new isolate (type strain APO (sup T) - ATCC BAA_393(sup T) = DSMZ 14871 (sup T)).

  1. Revision of the taxonomic position of the xylanolytic Bacillus sp. MIR32 reidentified as Bacillus halodurans and plasmid-mediated transformation of B. halodurans.

    PubMed

    Martínez, M Alejandra; Delgado, Osvaldo D; Breccia, Javier D; Baigorí, Mario D; Siñeriz, Faustino

    2002-10-01

    Bacillus sp. MIR32 has been isolated using xylan as the only carbon source, and one of its xylanolytic enzymes has been extensively studied. Biochemical analysis first related this strain to Bacillus amyloliquefaciens, but further studies based on a comparison of 16S rDNA sequences, G+C content, and DNA-DNA hybridization showed that strain MIR32 should be classified as a member of the species Bacillus halodurans. This change is also supported by the typical phenotype observed and by the results of PCR amplification directed toward spacers in rDNA and tDNA genes, which were assayed and compared with those of B. halodurans DSM 497(T). Although among alkaliphilic bacilli competence development has not been experimentally demonstrated, in this work both B. halodurans MIR32 and DSM 497(T) were transformed according to a simple procedure developed in our laboratory, reaching 10(2)-10(3) stable transformants per microgram of plasmid DNA. PMID:12382115

  2. Salinicoccus kekensis sp. nov., a novel alkaliphile and moderate halophile isolated from Keke Salt Lake in Qinghai, China.

    PubMed

    Gao, Miao; Wang, Lei; Chen, San-feng; Zhou, Yu-guang; Liu, Hong-can

    2010-10-01

    A novel alkaliphilic and moderate halophilic bacterium, designated strain K164(T), was isolated from Keke Salt Lake in Qinghai, China. The strain grew with 2.0-20.0% (w/v) NaCl, at 4-50 degrees C and pH 6.5-11.5, with an optimum of 8% (w/v) NaCl, 37degrees C and pH 10, respectively. The predominant respiratory quinone was menaquinone 6 (MK-6) and the major polar lipid was phosphatidylethanolamine. The major cellular fatty acids were anteiso-C(15:0) and iso-C(15:0). The genomic DNA G+C content was 50.16 mol. Phylogenetic analysis based on the full-length 16S rRNA gene sequence revealed that strain K164(T) was a member of the genus Salinicoccus. Strain K164(T) showed the highest similarity (98.4%) with Salinicoccus alkaliphilus AS 1.2691(T) and below 97% similarity with other recognized members of the genus in 16S rRNA gene sequence. Level of DNA-DNA relatedness between strain K164(T) and Salinicoccus alkaliphilus AS 1.2691(T) was 20.1%. On the basis of its phenotypic characteristics and the level of DNA-DNA hybridization, strain K164(T) is considered to represent a novel species of the genus Salinicoccus, for which the name Salinicoccus kekensis sp. nov. is proposed. The type strain is K164(T) (=CGMCC 1.10337(T) = DSM 23173(T)).

  3. Surfactin production by strains of Bacillus mojavensis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacillus mojavensis, RRC101 is an endophytic bacterium patented for control of fungal diseases in maize and other plants. DNA fingerprint analysis of the rep-PCR fragments of 35 B. mojavensis and 4 B. subtilis strains using the Diversilab genotyping system revealed genotypic distinctive strains alon...

  4. Cell wall reactivity of acidophilic and alkaliphilic bacteria determined by potentiometric titrations and Cd adsorption experiments.

    PubMed

    Kenney, Janice P L; Fein, Jeremy B

    2011-05-15

    In this study, we used potentiometric titrations and Cd adsorption experiments to determine the binding capacities of two acidophilic (A. cryptum and A. acidophilum) and two alkaliphilic (B. pseudofirmus and B. circulans) bacterial species in order to determine if any consistent trends could be observed relating bacterial growth environment to proton and Cd binding properties and to compare those binding behaviors to those of neutrophilic bacteria. All of the bacterial species studied exhibited significant proton buffering over the pH range in this study, with the alkaliphiles exhibiting significantly higher acidity constants than the acidophiles as well as the neutrophilic bacterial consortia. The calculated average site concentrations for each of the bacteria in this study are within 2σ experimental error of each other, with the exception of A. cryptum, which has a significantly higher Site 2 concentration than the other species. Despite differing acidity constants between the acidophiles and alkaliphiles, all bacteria except A. cryptum exhibited remarkably similar Cd adsorption behavior to each other, and the observed extent of adsorption was also similar to that predicted from a generalized model derived using neutrophilic bacterial consortia. This study demonstrates that bacteria that grow under extreme conditions exhibit similar proton and metal adsorption behavior to that of previously studied neutrophilic species and that a single set of proton and metal binding constants can be used to model the behavior of bacterial adsorption under a wide range of environmental conditions.

  5. Microcella putealis gen. nov., sp. nov., a gram-positive alkaliphilic bacterium isolated from a nonsaline alkaline groundwater.

    PubMed

    Tiago, Igor; Pires, Carlos; Mendes, Vítor; Morais, Paula V; da Costa, Milton; Veríssimo, António

    2005-08-01

    Three Gram-positive bacteria designated CV-2T, CV-40 and AC-30 were isolated from a highly alkaline groundwater environment (pH 11.4). These organisms formed very small rod-shaped cells, are aerobic, non-spore-forming, catalase-positive, oxidase-negative, with an optimum growth temperature of 35 degrees C and optimum pH value of growth between 8.5 and 9.0. The strains possessed a novel B-type cell-wall peptidoglycan structure with lysine as the diamino acid; the major respiratory quinones were menaquinone 12 (MK12) and MK13. The G + C content of DNA was between 67.1 and 70.7 mol%. The phylogenetic analyses of the sequences of the 16S rRNA genes reveled that they formed a deep branch within the family Microbacteriaceae, with the highest similarity of approximately 95.6% with members of the genera Agreia, Agrococcus, Cryobacterium, Clavibacter, Frigoribacterium, Leifsonia, Mycetocola, Rhodoglobus, Salinibacterium and Subtercola. Based on the phylogenetic analyses and distinct phenotypic characteristics, we are of the opinion that strains CV-2T, CV-40 and AC-30, represent a new species of a novel genus within the family Microbacteriaceae for which we propose the name Microcella putealis gen. nov., sp. nov.

  6. Anaerovirgula multivorans gen. nov., sp. nov., a Novel Spore-Forming, Alkaliphilic Anaerobe Isolated from Owens Lake, California, USA

    NASA Technical Reports Server (NTRS)

    Pikuta, Elena V.; Itoh, Takashi; Krader, Paul; Whitman, William B.; Hoover, Richard B.

    2006-01-01

    A novel, alkaliphilic, obligately anaerobic bacterium, strain SCAT, was isolated from mud sediments of a soda lake in California, USA. The rod-shaped cells were motile, Gram-positive, formed spores and were 0.4-0.5x2.5-5.0 micrometers in size. Growth occurred within the pH range 6.7-10.0 and was optimal at pH 8.5. The temperature range for growth was 10-45 degrees C, with optimal growth at 35 degrees C. NaCl was required for growth. Growth occurred at 0.5-9.0% (w/v) NaCl and was optimal at 1-2% (w/v). The novel isolate was a catalase-negative chemo-organoheterotroph that fermented sugars, proteolysis products, some organic and amino acids, glycerol, d-cellobiose and cellulose. It was also capable of growth by the Stickland reaction. Strain SCAT was sensitive to tetracycline, chloramphenicol, rifampicin and gentamicin, but it was resistant to ampicillin and kanamycin. The G+C content of the genomic DNA was 34.2 mol%. Major fatty acid components were C14:0, iso-C15:0, C16:1omega9c and C16:0. 16S rRNA gene sequence analysis of strain SCAT showed a similarity of approximately 97% with the type strains of Clostridium formicaceticum and Clostridium aceticum in clostridial cluster XI and a similarity of less than 94.2% to any other recognized Clostridium species and those of related genera in this cluster. Strain SCAT was clearly differentiated from C. formicaceticum and C. aceticum based on comparison of their phenotypic properties and fatty acid profiles, as well as low levels of DNA-DNA relatedness between strain SCAT and the type strains of these two species. Therefore, strain SCAT is considered to represent a novel species of a new genus, Anaerovirgula multivorans gen. nov., sp. nov., in clostridial cluster XI. The type strain is SCAT (=ATCC BAA-1084T=JCM 12857T=DSM 17722T=CIP 107910T).

  7. Spore formation in Bacillus subtilis

    PubMed Central

    Tan, Irene S.; Ramamurthi, Kumaran S.

    2014-01-01

    Summary Although prokaryotes ordinarily undergo binary fission to produce two identical daughter cells, some are able to undergo alternative developmental pathways that produce daughter cells of distinct cell morphology and fate. One such example is a developmental program called sporulation in the bacterium Bacillus subtilis, which occurs under conditions of environmental stress. Sporulation has long been used as a model system to help elucidate basic processes of developmental biology including transcription regulation, intercellular signaling, membrane remodeling, protein localization, and cell fate determination. This review highlights some of the recent work that has been done to further understand prokaryotic cell differentiation during sporulation and its potential applications. PMID:24983526

  8. Spore formation in Bacillus subtilis.

    PubMed

    Tan, Irene S; Ramamurthi, Kumaran S

    2014-06-01

    Although prokaryotes ordinarily undergo binary fission to produce two identical daughter cells, some are able to undergo alternative developmental pathways that produce daughter cells of distinct cell morphology and fate. One such example is a developmental programme called sporulation in the bacterium Bacillus subtilis, which occurs under conditions of environmental stress. Sporulation has long been used as a model system to help elucidate basic processes of developmental biology including transcription regulation, intercellular signalling, membrane remodelling, protein localization and cell fate determination. This review highlights some of the recent work that has been done to further understand prokaryotic cell differentiation during sporulation and its potential applications. PMID:24983526

  9. Draft Genome Sequence of Bacillus megaterium BHG1.1, a Strain Isolated from Bar-Headed Goose (Anser indicus) Feces on the Qinghai-Tibet Plateau.

    PubMed

    Wang, Wen; Zheng, Si-Si; Sun, Hao; Cao, Jian; Yang, Fang; Wang, Xue-Lian; Li, Lai-Xing

    2016-01-01

    Bacillus megaterium is a soil-inhabiting Gram-positive bacterium that is routinely used in industrial applications for recombinant protein production and bioremediation. Studies involving Bacillus megaterium isolated from waterfowl are scarce. Here, we report a 6.26-Mbp draft genome sequence of Bacillus megaterium BHG1.1, which was isolated from feces of a bar-headed goose. PMID:27174262

  10. Decolorization of azo dyes (Direct Blue 151 and Direct Red 31) by moderately alkaliphilic bacterial consortium

    PubMed Central

    Lalnunhlimi, Sylvine; Krishnaswamy, Veenagayathri

    2016-01-01

    Removal of synthetic dyes is one of the main challenges before releasing the wastes discharged by textile industries. Biodegradation of azo dyes by alkaliphilic bacterial consortium is one of the environmental-friendly methods used for the removal of dyes from textile effluents. Hence, this study presents isolation of a bacterial consortium from soil samples of saline environment and its use for the decolorization of azo dyes, Direct Blue 151 (DB 151) and Direct Red 31 (DR 31). The decolorization of azo dyes was studied at various concentrations (100–300 mg/L). The bacterial consortium, when subjected to an application of 200 mg/L of the dyes, decolorized DB 151 and DR 31 by 97.57% and 95.25% respectively, within 5 days. The growth of the bacterial consortium was optimized with pH, temperature, and carbon and nitrogen sources; and decolorization of azo dyes was analyzed. In this study, the decolorization efficiency of mixed dyes was improved with yeast extract and sucrose, which were used as nitrogen and carbon sources, respectively. Such an alkaliphilic bacterial consortium can be used in the removal of azo dyes from contaminated saline environment. PMID:26887225

  11. Decolorization of azo dyes (Direct Blue 151 and Direct Red 31) by moderately alkaliphilic bacterial consortium.

    PubMed

    Lalnunhlimi, Sylvine; Krishnaswamy, Veenagayathri

    2016-01-01

    Removal of synthetic dyes is one of the main challenges before releasing the wastes discharged by textile industries. Biodegradation of azo dyes by alkaliphilic bacterial consortium is one of the environmental-friendly methods used for the removal of dyes from textile effluents. Hence, this study presents isolation of a bacterial consortium from soil samples of saline environment and its use for the decolorization of azo dyes, Direct Blue 151 (DB 151) and Direct Red 31 (DR 31). The decolorization of azo dyes was studied at various concentrations (100-300mg/L). The bacterial consortium, when subjected to an application of 200mg/L of the dyes, decolorized DB 151 and DR 31 by 97.57% and 95.25% respectively, within 5 days. The growth of the bacterial consortium was optimized with pH, temperature, and carbon and nitrogen sources; and decolorization of azo dyes was analyzed. In this study, the decolorization efficiency of mixed dyes was improved with yeast extract and sucrose, which were used as nitrogen and carbon sources, respectively. Such an alkaliphilic bacterial consortium can be used in the removal of azo dyes from contaminated saline environment.

  12. Properties of NAD (P) H azoreductase from alkaliphilic red bacteria Aquiflexum sp. DL6.

    PubMed

    Misal, Santosh A; Lingojwar, Devendra P; Gawai, Kachru R

    2013-12-01

    Azoreductase plays a key role in bioremediation and biotransformation of azo dyes. It initializes the reduction of azo bond in azo dye metabolism under aerobic or anaerobic conditions. In the present study, we isolated an alkaliphilic red-colored Aquiflexum sp. DL6 bacterial strain and identified by 16S rRNA method. We report nicotinamide adenine dinucleotide and nicotinamide adenine dinucleotide phosphate-dependent azoreductase purified from Aquiflexum sp. DL6 by a combination of ammonium sulfate precipitation and chromatography methods. The azoreductase was purified up to 30-fold with 37 % recovery. The molecular weight was found to be 80 kDa. The optimum activity was observed at pH 7.4 and temperature 60 °C with amaranth azo dye as a substrate. The thermal stability of azoreductase was up to 80 °C. The azoreductase has shown a wide range of substrate specificity, including azo dyes and nitro aromatic compounds. Metal ions have no significant inhibitory action on azoreductase activity. The apparent K m and V max values for amaranth azo dye were 1.11 mM and 30.77 U/mg protein respectively. This NAD (P) H azoreductase represents the first azoreductase to be characterized from alkaliphilic bacteria.

  13. Isolation and biochemical characterization of Bacillus pumilus lipases from the Antarctic.

    PubMed

    Arifin, Arild Ranlym; Kim, Soon-Ja; Yim, Joung Han; Suwanto, Antonius; Kim, Hyung Kwoun

    2013-05-01

    Lipase-producing bacterial strains were isolated from Antarctic soil samples using the tricaprylin agar plate method. Seven strains with relatively strong lipase activities were selected. All of them turned out to be Bacillus pumilus strains by the 16S rRNA gene sequence analysis. Their corresponding lipase genes were cloned, sequenced, and compared. Finally, three different Bacillus pumilus lipases (BPL1, BPL2, and BPL3) were chosen. Their amino acid sequence identities were in the range of 92-98% with the previous Bacillus pumilus lipases. Their optimum temperatures and pHs were measured to be 40 degrees C and pH 9. Lipase BPL1 and lipase BPL2 were stable up to 30 degrees C, whereas lipase BPL3 was stable up to 20 degrees C. Lipase BPL2 was stable within a pH range of 6-10, whereas lipase BPL1 and lipase BPL3 were stable within a pH range of 5-11, showing strong alkaline tolerance. All these lipases exhibited high hydrolytic activity toward pnitrophenyl caprylate (C8). In addition, lipase BPL1 showed high hydrolytic activity toward tributyrin, whereas lipase BPL2 and lipase BPL3 hydrolyzed tricaprylin and castor oil preferentially. These results demonstrated that the three Antarctic Bacillus lipases were alkaliphilic and had a substrate preference toward short- and mediumchain triglycerides. These Antarctic Bacillus lipases might be used in detergent and food industries. PMID:23648856

  14. The Influence of Siderophores Produced by Alkaliphilic Microorganisms on Iron and Metal Contaminant Speciation and Solubility

    NASA Astrophysics Data System (ADS)

    Aiken, A. M.; Peyton, B. M.; Petersen, J. N.; Apel, W. A.; Camper, A. K.

    2003-12-01

    Halomonas campisalis strain 4A has been identified as capable of producing siderophores under halo-alkaliphilic growth conditions. Because of the scarcity of iron under the alkaline conditions in which Halomonas campisalis thrives, we hypothesize that the siderophores secreted by Halomonas campisalis and other alkaliphilic bacteria will have a stronger affinity for binding and solubilizing ferrous iron than siderophores produced by mesophilic bacteria. Siderophore production by Halomonas campisalis was confirmed through the use of the chrome azural S (CAS) agar plate method which showed a red orange halo around the bacterial colonies indicative of siderophore production. The siderophores were found to be produced under conditions of both high salinity and pH with a salt concentrations ranging from 0.4 - 1.8 M NaCl and pH ranging from 8 - 11. The siderophores produced have been determined to be of the hydroxamate class via the Csaky method. A negative response to the Arnow assay indicated that the siderophore produced does not contain any catechol moieties in its chemical structure. It was found that maximum siderophore production was equivalent to approximately 400 mM desferrioxamine and occurred during mid stationary phase. Similar results were found at pH 8, 10 and 11. A purification scheme was developed that involved an initial extraction of the siderophore from the growth medium into benzyl alcohol followed by precipitation with diethyl ether. Additional purification was achieved via ion exchange chromatography and size exclusion chromatography. Final purification was achieved via HPLC. The structure of the purified siderophore was analyzed via LC/MS/MS equipped with an ESI source. To date, few studies have included the siderophores produced by microorganisms capable of tolerating highly saline and alkaline environments. In addition to unique structure and high affinity for iron, it is further hypothesized that siderophores from alkaliphilic bacteria will also

  15. Complete Genome Sequences of Nine Bacillus cereus Group Phages.

    PubMed

    Foltz, Samantha; Johnson, Allison A

    2016-01-01

    We report the sequences of nine novel Bacillus cereus group bacteriophages: DIGNKC, Juglone, Nemo, Nigalana, NotTheCreek, Phrodo, SageFayge, Vinny, and Zuko. These bacteriophages are double-stranded DNA-containing Myoviridae isolated from soil samples using B. thuringiensis subsp. kurstaki as the host bacterium.

  16. Complete Genome Sequences of Nine Bacillus cereus Group Phages

    PubMed Central

    Foltz, Samantha

    2016-01-01

    We report the sequences of nine novel Bacillus cereus group bacteriophages: DIGNKC, Juglone, Nemo, Nigalana, NotTheCreek, Phrodo, SageFayge, Vinny, and Zuko. These bacteriophages are double-stranded DNA-containing Myoviridae isolated from soil samples using B. thuringiensis subsp. kurstaki as the host bacterium. PMID:27417827

  17. Bacillus nakamurai sp. nov., a black pigment producing strain

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two isolates of a Gram-positive, strictly aerobic, motile, rod-shaped, endospore-forming bacterium were identified during a survey of the Bacillus diversity of the Agriculture Research Service Culture Collection. These strains were originally isolated from soil and have a phenotype of producing a da...

  18. Draft Genome Sequence of Bacillus megaterium Type Strain ATCC 14581

    PubMed Central

    Arya, Gitanjali; Petronella, Nicholas; Crosthwait, Jennifer; Carrillo, Catherine D.

    2014-01-01

    Bacillus megaterium is a Gram-positive, rod-shaped, spore-forming bacterium of biotechnological importance. Here, we report a 5.7-Mbp draft genome sequence of B. megaterium ATCC 14581, which is the type strain of the species. PMID:25395629

  19. Draft Genome Sequence of Bacillus megaterium Type Strain ATCC 14581.

    PubMed

    Arya, Gitanjali; Petronella, Nicholas; Crosthwait, Jennifer; Carrillo, Catherine D; Shwed, Philip S

    2014-01-01

    Bacillus megaterium is a Gram-positive, rod-shaped, spore-forming bacterium of biotechnological importance. Here, we report a 5.7-Mbp draft genome sequence of B. megaterium ATCC 14581, which is the type strain of the species. PMID:25395629

  20. Complete Genome Sequences of Nine Bacillus cereus Group Phages.

    PubMed

    Foltz, Samantha; Johnson, Allison A

    2016-01-01

    We report the sequences of nine novel Bacillus cereus group bacteriophages: DIGNKC, Juglone, Nemo, Nigalana, NotTheCreek, Phrodo, SageFayge, Vinny, and Zuko. These bacteriophages are double-stranded DNA-containing Myoviridae isolated from soil samples using B. thuringiensis subsp. kurstaki as the host bacterium. PMID:27417827

  1. Production of amino acids using auxotrophic mutants of methylotrophic bacillus

    DOEpatents

    Hanson, Richard S.; Flickinger, Michael C.; Schendel, Frederick J.; Guettler, Michael V.

    2001-07-17

    A method of producing amino acids by culturing an amino acid auxotroph of a biologically pure strain of a type I methylotrophic bacterium of the genus Bacillus which exhibits sustained growth at 50.degree. C. using methanol as a carbon and energy source and requiring vitamin B.sub.12 and biotin is provided.

  2. Understanding the detailed motion of a model bacterium

    NASA Astrophysics Data System (ADS)

    Thawani, Akanksha; Tirumkudulu, Mahesh

    2014-11-01

    Inspired by the motion of flagellated bacteria such as Escherichia coli and Bacillus subtilis, we have built a macroscopic model bacterium, in order to investigate the intricate aspects of their motion which cannot be visualized under a microscope. The flagellated rod shaped cells were approximated with a spherical head attached to a rigid metal helix, via a plastic hook. The motion of model bacterium was observed in a high viscosity silicone oil to replicate the low Reynolds number flow conditions. A significant wobble was observed even in the absence of an off-axis flagellum. We suspect that the flexibility in the hook connecting the head and flagellum is the cause for wobble, since wobble was observed to increase significantly with hook-flexibility. The motion of the model bacterium was predicted using the Slender Body theory of Lighthill, and was compared with the measured trajectories.

  3. Physiological and genomic features of highly alkaliphilic hydrogen-utilizing Betaproteobacteria from a continental serpentinizing site.

    PubMed

    Suzuki, Shino; Kuenen, J Gijs; Schipper, Kira; van der Velde, Suzanne; Ishii, Shun'ichi; Wu, Angela; Sorokin, Dimitry Y; Tenney, Aaron; Meng, XianYing; Morrill, Penny L; Kamagata, Yoichi; Muyzer, Gerard; Nealson, Kenneth H

    2014-01-01

    Serpentinization, or the aqueous alteration of ultramafic rocks, results in challenging environments for life in continental sites due to the combination of extremely high pH, low salinity and lack of obvious electron acceptors and carbon sources. Nevertheless, certain Betaproteobacteria have been frequently observed in such environments. Here we describe physiological and genomic features of three related Betaproteobacterial strains isolated from highly alkaline (pH 11.6) serpentinizing springs at The Cedars, California. All three strains are obligate alkaliphiles with an optimum for growth at pH 11 and are capable of autotrophic growth with hydrogen, calcium carbonate and oxygen. The three strains exhibit differences, however, regarding the utilization of organic carbon and electron acceptors. Their global distribution and physiological, genomic and transcriptomic characteristics indicate that the strains are adapted to the alkaline and calcium-rich environments represented by the terrestrial serpentinizing ecosystems. We propose placing these strains in a new genus 'Serpentinomonas'.

  4. Anaerobic Halo-Alkaliphilic Baterial Community of Athalassic, Hypersaline Mono Lake in California

    NASA Technical Reports Server (NTRS)

    Pikuta, Elena V.; Hoover, Richard B.; Marsic, Damien; Ng, Joseph D.; Six, N. Frank (Technical Monitor)

    2002-01-01

    The microorganisms of soda Mono Lake and other similar athalassic hypersaline alkaline soda lakes are of significance to Astrobiology. The microorganisms of these regimes represent the best known terrestrial analogs for microbial life that might have inhabited the hypersaline alkaline lakes and evaporites confined within closed volcanic basins and impact craters during the late Noachian and early Hesperian epochs (3.6 - 4.2 Gya) of ancient Mars. We have investigated the anaerobic microbiota of soda Mono Lake in northern California. In this paper we discuss the astrobiological significance of these ecosystems and describe several interesting features of two novel new species of anaerobic halo-alkaliphilic bacteria (Spirochaeta americana, sp. nov. and Desulfonatronum paiuteum, sp. nov) that we have isolated from Mono Lake.

  5. Physiological and genomic features of highly alkaliphilic hydrogen-utilizing Betaproteobacteria from a continental serpentinizing site

    PubMed Central

    Suzuki, Shino; Kuenen, J. Gijs; Schipper, Kira; van der Velde, Suzanne; Ishii, Shun’ichi; Wu, Angela; Sorokin, Dimitry Y.; Tenney, Aaron; Meng, XianYing; Morrill, Penny L.; Kamagata, Yoichi; Muyzer, Gerard; Nealson, Kenneth H.

    2014-01-01

    Serpentinization, or the aqueous alteration of ultramafic rocks, results in challenging environments for life in continental sites due to the combination of extremely high pH, low salinity and lack of obvious electron acceptors and carbon sources. Nevertheless, certain Betaproteobacteria have been frequently observed in such environments. Here we describe physiological and genomic features of three related Betaproteobacterial strains isolated from highly alkaline (pH 11.6) serpentinizing springs at The Cedars, California. All three strains are obligate alkaliphiles with an optimum for growth at pH 11 and are capable of autotrophic growth with hydrogen, calcium carbonate and oxygen. The three strains exhibit differences, however, regarding the utilization of organic carbon and electron acceptors. Their global distribution and physiological, genomic and transcriptomic characteristics indicate that the strains are adapted to the alkaline and calcium-rich environments represented by the terrestrial serpentinizing ecosystems. We propose placing these strains in a new genus ‘Serpentinomonas’. PMID:24845058

  6. Decomposition of Alternative Chirality Amino Acids by Alkaliphilic Anaerobe from Owens Lake, California

    NASA Technical Reports Server (NTRS)

    Townsend, Alisa; Pikuta, Elena V.; Guisler, Melissa; Hoover, Richard B.

    2009-01-01

    The study of alkaliphilic microbial communities from anaerobic sediments of Owens and Mono Lakes in California led to the isolation of a bacterial strain capable of metabolizing amino acids with alternative chirality. According to the phylogenetic analysis, the anaerobic strain BK1 belongs to the genus Tindallia; however, despite the characteristics of other described species of this genus, the strain BK1 was able to grow on D-arginine and Dlysine. Cell morphology of this strain showed straight, motile, non-spore-forming rods with sizes 0.45 x 1.2-3 microns. Physiological characteristics of the strain showed that it is catalase negative, obligately anaerobic, mesophilic, and obligately alkaliphilic. This isolate is unable to grow at pH 7 and requires CO3 (2-) ions for growth. The strain has chemo-heterotrophic metabolism and is able to ferment various proteolysis products and some sugars. It plays the role of a primary anaerobe within the trophic chain of an anaerobic microbial community by the degradation of complex protein molecules to smaller and less energetic molecules. The new isolate requires NaCl for growth, and can grow within the range of 0.5-13 %, with the optimum at 1 % NaCl (w/v). The temperature range for the growth of the new isolate is 12-40 C with optimum at 35 C. The pH range for the growth of strain BK1 occurs between 7.8 and 11.0 with optimum at 9.5. This paper presents detailed physiological characteristics of the novel isolate from Owens Lake, a unique relic ecosystem of Astrobiological significance, and makes an accent on the ability of this strain to utilize L-amino acids.

  7. A Lipid-Accumulating Alga Maintains Growth in Outdoor, Alkaliphilic Raceway Pond with Mixed Microbial Communities

    PubMed Central

    Bell, Tisza A. S.; Prithiviraj, Bharath; Wahlen, Brad D.; Fields, Matthew W.; Peyton, Brent M.

    2016-01-01

    Algal biofuels and valuable co-products are being produced in both open and closed cultivation systems. Growing algae in open pond systems may be a more economical alternative, but this approach allows environmental microorganisms to colonize the pond and potentially infect or outcompete the algal “crop.” In this study, we monitored the microbial community of an outdoor, open raceway pond inoculated with a high lipid-producing alkaliphilic alga, Chlorella vulgaris BA050. The strain C. vulgaris BA050 was previously isolated from Soap Lake, Washington, a system characterized by a high pH (∼9.8). An outdoor raceway pond (200 L) was inoculated with C. vulgaris and monitored for 10 days and then the culture was transferred to a 2,000 L raceway pond and cultivated for an additional 6 days. Community DNA samples were collected over the 16-day period in conjunction with water chemistry analyses and cell counts. Universal primers for the SSU rRNA gene sequences for Eukarya, Bacteria, and Archaea were used for barcoded pyrosequence determination. The environmental parameters that most closely correlated with C. vulgaris abundance were pH and phosphate. Community analyses indicated that the pond system remained dominated by the Chlorella population (93% of eukaryotic sequences), but was also colonized by other microorganisms. Bacterial sequence diversity increased over time while archaeal sequence diversity declined over the same time period. Using SparCC co-occurrence network analysis, a positive correlation was observed between C. vulgaris and Pseudomonas sp. throughout the experiment, which may suggest a symbiotic relationship between the two organisms. The putative relationship coupled with high pH may have contributed to the success of C. vulgaris. The characterization of the microbial community dynamics of an alkaliphilic open pond system provides significant insight into open pond systems that could be used to control photoautotrophic biomass productivity in an

  8. A Lipid-Accumulating Alga Maintains Growth in Outdoor, Alkaliphilic Raceway Pond with Mixed Microbial Communities.

    PubMed

    Bell, Tisza A S; Prithiviraj, Bharath; Wahlen, Brad D; Fields, Matthew W; Peyton, Brent M

    2015-01-01

    Algal biofuels and valuable co-products are being produced in both open and closed cultivation systems. Growing algae in open pond systems may be a more economical alternative, but this approach allows environmental microorganisms to colonize the pond and potentially infect or outcompete the algal "crop." In this study, we monitored the microbial community of an outdoor, open raceway pond inoculated with a high lipid-producing alkaliphilic alga, Chlorella vulgaris BA050. The strain C. vulgaris BA050 was previously isolated from Soap Lake, Washington, a system characterized by a high pH (∼9.8). An outdoor raceway pond (200 L) was inoculated with C. vulgaris and monitored for 10 days and then the culture was transferred to a 2,000 L raceway pond and cultivated for an additional 6 days. Community DNA samples were collected over the 16-day period in conjunction with water chemistry analyses and cell counts. Universal primers for the SSU rRNA gene sequences for Eukarya, Bacteria, and Archaea were used for barcoded pyrosequence determination. The environmental parameters that most closely correlated with C. vulgaris abundance were pH and phosphate. Community analyses indicated that the pond system remained dominated by the Chlorella population (93% of eukaryotic sequences), but was also colonized by other microorganisms. Bacterial sequence diversity increased over time while archaeal sequence diversity declined over the same time period. Using SparCC co-occurrence network analysis, a positive correlation was observed between C. vulgaris and Pseudomonas sp. throughout the experiment, which may suggest a symbiotic relationship between the two organisms. The putative relationship coupled with high pH may have contributed to the success of C. vulgaris. The characterization of the microbial community dynamics of an alkaliphilic open pond system provides significant insight into open pond systems that could be used to control photoautotrophic biomass productivity in an open

  9. A lipid-accumulating alga maintains growth in outdoor, alkaliphilic raceway pond with mixed microbial communities

    DOE PAGES

    Bell, Tisza A.S.; Prithiviraj, Bharath; Wahlen, Brad D.; Fields, Matthew W.; Peyton, Brent M.

    2016-01-07

    Algal biofuels and valuable co-products are being produced in both open and closed cultivation systems. Growing algae in open pond systems may be a more economical alternative, but this approach allows environmental microorganisms to colonize the pond and potentially infect or outcompete the algal “crop.” In this study, we monitored the microbial community of an outdoor, open raceway pond inoculated with a high lipid-producing alkaliphilic alga, Chlorella vulgaris BA050. The strain C. vulgaris BA050 was previously isolated from Soap Lake, Washington, a system characterized by a high pH (~9.8). An outdoor raceway pond (200 L) was inoculated with C. vulgarismore » and monitored for 10 days and then the culture was transferred to a 2,000 L raceway pond and cultivated for an additional 6 days. Community DNA samples were collected over the 16-day period in conjunction with water chemistry analyses and cell counts. Universal primers for the SSU rRNA gene sequences for Eukarya, Bacteria, and Archaea were used for barcoded pyrosequence determination. The environmental parameters that most closely correlated with C. vulgaris abundance were pH and phosphate. Community analyses indicated that the pond system remained dominated by the Chlorella population (93% of eukaryotic sequences), but was also colonized by other microorganisms. Bacterial sequence diversity increased over time while archaeal sequence diversity declined over the same time period. Using SparCC co-occurrence network analysis, a positive correlation was observed between C. vulgaris and Pseudomonas sp. throughout the experiment, which may suggest a symbiotic relationship between the two organisms. The putative relationship coupled with high pH may have contributed to the success of C. vulgaris. As a result, the characterization of the microbial community dynamics of an alkaliphilic open pond system provides significant insight into open pond systems that could be used to control photoautotrophic biomass

  10. Genomics of Bacillus Species

    NASA Astrophysics Data System (ADS)

    Økstad, Ole Andreas; Kolstø, Anne-Brit

    Members of the genus Bacillus are rod-shaped spore-forming bacteria belonging to the Firmicutes, the low G+C gram-positive bacteria. The Bacillus genus was first described and classified by Ferdinand Cohn in Cohn (1872), and Bacillus subtilis was defined as the type species (Soule, 1932). Several Bacilli may be linked to opportunistic infections. However, pathogenicity among Bacillus spp. is mainly a feature of bacteria belonging to the Bacillus cereus group, including B. cereus, Bacillus anthracis, and Bacillus thuringiensis. Here we review the genomics of B. cereus group bacteria in relation to their roles as etiological agents of two food poisoning syndromes (emetic and diarrhoeal).

  11. Diversity and enumeration of halophilic and alkaliphilic bacteria in Spanish-style green table-olive fermentations.

    PubMed

    Lucena-Padrós, Helena; Ruiz-Barba, José Luis

    2016-02-01

    The presence and enumeration of halophilic and alkaliphilic bacteria in Spanish-style table-olive fermentations was studied. Twenty 10-tonne fermenters at two large manufacturing companies in Spain, previously studied through both culture dependent and independent (PCR-DGGE) methodologies, were selected. Virtually all this microbiota was isolated during the initial fermentation stage. A total of 203 isolates were obtained and identified based on 16S rRNA gene sequences. They belonged to 13 bacterial species, included in 11 genera. It was noticeable the abundance of halophilic and alkaliphilic lactic acid bacteria (HALAB). These HALAB belonged to the three genera of this group: Alkalibacterium, Marinilactibacillus and Halolactibacillus. Ten bacterial species were isolated for the first time from table olive fermentations, including the genera Amphibacillus, Natronobacillus, Catenococcus and Streptohalobacillus. The isolates were genotyped through RAPD and clustered in a dendrogram where 65 distinct strains were identified. Biodiversity indexes found statistically significant differences between both patios regarding genotype richness, diversity and dominance. However, Jaccard similarity index suggested that the halophilic/alkaliphilic microbiota in both patios was more similar than the overall microbiota at the initial fermentation stage. Thus, up to 7 genotypes of 6 different species were shared, suggesting adaptation of some strains to this fermentation stage. Morisita-Horn similarity index indicated a high level of codominance of the same species in both patios. Halophilic and alkaliphilic bacteria, especially HALAB, appeared to be part of the characteristic microbiota at the initial stage of this table-olive fermentation, and they could contribute to the conditioning of the fermenting brines in readiness for growth of common lactic acid bacteria.

  12. Draft Genome Sequence of Bacillus simplex DSM 1321 for Setting Up Phylogenomics in Genomic Taxonomy of the Bacillus-Like Bacteria

    PubMed Central

    Liu, Guo-hong; Wang, Jie-ping; Che, Jian-mei; Chen, Qian-qian; Chen, Zheng

    2016-01-01

    Bacillus simplex DSM 1321 is a Gram-positive, spore-forming, and aerobic bacterium. Here, we report the draft genome sequence of B. simplex DSM 1321, with 6,494,937 bp, which will provide useful information for setting up phylogenomics in genomic taxonomy of the Bacillus-like bacteria as well as for the functional gene mining and application of B. simplex DSM 1321. PMID:27340061

  13. Bacillus arsenicoselenatis, sp. nov., and Bacillus selenitireducens, sp. nov.: Two haloalkaliphiles from Mono Lake, California that respire oxyanions of selenium and arsenic

    USGS Publications Warehouse

    Switzer, Blum J.; Burns, Bindi A.; Buzzelli, J.; Stolz, J.F.; Oremland, R.S.

    1998-01-01

    Two gram-positive anaerobic bacteria (strains E1H and MLS10) were isolated from the anoxic muds of Mono Lake, California, an alkaline, hypersaline, arsenic-rich water body. Both grew by dissimilatory reduction of As(V) to As(III) with the concomitant oxidation of lactate to acetate plus CO2. Bacillus arsenicoselenatis (strain E1H) is a spore-forming rod that also grew by dissimilatory reduction of Se(VI) to Se(IV). Bacillus selenitireducens (strain MLS 10) is a short, non-spore-forming rod that grew by dissimilatory reduction of Se(IV) to Se(0). When the two isolates were cocultured, a complete reduction of Se(VI) to Se(0) was achieved. Both isolates are alkaliphiles and had optimal specific growth rates in the pH range of 8.5-10. Strain E1H had a salinity optimum at 60 g 1-1 NaCl, while strain MLS10 had optimal growth at lower salinities (24-60 g 1-1 NaCl). Both strains have limited abilities to grow with electron donors and acceptors other than those given above. Strain MLS10 demonstrated weak growth as a microaerophile and was also capable of fermentative growth on glucose, while strain E1H is a strict anaerobe. Comparative 16S rRNA gene sequence analysis placed the two isolates with other Bacillus spp. in the low G+C gram-positive group of bacteria.

  14. Extracellular Electron Transport-Mediated Fe(III) Reduction by a Community of Alkaliphilic Bacteria That Use Flavins as Electron Shuttles

    PubMed Central

    Fuller, Samuel J.; McMillan, Duncan G. G.; Renz, Marc B.; Schmidt, Martin

    2014-01-01

    The biochemical and molecular mechanisms used by alkaliphilic bacterial communities to reduce metals in the environment are currently unknown. We demonstrate that an alkaliphilic (pH > 9) consortium dominated by Tissierella, Clostridium, and Alkaliphilus spp. is capable of using iron (Fe3+) as a final electron acceptor under anaerobic conditions. Iron reduction is associated with the production of a freely diffusible species that, upon rudimentary purification and subsequent spectroscopic, high-performance liquid chromatography, and electrochemical analysis, has been identified as a flavin species displaying properties indistinguishable from those of riboflavin. Due to the link between iron reduction and the onset of flavin production, it is likely that riboflavin has an import role in extracellular metal reduction by this alkaliphilic community. PMID:24141133

  15. Bacillus species isolated from tungrymbai and bekang, naturally fermented soybean foods of India.

    PubMed

    Chettri, Rajen; Tamang, Jyoti Prakash

    2015-03-16

    Tungrymbai and bekang are naturally fermented soybean foods commonly consumed in Meghalaya and Mizoram states of India. A total of 39 samples of tungrymbai and 43 samples of bekang were collected from different villages and markets of Meghalaya and Mizoram, respectively and were analysed for microbial load. In both tungrymbai and bekang, the average population of Bacillus spp. was 8.2±0.1 log cfu/g. A total of 428 isolates of Bacillus were isolated from tungrymbai (211) and bekang (217) for detailed identification. On the basis of a combination of phenotypic and molecular characterisation using ARDRA, ITS-PCR and RAPD-PCR techniques, species of Bacillus isolated from tungrymbai were identified as Bacillus licheniformis (25.5%), Bacillus pumilus (19.5%) and Bacillus subtilis (55%), and species of Bacillus from bekang were Bacillus brevis (2%), Bacillus circulans (7.5%), Bacillus coagulans (6.5%), B. licheniformis (16.5%), B. pumilus (9.1%), Bacillus sphaericus (4.6%), B. subtilis (51.8%), and Lysinibacillus fusiformis (2%). The most dominant bacterium in both products was B. subtilis.

  16. Aminopeptidases of Bacillus subtilis.

    PubMed Central

    Desmond, E P; Starnes, W L; Behal, F J

    1975-01-01

    Three enzymes with L- and one enzyme with D-aminopeptidase (EC 3.4.11; alpha-aminoacyl peptide hydrolase) activity have been separated from each other and partially purified from Bacillus subtilis 168 W.T., distinguished with respect to their molecular weights and catalytic properties, and studied in relation to the physiology of this bacterium. One L-aminopeptidase, designated aminopeptidase I, has a molecular weight of 210,000 +/- 20,000, is produced early in growth, and hydrolyzes L-alanyl-beta-naphthylamide most rapidly. Another, designated aminopeptidase II, molecular weight 67,000 +/- 10,000, is also produced early in growth and hydrolyzes L-lysyl-beta-naphthylamide most rapidly. A third, aminopeptidase III, molecular weight 228,000 +/- 20,000, is produced predominantly in early stationary phase and most efficiently utilizes L-alpha-aspartyl-beta-naphthylamide as substrate. The synthesis of aminopeptidase III in early stationary phase suggests that selective catabolism of peptides occurs at this time, perhaps related to the cessation of growth or the onset of early sporulation-associated events. A D-aminopeptidase which hydrolyzes the carboxyl-blocked dipeptide D-alanyl-D-alanyl-beta-naphthylamide (as well as D-alanyl-beta-naphthylamide and D-alanyl-D-alanyl-D-alanine) has also been identified, separated from aminopeptidase II, and purified 170-fold. D-Aminopeptidase, molecular weight 220,000 +/- 20,000, is localized predominantly in the cell wall and periplasm of the organism. This evidence and the variation of the activity during the growth cycle suggest an important function in cell wall or peptide antibiotic metabolism. PMID:240808

  17. Characterization of unusual alkaliphilic gram-positive bacteria isolated from degraded brown alga thalluses.

    PubMed

    Ivanova, E P; Wright, J P; Lysenko, A M; Zhukova, N V; Alexeeva, Y V; Buljan, V; Kalinovskaya, N I; Nicolau, D V; Christen, R; Mikhailov, V V

    2006-01-01

    Two orange-pigmented Gram-positive, aerobic bacteria were isolated from enrichment culture during degradation of brown alga Fucus evanescens thalluses. In this work, atomic force microscopy (AFM) has been used to study the cell morphology. The non-contact mode imaging revealed unusual irregular coccoid shape of cells, possessing a single flagellum. Bacteria produced carotenoid pigments, were chemo-organotrophic, alkaliphilic and halo-tolerant growing well on nutrient media containing up to 15% NaCl. Growth temperature ranged from 5 to 45 degrees C. The DNA base compositions were 48 mol% G + C and the level of DNA similarity of two strains was conspecific (98%). A comparative phylogenetic analysis of 16S rRNA gene sequences revealed that the strain KMM 3738 tightly clustered with recently described Planococcus maritimus (99.9% 16S rRNA gene sequence similarity). DNA-DNA hybridisation experiments revealed that DNA from the KMM 3738 showed 12-15% and 16-35% of genetic relatedness with the DNA of type strains of the genera Planomicrobium and Planococcus, respectively, and 87% with DNA from Planococcus maritimus, indicating that new isolates belong to the later species. PMID:17100323

  18. Isolation and characterization of a moderately thermophilic anaerobic alkaliphile, Clostridium paradoxum sp. nov.

    SciTech Connect

    Youhong Li; Wiegel, J.; Mandelco, L.

    1993-07-01

    Alkaliphilic, moderately thermophilic anaerobic bacteria able to grow above pH 10.5 and 55{degrees}C were isolated from various sewage plants in the United States. The strains were motile with two to six peritrichous flagella and formed round to slightly oval terminal spores in terminally distended and slightly enlarged cells. Sporulated cells remained motile. The pH range for growth was between 7.0 and 11.1, with an optimum of around 10.1. At pH 10.1 the temperature range for growth was between 30 and 63{degrees}C, with an optimum of 56{degrees}C. The shortest observed doubling time (glucose) was around 16 min at 56{degrees}C and pH 10.1. No dissimilatory sulfate reduction was detected. The organism utilized glucose, fructose, sucrose, maltose, and pyruvate but required yeast extract or tryptone for growth. Optimal NaCl concentrations for growth were between 50 and 200 mM. The guanine-plus-cytosine content was 30.0 {+-} 0.10 mol%. On the basis of unique properties and 16S rRNA analysis, the strains are placed in a new species, Clostridium paradoxum, referring to the unusual retainment of motility by sporulated cells. Strain JW-YL-7 (DSM 7308) is designated as the type strain.

  19. Exiguobacterium oxidotolerans sp. nov., a novel alkaliphile exhibiting high catalase activity.

    PubMed

    Yumoto, Isao; Hishinuma-Narisawa, Megumi; Hirota, Kikue; Shingyo, Tomohiro; Takebe, Fumihiko; Nodasaka, Yoshinobu; Matsuyama, Hidetoshi; Hara, Isao

    2004-11-01

    A novel alkaliphile was isolated from a drain of a fish processing plant. The isolate grew at a pH range of 7-10. Cells were Gram-positive, facultatively aerobic, motile rods with peritrichous flagella. Colonies were orange or yellow in colour. Catalase and oxidase reactions were positive. The isolate grew in 0-12 % NaCl but not above 15 % NaCl. Its cell extract exhibited 567 times higher catalase activity than an Escherichia coli cell extract. The major cellular fatty acids were iso-C(13 : 0), anteiso-C(13 : 0), iso-C(15 : 0), iso-C(16 : 0), iso-C(17 : 0), anteiso-C(17 : 0) and iso-C(17 : 1). Its DNA G+C content was 46.7 mol%. Phylogenetic analysis based on 16S rRNA gene sequencing and chemotaxonomic data indicated that strain T-2-2(T) is a member of the genus Exiguobacterium. DNA-DNA hybridization revealed a low relatedness of the isolate to several phylogenetic neighbours (less than 25 %). On the basis of phenotypic characteristics, phylogenetic data and DNA-DNA relatedness data, the isolate merits classification as a novel species, for which the name Exiguobacterium oxidotolerans sp. nov. is proposed. The type strain is T-2-2(T) (=JCM 12280(T)=NCIMB 13980(T)).

  20. Fermentative production of ethanol from syngas using novel moderately alkaliphilic strains of Alkalibaculum bacchi.

    PubMed

    Liu, Kan; Atiyeh, Hasan K; Tanner, Ralph S; Wilkins, Mark R; Huhnke, Raymond L

    2012-01-01

    Ethanol production from syngas using three moderately alkaliphilic strains of a novel genus and species Alkalibaculum bacchi CP11(T), CP13 and CP15 was investigated in 250 ml bottle fermentations containing 100ml of yeast extract medium at 37 °C and pH 8.0. Two commercial syngas mixtures (Syngas I: 20% CO, 15% CO(2), 5% H(2), 60% N(2)) and (Syngas II: 40% CO, 30% CO(2), 30% H(2)) were used. Syngas I and Syngas II represent gasified biomass and coal, respectively. The maximum ethanol concentration (1.7 g l(-1)) and yield from CO (76%) were obtained with strain CP15 and Syngas II after 360 h. CP15 produced over twofold more ethanol with Syngas I compared to strains CP11(T) and CP13. In addition, CP15 produced 18% and 71% more ethanol using Syngas II compared to strains CP11(T) and CP13, respectively. These results show that CP15 is the most promising for ethanol production because of its higher growth and ethanol production rates and yield compared to CP11(T) and CP13.

  1. Bacillus odysseyi sp. nov., a round-spore-forming bacillus isolated from the Mars Odyssey spacecraft

    NASA Technical Reports Server (NTRS)

    La Duc, Myron T.; Satomi, Masataka; Venkateswaran, Kasthuri

    2004-01-01

    A round-spore-forming Bacillus species that produces an exosporium was isolated from the surface of the Mars Odyssey spacecraft. This novel species has been characterized on the basis of phenotypic traits, 16S rDNA sequence analysis and DNA-DNA hybridization. According to the results of these analyses, this strain belongs to the genus Bacillus and is a Gram-positive, aerobic, rod-shaped, endospore-forming eubacterium. Ultrathin sections of the spores showed the presence of an exosporium, spore coat, cortex and core. 16S rDNA sequence similarities between this strain, Bacillus fusiformis and Bacillus silvestris were approximately 96% and DNA-DNA reassociation values with these two bacilli were 23 and 17%, respectively. Spores of the novel species were resistant to desiccation, H2O2 and UV and gamma radiation. Of all strains tested, the spores of this strain were the most consistently resistant and survived all of the challenges posed, i.e. exposure to conditions of desiccation (100% survival), H2O2 (26% survival), UV radiation (10% survival at 660 J m(-2)) and gamma radiation (0.4% survival). The name proposed for this novel bacterium is Bacillus odysseyi sp. nov.; the type strain is 34hs-1T (=ATCC PTA-4993T=NRRL B-30641T=NBRC 100172T).

  2. A Love Affair with Bacillus subtilis

    PubMed Central

    Losick, Richard

    2015-01-01

    My career in science was launched when I was an undergraduate at Princeton University and reinforced by graduate training at the Massachusetts Institute of Technology. However, it was only after I moved to Harvard University as a junior fellow that my affections were captured by a seemingly mundane soil bacterium. What Bacillus subtilis offered was endless fascinating biological problems (alternative sigma factors, sporulation, swarming, biofilm formation, stochastic cell fate switching) embedded in a uniquely powerful genetic system. Along the way, my career in science became inseparably interwoven with teaching and mentoring, which proved to be as rewarding as the thrill of discovery. PMID:25533458

  3. Osmotically regulated synthesis of the compatible solute ectoine in Bacillus pasteurii and related Bacillus spp.

    PubMed

    Kuhlmann, Anne U; Bremer, Erhard

    2002-02-01

    By using natural-abundance (13)C-nuclear magnetic resonance spectroscopy and high-performance liquid chromatography (HPLC) analysis we have investigated the types of compatible solutes that are synthesized de novo in a variety of Bacillus species under high-osmolality growth conditions. Five different patterns of compatible solute production were found among the 13 Bacillus species we studied. Bacillus subtilis, B. licheniformis, and B. megaterium produced proline; B. cereus, B. circulans, B. thuringiensis, Paenibacillus polymyxa, and Aneurinibacillus aneurinilyticus synthesized glutamate; B. alcalophilus, B. psychrophilus, and B. pasteurii synthesized ectoine; and Salibacillus (formerly Bacillus) salexigens produced both ectoine and hydroxyectoine, whereas Virgibacillus (formerly Bacillus) pantothenticus synthesized both ectoine and proline. Hence, the ability to produce the tetrahydropyrimidine ectoine under hyperosmotic growth conditions is widespread within the genus Bacillus and closely related taxa. To study ectoine biosynthesis within the group of Bacillus species in greater detail, we focused on B. pasteurii. We cloned and sequenced its ectoine biosynthetic genes (ectABC). The ectABC genes encode the diaminobutyric acid acetyltransferase (EctA), the diaminobutyric acid aminotransferase (EctB), and the ectoine synthase (EctC). Together these proteins constitute the ectoine biosynthetic pathway, and their heterologous expression in B. subtilis led to the production of ectoine. Northern blot analysis demonstrated that the ectABC genes are genetically organized as an operon whose expression is strongly enhanced when the osmolality of the growth medium is raised. Primer extension analysis allowed us to pinpoint the osmoregulated promoter of the B. pasteurii ectABC gene cluster. HPLC analysis of osmotically challenged B. pasteurii cells revealed that ectoine production within this bacterium is finely tuned and closely correlated with the osmolality of the growth

  4. Mosquitocidal properties of Bacillus species isolated from mangroves of Vellar estuary, Southeast coast of India.

    PubMed

    Balakrishnan, S; Indira, K; Srinivasan, M

    2015-09-01

    Samples collected from the mangroves of Vellar estuary yielded a mosquitocidal bacterium, whose secondary metabolites exhibited mosquito larvicidal and pupicidal activity. The bacterium was isolated using standard microbiological methods and identified using classical biochemical tests. The mosquitocidal bacterium was identified as Bacillus subtilis, Bacillus thuringiensis, Bacillus sphaericus and Bacillus cereus. Mosquitocidal metabolite(s) was separated from the culture supernatant of the bacterium and its efficacy was against the larval and pupal stages of two different species of mosquitoes and determined in terms of LC50 and LC90. Mosquito larvicidal activity in terms of LC50 against Anopheleus stephensi and Aedes aegypti was 4.374 and 7.406 μl/ml and its pupicidal activity was 4.928 and 9.865 μl/ml, respectively. The present study proved that the mosquitocidal properties of the Bacillus species isolated from mangroves of Vellar estuary was evaluated as target species of mosquito vectors. This is an ideal eco-friendly approach for the vector control programs.

  5. Pathogenicity of Bacillus thuringiensis variety kurstaki to Ixodes scapularis (Acari: Ixodidae)

    USGS Publications Warehouse

    Zhioua, E.; Heyer, K.; Browning, M.; Ginsberg, H.S.; LeBrun, R.A.

    1999-01-01

    Pathogenicity of the entomopathogenic bacterium Bacillus thuringiensis var. kurstaki de Barjac & Lemille was tested against the black-legged tick, Ixodes scapularis Say. Engorged larvae dipped in a solution of 108 spores per ml showed 96% mortality, 3 wk post-infection. The LC50 value for engorged larvae (concentration required to kill 50% of ticks) was 107 spores/ml. Bacillus thuringiensis shows considerable potential as a microbial control agent for the management of Ixodes scapularis.

  6. Surfactin A production and isoforms characterizations in strains of Bacillus mojavensis for control of a maize pathogen, Fusarium verticillioides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The endophytic bacterium, Bacillus mojavensis, RRC 101 controls fungal diseases in maize and other plants. The bacterium and its cultural extracts have been shown to be antagonistic to the pathogenic and mycotoxic fungus, Fusarium verticillioides. An antifungal cyclic lipopeptide produced by B. moj...

  7. Pseudomonas toyotomiensis sp. nov., a psychrotolerant facultative alkaliphile that utilizes hydrocarbons.

    PubMed

    Hirota, Kikue; Yamahira, Keiko; Nakajima, Kenji; Nodasaka, Yoshinobu; Okuyama, Hidetoshi; Yumoto, Isao

    2011-08-01

    A psychrotolerant, facultatively alkaliphilic strain, HT-3(T), was isolated from a sample of soil immersed in hot-spring water containing hydrocarbons in Toyotomi, Hokkaido, Japan. 16S rRNA gene sequence-based phylogeny suggested that strain HT-3(T) is a member of the genus Pseudomonas and belongs to the Pseudomonas oleovorans group. Cells of the isolate were Gram-negative, aerobic, straight rods, motile by a single polar flagellum. The strain grew at 4-42 °C, with optimum growth at 35 °C at pH 7, and at pH 6-10. It hydrolysed Tweens 20, 40, 60 and 80, but not casein, gelatin, starch or DNA. Its major isoprenoid quinone was ubiquinone-9 (Q-9) and the DNA G+C content was 65.1 mol%. The whole-cell fatty acid profile consisted mainly of C(16 : 0), C(16 : 1)ω9c and C(18 : 1)ω9c. Phylogenetic analyses based on gyrB, rpoB and rpoD sequences revealed that the isolate could be discriminated from Pseudomonas species that exhibited more than 97 % 16S rRNA gene sequence similarity and phylogenetic neighbours belonging to the P. oleovorans group including the closest relative of the isolate, Pseudomonas alcaliphila. DNA-DNA hybridization with P. alcaliphila AL15-21(T) revealed 51 ± 5 % relatedness. Owing to differences in phenotypic properties and phylogenetic analyses based on multilocus gene sequence analysis and DNA-DNA relatedness data, the isolate merits classification in a novel species, for which the name Pseudomonas toyotomiensis sp. nov. is proposed. The type strain is HT-3(T) ( = JCM 15604(T)  = NCIMB 14511(T)). PMID:20817837

  8. Phytoactinopolyspora alkaliphila sp. nov., an alkaliphilic actinomycete isolated from a saline-alkaline soil.

    PubMed

    Zhang, Yong-Guang; Lu, Xin-Hua; Ding, Yan-Bo; Zhou, Xing-Kui; Li, Li; Guo, Jian-Wei; Wang, Hong-Fei; Duan, Yan-Qing; Li, Wen-Jun

    2016-05-01

    An alkaliphilic, filamentous actinomycete, designated EGI 80629T, was isolated from a soil sample of Xinjiang, north-west China. Strain EGI 80629T grew at pH 6.0-11.0 (optimum pH 9.0-10.0) and in the presence of 0-13.0 % NaCl (optimum 3.0-5.0 %). The isolate formed fragmented substrate mycelia, and aerial hyphae with short spore chains with rod-like spores. Whole-cell hydrolysates of the isolate contained ll-diaminopimelic acid as the diagnostic diamino acid, and mannose and rhamnose as diagnostic sugars. The major fatty acids identified were iso-C15 : 0, iso-C16 : 0, anteiso-C15 : 0 and iso-C17 : 0. The predominant menaquinone was MK-9(H4), while the polar lipids were diphosphatidylglycerol, phosphatidylglycerol, two phosphatidylinositol mannosides, five unknown phospholipids, three unknown phosphoglycolipids, one unknown glycolipid, four unknown polar lipids and one unknown aminophospholipid. The G+C content of the genomic DNA was 67.3 mol%. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain EGI 80629T clustered with the genus Phytoactinopolyspora. The 16S rRNA gene sequence similarity between strain EGI 80629T and Phytoactinopolyspora endophytica EGI 60009T was 96.8 %. Based on morphological, chemotaxonomic and phylogenetic characteristics, strain EGI 80629T represents a novel species of the genus Phytoactinopolyspora, for which the name Phytoactinopolyspora alkaliphila sp. nov. is proposed. The type strain is EGI 80629T ( = CGMCC 4.7225T = KCTC 39701T). PMID:26920762

  9. Complete genome sequence of Bacillus cereus bacteriophage PBC1.

    PubMed

    Kong, Minsuk; Kim, Minsik; Ryu, Sangryeol

    2012-06-01

    Bacillus cereus is a ubiquitous, spore-forming bacterium associated with food poisoning cases. To develop an efficient biocontrol agent against B. cereus, we isolated lytic phage PBC1 and sequenced its genome. PBC1 showed a very low degree of homology to previously reported phages, implying that it is novel. Here we report the complete genome sequence of PBC1 and describe major findings from our analysis.

  10. Visualizing Bacillus subtilis During Vegetative Growth and Spore Formation.

    PubMed

    Wang, Xindan; Montero Llopis, Paula

    2016-01-01

    Bacillus subtilis is the most commonly used Gram-positive bacterium to study cellular processes because of its genetic tractability. In addition, during nutrient limitation, B. subtilis undergoes the development process of spore formation, which is among the simplest examples of cellular differentiation. Many aspects of these processes have benefited from fluorescence microscopy. Here, we describe basic wide-field fluorescence microscopy techniques to visualize B. subtilis during vegetative growth, and the developmental process of sporulation. PMID:27283315

  11. Draft genome sequence of Bacillus firmus DS1.

    PubMed

    Geng, Ce; Tang, Zhichao; Peng, Donghai; Shao, Zongze; Zhu, Lei; Zheng, Jinshui; Wang, Huan; Ruan, Lifang; Sun, Ming

    2014-05-10

    Bacillus firmus DS1, an aerobic, Gram-positive, spore-forming bacterium isolated from marine sediment of the China South Sea coast. Here, the first draft genome sequence of B. firmus DS1 that may help us to clarify the evolutionary status of B. firmus, also will give the opportunity to provide the genetic basis for heavy-metal ion absorption in environmental bioremediation, the enzymes in industrial production and more other active ingredients application.

  12. Bacillus hemicentroti sp. nov., a moderate halophile isolated from a sea urchin.

    PubMed

    Chen, Yi-Guang; Zhang, Yu-Qin; He, Jian-Wu; Klenk, Hans-Peter; Xiao, Jian-Qing; Zhu, Hong-Yi; Tang, Shu-Kun; Li, Wen-Jun

    2011-12-01

    A novel Gram-staining-positive, moderately halophilic, facultatively alkaliphilic, non-motile, catalase-positive, oxidase-negative, endospore-forming, facultatively anaerobic rod, designated JSM 076093(T), was isolated from a sea urchin (Hemicentrotus pulcherrimus) collected from Naozhou Island in the South China Sea. Growth occurred with 0.5-25% (w/v) NaCl (optimum 5-8%) and at pH 6.0-10.5 (optimum pH 8.0) and 5-40 °C (optimum 30-35 °C). meso-Diaminopimelic acid was present in the cell-wall peptidoglycan. The predominant respiratory quinone was menaquinone 7 and the polar lipids consisted of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol and one unidentified phospholipid. The major cellular fatty acids (>10% of the total) were anteiso-C(15:0), anteiso-C(17:0), iso-C(16:0) and iso-C(14:0). The genomic DNA G+C content was 38.8 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain JSM 076093(T) belonged to the genus Bacillus and was related most closely to Bacillus hwajinpoensis SW-72(T) (99.1% 16S rRNA gene sequence similarity) and Bacillus algicola KMM 3737(T) (97.3%). The combination of results from the phylogenetic analysis, DNA-DNA hybridization and phenotypic and chemotaxonomic characterization supported the conclusion that strain JSM 076093(T) represents a novel species of the genus Bacillus, for which the name Bacillus hemicentroti sp. nov. is proposed, with JSM 076093(T) (=DSM 23007(T)=KCTC 13710(T)) as the type strain.

  13. Computational discovery of small open reading frames in Bacillus lehensis

    NASA Astrophysics Data System (ADS)

    Zainuddin, Nurhafizhoh; Illias, Rosli Md.; Mahadi, Nor Muhammad; Firdaus-Raih, Mohd

    2015-09-01

    Bacillus lehensis is a Gram-positive and endospore-forming alkalitolerant bacterial strain. In recent years there has been increasing interest in alkaliphilic bacteria and their ability to grow under extreme conditions as well as their ability to serve various important functions in industrial biology especially enzyme production. Small open reading frames (sORFs) have emerged as important regulators in various biological roles such as tumor progression, hormone signalling and stress response. Over the past decade, many biocomputational tools have been developed to predict genes in bacterial genomes. In this study, three softwares were used to predict sORF (≤ 80 aa) in B. lehensis by using whole genome sequence. We used comparative analysis to identify the sORFs in B. lehensis that conserved across all other bacterial genomes. We extended the analysis by doing the homology analysis against protein database. This study established the sORFs in B. lehensis that are conserved across bacteria which might has important biological function which still remain elusive in biological field.

  14. Data on optimized production and characterization of alkaline proteases from newly isolated alkaliphiles from Lonar soda lake, India.

    PubMed

    Rathod, Mukundraj Govindrao; Pathak, Anupama Prabhakarrao

    2016-09-01

    Alkaline proteases are one of the industrially important enzymes and generally preferred from alkaliphilic sources. Here we have provided the data on optimized production and characterization of alkaline proteases from five newly isolated and identified alkaliphiles from Lonar soda lake, India. The data provided for optimization of physicochemical parameters for maximum alkaline proteases production is based on OVAT (one variable at a time) approach. Alkaline protease production (U/mL) recorded by using different agro industrial residues is included in the given data. Further readers can find more information in our previously published research article where we have already described about the methods used and comparative analysis of the data recorded regarding optimized production, characterization and application of alkaline proteases isolated from Lonar soda lake isolates (http://dx.doi.org/10.1016/j.bcab.2016.06.002) [1]. The data provided here by us is useful to other researchers for setting up various suitable statistical models to perform optimization studies other than OVAT approach. PMID:27508233

  15. Data on optimized production and characterization of alkaline proteases from newly isolated alkaliphiles from Lonar soda lake, India.

    PubMed

    Rathod, Mukundraj Govindrao; Pathak, Anupama Prabhakarrao

    2016-09-01

    Alkaline proteases are one of the industrially important enzymes and generally preferred from alkaliphilic sources. Here we have provided the data on optimized production and characterization of alkaline proteases from five newly isolated and identified alkaliphiles from Lonar soda lake, India. The data provided for optimization of physicochemical parameters for maximum alkaline proteases production is based on OVAT (one variable at a time) approach. Alkaline protease production (U/mL) recorded by using different agro industrial residues is included in the given data. Further readers can find more information in our previously published research article where we have already described about the methods used and comparative analysis of the data recorded regarding optimized production, characterization and application of alkaline proteases isolated from Lonar soda lake isolates (http://dx.doi.org/10.1016/j.bcab.2016.06.002) [1]. The data provided here by us is useful to other researchers for setting up various suitable statistical models to perform optimization studies other than OVAT approach.

  16. Draft genome sequence of Enterobacter cloacae subsp. cloacae strain 08XA1, a fecal bacterium of giant pandas.

    PubMed

    Yan, Yue; Zhao, Chuan-Wu; Zhang, Yi-Zheng; Zhang, Zhi-He; Pan, Guang-Lin; Liu, Wen-Wang; Ma, Qing-Yi; Hou, Rong; Tan, Xue-Mei

    2012-12-01

    Enterobacter cloacae, a common pathogenic bacterium, is a Gram-negative bacillus. We analyzed the draft genome of Enterobacter cloacae subsp. cloacae strain 08XA1 from the feces of a giant panda in China. Genes encoding a β-lactamase and efflux pumps, as well as other factors, have been found in the genome. PMID:23209197

  17. Draft genome sequence of Enterobacter cloacae subsp. cloacae strain 08XA1, a fecal bacterium of giant pandas.

    PubMed

    Yan, Yue; Zhao, Chuan-Wu; Zhang, Yi-Zheng; Zhang, Zhi-He; Pan, Guang-Lin; Liu, Wen-Wang; Ma, Qing-Yi; Hou, Rong; Tan, Xue-Mei

    2012-12-01

    Enterobacter cloacae, a common pathogenic bacterium, is a Gram-negative bacillus. We analyzed the draft genome of Enterobacter cloacae subsp. cloacae strain 08XA1 from the feces of a giant panda in China. Genes encoding a β-lactamase and efflux pumps, as well as other factors, have been found in the genome.

  18. Cyt1A from Bacillus thuringiensis Synergizes Activity of Bacillus sphaericus against Aedes aegypti (Diptera: Culicidae)

    PubMed Central

    Wirth, Margaret C.; Federici, Brian A.; Walton, William E.

    2000-01-01

    Bacillus sphaericus is a mosquitocidal bacterium recently developed as a commercial larvicide that is used worldwide to control pestiferous and vector mosquitoes. Whereas B. sphaericus is highly active against larvae of Culex and Anopheles mosquitoes, it is virtually nontoxic to Aedes aegypti, an important vector species. In the present study, we evaluated the capacity of the cytolytic protein Cyt1A from Bacillus thuringiensis subsp. israelensis to enhance the toxicity of B. sphaericus toward A. aegypti. Various combinations of these two materials were evaluated, and all were highly toxic. A ratio of 10:1 of B. sphaericus to Cyt1A was 3,600-fold more toxic to A. aegypti than B. sphaericus alone. Statistical analysis showed this high activity was due to synergism between the Cyt1A toxin and B. sphaericus. These results suggest that Cyt1A could be useful in expanding the host range of B. sphaericus. PMID:10698776

  19. Bacillus atrophaeus: main characteristics and biotechnological applications - a review.

    PubMed

    Sella, Sandra R B R; Vandenberghe, Luciana P S; Soccol, Carlos Ricardo

    2015-01-01

    The genus Bacillus includes a great diversity of industrially important strains, including Bacillus atrophaeus (formerly Bacillus subtilis var. niger). This spore-forming bacterium has been established as industrial bacteria in the production of biological indicators for sterilization, in studies of biodefense and astrobiology methods as well as disinfection agents, in treatment evaluation and as potential adjuvants or vehicles for vaccines, among other applications. This review covers an overview of the fundamental aspects of the B. atrophaeus that have been studied to date. Although the emphasis is placed on recent findings, basic information's such as multicellularity and growth characteristics, spore structure and lifecycle are described. The wide biotechnological application of B. atrophaeus spores, including vegetative cells, is briefly demonstrated, highlighting their use as a biological indicator of sterilization or disinfection.

  20. Molecular markers to determine ecological fate of Bacillus thuringiensis subsp. kurstaki

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacillus thuringiensis (“Bt”) is a ubiquitous soil bacterium with entomopathogenic properties. One strain, Bt subsp. kurstaki (“Btk”), is highly toxic to lepidopteran larvae and used in many commercial products for biological pest control. We designed a set of DNA markers that successfully identifi...

  1. Genome Sequence of a Chromium-Reducing Strain, Bacillus cereus S612.

    PubMed

    Wang, Dongping; Boukhalfa, Hakim; Ware, Doug S; Reimus, Paul W; Daligault, Hajnalka E; Gleasner, Cheryl D; Johnson, Shannon L; Li, Po-E

    2015-01-01

    We report here the genome sequence of an effective chromium-reducing bacterium, Bacillus cereus strain S612. The size of the draft genome sequence is approximately 5.4 Mb, with a G+C content of 35%, and it is predicted to contain 5,450 protein-coding genes.

  2. Draft Genome Sequence of the Shellfish Larval Probiotic Bacillus pumilus RI06-95.

    PubMed

    Hamblin, Meagan; Spinard, Edward; Gomez-Chiarri, Marta; Nelson, David R; Rowley, David C

    2015-09-03

    Bacillus pumilus RI06-95 is a marine bacterium isolated in Narragansett, Rhode Island, which has shown probiotic activity against marine pathogens in larval shellfish. We report the genome of B. pumilus RI06-95, which provides insight into the microbe's probiotic ability and may be used in future studies of the probiotic mechanism.

  3. Genome Sequence of a Chromium-Reducing Strain, Bacillus cereus S612

    DOE PAGES

    Wang, Dongping; Boukhalfa, Hakim; Ware, Doug S.; Reimus, Paul W.; Daligault, Hajnalka E.; Gleasner, Cheryl D.; Johnson, Shannon L.; Li, Po-E

    2015-12-10

    We report here the genome sequence of an effective chromium-reducing bacterium,Bacillus cereusstrain S612. We found that the size of the draft genome sequence is approximately 5.4 Mb, with a G+C content of 35%, and it is predicted to contain 5,450 protein-coding genes.

  4. Draft Genome Sequence of Bacillus licheniformis S127, Isolated from a Sheep Udder Clinical Infection.

    PubMed

    Ostrov, Ievgenia; Sela, Noa; Freed, Mor; Khateb, Nihaya; Kott-Gutkowski, Miriam; Inbar, Dana; Shemesh, Moshe

    2015-10-01

    Bacillus licheniformis is a Gram-positive biofilm- and endospore-forming bacterium, which contaminates dairy products and can be pathogenic to humans. The draft genome sequencing for B. licheniformis strain S127 is reported here, providing genetic data relevant to the ability of this strain to sustain its survival in the dairy industry.

  5. Draft Genome Sequence of Bacillus licheniformis S127, Isolated from a Sheep Udder Clinical Infection

    PubMed Central

    Ostrov, Ievgenia; Sela, Noa; Freed, Mor; Khateb, Nihaya; Kott-Gutkowski, Miriam; Inbar, Dana

    2015-01-01

    Bacillus licheniformis is a Gram-positive biofilm- and endospore-forming bacterium, which contaminates dairy products and can be pathogenic to humans. The draft genome sequencing for B. licheniformis strain S127 is reported here, providing genetic data relevant to the ability of this strain to sustain its survival in the dairy industry. PMID:26430024

  6. Complete Genome Sequence of Bacillus subtilis Strain CU1050, Which Is Sensitive to Phage SPβ

    PubMed Central

    2016-01-01

    The Gram-positive bacterium Bacillus subtilis is used as a model organism to study cellular and molecular processes. Here, we announce the complete genomic sequence of B. subtilis strain CU1050, derived from B. subtilis strain 168. CU1050 has historically been used to study suppressor mutations and phage biology, especially the lysogenic phage SPβ. PMID:27056236

  7. A Novel Tenebrio molitor Cadherin is a Functional Receptor for Bacillus thuringiensis Toxin Cry3Aa

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cry toxins produced by the bacterium Bacillus thuringiensis (Bt) are effective biological insecticides. Cadherin-like proteins have been reported as functional Cry1A toxin receptors in Lepidoptera. We present the first report demonstrating a functional interaction between the coleopteran-specific ...

  8. Genome Sequence of a Chromium-Reducing Strain, Bacillus cereus S612

    PubMed Central

    Boukhalfa, Hakim; Ware, Doug S.; Reimus, Paul W.; Daligault, Hajnalka E.; Gleasner, Cheryl D.; Johnson, Shannon L.; Li, Po-E

    2015-01-01

    We report here the genome sequence of an effective chromium-reducing bacterium, Bacillus cereus strain S612. The size of the draft genome sequence is approximately 5.4 Mb, with a G+C content of 35%, and it is predicted to contain 5,450 protein-coding genes. PMID:26659672

  9. [Photosynthetic activity and components of the electron transport chain in the aerobic bacteriochlorophyll A-containing bacterium Roseinatronobacter thiooxidans].

    PubMed

    Stadnichuk, I N; Ianiushin, M F; Boĭchenko, V A; Lukashev, E P; Boldareva, E N; Solov'ev, A A; Gorlenko, V M

    2009-01-01

    Bioenergetics of the aerobic bacteriochlorophyll a-containing (BCl a) bacterium (ABC bacterium) Roseinatronobacter thiooxidans is a combination of photosynthesis, oxygen respiration, and oxidation of sulfur compounds under alkaliphilic conditions. The photosynthetic activity of Rna. thiooxidans cells was established by the photoinhibition of cell respiration and reversible photobleaching discoloration of the BCl a of reaction centers (RC), connected by the chain of electron transfer with cytochrome c551 oxidation. The species under study, like many purple bacteria and some of the known ABC bacteria, possesses a light-harvesting pigment-protein (LHI) complex with the average number of 30 molecules of antenna BCl a per one photosynthetic RC. Under microaerobic growth conditions, the cells contained bc1 complex and two terminal oxidases: cbb3-cytochrome oxidase and the alternative cytochrome oxidase of the a3 type. Besides, Rna. thiooxidans was shown to have several different soluble low- and high-potential cytochromes c, probably associated with the ability of utilizing sulfur compounds as additional electron donors.

  10. Bacillus cereus Biofilms-Same, Only Different.

    PubMed

    Majed, Racha; Faille, Christine; Kallassy, Mireille; Gohar, Michel

    2016-01-01

    Bacillus cereus displays a high diversity of lifestyles and ecological niches and include beneficial as well as pathogenic strains. These strains are widespread in the environment, are found on inert as well as on living surfaces and contaminate persistently the production lines of the food industry. Biofilms are suspected to play a key role in this ubiquitous distribution and in this persistency. Indeed, B. cereus produces a variety of biofilms which differ in their architecture and mechanism of formation, possibly reflecting an adaptation to various environments. Depending on the strain, B. cereus has the ability to grow as immersed or floating biofilms, and to secrete within the biofilm a vast array of metabolites, surfactants, bacteriocins, enzymes, and toxins, all compounds susceptible to act on the biofilm itself and/or on its environment. Within the biofilm, B. cereus exists in different physiological states and is able to generate highly resistant and adhesive spores, which themselves will increase the resistance of the bacterium to antimicrobials or to cleaning procedures. Current researches show that, despite similarities with the regulation processes and effector molecules involved in the initiation and maturation of the extensively studied Bacillus subtilis biofilm, important differences exists between the two species. The present review summarizes the up to date knowledge on biofilms produced by B. cereus and by two closely related pathogens, Bacillus thuringiensis and Bacillus anthracis. Economic issues caused by B. cereus biofilms and management strategies implemented to control these biofilms are included in this review, which also discuss the ecological and functional roles of biofilms in the lifecycle of these bacterial species and explore future developments in this important research area. PMID:27458448

  11. Bacillus cereus Biofilms—Same, Only Different

    PubMed Central

    Majed, Racha; Faille, Christine; Kallassy, Mireille; Gohar, Michel

    2016-01-01

    Bacillus cereus displays a high diversity of lifestyles and ecological niches and include beneficial as well as pathogenic strains. These strains are widespread in the environment, are found on inert as well as on living surfaces and contaminate persistently the production lines of the food industry. Biofilms are suspected to play a key role in this ubiquitous distribution and in this persistency. Indeed, B. cereus produces a variety of biofilms which differ in their architecture and mechanism of formation, possibly reflecting an adaptation to various environments. Depending on the strain, B. cereus has the ability to grow as immersed or floating biofilms, and to secrete within the biofilm a vast array of metabolites, surfactants, bacteriocins, enzymes, and toxins, all compounds susceptible to act on the biofilm itself and/or on its environment. Within the biofilm, B. cereus exists in different physiological states and is able to generate highly resistant and adhesive spores, which themselves will increase the resistance of the bacterium to antimicrobials or to cleaning procedures. Current researches show that, despite similarities with the regulation processes and effector molecules involved in the initiation and maturation of the extensively studied Bacillus subtilis biofilm, important differences exists between the two species. The present review summarizes the up to date knowledge on biofilms produced by B. cereus and by two closely related pathogens, Bacillus thuringiensis and Bacillus anthracis. Economic issues caused by B. cereus biofilms and management strategies implemented to control these biofilms are included in this review, which also discuss the ecological and functional roles of biofilms in the lifecycle of these bacterial species and explore future developments in this important research area. PMID:27458448

  12. Draft genome sequencing of Bacillus sp. strain M2-6, isolated from the roots of Korean ginseng, Panax ginseng C. A. Meyer, after high-hydrostatic-pressure processing.

    PubMed

    Kim, Chong-Tai; Kim, Bong-Soo; Kim, Min-Ji; Park, Bang Heon; Kwon, Sujin; Maeng, Hack Young; Kwak, Jangyul; Chun, Jongsik; Cho, Yong-Jin; Kim, Namsoo; Kim, Chul-Jin; Maeng, Jin-Soo

    2012-12-01

    A bacterium, designated M2-6, was isolated from Korean ginseng, Panax ginseng C. A. Meyer, roots after high-hydrostatic-pressure processing. On the basis of 16 rRNA gene phylogeny, the isolate was presumptively identified as a Bacillus sp. Here we report the draft genome sequence of Bacillus sp. strain M2-6 (= KACC 16563).

  13. Bacillus nakamurai sp. nov., a black-pigment-producing strain.

    PubMed

    Dunlap, Christopher A; Saunders, Lauren P; Schisler, David A; Leathers, Timothy D; Naeem, Naveed; Cohan, Frederick M; Rooney, Alejandro P

    2016-08-01

    Two isolates of a Gram-stain-positive, strictly aerobic, motile, rod-shaped, endospore-forming bacterium were identified during a survey of the Bacillus diversity of the Agriculture Research Service Culture Collection. These strains were originally isolated from soil and have a phenotype of producing a dark pigment on tryptic soy agar. Phylogenetic analysis of the 16S rRNA gene indicated that these strains were related most closely to Bacillus subtilis subsp. inaquosorum (99.7 % similarity) and Bacillus axarquiensis (99.7 %). In phenotypic characterization, the novel strains were found to grow between 17 and 50 °C and can tolerate up to 9 % (w/v) NaCl. Furthermore, the strains grew in media of pH 5.5-10 (optimal growth at pH 7.0-8.0). The predominant cellular fatty acids were anteiso-C15 : 0 (34.8 %) and iso-C15 : 0 (21.9 %). The cell-wall peptidoglycan contained meso-diaminopimelic acid. A draft genome of both strains was completed. The DNA G+C content was 43.8 mol%. A phylogenomic analysis on the core genome of these two new strains and all members of the Bacillus subtilis group revealed these two strains formed a distinct monophyletic clade with the nearest neighbour Bacillus amyloliquefaciens. DNA-DNA relatedness studies using in silico DNA-DNA hybridizations showed the two strains were conspecific (93.8 %), while values with all other species (<31.5 %) were well below the species threshold of 70 %. Based on the consensus of phylogenetic and phenotypic analyses, these strains are considered to represent a novel species within the genus Bacillus, for which the name Bacillus nakamurai sp. nov. is proposed, with type strain NRRL B-41091T (=CCUG 68786T). PMID:27150918

  14. Single Bacterium Detection Using Sers

    NASA Astrophysics Data System (ADS)

    Gonchukov, S. A.; Baikova, T. V.; Alushin, M. V.; Svistunova, T. S.; Minaeva, S. A.; Ionin, A. A.; Kudryashov, S. I.; Saraeva, I. N.; Zayarny, D. A.

    2016-02-01

    This work is devoted to the study of a single Staphylococcus aureus bacterium detection using surface-enhanced Raman spectroscopy (SERS) and resonant Raman spectroscopy (RS). It was shown that SERS allows increasing sensitivity of predominantly low frequency lines connected with the vibrations of Amide, Proteins and DNA. At the same time the lines of carotenoids inherent to this kind of bacterium are well-detected due to the resonance Raman scattering mechanism. The reproducibility and stability of Raman spectra strongly depend on the characteristics of nanostructured substrate, and molecular structure and size of the tested biological object.

  15. CORNEAL REACTIONS TO BACTERIUM GRANULOSIS AND OTHER MICROORGANISMS

    PubMed Central

    Olitsky, Peter K.; Knutti, Ralph E.; Tyler, Joseph R.

    1932-01-01

    The conclusions which may be drawn from the results of the experiments here presented are: 1. The cornea of the rabbit is highly sensitive to the action of various injected bacteria. The lesions vary from insignificant, transient changes to severe, destructive panophthalmitis, with fine gradations from the mildest to the violent form of inflammation. Moreover, animals that receive the same organisms show like changes. 2. The varying degree of inflammatory reaction is related to the pathogenicity of the special culture employed; as, for example, is shown by the reactions to Type I pneumococci and to Bacterium granulosis. It is evident that when a microorganism having a certain degree of virulence is used, a lesion of localized vasculonebulous keratitis resembling pannus tenuis or vasculosus of human trachoma can be induced. Thus Bacterium granulosis, Bacillus xerosis, Hemophilus influenzae, Pneumococcus Type II, Streptococcus viridans, and gonococcus can cause the pannus-like corneal changes in the rabbit. Of these organisms, however, only Bacterium granulosis induces early, uncomplicated and enduring keratitic lesions; the others cause first, diffuse keratitis with suppurative lesions; then, as a residual effect, transient, localized, vasculonebulous changes in the cornea. These changes, in contradistinction to the granulosis lesions, are, therefore delayed, complicated, and transient. When, on the other hand, the invasiveness and infecting power of the organisms are low, as is the case with the filtrable, Gram-negative bacillus and the small, Gram-negative bacilli ultimately derived from cases of folliculosis, no marked effect is produced by their intracorneal inoculation. If the pathogenicity of bacteria is high (as shown by Pneumococcus Type I, hemolytic streptococcus, and the remaining bacteria), intracorneal inoculation of the microorganisms leads to serious suppurative or destructive changes. 3. The results of experiments with monkeys indicate that while

  16. Bacillus thuringiensis and Its Pesticidal Crystal Proteins

    PubMed Central

    Schnepf, E.; Crickmore, N.; Van Rie, J.; Lereclus, D.; Baum, J.; Feitelson, J.; Zeigler, D. R.; Dean, D. H.

    1998-01-01

    During the past decade the pesticidal bacterium Bacillus thuringiensis has been the subject of intensive research. These efforts have yielded considerable data about the complex relationships between the structure, mechanism of action, and genetics of the organism’s pesticidal crystal proteins, and a coherent picture of these relationships is beginning to emerge. Other studies have focused on the ecological role of the B. thuringiensis crystal proteins, their performance in agricultural and other natural settings, and the evolution of resistance mechanisms in target pests. Armed with this knowledge base and with the tools of modern biotechnology, researchers are now reporting promising results in engineering more-useful toxins and formulations, in creating transgenic plants that express pesticidal activity, and in constructing integrated management strategies to insure that these products are utilized with maximum efficiency and benefit. PMID:9729609

  17. General and regulatory proteolysis in Bacillus subtilis.

    PubMed

    Molière, Noël; Turgay, Kürşad

    2013-01-01

    The soil-dwelling bacterium Bacillus subtilis is widely used as a model organism to study the Gram-positive branch of Bacteria. A variety of different developmental pathways, such as endospore formation, genetic competence, motility, swarming and biofilm formation, have been studied in this organism. These processes are intricately connected and regulated by networks containing e.g. alternative sigma factors, two-component systems and other regulators. Importantly, in some of these regulatory networks the activity of important regulatory factors is controlled by proteases. Furthermore, together with chaperones, the same proteases constitute the cellular protein quality control (PQC) network, which plays a crucial role in protein homeostasis and stress tolerance of this organism. In this review, we will present the current knowledge on regulatory and general proteolysis in B. subtilis and discuss its involvement in developmental pathways and cellular stress management.

  18. Characterisation of an unusual bacterium isolated from genital ulcers.

    PubMed

    Ursi, J P; van Dyck, E; Ballard, R C; Jacob, W; Piot, P; Meheus, A Z

    1982-02-01

    The preliminary characterisation of an unusual gram-negative bacillus isolated from genital ulcers in Swaziland is reported. Like Haemophilus ducreyi, it is an oxidase positive, nitrate-reductase-positive gram-negative rod that forms streptobacillary chains in some circumstances; it was therefore called the "ducreyi-like bacterium" (DLB). Distinguishing features of DLB are production of alpha-haemolysis on horse-blood agar, stimulation of growth by a microaerophilic atmosphere and by a factor produced by Staphylococcus aureus, a strongly positive porphyrin test, and a remarkable ability to undergo autolysis. DLB had a guanine + cytosine value of c. 50 mole% but it cannot be classified, even at the genus level, until more taxonomic data are obtained.

  19. Bacillus cereus, a Volatile Human Pathogen

    PubMed Central

    Bottone, Edward J.

    2010-01-01

    Summary: Bacillus cereus is a Gram-positive aerobic or facultatively anaerobic, motile, spore-forming, rod-shaped bacterium that is widely distributed environmentally. While B. cereus is associated mainly with food poisoning, it is being increasingly reported to be a cause of serious and potentially fatal non-gastrointestinal-tract infections. The pathogenicity of B. cereus, whether intestinal or nonintestinal, is intimately associated with the production of tissue-destructive exoenzymes. Among these secreted toxins are four hemolysins, three distinct phospholipases, an emesis-inducing toxin, and proteases. The major hurdle in evaluating B. cereus when isolated from a clinical specimen is overcoming its stigma as an insignificant contaminant. Outside its notoriety in association with food poisoning and severe eye infections, this bacterium has been incriminated in a multitude of other clinical conditions such as anthrax-like progressive pneumonia, fulminant sepsis, and devastating central nervous system infections, particularly in immunosuppressed individuals, intravenous drug abusers, and neonates. Its role in nosocomial acquired bacteremia and wound infections in postsurgical patients has also been well defined, especially when intravascular devices such as catheters are inserted. Primary cutaneous infections mimicking clostridial gas gangrene induced subsequent to trauma have also been well documented. B. cereus produces a potent β-lactamase conferring marked resistance to β-lactam antibiotics. Antimicrobials noted to be effective in the empirical management of a B. cereus infection while awaiting antimicrobial susceptibility results for the isolate include ciprofloxacin and vancomycin. PMID:20375358

  20. Genome Sequence of the Plant Endophyte Bacillus pumilus INR7, Triggering Induced Systemic Resistance in Field Crops

    PubMed Central

    Jeong, Haeyoung; Choi, Soo-Keun; Kloepper, Joseph W.

    2014-01-01

    Bacillus pumilus INR7 is an endophytic bacterium that has been commercialized as a biological control product against soilborne pathogens as well as foliar pathogens by direct antagonism and induction of systemic resistance. In the current study, we provide the genome sequence and a possible explanation of the function of strain INR7. PMID:25359912

  1. Whole genomic sequence analysis of Bacillus infantis: defining the genetic blueprint of strain NRRL B-14911, an emerging cardiopathogenic microbe

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: We recently reported the identification of Bacillus sp. NRRL B-14911 that induces heart autoimmunity by generating cardiac-reactive T cells through molecular mimicry. This marine bacterium was originally isolated from the Gulf of Mexico, but no associations with human diseases were rep...

  2. A probability model for enterotoxin production of Bacillus cereus as a function of pH and temperature

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacillus cereus is frequently isolated from a variety of foods including vegetables, dairy products, meat, and other raw and processed foods. The bacterium is capable of producing enterotoxin and emetic toxin that can cause severe nausea, vomiting and diarrhea. The objectives of this study were to a...

  3. Short communication: In vitro evaluation of a Bacillus sp. for the biological control of the coffee phytopathogen Mycena citricolor.

    PubMed

    Quesada-Chanto, A; Jiménez-Ulate, F

    1996-01-01

    A cell-free supernatant and an ethanolic extract of a 3-day-old culture of Bacillus UCR-236 inhibited the growth of Mycena citricolor, as determined by the 'Oxford cylinder' method. A 3-day-old culture of the same bacterium also decreased leaf infection by the pathogen in a moisture-chamber test. PMID:24415098

  4. Reduced levels of membrane-bound alkaline phosphatase are common to lepidopteran strains resistant to Cry toxins from Bacillus thuringiensis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Development of insect resistance is one of the main concerns with the use of transgenic crops expressing Cry toxins from the bacterium Bacillus thuringiensis. Biomarkers for development of sensitive DNA-based methods to detect and monitor evolution of resistance to Bt toxins are currently needed. ...

  5. Draft Genome Sequence of Bacillus mycoides M2E15, a Strain Isolated from the Endosphere of Potato

    PubMed Central

    Yi, Yanglei; de Jong, Anne; Spoelder, Jan; Elzenga, J. Theo M.; van Elsas, Jan Dirk

    2016-01-01

    We present the draft genome sequence of Bacillus mycoides M2E15, a bacterium isolated from potato endosphere. Analysis of the 6.08-Mbp draft genome sequence identified 6,386 protein-encoding sequences, including potential plant growth promoting genes. Specifically, genes for proteins involved in phosphate utilization, iron acquisition, and bacteriocin production were identified. PMID:26950325

  6. Draft Genome Sequence of Bacillus subtilis Strain D7XPN1, Isolated from Commercial Bioreactor-Degrading Food Waste.

    PubMed

    Adelskov, Joseph; Patel, Bharat K C

    2014-10-02

    The analysis of the 4.1-Mb draft genome sequence of a moderately thermophilic, heterotrophic, and facultatively anaerobic bacterium, Bacillus subtilis strain D7XPN1, identified genes for a range of enzymes with potential in the biodegradation of food waste, a property consistent with the ecological habitat of the isolate.

  7. Bacillus tianshenii sp. nov., isolated from a marine sediment sample.

    PubMed

    Jiang, Zhao; Zhang, Dao-Feng; Khieu, Thi-Nhan; Son, Chu Ky; Zhang, Xiao-Mei; Cheng, Juan; Tian, Xin-Peng; Zhang, Si; Li, Wen-Jun

    2014-06-01

    A novel Gram-stain-positive, motile, catalase- and oxidase-positive, aerobic, endospore-forming, peritrichous, rod-shaped bacterium, designated YIM M13235(T), was isolated from a marine sediment sample collected from the South China Sea. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain YIM M13235(T) belonged to the genus Bacillus. The strain grew optimally at 30 °C, pH 7.0 and in the presence of 2-4% (w/v) NaCl. meso-Diaminopimelic acid was present in the cell-wall peptidoglycan. Strain YIM M13235(T) exhibited a menaquinone system with MK-7, and the major polar lipids consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, four unknown phospholipids and one unknown glycolipid. The major fatty acids (>5%) were iso-C(15 : 0), anteiso-C(15 : 0), anteiso-C(17 : 0), iso-C(17 : 1)ω10c and summed feature 4 (anteiso-C(17 : 1) and/or iso-C(17 : 1)). The genomic DNA G+C content was 42.1 mol%. The DNA-DNA relatedness values between strain YIM M13235(T) and its close relatives (16S rRNA gene sequence similarities >97%) including Bacillus halmapalus DSM 8723(T), Bacillus horikoshii DSM 8719(T) and Bacillus zhanjiangensis JSM 099021(T) were 41%, 44% and 44%, respectively. On the basis of genotypic, phenotypic and DNA-DNA relatedness data, it is apparent that strain YIM M13235(T) represents a novel species of the genus Bacillus, for which the name Bacillus tianshenii sp. nov. is proposed. The type strain is YIM M13235(T) ( = DSM 25879(T) = KCTC 33044(T)).

  8. 75 FR 34040 - Bacillus thuringiensis

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-16

    ... AGENCY 40 CFR Part 174 Bacillus thuringiensis eCry3.1Ab Protein in Corn; Temporary Exemption from the... Bacillus thuringiensis eCry3.1Ab protein in corn under the FFDCA. The temporary tolerance exemption expires... establishing an exemption from the requirement of a tolerance for residues of Bacillus thuringiensis...

  9. 76 FR 14289 - Bacillus thuringiensis

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-16

    ... AGENCY 40 CFR Part 174 Bacillus thuringiensis eCry3.1Ab Protein in Corn; Temporary Exemption From the... permissible level for residues of Bacillus thuringiensis eCry3.1Ab protein in corn. The temporary tolerance... for residues of Bacillus thuringiensis eCry3.1Ab protein in corn. This notice referenced a summary...

  10. Inhibitory effects of spice essential oils on the growth of Bacillus species.

    PubMed

    Ozcan, Mehmet Musa; Sağdiç, Osman; Ozkan, Gülcan

    2006-01-01

    A series of essential oils of 11 Turkish plant spices [black thyme, cumin, fennel (sweet), laurel, marjoram, mint, oregano, pickling herb, sage, savory, and thyme], used in foods mainly for their flavor, aromas, and preservation, in herbal tea, in alternative medicines, and in natural therapies, were screened for antibacterial effects at 1:50, 1:100, 1:250, and 1:500 dilutions by the paper disc diffusion method against six Bacillus species (Bacillus amyloliquefaciens ATCC 3842, Bacillus brevis FMC 3, Bacillus cereus FMC 19, Bacillus megaterium DSM 32, Bacillus subtilis IMG 22, and B. subtilis var. niger ATCC 10). All of the tested essential oils (except for cumin) showed antibacterial activity against one or more of the Bacillus species used in this study. Generally, the essential oils at 1:50 and 1:100 levels were more effective. Only one essential oil (laurel) was not found effective against the tested bacteria. The bacterium most sensitive to all of the spice essential oils was B. amyloliquefaciens ATCC 3842. Based on the results of this study, it is likely that essential oils of some spices may be used as antimicrobial agents to prevent the spoilage of food products. PMID:17004909

  11. Bacillus odysseyi isolate

    NASA Technical Reports Server (NTRS)

    Venkateswaran, Kasthuri (Inventor); La Duc, Myron Thomas (Inventor)

    2007-01-01

    The present invention relates to discovery and isolation of a biologically pure culture of a Bacillus odysseyi isolate with high adherence and sterilization resistant properties. B. odysseyi is a round spore forming Bacillus species that produces an exosporium. This novel species has been characterized on the basis of phenotypic traits, 16S rDNA sequence analysis and DNA-DNA hybridization. According to the results of these analyses, this strain belongs to the genus Bacillus and the type strain is 34hs-1.sup.T (=ATCC PTA-4993.sup.T=NRRL B-30641.sup.T=NBRC 100172.sup.T). The GenBank accession number for the 16S rDNA sequence of strain 34hs-1.sup.T is AF526913.

  12. Phenotypic and functional characterization of Bacillus anthracis biofilms.

    PubMed

    Lee, Keehoon; Costerton, J W; Ravel, Jacques; Auerbach, Raymond K; Wagner, David M; Keim, Paul; Leid, Jeff G

    2007-06-01

    Biofilms, communities of micro-organisms attached to a surface, are responsible for many chronic diseases and are often associated with environmental reservoirs or lifestyles. Bacillus anthracis is a Gram-positive, endospore-forming bacterium and is the aetiological agent of pulmonary, gastrointestinal and cutaneous anthrax. Anthrax infections are part of the natural lifecycle of many ruminants in North America, including cattle and bison, and B. anthracis is thought to be a central part of this ecosystem. However, in endemic areas in which humans and livestock interact, chronic cases of cutaneous anthrax are commonly reported. This suggests that biofilms of B. anthracis exist in the environment and are part of the ecology associated with its lifecycle. Currently, there are few data that account for the importance of the biofilm mode of life in B. anthracis, yet biofilms have been characterized in other pathogenic and non-pathogenic Bacillus species, including Bacillus cereus and Bacillus subtilis, respectively. This study investigated the phenotypic and functional role of biofilms in B. anthracis. The results demonstrate that B. anthracis readily forms biofilms which are inherently resistant to commonly prescribed antibiotics, and that antibiotic resistance is not solely the function of sporulation.

  13. Biocontrol: Bacillus penetrans and Related Parasites of Nematodes

    PubMed Central

    Sayre, R. M.

    1980-01-01

    Bacillus penetrans Mankau, 1975, previously described as Duboscqia penetrans Thorne 1940, is a candidate agent for biocontrol of nematodes. This review considers the life stages of this bacterium: vegetative growth phase, colony fragmentation, sporogenesis, soil phase, spore attachment, and penetration into larvae of root-knot nematodes. The morphology of the microthallus colonies and the unusual external features of the spore are discussed. Taxonomic affinities with the actinomycetes, particularly with the genus Pasteuria, are considered. Also discussed are other soil bacterial species that are potential biocontrol agents. Products of their bacterial fermentation in soil are toxic to nematodes, making them effective biocontrol agents. PMID:19300701

  14. Occurrence of Isocitrate Lyase in a Thermophilic Bacillus Species

    PubMed Central

    Daron, Harlow H.

    1967-01-01

    A thermophilic, sporeforming bacterium has been isolated from soil on a medium containing acetate as a carbon source. This organism is similar to Bacillus stearothermophilus in most respects but differs in its inability to hydrolyze starch. Isocitrate lyase is present in cell-free extracts of organisms grown in a medium with acetate as a carbon source. The specific activity was 400 times lower in extracts of organisms utilizing glucose as a carbon source. With crude extracts, enzyme activity was strongly stimulated by Mg++, but cysteine and ethylenediaminetetraacetate had little effect. It appeared to be more heat-stable than the pure isocitrate lyase from Pseudomonas indigofera. Images PMID:6020570

  15. Melanin: a photoprotection for Bacillus thuringiensis based biopesticides.

    PubMed

    Sansinenea, Estibaliz; Ortiz, Aurelio

    2015-03-01

    Melanins are negatively-charged, hydrophobic, dark high molecular weight irregular biopolymers, composed of polymerized phenolic and/or indolic compounds. They are produced by most organisms. Bacillus thuringiensis is a Gram-positive, spore-forming, soil bacterium and the most successful biological control agent that produces distinctly shaped crystals during sporulation that have insecticidal activity. However, one of the main disadvantages is that the insecticidal activity of B. thuringiensis formulation is unstable and rapidly loses its activity under field conditions due to UV radiation. Melanin absorbs radiation; therefore photoprotection of B. thuringiensis based on melanin has been studied and is herewith reviewed.

  16. Sticking together: building a biofilm the Bacillus subtilis way.

    PubMed

    Vlamakis, Hera; Chai, Yunrong; Beauregard, Pascale; Losick, Richard; Kolter, Roberto

    2013-03-01

    Biofilms are ubiquitous communities of tightly associated bacteria encased in an extracellular matrix. Bacillus subtilis has long served as a robust model organism to examine the molecular mechanisms of biofilm formation, and a number of studies have revealed that this process is regulated by several integrated pathways. In this Review, we focus on the molecular mechanisms that control B. subtilis biofilm assembly, and then briefly summarize the current state of knowledge regarding biofilm disassembly. We also discuss recent progress that has expanded our understanding of B. subtilis biofilm formation on plant roots, which are a natural habitat for this soil bacterium.

  17. PLASMOLYSIS IN BACILLUS MEGATERIUM.

    PubMed

    WEIBULL, C

    1965-04-01

    Weibull, Claes (Central Bacteriological Laboratory of Stockholm City, Stockholm, Sweden). Plasmolysis in Bacillus megaterium. J. Bacteriol. 89:1151-1154. 1965.-Sucrose solutions stronger than 1 m caused plasmolysis in Bacillus megaterium strain M, whereas concentrated NaCl and KNO(3) solutions were ineffective. In plasmolyzed cells, mesosome bodies were found in pockets between the cytoplasmic membrane and the cell wall. After plasmolysis, the cytoplasmic membrane appeared as a triple-layered structure, a "unit membrane." Plasmolysis did not markedly influence the viability of the cells.

  18. Desulfonatronobacter acetoxydans sp. nov.,: a first acetate-oxidizing, extremely salt-tolerant alkaliphilic SRB from a hypersaline soda lake.

    PubMed

    Sorokin, D Y; Chernyh, N A; Poroshina, M N

    2015-09-01

    Recent intensive microbiological investigation of sulfidogenesis in soda lakes did not result in isolation of any pure cultures of sulfate-reducing bacteria (SRB) able to directly oxidize acetate. The sulfate-dependent acetate oxidation at haloalkaline conditions has, so far, been only shown in two syntrophic associations of novel Syntrophobacteraceae members and haloalkaliphilic hydrogenotrophic SRB. In the course of investigation of one of them, obtained from a hypersaline soda lake in South-Western Siberia, a minor component was observed showing a close relation to Desulfonatronobacter acidivorans--a "complete oxidizing" SRB from soda lakes. This organism became dominant in a secondary enrichment with propionate as e-donor and sulfate as e-acceptor. A pure culture, strain APT3, was identified as a novel member of the family Desulfobacteraceae. It is an extremely salt-tolerant alkaliphile, growing with butyrate at salinity up to 4 M total Na(+) with a pH optimum at 9.5. It can grow with sulfate as e-acceptor with C3-C9 VFA and also with some alcohols. The most interesting property of strain APT3 is its ability to grow with acetate as e-donor, although not with sulfate, but with sulfite or thiosulfate as e-acceptors. The new isolate is proposed as a new species Desulfonatronobacter acetoxydans.

  19. Genomic and Enzymatic Results Show Bacillus cellulosilyticus Uses a Novel Set of LPXTA Carbohydrases to Hydrolyze Polysaccharides

    PubMed Central

    Mead, David; Drinkwater, Colleen; Brumm, Phillip J.

    2013-01-01

    Background Alkaliphilic Bacillus species are intrinsically interesting due to the bioenergetic problems posed by growth at high pH and high salt. Three alkaline cellulases have been cloned, sequenced and expressed from Bacillus cellulosilyticus N-4 (Bcell) making it an excellent target for genomic sequencing and mining of biomass-degrading enzymes. Methodology/Principal Findings The genome of Bcell is a single chromosome of 4.7 Mb with no plasmids present and three large phage insertions. The most unusual feature of the genome is the presence of 23 LPXTA membrane anchor proteins; 17 of these are annotated as involved in polysaccharide degradation. These two values are significantly higher than seen in any other Bacillus species. This high number of membrane anchor proteins is seen only in pathogenic Gram-positive organisms such as Listeria monocytogenes or Staphylococcus aureus. Bcell also possesses four sortase D subfamily 4 enzymes that incorporate LPXTA-bearing proteins into the cell wall; three of these are closely related to each other and unique to Bcell. Cell fractionation and enzymatic assay of Bcell cultures show that the majority of polysaccharide degradation is associated with the cell wall LPXTA-enzymes, an unusual feature in Gram-positive aerobes. Genomic analysis and growth studies both strongly argue against Bcell being a truly cellulolytic organism, in spite of its name. Preliminary results suggest that fungal mycelia may be the natural substrate for this organism. Conclusions/Significance Bacillus cellulosilyticus N-4, in spite of its name, does not possess any of the genes necessary for crystalline cellulose degradation, demonstrating the risk of classifying microorganisms without the benefit of genomic analysis. Bcell is the first Gram-positive aerobic organism shown to use predominantly cell-bound, non-cellulosomal enzymes for polysaccharide degradation. The LPXTA-sortase system utilized by Bcell may have applications both in anchoring

  20. Intragenomic diversity of the V1 regions of 16S rRNA genes in high-alkaline protease-producing Bacillus clausii spp.

    PubMed

    Kageyama, Yasushi; Takaki, Yoshihiro; Shimamura, Shigeru; Nishi, Shinro; Nogi, Yuichi; Uchimura, Kohsuke; Kobayashi, Tohru; Hitomi, Jun; Ozaki, Katsuya; Kawai, Shuji; Ito, Susumu; Horikoshi, Koki

    2007-07-01

    Alkaliphilic Bacillus sp. strain KSM-K16, which produces high-alkaline M-protease, was characterized phenotypically, biochemically and genetically. This strain was identified as Bacillus clausii based on the results of taxonomic studies, including sequencing of the 16S rRNA gene and DNA-DNA hybridization. Seven rRNA operons in the genome were identified by pulsed-field gel electrophoresis. Sequencing of cloned 16S rRNA genes revealed two distinct types of variable region V1. Moreover, some cloned 16S rRNA genes in some of the reference strains of B. clausii had a V1 region of yet another type. The B. clausii strains could clearly be divided into at least two subgroups based on the frequencies of the types of cloned V1 sequence. Bacillus sp. strain KSM-K16 was found to be in a different phylogenetic position from other high-alkaline protease-producing strains of B. clausii. PMID:17429572

  1. Bacillus velezensis is not a later heterotypic synonym of Bacillus amyloliquefaciens; Bacillus methylotrophicus, Bacillus amyloliquefaciens subsp plantarum and ‘Bacillus oryzicola’ are later heterotypic synonyms of Bacillus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The rhizosphere isolated bacteria belonging to the Bacillus amyloliquefaciens subsp. plantarum and Bacillus methylotrophicus clades are an important group of strains that are used as plant growth promoters and antagonists of plant pathogens. These properties have made these strains the focus of comm...

  2. Suitability of the alkalistable carbonic anhydrase from a polyextremophilic bacterium Aeribacillus pallidus TSHB1 in biomimetic carbon sequestration.

    PubMed

    Bose, Himadri; Satyanarayana, T

    2016-10-01

    Carbonic anhydrase (CA) was produced from the polyextremophilic (halotolerant, moderately thermophilic and alkaliphilic) bacterium Aeribacillus pallidus TSHB1 isolated from water and sediment samples of Choti Anhoni hot spring of Pipariya, Madhya Pradesh (India), is being reported to be suitable for carbon sequestration. Growth and CA production were inhibited at higher CO2 concentration (5-10 %). Under optimized culture variables (tryptone 0.8 %, yeast extract 0.08 %, glucose 1 %, micronutrient solution 1 %, inoculums size 1.10 %, agitation 200 at pH 8, and temperature 55 °C), 3.7-fold higher CA production was attained than that under unoptimized conditions. The zymogram analysis of the partially purified CA revealed an activity band corresponding to 32 kDa. The enzyme is stable in the pH range between 8.0 and 11.0 with T 1/2 of 40, 15, and 8 min at 60, 70, and 80 °C, respectively. The CA of A. pallidus displayed a marked enhancement in the rate of CaCO3 precipitation from aqueous CO2. The CA-aided formation of CaCO3 was 42.5 mg mg(-1) protein. Scanning electron microscopy revealed the formation of rhomboid calcite crystals. This is the first report on the production and applicability of CA from the polyextremophilic A. pallidus in carbon sequestration. PMID:27215773

  3. Mutations alter the sodium versus proton use of a Bacillus clausii flagellar motor and confer dual ion use on Bacillus subtilis motors.

    PubMed

    Terahara, Naoya; Krulwich, Terry A; Ito, Masahiro

    2008-09-23

    Bacterial flagella contain membrane-embedded stators, Mot complexes, that harness the energy of either transmembrane proton or sodium ion gradients to power motility. Use of sodium ion gradients is associated with elevated pH and sodium concentrations. The Mot complexes studied to date contain channels that use either protons or sodium ions, with some bacteria having only one type and others having two distinct Mot types with different ion-coupling. Here, alkaliphilic Bacillus clausii KSM-K16 was shown to be motile in a pH range from 7 to 11 although its genome encodes only one Mot (BCl-MotAB). Assays of swimming as a function of pH, sodium concentration, and ion-selective motility inhibitors showed that BCl-MotAB couples motility to sodium at the high end of its pH range but uses protons at lower pH. This pattern was confirmed in swimming assays of a statorless Bacillus subtilis mutant expressing either BCl-MotAB or one of the two B. subtilis stators, sodium-coupled Bs-MotPS or proton-coupled Bs-MotAB. Pairs of mutations in BCl-MotB were identified that converted the naturally bifunctional BCl-MotAB to stators that preferentially use either protons or sodium ions across the full pH range. We then identified trios of mutations that added a capacity for dual-ion coupling on the distinct B. subtilis Bs-MotAB and Bs-MotPS motors. Determinants that alter the specificity of bifunctional and single-coupled flagellar stators add to insights from studies of other ion-translocating transporters that use both protons and sodium ions. PMID:18796609

  4. Extraction of Copper from Malanjkhand Low-Grade Ore by Bacillus stearothermophilus.

    PubMed

    Singh, Sradhanjali; Sukla, Lala Behari; Mishra, Baroda Kanta

    2011-10-01

    Thermophilic bacteria are actively prevalent in hot water springs. Their potential to grow and sustain at higher temperatures makes them exceptional compare to other microorganism. The present study was initiated to isolate, identify and determine the feasibility of extraction of copper using thermophilic heterotrophic bacterial strain. Bacillus stearothermophilus is a thermophilic heterotrophic bacterium isolated from hot water spring, Atri, Orissa, India. This bacterium was adapted to low-grade chalcopyrite ore and its efficiency to solubilize copper from Malanjkhand low-grade ore was determined. The low-grade copper ore contains 0.27% Cu, in which the major copper-bearing mineral is chalcopyrite associated with other minerals present as minor phase. Variation in parameters such as pulp-density and temperatures were studied. After 30 days of incubation, it was found that Bacillus stearothermophilus solubilize copper up to 81.25% at pH 6.8 at 60°C. PMID:23024410

  5. Genome analysis shows Bacillus axarquiensis is not a later heterotypic synonym of Bacillus mojavensis; Reclassification of Bacillus malacitensis and Brevibacterium halotolerans as heterotypic synonyms of Bacillus axarquiensis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacillus axarquiensis and Bacillus malacitensis were previously reported to be later heterotypic synonyms of Bacillus mojavensis, based primarily on DNA-DNA relatedness values. We have sequenced draft genomes of Bacillus axarquiensis NRRL B-41617**T and Bacillus malacitensis NRRL B-41618**T. Compara...

  6. Tindallia texcoconensis sp. nov., a new haloalkaliphilic bacterium isolated from lake Texcoco, Mexico.

    PubMed

    Alazard, Didier; Badillo, Claudia; Fardeau, Marie-Laure; Cayol, Jean-Luc; Thomas, Pierre; Roldan, Teresa; Tholozan, Jean-Luc; Ollivier, Bernard

    2007-01-01

    A new alkaliphilic and moderately halophilic, strictly anaerobic, fermentative bacterium (strain IMP-300(T)) was isolated from a groundwater sample in the zone of the former soda lake Texcoco in Mexico. Strain IMP-300(T) was Gram-positive, non-sporulated, motile and rod-shaped. It grew within a pH range from 7.5 to 10.5, and an optimum at 9.5. The organism was obligately dependent on the presence of sodium salts. Growth showed an optimum at 35 degrees C with absence of growth above 45 degrees C. It fermented peptone and a few amino acids, preferentially arginine and ornithine, with production of acetate, propionate, and ammonium. Its fatty acid pattern was mainly composed of straight chain saturated, unsaturated, and cyclopropane fatty acids. The G + C content of genomic DNA was 40.0 mol%. Analysis of the 16S rRNA gene sequence indicated that the new isolate belongs to the genus Tindallia, in the low G + C Gram-positive phylum. Phylogenetically, strain IMP-300(T) has Tindallia californiensis, as closest relative with a 97.5% similarity level between their 16S rDNA gene sequences, but the DNA-DNA re-association value between the two DNAs was only 42.2%. On the basis of differences in genotypic, phenotypic, and phylogenetic characteristics, strain IMP-300(T) is proposed as a new species of the genus Tindallia, T. texcoconensis sp. nov. (type strain IMP-300(T ) = DSM 18041(T) = JCM 13990(T)).

  7. Genome Sequence of a Chromium-Reducing Strain, Bacillus cereus S612

    SciTech Connect

    Wang, Dongping; Boukhalfa, Hakim; Ware, Doug S.; Reimus, Paul W.; Daligault, Hajnalka E.; Gleasner, Cheryl D.; Johnson, Shannon L.; Li, Po-E

    2015-12-10

    We report here the genome sequence of an effective chromium-reducing bacterium,Bacillus cereusstrain S612. We found that the size of the draft genome sequence is approximately 5.4 Mb, with a G+C content of 35%, and it is predicted to contain 5,450 protein-coding genes.

  8. Biofilm formation by Bacillus subtilis: new insights into regulatory strategies and assembly mechanisms

    PubMed Central

    Cairns, Lynne S; Hobley, Laura; Stanley-Wall, Nicola R

    2014-01-01

    Biofilm formation is a social behaviour that generates favourable conditions for sustained survival in the natural environment. For the Gram-positive bacterium Bacillus subtilis the process involves the differentiation of cell fate within an isogenic population and the production of communal goods that form the biofilm matrix. Here we review recent progress in understanding the regulatory pathways that control biofilm formation and highlight developments in understanding the composition, function and structure of the biofilm matrix. PMID:24988880

  9. Bacillus vini sp. nov. isolated from alcohol fermentation pit mud.

    PubMed

    Ma, Kedong; Chen, Xiaorong; Guo, Xiang; Wang, Yanwei; Wang, Huimin; Zhou, Shan; Song, Jinlong; Kong, Delong; Zhu, Jie; Dong, Weiwei; He, Mingxiong; Hu, Guoquan; Zhao, Bingqiang; Ruan, Zhiyong

    2016-08-01

    A novel aerobic, Gram-stain-positive, sporogenous, rod-shaped bacterium, designated LAM0415(T), was isolated from an alcohol fermentation pit mud sample collected from Sichuan Luzhou-flavour liquor enterprise in China. The isolate was found to be able to grow at NaCl concentrations of 0-10 % (w/v) (optimum: 1.0 %), 10-50 °C (optimum: 30-35 °C) and pH 3.0-10.0 (optimum: 7.0-8.0). Phylogenetic analysis of 16S rRNA gene sequences indicated that the new isolate belonged to the genus Bacillus and was closely related to Bacillus sporothermodurans DSM 10599(T) and Bacillus oleronius DSM 9356(T), with 98.4 and 97.2 % sequence similarity, respectively. The DNA-DNA hybridization values between strain LAM0415(T) and the two reference strains were 33.3 ± 1.2 and 42.8 ± 0.8 %, respectively. The genomic DNA G+C content was 35.2 mol% as determined by the T m method. The major fatty acids were determined to be iso-C15:0, anteiso-C15:0 and anteiso-C17:0. The predominant menaquinones were identified as MK7 and MK8. The major polar lipids were found to be diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, one unidentified phospholipid and four unidentified glycolipids. The diagnostic amino acid of the cell wall peptidoglycan was determined to be meso-diaminopimelic acid. On the basis of its phenotypic, phylogenetic and chemotaxonomic characteristics, strain LAM0415(T) (=ACCC 06413(T) = JCM 19841(T)) represents the type strain of a novel species of the genus Bacillus, for which the name Bacillus vini sp. nov. is proposed. PMID:27055557

  10. Bacillus panacisoli sp. nov., isolated from ginseng soil.

    PubMed

    Choi, Jung-Hye; Cha, Chang-Jun

    2014-03-01

    A Gram-staining-positive, motile, facultatively anaerobic, endospore-forming and rod-shaped bacterium, designated strain CJ32(T), was isolated from ginseng soil at Geumsan in Korea. The isolate grew optimally at 30 °C, 2% (w/v) NaCl and pH 7.0. Colonies of strain CJ32(T) were beige and circular with an entire margin on LB agar plates. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain CJ32(T) was associated with the genus Bacillus and was most closely related to Bacillus graminis YC6957(T) (97.3% similarity) and Bacillus lentus IAM 12466(T) (97.1%). DNA-DNA hybridization with closely related strains was below 31.3%. The major respiratory isoprenoid quinone was MK-7. The diagnostic diamino acid in the cell-wall peptidoglycan was meso-diaminopimelic acid. The polar lipid profile of strain CJ32(T) consisted of phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol and several unidentified lipids, including phospholipids, aminolipids and aminophospholipids. The predominant fatty acids of strain CJ32(T) were iso-C15:0 and anteiso-C15:0. The G+C content of the genomic DNA was 35.1 mol%. Based on phenotypic, genotypic and phylogenetic data, strain CJ32(T) should be classified within a novel species of the genus Bacillus, for which the name Bacillus panacisoli sp. nov. is proposed. The type strain is strain CJ32(T) ( = KACC 17503(T) = JCM 19226(T)).

  11. Bacillus glycinifermentans sp. nov., isolated from fermented soybean paste.

    PubMed

    Kim, Soo-Jin; Dunlap, Christopher A; Kwon, Soon-Wo; Rooney, Alejandro P

    2015-10-01

    Two independent isolates of a Gram-stain-positive, facultatively anaerobic, motile, rod-shaped bacterium were recovered from cheonggukjang, a Korean fermented soybean paste food product. Preliminary sequencing analysis of the 16S rRNA gene indicated that these strains were related most closely to Bacillus sonorensis KCTC-13918T and Bacillus licheniformis DSM 13T. In phenotypic characterization, the novel strains were found to grow between 15 and 55 °C and to tolerate up to 8 % (w/v) NaCl. Furthermore, the strains grew in media of pH 5-10 (optimal growth at pH 7.0). The predominant cellular fatty acids were anteiso-C15 : 0 and iso-C15 : 0.The isoprenoid quinone was menaquinone 7 (MK-7). The cell-wall peptidoglycan contained meso-diaminopimelic acid. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and an unknown glycolipid. Draft genomes of the two strains were determined and in silico DNA-DNA hybridizations with their nearest neighbour (B. sonorensis KCTC-13918T) revealed 29.9 % relatedness for both strains. Phylogenomic analysis of the genomes was conducted with the core genome (799 genes) of all strains in the Bacillus subtilis group and the two strains formed a distinct monophyletic cluster. In addition, the strains differed from the two most closely related species in that they did not metabolize maltose, d-galactose, d-sorbitol or d-gluconic acid. The DNA G+C content was 45.9 mol%. Based upon the consensus of phylogenetic and phenotypic analyses, these strains represent a novel species of the genus Bacillus, for which the name Bacillus glycinifermentans sp. nov. is proposed. The type strain is GO-13T ( = KACC 18425T = NRRL B-65291T). PMID:26297378

  12. Nature versus nurture in two highly enantioselective esterases from Bacillus cereus and Thermoanaerobacter tengcongensis.

    PubMed

    Grosse, Stephan; Bergeron, Hélène; Imura, Akihiro; Boyd, Jason; Wang, Shaozhao; Kubota, Kazuo; Miyadera, Akihiko; Sulea, Traian; Lau, Peter C K

    2010-01-01

    There is an increasing need for the use of biocatalysis to obtain enantiopure compounds as chiral building blocks for drug synthesis such as antibiotics. The principal findings of this study are: (i) the complete sequenced genomes of Bacillus cereus ATCC 14579 and Thermoanaerobacter tengcongensis MB4 contain a hitherto undescribed enantioselective and alkaliphilic esterase (BcEST and TtEST respectively) that is specific for the production of (R)-2-benzyloxy-propionic acid ethyl ester, a key intermediate in the synthesis of levofloxacin, a potent antibiotic; and (ii) directed evolution targeted for increased thermostability of BcEST produced two improved variants, but in either case the 3-5 °C increase in the apparent melting temperature (T(m)) of the mutants over the native BcEST that has a T(m) of 50 °C was outperformed by TtEST, a naturally occurring homologue with a T(m) of 65 °C. Protein modelling of BcEST mapped the S148C and K272R mutations at protein surface and the I88T and Q110L mutations at more buried locations. This work expands the repertoire of characterized members of the α/β-fold hydrolase superfamily. Further, it shows that genome mining is an economical option for new biocatalyst discovery and we provide a rare example of a naturally occurring thermostable biocatalyst that outperforms experimentally evolved homologues that carry out the same hydrolysis. PMID:21255307

  13. β-Cyclodextrin Production by Cyclodextrin Glucanotransferase from an Alkaliphile Microbacterium terrae KNR 9 Using Different Starch Substrates.

    PubMed

    Rajput, Kiransinh N; Patel, Kamlesh C; Trivedi, Ujjval B

    2016-01-01

    Cyclodextrin glucanotransferase (CGTase, EC 2.4.1.19) is an important member of α-amylase family which can degrade the starch and produce cyclodextrins (CDs) as a result of intramolecular transglycosylation (cyclization). β-Cyclodextrin production was carried out using the purified CGTase enzyme from an alkaliphile Microbacterium terrae KNR 9 with different starches in raw as well as gelatinized form. Cyclodextrin production was confirmed using thin layer chromatography. Six different starch substrates, namely, soluble starch, potato starch, sago starch, corn starch, corn flour, and rice flour, were tested for CD production. Raw potato starch granules were found to be the best substrate giving 13.46 gm/L of cyclodextrins after 1 h of incubation at 60°C. Raw sago starch gave 12.96 gm/L of cyclodextrins as the second best substrate. To achieve the maximum cyclodextrin production, statistical optimization using Central Composite Design (CCD) was carried out with three parameters, namely, potato starch concentration, CGTase enzyme concentration, and incubation temperature. Cyclodextrin production of 28.22 (gm/L) was achieved with the optimized parameters suggested by the model which are CGTase 4.8 U/L, starch 150 gm/L, and temperature 55.6°C. The suggested optimized conditions showed about 15% increase in β-cyclodextrin production (28.22 gm/L) at 55.6°C as compared to 24.48 gm/L at 60°C. The degradation of raw potato starch granules by purified CGTase was also confirmed by microscopic observations. PMID:27648307

  14. β-Cyclodextrin Production by Cyclodextrin Glucanotransferase from an Alkaliphile Microbacterium terrae KNR 9 Using Different Starch Substrates

    PubMed Central

    Trivedi, Ujjval B.

    2016-01-01

    Cyclodextrin glucanotransferase (CGTase, EC 2.4.1.19) is an important member of α-amylase family which can degrade the starch and produce cyclodextrins (CDs) as a result of intramolecular transglycosylation (cyclization). β-Cyclodextrin production was carried out using the purified CGTase enzyme from an alkaliphile Microbacterium terrae KNR 9 with different starches in raw as well as gelatinized form. Cyclodextrin production was confirmed using thin layer chromatography. Six different starch substrates, namely, soluble starch, potato starch, sago starch, corn starch, corn flour, and rice flour, were tested for CD production. Raw potato starch granules were found to be the best substrate giving 13.46 gm/L of cyclodextrins after 1 h of incubation at 60°C. Raw sago starch gave 12.96 gm/L of cyclodextrins as the second best substrate. To achieve the maximum cyclodextrin production, statistical optimization using Central Composite Design (CCD) was carried out with three parameters, namely, potato starch concentration, CGTase enzyme concentration, and incubation temperature. Cyclodextrin production of 28.22 (gm/L) was achieved with the optimized parameters suggested by the model which are CGTase 4.8 U/L, starch 150 gm/L, and temperature 55.6°C. The suggested optimized conditions showed about 15% increase in β-cyclodextrin production (28.22 gm/L) at 55.6°C as compared to 24.48 gm/L at 60°C. The degradation of raw potato starch granules by purified CGTase was also confirmed by microscopic observations.

  15. Expression and functional analysis of two NhaD type antiporters from the halotolerant and alkaliphilic Halomonas sp. Y2.

    PubMed

    Cui, Yanbing; Cheng, Bin; Meng, Yiwei; Li, Chunfang; Yin, Huijia; Xu, Ping; Yang, Chunyu

    2016-09-01

    Na(+)/H(+) antiporters play important roles in ion and pH homeostasis. In this study, two NhaD homologues that effectively catalyze Na(+)/H(+) antiporter were identified from Halomonas sp. Y2, a halotolerant and alkaliphilic strain isolated from sodium enriched black liquor. They exhibited high sequence identity of 72 % and similar binding affinities for Na(+) and Li(+) translocation, while having different pH profiles. Ha-NhaD1 was active at pH 6.0 and most active at pH 8.0-8.5, whereas Ha-NhaD2 lacked activity at pH 6.0 but exhibited maximum activity at pH 9.5 or higher. Based on multiple alignments, 11 partially conserved residues were selected and corresponding mutants were generated for Ha-NhaD1. As expected, replacement of most of the hydrophobic residues abolished the cation exchange activities. Three serine residues at positions 200, 282 and 353 in Ha-NhaD1 were replaceable by alanines with partial retention of activity. The S353A mutant exhibited significantly reduced binding affinity for Na(+) and Li(+), while S282 mutant exhibited an alkaline shift of about 1.5 pH units, as compared to the wild type Ha-NhaD1. Serine at position 282 was predicted to be located in transmembrane segment VIII and was found to be important in regulating pH sensitivity in concert with flanking residues. PMID:27315164

  16. β-Cyclodextrin Production by Cyclodextrin Glucanotransferase from an Alkaliphile Microbacterium terrae KNR 9 Using Different Starch Substrates

    PubMed Central

    Trivedi, Ujjval B.

    2016-01-01

    Cyclodextrin glucanotransferase (CGTase, EC 2.4.1.19) is an important member of α-amylase family which can degrade the starch and produce cyclodextrins (CDs) as a result of intramolecular transglycosylation (cyclization). β-Cyclodextrin production was carried out using the purified CGTase enzyme from an alkaliphile Microbacterium terrae KNR 9 with different starches in raw as well as gelatinized form. Cyclodextrin production was confirmed using thin layer chromatography. Six different starch substrates, namely, soluble starch, potato starch, sago starch, corn starch, corn flour, and rice flour, were tested for CD production. Raw potato starch granules were found to be the best substrate giving 13.46 gm/L of cyclodextrins after 1 h of incubation at 60°C. Raw sago starch gave 12.96 gm/L of cyclodextrins as the second best substrate. To achieve the maximum cyclodextrin production, statistical optimization using Central Composite Design (CCD) was carried out with three parameters, namely, potato starch concentration, CGTase enzyme concentration, and incubation temperature. Cyclodextrin production of 28.22 (gm/L) was achieved with the optimized parameters suggested by the model which are CGTase 4.8 U/L, starch 150 gm/L, and temperature 55.6°C. The suggested optimized conditions showed about 15% increase in β-cyclodextrin production (28.22 gm/L) at 55.6°C as compared to 24.48 gm/L at 60°C. The degradation of raw potato starch granules by purified CGTase was also confirmed by microscopic observations. PMID:27648307

  17. Bacillus anthracis Virulent Plasmid pX02 Genes Found in Large Plasmids of Two Other Bacillus Species

    PubMed Central

    Luna, Vicki A.; King, Debra S.; Peak, K. Kealy; Reeves, Frank; Heberlein-Larson, Lea; Veguilla, William; Heller, L.; Duncan, Kathleen E.; Cannons, Andrew C.; Amuso, Philip; Cattani, Jacqueline

    2006-01-01

    In order to cause the disease anthrax, Bacillus anthracis requires two plasmids, pX01 and pX02, which carry toxin and capsule genes, respectively, that are used as genetic targets in the laboratory detection of the bacterium. Clinical, forensic, and environmental samples that test positive by PCR protocols established by the Centers for Disease Control and Prevention for B. anthracis are considered to be potentially B. anthracis until confirmed by culture and a secondary battery of tests. We report the presence of 10 genes (acpA, capA, capB, capC, capR, capD, IS1627, ORF 48, ORF 61, and repA) and the sequence for the capsule promoter normally found on pX02 in Bacillus circulans and a Bacillus species closely related to Bacillus luciferensis. Tests revealed these sequences to be present on a large plasmid in each isolate. The 11 sequences consistently matched to B. anthracis plasmid pX02, GenBank accession numbers AF188935.1, AE011191.1, and AE017335.3. The percent nucleotide identities for capD and the capsule promoter were 99.9% and 99.7%, respectively, and for the remaining nine genes, the nucleotide identity was 100% for both isolates. The presence of these genes, which are usually associated with the pX02 plasmid, in two soil Bacillus species unrelated to B. anthracis alerts us to the necessity of identifying additional sequences that will signal the presence of B. anthracis in clinical, forensic, and environmental samples. PMID:16825351

  18. Non contiguous-finished genome sequence and description of Bacillus massiliosenegalensis sp. nov.

    PubMed Central

    Ramasamy, Dhamodharan; Lagier, Jean-Christophe; Gorlas, Aurore; Raoult, Didier

    2013-01-01

    Bacillus massiliosenegalensis strain JC6T sp. nov. is the type strain of Bacillus massiliosenegalensis sp. nov., a new species within the genus Bacillus. This strain was isolated from the fecal flora of a healthy Senegalese patient. B. massiliosenegalensis is an aerobic Gram-positive rod-shaped bacterium. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 4,981,278-bp long genome comprises a 4,957,301-bp chromosome and a 23,977-bp plasmid. The chromosome contains 4,925 protein-coding and 72 RNA genes, including 4 rRNA genes. The plasmid contains 29 protein-coding genes. PMID:23991258

  19. The enrichment of an alkaliphilic biofilm consortia capable of the anaerobic degradation of isosaccharinic acid from cellulosic materials incubated within an anthropogenic, hyperalkaline environment.

    PubMed

    Charles, C J; Rout, S P; Garratt, E J; Patel, K; Laws, A P; Humphreys, P N

    2015-08-01

    Anthropogenic hyperalkaline sites provide an environment that is analogous to proposed cementitious geological disposal facilities (GDF) for radioactive waste. Under anoxic, alkaline conditions cellulosic wastes will hydrolyze to a range of cellulose degradation products (CDP) dominated by isosaccharinic acids (ISA). In order to investigate the potential for microbial activity in a cementitious GDF, cellulose samples were incubated in the alkaline (∼pH 12), anaerobic zone of a lime kiln waste site. Following retrieval, these samples had undergone partial alkaline hydrolysis and were colonized by a Clostridia-dominated biofilm community, where hydrogenotrophic, alkaliphilic methanogens were also present. When these samples were used to establish an alkaline CDP fed microcosm, the community shifted away from Clostridia, methanogens became undetectable and a flocculate community dominated by Alishewanella sp. established. These flocs were composed of bacteria embedded in polysaccharides and proteins stabilized by extracellular DNA. This community was able to degrade all forms of ISA with >60% of the carbon flow being channelled into extracellular polymeric substance (EPS) production. This study demonstrated that alkaliphilic microbial communities can degrade the CDP associated with some radioactive waste disposal concepts at pH 11. These communities divert significant amounts of degradable carbon to EPS formation, suggesting that EPS has a central role in the protection of these communities from hyperalkaline conditions.

  20. The enrichment of an alkaliphilic biofilm consortia capable of the anaerobic degradation of isosaccharinic acid from cellulosic materials incubated within an anthropogenic, hyperalkaline environment

    PubMed Central

    Charles, C. J.; Rout, S. P.; Garratt, E. J.; Patel, K.; Laws, A. P.; Humphreys, P. N.

    2015-01-01

    Anthropogenic hyperalkaline sites provide an environment that is analogous to proposed cementitious geological disposal facilities (GDF) for radioactive waste. Under anoxic, alkaline conditions cellulosic wastes will hydrolyze to a range of cellulose degradation products (CDP) dominated by isosaccharinic acids (ISA). In order to investigate the potential for microbial activity in a cementitious GDF, cellulose samples were incubated in the alkaline (∼pH 12), anaerobic zone of a lime kiln waste site. Following retrieval, these samples had undergone partial alkaline hydrolysis and were colonized by a Clostridia-dominated biofilm community, where hydrogenotrophic, alkaliphilic methanogens were also present. When these samples were used to establish an alkaline CDP fed microcosm, the community shifted away from Clostridia, methanogens became undetectable and a flocculate community dominated by Alishewanella sp. established. These flocs were composed of bacteria embedded in polysaccharides and proteins stabilized by extracellular DNA. This community was able to degrade all forms of ISA with >60% of the carbon flow being channelled into extracellular polymeric substance (EPS) production. This study demonstrated that alkaliphilic microbial communities can degrade the CDP associated with some radioactive waste disposal concepts at pH 11. These communities divert significant amounts of degradable carbon to EPS formation, suggesting that EPS has a central role in the protection of these communities from hyperalkaline conditions. PMID:26195600

  1. The enrichment of an alkaliphilic biofilm consortia capable of the anaerobic degradation of isosaccharinic acid from cellulosic materials incubated within an anthropogenic, hyperalkaline environment.

    PubMed

    Charles, C J; Rout, S P; Garratt, E J; Patel, K; Laws, A P; Humphreys, P N

    2015-08-01

    Anthropogenic hyperalkaline sites provide an environment that is analogous to proposed cementitious geological disposal facilities (GDF) for radioactive waste. Under anoxic, alkaline conditions cellulosic wastes will hydrolyze to a range of cellulose degradation products (CDP) dominated by isosaccharinic acids (ISA). In order to investigate the potential for microbial activity in a cementitious GDF, cellulose samples were incubated in the alkaline (∼pH 12), anaerobic zone of a lime kiln waste site. Following retrieval, these samples had undergone partial alkaline hydrolysis and were colonized by a Clostridia-dominated biofilm community, where hydrogenotrophic, alkaliphilic methanogens were also present. When these samples were used to establish an alkaline CDP fed microcosm, the community shifted away from Clostridia, methanogens became undetectable and a flocculate community dominated by Alishewanella sp. established. These flocs were composed of bacteria embedded in polysaccharides and proteins stabilized by extracellular DNA. This community was able to degrade all forms of ISA with >60% of the carbon flow being channelled into extracellular polymeric substance (EPS) production. This study demonstrated that alkaliphilic microbial communities can degrade the CDP associated with some radioactive waste disposal concepts at pH 11. These communities divert significant amounts of degradable carbon to EPS formation, suggesting that EPS has a central role in the protection of these communities from hyperalkaline conditions. PMID:26195600

  2. The sigma factors of Bacillus subtilis.

    PubMed Central

    Haldenwang, W G

    1995-01-01

    The specificity of DNA-dependent RNA polymerase for target promotes is largely due to the replaceable sigma subunit that it carries. Multiple sigma proteins, each conferring a unique promoter preference on RNA polymerase, are likely to be present in all bacteria; however, their abundance and diversity have been best characterized in Bacillus subtilis, the bacterium in which multiple sigma factors were first discovered. The 10 sigma factors thus far identified in B. subtilis directly contribute to the bacterium's ability to control gene expression. These proteins are not merely necessary for the expression of those operons whose promoters they recognize; in many instances, their appearance within the cell is sufficient to activate these operons. This review describes the discovery of each of the known B. subtilis sigma factors, their characteristics, the regulons they direct, and the complex restrictions placed on their synthesis and activities. These controls include the anticipated transcriptional regulation that modulates the expression of the sigma factor structural genes but, in the case of several of the B. subtilis sigma factors, go beyond this, adding novel posttranslational restraints on sigma factor activity. Two of the sigma factors (sigma E and sigma K) are, for example, synthesized as inactive precursor proteins. Their activities are kept in check by "pro-protein" sequences which are cleaved from the precursor molecules in response to intercellular cues. Other sigma factors (sigma B, sigma F, and sigma G) are inhibited by "anti-sigma factor" proteins that sequester them into complexes which block their ability to form RNA polymerase holoenzymes. The anti-sigma factors are, in turn, opposed by additional proteins which participate in the sigma factors' release. The devices used to control sigma factor activity in B, subtilis may prove to be as widespread as multiple sigma factors themselves, providing ways of coupling sigma factor activation to

  3. Bacillus oceanisediminis sp. nov., isolated from marine sediment.

    PubMed

    Zhang, Jianli; Wang, Jiewei; Fang, Caiyuan; Song, Fei; Xin, Yuhua; Qu, Lei; Ding, Kai

    2010-12-01

    A Gram-stain-positive, spore-forming, rod-shaped and aerobic bacterium was isolated from a sediment sample from the South Sea in China. The isolate, designated H2(T), grew at 4-45 °C (optimum 37 °C) and pH 6-10 (optimum pH 7.0). The cell-wall peptidoglycan contained meso-diaminopimelic acid. The major isoprenoid quinone was MK-7 and the polar lipids consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and an unknown aminophospholipid. The major fatty acid was iso-C(15 : 0). The genomic DNA G+C content of strain H2(T) was 44.8mol%. Phylogenetic analysis based on 16S rRNA gene sequences showed that the isolate formed a monophyletic clade with Bacillus firmus IAM 12464(T). DNA-DNA relatedness between the isolate and B. firmus ATCC 14575(T) was low (27.5 %). Strain H2(T) also had a phenotypic profile that readily distinguished it from its closest phylogenetic neighbours. It is evident from the combination of genotypic and phenotypic data that the organism should be classified in a novel species of the genus Bacillus, for which the name Bacillus oceanisediminis sp. nov. is proposed. The type strain is H2(T) (=CGMCC 1.10115(T) =JCM 16506(T)).

  4. Vacuum distillation residue upgrading by an indigenous bacillus cereus

    PubMed Central

    2013-01-01

    Background Biological processing of heavy fractions of crude oils offers less severe process conditions and higher selectivity for refining. Biochemical Processes are expected to be low demand energy processes and certainly ecofriendly. Results A strain of biosurfactant producing bacterium was isolated from an oil contaminated soil at Tehran refinery distillation unit. Based on selected phenotypic and genotypic characteristic including morphology, biochemical proprety, and 16 SrRNA sequencing identified as a novel strain of Bacillus cereus (JQ178332). This bacterium endures a wide range of pH, salinity and temperature. This specific strain utilizes both paraffin and anthracene as samples of aliphatic and polycyclic aromatic hydrocarbons. The ability of this bacterium to acquire all its energy and chemical requirements from Vacuum Distillation Residue (VR), as a net sample of problematic hydrocarbons in refineries, was studied. SARA test ASTM D4124-01 revealed 65.5% decrease in asphaltenic, 22.1% in aliphatics and 30.3% in Aromatics content of the VR in MSM medium. Further results with 0.9% saline showed 55% decrease in asphaltene content and 2.1% Aromatics respectively. Conclusion Remarkable abilities of this microorganism propose its application in an ecofriendly technology to upgrade heavy crude oils. PMID:24499629

  5. Bacillus halodurans Strain C125 Encodes and Synthesizes Enzymes from Both Known Pathways To Form dUMP Directly from Cytosine Deoxyribonucleotides.

    PubMed

    Oehlenschlæger, Christian Berg; Løvgreen, Monika Nøhr; Reinauer, Eva; Lehtinen, Emilia; Pind, Marie-Louise Lindberg; Harris, Pernille; Martinussen, Jan; Willemoës, Martin

    2015-05-15

    Analysis of the genome of Bacillus halodurans strain C125 indicated that two pathways leading from a cytosine deoxyribonucleotide to dUMP, used for dTMP synthesis, were encoded by the genome of the bacterium. The genes that were responsible, the comEB gene and the dcdB gene, encoding dCMP deaminase and the bifunctional dCTP deaminase:dUTPase (DCD:DUT), respectively, were both shown to be expressed in B. halodurans, and both genes were subject to repression by the nucleosides thymidine and deoxycytidine. The latter nucleoside presumably exerts its repression after deamination by cytidine deaminase. Both comEB and dcdB were cloned, overexpressed in Escherichia coli, and purified to homogeneity. Both enzymes were active and displayed the expected regulatory properties: activation by dCTP for dCMP deaminase and dTTP inhibition for both enzymes. Structurally, the B. halodurans enzyme resembled the Mycobacterium tuberculosis enzyme the most. An investigation of sequenced genomes from other species of the genus Bacillus revealed that not only the genome of B. halodurans but also the genomes of Bacillus pseudofirmus, Bacillus thuringiensis, Bacillus hemicellulosilyticus, Bacillus marmarensis, Bacillus cereus, and Bacillus megaterium encode both the dCMP deaminase and the DCD:DUT enzymes. In addition, eight dcdB homologs from Bacillus species within the genus for which the whole genome has not yet been sequenced were registered in the NCBI Entrez database.

  6. Bacillus halodurans Strain C125 Encodes and Synthesizes Enzymes from Both Known Pathways To Form dUMP Directly from Cytosine Deoxyribonucleotides

    PubMed Central

    Oehlenschlæger, Christian Berg; Løvgreen, Monika Nøhr; Reinauer, Eva; Lehtinen, Emilia; Pind, Marie-Louise Lindberg; Martinussen, Jan

    2015-01-01

    Analysis of the genome of Bacillus halodurans strain C125 indicated that two pathways leading from a cytosine deoxyribonucleotide to dUMP, used for dTMP synthesis, were encoded by the genome of the bacterium. The genes that were responsible, the comEB gene and the dcdB gene, encoding dCMP deaminase and the bifunctional dCTP deaminase:dUTPase (DCD:DUT), respectively, were both shown to be expressed in B. halodurans, and both genes were subject to repression by the nucleosides thymidine and deoxycytidine. The latter nucleoside presumably exerts its repression after deamination by cytidine deaminase. Both comEB and dcdB were cloned, overexpressed in Escherichia coli, and purified to homogeneity. Both enzymes were active and displayed the expected regulatory properties: activation by dCTP for dCMP deaminase and dTTP inhibition for both enzymes. Structurally, the B. halodurans enzyme resembled the Mycobacterium tuberculosis enzyme the most. An investigation of sequenced genomes from other species of the genus Bacillus revealed that not only the genome of B. halodurans but also the genomes of Bacillus pseudofirmus, Bacillus thuringiensis, Bacillus hemicellulosilyticus, Bacillus marmarensis, Bacillus cereus, and Bacillus megaterium encode both the dCMP deaminase and the DCD:DUT enzymes. In addition, eight dcdB homologs from Bacillus species within the genus for which the whole genome has not yet been sequenced were registered in the NCBI Entrez database. PMID:25746996

  7. Bacillus thuringiensis plants expressing Cry1Ac, Cry2Ab and Cry1F are not toxic to the assassin bug, Zelus renardii

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton and maize delivering insecticidal crystal (Cry) proteins from the bacterium, Bacillus thuringiensis (Bt), have been commercialized since 1996. Bt plants are subjected to environmental risk assessments for non-target organisms, especially natural enemies that suppress pest populations. In th...

  8. Increased toxicity of Bacillus thuringiensis Cry3Aa against Crioceris quatuordecimpunctata, Phaedon brassicae and Colaphellus bowringi by a Tenebrio molitor cadherin fragment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    BACKGROUND: Biopesticides containing Cry insecticidal proteins from the bacterium Bacillus thuringiensis (Bt) are effective against many lepidopteran pests, but there is a lack of Bt-based pesticides to efficiently control important coleopteran pests. Based on the reported increase of Bt toxin olig...

  9. Draft Genome Sequence of Bacillus subtilis ALBA01, a Strain with Antagonistic Activity against the Soilborne Fungal Pathogen of Onion Setophoma terrestris

    PubMed Central

    Tobares, Romina A.; Ducasse, Daniel A.; Smania, Andrea M.

    2016-01-01

    Bacillus subtilis is a nonpathogenic bacterium that lives in soil and has long been used as biological control agent in agriculture. Here, we report the genome sequence of a B. subtilis strain isolated from rhizosphere of onion that shows strong biological activity against the soilborne fungal pathogen Setophoma terrestris. PMID:27257193

  10. Draft Genome Sequence of the Extremely Halophilic Bacillus sp. Strain SB49, Isolated from a Salt Crystallizer Pond of the Little Rann of Kutch, India

    PubMed Central

    Dey, Rinku; Thomas, Manesh; Sherathia, Dharmesh; Dalsania, Trupti; Patel, Ilaxi; Savsani, Kinjal; Ghorai, Sucheta; Vanpariya, Sejal; Sukhadiya, Bhoomika; Mandaliya, Mona; Rupapara, Rupal; Rawal, Priya

    2013-01-01

    Here we report the draft whole-genome sequence (3.72 Mbp) of Bacillus sp. strain SB49, an extremely halophilic bacterium isolated from a salt crystallizer pond of the Little Rann of Kutch in India. Unraveling the genome of this organism will facilitate understanding and isolation of the genes involved in imparting extreme osmotolerance. PMID:24136852

  11. Draft Genome Sequence of Bacillus subtilis ALBA01, a Strain with Antagonistic Activity against the Soilborne Fungal Pathogen of Onion Setophoma terrestris.

    PubMed

    Albarracín Orio, Andrea G; Tobares, Romina A; Ducasse, Daniel A; Smania, Andrea M

    2016-01-01

    Bacillus subtilis is a nonpathogenic bacterium that lives in soil and has long been used as biological control agent in agriculture. Here, we report the genome sequence of a B. subtilis strain isolated from rhizosphere of onion that shows strong biological activity against the soilborne fungal pathogen Setophoma terrestris. PMID:27257193

  12. Genome analysis shows Bacillus axarquiensis is not a later heterotypic synonym of Bacillus mojavensis; reclassification of Bacillus malacitensis and Brevibacterium halotolerans as heterotypic synonyms of Bacillus axarquiensis.

    PubMed

    Dunlap, Christopher A; Bowman, Michael J; Schisler, David A; Rooney, Alejandro P

    2016-06-01

    Bacillus axarquiensis and Bacillus malacitensis were previously reported to be later heterotypic synonyms of Bacillus mojavensis, based primarily on DNA-DNA relatedness values. We have sequenced draft genomes of Bacillus axarquiensis NRRL B-41617T and Bacillus malacitensis NRRL B-41618T. Comparative genomics and DNA-DNA relatedness calculations showed that while Bacillus axarquiensis and Bacillus malacitensis are synonymous with each other, they are not synonymous with Bacillus mojavensis. In addition, a draft genome was completed for Brevibacterium halotolerans, a strain long suspected of being a Bacillus subtilis group member based on 16S rRNA similarities (99.8 % with Bacillus mojavensis). Comparative genomics and DNA-DNA relatedness calculations showed that Brevibacterium halotolerans is synonymous with Bacillus axarquiensis and Bacillus malacitensis. The pairwise in silico DNA-DNA hybridization values calculated in comparisons between the three conspecific strains were all greater than 92 %, which is well above the standard species threshold of 70 %. While the pairwise in silico DNA-DNA hybridization values calculated in comparisons of the three conspecific strains with Bacillus mojavensis were all less than 65 %. The combined results of our genotype and phenotype studies showed that Bacillus axarquiensis, Bacillus malacitensis and Brevibacterium halotolerans are conspecific and distinct from Bacillus mojavensis. Because the valid publication of the name Bacillus axarquiensis predates the publication of the name Bacillus malacitensis, we propose that Bacillus malacitensis be reclassified as a synonym of Bacillus axarquiensis. In addition, we propose to reclassify Brevibacterium halotolerans as a synonym of Bacillus axarquiensis. An amended description of Bacillus axarquiensis is provided. PMID:27030978

  13. Kin discrimination between sympatric Bacillus subtilis isolates.

    PubMed

    Stefanic, Polonca; Kraigher, Barbara; Lyons, Nicholas Anthony; Kolter, Roberto; Mandic-Mulec, Ines

    2015-11-10

    Kin discrimination, broadly defined as differential treatment of conspecifics according to their relatedness, could help biological systems direct cooperative behavior toward their relatives. Here we investigated the ability of the soil bacterium Bacillus subtilis to discriminate kin from nonkin in the context of swarming, a cooperative multicellular behavior. We tested a collection of sympatric conspecifics from soil in pairwise combinations and found that despite their history of coexistence, the vast majority formed distinct boundaries when the swarms met. Some swarms did merge, and most interestingly, this behavior was only seen in the most highly related strain pairs. Overall the swarm interaction phenotype strongly correlated with phylogenetic relatedness, indicative of kin discrimination. Using a subset of strains, we examined cocolonization patterns on plant roots. Pairs of kin strains were able to cocolonize roots and formed a mixed-strain biofilm. In contrast, inoculating roots with pairs of nonkin strains resulted in biofilms consisting primarily of one strain, suggestive of an antagonistic interaction among nonkin strains. This study firmly establishes kin discrimination in a bacterial multicellular setting and suggests its potential effect on ecological interactions. PMID:26438858

  14. Kin discrimination between sympatric Bacillus subtilis isolates

    PubMed Central

    Stefanic, Polonca; Kraigher, Barbara; Lyons, Nicholas Anthony; Kolter, Roberto; Mandic-Mulec, Ines

    2015-01-01

    Kin discrimination, broadly defined as differential treatment of conspecifics according to their relatedness, could help biological systems direct cooperative behavior toward their relatives. Here we investigated the ability of the soil bacterium Bacillus subtilis to discriminate kin from nonkin in the context of swarming, a cooperative multicellular behavior. We tested a collection of sympatric conspecifics from soil in pairwise combinations and found that despite their history of coexistence, the vast majority formed distinct boundaries when the swarms met. Some swarms did merge, and most interestingly, this behavior was only seen in the most highly related strain pairs. Overall the swarm interaction phenotype strongly correlated with phylogenetic relatedness, indicative of kin discrimination. Using a subset of strains, we examined cocolonization patterns on plant roots. Pairs of kin strains were able to cocolonize roots and formed a mixed-strain biofilm. In contrast, inoculating roots with pairs of nonkin strains resulted in biofilms consisting primarily of one strain, suggestive of an antagonistic interaction among nonkin strains. This study firmly establishes kin discrimination in a bacterial multicellular setting and suggests its potential effect on ecological interactions. PMID:26438858

  15. A pangenomic study of Bacillus thuringiensis.

    PubMed

    Fang, Yongjun; Li, Zhaolong; Liu, Jiucheng; Shu, Changlong; Wang, Xumin; Zhang, Xiaowei; Yu, Xiaoguang; Zhao, Duojun; Liu, Guiming; Hu, Songnian; Zhang, Jie; Al-Mssallem, Ibrahim; Yu, Jun

    2011-12-20

    Bacillus thuringiensis (B. thuringiensis) is a soil-dwelling Gram-positive bacterium and its plasmid-encoded toxins (Cry) are commonly used as biological alternatives to pesticides. In a pangenomic study, we sequenced seven B. thuringiensis isolates in both high coverage and base-quality using the next-generation sequencing platform. The B. thuringiensis pangenome was extrapolated to have 4196 core genes and an asymptotic value of 558 unique genes when a new genome is added. Compared to the pangenomes of its closely related species of the same genus, B. thuringiensis pangenome shows an open characteristic, similar to B. cereus but not to B. anthracis; the latter has a closed pangenome. We also found extensive divergence among the seven B. thuringiensis genome assemblies, which harbor ample repeats and single nucleotide polymorphisms (SNPs). The identities among orthologous genes are greater than 84.5% and the hotspots for the genome variations were discovered in genomic regions of 2.3-2.8Mb and 5.0-5.6Mb. We concluded that high-coverage sequence assemblies from multiple strains, before all the gaps are closed, are very useful for pangenomic studies. PMID:22196399

  16. A pangenomic study of Bacillus thuringiensis.

    PubMed

    Fang, Yongjun; Li, Zhaolong; Liu, Jiucheng; Shu, Changlong; Wang, Xumin; Zhang, Xiaowei; Yu, Xiaoguang; Zhao, Duojun; Liu, Guiming; Hu, Songnian; Zhang, Jie; Al-Mssallem, Ibrahim; Yu, Jun

    2011-12-20

    Bacillus thuringiensis (B. thuringiensis) is a soil-dwelling Gram-positive bacterium and its plasmid-encoded toxins (Cry) are commonly used as biological alternatives to pesticides. In a pangenomic study, we sequenced seven B. thuringiensis isolates in both high coverage and base-quality using the next-generation sequencing platform. The B. thuringiensis pangenome was extrapolated to have 4196 core genes and an asymptotic value of 558 unique genes when a new genome is added. Compared to the pangenomes of its closely related species of the same genus, B. thuringiensis pangenome shows an open characteristic, similar to B. cereus but not to B. anthracis; the latter has a closed pangenome. We also found extensive divergence among the seven B. thuringiensis genome assemblies, which harbor ample repeats and single nucleotide polymorphisms (SNPs). The identities among orthologous genes are greater than 84.5% and the hotspots for the genome variations were discovered in genomic regions of 2.3-2.8Mb and 5.0-5.6Mb. We concluded that high-coverage sequence assemblies from multiple strains, before all the gaps are closed, are very useful for pangenomic studies.

  17. Transduction in Bacillus subtilis.

    PubMed

    THORNE, C B

    1962-01-01

    Thorne, Curtis B. (Fort Detrick, Frederick, Md.). Transduction in Bacillus subtilis. J. Bacteriol. 83:106-111. 1962.-A bacteriophage, SP-10, isolated from soil carries out general transduction in Bacillus subtilis. Phage propagated on a streptomycin-resistant mutant of the wild-type strain W-23 was capable of transducing to prototrophy strain 168 (indole(-)), as well as all of the auxotrophic mutants of W-23-S(r) tested, which included mutants requiring arginine, histidine, adenine, guanine, thiamine, leucine, or methionine. Although strain 168 was transduced by phage SP-10, lytic activity on this strain could not be detected and attempts to propagate the phage on it failed. Transductions occurred at frequencies in the range of 10(-6) to 10(-5) per plaque-forming unit. Homologous phage was ineffective, deoxyribonuclease had no effect on the frequency of transduction, and transduction was prevented by the addition of phage antiserum. Phage SP-10 was capable of lysogenizing strain W-23-S(r), and this condition was maintained through repeated growth and sporulation cycles in potato-extract medium. Although heating at 65 C for 60 min inactivated free phage particles, spores retained their lysogenic condition after such heat treatment. When heat-treated spores of the lysogenic cultures were used as inocula for growth in a nutrient broth-yeast extract-glucose medium, filtrates contained 10(9), or more, phage particles per ml.

  18. A serine sensor for multicellularity in a bacterium

    PubMed Central

    Subramaniam, Arvind R; DeLoughery, Aaron; Bradshaw, Niels; Chen, Yun; O’Shea, Erin; Losick, Richard; Chai, Yunrong

    2013-01-01

    We report the discovery of a simple environmental sensing mechanism for biofilm formation in the bacterium Bacillus subtilis that operates without the involvement of a dedicated RNA or protein. Certain serine codons, the four TCN codons, in the gene for the biofilm repressor SinR caused a lowering of SinR levels under biofilm-inducing conditions. Synonymous substitutions of these TCN codons with AGC or AGT impaired biofilm formation and gene expression. Conversely, switching AGC or AGT to TCN codons upregulated biofilm formation. Genome-wide ribosome profiling showed that ribosome density was higher at UCN codons than at AGC or AGU during biofilm formation. Serine starvation recapitulated the effect of biofilm-inducing conditions on ribosome occupancy and SinR production. As serine is one of the first amino acids to be exhausted at the end of exponential phase growth, reduced translation speed at serine codons may be exploited by other microbes in adapting to stationary phase. DOI: http://dx.doi.org/10.7554/eLife.01501.001 PMID:24347549

  19. Bacillus pumilus SAFR-032 isolate

    NASA Technical Reports Server (NTRS)

    Venkateswaran, Kasthuri J. (Inventor)

    2007-01-01

    The present invention relates to discovery and isolation of a biologically pure culture of a Bacillus pumilus SAFR-032 isolate with UV sterilization resistant properties. This novel strain has been characterized on the basis of phenotypic traits, 16S rDNA sequence analysis and DNA-DNA hybridization. According to the results of these analyses, this strain belongs to the genus Bacillus. The GenBank accession number for the 16S rDNA sequence of the Bacillus pumilus SAFR-032 isolate is AY167879.

  20. Complete Genome Sequence of Raoultella ornithinolytica Strain B6, a 2,3-Butanediol-Producing Bacterium Isolated from Oil-Contaminated Soil.

    PubMed

    Shin, Sang Heum; Um, Youngsoon; Beak, Jeong Hun; Kim, Sehwan; Lee, Soojin; Oh, Min-Kyu; Kim, Young-Rok; Lee, Jinwon; Yang, Kap-Seok

    2013-06-27

    Here we report the full genome sequence of Raoultella ornithinolytica strain B6, a Gram-negative aerobic bacillus belonging to the family Enterobacteriaceae. This 2,3-butanediol-producing bacterium was isolated from oil-contaminated soil on Backwoon Mountain in South Korea. Strain B6 contains 5,398,151 bp with 4,909 protein-coding genes, 104 structural RNAs, and 55.88% G+C content.

  1. Isolation of a 250 million-year-old halotolerant bacterium from a primary salt crystal

    NASA Astrophysics Data System (ADS)

    Vreeland, Russell H.; Rosenzweig, William D.; Powers, Dennis W.

    2000-10-01

    Bacteria have been found associated with a variety of ancient samples, however few studies are generally accepted due to questions about sample quality and contamination. When Cano and Borucki isolated a strain of Bacillus sphaericus from an extinct bee trapped in 25-30 million-year-old amber, careful sample selection and stringent sterilization techniques were the keys to acceptance. Here we report the isolation and growth of a previously unrecognized spore-forming bacterium (Bacillus species, designated 2-9-3) from a brine inclusion within a 250million-year-old salt crystal from the Permian Salado Formation. Complete gene sequences of the 16S ribosomal DNA show that the organism is part of the lineage of Bacillus marismortui and Virgibacillus pantothenticus. Delicate crystal structures and sedimentary features indicate the salt has not recrystallized since formation. Samples were rejected if brine inclusions showed physical signs of possible contamination. Surfaces of salt crystal samples were sterilized with strong alkali and acid before extracting brines from inclusions. Sterilization procedures reduce the probability of contamination to less than 1 in 10 9.

  2. Bacillus abyssalis sp. nov., isolated from a sediment of the South China Sea.

    PubMed

    You, Zhi-Qing; Li, Jie; Qin, Sheng; Tian, Xin-Peng; Wang, Fa-Zuo; Zhang, Si; Li, Wen-Jun

    2013-05-01

    A Gram-positive bacterium, designated SCSIO 15042(T), was isolated from a sediment of the South China Sea and was subjected to a polyphasic taxonomic study. The isolate grew at 20-60 °C, pH 6.0-10.0 and it could grow with up to 10 % (w/v) NaCl. The cell-wall diamino acid was found to be meso-diaminopimelic acid. Polar lipids were found to be diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine and an unknown polar lipid. The only menaquinone was determined to be MK-7. The major fatty acids were identified as C16:1 ω7c/C16:1 ω6c, C16:0, iso-C15:0, anteiso-C15:0, and iso-C16:0. The DNA G+C content of strain SCSIO 15042(T) was determined to be 43.1 mol%. Phylogenetic analysis based on 16S rRNA gene sequences affiliated strain SCSIO 15042(T) to the genus Bacillus. Levels of 16S rRNA gene sequence similarities between strain SCSIO 15042(T) and Bacillus herbersteinensis D-1-5a(T), Bacillus infantis SMC 4352-1(T), Bacillus novalis LMG 21837(T) and Bacillus drentensis LMG 21831(T) were 96.2, 96.2, 96.1 and 96.1 %, respectively. Based on the evidence of the present polyphasic study, strain SCSIO 15042(T) is considered to represent a novel species of the genus Bacillus, for which the name Bacillus abyssalis sp. nov. is proposed. The type strain is SCSIO 15042(T) (=DSM 25875(T) = CCTCC AB 2012074(T) = NBRC 109102(T)).

  3. Isolation, Partial Purification and Characterization of an Antimicrobial Compound, Produced by Bacillus atrophaeus

    PubMed Central

    Ebrahimipour, Gholam Hossein; Khosravibabadi, Zahra; Sadeghi, Hossein; Aliahmadi, Atusa

    2014-01-01

    Background: Antibiotics are usually assumed as secondary metabolites produced during the idiophase of microbial growth, which can kill or inhibit the growth of other microorganisms. Nowadays, indiscriminate use of antibiotics has resulted in resistant microorganisms. Therefore, screening researches on products with antimicrobial activities are necessary. Objectives: To find new antibiotics to defend against pathogenic microorganisms resistant to common antibiotics, the bacterium isolated from skin of the frog called Rana ridibunda was studied for its antimicrobial activities. Materials and Methods: An antibiotic-producing bacterium was isolated from the frog skin. The bacterium was identified based on 16SrDNA sequencing and biochemical and morphological characteristics. Antimicrobial activity of the culture supernatant was examined against laboratorial standard bacteria by disc diffusion and minimum inhibitory concentration (MIC) methods. To characterize the produced antimicrobial compound, the culture supernatant of the bacterium was washed by chloroform and dried at 40°C; then, the antimicrobial substance was extracted by methanol and acetone and detected by bioautography on silica gel plates. Dialysis tube was used to find the molecular weight of this substance. Results: The isolated bacterium was identified as a new strain of Bacillus atrophaeus. The antimicrobial substance exhibited heat stability between 25ºC and 100ºC and was active in a broad pH range from 2.0 to 11.0. The bioautography assay showed that methanol was the optimum solvent for the extraction of antimicrobial substance. The dialysis tube indicated that the antimicrobial substance weight was less than 1 kDa and the compound did not precipitate with ammonium sulfate. Conclusions: This study showed that some properties of antimicrobial substances produced by the GA strain differed from other peptide antibiotics produced by the genus Bacillus such as bacitracin, which increases the likelihood of

  4. Bacillus thuringiensis (Bt)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Bacillus thuringiensis (Bt), a natural bacteria found all over the Earth, has a fairly novel way of getting rid of unwanted insects. Bt forms a protein substance (shown on the right) that is not harmful to humans, birds, fish or other vertebrates. When eaten by insect larvae the protein causes a fatal loss of appetite. For over 25 years agricultural chemical companies have relied heavily upon safe Bt pesticides. New space based research promises to give the insecticide a new dimension in effectiveness and applicability. Researchers from the Consortium for Materials Development in Space along with industrial affiliates such as Abott Labs and Pern State University flew Bt on a Space Shuttle mission in the fall of 1996. Researchers expect that the Shuttle's microgravity environment will reveal new information about the protein that will make it more effective against a wider variety of pests.

  5. Thermotolerant Bacillus licheniformis TY7 produces optically active l-lactic acid from kitchen refuse under open condition.

    PubMed

    Sakai, Kenji; Yamanami, Tetsuya

    2006-08-01

    A thermotolerant l-lactic-acid-producing bacterium was isolated and identified as Bacillus licheniformis TY7. TY7 shows optimum growth at pH 6.5 at 30 degrees C and normal growth up to 65 degrees C. Using nonsterile kitchen refuse at 50 degrees C, the strain produced 40 g/ll-lactic acid with 97% optical activity and 2.5 g/lxh productivity.

  6. Wenzhouxiangella marina gen. nov, sp. nov, a marine bacterium from the culture broth of Picochlorum sp. 122, and proposal of Wenzhouxiangellaceae fam. nov. in the order Chromatiales.

    PubMed

    Wang, Guanghua; Tang, Mingxing; Li, Tao; Dai, Shikun; Wu, Huanlian; Chen, Chenghao; He, Hui; Fan, Jiewei; Xiang, Wenzhou; Li, Xiang

    2015-06-01

    A Gram-stain negative, non-motile, non-phototrophic, non-alkaliphilic, obligately aerobic, chemoheterotrophic, and rod-shaped bacterium, designated strain Ma-11(T), was isolated from the culture broth of a marine microalga, Picochloruma sp. 122. Phylogenetic analyses showed that strain Ma-11(T) has less than 91 % similarity to its closest relative, Thioalkalivibrio sulfidiphilus HL-EbGR7(T), represents a distinct phylogenetic lineage in the order Chromatiales, and could not be assigned to any defined families in this order. Chemotaxonomic, genetic and physiological characteristics, including major fatty acids, genomic G+C content, lack of motility, aerophilicity and chemoheterotrophicity, could readily distinguish strain Ma-11(T) from any established members of the order Chromatiales. Based on the 16S rRNA gene sequence analysis and its signature nucleotide pattern, a new family Wenzhouxiangellaceae fam. nov. comprising the genus Wenzhouxiangella gen. nov. and species Wenzhouxiangella marina sp. nov. is proposed. The type strain is Ma-11(T) (=CGMCC 1.14936(T) = KCTC 42284(T) = MCCC 1K00261(T)).

  7. CHLORINE INACTIVATION OF BACILLUS ENDOSPORES

    EPA Science Inventory

    The possibility of a bioterrorism event resulting in the release of Bacillus anthracis endospores into a drinking water distribution system necessitates research into means by which these endospores can be inactivated. This study was designed to determine the chlorine resistance...

  8. A novel strategy for acetonitrile wastewater treatment by using a recombinant bacterium with biofilm-forming and nitrile-degrading capability.

    PubMed

    Li, Chunyan; Yue, Zhenlei; Feng, Fengzhao; Xi, Chuanwu; Zang, Hailian; An, Xuejiao; Liu, Keran

    2016-10-01

    There is a great need for efficient acetonitrile removal technology in wastewater treatment to reduce the discharge of this pollutant in untreated wastewater. In this study, a nitrilase gene (nit) isolated from a nitrile-degrading bacterium (Rhodococcus rhodochrous BX2) was cloned and transformed into a biofilm-forming bacterium (Bacillus subtilis N4) that expressed the recombinant protein upon isopropylthio-β-galactoside (IPTG) induction. The recombinant bacterium (B. subtilis N4-pHT01-nit) formed strong biofilms and had nitrile-degrading capability. Further testing demonstrated that biofilms formed by B. subtilis N4-pHT01-nit were highly resistant to loading shock from acetonitrile and almost completely degraded the initial concentration of acetonitrile (800 mg L(-1)) within 24 h in a moving bed biofilm reactor (MBBR) after operation for 35 d. The bacterial composition of the biofilm, identified by high-throughput sequencing, in a reactor in which the B. subtilis N4-pHT01-nit bacterium was introduced indicated that the engineered bacterium was successfully immobilized in the reactor and became dominant genus. This work demonstrates that an engineered bacterium with nitrile-degrading and biofilm-forming capacity can improve the degradation of contaminants in wastewater. This approach offers a novel strategy for enhancing the biological oxidation of toxic pollutants in wastewater.

  9. Bacillus subtilis biosensor engineered to assess meat spoilage.

    PubMed

    Daszczuk, Alicja; Dessalegne, Yonathan; Drenth, Ismaêl; Hendriks, Elbrich; Jo, Emeraldo; van Lente, Tom; Oldebesten, Arjan; Parrish, Jonathon; Poljakova, Wlada; Purwanto, Annisa A; van Raaphorst, Renske; Boonstra, Mirjam; van Heel, Auke; Herber, Martijn; van der Meulen, Sjoerd; Siebring, Jeroen; Sorg, Robin A; Heinemann, Matthias; Kuipers, Oscar P; Veening, Jan-Willem

    2014-12-19

    Here, we developed a cell-based biosensor that can assess meat freshness using the Gram-positive model bacterium Bacillus subtilis as a chassis. Using transcriptome analysis, we identified promoters that are specifically activated by volatiles released from spoiled meat. The most strongly activated promoter was PsboA, which drives expression of the genes required for the bacteriocin subtilosin. Next, we created a novel BioBrick compatible integration plasmid for B. subtilis and cloned PsboA as a BioBrick in front of the gene encoding the chromoprotein amilGFP inside this vector. We show that the newly identified promoter could efficiently drive fluorescent protein production in B. subtilis in response to spoiled meat and thus can be used as a biosensor to detect meat spoilage.

  10. The structure and regulation of flagella in Bacillus subtilis

    PubMed Central

    Mukherjee, Sampriti; Kearns, Daniel B.

    2016-01-01

    Bacterial flagellar motility is among the most extensively studied physiological systems in biology but most research has been restricted to using the highly similar Gram negative species Escherichia coli and Salmonella enterica. Here we review the recent advances in the study of flagellar structure and regulation of the distantly-related and genetically-tractable Gram positive bacterium Bacillus subitlis. B. subtilis has a thicker layer of peptidoglycan and lacks the outer membrane of the Gram negative bacteria; thus, not only phylogenetic separation but also differences in fundamental cell architecture contributes to deviations in flagellar structure and regulation. We speculate that a large number of flagella and the absence of a periplasm makes B. subtilis a premier organism for the study of the earliest events in flagellar morphogenesis and type III secretion system. Furthermore, B. subtilis has been instrumental in the study of heterogeneous gene transcription in subpopulations, and flagellar regulation at the translational and functional level. PMID:25251856

  11. Structure of isochorismate synthase DhbC from Bacillus anthracis

    PubMed Central

    Domagalski, M. J.; Tkaczuk, K. L.; Chruszcz, M.; Skarina, T.; Onopriyenko, O.; Cymborowski, M.; Grabowski, M.; Savchenko, A.; Minor, W.

    2013-01-01

    The isochorismate synthase DhbC from Bacillus anthracis is essential for the biosynthesis of the siderophore bacillibactin by this pathogenic bacterium. The structure of the selenomethionine-substituted protein was determined to 2.4 Å resolution using single-wavelength anomalous diffraction. B. anthracis DhbC bears the strongest resemblance to the Escherichia coli isochorismate synthase EntC, which is involved in the biosynthesis of another siderophore, namely enterobactin. Both proteins adopt the characteristic fold of other chorismate-utilizing enzymes, which are involved in the biosynthesis of various products, including siderophores, menaquinone and tryptophan. The conservation of the active-site residues, as well as their spatial arrangement, suggests that these enzymes share a common Mg2+-dependent catalytic mechanism. PMID:23989140

  12. Bacillus subtilis biosensor engineered to assess meat spoilage.

    PubMed

    Daszczuk, Alicja; Dessalegne, Yonathan; Drenth, Ismaêl; Hendriks, Elbrich; Jo, Emeraldo; van Lente, Tom; Oldebesten, Arjan; Parrish, Jonathon; Poljakova, Wlada; Purwanto, Annisa A; van Raaphorst, Renske; Boonstra, Mirjam; van Heel, Auke; Herber, Martijn; van der Meulen, Sjoerd; Siebring, Jeroen; Sorg, Robin A; Heinemann, Matthias; Kuipers, Oscar P; Veening, Jan-Willem

    2014-12-19

    Here, we developed a cell-based biosensor that can assess meat freshness using the Gram-positive model bacterium Bacillus subtilis as a chassis. Using transcriptome analysis, we identified promoters that are specifically activated by volatiles released from spoiled meat. The most strongly activated promoter was PsboA, which drives expression of the genes required for the bacteriocin subtilosin. Next, we created a novel BioBrick compatible integration plasmid for B. subtilis and cloned PsboA as a BioBrick in front of the gene encoding the chromoprotein amilGFP inside this vector. We show that the newly identified promoter could efficiently drive fluorescent protein production in B. subtilis in response to spoiled meat and thus can be used as a biosensor to detect meat spoilage. PMID:25524109

  13. Quorum quenching Bacillus sonorensis isolated from soya sauce fermentation brine.

    PubMed

    Yin, Wai-Fong; Tung, Hun-Jiat; Sam, Choon-Kook; Koh, Chong-Lek; Chan, Kok-Gan

    2012-01-01

    An N-acylhomoserine lactone (AHL)-degrading bacterial strain, L62, was isolated from a sample of fermentation brine of Chinese soya sauce by using rich medium agar supplemented with soya sauce (10% v/v). L62, a rod-shaped Gram positive bacterium with amylolytic activity, was phylogentically related to Bacillus sonorensis by 16S ribosomal DNA and rpoB sequence analyses. B. sonorensis L62 efficiently degraded N-3-oxohexanoyl homoserine lactone and N-octanoylhomoserine lactone. However, the aiiA homologue, encoding an autoinducer inactivation enzyme catalyzing the degradation of AHLs, was not detected in L62, suggesting the presence of a different AHL-degrading gene in L62. To the best of our knowledge, this is the first report of AHL-degrading B. sonorensis from soya sauce liquid state fermentation.

  14. Quorum Quenching Bacillus sonorensis Isolated from Soya Sauce Fermentation Brine

    PubMed Central

    Yin, Wai-Fong; Tung, Hun-Jiat; Sam, Choon-Kook; Koh, Chong-Lek; Chan, Kok-Gan

    2012-01-01

    An N-acylhomoserine lactone (AHL)-degrading bacterial strain, L62, was isolated from a sample of fermentation brine of Chinese soya sauce by using rich medium agar supplemented with soya sauce (10% v/v). L62, a rod-shaped Gram positive bacterium with amylolytic activity, was phylogentically related to Bacillus sonorensis by 16S ribosomal DNA and rpoB sequence analyses. B. sonorensis L62 efficiently degraded N-3-oxohexanoyl homoserine lactone and N-octanoylhomoserine lactone. However, the aiiA homologue, encoding an autoinducer inactivation enzyme catalyzing the degradation of AHLs, was not detected in L62, suggesting the presence of a different AHL-degrading gene in L62. To the best of our knowledge, this is the first report of AHL-degrading B. sonorensis from soya sauce liquid state fermentation. PMID:22666018

  15. Systems Biology of Recombinant Protein Production in Bacillus megaterium

    NASA Astrophysics Data System (ADS)

    Biedendieck, Rebekka; Bunk, Boyke; Fürch, Tobias; Franco-Lara, Ezequiel; Jahn, Martina; Jahn, Dieter

    Over the last two decades the Gram-positive bacterium Bacillus megaterium was systematically developed to a useful alternative protein production host. Multiple vector systems for high yield intra- and extracellular protein production were constructed. Strong inducible promoters were combined with DNA sequences for optimised ribosome binding sites, various leader peptides for protein export and N- as well as C-terminal affinity tags for affinity chromatographic purification of the desired protein. High cell density cultivation and recombinant protein production were successfully tested. For further system biology based control and optimisation of the production process the genomes of two B. megaterium strains were completely elucidated, DNA arrays designed, proteome, fluxome and metabolome analyses performed and all data integrated using the bioinformatics platform MEGABAC. Now, solid theoretical and experimental bases for primary modeling attempts of the production process are available.

  16. The non-redundant Bacillus subtilis (NRSub) database: update 1998.

    PubMed

    Perrière, G; Gouy, M; Gojobori, T

    1998-01-01

    The non-redundant Bacillus subtilis database (NRSub) has been developed in the context of the sequencing project devoted to this bacterium. As this project has reached completion, the whole genome is now available as a single contig. Thanks to the ACNUC database management system and its associated retrieval system Query_win, each functional region of the genome can be accessed individually. Extra annotations have been added such as accession numbers for the genes, locations on the genetic map, codon adaptation index values, as well as cross-references with other collections. NRSub is distributed through anonymous FTP as a text file in EMBL format and as an ACNUC database. It is also possible to access NRSub through two dedicated World Wide Web servers located in France (http://acnuc. univ-lyon1.fr/nrsub/nrsub.html ) and in Japan (http://ddbjs4h.genes. nig.ac.jp/ ). PMID:9399801

  17. Bacillus thuringiensis: a century of research, development and commercial applications.

    PubMed

    Sanahuja, Georgina; Banakar, Raviraj; Twyman, Richard M; Capell, Teresa; Christou, Paul

    2011-04-01

    Bacillus thuringiensis (Bt) is a soil bacterium that forms spores during the stationary phase of its growth cycle. The spores contain crystals, predominantly comprising one or more Cry and/or Cyt proteins (also known as δ-endotoxins) that have potent and specific insecticidal activity. Different strains of Bt produce different types of toxin, each of which affects a narrow taxonomic group of insects. Therefore, Bt toxins have been used as topical pesticides to protect crops, and more recently the proteins have been expressed in transgenic plants to confer inherent pest resistance. Bt transgenic crops have been overwhelmingly successful and beneficial, leading to higher yields and reducing the use of chemical pesticides and fossil fuels. However, their deployment has attracted some criticism particularly with regard to the potential evolution of pest-resistant insect strains. Here, we review recent progress in the development of Bt technology and the countermeasures that have been introduced to prevent the evolution of resistant insect populations.

  18. Isolation and characterization of a thermophilic Bacillus sp. with protease activity isolated from hot spring of Tarabalo, Odisha, India

    PubMed Central

    Panda, Mrunmaya Kumar; Sahu, Mahesh Kumar; Tayung, Kumananda

    2013-01-01

    Background and Objectives Thermophilic bacteria are less studied but important group of microorganisms due to their ability to produce industrial enzymes. Materials and Methods In this study, thermophilic bacteria were isolated from hot spring of Tarabalo, India. A bacterium that could tolerate high temperatures was characterized by morphology, biochemistry and sequencing of its 16S rRNA gene. The isolate was screened for protease and amylase activity. Phylogenetic affiliations and G+C content of the isolate was studied. Results The bacterium with the ability to tolerate high temperatures was identified as Bacillus sp. both by morphology, biochemistry and sequencing of its 16S rRNA gene. BLAST search analysis of the sequence showed maximum identity with Bacillus amyloliquefaciens (99% similarity). Strain exhibited considerable protease activity. Phylogenetic analysis of the isolate revealed close affiliation with thermophilic Bacillus species. The G+C content was found to be 54.7%. Conclusion The study confirmed that the isolated Bacillus sp. to be a true thermophile and could be a source of thermostable protease which can be exploited for pharmaceutical and industrials applications. PMID:23825735

  19. Oceanobacillus-like bacterium isolated from Vyhna travertine spring.

    PubMed

    Pristas, P; Cunderlikova, M; Judova, J

    2014-03-01

    During characterization of autochthonic Vyhna travertine source microflora, several bacterial strains were isolated and characterised. Isolate T6, a halotolerant, moderately alkaliphilic and thermophilic bacterial isolate, was further characterised based on physiological, microbiological and biochemical tests and phylogenetic 16S rRNA analysis. On the basis of the results obtained, the T6 isolate should be placed in the genus Oceanobacillus, and it is probably a prototype of a novel bacterial species. Characterization of the T6 isolate broadens our knowledge on variability of halophilic bacteria of Oceanobacillus genus and expands data on travertine-associated bacterial communities. PMID:24022266

  20. Bacillus paralicheniformis sp. nov., isolated from fermented soybean paste.

    PubMed

    Dunlap, Christopher A; Kwon, Soon-Wo; Rooney, Alejandro P; Kim, Soo-Jin

    2015-10-01

    An isolate of a Gram-stain-positive, facultatively anaerobic, motile, rod-shaped, endospore-forming bacterium was recovered from soybean-based fermented paste. Phylogenetic analysis of the 16S rRNA gene indicated that the strain was most closely related to Bacillus sonorensis KCTC-13918T (99.5 % similarity) and Bacillus licheniformis DSM 13T (99.4 %). In phenotypic characterization, the novel strain was found to grow at 15–60 °C and to tolerate up to 10 % (w/v) NaCl. Furthermore, the strain grew in media with pH 6–11 (optimal growth at pH 7.0–8.0). The predominant cellular fatty acids were anteiso-C15 : 0 (37.7 %) and iso-C15 : 0 (31.5 %). The predominant isoprenoid quinone was menaquinone 7 (MK-7). The cell-wall peptidoglycan contained meso-diaminopimelic acid. A draft genome sequence of the strain was completed and used for phylogenetic analysis. Phylogenomic analysis of all published genomes of species in the B. licheniformis group revealed that strains belonging to B. licheniformis clustered into two distinct groups, with group 1 consisting of B. licheniformis DSM 13T and 11 other strains and group 2 consisting of KJ-16T and four other strains. The DNA G+C content of strain KJ-16T was 45.9 % (determined from the genome sequence). Strain KJ-16T and another strain from group 2 were subsequently characterized using a polyphasic taxonomic approach and compared with strains from group 1 and another closely related species of the genus Bacillus. Based upon the consensus of phylogenetic and phenotypic analyses, we conclude that this strain represents a novel species within the genus Bacillus, for which the name Bacillus paralicheniformis sp. nov. is proposed, with type strain KJ-16T ( = KACC 18426T = NRRL B-65293T). PMID:26296568

  1. Aliidiomarina iranensis sp. nov., a haloalkaliphilic bacterium from a coastal-marine wetland.

    PubMed

    Ali Amoozegar, Mohammad; Shahinpei, Azadeh; Abolhassan Shahzadeh Fazeli, Seyed; Schumann, Peter; Spröer, Cathrin; Ventosa, Antonio

    2016-05-01

    A novel Gram-stain-negative, straight rod-shaped, non-pigmented, slightly halophilic and alkaliphilic bacterium, designated strain GBPy7T, was isolated from a sample of the coastal-marine wetland Gomishan in Iran. Cells of strain GBPy7T were motile. Growth occurred on media with 1-15 % (w/v) NaCl (optimum 3 %), at pH 7-10 (optimum pH 8.5) and at 4-45 °C (optimum 37 °C). Phylogenetic analysis based on 16S rRNA gene sequence comparison indicated that strain GBPy7T belonged to the family Idiomarinaceae. Its closest relatives were Aliidiomarina shirensis AIST (98.1 % 16S rRNA gene sequence similarity) and other Aliidiomarina species (95.9-94.2 %), together with Idiomarina seosinensis CL-SP19T (94.3 %) and Idiomarina fontislapidosi F23T (94.3 %). The major cellular fatty acids of the isolate were iso-C15 : 0, iso-C17 : 0, iso-C17 : 1ω9c and C18 : 1ω7c and its polar lipid profile comprised phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, one unknown phospholipid and one unknown aminophospholipid. Cells of strain GBPy7T contained ubiquinone Q-8. The G+C content of the genomic DNA of this strain was 51.6 mol%. The level of DNA-DNA relatedness between strain GBPy7T and A. shirensis IBRC-M 10414T was 21 %. The physiological, biochemical, genotypic and phylogenetic differences between strain GBPy7T and other previously described taxa indicate that the strain represents a novel species of the genus Aliidiomarina within the family Idiomarinaceae, for which the name Aliidiomarina iranensis sp. nov. is proposed. The type strain is GBPy7T ( = IBRC-M 10763T = CECT 8339T). PMID:26928783

  2. Aliidiomarina iranensis sp. nov., a haloalkaliphilic bacterium from a coastal-marine wetland.

    PubMed

    Ali Amoozegar, Mohammad; Shahinpei, Azadeh; Abolhassan Shahzadeh Fazeli, Seyed; Schumann, Peter; Spröer, Cathrin; Ventosa, Antonio

    2016-05-01

    A novel Gram-stain-negative, straight rod-shaped, non-pigmented, slightly halophilic and alkaliphilic bacterium, designated strain GBPy7T, was isolated from a sample of the coastal-marine wetland Gomishan in Iran. Cells of strain GBPy7T were motile. Growth occurred on media with 1-15 % (w/v) NaCl (optimum 3 %), at pH 7-10 (optimum pH 8.5) and at 4-45 °C (optimum 37 °C). Phylogenetic analysis based on 16S rRNA gene sequence comparison indicated that strain GBPy7T belonged to the family Idiomarinaceae. Its closest relatives were Aliidiomarina shirensis AIST (98.1 % 16S rRNA gene sequence similarity) and other Aliidiomarina species (95.9-94.2 %), together with Idiomarina seosinensis CL-SP19T (94.3 %) and Idiomarina fontislapidosi F23T (94.3 %). The major cellular fatty acids of the isolate were iso-C15 : 0, iso-C17 : 0, iso-C17 : 1ω9c and C18 : 1ω7c and its polar lipid profile comprised phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, one unknown phospholipid and one unknown aminophospholipid. Cells of strain GBPy7T contained ubiquinone Q-8. The G+C content of the genomic DNA of this strain was 51.6 mol%. The level of DNA-DNA relatedness between strain GBPy7T and A. shirensis IBRC-M 10414T was 21 %. The physiological, biochemical, genotypic and phylogenetic differences between strain GBPy7T and other previously described taxa indicate that the strain represents a novel species of the genus Aliidiomarina within the family Idiomarinaceae, for which the name Aliidiomarina iranensis sp. nov. is proposed. The type strain is GBPy7T ( = IBRC-M 10763T = CECT 8339T).

  3. Bacillus thuringiensis subsp. israelensis and Its Dipteran-Specific Toxins

    PubMed Central

    Ben-Dov, Eitan

    2014-01-01

    Bacillus thuringiensis subsp. israelensis (Bti) is the first Bacillus thuringiensis to be found and used as an effective biological control agent against larvae of many mosquito and black fly species around the world. Its larvicidal activity resides in four major (of 134, 128, 72 and 27 kDa) and at least two minor (of 78 and 29 kDa) polypeptides encoded respectively by cry4Aa, cry4Ba, cry11Aa, cyt1Aa, cry10Aa and cyt2Ba, all mapped on the 128 kb plasmid known as pBtoxis. These six δ-endotoxins form a complex parasporal crystalline body with remarkably high, specific and different toxicities to Aedes, Culex and Anopheles larvae. Cry toxins are composed of three domains (perforating domain I and receptor binding II and III) and create cation-selective channels, whereas Cyts are composed of one domain that acts as well as a detergent-like membrane perforator. Despite the low toxicities of Cyt1Aa and Cyt2Ba alone against exposed larvae, they are highly synergistic with the Cry toxins and hence their combinations prevent emergence of resistance in the targets. The lack of significant levels of resistance in field mosquito populations treated for decades with Bti-bioinsecticide suggests that this bacterium will be an effective biocontrol agent for years to come. PMID:24686769

  4. Transport of Bacillus thuringiensis var. kurstaki via fomites.

    PubMed

    Van Cuyk, Sheila; Veal, Lee Ann B; Simpson, Beverley; Omberg, Kristin M

    2011-09-01

    The intentional and controlled release of an aerosolized bacterium provides an opportunity to investigate the implications of a biological attack. Since 2006, Los Alamos National Laboratory has worked with several urban areas, including Fairfax County, VA, to design experiments to evaluate biodefense concepts of operations using routine spraying of Bacillus thuringiensis var. kurstaki (Btk). Btk is dispersed in large quantities as a slurry to control the gypsy moth, Lymantria dispar. Understanding whether personnel and equipment pick up residual contamination during sampling activities and transport it to other areas is critical for the formulation of appropriate response and recovery plans. While there is a growing body of literature surrounding the transmission of viral diseases via fomites, there is limited information on the transport of Bacillus species via this route. In 2008, LANL investigated whether field sampling activities conducted near sprayed areas, post-spray, resulted in measurable cross-contamination of sampling personnel, equipment, vehicles, and hotel rooms. Viable Btk was detected in all sample types, indicating transport of the agent occurred via fomites.

  5. Bacillus thuringiensis subsp. israelensis and its dipteran-specific toxins.

    PubMed

    Ben-Dov, Eitan

    2014-03-28

    Bacillus thuringiensis subsp. israelensis (Bti) is the first Bacillus thuringiensis to be found and used as an effective biological control agent against larvae of many mosquito and black fly species around the world. Its larvicidal activity resides in four major (of 134, 128, 72 and 27 kDa) and at least two minor (of 78 and 29 kDa) polypeptides encoded respectively by cry4Aa, cry4Ba, cry11Aa, cyt1Aa, cry10Aa and cyt2Ba, all mapped on the 128 kb plasmid known as pBtoxis. These six δ-endotoxins form a complex parasporal crystalline body with remarkably high, specific and different toxicities to Aedes, Culex and Anopheles larvae. Cry toxins are composed of three domains (perforating domain I and receptor binding II and III) and create cation-selective channels, whereas Cyts are composed of one domain that acts as well as a detergent-like membrane perforator. Despite the low toxicities of Cyt1Aa and Cyt2Ba alone against exposed larvae, they are highly synergistic with the Cry toxins and hence their combinations prevent emergence of resistance in the targets. The lack of significant levels of resistance in field mosquito populations treated for decades with Bti-bioinsecticide suggests that this bacterium will be an effective biocontrol agent for years to come.

  6. Systems biology of recombinant protein production using Bacillus megaterium.

    PubMed

    Biedendieck, Rebekka; Borgmeier, Claudia; Bunk, Boyke; Stammen, Simon; Scherling, Christian; Meinhardt, Friedhelm; Wittmann, Christoph; Jahn, Dieter

    2011-01-01

    The Gram-negative bacterium Escherichia coli is the most widely used production host for recombinant proteins in both academia and industry. The Gram-positive bacterium Bacillus megaterium represents an increasingly used alternative for high yield intra- and extracellular protein synthesis. During the past two decades, multiple tools including gene expression plasmids and production strains have been developed. Introduction of free replicating and integrative plasmids into B. megaterium is possible via protoplasts transformation or transconjugation. Using His(6)- and StrepII affinity tags, the intra- or extracellular produced proteins can easily be purified in one-step procedures. Different gene expression systems based on the xylose controlled promoter P(xylA) and various phage RNA polymerase (T7, SP6, K1E) driven systems enable B. megaterium to produce up to 1.25g of recombinant protein per liter. Biomass concentrations of up to 80g/l can be achieved by high cell density cultivations in bioreactors. Gene knockouts and gene replacements in B. megaterium are possible via an optimized gene disruption system. For a safe application in industry, sporulation and protease-deficient as well as UV-sensitive mutants are available. With the help of the recently published B. megaterium genome sequence, it is possible to characterize bottle necks in the protein production process via systems biology approaches based on transcriptome, proteome, metabolome, and fluxome data. The bioinformatical platform (Megabac, http://www.megabac.tu-bs.de) integrates obtained theoretical and experimental data. PMID:21943898

  7. Highly selective antibacterial activities of silver nanoparticles against Bacillus subtilis.

    PubMed

    Li, Ju; Rong, Kaifeng; Zhao, Huiping; Li, Fei; Lu, Zhong; Chen, Rong

    2013-10-01

    Silver nanoparticles (AgNPs) with different sizes (5, 15 and 55 nm) were synthesized via simple method, and characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), energy-dispersive X-ray microanalysis (EDX) and ultraviolet-visible absorption spectroscopy (UV-Vis). The antibacterial activities of the prepared AgNPs against Gram-negative Escherichia coli (E. coli), Gram-positive Staphylococcus aureus (S. aureus) and Bacillus subtilis (B. subtilis) were evaluated by inhibition zone, inhibition curve, and colony counting methods. The results showed that the AgNPs exhibited obvious bacterium-selective and size-dependent antibacterial activities. The Gram-positive bacteria S. aureus and B. subtilis were more sensitive to AgNPs than Gram-negative bacterium E. coli. Interestingly, AgNPs displayed remarkably antibacterial activities against B. subtilis among Gram-positive bacteria, regardless of whether in separately or cocultured bacteria. It also showed that AgNPs with 5 nm in size presented the highest antibacterial activity against both Gram-negative and Gram-positive bacteria. The effects of AgNPs on the membrane leakage of the reducing sugars from three bacteria were also measured by 3,5-dinitrosalicylic acid method. The leakage amount of reducing sugars from B. subtilis was the highest among the tested bacteria, indicating that AgNPs could damage the structure of bacteria cell membrane and resulted in the leakage of reducing sugars, leading to the death of bacteria.

  8. Bacillus plakortidis sp. nov. and Bacillus murimartini sp. nov., novel alkalitolerant members of rRNA group 6.

    PubMed

    Borchert, Martin S; Nielsen, Preben; Graeber, Ingeborg; Kaesler, Ines; Szewzyk, Ulrich; Pape, Thomas; Antranikian, Garabed; Schäfer, Thomas

    2007-12-01

    The Gram-positive, alkali- and salt-tolerant marine bacterium strain P203(T) is described together with its closest phylogenetic neighbour, terrestrial isolate LMG 21005(T). Strain P203(T) was isolated from material from the sponge Plakortis simplex that was obtained from the Sula-Ridge, Norwegian Sea. Strain LMG 21005(T) was an undescribed strain that was isolated from a church wall mural in Germany. Strains P203(T) and LMG 21005(T) were identified as novel alkalitolerant members of the Bacillus rRNA group 6 with a 16S rRNA gene sequence similarity of 99.5 %. The closest described neighbour, Bacillus gibsonii DSM 8722(T), showed 99.0 % gene sequence similarity with P203(T) and 98.8 % similarity with strain LMG 21005(T). Despite the high 16S rRNA gene sequence similarity, DNA-DNA cross-hybridization revealed only 25.8-34.1 % similarity amongst the three strains. The DNA G+C contents were 41.1 mol% for strain P203(T) and 39.6 mol% for strain LMG 21005(T). Both strains grew well between pH 7 and pH 11. Strain P203(T) showed growth at moderate temperatures (from 4 to 30 degrees C) and in the presence of up to 12 % (w/v) NaCl at pH 9.7, whereas strain LMG 21005(T) was not salt tolerant (up to 4 % NaCl) and no growth was observed at 4 degrees C. The major fatty acids of strains P203(T), LMG 21005(T) and the type strain of B. gibsonii were the saturated terminally methyl-branched compounds iso-C(15 : 0) (19.8, 15.6 and 28.0 %, respectively) and anteiso-C(15 : 0) (57.1, 48.6 and 45.2 %, respectively). Physiological and biochemical tests allowed genotypic and phenotypic differentiation of strains P203(T) and LMG 21005(T) from the six related Bacillus species with validly published names and supported the proposal of two novel species, Bacillus plakortidis [type strain P203(T) (=DSM 19153(T)=NCIMB 14288(T))] and Bacillus murimartini [type strain LMG 21005(T) (=NCIMB 14102(T))]. PMID:18048744

  9. Bacillus vanillea sp. nov., Isolated from the Cured Vanilla Bean.

    PubMed

    Chen, Yong-gan; Gu, Feng-lin; Li, Ji-hua; Xu, Fei; He, Shu-zhen; Fang, Yi-ming

    2015-02-01

    A Gram-positive bacterium, designated strain XY18(T), was isolated from a cured vanilla bean in Hainan province, China. Cells were rod-shaped, endospore producing, and peritrichous flagella. Strain XY18(T) grew at salinities of 0-8 % (w/v) NaCl (optimally 1-4 %), pH 4.0-8.0 (optimally 5.0-7.0 %) and temperature range 20-45 °C (optimally 28-35 °C). The predominant menaquinone was MK-7. The major cellular fatty acids were anteiso-C15:0, iso-C15:0, anteiso-C17:0, and iso-C17:0. Phylogenetic analysis based on 16S rRNA gene sequence indicated that strain XY18(T) was a member of the genus Bacillus, and closely related to B. amyloliquefaciens NBRC 15535(T) and B. siamensis PD-A10(T), with 99.1 and 99.2 % sequence similarity, respectively. However, the DNA-DNA hybridization value between strain XY18(T) and B. amyloliquefaciens NBRC 15535(T) was 35.7 %. The genomic DNA G+C content of strain XY18(T) was 46.4 mol%, significantly differed from B. siamensis PD-A10(T) (41.4 %), which was higher than the range of 4 % indicative of species. On the basis of polyphasic taxonomic study, including phenotypic features, chemotaxonomy, and phylogenetic analyses, strain XY18(T) represents a novel species within the genus Bacillus, for which the name Bacillus vanillea sp. nov. is proposed. The type strain is XY18(T) (=CGMCC 8629 = NCCB 100507). PMID:25292250

  10. Bacillus vanillea sp. nov., Isolated from the Cured Vanilla Bean.

    PubMed

    Chen, Yong-gan; Gu, Feng-lin; Li, Ji-hua; Xu, Fei; He, Shu-zhen; Fang, Yi-ming

    2015-02-01

    A Gram-positive bacterium, designated strain XY18(T), was isolated from a cured vanilla bean in Hainan province, China. Cells were rod-shaped, endospore producing, and peritrichous flagella. Strain XY18(T) grew at salinities of 0-8 % (w/v) NaCl (optimally 1-4 %), pH 4.0-8.0 (optimally 5.0-7.0 %) and temperature range 20-45 °C (optimally 28-35 °C). The predominant menaquinone was MK-7. The major cellular fatty acids were anteiso-C15:0, iso-C15:0, anteiso-C17:0, and iso-C17:0. Phylogenetic analysis based on 16S rRNA gene sequence indicated that strain XY18(T) was a member of the genus Bacillus, and closely related to B. amyloliquefaciens NBRC 15535(T) and B. siamensis PD-A10(T), with 99.1 and 99.2 % sequence similarity, respectively. However, the DNA-DNA hybridization value between strain XY18(T) and B. amyloliquefaciens NBRC 15535(T) was 35.7 %. The genomic DNA G+C content of strain XY18(T) was 46.4 mol%, significantly differed from B. siamensis PD-A10(T) (41.4 %), which was higher than the range of 4 % indicative of species. On the basis of polyphasic taxonomic study, including phenotypic features, chemotaxonomy, and phylogenetic analyses, strain XY18(T) represents a novel species within the genus Bacillus, for which the name Bacillus vanillea sp. nov. is proposed. The type strain is XY18(T) (=CGMCC 8629 = NCCB 100507).

  11. [Isolation and Identification of Petroleum Degradation Bacteria and Interspecific Interactions Among Four Bacillus Strains].

    PubMed

    Wang, Jia-nan; Shi, Yan-yun; Zheng, Li-yan; Wang, Zhe; Cai, Zhang; Liu, Jie

    2015-06-01

    Six petroleum-degrading strains were isolated from oil-contaminated soil at Dagang oil field and oil sewage on Bohai offshore drilling platform in Tianjin using enrichment culture and isolation method. The physiological biochemical test together with 16S rDNA sequencing analysis indicated that they belonged to Bacillus (S1, S2, S3, S4), Pseudomonas (W1) and Ochrobactrum (W2), respectively. The strain S3 had the maximum degradation rate of alkane (41.3%) and aromatic hydrocarbon (30.9%) among all isolated strains showing the better degradation efficiency by endogenous bacteria when compared to that by the exogenous bacteria. The four Bacillus strains were used to construct microbiome, thereafter subjected to petroleum degradation efficiency test and analyzed. The results showed that microbiome F3 consisting of S1 and S4 had the maximum degradation rates of alkane (50.5%) and aromatic hydrocarbon (54.0%), which were 69.9% and 156.1% higher than those by single bacterium, respectively. Furthermore, they were 22.1% and 74.6% respectively higher than those by the most optimal degradation bacterium S3. Microbiome F4 consisting of S2 and S3 had the minimum degradation rates of alkane (18.5%) and aromatic hydrocarbon (18.9%) which were 55.3% and 39.0% lower than the degradation rates of single bacterium, respectively. The results also demonstrated that there were both microbial synergy promotion and antagonism inhibition among bacteria of the same genus in the petroleum degradation period. Bacteria with close affinity in Bacillus genus displayed mainly promoted petroleum degradation effect.

  12. [Isolation and Identification of Petroleum Degradation Bacteria and Interspecific Interactions Among Four Bacillus Strains].

    PubMed

    Wang, Jia-nan; Shi, Yan-yun; Zheng, Li-yan; Wang, Zhe; Cai, Zhang; Liu, Jie

    2015-06-01

    Six petroleum-degrading strains were isolated from oil-contaminated soil at Dagang oil field and oil sewage on Bohai offshore drilling platform in Tianjin using enrichment culture and isolation method. The physiological biochemical test together with 16S rDNA sequencing analysis indicated that they belonged to Bacillus (S1, S2, S3, S4), Pseudomonas (W1) and Ochrobactrum (W2), respectively. The strain S3 had the maximum degradation rate of alkane (41.3%) and aromatic hydrocarbon (30.9%) among all isolated strains showing the better degradation efficiency by endogenous bacteria when compared to that by the exogenous bacteria. The four Bacillus strains were used to construct microbiome, thereafter subjected to petroleum degradation efficiency test and analyzed. The results showed that microbiome F3 consisting of S1 and S4 had the maximum degradation rates of alkane (50.5%) and aromatic hydrocarbon (54.0%), which were 69.9% and 156.1% higher than those by single bacterium, respectively. Furthermore, they were 22.1% and 74.6% respectively higher than those by the most optimal degradation bacterium S3. Microbiome F4 consisting of S2 and S3 had the minimum degradation rates of alkane (18.5%) and aromatic hydrocarbon (18.9%) which were 55.3% and 39.0% lower than the degradation rates of single bacterium, respectively. The results also demonstrated that there were both microbial synergy promotion and antagonism inhibition among bacteria of the same genus in the petroleum degradation period. Bacteria with close affinity in Bacillus genus displayed mainly promoted petroleum degradation effect. PMID:26387332

  13. Bacillus zhanjiangensis sp. nov., isolated from an oyster in South China Sea.

    PubMed

    Chen, Yi-Guang; Hu, Song-Ping; Tang, Shu-Kun; He, Jian-Wu; Xiao, Jian-Qing; Zhu, Hong-Yi; Li, Wen-Jun

    2011-03-01

    A novel Gram-stain-positive, motile, catalase- and oxidase-positive, endospore-forming, aerobic, rod-shaped bacterium, designated strain JSM 099021(T), was isolated from an oyster collected from Naozhou Island in the South China Sea. Growth occurred with 0-15% (w/v) NaCl (optimum 2-4%) and at pH 6.0-10.0 (optimum pH 7.5) and at 10-45°C (optimum 30-35°C). meso-Diaminopimelic acid was present in the cell-wall peptidoglycan. The predominant respiratory quinone was menaquinone 7 (MK-7) and the major polar lipids consisted of diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylglycerol. The major cellular fatty acids were anteiso-C15:0, anteiso-C17:0, iso-C15:0 and iso-C16:0. The genomic DNA G + C content was 39.5 mol%. A phylogenetic analysis based on 16S rRNA gene sequences indicated that strain JSM 099021(T) belongs to the genus Bacillus, and was most closely related to the type strains of Bacillus halmapalus (sequence similarity 99.0%), Bacillus horikoshii (98.4%) and Bacillus cohnii (98.0%). The combination of phylogenetic analysis, DNA-DNA hybridization, phenotypic characteristics and chemotaxonomic data supported the proposal that strain JSM 099021(T) represents a new species of the genus Bacillus, for which the name Bacillus zhanjiangensis sp. nov. is proposed. The type strain was JSM 099021(T) (=DSM 23010(T) = KCTC 13713(T)).

  14. Antifungal Activity of Selected Indigenous Pseudomonas and Bacillus from the Soybean Rhizosphere

    PubMed Central

    León, M.; Yaryura, P. M.; Montecchia, M. S.; Hernández, A. I.; Correa, O. S.; Pucheu, N. L.; Kerber, N. L.; García, A. F.

    2009-01-01

    The purpose of this study was to isolate and select indigenous soil Pseudomonas and Bacillus bacteria capable of developing multiple mechanisms of action related to the biocontrol of phytopathogenic fungi affecting soybean crops. The screening procedure consisted of antagonism tests against a panel of phytopathogenic fungi, taxonomic identification, detection by PCR of several genes related to antifungal activity, in vitro detection of the antifungal products, and root colonization assays. Two isolates, identified and designated as Pseudomonas fluorescens BNM296 and Bacillus amyloliquefaciens BNM340, were selected for further studies. These isolates protected plants against the damping-off caused by Pythium ultimum and were able to increase the seedling emergence rate after inoculation of soybean seeds with each bacterium. Also, the shoot nitrogen content was higher in plants when seeds were inoculated with BNM296. The polyphasic approach of this work allowed us to select two indigenous bacterial strains that promoted the early development of soybean plants. PMID:20016811

  15. Thermostable alpha-galactosidase from Bacillus stearothermophilus NUB3621: cloning, sequencing and characterization.

    PubMed

    Fridjonsson, O; Watzlawick, H; Gehweiler, A; Mattes, R

    1999-07-01

    An alpha-galactosidase gene from the thermophilic bacterium Bacillus stearothermophilus NUB3621 was cloned, sequenced, expressed in Escherichia coli and the recombinant protein was purified. The Bacillus enzyme, designated AgaN, is similar to alpha-galactosidases of family 36 in the classification of glycosyl hydrolases. The enzyme was estimated to be a tetramer with a molecular mass of subunits 80.3 kDa. The purified AgaN is thermostable and has a temperature optimum of activity at 75 degrees C and a half-life of inactivation of 19 h at 70 degrees C. AgaN displays high affinity for oligomeric substrates such as melibiose and raffinose and is able to hydrolyze raffinose in the presence of 60% sucrose with high efficiency.

  16. Production, optimization and characterization of fibrinolytic enzyme by Bacillus subtilis RJAS19.

    PubMed

    Kumar, D J Mukesh; Rakshitha, R; Vidhya, M Annu; Jennifer, P Sharon; Prasad, Sandip; Kumar, M Ravi; Kalaichelvan, P T

    2014-04-01

    The present study aimed at the production, purification and characterization of fibrinolytic nattokinase enzyme from the bacteria isolated from natto food. For the purpose, a fibrinolytic bacterium was isolated and identified as Bacillus subtilis based on 16S rDNA sequence analysis. The strain was employed for the production and optimization of fibrinolytic enzyme. The strain showed better enzyme production during 72nd h of incubation time with 50 degrees C at the pH 9. The lactose and peptone were found to be increasing the enzyme production rate. The enzyme produced was purified and also characterized with the help of SDS-PAGE analysis. The activity and stability profile of the purified enzyme was tested against different temperature and pH. The observations suggesting that the potential of fibrinolytic enzyme produced by Bacillus subtilis RJAS 19 for its applications in preventive medicines.

  17. Are nematodes a missing link in the confounded ecology of the entomopathogen Bacillus thuringiensis?

    PubMed

    Ruan, Lifang; Crickmore, Neil; Peng, Donghai; Sun, Ming

    2015-06-01

    Bacillus thuringiensis, which is well known as an entomopathogen, has been accepted by the public as a safe bioinsecticide. The natural ecology of this bacterium has never been particularly clear, with views ranging from it being an obligate pathogen to an opportunist pathogen that can otherwise exist as a soil saprophyte or a plant endophyte. This confusion has recently led to it being considered as an environmental pathogen that has evolved to occupy a diverse set of environmental niches in which it can thrive without needing a host. A significant driving force behind this classification is the fact that B. thuringiensis is found in high numbers in environments that are not occupied by the insect hosts to which it is pathogenic. It is our opinion that the ubiquitous presence of this bacterium in the environment is the result of a variety of vectoring systems, particularly those that include nematodes.

  18. Complete genome sequence of Bacillus thuringiensis YBT-1518, a typical strain with high toxicity to nematodes.

    PubMed

    Wang, Pengxia; Zhang, Chunyi; Guo, Mengmeng; Guo, Suxia; Zhu, Yiguang; Zheng, Jinshui; Zhu, Lei; Ruan, Lifang; Peng, Donghai; Sun, Ming

    2014-02-10

    Bacillus thuringiensis is a ubiquitous spore-forming bacterium and has been widely used as a biopesticide for controlling agricultural insects by the production of insecticidal crystal proteins (ICPs). B. thuringiensis YBT-1518 displays effective toxicity to nematodes. This strain harbors three nematicidal crystal protein genes, including cry55Aa1, cry6Aa2 and cry5Ba2, and also contains multiple potential virulence factors. Here, we report the complete genome sequence of B. thuringiensis YBT-1518, which consists of one circular chromosome and six circular plasmids.

  19. The complete genome sequence of Bacillus thuringiensis serovar Hailuosis YWC2-8.

    PubMed

    Zhu, Jun; Zhang, Qinbin; Cao, Ye; Li, Qiao; Zhu, Zizhong; Wang, Linxia; Li, Ping

    2016-02-10

    Bacillus thuringiensis, a typical aerobic, Gram-positive, spore-forming bacterium, is an important microbial insecticide widely used in the control of agricultural pests. B. thuringiensis serovar Hailuosis YWC2-8 with high insecticidal activity against Diptera and Lepidoptera insects has three insecticidal crystal protein genes, such as cry4Cb2, cry30Ea2, and cry56Aa1. In this study, the complete genome sequence of B. thuringiensis YWC2-8 was analyzed, which contains one circular gapless chromosome and six circular plasmids.

  20. Near complete genome sequence of the animal feed probiotic, Bacillus amyloliquefaciens H57.

    PubMed

    Schofield, Benjamin J; Skarshewski, Adam; Lachner, Nancy; Ouwerkerk, Diane; Klieve, Athol V; Dart, Peter; Hugenholtz, Philip

    2016-01-01

    Bacillus amyloliquefaciens H57 is a bacterium isolated from lucerne for its ability to prevent feed spoilage. Further interest developed when ruminants fed with H57-inoculated hay showed increased weight gain and nitrogen retention relative to controls, suggesting a probiotic effect. The near complete genome of H57 is ~3.96 Mb comprising 16 contigs. Within the genome there are 3,836 protein coding genes, an estimated sixteen rRNA genes and 69 tRNA genes. H57 has the potential to synthesise four different lipopeptides and four polyketide compounds, which are known antimicrobials. This antimicrobial capacity may facilitate the observed probiotic effect. PMID:27602182

  1. Determination of turgor pressure in Bacillus subtilis: a possible role for K+ in turgor regulation.

    PubMed

    Whatmore, A M; Reed, R H

    1990-12-01

    The effects of hypersaline treatment (osmotic upshock) on cell water relations were examined in the Gram-positive bacterium Bacillus subtilis using particle size analysis. Application of the Boyle-van't Hoff relationship (cell volume versus reciprocal of external osmolality) permitted direct determination of turgor pressure, which was approximately 0.75 osmol kg-1 (1.9 MPa) in exponentially growing bacteria in a defined medium. The abolition of turgor pressure immediately after upshock and the subsequent recovery of turgor were investigated. Recovery of turgor was K+ dependent. Calculation of turgor by an alternative method involving spectrophotometric analysis of shrinkage gave somewhat lower estimates of turgor pressure.

  2. Interactions of Bacillus mojavensis and Fusarium verticillioides with a benzoxazolinone (BOA) and its transformation product, APO.

    PubMed

    Bacon, Charles W; Hinton, Dorothy M; Glenn, Anthony E; Macías, Francisco A; Marin, David

    2007-10-01

    The benzoxazolinones, specifically benzoxazolin-2(3H)-one (BOA), are important transformation products of the benzoxazinones that can serve as allelochemicals providing resistance to maize from pathogenic bacteria, fungi, and insects. However, maize pathogens such as Fusarium verticillioides are capable of detoxifying the benzoxazolinones to 2-aminophenol (AP), which is converted to the less toxic N-(2-hydroxyphenyl) malonamic acid (HPMA) and 2-acetamidophenol (HPAA). As biocontrol strategies that utilize a species of endophytic bacterium, Bacillus mojavensis, are considered efficacious as a control of this Fusarium species, the in vitro transformation and effects of BOA on growth of this bacterium was examined relative to its interaction with strains of F. verticillioides. The results showed that a red pigment was produced and accumulated only on BOA-amended media when wild type and the progeny of genetic crosses of F. verticillioides are cultured in the presence of the bacterium. The pigment was identified as 2-amino-3H-phenoxazin-3-one (APO), which is a stable product. The results indicate that the bacterium interacts with the fungus preventing the usual transformation of AP to the nontoxic HPMA, resulting in the accumulation of higher amounts of APO than when the fungus is cultured alone. APO is highly toxic to F. verticillioides and other organisms. Thus, an enhanced biocontrol is suggested by this in vitro study.

  3. Occurrence of Bacillus amyloliquefaciens as a systemic endophyte of vanilla orchids.

    PubMed

    White, James F; Torres, Mónica S; Sullivan, Raymond F; Jabbour, Rabih E; Chen, Qiang; Tadych, Mariusz; Irizarry, Ivelisse; Bergen, Marshall S; Havkin-Frenkel, Daphna; Belanger, Faith C

    2014-11-01

    We report the occurrence of Bacillus amyloliquefaciens in vanilla orchids (Vanilla phaeantha) and cultivated hybrid vanilla (V. planifolia × V. pompona) as a systemic bacterial endophyte. We determined with light microscopy and isolations that tissues of V. phaeantha and the cultivated hybrid were infected by a bacterial endophyte and that shoot meristems and stomatal areas of stems and leaves were densely colonized. We identified the endophyte as B. amyloliquefaciens using DNA sequence data. Since additional endophyte-free plants and seed of this orchid were not available, additional studies were performed on surrogate hosts Amaranthus caudatus, Ipomoea tricolor, and I. purpurea. Plants of A. caudatus inoculated with B. amyloliquefaciens demonstrated intracellular colonization of guard cells and other epidermal cells, confirming the pattern observed in the orchids. Isolations and histological studies suggest that the bacterium may penetrate deeply into developing plant tissues in shoot meristems, forming endospores in maturing tissues. B. amyloliquefaciens produced fungal inhibitors in culture. In controlled experiments using morning glory seedlings we showed that the bacterium promoted seedling growth and reduced seedling necrosis due to pathogens. We detected the gene for phosphopantetheinyl transferase (sfp), an enzyme in the pathway for production of antifungal lipopeptides, and purified the lipopeptide "surfactin" from cultures of the bacterium. We hypothesize that B. amyloliquefaciens is a robust endophyte and defensive mutualist of vanilla orchids. Whether the symbiosis between this bacterium and its hosts can be managed to protect vanilla crops from diseases is a question that should be evaluated in future research. PMID:25060609

  4. Occurrence of Bacillus amyloliquefaciens as a systemic endophyte of vanilla orchids.

    PubMed

    White, James F; Torres, Mónica S; Sullivan, Raymond F; Jabbour, Rabih E; Chen, Qiang; Tadych, Mariusz; Irizarry, Ivelisse; Bergen, Marshall S; Havkin-Frenkel, Daphna; Belanger, Faith C

    2014-11-01

    We report the occurrence of Bacillus amyloliquefaciens in vanilla orchids (Vanilla phaeantha) and cultivated hybrid vanilla (V. planifolia × V. pompona) as a systemic bacterial endophyte. We determined with light microscopy and isolations that tissues of V. phaeantha and the cultivated hybrid were infected by a bacterial endophyte and that shoot meristems and stomatal areas of stems and leaves were densely colonized. We identified the endophyte as B. amyloliquefaciens using DNA sequence data. Since additional endophyte-free plants and seed of this orchid were not available, additional studies were performed on surrogate hosts Amaranthus caudatus, Ipomoea tricolor, and I. purpurea. Plants of A. caudatus inoculated with B. amyloliquefaciens demonstrated intracellular colonization of guard cells and other epidermal cells, confirming the pattern observed in the orchids. Isolations and histological studies suggest that the bacterium may penetrate deeply into developing plant tissues in shoot meristems, forming endospores in maturing tissues. B. amyloliquefaciens produced fungal inhibitors in culture. In controlled experiments using morning glory seedlings we showed that the bacterium promoted seedling growth and reduced seedling necrosis due to pathogens. We detected the gene for phosphopantetheinyl transferase (sfp), an enzyme in the pathway for production of antifungal lipopeptides, and purified the lipopeptide "surfactin" from cultures of the bacterium. We hypothesize that B. amyloliquefaciens is a robust endophyte and defensive mutualist of vanilla orchids. Whether the symbiosis between this bacterium and its hosts can be managed to protect vanilla crops from diseases is a question that should be evaluated in future research.

  5. Bacillamides from a hypersaline microbial mat bacterium.

    PubMed

    Socha, Aaron M; Long, Richard A; Rowley, David C

    2007-11-01

    Chemical studies of a Bacillus endophyticus isolated from a Bahamian hypersaline microbial mat led to the isolation of bacillamides B and C, new tryptamide thiazole metabolites. Bioassay-guided fractionation using a HPLC-UV-MS bioassay technique enabled the detection of these trace fermentation products, and their total structures were elucidated by combined spectroscopic techniques.

  6. Phages preying on Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis: past, present and future.

    PubMed

    Gillis, Annika; Mahillon, Jacques

    2014-07-01

    Many bacteriophages (phages) have been widely studied due to their major role in virulence evolution of bacterial pathogens. However, less attention has been paid to phages preying on bacteria from the Bacillus cereus group and their contribution to the bacterial genetic pool has been disregarded. Therefore, this review brings together the main information for the B. cereus group phages, from their discovery to their modern biotechnological applications. A special focus is given to phages infecting Bacillus anthracis, B. cereus and Bacillus thuringiensis. These phages belong to the Myoviridae, Siphoviridae, Podoviridae and Tectiviridae families. For the sake of clarity, several phage categories have been made according to significant characteristics such as lifestyles and lysogenic states. The main categories comprise the transducing phages, phages with a chromosomal or plasmidial prophage state, γ-like phages and jumbo-phages. The current genomic characterization of some of these phages is also addressed throughout this work and some promising applications are discussed here.

  7. Phages preying on Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis: past, present and future.

    PubMed

    Gillis, Annika; Mahillon, Jacques

    2014-07-01

    Many bacteriophages (phages) have been widely studied due to their major role in virulence evolution of bacterial pathogens. However, less attention has been paid to phages preying on bacteria from the Bacillus cereus group and their contribution to the bacterial genetic pool has been disregarded. Therefore, this review brings together the main information for the B. cereus group phages, from their discovery to their modern biotechnological applications. A special focus is given to phages infecting Bacillus anthracis, B. cereus and Bacillus thuringiensis. These phages belong to the Myoviridae, Siphoviridae, Podoviridae and Tectiviridae families. For the sake of clarity, several phage categories have been made according to significant characteristics such as lifestyles and lysogenic states. The main categories comprise the transducing phages, phages with a chromosomal or plasmidial prophage state, γ-like phages and jumbo-phages. The current genomic characterization of some of these phages is also addressed throughout this work and some promising applications are discussed here. PMID:25010767

  8. Phages Preying on Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis: Past, Present and Future

    PubMed Central

    Gillis, Annika; Mahillon, Jacques

    2014-01-01

    Many bacteriophages (phages) have been widely studied due to their major role in virulence evolution of bacterial pathogens. However, less attention has been paid to phages preying on bacteria from the Bacillus cereus group and their contribution to the bacterial genetic pool has been disregarded. Therefore, this review brings together the main information for the B. cereus group phages, from their discovery to their modern biotechnological applications. A special focus is given to phages infecting Bacillus anthracis, B. cereus and Bacillus thuringiensis. These phages belong to the Myoviridae, Siphoviridae, Podoviridae and Tectiviridae families. For the sake of clarity, several phage categories have been made according to significant characteristics such as lifestyles and lysogenic states. The main categories comprise the transducing phages, phages with a chromosomal or plasmidial prophage state, γ-like phages and jumbo-phages. The current genomic characterization of some of these phages is also addressed throughout this work and some promising applications are discussed here. PMID:25010767

  9. Susceptibilities of Bacillus subtilis, Bacillus cereus, and avirulent Bacillus anthracis spores to liquid biocides.

    PubMed

    Hilgren, J; Swanson, K M J; Diez-Gonzalez, F; Cords, B

    2009-02-01

    The susceptibility of spores of Bacillus subtilis, Bacillus cereus, and avirulent Bacillus anthracis to treatment with hydrogen peroxide, peroxyacetic acid, a peroxy-fatty acid mixture, sodium hypochlorite, and acidified sodium chlorite was investigated. Results indicated that B. cereus spores may be reasonable predictors of B. anthracis spore inactivation by peroxyacetic acid-based biocides. However, B. cereus was not a reliable predictor of B. anthracis inactivation by the other biocides. In studies comparing B. cereus and B. subtilis, B. cereus spores were more resistant (by 1.5 to 2.5 log CFU) than B. subtilis spores to peroxyacetic acid, the peroxy-fatty acid mixture, and acidified sodium chlorite. Conversely, B. subtilis spores were more resistant than B. cereus spores to hydrogen peroxide. These findings indicated the relevance of side-by-side testing of target organisms and potential surrogates against categories of biocides to determine whether both have similar properties and to validate the use of the surrogate microorganisms.

  10. Novel Waddlia Intracellular Bacterium in Artibeus intermedius Fruit Bats, Mexico

    PubMed Central

    Pierlé, Sebastián Aguilar; Morales, Cirani Obregón; Martínez, Leonardo Perea; Ceballos, Nidia Aréchiga; Rivero, Juan José Pérez; Díaz, Osvaldo López; Brayton, Kelly A.

    2015-01-01

    An intracellular bacterium was isolated from fruit bats (Artibeus intermedius) in Cocoyoc, Mexico. The bacterium caused severe lesions in the lungs and spleens of bats and intracytoplasmic vacuoles in cell cultures. Sequence analyses showed it is related to Waddlia spp. (order Chlamydiales). We propose to call this bacterium Waddlia cocoyoc. PMID:26583968

  11. Novel Waddlia Intracellular Bacterium in Artibeus intermedius Fruit Bats, Mexico.

    PubMed

    Pierlé, Sebastián Aguilar; Morales, Cirani Obregón; Martínez, Leonardo Perea; Ceballos, Nidia Aréchiga; Rivero, Juan José Pérez; Díaz, Osvaldo López; Brayton, Kelly A; Setién, Alvaro Aguilar

    2015-12-01

    An intracellular bacterium was isolated from fruit bats (Artibeus intermedius) in Cocoyoc, Mexico. The bacterium caused severe lesions in the lungs and spleens of bats and intracytoplasmic vacuoles in cell cultures. Sequence analyses showed it is related to Waddlia spp. (order Chlamydiales). We propose to call this bacterium Waddlia cocoyoc.

  12. Screening and Selection of Medium Components for Cyclodextrin Glucanotransferase Production by New Alkaliphile Microbacterium terrae KNR 9 Using Plackett-Burman Design.

    PubMed

    Rajput, Kiransinh N; Patel, Kamlesh C; Trivedi, Ujjval B

    2016-01-01

    Cyclodextrin glucanotransferase (CGTase, EC 2.4.1.19) production using new alkaliphile Microbacterium terrae KNR 9 was investigated by submerged fermentation. Statistical screening for components belonging to different categories, namely, soluble and raw starches as carbon sources, complex organic and inorganic nitrogen sources, minerals, a buffering agent, and a surfactant, has been carried out for CGTase production using Plackett-Burman factorial design. To screen out k (19), number of variables, k + 1 (20), number of experiments, were performed. Among the fourteen components screened, four components, namely, soluble starch, corn flour, yeast extract, and K2HPO4, were identified as significant with reference to their concentration effect and corresponding p value. Although soluble starch showed highest significance, comparable significance was also observed with corn flour and hence it was selected as a sole carbon source along with yeast extract and K2HPO4 for further media optimization studies. Using screened components, CGTase production was increased to 45% and 87% at shake flask level and laboratory scale fermenter, respectively, as compared to basal media. PMID:26955489

  13. Screening and Selection of Medium Components for Cyclodextrin Glucanotransferase Production by New Alkaliphile Microbacterium terrae KNR 9 Using Plackett-Burman Design

    PubMed Central

    Rajput, Kiransinh N.; Patel, Kamlesh C.; Trivedi, Ujjval B.

    2016-01-01

    Cyclodextrin glucanotransferase (CGTase, EC 2.4.1.19) production using new alkaliphile Microbacterium terrae KNR 9 was investigated by submerged fermentation. Statistical screening for components belonging to different categories, namely, soluble and raw starches as carbon sources, complex organic and inorganic nitrogen sources, minerals, a buffering agent, and a surfactant, has been carried out for CGTase production using Plackett-Burman factorial design. To screen out k (19), number of variables, k + 1 (20), number of experiments, were performed. Among the fourteen components screened, four components, namely, soluble starch, corn flour, yeast extract, and K2HPO4, were identified as significant with reference to their concentration effect and corresponding p value. Although soluble starch showed highest significance, comparable significance was also observed with corn flour and hence it was selected as a sole carbon source along with yeast extract and K2HPO4 for further media optimization studies. Using screened components, CGTase production was increased to 45% and 87% at shake flask level and laboratory scale fermenter, respectively, as compared to basal media. PMID:26955489

  14. Infections Caused by Actinomyces neuii: A Case Series and Review of an Unusual Bacterium

    PubMed Central

    Zelyas, Nathan; Gee, Susan; Nilsson, Barb; Bennett, Tracy; Rennie, Robert

    2016-01-01

    Background. Actinomyces neuii is a Gram-positive bacillus rarely implicated in human infections. However, its occurrence is being increasingly recognized with the use of improved identification systems. Objective. To analyse A. neuii infections in Alberta, Canada, and review the literature regarding this unusual pathogen. Methods. Cases of A. neuii were identified in 2013-2014 in Alberta. Samples were cultured aerobically and anaerobically. A predominant catalase positive Gram-positive coryneform bacillus with no branching was isolated in each case. Testing was initially done with API-CORYNE® (bioMérieux) and isolates were sent to the Provincial Laboratory for Public Health for further testing. Isolates' identities were confirmed by matrix-assisted laser desorption ionization time-of-flight mass spectrometry microbial identification system (MALDI-TOF MS MIS; bioMérieux) and/or DNA sequencing. Results. Six cases of A. neuii infection were identified. All patients had soft tissue infections; typically, incision and drainage were done followed by a course of antibiotics. Agents used included cephalexin, ertapenem, ciprofloxacin, and clindamycin. All had favourable outcomes. Conclusions. While A. neuii is infrequently recognized, it can cause a diverse array of infections. Increased use of MALDI-TOF MS MIS is leading to increased detection; thus, understanding the pathogenicity of this bacterium and its typical susceptibility profile will aid clinical decision-making. PMID:27366175

  15. Infections Caused by Actinomyces neuii: A Case Series and Review of an Unusual Bacterium.

    PubMed

    Zelyas, Nathan; Gee, Susan; Nilsson, Barb; Bennett, Tracy; Rennie, Robert

    2016-01-01

    Background. Actinomyces neuii is a Gram-positive bacillus rarely implicated in human infections. However, its occurrence is being increasingly recognized with the use of improved identification systems. Objective. To analyse A. neuii infections in Alberta, Canada, and review the literature regarding this unusual pathogen. Methods. Cases of A. neuii were identified in 2013-2014 in Alberta. Samples were cultured aerobically and anaerobically. A predominant catalase positive Gram-positive coryneform bacillus with no branching was isolated in each case. Testing was initially done with API-CORYNE® (bioMérieux) and isolates were sent to the Provincial Laboratory for Public Health for further testing. Isolates' identities were confirmed by matrix-assisted laser desorption ionization time-of-flight mass spectrometry microbial identification system (MALDI-TOF MS MIS; bioMérieux) and/or DNA sequencing. Results. Six cases of A. neuii infection were identified. All patients had soft tissue infections; typically, incision and drainage were done followed by a course of antibiotics. Agents used included cephalexin, ertapenem, ciprofloxacin, and clindamycin. All had favourable outcomes. Conclusions. While A. neuii is infrequently recognized, it can cause a diverse array of infections. Increased use of MALDI-TOF MS MIS is leading to increased detection; thus, understanding the pathogenicity of this bacterium and its typical susceptibility profile will aid clinical decision-making. PMID:27366175

  16. Data supporting functional diversity of the marine bacterium Cobetia amphilecti KMM 296.

    PubMed

    Balabanova, Larissa; Nedashkovskaya, Olga; Podvolotskaya, Anna; Slepchenko, Lubov; Golotin, Vasily; Belik, Alexey; Shevchenko, Ludmila; Son, Oksana; Rasskazov, Valery

    2016-09-01

    Data is presented in support of functionality of hyper-diverse protein families encoded by the Cobetia amphilecti KMM 296 (formerly Cobetia marina KMM 296) genome ("The genome of the marine bacterium Cobetia marina KMM 296 isolated from the mussel Crenomytilus grayanus (Dunker, 1853)" [1]) providing its nutritional versatility, adaptability and biocontrol that could be the basis of the marine bacterium evolutionary and application potential. Presented data include the information of growth and biofilm-forming properties of the food-associated isolates of Pseudomonas, Bacillus, Listeria, Salmonella and Staphylococcus under the conditions of their co-culturing with C. amphilecti KMM 296 to confirm its high inter-species communication and anti-microbial activity. Also included are the experiments on the crude petroleum consumption by C. amphilecti KMM 296 as the sole source of carbon in the presence of sulfate or nitrate to ensure its bioremediation capacity. The multifunctional C. amphilecti KMM 296 genome is a promising source for the beneficial psychrophilic enzymes and essential secondary metabolites. PMID:27508225

  17. Draft Genome Sequences of Four Plant Probiotic Bacillus Strains

    PubMed Central

    Park, Seung-Hwan

    2016-01-01

    Here, we report the whole-genome sequences of four Bacillus strains that exhibit plant probiotic activities. Three of them are the type strains of Bacillus endophyticus, “Bacillus gaemokensis,” and Bacillus trypoxylicola, and the other, Bacillus sp. strain KCTC 13219, should be reclassified into a species belonging to the genus Lysinibacillus. PMID:27174273

  18. Draft Genome Sequence of Bacillus sp. GZT, a 2,4,6-Tribromophenol-Degrading Strain Isolated from the River Sludge of an Electronic Waste-Dismantling Region

    PubMed Central

    Liang, Zhishu; Li, Guiying; Das, Ranjit

    2016-01-01

    Here, we report the draft genome sequence of Bacillus sp. strain GZT, a 2,4,6-tribromophenol (TBP)-degrading bacterium previously isolated from an electronic waste-dismantling region. The draft genome sequence is 5.18 Mb and has a G+C content of 35.1%. This is the first genome report of a brominated flame retardant-degrading strain. PMID:27257197

  19. Characterization of a novel extremely alkalophilic bacterium

    NASA Technical Reports Server (NTRS)

    Souza, K. A.; Deal, P. H.

    1977-01-01

    A new alkalophilic bacterium, isolated from a natural spring of high pH is characterized. It is a Gram-positive, non-sporulating, motile rod requiring aerobic and alkaline conditions for growth. The characteristics of this organism resemble those of the coryneform group of bacteria; however, there are no accepted genera within this group with which this organism can be closely matched. Therefore, a new genus may be warranted.

  20. Differentiation of Bacillus anthracis and other Bacillus species by lectins.

    PubMed Central

    Cole, H B; Ezzell, J W; Keller, K F; Doyle, R J

    1984-01-01

    Bacillus anthracis was agglutinated by several lectins, including those from Griffonia simplicifolia, Glycine max, Abrus precatorius, and Ricinus communis. Some strains of Bacillus cereus var. mycoides (B. mycoides) were strongly reactive with the lectin from Helix pomatia and weakly reactive with the G. max lectin. The differential interactions between Bacillus species and lectins afforded a means of distinguishing B. anthracis from other bacilli. B. cereus strains exhibited heterogeneity with respect to agglutination patterns by lectins but could readily be differentiated from B. anthracis and the related B. mycoides. Spores of B. anthracis and B. mycoides retained lectin receptors, although the heating of spores or vegetative cells at 100 degrees C resulted in a decrease in their ability to be specifically agglutinated. Fluorescein-conjugated lectin of G. max stained vegetative cells of B. anthracis uniformly, suggesting that the distribution of lectin receptors was continuous over the entire cellular surface. B. anthracis cells grown under conditions to promote the production of capsular poly(D-glutamyl peptide) were also readily agglutinated by the lectins, suggesting that the lectin reactive sites penetrate the polypeptide layer. Trypsin, subtilisin, lysozyme, and mutanolysin did not modify the reactivity of B. anthracis with the G. max agglutinin, although the same enzymes markedly diminished the interaction between the lectin and B. mycoides. Because the lectins which interact with B. anthracis are specific for alpha-D-galactose or 2-acetamido-2-deoxy-alpha-D-galactose residues, it is likely that the bacteria possess cell surface polymers which contain these sugars. Lectins may prove useful in the laboratory identification of B. anthracis and possibly other pathogenic Bacillus species, such as B. cereus. Images PMID:6418761

  1. Environmental Persistence of Bacillus anthracis and Bacillus subtilis Spores.

    PubMed

    Wood, Joseph P; Meyer, Kathryn M; Kelly, Thomas J; Choi, Young W; Rogers, James V; Riggs, Karen B; Willenberg, Zachary J

    2015-01-01

    There is a lack of data for how the viability of biological agents may degrade over time in different environments. In this study, experiments were conducted to determine the persistence of Bacillus anthracis and Bacillus subtilis spores on outdoor materials with and without exposure to simulated sunlight, using ultraviolet (UV)-A/B radiation. Spores were inoculated onto glass, wood, concrete, and topsoil and recovered after periods of 2, 14, 28, and 56 days. Recovery and inactivation kinetics for the two species were assessed for each surface material and UV exposure condition. Results suggest that with exposure to UV, decay of spore viability for both Bacillus species occurs in two phases, with an initial rapid decay, followed by a slower inactivation period. The exception was with topsoil, in which there was minimal loss of spore viability in soil over 56 days, with or without UV exposure. The greatest loss in viable spore recovery occurred on glass with UV exposure, with nearly a four log10 reduction after just two days. In most cases, B. subtilis had a slower rate of decay than B. anthracis, although less B. subtilis was recovered initially. PMID:26372011

  2. Environmental Persistence of Bacillus anthracis and Bacillus subtilis Spores

    PubMed Central

    Wood, Joseph P.; Meyer, Kathryn M.; Kelly, Thomas J.; Choi, Young W.; Rogers, James V.; Riggs, Karen B.; Willenberg, Zachary J.

    2015-01-01

    There is a lack of data for how the viability of biological agents may degrade over time in different environments. In this study, experiments were conducted to determine the persistence of Bacillus anthracis and Bacillus subtilis spores on outdoor materials with and without exposure to simulated sunlight, using ultraviolet (UV)-A/B radiation. Spores were inoculated onto glass, wood, concrete, and topsoil and recovered after periods of 2, 14, 28, and 56 days. Recovery and inactivation kinetics for the two species were assessed for each surface material and UV exposure condition. Results suggest that with exposure to UV, decay of spore viability for both Bacillus species occurs in two phases, with an initial rapid decay, followed by a slower inactivation period. The exception was with topsoil, in which there was minimal loss of spore viability in soil over 56 days, with or without UV exposure. The greatest loss in viable spore recovery occurred on glass with UV exposure, with nearly a four log10 reduction after just two days. In most cases, B. subtilis had a slower rate of decay than B. anthracis, although less B. subtilis was recovered initially. PMID:26372011

  3. Environmental Persistence of Bacillus anthracis and Bacillus subtilis Spores.

    PubMed

    Wood, Joseph P; Meyer, Kathryn M; Kelly, Thomas J; Choi, Young W; Rogers, James V; Riggs, Karen B; Willenberg, Zachary J

    2015-01-01

    There is a lack of data for how the viability of biological agents may degrade over time in different environments. In this study, experiments were conducted to determine the persistence of Bacillus anthracis and Bacillus subtilis spores on outdoor materials with and without exposure to simulated sunlight, using ultraviolet (UV)-A/B radiation. Spores were inoculated onto glass, wood, concrete, and topsoil and recovered after periods of 2, 14, 28, and 56 days. Recovery and inactivation kinetics for the two species were assessed for each surface material and UV exposure condition. Results suggest that with exposure to UV, decay of spore viability for both Bacillus species occurs in two phases, with an initial rapid decay, followed by a slower inactivation period. The exception was with topsoil, in which there was minimal loss of spore viability in soil over 56 days, with or without UV exposure. The greatest loss in viable spore recovery occurred on glass with UV exposure, with nearly a four log10 reduction after just two days. In most cases, B. subtilis had a slower rate of decay than B. anthracis, although less B. subtilis was recovered initially.

  4. Bacillus iranensis sp. nov., a moderate halophile from a hypersaline lake.

    PubMed

    Bagheri, M; Didari, M; Amoozegar, M A; Schumann, P; Sánchez-Porro, C; Mehrshad, M; Ventosa, A

    2012-04-01

    A Gram-positive, moderately halophilic rod, designated X5BT, was isolated from saline mud of the hypersaline lake Aran-Bidgol in Iran. Strain X5BT was a strictly aerobic, motile bacterium that produced ellipsoidal endospores at a central-subterminal position in non-swollen sporangia. The isolate grew at pH 7.0-10.0 (optimum pH 7.5), at 25-45 °C (optimum 35 °C) and with 2.5-15 % (w/v) NaCl (optimum 5-7.5 %). On the basis of 16S rRNA gene sequences, strain X5BT belonged to the genus Bacillus and showed highest similarity with Bacillus persepolensis HS136T (95.6 % 16S rRNA gene sequence similarity) and Bacillus salarius BH169T (95.5 %). The DNA G+C content was 42.4 mol%. The major cellular fatty acids were anteiso-C15:0 and iso-C15:0 and the polar lipid profile consisted of phosphatidylglycerol, diphosphatidylglycerol, three phospholipids and two glycolipids. The diamino acid found in the cell-wall peptidoglycan was meso-diaminopimelic acid and the isoprenoid quinones were MK-7 (92 %), MK-6 (6 %) and MK-5 (2 %). On the basis of phylogenetic, chemotaxonomic and phenotypic data, a novel species of the genus Bacillus is proposed, with the name Bacillus iranensis sp. nov. The type strain is X5BT (=IBRC 10446T=DSM 23995T).

  5. FORMALDEHYDE GAS INACTIVATION OF BACILLUS ANTHRACIS, BACILLUS SUBTILIS AND GEOBACILLUS STEAROTHERMOPHILUS SPORES ON INDOOR SURFACE MATERIALS.

    EPA Science Inventory

    Research evaluated the decontamination of Bacillus anthracis, Bacillus subtilis, and Geobacillus stearothermophilus spores on indoor surface material using formaldehyde gas. Spores were dried on seven types of indoor surfaces and exposed to 1100 ppm formaldehyde gas for 10 hr. Fo...

  6. Biosurfactant production by a CO2 sequestering Bacillus sp. strain ISTS2.

    PubMed

    Sundaram, Smita; Thakur, Indu Shekhar

    2015-01-01

    A chemolithotrophic bacterium, Bacillus sp. strain ISTS2, produced biosurfactant when enriched in the chemostat in presence of sodium bicarbonate as carbon source was evaluated for carbon dioxide (CO2) sequestration and biosurfactant production. CO2 sequestration efficiency of the bacterium was determined by enzymatic activity of carbonic anhydrase and ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO). Biosurfactant production ability at 100 mM NHCO3 and 5% CO2 was screened by surface and interfacial tension measurement, emulsification stability test, hydrophobicity test, contact angle measurement, bacterial adhesion to hydrocarbon and purified by silica gel column (60-120 mesh). Thin layer chromatography (TLC) and gas chromatography-mass spectrometry (GC-MS) showed that the crude biosurfactant of ISTS2 were composed of lipopeptides and free fatty acids (FA) and its hydrophobic fraction contained five kinds of fatty acids (FA) with chain lengths of C14-C19. Thus Bacillus sp. strain IST2 can be used as a cleaner bioprocess for the utilization of industrial CO2 as alternate substrate.

  7. Role of spore coat proteins in the resistance of Bacillus subtilis spores to Caenorhabditis elegans predation.

    PubMed

    Laaberki, Maria-Halima; Dworkin, Jonathan

    2008-09-01

    Bacterial spores are resistant to a wide range of chemical and physical insults that are normally lethal for the vegetative form of the bacterium. While the integrity of the protein coat of the spore is crucial for spore survival in vitro, far less is known about how the coat provides protection in vivo against predation by ecologically relevant hosts. In particular, assays had characterized the in vitro resistance of spores to peptidoglycan-hydrolyzing enzymes like lysozyme that are also important effectors of innate immunity in a wide variety of hosts. Here, we use the bacteriovorous nematode Caenorhabditis elegans, a likely predator of Bacillus spores in the wild, to characterize the role of the spore coat in an ecologically relevant spore-host interaction. We found that ingested wild-type Bacillus subtilis spores were resistant to worm digestion, whereas vegetative forms of the bacterium were efficiently digested by the nematode. Using B. subtilis strains carrying mutations in spore coat genes, we observed a correlation between the degree of alteration of the spore coat assembly and the susceptibility to the worm degradation. Surprisingly, we found that the spores that were resistant to lysozyme in vitro can be sensitive to C. elegans digestion depending on the extent of the spore coat structure modifications.

  8. Biotransformation of various saccharides and production of exopolymeric substances by cloud-borne Bacillus sp. 3B6.

    PubMed

    Matulová, Mária; Husárová, Slavomíra; Capek, Peter; Sancelme, Martine; Delort, Anne-Marie

    2014-12-16

    The ability of Bacillus sp. 3B6, a bacterial strain isolated from cloudwaters, to biotransform saccharides present in the atmosphere was evaluated using in situ 1D and 2D NMR spectroscopy. Bacillus is one of the genera most frequently described in the air and in atmospheric waters. Sugars present in these environments have a biogenic origin; they include alditols, monosaccharides, disaccharides, oligosaccharides, and polysaccharides. Bacillus sp. 3B6 was able to efficiently metabolize sugars, which could thus provide sources of energy for this bacterium and allow it to live and to be metabolically active in warm clouds. In addition, a number of these saccharides (L-arabitol, D-fructose, sucrose, D-glucose, cellotetraose, cellulose, and starch) were transformed to EPSs (exopolymeric substances). We have clearly identified the structure of two EPSs as 1,6-α-galactan and partially acetylated polyethylene glycol. 1,6-α-Galactan is a newly described polymer. The production of EPSs might protect this bacterium under hostile cloud environment conditions, including low nutrient availability, cold temperature and freeze-thaw processes, UV and radical exposure, and evaporation-condensation processes and thus desiccation and osmolarity changes. EPSs could also have a potential role in atmospheric processes because they can be considered as secondary organic aerosols and efficient cloud condensation nuclei.

  9. Improving Protein Production on the Level of Regulation of both Expression and Secretion Pathways in Bacillus subtilis.

    PubMed

    Song, Yafeng; Nikoloff, Jonas M; Zhang, Dawei

    2015-07-01

    The well-characterized gram-positive bacterium Bacillus subtilis is an outstanding industrial candidate for protein expression owing to its single membrane and high capacity of secretion, simplifying the downstream processing of secretory proteins. During the last few years, there has been continuous progress in the illustration of secretion mechanisms and application of this robust host in various fields of life science, such as enzyme production, feed additives, and food and pharmaceutical industries. Here, we review the developments of Bacillus subtilis as a highly promising expression system illuminating strong chemical- and temperatureinducible and other types of promoters, strategies for ribosome-binding-site utilization, and the novel approach of signal peptide selection. Furthermore, we outline the main steps of the Sec pathway and the relevant elements as well as their interactions. In addition, we introduce the latest discoveries of Tat-related complex structures and functions and the countless applications of this full-folded protein secretion pathway. This review also lists some of the current understandings of ATP-binding cassette transporters. According to the extensive knowledge on the genetic modification strategies and molecular biology of Bacillus subtilis, we propose some suggestions and strategies for improving the yield of intended productions. We expect this to promote striking future developments in the optimization and application of this bacterium.

  10. Expression of mosquito active toxin genes by a Colombian native strain of the gram-negative bacterium Asticcacaulis excentricus.

    PubMed

    Romero, M; Gil, F M; Orduz, S

    2001-02-01

    Mosquito control with biological insecticides, such as Bacillus sp. toxins, has been used widely in many countries. However, rapid sedimentation away from the mosquito larvae feeding zone causes a low residual effect. In order to overcome this problem, it has been proposed to clone the Bacillus toxin genes in aquatic bacteria which are able to live in the upper part of the water column. Two strains of Asticcacaulis excentricus were chosen to introduce the B. sphaericus binary toxin gene and B. thuringiensis subsp. medellin cry11Bb gene cloned in suitable vectors. In feeding experiments with these aquatic bacteria, it was shown that Culex quinquefasciatus, Aedes aegypti, and Anopheles albimanus larvae were able to survive on a diet based on this wild bacterium. A. excentricus recombinant strains were able to express both genes, but the recombinant strain expressing the B. sphaericus binary toxin was toxic to mosquito larvae. Crude protease A. excentricus extracts did not degrade the Cry11Bb toxin. The flotability studies indicated that the recombinant A. excentricus strains remained in the upper part of the water column longer than the wild type Bacillus strains.

  11. Identification and characterization of a novel marine Bacillus cereus for mosquito control.

    PubMed

    Poopathi, Subbiah; Mani, C; Thirugnanasambantham, K; Praba, V Lakshmi; Ahangar, Niyaz Ahmad; Balagangadharan, K

    2014-01-01

    Entomopathogenic bacteria to control mosquitoes are a promising environmentally friendly alternative to synthetic pesticides. In the present study, a novel mosquitocidal bacterium was isolated from marine soil collected from east coastal areas at Pondicherry (India). 16S rRNA gene sequence alignment depicted that this isolate belonged to Bacillus cereus VCRC-B520 (NCBI: KC-119192). Biochemical studies on bacterial growth, biomass, and toxin production have revealed that this strain could possibly be helpful in the production of a biopesticide in mosquito control. Toxicity assay with B. cereus against mosquito larvae has shown that the filariasis vector, Culex quinquefasciatus, is more susceptible than the other two species (Anopheles stephensi and Aedes aegypti). The LC50 and LC90 values for C. quinquefasciatus were 0.30 and 2.21 mg/L, respectively. No effect of B. cereus was found on nontargeted organisms. SDS-PAGE analysis and protein purification result from the cell mass of B. cereus have shown that a well-perceptible polypeptide was the dependable factor (85 kDa) for mosquitocidal action. Protein characterization (M/S MALDI-TOF) has shown that it is an endotoxin-specific insecticidal protein, namely "Cry4Aa". Phylogenetic analyses of 16S rDNA gene sequence from this marine isolate have revealed the presence of homology among closely related Bacillus strains. Therefore, considerable interest has been shown on the identification of a potential mosquitocidal bacterium from marine environment (B. cereus), which was not reported earlier in view of the current scenario of the rapid development of resistance to Bacillus sphaericus in mosquito vector control program.

  12. Proteomic profiling and identification of immunodominant spore antigens of Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis.

    PubMed

    Delvecchio, Vito G; Connolly, Joseph P; Alefantis, Timothy G; Walz, Alexander; Quan, Marian A; Patra, Guy; Ashton, John M; Whittington, Jessica T; Chafin, Ryan D; Liang, Xudong; Grewal, Paul; Khan, Akbar S; Mujer, Cesar V

    2006-09-01

    Differentially expressed and immunogenic spore proteins of the Bacillus cereus group of bacteria, which includes Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis, were identified. Comparative proteomic profiling of their spore proteins distinguished the three species from each other as well as the virulent from the avirulent strains. A total of 458 proteins encoded by 232 open reading frames were identified by matrix-assisted laser desorption ionization-time-of-flight mass spectrometry analysis for all the species. A number of highly expressed proteins, including elongation factor Tu (EF-Tu), elongation factor G, 60-kDa chaperonin, enolase, pyruvate dehydrogenase complex, and others exist as charge variants on two-dimensional gels. These charge variants have similar masses but different isoelectric points. The majority of identified proteins have cellular roles associated with energy production, carbohydrate transport and metabolism, amino acid transport and metabolism, posttranslational modifications, and translation. Novel vaccine candidate proteins were identified using B. anthracis polyclonal antisera from humans postinfected with cutaneous anthrax. Fifteen immunoreactive proteins were identified in B. anthracis spores, whereas 7, 14, and 7 immunoreactive proteins were identified for B. cereus and in the virulent and avirulent strains of B. thuringiensis spores, respectively. Some of the immunodominant antigens include charge variants of EF-Tu, glyceraldehyde-3-phosphate dehydrogenase, dihydrolipoamide acetyltransferase, Delta-1-pyrroline-5-carboxylate dehydrogenase, and a dihydrolipoamide dehydrogenase. Alanine racemase and neutral protease were uniquely immunogenic to B. anthracis. Comparative analysis of the spore immunome will be of significance for further nucleic acid- and immuno-based detection systems as well as next-generation vaccine development.

  13. A selective chromogenic agar that distinguishes Bacillus anthracis from Bacillus cereus and Bacillus thuringiensis.

    PubMed

    Juergensmeyer, Margaret A; Gingras, Bruce A; Restaino, Lawrence; Frampton, Elon W

    2006-08-01

    A selective and differential plating medium, R & F anthracis chromogenic agar (ACA), has been developed for isolating and identifying presumptive colonies of Bacillus anthracis. ACA contains the chromogenic substrate 5-bromo-4-chloro-3-indoxyl-choline phosphate that upon hydrolysis yields teal (blue green) colonies indicating the presence of phosphatidylcholine-specific phospholipase C (PC-PLC) activity. Among seven Bacillus species tested on ACA, only members of the Bacillus cereus group (B. anthracis, B. cereus, and B. thuringiensis) produced teal colonies (PC-PLC positive) having cream rings. Examination of colony morphology in 18 pure culture strains of B. anthracis (15 ATCC strains plus AMES-1-RIID, ANR-1, and AMED-RIID), with one exception, required 48 h at 35 to 37 degrees C for significant color production, whereas only 24 h was required for B. cereus and B. thuringiensis. This differential rate of PC-PLC synthesis in B. anthracis (due to the truncated plcR gene and PlcR regulator in B. anthracis) allowed for the rapid differentiation on ACA of presumptive colonies of B. anthracis from B. cereus and B. thuringiensis in both pure and mixed cultures. Effective recovery of B. anthracis from a variety of matrices having both high (soil and sewage) and low microbial backgrounds (cloth, paper, and blood) spiked with B. anthracis ANR-1 spores suggests the probable utility of ACA plating for B. anthracis recovery in a diversity of applications.

  14. Spirochaeta alkalica sp. nov., Spirochaeta africana sp. nov., and Spirochaeta asiatica sp. nov., alkaliphilic anaerobes from the Continental Soda Lakes in Central Asia and the East African Rift.

    PubMed

    Zhilina, T N; Zavarzin, G A; Rainey, F; Kevbrin, V V; Kostrikina, N A; Lysenko, A M

    1996-01-01

    During a study of microbial communities in athalassic bodies of water, three new species within the genus Spirochaeta were described. These are alkaliphilic Spirochaeta alkalica sp. nov. Z-7491 (DSM 8900) and halophilic S. africana sp. nov. Z-7692 (DSM 8902) from the soda-depositing Lake Magadi in Central Africa and haloalkaliphilic S. asiatica sp. nov. Z-7591 (DSM 8901) from Lake Khatyn, Central Asia. These mesophilic spirochetes develop at pHs of > 9 as anaerobic saccharolytic dissipotrophs. The DNA base compositions (moles percent G+C) of the strains were as follows: S. alkalica Z-7491, 57.1; S. africana Z-7692, 56.1; and S. asiatica Z-7591, 49.2. The optimum growth parameters (temperature, pH, and NaCl concentration [percent, wt/vol], respectively) were as follows: for S. alkalica Z-7491, 35 degrees C, 9.2, and 5 to 7%; for S. africana Z-7692, 35 degrees C, 9.3, and 5 to 7%; and for S. asiatica Z-7591, 35 degrees C, 8.9, and 3 to 6%. The products of glucose fermentation were acetate, hydrogen, ethanol, and lactate, in different proportions, for S. alkalica and S. africana; for S. asiatica, they were acetate, ethanol, and lactate. S. asiatica is strictly anaerobic, while S. alkalica and S. africana are rather aerotolerant. All three species group within the radiation of the majority of the species of the genus Spirochaeta. Studies of the genes encoding 16S rRNA indicate a possible fanning out of the phylogenetic tree of spirochetes.

  15. Taxonomic characterization of new alkaliphilic and alkalitolerant methanotrophs from soda lakes of the Southeastern Transbaikal region and description of Methylomicrobium buryatense sp.nov.

    PubMed

    Kaluzhnaya, M; Khmelenina, V; Eshinimaev, B; Suzina, N; Nikitin, D; Solonin, A; Lin, J L; McDonald, I; Murrell, C; Trotsenko, Y

    2001-07-01

    Five strains of obligate methanotrophic bacteria (4G, 5G, 6G, 7G and 5B) isolated from bottom sediments of Southeastern Transbaikal soda lakes (pH 9.5-10.5) are taxonomically described. These bacteria are aerobic, Gram-negative monotrichous rods having tightly packed cup-shaped structures on the outer cell wall surface (S-layers) and Type I intracytoplasmic membranes. All the isolates possess particulate methane monooxygenase (pMMO) and one strain (5G) also contains soluble methane monooxygenase (sMMO). They assimilate methane and methanol via the ribulose monophosphate pathway (RuMP). The isolates are alkalitolerant or facultatively alkaliphilic, able to grow at pH 10.5-11.0 and optimally at pH 8.5-9.5. These organisms are obligately dependent on the presence of sodium ions in the growth medium and tolerate up to 0.9-1.4 M NaCl or 1 M NaHCO3. Although being mesophilic, all the isolates are resistant to heating (80 degrees C, 20 min), freezing and drying. Their cellular fatty acids profiles primarily consist of C(16:1). The major phospholipids are phosphatidylethanolamine and phosphatidylglycerol. The main quinone is Q-8. The DNA G+C content ranges from 49.2-51.5 mol %. Comparative 16S rDNA sequencing showed that the newly isolated methanotrophs are related to membres of the Methylomicrobium genus. However, they differ from the known members of this genus by DNA-DNA relatedness. Based on pheno- and genotypic characteristics, we propose a new species of the genus Methylomicrobium Methylomicrobium buryatense sp. nov. PMID:11518319

  16. Alternative modes of biofilm formation by plant-associated Bacillus cereus.

    PubMed

    Gao, Tantan; Foulston, Lucy; Chai, Yunrong; Wang, Qi; Losick, Richard

    2015-06-01

    The ability to form multicellular communities known as biofilms is a widespread adaptive behavior of bacteria. Members of the Bacillus group of bacteria have been found to form biofilms on plant roots, where they protect against pathogens and promote growth. In the case of the model bacterium Bacillus subtilis the genetic pathway controlling biofilm formation and the production of an extracellular matrix is relatively well understood. However, it is unclear whether other members of this genus utilize similar mechanisms. We determined that a plant-associated strain of Bacillus cereus (905) can form biofilms by two seemingly independent pathways. In one mode involving the formation of floating biofilms (pellicles) B. cereus 905 appears to rely on orthologs of many of the genes known to be important for B. subtilis biofilm formation. We report that B. cereus 905 also forms submerged, surface-associated biofilms and in a manner that resembles biofilm formation by the pathogen Staphylococcus aureus. This alternative mode, which does not rely on B. subtilis-like genes for pellicle formation, takes place under conditions of glucose fermentation and depends on a drop in the pH of the medium.

  17. Experimental design and Bayesian networks for enhancement of delta-endotoxin production by Bacillus thuringiensis.

    PubMed

    Ennouri, Karim; Ayed, Rayda Ben; Hassen, Hanen Ben; Mazzarello, Maura; Ottaviani, Ennio

    2015-12-01

    Bacillus thuringiensis (Bt) is a Gram-positive bacterium. The entomopathogenic activity of Bt is related to the existence of the crystal consisting of protoxins, also called delta-endotoxins. In order to optimize and explain the production of delta-endotoxins of Bacillus thuringiensis kurstaki, we studied seven medium components: soybean meal, starch, KH₂PO₄, K₂HPO₄, FeSO₄, MnSO₄, and MgSO₄and their relationships with the concentration of delta-endotoxins using an experimental design (Plackett-Burman design) and Bayesian networks modelling. The effects of the ingredients of the culture medium on delta-endotoxins production were estimated. The developed model showed that different medium components are important for the Bacillus thuringiensis fermentation. The most important factors influenced the production of delta-endotoxins are FeSO₄, K2HPO₄, starch and soybean meal. Indeed, it was found that soybean meal, K₂HPO₄, KH₂PO₄and starch also showed positive effect on the delta-endotoxins production. However, FeSO4 and MnSO4 expressed opposite effect. The developed model, based on Bayesian techniques, can automatically learn emerging models in data to serve in the prediction of delta-endotoxins concentrations. The constructed model in the present study implies that experimental design (Plackett-Burman design) joined with Bayesian networks method could be used for identification of effect variables on delta-endotoxins variation.

  18. Experimental design and Bayesian networks for enhancement of delta-endotoxin production by Bacillus thuringiensis.

    PubMed

    Ennouri, Karim; Ayed, Rayda Ben; Hassen, Hanen Ben; Mazzarello, Maura; Ottaviani, Ennio

    2015-12-01

    Bacillus thuringiensis (Bt) is a Gram-positive bacterium. The entomopathogenic activity of Bt is related to the existence of the crystal consisting of protoxins, also called delta-endotoxins. In order to optimize and explain the production of delta-endotoxins of Bacillus thuringiensis kurstaki, we studied seven medium components: soybean meal, starch, KH₂PO₄, K₂HPO₄, FeSO₄, MnSO₄, and MgSO₄and their relationships with the concentration of delta-endotoxins using an experimental design (Plackett-Burman design) and Bayesian networks modelling. The effects of the ingredients of the culture medium on delta-endotoxins production were estimated. The developed model showed that different medium components are important for the Bacillus thuringiensis fermentation. The most important factors influenced the production of delta-endotoxins are FeSO₄, K2HPO₄, starch and soybean meal. Indeed, it was found that soybean meal, K₂HPO₄, KH₂PO₄and starch also showed positive effect on the delta-endotoxins production. However, FeSO4 and MnSO4 expressed opposite effect. The developed model, based on Bayesian techniques, can automatically learn emerging models in data to serve in the prediction of delta-endotoxins concentrations. The constructed model in the present study implies that experimental design (Plackett-Burman design) joined with Bayesian networks method could be used for identification of effect variables on delta-endotoxins variation. PMID:26689874

  19. Role of Bacillus licheniformis in phytoremediation of nickel contaminated soil cultivated with rice.

    PubMed

    Jamil, Muhammad; Zeb, Salma; Anees, Muhammad; Roohi, Aneela; Ahmed, Iftikhar; ur Rehman, Shafiq; Rha, Eui Shik

    2014-01-01

    Heavy metal contamination in soil is an important environmental problem and it has negative effect on agriculture. Bacteria play a major role in phytoremediation of heavy metals contaminated soil. In this study, the effect of Bacillus licheniformis NCCP-59, a halophilic bacterium isolated from salt mines near Karak, Pakistan, were determined on a three week old greenhouse grown seedling and germinating seeds of two rice varieties (Basmati-385 (B-385) and KSK-282) in soil contaminated with different concentrations (0, 100, 250, 500, and 1000 ppm) of Nickel. Nickel significantly reduced the germination rate and germination percentage mainly at 500 and 1000 ppm. Significant decrease in ion contents (Na, K, and Ca) was observed while Ni ion concentration in the plant tissues increases as the concentration of Ni applied increases. The photosynthetic pigments (chlorophyll a (chl a), chlorophyll b (chl b), and carotenoids) were also decreased by the application of different concentrations of Ni. Total protein and organic nitrogen were found to be reduced at higher concentrations of Nickel. Inoculation of Bacillus licheniformis NCCP-59 improved seed germination and biochemical attribute of the plant under Ni stress. It is clear from the results that the Bacillus Licheniformis NCCP-59 strain has the ability to protect the plants from the toxic effects of nickel and can be used for the phytoremediation of Ni contaminated soil.

  20. Decolorization of dyehouse effluent and biodegradation of Congo red by Bacillus thuringiensis RUN1.

    PubMed

    Olukanni, Olumide David; Osuntoki, Akinniyi A; Awotula, Ayodeji Olushola; Kalyani, Dayanand C; Gbenle, George Olabode; Govindwar, Sanjay P

    2013-06-28

    A dye-decolorizing bacterium was isolated from a soil sample and identified as Bacillus thuringiensis using 16S rRNA sequencing. The bacterium was able to decolorize three different textile dyes, namely, Reactive blue 13, Reactive red 58, and Reactive yellow 42, and a real dyehouse effluent up to 80-95% within 6 h. Some non-textile industrially important dyes were also decolorized to different extents. Fourier transform infrared spectroscopy and gas chromatography-mass spectrometer analysis of the ethyl acetate extract of Congo red dye and its metabolites showed that the bacterium could degrade it by the asymmetric cleavage of the azo bonds to yield sodium (4- amino-3-diazenylnaphthalene-1-sulfonate) and phenylbenzene. Sodium (4-amino-3-diazenylnaphthalene-1-sulfonate) was further oxidized by the ortho-cleavage pathway to yield 2- (1-amino-2-diazenyl-2-formylvinyl) benzoic acid. There was induction of the activities of laccase and azoreductase during the decolorization of Congo red, which suggests their probable role in the biodegradation. B. thuringiensis was found to be versatile and could be used for industrial effluent biodegradation.

  1. Kinetics of Molybdenum Reduction to Molybdenum Blue by Bacillus sp. Strain A.rzi

    PubMed Central

    Othman, A. R.; Bakar, N. A.; Halmi, M. I. E.; Johari, W. L. W.; Ahmad, S. A.; Jirangon, H.; Syed, M. A.; Shukor, M. Y.

    2013-01-01

    Molybdenum is very toxic to agricultural animals. Mo-reducing bacterium can be used to immobilize soluble molybdenum to insoluble forms, reducing its toxicity in the process. In this work the isolation of a novel molybdate-reducing Gram positive bacterium tentatively identified as Bacillus sp. strain A.rzi from a metal-contaminated soil is reported. The cellular reduction of molybdate to molybdenum blue occurred optimally at 4 mM phosphate, using 1% (w/v) glucose, 50 mM molybdate, between 28 and 30°C and at pH 7.3. The spectrum of the Mo-blue product showed a maximum peak at 865 nm and a shoulder at 700 nm. Inhibitors of bacterial electron transport system (ETS) such as rotenone, sodium azide, antimycin A, and potassium cyanide could not inhibit the molybdenum-reducing activity. At 0.1 mM, mercury, copper, cadmium, arsenic, lead, chromium, cobalt, and zinc showed strong inhibition on molybdate reduction by crude enzyme. The best model that fitted the experimental data well was Luong followed by Haldane and Monod. The calculated value for Luong's constants pmax, Ks, Sm, and n was 5.88 μmole Mo-blue hr−1, 70.36 mM, 108.22 mM, and 0.74, respectively. The characteristics of this bacterium make it an ideal tool for bioremediation of molybdenum pollution. PMID:24369531

  2. A novel intracellular nitrogen-fixing symbiosis made by Ustilago maydis and Bacillus spp.

    PubMed

    Ruiz-Herrera, José; León-Ramírez, Claudia; Vera-Nuñez, Antonio; Sánchez-Arreguín, Alejandro; Ruiz-Medrano, Roberto; Salgado-Lugo, Holjes; Sánchez-Segura, Lino; Peña-Cabriales, Juan José

    2015-08-01

    We observed that the maize pathogenic fungus Ustilago maydis grew in nitrogen (N)-free media at a rate similar to that observed in media containing ammonium nitrate, suggesting that it was able to fix atmospheric N2 . Because only prokaryotic organisms have the capacity to reduce N2 , we entertained the possibility that U. maydis was associated with an intracellular bacterium. The presence of nitrogenase in the fungus was analyzed by acetylene reduction, and capacity to fix N2 by use of (15) N2 . Presence of an intracellular N2 -fixing bacterium was analyzed by PCR amplification of bacterial 16S rRNA and nifH genes, and by microscopic observations. Nitrogenase activity and (15) N incorporation into the cells proved that U. maydis fixed N2 . Light and electron microscopy, and fluorescence in situ hybridization (FISH) experiments revealed the presence of intracellular bacteria related to Bacillus pumilus, as evidenced by sequencing of the PCR-amplified fragments. These observations reveal for the first time the existence of an endosymbiotic N2 -fixing association involving a fungus and a bacterium.

  3. Preparation and evaluation of Bacillus megaterium-alginate microcapsules for control of rice sheath blight disease.

    PubMed

    Wiwattanapatapee, R; Chumthong, A; Pengnoo, A; Kanjanamaneesathian, M

    2013-08-01

    Bacillus megaterium encapsulated in calcium alginate microcapsules was prepared and tested for its efficacy against sheath blight disease of rice. In laboratory conditions, the aqueous suspension (1:100, v/v in potato dextrose agar) of the bacterial microcapsules (10(10) spores/ml) inhibited mycelial growth of Rhizoctonia solani (>99 %) after the microcapsules were produced and stored for 12 months at room temperature (28 ± 2 °C). The survival of the bacterium in the microcapsules in response to ultraviolet (u.v.) irradiation and high temperature was investigated. The survivability of the bacterium in the encapsulated form was greater than that of the fresh cells when it was subjected to u.v. (20-W General electric u.v. lamp from a 25 cm distance for 48 h) and a high temperature treatment (80 °C for 48 h). Cells of the bacterium were detected by scanning electron microscope on both the leaf sheath and the leaf blade (in pot tests in a greenhouse) after spraying encapsulated product. The number of bacteria on the surface of both rice tissues (5 Log. number/g of plant) after spraying with encapsulated product was not significantly different from that after spraying with fresh cells onto the rice seedlings. Spraying the encapsulated B. megaterium on rice plants in the greenhouse was as effective as spraying a chemical fungicide for suppressing rice sheath blight disease.

  4. Detection of Salmonella bacterium in drinking water using microring resonator.

    PubMed

    Bahadoran, Mahdi; Noorden, Ahmad Fakhrurrazi Ahmad; Mohajer, Faeze Sadat; Abd Mubin, Mohamad Helmi; Chaudhary, Kashif; Jalil, Muhammad Arif; Ali, Jalil; Yupapin, Preecha

    2016-01-01

    A new microring resonator system is proposed for the detection of the Salmonella bacterium in drinking water, which is made up of SiO2-TiO2 waveguide embedded inside thin film layer of the flagellin. The change in refractive index due to the binding of the Salmonella bacterium with flagellin layer causes a shift in the output signal wavelength and the variation in through and drop port's intensities, which leads to the detection of Salmonella bacterium in drinking water. The sensitivity of proposed sensor for detecting of Salmonella bacterium in water solution is 149 nm/RIU and the limit of detection is 7 × 10(-4)RIU.

  5. Genome characteristics of a novel phage from Bacillus thuringiensis showing high similarity with phage from Bacillus cereus.

    PubMed

    Yuan, Yihui; Gao, Meiying; Wu, Dandan; Liu, Pengming; Wu, Yan

    2012-01-01

    Bacillus thuringiensis is an important entomopathogenic bacterium belongs to the Bacillus cereus group, which also includes B. anthracis and B. cereus. Several genomes of phages originating from this group had been sequenced, but no genome of Siphoviridae phage from B. thuringiensis has been reported. We recently sequenced and analyzed the genome of a novel phage, BtCS33, from a B. thuringiensis strain, subsp. kurstaki CS33, and compared the gneome of this phage to other phages of the B. cereus group. BtCS33 was the first Siphoviridae phage among the sequenced B. thuringiensis phages. It produced small, turbid plaques on bacterial plates and had a narrow host range. BtCS33 possessed a linear, double-stranded DNA genome of 41,992 bp with 57 putative open reading frames (ORFs). It had a typical genome structure consisting of three modules: the "late" region, the "lysogeny-lysis" region and the "early" region. BtCS33 exhibited high similarity with several phages, B. cereus phage Wβ and some variants of Wβ, in genome organization and the amino acid sequences of structural proteins. There were two ORFs, ORF22 and ORF35, in the genome of BtCS33 that were also found in the genomes of B. cereus phage Wβ and may be involved in regulating sporulation of the host cell. Based on these observations and analysis of phylogenetic trees, we deduced that B. thuringiensis phage BtCS33 and B. cereus phage Wβ may have a common distant ancestor.

  6. Genome Characteristics of a Novel Phage from Bacillus thuringiensis Showing High Similarity with Phage from Bacillus cereus

    PubMed Central

    Yuan, Yihui; Gao, Meiying; Wu, Dandan; Liu, Pengming; Wu, Yan

    2012-01-01

    Bacillus thuringiensis is an important entomopathogenic bacterium belongs to the Bacillus cereus group, which also includes B. anthracis and B. cereus. Several genomes of phages originating from this group had been sequenced, but no genome of Siphoviridae phage from B. thuringiensis has been reported. We recently sequenced and analyzed the genome of a novel phage, BtCS33, from a B. thuringiensis strain, subsp. kurstaki CS33, and compared the gneome of this phage to other phages of the B. cereus group. BtCS33 was the first Siphoviridae phage among the sequenced B. thuringiensis phages. It produced small, turbid plaques on bacterial plates and had a narrow host range. BtCS33 possessed a linear, double-stranded DNA genome of 41,992 bp with 57 putative open reading frames (ORFs). It had a typical genome structure consisting of three modules: the “late” region, the “lysogeny-lysis” region and the “early” region. BtCS33 exhibited high similarity with several phages, B. cereus phage Wβ and some variants of Wβ, in genome organization and the amino acid sequences of structural proteins. There were two ORFs, ORF22 and ORF35, in the genome of BtCS33 that were also found in the genomes of B. cereus phage Wβ and may be involved in regulating sporulation of the host cell. Based on these observations and analysis of phylogenetic trees, we deduced that B. thuringiensis phage BtCS33 and B. cereus phage Wβ may have a common distant ancestor. PMID:22649540

  7. Addition of microbially-treated sugar beet residue and a native bacterium increases structural stability in heavy metal-contaminated Mediterranean soils.

    PubMed

    Carrasco, L; Caravaca, F; Azcón, R; Kohler, J; Roldán, A

    2009-10-15

    A mesocosm experiment was conducted to investigate the effect of the addition of Aspergillus niger-treated sugar beet waste, in the presence of rock phosphate, and inoculation with a native, metal-tolerant bacterium, Bacillus thuringiensis, on the stabilisation of soil aggregates of two mine tailings, with differing pH values, from a semiarid Mediterranean area and on the stimulation of growth of Piptatherum miliaceum. Bacterium combined with organic amendment enhanced structural stability (38% in acidic soil and 106% in neutral soil compared with their corresponding controls). Only the organic amendment increased pH, electrical conductivity, water-soluble C, water-soluble carbohydrates and plant growth, in both soils. While in neutral soil both organic amendment and bacterium increased dehydrogenase activity, only organic amendment had a significant effect in acidic soil. This study demonstrates that the use of P. miliaceum in combination with organic amendment and bacterium is a suitable tool for the stabilisation of the soil structure of degraded mine tailings, although its effectiveness is dependent on soil pH. PMID:19660785

  8. [Bacillus licheniformis: an unusual cause of erysipelosis].

    PubMed

    Ameur, M A; Dubrous, P; Koeck, J L

    2005-01-01

    The authors report a case of a cutaneous infection due to Bacillus licheniformis. It occurred after a wound due to a wicker splinter. The bacteriological identification was easy thanks to the very typical aspects of culture. First intention antibiotherapy given for bacterial dermo-hypodermatitis may be ineffective because Bacillus licheniformis secretes a biofilm and is frequently resistant to Beta-lactams.

  9. Salt-tolerant and high-pH-resistant hydrogenase from the haloalkaliphilic, sulfate-reducing bacterium Desulfonatronum thiodismutans

    NASA Astrophysics Data System (ADS)

    Detkova, Ekaterina N.; Pikuta, Elena V.; Hoover, Richard B.

    2004-11-01

    Hydrogenase is the key enzyme of energetic metabolism in cells, catalyzing the converse reaction of hydrogen oxidation and responsible for the consumption and excretion of hydrogen in bacteria. Hydrogenases are proteins, most of which contain either nickel and iron or iron alone in their active center. Hydrogenases have been found in many microorganisms, such as methanogenic, acetogenic, nitrogen-fixing, sulfate-reducing, photosynthetic bacteria, and algae that use the hydrogen as an energy source or as an electron sink. Hydrogenases are the subject of wide physiological, biochemical, physico-chemical and genetic studies due to their abilities to produce molecular hydrogen as an alternative source of energy. Despite the large quantity of work dealing with the intracellular and extracellular enzymes of halophilic bacteria, the data about the response of hydrogenases to salts are practically absent. The study of hydrogenase in cell-free extracts of the extremely halophilic eubacterium Acetohalobium arabaticum showed a dramatic increase in the activity of the enzyme at high concentrations of NaCl and KCl (near saturated solutions). Here we present data about hydrogenase in a free-cell extract from the new halo-alkaliphilic sulfate-reducing bacterium Desulfonatronum thiodismutans, which grows on a highly mineralized carbonate-bicarbonate medium in the salinity range from 1 to 7 % NaCl and at pH 8.0-10.0. The studied enzyme was active in concentration range from 0.0 to 4.3 M NaCl with the optimum at 1.0 M NaCl. At 1.0 M NaCl the enzyme expressed 20 % additional activity, with NaCl concentration changing from 2.1 M to 3.4 M, and then the activity decreased and reached a constant level. Although sodium bicarbonate decreases the hydrogenase activity, the enzyme still showed activity at 60 % of the maximum level at concentration in a near saturated solution (1.2 M NaHCO3). The maximum enzyme activity was observed at pH 9.5 with limits of 7.5 and 11.5, which is practically

  10. On the fate of ingested Bacillus spores.

    PubMed

    Spinosa, M R; Braccini, T; Ricca, E; De Felice, M; Morelli, L; Pozzi, G; Oggioni, M R

    2000-06-01

    Spores of various Bacillus species, including B. subtilis, B. cereus and B. clausii, are used as probiotics, although they are generally absent from the normal microflora of man. We used two nonpathogenic Bacillus species, B. subtilis and B. clausii, to follow the fate of spores inoculated intragastrically in mice. We did not find detectable amounts of vegetative cells in intestinal samples, probably because of high toxicity of the conjugated bile salt taurodeoxycholic acid against Bacillus species. Both spores and cells were detected in the lymph nodes and spleen of one mouse. Our results indicate that Bacillus is present in the intestinal tract solely as spores and that nonpathogenic Bacillus spores may germinate in lymphoid organs, a finding reminiscent of B. anthracis germination in macrophages. These results indicate that any claimed probiotic effect of B. subtilis should be due to spores or, alternatively, to vegetative growth outside the intestine. PMID:10919516

  11. Complete genome sequence of Bacillus amyloliquefaciens B15 isolated from grape skin, a strain of strong inhibitory activity against fungi.

    PubMed

    Yan, Yinzhuo; Liu, Shiyu; Wang, Deliang; Xue, Jie; Guo, Danyang; Song, Xulei; Zhang, Fengjie; Huang, Shihai; Luan, Chunguang

    2016-06-20

    Bacillus amyloliquefaciens B15 is a Gram-positive, plant-associated bacterium which shows strong antifungal activity, isolated from grape skin in Xinjiang, China. The genome of B. amyloliquefaciens B15 comprises a 4,006,754bp long circular chromosome containing 3991 protein coding genes and 109 RNA genes. Based on genomic analysis, we identified the giant gene clusters, nonribosomal peptidesynthetases (NRPS), and polyketide synthases (PKS), responsible for the biosynthesis of numerous bioactive metabolites. In addition, several functionally related genes, such as TasA, were also been identified for the antagonistic effect on pathogenic fungi but has no effect on the growth of itself. PMID:27114322

  12. Identification and Evaluation of Strain B37 of Bacillus subtilis Antagonistic to Sapstain Fungi on Poplar Wood

    PubMed Central

    Zhang, XiaoHua; Zhao, GuiHua; Li, DeWei; Li, ShunPeng; Hong, Qing

    2014-01-01

    Devaluation of poplar products by sapstain accounts for huge and unpredictable losses each year in China. We had isolated four poplar sapstain fungi, Ceratocystis adiposa Hz91, Lasiodiplodia theobromae YM0737, L. theobromae Fx46, and Fusarium sp. YM05, from five poplar varieties and 13 antagonistic bacteria from nine diverse varieties. After being experimented with agar plates, wood chips, and enzyme activities, strain B37 was identified as the best poplar sapstain biocontrol bacterium. The strain B37 was identified as Bacillus subtilis using sequences of the 16S rRNA gene, physiological biochemical, and morphological characteristics. PMID:25401124

  13. Draft Genome Sequence of Commercial Textile Dye-Decolorizing and -Degrading Bacillus subtilis Strain C3 Isolated in India.

    PubMed

    Kunadia, Khushbu; Nathani, Neelam M; Kothari, Vishal; Kotadia, Rohit J; Kothari, Charmy R; Joshi, Anjali; Rank, Jalpa K; Faldu, Priti R; Shekar, M Chandra; Viroja, Mitkumar J; Patel, Priyank A; Jadeja, Divyarajsinh; Reddy, Bhaskar; Pal Singh, Ravindra; Koringa, Prakash G; Joshi, Chaitanya G; Kothari, Ramesh K

    2016-03-10

    Bacillus subtilis C3, a commercial textile dye-decolorizing and -degrading bacterium, was isolated from the common effluent treatment plant (CEPT) of the Jetpur textile dyeing and printing industrial sector situated in the district of Rajkot, Gujarat, India. Here, we present the annotated 4.18-Mb draft genome sequence of B. subtilis C3, providing information about the metabolic pathways involved in decolorization and degradation of several commercial textile azo dyes. Thus, we confirm B. subtilis C3 as a potential candidate for bioremediation of textile effluents.

  14. Draft Genome Sequence of Commercial Textile Dye-Decolorizing and -Degrading Bacillus subtilis Strain C3 Isolated in India.

    PubMed

    Kunadia, Khushbu; Nathani, Neelam M; Kothari, Vishal; Kotadia, Rohit J; Kothari, Charmy R; Joshi, Anjali; Rank, Jalpa K; Faldu, Priti R; Shekar, M Chandra; Viroja, Mitkumar J; Patel, Priyank A; Jadeja, Divyarajsinh; Reddy, Bhaskar; Pal Singh, Ravindra; Koringa, Prakash G; Joshi, Chaitanya G; Kothari, Ramesh K

    2016-01-01

    Bacillus subtilis C3, a commercial textile dye-decolorizing and -degrading bacterium, was isolated from the common effluent treatment plant (CEPT) of the Jetpur textile dyeing and printing industrial sector situated in the district of Rajkot, Gujarat, India. Here, we present the annotated 4.18-Mb draft genome sequence of B. subtilis C3, providing information about the metabolic pathways involved in decolorization and degradation of several commercial textile azo dyes. Thus, we confirm B. subtilis C3 as a potential candidate for bioremediation of textile effluents. PMID:26966205

  15. Draft Genome Sequence of Commercial Textile Dye-Decolorizing and -Degrading Bacillus subtilis Strain C3 Isolated in India

    PubMed Central

    Kunadia, Khushbu; Nathani, Neelam M.; Kothari, Vishal; Kotadia, Rohit J.; Kothari, Charmy R.; Joshi, Anjali; Rank, Jalpa K.; Faldu, Priti R.; Shekar, M. Chandra; Viroja, Mitkumar J.; Patel, Priyank A.; Jadeja, Divyarajsinh; Reddy, Bhaskar; Pal Singh, Ravindra; Koringa, Prakash G.; Joshi, Chaitanya G.

    2016-01-01

    Bacillus subtilis C3, a commercial textile dye-decolorizing and -degrading bacterium, was isolated from the common effluent treatment plant (CEPT) of the Jetpur textile dyeing and printing industrial sector situated in the district of Rajkot, Gujarat, India. Here, we present the annotated 4.18-Mb draft genome sequence of B. subtilis C3, providing information about the metabolic pathways involved in decolorization and degradation of several commercial textile azo dyes. Thus, we confirm B. subtilis C3 as a potential candidate for bioremediation of textile effluents. PMID:26966205

  16. Identification and evaluation of strain B37 of Bacillus subtilis antagonistic to sapstain fungi on poplar wood.

    PubMed

    Zhang, XiaoHua; Zhao, GuiHua; Li, DeWei; Li, ShunPeng; Hong, Qing

    2014-01-01

    Devaluation of poplar products by sapstain accounts for huge and unpredictable losses each year in China. We had isolated four poplar sapstain fungi, Ceratocystis adiposa Hz91, Lasiodiplodia theobromae YM0737, L. theobromae Fx46, and Fusarium sp. YM05, from five poplar varieties and 13 antagonistic bacteria from nine diverse varieties. After being experimented with agar plates, wood chips, and enzyme activities, strain B37 was identified as the best poplar sapstain biocontrol bacterium. The strain B37 was identified as Bacillus subtilis using sequences of the 16S rRNA gene, physiological biochemical, and morphological characteristics. PMID:25401124

  17. One-day pulsed-field gel electrophoresis protocol for rapid determination of emetic Bacillus cereus isolates.

    PubMed

    Kaminska, Paulina S; Fiedoruk, Krzysztof; Jankowska, Dominika; Mahillon, Jacques; Nowosad, Karol; Drewicka, Ewa; Zambrzycka, Monika; Swiecicka, Izabela

    2015-04-01

    Bacillus cereus, the Gram-positive and spore-forming ubiquitous bacterium, may cause emesis as the result of food intoxication with cereulide, a heat-stable emetic toxin. Rapid determination of cereulide-positive B. cereus isolates is of highest importance due to consequences of this intoxication for human health and life. Here we present a 1-day pulsed-field gel electrophoresis for emetic B. cereus isolates, which allows rapid and efficient determination of their genomic relatedness and helps determining the source of intoxication in case of outbreaks caused by these bacilli.

  18. Characterization of Cellulolytic and Xylanolytic Enzymes of Bacillus licheniformis JK7 Isolated from the Rumen of a Native Korean Goat

    PubMed Central

    Seo, J. K.; Park, T. S.; Kwon, I. H.; Piao, M. Y.; Lee, C. H.; Ha, Jong K.

    2013-01-01

    A facultative bacterium producing cellulolytic and hemicellulolytic enzymes was isolated from the rumen of a native Korean goat. The bacterium was identified as a Bacillus licheniformis on the basis of biochemical and morphological characteristics and 16S rDNA sequences, and has been designated Bacillus licheniformis JK7. Endoglucanase activities were higher than those of β-glucosidase and xylanase at all temperatures. Xylanase had the lowest activity among the three enzymes examined. The optimum temperature for the enzymes of Bacillus licheniformis JK7 was 70°C for endoglucanase (0.75 U/ml) and 50°C for β-glucosidase and xylanase (0.63 U/ml, 0.44 U/ml, respectively). All three enzymes were stable at a temperature range of 20 to 50°C. At 50°C, endoglucanse, β-glucosidase, and xylanase had 90.29, 94.80, and 88.69% residual activity, respectively. The optimal pH for the three enzymes was 5.0, at which their activity was 1.46, 1.10, and 1.08 U/ml, respectively. The activity of all three enzymes was stable in the pH range of 3.0 to 6.0. Endoglucanase activity was increased 113% by K+, while K+, Zn+, and tween 20 enhanced β-glucosidase activity. Xylanase showed considerable activity even in presence of selected chemical additives, with the exception of Mn2+ and Cu2+. The broad range of optimum temperatures (20 to 40°C) and the stability under acidic pH (4 to 6) suggest that the cellulolytic enzymes of Bacillus licheniformis JK7 may be good candidates for use in the biofuel industry. PMID:25049705

  19. Bacillus thuringiensis Toxins: An Overview of Their Biocidal Activity

    PubMed Central

    Palma, Leopoldo; Muñoz, Delia; Berry, Colin; Murillo, Jesús; Caballero, Primitivo

    2014-01-01

    Bacillus thuringiensis (Bt) is a Gram positive, spore-forming bacterium that synthesizes parasporal crystalline inclusions containing Cry and Cyt proteins, some of which are toxic against a wide range of insect orders, nematodes and human-cancer cells. These toxins have been successfully used as bioinsecticides against caterpillars, beetles, and flies, including mosquitoes and blackflies. Bt also synthesizes insecticidal proteins during the vegetative growth phase, which are subsequently secreted into the growth medium. These proteins are commonly known as vegetative insecticidal proteins (Vips) and hold insecticidal activity against lepidopteran, coleopteran and some homopteran pests. A less well characterized secretory protein with no amino acid similarity to Vip proteins has shown insecticidal activity against coleopteran pests and is termed Sip (secreted insecticidal protein). Bin-like and ETX_MTX2-family proteins (Pfam PF03318), which share amino acid similarities with mosquitocidal binary (Bin) and Mtx2 toxins, respectively, from Lysinibacillus sphaericus, are also produced by some Bt strains. In addition, vast numbers of Bt isolates naturally present in the soil and the phylloplane also synthesize crystal proteins whose biological activity is still unknown. In this review, we provide an updated overview of the known active Bt toxins to date and discuss their activities. PMID:25514092

  20. Degradation of ochratoxin A by Bacillus amyloliquefaciens ASAG1.

    PubMed

    Chang, Xiaojiao; Wu, Zidan; Wu, Songling; Dai, Yanshi; Sun, Changpo

    2015-01-01

    Ochratoxin A (OTA) is widely found in food and feed products as a mycotoxin contaminant. It is produced by Penicillium species and several Aspergillus species. The identification OTA detoxification microorganisms is believed to be the best approach for decontamination. In this study, we isolated ASAG1, a bacterium with the ability to degrade OTA effectively, from grain depot-stored maize. A 16S rDNA sequencing approach was used to identify this strain as Bacillus amyloliquefaciens ASAG1. The degradation of OTA was detected in both medium and cell-free extracts after incubation with a culture of B. amyloliquefaciens ASAG1 cells. Subsequently, a hydrolysed enzyme (carboxypeptidase) related to the enzymatic conversion of OTA was cloned from the B. amyloliquefaciens ASAG1 genome. Using the Escherichia coli Expression System, we successfully expressed and purified this carboxypeptidase. When this enzyme was incubated with the engineered recombinant E. coli cells, the concentration of OTA was dramatically degraded. Our data therefore indicate that the carboxypeptidase produced by B. amyloliquefaciens ASAG1 is likely responsible for the biodegradation of OTA. PMID:25517039

  1. Synergistic activity of Bacillus thuringiensis toxins against Simulium spp. larvae.

    PubMed

    Monnerat, Rose; Pereira, Eleny; Teles, Beatriz; Martins, Erica; Praça, Lilian; Queiroz, Paulo; Soberon, Mario; Bravo, Alejandra; Ramos, Felipe; Soares, Carlos Marcelo

    2014-09-01

    Species of Simulium spread diseases in humans and animals such as onchocerciasis and mansonelosis, causing health problems and economic loses. One alternative for controlling these insects is the use of Bacillus thuringiensis serovar israelensis (Bti). This bacterium produces different dipteran-active Cry and Cyt toxins and has been widely used in blackfly biological control programs worldwide. Studies on other insect targets have revealed the role of individual Cry and Cyt proteins in toxicity and demonstrated a synergistic effect among them. However, the insecticidal activity and interactions of these proteins against Simulium larvae have not been reported. In this study we demonstrate that Cry4Ba is the most effective toxin followed by Cry4Aa and Cry11Aa. Cry10Aa and Cyt1Aa were not toxic when administered alone but both were able to synergise the activity of Cry4B and Cry11Aa toxins. Cyt1Aa is also able to synergise with Cry4Aa. The mixture of all toxin-producing strains showed the greatest level of synergism, but still lower than the Bti parental strain.

  2. A biochemically active MCM-like helicase in Bacillus cereus

    PubMed Central

    Samuels, Martin; Gulati, Gaurav; Shin, Jae-Ho; Opara, Rejoice; McSweeney, Elizabeth; Sekedat, Matt; Long, Stephen; Kelman, Zvi; Jeruzalmi, David

    2009-01-01

    The mini-chromosome maintenance (MCM) proteins serve as the replicative helicases in archaea and eukaryotes. Interestingly, an MCM homolog was identified, by BLAST analysis, within a phage integrated in the bacterium Bacillus cereus (Bc). BcMCM is only related to the AAA region of MCM-helicases; the typical amino-terminus is missing and is replaced by a segment with weak homology to primases. We show that BcMCM displays 3′→5′ helicase and ssDNA-stimulated ATPase activity, properties that arise from its conserved AAA domain. Isolated BcMCM is a monomer in solution but likely forms the functional oligomer in vivo. We found that the BcMCM amino-terminus can bind ssDNA and harbors a zinc atom, both hallmarks of the typical MCM amino-terminus. No BcMCM-catalyzed primase activity could be detected. We propose that the divergent amino-terminus of BcMCM is a paralog of the corresponding region of MCM-helicases. A divergent amino terminus makes BcMCM a useful model for typical MCM-helicases since it accomplishes the same function using an apparently unrelated structure. PMID:19474351

  3. Assessment of imidacloprid degradation by soil-isolated Bacillus alkalinitrilicus.

    PubMed

    Sharma, Smriti; Singh, Balwinder; Gupta, V K

    2014-11-01

    Imidacloprid is extensively used on a broad range of crops worldwide as seed dressing, soil treatment, and foliar application. Hence, the degradation potential of bacterial strains from sugarcane-growing soils was studied in liquid medium for subsequent use in bioremediation of contaminated soils. The microbe cultures degrading imidacloprid were isolated and enriched on Dorn's broth containing imidacloprid as sole carbon source maintained at 28 °C and Bacillus alkalinitrilicus showed maximum potential to degrade imidacloprid. Clay loam soil samples were fortified with imidacloprid at 50, 100, and 150 mg kg(-1) along with 45 × 10(7) microbe cells under two opposing sets of conditions, viz., autoclaved and unautoclaved. To study degradation and metabolism of imidacloprid under these two conditions, samples were drawn at regular intervals of 7, 14, 28, 35, 42, 49, and 56 days. Among metabolites, three metabolites were detected, viz., 6-chloronicotinic acid, nitrosimine followed by imidacloprid-NTG under both the conditions. Total imidacloprid residues were not found to follow the first-order kinetics in both types of conditions. This paper reports for the first time the potential use of pure cultures of soil-isolated native bacterium B. alkalinitrilicus and also its use along with natural soil microflora for remediation of imidacloprid-contaminated soils. PMID:25052329

  4. Degradation of ochratoxin A by Bacillus amyloliquefaciens ASAG1.

    PubMed

    Chang, Xiaojiao; Wu, Zidan; Wu, Songling; Dai, Yanshi; Sun, Changpo

    2015-01-01

    Ochratoxin A (OTA) is widely found in food and feed products as a mycotoxin contaminant. It is produced by Penicillium species and several Aspergillus species. The identification OTA detoxification microorganisms is believed to be the best approach for decontamination. In this study, we isolated ASAG1, a bacterium with the ability to degrade OTA effectively, from grain depot-stored maize. A 16S rDNA sequencing approach was used to identify this strain as Bacillus amyloliquefaciens ASAG1. The degradation of OTA was detected in both medium and cell-free extracts after incubation with a culture of B. amyloliquefaciens ASAG1 cells. Subsequently, a hydrolysed enzyme (carboxypeptidase) related to the enzymatic conversion of OTA was cloned from the B. amyloliquefaciens ASAG1 genome. Using the Escherichia coli Expression System, we successfully expressed and purified this carboxypeptidase. When this enzyme was incubated with the engineered recombinant E. coli cells, the concentration of OTA was dramatically degraded. Our data therefore indicate that the carboxypeptidase produced by B. amyloliquefaciens ASAG1 is likely responsible for the biodegradation of OTA.

  5. The glucose and nitrogen starvation response of Bacillus licheniformis.

    PubMed

    Voigt, Birgit; Hoi, Le Thi; Jürgen, Britta; Albrecht, Dirk; Ehrenreich, Armin; Veith, Birgit; Evers, Stefan; Maurer, Karl-Heinz; Hecker, Michael; Schweder, Thomas

    2007-02-01

    The glucose and nitrogen starvation stimulons of Bacillus licheniformis were determined by transcriptome and proteome analyses. Under both starvation conditions, the main response of B. licheniformis was a switch to the usage of alternative nutrient sources. This was indicated by an induction of genes involved in the metabolism of C-2 substrates during glucose limitation. In addition, B. licheniformis seems to be using other organic substances like amino acids and lipids as carbon sources when subjected to glucose starvation. This observation is supported by the induction of a high number of genes coding for proteins involved in amino acid and lipid degradation. During nitrogen starvation, genes for several proteases and peptidases involved in nitrate and nitrite assimilation were induced, which enables this bacterium to recruit nitrogen from alternative sources. Both starvation conditions led to a down-regulation of transcription of most vegetative genes, which was subsequently reflected by a reduced synthesis of the corresponding proteins. A selected set of genes was induced by both starvation conditions. Among them were yvyD, citA and the putative methylcitrate shunt genes mmgD, mmgE and yqiQ. However, both starvation conditions did not induce a general SigmaB-dependent stress response.

  6. Bacillus thuringiensis toxins: an overview of their biocidal activity.

    PubMed

    Palma, Leopoldo; Muñoz, Delia; Berry, Colin; Murillo, Jesús; Caballero, Primitivo

    2014-12-11

    Bacillus thuringiensis (Bt) is a Gram positive, spore-forming bacterium that synthesizes parasporal crystalline inclusions containing Cry and Cyt proteins, some of which are toxic against a wide range of insect orders, nematodes and human-cancer cells. These toxins have been successfully used as bioinsecticides against caterpillars, beetles, and flies, including mosquitoes and blackflies. Bt also synthesizes insecticidal proteins during the vegetative growth phase, which are subsequently secreted into the growth medium. These proteins are commonly known as vegetative insecticidal proteins (Vips) and hold insecticidal activity against lepidopteran, coleopteran and some homopteran pests. A less well characterized secretory protein with no amino acid similarity to Vip proteins has shown insecticidal activity against coleopteran pests and is termed Sip (secreted insecticidal protein). Bin-like and ETX_MTX2-family proteins (Pfam PF03318), which share amino acid similarities with mosquitocidal binary (Bin) and Mtx2 toxins, respectively, from Lysinibacillus sphaericus, are also produced by some Bt strains. In addition, vast numbers of Bt isolates naturally present in the soil and the phylloplane also synthesize crystal proteins whose biological activity is still unknown. In this review, we provide an updated overview of the known active Bt toxins to date and discuss their activities.

  7. Prodigiosin Induces Autolysins in Actively Grown Bacillus subtilis Cells

    PubMed Central

    Danevčič, Tjaša; Borić Vezjak, Maja; Tabor, Maja; Zorec, Maša; Stopar, David

    2016-01-01

    Prodigiosin produced by marine bacterium Vibrio ruber DSM 14379 exhibits a potent antimicrobial activity against a broad range of Gram positive and Gram negative bacteria. The mechanism of prodigiosin antimicrobial action, however, is not known. In this work, the effect of prodigiosin on Bacillus subtilis growth, cell membrane leakage, and induction of autolysins was studied. Treating B. subtilis with prodigiosin resulted in rapid decline of optical density and increased cell membrane leakage measured by β-galactosidase activity. Cell lysis was initiated immediately after treatment with prodigiosin in the middle exponential phase and was completed within 2 h. Lytic activity of prodigiosin in mutant strains with impaired autolysin genes lytABCD decreased for 80% compared to the wild type strain, while in lytABCDEF mutant strain prodigiosin had no bacteriolytic but only bacteriostatic effect. Fast prodigiosin lytic activity on individual B. subtilis cells was confirmed by a modified comet assay. The results indicate that prodigiosin autolysin induction in B. subtilis is growth phase dependent. PMID:26858704

  8. A part toolbox to tune genetic expression in Bacillus subtilis.

    PubMed

    Guiziou, Sarah; Sauveplane, Vincent; Chang, Hung-Ju; Clerté, Caroline; Declerck, Nathalie; Jules, Matthieu; Bonnet, Jerome

    2016-09-01

    Libraries of well-characterised components regulating gene expression levels are essential to many synthetic biology applications. While widely available for the Gram-negative model bacterium Escherichia coli, such libraries are lacking for the Gram-positive model Bacillus subtilis, a key organism for basic research and biotechnological applications. Here, we engineered a genetic toolbox comprising libraries of promoters, Ribosome Binding Sites (RBS), and protein degradation tags to precisely tune gene expression in B. subtilis We first designed a modular Expression Operating Unit (EOU) facilitating parts assembly and modifications and providing a standard genetic context for gene circuits implementation. We then selected native, constitutive promoters of B. subtilis and efficient RBS sequences from which we engineered three promoters and three RBS sequence libraries exhibiting ∼14 000-fold dynamic range in gene expression levels. We also designed a collection of SsrA proteolysis tags of variable strength. Finally, by using fluorescence fluctuation methods coupled with two-photon microscopy, we quantified the absolute concentration of GFP in a subset of strains from the library. Our complete promoters and RBS sequences library comprising over 135 constructs enables tuning of GFP concentration over five orders of magnitude, from 0.05 to 700 μM. This toolbox of regulatory components will support many research and engineering applications in B. subtilis. PMID:27402159

  9. Novel and Unique Diagnostic Biomarkers for Bacillus anthracis Infection▿

    PubMed Central

    Sela-Abramovich, Sagit; Chitlaru, Theodor; Gat, Orit; Grosfeld, Haim; Cohen, Ofer; Shafferman, Avigdor

    2009-01-01

    A search for bacterium-specific biomarkers in peripheral blood following infection with Bacillus anthracis was carried out with rabbits, using a battery of specific antibodies generated by DNA vaccination against 10 preselected highly immunogenic bacterial antigens which were identified previously by a genomic/proteomic/serologic screen of the B. anthracis secretome. Detection of infection biomarkers in the circulation of infected rabbits could be achieved only after removal of highly abundant serum proteins by chromatography using a random-ligand affinity column. Besides the toxin component protective antigen, the following three secreted proteins were detected in the circulation of infected animals: the chaperone and protease HtrA (BA3660), an NlpC/P60 endopeptidase (BA1952), and a protein of unknown function harboring two SH3 (Src homology 3) domains (BA0796). The three proteins could be detected in plasma samples from infected animals exhibiting 103 to 105 CFU/ml blood and also in standard blood cultures at 3 to 6 h post-bacterial inoculation at a bacteremic level as low as 103 CFU/ml. Furthermore, the three biomarkers appear to be present only in the secretome of B. anthracis, not in those of the related pathogens B. thuringiensis and B. cereus. To the best of our knowledge, this is the first report of direct detection of B. anthracis-specific proteins, other than the toxin components, in the circulation of infected animals. PMID:19648366

  10. A part toolbox to tune genetic expression in Bacillus subtilis

    PubMed Central

    Guiziou, Sarah; Sauveplane, Vincent; Chang, Hung-Ju; Clerté, Caroline; Declerck, Nathalie; Jules, Matthieu; Bonnet, Jerome

    2016-01-01

    Libraries of well-characterised components regulating gene expression levels are essential to many synthetic biology applications. While widely available for the Gram-negative model bacterium Escherichia coli, such libraries are lacking for the Gram-positive model Bacillus subtilis, a key organism for basic research and biotechnological applications. Here, we engineered a genetic toolbox comprising libraries of promoters, Ribosome Binding Sites (RBS), and protein degradation tags to precisely tune gene expression in B. subtilis. We first designed a modular Expression Operating Unit (EOU) facilitating parts assembly and modifications and providing a standard genetic context for gene circuits implementation. We then selected native, constitutive promoters of B. subtilis and efficient RBS sequences from which we engineered three promoters and three RBS sequence libraries exhibiting ∼14 000-fold dynamic range in gene expression levels. We also designed a collection of SsrA proteolysis tags of variable strength. Finally, by using fluorescence fluctuation methods coupled with two-photon microscopy, we quantified the absolute concentration of GFP in a subset of strains from the library. Our complete promoters and RBS sequences library comprising over 135 constructs enables tuning of GFP concentration over five orders of magnitude, from 0.05 to 700 μM. This toolbox of regulatory components will support many research and engineering applications in B. subtilis. PMID:27402159

  11. DNA Repair and Genome Maintenance in Bacillus subtilis

    PubMed Central

    Lenhart, Justin S.; Schroeder, Jeremy W.; Walsh, Brian W.

    2012-01-01

    Summary: From microbes to multicellular eukaryotic organisms, all cells contain pathways responsible for genome maintenance. DNA replication allows for the faithful duplication of the genome, whereas DNA repair pathways preserve DNA integrity in response to damage originating from endogenous and exogenous sources. The basic pathways important for DNA replication and repair are often conserved throughout biology. In bacteria, high-fidelity repair is balanced with low-fidelity repair and mutagenesis. Such a balance is important for maintaining viability while providing an opportunity for the advantageous selection of mutations when faced with a changing environment. Over the last decade, studies of DNA repair pathways in bacteria have demonstrated considerable differences between Gram-positive and Gram-negative organisms. Here we review and discuss the DNA repair, genome maintenance, and DNA damage checkpoint pathways of the Gram-positive bacterium Bacillus subtilis. We present their molecular mechanisms and compare the functions and regulation of several pathways with known information on other organisms. We also discuss DNA repair during different growth phases and the developmental program of sporulation. In summary, we present a review of the function, regulation, and molecular mechanisms of DNA repair and mutagenesis in Gram-positive bacteria, with a strong emphasis on B. subtilis. PMID:22933559

  12. Metabolic engineering of Bacillus subtilis for terpenoid production.

    PubMed

    Guan, Zheng; Xue, Dan; Abdallah, Ingy I; Dijkshoorn, Linda; Setroikromo, Rita; Lv, Guiyuan; Quax, Wim J

    2015-11-01

    Terpenoids are the largest group of small-molecule natural products, with more than 60,000 compounds made from isopentenyl diphosphate (IPP) and its isomer dimethylallyl diphosphate (DMAPP). As the most diverse group of small-molecule natural products, terpenoids play an important role in the pharmaceutical, food, and cosmetic industries. For decades, Escherichia coli (E. coli) and Saccharomyces cerevisiae (S. cerevisiae) were extensively studied to biosynthesize terpenoids, because they are both fully amenable to genetic modifications and have vast molecular resources. On the other hand, our literature survey (20 years) revealed that terpenoids are naturally more widespread in Bacillales. In the mid-1990s, an inherent methylerythritol phosphate (MEP) pathway was discovered in Bacillus subtilis (B. subtilis). Since B. subtilis is a generally recognized as safe (GRAS) organism and has long been used for the industrial production of proteins, attempts to biosynthesize terpenoids in this bacterium have aroused much interest in the scientific community. This review discusses metabolic engineering of B. subtilis for terpenoid production, and encountered challenges will be discussed. We will summarize some major advances and outline future directions for exploiting the potential of B. subtilis as a desired "cell factory" to produce terpenoids.

  13. Genomic reconstruction of the transcriptional regulatory network in Bacillus subtilis.

    PubMed

    Leyn, Semen A; Kazanov, Marat D; Sernova, Natalia V; Ermakova, Ekaterina O; Novichkov, Pavel S; Rodionov, Dmitry A

    2013-06-01

    The adaptation of microorganisms to their environment is controlled by complex transcriptional regulatory networks (TRNs), which are still only partially understood even for model species. Genome scale annotation of regulatory features of genes and TRN reconstruction are challenging tasks of microbial genomics. We used the knowledge-driven comparative-genomics approach implemented in the RegPredict Web server to infer TRN in the model Gram-positive bacterium Bacillus subtilis and 10 related Bacillales species. For transcription factor (TF) regulons, we combined the available information from the DBTBS database and the literature with bioinformatics tools, allowing inference of TF binding sites (TFBSs), comparative analysis of the genomic context of predicted TFBSs, functional assignment of target genes, and effector prediction. For RNA regulons, we used known RNA regulatory motifs collected in the Rfam database to scan genomes and analyze the genomic context of new RNA sites. The inferred TRN in B. subtilis comprises regulons for 129 TFs and 24 regulatory RNA families. First, we analyzed 66 TF regulons with previously known TFBSs in B. subtilis and projected them to other Bacillales genomes, resulting in refinement of TFBS motifs and identification of novel regulon members. Second, we inferred motifs and described regulons for 28 experimentally studied TFs with previously unknown TFBSs. Third, we discovered novel motifs and reconstructed regulons for 36 previously uncharacterized TFs. The inferred collection of regulons is available in the RegPrecise database (http://regprecise.lbl.gov/) and can be used in genetic experiments, metabolic modeling, and evolutionary analysis.

  14. Comparison of hand hygiene procedures for removing Bacillus cereus spores.

    PubMed

    Sasahara, Teppei; Hayashi, Shunji; Hosoda, Kouichi; Morisawa, Yuji; Hirai, Yoshikazu

    2014-01-01

    Bacillus cereus is a spore-forming bacterium. B. cereus occasionally causes nosocomial infections, in which hand contamination with the spores plays an important role. Therefore, hand hygiene is the most important practice for controlling nosocomial B. cereus infections. This study aimed to determine the appropriate hand hygiene procedure for removing B. cereus spores. Thirty volunteers' hands were experimentally contaminated with B. cereus spores, after which they performed 6 different hand hygiene procedures. We compared the efficacy of the procedures in removing the spores from hands. The alcohol-based hand-rubbing procedures scarcely removed them. The soap washing procedures reduced the number of spores by more than 2 log10. Extending the washing time increased the spore-removing efficacy of the washing procedures. There was no significant difference in efficacy between the use of plain soap and antiseptic soap. Handwashing with soap is appropriate for removing B. cereus spores from hands. Alcohol-based hand-rubbing is not effective. PMID:25252644

  15. Prodigiosin Induces Autolysins in Actively Grown Bacillus subtilis Cells.

    PubMed

    Danevčič, Tjaša; Borić Vezjak, Maja; Tabor, Maja; Zorec, Maša; Stopar, David

    2016-01-01

    Prodigiosin produced by marine bacterium Vibrio ruber DSM 14379 exhibits a potent antimicrobial activity against a broad range of Gram positive and Gram negative bacteria. The mechanism of prodigiosin antimicrobial action, however, is not known. In this work, the effect of prodigiosin on Bacillus subtilis growth, cell membrane leakage, and induction of autolysins was studied. Treating B. subtilis with prodigiosin resulted in rapid decline of optical density and increased cell membrane leakage measured by β-galactosidase activity. Cell lysis was initiated immediately after treatment with prodigiosin in the middle exponential phase and was completed within 2 h. Lytic activity of prodigiosin in mutant strains with impaired autolysin genes lytABCD decreased for 80% compared to the wild type strain, while in lytABCDEF mutant strain prodigiosin had no bacteriolytic but only bacteriostatic effect. Fast prodigiosin lytic activity on individual B. subtilis cells was confirmed by a modified comet assay. The results indicate that prodigiosin autolysin induction in B. subtilis is growth phase dependent.

  16. Bacillus cereus and related species.

    PubMed

    Drobniewski, F A

    1993-10-01

    Bacillus cereus is a gram-positive aerobic or facultatively anaerobic spore-forming rod. It is a cause of food poisoning, which is frequently associated with the consumption of rice-based dishes. The organism produces an emetic or diarrheal syndrome induced by an emetic toxin and enterotoxin, respectively. Other toxins are produced during growth, including phospholipases, proteases, and hemolysins, one of which, cereolysin, is a thiol-activated hemolysin. These toxins may contribute to the pathogenicity of B. cereus in nongastrointestinal disease. B. cereus isolated from clinical material other than feces or vomitus was commonly dismissed as a contaminant, but increasingly it is being recognized as a species with pathogenic potential. It is now recognized as an infrequent cause of serious nongastrointestinal infection, particularly in drug addicts, the immunosuppressed, neonates, and postsurgical patients, especially when prosthetic implants such as ventricular shunts are inserted. Ocular infections are the commonest types of severe infection, including endophthalmitis, panophthalmitis, and keratitis, usually with the characteristic formation of corneal ring abscesses. Even with prompt surgical and antimicrobial agent treatment, enucleation of the eye and blindness are common sequelae. Septicemia, meningitis, endocarditis, osteomyelitis, and surgical and traumatic wound infections are other manifestations of severe disease. B. cereus produces beta-lactamases, unlike Bacillus anthracis, and so is resistant to beta-lactam antibiotics; it is usually susceptible to treatment with clindamycin, vancomycin, gentamicin, chloramphenicol, and erythromycin. Simultaneous therapy via multiple routes may be required.

  17. Bacillus cereus and related species.

    PubMed Central

    Drobniewski, F A

    1993-01-01

    Bacillus cereus is a gram-positive aerobic or facultatively anaerobic spore-forming rod. It is a cause of food poisoning, which is frequently associated with the consumption of rice-based dishes. The organism produces an emetic or diarrheal syndrome induced by an emetic toxin and enterotoxin, respectively. Other toxins are produced during growth, including phospholipases, proteases, and hemolysins, one of which, cereolysin, is a thiol-activated hemolysin. These toxins may contribute to the pathogenicity of B. cereus in nongastrointestinal disease. B. cereus isolated from clinical material other than feces or vomitus was commonly dismissed as a contaminant, but increasingly it is being recognized as a species with pathogenic potential. It is now recognized as an infrequent cause of serious nongastrointestinal infection, particularly in drug addicts, the immunosuppressed, neonates, and postsurgical patients, especially when prosthetic implants such as ventricular shunts are inserted. Ocular infections are the commonest types of severe infection, including endophthalmitis, panophthalmitis, and keratitis, usually with the characteristic formation of corneal ring abscesses. Even with prompt surgical and antimicrobial agent treatment, enucleation of the eye and blindness are common sequelae. Septicemia, meningitis, endocarditis, osteomyelitis, and surgical and traumatic wound infections are other manifestations of severe disease. B. cereus produces beta-lactamases, unlike Bacillus anthracis, and so is resistant to beta-lactam antibiotics; it is usually susceptible to treatment with clindamycin, vancomycin, gentamicin, chloramphenicol, and erythromycin. Simultaneous therapy via multiple routes may be required. PMID:8269390

  18. OXIDATIVE ASSIMILATION BY BACILLUS MEGATERIUM

    PubMed Central

    Clifton, C. E.

    1963-01-01

    Clifton, C. E. (Stanford University, Stanford, Calif.). Oxidative assimilation by Bacillus megaterium. J. Bacteriol. 85:1365–1370. 1963.—Washed suspensions of Bacillus megaterium oxidized to CO2 about 39% of the U-C14-glucose supplied and incorporated about 37% of the label by the time a marked break in the rate of O2 consumption was noted. Almost one-half of the label was lost from the cells on acidification of the suspension. The remainder of the C14 was present in the supernatant fluid, primarily in forms as yet unidentified, but other than carbohydrate. Both the Embden-Meyerhof and hexose monophosphate pathways of oxidation were involved. Endogenous respiration appeared to be inhibited only to a slight extent in the presence of an exogenous substrate. C14 appeared in all fractions of the cells; the highest percentage of firmly bound C14 was present in hot 5% trichloroacetic acid-insoluble matter. A decrease in C14 content of the various fractions was noted during endogenous respiration of cells labeled during growth. Pyruvate and acetate were oxidized very slowly by B. megaterium. The results indicate the complexity of oxidative assimilation and the dynamic state of cellular metabolism. PMID:14047231

  19. Inhibition of Bacillus cereus Growth and Toxin Production by Bacillus amyloliquefaciens RD7-7 in Fermented Soybean Products.

    PubMed

    Eom, Jeong Seon; Choi, Hye Sun

    2016-01-01

    Bacillus cereus is a gram-positive, rod-shaped, spore-forming bacterium that has been isolated from contaminated fermented soybean food products and from the environment. B. cereus produces diarrheal and emetic toxins and has caused many outbreaks of foodborne diseases. In this study, we investigated whether B. amyloliquefaciens RD7-7, isolated from rice doenjang (Korean fermented soybean paste), a traditional Korean fermented soybean food, shows antimicrobial activity against B. cereus and regulates its toxin gene expression. B. amyloliquefaciens RD7-7 exhibited strong antibacterial activity against B. cereus and inhibited the expression of B. cereus toxin-related genes (groEL, nheA, nheC, and entFM). We also found that addition of water extracts of soybean and buckwheat soksungjang (Korean fermented soybean paste made in a short time) fermented with B. amyloliquefaciens RD7-7 significantly reduced the growth and toxin expression of B. cereus. These results indicate that B. amyloliquefaciens RD7-7 could be used to control B. cereus growth and toxin production in the fermented soybean food industry. Our findings also provide a basis for the development of candidate biological control agents against B. cereus to improve the safety of fermented soybean food products.

  20. Agrobacterium tumefaciens Is a Diazotrophic Bacterium

    PubMed Central

    Kanvinde, Lalita; Sastry, G. R. K.

    1990-01-01

    This is the first report that Agrobacterium tumefaciens can fix nitrogen in a free-living condition as shown by its abilities to grow on nitrogen-free medium, reduce acetylene to ethylene, and incorporate 15N supplied as 15N2. As with most other well-characterized diazotrophic bacteria, the presence of NH4+ in the medium and aerobic conditions repress nitrogen fixation by A. tumefaciens. The system requires molybdenum. No evidence for nodulation was found with pea, peanut, or soybean plants. Further understanding of the nitrogen-fixing ability of this bacterium, which has always been considered a pathogen, should cast new light on the evolution of a pathogenic versus symbiotic relationship. Images PMID:16348237

  1. Agrobacterium tumefaciens is a diazotrophic bacterium

    SciTech Connect

    Kanvinde, L.; Sastry, G.R.K. )

    1990-07-01

    This is the first report that Agrobacterium tumefaciens can fix nitrogen in a free-living condition as shown by its abilities to grown on nitrogen-free medium, reduce acetylene to ethylene, and incorporate {sup 15}N supplied as {sup 15}N{sub 2}. As with most other well-characterized diazotrophic bacteria, the presence of NH{sub 4}{sup +} in the medium and aerobic conditions repress nitrogen fixation by A. tumefaciens. The system requires molybdenum. No evidence for nodulation was found with pea, peanut, or soybean plants. Further understanding of the nitrogen-fixing ability of this bacterium, which has always been considered a pathogen, should cast new light on the evolution of a pathogenic versus symbiotic relationship.

  2. Immobilization of the Methanogenic bacterium methanosarcina barkeri

    SciTech Connect

    Scherer, P.; Kluge, M.; Klein, J.; Sahm, H.

    1981-05-01

    Whole cells of the methanogen Methanosarcina barkeri were immobilized in an alginate network which was crosslinked with Ca/sup 2+/ calcium ions. The rates of methanol conversion to methane of entrapped cells were found to be in the same range as the corresponding rates of free cells. Furthermore, immobilized cells were active for a longer period than free cells. The particle size of the spherical alginate beads and thus diffusion has no obvious influence on the turnover of methanol. The half-value period for methanol conversion activity determined in a buffer medium was approximately 4 days at 37/degree/C for entrapped cells. The high rates of methanol degradation indicated that the immobilization technique preserved the cellular functions of this methanogenic bacterium. 24 refs.

  3. The chemical formula of a magnetotactic bacterium.

    PubMed

    Naresh, Mohit; Das, Sayoni; Mishra, Prashant; Mittal, Aditya

    2012-05-01

    Elucidation of the chemical logic of life is one of the grand challenges in biology, and essential to the progress of the upcoming field of synthetic biology. Treatment of microbial cells explicitly as a "chemical" species in controlled reaction (growth) environments has allowed fascinating discoveries of elemental formulae of a few species that have guided the modern views on compositions of a living cell. Application of mass and energy balances on living cells has proved to be useful in modeling of bioengineering systems, particularly in deriving optimized media compositions for growing microorganisms to maximize yields of desired bio-derived products by regulating intra-cellular metabolic networks. In this work, application of elemental mass balance during growth of Magnetospirillum gryphiswaldense in bioreactors has resulted in the discovery of the chemical formula of the magnetotactic bacterium. By developing a stoichiometric equation characterizing the formation of a magnetotactic bacterial cell, coupled with rigorous experimental measurements and robust calculations, we report the elemental formula of M. gryphiswaldense cell as CH(2.06)O(0.13)N(0.28)Fe(1.74×10(-3)). Remarkably, we find that iron metabolism during growth of this magnetotactic bacterium is much more correlated individually with carbon and nitrogen, compared to carbon and nitrogen with each other, indicating that iron serves more as a nutrient during bacterial growth rather than just a mineral. Magnetotactic bacteria have not only invoked some interest in the field of astrobiology for the last two decades, but are also prokaryotes having the unique ability of synthesizing membrane bound intracellular organelles. Our findings on these unique prokaryotes are a strong addition to the limited repertoire, of elemental compositions of living cells, aimed at exploring the chemical logic of life.

  4. Immobilization of Rhodococcus rhodochrous BX2 (an acetonitrile-degrading bacterium) with biofilm-forming bacteria for wastewater treatment.

    PubMed

    Li, Chunyan; Li, Yue; Cheng, Xiaosong; Feng, Liping; Xi, Chuanwu; Zhang, Ying

    2013-03-01

    In this study, a unique biofilm consisting of three bacterial strains with high biofilm-forming capability (Bacillus subtilis E2, E3, and N4) and an acetonitrile-degrading bacterium (Rhodococcus rhodochrous BX2) was established for acetonitrile-containing wastewater treatment. The results indicated that this biofilm exhibited strong resistance to acetonitrile loading shock and displayed a typical spatial and structural heterogeneity and completely depleted the initial concentration of acetonitrile (800mgL(-1)) within 24h in a moving-bed-biofilm reactor (MBBR) after operation for 30days. The immobilization of BX2 cells in the biofilm was confirmed by PCR-DGGE. It has been demonstrated that biofilm-forming bacteria can promote the immobilization of contaminant-degrading bacteria in the biofilms and can subsequently improve the degradation of contaminants in wastewater. This approach offers a novel strategy for enhancing biological oxidation of toxic pollutants in wastewater. PMID:23376196

  5. Comparative analysis of heterologous expression, biochemical characterization optimal production of an alkaline α-amylase from alkaliphilic Alkalimonas amylolytica in Escherichia coli and Pichia pastoris.

    PubMed

    Yang, Haiquan; Liu, Long; Shin, Hyun-dong; Chen, Rachel R; Li, Jianghua; Du, Guocheng; Chen, Jian

    2013-01-01

    An alkaline α-amylase gene from alkaliphilic Alkalimonas amylolytica was synthesized based on the preferred codon usage of Escherichia coli and Pichia pastoris, respectively, and then was expressed in the according heterologous host, E. coli BL21 (DE3) and P. pastoris GS115. The alkaline α-amylase expressed in E. coli was designated AmyA, whereas that produced by P. pastoris was designated AmyB. The specific activity of AmyA and AmyB was 16.0 and 16.6 U/mg at pH 9.5 and 50°C, respectively. The optimal pH and pH stability of AmyA and AmyB were similar, whereas the optimum temperature and thermal stability of AmyB were slightly enhanced compared with those of AmyA. The AmyA and AmyB had a similar melting temperature of 64°C and the same catalytic efficiency (k(cat) /K(m) ) of 2.0 × 10(6) L/(mol min). AmyA and AmyB were slightly activated by 1 mM Co(2+) , Ca(2+) , or Na(+) , but inhibited by all other metal ions (K(+) , Mg(2+) , Fe(3+) , Fe(2+) , Zn(2+) , Mn(2+) , and Cu(2+) ). Tween 80 or Tween 60 (10% (w/v)) had little influence on the stability of AmyA and AmyB, while the 10% (w/v) sodium dodecyl sulfate caused the complete loss of AmyA and AmyB activities. The AmyA and AmyB were stable in the presence of solid detergents (washing powder), while were less stable in liquid detergents. Under the optimal conditions in 3-L bioreactor, the extracellular AmyB activity reached 600 U/mL, which was about 10 times as that of AmyA. These results indicated that P. pastoris was a preferable host for alkaline α-amylase expression and the produced alkaline α-amylase had a certain application potential in solid detergents.

  6. Bacillus cereus endocarditis in native aortic valve.

    PubMed

    Ngow, H A; Wan Khairina, W M N

    2013-02-01

    Bacillus cereus endocarditis is rare. It has been implicated in immunocompromised individuals, especially in intravenous drug users as well as in those with a cardiac prosthesis. The patient was a 31-year-old ex-intravenous drug addict with a past history of staphylococcal pulmonary valve endocarditis, who presented with symptoms of decompensated cardiac failure. Echocardiography showed severe aortic regurgitation with an oscillating vegetation seen on the right coronary cusp of the aortic valve. The blood cultures grew Bacillus cereus. We report this as a rare case of Bacillus cereus endocarditis affecting a native aortic valve.

  7. Filobacterium rodentium gen. nov., sp. nov., a member of Filobacteriaceae fam. nov. within the phylum Bacteroidetes; includes a microaerobic filamentous bacterium isolated from specimens from diseased rodent respiratory tracts.

    PubMed

    Ike, Fumio; Sakamoto, Mitsuo; Ohkuma, Moriya; Kajita, Ayako; Matsushita, Satoru; Kokubo, Toshiaki

    2016-01-01

    Strain SMR-CT, which was originally isolated from rats as the SMR strain, had been named 'cilia-associated respiratory bacillus' ('CAR bacillus'). 'CAR bacillus' was a Gram-stain-negative, filamentous argentophilic bacterium without flagella. SMR-CT grew at 37 °C under microaerobic conditions, showed gliding activity, hydrolysed urea and induced chronic respiratory diseases in rodents. The dominant cellular fatty acids detected were iso-C15 : 0 and anteiso-C15 : 0. The DNA G+C content was 47.7 mol%. 16S rRNA gene sequence analysis revealed SMR-CT and other strains of 'CAR bacillus' isolated from rodents all belonged to the phylum Bacteroidetes. The nearest known type strain, with 86 % 16S rRNA gene sequence similarity, was Chitinophaga pinensis DSM 2588T in the family Chitinophagaceae. Strain SMR-CT and closely related strains of 'CAR bacillus' rodent-isolates formed a novel family-level clade in the phylum Bacteroidetes with high bootstrap support (98-100 %). Based on these results, we propose a novel family, Filobacteriaceae fam. nov., in the order Sphingobacteriales as well as a novel genus and species, Filobacterium rodentium gen. nov., sp. nov., for strain SMR-CT. The type strain is SMR-CT ( = JCM 19453T = DSM 100392T).

  8. Filobacterium rodentium gen. nov., sp. nov., a member of Filobacteriaceae fam. nov. within the phylum Bacteroidetes; includes a microaerobic filamentous bacterium isolated from specimens from diseased rodent respiratory tracts.

    PubMed

    Ike, Fumio; Sakamoto, Mitsuo; Ohkuma, Moriya; Kajita, Ayako; Matsushita, Satoru; Kokubo, Toshiaki

    2016-01-01

    Strain SMR-CT, which was originally isolated from rats as the SMR strain, had been named 'cilia-associated respiratory bacillus' ('CAR bacillus'). 'CAR bacillus' was a Gram-stain-negative, filamentous argentophilic bacterium without flagella. SMR-CT grew at 37 °C under microaerobic conditions, showed gliding activity, hydrolysed urea and induced chronic respiratory diseases in rodents. The dominant cellular fatty acids detected were iso-C15 : 0 and anteiso-C15 : 0. The DNA G+C content was 47.7 mol%. 16S rRNA gene sequence analysis revealed SMR-CT and other strains of 'CAR bacillus' isolated from rodents all belonged to the phylum Bacteroidetes. The nearest known type strain, with 86 % 16S rRNA gene sequence similarity, was Chitinophaga pinensis DSM 2588T in the family Chitinophagaceae. Strain SMR-CT and closely related strains of 'CAR bacillus' rodent-isolates formed a novel family-level clade in the phylum Bacteroidetes with high bootstrap support (98-100 %). Based on these results, we propose a novel family, Filobacteriaceae fam. nov., in the order Sphingobacteriales as well as a novel genus and species, Filobacterium rodentium gen. nov., sp. nov., for strain SMR-CT. The type strain is SMR-CT ( = JCM 19453T = DSM 100392T). PMID:26476525

  9. Phosphatidyltransferase activity in Bacillus megaterium.

    PubMed

    Morii, H; Goldfine, H

    1991-07-01

    Phosphatidyl transfer between phosphatidylethanolamine, phosphatidylglycerol or phosphatidylserine as donors and primary hydroxyl acceptors including ethanolamine, glycerol, serine and Triton X-100 has been shown to be catalysed by membrane particles derived from Bacillus megaterium strains ATCC 13632 and ATCC 14581. The rate of cardiolipin synthesis from phosphatidylglycerol in the presence of ethanolamine was an order of magnitude greater than that of phosphatidylethanolamine formation. Cardiolipin synthesis from phosphatidylethanolamine in the presence of glycerol was also observed, and was 1.5-fold greater than the formation of phosphatidylglycerol. Similar heat lability, effects of pH and of Triton X-100 for phosphatidyl transfer and cardiolipin synthesis indicate that both reactions were catalysed by cardiolipin synthase. PMID:1659610

  10. Narrow terahertz attenuation signatures in Bacillus thuringiensis.

    PubMed

    Zhang, Weidong; Brown, Elliott R; Viveros, Leamon; Burris, Kellie P; Stewart, C Neal

    2014-10-01

    Terahertz absorption signatures from culture-cultivated Bacillus thuringiensis were measured with a THz photomixing spectrometer operating from 400 to 1200 GHz. We observe two distinct signatures centered at ∼955 and 1015 GHz, and attribute them to the optically coupled particle vibrational resonance (surface phonon-polariton) of Bacillus spores. This demonstrates the potential of the THz attenuation signatures as "fingerprints" for label-free biomolecular detection.

  11. The Pore-Forming Protein Cry5B Elicits the Pathogenicity of Bacillus sp. against Caenorhabditis elegans

    PubMed Central

    Kho, Melanie F.; Hu, Yan; Hsu, Wayne; Nielsen-LeRoux, Christina; McGillivray, Shauna M.; Nizet, Victor; Aroian, Raffi V.

    2011-01-01

    The soil bacterium Bacillus thuringiensis is a pathogen of insects and nematodes and is very closely related to, if not the same species as, Bacillus cereus and Bacillus anthracis. The defining characteristic of B. thuringiensis that sets it apart from B. cereus and B. anthracis is the production of crystal (Cry) proteins, which are pore-forming toxins or pore-forming proteins (PFPs). Although it is known that PFPs are important virulence factors since their elimination results in reduced virulence of many pathogenic bacteria, the functions by which PFPs promote virulence are incompletely understood. Here we study the effect of Cry proteins in B. thuringiensis pathogenesis of the nematode Caenorhabditis elegans. We find that whereas B. thuringiensis on its own is not able to infect C. elegans, the addition of the PFP Cry protein, Cry5B, results in a robust lethal infection that consumes the nematode host in 1–2 days, leading to a “Bob” or bag-of-bacteria phenotype. Unlike other infections of C. elegans characterized to date, the infection by B. thuringiensis shows dose-dependency based on bacterial inoculum size and based on PFP concentration. Although the infection process takes 1–2 days, the PFP-instigated infection process is irreversibly established within 15 minutes of initial exposure. Remarkably, treatment of C. elegans with Cry5B PFP is able to instigate many other Bacillus species, including B. anthracis and even “non-pathogenic” Bacillus subtilis, to become lethal and infectious agents to C. elegans. Co-culturing of Cry5B-expressing B. thuringiensis with B. anthracis can result in lethal infection of C. elegans by B. anthracis. Our data demonstrate that one potential property of PFPs is to sensitize the host to bacterial infection and further that C. elegans and probably other roundworms can be common hosts for B. cereus-group bacteria, findings with important ecological and research implications. PMID:22216181

  12. Influence of lysogeny of Tectiviruses GIL01 and GIL16 on Bacillus thuringiensis growth, biofilm formation, and swarming motility.

    PubMed

    Gillis, Annika; Mahillon, Jacques

    2014-12-01

    Bacillus thuringiensis is an entomopathogenic bacterium that has been used as an efficient biopesticide worldwide. Despite the fact that this bacterium is usually described as an insect pathogen, its life cycle in the environment is still largely unknown. B. thuringiensis belongs to the Bacillus cereus group of bacteria, which has been associated with many mobile genetic elements, such as species-specific temperate or virulent bacteriophages (phages). Temperate (lysogenic) phages are able to establish a long-term relationship with their host, providing, in some cases, novel ecological traits to the bacterial lysogens. Therefore, this work focuses on evaluating the potential influence of temperate tectiviruses GIL01 and GIL16 on the development of different life traits of B. thuringiensis. For this purpose, a B. thuringiensis serovar israelensis plasmid-cured (nonlysogenic) strain was used to establish bacterial lysogens for phages GIL01 and GIL16, and, subsequently, the following life traits were compared among the strains: kinetics of growth, metabolic profiles, antibiotics susceptibility, biofilm formation, swarming motility, and sporulation. The results revealed that GIL01 and GIL16 lysogeny has a significant influence on the bacterial growth, sporulation rate, biofilm formation, and swarming motility of B. thuringiensis. No changes in metabolic profiles or antibiotic susceptibilities were detected. These findings provide evidence that tectiviruses have a putative role in the B. thuringiensis life cycle as adapters of life traits with ecological advantages.

  13. Influence of lysogeny of Tectiviruses GIL01 and GIL16 on Bacillus thuringiensis growth, biofilm formation, and swarming motility.

    PubMed

    Gillis, Annika; Mahillon, Jacques

    2014-12-01

    Bacillus thuringiensis is an entomopathogenic bacterium that has been used as an efficient biopesticide worldwide. Despite the fact that this bacterium is usually described as an insect pathogen, its life cycle in the environment is still largely unknown. B. thuringiensis belongs to the Bacillus cereus group of bacteria, which has been associated with many mobile genetic elements, such as species-specific temperate or virulent bacteriophages (phages). Temperate (lysogenic) phages are able to establish a long-term relationship with their host, providing, in some cases, novel ecological traits to the bacterial lysogens. Therefore, this work focuses on evaluating the potential influence of temperate tectiviruses GIL01 and GIL16 on the development of different life traits of B. thuringiensis. For this purpose, a B. thuringiensis serovar israelensis plasmid-cured (nonlysogenic) strain was used to establish bacterial lysogens for phages GIL01 and GIL16, and, subsequently, the following life traits were compared among the strains: kinetics of growth, metabolic profiles, antibiotics susceptibility, biofilm formation, swarming motility, and sporulation. The results revealed that GIL01 and GIL16 lysogeny has a significant influence on the bacterial growth, sporulation rate, biofilm formation, and swarming motility of B. thuringiensis. No changes in metabolic profiles or antibiotic susceptibilities were detected. These findings provide evidence that tectiviruses have a putative role in the B. thuringiensis life cycle as adapters of life traits with ecological advantages. PMID:25261525

  14. The genome of Bacillus coahuilensis reveals adaptations essential for survival in the relic of an ancient marine environment

    PubMed Central

    Alcaraz, Luis David; Olmedo, Gabriela; Bonilla, Germán; Cerritos, René; Hernández, Gustavo; Cruz, Alfredo; Ramírez, Enrique; Putonti, Catherine; Jiménez, Beatriz; Martínez, Eva; López, Varinia; Arvizu, Jacqueline L.; Ayala, Francisco; Razo, Francisco; Caballero, Juan; Siefert, Janet; Eguiarte, Luis; Vielle, Jean-Philippe; Martínez, Octavio; Souza, Valeria; Herrera-Estrella, Alfredo; Herrera-Estrella, Luis

    2008-01-01

    The Cuatro Ciénegas Basin (CCB) in the central part of the Chihuahan desert (Coahuila, Mexico) hosts a wide diversity of microorganisms contained within springs thought to be geomorphological relics of an ancient sea. A major question remaining to be answered is whether bacteria from CCB are ancient marine bacteria that adapted to an oligotrophic system poor in NaCl, rich in sulfates, and with extremely low phosphorus levels (<0.3 μM). Here, we report the complete genome sequence of Bacillus coahuilensis, a sporulating bacterium isolated from the water column of a desiccation lagoon in CCB. At 3.35 Megabases this is the smallest genome sequenced to date of a Bacillus species and provides insights into the origin, evolution, and adaptation of B. coahuilensis to the CCB environment. We propose that the size and complexity of the B. coahuilensis genome reflects the adaptation of an ancient marine bacterium to a novel environment, providing support to a “marine isolation origin hypothesis” that is consistent with the geology of CCB. This genomic adaptation includes the acquisition through horizontal gene transfer of genes involved in phosphorous utilization efficiency and adaptation to high-light environments. The B. coahuilensis genome sequence also revealed important ecological features of the bacterial community in CCB and offers opportunities for a unique glimpse of a microbe-dominated world last seen in the Precambrian. PMID:18408155

  15. The genome of Bacillus coahuilensis reveals adaptations essential for survival in the relic of an ancient marine environment.

    PubMed

    Alcaraz, Luis David; Olmedo, Gabriela; Bonilla, Germán; Cerritos, René; Hernández, Gustavo; Cruz, Alfredo; Ramírez, Enrique; Putonti, Catherine; Jiménez, Beatriz; Martínez, Eva; López, Varinia; Arvizu, Jacqueline L; Ayala, Francisco; Razo, Francisco; Caballero, Juan; Siefert, Janet; Eguiarte, Luis; Vielle, Jean-Philippe; Martínez, Octavio; Souza, Valeria; Herrera-Estrella, Alfredo; Herrera-Estrella, Luis

    2008-04-15

    The Cuatro Ciénegas Basin (CCB) in the central part of the Chihuahan desert (Coahuila, Mexico) hosts a wide diversity of microorganisms contained within springs thought to be geomorphological relics of an ancient sea. A major question remaining to be answered is whether bacteria from CCB are ancient marine bacteria that adapted to an oligotrophic system poor in NaCl, rich in sulfates, and with extremely low phosphorus levels (<0.3 microM). Here, we report the complete genome sequence of Bacillus coahuilensis, a sporulating bacterium isolated from the water column of a desiccation lagoon in CCB. At 3.35 Megabases this is the smallest genome sequenced to date of a Bacillus species and provides insights into the origin, evolution, and adaptation of B. coahuilensis to the CCB environment. We propose that the size and complexity of the B. coahuilensis genome reflects the adaptation of an ancient marine bacterium to a novel environment, providing support to a "marine isolation origin hypothesis" that is consistent with the geology of CCB. This genomic adaptation includes the acquisition through horizontal gene transfer of genes involved in phosphorous utilization efficiency and adaptation to high-light environments. The B. coahuilensis genome sequence also revealed important ecological features of the bacterial community in CCB and offers opportunities for a unique glimpse of a microbe-dominated world last seen in the Precambrian. PMID:18408155

  16. Isolation of an indigenous imidacloprid-degrading bacterium and imidacloprid bioremediation under simulated in situ and ex situ conditions.

    PubMed

    Hu, Guiping; Zhao, Yan; Liu, Bo; Song, Fengqing; You, Minsheng

    2013-11-28

    The Bacterial community structure and its complexity of the enrichment culture during the isolation and screening of imidacloprid-degrading strain were studied using denaturating gradient gel electrophoresis analysis. The dominant bacteria in the original tea rhizosphere soil were uncultured bacteria, Rhizobium sp., Sinorhizobium, Ochrobactrum sp., Alcaligenes, Bacillus sp., Bacterium, Klebsiella sp., and Ensifer adhaerens. The bacterial community structure was altered extensively and its complexity reduced during the enrichment process, and four culturable bacteria, Ochrobactrum sp., Rhizobium sp., Geobacillus stearothermophilus, and Alcaligenes faecalis, remained in the final enrichment. Only one indigenous strain, BCL-1, with imidacloprid-degrading potential, was isolated from the sixth enrichment culture. This isolate was a gram-negative rod-shaped bacterium and identified as the genus Ochrobactrum based on its morphological, physiological, and biochemical properties and its 16S rRNA gene sequence. The degradation test showed that approximately 67.67% of the imidacloprid (50 mg/l) was degraded within 48 h by strain BCL-1. The optimum conditions for degradation were a pH of 8 and 30°C. The simulation of imidacloprid bioremediation by strain BCL-1 in soil demonstrated that the best performance in situ (tea soil) resulted in the degradation of 92.44% of the imidacloprid (100 mg/g) within 20 days, which was better than those observed in the ex situ simulations that were 64.66% (cabbage soil), 41.15% (potato soil), and 54.15% (tomato soil). PMID:23985542

  17. [Influence of Bacillus cereus on microbiocenosis of gastrointestinal tract in rats].

    PubMed

    Nesvizhskiĭ, Iu V; Bogdanova, E A; Zverev, V V

    2007-01-01

    The modifying effect of Bacillus cereus on intestinal microbiocenosis was investigated in eubiotic and disbiotic female rats. Qualitative and quantitative characteristics of gut and mucosal microflora from different parts of rats' intestine were studied before and after intragastral application of B. cereus suspension. The single application of B. cereus suspension resulted in appearance of this bacterium in feces and in parietal mucin from all parts of the intestine. In eubiotic rats compared with disbiotic, B. cereus adhere to parietal mucin much more efficiently and supplanted indigenous microflora. During disbiosis B. cereus sometimes had stimulating effect on the intestinal microbiocenosis. Gut microbiocenosis appeared to be more resistant to B. cereus invasion than mucosal. This fact was considered to be the evidence of higher sensitivity of mucosal microbiocenosis to short-term influence of exogenous microbial factor.

  18. Global variation in the genetic and biochemical basis of diamondback moth resistance to Bacillus thuringiensis.

    PubMed

    Tabashnik, B E; Liu, Y B; Malvar, T; Heckel, D G; Masson, L; Ballester, V; Granero, F; Ménsua, J L; Ferré, J

    1997-11-25

    Insecticidal proteins from the soil bacterium Bacillus thuringiensis (Bt) are becoming a cornerstone of ecologically sound pest management. However, if pests quickly adapt, the benefits of environmentally benign Bt toxins in sprays and genetically engineered crops will be short-lived. The diamondback moth (Plutella xylostella) is the first insect to evolve resistance to Bt in open-field populations. Here we report that populations from Hawaii and Pennsylvania share a genetic locus at which a recessive mutation associated with reduced toxin binding confers extremely high resistance to four Bt toxins. In contrast, resistance in a population from the Philippines shows multilocus control, a narrower spectrum, and for some Bt toxins, inheritance that is not recessive and not associated with reduced binding. The observed variation in the genetic and biochemical basis of resistance to Bt, which is unlike patterns documented for some synthetic insecticides, profoundly affects the choice of strategies for combating resistance.

  19. Complete genome sequence of thermophilic Bacillus smithii type strain DSM 4216(T).

    PubMed

    Bosma, Elleke F; Koehorst, Jasper J; van Hijum, Sacha A F T; Renckens, Bernadet; Vriesendorp, Bastienne; van de Weijer, Antonius H P; Schaap, Peter J; de Vos, Willem M; van der Oost, John; van Kranenburg, Richard

    2016-01-01

    Bacillus smithii is a facultatively anaerobic, thermophilic bacterium able to use a variety of sugars that can be derived from lignocellulosic feedstocks. Being genetically accessible, it is a potential new host for biotechnological production of green chemicals from renewable resources. We determined the complete genomic sequence of the B. smithii type strain DSM 4216(T), which consists of a 3,368,778 bp chromosome (GenBank accession number CP012024.1) and a 12,514 bp plasmid (GenBank accession number CP012025.1), together encoding 3880 genes. Genome annotation via RAST was complemented by a protein domain analysis. Some unique features of B. smithii central metabolism in comparison to related organisms included the lack of a standard acetate production pathway with no apparent pyruvate formate lyase, phosphotransacetylase, and acetate kinase genes, while acetate was the second fermentation product. PMID:27559429

  20. Isolation, Identification, and Characterization of a Cellulolytic Bacillus amyloliquefaciens Strain SS35 from Rhinoceros Dung

    PubMed Central

    Singh, Shuchi; Moholkar, Vijayanand S.; Goyal, Arun

    2013-01-01

    Cellulose hydrolyzing bacteria were isolated from rhinoceros dung and tested for clear zone formation around the colonies on the agar plates containing the medium amended with carboxymethylcellulose as a sole carbon source. Isolates were further screened on the basis of carboxymethylcellulase production in liquid medium. Out of 36 isolates, isolate no. 35 exhibited maximum enzyme activity of 0.079 U/mL and was selected for further identification by using conventional biochemical tests and phylogenetic analyses. This was a Gram-positive, spore forming bacterium with rod-shaped cells. The isolate was identified as Bacillus amyloliquefaciens SS35 based on nucleotide homology and phylogenetic analysis using 16S rDNA and gyrase A gene sequences. PMID:23762763

  1. Side effects of Bacillus thuringiensis var. kurstaki on the hymenopterous parasitic wasp Trichogramma chilonis.

    PubMed

    Amichot, Marcel; Curty, Christine; Benguettat-Magliano, Olivia; Gallet, Armel; Wajnberg, Eric

    2016-02-01

    Most of the detrimental effects of using conventional insecticides to control crop pests are now well identified and are nowadays major arguments for replacing such compounds by the use of biological control agents. In this respect, the bacterium Bacillus thuringiensis var. kurstaki and Trichogramma (Hymenoptera: Trichogrammatidae) parasitic wasp species are both effective against lepidopterous pests and can actually be used concomitantly. In this work, we studied the potential side effects of B. thuringiensis var. kurstaki on Trichogramma chilonis females. We first evidenced an acute toxicity of B. thuringiensis on T. chilonis. Then, after ingestion of B. thuringiensis at sublethal doses, we focused on life history traits of T. chilonis such as longevity, reproductive success and the time spent on host eggs patches. The reproductive success of T. chilonis was not modified by B. thuringiensis while a significant effect was observed on longevity and the time spent on host eggs patches. The physiological and ecological meanings of the results obtained are discussed.

  2. Rice Seed Priming with Picomolar Rutin Enhances Rhizospheric Bacillus subtilis CIM Colonization and Plant Growth

    PubMed Central

    Singh, Akanksha; Gupta, Rupali; Pandey, Rakesh

    2016-01-01

    The effect of rutin, a bioflavonoid on the growth and biofilm formation of Bacillus subtilis strain CIM was investigated. In addition to swimming, swarming, and twitching potentials of B. subtilis CIM (BS), one picomolar (1 pM) of rutin was also observed to boost the biofilm forming ability of the bacterium. Bio-priming of rice seeds with BS and rutin not only augmented root and shoot lengths but also the photosynthetic pigments like chlorophyll and carotenoid. Similarly, high accumulation of phenolic and flavonoid contents was observed in the leaves. Fluorescent microscopic images revealed that BS plus rutin enhanced callose deposition in the leaves. It was also established that the least formation of reactive oxygen species in BS plus rutin treated rice plants was due to higher free radicals scavenging activity and total antioxidant potential. The results highlight chemo attractant nature of BS towards rutin, which by enhancing biofilm formation and root colonization indirectly strengthened the plants’ defensive state. PMID:26742102

  3. Translocation and insecticidal activity of Bacillus thuringiensis living inside of plants

    PubMed Central

    Monnerat, Rose Gomes; Soares, Carlos Marcelo; Capdeville, Guy; Jones, Gareth; Martins, Érica Soares; Praça, Lilian; Cordeiro, Bruno Arrivabene; Braz, Shélida Vasconcelos; Dos Santos, Roseane Cavalcante; Berry, Colin

    2009-01-01

    Summary The major biological pesticide for the control of insect infestations of crops, Bacillus thuringiensis was found to be present naturally within cotton plants from fields that had never been treated with commercial formulations of this bacterium. The ability of B. thuringiensis to colonize plants as an endophyte was further established by the introduction of a strain marked by production of green fluorescent protein (GFP). After inoculation of this preparation close to the roots of cotton and cabbage seedlings, GFP‐marked bacteria could be re‐isolated from all parts of the plant, having entered the roots and migrated through the xylem. Leaves taken from the treated plants were able to cause toxicity when fed to the Lepidoptera Spodoptera frugiperda (cotton) and Plutella xylostella (cabbage). These results open up new horizons for understanding the natural ecology and evolution of B. thuringiensis and use of B. thuringiensis in insect control. PMID:21255282

  4. Antioxidant Properties of Fish Protein Hydrolysates Prepared from Cod Protein Hydrolysate by Bacillus sp.

    PubMed

    Godinho, I; Pires, C; Pedro, S; Teixeira, B; Mendes, R; Nunes, M L; Batista, I

    2016-03-01

    Fermentative protein hydrolysates (FPH) were prepared with a proteolytic bacterium, Bacillus strain exhibiting high proteolytic activity. Three FPH with 1, 2, and 4 % of cod protein hydrolysate (CPH) and 0.5 % of yeast extract in the culture were prepared. The yields achieved varied between 30 and 58 % based on protein content. A general decrease of leucine, isoleucine, valine, alanine, arginine, threonine, proline, and glutamic acid was observed. All FPHs showed higher reducing power and DPPH radical scavenging activity than CPH, but similar ABTS radical scavenging activity. However, FPHs exhibited lower Cu(+2)-chelating activity than CPH. The ACE inhibitory activity of FPHs was not improved relatively to that recorded in CPH. The fermentative process seems to have potential to obtaining hydrolysates with improved biological activities or even to produce protein hydrolysates from native fish proteins. PMID:26590847

  5. Clostridium and Bacillus Binary Enterotoxins: Bad for the Bowels, and Eukaryotic Being

    PubMed Central

    Stiles, Bradley G.; Pradhan, Kisha; Fleming, Jodie M.; Samy, Ramar Perumal; Barth, Holger; Popoff, Michel R.

    2014-01-01

    Some pathogenic spore-forming bacilli employ a binary protein mechanism for intoxicating the intestinal tracts of insects, animals, and humans. These Gram-positive bacteria and their toxins include Clostridium botulinum (C2 toxin), Clostridium difficile (C. difficile toxin or CDT), Clostridium perfringens (ι-toxin and binary enterotoxin, or BEC), Clostridium spiroforme (C. spiroforme toxin or CST), as well as Bacillus cereus (vegetative insecticidal protein or VIP). These gut-acting proteins form an AB complex composed of ADP-ribosyl transferase (A) and cell-binding (B) components that intoxicate cells via receptor-mediated endocytosis and endosomal trafficking. Once inside the cytosol, the A components inhibit normal cell functions by mono-ADP-ribosylation of globular actin, which induces cytoskeletal disarray and death. Important aspects of each bacterium and binary enterotoxin will be highlighted in this review, with particular focus upon the disease process involving the biochemistry and modes of action for each toxin. PMID:25198129

  6. Tyzzer's Disease of Rabbits: Isolation and Propagation of Bacillus piliformis (Tyzzer) in Embryonated Eggs

    PubMed Central

    Ganaway, James R.; Allen, Anton M.; Moore, Thomas D.

    1971-01-01

    Bacillus piliformis (Tyzzer) was isolated from the liver of rabbits with Tyzzer's disease and serially passaged in embryonated hens' eggs. Weanling rabbits given the 32nd egg passage developed lesions typical of Tyzzer's disease and died. B. piliformis was reisolated from the liver of these rabbits in embryonated eggs. Outside the host cell, the motile vegetative phase appeared to be unstable, and no means was found to preserve its viability; the results of titrations were believed to be dependent upon the resistant stage or spore. The spore withstood repeated freeze and thaw and was resistant to heat treatment of 56 C for 1 hr but not 80 C for 0.5 hr. None of several antibacterial substances tested in embryonated eggs was completely inhibitory; B. piliformis was resistant to sulfamethazine and chloramphenicol. The taxonomic position of this pleomorphic, gram-negative, sporeforming, pathogenic bacterium which appears to grow only in certain cells of several species remains unresolved. Images PMID:16557992

  7. Structure of 5-formyltetrahydrofolate cyclo-ligase from Bacillus anthracis (BA4489)

    SciTech Connect

    Meier, Christoph; Carter, Lester G.; Winter, Graeme; Owens, Ray J.; Stuart, David I.; Esnouf, Robert M.

    2007-03-01

    The structure of 5-formyltetrahydrofolate cyclo-ligase from B. anthracis determined by X-ray crystallography at a resolution of 1.6 Å is described. Bacillus anthracis is a spore-forming bacterium and the causative agent of the disease anthrax. The Oxford Protein Production Facility has been targeting proteins from B. anthracis in order to develop high-throughput technologies within the Structural Proteomics in Europe project. As part of this work, the structure of 5-formyltetrahydrofolate cyclo-ligase (BA4489) has been determined by X-ray crystallography to 1.6 Å resolution. The structure, solved in complex with magnesium-ion-bound ADP and phosphate, gives a detailed picture of the proposed catalytic mechanism of the enzyme. Chemical differences from other cyclo-ligase structures close to the active site that could be exploited to design specific inhibitors are also highlighted.

  8. Structure of purine nucleoside phosphorylase (DeoD) from Bacillus anthracis

    SciTech Connect

    Grenha, Rosa; Levdikov, Vladimir M.; Fogg, Mark J.; Blagova, Elena V.; Brannigan, James A. Wilkinson, Anthony J.; Wilson, Keith S.

    2005-05-01

    The crystal structure of purine nucleoside phosphorylase (DeoD) from B. anthracis was solved by X-ray crystallography using molecular replacement and refined at a resolution of 2.24 Å. Protein structures from the causative agent of anthrax (Bacillus anthracis) are being determined as part of a structural genomics programme. Amongst initial candidates for crystallographic analysis are enzymes involved in nucleotide biosynthesis, since these are recognized as potential targets in antibacterial therapy. Purine nucleoside phosphorylase is a key enzyme in the purine-salvage pathway. The crystal structure of purine nucleoside phosphorylase (DeoD) from B. anthracis has been solved by molecular replacement at 2.24 Å resolution and refined to an R factor of 18.4%. This is the first report of a DeoD structure from a Gram-positive bacterium.

  9. Isolation of a New Mexican Strain of Bacillus subtilis with Antifungal and Antibacterial Activities

    PubMed Central

    Basurto-Cadena, M. G. L.; Vázquez-Arista, M.; García-Jiménez, J.; Salcedo-Hernández, R.; Bideshi, D. K.; Barboza-Corona, J. E.

    2012-01-01

    Although several strains of B. subtilis with antifungal activity have been isolated worldwide, to date there are no published reports regarding the isolation of a native B. subtilis strain from strawberry plants in Mexico. A native bacterium (Bacillus subtilis 21) demonstrated in vitro antagonistic activity against different plant pathogenic fungi. Under greenhouse conditions, it was shown that plants infected with Rhizoctonia solani and Fusarium verticillioides and treated with B. subtilis 21 produced augment in the number of leaves per plant and an increment in the length of healthy leaves in comparison with untreated plants. In addition, B. subtilis 21 showed activity against pathogenic bacteria. Secreted proteins by B. subtilis 21 were studied, detecting the presence of proteases and bacteriocin-like inhibitor substances that could be implicated in its antagonistic activity. Chitinases and zwittermicin production could not be detected. Then, B. subtilis 21 could potentially be used to control phytopathogenic fungi that infect strawberry plants. PMID:22593682

  10. Isolation of a new Mexican strain of Bacillus subtilis with antifungal and antibacterial activities.

    PubMed

    Basurto-Cadena, M G L; Vázquez-Arista, M; García-Jiménez, J; Salcedo-Hernández, R; Bideshi, D K; Barboza-Corona, J E

    2012-01-01

    Although several strains of B. subtilis with antifungal activity have been isolated worldwide, to date there are no published reports regarding the isolation of a native B. subtilis strain from strawberry plants in Mexico. A native bacterium (Bacillus subtilis 21) demonstrated in vitro antagonistic activity against different plant pathogenic fungi. Under greenhouse conditions, it was shown that plants infected with Rhizoctonia solani and Fusarium verticillioides and treated with B. subtilis 21 produced augment in the number of leaves per plant and an increment in the length of healthy leaves in comparison with untreated plants. In addition, B. subtilis 21 showed activity against pathogenic bacteria. Secreted proteins by B. subtilis 21 were studied, detecting the presence of proteases and bacteriocin-like inhibitor substances that could be implicated in its antagonistic activity. Chitinases and zwittermicin production could not be detected. Then, B. subtilis 21 could potentially be used to control phytopathogenic fungi that infect strawberry plants. PMID:22593682

  11. Rice Seed Priming with Picomolar Rutin Enhances Rhizospheric Bacillus subtilis CIM Colonization and Plant Growth.

    PubMed

    Singh, Akanksha; Gupta, Rupali; Pandey, Rakesh

    2016-01-01

    The effect of rutin, a bioflavonoid on the growth and biofilm formation of Bacillus subtilis strain CIM was investigated. In addition to swimming, swarming, and twitching potentials of B. subtilis CIM (BS), one picomolar (1 pM) of rutin was also observed to boost the biofilm forming ability of the bacterium. Bio-priming of rice seeds with BS and rutin not only augmented root and shoot lengths but also the photosynthetic pigments like chlorophyll and carotenoid. Similarly, high accumulation of phenolic and flavonoid contents was observed in the leaves. Fluorescent microscopic images revealed that BS plus rutin enhanced callose deposition in the leaves. It was also established that the least formation of reactive oxygen species in BS plus rutin treated rice plants was due to higher free radicals scavenging activity and total antioxidant potential. The results highlight chemo attractant nature of BS towards rutin, which by enhancing biofilm formation and root colonization indirectly strengthened the plants' defensive state.

  12. Oscillatory behavior of population density in continuous culture of genetic-engineered Bacillus stearothermophilus.

    PubMed

    Koizumi, J; Aiba, S

    1989-09-01

    An oscillatory behavior in population density was observed when a transformant of Bacillus stearothermophilus carrying a rocombinant plasmid pZAM26 was cultivated continuously in a well-stirred reactor vessel at a fixed dilution rato. Among the transformant cells that were subjected to the continuous culture, the fraction of cells harboring p2AM26 was found to be as high as 0.98-1.00 despite the emergence of the oscillation. Cells whose plasmids underwent rearrangement of DMA in terms of structural change could not be found throughout. With reference to this observation, the dynamics of the genetic-engineered bacterium was analyzed within the category of both the linearized stability principle and the bifurcation theory. It was concluded that Hopf bifurcation was most probable to account for the experimental oscillation.

  13. Cocultivation of the amoeba Naegleria fowleri and the amoebicin- producing strain Bacillus licheniformis M-4.

    PubMed

    Lebbadi, M; Valdivia, E; Gálvez, A; Martínez-Bueno, M; Maqueda, M

    1995-04-01

    Antagonism between Bacillus licheniformis M-4 and the pathogenic amoeba Naegleria fowleri HB-1 during cocultivation was influenced by the composition of the medium and the initial amoeba/bacterium ratio. While a ratio of 50 caused complete lysis of amoebae in soil extract with 0.3% glucose (SEG) before 72 h, this ratio had to be at least 12-fold lower in order to obtain similar results in Cline medium. Sporulation of B. licheniformis M-4 took place much earlier in SEG. Amoebicin production was stimulated by the presence of amoebae by either shortening the time of production (as in SEG) or increasing the amount of amoebicins released (as in Cline medium). Electron microscopy showed that amoebae cocultivated in the Cline medium contained bacteria enclosed in digestive vacuoles, while amoebae from SEG cocultures did not.

  14. Efficient transformation of Cellulomonas flavigena by electroporation and conjugation with Bacillus thuringiensis.

    PubMed

    Montes-Horcasitas, Carmen; Ruiz-Medrano, Roberto; Magaña-Plaza, Ignacio; Silva, Lidia Gómez; Herrera-Martínez, Aseneth; Hernández-Montalvo, Lourdes; Xoconostle-Cázares, Beatriz

    2004-12-01

    The conjugative self-transmissible plasmid pHT73, harbored in Bacillus thuringiensis var. kurstaki, was demonstrated to be transferred to Cellulomonas flavigena, a cellulolytic bacterium. Both conjugation and transformation procedures yielded resistant colonies; however, chromosomal integration was observed only when bacterial conjugation occurred. The efficiency of conjugation was 10% of recipient strain, which is considered a very efficient process. When the plasmid pHT73 was introduced by transformation, erythromycin-resistant cells contained the plasmid as an episome with no arrangements, as assayed by Southern blot analysis. In contrast, conjugated-resistant cells harbor the plasmid integrated into the chromosome. These data suggest a common mechanism of cell communication between nonrelated bacterial species with similar ecological habitats, and also that both electroporation and conjugation can be used to transform C. flavigena efficiently.

  15. Lifesaving liver transplantation for multi-organ failure caused by Bacillus cereus food poisoning.

    PubMed

    Tschiedel, Eva; Rath, Peter-Michael; Steinmann, Jörg; Becker, Heinz; Dietrich, Rudolf; Paul, Andreas; Felderhoff-Müser, Ursula; Dohna-Schwake, Christian

    2015-02-01

    Bacillus cereus is a spore-forming, gram-positive bacterium that causes food poisoning presenting with either emesis or diarrhea. Diarrhea is caused by proteinaceous enterotoxin complexes, mainly hemolysin BL, non-hemolytic enterotoxin (NHE), and cytotoxin K. In contrast, emesis is caused by the ingestion of the depsipeptide toxin cereulide, which is produced in B. cereus contaminated food, particularly in pasta or rice. In general, the illness is mild and self-limiting. However, due to cereulide intoxication, nine severe cases with rhabdomyolysis and/or liver failure, five of them lethal, are reported in literature. Here we report the first case of life-threatening liver failure and severe rhabdomyolysis in this context that could not be survived without emergency hepatectomy and consecutive liver transplantation.

  16. Chitoporin from the Marine Bacterium Vibrio harveyi

    PubMed Central

    Chumjan, Watcharin; Winterhalter, Mathias; Schulte, Albert; Benz, Roland; Suginta, Wipa

    2015-01-01

    VhChiP is a sugar-specific porin present in the outer membrane of the marine bacterium Vibrio harveyi. VhChiP is responsible for the uptake of chitin oligosaccharides, with particular selectivity for chitohexaose. In this study, we employed electrophysiological and biochemical approaches to demonstrate that Trp136, located at the mouth of the VhChiP pore, plays an essential role in controlling the channel's ion conductivity, chitin affinity, and permeability. Kinetic analysis of sugar translocation obtained from single channel recordings indicated that the Trp136 mutations W136A, W136D, W136R, and W136F considerably reduce the binding affinity of the protein channel for its best substrate, chitohexaose. Liposome swelling assays confirmed that the Trp136 mutations decreased the rate of bulk chitohexaose permeation through the VhChiP channel. Notably, all of the mutants show increases in the off-rate for chitohexaose of up to 20-fold compared with that of the native channel. Furthermore, the cation/anion permeability ratio Pc/Pa is decreased in the W136R mutant and increased in the W136D mutant. This demonstrates that the negatively charged surface at the interior of the protein lumen preferentially attracts cationic species, leading to the cation selectivity of this trimeric channel. PMID:26082491

  17. Characterizations of intracellular arsenic in a bacterium

    NASA Astrophysics Data System (ADS)

    Wolfe-Simon, F.; Yannone, S. M.; Tainer, J. A.

    2011-12-01

    Life requires a key set of chemical elements to sustain growth. Yet, a growing body of literature suggests that microbes can alter their nutritional requirements based on the availability of these chemical elements. Under limiting conditions for one element microbes have been shown to utilize a variety of other elements to serve similar functions often (but not always) in similar molecular structures. Well-characterized elemental exchanges include manganese for iron, tungsten for molybdenum and sulfur for phosphorus or oxygen. These exchanges can be found in a wide variety of biomolecules ranging from protein to lipids and DNA. Recent evidence suggested that arsenic, as arsenate or As(V), was taken up and incorporated into the cellular material of the bacterium GFAJ-1. The evidence was interpreted to support As(V) acting in an analogous role to phosphate. We will therefore discuss our ongoing efforts to characterize intracellular arsenate and how it may partition among the cellular fractions of the microbial isolate GFAJ-1 when exposed to As(V) in the presence of various levels of phosphate. Under high As(V) conditions, cells express a dramatically different proteome than when grown given only phosphate. Ongoing studies on the diversity and potential role of proteins and metabolites produced in the presence of As(V) will be reported. These investigations promise to inform the role and additional metabolic potential for As in biology. Arsenic assimilation into biomolecules contributes to the expanding set of chemical elements utilized by microbes in unusual environmental niches.

  18. Isolation and Characterization of a Mn(II)-Oxidizing Bacillus Strain from the Demosponge Suberites domuncula

    PubMed Central

    Wang, Xiaohong; Wiens, Matthias; Divekar, Mugdha; Grebenjuk, Vladislav A.; Schröder, Heinz C.; Batel, Renato; Müller, Werner E. G.

    2011-01-01

    In this study we demonstrate that the demosponge Suberites domuncula harbors a Mn(II)-oxidizing bacterium, a Bacillus strain, termed BAC-SubDo-03. Our studies showed that Mn(II) stimulates bacterial growth and induces sporulation. Moreover, we show that these bacteria immobilize manganese on their cell surface. Comparison of the 16S rDNA sequence allowed the grouping of BAC-SubDo-03 to the Mn-precipitating bacteria. Analysis of the spore cell wall revealed that it contains an Mn(II)-oxidizing enzyme. Co-incubation studies of BAC-SubDo-03 with 100 μM MnCl2 and >1 μM of CuCl2 showed an increase in their Mn(II)-oxidizing capacity. In order to prove that a multicopper oxidase-like enzyme(s) (MCO) exists in the cell wall of the S. domuncula-associated BAC-SubDo-03 Bacillus strain, the gene encoding this enzyme was cloned (mnxG-SubDo-03). Sequence alignment of the deduced MCO protein (MnxG-SubDo-03) revealed that the sponge bacterium clusters together with known Mn(II)-oxidizing bacteria. The expression of the mnxG-SubDo-03 gene is under strong control of extracellular Mn(II). Based on these findings, we assume that BAC-SubDo-03 might serve as a Mn reserve in the sponge providing the animal with the capacity to detoxify Mn in the environment. Applying the in vitro primmorph cell culture system we could demonstrate that sponge cells, that were co-incubated with BAC-SubDo-03 in the presence of Mn(II), show an increased proliferation potential. PMID:21339943

  19. Spatio-temporal Remodeling of Functional Membrane Microdomains Organizes the Signaling Networks of a Bacterium

    PubMed Central

    Schneider, Johannes; Klein, Teresa; Mielich-Süss, Benjamin; Koch, Gudrun; Franke, Christian; Kuipers, Oscar P.; Kovács, Ákos T.; Sauer, Markus; Lopez, Daniel

    2015-01-01

    Lipid rafts are membrane microdomains specialized in the regulation of numerous cellular processes related to membrane organization, as diverse as signal transduction, protein sorting, membrane trafficking or pathogen invasion. It has been proposed that this functional diversity would require a heterogeneous population of raft domains with varying compositions. However, a mechanism for such diversification is not known. We recently discovered that bacterial membranes organize their signal transduction pathways in functional membrane microdomains (FMMs) that are structurally and functionally similar to the eukaryotic lipid rafts. In this report, we took advantage of the tractability of the prokaryotic model Bacillus subtilis to provide evidence for the coexistence of two distinct families of FMMs in bacterial membranes, displaying a distinctive distribution of proteins specialized in different biological processes. One family of microdomains harbors the scaffolding flotillin protein FloA that selectively tethers proteins specialized in regulating cell envelope turnover and primary metabolism. A second population of microdomains containing the two scaffolding flotillins, FloA and FloT, arises exclusively at later stages of cell growth and specializes in adaptation of cells to stationary phase. Importantly, the diversification of membrane microdomains does not occur arbitrarily. We discovered that bacterial cells control the spatio-temporal remodeling of microdomains by restricting the activation of FloT expression to stationary phase. This regulation ensures a sequential assembly of functionally specialized membrane microdomains to strategically organize signaling networks at the right time during the lifespan of a bacterium. PMID:25909364

  20. Biodegradation of bisphenol A and other bisphenols by a gram-negative aerobic bacterium

    SciTech Connect

    Lobos, J.H.; Leib, T.K. ); Tahmun Su )

    1992-06-01

    A novel bacterium designated strain MV1 was isolated from a sludge enrichmet takes from the wastewater treatment plant at a plastics manufacturing facility and shown to degrade 2,2-bis(4-hydroxyphenyl)propane (4,4[prime]-isopropylidenediphenol or bisphenol A). Strain MV1 is a gram-negative, aerobic bacillus that grows on bisphenol A as a sole source of carbon and energy. Total carbon analysis for bisphenol A degradation demonstrated that 60% of the carbon was mineralized to CO[sub 2], 20% was associated with the bacterial cells, and 20% was converted to soluble organic compounds. Metabolic intermediates detected in the culture medium during growth on bisphenol A were identified as 4-hydroxybenzoic acid, 4-hydroxyacetophenone, 2,2-bis(4-hydroxyphenyl)-1-propanol, and 2,3-bis(4-hydroxyphenyl)-1,2-propanediol. Most of the bisphenol A degraded by strain MV1 is cleaved in some way to form 4-hydroxybenzoic acid and 4-hydroxyacetophenone, which are subsequently mineralized or assimilated into cell carbon. In addition, about 20% of the bisphenol A is hydroxylated to form 2,2-bis(4-hydroxyphenyl)-1-propanol, which is slowly biotransformed to 2,3-bis(4-hydroxyphenyl)-1,2-propanediol. Cells that were grown on bisphenol A degraded a variety of bisphenol alkanes, hydroxylated benzoic acids, and hydroxylated acetophenones during resting-cell assays. Transmission electron microscopy of cells grown on bisphenol A revealed lipid storage granules and intracytoplasmic membranes.