Science.gov

Sample records for alkaloid biosynthetic gene

  1. Identification and developmental expression profiling of putative alkaloid biosynthetic genes in Corydalis yanhusuo bulbs

    PubMed Central

    Liao, Dengqun; Wang, Pengfei; Jia, Chan; Sun, Peng; Qi, Jianjun; Zhou, Lili; Li, Xian’en

    2016-01-01

    Alkaloids in bulbs of Corydalis (C.) yanhusuo are the major pharmacologically active compounds in treatment of blood vessel diseases, tumors and various pains. However, due to the absence of gene sequences in C. yanhusuo, the genes involved in alkaloid biosynthesis and their expression during bulb development remain unknown. We therefore established the first transcriptome database of C. yanhusuo via Illumina mRNA-Sequencing of a RNA composite sample collected at Bulb initiation (Day 0), early enlargement (Day 10) and maturation (Day 30). 25,013,630 clean 90 bp paired-end reads were de novo assembled into 47,081 unigenes with an average length of 489 bp, among which 30,868 unigenes (65.56%) were annotated in four protein databases. Of 526 putative unigenes involved in biosynthesis o f various alkaloids, 187 were identified as the candidate genes involved in the biosynthesis of benzylisoquinoline alkaloids (BIAs), the only alkaloid type reported in C. yanhusuo untill now. BIAs biosynthetic genes were highly upregulated in the overall pathway during bulb development. Identification of alkaloid biosynthetic genes in C. yanhusuo provide insights on pathways and molecular regulation of alkaloid biosynthesis, to initiate metabolic engineering in order to improve the yield of interesting alkaloids and to identify potentially new alkaloids predicted from the transcriptomic information. PMID:26777987

  2. Identification and developmental expression profiling of putative alkaloid biosynthetic genes in Corydalis yanhusuo bulbs.

    PubMed

    Liao, Dengqun; Wang, Pengfei; Jia, Chan; Sun, Peng; Qi, Jianjun; Zhou, Lili; Li, Xian'en

    2016-01-18

    Alkaloids in bulbs of Corydalis (C.) yanhusuo are the major pharmacologically active compounds in treatment of blood vessel diseases, tumors and various pains. However, due to the absence of gene sequences in C. yanhusuo, the genes involved in alkaloid biosynthesis and their expression during bulb development remain unknown. We therefore established the first transcriptome database of C. yanhusuo via Illumina mRNA-Sequencing of a RNA composite sample collected at Bulb initiation (Day 0), early enlargement (Day 10) and maturation (Day 30). 25,013,630 clean 90 bp paired-end reads were de novo assembled into 47,081 unigenes with an average length of 489 bp, among which 30,868 unigenes (65.56%) were annotated in four protein databases. Of 526 putative unigenes involved in biosynthesis o f various alkaloids, 187 were identified as the candidate genes involved in the biosynthesis of benzylisoquinoline alkaloids (BIAs), the only alkaloid type reported in C. yanhusuo untill now. BIAs biosynthetic genes were highly upregulated in the overall pathway during bulb development. Identification of alkaloid biosynthetic genes in C. yanhusuo provide insights on pathways and molecular regulation of alkaloid biosynthesis, to initiate metabolic engineering in order to improve the yield of interesting alkaloids and to identify potentially new alkaloids predicted from the transcriptomic information.

  3. Biosynthetic Pathways of Ergot Alkaloids

    PubMed Central

    Gerhards, Nina; Neubauer, Lisa; Tudzynski, Paul; Li, Shu-Ming

    2014-01-01

    Ergot alkaloids are nitrogen-containing natural products belonging to indole alkaloids. The best known producers are fungi of the phylum Ascomycota, e.g., Claviceps, Epichloë, Penicillium and Aspergillus species. According to their structures, ergot alkaloids can be divided into three groups: clavines, lysergic acid amides and peptides (ergopeptines). All of them share the first biosynthetic steps, which lead to the formation of the tetracyclic ergoline ring system (except the simplest, tricyclic compound: chanoclavine). Different modifications on the ergoline ring by specific enzymes result in an abundance of bioactive natural products, which are used as pharmaceutical drugs or precursors thereof. From the 1950s through to recent years, most of the biosynthetic pathways have been elucidated. Gene clusters from several ergot alkaloid producers have been identified by genome mining and the functions of many of those genes have been demonstrated by knock-out experiments or biochemical investigations of the overproduced enzymes. PMID:25513893

  4. Systematic silencing of benzylisoquinoline alkaloid biosynthetic genes reveals the major route to papaverine in opium poppy.

    PubMed

    Desgagné-Penix, Isabel; Facchini, Peter J

    2012-10-01

    Papaverine, a major benzylisoquinoline alkaloid in opium poppy (Papaver somniferum), is used as a vasodilator and antispasmodic. Conversion of the initial intermediate (S)-norcoclaurine to papaverine involves 3'-hydroxylation, four O-methylations and dehydrogenation. However, our understanding of papaverine biosynthesis remains controversial more than a century after an initial scheme was proposed. In vitro assays and in vivo labeling studies have been insufficient to establish the sequence of conversions, the potential role of the intermediate (S)-reticuline, and the enzymes involved. We used virus-induced gene silencing in opium poppy to individually suppress the expression of six genes with putative roles in papaverine biosynthesis. Suppression of the gene encoding coclaurine N-methyltransferase dramatically increased papaverine levels at the expense of N-methylated alkaloids, indicating that the main biosynthetic route to papaverine proceeds via N-desmethylated compounds rather than through (S)-reticuline. Suppression of genes encoding (S)-3'-hydroxy-N-methylcoclaurine 4-O-methyltransferase and norreticuline 7-O-methyltransferase, which accept certain N-desmethylated alkaloids, reduced papaverine content. In contrast, suppression of genes encoding N-methylcoclaurine 3'-hydroxylase or reticuline 7-O-methyltransferase, which are specific for N-methylated alkaloids, did not affect papaverine levels. Suppression of norcoclaurine 6-O-methyltransferase transcript levels significantly suppressed total alkaloid accumulation, implicating (S)-coclaurine as a key branch-point intermediate. The differential detection of N-desmethylated compounds in response to suppression of specific genes highlights the primary route to papaverine.

  5. CrBPF1 overexpression alters transcript levels of terpenoid indole alkaloid biosynthetic and regulatory genes

    PubMed Central

    Li, Chun Yao; Leopold, Alex L.; Sander, Guy W.; Shanks, Jacqueline V.; Zhao, Le; Gibson, Susan I.

    2015-01-01

    Terpenoid indole alkaloid (TIA) biosynthesis in Catharanthus roseus is a complex and highly regulated process. Understanding the biochemistry and regulation of the TIA pathway is of particular interest as it may allow the engineering of plants to accumulate higher levels of pharmaceutically important alkaloids. Toward this end, we generated a transgenic C. roseus hairy root line that overexpresses the CrBPF1 transcriptional activator under the control of a β-estradiol inducible promoter. CrBPF1 is a MYB-like protein that was previously postulated to help regulate the expression of the TIA biosynthetic gene STR. However, the role of CrBPF1 in regulation of the TIA and related pathways had not been previously characterized. In this study, transcriptional profiling revealed that overexpression of CrBPF1 results in increased transcript levels for genes from both the indole and terpenoid biosynthetic pathways that provide precursors for TIA biosynthesis, as well as for genes in the TIA biosynthetic pathway. In addition, overexpression of CrBPF1 causes increases in the transcript levels for 11 out of 13 genes postulated to act as transcriptional regulators of genes from the TIA and TIA feeder pathways. Interestingly, overexpression of CrBPF1 causes increased transcript levels for both TIA transcriptional activators and repressors. Despite the fact that CrBPF1 overexpression affects transcript levels of a large percentage of TIA biosynthetic and regulatory genes, CrBPF1 overexpression has only very modest effects on the levels of the TIA metabolites analyzed. This finding may be due, at least in part, to the up-regulation of both transcriptional activators and repressors in response to CrBPF1 overexpression, suggesting that CrBPF1 may serve as a “fine-tune” regulator for TIA biosynthesis, acting to help regulate the timing and amplitude of TIA gene expression. PMID:26483828

  6. Analysis of the Dendrobium officinale transcriptome reveals putative alkaloid biosynthetic genes and genetic markers.

    PubMed

    Guo, Xu; Li, Ying; Li, Chunfang; Luo, Hongmei; Wang, Lizhi; Qian, Jun; Luo, Xiang; Xiang, Li; Song, Jingyuan; Sun, Chao; Xu, Haibin; Yao, Hui; Chen, Shilin

    2013-09-15

    Dendrobium officinale Kimura et Migo (Orchidaceae) is a traditional Chinese medicinal plant. The stem contains an alkaloid that is the primary bioactive component. However, the details of alkaloid biosynthesis have not been effectively explored because of the limited number of expressed sequence tags (ESTs) available in GenBank. In this study, we analyzed RNA isolated from the stem of D. officinale using a single half-run on the Roche 454 GS FLX Titanium platform to generate 553,084 ESTs with an average length of 417 bases. The ESTs were assembled into 36,407 unique putative transcripts. A total of 69.97% of the unique sequences were annotated, and a detailed view of alkaloid biosynthesis was obtained. Functional assignment based on Kyoto Encyclopedia of Genes and Genomes (KEGG) terms revealed 69 unique sequences representing 25 genes involved in alkaloid backbone biosynthesis. A series of qRT-PCR experiments confirmed that the expression levels of 5 key enzyme-encoding genes involved in alkaloid biosynthesis are greater in the leaves of D. officinale than in the stems. Cytochrome P450s, aminotransferases, methyltransferases, multidrug resistance protein (MDR) transporters and transcription factors were screened for possible involvement in alkaloid biosynthesis. Furthermore, a total of 1061 simple sequence repeat motifs (SSR) were detected from 36,407 unigenes. Dinucleotide repeats were the most abundant repeat type. Of these, 179 genes were associated with a metabolic pathway in KEGG. This study is the first to produce a large volume of transcriptome data from D. officinale. It extends the foundation to facilitate gene discovery in D. officinale and provides an important resource for the molecular genetic and functional genomic studies in this species. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Evaluation of Biosynthetic Pathway and Engineered Biosynthesis of Alkaloids.

    PubMed

    Kishimoto, Shinji; Sato, Michio; Tsunematsu, Yuta; Watanabe, Kenji

    2016-08-18

    Varieties of alkaloids are known to be produced by various organisms, including bacteria, fungi and plants, as secondary metabolites that exhibit useful bioactivities. However, understanding of how those metabolites are biosynthesized still remains limited, because most of these compounds are isolated from plants and at a trace level of production. In this review, we focus on recent efforts in identifying the genes responsible for the biosynthesis of those nitrogen-containing natural products and elucidating the mechanisms involved in the biosynthetic processes. The alkaloids discussed in this review are ditryptophenaline (dimeric diketopiperazine alkaloid), saframycin (tetrahydroisoquinoline alkaloid), strictosidine (monoterpene indole alkaloid), ergotamine (ergot alkaloid) and opiates (benzylisoquinoline and morphinan alkaloid). This review also discusses the engineered biosynthesis of these compounds, primarily through heterologous reconstitution of target biosynthetic pathways in suitable hosts, such as Escherichia coli, Saccharomyces cerevisiae and Aspergillus nidulans. Those heterologous biosynthetic systems can be used to confirm the functions of the isolated genes, economically scale up the production of the alkaloids for commercial distributions and engineer the biosynthetic pathways to produce valuable analogs of the alkaloids. In particular, extensive involvement of oxidation reactions catalyzed by oxidoreductases, such as cytochrome P450s, during the secondary metabolite biosynthesis is discussed in details.

  8. Effect of loss of T-DNA genes on MIA biosynthetic pathway gene regulation and alkaloid accumulation in Catharanthus roseus hairy roots.

    PubMed

    Taneja, Jyoti; Jaggi, Monika; Wankhede, Dhammaprakash Pandhari; Sinha, Alok Krishna

    2010-10-01

    Hairy roots are generated by integration of T-DNA in host plant genome from root inducing (Ri) plasmid of Agrobacterium rhizogenes and have been utilized for production of secondary metabolites in different plant systems. In Catharanthus roseus, hairy roots are known to show different morphologies, growth patterns, and alkaloid contents. It is also known that during transformation, there is a differential loss of a few T-DNA genes. To decipher the effect of loss of T-DNA genes on the various aspects of hairy roots, ten hairy root clones were analyzed for the presence or absence of T-DNA genes and its implications. It was found that the loss of a few ORFs drastically affects the growth and morphological patterns of hairy roots. The absence of T(R)-DNA from hairy roots revealed increased transcript accumulation and higher alkaloid concentrations, whereas callusing among hairy root lines led to decreased transcript and alkaloid accumulation. Significantly higher expression of MIA biosynthetic pathway genes and low abundance of regulator transcripts in hairy root clones in comparison with non-transformed control roots were also observed. This study indicates that it is not only the integration of T-DNA at certain region of host plant genome but also the presence or absence of important ORFs that affects the expression patterns of MIA biosynthetic pathway genes, regulators, and accumulation of specific alkaloids.

  9. Dimeric pyrrole-imidazole alkaloids: Synthetic approaches and biosynthetic hypotheses

    PubMed Central

    Wang, Xiao; Ma, Zhiqiang; Wang, Xiaolei; De, Saptarshi; Ma, Yuyong

    2014-01-01

    The pyrrole-imidazole alkaloids are a group of structurally unique and biologically interesting marine sponge metabolites. Among them, the cyclic dimers have caught synthetic chemists’ attention particularly. Numerous synthetic strategies have been developed and various biosynthetic hypotheses have been proposed for these fascinating natural products. We discuss herein the synthetic approaches and the biosynthetic insights obtained from these studies. PMID:24828265

  10. Dimeric pyrrole-imidazole alkaloids: synthetic approaches and biosynthetic hypotheses.

    PubMed

    Wang, Xiao; Ma, Zhiqiang; Wang, Xiaolei; De, Saptarshi; Ma, Yuyong; Chen, Chuo

    2014-08-14

    The pyrrole-imidazole alkaloids are a group of structurally unique and biologically interesting marine sponge metabolites. Among them, the cyclic dimers have caught synthetic chemists' attention particularly. Numerous synthetic strategies have been developed and various biosynthetic hypotheses have been proposed for these fascinating natural products. We discuss herein the synthetic approaches and the biosynthetic insights obtained from these studies.

  11. Structures of alkaloid biosynthetic glucosidases decode substrate specificity.

    PubMed

    Xia, Liqun; Ruppert, Martin; Wang, Meitian; Panjikar, Santosh; Lin, Haili; Rajendran, Chitra; Barleben, Leif; Stöckigt, Joachim

    2012-01-20

    Two similar enzymes with different biosynthetic function in one species have evolved to catalyze two distinct reactions. X-ray structures of both enzymes help reveal their most important differences. The Rauvolfia alkaloid biosynthetic network harbors two O-glucosidases: raucaffricine glucosidase (RG), which hydrolyses raucaffricine to an intermediate downstream in the ajmaline pathway, and strictosidine glucosidase (SG), which operates upstream. RG converts strictosidine, the substrate of SG, but SG does not accept raucaffricine. Now elucidation of crystal structures of RG, inactive RG-E186Q mutant, and its complexes with ligands dihydro-raucaffricine and secologanin reveals that it is the "wider gate" of RG that allows strictosidine to enter the catalytic site, whereas the "slot-like" entrance of SG prohibits access by raucaffricine. Trp392 in RG and Trp388 in SG control the gate shape and acceptance of substrates. Ser390 directs the conformation of Trp392. 3D structures, supported by site-directed mutations and kinetic data of RG and SG, provide a structural and catalytic explanation of substrate specificity and deeper insights into O-glucosidase chemistry.

  12. Targeting Ochratoxin Biosynthetic Genes.

    PubMed

    Gallo, Antonia; Perrone, Giancarlo

    2017-01-01

    The pathway of ochratoxin A (OTA) biosynthesis has not yet been completely elucidated. Essentially, two kind of genes have been demonstrated to be involved in the biosynthesis of OTA. One of them is the nrps gene encoding a non-ribosomal peptide synthetase (NRPS) which catalyzes the ligation between the isocoumarin group, constituting the polyketide group of OTA molecule, and the amino acid phenylalanine.Here we describe a conventional PCR method developed for the detection of OTA-producing molds belonging to Penicillium and Aspergillus genera by Luque et al. (Food Control 29:270-278, 2013). This method is based on the OTA nrps gene of Penicillium nordicum. It produces a specific amplicon of 459 bp and its functionality in naturally infected samples was also demonstrated.

  13. An Ergot Alkaloid Biosynthesis Gene and Clustered Hypothetical Genes from Aspergillus fumigatus†

    PubMed Central

    Coyle, Christine M.; Panaccione, Daniel G.

    2005-01-01

    The ergot alkaloids are a family of indole-derived mycotoxins with a variety of significant biological activities. Aspergillus fumigatus, a common airborne fungus and opportunistic human pathogen, and several fungi in the relatively distant taxon Clavicipitaceae (clavicipitaceous fungi) produce different sets of ergot alkaloids. The ergot alkaloids of these divergent fungi share a four-member ergoline ring but differ in the number, type, and position of the side chains. Several genes required for ergot alkaloid production are known in the clavicipitaceous fungi, and these genes are clustered in the genome of the ergot fungus Claviceps purpurea. We investigated whether the ergot alkaloids of A. fumigatus have a common biosynthetic and genetic origin with those of the clavicipitaceous fungi. A homolog of dmaW, the gene controlling the determinant step in the ergot alkaloid pathway of clavicipitaceous fungi, was identified in the A. fumigatus genome. Knockout of dmaW eliminated all known ergot alkaloids from A. fumigatus, and complementation of the mutation restored ergot alkaloid production. Clustered with dmaW in the A. fumigatus genome are sequences corresponding to five genes previously proposed to encode steps in the ergot alkaloid pathway of C. purpurea, as well as additional sequences whose deduced protein products are consistent with their involvement in the ergot alkaloid pathway. The corresponding genes have similarities in their nucleotide sequences, but the orientations and positions within the cluster of several of these genes differ. The data indicate that the ergot alkaloid biosynthetic capabilities in A. fumigatus and the clavicipitaceous fungi had a common origin. PMID:15933009

  14. Anthocyanin biosynthetic genes in Brassica rapa.

    PubMed

    Guo, Ning; Cheng, Feng; Wu, Jian; Liu, Bo; Zheng, Shuning; Liang, Jianli; Wang, Xiaowu

    2014-06-04

    Anthocyanins are a group of flavonoid compounds. As a group of important secondary metabolites, they perform several key biological functions in plants. Anthocyanins also play beneficial health roles as potentially protective factors against cancer and heart disease. To elucidate the anthocyanin biosynthetic pathway in Brassica rapa, we conducted comparative genomic analyses between Arabidopsis thaliana and B. rapa on a genome-wide level. In total, we identified 73 genes in B. rapa as orthologs of 41 anthocyanin biosynthetic genes in A. thaliana. In B. rapa, the anthocyanin biosynthetic genes (ABGs) have expanded and most genes exist in more than one copy. The anthocyanin biosynthetic structural genes have expanded through whole genome and tandem duplication in B. rapa. More structural genes located upstream of the anthocyanin biosynthetic pathway have been retained than downstream. More negative regulatory genes are retained in the anthocyanin biosynthesis regulatory system of B. rapa. These results will promote an understanding of the genetic mechanism of anthocyanin biosynthesis, as well as help the improvement of the nutritional quality of B. rapa through the breeding of high anthocyanin content varieties.

  15. Studies Towards the Leucetta-derived Alkaloids Spirocalcaridine A and B - Possible Biosynthetic Implications.

    PubMed

    Koswatta, Panduka B; Das, Jayanta; Yousufuddin, Muhammed; Lovely, Carl J

    2015-04-01

    An exploration of an abiotic approach to spirocalcaridines A and B is described centered on electrophile-induced dearomatizing spirocyclization of aryl enyne derivatives. Elaboration of the α-iodoenone via an Ullmann-like, copper-catalyzed amidation provided a formamide which upon treatment with methylamine undergoes a dienol-arene rearrangement, providing the corresponding kealiinine-like framework. This observation suggests a possible biosynthetic links between the spirocalcaridines and the naphthimidazole group of Leucetta alkaloids.

  16. Studies Towards the Leucetta-derived Alkaloids Spirocalcaridine A and B – Possible Biosynthetic Implications

    PubMed Central

    Koswatta, Panduka B.; Das, Jayanta; Yousufuddin, Muhammed; Lovely, Carl J.

    2015-01-01

    An exploration of an abiotic approach to spirocalcaridines A and B is described centered on electrophile-induced dearomatizing spirocyclization of aryl enyne derivatives. Elaboration of the α–iodoenone via an Ullmann-like, copper-catalyzed amidation provided a formamide which upon treatment with methylamine undergoes a dienol-arene rearrangement, providing the corresponding kealiinine-like framework. This observation suggests a possible biosynthetic links between the spirocalcaridines and the naphthimidazole group of Leucetta alkaloids. PMID:26257576

  17. Sequence analysis of porothramycin biosynthetic gene cluster.

    PubMed

    Najmanova, Lucie; Ulanova, Dana; Jelinkova, Marketa; Kamenik, Zdenek; Kettnerova, Eliska; Koberska, Marketa; Gazak, Radek; Radojevic, Bojana; Janata, Jiri

    2014-11-01

    The biosynthetic gene cluster of porothramycin, a sequence-selective DNA alkylating compound, was identified in the genome of producing strain Streptomyces albus subsp. albus (ATCC 39897) and sequentially characterized. A 39.7 kb long DNA region contains 27 putative genes, 18 of them revealing high similarity with homologous genes from biosynthetic gene cluster of closely related pyrrolobenzodiazepine (PBD) compound anthramycin. However, considering the structures of both compounds, the number of differences in the gene composition of compared biosynthetic gene clusters was unexpectedly high, indicating participation of alternative enzymes in biosynthesis of both porothramycin precursors, anthranilate, and branched L-proline derivative. Based on the sequence analysis of putative NRPS modules Por20 and Por21, we suppose that in porothramycin biosynthesis, the methylation of anthranilate unit occurs prior to the condensation reaction, while modifications of branched proline derivative, oxidation, and dimethylation of the side chain occur on already condensed PBD core. Corresponding two specific methyltransferase encoding genes por26 and por25 were identified in the porothramycin gene cluster. Surprisingly, also methyltransferase gene por18 homologous to orf19 from anthramycin biosynthesis was detected in porothramycin gene cluster even though the appropriate biosynthetic step is missing, as suggested by ultra high-performance liquid chromatography-diode array detection-mass spectrometry (UHPLC-DAD-MS) analysis of the product in the S. albus culture broth.

  18. Biosynthetic Genes for the Tetrodecamycin Antibiotics

    PubMed Central

    Gverzdys, Tomas

    2016-01-01

    ABSTRACT We recently described 13-deoxytetrodecamycin, a new member of the tetrodecamycin family of antibiotics. A defining feature of these molecules is the presence of a five-membered lactone called a tetronate ring. By sequencing the genome of a producer strain, Streptomyces sp. strain WAC04657, and searching for a gene previously implicated in tetronate ring formation, we identified the biosynthetic genes responsible for producing 13-deoxytetrodecamycin (the ted genes). Using the ted cluster in WAC04657 as a reference, we found related clusters in three other organisms: Streptomyces atroolivaceus ATCC 19725, Streptomyces globisporus NRRL B-2293, and Streptomyces sp. strain LaPpAH-202. Comparing the four clusters allowed us to identify the cluster boundaries. Genetic manipulation of the cluster confirmed the involvement of the ted genes in 13-deoxytetrodecamycin biosynthesis and revealed several additional molecules produced through the ted biosynthetic pathway, including tetrodecamycin, dihydrotetrodecamycin, and another, W5.9, a novel molecule. Comparison of the bioactivities of these four molecules suggests that they may act through the covalent modification of their target(s). IMPORTANCE The tetrodecamycins are a distinct subgroup of the tetronate family of secondary metabolites. Little is known about their biosynthesis or mechanisms of action, making them an attractive subject for investigation. In this paper we present the biosynthetic gene cluster for 13-deoxytetrodecamycin in Streptomyces sp. strain WAC04657. We identify related clusters in several other organisms and show that they produce related molecules. PMID:27137499

  19. A Papaver somniferum 10-gene cluster for synthesis of the anticancer alkaloid noscapine.

    PubMed

    Winzer, Thilo; Gazda, Valeria; He, Zhesi; Kaminski, Filip; Kern, Marcelo; Larson, Tony R; Li, Yi; Meade, Fergus; Teodor, Roxana; Vaistij, Fabián E; Walker, Carol; Bowser, Tim A; Graham, Ian A

    2012-06-29

    Noscapine is an antitumor alkaloid from opium poppy that binds tubulin, arrests metaphase, and induces apoptosis in dividing human cells. Elucidation of the biosynthetic pathway will enable improvement in the commercial production of noscapine and related bioactive molecules. Transcriptomic analysis revealed the exclusive expression of 10 genes encoding five distinct enzyme classes in a high noscapine-producing poppy variety, HN1. Analysis of an F(2) mapping population indicated that these genes are tightly linked in HN1, and bacterial artificial chromosome sequencing confirmed that they exist as a complex gene cluster for plant alkaloids. Virus-induced gene silencing resulted in accumulation of pathway intermediates, allowing gene function to be linked to noscapine synthesis and a novel biosynthetic pathway to be proposed.

  20. Characterization of the Promoter Region of Biosynthetic Enzyme Genes Involved in Berberine Biosynthesis in Coptis japonica

    PubMed Central

    Yamada, Yasuyuki; Yoshimoto, Tadashi; Yoshida, Sayumi T.; Sato, Fumihiko

    2016-01-01

    The presence of alkaloids is rather specific to certain plant species. However, berberine, an isoquinoline alkaloid, is relatively broadly distributed in the plant kingdom. Thus, berberine biosynthesis has been intensively investigated, especially using Coptis japonica cell cultures. Almost all biosynthetic enzyme genes have already been characterized at the molecular level. Particularly, two transcription factors (TFs), a plant-specific WRKY-type TF, CjWRKY1, and a basic helix-loop-helix TF, CjbHLH1, were shown to comprehensively regulate berberine biosynthesis in C. japonica cells. In this study, we characterized the promoter region of some biosynthetic enzyme genes and associated cis-acting elements involved in the transcriptional regulation via two TFs. The promoter regions of three berberine biosynthetic enzyme genes (CYP80B2, 4′OMT and CYP719A1) were isolated, and their promoter activities were dissected by a transient assay involving the sequentially truncated promoter::luciferase (LUC) reporter constructs. Furthermore, transactivation activities of CjWRKY1 were determined using the truncated promoter::LUC reporter constructs or constructs with mutated cis-elements. These results suggest the involvement of a putative W-box in the regulation of biosynthetic enzyme genes. Direct binding of CjWRKY1 to the W-box DNA sequence was also confirmed by an electrophoresis mobility shift assay and by a chromatin immunoprecipitation assay. In addition, CjbHLH1 also activated transcription from truncated 4′OMT and CYP719A1 promoters independently of CjWRKY1, suggesting the involvement of a putative E-box. Unexpected transcriptional activation of biosynthetic enzyme genes via a non-W-box sequence and by CjWRKY1 as well as the possible involvement of a GCC-box in berberine biosynthesis in C. japonica are discussed. PMID:27642289

  1. A virus-induced gene silencing approach to understanding alkaloid metabolism in Catharanthus roseus

    PubMed Central

    Liscombe, David K.; O’Connor, Sarah E.

    2011-01-01

    The anticancer agents vinblastine and vincristine are bisindole alkaloids derived from coupling vindoline and catharanthine, monoterpenoid indole alkaloids produced exclusively by Madagascar periwinkle (Catharanthus roseus) plants. Industrial production of vinblastine and vincristine currently relies on isolation from C. roseus leaves, a process that affords these compounds in 0.0003–0.01% yields. Metabolic engineering efforts to improve alkaloid content or provide alternative sources of the bisindole alkaloids ultimately rely on the isolation and characterization of the genes involved. Several vindoline biosynthetic genes have been isolated, and the cellular and subcellular organization of the corresponding enzymes has been well studied. However, due to the leaf-specific localization of vindoline biosynthesis, and the lack of production of this precursor in cell suspension and hairy root cultures of C. roseus, further elucidation of this pathway demands the development of reverse genetics approaches to assay gene function in planta. The bipartite pTRV vector system is a Tobacco Rattle Virus-based virus-induced gene silencing (VIGS) platform that has provided efficient and effective means to assay gene function in diverse plant systems. We have developed a VIGS method to investigate gene function in C. roseus plants using the pTRV vector system. The utility of this approach in understanding gene function in C. roseus leaves is demonstrated by silencing known vindoline biosynthetic genes previously characterized in vitro. PMID:21802100

  2. Comprehensive curation and analysis of fungal biosynthetic gene clusters of published natural products.

    PubMed

    Li, Yong Fuga; Tsai, Kathleen J S; Harvey, Colin J B; Li, James Jian; Ary, Beatrice E; Berlew, Erin E; Boehman, Brenna L; Findley, David M; Friant, Alexandra G; Gardner, Christopher A; Gould, Michael P; Ha, Jae H; Lilley, Brenna K; McKinstry, Emily L; Nawal, Saadia; Parry, Robert C; Rothchild, Kristina W; Silbert, Samantha D; Tentilucci, Michael D; Thurston, Alana M; Wai, Rebecca B; Yoon, Yongjin; Aiyar, Raeka S; Medema, Marnix H; Hillenmeyer, Maureen E; Charkoudian, Louise K

    2016-04-01

    Microorganisms produce a wide range of natural products (NPs) with clinically and agriculturally relevant biological activities. In bacteria and fungi, genes encoding successive steps in a biosynthetic pathway tend to be clustered on the chromosome as biosynthetic gene clusters (BGCs). Historically, "activity-guided" approaches to NP discovery have focused on bioactivity screening of NPs produced by culturable microbes. In contrast, recent "genome mining" approaches first identify candidate BGCs, express these biosynthetic genes using synthetic biology methods, and finally test for the production of NPs. Fungal genome mining efforts and the exploration of novel sequence and NP space are limited, however, by the lack of a comprehensive catalog of BGCs encoding experimentally-validated products. In this study, we generated a comprehensive reference set of fungal NPs whose biosynthetic gene clusters are described in the published literature. To generate this dataset, we first identified NCBI records that included both a peer-reviewed article and an associated nucleotide record. We filtered these records by text and homology criteria to identify putative NP-related articles and BGCs. Next, we manually curated the resulting articles, chemical structures, and protein sequences. The resulting catalog contains 197 unique NP compounds covering several major classes of fungal NPs, including polyketides, non-ribosomal peptides, terpenoids, and alkaloids. The distribution of articles published per compound shows a bias toward the study of certain popular compounds, such as the aflatoxins. Phylogenetic analysis of biosynthetic genes suggests that much chemical and enzymatic diversity remains to be discovered in fungi. Our catalog was incorporated into the recently launched Minimum Information about Biosynthetic Gene cluster (MIBiG) repository to create the largest known set of fungal BGCs and associated NPs, a resource that we anticipate will guide future genome mining and

  3. Digital Gene Expression Analysis Provides Insight into the Transcript Profile of the Genes Involved in Aporphine Alkaloid Biosynthesis in Lotus (Nelumbo nucifera).

    PubMed

    Yang, Mei; Zhu, Lingping; Li, Ling; Li, Juanjuan; Xu, Liming; Feng, Ji; Liu, Yanling

    2017-01-01

    The predominant alkaloids in lotus leaves are aporphine alkaloids. These are the most important active components and have many pharmacological properties, but little is known about their biosynthesis. We used digital gene expression (DGE) technology to identify differentially-expressed genes (DEGs) between two lotus cultivars with different alkaloid contents at four leaf development stages. We also predicted potential genes involved in aporphine alkaloid biosynthesis by weighted gene co-expression network analysis (WGCNA). Approximately 335 billion nucleotides were generated; and 94% of which were aligned against the reference genome. Of 22 thousand expressed genes, 19,000 were differentially expressed between the two cultivars at the four stages. Gene Ontology (GO) enrichment analysis revealed that catalytic activity and oxidoreductase activity were enriched significantly in most pairwise comparisons. In Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, dozens of DEGs were assigned to the categories of biosynthesis of secondary metabolites, isoquinoline alkaloid biosynthesis, and flavonoid biosynthesis. The genes encoding norcoclaurine synthase (NCS), norcoclaurine 6-O-methyltransferase (6OMT), coclaurine N-methyltransferase (CNMT), N-methylcoclaurine 3'-hydroxylase (NMCH), and 3'-hydroxy-N-methylcoclaurine 4'-O-methyltransferase (4'OMT) in the common pathways of benzylisoquinoline alkaloid biosynthesis and the ones encoding corytuberine synthase (CTS) in aporphine alkaloid biosynthetic pathway, which have been characterized in other plants, were identified in lotus. These genes had positive effects on alkaloid content, albeit with phenotypic lag. The WGCNA of DEGs revealed that one network module was associated with the dynamic change of alkaloid content. Eleven genes encoding proteins with methyltransferase, oxidoreductase and CYP450 activities were identified. These were surmised to be genes involved in aporphine alkaloid biosynthesis. This

  4. Digital Gene Expression Analysis Provides Insight into the Transcript Profile of the Genes Involved in Aporphine Alkaloid Biosynthesis in Lotus (Nelumbo nucifera)

    PubMed Central

    Yang, Mei; Zhu, Lingping; Li, Ling; Li, Juanjuan; Xu, Liming; Feng, Ji; Liu, Yanling

    2017-01-01

    The predominant alkaloids in lotus leaves are aporphine alkaloids. These are the most important active components and have many pharmacological properties, but little is known about their biosynthesis. We used digital gene expression (DGE) technology to identify differentially-expressed genes (DEGs) between two lotus cultivars with different alkaloid contents at four leaf development stages. We also predicted potential genes involved in aporphine alkaloid biosynthesis by weighted gene co-expression network analysis (WGCNA). Approximately 335 billion nucleotides were generated; and 94% of which were aligned against the reference genome. Of 22 thousand expressed genes, 19,000 were differentially expressed between the two cultivars at the four stages. Gene Ontology (GO) enrichment analysis revealed that catalytic activity and oxidoreductase activity were enriched significantly in most pairwise comparisons. In Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, dozens of DEGs were assigned to the categories of biosynthesis of secondary metabolites, isoquinoline alkaloid biosynthesis, and flavonoid biosynthesis. The genes encoding norcoclaurine synthase (NCS), norcoclaurine 6-O-methyltransferase (6OMT), coclaurine N-methyltransferase (CNMT), N-methylcoclaurine 3′-hydroxylase (NMCH), and 3′-hydroxy-N-methylcoclaurine 4′-O-methyltransferase (4′OMT) in the common pathways of benzylisoquinoline alkaloid biosynthesis and the ones encoding corytuberine synthase (CTS) in aporphine alkaloid biosynthetic pathway, which have been characterized in other plants, were identified in lotus. These genes had positive effects on alkaloid content, albeit with phenotypic lag. The WGCNA of DEGs revealed that one network module was associated with the dynamic change of alkaloid content. Eleven genes encoding proteins with methyltransferase, oxidoreductase and CYP450 activities were identified. These were surmised to be genes involved in aporphine alkaloid biosynthesis. This

  5. Distribution and evolution of fusarin mycotoxin biosynthetic genes in Fusarium

    USDA-ARS?s Scientific Manuscript database

    In Fusarium/Gibberella, secondary metabolite biosynthetic (SMB) genes that have a narrow distribution within the genus can have complex evolutionary histories. Whether more widely distributed SMB genes have similarly complex histories is not known. Genes responsible for production of fusarin mycot...

  6. Threonine biosynthetic genes are essential in Cryptococcus neoformans

    PubMed Central

    Kingsbury, Joanne M.; McCusker, John H.

    2009-01-01

    Summary We identified and attempted to disrupt the Cryptococcus neoformans homoserine and/or threonine biosynthetic genes encoding aspartate kinase (HOM3), homoserine kinase (THR1), and threonine synthase (THR4), however, each gene proved recalcitrant to disruption. By replacing the endogenous promoters of HOM3 and THR1 with the copper-repressible CTR4-1 promoter, we showed that HOM3 and THR1 were essential for the growth of C. neoformans in rich media, when ammonium was the nitrogen source, or when threonine was supplied as an amino acid instead of a dipeptide. Moreover, the severity of the growth defect associated with HOM3- or THR1-repression increased with increasing incubation temperature. This study comprises the first demonstration of threonine biosynthetic genes being essential in a fungus. The necessity of these genes for C. neoformans growth, particularly at physiologically relevant temperatures, makes threonine biosynthetic genes ideal anti-cryptococcal drug targets. PMID:18757810

  7. Effect of polyamine biosynthetic inhibitors on alkaloids and organogenesis in tobacco callus cultures.

    PubMed

    Tiburcio, A F; Kaur-Sawhney, R; Galston, A W

    1987-01-01

    We studied the effects of inhibitors of ornithine decarboxylase (ODC), arginine decarboxylase (ADC) and spermidine synthase (Spd synthase) on organogenesis and the titers of polyamines (PA) and alkaloids in tobacco calli. DL-alpha-diffluromethylarginine (DFMA) and D-arginine (D-Arg), both inhibitors of ADC activity, were more effective than DL-alpha-difluromethylorinithine (DFMO), an inhibitor of ODC, in reducing titers of PA and the putrescine (Put)-derived alkaloids (nornicotine and nicotine). Dicyclohexylammonium sulfate (DCHA), an inhibitor of Spd synthase, was also more efficient than DFMO in reducing PA and alkaloid levels. Root organogenesis is inversely related to the titers of Put and alkaloids. Thus, DFMA and D-Arg, which strongly inhibit Put and alkaloid biosynthesis, markedly promote root organogenesis, while control callus with high Put and alkaloid content showed poor root organization. These results suggest that morphological differentiation is not required for activation of secondary metabolic pathways and support the view that ADC has a major role in the generation of Put going to the pyrrolidine ring of tobacco alkaloids.

  8. Valinomycin biosynthetic gene cluster in Streptomyces: conservation, ecology and evolution.

    PubMed

    Matter, Andrea M; Hoot, Sara B; Anderson, Patrick D; Neves, Susana S; Cheng, Yi-Qiang

    2009-09-29

    Many Streptomyces strains are known to produce valinomycin (VLM) antibiotic and the VLM biosynthetic gene cluster (vlm) has been characterized in two independent isolates. Here we report the phylogenetic relationships of these strains using both parsimony and likelihood methods, and discuss whether the vlm gene cluster shows evidence of horizontal transmission common in natural product biosynthetic genes. Eight Streptomyces strains from around the world were obtained and sequenced for three regions of the two large nonribosomal peptide synthetase genes (vlm1 and vlm2) involved in VLM biosynthesis. The DNA sequences representing the vlm gene cluster are highly conserved among all eight environmental strains. The geographic distribution pattern of these strains and the strict congruence between the trees of the two vlm genes and the housekeeping genes, 16S rDNA and trpB, suggest vertical transmission of the vlm gene cluster in Streptomyces with no evidence of horizontal gene transfer. We also explored the relationship of the sequence of vlm genes to that of the cereulide biosynthetic genes (ces) found in Bacillus cereus and found them highly divergent from each other at DNA level (genetic distance values >or= 95.6%). It is possible that the vlm gene cluster and the ces gene cluster may share a relatively distant common ancestor but these two gene clusters have since evolved independently.

  9. Regulation of Flavonoid Biosynthetic Genes in Germinating Arabidopsis Seedlings.

    PubMed Central

    Kubasek, WL; Shirley, BW; McKillop, A; Goodman, HM; Briggs, W; Ausubel, FM

    1992-01-01

    Many higher plants, including Arabidopsis, transiently display purple anthocyanin pigments just after seed germination. We observed that steady state levels of mRNAs encoded by four flavonoid biosynthetic genes, PAL1 (encoding phenylalanine ammonia-lyase 1), CHS (encoding chalcone synthase), CHI (encoding chalcone isomerase), and DFR (encoding dihydroflavonol reductase), were temporally regulated, peaking in 3-day-old seedlings grown in continuous white light. Except for the case of PAL1 mRNA, mRNA levels for these flavonoid genes were very low in seedlings grown in darkness. Light induction studies using seedlings grown in darkness showed that PAL1 mRNA began to accumulate before CHS and CHI mRNAs, which, in turn, began to accumulate before DFR mRNA. This order of induction is the same as the order of the biosynthetic steps in flavonoid biosynthesis. Our results suggest that the flavonoid biosynthetic pathway is coordinately regulated by a developmental timing mechanism during germination. Blue light and UVB light induction experiments using red light- and dark-grown seedlings showed that the flavonoid biosynthetic genes are induced most effectively by UVB light and that blue light induction is mediated by a specific blue light receptor. PMID:12297632

  10. YUCCA auxin biosynthetic genes are required for Arabidopsis shade avoidance.

    PubMed

    Müller-Moulé, Patricia; Nozue, Kazunari; Pytlak, Melissa L; Palmer, Christine M; Covington, Michael F; Wallace, Andreah D; Harmer, Stacey L; Maloof, Julin N

    2016-01-01

    Plants respond to neighbor shade by increasing stem and petiole elongation. Shade, sensed by phytochrome photoreceptors, causes stabilization of PHYTOCHROME INTERACTING FACTOR proteins and subsequent induction of YUCCA auxin biosynthetic genes. To investigate the role of YUCCA genes in phytochrome-mediated elongation, we examined auxin signaling kinetics after an end-of-day far-red (EOD-FR) light treatment, and found that an auxin responsive reporter is rapidly induced within 2 hours of far-red exposure. YUCCA2, 5, 8, and 9 are all induced with similar kinetics suggesting that they could act redundantly to control shade-mediated elongation. To test this hypothesis we constructed a yucca2, 5, 8, 9 quadruple mutant and found that the hypocotyl and petiole EOD-FR and shade avoidance responses are completely disrupted. This work shows that YUCCA auxin biosynthetic genes are essential for detectable shade avoidance and that YUCCA genes are important for petiole shade avoidance.

  11. YUCCA auxin biosynthetic genes are required for Arabidopsis shade avoidance

    PubMed Central

    Müller-Moulé, Patricia; Nozue, Kazunari; Pytlak, Melissa L.; Palmer, Christine M.; Covington, Michael F.; Wallace, Andreah D.; Harmer, Stacey L.

    2016-01-01

    Plants respond to neighbor shade by increasing stem and petiole elongation. Shade, sensed by phytochrome photoreceptors, causes stabilization of PHYTOCHROME INTERACTING FACTOR proteins and subsequent induction of YUCCA auxin biosynthetic genes. To investigate the role of YUCCA genes in phytochrome-mediated elongation, we examined auxin signaling kinetics after an end-of-day far-red (EOD-FR) light treatment, and found that an auxin responsive reporter is rapidly induced within 2 hours of far-red exposure. YUCCA2, 5, 8, and 9 are all induced with similar kinetics suggesting that they could act redundantly to control shade-mediated elongation. To test this hypothesis we constructed a yucca2, 5, 8, 9 quadruple mutant and found that the hypocotyl and petiole EOD-FR and shade avoidance responses are completely disrupted. This work shows that YUCCA auxin biosynthetic genes are essential for detectable shade avoidance and that YUCCA genes are important for petiole shade avoidance. PMID:27761349

  12. Terpenoid-Alkaloids: Their Biosynthetic Twist of Fate and Total Synthesis

    PubMed Central

    Cherney, Emily C.; Baran, Phil S.

    2015-01-01

    Terpenes and alkaloids are ever-growing classes of natural products that provide new molecular structures which inspire chemists and possess a broad range of biological activity. Terpenoid-alkaloids originate from the same prenyl units that construct terpene skeletons. However, during biosynthesis, a nitrogen atom (or atoms) is introduced in the form of β-aminoethanol, ethylamine, or methylamine. Nitrogen incorporation can occur either before, during, or after the cyclase phase. The outcome of this unique biosynthesis is the formation of natural products containing unprecedented structures. These complex structural motifs expose current limitations in organic chemistry, thus providing opportunities for invention. This review focuses on total syntheses of terpenoid-alkaloids and unique issues presented by this class of natural products. More specifically, it examines how these syntheses relate to the way terpenoid-alkaloids are made in Nature. Developments in chemistry that have facilitated these syntheses are emphasized, as well as chemical technology needed to conquer those that evade synthesis. PMID:26207071

  13. Transcriptional regulation of the novobiocin biosynthetic gene cluster.

    PubMed

    Dangel, Volker; Härle, Johannes; Goerke, Christiane; Wolz, Christiane; Gust, Bertolt; Pernodet, Jean-Luc; Heide, Lutz

    2009-12-01

    The aminocoumarin antibiotic novobiocin is a gyrase inhibitor formed by a Streptomyces strain. The biosynthetic gene cluster of novobiocin spans 23.4 kb and contains 20 coding sequences, among them the two regulatory genes novE and novG. We investigated the location of transcriptional promoters within this cluster by insertion of transcriptional terminator cassettes and RT-PCR analysis of the resulting mutants. The cluster was found to contain eight DNA regions with promoter activity. The regulatory protein NovG binds to a previously identified binding site within the promoter region located upstream of novH, but apparently not to any of the other seven promoters. Quantitative real-time PCR was used to compare the number of transcripts in a strain carrying an intact novobiocin cluster with strains carrying mutated clusters. Both in-frame deletion of the regulatory gene novG and insertion of a terminator cassette into the biosynthetic gene novH led to a strong reduction of the number of transcripts of the genes located between novH and novW. This suggested that these 16 biosynthetic genes form a single operon. Three internal promoters are located within this operon but appear to be of minor importance, if any, under our experimental conditions. Transcription of novG was found to depend on the presence of NovE, suggesting that the two regulatory genes, novE and novG, act in a cascade-like mechanism. The resistance gene gyrB(R), encoding an aminocoumarin-resistant gyrase B subunit, may initially be co-transcribed with the genes from novH to novW. However, when the gyrase inhibitor novobiocin accumulates in the cultures, gyrB(R) is transcribed from its own promoter. Previous work has suggested that this promoter is controlled by the superhelical density of chromosomal DNA.

  14. Diversity and abundance of phosphonate biosynthetic genes in nature

    PubMed Central

    Yu, Xiaomin; Doroghazi, James R.; Janga, Sarath C.; Zhang, Jun Kai; Circello, Benjamin; Griffin, Benjamin M.; Labeda, David P.; Metcalf, William W.

    2013-01-01

    Phosphonates, molecules containing direct carbon–phosphorus bonds, compose a structurally diverse class of natural products with interesting and useful biological properties. Although their synthesis in protozoa was discovered more than 50 y ago, the extent and diversity of phosphonate production in nature remains poorly characterized. The rearrangement of phosphoenolpyruvate (PEP) to phosphonopyruvate, catalyzed by the enzyme PEP mutase (PepM), is shared by the vast majority of known phosphonate biosynthetic pathways. Thus, the pepM gene can be used as a molecular marker to examine the occurrence and abundance of phosphonate-producing organisms. Based on the presence of this gene, phosphonate biosynthesis is common in microbes, with ∼5% of sequenced bacterial genomes and 7% of genome equivalents in metagenomic datasets carrying pepM homologs. Similarly, we detected the pepM gene in ∼5% of random actinomycete isolates. The pepM-containing gene neighborhoods from 25 of these isolates were cloned, sequenced, and compared with those found in sequenced genomes. PEP mutase sequence conservation is strongly correlated with conservation of other nearby genes, suggesting that the diversity of phosphonate biosynthetic pathways can be predicted by examining PEP mutase diversity. We used this approach to estimate the range of phosphonate biosynthetic pathways in nature, revealing dozens of discrete groups in pepM amplicons from local soils, whereas hundreds were observed in metagenomic datasets. Collectively, our analyses show that phosphonate biosynthesis is both diverse and relatively common in nature, suggesting that the role of phosphonate molecules in the biosphere may be more important than is often recognized. PMID:24297932

  15. Downregulation of terpenoid indole alkaloid biosynthetic pathway by low temperature and cloning of a AP2 type C-repeat binding factor (CBF) from Catharanthus roseus (L). G. Don.

    PubMed

    Dutta, Ajaswrata; Sen, Jayanti; Deswal, Renu

    2007-10-01

    Plants produce secondary metabolites in response to various external signals. Coordinated transcriptional control of biosynthetic genes emerges as a major mechanism dictating the accumulation of secondary metabolites in plant cells. However, information about stress regulation of secondary metabolites and the molecular mechanisms regulating these specialized pathways are poorly understood. Here, we show that terpenoid indole alkaloid (TIA) biosynthetic pathway is differentially regulated in response to different abiotic stresses in Catharanthus roseus, a model medicinal plant producing important anticancer and antihypertensive drugs. Semiquantitative RT-PCR analysis of TIA and related primary pathway genes in response to dehydration, low temperature, salinity, UV-light and wounding revealed their negative regulation in response to low temperature. HPLC analysis further supports the notion that TIA biosynthetic pathway is negatively controlled by low temperature stress. Furthermore, we report the cloning of a C-repeat binding transcription factor from C. roseus (CrCbf), belonging to AP2 class of transcription factor and possessed the NLS and CBF signature sequence characteristic of CBFs. CrCbf was found to be similar to Brassica Cbfs, whereas it was distant to monocot Cbfs. Southern analysis of CrCbf revealed the presence of more than one copy of CrCbf gene or other Cbf homologues in C. roseus genome. The transcription of CrCbf was found to be constitutive in response to low temperature but it showed differential distribution. The need for identifying novel transcription factors in understanding secondary metabolite biosynthesis is discussed.

  16. Why biosynthetic genes for chemical defense compounds cluster.

    PubMed

    Takos, Adam M; Rook, Fred

    2012-07-01

    In plants, the genomic clustering of non-homologous genes for the biosynthesis of chemical defense compounds is an emerging theme. Gene clustering is also observed for polymorphic sexual traits under balancing selection, and examples in plants are self-incompatibility and floral dimorphy. The chemical defense pathways organized as gene clusters are self-contained biosynthetic modules under opposing selection pressures and adaptive polymorphisms, often the presence or absence of a functional pathway, are observed in nature. We propose that these antagonistic selection pressures favor closer physical linkage between beneficially interacting alleles as the resulting reduction in recombination maintains a larger fraction of the fitter genotypes. Gene clusters promote the stable inheritance of functional chemical defense pathways in the dynamic ecological context of natural populations. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Carotenoid biosynthetic genes in Brassica rapa: comparative genomic analysis, phylogenetic analysis, and expression profiling.

    PubMed

    Li, Peirong; Zhang, Shujiang; Zhang, Shifan; Li, Fei; Zhang, Hui; Cheng, Feng; Wu, Jian; Wang, Xiaowu; Sun, Rifei

    2015-07-03

    Carotenoids are isoprenoid compounds synthesized by all photosynthetic organisms. Despite much research on carotenoid biosynthesis in the model plant Arabidopsis thaliana, there is a lack of information on the carotenoid pathway in Brassica rapa. To better understand its carotenoid biosynthetic pathway, we performed a systematic analysis of carotenoid biosynthetic genes at the genome level in B. rapa. We identified 67 carotenoid biosynthetic genes in B. rapa, which were orthologs of the 47 carotenoid genes in A. thaliana. A high level of synteny was observed for carotenoid biosynthetic genes between A. thaliana and B. rapa. Out of 47 carotenoid biosynthetic genes in A. thaliana, 46 were successfully mapped to the 10 B. rapa chromosomes, and most of the genes retained more than one copy in B. rapa. The gene expansion was caused by the whole-genome triplication (WGT) event experienced by Brassica species. An expression analysis of the carotenoid biosynthetic genes suggested that their expression levels differed in root, stem, leaf, flower, callus, and silique tissues. Additionally, the paralogs of each carotenoid biosynthetic gene, which were generated from the WGT in B. rapa, showed significantly different expression levels among tissues, suggesting differentiated functions for these multi-copy genes in the carotenoid pathway. This first systematic study of carotenoid biosynthetic genes in B. rapa provides insights into the carotenoid metabolic mechanisms of Brassica crops. In addition, a better understanding of carotenoid biosynthetic genes in B. rapa will contribute to the development of conventional and transgenic B. rapa cultivars with enriched carotenoid levels in the future.

  18. Discovery of putative capsaicin biosynthetic genes by RNA-Seq and digital gene expression analysis of pepper.

    PubMed

    Zhang, Zi-Xin; Zhao, Shu-Niu; Liu, Gao-Feng; Huang, Zu-Mei; Cao, Zhen-Mu; Cheng, Shan-Han; Lin, Shi-Sen

    2016-10-19

    The Indian pepper 'Guijiangwang' (Capsicum frutescens L.), one of the world's hottest chili peppers, is rich in capsaicinoids. The accumulation of the alkaloid capsaicin and its analogs in the epidermal cells of the placenta contribute to the pungency of Capsicum fruits. To identify putative genes involved in capsaicin biosynthesis, RNA-Seq was used to analyze the pepper's expression profiles over five developmental stages. Five cDNA libraries were constructed from the total RNA of placental tissue and sequenced using an Illumina HiSeq 2000. More than 19 million clean reads were obtained from each library, and greater than 50% of the reads were assignable to reference genes. Digital gene expression (DGE) profile analysis using Solexa sequencing was performed at five fruit developmental stages and resulted in the identification of 135 genes of known function; their expression patterns were compared to the capsaicin accumulation pattern. Ten genes of known function were identified as most likely to be involved in regulating capsaicin synthesis. Additionally, 20 new candidate genes were identified related to capsaicin synthesis. We use a combination of RNA-Seq and DGE analyses to contribute to the understanding of the biosynthetic regulatory mechanism(s) of secondary metabolites in a nonmodel plant and to identify candidate enzyme-encoding genes.

  19. Discovery of putative capsaicin biosynthetic genes by RNA-Seq and digital gene expression analysis of pepper

    PubMed Central

    Zhang, Zi-Xin; Zhao, Shu-Niu; Liu, Gao-Feng; Huang, Zu-Mei; Cao, Zhen-Mu; Cheng, Shan-Han; Lin, Shi-Sen

    2016-01-01

    The Indian pepper ‘Guijiangwang’ (Capsicum frutescens L.), one of the world’s hottest chili peppers, is rich in capsaicinoids. The accumulation of the alkaloid capsaicin and its analogs in the epidermal cells of the placenta contribute to the pungency of Capsicum fruits. To identify putative genes involved in capsaicin biosynthesis, RNA-Seq was used to analyze the pepper’s expression profiles over five developmental stages. Five cDNA libraries were constructed from the total RNA of placental tissue and sequenced using an Illumina HiSeq 2000. More than 19 million clean reads were obtained from each library, and greater than 50% of the reads were assignable to reference genes. Digital gene expression (DGE) profile analysis using Solexa sequencing was performed at five fruit developmental stages and resulted in the identification of 135 genes of known function; their expression patterns were compared to the capsaicin accumulation pattern. Ten genes of known function were identified as most likely to be involved in regulating capsaicin synthesis. Additionally, 20 new candidate genes were identified related to capsaicin synthesis. We use a combination of RNA-Seq and DGE analyses to contribute to the understanding of the biosynthetic regulatory mechanism(s) of secondary metabolites in a nonmodel plant and to identify candidate enzyme-encoding genes. PMID:27756914

  20. Functions Encoded by Pyrrolnitrin Biosynthetic Genes from Pseudomonas fluorescens

    PubMed Central

    Kirner, Sabine; Hammer, Philip E.; Hill, D. Steven; Altmann, Annett; Fischer, Ilona; Weislo, Laura J.; Lanahan, Mike; van Pée, Karl-Heinz; Ligon, James M.

    1998-01-01

    Pyrrolnitrin is a secondary metabolite derived from tryptophan and has strong antifungal activity. Recently we described four genes, prnABCD, from Pseudomonas fluorescens that encode the biosynthesis of pyrrolnitrin. In the work presented here, we describe the function of each prn gene product. The four genes encode proteins identical in size and serology to proteins present in wild-type Pseudomonas fluorescens, but absent from a mutant from which the entire prn gene region had been deleted. The prnA gene product catalyzes the chlorination of l-tryptophan to form 7-chloro-l-tryptophan. The prnB gene product catalyzes a ring rearrangement and decarboxylation to convert 7-chloro-l-tryptophan to monodechloroaminopyrrolnitrin. The prnC gene product chlorinates monodechloroaminopyrrolnitrin at the 3 position to form aminopyrrolnitrin. The prnD gene product catalyzes the oxidation of the amino group of aminopyrrolnitrin to a nitro group to form pyrrolnitrin. The organization of the prn genes in the operon is identical to the order of the reactions in the biosynthetic pathway. PMID:9537395

  1. Functions encoded by pyrrolnitrin biosynthetic genes from Pseudomonas fluorescens.

    PubMed

    Kirner, S; Hammer, P E; Hill, D S; Altmann, A; Fischer, I; Weislo, L J; Lanahan, M; van Pée, K H; Ligon, J M

    1998-04-01

    Pyrrolnitrin is a secondary metabolite derived from tryptophan and has strong antifungal activity. Recently we described four genes, prnABCD, from Pseudomonas fluorescens that encode the biosynthesis of pyrrolnitrin. In the work presented here, we describe the function of each prn gene product. The four genes encode proteins identical in size and serology to proteins present in wild-type Pseudomonas fluorescens, but absent from a mutant from which the entire prn gene region had been deleted. The prnA gene product catalyzes the chlorination of L-tryptophan to form 7-chloro-L-tryptophan. The prnB gene product catalyzes a ring rearrangement and decarboxylation to convert 7-chloro-L-tryptophan to monodechloroaminopyrrolnitrin. The prnC gene product chlorinates monodechloroaminopyrrolnitrin at the 3 position to form aminopyrrolnitrin. The prnD gene product catalyzes the oxidation of the amino group of aminopyrrolnitrin to a nitro group to form pyrrolnitrin. The organization of the prn genes in the operon is identical to the order of the reactions in the biosynthetic pathway.

  2. Functional Analysis of the Fusarielin Biosynthetic Gene Cluster.

    PubMed

    Droce, Aida; Saei, Wagma; Jørgensen, Simon Hartung; Wimmer, Reinhard; Giese, Henriette; Wollenberg, Rasmus Dam; Sondergaard, Teis Esben; Sørensen, Jens Laurids

    2016-12-13

    Fusarielins are polyketides with a decalin core produced by various species of Aspergillus and Fusarium. Although the responsible gene cluster has been identified, the biosynthetic pathway remains to be elucidated. In the present study, members of the gene cluster were deleted individually in a Fusarium graminearum strain overexpressing the local transcription factor. The results suggest that a trans-acting enoyl reductase (FSL5) assists the polyketide synthase FSL1 in biosynthesis of a polyketide product, which is released by hydrolysis by a trans-acting thioesterase (FSL2). Deletion of the epimerase (FSL3) resulted in accumulation of an unstable compound, which could be the released product. A novel compound, named prefusarielin, accumulated in the deletion mutant of the cytochrome P450 monooxygenase FSL4. Unlike the known fusarielins from Fusarium, this compound does not contain oxygenized decalin rings, suggesting that FSL4 is responsible for the oxygenation.

  3. Cloning and Heterologous Expression of the Grecocycline Biosynthetic Gene Cluster

    PubMed Central

    Bilyk, Oksana; Sekurova, Olga N.; Zotchev, Sergey B.; Luzhetskyy, Andriy

    2016-01-01

    Transformation-associated recombination (TAR) in yeast is a rapid and inexpensive method for cloning and assembly of large DNA fragments, which relies on natural homologous recombination. Two vectors, based on p15a and F-factor replicons that can be maintained in yeast, E. coli and streptomycetes have been constructed. These vectors have been successfully employed for assembly of the grecocycline biosynthetic gene cluster from Streptomyces sp. Acta 1362. Fragments of the cluster were obtained by PCR and transformed together with the “capture” vector into the yeast cells, yielding a construct carrying the entire gene cluster. The obtained construct was heterologously expressed in S. albus J1074, yielding several grecocycline congeners. Grecocyclines have unique structural moieties such as a dissacharide side chain, an additional amino sugar at the C-5 position and a thiol group. Enzymes from this pathway may be used for the derivatization of known active angucyclines in order to improve their desired biological properties. PMID:27410036

  4. Chlorella viruses contain genes encoding a complete polyamine biosynthetic pathway

    PubMed Central

    Baumann, Sascha; Sander, Adrianne; Gurnon, James R.; Yanai-Balser, Giane; VanEtten, James L.; Piotrowski, Markus

    2007-01-01

    Two genes encoding the putative polyamine biosynthetic enzymes agmatine iminohydrolase (AIH) and N-carbamoylputrescine amidohydrolase (CPA) were cloned from the chloroviruses PBCV-1, NY-2A and MT325. They were expressed in Escherichia coli to form C-terminal (His)6-tagged proteins and the recombinant proteins were purified by Ni2+- binding affinity chromatography. The biochemical properties of the two enzymes are similar to AIH and CPA enzymes from Arabidopsis thaliana and Pseudomonas aeruginosa. Together with the previously known virus genes encoding ornithine/arginine decarboxlyase (ODC/ADC) and homospermidine synthase, the chloroviruses have genes that encode a complete set of functional enzymes that synthesize the rare polyamine homospermidine from arginine via agmatine, N-carbamoylputrescine and putrescine. The PBCV-1 aih and cpa genes are expressed early during virus infection together with the odc/adc gene, suggesting that biosynthesis of putrescine is important in early stages of viral replication. The aih and cpa genes are widespread in the chlorella viruses. PMID:17101165

  5. Heterologous Expression of Novobiocin and Clorobiocin Biosynthetic Gene Clusters

    PubMed Central

    Eustáquio, Alessandra S.; Gust, Bertolt; Galm, Ute; Li, Shu-Ming; Chater, Keith F.; Heide, Lutz

    2005-01-01

    A method was developed for the heterologous expression of biosynthetic gene clusters in different Streptomyces strains and for the modification of these clusters by single or multiple gene replacements or gene deletions with unprecedented speed and versatility. λ-Red-mediated homologous recombination was used for genetic modification of the gene clusters, and the attachment site and integrase of phage φC31 were employed for the integration of these clusters into the heterologous hosts. This method was used to express the gene clusters of the aminocoumarin antibiotics novobiocin and clorobiocin in the well-studied strains Streptomyces coelicolor and Streptomyces lividans, which, in contrast to the natural producers, can be easily genetically manipulated. S. coelicolor M512 derivatives produced the respective antibiotic in yields comparable to those of natural producer strains, whereas S. lividans TK24 derivatives were at least five times less productive. This method could also be used to carry out functional investigations. Shortening of the cosmids' inserts showed which genes are essential for antibiotic production. PMID:15870333

  6. Discovery of a widely distributed toxin biosynthetic gene cluster

    PubMed Central

    Lee, Shaun W.; Mitchell, Douglas A.; Markley, Andrew L.; Hensler, Mary E.; Gonzalez, David; Wohlrab, Aaron; Dorrestein, Pieter C.; Nizet, Victor; Dixon, Jack E.

    2008-01-01

    Bacteriocins represent a large family of ribosomally produced peptide antibiotics. Here we describe the discovery of a widely conserved biosynthetic gene cluster for the synthesis of thiazole and oxazole heterocycles on ribosomally produced peptides. These clusters encode a toxin precursor and all necessary proteins for toxin maturation and export. Using the toxin precursor peptide and heterocycle-forming synthetase proteins from the human pathogen Streptococcus pyogenes, we demonstrate the in vitro reconstitution of streptolysin S activity. We provide evidence that the synthetase enzymes, as predicted from our bioinformatics analysis, introduce heterocycles onto precursor peptides, thereby providing molecular insight into the chemical structure of streptolysin S. Furthermore, our studies reveal that the synthetase exhibits relaxed substrate specificity and modifies toxin precursors from both related and distant species. Given our findings, it is likely that the discovery of similar peptidic toxins will rapidly expand to existing and emerging genomes. PMID:18375757

  7. Translating biosynthetic gene clusters into fungal armor and weaponry.

    PubMed

    Keller, Nancy P

    2015-09-01

    Filamentous fungi are renowned for the production of a diverse array of secondary metabolites (SMs) where the genetic material required for synthesis of a SM is typically arrayed in a biosynthetic gene cluster (BGC). These natural products are valued for their bioactive properties stemming from their functions in fungal biology, key among those protection from abiotic and biotic stress and establishment of a secure niche. The producing fungus must not only avoid self-harm from endogenous SMs but also deliver specific SMs at the right time to the right tissue requiring biochemical aid. This review highlights functions of BGCs beyond the enzymatic assembly of SMs, considering the timing and location of SM production and other proteins in the clusters that control SM activity. Specifically, self-protection is provided by both BGC-encoded mechanisms and non-BGC subcellular containment of toxic SM precursors; delivery and timing is orchestrated through cellular trafficking patterns and stress- and developmental-responsive transcriptional programs.

  8. Heterologous expression of pikromycin biosynthetic gene cluster using Streptomyces artificial chromosome system.

    PubMed

    Pyeon, Hye-Rim; Nah, Hee-Ju; Kang, Seung-Hoon; Choi, Si-Sun; Kim, Eung-Soo

    2017-05-31

    Heterologous expression of biosynthetic gene clusters of natural microbial products has become an essential strategy for titer improvement and pathway engineering of various potentially-valuable natural products. A Streptomyces artificial chromosomal conjugation vector, pSBAC, was previously successfully applied for precise cloning and tandem integration of a large polyketide tautomycetin (TMC) biosynthetic gene cluster (Nah et al. in Microb Cell Fact 14(1):1, 2015), implying that this strategy could be employed to develop a custom overexpression scheme of natural product pathway clusters present in actinomycetes. To validate the pSBAC system as a generally-applicable heterologous overexpression system for a large-sized polyketide biosynthetic gene cluster in Streptomyces, another model polyketide compound, the pikromycin biosynthetic gene cluster, was preciously cloned and heterologously expressed using the pSBAC system. A unique HindIII restriction site was precisely inserted at one of the border regions of the pikromycin biosynthetic gene cluster within the chromosome of Streptomyces venezuelae, followed by site-specific recombination of pSBAC into the flanking region of the pikromycin gene cluster. Unlike the previous cloning process, one HindIII site integration step was skipped through pSBAC modification. pPik001, a pSBAC containing the pikromycin biosynthetic gene cluster, was directly introduced into two heterologous hosts, Streptomyces lividans and Streptomyces coelicolor, resulting in the production of 10-deoxymethynolide, a major pikromycin derivative. When two entire pikromycin biosynthetic gene clusters were tandemly introduced into the S. lividans chromosome, overproduction of 10-deoxymethynolide and the presence of pikromycin, which was previously not detected, were both confirmed. Moreover, comparative qRT-PCR results confirmed that the transcription of pikromycin biosynthetic genes was significantly upregulated in S. lividans containing tandem

  9. The Catharanthus alkaloids: pharmacognosy and biotechnology.

    PubMed

    van Der Heijden, Robert; Jacobs, Denise I; Snoeijer, Wim; Hallard, Didier; Verpoorte, Robert

    2004-03-01

    The Catharanthus (or Vinca) alkaloids comprise a group of about 130 terpenoid indole alkaloids. Vinblastine is now marketed for more than 40 years as an anticancer drug and became a true lead compound for drug development. Due to the pharmaceutical importance and the low content in the plant of vinblastine and the related alkaloid vincristine, Catharanthus roseus became one of the best-studied medicinal plants. Consequently it developed as a model system for biotechnological studies on plant secondary metabolism. The aim of this review is to acquaint a broader audience with the recent progress in this research and with its exciting perspectives. The pharmacognostical aspects of the Catharanthus alkaloids cover botanical (including some historical), phytochemical and analytical data. An up-to-date view on the biosynthesis of the alkaloids is given. The pharmacological aspects of these alkaloids and their semi-synthetic derivatives are only discussed briefly. The biotechnological part focuses on alternative production systems for these alkaloids, for example by in vitro culture of C. roseus cells. Subsequently it will be discussed to what extent the alkaloid biosynthetic pathway can be manipulated genetically ("metabolic engineering"), aiming at higher production levels of the alkaloids. Another approach is to produce the alkaloids (or their precursors) in other organisms such as yeast. Despite the availability of only a limited number of biosynthetic genes, the research on C. roseus has already led to a broad scientific spin-off. It is clear that many interesting results can be expected when more genes become available.

  10. Phloem-Specific Expression of Tyrosine/Dopa Decarboxylase Genes and the Biosynthesis of Isoquinoline Alkaloids in Opium Poppy.

    PubMed Central

    Facchini, P. J.; De Luca, V.

    1995-01-01

    Tyrosine/dopa decarboxylase (TYDC) catalyzes the formation of tyramine and dopamine and represents the first steps in the biosynthesis of the large and diverse group of tetrahydroisoquinoline alkaloids. Opium poppy accumulates morphine in aerial organs and roots, whereas sanguinarine, which is derived from a distinct branch pathway, accumulates only in roots. Expression of the TYDC gene family in opium poppy was investigated in relation to the organ-specific biosynthesis of these different types of alkaloids. Members of the TYDC gene family are classified into two groups (represented by TYDC1 and TYDC2) and are differentially expressed. In the mature plant, TYDC2-like transcripts are predominant in stems and are also present in roots, whereas TYDC1-like transcripts are abundant only in roots. In situ hybridization analysis revealed that the expression of TYDC genes is developmentally regulated. TYDC transcripts are associated with vascular tissue in mature roots and stems but are also expressed in cortical tissues at earlier stages of development. Expression of TYDC genes is restricted to metaphloem and to protoxylem in the vascular bundles of mature aerial organs. Localization of TYDC transcripts in the phloem is consistent with the expected developmental origin of laticifers, which are specialized internal secretory cells that accompany vascular tissues in all organs of select species and that contain the alkaloid-rich latex in aerial organs. The differential expression of TYDC genes and the organ-dependent accumulation of different alkaloids suggest a coordinated regulation of specific alkaloid biosynthetic genes that are ultimately controlled by specific developmental programs. PMID:12242361

  11. Detection of photoactive siderophore biosynthetic genes in the marine environment.

    PubMed

    Gärdes, Astrid; Triana, Christopher; Amin, Shady A; Green, David H; Romano, Ariel; Trimble, Lyndsay; Carrano, Carl J

    2013-06-01

    Iron is an essential element for oceanic microbial life but its low bioavailability limits microorganisms in large areas of the oceans. To acquire this metal many marine bacteria produce organic chelates that bind and transport iron (siderophores). While it has been hypothesized that the global production of siderophores by heterotrophic bacteria and some cyanobacteria constitutes the bulk of organic ligands binding iron in the ocean because stability constants of siderophores and these organic ligands are similar, and because ligand concentrations rise sharply in response to iron fertilization events, direct evidence for this proposal is lacking. This lack is due to the difficulty in characterizing these ligands due both to their extremely low concentrations and their highly heterogeneous nature. The situation for characterizing photoactive siderophores in situ is more problematic because of their expected short lifetimes in the photic zone. An alternative approach is to make use of high sensitivity molecular technology (qPCR) to search for siderophore biosynthesis genes related to the production of photoactive siderophores. In this way one can access their "biochemical potential" and utilize this information as a proxy for the presence of these siderophores in the marine environment. Here we show, using qPCR primers designed to detect biosynthetic genes for the siderophores vibrioferrin, petrobactin and aerobactin that such genes are widespread and based on their abundance, the "biochemical potential" for photoactive siderophore production is significant. Concurrently we also briefly examine the microbial biodiversity responsible for such production as a function of depth and location across a North Atlantic transect.

  12. Mutational Studies of Putative Biosynthetic Genes for the Cyanobacterial Sunscreen Scytonemin in Nostoc punctiforme ATCC 29133.

    PubMed

    Ferreira, Daniela; Garcia-Pichel, Ferran

    2016-01-01

    The heterocyclic indole-alkaloid scytonemin is a sunscreen found exclusively among cyanobacteria. An 18-gene cluster is responsible for scytonemin production in Nostoc punctiforme ATCC 29133. The upstream genes scyABCDEF in the cluster are proposed to be responsible for scytonemin biosynthesis from aromatic amino acid substrates. In vitro studies of ScyA, ScyB, and ScyC proved that these enzymes indeed catalyze initial pathway reactions. Here we characterize the role of ScyD, ScyE, and ScyF, which were logically predicted to be responsible for late biosynthetic steps, in the biological context of N. punctiforme. In-frame deletion mutants of each were constructed (ΔscyD, ΔscyE, and ΔscyF) and their phenotypes studied. Expectedly, ΔscyE presents a scytoneminless phenotype, but no accumulation of the predicted intermediaries. Surprisingly, ΔscyD retains scytonemin production, implying that it is not required for biosynthesis. Indeed, scyD presents an interesting evolutionary paradox: it likely originated in a duplication event from scyE, and unlike other genes in the operon, it has not been subjected to purifying selection. This would suggest that it is a pseudogene, and yet scyD is highly conserved in the scytonemin operon of cyanobacteria. ΔscyF also retains scytonemin production, albeit exhibiting a reduction of the production yield compared with the wild-type. This indicates that ScyF is not essential but may play an adjuvant role for scytonemin synthesis. Altogether, our findings suggest that these downstream genes are not responsible, as expected, for the late steps of scytonemin synthesis and we must look for those functions elsewhere. These findings are particularly important for biotechnological production of this sunscreen through heterologous expression of its genes in more tractable organisms.

  13. Physiological factors affecting transcription of genes involved in the flavonoid biosynthetic pathway in different rice varieties.

    PubMed

    Chen, Xiaoqiong; Itani, Tomio; Wu, Xianjun; Chikawa, Yuuki; Irifune, Kohei

    2013-01-01

    Flavonoids play an important role in the grain color and flavor of rice. Since their characterization in maize, the flavonoid biosynthetic genes have been extensively studied in grape, Arabidopsis, and Petunia. However, we are still a long way from understanding the molecular features and mechanisms underlying the flavonoid biosynthetic pathway. The present study was undertaken to understand the physiological factors affecting the transcription and regulation of these genes. We report that the expression of CHI, CHS, DFR, LAR, and ANS, the 5 flavonoid biosynthetic genes in different rice varieties, differ dramatically with respect to the stage of development, white light, and sugar concentrations. We further demonstrate that white light could induce the transcription of the entire flavonoid biosynthetic gene pathway; however, differences were observed in the degrees of sensitivity and the required illumination time. Our study provides valuable insights into understanding the regulation of the flavonoid biosynthetic pathway.

  14. Coordinated regulation of biosynthetic and regulatory genes coincides with anthocyanin accumulation in developing eggplant fruit

    USDA-ARS?s Scientific Manuscript database

    Violet to black pigmentation of eggplant (Solanum melongena) fruit is attributed to anthocyanin accumulation. Model systems support the interaction of biosynthetic and regulatory genes for anthocyanin biosynthesis. Anthocyanin structural gene transcription requires the expression of at least one m...

  15. Flg22-Triggered Immunity Negatively Regulates Key BR Biosynthetic Genes.

    PubMed

    Jiménez-Góngora, Tamara; Kim, Seong-Ki; Lozano-Durán, Rosa; Zipfel, Cyril

    2015-01-01

    In plants, activation of growth and activation of immunity are opposing processes that define a trade-off. In the past few years, the growth-promoting hormones brassinosteroids (BR) have emerged as negative regulators of pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI), promoting growth at the expense of defense. The crosstalk between BR and PTI signaling was described as negative and unidirectional, since activation of PTI does not affect several analyzed steps in the BR signaling pathway. In this work, we describe that activation of PTI by the bacterial PAMP flg22 results in the reduced expression of BR biosynthetic genes. This effect does not require BR perception or signaling, and occurs within 15 min of flg22 treatment. Since the described PTI-induced repression of gene expression may result in a reduction in BR biosynthesis, the crosstalk between PTI and BR could actually be negative and bidirectional, a possibility that should be taken into account when considering the interaction between these two pathways.

  16. Detection of additional genes of the patulin biosynthetic pathway in Penicillium griseofulvum

    USDA-ARS?s Scientific Manuscript database

    Genes in the patulin biosynthetic pathway are likely to be arranged in a cluster as has been found for biosynthetic pathways of other mycotoxins. The mycotoxin patulin, common in apples and apple juice, is most often associated with Penicillium expansum. However, of 15 fungal species capable of sy...

  17. Translating biosynthetic gene clusters into fungal armor and weaponry

    PubMed Central

    Keller, Nancy P

    2015-01-01

    Filamentous fungi are renowned for the production of a diverse array of secondary metabolites (SMs) where the genetic material required for synthesis of a SM is typically arrayed in a biosynthetic gene cluster (BGC). These natural products are valued for their bioactive properties stemming from their functions in fungal biology, key among those protection from abiotic and biotic stress and establishment of a secure niche. The producing fungus must not only avoid self-harm from endogenous SMs but also deliver specific SMs at the right time to the right tissue requiring biochemical aid. This review highlights functions of BGCs beyond the enzymatic assembly of SMs, considering the timing and location of SM production and other proteins in the clusters that control SM activity. Specifically, self-protection is provided by both BGC-encoded mechanisms and non-BGC subcellular containment of toxic SM precursors; delivery and timing is orchestrated through cellular trafficking patterns and stress- and developmental-responsive transcriptional programs. PMID:26284674

  18. Transcription factors in alkaloid biosynthesis.

    PubMed

    Yamada, Yasuyuki; Sato, Fumihiko

    2013-01-01

    Higher plants produce a large variety of low-molecular weight secondary compounds. Among them, nitrogen-containing alkaloids are the most biologically active and are often used pharmaceutically. Whereas alkaloid chemistry has been intensively investigated, alkaloid biosynthesis, including the relevant biosynthetic enzymes, genes and their regulation, and especially transcription factors, is largely unknown, as only a limited number of plant species produce certain types of alkaloids and they are difficult to study. Recently, however, several groups have succeeded in isolating the transcription factors that are involved in the biosynthesis of several types of alkaloids, including bHLH, ERF, and WRKY. Most of them show Jasmonate (JA) responsiveness, which suggests that the JA signaling cascade plays an important role in alkaloid biosynthesis. Here, we summarize the types and functions of transcription factors that have been isolated in alkaloid biosynthesis, and characterize their similarities and differences compared to those in other secondary metabolite pathways, such as phenylpropanoid and terpenoid biosyntheses. The evolution of this biosynthetic pathway and regulatory network, as well as the application of these transcription factors to metabolic engineering, is discussed.

  19. Comparative genomic analysis of secondary metabolite biosynthetic gene clusters in 207 isolates of Fusarium

    USDA-ARS?s Scientific Manuscript database

    Fusarium species are known for their ability to produce secondary metabolites (SMs), including plant hormones, pigments, mycotoxins, and other compounds with potential agricultural, pharmaceutical, and biotechnological impact. Understanding the distribution of SM biosynthetic gene clusters across th...

  20. Comparison of carotenoid accumulation and biosynthetic gene expression between Valencia and Rohde Red Valencia sweet oranges

    USDA-ARS?s Scientific Manuscript database

    Carotenoid accumulation and biosynthetic gene expression levels during fruit maturation were compared between ordinary Valencia (VAL) and its more deeply colored mutant Rohde Red Valencia orange (RRV). The two cultivars exhibited different carotenoid profiles and regulatory mechanisms in flavedo and...

  1. Fumonisin-nonproducing mutants exhibit differential expression of putative polyketide biosynthetic gene clusters in Fusarium verticillioides

    USDA-ARS?s Scientific Manuscript database

    The maize pathogen Fusarium verticillioides produces a group of polyketide derived secondary metabolites called fumonisins. Fumonisins can cause diseases in animals, and have been correlated epidemiologically with esophageal cancer and birth defects in humans. The fumonisin biosynthetic gene clust...

  2. Transformation of opium poppy (Papaver somniferum L.) with antisense berberine bridge enzyme gene (anti-bbe) via somatic embryogenesis results in an altered ratio of alkaloids in latex but not in roots.

    PubMed

    Frick, Susanne; Chitty, Julie A; Kramell, Robert; Schmidt, Jürgen; Allen, Robert S; Larkin, Philip J; Kutchan, Toni M

    2004-12-01

    The berberine bridge enzyme cDNA bbe from Papaver somniferum L. was transformed in antisense orientation into seedling explants of the industrial elite line C048-6-14-64. In this way, 84 phenotypically normal To plants derived from embryogenic callus cultures were produced. The selfed progeny of these 84 plants yielded several T1 plants with an altered alkaloid profile. One of these plants T1-47, and its siblings T2-1.2 and T2-1.5 are the subject of the present work. The transformation of these plants was evaluated by PCR, and northern and Southern hybridisation. The transgenic plants contained one additional copy of the transgene. The alkaloid content in latex and roots was determined with HPLC and LC-MS. We observed an increased concentration of several pathway intermediates from all biosynthetic branches, e.g., reticuline, laudanine, laudanosine, dehydroreticuline, salutaridine and (S)-scoulerine. The transformation altered the ratio of morphinan and tetrahydrobenzylisoquinoline alkaloids in latex but not the benzophenanthridine alkaloids in roots. The altered alkaloid profile is heritable at least to the T2 generation. These results are the first example of metabolic engineering of the alkaloid pathways in opium poppy and, to our knowledge, the first time that an alkaloid biosynthetic gene has been transformed into the native species, followed by regeneration into a mature plant to enable analyses of the effect of the transgene on metabolism over several generations.

  3. Cloning and characterization of the goadsporin biosynthetic gene cluster from Streptomyces sp. TP-A0584.

    PubMed

    Onaka, Hiroyasu; Nakaho, Mizuho; Hayashi, Keiko; Igarashi, Yasuhiro; Furumai, Tamotsu

    2005-12-01

    The biosynthetic gene cluster of goadsporin, a polypeptide antibiotic containing thiazole and oxazole rings, was cloned from Streptomyces sp. TP-A0584. The cluster contains a structural gene, godA, and nine god (goadsporin) genes involved in post-translational modification, immunity and transcriptional regulation. Although the gene organization is similar to typical bacteriocin biosynthetic gene clusters, each goadsporin biosynthetic gene shows low homology to these genes. Goadsporin biosynthesis is initiated by the translation of godA, and the subsequent cyclization, dehydration and acetylation are probably catalysed by godD, godE, godF, godG and godH gene products. godI shows high similarity to the 54 kDa subunit of the signal recognition particle and plays an important role in goadsporin immunity. Furthermore, four goadsporin analogues were produced by site-directed mutagenesis of godA, suggesting that this biosynthesis machinery is used for the heterocyclization of peptides.

  4. The Amaryllidaceae alkaloids: biosynthesis and methods for enzyme discovery.

    PubMed

    Kilgore, Matthew B; Kutchan, Toni M

    2016-06-01

    Amaryllidaceae alkaloids are an example of the vast diversity of secondary metabolites with great therapeutic promise. The identification of novel compounds in this group with over 300 known structures continues to be an area of active study. The recent identification of norbelladine 4'-O-methyltransferase (N4OMT), an Amaryllidaceae alkaloid biosynthetic enzyme, and the assembly of transcriptomes for Narcissus sp. aff. pseudonarcissus and Lycoris aurea highlight the potential for discovery of Amaryllidaceae alkaloid biosynthetic genes with new technologies. Recent technical advances of interest include those in enzymology, next generation sequencing, genetic modification, nuclear magnetic resonance spectroscopy (NMR), and mass spectrometry (MS).

  5. The Amaryllidaceae alkaloids: biosynthesis and methods for enzyme discovery

    PubMed Central

    Kilgore, Matthew B.; Kutchan, Toni M.

    2015-01-01

    Amaryllidaceae alkaloids are an example of the vast diversity of secondary metabolites with great therapeutic promise. The identification of novel compounds in this group with over 300 known structures continues to be an area of active study. The recent identification of norbelladine 4′-O-methyltransferase (N4OMT), an Amaryllidaceae alkaloid biosynthetic enzyme, and the assembly of transcriptomes for Narcissus sp. aff. pseudonarcissus and Lycoris aurea highlight the potential for discovery of Amaryllidaceae alkaloid biosynthetic genes with new technologies. Recent technical advances of interest include those in enzymology, next generation sequencing, genetic modification, nuclear magnetic resonance spectroscopy (NMR), and mass spectrometry (MS). PMID:27340382

  6. Beta-lactam antibiotic biosynthetic genes have been conserved in clusters in prokaryotes and eukaryotes.

    PubMed Central

    Smith, D J; Burnham, M K; Bull, J H; Hodgson, J E; Ward, J M; Browne, P; Brown, J; Barton, B; Earl, A J; Turner, G

    1990-01-01

    A cosmid clone containing closely linked beta-lactam antibiotic biosynthetic genes was isolated from a gene library of Flavobacterium sp. SC 12,154. The location within the cluster of the DNA thought to contain the gene for delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine synthetase (ACVS), the first step in the beta-lactam antibiotic biosynthetic pathway, was identified by a novel method. This DNA facilitated the isolation, by cross-hybridization, of the corresponding DNA from Streptomyces clavuligerus ATCC 27064, Penicillium chrysogenum Oli13 and Aspergillus nidulans R153. Evidence was obtained which confirmed that the cross-hybridizing sequences contained the ACVS gene. In each case the ACVS gene was found to be closely linked to other beta-lactam biosynthetic genes and constituted part of a gene cluster. Images Fig. 1. Fig. 2. Fig. 4. Fig. 5. Fig. 6. Fig. 7. PMID:2107074

  7. Engineered Streptomyces avermitilis host for heterologous expression of biosynthetic gene cluster for secondary metabolites

    PubMed Central

    KOMATSU, MAMORU; KOMATSU, KYOKO; KOIWAI, HANAE; YAMADA, YUUKI; KOZONE, IKUKO; IZUMIKAWA, MIHO; HASHIMOTO, JUNKO; TAKAGI, MOTOKI; OMURA, SATOSHI; SHIN-YA, KAZUO; CANE, DAVID E.; IKEDA, HARUO

    2014-01-01

    An industrial microorganism Streptomyces avermitilis, which is a producer of anthelmintic macrocyclic lactones, avermectins, has been constructed as a versatile model host for heterologous expression of genes encoding secondary metabolite biosynthesis. Twenty of the entire biosynthetic gene clusters for secondary metabolites were successively cloned and introduced into a versatile model host S. avermitilis SUKA17 or 22. Almost all S. avermitilis transformants carrying the entire gene cluster produced metabolites as a result of the expression of biosynthetic gene clusters introduced. A few transformants were unable to produce metabolites but their production was restored by the expression of biosynthetic genes using an alternative promoter or the expression of a regulatory gene in the gene cluster that controls the expression of biosynthetic genes in the cluster using an alternative promoter. Production of metabolites in some transformants of the versatile host was higher than that of the original producers and cryptic biosynthetic gene clusters in the original producer were also expressed in a versatile host. PMID:23654282

  8. Nonlinear biosynthetic gene cluster dose effect on penicillin production by Penicillium chrysogenum.

    PubMed

    Nijland, Jeroen G; Ebbendorf, Bjorg; Woszczynska, Marta; Boer, Rémon; Bovenberg, Roel A L; Driessen, Arnold J M

    2010-11-01

    Industrial penicillin production levels by the filamentous fungus Penicillium chrysogenum increased dramatically by classical strain improvement. High-yielding strains contain multiple copies of the penicillin biosynthetic gene cluster that encodes three key enzymes of the β-lactam biosynthetic pathway. We have analyzed the gene cluster dose effect on penicillin production using the high-yielding P. chrysogenum strain DS17690 that was cured from its native clusters. The amount of penicillin V produced increased with the penicillin biosynthetic gene cluster number but was saturated at high copy numbers. Likewise, transcript levels of the biosynthetic genes pcbAB [δ-(l-α-aminoadipyl)-l-cysteinyl-d-valine synthetase], pcbC (isopenicillin N synthase), and penDE (acyltransferase) correlated with the cluster copy number. Remarkably, the protein level of acyltransferase, which localizes to peroxisomes, was saturated already at low cluster copy numbers. At higher copy numbers, intracellular levels of isopenicillin N increased, suggesting that the acyltransferase reaction presents a limiting step at a high gene dose. Since the number and appearance of the peroxisomes did not change significantly with the gene cluster copy number, we conclude that the acyltransferase activity is limiting for penicillin biosynthesis at high biosynthetic gene cluster copy numbers. These results suggest that at a high penicillin production level, productivity is limited by the peroxisomal acyltransferase import activity and/or the availability of coenzyme A (CoA)-activated side chains.

  9. Effect of pmt gene overexpression on tropane alkaloid production in transformed root cultures of Datura metel and Hyoscyamus muticus.

    PubMed

    Moyano, Elisabet; Jouhikainen, Katja; Tammela, Päivi; Palazón, Javier; Cusidó, Rosa M; Piñol, M Teresa; Teeri, Teemu H; Oksman-Caldentey, Kirsi-Marja

    2003-01-01

    In order to increase the production of the pharmaceuticals hyoscyamine and scopolamine in hairy root cultures, a binary vector system was developed to introduce the T-DNA of the Ri plasmid together with the tobacco pmt gene under the control of CaMV 35S promoter, into the genome of Datura metel and Hyoscyamus muticus. This gene codes for putrescine:SAM N-methyltransferase (PMT; EC. 2.1.1.53), which catalyses the first committed step in the tropane alkaloid pathway. Hairy root cultures overexpressing the pmt gene aged faster and accumulated higher amounts of tropane alkaloids than control hairy roots. Both hyoscyamine and scopolamine production were improved in hairy root cultures of D. metel, whereas in H. muticus only hyoscyamine contents were increased by pmt gene overexpression. These roots have a high capacity to synthesize hyoscyamine, but their ability to convert it into scopolamine is very limited. The results indicate that the same biosynthetic pathway in two related plant species can be differently regulated, and overexpression of a given gene does not necessarily lead to a similar accumulation pattern of secondary metabolites.

  10. Variation in the fumonisin biosynthetic gene cluster in fumonisin-producing and nonproducing black aspergilli

    USDA-ARS?s Scientific Manuscript database

    The ability to produce fumonisin mycotoxins varies among members of the black aspergilli. Previously, analyses of selected genes in the fumonisin biosynthetic gene (fum) cluster in black aspergilli from California grapes indicated that fumonisin-nonproducing isolates of Aspergillus welwitschiae lack...

  11. Transgenic and Mutation-Based Suppression of a Berberine Bridge Enzyme-Like (BBL) Gene Family Reduces Alkaloid Content in Field-Grown Tobacco

    PubMed Central

    Lewis, Ramsey S.; Lopez, Harry O.; Bowen, Steve W.; Andres, Karen R.; Steede, William T.; Dewey, Ralph E.

    2015-01-01

    Motivation exists to develop tobacco cultivars with reduced nicotine content for the purpose of facilitating compliance with expected tobacco product regulations that could mandate the lowering of nicotine levels per se, or the reduction of carcinogenic alkaloid-derived tobacco specific nitrosamines (TSNAs). A berberine bridge enzyme-like (BBL) gene family was recently characterized for N. tabacum and found to catalyze one of the final steps in pyridine alkaloid synthesis for this species. Because this gene family acts downstream in the nicotine biosynthetic pathway, it may represent an attractive target for genetic strategies with the objective of reducing alkaloid content in field-grown tobacco. In this research, we produced transgenic doubled haploid lines of tobacco cultivar K326 carrying an RNAi construct designed to reduce expression of the BBL gene family. Field-grown transgenic lines carrying functional RNAi constructs exhibited average cured leaf nicotine levels of 0.684%, in comparison to 2.454% for the untransformed control. Since numerous barriers would need to be overcome to commercialize transgenic tobacco cultivars, we subsequently pursued a mutation breeding approach to identify EMS-induced mutations in the three most highly expressed isoforms of the BBL gene family. Field evaluation of individuals possessing different homozygous combinations of truncation mutations in BBLa, BBLb, and BBLc indicated that a range of alkaloid phenotypes could be produced, with the triple homozygous knockout genotype exhibiting greater than a 13-fold reduction in percent total alkaloids. The novel source of genetic variability described here may be useful in future tobacco breeding for varied alkaloid levels. PMID:25688975

  12. Transgenic and mutation-based suppression of a berberine bridge enzyme-like (BBL) gene family reduces alkaloid content in field-grown tobacco.

    PubMed

    Lewis, Ramsey S; Lopez, Harry O; Bowen, Steve W; Andres, Karen R; Steede, William T; Dewey, Ralph E

    2015-01-01

    Motivation exists to develop tobacco cultivars with reduced nicotine content for the purpose of facilitating compliance with expected tobacco product regulations that could mandate the lowering of nicotine levels per se, or the reduction of carcinogenic alkaloid-derived tobacco specific nitrosamines (TSNAs). A berberine bridge enzyme-like (BBL) gene family was recently characterized for N. tabacum and found to catalyze one of the final steps in pyridine alkaloid synthesis for this species. Because this gene family acts downstream in the nicotine biosynthetic pathway, it may represent an attractive target for genetic strategies with the objective of reducing alkaloid content in field-grown tobacco. In this research, we produced transgenic doubled haploid lines of tobacco cultivar K326 carrying an RNAi construct designed to reduce expression of the BBL gene family. Field-grown transgenic lines carrying functional RNAi constructs exhibited average cured leaf nicotine levels of 0.684%, in comparison to 2.454% for the untransformed control. Since numerous barriers would need to be overcome to commercialize transgenic tobacco cultivars, we subsequently pursued a mutation breeding approach to identify EMS-induced mutations in the three most highly expressed isoforms of the BBL gene family. Field evaluation of individuals possessing different homozygous combinations of truncation mutations in BBLa, BBLb, and BBLc indicated that a range of alkaloid phenotypes could be produced, with the triple homozygous knockout genotype exhibiting greater than a 13-fold reduction in percent total alkaloids. The novel source of genetic variability described here may be useful in future tobacco breeding for varied alkaloid levels.

  13. Human Genetic Disorders Caused by Mutations in Genes Encoding Biosynthetic Enzymes for Sulfated Glycosaminoglycans*

    PubMed Central

    Mizumoto, Shuji; Ikegawa, Shiro; Sugahara, Kazuyuki

    2013-01-01

    A number of genetic disorders are caused by mutations in the genes encoding glycosyltransferases and sulfotransferases, enzymes responsible for the synthesis of sulfated glycosaminoglycan (GAG) side chains of proteoglycans, including chondroitin sulfate, dermatan sulfate, and heparan sulfate. The phenotypes of these genetic disorders reflect disturbances in crucial biological functions of GAGs in human. Recent studies have revealed that mutations in genes encoding chondroitin sulfate and dermatan sulfate biosynthetic enzymes cause various disorders of connective tissues. This minireview focuses on growing glycobiological studies of recently described genetic diseases caused by disturbances in biosynthetic enzymes for sulfated GAGs. PMID:23457301

  14. Butenyl-spinosyns, a natural example of genetic engineering of antibiotic biosynthetic genes.

    PubMed

    Hahn, Donald R; Gustafson, Gary; Waldron, Clive; Bullard, Brian; Jackson, James D; Mitchell, Jon

    2006-02-01

    Spinosyns, a novel class of insect active macrolides produced by Saccharopolyspora spinosa, are used for insect control in a number of commercial crops. Recently, a new class of spinosyns was discovered from S. pogona NRRL 30141. The butenyl-spinosyns, also called pogonins, are very similar to spinosyns, differing in the length of the side chain at C-21 and in the variety of novel minor factors. The butenyl-spinosyn biosynthetic genes (bus) were cloned on four cosmids covering a contiguous 110-kb region of the NRRL 30141 chromosome. Their function in butenyl-spinosyn biosynthesis was confirmed by a loss-of-function deletion, and subsequent complementation by cloned genes. The coding sequences of the butenyl-spinosyn biosynthetic genes and the spinosyn biosynthetic genes from S. spinosa were highly conserved. In particular, the PKS-coding genes from S. spinosa and S. pogona have 91-94% nucleic acid identity, with one notable exception. The butenyl-spinosyn gene sequence codes for one additional PKS module, which is responsible for the additional two carbons in the C-21 tail. The DNA sequence of spinosyn genes in this region suggested that the S. spinosa spnA gene could have been the result of an in-frame deletion of the S. pogona busA gene. Therefore, the butenyl-spinosyn genes represent the putative parental gene structure that was naturally engineered by deletion to create the spinosyn genes.

  15. Partial Reconstruction of the Ergot Alkaloid Pathway by Heterologous Gene Expression in Aspergillus nidulans

    PubMed Central

    Ryan, Katy L.; Moore, Christopher T.; Panaccione, Daniel G.

    2013-01-01

    Ergot alkaloids are pharmaceutically and agriculturally important secondary metabolites produced by several species of fungi. Ergot alkaloid pathways vary among different fungal lineages, but the pathway intermediate chanoclavine-I is evolutionarily conserved among ergot alkaloid producers. At least four genes, dmaW, easF, easE, and easC, are necessary for pathway steps prior to chanoclavine-I; however, the sufficiency of these genes for chanoclavine-I synthesis has not been established. A fragment of genomic DNA containing dmaW, easF, easE, and easC was amplified from the human-pathogenic, ergot alkaloid-producing fungus Aspergillus fumigatus and transformed into Aspergillus nidulans, a model fungus that does not contain any of the ergot alkaloid synthesis genes. HPLC and LC-MS analyses demonstrated that transformed A. nidulans strains produced chanoclavine-I and an earlier pathway intermediate. Aspergillus nidulans transformants containing dmaW, easF, and either easE or easC did not produce chanoclavine-I but did produce an early pathway intermediate and, in the case of the easC transformant, an additional ergot alkaloid-like compound. We conclude that dmaW, easF, easE, and easC are sufficient for the synthesis of chanoclavine-I in A. nidulans and expressing ergot alkaloid pathway genes in A. nidulans provides a novel approach to understanding the early steps in ergot alkaloid synthesis. PMID:23435153

  16. Characterization of thermolide biosynthetic genes and a new thermolide from sister thermophilic fungi.

    PubMed

    Niu, Xuemei; Chen, Li; Yue, Qun; Wang, Baile; Zhang, Junxian; Zhu, Chunyan; Zhang, Keqin; Bills, Gerald F; An, Zhiqiang

    2014-07-18

    Prior chemical analysis of obligate thermophilic fungus Talaromyces thermophilus led to the discovery of thermolides A-F, six previously undescribed members of the lactam-bearing macrolactone class. A combination of chemical screening, genome analyses, and genetic manipulation led to the identification of the thermolide biosynthetic genes from sister thermophilic fungi T. thermophilus and Thermomyces lanuginosus and a new thermolide. The biosynthetic locus for the thermolides' mixed polyketide/amino acid structure encodes a hybrid polyketide synthase-nonribosomal peptide synthetase (PKS-NRPS). Our results reveal the first fungal hybrid iterative PKS-NRPS genes involved in the biosynthesis of bacterial-like hybrid macrolactones instead of typical fungal tetramic acids-containing metabolites. The finding provides an insight into the convergent biosynthetic end products that bridge the gap between the modular and iterative PKS-NRPS hybrids.

  17. Precise cloning and tandem integration of large polyketide biosynthetic gene cluster using Streptomyces artificial chromosome system.

    PubMed

    Nah, Hee-Ju; Woo, Min-Woo; Choi, Si-Sun; Kim, Eung-Soo

    2015-09-16

    Direct cloning combined with heterologous expression of a secondary metabolite biosynthetic gene cluster has become a useful strategy for production improvement and pathway modification of potentially valuable natural products present at minute quantities in original isolates of actinomycetes. However, precise cloning and efficient overexpression of an entire biosynthetic gene cluster remains challenging due to the ineffectiveness of current genetic systems in manipulating large-sized gene clusters for heterologous as well as homologous expression. A versatile Escherichia coli-Streptomyces shuttle bacterial artificial chromosomal (BAC) conjugation vector, pSBAC, was used along with a cluster tandem integration approach to carry out homologous and heterologous overexpression of a large 80-kb polyketide biosynthetic pathway gene cluster of tautomycetin (TMC), which is a protein phosphatase PP1/PP2A inhibitor and T cell-specific immunosuppressant. Unique XbaI restriction sites were precisely inserted at both border regions of the TMC biosynthetic gene cluster within the chromosome of TMC-producing Streptomyces sp. CK4412, followed by site-specific recombination of pSBAC into the flanking region of the TMC gene cluster. The entire TMC gene cluster was then rescued as a single giant recombinant pSBAC by XbaI digestion of the chromosomal DNA as well as subsequent self-ligation. Next, the recombinant pSBAC construct containing the entire TMC cluster in E. coli was directly conjugated into model Streptomyces strains, resulting in rapid and enhanced TMC production. Moreover, introduction of the TMC cluster-containing pSBAC into wild-type Streptomyces sp. CK4412 as well as a recombinant S. coelicolor strain resulted in a chromosomal tandem repeat of the entire TMC cluster with 14-fold and 5.4-fold enhanced TMC productivities, respectively. The 80-kb TMC biosynthetic gene cluster was isolated in a single integration vector, pSBAC. Introduction of TMC biosynthetic gene cluster

  18. Accumulation of Rutin and Betulinic Acid and Expression of Phenylpropanoid and Triterpenoid Biosynthetic Genes in Mulberry (Morus alba L.).

    PubMed

    Zhao, Shicheng; Park, Chang Ha; Li, Xiaohua; Kim, Yeon Bok; Yang, Jingli; Sung, Gyoo Byung; Park, Nam Il; Kim, Soonok; Park, Sang Un

    2015-09-30

    Mulberry (Morus alba L.) is used in traditional Chinese medicine and is the sole food source of the silkworm. Here, 21 cDNAs encoding phenylpropanoid biosynthetic genes and 21 cDNAs encoding triterpene biosynthetic genes were isolated from mulberry. The expression levels of genes involved in these biosynthetic pathways and the accumulation of rutin, betulin, and betulinic acid, important secondary metabolites, were investigated in different plant organs. Most phenylpropanoid and triterpene biosynthetic genes were highly expressed in leaves and/or fruit, and most genes were downregulated during fruit ripening. The accumulation of rutin was more than fivefold higher in leaves than in other organs, and higher levels of betulin and betulinic acid were found in roots and leaves than in fruit. By comparing the contents of these compounds with gene expression levels, we speculate that MaUGT78D1 and MaLUS play important regulatory roles in the rutin and betulin biosynthetic pathways.

  19. Diurnal and circadian expression profiles of glycerolipid biosynthetic genes in Arabidopsis

    PubMed Central

    Nakamura, Yuki; Andrés, Fernando; Kanehara, Kazue; Liu, Yu-chi; Coupland, George; Dörmann, Peter

    2014-01-01

    Glycerolipid composition in plant membranes oscillates in response to diurnal change. However, its functional significance remained unclear. A recent discovery that Arabidopsis florigen FT binds diurnally oscillating phosphatidylcholine molecules to promote flowering suggests that diurnal oscillation of glycerolipid composition is an important input in flowering time control. Taking advantage of public microarray data, we globally analyzed the expression pattern of glycerolipid biosynthetic genes in Arabidopsis under long-day, short-day, and continuous light conditions. The results revealed that 12 genes associated with glycerolipid metabolism showed significant oscillatory profiles. Interestingly, expression of most of these genes followed circadian profiles, suggesting that glycerolipid biosynthesis is partially under clock regulation. The oscillating expression profile of one representative gene, PECT1, was analyzed in detail. Expression of PECT1 showed a circadian pattern highly correlated with that of the clock-regulated gene GIGANTEA. Thus, our study suggests that a considerable number of glycerolipid biosynthetic genes are under circadian control. PMID:25763705

  20. Activation and Characterization of a Cryptic Polycyclic Tetramate Macrolactam Biosynthetic Gene Cluster

    PubMed Central

    Luo, Yunzi; Huang, Hua; Liang, Jing; Wang, Meng; Lu, Lu; Shao, Zengyi; Cobb, Ryan E.; Zhao, Huimin

    2014-01-01

    Polycyclic tetramate macrolactams (PTMs) are a widely distributed class of natural products with important biological activities. However, many of them have not been characterized. Here we apply a plug and play synthetic biology strategy to activate a cryptic PTM biosynthetic gene cluster SGR810-815 from Streptomyces griseus and discover three potential PTMs. This gene cluster is highly conserved in phylogenetically diverse bacterial strains and contains an unusual hybrid polyketide synthase-nonribosomal peptide synthetase (PKS-NRPS) which resembles iterative PKSs known in fungi. To further characterize this gene cluster, we use the same synthetic biology approach to create a series of gene deletion constructs and elucidate the biosynthetic steps for the formation of the polycyclic system. The strategy we employ bypasses the traditional laborious processes to elicit gene cluster expression and should be generally applicable to many other silent or cryptic gene clusters for discovery and characterization of new natural products. PMID:24305602

  1. Benzylisoquinoline alkaloid biosynthesis in opium poppy.

    PubMed

    Beaudoin, Guillaume A W; Facchini, Peter J

    2014-07-01

    Opium poppy (Papaver somniferum) is one of the world's oldest medicinal plants and remains the only commercial source for the narcotic analgesics morphine, codeine and semi-synthetic derivatives such as oxycodone and naltrexone. The plant also produces several other benzylisoquinoline alkaloids with potent pharmacological properties including the vasodilator papaverine, the cough suppressant and potential anticancer drug noscapine and the antimicrobial agent sanguinarine. Opium poppy has served as a model system to investigate the biosynthesis of benzylisoquinoline alkaloids in plants. The application of biochemical and functional genomics has resulted in a recent surge in the discovery of biosynthetic genes involved in the formation of major benzylisoquinoline alkaloids in opium poppy. The availability of extensive biochemical genetic tools and information pertaining to benzylisoquinoline alkaloid metabolism is facilitating the study of a wide range of phenomena including the structural biology of novel catalysts, the genomic organization of biosynthetic genes, the cellular and sub-cellular localization of biosynthetic enzymes and a variety of biotechnological applications. In this review, we highlight recent developments and summarize the frontiers of knowledge regarding the biochemistry, cellular biology and biotechnology of benzylisoquinoline alkaloid biosynthesis in opium poppy.

  2. Isolation and Characterization of the Gibberellin Biosynthetic Gene Cluster in Sphaceloma manihoticola▿ †

    PubMed Central

    Bömke, Christiane; Rojas, Maria Cecilia; Gong, Fan; Hedden, Peter; Tudzynski, Bettina

    2008-01-01

    Gibberellins (GAs) are tetracyclic diterpenoid phytohormones that were first identified as secondary metabolites of the fungus Fusarium fujikuroi (teleomorph, Gibberella fujikuroi). GAs were also found in the cassava pathogen Sphaceloma manihoticola, but the spectrum of GAs differed from that in F. fujikuroi. In contrast to F. fujikuroi, the GA biosynthetic pathway has not been studied in detail in S. manihoticola, and none of the GA biosynthetic genes have been cloned from the species. Here, we present the identification of the GA biosynthetic gene cluster from S. manihoticola consisting of five genes encoding a bifunctional ent-copalyl/ent-kaurene synthase (CPS/KS), a pathway-specific geranylgeranyl diphosphate synthase (GGS2), and three cytochrome P450 monooxygenases. The functions of all of the genes were analyzed either by a gene replacement approach or by complementing the corresponding F. fujikuroi mutants. The cluster organization and gene functions are similar to those in F. fujikuroi. However, the two border genes in the Fusarium cluster encoding the GA4 desaturase (DES) and the 13-hydroxylase (P450-3) are absent in the S. manihoticola GA gene cluster, consistent with the spectrum of GAs produced by this fungus. The close similarity between the two GA gene clusters, the identical gene functions, and the conserved intron positions suggest a common evolutionary origin despite the distant relatedness of the two fungi. PMID:18567680

  3. Organization of the biosynthetic gene cluster for the macrolide antibiotic spiramycin in Streptomyces ambofaciens.

    PubMed

    Karray, Fatma; Darbon, Emmanuelle; Oestreicher, Nathalie; Dominguez, Hélène; Tuphile, Karine; Gagnat, Josette; Blondelet-Rouault, Marie-Hélène; Gerbaud, Claude; Pernodet, Jean-Luc

    2007-12-01

    Spiramycin, a 16-membered macrolide antibiotic used in human medicine, is produced by Streptomyces ambofaciens; it comprises a polyketide lactone, platenolide, to which three deoxyhexose sugars are attached. In order to characterize the gene cluster governing the biosynthesis of spiramycin, several overlapping cosmids were isolated from an S. ambofaciens gene library, by hybridization with various probes (spiramycin resistance or biosynthetic genes, tylosin biosynthetic genes), and the sequences of their inserts were determined. Sequence analysis showed that the spiramycin biosynthetic gene cluster spanned a region of over 85 kb of contiguous DNA. In addition to the five previously described genes that encode the type I polyketide synthase involved in platenolide biosynthesis, 45 other genes have been identified. It was possible to propose a function for most of the inferred proteins in spiramycin biosynthesis, in its regulation, in resistance to the produced antibiotic or in the provision of extender units for the polyketide synthase. Two of these genes, predicted to be involved in deoxysugar biosynthesis, were inactivated by gene replacement, and the resulting mutants were unable to produce spiramycin, thus confirming their involvement in spiramycin biosynthesis. This work reveals the main features of spiramycin biosynthesis and constitutes a first step towards a detailed molecular analysis of the production of this medically important antibiotic.

  4. Characterization of the fumonisin B2 biosynthetic gene cluster in Aspergillus niger and A. awamori.

    USDA-ARS?s Scientific Manuscript database

    Aspergillus niger and A. awamori strains isolated from grapes cultivated in Mediterranean basin were examined for fumonisin B2 (FB2) production and presence/absence of sequences within the fumonisin biosynthetic gene (fum) cluster. Presence of 13 regions in the fum cluster was evaluated by PCR assay...

  5. Altered expression of polyketide biosynthetic gene clusters in fumonisin-deficient mutants of Fusarium verticillioides

    USDA-ARS?s Scientific Manuscript database

    Fusarium verticillioides is a pathogen of maize and produces fumonisins, a group of polyketide derived secondary metabolites. Fumonisins cause diseases in animals, and they have been correlated epidemiologically with esophageal cancer and birth defects in humans. Fumonisin biosynthetic genes are c...

  6. Characterization of the cobalamin (vitamin B12) biosynthetic genes of Salmonella typhimurium.

    PubMed Central

    Roth, J R; Lawrence, J G; Rubenfield, M; Kieffer-Higgins, S; Church, G M

    1993-01-01

    Salmonella typhimurium synthesizes cobalamin (vitamin B12) de novo under anaerobic conditions. Of the 30 cobalamin synthetic genes, 25 are clustered in one operon, cob, and are arranged in three groups, each group encoding enzymes for a biochemically distinct portion of the biosynthetic pathway. We have determined the DNA sequence for the promoter region and the proximal 17.1 kb of the cob operon. This sequence includes 20 translationally coupled genes that encode the enzymes involved in parts I and III of the cobalamin biosynthetic pathway. A comparison of these genes with the cobalamin synthetic genes from Pseudomonas denitrificans allows assignment of likely functions to 12 of the 20 sequenced Salmonella genes. Three additional Salmonella genes encode proteins likely to be involved in the transport of cobalt, a component of vitamin B12. However, not all Salmonella and Pseudomonas cobalamin synthetic genes have apparent homologs in the other species. These differences suggest that the cobalamin biosynthetic pathways differ between the two organisms. The evolution of these genes and their chromosomal positions is discussed. Images PMID:8501034

  7. Functional conservation of coenzyme Q biosynthetic genes among yeasts, plants, and humans.

    PubMed

    Hayashi, Kazuhiro; Ogiyama, Yuki; Yokomi, Kazumasa; Nakagawa, Tsuyoshi; Kaino, Tomohiro; Kawamukai, Makoto

    2014-01-01

    Coenzyme Q (CoQ) is an essential factor for aerobic growth and oxidative phosphorylation in the electron transport system. The biosynthetic pathway for CoQ has been proposed mainly from biochemical and genetic analyses of Escherichia coli and Saccharomyces cerevisiae; however, the biosynthetic pathway in higher eukaryotes has been explored in only a limited number of studies. We previously reported the roles of several genes involved in CoQ synthesis in the fission yeast Schizosaccharomyces pombe. Here, we expand these findings by identifying ten genes (dps1, dlp1, ppt1, and coq3-9) that are required for CoQ synthesis. CoQ10-deficient S. pombe coq deletion strains were generated and characterized. All mutant fission yeast strains were sensitive to oxidative stress, produced a large amount of sulfide, required an antioxidant to grow on minimal medium, and did not survive at the stationary phase. To compare the biosynthetic pathway of CoQ in fission yeast with that in higher eukaryotes, the ability of CoQ biosynthetic genes from humans and plants (Arabidopsis thaliana) to functionally complement the S. pombe coq deletion strains was determined. With the exception of COQ9, expression of all other human and plant COQ genes recovered CoQ10 production by the fission yeast coq deletion strains, although the addition of a mitochondrial targeting sequence was required for human COQ3 and COQ7, as well as A. thaliana COQ6. In summary, this study describes the functional conservation of CoQ biosynthetic genes between yeasts, humans, and plants.

  8. Discovery of the rhizopodin biosynthetic gene cluster in Stigmatella aurantiaca Sg a15 by genome mining.

    PubMed

    Pistorius, Dominik; Müller, Rolf

    2012-02-13

    The field of bacterial natural product research is currently undergoing a paradigm change concerning the discovery of natural products. Previously most efforts were based on isolation of the most abundant compound in an extract, or on tracking bioactivity. However, traditional activity-guided approaches are limited by the available test panels and frequently lead to the rediscovery of already known compounds. The constantly increasing availability of bacterial genome sequences provides the potential for the discovery of a huge number of new natural compounds by in silico identification of biosynthetic gene clusters. Examination of the information on the biosynthetic machinery can further prevent rediscovery of known compounds, and can help identify so far unknown biosynthetic pathways of known compounds. By in silico screening of the genome of the myxobacterium Stigmatella aurantiaca Sg a15, a trans-AT polyketide synthase/non-ribosomal peptide synthetase (PKS/NRPS) gene cluster was identified that could not be correlated to any secondary metabolite known to be produced by this strain. Targeted gene inactivation and analysis of extracts from the resulting mutants by high performance liquid chromatography coupled to high resolution mass spectrometry (HPLC-HRMS), in combination with the use of statistical tools resulted in the identification of a compound that was absent in the mutants extracts. By matching with our in-house database of myxobacterial secondary metabolites, this compound was identified as rhizopodin. A detailed analysis of the rhizopodin biosynthetic machinery is presented in this manuscript.

  9. Genetic localization and in vivo characterization of a Monascus azaphilone pigment biosynthetic gene cluster.

    PubMed

    Balakrishnan, Bijinu; Karki, Suman; Chiu, Shih-Hau; Kim, Hyun-Ju; Suh, Jae-Won; Nam, Bora; Yoon, Yeo-Min; Chen, Chien-Chi; Kwon, Hyung-Jin

    2013-07-01

    Monascus spp. produce several well-known polyketides such as monacolin K, citrinin, and azaphilone pigments. In this study, the azaphilone pigment biosynthetic gene cluster was identified through T-DNA random mutagenesis in Monascus purpureus. The albino mutant W13 bears a T-DNA insertion upstream of a transcriptional regulator gene (mppR1). The transcription of mppR1 and the nearby polyketide synthase gene (MpPKS5) was significantly repressed in the W13 mutant. Targeted inactivation of MpPKS5 also gave rise to an albino mutant, confirming that mppR1 and MpPKS5 belong to an azaphilone pigment biosynthetic gene cluster. This M. purpureus sequence was used to identify the whole biosynthetic gene cluster in the Monascus pilosus genome. MpPKS5 contains SAT/KS/AT/PT/ACP/MT/R domains, and this domain organization is preserved in other azaphilone polyketide synthases. This biosynthetic gene cluster also encodes fatty acid synthase (FAS), which is predicted to assist the synthesis of 3-oxooactanoyl-CoA and 3-oxodecanoyl-CoA. These 3-oxoacyl compounds are proposed to be incorporated into the azaphilone backbone to complete the pigment biosynthesis. A monooxygenase gene (an azaH and tropB homolog) that is located far downstream of the FAS gene is proposed to be involved in pyrone ring formation. A homology search on other fungal genome sequences suggests that this azaphilone pigment gene cluster also exists in the Penicillium marneffei and Talaromyces stipitatus genomes.

  10. Identification of a 12-gene fusaric acid biosynthetic gene cluster in Fusarium species through comparative and functional genomics

    USDA-ARS?s Scientific Manuscript database

    In fungi, genes involved in biosynthesis of a secondary metabolite (SM) are often located adjacent to one another in the genome and are coordinately regulated. These SM biosynthetic gene clusters typically encode enzymes, one or more transcription factors, and a transport protein. Fusaric acid is a ...

  11. Chromosomal position effect influences the heterologous expression of genes and biosynthetic gene clusters in Streptomyces albus J1074.

    PubMed

    Bilyk, Bohdan; Horbal, Liliya; Luzhetskyy, Andriy

    2017-01-04

    Efforts to construct the Streptomyces host strain with enhanced yields of heterologous product have focussed mostly on engineering of primary metabolism and/or the deletion of endogenous biosynthetic gene clusters. However, other factors, such as chromosome compactization, have been shown to have a significant influence on gene expression levels in bacteria and fungi. The expression of genes and biosynthetic gene clusters may vary significantly depending on their location within the chromosome. Little is known about the position effect in actinomycetes, which are important producers of various industrially relevant bioactive molecules. To demonstrate an impact of the chromosomal position effect on the heterologous expression of genes and gene clusters in Streptomyces albus J1074, a transposon mutant library with randomly distributed transposon that includes a β-glucuronidase reporter gene was generated. Reporter gene expression levels have been shown to depend on the position on the chromosome. Using a combination of the transposon system and a φC31-based vector, the aranciamycin biosynthetic cluster was introduced randomly into the S. albus genome. The production levels of aranciamycin varied up to eightfold depending on the location of the gene cluster within the chromosome of S. albus J1074. One of the isolated mutant strains with an artificially introduced attachment site produced approximately 50% more aranciamycin than strains with endogenous attBs. In this study, we demonstrate that expression of the reporter gene and aranciamycin biosynthetic cluster in Streptomyces albus J1074 varies up to eightfold depending on its position on the chromosome. The integration of the heterologous cluster into different locations on the chromosome may significantly influence the titre of the produced substance. This knowledge can be used for the more efficient engineering of Actinobacteria via the relocation of the biosynthetic gene clusters and insertion of additional

  12. Indole-Diterpene Biosynthetic Capability of Epichloë Endophytes as Predicted by ltm Gene Analysis▿

    PubMed Central

    Young, Carolyn A.; Tapper, Brian A.; May, Kimberley; Moon, Christina D.; Schardl, Christopher L.; Scott, Barry

    2009-01-01

    Bioprotective alkaloids produced by Epichloë and closely related asexual Neotyphodium fungal endophytes protect their grass hosts from insect and mammalian herbivory. One class of these compounds, known for antimammalian toxicity, is the indole-diterpenes. The LTM locus of Neotyphodium lolii (Lp19) and Epichloë festuce (Fl1), required for the biosynthesis of the indole-diterpene lolitrem, consists of 10 ltm genes. We have used PCR and Southern analysis to screen a broad taxonomic range of 44 endophyte isolates to determine why indole-diterpenes are present in so few endophyte-grass associations in comparison to that of the other bioprotective alkaloids, which are more widespread among the endophtyes. All 10 ltm genes were present in only three epichloë endophytes. A predominance of the asexual Neotyphodium spp. examined contained 8 of the 10 ltm genes, with only one N. lolii containing the entire LTM locus and the ability to produce lolitrems. Liquid chromatography-tandem mass spectrometry profiles of indole-diterpenes from a subset of endophyte-infected perennial ryegrass showed that endophytes that contained functional genes present in ltm clusters 1 and 2 were capable of producing simple indole-diterpenes such as paspaline, 13-desoxypaxilline, and terpendoles, compounds predicted to be precursors of lolitrem B. Analysis of toxin biosynthesis genes by PCR now enables a diagnostic method to screen endophytes for both beneficial and detrimental alkaloids and can be used as a resource for screening isolates required for forage improvement. PMID:19181837

  13. Transactivation of anthocyanin biosynthetic genes following transfer of B regulatory genes into maize tissues.

    PubMed Central

    Goff, S A; Klein, T M; Roth, B A; Fromm, M E; Cone, K C; Radicella, J P; Chandler, V L

    1990-01-01

    The C1, B and R genes regulating the maize anthocyanin biosynthetic pathway encode tissue-specific regulatory proteins with similarities to transcriptional activators. The C1 and R regulatory genes are usually responsible for pigmentation of seed tissues, and the B-Peru allele of B, but not the B-I allele, can substitute for R function in the seed. In this study, members of the B family of regulatory genes were delivered to intact maize tissues by high velocity microprojectiles. In colorless r aleurones or embryos, the introduction of the B-Peru genomic clone or the expressed cDNAs of B-Peru or B-I resulted in anthocyanin-producing cells. Luciferase produced from the Bronze1 anthocyanin structural gene promoter was induced 100-fold when co-introduced with the expressed B-Peru or B-I cDNAs. This quantitative transactivation assay demonstrates that the proteins encoded by these two B alleles are equally able to transactivate the Bronze1 promoter. Analogous results were obtained using embryogenic callus cells. These observations suggest that one major contribution towards tissue-specific anthocyanin synthesis controlled by the various alleles of the B and R genes is the differential expression of functionally similar proteins. Images Fig. 2. PMID:2369901

  14. Sequencing rare marine actinomycete genomes reveals high density of unique natural product biosynthetic gene clusters.

    PubMed

    Schorn, Michelle A; Alanjary, Mohammad M; Aguinaldo, Kristen; Korobeynikov, Anton; Podell, Sheila; Patin, Nastassia; Lincecum, Tommie; Jensen, Paul R; Ziemert, Nadine; Moore, Bradley S

    2016-12-01

    Traditional natural product discovery methods have nearly exhausted the accessible diversity of microbial chemicals, making new sources and techniques paramount in the search for new molecules. Marine actinomycete bacteria have recently come into the spotlight as fruitful producers of structurally diverse secondary metabolites, and remain relatively untapped. In this study, we sequenced 21 marine-derived actinomycete strains, rarely studied for their secondary metabolite potential and under-represented in current genomic databases. We found that genome size and phylogeny were good predictors of biosynthetic gene cluster diversity, with larger genomes rivalling the well-known marine producers in the Streptomyces and Salinispora genera. Genomes in the Micrococcineae suborder, however, had consistently the lowest number of biosynthetic gene clusters. By networking individual gene clusters into gene cluster families, we were able to computationally estimate the degree of novelty each genus contributed to the current sequence databases. Based on the similarity measures between all actinobacteria in the Joint Genome Institute's Atlas of Biosynthetic gene Clusters database, rare marine genera show a high degree of novelty and diversity, with Corynebacterium, Gordonia, Nocardiopsis, Saccharomonospora and Pseudonocardia genera representing the highest gene cluster diversity. This research validates that rare marine actinomycetes are important candidates for exploration, as they are relatively unstudied, and their relatives are historically rich in secondary metabolites.

  15. Linking Biosynthetic Gene Clusters to their Metabolites via Pathway-Targeted Molecular Networking

    PubMed Central

    Trautman, Eric P.; Crawford, Jason M.

    2016-01-01

    The connection of microbial biosynthetic gene clusters to the small molecule metabolites they encode is central to the discovery and characterization of new metabolic pathways with ecological and pharmacological potential. With increasing microbial genome sequence information being deposited into publicly available databases, it is clear that microbes have the coding capacity for many more biologically active small molecules than previously realized. Of increasing interest are the small molecules encoded by the human microbiome, as these metabolites likely mediate a variety of currently uncharacterized human-microbe interactions that influence health and disease. In this mini-review, we describe the ongoing biosynthetic, structural, and functional characterizations of the genotoxic colibactin pathway in gut bacteria as a thematic example of linking biosynthetic gene clusters to their metabolites. We also highlight other natural products that are produced through analogous biosynthetic logic and comment on some current disconnects between bioinformatics predictions and experimental structural characterizations. Lastly, we describe the use of pathway-targeted molecular networking as a tool to characterize secondary metabolic pathways within complex metabolomes and to aid in downstream metabolite structural elucidation efforts. PMID:26456470

  16. Hybrid biosynthetic gene therapy vector development and dual engineering capacity.

    PubMed

    Jones, Charles H; Ravikrishnan, Anitha; Chen, Mingfu; Reddinger, Ryan; Kamal Ahmadi, Mahmoud; Rane, Snehal; Hakansson, Anders P; Pfeifer, Blaine A

    2014-08-26

    Genetic vaccines offer a treatment opportunity based upon successful gene delivery to specific immune cell modulators. Driving the process is the vector chosen for gene cargo packaging and subsequent delivery to antigen-presenting cells (APCs) capable of triggering an immune cascade. As such, the delivery process must successfully navigate a series of requirements and obstacles associated with the chosen vector and target cell. In this work, we present the development and assessment of a hybrid gene delivery vector containing biological and biomaterial components. Each component was chosen to design and engineer gene delivery separately in a complimentary and fundamentally distinct fashion. A bacterial (Escherichia coli) inner core and a biomaterial [poly(beta-amino ester)]-coated outer surface allowed the simultaneous application of molecular biology and polymer chemistry to address barriers associated with APC gene delivery, which include cellular uptake and internalization, phagosomal escape, and intracellular cargo concentration. The approach combined and synergized normally disparate vector properties and tools, resulting in increased in vitro gene delivery beyond individual vector components or commercially available transfection agents. Furthermore, the hybrid device demonstrated a strong, efficient, and safe in vivo humoral immune response compared with traditional forms of antigen delivery. In summary, the flexibility, diversity, and potential of the hybrid design were developed and featured in this work as a platform for multivariate engineering at the vector and cellular scales for new applications in gene delivery immunotherapy.

  17. Hybrid biosynthetic gene therapy vector development and dual engineering capacity

    PubMed Central

    Jones, Charles H.; Ravikrishnan, Anitha; Chen, Mingfu; Reddinger, Ryan; Kamal Ahmadi, Mahmoud; Rane, Snehal; Hakansson, Anders P.; Pfeifer, Blaine A.

    2014-01-01

    Genetic vaccines offer a treatment opportunity based upon successful gene delivery to specific immune cell modulators. Driving the process is the vector chosen for gene cargo packaging and subsequent delivery to antigen-presenting cells (APCs) capable of triggering an immune cascade. As such, the delivery process must successfully navigate a series of requirements and obstacles associated with the chosen vector and target cell. In this work, we present the development and assessment of a hybrid gene delivery vector containing biological and biomaterial components. Each component was chosen to design and engineer gene delivery separately in a complimentary and fundamentally distinct fashion. A bacterial (Escherichia coli) inner core and a biomaterial [poly(beta-amino ester)]-coated outer surface allowed the simultaneous application of molecular biology and polymer chemistry to address barriers associated with APC gene delivery, which include cellular uptake and internalization, phagosomal escape, and intracellular cargo concentration. The approach combined and synergized normally disparate vector properties and tools, resulting in increased in vitro gene delivery beyond individual vector components or commercially available transfection agents. Furthermore, the hybrid device demonstrated a strong, efficient, and safe in vivo humoral immune response compared with traditional forms of antigen delivery. In summary, the flexibility, diversity, and potential of the hybrid design were developed and featured in this work as a platform for multivariate engineering at the vector and cellular scales for new applications in gene delivery immunotherapy. PMID:25114239

  18. Functional characterization of the penicillin biosynthetic gene cluster of Penicillium chrysogenum Wisconsin54-1255.

    PubMed

    van den Berg, Marco A; Westerlaken, Ilja; Leeflang, Chris; Kerkman, Richard; Bovenberg, Roel A L

    2007-09-01

    Industrial strain improvement via classical mutagenesis is a black box approach. In an attempt to learn from and understand the mutations introduced, we cloned and characterized the amplified region of industrial penicillin production strains. Upon amplification of this region Penicillium chrysogenum is capable of producing an increased amount of antibiotics, as was previously reported [Barredo, J.L., Diez, B., Alvarez, E., Martín, J.F., 1989a. Large amplification of a 35-kb DNA fragment carrying two penicillin biosynthetic genes in high yielding strains of Penicillium chrysogenum. Curr. Genet. 16, 453-459; Newbert, R.W., Barton, B., Greaves, P., Harper, J., Turner, G., 1997. Analysis of a commercially improved Penicillium chrysogenum strain series, involvement of recombinogenic regions in amplification and deletion of the penicillin gene cluster. J. Ind. Microbiol. 19, 18-27]. Bioinformatic analysis of the central 56.9kb, present as six direct repeats in the strains analyzed in this study, predicted 15 Open Reading Frames (ORFs). Besides the three penicillin biosynthetic genes (pcbAB, pcbC and penDE) only one ORF has an orthologue of known function in the database: the Saccharomyces cerevisiae gene ERG25. Surprisingly, many genes known to encode direct or indirect steps beta-lactam biosynthesis like phenyl acetic acid CoA ligase and transporters are not present. Detailed analyses reveal a detectable transcript for most of the predicted ORFs under the conditions tested. We have studied the role of these in relation to penicillin production and amplification of the biosynthetic gene cluster. In contrast to what was expected, the genes encoding the three penicillin biosynthetic enzymes alone are sufficient to restore full beta-lactam synthesis in a mutant lacking the complete region. Therefore, the role of the other 12 ORFs in this region seems irrelevant for penicillin biosynthesis.

  19. Carotenoid biosynthetic pathway: molecular phylogenies and evolutionary behavior of crt genes in eubacteria.

    PubMed

    Phadwal, Kanchan

    2005-01-17

    Phylogenetic analysis of carotenoid biosynthetic pathway genes and their evolutionary rate variations were studied among eubacterial taxa. The gene sequences for the enzymes involved in this pathway were obtained for major phylogenetic groups of eubacteria (green sulfur bacteria, green nonsulphur bacteria, Gram-positive bacteria, proteobacteria, flavobacteria, cyanobacteria) and archeabacteria. These gene datasets were distributed under five major steps of carotenoid biosynthesis in eubacteria; isoprenoid precursor biosynthesis, phytoene synthesis, dehydrogenation of phytoene, lycopene cyclization, formation of acyclic xanthophylls, formation of cyclic xanthophylls and carotenoid biosynthesis regulation. The NJ algorithm was used on protein coding DNA sequences to deduce the evolutionary relationship for the respective crt genes among different eubacterial lineages. The rate of nonsynonymous nucleotide substitutions per nonsynonymous site (d(N)) and synonymous nucleotide substitutions per synonymous site (d(S)) were calculated for different clades of the respective phylogenetic tree for specific crt genes. The phylogenetic analysis suggests that evolutionary pattern of crt genes in eubacteria is characterized by lateral gene transfer and gene duplication events. The d(N) values indicate that carotenoid biosynthetic genes are more conserved in proteobacteria than in any other eubacterial phyla. Furthermore, of the genes involved in carotenoid biosynthesis pathway, structural genes evolve slowly than the regulatory genes in eubacteria.

  20. Insights into secondary metabolism from a global analysis of prokaryotic biosynthetic gene clusters

    PubMed Central

    Cimermancic, Peter; Medema, Marnix H.; Claesen, Jan; Kurita, Kenji; Wieland Brown, Laura C.; Mavrommatis, Konstantinos; Pati, Amrita; Godfrey, Paul A.; Koehrsen, Michael; Clardy, Jon; Birren, Bruce W.; Takano, Eriko; Sali, Andrej; Linington, Roger G.; Fischbach, Michael A.

    2014-01-01

    Summary Although biosynthetic gene clusters (BGCs) have been discovered for hundreds of bacterial metabolites, our knowledge of their diversity remains limited. Here, we used a novel algorithm to systematically identify BGCs in the extensive extant microbial sequencing data. Network analysis of the predicted BGCs revealed large gene cluster families, the vast majority uncharacterized. We experimentally characterized the most prominent family, consisting of two subfamilies of hundreds of BGCs distributed throughout the Proteobacteria; their products are aryl polyenes, lipids with an aryl head group conjugated to a polyene tail. We identified a distant relationship to a third subfamily of aryl polyene BGCs, and together the three subfamilies represent the largest known family of biosynthetic gene clusters, with more than 1,000 members. Although these clusters are widely divergent in sequence, their small molecule products are remarkably conserved, indicating for the first time the important roles these compounds play in Gram-negative cell biology. PMID:25036635

  1. A Genomics Based Discovery of Secondary Metabolite Biosynthetic Gene Clusters in Aspergillus ustus

    PubMed Central

    Pi, Borui; Yu, Dongliang; Dai, Fangwei; Song, Xiaoming; Zhu, Congyi; Li, Hongye; Yu, Yunsong

    2015-01-01

    Secondary metabolites (SMs) produced by Aspergillus have been extensively studied for their crucial roles in human health, medicine and industrial production. However, the resulting information is almost exclusively derived from a few model organisms, including A. nidulans and A. fumigatus, but little is known about rare pathogens. In this study, we performed a genomics based discovery of SM biosynthetic gene clusters in Aspergillus ustus, a rare human pathogen. A total of 52 gene clusters were identified in the draft genome of A. ustus 3.3904, such as the sterigmatocystin biosynthesis pathway that was commonly found in Aspergillus species. In addition, several SM biosynthetic gene clusters were firstly identified in Aspergillus that were possibly acquired by horizontal gene transfer, including the vrt cluster that is responsible for viridicatumtoxin production. Comparative genomics revealed that A. ustus shared the largest number of SM biosynthetic gene clusters with A. nidulans, but much fewer with other Aspergilli like A. niger and A. oryzae. These findings would help to understand the diversity and evolution of SM biosynthesis pathways in genus Aspergillus, and we hope they will also promote the development of fungal identification methodology in clinic. PMID:25706180

  2. The Biosynthetic Gene Cluster for Andrastin A in Penicillium roqueforti.

    PubMed

    Rojas-Aedo, Juan F; Gil-Durán, Carlos; Del-Cid, Abdiel; Valdés, Natalia; Álamos, Pamela; Vaca, Inmaculada; García-Rico, Ramón O; Levicán, Gloria; Tello, Mario; Chávez, Renato

    2017-01-01

    Penicillium roqueforti is a filamentous fungus involved in the ripening of several kinds of blue cheeses. In addition, this fungus produces several secondary metabolites, including the meroterpenoid compound andrastin A, a promising antitumoral compound. However, to date the genomic cluster responsible for the biosynthesis of this compound in P. roqueforti has not been described. In this work, we have sequenced and annotated a genomic region of approximately 29.4 kbp (named the adr gene cluster) that is involved in the biosynthesis of andrastin A in P. roqueforti. This region contains ten genes, named adrA, adrC, adrD, adrE, adrF, adrG, adrH, adrI, adrJ and adrK. Interestingly, the adrB gene previously found in the adr cluster from P. chrysogenum, was found as a residual pseudogene in the adr cluster from P. roqueforti. RNA-mediated gene silencing of each of the ten genes resulted in significant reductions in andrastin A production, confirming that all of them are involved in the biosynthesis of this compound. Of particular interest was the adrC gene, encoding for a major facilitator superfamily transporter. According to our results, this gene is required for the production of andrastin A but does not have any role in its secretion to the extracellular medium. The identification of the adr cluster in P. roqueforti will be important to understand the molecular basis of the production of andrastin A, and for the obtainment of strains of P. roqueforti overproducing andrastin A that might be of interest for the cheese industry.

  3. Currencies of Mutualisms: Sources of Alkaloid Genes in Vertically Transmitted Epichloae

    PubMed Central

    Schardl, Christopher L.; Young, Carolyn A.; Pan, Juan; Florea, Simona; Takach, Johanna E.; Panaccione, Daniel G.; Farman, Mark L.; Webb, Jennifer S.; Jaromczyk, Jolanta; Charlton, Nikki D.; Nagabhyru, Padmaja; Chen, Li; Shi, Chong; Leuchtmann, Adrian

    2013-01-01

    The epichloae (Epichloë and Neotyphodium species), a monophyletic group of fungi in the family Clavicipitaceae, are systemic symbionts of cool-season grasses (Poaceae subfamily Poöideae). Most epichloae are vertically transmitted in seeds (endophytes), and most produce alkaloids that attack nervous systems of potential herbivores. These protective metabolites include ergot alkaloids and indole-diterpenes (tremorgens), which are active in vertebrate systems, and lolines and peramine, which are more specific against invertebrates. Several Epichloë species have been described which are sexual and capable of horizontal transmission, and most are vertically transmissible also. Asexual epichloae are mainly or exclusively vertically transmitted, and many are interspecific hybrids with genomic contributions from two or three ancestral Epichloë species. Here we employ genome-scale analyses to investigate the origins of biosynthesis gene clusters for ergot alkaloids (EAS), indole-diterpenes (IDT), and lolines (LOL) in 12 hybrid species. In each hybrid, the alkaloid-gene and housekeeping-gene relationships were congruent. Interestingly, hybrids frequently had alkaloid clusters that were rare in their sexual ancestors. Also, in those hybrids that had multiple EAS, IDT or LOL clusters, one cluster lacked some genes, usually for late pathway steps. Possible implications of these findings for the alkaloid profiles and endophyte ecology are discussed. PMID:23744053

  4. Molecular analysis of the cercosporin biosynthetic gene cluster in Cercospora nicotianae.

    PubMed

    Chen, Huiqin; Lee, Miin-Huey; Daub, Margret E; Chung, Kuang-Ren

    2007-05-01

    We describe a core gene cluster, comprised of eight genes (designated CTB1-8), and associated with cercosporin toxin production in Cercospora nicotianae. Sequence analysis identified 10 putative open reading frames (ORFs) flanking the previously characterized CTB1 and CTB3 genes that encode, respectively, the polyketide synthase and a dual methyltransferase/monooxygenase required for cercosporin production. Expression of eight of the genes was co-ordinately induced under cercosporin-producing conditions and was regulated by the Zn(II)Cys(6) transcriptional activator, CTB8. Expression of the genes, affected by nitrogen and carbon sources and pH, was also controlled by another transcription activator, CRG1, previously shown to regulate cercosporin production and resistance. Disruption of the CTB2 gene encoding a methyltransferase or the CTB8 gene yielded mutants that were completely defective in cercosporin production and inhibitory expression of the other CTB cluster genes. Similar 'feedback' transcriptional inhibition was observed when the CTB1, or CTB3 but not CTB4 gene was inactivated. Expression of four ORFs located on the two distal ends of the cluster did not correlate with cercosporin biosynthesis and did not show regulation by CTB8, suggesting that the biosynthetic cluster was limited to CTB1-8. A biosynthetic pathway and a regulatory network leading to cercosporin formation are proposed.

  5. Genomics-driven discovery of the pneumocandin biosynthetic gene cluster in the fungus Glarea lozoyensis

    PubMed Central

    2013-01-01

    Background The antifungal therapy caspofungin is a semi-synthetic derivative of pneumocandin B0, a lipohexapeptide produced by the fungus Glarea lozoyensis, and was the first member of the echinocandin class approved for human therapy. The nonribosomal peptide synthetase (NRPS)-polyketide synthases (PKS) gene cluster responsible for pneumocandin biosynthesis from G. lozoyensis has not been elucidated to date. In this study, we report the elucidation of the pneumocandin biosynthetic gene cluster by whole genome sequencing of the G. lozoyensis wild-type strain ATCC 20868. Results The pneumocandin biosynthetic gene cluster contains a NRPS (GLNRPS4) and a PKS (GLPKS4) arranged in tandem, two cytochrome P450 monooxygenases, seven other modifying enzymes, and genes for L-homotyrosine biosynthesis, a component of the peptide core. Thus, the pneumocandin biosynthetic gene cluster is significantly more autonomous and organized than that of the recently characterized echinocandin B gene cluster. Disruption mutants of GLNRPS4 and GLPKS4 no longer produced the pneumocandins (A0 and B0), and the Δglnrps4 and Δglpks4 mutants lost antifungal activity against the human pathogenic fungus Candida albicans. In addition to pneumocandins, the G. lozoyensis genome encodes a rich repertoire of natural product-encoding genes including 24 PKSs, six NRPSs, five PKS-NRPS hybrids, two dimethylallyl tryptophan synthases, and 14 terpene synthases. Conclusions Characterization of the gene cluster provides a blueprint for engineering new pneumocandin derivatives with improved pharmacological properties. Whole genome estimation of the secondary metabolite-encoding genes from G. lozoyensis provides yet another example of the huge potential for drug discovery from natural products from the fungal kingdom. PMID:23688303

  6. Investigation of Proposed Ladderane Biosynthetic Genes from Anammox Bacteria by Heterologous Expression in E. coli

    PubMed Central

    Javidpour, Pouya; Deutsch, Samuel; Mutalik, Vivek K.; Hillson, Nathan J.; Petzold, Christopher J.; Keasling, Jay D.; Beller, Harry R.

    2016-01-01

    Ladderanes are hydrocarbon chains with three or five linearly concatenated cyclobutane rings that are uniquely produced as membrane lipid components by anammox (anaerobic ammonia-oxidizing) bacteria. By virtue of their angle and torsional strain, ladderanes are unusually energetic compounds, and if produced biochemically by engineered microbes, could serve as renewable, high-energy-density jet fuel components. The biochemistry and genetics underlying the ladderane biosynthetic pathway are unknown, however, previous studies have identified a pool of 34 candidate genes from the anammox bacterium, Kuenenia stuttgartiensis, some or all of which may be involved with ladderane fatty acid biosynthesis. The goal of the present study was to establish a systematic means of testing the candidate genes from K. stuttgartiensis for involvement in ladderane biosynthesis through heterologous expression in E. coli under anaerobic conditions. This study describes an efficient means of assembly of synthesized, codon-optimized candidate ladderane biosynthesis genes in synthetic operons that allows for changes to regulatory element sequences, as well as modular assembly of multiple operons for simultaneous heterologous expression in E. coli (or potentially other microbial hosts). We also describe in vivo functional tests of putative anammox homologs of the phytoene desaturase CrtI, which plays an important role in the hypothesized ladderane pathway, and a method for soluble purification of one of these enzymes. This study is, to our knowledge, the first experimental effort focusing on the role of specific anammox genes in the production of ladderanes, and lays the foundation for future efforts toward determination of the ladderane biosynthetic pathway. Our substantial, but far from comprehensive, efforts at elucidating the ladderane biosynthetic pathway were not successful. We invite the scientific community to take advantage of the considerable synthetic biology resources and

  7. Investigation of Proposed Ladderane Biosynthetic Genes from Anammox Bacteria by Heterologous Expression in E. coli

    DOE PAGES

    Javidpour, Pouya; Deutsch, Samuel; Mutalik, Vivek K.; ...

    2016-03-14

    Ladderanes are hydrocarbon chains with three or five linearly concatenated cyclobutane rings that are uniquely produced as membrane lipid components by anammox (anaerobic ammonia-oxidizing) bacteria. By virtue of their angle and torsional strain, ladderanes are unusually energetic compounds, and if produced biochemically by engineered microbes, could serve as renewable, high-energy-density jet fuel components. The biochemistry and genetics underlying the ladderane biosynthetic pathway are unknown, however, previous studies have identified a pool of 34 candidate genes from the anammox bacterium, Kuenenia stuttgartiensis, some or all of which may be involved with ladderane fatty acid biosynthesis. The goal of the present studymore » was to establish a systematic means of testing the candidate genes from K. stuttgartiensis for involvement in ladderane biosynthesis through heterologous expression in E. coli under anaerobic conditions. This study describes an efficient means of assembly of synthesized, codon-optimized candidate ladderane biosynthesis genes in synthetic operons that allows for changes to regulatory element sequences, as well as modular assembly of multiple operons for simultaneous heterologous expression in E. coli (or potentially other microbial hosts). We also describe in vivo functional tests of putative anammox homologs of the phytoene desaturase CrtI, which plays an important role in the hypothesized ladderane pathway, and a method for soluble purification of one of these enzymes. This study is, to our knowledge, the first experimental effort focusing on the role of specific anammox genes in the production of ladderanes, and lays the foundation for future efforts toward determination of the ladderane biosynthetic pathway. Our substantial, but far from comprehensive, efforts at elucidating the ladderane biosynthetic pathway were not successful. We invite the scientific community to take advantage of the considerable synthetic biology resources and

  8. Divergent evolutionary pattern of starch biosynthetic pathway genes in grasses and dicots.

    PubMed

    Li, Chun; Li, Qi-Gang; Dunwell, Jim M; Zhang, Yuan-Ming

    2012-10-01

    Starch is the most widespread and abundant storage carbohydrate in crops and its production is critical to both crop yield and quality. In regard to the starch content in the seeds of crop plants, there is a distinct difference between grasses (Poaceae) and dicots. However, few studies have described the evolutionary pattern of genes in the starch biosynthetic pathway in these two groups of plants. In this study, therefore, an attempt was made to compare evolutionary rate, gene duplication, and selective pattern of the key genes involved in this pathway between the two groups, using five grasses and five dicots as materials. The results showed 1) distinct differences in patterns of gene duplication and loss between grasses and dicots; duplication in grasses mainly occurred before the divergence of grasses, whereas duplication mostly occurred in individual species within the dicots; there is less gene loss in grasses than in dicots, 2) a considerably higher evolutionary rate in grasses than in dicots in most gene families analyzed, and 3) evidence of a different selective pattern between grasses and dicots; positive selection may have occurred asymmetrically in grasses in some gene families, for example, ADP-glucose pyrophosphorylase small subunit. Therefore, we deduced that gene duplication contributes to, and a higher evolutionary rate is associated with, the higher starch content in grasses. In addition, two novel aspects of the evolution of the starch biosynthetic pathway were observed.

  9. Characterization of the biosynthetic gene cluster for maklamicin, a spirotetronate-class antibiotic of the endophytic Micromonospora sp. NBRC 110955.

    PubMed

    Daduang, Ratama; Kitani, Shigeru; Hashimoto, Junko; Thamchaipenet, Arinthip; Igarashi, Yasuhiro; Shin-ya, Kazuo; Ikeda, Haruo; Nihira, Takuya

    2015-11-01

    Maklamicin, which is produced by the endophytic Micromonospora sp. NBRC 110955, is a spirotetronate-class antibiotic possessing anti-microbial activity against Gram-positive bacteria, and has several unique structural features different from other spirotetronates. Here we describe identification and characterization of the maklamicin biosynthetic (mak) gene cluster through draft genome sequencing, genomic library screening, and gene disruption. Sequence analysis revealed that a plausible maklamicin cluster resides in a 152 kb DNA region encoding 46 open reading frames, 24 of which can be assigned roles in the biosynthesis of polyketide backbone, spirotetronate or peripheral moieties, self-resistance and the regulation of maklamicin production. Disruption of the polyketide synthase (PKS) genes makA1 or makA4 resulted in a complete loss of maklamicin production, indicating that the type I modular PKS system is responsible for the biosynthesis of maklamicin. The mak gene cluster contained a set of biosynthetic genes for the formation of a tetronate moiety, which were found to be highly conserved in the gene clusters for spirotetronate antibiotics. Based on the estimated biosynthetic genes, we propose the biosynthetic pathway for maklamicin. Our findings provide not only insights on the biosynthetic mechanism of the unique structures in maklamicin, but also useful information to facilitate a comparative analysis of the spirotetronate biosynthetic pathways to expand the structural repertoire. Copyright © 2015 Elsevier GmbH. All rights reserved.

  10. The evolutionary life cycle of the polysaccharide biosynthetic gene cluster based on the Sphingomonadaceae.

    PubMed

    Wu, Mengmeng; Huang, Haidong; Li, Guoqiang; Ren, Yi; Shi, Zhong; Li, Xiaoyan; Dai, Xiaohui; Gao, Ge; Ren, Mengnan; Ma, Ting

    2017-04-21

    Although clustering of genes from the same metabolic pathway is a widespread phenomenon, the evolution of the polysaccharide biosynthetic gene cluster remains poorly understood. To determine the evolution of this pathway, we identified a scattered production pathway of the polysaccharide sanxan by Sphingomonas sanxanigenens NX02, and compared the distribution of genes between sphingan-producing and other Sphingomonadaceae strains. This allowed us to determine how the scattered sanxan pathway developed, and how the polysaccharide gene cluster evolved. Our findings suggested that the evolution of microbial polysaccharide biosynthesis gene clusters is a lengthy cyclic process comprising cluster 1 → scatter → cluster 2. The sanxan biosynthetic pathway proved the existence of a dispersive process. We also report the complete genome sequence of NX02, in which we identified many unstable genetic elements and powerful secretion systems. Furthermore, nine enzymes for the formation of activated precursors, four glycosyltransferases, four acyltransferases, and four polymerization and export proteins were identified. These genes were scattered in the NX02 genome, and the positive regulator SpnA of sphingans synthesis could not regulate sanxan production. Finally, we concluded that the evolution of the sanxan pathway was independent. NX02 evolved naturally as a polysaccharide producing strain over a long-time evolution involving gene acquisitions and adaptive mutations.

  11. Discovery of Unusual Biaryl Polyketides by Activation of a Silent Streptomyces venezuelae Biosynthetic Gene Cluster

    PubMed Central

    Thanapipatsiri, Anyarat; Gomez‐Escribano, Juan Pablo; Song, Lijiang; Bibb, Maureen J.; Al‐Bassam, Mahmoud; Chandra, Govind

    2016-01-01

    Abstract Comparative transcriptional profiling of a ΔbldM mutant of Streptomyces venezuelae with its unmodified progenitor revealed that the expression of a cryptic biosynthetic gene cluster containing both type I and type III polyketide synthase genes is activated in the mutant. The 29.5 kb gene cluster, which was predicted to encode an unusual biaryl metabolite, which we named venemycin, and potentially halogenated derivatives, contains 16 genes including one—vemR—that encodes a transcriptional activator of the large ATP‐binding LuxR‐like (LAL) family. Constitutive expression of vemR in the ΔbldM mutant led to the production of sufficient venemycin for structural characterisation, confirming its unusual biaryl structure. Co‐expression of the venemycin biosynthetic gene cluster and vemR in the heterologous host Streptomyces coelicolor also resulted in venemycin production. Although the gene cluster encodes two halogenases and a flavin reductase, constitutive expression of all three genes led to the accumulation only of a monohalogenated venemycin derivative, both in the native producer and the heterologous host. A competition experiment in which equimolar quantities of sodium chloride and sodium bromide were fed to the venemycin‐producing strains resulted in the preferential incorporation of bromine, thus suggesting that bromide is the preferred substrate for one or both halogenases. PMID:27605017

  12. Discovery of Unusual Biaryl Polyketides by Activation of a Silent Streptomyces venezuelae Biosynthetic Gene Cluster.

    PubMed

    Thanapipatsiri, Anyarat; Gomez-Escribano, Juan Pablo; Song, Lijiang; Bibb, Maureen J; Al-Bassam, Mahmoud; Chandra, Govind; Thamchaipenet, Arinthip; Challis, Gregory L; Bibb, Mervyn J

    2016-11-17

    Comparative transcriptional profiling of a ΔbldM mutant of Streptomyces venezuelae with its unmodified progenitor revealed that the expression of a cryptic biosynthetic gene cluster containing both type I and type III polyketide synthase genes is activated in the mutant. The 29.5 kb gene cluster, which was predicted to encode an unusual biaryl metabolite, which we named venemycin, and potentially halogenated derivatives, contains 16 genes including one-vemR-that encodes a transcriptional activator of the large ATP-binding LuxR-like (LAL) family. Constitutive expression of vemR in the ΔbldM mutant led to the production of sufficient venemycin for structural characterisation, confirming its unusual biaryl structure. Co-expression of the venemycin biosynthetic gene cluster and vemR in the heterologous host Streptomyces coelicolor also resulted in venemycin production. Although the gene cluster encodes two halogenases and a flavin reductase, constitutive expression of all three genes led to the accumulation only of a monohalogenated venemycin derivative, both in the native producer and the heterologous host. A competition experiment in which equimolar quantities of sodium chloride and sodium bromide were fed to the venemycin-producing strains resulted in the preferential incorporation of bromine, thus suggesting that bromide is the preferred substrate for one or both halogenases.

  13. Genome mining unearths a hybrid nonribosomal peptide synthetase-like-pteridine synthase biosynthetic gene cluster

    PubMed Central

    Park, Hyun Bong; Perez, Corey E; Barber, Karl W; Rinehart, Jesse; Crawford, Jason M

    2017-01-01

    Nonribosomal peptides represent a large class of metabolites with pharmaceutical relevance. Pteridines, such as pterins, folates, and flavins, are heterocyclic metabolites that often serve as redox-active cofactors. The biosynthetic machineries for construction of these distinct classes of small molecules operate independently in the cell. Here, we discovered an unprecedented nonribosomal peptide synthetase-like-pteridine synthase hybrid biosynthetic gene cluster in Photorhabdus luminescens using genome synteny analysis. P. luminescens is a Gammaproteobacterium that undergoes phenotypic variation and can have both pathogenic and mutualistic roles. Through extensive gene deletion, pathway-targeted molecular networking, quantitative proteomic analysis, and NMR, we show that the genetic locus affects the regulation of quorum sensing and secondary metabolic enzymes and encodes new pteridine metabolites functionalized with cis-amide acyl-side chains, termed pepteridine A (1) and B (2). The pepteridines are produced in the pathogenic phenotypic variant and represent the first reported metabolites to be synthesized by a hybrid NRPS-pteridine pathway. These studies expand our view of the combinatorial biosynthetic potential available in bacteria. DOI: http://dx.doi.org/10.7554/eLife.25229.001

  14. Expression of genes of the aflatoxin biosynthetic pathway in Aspergillus flavus isolates from keratitis.

    PubMed

    Leema, George; Chou, Duen-Suey; Jesudasan, Christadoss A Nelson; Geraldine, Pitchairaj; Thomas, Philip A

    2011-01-01

    To document transcriptional activation (expression) of key aflatoxin biosynthetic pathway genes in corneal isolates of Aspergillus flavus. The expression of certain regulatory (aflatoxin regulatory [aflR] and aflatoxin J [aflJ]) and structural (polyketide synthase acetate [pksA] and norsolonic acid-1 [nor-1]) genes in four corneal A. flavus isolates was evaluated by reverse transcription PCR. The aflatoxin-producing potential of each strain was determined by thin-layer chromatography and quantified by spectrophotometry. Four environmental isolates were used for comparison. The mean expression levels of these genes were compared in the corneal and environmental A. flavus isolates. In addition, the mean expression levels were also correlated with the aflatoxin production levels. All isolates expressed aflJ, nor-1, and pksA, while all but one expressed aflR. Overall, significantly higher mean expression levels occurred in aflatoxigenic than in non-aflatoxigenic corneal isolates. A significant positive correlation was noted between the mean expression level of aflR and the quantum of aflatoxin production by the corneal isolates. Essentially similar patterns of expression of these genes were noted in four environmental A. flavus isolates used for comparison. For the first time, isolates of A. flavus from human keratitis patients have been shown to express regulatory and structural aflatoxin biosynthetic pathway genes. Further studies are needed to clarify the precise influence of the corneal microenvironment on expression of these genes and aflatoxin production by A. flavus infecting the cornea.

  15. CaaX-prenyltransferases are essential for expression of genes involvedin the early stages of monoterpenoid biosynthetic pathway in Catharanthus roseus cells.

    PubMed

    Courdavault, Vincent; Thiersault, Martine; Courtois, Martine; Gantet, Pascal; Oudin, Audrey; Doireau, Pierre; St-Pierre, Benoit; Giglioli-Guivarc'h, Nathalie

    2005-04-01

    CaaX-prenyltransferases (CaaX-PTases) catalyse the covalent attachment of isoprenyl groups to conserved cysteine residues located at the C-terminal CaaX motif of a protein substrate. This post-translational modification is required for the function and/or subcellular localization of some transcription factors and components of signal transduction and membrane trafficking machinery. CaaX-PTases, including protein farnesyltransferase (PFT) and type-I protein geranylgeranyltransferase (PGGT-I), are heterodimeric enzymes composed of a common alpha subunit and a specific beta subunit. We have established RNA interference cell lines targeting the beta subunits of PFT and PGGT-I, respectively, in the Catharanthus roseus C20D cell line, which synthesizes monoterpenoid indole alkaloids in response to auxin depletion from the culture medium. In both types of RNAi cell lines, expression of a subset of genes involved in the early stage of monoterpenoid biosynthetic pathway (ESMB genes), including the MEP pathway, is strongly decreased. The role of CaaX-PTases in ESMB gene regulation was confirmed by using the general prenyltransferase inhibitor s-perillyl alcohol (SP) and the specific PFT inhibitor Manumycin A on the wild type line. Furthermore, supplementation of SP inhibited cells with monoterpenoid intermediates downstream of the steps encoded by the ESMB genes restores monoterpenoid indole alkaloids biosynthesis. We conclude that protein targets for both PFT and PGGT-I are required for the expression of ESMB genes and monoterpenoid biosynthesis in C. roseus, this represents a non previously described role for protein prenyltransferase in plants.

  16. Comparative genomics of actinomycetes with a focus on natural product biosynthetic genes

    PubMed Central

    2013-01-01

    Background Actinomycetes are a diverse group of medically, industrially and ecologically important bacteria, studied as much for the diseases they cause as for the cures they hold. The genomes of actinomycetes revealed that these bacteria have a large number of natural product gene clusters, although many of these are difficult to tie to products in the laboratory. Large scale comparisons of these clusters are difficult to perform due to the presence of highly similar repeated domains in the most common biosynthetic machinery: polyketide synthases (PKSs) and nonribosomal peptide synthetases (NRPSs). Results We have used comparative genomics to provide an overview of the genomic features of a set of 102 closed genomes from this important group of bacteria with a focus on natural product biosynthetic genes. We have focused on well-represented genera and determine the occurrence of gene cluster families therein. Conservation of natural product gene clusters within Mycobacterium, Streptomyces and Frankia suggest crucial roles for natural products in the biology of each genus. The abundance of natural product classes is also found to vary greatly between genera, revealing underlying patterns that are not yet understood. Conclusions A large-scale analysis of natural product gene clusters presents a useful foundation for hypothesis formulation that is currently underutilized in the field. Such studies will be increasingly necessary to study the diversity and ecology of natural products as the number of genome sequences available continues to grow. PMID:24020438

  17. Bacterial Biosynthetic Gene Clusters Encoding the Anti-cancer Haterumalide Class of Molecules

    PubMed Central

    Matilla, Miguel A.; Stöckmann, Henning; Leeper, Finian J.; Salmond, George P. C.

    2012-01-01

    Haterumalides are halogenated macrolides with strong antitumor properties, making them attractive targets for chemical synthesis. Unfortunately, current synthetic routes to these molecules are inefficient. The potent haterumalide, oocydin A, was previously identified from two plant-associated bacteria through its high bioactivity against plant pathogenic fungi and oomycetes. In this study, we describe oocydin A (ooc) biosynthetic gene clusters identified by genome sequencing, comparative genomics, and chemical analysis in four plant-associated enterobacteria of the Serratia and Dickeya genera. Disruption of the ooc gene cluster abolished oocydin A production and bioactivity against fungi and oomycetes. The ooc gene clusters span between 77 and 80 kb and encode five multimodular polyketide synthase (PKS) proteins, a hydroxymethylglutaryl-CoA synthase cassette and three flavin-dependent tailoring enzymes. The presence of two free-standing acyltransferase proteins classifies the oocydin A gene cluster within the growing family of trans-AT PKSs. The amino acid sequences and organization of the PKS domains are consistent with the chemical predictions and functional peculiarities associated with trans-acyltransferase PKS. Based on extensive in silico analysis of the gene cluster, we propose a biosynthetic model for the production of oocydin A and, by extension, for other members of the haterumalide family of halogenated macrolides exhibiting anti-cancer, anti-fungal, and other interesting biological properties. PMID:23012376

  18. Comparative genomics of actinomycetes with a focus on natural product biosynthetic genes.

    PubMed

    Doroghazi, James R; Metcalf, William W

    2013-09-11

    Actinomycetes are a diverse group of medically, industrially and ecologically important bacteria, studied as much for the diseases they cause as for the cures they hold. The genomes of actinomycetes revealed that these bacteria have a large number of natural product gene clusters, although many of these are difficult to tie to products in the laboratory. Large scale comparisons of these clusters are difficult to perform due to the presence of highly similar repeated domains in the most common biosynthetic machinery: polyketide synthases (PKSs) and nonribosomal peptide synthetases (NRPSs). We have used comparative genomics to provide an overview of the genomic features of a set of 102 closed genomes from this important group of bacteria with a focus on natural product biosynthetic genes. We have focused on well-represented genera and determine the occurrence of gene cluster families therein. Conservation of natural product gene clusters within Mycobacterium, Streptomyces and Frankia suggest crucial roles for natural products in the biology of each genus. The abundance of natural product classes is also found to vary greatly between genera, revealing underlying patterns that are not yet understood. A large-scale analysis of natural product gene clusters presents a useful foundation for hypothesis formulation that is currently underutilized in the field. Such studies will be increasingly necessary to study the diversity and ecology of natural products as the number of genome sequences available continues to grow.

  19. Conservation of the pyrrolnitrin biosynthetic gene cluster among six pyrrolnitrin-producing strains.

    PubMed

    Hammer, P E; Burd, W; Hill, D S; Ligon, J M; van Pée, K

    1999-11-01

    The prnABCD gene cluster from Pseudomonas fluorescens encodes the biosynthetic pathway for pyrrolnitrin, a secondary metabolite derived from tryptophan which has strong anti-fungal activity. We used the prn genes from P. fluorescens strain BL915 as a probe to clone and sequence homologous genes from three other Pseudomonas strains, Burkholderia cepacia and Myxococcus fulvus. With the exception of the prnA gene from M. fulvus59% similar among the strains, indicating that the biochemical pathway for pyrrolnitrin biosynthesis is highly conserved. The prnA gene from M. fulvus is about 45% similar to prnA from the other strains and contains regions which are highly conserved among all six strains.

  20. Gene transcript profiles of the TIA biosynthetic pathway in response to ethylene and copper reveal their interactive role in modulating TIA biosynthesis in Catharanthus roseus.

    PubMed

    Pan, Ya-Jie; Liu, Jia; Guo, Xiao-Rui; Zu, Yuan-Gang; Tang, Zhong-Hua

    2015-05-01

    Research on transcriptional regulation of terpenoid indole alkaloid (TIA) biosynthesis of the medicinal plant, Catharanthus roseus, has largely been focused on gene function and not clustering analysis of multiple genes at the transcript level. Here, more than ten key genes encoding key enzyme of alkaloid synthesis in TIA biosynthetic pathways were chosen to investigate the integrative responses to exogenous elicitor ethylene and copper (Cu) at both transcriptional and metabolic levels. The ethylene-induced gene transcripts in leaves and roots, respectively, were subjected to principal component analysis (PCA) and the results showed the overall expression of TIA pathway genes indicated as the Q value followed a standard normal distribution after ethylene treatments. Peak gene expression was at 15-30 μM of ethephon, and the pre-mature leaf had a higher Q value than the immature or mature leaf and root. Treatment with elicitor Cu found that Cu up-regulated overall TIA gene expression more in roots than in leaves. The combined effects of Cu and ethephon on TIA gene expression were stronger than their separate effects. It has been documented that TIA gene expression is tightly regulated by the transcriptional factor (TF) ethylene responsive factor (ERF) and mitogen-activated protein kinase (MAPK) cascade. The loading plot combination with correlation analysis for the genes of C. roseus showed that expression of the MPK gene correlated with strictosidine synthase (STR) and strictosidine b-D-glucosidase(SGD). In addition, ERF expression correlated with expression of secologanin synthase (SLS) and tryptophan decarboxylase (TDC), specifically in roots, whereas MPK and myelocytomatosis oncogene (MYC) correlated with STR and SGD genes. In conclusion, the ERF regulates the upstream pathway genes in response to heavy metal Cu mainly in C. roseus roots, while the MPK mainly participates in regulating the STR gene in response to ethylene in pre-mature leaf. Interestingly, the

  1. Detection of polyketide synthase and nonribosomal peptide synthetase biosynthetic genes from antimicrobial coral-associated actinomycetes.

    PubMed

    Li, Jie; Dong, Jun-De; Yang, Jian; Luo, Xiong-Ming; Zhang, Si

    2014-10-01

    The diversity and properties of actinobacteria, predominant residents in coral holobionts, have been rarely documented. In this study, we aimed to explore the species diversity, antimicrobial activities and biosynthetic potential of culturable actinomycetes within the tissues of the scleractinian corals Porites lutea, Galaxea fascicularis and Acropora millepora from the South China Sea. A total of 70 strains representing 13 families and 15 genera of actinobacteria were isolated. The antimicrobial activity and biosynthetic potential of fifteen representative filamentous actinomycetes were estimated. Crude fermentation extracts of 6 strains exhibited comparable or greater activities against Vibrio alginolyticus than ciprofloxacin. Seven of the 15 actinomycetes strains possess type I polyketide synthases (PKS-I) and/or nonribosomal peptide synthetases (NRPS) genes. Nine tested strains possess type II polyketide synthases (PKS-II). Phylogenetic analysis based on 16S rRNA gene sequences indicated that these PKS and NRPS gene screening positive strains belong to genera Nocardiopsis, Pseudonocardia, Streptomyces, Micromonospora, Amycolatopsis and Prauserella. One PKS-I and four NRPS fragments showed <70% similarity to their closest relatives, which suggested the novelty of these genes. This study helps uncover the genetic capacity of stony coral-associated actinomycetes to produce bioactive molecules.

  2. Expression of carotenoid biosynthetic pathway genes and changes in carotenoids during ripening in tomato (Lycopersicon esculentum).

    PubMed

    Namitha, Kanakapura Krishnamurthy; Archana, Surya Narayana; Negi, Pradeep Singh

    2011-04-01

    To study the expression pattern of carotenoid biosynthetic pathway genes, changes in their expression at different stages of maturity in tomato fruit (cv. Arka Ahuti) were investigated. The genes regulating carotenoid production were quantified by a dot blot method using a DIG (dioxigenin) labelling and detection kit. The results revealed that there was an increase in the levels of upstream genes of the carotenoid biosynthetic pathway such as 1-deoxy-d-xylulose-5-phosphate reductoisomerase (DXR), 4-hydroxy-3-methyl-but-2-enyl diphosphate reductase (Lyt B), phytoene synthase (PSY), phytoene desaturase (PDS) and ζ-carotene desaturase (ZDS) by 2-4 fold at the breaker stage as compared to leaf. The lycopene and β-carotene content was analyzed by HPLC at different stages of maturity. The lycopene (15.33 ± 0.24 mg per 100 g) and β-carotene (10.37 ± 0.46 mg per 100 g) content were found to be highest at 5 days post-breaker and 10 days post-breaker stage, respectively. The lycopene accumulation pattern also coincided with the color values at different stages of maturity. These studies may provide insight into devising gene-based strategies for enhancing carotenoid accumulation in tomato fruits.

  3. Identification and Functional Analysis of Trypanosoma cruzi Genes That Encode Proteins of the Glycosylphosphatidylinositol Biosynthetic Pathway

    PubMed Central

    Cardoso, Mariana S.; Junqueira, Caroline; Trigueiro, Ricardo C.; Shams-Eldin, Hosam; Macedo, Cristiana S.; Araújo, Patrícia R.; Gomes, Dawidson A.; Martinelli, Patrícia M.; Kimmel, Jürgen; Stahl, Philipp; Niehus, Sebastian; Schwarz, Ralph T.; Previato, José O.; Mendonça-Previato, Lucia; Gazzinelli, Ricardo T.; Teixeira, Santuza M. R.

    2013-01-01

    Background Trypanosoma cruzi is a protist parasite that causes Chagas disease. Several proteins that are essential for parasite virulence and involved in host immune responses are anchored to the membrane through glycosylphosphatidylinositol (GPI) molecules. In addition, T. cruzi GPI anchors have immunostimulatory activities, including the ability to stimulate the synthesis of cytokines by innate immune cells. Therefore, T. cruzi genes related to GPI anchor biosynthesis constitute potential new targets for the development of better therapies against Chagas disease. Methodology/Principal Findings In silico analysis of the T. cruzi genome resulted in the identification of 18 genes encoding proteins of the GPI biosynthetic pathway as well as the inositolphosphorylceramide (IPC) synthase gene. Expression of GFP fusions of some of these proteins in T. cruzi epimastigotes showed that they localize in the endoplasmic reticulum (ER). Expression analyses of two genes indicated that they are constitutively expressed in all stages of the parasite life cycle. T. cruzi genes TcDPM1, TcGPI10 and TcGPI12 complement conditional yeast mutants in GPI biosynthesis. Attempts to generate T. cruzi knockouts for three genes were unsuccessful, suggesting that GPI may be an essential component of the parasite. Regarding TcGPI8, which encodes the catalytic subunit of the transamidase complex, although we were able to generate single allele knockout mutants, attempts to disrupt both alleles failed, resulting instead in parasites that have undergone genomic recombination and maintained at least one active copy of the gene. Conclusions/Significance Analyses of T. cruzi sequences encoding components of the GPI biosynthetic pathway indicated that they are essential genes involved in key aspects of host-parasite interactions. Complementation assays of yeast mutants with these T. cruzi genes resulted in yeast cell lines that can now be employed in high throughput screenings of drugs against this

  4. Betacyanin Biosynthetic Genes and Enzymes Are Differentially Induced by (a)biotic Stress in Amaranthus hypochondriacus

    PubMed Central

    Casique-Arroyo, Gabriela; Martínez-Gallardo, Norma; González de la Vara, Luis; Délano-Frier, John P.

    2014-01-01

    An analysis of key genes and enzymes of the betacyanin biosynthetic pathway in Amaranthus hypochondriacus (Ah) was performed. Complete cDNA sequence of Ah genes coding for cyclo-DOPA 5-O glucosyltransferase (AhcDOPA5-GT), two 4, 5-DOPA-extradiol-dioxygenase isoforms (AhDODA-1 and AhDODA-2, respectively), and a betanidin 5-O-glucosyltransferase (AhB5-GT), plus the partial sequence of an orthologue of the cytochrome P-450 R gene (CYP76AD1) were obtained. With the exception AhDODA-2, which had a closer phylogenetic relationship to DODA-like genes in anthocyanin-synthesizing plants, all genes analyzed closely resembled those reported in related Caryophyllales species. The measurement of basal gene expression levels, in addition to the DOPA oxidase tyrosinase (DOT) activity, in different tissues of three Ah genotypes having contrasting pigmentation levels (green to red-purple) was determined. Additional analyses were performed in Ah plants subjected to salt and drought stress and to two different insect herbivory regimes. Basal pigmentation accumulation in leaves, stems and roots of betacyanic plants correlated with higher expression levels of AhDODA-1 and AhB5-GT, whereas DOT activity levels coincided with pigment accumulation in stems and roots and with the acyanic nature of green plants, respectively, but not with pigmentation in leaves. Although the abiotic stress treatments tested produced changes in pigment levels in different tissues, pigment accumulation was the highest in leaves and stems of drought stressed betacyanic plants, respectively. However, tissue pigment accumulation in stressed Ah plants did not always correlate with betacyanin biosynthetic gene expression levels and/or DOT activity. This effect was tissue- and genotype-dependent, and further suggested that other unexamined factors were influencing pigment content in stressed Ah. The results obtained from the insect herbivory assays, particularly in acyanic plants, also support the proposal that

  5. Quantitative analysis of Penicillium chrysogenum Wis54-1255 transformants overexpressing the penicillin biosynthetic genes.

    PubMed

    Theilgaard, H; van Den Berg, M; Mulder, C; Bovenberg, R; Nielsen, J

    2001-02-20

    The low penicillin-producing, single gene copy strain Wis54-1255 was used to study the effect of overexpressing the penicillin biosynthetic genes in Penicillium chrysogenum. Transformants of Wis54-1255 were obtained with the amdS expression-cassette using the four combinations: pcbAB, pcbC, pcbC-penDE, and pcbAB-pcbC-penDE of the three penicillin biosynthetic genes. Transformants showing an increased penicillin production were investigated during steady-state continuous cultivations with glucose as the growth-limiting substrate. The transformants were characterized with respect to specific penicillin productivity, the activity of the two pathway enzymes delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine synthetase (ACVS) and isopenicillin N synthetase (IPNS) and the intracellular concentration of the metabolites: delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine (ACV), bis-delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine (bisACV), isopenicillin N (IPN), glutathione (GSH), and glutathione disulphide (GSSG). Transformants with the whole gene cluster amplified showed the largest increase in specific penicillin productivity (r(p))-124% and 176%, respectively, whereas transformation with the pcbC-penDE gene fragment resulted in a decrease in r(p) of 9% relative to Wis54-1255. A marked increase in r(p) is clearly correlated with a balanced amplification of both the ACVS and IPNS activity or a large amplification of either enzyme activity. The increased capacity of a single enzyme occurs surprisingly only in the transformants where all the three biosynthetic genes are overexpressed but is not found within the group of pcbAB or pcbC transformants. The indication of the pcbAB and pcbC genes being closely regulated in fungi might explain why high-yielding strains of P. chrysogenum have been found to contain amplifications of a large region including the whole penicillin gene cluster and not single gene amplifications. Measurements of the total ACV concentration showed a large

  6. New tools for reconstruction and heterologous expression of natural product biosynthetic gene clusters

    PubMed Central

    Luo, Yunzi; Enghiad, Behnam; Zhao, Huimin

    2015-01-01

    Natural product scaffolds remain a major source and inspiration for human therapeutics. However, generation of a natural product in the post-genomic era often requires reconstruction of the corresponding biosynthetic gene cluster in a heterologous host. In the burgeoning fields of synthetic biology and metabolic engineering, a significant amount of efforts has been devoted to develop DNA assembly techniques with higher efficiency, fidelity, and modularity, and heterologous expression systems with higher productivity and yield. Here we describe recent advances in DNA assembly and host engineering and highlight their applications in natural product discovery and engineering. PMID:26647833

  7. New tools for reconstruction and heterologous expression of natural product biosynthetic gene clusters.

    PubMed

    Luo, Yunzi; Enghiad, Behnam; Zhao, Huimin

    2016-02-01

    Natural product scaffolds remain a major source and inspiration for human therapeutics. However, generation of a natural product in the post-genomic era often requires reconstruction of the corresponding biosynthetic gene cluster in a heterologous host. In the burgeoning fields of synthetic biology and metabolic engineering, a significant amount of efforts has been devoted to develop DNA assembly techniques with higher efficiency, fidelity, and modularity, and heterologous expression systems with higher productivity and yield. Here we describe recent advances in DNA assembly and host engineering and highlight their applications in natural product discovery and engineering.

  8. Identification of Nocobactin NA Biosynthetic Gene Clusters in Nocardia farcinica▿ §

    PubMed Central

    Hoshino, Yasutaka; Chiba, Kazuhiro; Ishino, Keiko; Fukai, Toshio; Igarashi, Yasuhiro; Yazawa, Katsukiyo; Mikami, Yuzuru; Ishikawa, Jun

    2011-01-01

    We identified the biosynthetic gene clusters of the siderophore nocobactin NA. The nbt clusters, which were discovered as genes highly homologous to the mycobactin biosynthesis genes by the genomic sequencing of Nocardia farcinica IFM 10152, consist of 10 genes separately located at two genomic regions. The gene organization of the nbt clusters and the predicted functions of the nbt genes, particularly the cyclization and epimerization domains, were in good agreement with the chemical structure of nocobactin NA. Disruptions of the nbtA and nbtE genes, respectively, reduced and abolished the productivity of nocobactin NA. The heterologous expression of the nbtS gene revealed that this gene encoded a salicylate synthase. These results indicate that the nbt clusters are responsible for the biosynthesis of nocobactin NA. We also found putative IdeR-binding sequences upstream of the nbtA, -G, -H, -S, and -T genes, whose expression was more than 10-fold higher in the low-iron condition than in the high-iron condition. These results suggest that nbt genes are regulated coordinately by IdeR protein in an iron-dependent manner. The ΔnbtE mutant was found to be impaired in cytotoxicity against J774A.1 cells, suggesting that nocobactin NA production is required for virulence of N. farcinica. PMID:21097631

  9. Improvement of gougerotin and nikkomycin production by engineering their biosynthetic gene clusters.

    PubMed

    Du, Deyao; Zhu, Yu; Wei, Junhong; Tian, Yuqing; Niu, Guoqing; Tan, Huarong

    2013-07-01

    Nikkomycins and gougerotin are peptidyl nucleoside antibiotics with broad biological activities. The nikkomycin biosynthetic gene cluster comprises one pathway-specific regulatory gene (sanG) and 21 structural genes, whereas the gene cluster for gougerotin biosynthesis includes one putative regulatory gene, one major facilitator superfamily transporter gene, and 13 structural genes. In the present study, we introduced sanG driven by six different promoters into Streptomyces ansochromogenes TH322. Nikkomycin production was increased significantly with the highest increase in engineered strain harboring hrdB promoter-driven sanG. In the meantime, we replaced the native promoter of key structural genes in the gougerotin (gou) gene cluster with the hrdB promoters. The heterologous producer Streptomyces coelicolor M1146 harboring the modified gene cluster produced gougerotin up to 10-fold more than strains carrying the unmodified cluster. Therefore, genetic manipulations of genes involved in antibiotics biosynthesis with the constitutive hrdB promoter present a robust, easy-to-use system generally useful for the improvement of antibiotics production in Streptomyces.

  10. Genetic engineering and heterologous expression of the disorazol biosynthetic gene cluster via Red/ET recombineering.

    PubMed

    Tu, Qiang; Herrmann, Jennifer; Hu, Shengbiao; Raju, Ritesh; Bian, Xiaoying; Zhang, Youming; Müller, Rolf

    2016-02-15

    Disorazol, a macrocyclic polykitide produced by the myxobacterium Sorangium cellulosum So ce12 and it is reported to have potential cytotoxic activity towards several cancer cell lines, including multi-drug resistant cells. The disorazol biosynthetic gene cluster (dis) from Sorangium cellulosum (So ce12) was identified by transposon mutagenesis and cloned in a bacterial artificial chromosome (BAC) library. The 58-kb dis core gene cluster was reconstituted from BACs via Red/ET recombineering and expressed in Myxococcus xanthus DK1622. For the first time ever, a myxobacterial trans-AT polyketide synthase has been expressed heterologously in this study. Expression in M. xanthus allowed us to optimize the yield of several biosynthetic products using promoter engineering. The insertion of an artificial synthetic promoter upstream of the disD gene encoding a discrete acyl transferase (AT), together with an oxidoreductase (Or), resulted in 7-fold increase in disorazol production. The successful reconstitution and expression of the genetic sequences encoding for these promising cytotoxic compounds will allow combinatorial biosynthesis to generate novel disorazol derivatives for further bioactivity evaluation.

  11. Molecular evolution of paclitaxel biosynthetic genes TS and DBAT of Taxus species.

    PubMed

    Hao, Da Cheng; Yang, Ling; Huang, Beili

    2009-03-01

    Evolutionary patterns of sequence divergence were analyzed in genes from the conifer genus Taxus (yew), encoding paclitaxel biosynthetic enzymes taxadiene synthase (TS) and 10-deacetylbaccatin III-10 beta-O-acetyltransferase (DBAT). N-terminal fragments of TS, full-length DBAT and internal transcribed spacer (ITS) were amplified from 15 closely related Taxus species and sequenced. Premature stop codons were not found in TS and DBAT sequences. Codon usage bias was not found, suggesting that synonymous mutations are selectively neutral. TS and DBAT gene trees are not consistent with the ITS tree, where species formed monophyletic clades. In fact, for both genes, alleles were sometimes shared across species and parallel amino acid substitutions were identified. While both TS and DBAT are, overall, under purifying selection, we identified a number of amino acids of TS under positive selection based on inference using maximum likelihood models. Positively selected amino acids in the N-terminal region of TS suggest that this region might be more important for enzyme function than previously thought. Moreover, we identify lineages with significantly elevated rates of amino acid substitution using a genetic algorithm. These findings demonstrate that the pattern of adaptive paclitaxel biosynthetic enzyme evolution can be documented between closely related Taxus species, where species-specific taxane metabolism has evolved recently.

  12. Genetic engineering and heterologous expression of the disorazol biosynthetic gene cluster via Red/ET recombineering

    PubMed Central

    Tu, Qiang; Herrmann, Jennifer; Hu, Shengbiao; Raju, Ritesh; Bian, Xiaoying; Zhang, Youming; Müller, Rolf

    2016-01-01

    Disorazol, a macrocyclic polykitide produced by the myxobacterium Sorangium cellulosum So ce12 and it is reported to have potential cytotoxic activity towards several cancer cell lines, including multi-drug resistant cells. The disorazol biosynthetic gene cluster (dis) from Sorangium cellulosum (So ce12) was identified by transposon mutagenesis and cloned in a bacterial artificial chromosome (BAC) library. The 58-kb dis core gene cluster was reconstituted from BACs via Red/ET recombineering and expressed in Myxococcus xanthus DK1622. For the first time ever, a myxobacterial trans-AT polyketide synthase has been expressed heterologously in this study. Expression in M. xanthus allowed us to optimize the yield of several biosynthetic products using promoter engineering. The insertion of an artificial synthetic promoter upstream of the disD gene encoding a discrete acyl transferase (AT), together with an oxidoreductase (Or), resulted in 7-fold increase in disorazol production. The successful reconstitution and expression of the genetic sequences encoding for these promising cytotoxic compounds will allow combinatorial biosynthesis to generate novel disorazol derivatives for further bioactivity evaluation. PMID:26875499

  13. Expression of phenazine biosynthetic genes during the arbuscular mycorrhizal symbiosis of Glomus intraradices

    PubMed Central

    León-Martínez, Dionicia Gloria; Vielle-Calzada, Jean-Philippe; Olalde-Portugal, Víctor

    2012-01-01

    To explore the molecular mechanisms that prevail during the establishment of the arbuscular mycorrhiza symbiosis involving the genus Glomus, we transcriptionally analysed spores of Glomus intraradices BE3 during early hyphal growth. Among 458 transcripts initially identified as being expressed at presymbiotic stages, 20% of sequences had homology to previously characterized eukaryotic genes, 30% were homologous to fungal coding sequences, and 9% showed homology to previously characterized bacterial genes. Among them, GintPbr1a encodes a homolog to Phenazine Biosynthesis Regulator (Pbr) of Burkholderia cenocepacia, an pleiotropic regulatory protein that activates phenazine production through transcriptional activation of the protein D isochorismatase biosynthetic enzyme phzD (Ramos et al., 2010). Whereas GintPbr1a is expressed during the presymbiotic phase, the G. intraradices BE3 homolog of phzD (BGintphzD) is transcriptionally active at the time of the establishment of the arbuscular mycorrhizal symbiosis. DNA from isolated bacterial cultures found in spores of G. intraradices BE3 confirmed that both BGintPbr1a and BGintphzD are present in the genome of its potential endosymbionts. Taken together, our results indicate that spores of G. intraradices BE3 express bacterial phenazine biosynthetic genes at the onset of the fungal-plant symbiotic interaction. PMID:24031884

  14. The Cremeomycin Biosynthetic Gene Cluster Encodes a Pathway for Diazo Formation.

    PubMed

    Waldman, Abraham J; Pechersky, Yakov; Wang, Peng; Wang, Jennifer X; Balskus, Emily P

    2015-10-12

    Diazo groups are found in a range of natural products that possess potent biological activities. Despite longstanding interest in these metabolites, diazo group biosynthesis is not well understood, in part because of difficulties in identifying specific genes linked to diazo formation. Here we describe the discovery of the gene cluster that produces the o-diazoquinone natural product cremeomycin and its heterologous expression in Streptomyces lividans. We used stable isotope feeding experiments and in vitro characterization of biosynthetic enzymes to decipher the order of events in this pathway and establish that diazo construction involves late-stage N-N bond formation. This work represents the first successful production of a diazo-containing metabolite in a heterologous host, experimentally linking a set of genes with diazo formation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Insights into polyether biosynthesis from analysis of the nigericin biosynthetic gene cluster in Streptomyces sp. DSM4137.

    PubMed

    Harvey, Barbara M; Mironenko, Tatiana; Sun, Yuhui; Hong, Hui; Deng, Zixin; Leadlay, Peter F; Weissman, Kira J; Haydock, Stephen F

    2007-06-01

    Nigericin was among the first polyether ionophores to be discovered, but its biosynthesis remains obscure. The biosynthetic gene cluster for nigericin has been serendipitously cloned from Streptomyces sp. DSM4137, and deletion of this gene cluster abolished the production of both nigericin and the closely related metabolite abierixin. Detailed comparison of the nigericin biosynthetic genes with their counterparts in the biosynthetic clusters for other polyketides has prompted a significant revision of the proposed common pathway for polyether biosynthesis. In particular, we present evidence that in nigericin, nanchangmycin, and monensin, an unusual ketosynthase-like protein, KSX, transfers the initially formed linear polyketide chain to a discrete acyl carrier protein, ACPX, for oxidative cyclization. Consistent with this, deletion of either monACPX or monKSX from the monensin gene cluster effectively abolished monensin A biosynthesis.

  16. Genetic engineering approach using early Vinca alkaloid biosynthesis genes led to increased tryptamine and terpenoid indole alkaloids biosynthesis in differentiating cultures of Catharanthus roseus.

    PubMed

    Sharma, Abhishek; Verma, Priyanka; Mathur, Archana; Mathur, Ajay Kumar

    2017-08-14

    Catharanthus roseus today occupies the central position in ongoing metabolic engineering efforts in medicinal plants. The entire multi-step biogenetic pathway of its very expensive anticancerous alkaloids vinblastine and vincristine is fairly very well dissected at biochemical and gene levels except the pathway steps leading to biosynthesis of monomeric alkaloid catharanthine and tabersonine. In order to enhance the plant-based productivity of these pharma molecules for the drug industry, cell and tissue cultures of C. roseus are being increasingly tested to provide their alternate production platforms. However, a rigid developmental regulation and involvement of different cell, tissues, and organelles in the synthesis of these alkaloids have restricted the utility of these cultures. Therefore, the present study was carried out with pushing the terpenoid indole alkaloid pathway metabolic flux towards dimeric alkaloids vinblastine and vincristine production by over-expressing the two upstream pathway genes tryptophan decarboxylase and strictosidine synthase at two different levels of cellular organization viz. callus and leaf tissues. The transformation experiments were carried out using Agrobacterium tumefaciens LBA1119 strain having tryptophan decarboxylase and strictosidine synthase gene cassette. The callus transformation reported a maximum of 0.027% dry wt vindoline and 0.053% dry wt catharanthine production, whereas, the transiently transformed leaves reported a maximum of 0.30% dry wt vindoline, 0.10% catharanthine, and 0.0027% dry wt vinblastine content.

  17. Gene clusters for insecticidal loline alkaloids in the grass-endophytic fungus Neotyphodium uncinatum.

    PubMed

    Spiering, Martin J; Moon, Christina D; Wilkinson, Heather H; Schardl, Christopher L

    2005-03-01

    Loline alkaloids are produced by mutualistic fungi symbiotic with grasses, and they protect the host plants from insects. Here we identify in the fungal symbiont, Neotyphodium uncinatum, two homologous gene clusters (LOL-1 and LOL-2) associated with loline-alkaloid production. Nine genes were identified in a 25-kb region of LOL-1 and designated (in order) lolF-1, lolC-1, lolD-1, lolO-1, lolA-1, lolU-1, lolP-1, lolT-1, and lolE-1. LOL-2 contained the homologs lolC-2 through lolE-2 in the same order and orientation. Also identified was lolF-2, but its possible linkage with either cluster was undetermined. Most lol genes were regulated in N. uncinatum and N. coenophialum, and all were expressed concomitantly with loline-alkaloid biosynthesis. A lolC-2 RNA-interference (RNAi) construct was introduced into N. uncinatum, and in two independent transformants, RNAi significantly decreased lolC expression (P < 0.01) and loline-alkaloid accumulation in culture (P < 0.001) compared to vector-only controls, indicating involvement of lolC in biosynthesis of lolines. The predicted LolU protein has a DNA-binding site signature, and the relationships of other lol-gene products indicate that the pathway has evolved from various different primary and secondary biosynthesis pathways.

  18. Gene Clusters for Insecticidal Loline Alkaloids in the Grass-Endophytic Fungus Neotyphodium uncinatum

    PubMed Central

    Spiering, Martin J.; Moon, Christina D.; Wilkinson, Heather H.; Schardl, Christopher L.

    2005-01-01

    Loline alkaloids are produced by mutualistic fungi symbiotic with grasses, and they protect the host plants from insects. Here we identify in the fungal symbiont, Neotyphodium uncinatum, two homologous gene clusters (LOL-1 and LOL-2) associated with loline-alkaloid production. Nine genes were identified in a 25-kb region of LOL-1 and designated (in order) lolF-1, lolC-1, lolD-1, lolO-1, lolA-1, lolU-1, lolP-1, lolT-1, and lolE-1. LOL-2 contained the homologs lolC-2 through lolE-2 in the same order and orientation. Also identified was lolF-2, but its possible linkage with either cluster was undetermined. Most lol genes were regulated in N. uncinatum and N. coenophialum, and all were expressed concomitantly with loline-alkaloid biosynthesis. A lolC-2 RNA-interference (RNAi) construct was introduced into N. uncinatum, and in two independent transformants, RNAi significantly decreased lolC expression (P < 0.01) and loline-alkaloid accumulation in culture (P < 0.001) compared to vector-only controls, indicating involvement of lolC in biosynthesis of lolines. The predicted LolU protein has a DNA-binding site signature, and the relationships of other lol-gene products indicate that the pathway has evolved from various different primary and secondary biosynthesis pathways. PMID:15654104

  19. Identification of flavonoids and expression of flavonoid biosynthetic genes in two coloured tree peony flowers.

    PubMed

    Zhao, Daqiu; Tang, Wenhui; Hao, Zhaojun; Tao, Jun

    2015-04-10

    Tree peony (Paeonia suffruticosa Andr.) has been named the "king of flowers" because of its elegant and gorgeous flower colour. Among these colours, the molecular mechanisms of white formation and how white turned to red in P. suffruticosa is little known. In this study, flower colour variables, flavonoid accumulation and expression of flavonoid biosynthetic genes of white ('Xueta') and red ('Caihui') P. suffruticosa were investigated. The results showed that the flower colours of both cultivars were gradually deepened with the development of flowers. Moreover, two anthoxanthin compositions apigenin 7-O-glucoside together with apigenin deoxyheso-hexoside were identified in 'Xueta' and 'Caihui', but one main anthocyanin composition peonidin 3,5-di-O-glucoside (Pn3G5G) was only found in 'Caihui'. Total contents of anthocyanins in 'Caihui' was increased during flower development, and the same trend was presented in anthoxanthins and flavonoids of these two cultivars, but the contents of these two category flavonoid in 'Caihui' were always higher than those in 'Xueta'. Furthermore, nine structural genes in flavonoid biosynthetic pathway were isolated including the full-length cDNAs of phenylalanine ammonialyase gene (PAL), chalcone synthase gene (CHS) and chalcone isomerase gene (CHI), together with the partial-length cDNAs of flavanone 3-hydroxylase gene (F3H), flavonoid 3'-hydroxylase gene (F3'H), dihydroflavonol 4-reductase gene (DFR), anthocyanidin synthase gene (ANS), UDP-glucose: flavonoid 3-O-glucosyltransferase gene (UF3GT) and UDP-glucose: flavonoid 5-O-glucosyltransferase gene (UF5GT), and PAL, UF3GT and UF5GT were reported in P. suffruticosa for the first time. Their expression patterns showed that transcription levels of downstream genes in 'Caihui' were basically higher than those in 'Xueta', especially PsDFR and PsANS, suggesting that these two genes may play a key role in the anthocyanin biosynthesis which resulted in the shift from white to red in

  20. Bacterial Long-Chain Polyunsaturated Fatty Acids: Their Biosynthetic Genes, Functions, and Practical Use

    PubMed Central

    Yoshida, Kiyohito; Hashimoto, Mikako; Hori, Ryuji; Adachi, Takumi; Okuyama, Hidetoshi; Orikasa, Yoshitake; Nagamine, Tadashi; Shimizu, Satoru; Ueno, Akio; Morita, Naoki

    2016-01-01

    The nutritional and pharmaceutical values of long-chain polyunsaturated fatty acids (LC-PUFAs) such as arachidonic, eicosapentaenoic and docosahexaenoic acids have been well recognized. These LC-PUFAs are physiologically important compounds in bacteria and eukaryotes. Although little is known about the biosynthetic mechanisms and functions of LC-PUFAs in bacteria compared to those in higher organisms, a combination of genetic, bioinformatic, and molecular biological approaches to LC-PUFA-producing bacteria and some eukaryotes have revealed the notably diverse organization of the pfa genes encoding a polyunsaturated fatty acid synthase complex (PUFA synthase), the LC-PUFA biosynthetic processes, and tertiary structures of the domains of this enzyme. In bacteria, LC-PUFAs appear to take part in specific functions facilitating individual membrane proteins rather than in the adjustment of the physical fluidity of the whole cell membrane. Very long chain polyunsaturated hydrocarbons (LC-HCs) such as hentriacontanonaene are considered to be closely related to LC-PUFAs in their biosynthesis and function. The possible role of LC-HCs in strictly anaerobic bacteria under aerobic and anaerobic environments and the evolutionary relationships of anaerobic and aerobic bacteria carrying pfa-like genes are also discussed. PMID:27187420

  1. Transcriptome and Metabolite analysis reveal candidate genes of the cardiac glycoside biosynthetic pathway from Calotropis procera

    PubMed Central

    Pandey, Akansha; Swarnkar, Vishakha; Pandey, Tushar; Srivastava, Piush; Kanojiya, Sanjeev; Mishra, Dipak Kumar; Tripathi, Vineeta

    2016-01-01

    Calotropis procera is a medicinal plant of immense importance due to its pharmaceutical active components, especially cardiac glycosides (CG). As genomic resources for this plant are limited, the genes involved in CG biosynthetic pathway remain largely unknown till date. Our study on stage and tissue specific metabolite accumulation showed that CG’s were maximally accumulated in stems of 3 month old seedlings. De novo transcriptome sequencing of same was done using high throughput Illumina HiSeq platform generating 44074 unigenes with average mean length of 1785 base pair. Around 66.6% of unigenes were annotated by using various public databases and 5324 unigenes showed significant match in the KEGG database involved in 133 different pathways of plant metabolism. Further KEGG analysis resulted in identification of 336 unigenes involved in cardenolide biosynthesis. Tissue specific expression analysis of 30 putative transcripts involved in terpenoid, steroid and cardenolide pathways showed a positive correlation between metabolite and transcript accumulation. Wound stress elevated CG levels as well the levels of the putative transcripts involved in its biosynthetic pathways. This result further validated the involvement of identified transcripts in CGs biosynthesis. The identified transcripts will lay a substantial foundation for further research on metabolic engineering and regulation of cardiac glycosides biosynthesis pathway genes. PMID:27703261

  2. Evolution of the Structure and Chromosomal Distribution of Histidine Biosynthetic Genes

    NASA Astrophysics Data System (ADS)

    Fani, Renato; Mori, Elena; Tamburini, Elena; Lazcano, Antonio

    1998-10-01

    A database of more than 100 histidine biosynthetic genes from different organisms belonging to the three primary domains has been analyzed, including those found in the now completely sequenced genomes of Haemophilus influenzae, Mycoplasma genitalium, Synechocystis sp., Methanococcus jannaschii, and Saccharomyces cerevisiae. The ubiquity of his genes suggests that it is a highly conserved pathway that was probably already present in the last common ancestor of all extant life. The chromosomal distribution of the his genes shows that the enterobacterial histidine operon structure is not the only possible organization, and that there is a diversity of gene arrays for the his pathway. Analysis of the available sequences shows that gene fusions (like those involved in the origin of the Escherichia coli and Salmonella typhimurium hisIE and hisB gene structures) are not universal. In contrast, the elongation event that led to the extant hisA gene from two homologous ancestral modules, as well as the subsequent paralogous duplication that originated hisF, appear to be irreversible and are conserved in all known organisms. The available evidence supports the hypothesis that histidine biosynthesis was assembled by a gene recruitment process.

  3. Multiplex PCR analysis of fumonisin biosynthetic genes in fumonisin-nonproducing Aspergillus niger and A. awamori strains

    USDA-ARS?s Scientific Manuscript database

    In order to determine the genetic basis for loss of fumonisin B¬2 (FB2) biosynthesis in FB2 non-producing A. niger strains, we developed multiplex PCR primer sets to amplify fragments of eight fumonisin biosynthetic pathway (fum) genes. Fragments of all eight fum genes were amplified in FB2-produci...

  4. Multiplexed CRISPR/Cas9- and TAR-Mediated Promoter Engineering of Natural Product Biosynthetic Gene Clusters in Yeast.

    PubMed

    Kang, Hahk-Soo; Charlop-Powers, Zachary; Brady, Sean F

    2016-09-16

    The use of DNA sequencing to guide the discovery of natural products has emerged as a new paradigm for revealing chemistries encoded in bacterial genomes. A major obstacle to implementing this approach to natural product discovery is the transcriptional silence of biosynthetic gene clusters under laboratory growth conditions. Here we describe an improved yeast-based promoter engineering platform (mCRISTAR) that combines CRISPR/Cas9 and TAR to enable single-marker multiplexed promoter engineering of large gene clusters. mCRISTAR highlights the first application of the CRISPR/Cas9 system to multiplexed promoter engineering of natural product biosynthetic gene clusters. In this method, CRISPR/Cas9 is used to induce DNA double-strand breaks in promoter regions of biosynthetic gene clusters, and the resulting operon fragments are reassembled by TAR using synthetic gene-cluster-specific promoter cassettes. mCRISTAR uses a CRISPR array to simplify the construction of a CRISPR plasmid for multiplex CRISPR and a single auxotrophic selection to improve the inefficiency of using a CRISPR array for multiplex gene cluster refactoring. mCRISTAR is a simple and generic method for multiplexed replacement of promoters in biosynthetic gene clusters that will facilitate the discovery of natural products from the rapidly growing collection of gene clusters found in microbial genome and metagenome sequencing projects.

  5. Horizontal gene transfer and redundancy of tryptophan biosynthetic enzymes in dinotoms.

    PubMed

    Imanian, Behzad; Keeling, Patrick J

    2014-02-01

    A tertiary endosymbiosis between a dinoflagellate host and diatom endosymbiont gave rise to "dinotoms," cells with a unique nuclear and mitochondrial redundancy derived from two evolutionarily distinct eukaryotic lineages. To examine how this unique redundancy might have affected the evolution of metabolic systems, we investigated the transcription of genes involved in biosynthesis of the amino acid tryptophan in three species, Durinskia baltica, Kryptoperidinium foliaceum, and Glenodinium foliaceum. From transcriptome sequence data, we recovered two distinct sets of protein-coding transcripts covering the entire tryptophan biosynthetic pathway. Phylogenetic analyses suggest a diatom origin for one set of the proteins, which we infer to be expressed in the endosymbiont, and that the other arose from multiple horizontal gene transfer events to the dinoflagellate ancestor of the host lineage. This is the first indication that these cells retain redundant sets of transcripts and likely metabolic pathways for the biosynthesis of small molecules and extend their redundancy to their two distinct nuclear genomes.

  6. Heparan sulfate biosynthetic gene Ndst1 is required for FGF signaling in early lens development.

    PubMed

    Pan, Yi; Woodbury, Andrea; Esko, Jeffrey D; Grobe, Kay; Zhang, Xin

    2006-12-01

    Multiple signaling molecules, including bone morphogenic proteins (BMP) and fibroblast growth factors (FGF), play important roles in early lens development. However, how these morphogens are regulated is still largely unknown. Heparan sulfate participates in both morphogen transport and morphogen-receptor interaction. In this study, we demonstrate that inactivation of the heparan sulfate biosynthetic gene Ndst1 resulted in invagination defects of the early lens and in the disruption of lens-determination gene expression, leading to severe lens hypoplasia or anophthalmia. Ndst1 mutants exhibited reduced sulfation of heparan sulfate, but both BMP- and Wnt-signaling remained unchanged. Instead, these embryos showed diminished binding of a subset of FGF proteins to FGF receptors. Consistent with disruption of FGF signaling, expression of phospho-Erk and ERM were also downregulated in Ndst1-mutant lenses. Taken together, these results establish an important role of Ndst1 function in FGF signaling during lens development.

  7. Cloning of three human multifunctional de novo purine biosynthetic genes by functional complementation of yeast mutations.

    PubMed Central

    Schild, D; Brake, A J; Kiefer, M C; Young, D; Barr, P J

    1990-01-01

    Functional complementation of mutations in the yeast Saccharomyces cerevisiae has been used to clone three multifunctional human genes involved in de novo purine biosynthesis. A HepG2 cDNA library constructed in a yeast expression vector was used to transform yeast strains with mutations in adenine biosynthetic genes. Clones were isolated that complement mutations in the yeast ADE2, ADE3, and ADE8 genes. The cDNA that complemented the ade8 (phosphoribosylglycinamide formyltransferase, GART) mutation, also complemented the ade5 (phosphoribosylglycinamide synthetase) and ade7 [phosphoribosylaminoimidazole synthetase (AIRS; also known as PAIS)] mutations, indicating that it is the human trifunctional GART gene. Supporting data include homology between the AIRS and GART domains of this gene and the published sequence of these domains from other organisms, and localization of the cloned gene to human chromosome 21, where the GART gene has been shown to map. The cDNA that complemented ade2 (phosphoribosylaminoimidazole carboxylase) also complemented ade1 (phosphoribosylaminoimidazole succinocarboxamide synthetase), supporting earlier data suggesting that in some organisms these functions are part of a bifunctional protein. The cDNA that complemented ade3 (formyltetrahydrofolate synthetase) is different from the recently isolated human cDNA encoding this enzyme and instead appears to encode a related mitochondrial enzyme. Images PMID:2183217

  8. Stress and developmental responses of terpenoid biosynthetic genes in Cistus creticus subsp. creticus.

    PubMed

    Pateraki, Irene; Kanellis, Angelos K

    2010-06-01

    Plants, and specially species adapted in non-friendly environments, produce secondary metabolites that help them to cope with biotic or abiotic stresses. These metabolites could be of great pharmaceutical interest because several of those show cytotoxic, antibacterial or antioxidant activities. Leaves' trichomes of Cistus creticus ssp. creticus, a Mediterranean xerophytic shrub, excrete a resin rich in several labdane-type diterpenes with verified in vitro and in vivo cytotoxic and cytostatic activity against human cancer cell lines. Bearing in mind the properties and possible future exploitation of these natural products, it seemed interesting to study their biosynthesis and its regulation, initially at the molecular level. For this purpose, genes encoding enzymes participating in the early steps of the terpenoids biosynthetic pathways were isolated and their gene expression patterns were investigated in different organs and in response to various stresses and defence signals. The genes studied were the CcHMGR from the mevalonate pathway, CcDXS and CcDXR from the methylerythritol 4-phosphate pathway and the two geranylgeranyl diphosphate synthases (CcGGDPS1 and 2) previously characterized from this species. The present work indicates that the leaf trichomes are very active biosynthetically as far as it concerns terpenoids biosynthesis, and the terpenoid production from this tissue seems to be transcriptionally regulated. Moreover, the CcHMGR and CcDXS genes (the rate-limiting steps of the isoprenoids' pathways) showed an increase during mechanical wounding and application of defence signals (like meJA and SA), which is possible to reflect an increased need of the plant tissues for the corresponding metabolites.

  9. [Cloning and analysis of geldanamycin partial biosynthetic gene cluster of Streptomyces hygroscopicus 17997].

    PubMed

    He, Wei-Qing; Wang, Yi-Guang

    2006-11-01

    A geldanamycin (GDM) producing strain, Streptomyces hygroscopicus 17997, was isolated from Yunnan China soil by our institute researchers. GDM is an ansamycin antibiotic, which has the ability to bind with Hsp90 (Heat Shock Protein 90) and alter its function. Hsp90 is a chaperone protein involved in the regulation of the cell cycle, cell growth, cell survival, apoptosis, and oncogenesis. So it plays a key role in regulating the physiology of cells exposed to environmental stress and in maintaining the malignant phenotype of tumor cells. As an inhibitor of Hsp90, GDM possesses potent antitumor and antivirus bioactivity, but the hypato-toxicity and poor solubility in water limits its clinical use. Two GDM derivatives, 17-(Allylamino)-17-demethoxygeldanamycin (17-AAG) and 17-dimethylamino-ethylamino-17-demethoxygeldanamycin (17-DMAG), both showing lesser hepato-toxicity, are now in Phase II and Phase I clinic trials. In order to accomplish the structure modification of GDM by genetic means, an attempt to obtain the biosynthetic gene cluster of GDM from S. hygroscopicus 17997 was made. In this study, a pair of primers was designed according to a conserved sequence of one of possible post-PKS (polyketides synthase) modification genes, the carbamoyltransferase (CT) gene (gdmN) in GDM biosynthesis. The 732 bp PCR product was obtained from the S. hygroscopicus 17997 genomic DNA. Through the colony-PCR Binary Search Method, using the CT gene primers, six positive cosmid clones, CT1-6, were identified from the S. hygroscopicus 17997 cosmid genomic library. The CT gene containing fragments were verified and localized by Southern blot. The CT-4 positive cosmid was then sub-cloned and sequenced. Approximately 28.356kb of foreign gene sequence from CT-4 cosmid and by further PCR extension reaction was obtained. Based on BLAST analysis, this sequence contains 13 possible ORFs and their deduced functions are believed to be involved in GDM production. The ORF1 encoding products

  10. Phenylpropanoids Accumulation in Eggplant Fruit: Characterization of Biosynthetic Genes and Regulation by a MYB Transcription Factor.

    PubMed

    Docimo, Teresa; Francese, Gianluca; Ruggiero, Alessandra; Batelli, Giorgia; De Palma, Monica; Bassolino, Laura; Toppino, Laura; Rotino, Giuseppe L; Mennella, Giuseppe; Tucci, Marina

    2015-01-01

    Phenylpropanoids are major secondary metabolites in eggplant (Solanum melongena) fruits. Chlorogenic acid (CGA) accounts for 70-90% of total phenolics in flesh tissues, while anthocyanins are mainly present in the fruit skin. As a contribution to the understanding of the peculiar accumulation of these health-promoting metabolites in eggplant, we report on metabolite abundance, regulation of CGA and anthocyanin biosynthesis, and characterization of candidate CGA biosynthetic genes in S. melongena. Higher contents of CGA, Delphinidin 3-rutinoside, and rutin were found in eggplant fruits compared to other tissues, associated to an elevated transcript abundance of structural genes such as PAL, HQT, DFR, and ANS, suggesting that active in situ biosynthesis contributes to anthocyanin and CGA accumulation in fruit tissues. Putative orthologs of the two CGA biosynthetic genes PAL and HQT, as well as a variant of a MYB1 transcription factor showing identity with group six MYBs, were isolated from an Occidental S. melongena traditional variety and demonstrated to differ from published sequences from Asiatic varieties. In silico analysis of the isolated SmPAL1, SmHQT1, SmANS, and SmMyb1 promoters revealed the presence of several Myb regulatory elements for the biosynthetic genes and unique elements for the TF, suggesting its involvement in other physiological roles beside phenylpropanoid biosynthesis regulation. Transient overexpression in Nicotiana benthamiana leaves of SmMyb1 and of a C-terminal SmMyb1 truncated form (SmMyb1Δ9) resulted in anthocyanin accumulation only of SmMyb1 agro-infiltrated leaves. A yeast two-hybrid assay confirmed the interaction of both SmMyb1 and SmMyb1Δ9 with an anthocyanin-related potato bHLH1 TF. Interestingly, a doubled amount of CGA was detected in both SmMyb1 and SmMyb1Δ9 agro-infiltrated leaves, thus suggesting that the N-terminal region of SmMyb1 is sufficient to activate its synthesis. These data suggest that a deletion of the C

  11. Phenylpropanoids Accumulation in Eggplant Fruit: Characterization of Biosynthetic Genes and Regulation by a MYB Transcription Factor

    PubMed Central

    Docimo, Teresa; Francese, Gianluca; Ruggiero, Alessandra; Batelli, Giorgia; De Palma, Monica; Bassolino, Laura; Toppino, Laura; Rotino, Giuseppe L.; Mennella, Giuseppe; Tucci, Marina

    2016-01-01

    Phenylpropanoids are major secondary metabolites in eggplant (Solanum melongena) fruits. Chlorogenic acid (CGA) accounts for 70–90% of total phenolics in flesh tissues, while anthocyanins are mainly present in the fruit skin. As a contribution to the understanding of the peculiar accumulation of these health-promoting metabolites in eggplant, we report on metabolite abundance, regulation of CGA and anthocyanin biosynthesis, and characterization of candidate CGA biosynthetic genes in S. melongena. Higher contents of CGA, Delphinidin 3-rutinoside, and rutin were found in eggplant fruits compared to other tissues, associated to an elevated transcript abundance of structural genes such as PAL, HQT, DFR, and ANS, suggesting that active in situ biosynthesis contributes to anthocyanin and CGA accumulation in fruit tissues. Putative orthologs of the two CGA biosynthetic genes PAL and HQT, as well as a variant of a MYB1 transcription factor showing identity with group six MYBs, were isolated from an Occidental S. melongena traditional variety and demonstrated to differ from published sequences from Asiatic varieties. In silico analysis of the isolated SmPAL1, SmHQT1, SmANS, and SmMyb1 promoters revealed the presence of several Myb regulatory elements for the biosynthetic genes and unique elements for the TF, suggesting its involvement in other physiological roles beside phenylpropanoid biosynthesis regulation. Transient overexpression in Nicotiana benthamiana leaves of SmMyb1 and of a C-terminal SmMyb1 truncated form (SmMyb1Δ9) resulted in anthocyanin accumulation only of SmMyb1 agro-infiltrated leaves. A yeast two-hybrid assay confirmed the interaction of both SmMyb1 and SmMyb1Δ9 with an anthocyanin-related potato bHLH1 TF. Interestingly, a doubled amount of CGA was detected in both SmMyb1 and SmMyb1Δ9 agro-infiltrated leaves, thus suggesting that the N-terminal region of SmMyb1 is sufficient to activate its synthesis. These data suggest that a deletion of the C

  12. Genetics of ergoline alkaloid formation in Penicillium roquefortii.

    PubMed Central

    Hong, S L; Robbers, J E

    1985-01-01

    Auxotrophic, spore color, and alkaloid biosynthetic mutants of Penicillium roquefortii were selected after N-methyl-N'-nitro-N-nitrosoguanidine treatment. Diploids were obtained via protoplast fusion techniques, and the segregants from a diploid were genetically analyzed. The data demonstrated the potential of parasexual recombination in this organism. Evidence was obtained which suggests that the his and sts (sensitivity to Sulfatase) genes may be linked. The genetic information obtained in this study can serve as a starting point for further mapping of genes in P. roquefortii, and indications are that this organism may serve as a promising vehicle for the genetic study of the formation of ergoline alkaloids. PMID:4073893

  13. A Systematic Computational Analysis of Biosynthetic Gene Cluster Evolution: Lessons for Engineering Biosynthesis

    PubMed Central

    Sali, Andrej; Takano, Eriko; Fischbach, Michael A.

    2014-01-01

    Bacterial secondary metabolites are widely used as antibiotics, anticancer drugs, insecticides and food additives. Attempts to engineer their biosynthetic gene clusters (BGCs) to produce unnatural metabolites with improved properties are often frustrated by the unpredictability and complexity of the enzymes that synthesize these molecules, suggesting that genetic changes within BGCs are limited by specific constraints. Here, by performing a systematic computational analysis of BGC evolution, we derive evidence for three findings that shed light on the ways in which, despite these constraints, nature successfully invents new molecules: 1) BGCs for complex molecules often evolve through the successive merger of smaller sub-clusters, which function as independent evolutionary entities. 2) An important subset of polyketide synthases and nonribosomal peptide synthetases evolve by concerted evolution, which generates sets of sequence-homogenized domains that may hold promise for engineering efforts since they exhibit a high degree of functional interoperability, 3) Individual BGC families evolve in distinct ways, suggesting that design strategies should take into account family-specific functional constraints. These findings suggest novel strategies for using synthetic biology to rationally engineer biosynthetic pathways. PMID:25474254

  14. Bioinformatics Analysis of Phylogeny and Transcription of TAA/YUC Auxin Biosynthetic Genes.

    PubMed

    Poulet, Axel; Kriechbaumer, Verena

    2017-08-18

    Auxin is a main plant growth hormone crucial in a multitude of developmental processes in plants. Auxin biosynthesis via the tryptophan aminotransferase of arabidopsis (TAA)/YUCCA (YUC) route involving tryptophan aminotransferases and YUC flavin-dependent monooxygenases that produce the auxin indole-3-acetic acid (IAA) from tryptophan is currently the most researched auxin biosynthetic pathway. Previous data showed that, in maize and arabidopsis, TAA/YUC-dependent auxin biosynthesis can be detected in endoplasmic reticulum (ER) microsomal fractions, and a subset of auxin biosynthetic proteins are localized to the ER, mainly due to transmembrane domains (TMD). The phylogeny presented here for TAA/TAR (tryptophan aminotransferase related) and YUC proteins analyses phylogenetic groups as well as transmembrane domains for ER-membrane localisation. In addition, RNAseq datasets are analysed for transcript abundance of YUC and TAA/TAR proteins in Arabidopsis thaliana. We show that ER membrane localisation for TAA/YUC proteins involved in auxin biosynthesis is already present early on in the evolution of mosses and club mosses. ER membrane anchored YUC proteins can mainly be found in roots, while cytosolic proteins are more abundant in the shoot. The distribution between the different phylogenetic classes in root and shoot may well originate from gene duplications, and the phylogenetic groups detected also overlap with the biological function.

  15. Bioinformatics Analysis of Phylogeny and Transcription of TAA/YUC Auxin Biosynthetic Genes

    PubMed Central

    2017-01-01

    Auxin is a main plant growth hormone crucial in a multitude of developmental processes in plants. Auxin biosynthesis via the tryptophan aminotransferase of arabidopsis (TAA)/YUCCA (YUC) route involving tryptophan aminotransferases and YUC flavin-dependent monooxygenases that produce the auxin indole-3-acetic acid (IAA) from tryptophan is currently the most researched auxin biosynthetic pathway. Previous data showed that, in maize and arabidopsis, TAA/YUC-dependent auxin biosynthesis can be detected in endoplasmic reticulum (ER) microsomal fractions, and a subset of auxin biosynthetic proteins are localized to the ER, mainly due to transmembrane domains (TMD). The phylogeny presented here for TAA/TAR (tryptophan aminotransferase related) and YUC proteins analyses phylogenetic groups as well as transmembrane domains for ER-membrane localisation. In addition, RNAseq datasets are analysed for transcript abundance of YUC and TAA/TAR proteins in Arabidopsis thaliana. We show that ER membrane localisation for TAA/YUC proteins involved in auxin biosynthesis is already present early on in the evolution of mosses and club mosses. ER membrane anchored YUC proteins can mainly be found in roots, while cytosolic proteins are more abundant in the shoot. The distribution between the different phylogenetic classes in root and shoot may well originate from gene duplications, and the phylogenetic groups detected also overlap with the biological function. PMID:28820425

  16. Para-position derivatives of fungal anthelmintic cyclodepsipeptides engineered with Streptomyces venezuelae antibiotic biosynthetic genes.

    PubMed

    Yanai, Koji; Sumida, Naomi; Okakura, Kaoru; Moriya, Tatsuki; Watanabe, Manabu; Murakami, Takeshi

    2004-07-01

    PF1022A, a cyclooctadepsipeptide possessing strong anthelmintic properties and produced by the filamentous fungus Rosellinia sp. PF1022, consists of four alternating residues of N-methyl-L-leucine and four residues of D-lactate or D-phenyllactate. PF1022A derivatives obtained through modification of their benzene ring at the para-position with nitro or amino groups act as valuable starting materials for the synthesis of compounds with improved anthelmintic activities. Here we describe the production of such derivatives by fermentation through metabolic engineering of the PF1022A biosynthetic pathway in Rosellinia sp. PF1022. Three genes cloned from Streptomyces venezuelae, and required for the biosynthesis of p-aminophenylpyruvate from chorismate in the chloramphenicol biosynthetic pathway, were expressed in a chorismate mutase-deficient strain derived from Rosellinia sp. PF1022. Liquid chromatography-mass spectrometry and NMR analyses confirmed that this approach facilitated the production of PF1022A derivatives specifically modified at the para-position. This fermentation method is environmentally safe and can be used for the industrial scale production of PF1022A derivatives.

  17. A systematic computational analysis of biosynthetic gene cluster evolution: lessons for engineering biosynthesis.

    PubMed

    Medema, Marnix H; Cimermancic, Peter; Sali, Andrej; Takano, Eriko; Fischbach, Michael A

    2014-12-01

    Bacterial secondary metabolites are widely used as antibiotics, anticancer drugs, insecticides and food additives. Attempts to engineer their biosynthetic gene clusters (BGCs) to produce unnatural metabolites with improved properties are often frustrated by the unpredictability and complexity of the enzymes that synthesize these molecules, suggesting that genetic changes within BGCs are limited by specific constraints. Here, by performing a systematic computational analysis of BGC evolution, we derive evidence for three findings that shed light on the ways in which, despite these constraints, nature successfully invents new molecules: 1) BGCs for complex molecules often evolve through the successive merger of smaller sub-clusters, which function as independent evolutionary entities. 2) An important subset of polyketide synthases and nonribosomal peptide synthetases evolve by concerted evolution, which generates sets of sequence-homogenized domains that may hold promise for engineering efforts since they exhibit a high degree of functional interoperability, 3) Individual BGC families evolve in distinct ways, suggesting that design strategies should take into account family-specific functional constraints. These findings suggest novel strategies for using synthetic biology to rationally engineer biosynthetic pathways.

  18. Saponin determination, expression analysis and functional characterization of saponin biosynthetic genes in Chenopodium quinoa leaves.

    PubMed

    Fiallos-Jurado, Jennifer; Pollier, Jacob; Moses, Tessa; Arendt, Philipp; Barriga-Medina, Noelia; Morillo, Eduardo; Arahana, Venancio; de Lourdes Torres, Maria; Goossens, Alain; Leon-Reyes, Antonio

    2016-09-01

    Quinoa (Chenopodium quinoa Willd.) is a highly nutritious pseudocereal with an outstanding protein, vitamin, mineral and nutraceutical content. The leaves, flowers and seed coat of quinoa contain triterpenoid saponins, which impart bitterness to the grain and make them unpalatable without postharvest removal of the saponins. In this study, we quantified saponin content in quinoa leaves from Ecuadorian sweet and bitter genotypes and assessed the expression of saponin biosynthetic genes in leaf samples elicited with methyl jasmonate. We found saponin accumulation in leaves after MeJA treatment in both ecotypes tested. As no reference genes were available to perform qPCR in quinoa, we mined publicly available RNA-Seq data for orthologs of 22 genes known to be stably expressed in Arabidopsis thaliana using geNorm, NormFinder and BestKeeper algorithms. The quinoa ortholog of At2g28390 (Monensin Sensitivity 1, MON1) was stably expressed and chosen as a suitable reference gene for qPCR analysis. Candidate saponin biosynthesis genes were screened in the quinoa RNA-Seq data and subsequent functional characterization in yeast led to the identification of CqbAS1, CqCYP716A78 and CqCYP716A79. These genes were found to be induced by MeJA, suggesting this phytohormone might also modulate saponin biosynthesis in quinoa leaves. Knowledge of the saponin biosynthesis and its regulation in quinoa may aid the further development of sweet cultivars that do not require postharvest processing.

  19. Phylogenomics of the benzoxazinoid biosynthetic pathway of Poaceae: gene duplications and origin of the Bx cluster

    PubMed Central

    2012-01-01

    Background The benzoxazinoids 2,4-dihydroxy-1,4-benzoxazin-3-one (DIBOA) and 2,4-dihydroxy-7- methoxy-1,4-benzoxazin-3-one (DIMBOA), are key defense compounds present in major agricultural crops such as maize and wheat. Their biosynthesis involves nine enzymes thought to form a linear pathway leading to the storage of DI(M)BOA as glucoside conjugates. Seven of the genes (Bx1-Bx6 and Bx8) form a cluster at the tip of the short arm of maize chromosome 4 that includes four P450 genes (Bx2-5) belonging to the same CYP71C subfamily. The origin of this cluster is unknown. Results We show that the pathway appeared following several duplications of the TSA gene (α-subunit of tryptophan synthase) and of a Bx2-like ancestral CYP71C gene and the recruitment of Bx8 before the radiation of Poaceae. The origins of Bx6 and Bx7 remain unclear. We demonstrate that the Bx2-like CYP71C ancestor was not committed to the benzoxazinoid pathway and that after duplications the Bx2-Bx5 genes were under positive selection on a few sites and underwent functional divergence, leading to the current specific biochemical properties of the enzymes. The absence of synteny between available Poaceae genomes involving the Bx gene regions is in contrast with the conserved synteny in the TSA gene region. Conclusions These results demonstrate that rearrangements following duplications of an IGL/TSA gene and of a CYP71C gene probably resulted in the clustering of the new copies (Bx1 and Bx2) at the tip of a chromosome in an ancestor of grasses. Clustering favored cosegregation and tip chromosomal location favored gene rearrangements that allowed the further recruitment of genes to the pathway. These events, a founding event and elongation events, may have been the key to the subsequent evolution of the benzoxazinoid biosynthetic cluster. PMID:22577841

  20. Phylogenomics of the benzoxazinoid biosynthetic pathway of Poaceae: gene duplications and origin of the Bx cluster.

    PubMed

    Dutartre, Leslie; Hilliou, Frédérique; Feyereisen, René

    2012-05-11

    The benzoxazinoids 2,4-dihydroxy-1,4-benzoxazin-3-one (DIBOA) and 2,4-dihydroxy-7- methoxy-1,4-benzoxazin-3-one (DIMBOA), are key defense compounds present in major agricultural crops such as maize and wheat. Their biosynthesis involves nine enzymes thought to form a linear pathway leading to the storage of DI(M)BOA as glucoside conjugates. Seven of the genes (Bx1-Bx6 and Bx8) form a cluster at the tip of the short arm of maize chromosome 4 that includes four P450 genes (Bx2-5) belonging to the same CYP71C subfamily. The origin of this cluster is unknown. We show that the pathway appeared following several duplications of the TSA gene (α-subunit of tryptophan synthase) and of a Bx2-like ancestral CYP71C gene and the recruitment of Bx8 before the radiation of Poaceae. The origins of Bx6 and Bx7 remain unclear. We demonstrate that the Bx2-like CYP71C ancestor was not committed to the benzoxazinoid pathway and that after duplications the Bx2-Bx5 genes were under positive selection on a few sites and underwent functional divergence, leading to the current specific biochemical properties of the enzymes. The absence of synteny between available Poaceae genomes involving the Bx gene regions is in contrast with the conserved synteny in the TSA gene region. These results demonstrate that rearrangements following duplications of an IGL/TSA gene and of a CYP71C gene probably resulted in the clustering of the new copies (Bx1 and Bx2) at the tip of a chromosome in an ancestor of grasses. Clustering favored cosegregation and tip chromosomal location favored gene rearrangements that allowed the further recruitment of genes to the pathway. These events, a founding event and elongation events, may have been the key to the subsequent evolution of the benzoxazinoid biosynthetic cluster.

  1. Structures and comparative characterization of biosynthetic gene clusters for cyanosporasides, enediyne-derived natural products from marine actinomycetes.

    PubMed

    Lane, Amy L; Nam, Sang-Jip; Fukuda, Takashi; Yamanaka, Kazuya; Kauffman, Christopher A; Jensen, Paul R; Fenical, William; Moore, Bradley S

    2013-03-20

    Cyanosporasides are marine bacterial natural products containing a chlorinated cyclopenta[a]indene core of suspected enediyne polyketide biosynthetic origin. Herein, we report the isolation and characterization of novel cyanosporasides C-F (3-6) from the marine actinomycetes Salinispora pacifica CNS-143 and Streptomyces sp. CNT-179, highlighted by the unprecedented C-2' N-acetylcysteamine functionalized hexose group of 6. Cloning, sequencing, and mutagenesis of homologous ~50 kb cyanosporaside biosynthetic gene clusters from both bacteria afforded the first genetic evidence supporting cyanosporaside's enediyne, and thereby p-benzyne biradical, biosynthetic origin and revealed the molecular basis for nitrile and glycosyl functionalization. This study provides new opportunities for bioengineering of enediyne derivatives and expands the structural diversity afforded by enediyne gene clusters.

  2. Carotenoid profiling and the expression of carotenoid biosynthetic genes in developing coffee grain.

    PubMed

    Simkin, Andrew J; Kuntz, Marcel; Moreau, Helene; McCarthy, James

    2010-06-01

    Roasted coffee contains a complex array of volatile organic compounds (VOCs) which make an important contribution to the characteristic flavour and aroma of the final beverage. It is thought that a few of the potent coffee aroma components, such as "beta-damascenone", could be derived from carotenoid precursors. In order to further investigate the potential link between carotenoids and coffee aroma profiles, we have measured the carotenoid content in developing coffee grain. The data obtained confirms the presence of lutein in the grain, and additionally shows that the immature coffee grain also contains significant amounts of beta-carotene, alpha-carotene, violaxanthin, and neoxanthin. Complimentary quantitative gene expression analysis revealed that all the carotenoid biosynthetic genes examined are expressed in the grain, and that the transcript levels are gene and stage dependent. Furthermore, consistent with the reduction of the carotenoid levels at the last stage of grain development (mature-red), most of the transcript levels were also found to be lower at the final developmental stage. Quantitative expression analysis of the carotenoid genes was also carried out for the developing pericarp tissue of the coffee cherries. Again, all the genes examined were expressed, and in most cases, the highest transcript levels were detected around the large green-yellow stages, a period when carotenoid synthesis is probably greatest.

  3. Cloning and engineering of the cinnamycin biosynthetic gene cluster from Streptomyces cinnamoneus cinnamoneus DSM 40005

    PubMed Central

    Widdick, D. A.; Dodd, H. M.; Barraille, P.; White, J.; Stein, T. H.; Chater, K. F.; Gasson, M. J.; Bibb, M. J.

    2003-01-01

    Lantibiotics are ribosomally synthesized oligopeptide antibiotics that contain lanthionine bridges derived by the posttranslational modification of amino acid residues. Here, we describe the cinnamycin biosynthetic gene cluster (cin) from Streptomyces cinnamoneus cinnamoneus DSM 40005, the first, to our knowledge, lantibiotic gene cluster from a high G+C bacterium to be cloned and sequenced. The cin cluster contains many genes not found in lantibiotic clusters from low G+C Gram-positive bacteria, including a Streptomyces antibiotic regulatory protein regulatory gene, and lacks others found in such clusters, such as a LanT-type transporter and a LanP-type protease. Transfer of the cin cluster to Streptomyces lividans resulted in heterologous production of cinnamycin. Furthermore, modification of the cinnamycin structural gene (cinA) led to production of two naturally occurring lantibiotics, duramycin and duramycin B, closely resembling cinnamycin, whereas attempts to make a more widely diverged derivative, duramycin C, failed to generate biologically active material. These results provide a basis for future attempts to construct extensive libraries of cinnamycin variants. PMID:12642677

  4. Molecular cloning and identification of the laspartomycin biosynthetic gene cluster from Streptomyces viridochromogenes

    PubMed Central

    Wang, Yang; Chen, Ying; Shen, Qirong; Yin, Xihou

    2011-01-01

    The biosynthetic gene cluster for laspartomycins, a family of 11 amino acid peptide antibiotics, has been cloned and sequenced from Streptomyces viridochromogenes ATCC 29814. Annotation of a segment of 88912 bp of S. viridochromogenes genomic sequence revealed the putative las cluster and its flanking regions which harbor 43 open reading frames. The lpm cluster, which spans approximately 60 kb, consists of 21 open reading frames. Those include four NRPS genes (lpmA/orf18, lpmB/orf25, lpmC/orf26 and lpmD/orf27), four genes (orfs 21, 22, 24 and 29) involved in the lipid tail biosynthesis and attachment, four regulatory genes (orfs 13, 19, 32 and 33) and three putative exporters or self-resistance genes (orfs 14, 20 and 30). In addition, the gene involved in the biosynthesis of the nonproteinogenic amino acid Pip was also identified in the lpm cluster while the genes necessary for the biosynthesis of the rare residue diaminopropionic acid (Dap) were found to reside elsewhere on the chromosome. Interestingly, the dabA, dabB and dabC genes predicted to code for the biosynthesis of the unusual amino acid diaminobutyric acid (Dab) are organized into the lpm cluster even though the Dab residue was not found in the laspartomycins. Disruption of the NRPS lpmC gene completely abolished laspartomycin production in the corresponding mutant strain. These findings will allow molecular engineering and combinatorial biosynthesis approaches to expand the structural diversity of the amphomycin-group peptide antibiotics including the laspartomycins and friulimicins. PMID:21640802

  5. The antiSMASH database, a comprehensive database of microbial secondary metabolite biosynthetic gene clusters

    PubMed Central

    Blin, Kai; Medema, Marnix H.; Kottmann, Renzo; Lee, Sang Yup; Weber, Tilmann

    2017-01-01

    Secondary metabolites produced by microorganisms are the main source of bioactive compounds that are in use as antimicrobial and anticancer drugs, fungicides, herbicides and pesticides. In the last decade, the increasing availability of microbial genomes has established genome mining as a very important method for the identification of their biosynthetic gene clusters (BGCs). One of the most popular tools for this task is antiSMASH. However, so far, antiSMASH is limited to de novo computing results for user-submitted genomes and only partially connects these with BGCs from other organisms. Therefore, we developed the antiSMASH database, a simple but highly useful new resource to browse antiSMASH-annotated BGCs in the currently 3907 bacterial genomes in the database and perform advanced search queries combining multiple search criteria. antiSMASH-DB is available at http://antismash-db.secondarymetabolites.org/. PMID:27924032

  6. The antiSMASH database, a comprehensive database of microbial secondary metabolite biosynthetic gene clusters.

    PubMed

    Blin, Kai; Medema, Marnix H; Kottmann, Renzo; Lee, Sang Yup; Weber, Tilmann

    2017-01-04

    Secondary metabolites produced by microorganisms are the main source of bioactive compounds that are in use as antimicrobial and anticancer drugs, fungicides, herbicides and pesticides. In the last decade, the increasing availability of microbial genomes has established genome mining as a very important method for the identification of their biosynthetic gene clusters (BGCs). One of the most popular tools for this task is antiSMASH. However, so far, antiSMASH is limited to de novo computing results for user-submitted genomes and only partially connects these with BGCs from other organisms. Therefore, we developed the antiSMASH database, a simple but highly useful new resource to browse antiSMASH-annotated BGCs in the currently 3907 bacterial genomes in the database and perform advanced search queries combining multiple search criteria. antiSMASH-DB is available at http://antismash-db.secondarymetabolites.org/.

  7. Accumulation of Carotenoids and Expression of Carotenoid Biosynthetic Genes during Maturation in Citrus Fruit1

    PubMed Central

    Kato, Masaya; Ikoma, Yoshinori; Matsumoto, Hikaru; Sugiura, Minoru; Hyodo, Hiroshi; Yano, Masamichi

    2004-01-01

    The relationship between carotenoid accumulation and the expression of carotenoid biosynthetic genes during fruit maturation was investigated in three citrus varieties, Satsuma mandarin (Citrus unshiu Marc.), Valencia orange (Citrus sinensis Osbeck), and Lisbon lemon (Citrus limon Burm.f.). We cloned the cDNAs for phytoene synthase (CitPSY), phytoene desaturase (CitPDS), ζ-carotene (car) desaturase (CitZDS), carotenoid isomerase (CitCRTISO), lycopene β-cyclase (CitLCYb), β-ring hydroxylase (CitHYb), zeaxanthin (zea) epoxidase (CitZEP), and lycopene ε-cyclase (CitLCYe) from Satsuma mandarin, which shared high identities in nucleotide sequences with Valencia orange, Lisbon lemon, and other plant species. With the transition of peel color from green to orange, the change from β,ε-carotenoid (α-car and lutein) accumulation to β,β-carotenoid (β-car, β-cryptoxanthin, zea, and violaxanthin) accumulation was observed in the flavedos of Satsuma mandarin and Valencia orange, accompanying the disappearance of CitLCYe transcripts and the increase in CitLCYb transcripts. Even in green fruit, high levels of β,ε-carotenoids and CitLCYe transcripts were not observed in the juice sacs. As fruit maturation progressed in Satsuma mandarin and Valencia orange, a simultaneous increase in the expression of genes (CitPSY, CitPDS, CitZDS, CitLCYb, CitHYb, and CitZEP) led to massive β,β-xanthophyll (β-cryptoxanthin, zea, and violaxanthin) accumulation in both the flavedo and juice sacs. The gene expression of CitCRTISO was kept low or decreased in the flavedo during massive β,β-xanthophyll accumulation. In the flavedo of Lisbon lemon and Satsuma mandarin, massive accumulation of phytoene was observed with a decrease in the transcript level for CitPDS. Thus, the carotenoid accumulation during citrus fruit maturation was highly regulated by the coordination of the expression among carotenoid biosynthetic genes. In this paper, the mechanism leading to diversity in

  8. Biosynthetic thiolase from Zoogloea ramigera. III. Isolation and characterization of the structural gene.

    PubMed

    Peoples, O P; Masamune, S; Walsh, C T; Sinskey, A J

    1987-01-05

    The gene coding for the biosynthetic thiolase from Zoogloea ramigera has been isolated by using antibody screening methods to detect its expression in Escherichia coli under the transcriptional control of the lac promoter. We have located and determined the nucleotide sequence of the gene. The structural gene is 1173 nucleotides long and codes for a polypeptide of 391 amino acids; 282 nucleotides 5' and 58 nucleotides 3' to the coding sequence are also reported. By comparing the amino acid sequence data predicted from the gene with data determined experimentally, we have derived the complete primary structure of thiolase. A catalytically essential cysteine is located at residue 89. The DNA sequence presented has a very high G/C content, 66.2%, typical of the Z. ramigera genome. In the coding region, this increases to 68.2% and is strongly reflected in the codon usage which demonstrates a strong preference for G or C in the third position. Examination of the 5'-flanking sequence establishes that the NH2-terminal methionine is specified by an ATG codon, 7 nucleotides downstream from a Shine-Dalgarno sequence.

  9. Modification of Monolignol Biosynthetic Pathway in Jute: Different Gene, Different Consequence

    PubMed Central

    Shafrin, Farhana; Ferdous, Ahlan Sabah; Sarkar, Suprovath Kumar; Ahmed, Rajib; Amin, Al-; Hossain, Kawsar; Sarker, Mrinmoy; Rencoret, Jorge; Gutiérrez, Ana; del Rio, Jose C.; Sanan-Mishra, Neeti; Khan, Haseena

    2017-01-01

    Lignin, a cross-linked macromolecule of hydrophobic aromatic structure, provides additional rigidity to a plant cell wall. Although it is an integral part of the plant cell, presence of lignin considerably reduces the quality of the fiber of fiber-yielding plants. Decreasing lignin in such plants holds significant commercial and environmental potential. This study aimed at reducing the lignin content in jute-a fiber crop, by introducing hpRNA-based vectors for downregulation of two monolignoid biosynthetic genes- cinnamate 4-hydroxylase (C4H) and caffeic acid O-methyltransferase (COMT). Transgenic generations, analyzed through Southern, RT-PCR and northern assays showed downregulation of the selected genes. Transgenic lines exhibited reduced level of gene expression with ~ 16–25% reduction in acid insoluble lignin for the whole stem and ~13–14% reduction in fiber lignin content compared to the control lines. Among the two transgenic plant types one exhibited an increase in cellulose content and concomitant improvement of glucose release. Composition of the lignin building blocks was found to alter and this alteration resulted in a pattern, different from other plants where the same genes were manipulated. It is expected that successful COMT-hpRNA and C4H-hpRNA transgenesis in jute will have far-reaching commercial implications leading to product diversification and value addition. PMID:28051165

  10. Modification of Monolignol Biosynthetic Pathway in Jute: Different Gene, Different Consequence.

    PubMed

    Shafrin, Farhana; Ferdous, Ahlan Sabah; Sarkar, Suprovath Kumar; Ahmed, Rajib; Amin, Al-; Hossain, Kawsar; Sarker, Mrinmoy; Rencoret, Jorge; Gutiérrez, Ana; Del Rio, Jose C; Sanan-Mishra, Neeti; Khan, Haseena

    2017-01-04

    Lignin, a cross-linked macromolecule of hydrophobic aromatic structure, provides additional rigidity to a plant cell wall. Although it is an integral part of the plant cell, presence of lignin considerably reduces the quality of the fiber of fiber-yielding plants. Decreasing lignin in such plants holds significant commercial and environmental potential. This study aimed at reducing the lignin content in jute-a fiber crop, by introducing hpRNA-based vectors for downregulation of two monolignoid biosynthetic genes- cinnamate 4-hydroxylase (C4H) and caffeic acid O-methyltransferase (COMT). Transgenic generations, analyzed through Southern, RT-PCR and northern assays showed downregulation of the selected genes. Transgenic lines exhibited reduced level of gene expression with ~ 16-25% reduction in acid insoluble lignin for the whole stem and ~13-14% reduction in fiber lignin content compared to the control lines. Among the two transgenic plant types one exhibited an increase in cellulose content and concomitant improvement of glucose release. Composition of the lignin building blocks was found to alter and this alteration resulted in a pattern, different from other plants where the same genes were manipulated. It is expected that successful COMT-hpRNA and C4H-hpRNA transgenesis in jute will have far-reaching commercial implications leading to product diversification and value addition.

  11. A Relational Database for the Discovery of Genes Encoding Amino Acid Biosynthetic Enzymes in Pathogenic Fungi

    PubMed Central

    Giles, Peter F.; Soanes, Darren M.

    2003-01-01

    Fungal phytopathogens continue to cause major economic impact, either directly, through crop losses, or due to the costs of fungicide application. Attempts to understand these organisms are hampered by a lack of fungal genome sequence data. A need exists, however, to develop specific bioinformatics tools to collate and analyse the sequence data that currently is available. A web-accessible gene discovery database (http://cogeme.ex.ac.uk/biosynthesis.html) was developed as a demonstration tool for the analysis of metabolic and signal transduction pathways in pathogenic fungi using incomplete gene inventories. Using Bayesian probability to analyse the currently available gene information from pathogenic fungi, we provide evidence that the obligate pathogen Blumeria graminis possesses all amino acid biosynthetic pathways found in free-living fungi, such as Saccharomyces cerevisiae. Phylogenetic analysis was also used to deduce a gene history of succinate-semialdehyde dehydrogenase, an enzyme in the glutamate and lysine biosynthesis pathways. The database provides a tool and methodology to researchers to direct experimentation towards predicting pathway conservation in pathogenic microorganisms. PMID:18629094

  12. Cloning and expression analyses of the anthocyanin biosynthetic genes in mulberry plants.

    PubMed

    Qi, Xiwu; Shuai, Qin; Chen, Hu; Fan, Li; Zeng, Qiwei; He, Ningjia

    2014-10-01

    Anthocyanins are natural food colorants produced by plants that play important roles in their growth and development. Mulberry fruits are rich in anthocyanins, which are the most important active components of mulberry and have many potentially beneficial effects on human health. The study of anthocyanin biosynthesis will bring benefits for quality improvement and industrial exploration of mulberry fruits. In the present study, nine putative genes involved in anthocyanin biosynthesis in mulberry plants were identified and cloned. Sequence analysis revealed that the mulberry anthocyanin biosynthetic genes were conserved and had counterparts in other plants. Spatial transcriptional analysis showed detectable expression of eight of these genes in different tissues. The results of expression and UPLC analyses in two mulberry cultivars with differently colored fruit indicated that anthocyanin concentrations correlated with the expression levels of genes associated with anthocyanin biosynthesis including CHS1, CHI, F3H1, F3'H1, and ANS during the fruit ripening process. The present studies provide insight into anthocyanin biosynthesis in mulberry plants and may facilitate genetic engineering for improvement of the anthocyanin content in mulberry fruit.

  13. Recent advances in awakening silent biosynthetic gene clusters and linking orphan clusters to natural products in microorganisms.

    PubMed

    Chiang, Yi-Ming; Chang, Shu-Lin; Oakley, Berl R; Wang, Clay C C

    2011-02-01

    Secondary metabolites from microorganisms have a broad spectrum of applications, particularly in therapeutics. The growing number of sequenced microbial genomes has revealed a remarkably large number of natural product biosynthetic clusters for which the products are still unknown. These cryptic clusters are potentially a treasure house of medically useful compounds. The recent development of new methodologies has made it possible to begin unlock this treasure house, to discover new natural products and to determine their biosynthesis pathways. This review will highlight some of the most recent strategies to activate silent biosynthetic gene clusters and to elucidate their corresponding products and pathways.

  14. Identification of the biosynthetic gene cluster and an additional gene for resistance to the antituberculosis drug capreomycin.

    PubMed

    Felnagle, Elizabeth A; Rondon, Michelle R; Berti, Andrew D; Crosby, Heidi A; Thomas, Michael G

    2007-07-01

    Capreomycin (CMN) belongs to the tuberactinomycin family of nonribosomal peptide antibiotics that are essential components of the drug arsenal for the treatment of multidrug-resistant tuberculosis. Members of this antibiotic family target the ribosomes of sensitive bacteria and disrupt the function of both subunits of the ribosome. Resistance to these antibiotics in Mycobacterium species arises due to mutations in the genes coding for the 16S or 23S rRNA but can also arise due to mutations in a gene coding for an rRNA-modifying enzyme, TlyA. While Mycobacterium species develop resistance due to alterations in the drug target, it has been proposed that the CMN-producing bacterium, Saccharothrix mutabilis subsp. capreolus, uses CMN modification as a mechanism for resistance rather than ribosome modification. To better understand CMN biosynthesis and resistance in S. mutabilis subsp. capreolus, we focused on the identification of the CMN biosynthetic gene cluster in this bacterium. Here, we describe the cloning and sequence analysis of the CMN biosynthetic gene cluster from S. mutabilis subsp. capreolus ATCC 23892. We provide evidence for the heterologous production of CMN in the genetically tractable bacterium Streptomyces lividans 1326. Finally, we present data supporting the existence of an additional CMN resistance gene. Initial work suggests that this resistance gene codes for an rRNA-modifying enzyme that results in the formation of CMN-resistant ribosomes that are also resistant to the aminoglycoside antibiotic kanamycin. Thus, S. mutabilis subsp. capreolus may also use ribosome modification as a mechanism for CMN resistance.

  15. Mutational analysis of a phenazine biosynthetic gene cluster in Streptomyces anulatus 9663

    PubMed Central

    Saleh, Orwah; Flinspach, Katrin; Westrich, Lucia; Kulik, Andreas; Gust, Bertolt; Fiedler, Hans-Peter

    2012-01-01

    Summary The biosynthetic gene cluster for endophenazines, i.e., prenylated phenazines from Streptomyces anulatus 9663, was heterologously expressed in several engineered host strains derived from Streptomyces coelicolor M145. The highest production levels were obtained in strain M512. Mutations in the rpoB and rpsL genes of the host, which result in increased production of other secondary metabolites, had no beneficial effect on the production of phenazines. The heterologous expression strains produced, besides the known phenazine compounds, a new prenylated phenazine, termed endophenazine E. The structure of endophenazine E was determined by high-resolution mass spectrometry and by one- and two-dimensional NMR spectroscopy. It represented a conjugate of endophenazine A (9-dimethylallylphenazine-1-carboxylic acid) and L-glutamine (L-Gln), with the carboxyl group of endophenazine A forming an amide bond to the α-amino group of L-Gln. Gene inactivation experiments in the gene cluster proved that ppzM codes for a phenazine N-methyltransferase. The gene ppzV apparently represents a new type of TetR-family regulator, specifically controlling the prenylation in endophenazine biosynthesis. The gene ppzY codes for a LysR-type regulator and most likely controls the biosynthesis of the phenazine core. A further putative transcriptional regulator is located in the vicinity of the cluster, but was found not to be required for phenazine or endophenazine formation. This is the first investigation of the regulatory genes of phenazine biosynthesis in Streptomyces. PMID:22509222

  16. The biosynthetic gene cluster for the cyanogenic glucoside dhurrin in Sorghum bicolor contains its co-expressed vacuolar MATE transporter

    PubMed Central

    Darbani, Behrooz; Motawia, Mohammed Saddik; Olsen, Carl Erik; Nour-Eldin, Hussam H.; Møller, Birger Lindberg; Rook, Fred

    2016-01-01

    Genomic gene clusters for the biosynthesis of chemical defence compounds are increasingly identified in plant genomes. We previously reported the independent evolution of biosynthetic gene clusters for cyanogenic glucoside biosynthesis in three plant lineages. Here we report that the gene cluster for the cyanogenic glucoside dhurrin in Sorghum bicolor additionally contains a gene, SbMATE2, encoding a transporter of the multidrug and toxic compound extrusion (MATE) family, which is co-expressed with the biosynthetic genes. The predicted localisation of SbMATE2 to the vacuolar membrane was demonstrated experimentally by transient expression of a SbMATE2-YFP fusion protein and confocal microscopy. Transport studies in Xenopus laevis oocytes demonstrate that SbMATE2 is able to transport dhurrin. In addition, SbMATE2 was able to transport non-endogenous cyanogenic glucosides, but not the anthocyanin cyanidin 3-O-glucoside or the glucosinolate indol-3-yl-methyl glucosinolate. The genomic co-localisation of a transporter gene with the biosynthetic genes producing the transported compound is discussed in relation to the role self-toxicity of chemical defence compounds may play in the formation of gene clusters. PMID:27841372

  17. Labellum transcriptome reveals alkene biosynthetic genes involved in orchid sexual deception and pollination-induced senescence.

    PubMed

    Monteiro, Filipa; Sebastiana, Mónica; Figueiredo, Andreia; Sousa, Lisete; Cotrim, Helena C; Pais, Maria Salomé

    2012-11-01

    One of the most remarkable pollination strategy in orchids biology is pollination by sexual deception, in which the modified petal labellum lures pollinators by mimicking the chemical (e.g. sex pheromones), visual (e.g. colour and shape/size) and tactile (e.g. labellum trichomes) cues of the receptive female insect species. The present study aimed to characterize the transcriptional changes occurring after pollination in the labellum of a sexually deceptive orchid (Ophrys fusca Link) in order to identify genes involved on signals responsible for pollinator attraction, the major goal of floral tissues. Novel information on alterations in the orchid petal labellum gene expression occurring after pollination demonstrates a reduction in the expression of alkene biosynthetic genes using O. fusca Link as the species under study. Petal labellum transcriptional analysis revealed downregulation of transcripts involved in both pigment machinery and scent compounds, acting as visual and olfactory cues, respectively, important in sexual mimicry. Regulation of petal labellum senescence was revealed by transcripts related to macromolecules breakdown, protein synthesis and remobilization of nutrients.

  18. Diversity and distribution of a key sulpholipid biosynthetic gene in marine microbial assemblages.

    PubMed

    Villanueva, Laura; Bale, Nicole; Hopmans, Ellen C; Schouten, Stefan; Damsté, Jaap S Sinninghe

    2014-03-01

    Sulphoquinovosyldiacylglycerols (SQDG) are polar sulphur-containing membrane lipids, whose presence has been related to a microbial strategy to adapt to phosphate deprivation. In this study, we have targeted the sqdB gene coding the uridine 5'-diphosphate-sulphoquinovose (UDP-SQ) synthase involved in the SQDG biosynthetic pathway to assess potential microbial sources of SQDGs in the marine environment. The phylogeny of the sqdB-coding protein reveals two distinct clusters: one including green algae, higher plants and cyanobacteria, and another one comprising mainly non-photosynthetic bacteria, as well as other cyanobacteria and algal groups. Evolutionary analysis suggests that the appearance of UDP-SQ synthase occurred twice in cyanobacterial evolution, and one of those branches led to the diversification of the protein in members of the phylum Proteobacteria. A search of homologues of sqdB-proteins in marine metagenomes strongly suggested the presence of heterotrophic bacteria potential SQDG producers. Application of newly developed sqdB gene primers in the marine environment revealed a high diversity of sequences affiliated to cyanobacteria and Proteobacteria in microbial mats, while in North Sea surface water, most of the detected sqdB genes were attributed to the cyanobacterium Synechococcus sp. Lipid analysis revealed that specific SQDGs were characteristic of microbial mat depth, suggesting that SQDG lipids are associated with specific producers.

  19. Cloning, sequencing, analysis, and heterologous expression of the fredericamycin biosynthetic gene cluster from Streptomyces griseus.

    PubMed

    Wendt-Pienkowski, Evelyn; Huang, Yong; Zhang, Jian; Li, Bensheng; Jiang, Hao; Kwon, Hyungjin; Hutchinson, C Richard; Shen, Ben

    2005-11-30

    Fredericamycin (FDM) A, a pentadecaketide featuring two sets of peri-hydroxy tricyclic aromatic moieties connected through a unique chiral spiro carbon center, exhibits potent cytotoxicity and has been studied as a new type of anticancer drug lead because of its novel molecular architecture. The fdm gene cluster was localized to 33-kb DNA segment of Streptomyces griseus ATCC 49344, and its involvement in FDM A biosynthesis was proven by gene inactivation, complementation, and heterologous expression experiments. The fdm cluster consists of 28 open reading frames (ORFs), encoding a type II polyketide synthase (PKS) and tailoring enzymes as well as several regulatory and resistance proteins. The FDM PKS features a KSalpha subunit with heretofore unseen tandem cysteines at its active site, a KSbeta subunit that is distinct phylogenetically from KSbeta of hexa-, octa-, or decaketide PKSs, and a dedicated phosphopantetheinyl transferase. Further study of the FDM PKS could provide new insight into how a type II PKS controls chain length in aromatic polyketide biosynthesis. The availability of the fdm genes, in vivo characterization of the fdm cluster in S. griseus, and heterologous expression of the fdm cluster in Streptomyces albus set the stage to investigate FDM A biosynthesis and engineer the FDM biosynthetic machinery for the production of novel FDM A analogues.

  20. Deciphering tuberactinomycin biosynthesis: isolation, sequencing, and annotation of the viomycin biosynthetic gene cluster.

    PubMed

    Thomas, Michael G; Chan, Yolande A; Ozanick, Sarah G

    2003-09-01

    The tuberactinomycin antibiotics are essential components in the drug arsenal against Mycobacterium tuberculosis infections and are specifically used for the treatment of multidrug-resistant tuberculosis. These antibiotics are also being investigated for their targeting of the catalytic RNAs involved in viral replication and for the treatment of bacterial infections caused by methicillin-resistant Staphylococcus aureus strains and vancomycin-resistant enterococci. We report on the isolation, sequencing, and annotation of the biosynthetic gene cluster for one member of this antibiotic family, viomycin, from Streptomyces sp. strain ATCC 11861. This is the first gene cluster for a member of the tuberactinomycin family of antibiotics sequenced, and the information gained can be extrapolated to all members of this family. The gene cluster covers 36.3 kb of DNA and encodes 20 open reading frames that we propose are involved in the biosynthesis, regulation, export, and activation of viomycin, in addition to self-resistance to the antibiotic. These results enable us to predict the metabolic logic of tuberactinomycin production and begin steps toward the combinatorial biosynthesis of these antibiotics to complement existing chemical modification techniques to produce novel tuberactinomycin derivatives.

  1. Comparative SNP diversity among four Eucalyptus species for genes from secondary metabolite biosynthetic pathways

    PubMed Central

    Külheim, Carsten; Hui Yeoh, Suat; Maintz, Jens; Foley, William J; Moran, Gavin F

    2009-01-01

    Background There is little information about the DNA sequence variation within and between closely related plant species. The combination of re-sequencing technologies, large-scale DNA pools and availability of reference gene sequences allowed the extensive characterisation of single nucleotide polymorphisms (SNPs) in genes of four biosynthetic pathways leading to the formation of ecologically relevant secondary metabolites in Eucalyptus. With this approach the occurrence and patterns of SNP variation for a set of genes can be compared across different species from the same genus. Results In a single GS-FLX run, we sequenced over 103 Mbp and assembled them to approximately 50 kbp of reference sequences. An average sequencing depth of 315 reads per nucleotide site was achieved for all four eucalypt species, Eucalyptus globulus, E. nitens, E. camaldulensis and E. loxophleba. We sequenced 23 genes from 1,764 individuals and discovered 8,631 SNPs across the species, with about 1.5 times as many SNPs per kbp in the introns compared to exons. The exons of the two closely related species (E. globulus and E. nitens) had similar numbers of SNPs at synonymous and non-synonymous sites. These species also had similar levels of SNP diversity, whereas E. camaldulensis and E. loxophleba had much higher SNP diversity. Neither the pathway nor the position in the pathway influenced gene diversity. The four species share between 20 and 43% of the SNPs in these genes. Conclusion By using conservative statistical detection methods, we were confident about the validity of each SNP. With numerous individuals sampled over the geographical range of each species, we discovered one SNP in every 33 bp for E. nitens and one in every 31 bp in E. globulus. In contrast, the more distantly related species contained more SNPs: one in every 16 bp for E. camaldulensis and one in 17 bp for E. loxophleba, which is, to the best of our knowledge, the highest frequency of SNPs described in woody plant

  2. Molecular Networking and Pattern-Based Genome Mining Improves discovery of biosynthetic gene clusters and their products from Salinispora species

    PubMed Central

    Duncan, Katherine R.; Crüsemann, Max; Lechner, Anna; Sarkar, Anindita; Li, Jie; Ziemert, Nadine; Wang, Mingxun; Bandeira, Nuno; Moore, Bradley S.; Dorrestein, Pieter C.; Jensen, Paul R.

    2015-01-01

    Summary Genome sequencing has revealed that bacteria contain many more biosynthetic gene clusters than predicted based on the number of secondary metabolites discovered to date. While this biosynthetic reservoir has fostered interest in new tools for natural product discovery, there remains a gap between gene cluster detection and compound discovery. Here we apply molecular networking and the new concept of pattern-based genome mining to 35 Salinispora strains including 30 for which draft genome sequences were either available or obtained for this study. The results provide a method to simultaneously compare large numbers of complex microbial extracts, which facilitated the identification of media components, known compounds and their derivatives, and new compounds that could be prioritized for structure elucidation. These efforts revealed considerable metabolite diversity and led to several molecular family-gene cluster pairings, of which the quinomycin-type depsipeptide retimycin A was characterized and linked to gene cluster NRPS40 using pattern-based bioinformatic approaches. PMID:25865308

  3. Molecular Networking and Pattern-Based Genome Mining Improves Discovery of Biosynthetic Gene Clusters and their Products from Salinispora Species

    SciTech Connect

    Duncan, Katherine R.; Crüsemann, Max; Lechner, Anna; Sarkar, Anindita; Li, Jie; Ziemert, Nadine; Wang, Mingxun; Bandeira, Nuno; Moore, Bradley S.; Dorrestein, Pieter C.; Jensen, Paul R.

    2015-04-09

    Genome sequencing has revealed that bacteria contain many more biosynthetic gene clusters than predicted based on the number of secondary metabolites discovered to date. While this biosynthetic reservoir has fostered interest in new tools for natural product discovery, there remains a gap between gene cluster detection and compound discovery. In this paper, we apply molecular networking and the new concept of pattern-based genome mining to 35 Salinispora strains, including 30 for which draft genome sequences were either available or obtained for this study. The results provide a method to simultaneously compare large numbers of complex microbial extracts, which facilitated the identification of media components, known compounds and their derivatives, and new compounds that could be prioritized for structure elucidation. Finally, these efforts revealed considerable metabolite diversity and led to several molecular family-gene cluster pairings, of which the quinomycin-type depsipeptide retimycin A was characterized and linked to gene cluster NRPS40 using pattern-based bioinformatic approaches.

  4. Sequencing, physical organization and kinetic expression of the patulin biosynthetic gene cluster from Penicillium expansum.

    PubMed

    Tannous, Joanna; El Khoury, Rhoda; Snini, Selma P; Lippi, Yannick; El Khoury, André; Atoui, Ali; Lteif, Roger; Oswald, Isabelle P; Puel, Olivier

    2014-10-17

    Patulin is a polyketide-derived mycotoxin produced by numerous filamentous fungi. Among them, Penicillium expansum is by far the most problematic species. This fungus is a destructive phytopathogen capable of growing on fruit, provoking the blue mold decay of apples and producing significant amounts of patulin. The biosynthetic pathway of this mycotoxin is chemically well-characterized, but its genetic bases remain largely unknown with only few characterized genes in less economic relevant species. The present study consisted of the identification and positional organization of the patulin gene cluster in P. expansum strain NRRL 35695. Several amplification reactions were performed with degenerative primers that were designed based on sequences from the orthologous genes available in other species. An improved genome Walking approach was used in order to sequence the remaining adjacent genes of the cluster. RACE-PCR was also carried out from mRNAs to determine the start and stop codons of the coding sequences. The patulin gene cluster in P. expansum consists of 15 genes in the following order: patH, patG, patF, patE, patD, patC, patB, patA, patM, patN, patO, patL, patI, patJ, and patK. These genes share 60-70% of identity with orthologous genes grouped differently, within a putative patulin cluster described in a non-producing strain of Aspergillus clavatus. The kinetics of patulin cluster genes expression was studied under patulin-permissive conditions (natural apple-based medium) and patulin-restrictive conditions (Eagle's minimal essential medium), and demonstrated a significant association between gene expression and patulin production. In conclusion, the sequence of the patulin cluster in P. expansum constitutes a key step for a better understanding of the mechanisms leading to patulin production in this fungus. It will allow the role of each gene to be elucidated, and help to define strategies to reduce patulin production in apple-based products.

  5. Biosynthesis and accumulation of ergoline alkaloids in a mutualistic association between Ipomoea asarifolia (Convolvulaceae) and a clavicipitalean fungus.

    PubMed

    Markert, Anne; Steffan, Nicola; Ploss, Kerstin; Hellwig, Sabine; Steiner, Ulrike; Drewke, Christel; Li, Shu-Ming; Boland, Wilhelm; Leistner, Eckhard

    2008-05-01

    Ergoline alkaloids occur in taxonomically unrelated taxa, such as fungi, belonging to the phylum Ascomycetes and higher plants of the family Convolvulaceae. The disjointed occurrence can be explained by the observation that plant-associated epibiotic clavicipitalean fungi capable of synthesizing ergoline alkaloids colonize the adaxial leaf surface of certain Convolvulaceae plant species. The fungi are seed transmitted. Their capacity to synthesize ergoline alkaloids depends on the presence of an intact differentiated host plant (e.g. Ipomoea asarifolia or Turbina corymbosa [Convolvulaceae]). Here, we present independent proof that these fungi are equipped with genetic material responsible for ergoline alkaloid biosynthesis. The gene (dmaW) for the determinant step in ergoline alkaloid biosynthesis was shown to be part of a cluster involved in ergoline alkaloid formation. The dmaW gene was overexpressed in Saccharomyces cerevisiae, the encoded DmaW protein purified to homogeneity, and characterized. Neither the gene nor the biosynthetic capacity, however, was detectable in the intact I. asarifolia or the taxonomically related T. corymbosa host plants. Both plants, however, contained the ergoline alkaloids almost exclusively, whereas alkaloids are not detectable in the associated epibiotic fungi. This indicates that a transport system may exist translocating the alkaloids from the epibiotic fungus into the plant. The association between the fungus and the plant very likely is a symbiotum in which ergoline alkaloids play an essential role.

  6. Biosynthesis and Accumulation of Ergoline Alkaloids in a Mutualistic Association between Ipomoea asarifolia (Convolvulaceae) and a Clavicipitalean Fungus1

    PubMed Central

    Markert, Anne; Steffan, Nicola; Ploss, Kerstin; Hellwig, Sabine; Steiner, Ulrike; Drewke, Christel; Li, Shu-Ming; Boland, Wilhelm; Leistner, Eckhard

    2008-01-01

    Ergoline alkaloids occur in taxonomically unrelated taxa, such as fungi, belonging to the phylum Ascomycetes and higher plants of the family Convolvulaceae. The disjointed occurrence can be explained by the observation that plant-associated epibiotic clavicipitalean fungi capable of synthesizing ergoline alkaloids colonize the adaxial leaf surface of certain Convolvulaceae plant species. The fungi are seed transmitted. Their capacity to synthesize ergoline alkaloids depends on the presence of an intact differentiated host plant (e.g. Ipomoea asarifolia or Turbina corymbosa [Convolvulaceae]). Here, we present independent proof that these fungi are equipped with genetic material responsible for ergoline alkaloid biosynthesis. The gene (dmaW) for the determinant step in ergoline alkaloid biosynthesis was shown to be part of a cluster involved in ergoline alkaloid formation. The dmaW gene was overexpressed in Saccharomyces cerevisiae, the encoded DmaW protein purified to homogeneity, and characterized. Neither the gene nor the biosynthetic capacity, however, was detectable in the intact I. asarifolia or the taxonomically related T. corymbosa host plants. Both plants, however, contained the ergoline alkaloids almost exclusively, whereas alkaloids are not detectable in the associated epibiotic fungi. This indicates that a transport system may exist translocating the alkaloids from the epibiotic fungus into the plant. The association between the fungus and the plant very likely is a symbiotum in which ergoline alkaloids play an essential role. PMID:18344419

  7. Distinct cell-specific expression patterns of early and late gibberellin biosynthetic genes during Arabidopsis seed germination.

    PubMed

    Yamaguchi, S; Kamiya, Y; Sun, T

    2001-11-01

    Gibberellins (GAs) are biosynthesized through a complex pathway that involves several classes of enzymes. To predict sites of individual GA biosynthetic steps, we studied cell type-specific expression of genes encoding early and late GA biosynthetic enzymes in germinating Arabidopsis seeds. We showed that expression of two genes, AtGA3ox1 and AtGA3ox2, encoding GA 3-oxidase, which catalyzes the terminal biosynthetic step, was mainly localized in the cortex and endodermis of embryo axes in germinating seeds. Because another GA biosynthetic gene, AtKO1, coding for ent-kaurene oxidase, exhibited a similar cell-specific expression pattern, we predicted that the synthesis of bioactive GAs from ent-kaurene oxidation occurs in the same cell types during seed germination. We also showed that the cortical cells expand during germination, suggesting a spatial correlation between GA production and response. However, promoter activity of the AtCPS1 gene, responsible for the first committed step in GA biosynthesis, was detected exclusively in the embryo provasculature in germinating seeds. When the AtCPS1 cDNA was expressed only in the cortex and endodermis of non-germinating ga1-3 seeds (deficient in AtCPS1) using the AtGA3ox2 promoter, germination was not as resistant to a GA biosynthesis inhibitor as expression in the provasculature. These results suggest that the biosynthesis of GAs during seed germination takes place in two separate locations with the early step occurring in the provasculature and the later steps in the cortex and endodermis. This implies that intercellular transport of an intermediate of the GA biosynthetic pathway is required to produce bioactive GAs.

  8. Molecular characterization of tocopherol biosynthetic genes in sweetpotato that respond to stress and activate the tocopherol production in tobacco.

    PubMed

    Ji, Chang Yoon; Kim, Yun-Hee; Kim, Ho Soo; Ke, Qingbo; Kim, Gun-Woo; Park, Sung-Chul; Lee, Haeng-Soon; Jeong, Jae Cheol; Kwak, Sang-Soo

    2016-09-01

    Tocopherol (vitamin E) is a chloroplast lipid that is presumed to be involved in the plant response to oxidative stress. In this study, we isolated and characterized five tocopherol biosynthetic genes from sweetpotato (Ipomoea batatas [L.] Lam) plants, including genes encoding 4-hydroxyphenylpyruvate dioxygenase (IbHPPD), homogentisate phytyltransferase (IbHPT), 2-methyl-6-phytylbenzoquinol methyltransferase (IbMPBQ MT), tocopherol cyclase (IbTC) and γ-tocopherol methyltransferase (IbTMT). Fluorescence microscope analysis indicated that four proteins localized into the chloroplast, whereas IbHPPD observed in the nuclear. Quantitative RT-PCR analysis revealed that the expression patterns of the five tocopherol biosynthetic genes varied in different plant tissues and under different stress conditions. All five genes were highly expressed in leaf tissues, whereas IbHPPD and IbHPT were highly expressed in the thick roots. The expression patterns of these five genes significantly differed in response to PEG, NaCl and H2O2-mediated oxidative stress. IbHPPD was strongly induced following PEG and H2O2 treatment and IbHPT was strongly induced following PEG treatment, whereas IbMPBQ MT and IbTC were highly expressed following NaCl treatment. Upon infection of the bacterial pathogen Pectobacterium chrysanthemi, the expression of IbHPPD increased sharply in sweetpotato leaves, whereas the expression of the other genes was reduced or unchanged. Additionally, transient expression of the five tocopherol biosynthetic genes in tobacco (Nicotiana bentamiana) leaves resulted in increased transcript levels of the transgenes expressions and tocopherol production. Therefore, our results suggested that the five tocopherol biosynthetic genes of sweetpotato play roles in the stress defense response as transcriptional regulators of the tocopherol production.

  9. PCR-Independent Method of Transformation-Associated Recombination Reveals the Cosmomycin Biosynthetic Gene Cluster in an Ocean Streptomycete.

    PubMed

    Larson, Charles B; Crüsemann, Max; Moore, Bradley S

    2017-04-28

    The transformation-associated recombination cloning methodology facilitates the genomic capture and heterologous expression of natural product biosynthetic gene clusters (BGCs). We have streamlined this procedure by introduction of synthetic DNA gene blocks for the efficient capture of BGCs. We show the successful capture and expression of the aromatic polyketide antitumor agent cosmomycin from streptomycete bacteria and the discovery of new cosmomycin analogues by mass spectral molecular networking.

  10. Sequence diversity and differential expression of major phenylpropanoid-flavonoid biosynthetic genes among three mango varieties.

    PubMed

    Hoang, Van L T; Innes, David J; Shaw, P Nicholas; Monteith, Gregory R; Gidley, Michael J; Dietzgen, Ralf G

    2015-07-30

    Mango fruits contain a broad spectrum of phenolic compounds which impart potential health benefits; their biosynthesis is catalysed by enzymes in the phenylpropanoid-flavonoid (PF) pathway. The aim of this study was to reveal the variability in genes involved in the PF pathway in three different mango varieties Mangifera indica L., a member of the family Anacardiaceae: Kensington Pride (KP), Irwin (IW) and Nam Doc Mai (NDM) and to determine associations with gene expression and mango flavonoid profiles. A close evolutionary relationship between mango genes and those from the woody species poplar of the Salicaceae family (Populus trichocarpa) and grape of the Vitaceae family (Vitis vinifera), was revealed through phylogenetic analysis of PF pathway genes. We discovered 145 SNPs in total within coding sequences with an average frequency of one SNP every 316 bp. Variety IW had the highest SNP frequency (one SNP every 258 bp) while KP and NDM had similar frequencies (one SNP every 369 bp and 360 bp, respectively). The position in the PF pathway appeared to influence the extent of genetic diversity of the encoded enzymes. The entry point enzymes phenylalanine lyase (PAL), cinnamate 4-mono-oxygenase (C4H) and chalcone synthase (CHS) had low levels of SNP diversity in their coding sequences, whereas anthocyanidin reductase (ANR) showed the highest SNP frequency followed by flavonoid 3'-hydroxylase (F3'H). Quantitative PCR revealed characteristic patterns of gene expression that differed between mango peel and flesh, and between varieties. The combination of mango expressed sequence tags and availability of well-established reference PF biosynthetic genes from other plant species allowed the identification of coding sequences of genes that may lead to the formation of important flavonoid compounds in mango fruits and facilitated characterisation of single nucleotide polymorphisms between varieties. We discovered an association between the extent of sequence variation and

  11. Identification and characterization of the spiruchostatin biosynthetic gene cluster enables yield improvement by overexpressing a transcriptional activator

    PubMed Central

    Potharla, Vishwakanth Y.; Wang, Cheng; Cheng, Yi-Qiang

    2014-01-01

    Spiruchostatins A and B are members of the FK228-family of natural products with potent histone deacetylase inhibitory activities and antineoplastic activities. However, their production in the wild-type strain of Pseudomonas sp. Q71576 is low. To improve the yield, the spiruchostatin biosynthetic gene cluster (spi) was first identified by rapid genome sequencing and characterized by genetic mutations. This spi gene cluster encodes a hybrid biosynthetic pathway similar to that encoded by the FK228 biosynthetic gene cluster (dep) in Chromobacterium violaceum No. 968. Each gene cluster contains a pathway regulatory gene (spiR vs. depR) but these two genes encode transcriptional activators of different classes. Overexpression of native spiR or heterologous depR in the wild-type strain of Pseudomonas sp. Q71576 resulted in 268% or 1,285% increase of the combined titer of spiruchostatins A and B, respectively. RT-PCR analysis indicates that overexpression of heterologous depR upregulates the expression of native spiR. PMID:24973954

  12. Horizontal Gene Transfer and Redundancy of Tryptophan Biosynthetic Enzymes in Dinotoms

    PubMed Central

    Imanian, Behzad; Keeling, Patrick J.

    2014-01-01

    A tertiary endosymbiosis between a dinoflagellate host and diatom endosymbiont gave rise to “dinotoms,” cells with a unique nuclear and mitochondrial redundancy derived from two evolutionarily distinct eukaryotic lineages. To examine how this unique redundancy might have affected the evolution of metabolic systems, we investigated the transcription of genes involved in biosynthesis of the amino acid tryptophan in three species, Durinskia baltica, Kryptoperidinium foliaceum, and Glenodinium foliaceum. From transcriptome sequence data, we recovered two distinct sets of protein-coding transcripts covering the entire tryptophan biosynthetic pathway. Phylogenetic analyses suggest a diatom origin for one set of the proteins, which we infer to be expressed in the endosymbiont, and that the other arose from multiple horizontal gene transfer events to the dinoflagellate ancestor of the host lineage. This is the first indication that these cells retain redundant sets of transcripts and likely metabolic pathways for the biosynthesis of small molecules and extend their redundancy to their two distinct nuclear genomes. PMID:24448981

  13. Diurnal Regulation of the Brassinosteroid-Biosynthetic CPD Gene in Arabidopsis1[W

    PubMed Central

    Bancos, Simona; Szatmári, Anna-Mária; Castle, Julie; Kozma-Bognár, László; Shibata, Kyomi; Yokota, Takao; Bishop, Gerard J.; Nagy, Ferenc; Szekeres, Miklós

    2006-01-01

    Plant steroid hormones, brassinosteroids (BRs), are essential for normal photomorphogenesis. However, the mechanism by which light controls physiological functions via BRs is not well understood. Using transgenic plants carrying promoter-luciferase reporter gene fusions, we show that in Arabidopsis (Arabidopsis thaliana) the BR-biosynthetic CPD and CYP85A2 genes are under diurnal regulation. The complex diurnal expression profile of CPD is determined by dual, light-dependent, and circadian control. The severely decreased expression level of CPD in phytochrome-deficient background and the red light-specific induction in wild-type plants suggest that light regulation of CPD is primarily mediated by phytochrome signaling. The diurnal rhythmicity of CPD expression is maintained in brassinosteroid insensitive 1 transgenic seedlings, indicating that its transcriptional control is independent of hormonal feedback regulation. Diurnal changes in the expression of CPD and CYP85A2 are accompanied by changes of the endogenous BR content during the day, leading to brassinolide accumulation at the middle of the light phase. We also show that CPD expression is repressed in extended darkness in a BR feedback-dependent manner. In the dark the level of the bioactive hormone did not increase; therefore, our data strongly suggest that light also influences the sensitivity of plants to BRs. PMID:16531479

  14. Bioactivity-guided genome mining reveals the lomaiviticin biosynthetic gene cluster in Salinispora tropica.

    PubMed

    Kersten, Roland D; Lane, Amy L; Nett, Markus; Richter, Taylor K S; Duggan, Brendan M; Dorrestein, Pieter C; Moore, Bradley S

    2013-05-27

    The use of genome sequences has become routine in guiding the discovery and identification of microbial natural products and their biosynthetic pathways. In silico prediction of molecular features, such as metabolic building blocks, physico-chemical properties or biological functions, from orphan gene clusters has opened up the characterization of many new chemo- and genotypes in genome mining approaches. Here, we guided our genome mining of two predicted enediyne pathways in Salinispora tropica CNB-440 by a DNA interference bioassay to isolate DNA-targeting enediyne polyketides. An organic extract of S. tropica showed DNA-interference activity that surprisingly was not abolished in genetic mutants of the targeted enediyne pathways, ST_pks1 and spo. Instead we showed that the product of the orphan type II polyketide synthase pathway, ST_pks2, is solely responsible for the DNA-interfering activity of the parent strain. Subsequent comparative metabolic profiling revealed the lomaiviticins, glycosylated diazofluorene polyketides, as the ST_pks2 products. This study marks the first report of the 59 open reading frame lomaiviticin gene cluster (lom) and supports the biochemical logic of their dimeric construction through a pathway related to the kinamycin monomer. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Accumulation of kaempferitrin and expression of phenyl-propanoid biosynthetic genes in kenaf (Hibiscus cannabinus).

    PubMed

    Zhao, Shicheng; Li, Xiaohua; Cho, Dong Ha; Arasu, Mariadhas Valan; Al-Dhabi, Naif Abdullah; Park, Sang Un

    2014-10-23

    Kenaf (Hibiscus cannabinus) is cultivated worldwide for its fiber; however, the medicinal properties of this plant are currently attracting increasing attention. In this study, we investigated the expression levels of genes involved in the biosynthesis of kaempferitrin, a compound with many biological functions, in different kenaf organs. We found that phenylalanine ammonia lyase (HcPAL) was more highly expressed in stems than in other organs. Expression levels of cinnamate 4-hydroxylase (HcC4H) and 4-coumarate-CoA ligase (Hc4CL) were highest in mature leaves, followed by stems and young leaves, and lowest in roots and mature flowers. The expression of chalcone synthase (HcCHS), chalcone isomerase (HcCHI), and flavone 3-hydroxylase (HcF3H) was highest in young flowers, whereas that of flavone synthase (HcFLS) was highest in leaves. An analysis of kaempferitrin accumulation in the different organs of kenaf revealed that the accumulation of this compound was considerably higher (>10-fold) in leaves than in other organs. On the basis of a comparison of kaempferitrin contents with the expression levels of different genes in different organs, we speculate that HcFLS plays an important regulatory role in the kaempferitrin biosynthetic pathway in kenaf.

  16. Glutamic acid promotes monacolin K production and monacolin K biosynthetic gene cluster expression in Monascus.

    PubMed

    Zhang, Chan; Liang, Jian; Yang, Le; Chai, Shiyuan; Zhang, Chenxi; Sun, Baoguo; Wang, Chengtao

    2017-12-01

    This study investigated the effects of glutamic acid on production of monacolin K and expression of the monacolin K biosynthetic gene cluster. When Monascus M1 was grown in glutamic medium instead of in the original medium, monacolin K production increased from 48.4 to 215.4 mg l(-1), monacolin K production increased by 3.5 times. Glutamic acid enhanced monacolin K production by upregulating the expression of mokB-mokI; on day 8, the expression level of mokA tended to decrease by Reverse Transcription-polymerase Chain Reaction. Our findings demonstrated that mokA was not a key gene responsible for the quantity of monacolin K production in the presence of glutamic acid. Observation of Monascus mycelium morphology using Scanning Electron Microscope showed glutamic acid significantly increased the content of Monascus mycelium, altered the permeability of Monascus mycelium, enhanced secretion of monacolin K from the cell, and reduced the monacolin K content in Monascus mycelium, thereby enhancing monacolin K production.

  17. Dendrobium nobile Lindl. alkaloids regulate metabolism gene expression in livers of mice.

    PubMed

    Xu, Yun-Yan; Xu, Ya-Sha; Wang, Yuan; Wu, Qin; Lu, Yuan-Fu; Liu, Jie; Shi, Jing-Shan

    2017-10-01

    In our previous studies, Dendrobium nobile Lindl. alkaloids (DNLA) has been shown to have glucose-lowering and antihyperlipidaemia effects in diabetic rats, in rats fed with high-fat diets, and in mice challenged with adrenaline. This study aimed to examine the effects of DNLA on the expression of glucose and lipid metabolism genes in livers of mice. Mice were given DNLA at doses of 10-80 mg/kg, po for 8 days, and livers were removed for total RNA and protein isolation to perform real-time RT-PCR and Western blot analysis. Dendrobium nobile Lindl. alkaloids increased PGC1α at mRNA and protein levels and increased glucose metabolism gene Glut2 and FoxO1 expression. DNLA also increased the expression of fatty acid β-oxidation genes Acox1 and Cpt1a. The lipid synthesis regulator Srebp1 (sterol regulatory element-binding protein-1) was decreased, while the lipolysis gene ATGL was increased. Interestingly, DNLA increased the expression of antioxidant gene metallothionein-1 and NADPH quinone oxidoreductase-1 (Nqo1) in livers of mice. Western blot on selected proteins confirmed these changes including the increased expression of GLUT4 and PPARα. DNLA has beneficial effects on liver glucose and lipid metabolism gene expressions, and enhances the Nrf2-antioxidant pathway gene expressions, which could play integrated roles in regulating metabolic disorders. © 2017 Royal Pharmaceutical Society.

  18. De novo production of the plant-derived alkaloid strictosidine in yeast.

    PubMed

    Brown, Stephanie; Clastre, Marc; Courdavault, Vincent; O'Connor, Sarah E

    2015-03-17

    The monoterpene indole alkaloids are a large group of plant-derived specialized metabolites, many of which have valuable pharmaceutical or biological activity. There are ∼3,000 monoterpene indole alkaloids produced by thousands of plant species in numerous families. The diverse chemical structures found in this metabolite class originate from strictosidine, which is the last common biosynthetic intermediate for all monoterpene indole alkaloid enzymatic pathways. Reconstitution of biosynthetic pathways in a heterologous host is a promising strategy for rapid and inexpensive production of complex molecules that are found in plants. Here, we demonstrate how strictosidine can be produced de novo in a Saccharomyces cerevisiae host from 14 known monoterpene indole alkaloid pathway genes, along with an additional seven genes and three gene deletions that enhance secondary metabolism. This system provides an important resource for developing the production of more complex plant-derived alkaloids, engineering of nonnatural derivatives, identification of bottlenecks in monoterpene indole alkaloid biosynthesis, and discovery of new pathway genes in a convenient yeast host.

  19. Differential expression of carotenoid biosynthetic pathway genes in two contrasting tomato genotypes for lycopene content.

    PubMed

    Pandurangaiah, Shilpa; Ravishankar, Kundapura V; Shivashankar, Kodthalu S; Sadashiva, Avverahally T; Pillakenchappa, Kavitha; Narayanan, Sunil Kumar

    2016-06-01

    Tomato (Solanum lycopersicum L.) is one of the model plant to study carotenoid biosynthesis. In the present study, the fruit carotenoid content were quantified at different developmental stages for two contrasting genotypes, viz. IIHR-249-1 and IIHR-2866 by UPLC. Lycopene content was high in IIHR-249-1 (19.45 mg/100 g fresh weight) compared to IIHR-2866 (1.88 mg/100 g fresh weight) at the ripe stage. qPCR was performed for genes that are involved in the carotenoid biosynthetic pathway to study the difference in lycopene content in fruits of both the genotypes. The expression of Phytoene synthase (PSY) increased by 36-fold and Phytoene desaturase (PDS) increased by 14-fold from immature green stage to ripe stage in IIHR-249-1. The expression of Chloroplast lycopene beta-cyclase (LCY-B) and Chromoplast lycopene beta cyclase (CYC-B) decreased gradually from the initial stage to the ripe stage in IIHR-249-1. IIHR 249-1 showed 3- and 1.8-fold decrease in gene expression for Chloroplast lycopene beta-cyclase (LCY-B) and Chromoplast lycopene beta-cyclase (CYC-B) .The F2 hybrids derived from IIHR-249-1 and IIHR-2866 were analysed at the ripe stage for lycopene content. The gene expression of Chloroplast lycopene beta-cyclase (LCY-B) and Chromoplast lycopene beta-cyclase (CYC-B) in high and low lycopene lines from F2 progenies also showed the decrease in transcript levels of both the genes in high lycopene F2 lines. We wish to suggest that the differential expression of lycopene beta-cyclases can be used in marker-assisted breeding.

  20. Gene Duplication in the Carotenoid Biosynthetic Pathway Preceded Evolution of the Grasses1

    PubMed Central

    Gallagher, Cynthia E.; Matthews, Paul D.; Li, Faqiang; Wurtzel, Eleanore T.

    2004-01-01

    Despite ongoing research on carotenoid biosynthesis in model organisms, there is a paucity of information on pathway regulation operating in the grasses (Poaceae), which include plants of world-wide agronomic importance. As a result, efforts to either breed for or metabolically engineer improvements in carotenoid content or composition in cereal crops have led to unexpected results. In comparison to maize (Zea mays), rice (Oryza sativa) accumulates no endosperm carotenoids, despite having a functional pathway in chloroplasts. To better understand why these two related grasses differ in endosperm carotenoid content, we began to characterize genes encoding phytoene synthase (PSY), since this nuclear-encoded enzyme appeared to catalyze a rate-controlling step in the plastid-localized biosynthetic pathway. The enzyme had been previously associated with the maize Y1 locus thought to be the only functional gene controlling PSY accumulation, though function of the Y1 gene product had never been demonstrated. We show that both maize and rice possess and express products from duplicate PSY genes, PSY1 (Y1) and PSY2; PSY1 transcript accumulation correlates with carotenoid-containing endosperm. Using a heterologous bacterial system, we demonstrate enzyme function of PSY1 and PSY2 that are largely conserved in sequence except for N- and C-terminal domains. By database mining and use of ortholog-specific universal PCR primers, we found that the PSY duplication is prevalent in at least eight subfamilies of the Poaceae, suggesting that this duplication event preceded evolution of the Poaceae. These findings will impact study of grass phylogeny and breeding of enhanced carotenoid content in an entire taxonomic group of plant crops critical for global food security. PMID:15247400

  1. Heterogeneity in tandem octanucleotides within Haemophilus influenzae lipopolysaccharide biosynthetic gene losA affects serum resistance.

    PubMed

    Erwin, Alice L; Bonthuis, Paul J; Geelhood, Jennifer L; Nelson, Kevin L; McCrea, Kirk W; Gilsdorf, Janet R; Smith, Arnold L

    2006-06-01

    Haemophilus influenzae is subject to phase variation mediated by changes in the length of simple sequence repeat regions within several genes, most of which encode either surface proteins or enzymes involved in the synthesis of lipopolysaccharides (LPS). The translational repeat regions that have been described thus far all consist of tandemly repeated tetranucleotides. We describe an octanucleotide repeat region within a putative LPS biosynthetic gene, losA. Approximately 20 percent of nontypeable H. influenzae strains contain copies of losA and losB in a genetic locus flanked by infA and ksgA. Of 30 strains containing losA at this site, 24 contained 2 tandem copies of the octanucleotide CGAGCATA, allowing full-length translation of losA (on), and 6 strains contained 3, 4, 6, or 10 tandem copies (losA off). For a serum-sensitive strain, R3063, with losA off (10 repeat units), selection for serum-resistant variants yielded a heterogeneous population in which colonies with increased serum resistance had losA on (2, 8, or 11 repeat units), and colonies with unchanged sensitivity to serum had 10 repeats. Inactivation of losA in strains R3063 and R2846 (strain 12) by insertion of the cat gene decreased the serum resistance of these strains compared to losA-on variants and altered the electrophoretic mobility of LPS. We conclude that expression of losA, a gene that contributes to LPS structure and affects serum resistance, is determined by octanucleotide repeat variation.

  2. Description of a Riboflavin Biosynthetic Gene Variant Prevalent in the Phylum Proteobacteria

    PubMed Central

    Brutinel, Evan D.; Dean, Antony M.

    2013-01-01

    Riboflavin (vitamin B2) is the precursor of flavin mononucleotide and flavin adenine dinucleotide, which are cofactors essential for a host of intracellular redox reactions. Microorganisms synthesize flavins de novo to fulfill nutritional requirements, but it is becoming increasingly clear that flavins play a wider role in cellular physiology than was previously appreciated. Flavins mediate diverse processes beyond the cytoplasmic membrane, including iron acquisition, extracellular respiration, and interspecies interactions. While investigating the regulation of flavin electron shuttle biosynthesis in the Gram-negative gammaproteobacterium Shewanella oneidensis, we discovered that a riboflavin biosynthetic gene (ribBA) annotated as encoding a bifunctional 3,4-dihydroxy-2-butanone 4-phosphate (DHBP) synthase/GTP cyclohydrolase II does not possess both functions. The novel gene, renamed ribBX here, encodes an amino-terminal DHBP synthase domain. The carboxy-terminal end of RibBX not only lacks GTP cyclohydrolase II activity but also has evolved a different function altogether in S. oneidensis, regulating the activity of the DHBP synthase domain. Phylogenetic analysis revealed that the misannotation of ribBX as ribBA is rampant throughout the phylum Proteobacteria (40% of 2,173 annotated ribBA genes) and that ribBX emerged early in the evolution of this group of microorganisms. We examined the functionality of representative ribBX genes from Beta-, Gamma-, and Epsilonproteobacteria and found that, consistent with sequence-based predictions, the encoded GTP cyclohydrolase II domains lack catalytic activity. The persistence of ribBX in the genomes of so many phylogenetically divergent bacterial species lends weight to the argument that ribBX has evolved a function which lends a selective advantage to the host. PMID:24097946

  3. Description of a riboflavin biosynthetic gene variant prevalent in the phylum Proteobacteria.

    PubMed

    Brutinel, Evan D; Dean, Antony M; Gralnick, Jeffrey A

    2013-12-01

    Riboflavin (vitamin B2) is the precursor of flavin mononucleotide and flavin adenine dinucleotide, which are cofactors essential for a host of intracellular redox reactions. Microorganisms synthesize flavins de novo to fulfill nutritional requirements, but it is becoming increasingly clear that flavins play a wider role in cellular physiology than was previously appreciated. Flavins mediate diverse processes beyond the cytoplasmic membrane, including iron acquisition, extracellular respiration, and interspecies interactions. While investigating the regulation of flavin electron shuttle biosynthesis in the Gram-negative gammaproteobacterium Shewanella oneidensis, we discovered that a riboflavin biosynthetic gene (ribBA) annotated as encoding a bifunctional 3,4-dihydroxy-2-butanone 4-phosphate (DHBP) synthase/GTP cyclohydrolase II does not possess both functions. The novel gene, renamed ribBX here, encodes an amino-terminal DHBP synthase domain. The carboxy-terminal end of RibBX not only lacks GTP cyclohydrolase II activity but also has evolved a different function altogether in S. oneidensis, regulating the activity of the DHBP synthase domain. Phylogenetic analysis revealed that the misannotation of ribBX as ribBA is rampant throughout the phylum Proteobacteria (40% of 2,173 annotated ribBA genes) and that ribBX emerged early in the evolution of this group of microorganisms. We examined the functionality of representative ribBX genes from Beta-, Gamma-, and Epsilonproteobacteria and found that, consistent with sequence-based predictions, the encoded GTP cyclohydrolase II domains lack catalytic activity. The persistence of ribBX in the genomes of so many phylogenetically divergent bacterial species lends weight to the argument that ribBX has evolved a function which lends a selective advantage to the host.

  4. Staphylococcal enterotoxin A gene-carrying Staphylococcus aureus isolated from foods and its control by crude alkaloid from papaya leaves.

    PubMed

    Handayani, Lita; Faridah, Didah Nur; Kusumaningrum, Harsi D

    2014-11-01

    Staphylococcus aureus is a known pathogen causing intoxication by producing enterotoxins in food. Staphylococcal enterotoxin A is one of the enterotoxins commonly implicated in staphylococcal food poisoning. The ability of crude alkaloid extract from papaya leaves to inhibit the growth of S. aureus and staphylococcal enterotoxin A synthesis was investigated. Staphylococcal enterotoxin A gene-carrying S. aureus was isolated from raw milk and ready-to-eat foods. Crude alkaloid was extracted from ground, dried papaya leaves using ultrasonic-assisted extraction, and a MIC of the alkaloid was determined by the broth macrodilution method. Furthermore, S. aureus isolate was exposed to the crude alkaloid extract at one- and twofold MIC, and the expression of sea was subsequently analyzed using a quantitative reverse transcription real-time PCR. Ten isolates of S. aureus were obtained, and nine of those isolates were sea carriers. The yield of crude alkaloid extract was 0.48 to 1.82% per dry weight of papaya leaves. A MIC of crude alkaloid to S. aureus was 0.25 mg/ml. After exposure to the alkaloid at 0.25 and 0.5 mg/ml for 2 h, a significant increase in cycle threshold values of sea was observed. The sea was expressed 29 and 41 times less when S. aureus was exposed to crude alkaloid at one- and twofold MIC, respectively. This study revealed that crude alkaloid of papaya leaves could control staphylococcal enterotoxin A gene-carrying S. aureus by suppressing the expression of sea, in addition to the ability to inhibit the growth of S. aureus. The expression of sea was successfully quantified.

  5. Higher transcription levels in ascorbic acid biosynthetic and recycling genes were associated with higher ascorbic acid accumulation in blueberry.

    PubMed

    Liu, Fenghong; Wang, Lei; Gu, Liang; Zhao, Wei; Su, Hongyan; Cheng, Xianhao

    2015-12-01

    In our preliminary study, the ripe fruits of two highbush blueberry (Vaccinium corymbosum L.) cultivars, cv 'Berkeley' and cv 'Bluecrop', were found to contain different levels of ascorbic acid. However, factors responsible for these differences are still unknown. In the present study, ascorbic acid content in fruits was compared with expression profiles of ascorbic acid biosynthetic and recycling genes between 'Bluecrop' and 'Berkeley' cultivars. The results indicated that the l-galactose pathway was the predominant route of ascorbic acid biosynthesis in blueberry fruits. Moreover, higher expression levels of the ascorbic acid biosynthetic genes GME, GGP, and GLDH, as well as the recycling genes MDHAR and DHAR, were associated with higher ascorbic acid content in 'Bluecrop' compared with 'Berkeley', which indicated that a higher efficiency ascorbic acid biosynthesis and regeneration was likely to be responsible for the higher ascorbic acid accumulation in 'Bluecrop'.

  6. Non-enzymatic pyridine ring formation in the biosynthesis of the rubrolone tropolone alkaloids

    PubMed Central

    Yan, Yijun; Yang, Jing; Yu, Zhiyin; Yu, Mingming; Ma, Ya-Tuan; Wang, Li; Su, Can; Luo, Jianying; Horsman, Geoffrey P.; Huang, Sheng-Xiong

    2016-01-01

    The pyridine ring is a potent pharmacophore in alkaloid natural products. Nonetheless, its biosynthetic pathways are poorly understood. Rubrolones A and B are tropolone alkaloid natural products possessing a unique tetra-substituted pyridine moiety. Here, we report the gene cluster and propose a biosynthetic pathway for rubrolones, identifying a key intermediate that accumulates upon inactivation of sugar biosynthetic genes. Critically, this intermediate was converted to the aglycones of rubrolones by non-enzymatic condensation and cyclization with either ammonia or anthranilic acid to generate the respective pyridine rings. We propose that this non-enzymatic reaction occurs via hydrolysis of the key intermediate, which possesses a 1,5-dione moiety as an amine acceptor capable of cyclization. This study suggests that 1,5-dione moieties may represent a general strategy for pyridine ring biosynthesis, and more broadly highlights the utility of non-enzymatic diversification for exploring and expanding natural product chemical space. PMID:27713400

  7. Diversity of Culturable Thermophilic Actinobacteria in Hot Springs in Tengchong, China and Studies of their Biosynthetic Gene Profiles.

    PubMed

    Liu, Lan; Salam, Nimaichand; Jiao, Jian-Yu; Jiang, Hong-Chen; Zhou, En-Min; Yin, Yi-Rui; Ming, Hong; Li, Wen-Jun

    2016-07-01

    The class Actinobacteria has been a goldmine for the discovery of antibiotics and has attracted interest from both academics and industries. However, an absence of novel approaches during the last few decades has limited the discovery of new microbial natural products useful for industries. Scientists are now focusing on the ecological aspects of diverse environments including unexplored or underexplored habitats and extreme environments in the search for new metabolites. This paper reports on the diversity of culturable actinobacteria associated with hot springs located in Tengchong County, Yunnan Province, southwestern China. A total of 58 thermophilic actinobacterial strains were isolated from the samples collected from ten hot springs distributed over three geothermal fields (e.g., Hehua, Rehai, and Ruidian). Phylogenetic positions and their biosynthetic profiles were analyzed by sequencing 16S rRNA gene and three biosynthetic gene clusters (KS domain of PKS-I, KSα domain of PKS-II and A domain of NRPS). On the basis of 16S rRNA gene phylogenetic analysis, the 58 strains were affiliated with 12 actinobacterial genera: Actinomadura Micromonospora, Microbispora, Micrococcus, Nocardiopsis, Nonomuraea, Promicromonospora, Pseudonocardia, Streptomyces, Thermoactinospora, Thermocatellispora, and Verrucosispora, of which the two novel genera Thermoactinospora and Thermocatellisopora were recently described from among these strains. Considering the biosynthetic potential of these actinobacterial strains, 22 were positive for PCR amplification of at least one of the three biosynthetic gene clusters (PKS-I, PKS-II, and NRPS). These actinobacteria were further subjected to antimicrobial assay against five opportunistic human pathogens (Acinetobacter baumannii, Escherichia coli, Micrococcus luteus, Staphylococcus aureus and Streptococcus faecalis). All of the 22 strains that were positive for PCR amplification of at least one of the biosynthetic gene domains exhibited

  8. Heterologous expression of the kanamycin biosynthetic gene cluster (pSKC2) in Streptomyces venezuelae YJ003.

    PubMed

    Thapa, Laxmi Prasad; Oh, Tae-Jin; Lee, Hei Chan; Liou, Kwangkyoung; Park, Je Won; Yoon, Yeo Joon; Sohng, Jae Kyung

    2007-10-01

    The pSKC2 cosmid, which has 32 kb and 28 open-reading frames, was isolated from Streptomyces kanamyceticus ATCC12853 as the gene cluster of kanamycin. This gene cluster includes the minimal biosynthetic genes of kanamycin with the resistance and regulatory genes. It was heterologously expressed in Streptomyces venezuelae YJ003, which has the advantage of fast growth, good efficiency of the transformation host, and rapid production of the aminoglycosides antibiotic. The isolated compound was analyzed by electrospray ionization-mass spectrometry, liquid chromatography-mass spectrometry, high-performance liquid chromatography, and tandem mass spectrometry and shows a molecular weight of 485 as kanamycin A.

  9. Simultaneous Suppression of Multiple Genes by Single Transgenes. Down-Regulation of Three Unrelated Lignin Biosynthetic Genes in Tobacco1

    PubMed Central

    Abbott, James C.; Barakate, Abdellah; Pinçon, Gaelle; Legrand, Michel; Lapierre, Catherine; Mila, Isabelle; Schuch, Wolfgang; Halpin, Claire

    2002-01-01

    Many reports now describe the manipulation of plant metabolism by suppressing the expression of single genes. The potential of such work could be greatly expanded if multiple genes could be coordinately suppressed. In the work presented here, we test a novel method for achieving this by using single chimeric constructs incorporating partial sense sequences for multiple genes to target suppression of two or three lignin biosynthetic enzymes. We compare this method with a more conventional approach to achieving the same end by crossing plants harboring different antisense transgenes. Our results indicate that crossing antisense plants is less straightforward and predictable in outcome than anticipated. Most progeny had higher levels of target enzyme activity than predicted and had lost the expected modifications to lignin structure. In comparison, plants transformed with the chimeric partial sense constructs had more consistent high level suppression of target enzymes and had significant changes to lignin content, structure, and composition. It was possible to suppress three target genes coordinately using a single chimeric construct. Our results indicate that chimeric silencing constructs offer great potential for the rapid and coordinate suppression of multiple genes on diverse biochemical pathways and that the technique therefore deserves to be adopted by other researchers. PMID:11891241

  10. Purine biosynthetic genes are required for cadmium tolerance in Schizosaccharomyces pombe

    SciTech Connect

    Speiser, D.M.; Ortiz, D.F.; Kreppel, L.; Scheel, G.; McDonald, G.; Ow, D.W. Univ. of California, Berkeley )

    1992-12-01

    Phytochelatins (PCs) are metal-chelating peptides produced in plants and some fungi in response to heavy metal exposure. A Cd-sensitive mutant of the fission yeast Schizosaccharomyces pombe, defective in production of a PC-Cd-sulfide complex essential for metal tolerance, was found to harbor mutations in specific genes of the purine biosynthetic pathway. Genetic analysis of the link between metal complex accumulation and purine biosynthesis enzymes revealed that genetic lesions blocking two segments of the pathway, before and after the IMP branchpoint, are required to produce the Cd-sensitive phenotype. The biochemical functions of these two segments of the pathway are similar, and a model based on the alternate use of a sulfur analog substrate is presented. The novel participation of purine biosynthesis enzymes in the conversion of the PC-Cd complex to the PC-Cd-sulfide complex in the fission yeast raises an intriguing possibility that these same enzymes might have a role in sulfur metabolism in the fission yeast S. pombe, and perhaps in other biological systems. 41 refs., 8 figs., 2 tabs.

  11. Biosynthetic gene clusters for relevant secondary metabolites produced by Penicillium roqueforti in blue cheeses.

    PubMed

    García-Estrada, Carlos; Martín, Juan-Francisco

    2016-10-01

    Ripening of blue-veined cheeses, such as the French Bleu and Roquefort, the Italian Gorgonzola, the English Stilton, the Danish Danablu or the Spanish Cabrales, Picón Bejes-Tresviso, and Valdeón, requires the growth and enzymatic activity of the mold Penicillium roqueforti, which is responsible for the characteristic texture, blue-green spots, and aroma of these types of cheeses. This filamentous fungus is able to synthesize different secondary metabolites, including andrastins, mycophenolic acid, and several mycotoxins, such as roquefortines C and D, PR-toxin and eremofortins, isofumigaclavines A and B, and festuclavine. This review provides a detailed description of the main secondary metabolites produced by P. roqueforti in blue cheese, giving a special emphasis to roquefortine, PR-toxin and mycophenolic acid, and their biosynthetic gene clusters and pathways. The knowledge of these clusters and secondary metabolism pathways, together with the ability of P. roqueforti to produce beneficial secondary metabolites, is of interest for commercial purposes.

  12. Purine biosynthetic genes are required for cadmium tolerance in Schizosaccharomyces pombe.

    PubMed Central

    Speiser, D M; Ortiz, D F; Kreppel, L; Scheel, G; McDonald, G; Ow, D W

    1992-01-01

    Phytochelatins (PCs) are metal-chelating peptides produced in plants and some fungi in response to heavy metal exposure. A Cd-sensitive mutant of the fission yeast Schizosaccharomyces pombe, defective in production of a PC-Cd-sulfide complex essential for metal tolerance, was found to harbor mutations in specific genes of the purine biosynthetic pathway. Genetic analysis of the link between metal complex accumulation and purine biosynthesis enzymes revealed that genetic lesions blocking two segments of the pathway, before and after the IMP branchpoint, are required to produce the Cd-sensitive phenotype. The biochemical functions of these two segments of the pathway are similar, and a model based on the alternate use of a sulfur analog substrate is presented. The novel participation of purine biosynthesis enzymes in the conversion of the PC-Cd complex to the PC-Cd-sulfide complex in the fission yeast raises an intriguing possibility that these same enzymes might have a role in sulfur metabolism in the fission yeast S. pombe, and perhaps in other biological systems. Images PMID:1448066

  13. Discovering potential Streptomyces hormone producers by using disruptants of essential biosynthetic genes as indicator strains.

    PubMed

    Thao, Nguyen B; Kitani, Shigeru; Nitta, Hiroko; Tomioka, Toshiya; Nihira, Takuya

    2017-10-01

    Autoregulators are low-molecular-weight signaling compounds that control the production of many secondary metabolites in actinomycetes and have been referred to as 'Streptomyces hormones'. Here, potential producers of Streptomyces hormones were investigated in 40 Streptomyces and 11 endophytic actinomycetes. Production of γ-butyrolactone-type (IM-2, VB) and butenolide-type (avenolide) Streptomyces hormones was screened using Streptomyces lavendulae FRI-5 (ΔfarX), Streptomyces virginiae (ΔbarX) and Streptomyces avermitilis (Δaco), respectively. In these strains, essential biosynthetic genes for Streptomyces hormones were disrupted, enabling them to respond solely to the externally added hormones. The results showed that 20% of each of the investigated strains produced IM-2 and VB, confirming that γ-butyrolactone-type Streptomyces hormones are the most common in actinomycetes. Unlike the γ-butyrolactone type, butenolide-type Streptomyces hormones have been discovered in recent years, but their distribution has been unclear. Our finding that 24% of actinomycetes (12 of 51 strains) showed avenolide activity revealed for the first time that the butenolide-type Streptomyces hormone is also common in actinomycetes.

  14. Cloning, sequencing and characterization of the biosynthetic gene cluster of sanglifehrin A, a potent cyclophilin inhibitor.

    PubMed

    Qu, Xudong; Jiang, Nan; Xu, Fei; Shao, Lei; Tang, Gongli; Wilkinson, Barrie; Liu, Wen

    2011-03-01

    Sanglifehrin A (SFA), a potent cyclophilin inhibitor produced by Streptomyces flaveolus DSM 9954, bears a unique [5.5] spirolactam moiety conjugated with a 22-membered, highly functionalized macrolide through a linear carbon chain. SFA displays a diverse range of biological activities and offers significant therapeutic potential. However, the structural complexity of SFA poses a tremendous challenge for new analogue development via chemical synthesis. Based on a rational prediction of its biosynthetic origin, herein we report the cloning, sequencing and characterization of the gene cluster responsible for SFA biosynthesis. Analysis of the 92 776 bp contiguous DNA region reveals a mixed polyketide synthase (PKS)/non-ribosomal peptide synthetase (NRPS) pathway which includes a variety of unique features for unusual PKS and NRPS building block formation. Our findings suggest that SFA biosynthesis requires a crotonyl-CoA reductase/carboxylase (CCR) for generation of the putative unusual PKS starter unit (2R)-2-ethylmalonamyl-CoA, an iterative type I PKS for the putative atypical extender unit (2S)-2-(2-oxo-butyl)malonyl-CoA and a phenylalanine hydroxylase for the NRPS extender unit (2S)-m-tyrosine. A spontaneous ketalization of significant note, may trigger spirolactam formation in a stereo-selective manner. This study provides a framework for the application of combinatorial biosynthesis methods in order to expand the structural diversity of SFA.

  15. Identification of the chelocardin biosynthetic gene cluster from Amycolatopsis sulphurea: a platform for producing novel tetracycline antibiotics.

    PubMed

    Lukežič, Tadeja; Lešnik, Urška; Podgoršek, Ajda; Horvat, Jaka; Polak, Tomaž; Šala, Martin; Jenko, Branko; Raspor, Peter; Herron, Paul R; Hunter, Iain S; Petković, Hrvoje

    2013-12-01

    Tetracyclines (TCs) are medically important antibiotics from the polyketide family of natural products. Chelocardin (CHD), produced by Amycolatopsis sulphurea, is a broad-spectrum tetracyclic antibiotic with potent bacteriolytic activity against a number of Gram-positive and Gram-negative multi-resistant pathogens. CHD has an unknown mode of action that is different from TCs. It has some structural features that define it as 'atypical' and, notably, is active against tetracycline-resistant pathogens. Identification and characterization of the chelocardin biosynthetic gene cluster from A. sulphurea revealed 18 putative open reading frames including a type II polyketide synthase. Compared to typical TCs, the chd cluster contains a number of features that relate to its classification as 'atypical': an additional gene for a putative two-component cyclase/aromatase that may be responsible for the different aromatization pattern, a gene for a putative aminotransferase for C-4 with the opposite stereochemistry to TCs and a gene for a putative C-9 methylase that is a unique feature of this biosynthetic cluster within the TCs. Collectively, these enzymes deliver a molecule with different aromatization of ring C that results in an unusual planar structure of the TC backbone. This is a likely contributor to its different mode of action. In addition CHD biosynthesis is primed with acetate, unlike the TCs, which are primed with malonamate, and offers a biosynthetic engineering platform that represents a unique opportunity for efficient generation of novel tetracyclic backbones using combinatorial biosynthesis.

  16. antiSMASH 3.0-a comprehensive resource for the genome mining of biosynthetic gene clusters.

    PubMed

    Weber, Tilmann; Blin, Kai; Duddela, Srikanth; Krug, Daniel; Kim, Hyun Uk; Bruccoleri, Robert; Lee, Sang Yup; Fischbach, Michael A; Müller, Rolf; Wohlleben, Wolfgang; Breitling, Rainer; Takano, Eriko; Medema, Marnix H

    2015-07-01

    Microbial secondary metabolism constitutes a rich source of antibiotics, chemotherapeutics, insecticides and other high-value chemicals. Genome mining of gene clusters that encode the biosynthetic pathways for these metabolites has become a key methodology for novel compound discovery. In 2011, we introduced antiSMASH, a web server and stand-alone tool for the automatic genomic identification and analysis of biosynthetic gene clusters, available at http://antismash.secondarymetabolites.org. Here, we present version 3.0 of antiSMASH, which has undergone major improvements. A full integration of the recently published ClusterFinder algorithm now allows using this probabilistic algorithm to detect putative gene clusters of unknown types. Also, a new dereplication variant of the ClusterBlast module now identifies similarities of identified clusters to any of 1172 clusters with known end products. At the enzyme level, active sites of key biosynthetic enzymes are now pinpointed through a curated pattern-matching procedure and Enzyme Commission numbers are assigned to functionally classify all enzyme-coding genes. Additionally, chemical structure prediction has been improved by incorporating polyketide reduction states. Finally, in order for users to be able to organize and analyze multiple antiSMASH outputs in a private setting, a new XML output module allows offline editing of antiSMASH annotations within the Geneious software.

  17. antiSMASH 3.0—a comprehensive resource for the genome mining of biosynthetic gene clusters

    PubMed Central

    Weber, Tilmann; Blin, Kai; Duddela, Srikanth; Krug, Daniel; Kim, Hyun Uk; Bruccoleri, Robert; Lee, Sang Yup; Fischbach, Michael A.; Müller, Rolf; Wohlleben, Wolfgang; Breitling, Rainer; Takano, Eriko; Medema, Marnix H.

    2015-01-01

    Microbial secondary metabolism constitutes a rich source of antibiotics, chemotherapeutics, insecticides and other high-value chemicals. Genome mining of gene clusters that encode the biosynthetic pathways for these metabolites has become a key methodology for novel compound discovery. In 2011, we introduced antiSMASH, a web server and stand-alone tool for the automatic genomic identification and analysis of biosynthetic gene clusters, available at http://antismash.secondarymetabolites.org. Here, we present version 3.0 of antiSMASH, which has undergone major improvements. A full integration of the recently published ClusterFinder algorithm now allows using this probabilistic algorithm to detect putative gene clusters of unknown types. Also, a new dereplication variant of the ClusterBlast module now identifies similarities of identified clusters to any of 1172 clusters with known end products. At the enzyme level, active sites of key biosynthetic enzymes are now pinpointed through a curated pattern-matching procedure and Enzyme Commission numbers are assigned to functionally classify all enzyme-coding genes. Additionally, chemical structure prediction has been improved by incorporating polyketide reduction states. Finally, in order for users to be able to organize and analyze multiple antiSMASH outputs in a private setting, a new XML output module allows offline editing of antiSMASH annotations within the Geneious software. PMID:25948579

  18. Polymorphisms in monolignol biosynthetic genes are associated with biomass yield and agronomic traits in European maize (Zea mays L.).

    PubMed

    Chen, Yongsheng; Zein, Imad; Brenner, Everton Alen; Andersen, Jeppe Reitan; Landbeck, Mathias; Ouzunova, Milena; Lübberstedt, Thomas

    2010-01-15

    Reduced lignin content leads to higher cell wall digestibility and, therefore, better forage quality and increased conversion of lignocellulosic biomass into ethanol. However, reduced lignin content might lead to weaker stalks, lodging, and reduced biomass yield. Genes encoding enzymes involved in cell wall lignification have been shown to influence both cell wall digestibility and yield traits. In this study, associations between monolignol biosynthetic genes and plant height (PHT), days to silking (DTS), dry matter content (DMC), and dry matter yield (DMY) were identified by using a panel of 39 European elite maize lines. In total, 10 associations were detected between polymorphisms or tight linkage disequilibrium (LD) groups within the COMT, CCoAOMT2, 4CL1, 4CL2, F5H, and PAL genomic fragments, respectively, and the above mentioned traits. The phenotypic variation explained by these polymorphisms or tight LD groups ranged from 6% to 25.8% in our line collection. Only 4CL1 and F5H were found to have polymorphisms associated with both yield and forage quality related characters. However, no pleiotropic polymorphisms affecting both digestibility of neutral detergent fiber (DNDF), and PHT or DMY were discovered, even under less stringent statistical conditions. Due to absence of pleiotropic polymorphisms affecting both forage yield and quality traits, identification of optimal monolignol biosynthetic gene haplotype(s) combining beneficial quantitative trait polymorphism (QTP) alleles for both quality and yield traits appears possible within monolignol biosynthetic genes. This is beneficial to maximize forage and bioethanol yield per unit land area.

  19. Generation of the natamycin analogs by gene engineering of natamycin biosynthetic genes in Streptomyces chattanoogensis L10.

    PubMed

    Liu, Shui-Ping; Yuan, Peng-Hui; Wang, Yue-Yue; Liu, Xiao-Fang; Zhou, Zhen-Xing; Bu, Qing-ting; Yu, Pin; Jiang, Hui; Li, Yong-Quan

    2015-04-01

    The polyene antibiotic natamycin is widely used as an antifungal agent in both human therapy and the food industry. Here we obtained four natamycin analogs with high titers, including two new compounds, by engineering of six post-polyketide synthase (PKS) tailoring enzyme encoding genes in a natamycin industrial producing strain, Streptomyces chattanoogensis L10. Precise analysis of S. chattanoogensis L10 culture identified natamycin and two natamycin analogs, 4,5-deepoxy-natamycin and 4,5-deepoxy-natamycinolide. The scnD deletion mutant of S. chattanoogensis L10 did not produce natamycin but increased the titer of 4,5-deepoxy-natamycin. Inactivation of each of scnK, scnC, and scnJ in S. chattanoogensis L10 abolished natamycin production and accumulated 4,5-deepoxy-natamycinolide. Deletion of scnG in S. chattanoogensis L10 resulted in production of two new compounds, 4,5-deepoxy-12-decarboxyl-12-methyl-natamycin and its dehydration product without natamycin production. Inactivation of the ScnG-associated ferredoxin ScnF resulted in impaired production of natamycin. Bioassay of these natamycin analogs showed that three natamycin analogs remained antifungal activities. We found that homologous glycosyltransferases genes including amphDI and nysDI can partly complement the ΔscnK mutant. Our results here also support that ScnG, ScnK, and ScnD catalyze carboxylation, glycosylation, and epoxidation in turn in the natamycin biosynthetic pathway. Thus this paper provided a method to generate natamycin analogs and shed light on the natamycin biosynthetic pathway.

  20. Paralogous histidine biosynthetic genes: evolutionary analysis of the Saccharomyces cerevisiae HIS6 and HIS7 genes.

    PubMed

    Fani, R; Tamburini, E; Mori, E; Lazcano, A; Liò, P; Barberio, C; Casalone, E; Cavalieri, D; Perito, B; Polsinelli, M

    1997-09-15

    The HIS6 gene from Saccharomyces cerevisiae strain YNN282 is able to complement both the S. cerevisiae his6 and the Escherichia coli hisA mutations. The cloning and the nucleotide sequence indicated that this gene encodes a putative phosphoribosyl-5-amino-1-phosphoribosyl-4-imidazolecarboxiamide isomerase (5' Pro-FAR isomerase, EC 5.3.1.16) of 261 amino acids, with a molecular weight of 29,554. The HIS6 gene product shares a significant degree of sequence similarity with the prokaryotic HisA proteins and HisF proteins, and with the C-terminal domain of the S. cerevisiae HIS7 protein (homologous to HisF), indicating that the yeast HIS6 and HIS7 genes are paralogous. Moreover, the HIS6 gene is organized into two homologous modules half the size of the entire gene, typical of all the known prokaryotic hisA and hisF genes. The structure of the yeast HIS6 gene supports the two-step evolutionary model suggested by Fani et al. (J. Mol. Evol. 1994; 38: 489-495) to explain the present-day hisA and hisF genes. According to this idea, the hisF gene originated from the duplication of an ancestral hisA gene which, in turn, was the result of an earlier gene elongation event involving an ancestral module half the size of the extant gene. Results reported in this paper also suggest that these two successive paralogous gene duplications took probably place in the early steps of molecular evolution of the histidine pathway, well before the diversification of the three domains, and that this pathway was one of the metabolic activities of the last common ancestor. The molecular evolution of the yeast HIS6 and HIS7 genes is also discussed.

  1. Recombinational cloning of the antibiotic biosynthetic gene clusters in linear plasmid SCP1 of Streptomyces coelicolor A3(2).

    PubMed

    Zhang, Ran; Xia, Haiyang; Xu, Qingyu; Dang, Fujun; Qin, Zhongjun

    2013-08-01

    The model organism Streptomyces coelicolor A3(2) harbors a 356-kb linear plasmid, SCP1. We report here development of a recombinational cloning method for deleting large segment from one telomere of SCP1 followed by replacing with the telomere of pSLA2 and sequentially inserting with the overlapping cosmids in vivo. The procedure depends on homologous recombination coupled with cleavage at telomere termini by telomere terminal protein. Using this procedure, we cloned the 81-kb avermectin and the 76-kb spinosad biosynthetic gene clusters into SCP1. Heterologous expression of avermectin production in S. coelicolor was detected. These results demonstrate the utility of SCP1 for cloning large DNA segments such as antibiotic biosynthetic gene clusters. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  2. Bacillus cereus-type polyhydroxyalkanoate biosynthetic gene cluster contains R-specific enoyl-CoA hydratase gene.

    PubMed

    Kihara, Takahiro; Hiroe, Ayaka; Ishii-Hyakutake, Manami; Mizuno, Kouhei; Tsuge, Takeharu

    2017-08-01

    Bacillus cereus and Bacillus megaterium both accumulate polyhydroxyalkanoate (PHA) but their PHA biosynthetic gene (pha) clusters that code for proteins involved in PHA biosynthesis are different. Namely, a gene encoding MaoC-like protein exists in the B. cereus-type pha cluster but not in the B. megaterium-type pha cluster. MaoC-like protein has an R-specific enoyl-CoA hydratase (R-hydratase) activity and is referred to as PhaJ when involved in PHA metabolism. In this study, the pha cluster of B. cereus YB-4 was characterized in terms of PhaJ's function. In an in vitro assay, PhaJ from B. cereus YB-4 (PhaJYB4) exhibited hydration activity toward crotonyl-CoA. In an in vivo assay using Escherichia coli as a host for PHA accumulation, the recombinant strain expressing PhaJYB4 and PHA synthase led to increased PHA accumulation, suggesting that PhaJYB4 functioned as a monomer supplier. The monomer composition of the accumulated PHA reflected the substrate specificity of PhaJYB4, which appeared to prefer short chain-length substrates. The pha cluster from B. cereus YB-4 functioned to accumulate PHA in E. coli; however, it did not function when the phaJYB4 gene was deleted. The B. cereus-type pha cluster represents a new example of a pha cluster that contains the gene encoding PhaJ.

  3. Investigation of Proposed Ladderane Biosynthetic Genes from Anammox Bacteria by Heterologous Expression in E. coli

    SciTech Connect

    Javidpour, Pouya; Deutsch, Samuel; Mutalik, Vivek K.; Hillson, Nathan J.; Petzold, Christopher J.; Keasling, Jay D.; Beller, Harry R.; Isalan, Mark

    2016-03-14

    Ladderanes are hydrocarbon chains with three or five linearly concatenated cyclobutane rings that are uniquely produced as membrane lipid components by anammox (anaerobic ammonia-oxidizing) bacteria. By virtue of their angle and torsional strain, ladderanes are unusually energetic compounds, and if produced biochemically by engineered microbes, could serve as renewable, high-energy-density jet fuel components. The biochemistry and genetics underlying the ladderane biosynthetic pathway are unknown, however, previous studies have identified a pool of 34 candidate genes from the anammox bacterium, Kuenenia stuttgartiensis, some or all of which may be involved with ladderane fatty acid biosynthesis. The goal of the present study was to establish a systematic means of testing the candidate genes from K. stuttgartiensis for involvement in ladderane biosynthesis through heterologous expression in E. coli under anaerobic conditions. This study describes an efficient means of assembly of synthesized, codon-optimized candidate ladderane biosynthesis genes in synthetic operons that allows for changes to regulatory element sequences, as well as modular assembly of multiple operons for simultaneous heterologous expression in E. coli (or potentially other microbial hosts). We also describe in vivo functional tests of putative anammox homologs of the phytoene desaturase CrtI, which plays an important role in the hypothesized ladderane pathway, and a method for soluble purification of one of these enzymes. This study is, to our knowledge, the first experimental effort focusing on the role of specific anammox genes in the production of ladderanes, and lays the foundation for future efforts toward determination of the ladderane biosynthetic pathway. Our substantial, but far from comprehensive, efforts at elucidating the ladderane biosynthetic pathway were not successful. We invite the scientific community to take advantage of the considerable synthetic

  4. Characterization of CYP76M5–8 Indicates Metabolic Plasticity within a Plant Biosynthetic Gene Cluster*

    PubMed Central

    Wang, Qiang; Hillwig, Matthew L.; Okada, Kazunori; Yamazaki, Kohei; Wu, Yisheng; Swaminathan, Sivakumar; Yamane, Hisakazu; Peters, Reuben J.

    2012-01-01

    Recent reports have revealed genomic clustering of enzymatic genes for particular biosynthetic pathways in plant specialized/secondary metabolism. Rice (Oryza sativa) carries two such clusters for production of antimicrobial diterpenoid phytoalexins, with the cluster on chromosome 2 containing four closely related/homologous members of the cytochrome P450 CYP76M subfamily (CYP76M5–8). Notably, the underlying evolutionary expansion of these CYP appears to have occurred after assembly of the ancestral biosynthetic gene cluster, suggesting separate roles. It has been demonstrated that CYP76M7 catalyzes C11α-hydroxylation of ent-cassadiene, and presumably mediates an early step in biosynthesis of the derived phytocassane class of phytoalexins. Here we report biochemical characterization of CYP76M5, -6, and -8. Our results indicate that CYP76M8 is a multifunctional/promiscuous hydroxylase, with CYP76M5 and -7 seeming to provide only redundant activity, while CYP76M6 seems to provide both redundant and novel activity, relative to CYP76M8. RNAi-mediated double knockdown of CYP76M7 and -8 suppresses elicitor inducible phytocassane production, indicating a role for these monooxygenases in phytocassane biosynthesis. In addition, our data suggests that CYP76M5, -6, and -8 may play redundant roles in production of the oryzalexin class of phytoalexins as well. Intriguingly, the preceding diterpene synthase for oryzalexin biosynthesis, unlike that for the phytocassanes, is not found in the chromosome 2 diterpenoid biosynthetic gene cluster. Accordingly, our results not only uncover a complex evolutionary history, but also further suggest some intriguing differences between plant biosynthetic gene clusters and the seemingly similar microbial operons. The implications for the underlying metabolic evolution of plants are then discussed. PMID:22215681

  5. The Sound of Silence: Activating Silent Biosynthetic Gene Clusters in Marine Microorganisms.

    PubMed

    Reen, F Jerry; Romano, Stefano; Dobson, Alan D W; O'Gara, Fergal

    2015-07-31

    Unlocking the rich harvest of marine microbial ecosystems has the potential to both safeguard the existence of our species for the future, while also presenting significant lifestyle benefits for commercial gain. However, while significant advances have been made in the field of marine biodiscovery, leading to the introduction of new classes of therapeutics for clinical medicine, cosmetics and industrial products, much of what this natural ecosystem has to offer is locked in, and essentially hidden from our screening methods. Releasing this silent potential represents a significant technological challenge, the key to which is a comprehensive understanding of what controls these systems. Heterologous expression systems have been successful in awakening a number of these cryptic marine biosynthetic gene clusters (BGCs). However, this approach is limited by the typically large size of the encoding sequences. More recently, focus has shifted to the regulatory proteins associated with each BGC, many of which are signal responsive raising the possibility of exogenous activation. Abundant among these are the LysR-type family of transcriptional regulators, which are known to control production of microbial aromatic systems. Although the environmental signals that activate these regulatory systems remain unknown, it offers the exciting possibility of evoking mimic molecules and synthetic expression systems to drive production of potentially novel natural products in microorganisms. Success in this field has the potential to provide a quantum leap forward in medical and industrial bio-product development. To achieve these new endpoints, it is clear that the integrated efforts of bioinformaticians and natural product chemists will be required as we strive to uncover new and potentially unique structures from silent or cryptic marine gene clusters.

  6. The Sound of Silence: Activating Silent Biosynthetic Gene Clusters in Marine Microorganisms

    PubMed Central

    Reen, F. Jerry; Romano, Stefano; Dobson, Alan D.W.; O’Gara, Fergal

    2015-01-01

    Unlocking the rich harvest of marine microbial ecosystems has the potential to both safeguard the existence of our species for the future, while also presenting significant lifestyle benefits for commercial gain. However, while significant advances have been made in the field of marine biodiscovery, leading to the introduction of new classes of therapeutics for clinical medicine, cosmetics and industrial products, much of what this natural ecosystem has to offer is locked in, and essentially hidden from our screening methods. Releasing this silent potential represents a significant technological challenge, the key to which is a comprehensive understanding of what controls these systems. Heterologous expression systems have been successful in awakening a number of these cryptic marine biosynthetic gene clusters (BGCs). However, this approach is limited by the typically large size of the encoding sequences. More recently, focus has shifted to the regulatory proteins associated with each BGC, many of which are signal responsive raising the possibility of exogenous activation. Abundant among these are the LysR-type family of transcriptional regulators, which are known to control production of microbial aromatic systems. Although the environmental signals that activate these regulatory systems remain unknown, it offers the exciting possibility of evoking mimic molecules and synthetic expression systems to drive production of potentially novel natural products in microorganisms. Success in this field has the potential to provide a quantum leap forward in medical and industrial bio-product development. To achieve these new endpoints, it is clear that the integrated efforts of bioinformaticians and natural product chemists will be required as we strive to uncover new and potentially unique structures from silent or cryptic marine gene clusters. PMID:26264003

  7. New Insight into the Ochratoxin A Biosynthetic Pathway through Deletion of a Nonribosomal Peptide Synthetase Gene in Aspergillus carbonarius

    SciTech Connect

    Gallo, A.; Bruno, K. S.; Solfrizzo, M.; Perrone, G.; Mule, G.; Visconti, A.; Baker, S. E.

    2012-09-14

    Ochratoxin A (OTA), a mycotoxin produced by Aspergillus and Penicillium species, is composed of a dihydroisocoumarin ring linked to phenylalanine and its biosynthetic pathway has not yet been completely elucidated. Most of the knowledge regarding the genetic and enzymatic aspects of OTA biosynthesis has been obtained in Penicillium species. In Aspergillus species only pks genes involved in the initial steps of the pathway have been partially characterized. In our study, the inactivation of a gene encoding a nonribosomal peptide synthetase in OTA producing A. carbonarius ITEM 5010 has removed the ability of the fungus to produce OTA. This is the first report on the involvement of an nrps gene product in OTA biosynthetic pathway in Aspergillus species. The absence of OTA and ochratoxin α-the isocoumaric derivative of OTA, and the concomitant increase of ochratoxin β- the dechloro analog of ochratoxin α- were observed in the liquid culture of transformed strain. The data provide the first evidence that the enzymatic step adding phenylalanine to polyketide dihydroisocoumarin precedes the chlorination step to form OTA in A. carbonarius, and that ochratoxin α is a product of hydrolysis of OTA, giving an interesting new insight in the biosynthetic pathway of the toxin.

  8. A gene expression analysis of cell wall biosynthetic genes in Malus x domestica infected by 'Candidatus Phytoplasma mali'.

    PubMed

    Guerriero, Gea; Giorno, Filomena; Ciccotti, Anna Maria; Schmidt, Silvia; Baric, Sanja

    2012-11-01

    Apple proliferation (AP) represents a serious threat to several fruit-growing areas and is responsible for great economic losses. Several studies have highlighted the key role played by the cell wall in response to pathogen attack. The existence of a cell wall integrity signaling pathway which senses perturbations in the cell wall architecture upon abiotic/biotic stresses and activates specific defence responses has been widely demonstrated in plants. More recently a role played by cell wall-related genes has also been reported in plants infected by phytoplasmas. With the aim of shedding light on the cell wall response to AP disease in the economically relevant fruit-tree Malus × domestica Borkh., we investigated the expression of the cellulose (CesA) and callose synthase (CalS) genes in different organs (i.e., leaves, roots and branch phloem) of healthy and infected symptomatic outdoor-grown trees, sampled over the course of two time points (i.e., spring and autumn 2011), as well as in in vitro micropropagated control and infected plantlets. A strong up-regulation in the expression of cell wall biosynthetic genes was recorded in roots from infected trees. Secondary cell wall CesAs showed up-regulation in the phloem tissue from branches of infected plants, while either a down-regulation of some genes or no major changes were observed in the leaves. Micropropagated plantlets also showed an increase in cell wall-related genes and constitute a useful system for a general assessment of gene expression analysis upon phytoplasma infection. Finally, we also report the presence of several 'knot'-like structures along the roots of infected apple trees and discuss the occurrence of this interesting phenotype in relation to the gene expression results and the modalities of phytoplasma diffusion.

  9. A gene expression analysis of cell wall biosynthetic genes in Malus × domestica infected by ‘Candidatus Phytoplasma mali’

    PubMed Central

    Guerriero, Gea; Giorno, Filomena; Ciccotti, Anna Maria; Schmidt, Silvia; Baric, Sanja

    2016-01-01

    Apple proliferation (AP) represents a serious threat to several fruit-growing areas and is responsible for great economic losses. Several studies have highlighted the key role played by the cell wall in response to pathogen attack. The existence of a cell wall integrity signaling pathway which senses perturbations in the cell wall architecture upon abiotic/biotic stresses and activates specific defence responses has been widely demonstrated in plants. More recently a role played by cell wall-related genes has also been reported in plants infected by phytoplasmas. With the aim of shedding light on the cell wall response to AP disease in the economically relevant fruit-tree Malus × domestica Borkh., we investigated the expression of the cellulose (CesA) and callose synthase (CalS) genes in different organs (i.e., leaves, roots and branch phloem) of healthy and infected symptomatic outdoor-grown trees, sampled over the course of two time points (i.e., spring and autumn 2011), as well as in in vitro micropropagated control and infected plantlets. A strong up-regulation in the expression of cell wall biosynthetic genes was recorded in roots from infected trees. Secondary cell wall CesAs showed up-regulation in the phloem tissue from branches of infected plants, while either a down-regulation of some genes or no major changes were observed in the leaves. Micropropagated plantlets also showed an increase in cell wall-related genes and constitute a useful system for a general assessment of gene expression analysis upon phytoplasma infection. Finally, we also report the presence of several ‘knot’-like structures along the roots of infected apple trees and discuss the occurrence of this interesting phenotype in relation to the gene expression results and the modalities of phytoplasma diffusion. PMID:23086810

  10. Biosynthetic studies on the tropane alkaloid hyoscyamine in Datura stramonium; hyoscyamine is stable to in vivo oxidation and is not derived from littorine via a vicinal interchange process.

    PubMed

    Patterson, Stephen; O'Hagan, David

    2002-10-01

    The conversion of littorine to hyoscyamine has been investigated by feeding deuterium labelled (RS)-[2-(2)H]-, [3, 3-(2)H(2)]-, [2, 3, 3-(2)H(3)]- phenyllactic acids to transformed root cultures of Datura stramonium. Isolation and GC-MS analyses of the isotope incorporation into the resultant hyoscyamine does not support the involvement of a vicinal interchange process operating during the isomerisation of littorine to hyoscyamine. Additionally a metabolism study with [1'-13C, 3', 3'-(2)H(2)]-hyoscyamine has established that the alkaloid is metabolically stable at C-3' with no evidence for a reversible in vivo oxidation process to the corresponding aldehyde. The data do not support an S-adenosy-L-methionine (SAM 5)/co-enzyme-B(12) mediated process for the isomerisation of littorine to hyoscyamine.

  11. SCS3 and YFT2 Link Transcription of Phospholipid Biosynthetic Genes to ER Stress and the UPR

    PubMed Central

    Moir, Robyn D.; Gross, David A.; Silver, David L.; Willis, Ian M.

    2012-01-01

    The ability to store nutrients in lipid droplets (LDs) is an ancient function that provides the primary source of metabolic energy during periods of nutrient insufficiency and between meals. The Fat storage-Inducing Transmembrane (FIT) proteins are conserved ER–resident proteins that facilitate fat storage by partitioning energy-rich triglycerides into LDs. FIT2, the ancient ortholog of the FIT gene family first identified in mammals has two homologs in Saccharomyces cerevisiae (SCS3 and YFT2) and other fungi of the Saccharomycotina lineage. Despite the coevolution of these genes for more than 170 million years and their divergence from higher eukaryotes, SCS3, YFT2, and the human FIT2 gene retain some common functions: expression of the yeast genes in a human embryonic kidney cell line promotes LD formation, and expression of human FIT2 in yeast rescues the inositol auxotrophy and chemical and genetic phenotypes of strains lacking SCS3. To better understand the function of SCS3 and YFT2, we investigated the chemical sensitivities of strains deleted for either or both genes and identified synthetic genetic interactions against the viable yeast gene-deletion collection. We show that SCS3 and YFT2 have shared and unique functions that connect major biosynthetic processes critical for cell growth. These include lipid metabolism, vesicular trafficking, transcription of phospholipid biosynthetic genes, and protein synthesis. The genetic data indicate that optimal strain fitness requires a balance between phospholipid synthesis and protein synthesis and that deletion of SCS3 and YFT2 impacts a regulatory mechanism that coordinates these processes. Part of this mechanism involves a role for SCS3 in communicating changes in the ER (e.g. due to low inositol) to Opi1-regulated transcription of phospholipid biosynthetic genes. We conclude that SCS3 and YFT2 are required for normal ER membrane biosynthesis in response to perturbations in lipid metabolism and ER stress. PMID

  12. Living with high putrescine: expression of ornithine and arginine biosynthetic pathway genes in high and low putrescine producing poplar cells.

    PubMed

    Page, Andrew F; Minocha, Rakesh; Minocha, Subhash C

    2012-01-01

    Arginine (Arg) and ornithine (Orn), both derived from glutamate (Glu), are the primary substrates for polyamine (PA) biosynthesis, and also play important roles as substrates and intermediates of overall N metabolism in plants. Their cellular homeostasis is subject to multiple levels of regulation. Using reverse transcription quantitative PCR (RT-qPCR), we studied changes in the expression of all genes of the Orn/Arg biosynthetic pathway in response to up-regulation [via transgenic expression of mouse Orn decarboxylase (mODC)] of PA biosynthesis in poplar (Populus nigra × maximowiczii) cells grown in culture. Cloning and sequencing of poplar genes involved in the Orn/Arg biosynthetic pathway showed that they have high homology with similar genes in other plants. The expression of the genes of Orn, Arg and PA biosynthetic pathway fell into two hierarchical clusters; expression of one did not change in response to high putrescine, while members of the other cluster showed a shift in expression pattern during the 7-day culture cycle. Gene expression of branch point enzymes (N-acetyl-Glu synthase, Orn aminotransferase, Arg decarboxylase, and spermidine synthase) in the sub-pathways, constituted a separate cluster from those involved in intermediary reactions of the pathway (N-acetyl-Glu kinase, N-acetyl-Glu-5-P reductase, N-acetyl-Orn aminotransferase, N (2)-acetylOrn:N-acetyl-Glu acetyltransferase, N (2)-acetyl-Orn deacetylase, Orn transcarbamylase, argininosuccinate synthase, carbamoylphosphate synthetase, argininosuccinate lyase, S-adenosylmethionine decarboxylase, spermine synthase). We postulate that expression of all genes of the Glu-Orn-Arg pathway is constitutively coordinated and is not influenced by the increase in flux rate through this pathway in response to increased utilization of Orn by mODC; thus the pathway involves mostly biochemical regulation rather than changes in gene expression. We further suggest that Orn itself plays a major role in the

  13. Characterization and developmental expression of genes encoding the early carotenoid biosynthetic enzymes in Citrus paradisi Macf.

    PubMed

    Costa, Marcio G C; Moreira, Cristina D; Melton, John R; Otoni, Wagner C; Moore, Gloria A

    2012-02-01

    In the present study, the full-length cDNA sequences of PSY, PDS, and ZDS, encoding the early carotenoid biosynthetic enzymes in the carotenoid pathway of grapefruit (Citrus paradisi), were isolated and characterized for the first time. CpPSY contained a 1311-bp open reading frame (ORF) encoding a polypeptide of 436 amino acids, CpPDS contained a 1659-bp ORF encoding a polypeptide of 552 amino acids, and CpZDS contained a 1713-bp ORF encoding a polypeptide of 570 amino acids. Phylogenetic analysis indicated that CpPSY shares homology with PSYs from Citrus, tomato, pepper, Arabidopsis, and the monocot PSY1 group, while CpPDS and CpZDS are most closely related to orthologs from Citrus and tomato. Expression analysis revealed fluctuations in CpPSY, CpPDS, and CpZDS transcript abundance and a non-coordinated regulation between the former and the two latter genes during fruit development in albedo and juice vesicles of white ('Duncan') and red ('Flame') grapefruits. A 3× higher upregulation of CpPSY expression in juice vesicles of red-fleshed 'Flame' as compared to white-fruited 'Duncan' was observed in the middle stages of fruit development, which correlates with the well documented accumulation pattern of lycopene in red grapefruit. Together with previous data, our results suggest that the primary mechanism controlling lycopene accumulation in red grapefruit involves the transcriptional upregulation of CpPSY, which controls the flux into the carotenoid pathway, and the downregulated expression of CpLCYB2, which controls the step of cyclization of lycopene in chromoplasts during fruit ripening. A correlation between CpPSY expression and fruit color evolution in red grapefruit is demonstrated.

  14. Genome mining of astaxanthin biosynthetic genes from Sphingomonas sp. ATCC 55669 for heterologous overproduction in Escherichia coli.

    PubMed

    Ma, Tian; Zhou, Yuanjie; Li, Xiaowei; Zhu, Fayin; Cheng, Yongbo; Liu, Yi; Deng, Zixin; Liu, Tiangang

    2016-02-01

    As a highly valued keto-carotenoid, astaxanthin is widely used in nutritional supplements and pharmaceuticals. Therefore, the demand for biosynthetic astaxanthin and improved efficiency of astaxanthin biosynthesis has driven the investigation of metabolic engineering of native astaxanthin producers and heterologous hosts. However, microbial resources for astaxanthin are limited. In this study, we found that the α-Proteobacterium Sphingomonas sp. ATCC 55669 could produce astaxanthin naturally. We used whole-genome sequencing to identify the astaxanthin biosynthetic pathway using a combined PacBio-Illumina approach. The putative astaxanthin biosynthetic pathway in Sphingomonas sp. ATCC 55669 was predicted. For further confirmation, a high-efficiency targeted engineering carotenoid synthesis platform was constructed in E. coli for identifying the functional roles of candidate genes. All genes involved in astaxanthin biosynthesis showed discrete distributions on the chromosome. Moreover, the overexpression of exogenous E. coli idi in Sphingomonas sp. ATCC 55669 increased astaxanthin production by 5.4-fold. This study described a new astaxanthin producer and provided more biosynthesis components for bioengineering of astaxanthin in the future. © 2015 The Authors. Biotechnology Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Genome mining of astaxanthin biosynthetic genes from Sphingomonas sp. ATCC 55669 for heterologous overproduction in Escherichia coli

    PubMed Central

    Ma, Tian; Zhou, Yuanjie; Li, Xiaowei; Zhu, Fayin; Cheng, Yongbo; Liu, Yi; Deng, Zixin

    2015-01-01

    Abstract As a highly valued keto‐carotenoid, astaxanthin is widely used in nutritional supplements and pharmaceuticals. Therefore, the demand for biosynthetic astaxanthin and improved efficiency of astaxanthin biosynthesis has driven the investigation of metabolic engineering of native astaxanthin producers and heterologous hosts. However, microbial resources for astaxanthin are limited. In this study, we found that the α‐Proteobacterium Sphingomonas sp. ATCC 55669 could produce astaxanthin naturally. We used whole‐genome sequencing to identify the astaxanthin biosynthetic pathway using a combined PacBio‐Illumina approach. The putative astaxanthin biosynthetic pathway in Sphingomonas sp. ATCC 55669 was predicted. For further confirmation, a high‐efficiency targeted engineering carotenoid synthesis platform was constructed in E. coli for identifying the functional roles of candidate genes. All genes involved in astaxanthin biosynthesis showed discrete distributions on the chromosome. Moreover, the overexpression of exogenous E. coli idi in Sphingomonas sp. ATCC 55669 increased astaxanthin production by 5.4‐fold. This study described a new astaxanthin producer and provided more biosynthesis components for bioengineering of astaxanthin in the future. PMID:26580858

  16. IMG-ABC: An Atlas of Biosynthetic Gene Clusters to Fuel the Discovery of Novel Secondary Metabolites

    SciTech Connect

    Chen, I-Min; Chu, Ken; Ratner, Anna; Palaniappan, Krishna; Huang, Jinghua; Reddy, T. B.K.; Cimermancic, Peter; Fischbach, Michael; Ivanova, Natalia; Markowitz, Victor; Kyrpides, Nikos; Pati, Amrita

    2014-10-28

    In the discovery of secondary metabolites (SMs), large-scale analysis of sequence data is a promising exploration path that remains largely underutilized due to the lack of relevant computational resources. We present IMG-ABC (https://img.jgi.doe.gov/abc/) -- An Atlas of Biosynthetic gene Clusters within the Integrated Microbial Genomes (IMG) system1. IMG-ABC is a rich repository of both validated and predicted biosynthetic clusters (BCs) in cultured isolates, single-cells and metagenomes linked with the SM chemicals they produce and enhanced with focused analysis tools within IMG. The underlying scalable framework enables traversal of phylogenetic dark matter and chemical structure space -- serving as a doorway to a new era in the discovery of novel molecules.

  17. Evolutionary origin of the NCSI gene subfamily encoding norcoclaurine synthase is associated with the biosynthesis of benzylisoquinoline alkaloids in plants

    PubMed Central

    Vimolmangkang, Sornkanok; Deng, Xianbao; Owiti, Albert; Meelaph, Thitirat; Ogutu, Collins; Han, Yuepeng

    2016-01-01

    Sacred lotus is rich in biologically active compounds, particularly benzylisoquinoline alkaloids (BIAs). Here, we report on isolation of genes encoding (S)-norcoclaurine synthase (NCS) in sacred lotus, which is a key entry-enzyme in BIA biosynthesis. Seven NCS genes, designated NnNCS1 through NnNCS7, were identified in the sacred lotus genome, and five are located next to each other within a 83 kb region on scaffold 8. The NCS genes are divided into two subfamilies, designated NCSI and NCSII. The NCSII genes are universal in plants, while the NCSI genes are only identified in a limited number of dicotyledonous taxa that produce BIAs. In sacred lotus, only NnNCS4 belongs to the NCSII subfamily, whilst the rest NCS genes within the NCSI subfamily. Overall, the NnNCS7 gene was predominantly expressed in all tested tissues, and its expression is significantly correlated with alkaloid content in leaf. In contrast, the NnNCS4 expression shows no significant correlation with alkaloid accumulation in leaf, and its lack of expression cannot inhibit alkaloid accumulation. Taken together, these results suggest that the NCSI subfamily is crucial for BIA biosynthesis, and its origin may represent an important evolutionary event that allows certain plant taxa to produce BIAs. PMID:27189519

  18. In silico prediction and characterization of secondary metabolite biosynthetic gene clusters in the wheat pathogen Zymoseptoria tritici.

    PubMed

    Cairns, Timothy; Meyer, Vera

    2017-08-17

    Fungal pathogens of plants produce diverse repertoires of secondary metabolites, which have functions ranging from iron acquisition, defense against immune perturbation, to toxic assaults on the host. The wheat pathogen Zymoseptoria tritici causes Septoria tritici blotch, a foliar disease which is a significant threat to global food security. Currently, there is limited knowledge of the secondary metabolite arsenal produced by Z. tritici, which significantly restricts mechanistic understanding of infection. In this study, we analyzed the genome of Z. tritici isolate IP0323 to identify putative secondary metabolite biosynthetic gene clusters, and used comparative genomics to predict their encoded products. We identified 32 putative secondary metabolite clusters. These were physically enriched at subtelomeric regions, which may facilitate diversification of cognate products by rapid gene rearrangement or mutations. Comparative genomics revealed a four gene cluster with significant similarity to the ferrichrome-A biosynthetic locus of the maize pathogen Ustilago maydis, suggesting this siderophore is deployed by Z. tritici to acquire iron. The Z. tritici genome also contains several isoprenoid biosynthetic gene clusters, including one with high similarity to a carotenoid/opsin producing locus in several fungi. Furthermore, we identify putative phytotoxin biosynthetic clusters, suggesting Z. tritici can produce an epipolythiodioxopiperazine, and a polyketide and non-ribosomal peptide with predicted structural similarities to fumonisin and the Alternaria alternata AM-toxin, respectively. Interrogation of an existing transcriptional dataset suggests stage specific deployment of numerous predicted loci during infection, indicating an important role of these secondary metabolites in Z. tritici disease. We were able to assign putative biosynthetic products to numerous clusters based on conservation amongst other fungi. However, analysis of the majority of secondary

  19. A Zn(II)2Cys6 DNA binding protein regulates the sirodesmin PL biosynthetic gene cluster in Leptosphaeria maculans

    PubMed Central

    Fox, Ellen M.; Gardiner, Donald M.; Keller, Nancy P.; Howlett, Barbara J.

    2008-01-01

    A gene, sirZ, encoding a Zn(II)2Cys6 DNA binding protein is present in a cluster of genes responsible for the biosynthesis of the epipolythiodioxopiperazine (ETP) toxin, sirodesmin PL in the ascomycete plant pathogen, Leptosphaeria maculans. RNA-mediated silencing of sirZ gives rise to transformants that produce only residual amounts of sirodesmin PL and display a decrease in the transcription of several sirodesmin PL biosynthetic genes. This indicates that SirZ is a major regulator of this gene cluster. Proteins similar to SirZ are encoded in the gliotoxin biosynthetic gene cluster of Aspergillus fumigatus (gliZ) and in an ETP-like cluster in Penicillium lilacinoechinulatum (PlgliZ). Despite its high level of sequence similarity to gliZ, PlgliZ is unable to complement the gliotoxin-deficiency of a mutant of gliZ in A. fumigatus. Putative binding sites for these regulatory proteins in the promoters of genes in these clusters were predicted using bioinformatic analysis. These sites are similar to those commonly bound by other proteins with Zn(II)2Cys6 DNA binding domains. PMID:18023597

  20. Synthesis of 7-Epineoptilocaulin, Mirabilin B, and Isoptilocaulin. A Unified Biosynthetic Proposal for the Ptilocaulin and Batzelladine Alkaloids. Synthesis and Structure Revision of Netamines E and G

    PubMed Central

    Yu, Min; Pochapsky, Susan S.; Snider, Barry B.

    2008-01-01

    Addition of guanidine to a 6-methylhexahydroindenone in MeOH at reflux afforded 7-epineoptilocaulin. A similar reaction with a 6-propylhexahydroindenone afforded netamine E. MnO2 oxidation of 7-epineoptilocaulin and netamine E afforded mirabilin B and netamine G, respectively. The netamines have the side chains trans, not cis as was initially proposed. A unified biosynthetic scheme for the batzelladines and ptilocaulin family is proposed. Conjugate addition of guanidine to a bis enone followed by an intramolecular Michael reaction of the enolate to the other enone, aldol reaction, dehydration and enamine formation will lead to a tricyclic intermediate at the dehydroptilocaulin oxidation state. 1,4-Hydride addition will lead to ptilocaulin or 7-epineoptilocaulin depending on which face the hydride adds to. 1,2-Hydride addition will lead to isoptilocaulin. The key tricyclic intermediate was prepared from a tetrahydroindenone and guanidine and reduced with NaBH4 to give a mixture rich in ptilocaulin and isoptilocaulin. PMID:18928319

  1. Identification and characterization of genes involved in the jasmonate biosynthetic and signaling pathways in mulberry (Morus notabilis).

    PubMed

    Wang, Qing; Ma, Bi; Qi, Xiwu; Guo, Qing; Wang, Xuwei; Zeng, Qiwei; He, Ningjia

    2014-07-01

    Jasmonate (JA) is an important phytohormone regulating growth, development, and environmental response in plants, particularly defense response against herbivorous insects. Recently, completion of the draft genome of the mulberry (Morus notabilis) in conjunction with genome sequencing of silkworm (Bombyx mori) provides an opportunity to study this unique plant-herbivore interaction. Here, we identified genes involved in JA biosynthetic and signaling pathways in the genome of mulberry for the first time, with the majority of samples showing a tissue-biased expression pattern. The analysis of the representative genes 12-oxophytodienoic acid reductase (OPRs) and jasmonate ZIM-domain (JAZs) was performed and the results indicated that the mulberry genome contains a relatively small number of JA biosynthetic and signaling pathway genes. A gene encoding an important repressor, MnNINJA, was identified as an alternative splicing variant lacking an ethylene-responsive element binding factor-associated amphiphilic repression motif. Having this fundamental information will facilitate future functional study of JA-related genes pertaining to mulberry-silkworm interactions. © 2014 Institute of Botany, Chinese Academy of Sciences.

  2. Two separate gene clusters encode the biosynthetic pathway for the meroterpenoids, austinol and dehydroaustinol in Aspergillus nidulans

    PubMed Central

    Lo, Hsien-Chun; Entwistle, Ruth; Guo, Chun-Jun; Ahuja, Manmeet; Szewczyk, Edyta; Hung, Jui-Hsiang; Chiang, Yi-Ming; Oakley, Berl R.; Wang, Clay C. C.

    2012-01-01

    Meroterpenoids are a class of fungal natural products that are produced from polyketide and terpenoid precursors. An understanding of meroterpenoid biosynthesis at the genetic level should facilitate engineering of second-generation molecules and increasing production of first-generation compounds. The filamentous fungus Aspergillus nidulans has previously been found to produce two meroterpenoids, austinol and dehydroaustinol. Using targeted deletions that we created, we have determined that, surprisingly, two separate gene clusters are required for meroterpenoid biosynthesis. One is a cluster of four genes including a polyketide synthase gene, ausA. The second is a cluster of ten additional genes including a prenyltransferase gene, ausN, located on a separate chromosome. Chemical analysis of mutant extracts enabled us to isolate 3,5-dimethylorsellinic acid and ten additional meroterpenoids that are either intermediates or shunt products from the biosynthetic pathway. Six of them were identified as novel meroterpenoids in this study. Our data, in aggregate, allow us to propose a complete biosynthetic pathway for the A. nidulans meroterpenoids. PMID:22329759

  3. Differential expression of anthocyanin biosynthetic genes and transcription factor PcMYB10 in pears (Pyrus communis L.).

    PubMed

    Li, Li; Ban, Zhao-Jun; Li, Xi-Hong; Wu, Mao-Yu; Wang, Ai-Li; Jiang, Yu-Qian; Jiang, Yun-Hong

    2012-01-01

    Anthocyanin biosynthesis in various plants is affected by environmental conditions and controlled by the transcription level of the corresponding genes. In pears (Pyrus communis cv. 'Wujiuxiang'), anthocyanin biosynthesis is significantly induced during low temperature storage compared with that at room temperature. We further examined the transcriptional levels of anthocyanin biosynthetic genes in 'Wujiuxiang' pears during developmental ripening and temperature-induced storage. The expression of genes that encode flavanone 3-hydroxylase, dihydroflavonol 4-reductase, anthocyanidin synthase, UDP-glucose: flavonoid 3-O-glucosyltransferase, and R2R3 MYB transcription factor (PcMYB10) was strongly positively correlated with anthocyanin accumulation in 'Wujiuxiang' pears in response to both developmental and cold-temperature induction. Hierarchical clustering analysis revealed the expression patterns of the set of target genes, of which PcMYB10 and most anthocyanin biosynthetic genes were related to the same cluster. The present work may help explore the molecular mechanism that regulates anthocyanin biosynthesis and its response to abiotic stress at the transcriptional level in plants.

  4. The A622 gene in Nicotiana glauca (tree tobacco): evidence for a functional role in pyridine alkaloid synthesis.

    PubMed

    Deboer, Kathleen D; Lye, Jessica C; Aitken, Campbell D; Su, Angela K-K; Hamill, John D

    2009-02-01

    Nicotiana glauca (Argentinean tree tobacco) is atypical within the genus Nicotiana, accumulating predominantly anabasine rather than nicotine and/or nornicotine as the main component of its leaf pyridine alkaloid fraction. The current study examines the role of the A622 gene from N. glauca (NgA622) in alkaloid production and utilises an RNAi approach to down-regulate gene expression and diminish levels of A622 protein in transgenic tissues. Results indicate that RNAi-mediated reduction in A622 transcript levels markedly reduces the capacity of N. glauca to produce anabasine resulting in plants with scarcely any pyridine alkaloids in leaf tissues, even after damage to apical tissues. In addition, analysis of hairy roots containing the NgA622-RNAi construct shows a substantial reduction in both anabasine and nicotine levels within these tissues, even if stimulated with methyl jasmonate, indicating a role for the A622 enzyme in the synthesis of both alkaloids in roots of N. glauca. Feeding of Nicotinic Acid (NA) to hairy roots of N. glauca containing the NgA622-RNAi construct did not restore capacity for synthesis of anabasine or nicotine. Moreover, treatment of these hairy root lines with NA did not lead to an increase in anatabine levels, unlike controls. Together, these results strongly suggest that A622 is an integral component of the final enzyme complex responsible for biosynthesis of all three pyridine alkaloids in Nicotiana.

  5. Functional analysis of the gene controlling hydroxylation of festuclavine in the ergot alkaloid pathway of Neosartorya fumigata

    PubMed Central

    Bilovol, Yulia; Panaccione, Daniel G.

    2016-01-01

    Bioactive ergot alkaloids produced by several species of fungi are important molecules in agriculture and medicine. Much of the ergot alkaloid pathway has been elucidated, but a few steps, including the gene controlling hydroxylation of festuclavine to fumigaclavine B, remain unsolved. Festuclavine is a key intermediate in the fumigaclavine branch of the ergot alkaloid pathway of the opportunistic pathogen Neosartorya fumigata and also in the dihydrolysergic acid-based ergot alkaloid pathway of certain Claviceps species. Based on several lines of evidence, the N. fumigata gene easM is a logical candidate to encode the festuclavine-hydroxylating enzyme. To test this hypothesis we disrupted easM function by replacing part of its coding sequences with a hygromycin resistance gene and transforming N. fumigata with this construct. High pressure liquid chromatography analysis demonstrated that easM deletion mutants were blocked in the ergot alkaloid pathway at festuclavine, and downstream products were eliminated. An additional alkaloid, proposed to be a prenylated form of festuclavine on the basis of mass spectral data, also accumulated to higher concentrations in the easM knockout. Complementation with the wild-type allele of easM gene restored the ability of the fungus to produce downstream compounds. These results indicate that easM encodes an enzyme required for fumigaclavine B synthesis likely by hydroxylating festuclavine. The festuclavine-accumulating strain of N. fumigata may facilitate future investigations of the biosynthesis of dihydrolysergic acid derivatives, which are derived from festuclavine and are the basis for several important drugs. PMID:26972831

  6. Polymorphisms in monolignol biosynthetic genes are associated with biomass yield and agronomic traits in European maize (Zea mays L.)

    PubMed Central

    2010-01-01

    Background Reduced lignin content leads to higher cell wall digestibility and, therefore, better forage quality and increased conversion of lignocellulosic biomass into ethanol. However, reduced lignin content might lead to weaker stalks, lodging, and reduced biomass yield. Genes encoding enzymes involved in cell wall lignification have been shown to influence both cell wall digestibility and yield traits. Results In this study, associations between monolignol biosynthetic genes and plant height (PHT), days to silking (DTS), dry matter content (DMC), and dry matter yield (DMY) were identified by using a panel of 39 European elite maize lines. In total, 10 associations were detected between polymorphisms or tight linkage disequilibrium (LD) groups within the COMT, CCoAOMT2, 4CL1, 4CL2, F5H, and PAL genomic fragments, respectively, and the above mentioned traits. The phenotypic variation explained by these polymorphisms or tight LD groups ranged from 6% to 25.8% in our line collection. Only 4CL1 and F5H were found to have polymorphisms associated with both yield and forage quality related characters. However, no pleiotropic polymorphisms affecting both digestibility of neutral detergent fiber (DNDF), and PHT or DMY were discovered, even under less stringent statistical conditions. Conclusion Due to absence of pleiotropic polymorphisms affecting both forage yield and quality traits, identification of optimal monolignol biosynthetic gene haplotype(s) combining beneficial quantitative trait polymorphism (QTP) alleles for both quality and yield traits appears possible within monolignol biosynthetic genes. This is beneficial to maximize forage and bioethanol yield per unit land area. PMID:20078869

  7. Rapid cloning and heterologous expression of the meridamycin biosynthetic gene cluster using a versatile Escherichia coli-streptomyces artificial chromosome vector, pSBAC.

    PubMed

    Liu, Hongbo; Jiang, Hao; Haltli, Bradley; Kulowski, Kerry; Muszynska, Elwira; Feng, Xidong; Summers, Mia; Young, Mairead; Graziani, Edmund; Koehn, Frank; Carter, Guy T; He, Min

    2009-03-27

    Expression of biosynthetic pathways in heterologous hosts is an emerging approach to expedite production improvement and biosynthetic modification of natural products derived from microbial secondary metabolites. Herein we describe the development of a versatile Escherichia coli-Streptomyces shuttle Bacterial Artificial Chromosomal (BAC) conjugation vector, pSBAC, to facilitate the cloning, genetic manipulation, and heterologous expression of actinomycetes secondary metabolite biosynthetic gene clusters. The utility of pSBAC was demonstrated through the rapid cloning and heterologous expression of one of the largest polyketide synthase (PKS) and nonribosomal peptide synthetase (NRPS) biosynthetic pathways: the meridamycin biosynthesis gene cluster (mer). The entire mer gene cluster ( approximately 90 kb) was captured in a single pSBAC clone through a straightforward restriction enzyme digestion and cloning approach and transferred into Streptomyces lividans. The production of meridamycin (1) in the heterologous host was achieved after replacement of the original promoter with an ermE* promoter and was enhanced by feeding with a biosynthetic precursor. The success of heterologous expression of such a giant gene cluster demonstrates the versatility of BAC cloning technology and paves the road for future exploration of expression of the meridamycin biosynthetic pathway in various hosts, including strains that have been optimized for polyketide production.

  8. Molecular genetics of alkaloid biosynthesis in Nicotiana tabacum.

    PubMed

    Dewey, Ralph E; Xie, Jiahua

    2013-10-01

    Alkaloids represent an extensive group of nitrogen-containing secondary metabolites that are widely distributed throughout the plant kingdom. The pyridine alkaloids of tobacco (Nicotiana tabacum L.) have been the subject of particularly intensive investigation, driven largely due to the widespread use of tobacco products by society and the role that nicotine (16) (see Fig. 1) plays as the primary compound responsible for making the consumption of these products both pleasurable and addictive. In a typical commercial tobacco plant, nicotine (16) comprises about 90% of the total alkaloid pool, with the alkaloids nornicotine (17) (a demethylated derivative of nicotine), anatabine (15) and anabasine (5) making up most of the remainder. Advances in molecular biology have led to the characterization of the majority of the genes encoding the enzymes directly responsible the biosynthesis of nicotine (16) and nornicotine (17), while notable gaps remain within the anatabine (15) and anabasine (5) biosynthetic pathways. Several of the genes involved in the transcriptional regulation and transport of nicotine (16) have also been elucidated. Investigations of the molecular genetics of tobacco alkaloids have not only provided plant biologists with insights into the mechanisms underlying the synthesis and accumulation of this important class of plant alkaloids, they have also yielded tools and strategies for modifying the tobacco alkaloid composition in a manner that can result in changing the levels of nicotine (16) within the leaf, or reducing the levels of a potent carcinogenic tobacco-specific nitrosamine (TSNA). This review summarizes recent advances in our understanding of the molecular genetics of alkaloid biosynthesis in tobacco, and discusses the potential for applying information accrued from these studies toward efforts designed to help mitigate some of the negative health consequences associated with the use of tobacco products.

  9. Molecular Networking and Pattern-Based Genome Mining Improves Discovery of Biosynthetic Gene Clusters and their Products from Salinispora Species

    DOE PAGES

    Duncan, Katherine R.; Crüsemann, Max; Lechner, Anna; ...

    2015-04-09

    Genome sequencing has revealed that bacteria contain many more biosynthetic gene clusters than predicted based on the number of secondary metabolites discovered to date. While this biosynthetic reservoir has fostered interest in new tools for natural product discovery, there remains a gap between gene cluster detection and compound discovery. In this paper, we apply molecular networking and the new concept of pattern-based genome mining to 35 Salinispora strains, including 30 for which draft genome sequences were either available or obtained for this study. The results provide a method to simultaneously compare large numbers of complex microbial extracts, which facilitated themore » identification of media components, known compounds and their derivatives, and new compounds that could be prioritized for structure elucidation. Finally, these efforts revealed considerable metabolite diversity and led to several molecular family-gene cluster pairings, of which the quinomycin-type depsipeptide retimycin A was characterized and linked to gene cluster NRPS40 using pattern-based bioinformatic approaches.« less

  10. Molecular networking and pattern-based genome mining improves discovery of biosynthetic gene clusters and their products from Salinispora species.

    PubMed

    Duncan, Katherine R; Crüsemann, Max; Lechner, Anna; Sarkar, Anindita; Li, Jie; Ziemert, Nadine; Wang, Mingxun; Bandeira, Nuno; Moore, Bradley S; Dorrestein, Pieter C; Jensen, Paul R

    2015-04-23

    Genome sequencing has revealed that bacteria contain many more biosynthetic gene clusters than predicted based on the number of secondary metabolites discovered to date. While this biosynthetic reservoir has fostered interest in new tools for natural product discovery, there remains a gap between gene cluster detection and compound discovery. Here we apply molecular networking and the new concept of pattern-based genome mining to 35 Salinispora strains, including 30 for which draft genome sequences were either available or obtained for this study. The results provide a method to simultaneously compare large numbers of complex microbial extracts, which facilitated the identification of media components, known compounds and their derivatives, and new compounds that could be prioritized for structure elucidation. These efforts revealed considerable metabolite diversity and led to several molecular family-gene cluster pairings, of which the quinomycin-type depsipeptide retimycin A was characterized and linked to gene cluster NRPS40 using pattern-based bioinformatic approaches. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Wide Distribution of Foxicin Biosynthetic Gene Clusters in Streptomyces Strains – An Unusual Secondary Metabolite with Various Properties

    PubMed Central

    Greule, Anja; Marolt, Marija; Deubel, Denise; Peintner, Iris; Zhang, Songya; Jessen-Trefzer, Claudia; De Ford, Christian; Burschel, Sabrina; Li, Shu-Ming; Friedrich, Thorsten; Merfort, Irmgard; Lüdeke, Steffen; Bisel, Philippe; Müller, Michael; Paululat, Thomas; Bechthold, Andreas

    2017-01-01

    Streptomyces diastatochromogenes Tü6028 is known to produce the polyketide antibiotic polyketomycin. The deletion of the pokOIV oxygenase gene led to a non-polyketomycin-producing mutant. Instead, novel compounds were produced by the mutant, which have not been detected before in the wild type strain. Four different compounds were identified and named foxicins A–D. Foxicin A was isolated and its structure was elucidated as an unusual nitrogen-containing quinone derivative using various spectroscopic methods. Through genome mining, the foxicin biosynthetic gene cluster was identified in the draft genome sequence of S. diastatochromogenes. The cluster spans 57 kb and encodes three PKS type I modules, one NRPS module and 41 additional enzymes. A foxBII gene-inactivated mutant of S. diastatochromogenes Tü6028 ΔpokOIV is unable to produce foxicins. Homologous fox biosynthetic gene clusters were found in more than 20 additional Streptomyces strains, overall in about 2.6% of all sequenced Streptomyces genomes. However, the production of foxicin-like compounds in these strains has never been described indicating that the clusters are expressed at a very low level or are silent under fermentation conditions. Foxicin A acts as a siderophore through interacting with ferric ions. Furthermore, it is a weak inhibitor of the Escherichia coli aerobic respiratory chain and shows moderate antibiotic activity. The wide distribution of the cluster and the various properties of the compound indicate a major role of foxicins in Streptomyces strains. PMID:28270798

  12. Wide Distribution of Foxicin Biosynthetic Gene Clusters in Streptomyces Strains - An Unusual Secondary Metabolite with Various Properties.

    PubMed

    Greule, Anja; Marolt, Marija; Deubel, Denise; Peintner, Iris; Zhang, Songya; Jessen-Trefzer, Claudia; De Ford, Christian; Burschel, Sabrina; Li, Shu-Ming; Friedrich, Thorsten; Merfort, Irmgard; Lüdeke, Steffen; Bisel, Philippe; Müller, Michael; Paululat, Thomas; Bechthold, Andreas

    2017-01-01

    Streptomyces diastatochromogenes Tü6028 is known to produce the polyketide antibiotic polyketomycin. The deletion of the pokOIV oxygenase gene led to a non-polyketomycin-producing mutant. Instead, novel compounds were produced by the mutant, which have not been detected before in the wild type strain. Four different compounds were identified and named foxicins A-D. Foxicin A was isolated and its structure was elucidated as an unusual nitrogen-containing quinone derivative using various spectroscopic methods. Through genome mining, the foxicin biosynthetic gene cluster was identified in the draft genome sequence of S. diastatochromogenes. The cluster spans 57 kb and encodes three PKS type I modules, one NRPS module and 41 additional enzymes. A foxBII gene-inactivated mutant of S. diastatochromogenes Tü6028 ΔpokOIV is unable to produce foxicins. Homologous fox biosynthetic gene clusters were found in more than 20 additional Streptomyces strains, overall in about 2.6% of all sequenced Streptomyces genomes. However, the production of foxicin-like compounds in these strains has never been described indicating that the clusters are expressed at a very low level or are silent under fermentation conditions. Foxicin A acts as a siderophore through interacting with ferric ions. Furthermore, it is a weak inhibitor of the Escherichia coli aerobic respiratory chain and shows moderate antibiotic activity. The wide distribution of the cluster and the various properties of the compound indicate a major role of foxicins in Streptomyces strains.

  13. Genomic insights into the evolution of hybrid isoprenoid biosynthetic gene clusters in the MAR4 marine streptomycete clade

    DOE PAGES

    Gallagher, Kelley A.; Jensen, Paul R.

    2015-11-17

    Background: Considerable advances have been made in our understanding of the molecular genetics of secondary metabolite biosynthesis. Coupled with increased access to genome sequence data, new insight can be gained into the diversity and distributions of secondary metabolite biosynthetic gene clusters and the evolutionary processes that generate them. Here we examine the distribution of gene clusters predicted to encode the biosynthesis of a structurally diverse class of molecules called hybrid isoprenoids (HIs) in the genus Streptomyces. These compounds are derived from a mixed biosynthetic origin that is characterized by the incorporation of a terpene moiety onto a variety of chemicalmore » scaffolds and include many potent antibiotic and cytotoxic agents. Results: One hundred and twenty Streptomyces genomes were searched for HI biosynthetic gene clusters using ABBA prenyltransferases (PTases) as queries. These enzymes are responsible for a key step in HI biosynthesis. The strains included 12 that belong to the ‘MAR4’ clade, a largely marine-derived lineage linked to the production of diverse HI secondary metabolites. We found ABBA PTase homologs in all of the MAR4 genomes, which averaged five copies per strain, compared with 21 % of the non-MAR4 genomes, which averaged one copy per strain. Phylogenetic analyses suggest that MAR4 PTase diversity has arisen by a combination of horizontal gene transfer and gene duplication. Furthermore, there is evidence that HI gene cluster diversity is generated by the horizontal exchange of orthologous PTases among clusters. Many putative HI gene clusters have not been linked to their secondary metabolic products, suggesting that MAR4 strains will yield additional new compounds in this structure class. Finally, we confirm that the mevalonate pathway is not always present in genomes that contain HI gene clusters and thus is not a reliable query for identifying strains with the potential to produce HI secondary metabolites

  14. Genomic insights into the evolution of hybrid isoprenoid biosynthetic gene clusters in the MAR4 marine streptomycete clade

    SciTech Connect

    Gallagher, Kelley A.; Jensen, Paul R.

    2015-11-17

    Background: Considerable advances have been made in our understanding of the molecular genetics of secondary metabolite biosynthesis. Coupled with increased access to genome sequence data, new insight can be gained into the diversity and distributions of secondary metabolite biosynthetic gene clusters and the evolutionary processes that generate them. Here we examine the distribution of gene clusters predicted to encode the biosynthesis of a structurally diverse class of molecules called hybrid isoprenoids (HIs) in the genus Streptomyces. These compounds are derived from a mixed biosynthetic origin that is characterized by the incorporation of a terpene moiety onto a variety of chemical scaffolds and include many potent antibiotic and cytotoxic agents. Results: One hundred and twenty Streptomyces genomes were searched for HI biosynthetic gene clusters using ABBA prenyltransferases (PTases) as queries. These enzymes are responsible for a key step in HI biosynthesis. The strains included 12 that belong to the ‘MAR4’ clade, a largely marine-derived lineage linked to the production of diverse HI secondary metabolites. We found ABBA PTase homologs in all of the MAR4 genomes, which averaged five copies per strain, compared with 21 % of the non-MAR4 genomes, which averaged one copy per strain. Phylogenetic analyses suggest that MAR4 PTase diversity has arisen by a combination of horizontal gene transfer and gene duplication. Furthermore, there is evidence that HI gene cluster diversity is generated by the horizontal exchange of orthologous PTases among clusters. Many putative HI gene clusters have not been linked to their secondary metabolic products, suggesting that MAR4 strains will yield additional new compounds in this structure class. Finally, we confirm that the mevalonate pathway is not always present in genomes that contain HI gene clusters and thus is not a reliable query for identifying strains with the potential to produce HI secondary metabolites. In

  15. Functional characterization of KanP, a methyltransferase from the kanamycin biosynthetic gene cluster of Streptomyces kanamyceticus.

    PubMed

    Nepal, Keshav Kumar; Yoo, Jin Cheol; Sohng, Jae Kyung

    2010-09-20

    KanP, a putative methyltransferase, is located in the kanamycin biosynthetic gene cluster of Streptomyces kanamyceticus ATCC12853. Amino acid sequence analysis of KanP revealed the presence of S-adenosyl-L-methionine binding motifs, which are present in other O-methyltransferases. The kanP gene was expressed in Escherichia coli BL21 (DE3) to generate the E. coli KANP recombinant strain. The conversion of external quercetin to methylated quercetin in the culture extract of E. coli KANP proved the function of kanP as S-adenosyl-L-methionine-dependent methyltransferase. This is the first report concerning the identification of an O-methyltransferase gene from the kanamycin gene cluster. The resistant activity assay and RT-PCR analysis demonstrated the leeway for obtaining methylated kanamycin derivatives from the wild-type strain of kanamycin producer.

  16. IMG-ABC. A knowledge base to fuel discovery of biosynthetic gene clusters and novel secondary metabolites

    SciTech Connect

    Hadjithomas, Michalis; Chen, I-Min Amy; Chu, Ken; Ratner, Anna; Palaniappan, Krishna; Szeto, Ernest; Huang, Jinghua; Reddy, T. B. K.; Cimermančič, Peter; Fischbach, Michael A.; Ivanova, Natalia N.; Markowitz, Victor M.; Kyrpides, Nikos C.; Pati, Amrita

    2015-07-14

    In the discovery of secondary metabolites, analysis of sequence data is a promising exploration path that remains largely underutilized due to the lack of computational platforms that enable such a systematic approach on a large scale. In this work, we present IMG-ABC (https://img.jgi.doe.gov/abc), an atlas of biosynthetic gene clusters within the Integrated Microbial Genomes (IMG) system, which is aimed at harnessing the power of “big” genomic data for discovering small molecules. IMG-ABC relies on IMG’s comprehensive integrated structural and functional genomic data for the analysis of biosynthetic gene clusters (BCs) and associated secondary metabolites (SMs). SMs and BCs serve as the two main classes of objects in IMG-ABC, each with a rich collection of attributes. A unique feature of IMG-ABC is the incorporation of both experimentally validated and computationally predicted BCs in genomes as well as metagenomes, thus identifying BCs in uncultured populations and rare taxa. We demonstrate the strength of IMG-ABC’s focused integrated analysis tools in enabling the exploration of microbial secondary metabolism on a global scale, through the discovery of phenazine-producing clusters for the first time in lphaproteobacteria. IMG-ABC strives to fill the long-existent void of resources for computational exploration of the secondary metabolism universe; its underlying scalable framework enables traversal of uncovered phylogenetic and chemical structure space, serving as a doorway to a new era in the discovery of novel molecules. IMG-ABC is the largest publicly available database of predicted and experimental biosynthetic gene clusters and the secondary metabolites they produce. The system also includes powerful search and analysis tools that are integrated with IMG’s extensive genomic/metagenomic data and analysis tool kits. As new research on biosynthetic gene clusters and secondary metabolites is published and more genomes are sequenced, IMG

  17. IMG-ABC. A knowledge base to fuel discovery of biosynthetic gene clusters and novel secondary metabolites

    DOE PAGES

    Hadjithomas, Michalis; Chen, I-Min Amy; Chu, Ken; ...

    2015-07-14

    In the discovery of secondary metabolites, analysis of sequence data is a promising exploration path that remains largely underutilized due to the lack of computational platforms that enable such a systematic approach on a large scale. In this work, we present IMG-ABC (https://img.jgi.doe.gov/abc), an atlas of biosynthetic gene clusters within the Integrated Microbial Genomes (IMG) system, which is aimed at harnessing the power of “big” genomic data for discovering small molecules. IMG-ABC relies on IMG’s comprehensive integrated structural and functional genomic data for the analysis of biosynthetic gene clusters (BCs) and associated secondary metabolites (SMs). SMs and BCs serve asmore » the two main classes of objects in IMG-ABC, each with a rich collection of attributes. A unique feature of IMG-ABC is the incorporation of both experimentally validated and computationally predicted BCs in genomes as well as metagenomes, thus identifying BCs in uncultured populations and rare taxa. We demonstrate the strength of IMG-ABC’s focused integrated analysis tools in enabling the exploration of microbial secondary metabolism on a global scale, through the discovery of phenazine-producing clusters for the first time in lphaproteobacteria. IMG-ABC strives to fill the long-existent void of resources for computational exploration of the secondary metabolism universe; its underlying scalable framework enables traversal of uncovered phylogenetic and chemical structure space, serving as a doorway to a new era in the discovery of novel molecules. IMG-ABC is the largest publicly available database of predicted and experimental biosynthetic gene clusters and the secondary metabolites they produce. The system also includes powerful search and analysis tools that are integrated with IMG’s extensive genomic/metagenomic data and analysis tool kits. As new research on biosynthetic gene clusters and secondary metabolites is published and more genomes are sequenced, IMG

  18. IMG-ABC: A Knowledge Base To Fuel Discovery of Biosynthetic Gene Clusters and Novel Secondary Metabolites.

    PubMed

    Hadjithomas, Michalis; Chen, I-Min Amy; Chu, Ken; Ratner, Anna; Palaniappan, Krishna; Szeto, Ernest; Huang, Jinghua; Reddy, T B K; Cimermančič, Peter; Fischbach, Michael A; Ivanova, Natalia N; Markowitz, Victor M; Kyrpides, Nikos C; Pati, Amrita

    2015-07-14

    In the discovery of secondary metabolites, analysis of sequence data is a promising exploration path that remains largely underutilized due to the lack of computational platforms that enable such a systematic approach on a large scale. In this work, we present IMG-ABC (https://img.jgi.doe.gov/abc), an atlas of biosynthetic gene clusters within the Integrated Microbial Genomes (IMG) system, which is aimed at harnessing the power of "big" genomic data for discovering small molecules. IMG-ABC relies on IMG's comprehensive integrated structural and functional genomic data for the analysis of biosynthetic gene clusters (BCs) and associated secondary metabolites (SMs). SMs and BCs serve as the two main classes of objects in IMG-ABC, each with a rich collection of attributes. A unique feature of IMG-ABC is the incorporation of both experimentally validated and computationally predicted BCs in genomes as well as metagenomes, thus identifying BCs in uncultured populations and rare taxa. We demonstrate the strength of IMG-ABC's focused integrated analysis tools in enabling the exploration of microbial secondary metabolism on a global scale, through the discovery of phenazine-producing clusters for the first time in Alphaproteobacteria. IMG-ABC strives to fill the long-existent void of resources for computational exploration of the secondary metabolism universe; its underlying scalable framework enables traversal of uncovered phylogenetic and chemical structure space, serving as a doorway to a new era in the discovery of novel molecules. IMG-ABC is the largest publicly available database of predicted and experimental biosynthetic gene clusters and the secondary metabolites they produce. The system also includes powerful search and analysis tools that are integrated with IMG's extensive genomic/metagenomic data and analysis tool kits. As new research on biosynthetic gene clusters and secondary metabolites is published and more genomes are sequenced, IMG-ABC will continue to

  19. Yeast homologous recombination-based promoter engineering for the activation of silent natural product biosynthetic gene clusters.

    PubMed

    Montiel, Daniel; Kang, Hahk-Soo; Chang, Fang-Yuan; Charlop-Powers, Zachary; Brady, Sean F

    2015-07-21

    Large-scale sequencing of prokaryotic (meta)genomic DNA suggests that most bacterial natural product gene clusters are not expressed under common laboratory culture conditions. Silent gene clusters represent a promising resource for natural product discovery and the development of a new generation of therapeutics. Unfortunately, the characterization of molecules encoded by these clusters is hampered owing to our inability to express these gene clusters in the laboratory. To address this bottleneck, we have developed a promoter-engineering platform to transcriptionally activate silent gene clusters in a model heterologous host. Our approach uses yeast homologous recombination, an auxotrophy complementation-based yeast selection system and sequence orthogonal promoter cassettes to exchange all native promoters in silent gene clusters with constitutively active promoters. As part of this platform, we constructed and validated a set of bidirectional promoter cassettes consisting of orthogonal promoter sequences, Streptomyces ribosome binding sites, and yeast selectable marker genes. Using these tools we demonstrate the ability to simultaneously insert multiple promoter cassettes into a gene cluster, thereby expediting the reengineering process. We apply this method to model active and silent gene clusters (rebeccamycin and tetarimycin) and to the silent, cryptic pseudogene-containing, environmental DNA-derived Lzr gene cluster. Complete promoter refactoring and targeted gene exchange in this "dead" cluster led to the discovery of potent indolotryptoline antiproliferative agents, lazarimides A and B. This potentially scalable and cost-effective promoter reengineering platform should streamline the discovery of natural products from silent natural product biosynthetic gene clusters.

  20. Comparison of constitutive gene expression levels of hepatic cholesterol biosynthetic enzymes between Wistar-Kyoto and stroke-prone spontaneously hypertensive rats.

    PubMed

    Nemoto, Kiyomitsu; Ikeda, Ayaka; Ito, Sei; Miyata, Misaki; Yoshida, Chiaki; Degawa, Masakuni

    2013-01-01

    Serum total cholesterol amounts in the stroke-prone hypertensive rat (SHRSP) strain are lower than in the normotensive control strain, Wistar-Kyoto (WKY) rat. To understand the strain difference, constitutive gene expression levels of hepatic cholesterol biosynthetic enzymes in male 8-week-old SHRSP and WKY rats were comparatively examined by DNA microarray and real-time reverse transcription-polymerase chain reaction (RT-PCR) analyses. Of 22 cholesterol biosynthetic enzyme genes, expression levels of 8 genes, Pmvk, Idi1, Fdps, Fdft1, Sqle, Lss, Sc4mol, and Hsd17b7, in SHRSP were less than 50% those of the WKY rats; especially, the expression level of Sqle gene, encoding squalene epoxidase, a rate-limiting enzyme in cholesterol biosynthesis pathway, was about 20%. The gene expression level of sterol regulatory element-binding protein-2 (SREBP-2), which functions as a transcription factor upregulating gene expression of cholesterol biosynthetic enzymes, in SHRSP was about 70% of that in WKY rats. These results demonstrate the possibility that the lower serum total cholesterol level in SHRSP is defined by lower gene expression of most hepatic cholesterol biosynthetic enzymes. In particular, decreased gene expression level of Sqle gene might be the most essential factor. Moreover, the broad range of lowered rates of these genes in SHRSP suggests that the abnormal function and/or expression not only of SREBP-2 but also of one or more other transcription factors for those gene expressions exist in SHRSP.

  1. Antibiotic discovery throughout the Small World Initiative: A molecular strategy to identify biosynthetic gene clusters involved in antagonistic activity.

    PubMed

    Davis, Elizabeth; Sloan, Tyler; Aurelius, Krista; Barbour, Angela; Bodey, Elijah; Clark, Brigette; Dennis, Celeste; Drown, Rachel; Fleming, Megan; Humbert, Allison; Glasgo, Elizabeth; Kerns, Trent; Lingro, Kelly; McMillin, MacKenzie; Meyer, Aaron; Pope, Breanna; Stalevicz, April; Steffen, Brittney; Steindl, Austin; Williams, Carolyn; Wimberley, Carmen; Zenas, Robert; Butela, Kristen; Wildschutte, Hans

    2017-01-22

    The emergence of bacterial pathogens resistant to all known antibiotics is a global health crisis. Adding to this problem is that major pharmaceutical companies have shifted away from antibiotic discovery due to low profitability. As a result, the pipeline of new antibiotics is essentially dry and many bacteria now resist the effects of most commonly used drugs. To address this global health concern, citizen science through the Small World Initiative (SWI) was formed in 2012. As part of SWI, students isolate bacteria from their local environments, characterize the strains, and assay for antibiotic production. During the 2015 fall semester at Bowling Green State University, students isolated 77 soil-derived bacteria and genetically characterized strains using the 16S rRNA gene, identified strains exhibiting antagonistic activity, and performed an expanded SWI workflow using transposon mutagenesis to identify a biosynthetic gene cluster involved in toxigenic compound production. We identified one mutant with loss of antagonistic activity and through subsequent whole-genome sequencing and linker-mediated PCR identified a 24.9 kb biosynthetic gene locus likely involved in inhibitory activity in that mutant. Further assessment against human pathogens demonstrated the inhibition of Bacillus cereus, Listeria monocytogenes, and methicillin-resistant Staphylococcus aureus in the presence of this compound, thus supporting our molecular strategy as an effective research pipeline for SWI antibiotic discovery and genetic characterization.

  2. Contribution of taxane biosynthetic pathway gene expression to observed variability in paclitaxel accumulation in Taxus suspension cultures

    PubMed Central

    Patil, Rohan A.; Kolewe, Martin E.; Normanly, Jennifer; Walker, Elsbeth L.; Roberts, Susan C.

    2012-01-01

    Variability in product accumulation is one of the major obstacles limiting the widespread commercialization of plant cell culture technology to supply natural product pharmaceuticals. Despite extensive process engineering efforts, which have led to increased yields, plant cells exhibit variability in productivity that is poorly understood. Elicitation of Taxus cultures with methyl jasmonate (MeJA) induces paclitaxel accumulation, but to varying extents in different cultures. In this work, cultures with different aggregation profiles were established to create predictable differences in paclitaxel accumulation upon MeJA elicitation. Expression of known paclitaxel biosynthetic genes in MeJA-elicited cultures exhibiting both substantial (15-fold) and moderate (2-fold) differences in paclitaxel accumulation was analyzed using qRT-PCR. Each population exhibited the characteristic large increase in paclitaxel pathway gene expression following MeJA elicitation; however, differences in expression between populations were minor, and only observed for the cultures with the 15-fold variation in paclitaxel content. These data suggest that although upregulation of biosynthetic pathway gene expression contributes to observed increases in paclitaxel synthesis upon elicitation with MeJA, there are additional factors that need to be uncovered before paclitaxel productivity can be fully optimized. PMID:22095859

  3. Lovastatin biosynthetic genes of Aspergillus terreus are expressed differentially in solid-state and in liquid submerged fermentation.

    PubMed

    Barrios-González, J; Baños, J G; Covarrubias, A A; Garay-Arroyo, A

    2008-05-01

    Molecular studies were performed to establish the causes of the superior lovastatin productivity of a novel solid-state fermentation (SSF) process, in relation with liquid submerged fermentation (SmF; 20 mg/g vs. 0.65 mg/ml). In SSF, biosynthetic genes lovE and lovF transcripts accumulated to high levels from day 1 to day 7. In this period, lovE transcript showed 4.6-fold higher accumulation levels (transcription) than the highest level detected in SmF (day 5). lovF transcript showed two-fold higher expression than the highest point in SmF. In SmF, the expression was only detected clearly on day 5 and, showing a 50% decrease, on day 7. These results show that the higher lovastatin production in SSF is related to a more intense transcription of these biosynthetic genes. A strong expression of gldB gene in lovastatin SSF indicated that Aspergillus terreus senses osmotic stress during the course of SSF, but not in SmF. However, when a liquid medium of identical concentration was used in SmF, lovastatin production decreased in SSF.

  4. Transformation of carotenoid biosynthetic genes using a micro-cross section method in kiwifruit (Actinidia deliciosa cv. Hayward).

    PubMed

    Kim, Misun; Kim, Seong-Cheol; Song, Kwan Jeong; Kim, Ho Bang; Kim, In-Jung; Song, Eun-Young; Chun, Seung-Jong

    2010-12-01

    Genetic transformation using a micro-cross section (MCS) technique was conducted to improve the carotenoid content in kiwifruit (Actinidia deliciosa cv. Hayward). The introduced carotenoid biosynthetic genes include geranylgeranyl diphosphate synthase (GGPS), phytoene desaturase (PDS), ζ-carotene desaturase (ZDS), β-carotene hydroxylase (CHX), and phytoene synthase (PSY). The transformed explants were selected on half-strength MS medium containing 0.001 mg l(-1) of 2,4-D and 0.1 mg l(-1) of zeatin, either 5 mg l(-1) hygromycin or 25 mg l(-1) kanamycin, and 500 mg l(-1) cefotaxime. The genomic PCR, genomic Southern blot analysis, and RT-PCR were performed to confirm the integration and expression of the transgenes. The transformation efficiencies of either kanamycin- or hygromycin-resistant shoots ranged from 2.9 to 22.1% depending on the target genes, and from 2.9 to 24.2% depending on the reporter genes. The selection efficiencies ranged from 66.7 to 100% for the target genes and from 95.8 to 100% for the reporter genes. Changes of carotenoid content in the several PCR-positive plants were determined by UPLC analysis. As a result, transgenic plants expressing either GGPS or PSY increased about 1.2- to 1.3-fold in lutein or β-carotene content compared to non-transgenic plants. Our results suggest that the Agrobacterium-mediated transformation efficiency of kiwifruit can be greatly increased by this MCS method and that the carotenoid biosynthetic pathway can be modified in kiwifruit by genetic transformation. Our results further suggest that GGPS and PSY genes could be major target genes to increase carotenoid contents in kiwifruit.

  5. Phylogenomic Analysis of Natural Products Biosynthetic Gene Clusters Allows Discovery of Arseno-Organic Metabolites in Model Streptomycetes

    PubMed Central

    Cruz-Morales, Pablo; Kopp, Johannes Florian; Martínez-Guerrero, Christian; Yáñez-Guerra, Luis Alfonso; Selem-Mojica, Nelly; Ramos-Aboites, Hilda; Feldmann, Jörg; Barona-Gómez, Francisco

    2016-01-01

    Natural products from microbes have provided humans with beneficial antibiotics for millennia. However, a decline in the pace of antibiotic discovery exerts pressure on human health as antibiotic resistance spreads, a challenge that may better faced by unveiling chemical diversity produced by microbes. Current microbial genome mining approaches have revitalized research into antibiotics, but the empirical nature of these methods limits the chemical space that is explored. Here, we address the problem of finding novel pathways by incorporating evolutionary principles into genome mining. We recapitulated the evolutionary history of twenty-three enzyme families previously uninvestigated in the context of natural product biosynthesis in Actinobacteria, the most proficient producers of natural products. Our genome evolutionary analyses where based on the assumption that expanded—repurposed enzyme families—from central metabolism, occur frequently and thus have the potential to catalyze new conversions in the context of natural products biosynthesis. Our analyses led to the discovery of biosynthetic gene clusters coding for hidden chemical diversity, as validated by comparing our predictions with those from state-of-the-art genome mining tools; as well as experimentally demonstrating the existence of a biosynthetic pathway for arseno-organic metabolites in Streptomyces coelicolor and Streptomyces lividans, Using a gene knockout and metabolite profile combined strategy. As our approach does not rely solely on sequence similarity searches of previously identified biosynthetic enzymes, these results establish the basis for the development of an evolutionary-driven genome mining tool termed EvoMining that complements current platforms. We anticipate that by doing so real ‘chemical dark matter’ will be unveiled. PMID:27289100

  6. Phylogenomic Analysis of Natural Products Biosynthetic Gene Clusters Allows Discovery of Arseno-Organic Metabolites in Model Streptomycetes.

    PubMed

    Cruz-Morales, Pablo; Kopp, Johannes Florian; Martínez-Guerrero, Christian; Yáñez-Guerra, Luis Alfonso; Selem-Mojica, Nelly; Ramos-Aboites, Hilda; Feldmann, Jörg; Barona-Gómez, Francisco

    2016-07-02

    Natural products from microbes have provided humans with beneficial antibiotics for millennia. However, a decline in the pace of antibiotic discovery exerts pressure on human health as antibiotic resistance spreads, a challenge that may better faced by unveiling chemical diversity produced by microbes. Current microbial genome mining approaches have revitalized research into antibiotics, but the empirical nature of these methods limits the chemical space that is explored.Here, we address the problem of finding novel pathways by incorporating evolutionary principles into genome mining. We recapitulated the evolutionary history of twenty-three enzyme families previously uninvestigated in the context of natural product biosynthesis in Actinobacteria, the most proficient producers of natural products. Our genome evolutionary analyses where based on the assumption that expanded-repurposed enzyme families-from central metabolism, occur frequently and thus have the potential to catalyze new conversions in the context of natural products biosynthesis. Our analyses led to the discovery of biosynthetic gene clusters coding for hidden chemical diversity, as validated by comparing our predictions with those from state-of-the-art genome mining tools; as well as experimentally demonstrating the existence of a biosynthetic pathway for arseno-organic metabolites in Streptomyces coelicolor and Streptomyces lividans, Using a gene knockout and metabolite profile combined strategy.As our approach does not rely solely on sequence similarity searches of previously identified biosynthetic enzymes, these results establish the basis for the development of an evolutionary-driven genome mining tool termed EvoMining that complements current platforms. We anticipate that by doing so real 'chemical dark matter' will be unveiled.

  7. Increased sensitivity to Vinca alkaloids in cells overexpressing calmodulin by gene transfection.

    PubMed

    Ido, M; Lagacé, L; Chafouleas, J G

    1990-10-15

    Mouse C127 cells, transfected with the chicken calmodulin (CaM) gene and overexpressing CaM protein, were used to evaluate the effect of elevated levels of CaM on the sensitivity of these cells to various anticancer drugs. Clones C2 and C3 overexpress CaM mRNA by 40- and 80-fold, respectively, and CaM protein 3- and 8-fold, respectively. These cell lines were tested for their sensitivity to vincristine, vinblastine, bleomycin, and Adriamycin by comparing the 50% inhibitory concentration in a 72-h growth inhibition assay. The 50% inhibitory concentration values for vincristine with C2 and C3 cells were 6.27 +/- 0.56 nM and 6.60 +/- 0.96 nM, respectively. These values were significantly lower than 13.9 +/- 0.79 nM for the parental C127 cells and 14.0 +/- 1.55 nM for clone 6.8 (the control cell line for transfection without the chicken CaM gene) at P less than or equal to 0.005. The proliferation of C2 and C3 cells was inhibited at lower concentrations of vinblastine as well. The 50% inhibitory concentration values for the C2 and C3 cell lines were approximately one-half those required for C127 or clone 6.8 cells. However, no significant difference in the sensitivity to the DNA-binding drugs, bleomycin and Adriamycin, was observed between the different cell lines. The uptake of [3H]vinblastine was evaluated and found to be increased 1.6- and 2.8-fold in C2 and C3 cells, respectively, as compared with that value obtained for C127 cells. Moreover, the efflux of [3H]vinblastine from vinblastine-loaded cells was also observed to be decreased in the C2 and C3 cell lines. These data suggest that the increase in CaM expression in the C2 and C3 cell lines might be related to the higher sensitivity of these cells to Vinca alkaloids. This increased sensitivity appears to be due to the increase in intracellular concentration of the Vinca alkaloids as a result of an increase in drug uptake and a decrease in efflux. Moreover, the increased sensitivity of clones C2 and C3 to Vinca

  8. Sarpagine and related alkaloids

    PubMed Central

    Namjoshi, Ojas A.; Cook, James M.

    2016-01-01

    The sarpagine-related macroline and ajmaline alkaloids share a common biosynthetic origin, and bear important structural similarities, as expected. These indole alkaloids are widely dispersed in 25 plant genera, principally in the Apocynaceae family. Very diverse and interesting biological properties have been reported for this group of natural products. Isolation of new sarpagine-related alkaloids as well as the asymmetric synthesis of these structurally complex molecules are of paramount importance to the synthetic and medicinal chemists. A total of 115 newly isolated sarpagine-related macroline and ajmaline alkaloids, along with their physicochemical properties have been included in this chapter. A general and efficient strategy for the synthesis of these monomeric alkaloids, as well as bisindoles has been presented, which involves application of the asymmetric Pictet–Spengler reaction (>98% ee) as a key step because of the ease of scale up of the tetracyclic template. Also included in this chapter are the syntheses of the sarpagine-related alkaloids, published since the year 2000. PMID:26827883

  9. Gene expression changes induced by the tumorigenic pyrrolizidine alkaloid riddelliine in liver of Big Blue rats

    PubMed Central

    Mei, Nan; Guo, Lei; Liu, Ruqing; Fuscoe, James C; Chen, Tao

    2007-01-01

    Background Pyrrolizidine alkaloids (PAs) are probably the most common plant constituents that poison livestock, wildlife, and humans worldwide. Riddelliine is isolated from plants grown in the western United States and is a prototype of genotoxic PAs. Riddelliine was used to investigate the genotoxic effects of PAs via analysis of gene expression in the target tissue of rats in this study. Previously we observed that the mutant frequency in the liver of rats gavaged with riddelliine was 3-fold higher than that in the control group. Molecular analysis of the mutants indicated that there was a statistically significant difference between the mutational spectra from riddelliine-treated and control rats. Results Riddelliine-induced gene expression profiles in livers of Big Blue transgenic rats were determined. The female rats were gavaged with riddelliine at a dose of 1 mg/kg body weight 5 days a week for 12 weeks. Rat whole genome microarray was used to perform genome-wide gene expression studies. When a cutoff value of a two-fold change and a P-value less than 0.01 were used as gene selection criteria, 919 genes were identified as differentially expressed in riddelliine-treated rats compared to the control animals. By analysis with the Ingenuity Pathway Analysis Network, we found that these significantly changed genes were mainly involved in cancer, cell death, tissue development, cellular movement, tissue morphology, cell-to-cell signaling and interaction, and cellular growth and proliferation. We further analyzed the genes involved in metabolism, injury of endothelial cells, liver abnormalities, and cancer development in detail. Conclusion The alterations in gene expression were directly related to the pathological outcomes reported previously. These results provided further insight into the mechanisms involved in toxicity and carcinogenesis after exposure to riddelliine, and permitted us to investigate the interaction of gene products inside the signaling networks

  10. Unique actinomycetes from marine caves and coral reef sediments provide novel PKS and NRPS biosynthetic gene clusters.

    PubMed

    Hodges, Tyler W; Slattery, Marc; Olson, Julie B

    2012-06-01

    In the ever-expanding search for novel bioactive molecules and enzymes, marine actinomycetes have proven to be a productive source. While open reef sediment and sponge-associated actinomycetes have been extensively examined, their marine cave counterparts remain unevaluated. Anchialine cave systems in the Bahamas offered an ideal setting to evaluate the occurrence and variation within sediment-associated actinomycete communities. While in close geographical proximity to open reef environments, these systems provide a specialized environmental niche devoid of light and direct exposure to nutrient input. In the present study, selective isolation techniques and molecular methods were used to test the hypothesis that variable distribution of actinomycetes and secondary metabolite gene clusters occur between open reef and marine cave systems. The results indicated that differences exist within the culturable sediment-associated actinomycete communities between marine caves and open reef systems, with members of the genus Streptomyces dominating cultures from open reef sediments and a more diverse suite of actinomycetes isolated from marine cave sediment samples. Within the cave isolates, members of the proposed genus Solwaraspora were the most represented. Based on PKS- and NRPS-gene-targeted PCR amplification and sequencing, geographic variation in the occurrence of these biosynthetic pathways was also observed. These findings indicate that marine cave systems are a lucrative source in the search for novel secondary metabolite producers with biotechnological applications and that environmental and geographic factors likely affect the occurrence of these biosynthetic pathways.

  11. IMG-ABC: A Knowledge Base To Fuel Discovery of Biosynthetic Gene Clusters and Novel Secondary Metabolites

    PubMed Central

    Hadjithomas, Michalis; Chen, I-Min Amy; Chu, Ken; Ratner, Anna; Palaniappan, Krishna; Szeto, Ernest; Huang, Jinghua; Reddy, T. B. K.; Cimermančič, Peter; Fischbach, Michael A.; Ivanova, Natalia N.; Markowitz, Victor M.

    2015-01-01

    ABSTRACT In the discovery of secondary metabolites, analysis of sequence data is a promising exploration path that remains largely underutilized due to the lack of computational platforms that enable such a systematic approach on a large scale. In this work, we present IMG-ABC (https://img.jgi.doe.gov/abc), an atlas of biosynthetic gene clusters within the Integrated Microbial Genomes (IMG) system, which is aimed at harnessing the power of “big” genomic data for discovering small molecules. IMG-ABC relies on IMG’s comprehensive integrated structural and functional genomic data for the analysis of biosynthetic gene clusters (BCs) and associated secondary metabolites (SMs). SMs and BCs serve as the two main classes of objects in IMG-ABC, each with a rich collection of attributes. A unique feature of IMG-ABC is the incorporation of both experimentally validated and computationally predicted BCs in genomes as well as metagenomes, thus identifying BCs in uncultured populations and rare taxa. We demonstrate the strength of IMG-ABC’s focused integrated analysis tools in enabling the exploration of microbial secondary metabolism on a global scale, through the discovery of phenazine-producing clusters for the first time in Alphaproteobacteria. IMG-ABC strives to fill the long-existent void of resources for computational exploration of the secondary metabolism universe; its underlying scalable framework enables traversal of uncovered phylogenetic and chemical structure space, serving as a doorway to a new era in the discovery of novel molecules. PMID:26173699

  12. Plant-like biosynthesis of isoquinoline alkaloids in Aspergillus fumigatus

    PubMed Central

    Baccile, Joshua A.; Spraker, Joseph E.; Le, Henry H.; Brandenburger, Eileen; Gomez, Christian; Bok, Jin Woo; Macheleidt, Juliane; Brakhage, Axel A.; Hoffmeister, Dirk; Keller, Nancy P.; Schroeder, Frank C.

    2016-01-01

    Natural product discovery efforts have focused primarily on microbial biosynthetic gene clusters (BGCs) containing large multi-modular PKSs and NRPSs; however, sequencing of fungal genomes has revealed a vast number of BGCs containing smaller NRPS-like genes of unknown biosynthetic function. Using comparative metabolomics, we show that a BGC in the human pathogen Aspergillus fumigatus named fsq, which contains an NRPS-like gene lacking a condensation domain, produces several novel isoquinoline alkaloids, the fumisoquins. These compounds derive from carbon-carbon bond formation between two amino acid-derived moieties followed by a sequence that is directly analogous to isoquinoline alkaloid biosynthesis in plants. Fumisoquin biosynthesis requires the N-methyltransferase FsqC and the FAD-dependent oxidase FsqB, which represent functional analogs of coclaurine N-methyltransferase and berberine bridge enzyme in plants. Our results show that BGCs containing incomplete NRPS modules may reveal new biosynthetic paradigms and suggest that plant-like isoquinoline biosynthesis occurs in diverse fungi. PMID:27065235

  13. Characterization of the biosynthetic gene cluster for the ribosomally synthesized cyclic peptide ustiloxin B in Aspergillus flavus.

    PubMed

    Umemura, Myco; Nagano, Nozomi; Koike, Hideaki; Kawano, Jin; Ishii, Tomoko; Miyamura, Yuki; Kikuchi, Moto; Tamano, Koichi; Yu, Jiujiang; Shin-ya, Kazuo; Machida, Masayuki

    2014-07-01

    Ustiloxin B is a secondary metabolite known to be produced by Ustilaginoidea virens. In our previous paper, we observed the production of this compound by Aspergillus flavus, and identified two A. flavus genes responsible for ustiloxin B biosynthesis (Umemura et al., 2013). The compound is a cyclic tetrapeptide of Tyr-Ala-Ile-Gly, whose tyrosine is modified with a non-protein coding amino acid, norvaline. Although its chemical structure strongly suggested that ustiloxin B is biosynthesized by a non-ribosomal peptide synthetase, in the present study, we observed its synthesis through a ribosomal peptide synthetic (RiPS) pathway by precise sequence analyses after experimental validation of the cluster. The cluster possessed a gene (AFLA_094980), termed ustA, whose translated product, UstA, contains a 16-fold repeated peptide embedding a tetrapeptide, Tyr-Ala-Ile-Gly, that is converted into the cyclic moiety of ustiloxin B. This result strongly suggests that ustiloxin B is biosynthesized through a RiPS pathway and that UstA provides the precursor peptide of the compound. The present work is the first characterization of RiPS in Ascomycetes and the entire RiPS gene cluster in fungi. Based on the sequence analyses, we also proposed a biosynthetic mechanism involving the entire gene cluster. Our finding indicates the possibility that a number of unidentified RiPSs exist in Ascomycetes as the biosynthetic genes of secondary metabolites, and that the feature of a highly repeated peptide sequence in UstA will greatly contribute to the discovery of additional RiPS. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Biosynthesis of antinutritional alkaloids in solanaceous crops is mediated by clustered genes.

    PubMed

    Itkin, M; Heinig, U; Tzfadia, O; Bhide, A J; Shinde, B; Cardenas, P D; Bocobza, S E; Unger, T; Malitsky, S; Finkers, R; Tikunov, Y; Bovy, A; Chikate, Y; Singh, P; Rogachev, I; Beekwilder, J; Giri, A P; Aharoni, A

    2013-07-12

    Steroidal glycoalkaloids (SGAs) such as α-solanine found in solanaceous food plants--as, for example, potato--are antinutritional factors for humans. Comparative coexpression analysis between tomato and potato coupled with chemical profiling revealed an array of 10 genes that partake in SGA biosynthesis. We discovered that six of them exist as a cluster on chromosome 7, whereas an additional two are adjacent in a duplicated genomic region on chromosome 12. Following systematic functional analysis, we suggest a revised SGA biosynthetic pathway starting from cholesterol up to the tetrasaccharide moiety linked to the tomato SGA aglycone. Silencing GLYCOALKALOID METABOLISM 4 prevented accumulation of SGAs in potato tubers and tomato fruit. This may provide a means for removal of unsafe, antinutritional substances present in these widely used food crops.

  15. Expanding our understanding of sequence-function relationships of type II polyketide biosynthetic gene clusters: bioinformatics-guided identification of Frankiamicin A from Frankia sp. EAN1pec.

    PubMed

    Ogasawara, Yasushi; Yackley, Benjamin J; Greenberg, Jacob A; Rogelj, Snezna; Melançon, Charles E

    2015-01-01

    A large and rapidly increasing number of unstudied "orphan" natural product biosynthetic gene clusters are being uncovered in sequenced microbial genomes. An important goal of modern natural products research is to be able to accurately predict natural product structures and biosynthetic pathways from these gene cluster sequences. This requires both development of bioinformatic methods for global analysis of these gene clusters and experimental characterization of select products produced by gene clusters with divergent sequence characteristics. Here, we conduct global bioinformatic analysis of all available type II polyketide gene cluster sequences and identify a conserved set of gene clusters with unique ketosynthase α/β sequence characteristics in the genomes of Frankia species, a group of Actinobacteria with underexploited natural product biosynthetic potential. Through LC-MS profiling of extracts from several Frankia species grown under various conditions, we identified Frankia sp. EAN1pec as producing a compound with spectral characteristics consistent with the type II polyketide produced by this gene cluster. We isolated the compound, a pentangular polyketide which we named frankiamicin A, and elucidated its structure by NMR and labeled precursor feeding. We also propose biosynthetic and regulatory pathways for frankiamicin A based on comparative genomic analysis and literature precedent, and conduct bioactivity assays of the compound. Our findings provide new information linking this set of Frankia gene clusters with the compound they produce, and our approach has implications for accurate functional prediction of the many other type II polyketide clusters present in bacterial genomes.

  16. Directed biosynthesis of alkaloid analogs in the medicinal plant Catharanthus roseus.

    PubMed

    McCoy, Elizabeth; O'Connor, Sarah E

    2006-11-08

    Terpene indole alkaloids are plant natural products with diverse structures and biological activities. A highly branched biosynthetic pathway is responsible for the production of approximately 130 different alkaloids in Madagascar periwinkle (C. roseus) from a common biosynthetic intermediate derived from tryptamine. Although numerous biosynthetic pathways can incorporate unnatural starting materials to yield novel natural products, it was not clear how efficiently the complex, eukaryotic TIA pathway could utilize unnatural substrates to make new alkaloids. This work demonstrates that the TIA biosynthetic machinery can be used to produce novel alkaloid structures and also highlights the potential of this pathway for future metabolic engineering efforts.

  17. Natural product proteomining, a quantitative proteomics platform, allows rapid discovery of biosynthetic gene clusters for different classes of natural products.

    PubMed

    Gubbens, Jacob; Zhu, Hua; Girard, Geneviève; Song, Lijiang; Florea, Bogdan I; Aston, Philip; Ichinose, Koji; Filippov, Dmitri V; Choi, Young H; Overkleeft, Herman S; Challis, Gregory L; van Wezel, Gilles P

    2014-06-19

    Information on gene clusters for natural product biosynthesis is accumulating rapidly because of the current boom of available genome sequencing data. However, linking a natural product to a specific gene cluster remains challenging. Here, we present a widely applicable strategy for the identification of gene clusters for specific natural products, which we name natural product proteomining. The method is based on using fluctuating growth conditions that ensure differential biosynthesis of the bioactivity of interest. Subsequent combination of metabolomics and quantitative proteomics establishes correlations between abundance of natural products and concomitant changes in the protein pool, which allows identification of the relevant biosynthetic gene cluster. We used this approach to elucidate gene clusters for different natural products in Bacillus and Streptomyces, including a novel juglomycin-type antibiotic. Natural product proteomining does not require prior knowledge of the gene cluster or secondary metabolite and therefore represents a general strategy for identification of all types of gene clusters. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Identification and activation of novel biosynthetic gene clusters by genome mining in the kirromycin producer Streptomyces collinus Tü 365.

    PubMed

    Iftime, Dumitrita; Kulik, Andreas; Härtner, Thomas; Rohrer, Sabrina; Niedermeyer, Timo Horst Johannes; Stegmann, Evi; Weber, Tilmann; Wohlleben, Wolfgang

    2016-03-01

    Streptomycetes are prolific sources of novel biologically active secondary metabolites with pharmaceutical potential. S. collinus Tü 365 is a Streptomyces strain, isolated 1972 from Kouroussa (Guinea). It is best known as producer of the antibiotic kirromycin, an inhibitor of the protein biosynthesis interacting with elongation factor EF-Tu. Genome Mining revealed 32 gene clusters encoding the biosynthesis of diverse secondary metabolites in the genome of Streptomyces collinus Tü 365, indicating an enormous biosynthetic potential of this strain. The structural diversity of secondary metabolisms predicted for S. collinus Tü 365 includes PKS, NRPS, PKS-NRPS hybrids, a lanthipeptide, terpenes and siderophores. While some of these gene clusters were found to contain genes related to known secondary metabolites, which also could be detected in HPLC-MS analyses, most of the uncharacterized gene clusters are not expressed under standard laboratory conditions. With this study we aimed to characterize the genome information of S. collinus Tü 365 to make use of gene clusters, which previously have not been described for this strain. We were able to connect the gene clusters of a lanthipeptide, a carotenoid, five terpenoid compounds, an ectoine, a siderophore and a spore pigment-associated gene cluster to their respective biosynthesis products.

  19. Expression of ethylene biosynthetic and receptor genes in rose floral tissues during ethylene-enhanced flower opening.

    PubMed

    Xue, Jingqi; Li, Yunhui; Tan, Hui; Yang, Feng; Ma, Nan; Gao, Junping

    2008-01-01

    Ethylene production, as well as the expression of ethylene biosynthetic (Rh-ACS1-4 and Rh-ACO1) and receptor (Rh-ETR1-5) genes, was determined in five different floral tissues (sepals, petals, stamens, gynoecia, and receptacles) of cut rose (Rosa hybrida cv. Samantha upon treatment with ethylene or the ethylene inhibitor 1-methylcyclopropene (1-MCP). Ethylene-enhanced ethylene production occurred only in gynoecia, petals, and receptacles, with gynoecia showing the greatest enhancement in the early stage of ethylene treatment. However, 1-MCP did not suppress ethylene production in these three tissues. In sepals, ethylene production was highly decreased by ethylene treatment, and increased dramatically by 1-MCP. Ethylene production in stamens remained unchanged after ethylene or 1-MCP treatment. Induction of certain ethylene biosynthetic genes by ethylene in different floral tissues was positively correlated with the ethylene production, and this induction was also not suppressed by 1-MCP. The expression of Rh-ACS2 and Rh-ACS3 was quickly induced by ethylene in gynoecia, but neither Rh-ACS1 nor Rh-ACS4 was induced by ethylene in any of the five tissues. In addition, Rh-ACO1 was induced by ethylene in all floral tissues except sepals. The induced expression of ethylene receptor genes by ethylene was much faster in gynoecia than in petals, and the expression of Rh-ETR3 was strongly suppressed by 1-MCP in all floral tissues. These results indicate that ethylene biosynthesis in gynoecia is regulated developmentally, rather than autocatalytically. The response of rose flowers to ethylene occurs initially in gynoecia, and ethylene may regulate flower opening mainly through the Rh-ETR3 gene in gynoecia.

  20. Coregulated expression of loline alkaloid-biosynthesis genes in Neotyphodium uncinatum cultures.

    PubMed

    Zhang, Dong-Xiu; Stromberg, Arnold J; Spiering, Martin J; Schardl, Christopher L

    2009-08-01

    Epichloë endophytes (holomorphic Epichloë spp. and anamorphic Neotyphodium spp.) are systemic, often heritable symbionts of cool-season grasses (subfamily Pooideae). Many epichloae provide protection to their hosts by producing anti-insect compounds. Among these are the loline alkaloids (LA), which are toxic and deterrent to a broad range of herbivorous insects but not to mammalian herbivores. LOL, a gene cluster containing nine genes, is associated with LA biosynthesis. We investigated coordinate regulation between LOL-gene expression and LA production in minimal medium (MM) cultures of Neotyphodium uncinatum. Expression of all LOL genes significantly fit temporal quadratic patterns during LA production. LOL-gene expression started before LA were detectable, and increased while LA accumulated. The highest gene expression level was reached at close to the time of most rapid LA accumulation, and gene expression declined to a very low level as amounts of LA plateaued. Temporal expression profiles of the nine LOL genes were tightly correlated with each other, but not as tightly correlated with proC and metE (genes for biosynthesis of precursor amino acids). Furthermore, the start days and peak days of expression significantly correlated with the order of the LOL-cluster genes in the genome. Hierarchical cluster analysis indicated three pairs of genes-lolA and lolC, lolO and lolD, and lolT and lolE-expression of which was especially tightly correlated. Of these, lolA and lolC tended to be expressed early, and lolT and lolE tended to be expressed late, in keeping with the putative roles of the respective gene products in the LA-biosynthesis pathway. Several common transcriptional binding sites were discovered in the LOL upstream regions. However, low expression of P(lolC2)uidA and P(lolA2)uidA in N. uncinatum transformants suggested induced expression of LOL genes might be subject to position effect at the LOL locus.

  1. Overexpression of a brassinosteroid biosynthetic gene Dwarf enhances photosynthetic capacity through activation of Calvin cycle enzymes in tomato.

    PubMed

    Li, Xiao-Jing; Guo, Xie; Zhou, Yan-Hong; Shi, Kai; Zhou, Jie; Yu, Jing-Quan; Xia, Xiao-Jian

    2016-01-28

    Genetic manipulation of brassinosteroid (BR) biosynthesis or signaling is a promising strategy to improve crop yield and quality. However, the relationships between the BR-promoted growth and photosynthesis and the exact mechanism of BR-regulated photosynthetic capacity are not clear. Here, we generated transgenic tomato plants by overexpressing Dwarf, a BR biosynthetic gene that encodes the CYP85A1, and compared the photosynthetic capacity with the BR biosynthetic mutant d (im) and wild type. Overexpression of Dwarf promoted net photosynthetic rate (P N), whereas BR deficiency in d (im) led to a significant inhibition in P N as compared with WT. The activation status of RuBisCO, and the protein content and activity of RuBisCO activase, but not the total content and transcripts of RuBisCO were closely related to the endogenous BR levels in different genotypes. However, endogenous BR positively regulated the expression and activity of fructose-1,6-bisphosphatase. Dwarf overexpression enhanced the activity of dehydroascorbate reductase and glutathione reductase, leading to a reduced redox status, whereas BR deficiency had the contrasting effects. In addition, BR induced a reduction of 2-cystein peroxiredoxin without altering the protein content. BR plays a role in the regulation of photosynthesis. BR can increase the photosynthetic capacity by inducing a reduced redox status that maintains the activation states of Calvin cycle enzymes.

  2. Biosynthetic Functional Gene Analysis of Bis-Indole Metabolites from 25D7, a Clone Derived from a Deep-Sea Sediment Metagenomic Library

    PubMed Central

    Yan, Xia; Tang, Xi-Xiang; Qin, Dan; Yi, Zhi-Wei; Fang, Mei-Juan; Wu, Zhen; Qiu, Ying-Kun

    2016-01-01

    This work investigated the metabolites and their biosynthetic functional hydroxylase genes of the deep-sea sediment metagenomic clone 25D7. 5-Bromoindole was added to the 25D7 clone derived Escherichia coli fermentation broth. The new-generated metabolites and their biosynthetic byproducts were located through LC-MS, in which the isotope peaks of brominated products emerged. Two new brominated bis-indole metabolites, 5-bromometagenediindole B (1), and 5-bromometagenediindole C (2) were separated under the guidance of LC-MS. Their structures were elucidated on the basis of 1D and 2D NMR spectra (COSY, HSQC, and HMBC). The biosynthetic functional genes of the two new compounds were revealed through LC-MS and transposon mutagenesis analysis. 5-Bromometagenediindole B (1) also demonstrated moderately cytotoxic activity against MCF7, B16, CNE2, Bel7402, and HT1080 tumor cell lines in vitro. PMID:27258289

  3. Building Triketide α-Pyrone-Producing Yeast Platform Using Heterologous Expression of Sporopollenin Biosynthetic Genes.

    PubMed

    Kim, Sung Soo

    2015-11-01

    Sporopollenin is a poorly characterized mixed aliphatic and aromatic polymer with ester and ether linkages. Recent studies have reported that α-pyrone polyketide compounds generated by Arabidopsis thaliana, polyketide synthase A (PKSA) and tetraketide α-pyrone reductase 1 (TKPR1), are previously unknown sporopollenin precursors. Here, the yeast Saccharomyces cerevisiae was introduced to test potential sporopollenin biosynthetic pathways in vivo. A PKSA/TKPR1 dual expressor was generated and various chain-length alkyl α-pyrones were identified by GC-MS. The growth rate of the strain containing PKSA/TKPR1 appeared normal. These results indicate that PKSA/TKPR1-expressing yeast would be a starting platform to investigate in vivo sporopollenin metabolism.

  4. Early changes in gene expression induced by acute UV exposure in leaves of Psychotria brachyceras, a bioactive alkaloid accumulating plant.

    PubMed

    do Nascimento, Naíla Cannes; Menguer, Paloma Koprovski; Sperotto, Raul Antonio; de Almeida, Márcia Rodrigues; Fett-Neto, Arthur Germano

    2013-05-01

    UV-B radiation can damage biomolecules, such as DNA, RNA, and proteins, halting essential cellular processes; this damage is partly due to ROS generation. Plant secondary metabolites may protect against UV-B. Psychotria brachyceras Müll. Arg. (Rubiaceae), a subtropical shrub, produces brachycerine, a monoterpene indole alkaloid mainly accumulated in leaf tissues, which displays antioxidant and antimutagenic activities. Exposure of P. brachyceras cuttings to UV-B radiation significantly increases leaf brachycerine concentration. It has been suggested that this alkaloid might contribute to protection against UV-B damage both through its quenching activity on ROS and as UV shield. To identify differentially expressed genes of P. brachyceras in response to UV-B and investigate a possible influence of this stimulus on putative brachycerine-related genes, suppressive subtractive hybridization was applied. Complementary DNA from UV-B-treated leaves for 24 h was used as tester, and cDNA from untreated leaves, as driver. After BLASTX alignments, 134 sequences matched plant genes. Using quantitative RT-PCR, selected genes potentially related to brachycerine showed significant increases in transcription after UV-B exposure: tryptophan decarboxylase, ACC oxidase, UDP-glucose glucosyltransferase, lipase, and serine/threonine kinase. Results suggest a possible involvement of brachycerine in acute UV-B responses and show that alkaloid accumulation seems at least partly regulated at transcriptional level.

  5. From a Natural Product to Its Biosynthetic Gene Cluster: A Demonstration Using Polyketomycin from Streptomyces diastatochromogenes Tü6028

    PubMed Central

    Greule, Anja; Zhang, Songya; Paululat, Thomas; Bechthold, Andreas

    2017-01-01

    Streptomyces strains are known for their capability to produce a lot of different compounds with various bioactivities. Cultivation under different conditions often leads to the production of new compounds. Therefore, production cultures of the strains are extracted with ethyl acetate and the crude extracts are analyzed by HPLC. Furthermore, the extracts are tested for their bioactivity by different assays. For structure elucidation the compound of interest is purified by a combination of different chromatography methods. Genome sequencing coupled with genome mining allows the identification of a natural product biosynthetic gene cluster using different computer programs. To confirm that the correct gene cluster has been identified, gene inactivation experiments have to be performed. The resulting mutants are analyzed for the production of the particular natural product. Once the correct gene cluster has been inactivated, the strain should fail to produce the compound. The workflow is shown for the antibacterial compound polyketomycin produced by Streptomyces diastatochromogenes Tü6028. Around ten years ago, when genome sequencing was still very expensive, the cloning and identification of a gene cluster was a very time-consuming process. Fast genome sequencing combined with genome mining accelerates the trial of cluster identification and opens up new ways to explore biosynthesis and to generate novel natural products by genetic methods. The protocol described in this paper can be assigned to any other compound derived from a Streptomyces strain or another microorganism. PMID:28117820

  6. From a Natural Product to Its Biosynthetic Gene Cluster: A Demonstration Using Polyketomycin from Streptomyces diastatochromogenes Tü6028.

    PubMed

    Greule, Anja; Zhang, Songya; Paululat, Thomas; Bechthold, Andreas

    2017-01-13

    Streptomyces strains are known for their capability to produce a lot of different compounds with various bioactivities. Cultivation under different conditions often leads to the production of new compounds. Therefore, production cultures of the strains are extracted with ethyl acetate and the crude extracts are analyzed by HPLC. Furthermore, the extracts are tested for their bioactivity by different assays. For structure elucidation the compound of interest is purified by a combination of different chromatography methods. Genome sequencing coupled with genome mining allows the identification of a natural product biosynthetic gene cluster using different computer programs. To confirm that the correct gene cluster has been identified, gene inactivation experiments have to be performed. The resulting mutants are analyzed for the production of the particular natural product. Once the correct gene cluster has been inactivated, the strain should fail to produce the compound. The workflow is shown for the antibacterial compound polyketomycin produced by Streptomyces diastatochromogenes Tü6028. Around ten years ago, when genome sequencing was still very expensive, the cloning and identification of a gene cluster was a very time-consuming process. Fast genome sequencing combined with genome mining accelerates the trial of cluster identification and opens up new ways to explore biosynthesis and to generate novel natural products by genetic methods. The protocol described in this paper can be assigned to any other compound derived from a Streptomyces strain or another microorganism.

  7. Opium poppy and Madagascar periwinkle: model non-model systems to investigate alkaloid biosynthesis in plants.

    PubMed

    Facchini, Peter J; De Luca, Vincenzo

    2008-05-01

    Alkaloids represent a large and diverse group of compounds that are related by the occurrence of a nitrogen atom within a heterocyclic backbone. Unlike other types of secondary metabolites, the various structural categories of alkaloids are unrelated in terms of biosynthesis and evolution. Although the biology of each group is unique, common patterns have become apparent. Opium poppy (Papaver somniferum), which produces several benzylisoquinoline alkaloids, and Madagascar periwinkle (Catharanthus roseus), which accumulates an array of monoterpenoid indole alkaloids, have emerged as the premier organisms used to study plant alkaloid metabolism. The status of these species as model systems results from decades of research on the chemistry, enzymology and molecular biology responsible for the biosynthesis of valuable pharmaceutical alkaloids. Opium poppy remains the only commercial source for morphine, codeine and semi-synthetic analgesics, such as oxycodone, derived from thebaine. Catharanthus roseus is the only source for the anti-cancer drugs vinblastine and vincristine. Impressive collections of cDNAs encoding biosynthetic enzymes and regulatory proteins involved in the formation of benzylisoquinoline and monoterpenoid indole alkaloids are now available, and the rate of gene discovery has accelerated with the application of genomics. Such tools have allowed the establishment of models that describe the complex cell biology of alkaloid metabolism in these important medicinal plants. A suite of biotechnological resources, including genetic transformation protocols, has allowed the application of metabolic engineering to modify the alkaloid content of these and related species. An overview of recent progress on benzylisoquinoline and monoterpenoid indole alkaloid biosynthesis in opium poppy and C. roseus is presented.

  8. Elucidating steroid alkaloid biosynthesis in Veratrum californicum: production of verazine in Sf9 cells.

    PubMed

    Augustin, Megan M; Ruzicka, Dan R; Shukla, Ashutosh K; Augustin, Jörg M; Starks, Courtney M; O'Neil-Johnson, Mark; McKain, Michael R; Evans, Bradley S; Barrett, Matt D; Smithson, Ann; Wong, Gane Ka-Shu; Deyholos, Michael K; Edger, Patrick P; Pires, J Chris; Leebens-Mack, James H; Mann, David A; Kutchan, Toni M

    2015-06-01

    Steroid alkaloids have been shown to elicit a wide range of pharmacological effects that include anticancer and antifungal activities. Understanding the biosynthesis of these molecules is essential to bioengineering for sustainable production. Herein, we investigate the biosynthetic pathway to cyclopamine, a steroid alkaloid that shows promising antineoplastic activities. Supply of cyclopamine is limited, as the current source is solely derived from wild collection of the plant Veratrum californicum. To elucidate the early stages of the pathway to cyclopamine, we interrogated a V. californicum RNA-seq dataset using the cyclopamine accumulation profile as a predefined model for gene expression with the pattern-matching algorithm Haystack. Refactoring candidate genes in Sf9 insect cells led to discovery of four enzymes that catalyze the first six steps in steroid alkaloid biosynthesis to produce verazine, a predicted precursor to cyclopamine. Three of the enzymes are cytochromes P450 while the fourth is a γ-aminobutyrate transaminase; together they produce verazine from cholesterol.

  9. Activation and products of the cryptic secondary metabolite biosynthetic gene clusters by rifampin resistance (rpoB) mutations in actinomycetes.

    PubMed

    Tanaka, Yukinori; Kasahara, Ken; Hirose, Yutaka; Murakami, Kiriko; Kugimiya, Rie; Ochi, Kozo

    2013-07-01

    A subset of rifampin resistance (rpoB) mutations result in the overproduction of antibiotics in various actinomycetes, including Streptomyces, Saccharopolyspora, and Amycolatopsis, with H437Y and H437R rpoB mutations effective most frequently. Moreover, the rpoB mutations markedly activate (up to 70-fold at the transcriptional level) the cryptic/silent secondary metabolite biosynthetic gene clusters of these actinomycetes, which are not activated under general stressful conditions, with the exception of treatment with rare earth elements. Analysis of the metabolite profile demonstrated that the rpoB mutants produced many metabolites, which were not detected in the wild-type strains. This approach utilizing rifampin resistance mutations is characterized by its feasibility and potential scalability to high-throughput studies and would be useful to activate and to enhance the yields of metabolites for discovery and biochemical characterization.

  10. A conserved RNA structure (thi box) is involved in regulation of thiamin biosynthetic gene expression in bacteria

    PubMed Central

    Miranda-Ríos, Juan; Navarro, Margarito; Soberón, Mario

    2001-01-01

    The thiCOGE genes of Rhizobium etli code for enzymes involved in thiamin biosynthesis. These genes are transcribed with a 211-base untranslated leader that contains the thi box, a 38-base sequence highly conserved in the 5′ regions of thiamin biosynthetic and transport genes of Gram-positive and Gram-negative organisms. A deletion analysis of thiC-lacZ fusions revealed an unexpected relationship between the degree of repression shown by the deleted derivatives and the length of the thiC sequences present in the transcript. Three regions were found to be important for regulation: (i) the thi box sequence, which is absolutely necessary for high-level expression of thiC; (ii) the region immediately upstream to the translation start codon of thiC, which can be folded into a stem-loop structure that would mask the Shine-Dalgarno sequence; and (iii) the proximal part of the coding region of thiC, which was shown to contain a putative Rho-independent terminator. A comparative phylogenetic analysis revealed a possible folding of the thi box sequence into a hairpin structure composed of a hairpin loop, two helixes, and an interior loop. Our results show that thiamin regulation of gene expression involves a complex posttranscriptional mechanism and that the thi box RNA structure is indispensable for thiCOGE expression. PMID:11470904

  11. Exploring the Transcriptome Landscape of Pomegranate Fruit Peel for Natural Product Biosynthetic Gene and SSR Marker Discovery(F).

    PubMed

    Ono, Nadia Nicole; Britton, Monica Therese; Fass, Joseph Nathaniel; Nicolet, Charles Meyer; Lin, Dawei; Tian, Li

    2011-10-01

    Pomegranate fruit peel is rich in bioactive plant natural products, such as hydrolyzable tannins and anthocyanins. Despite their documented roles in human nutrition and fruit quality, genes involved in natural product biosynthesis have not been cloned from pomegranate and very little sequence information is available on pomegranate in the public domain. Shotgun transcriptome sequencing of pomegranate fruit peel cDNA was performed using RNA-Seq on the Illumina Genome Analyzer platform. Over 100 million raw sequence reads were obtained and assembled into 9,839 transcriptome assemblies (TAs) (>200 bp). Candidate genes for hydrolyzable tannin, anthocyanin, flavonoid, terpenoid and fatty acid biosynthesis and/or regulation were identified. Three lipid transfer proteins were obtained that may contribute to the previously reported IgE reactivity of pomegranate fruit extracts. In addition, 115 SSR markers were identified from the pomegranate fruit peel transcriptome and primers were designed for 77 SSR markers. The pomegranate fruit peel transcriptome set provides a valuable platform for natural product biosynthetic gene and SSR marker discovery in pomegranate. This work also demonstrates that next-generation transcriptome sequencing is an economical and effective approach for investigating natural product biosynthesis, identifying genes controlling important agronomic traits, and discovering molecular markers in non-model specialty crop species.

  12. Expression of genes associated with the biosynthetic pathways of abscisic acid, gibberellin, and ethylene during the germination of lettuce seeds.

    PubMed

    Clemente, A C S; Guimarães, R M; Martins, D C; Gomes, L A A; Caixeta, F; Reis, R G E; Rosa, S D V F

    2015-05-11

    Seed germination and dormancy are complex phenomena that are controlled by many genes and environmental factors. Such genes are indicated by phytohormones that interact with each other, and may cause dormancy or promote seed germination. The objective of this study was to investigate gene expression associated with the biosynthetic pathways of abscisic acid (ABA), gibberellic acid (GA), and ethylene (ET) in dormant and germinated lettuce seeds. The expressions of LsNCED, LsGA3ox1, and ACO-B were evaluated in germinating and dormant seeds from the cultivars Everglades, Babá de Verão, Verônica, Salinas, Colorado, and Regina 71. The expressions of LsNCED, LsGA3ox1, and ACO-B were related to the biosynthesis of ABA, GA, and ET, respectively; therefore, the presence of these substances depends on genotype. LsNCED expression only occurred in dormant seeds, and was connected to dormancy. LsGA3ox1expression only occurred in germinated seeds, and was connected to germination. The ACO-B gene was involved in ET biosynthesis, and was expressed differently in germinated and dormant seeds, depending on the genotype, indicating different functions for different characteristics. Furthermore, sensitivity to phytohormones appeared to be more important than the expression levels of LsNCED, LsGA3ox1, or ACO-B.

  13. Pleiotropic consequences of gene knockouts in the phthiocerol dimycocerosate and phenolic glycolipid biosynthetic gene cluster of the opportunistic human pathogen Mycobacterium marinum.

    PubMed

    Mohandas, Poornima; Budell, William C; Mueller, Emily; Au, Andrew; Bythrow, Glennon V; Quadri, Luis E N

    2016-03-01

    Phthiocerol dimycocerosates (PDIMs) and phenolic glycolipids (PGLs) contribute to the pathogenicity of several mycobacteria. Biosynthesis of these virulence factors requires polyketide synthases and other enzymes that represent potential targets for the development of adjuvant antivirulence drugs. We used six isogenic Mycobacterium marinum mutants, each with a different gene knockout in the PDIM/PGL biosynthetic pathway, to probe the pleiotropy of mutations leading to PDIM(-) PGL(-), PDIM(+) PGL(-) or PDIM(-) PGL(+) phenotypes. We evaluated the M. marinum mutants for changes in antibiotic susceptibility, cell envelope permeability, biofilm formation, surface properties, sliding motility and virulence in an amoeba model. The analysis also permitted us to begin exploring the hypothesis that different gene knockouts rendering the same PDIM and/or PGL deficiency phenotypes lead to M. marinum mutants with equivalent pleiotropic profiles. Overall, the results of our study revealed a complex picture of pleiotropic patterns emerging from different gene knockouts, uncovered unexpected phenotypic inequalities between mutants, and provided new insight into the phenotypic consequences of gene knockouts in the PDIM/PGL biosynthetic pathway.

  14. Analysis of the rice mutant dwarf and gladius leaf 1. Aberrant katanin-mediated microtubule organization causes up-regulation of gibberellin biosynthetic genes independently of gibberellin signaling.

    PubMed

    Komorisono, Masahiko; Ueguchi-Tanaka, Miyako; Aichi, Ikuko; Hasegawa, Yasuko; Ashikari, Motoyuki; Kitano, Hidemi; Matsuoka, Makoto; Sazuka, Takashi

    2005-08-01

    Molecular genetic studies of plant dwarf mutants have indicated that gibberellin (GA) and brassinosteroid (BR) are two major factors that determine plant height; dwarf mutants that are caused by other defects are relatively rare, especially in monocot species. Here, we report a rice (Oryza sativa) dwarf mutant, dwarf and gladius leaf 1 (dgl1), which exhibits only minimal response to GA and BR. In addition to the dwarf phenotype, dgl1 produces leaves with abnormally rounded tip regions. Positional cloning of DGL1 revealed that it encodes a 60-kD microtubule-severing katanin-like protein. The protein was found to be important in cell elongation and division, based on the observed cell phenotypes. GA biosynthetic genes are up-regulated in dgl1, but the expression of BR biosynthetic genes is not enhanced. The enhanced expression of GA biosynthetic genes in dgl1 is not caused by inappropriate GA signaling because the expression of these genes was repressed by GA3 treatment, and degradation of the rice DELLA protein SLR1 was triggered by GA3 in this mutant. Instead, aberrant microtubule organization caused by the loss of the microtubule-severing function of DGL1 may result in enhanced expression of GA biosynthetic genes in that enhanced expression was also observed in a BR-deficient mutant with aberrant microtubule organization. These results suggest that the function of DGL1 is important for cell and organ elongation in rice, and aberrant DGL1-mediated microtubule organization causes up-regulation of gibberellin biosynthetic genes independently of gibberellin signaling.

  15. Cecropia peltata Accumulates Starch or Soluble Glycogen by Differentially Regulating Starch Biosynthetic Genes[W][OA

    PubMed Central

    Bischof, Sylvain; Umhang, Martin; Eicke, Simona; Streb, Sebastian; Qi, Weihong; Zeeman, Samuel C.

    2013-01-01

    The branched glucans glycogen and starch are the most widespread storage carbohydrates in living organisms. The production of semicrystalline starch granules in plants is more complex than that of small, soluble glycogen particles in microbes and animals. However, the factors determining whether glycogen or starch is formed are not fully understood. The tropical tree Cecropia peltata is a rare example of an organism able to make either polymer type. Electron micrographs and quantitative measurements show that glycogen accumulates to very high levels in specialized myrmecophytic structures (Müllerian bodies), whereas starch accumulates in leaves. Compared with polymers comprising leaf starch, glycogen is more highly branched and has shorter branches—factors that prevent crystallization and explain its solubility. RNA sequencing and quantitative shotgun proteomics reveal that isoforms of all three classes of glucan biosynthetic enzyme (starch/glycogen synthases, branching enzymes, and debranching enzymes) are differentially expressed in Müllerian bodies and leaves, providing a system-wide view of the quantitative programming of storage carbohydrate metabolism. This work will prompt targeted analysis in model organisms and cross-species comparisons. Finally, as starch is the major carbohydrate used for food and industrial applications worldwide, these data provide a basis for manipulating starch biosynthesis in crops to synthesize tailor-made polyglucans. PMID:23632447

  16. Cecropia peltata accumulates starch or soluble glycogen by differentially regulating starch biosynthetic genes.

    PubMed

    Bischof, Sylvain; Umhang, Martin; Eicke, Simona; Streb, Sebastian; Qi, Weihong; Zeeman, Samuel C

    2013-04-01

    The branched glucans glycogen and starch are the most widespread storage carbohydrates in living organisms. The production of semicrystalline starch granules in plants is more complex than that of small, soluble glycogen particles in microbes and animals. However, the factors determining whether glycogen or starch is formed are not fully understood. The tropical tree Cecropia peltata is a rare example of an organism able to make either polymer type. Electron micrographs and quantitative measurements show that glycogen accumulates to very high levels in specialized myrmecophytic structures (Müllerian bodies), whereas starch accumulates in leaves. Compared with polymers comprising leaf starch, glycogen is more highly branched and has shorter branches--factors that prevent crystallization and explain its solubility. RNA sequencing and quantitative shotgun proteomics reveal that isoforms of all three classes of glucan biosynthetic enzyme (starch/glycogen synthases, branching enzymes, and debranching enzymes) are differentially expressed in Müllerian bodies and leaves, providing a system-wide view of the quantitative programming of storage carbohydrate metabolism. This work will prompt targeted analysis in model organisms and cross-species comparisons. Finally, as starch is the major carbohydrate used for food and industrial applications worldwide, these data provide a basis for manipulating starch biosynthesis in crops to synthesize tailor-made polyglucans.

  17. Identification of the biosynthetic gene cluster for the antibiotic polyketide L-155,175 in Streptomyces hygroscopicus.

    PubMed

    Kim, Eun Young; Han, Jae Woo; Lee, Jee Yeon; Kim, Beom Seok

    2012-11-01

    The antibiotic L-155,175, a potent antiparasitic and antifungal compound, has an unusual structure involving 16-membered macrolides that contain a tetrahydropyran ring connected through a three-carbon linker chain. To identify the biosynthetic gene cluster for L-155,175, a genomic DNA library of Streptomyces hygroscopicus ATCC31955 was constructed and screened with a degenerate primer set designed from a conserved region of the ketosynthase (KS) domain. Sequence analysis of a fosmid clone, pEY1D8 (34 kb), revealed multiple open reading frames (ORFs) encoding type I polyketide synthase (PKS). To determine whether the cloned genes are involved in L-155,175 biosynthesis, a deletion mutant (1D8m) was generated by homologous recombination, in which the gene encoding the KS domain was substituted with an apramycin-resistance gene by PCR-targeted Streptomyces gene replacement. LC-MS analysis showed that L-155,175 production was completely abolished in the 1D8m strain, thereby proving that the cloned gene is responsible for L-155,175 biosynthesis. The sequencing of two other fosmid clones (pEY8B10 and pEY1C9) harboring overlapping sequences from pEY1D8 revealed a 60-kb DNA segment encoding six ORFs for type I PKS harboring 12 modules. The domain organization of the PKS modules encoded by PKS exactly matched the structure of L-155,175. This is the first report on the gene cluster involved in the biosynthesis of L-155,175.

  18. The LexA transcription factor regulates fatty acid biosynthetic genes in the cyanobacterium Synechocystis sp. PCC 6803.

    PubMed

    Kizawa, Ayumi; Kawahara, Akihito; Takashima, Kosuke; Takimura, Yasushi; Nishiyama, Yoshitaka; Hihara, Yukako

    2017-07-26

    Specific transcription factors have been identified in various heterotrophic bacterial species that regulate the sets of genes required for fatty acid metabolism. Here, we report that expression of the fab genes, encoding fatty acid biosynthetic enzymes, is regulated by the global regulator LexA in the photoautotrophic cyanobacterium Synechocystis sp. PCC 6803. Sll1626, an ortholog of the well-known LexA repressor involved in the SOS response in heterotrophic bacteria, was isolated from crude extracts of Synechocystis by DNA affinity chromatography, reflecting its binding to the upstream region of the acpP-fabF and fabI genes. An electrophoresis mobility shift assay revealed that the recombinant LexA protein can bind to the upstream region of each fab gene tested (fabD, fabH, fabF, fabG, fabZ and fabI). Quantitative RT-PCR analysis of the wild type and a lexA-disrupted mutant strain suggested that LexA acts as a repressor of the fab genes involved in initiation of fatty acid biosynthesis (fabD, fabH and fabF) and the first reductive step in the subsequent elongation cycle (fabG) under normal growth conditions. Under nitrogen-depleted conditions, downregulation of fab gene expression is partly achieved through an increase in LexA-repressing activity. In contrast, under phosphate-depleted conditions, fab gene expression is upregulated, probably due to the loss of repression by LexA. We further demonstrate that elimination of LexA largely increases the production of fatty acids in strains modified to secrete free fatty acids. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  19. Quantitative 1H Nuclear Magnetic Resonance Metabolite Profiling as a Functional Genomics Platform to Investigate Alkaloid Biosynthesis in Opium Poppy1[W

    PubMed Central

    Hagel, Jillian M.; Weljie, Aalim M.; Vogel, Hans J.; Facchini, Peter J.

    2008-01-01

    Opium poppy (Papaver somniferum) produces a diverse array of bioactive benzylisoquinoline alkaloids and has emerged as a versatile model system to study plant alkaloid metabolism. The plant is widely cultivated as the only commercial source of the narcotic analgesics morphine and codeine. Variations in plant secondary metabolism as a result of genetic diversity are often associated with perturbations in other metabolic pathways. As part of a functional genomics platform, we used 1H nuclear magnetic resonance (NMR) metabolite profiling for the analysis of primary and secondary metabolism in opium poppy. Aqueous and chloroform extracts of six different opium poppy cultivars were subjected to chemometric analysis. Principle component analysis of the 1H NMR spectra for latex extracts clearly distinguished two varieties, including a low-alkaloid variety and a high-thebaine, low-morphine cultivar. Distinction was also made between pharmaceutical-grade opium poppy cultivars and a condiment variety. Such phenotypic differences were not observed in root extracts. Loading plots confirmed that morphinan alkaloids contributed predominantly to the variance in latex extracts. Quantification of 34 root and 21 latex metabolites, performed using Chenomx NMR Suite version 4.6, showed major differences in the accumulation of specific alkaloids in the latex of the low-alkaloid and high-thebaine, low-morphine varieties. Relatively few differences were found in the levels of other metabolites, indicating that the variation was specific for alkaloid metabolism. Exceptions in the low-alkaloid cultivar included an increased accumulation of the alkaloid precursor tyramine and reduced levels of sucrose, some amino acids, and malate. Real-time polymerase chain reaction analysis of 42 genes involved in primary and secondary metabolism showed differential gene expression mainly associated with alkaloid biosynthesis. Reduced alkaloid levels in the condiment variety were associated with the

  20. Regulation of anthocyanin biosynthetic genes introduced into intact maize tissues by microprojectiles

    PubMed Central

    Klein, Theodore M.; Roth, Bradley A.; Fromm, Michael E.

    1989-01-01

    We have employed microprojectiles to deliver genes involved in anthocyanin biosynthesis to cells within intact aleurone and embryo tissues of maize. Clones of the A1 or Bz1 genes were introduced into aleurone tissue that lacked anthocyanins due to mutations of the endogenous A1 or Bz1 gene. Following bombardment, cells within the aleurone developed purple pigmentation, indicating that the mutation in the a1 or bz1 genotypes was corrected by the introduced gene. To analyze the expression of these genes in different genetic backgrounds, chimeric genes containing the 5′ and 3′ regions of the A1 or Bz1 genes fused to a luciferase coding region were constructed. These constructs were introduced into aleurones of genotypes carrying either dominant or recessive alleles of the C1 and R genes, which are known to regulate anthocyanin production. Levels of luciferase activity in permissive backgrounds (C1, R) were 30- to 200-fold greater than those detected in tissue carrying one or both of the recessive alleles (c1, r) of these genes. These results show that genes delivered to intact tissues by microprojectiles are regulated in a manner similar to the endogenous genes. The transfer of genes directly to intact tissues provides a rapid means for analyzing the genetic and tissue-specific regulation of gene expression. Images PMID:16594066

  1. Biosynthesis and regulation of terpenoid indole alkaloids in Catharanthus roseus

    PubMed Central

    Zhu, Jianhua; Wang, Mingxuan; Wen, Wei; Yu, Rongmin

    2015-01-01

    Catharanthus roseus produces a wide range of terpenoid indole alkaloids (TIA). Many of them, such as vinblastine and vincristine, have significant bioactivity. They are valuable chemotherapy drugs used in combination with other drugs to treat lymphoma and leukemia. The TIA biosynthetic pathway has been investigated for many years, for scientific interest and for their potential in manufacturing applications, to fulfill the market demand. In this review, the progress and perspective of C. roseus TIA biosynthesis and its regulating enzymes are described. In addition, the culture condition, hormones, signaling molecules, precursor feeding on the accumulation of TIA, and gene expression are also evaluated and discussed. PMID:26009689

  2. Genetic manipulation of the Fusarium fujikuroi fusarin gene cluster yields insight into the complex regulation and fusarin biosynthetic pathway.

    PubMed

    Niehaus, Eva-Maria; Kleigrewe, Karin; Wiemann, Philipp; Studt, Lena; Sieber, Christian M K; Connolly, Lanelle R; Freitag, Michael; Güldener, Ulrich; Tudzynski, Bettina; Humpf, Hans-Ulrich

    2013-08-22

    In this work, the biosynthesis and regulation of the polyketide synthase/nonribosomal peptide synthetase (PKS/NRPS)-derived mutagenic mycotoxin fusarin C was studied in the fungus Fusarium fujikuroi. The fusarin gene cluster consists of nine genes (fus1-fus9) that are coexpressed under high-nitrogen and acidic pH conditions. Chromatin immunoprecipitation revealed a correlation between high expression and enrichment of activating H3K9-acetylation marks under inducing conditions. We provide evidence that only four genes are sufficient for the biosynthesis. The combination of genetic engineering with nuclear magnetic resonance and mass-spectrometry-based structure elucidation allowed the discovery of the putative fusarin biosynthetic pathway. Surprisingly, we indicate that PKS/NRPS releases its product with an open ring structure, probably as an alcohol. Our data indicate that 2-pyrrolidone ring closure, oxidation at C-20, and, finally, methylation at C-20 are catalyzed by Fus2, Fus8, and Fus9, respectively. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Genistein: A Novel Anthocyanin Synthesis Promoter that Directly Regulates Biosynthetic Genes in Red Cabbage in a Light-Dependent Way

    PubMed Central

    Zhang, Na; Qi, Yan; Zhang, Hai-Jun; Wang, Xiaoyun; Li, Hongfei; Shi, Yantong; Guo, Yang-Dong

    2016-01-01

    Genistein (GNT), an isoflavone, is used in the clinical treatment of various health disorders. GNT is found in primary food source plants and some medical plants. However, studies on the functions of GNT in plants are rarely reported. In this study, we demonstrated that GNT plays an important role in promoting anthocyanin accumulation in red cabbage. GNT solutions (10, 20, 30, 40, and 50 mg/L) as foliar fertilizers were applied to red cabbage. Consequently, anthocyanin accumulation in red cabbage increased in a light-dependent manner. GNT solution at 30 mg/L exhibited the optimal effect on anthocyanin accumulation, which was twice that of the control. Quantitative real-time PCR analysis indicated that GNT application upregulated the expression of all structural genes, contributing to anthocyanin biosynthesis under light conditions. Under dark conditions, GNT exerted no significant promotive effect on anthocyanin accumulation; only early biosynthetic genes of anthocyanin biosynthesis responded to GNT. The promotive effect of GNT on anthocyanin biosynthesis is directly attributable to the regulation of structural gene expression. Transcription factors exhibited no response to GNT. The levels of anthocyanin in red cabbage positively correlated with the enzyme activities of antioxidant systems. This finding correlation suggested that the promotive effect of GNT on anthocyanin levels was correlated with improved antioxidant activity in the red cabbage. PMID:27990149

  4. Organization and characterization of a biosynthetic gene cluster for bafilomycin from Streptomyces griseus DSM 2608

    PubMed Central

    2013-01-01

    Streptomyces griseus DSM 2608 produces bafilomycin, an antifungal plecomacrolide antibiotic. We cloned and sequenced an 87.4-kb region, including a polyketide synthase (PKS) region, methoxymalonate genes, flavensomycinate genes, and other putative regulatory genes. The 58.5kb of PKS region consisting 12 PKS modules arranged in five different PKS genes, was assumed to be responsible for the biosynthesis of plecomacrolide backbone including 16-membered macrocyclic lactone. All the modules showed high similarities with typical type I PKS genes. However, the starting module of PKS gene was confirmed to be specific for isobutyrate by sequence comparison of an acyltransferase domain. In downstream of PKS region, the genes for methoxymalonate biosynthesis were located, among which a gene for FkbH-like protein was assumed to play an important role in the production of methoxymalonyl-CoA from glyceryl-CoA. Further the genes encoding flavensomycinyl-ACP biosynthesis for the post-PKS tailoring were also found in the upstream of PKS region. By gene disruption experiments of a dehydratase domain of module 12 and an FkbH-like protein, this gene cluster was confirmed to be involved in the biosynthesis of bafilomycin. PMID:23663353

  5. Simple and rapid direct cloning and heterologous expression of natural product biosynthetic gene cluster in Bacillus subtilis via Red/ET recombineering

    PubMed Central

    Liu, Qingshu; Shen, Qiyao; Bian, Xiaoying; Chen, Hanna; Fu, Jun; Wang, Hailong; Lei, Ping; Guo, Zhaohui; Chen, Wu; Li, Dingjun; Zhang, Youming

    2016-01-01

    Heterologous expression of biosynthetic pathways is an important way to research and discover microbial natural products. Bacillus subtilis is a suitable host for the heterologous production of natural products from bacilli and related Firmicutes. Existing technologies for heterologous expression of large biosynthetic gene clusters in B. subtilis are complicated. Herein, we present a simple and rapid strategy for direct cloning based heterologous expression of biosynthetic pathways in B. subtilis via Red/ET recombineering, using a 5.2 kb specific direct cloning vector carrying homologous sequences to the amyE gene in B. subtilis and CcdB counterselection marker. Using a two-step procedure, two large biosynthetic pathways for edeine (48.3 kb) and bacillomycin (37.2 kb) from Brevibacillus brevis X23 and B. amyloliquefaciens FZB42, respectively, were directly cloned and subsequently integrated into the chromosome of B. subtilis within one week. The gene cluster for bacillomycin was successfully expressed in the heterologous host, although edeine production was not detectable. Compared with similar technologies, this method offers a simpler and more feasible system for the discovery of natural products from bacilli and related genera. PMID:27687863

  6. Genome mining of the sordarin biosynthetic gene cluster from Sordaria araneosa Cain ATCC 36386: characterization of cycloaraneosene synthase and GDP-6-deoxyaltrose transferase.

    PubMed

    Kudo, Fumitaka; Matsuura, Yasunori; Hayashi, Takaaki; Fukushima, Masayuki; Eguchi, Tadashi

    2016-07-01

    Sordarin is a glycoside antibiotic with a unique tetracyclic diterpene aglycone structure called sordaricin. To understand its intriguing biosynthetic pathway that may include a Diels-Alder-type [4+2]cycloaddition, genome mining of the gene cluster from the draft genome sequence of the producer strain, Sordaria araneosa Cain ATCC 36386, was carried out. A contiguous 67 kb gene cluster consisting of 20 open reading frames encoding a putative diterpene cyclase, a glycosyltransferase, a type I polyketide synthase, and six cytochrome P450 monooxygenases were identified. In vitro enzymatic analysis of the putative diterpene cyclase SdnA showed that it catalyzes the transformation of geranylgeranyl diphosphate to cycloaraneosene, a known biosynthetic intermediate of sordarin. Furthermore, a putative glycosyltransferase SdnJ was found to catalyze the glycosylation of sordaricin in the presence of GDP-6-deoxy-d-altrose to give 4'-O-demethylsordarin. These results suggest that the identified sdn gene cluster is responsible for the biosynthesis of sordarin. Based on the isolated potential biosynthetic intermediates and bioinformatics analysis, a plausible biosynthetic pathway for sordarin is proposed.

  7. Development of a gene cloning system in a fast-growing and moderately thermophilic Streptomyces species and heterologous expression of Streptomyces antibiotic biosynthetic gene clusters

    PubMed Central

    2011-01-01

    Background Streptomyces species are a major source of antibiotics. They usually grow slowly at their optimal temperature and fermentation of industrial strains in a large scale often takes a long time, consuming more energy and materials than some other bacterial industrial strains (e.g., E. coli and Bacillus). Most thermophilic Streptomyces species grow fast, but no gene cloning systems have been developed in such strains. Results We report here the isolation of 41 fast-growing (about twice the rate of S. coelicolor), moderately thermophilic (growing at both 30°C and 50°C) Streptomyces strains, detection of one linear and three circular plasmids in them, and sequencing of a 6996-bp plasmid, pTSC1, from one of them. pTSC1-derived pCWH1 could replicate in both thermophilic and mesophilic Streptomyces strains. On the other hand, several Streptomyces replicons function in thermophilic Streptomyces species. By examining ten well-sporulating strains, we found two promising cloning hosts, 2C and 4F. A gene cloning system was established by using the two strains. The actinorhodin and anthramycin biosynthetic gene clusters from mesophilic S. coelicolor A3(2) and thermophilic S. refuineus were heterologously expressed in one of the hosts. Conclusions We have developed a gene cloning and expression system in a fast-growing and moderately thermophilic Streptomyces species. Although just a few plasmids and one antibiotic biosynthetic gene cluster from mesophilic Streptomyces were successfully expressed in thermophilic Streptomyces species, we expect that by utilizing thermophilic Streptomyces-specific promoters, more genes and especially antibiotic genes clusters of mesophilic Streptomyces should be heterologously expressed. PMID:22032628

  8. Analysis of the carbapenem gene cluster of Erwinia carotovora: definition of the antibiotic biosynthetic genes and evidence for a novel beta-lactam resistance mechanism.

    PubMed

    McGowan, S J; Sebaihia, M; O'Leary, S; Hardie, K R; Williams, P; Stewart, G S; Bycroft, B W; Salmond, G P

    1997-11-01

    Members of two genera of Gram-negative bacteria, Serratia and Erwinia, produce a beta-lactam antibiotic, 1-carbapen-2-em-3-carboxylic acid. We have reported previously the cloning and sequencing of the genes responsible for production of this carbapenem in Erwinia carotovora. These genes are organized as an operon, carA--H, and are controlled by a LuxR-type transcriptional activator, encoded by the linked carR gene. We report in this paper the genetic dissection of this putative operon to determine the function of each of the genes. We demonstrate by mutational analysis that the products of the first five genes of the operon are involved in the synthesis of the carbapenem molecule. Three of these, carABC, are absolutely required. In addition, we provide evidence for the existence of a novel carbapenem resistance mechanism, encoded by the CarF and carG genes. Both products of these overlapping and potentially translationally coupled genes have functional, N-terminal signal peptides. Removal of these genes from the Erwinia chromosome results in a carbapenem-sensitive phenotype. We assume that these novel beta-lactam resistance genes have evolved in concert with the biosynthetic genes to ensure 'self-resistance' in the Erwinia carbapenem producer.

  9. RecET direct cloning and Redαβ recombineering of biosynthetic gene clusters, large operons or single genes for heterologous expression.

    PubMed

    Wang, Hailong; Li, Zhen; Jia, Ruonan; Hou, Yu; Yin, Jia; Bian, Xiaoying; Li, Aiying; Müller, Rolf; Stewart, A Francis; Fu, Jun; Zhang, Youming

    2016-07-01

    Full-length RecE and RecT from Rac prophage mediate highly efficient linear-linear homologous recombination that can be used to clone large DNA regions directly from genomic DNA into expression vectors, bypassing library construction and screening. Homologous recombination mediated by Redαβ from lambda phage has been widely used for recombinant DNA engineering. Here we present a protocol for direct cloning and engineering of biosynthetic gene clusters, large operons or single genes from genomic DNA using one Escherichia coli host that harbors both RecET and Redαβ systems. The pipeline uses standardized cassettes for horizontal gene transfer options, as well as vectors with different replication origins configured to minimize recombineering background through the use of selectively replicating templates or CcdB counterselection. These optimized reagents and protocols facilitate fast acquisition of transgenes from genomic DNA preparations, which are ready for heterologous expression within 1 week.

  10. Environmental cues induce changes of steviol glycosides contents and transcription of corresponding biosynthetic genes in Stevia rebaudiana.

    PubMed

    Yang, Yongheng; Huang, Suzhen; Han, Yulin; Yuan, Haiyan; Gu, Chunsun; Wang, Zhongwei

    2015-01-01

    Plant growth and secondary metabolism are commonly regulated by external cues such as light, temperature and water availability. In this study, the influences of low and high temperatures, dehydration, photoperiods, and different growing stages on the changes of steviol glycosides (SGs) contents and transcription levels of fifteen genes involved in SGs biosynthesis of Stevia rebaudiana Bertoni were examined using HPLC and RT-PCR. The observations showed that the transcript levels of all the fifteen genes were maximum under 25 °C treatment, and the transcription of SrDXS, SrDXR, SrMCT, SrCMK, SrMDS, SrHDS, SrHDR, SrIDI, SrGGDPS, SrCPPS1, SrUGT85C2 and SrUGT76G1 were restrained both in low temperature (15 °C) and high temperature (35 °C). Most genes in SGs biosynthesis pathway exhibited down-regulation in dehydration. To elucidate the effect of photoperiods, the plants were treated by different simulated photoperiods (8 L/16 D, 1 0L/14 D, 14 L/10 D and 16 L/8 D), but no significant transcription changes were observed. In the study of growing stages, there were evident changes of SGs contents, and the transcript levels of all the fifteen genes were minimal in fast growing period, and exhibited evident increase both in flower-bud appearing stage and flowering stage. The obtained results strongly suggest that the effect of environmental cues on steviol glycosides contents and transcription of corresponding biosynthetic genes in S. rebaudiana is significant. It is worth to study deeply. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  11. Variation in Type A Trichothecene Production and Trichothecene Biosynthetic Genes in Fusarium goolgardi from Natural Ecosystems of Australia

    PubMed Central

    Rocha, Liliana O.; Laurence, Matthew H.; Proctor, Robert H.; McCormick, Susan P.; Summerell, Brett A.; Liew, Edward C. Y.

    2015-01-01

    Fusarium goolgardi, isolated from the grass tree Xanthorrhoea glauca in natural ecosystems of Australia, is closely related to fusaria that produce a subgroup of trichothecene (type A) mycotoxins that lack a carbonyl group at carbon atom 8 (C-8). Mass spectrometric analysis revealed that F. goolgardi isolates produce type A trichothecenes, but exhibited one of two chemotypes. Some isolates (50%) produced multiple type A trichothecenes, including 4,15-diacetoxyscirpenol (DAS), neosolaniol (NEO), 8-acetylneosolaniol (Ac-NEO) and T-2 toxin (DAS-NEO-T2 chemotype). Other isolates (50%) produced only DAS (DAS chemotype). In the phylogenies inferred from DNA sequences of genes encoding the RNA polymerase II largest (RPB1) and second largest (RPB2) subunits as well as the trichothecene biosynthetic genes (TRI), F. goolgardi isolates were resolved as a monophyletic clade, distinct from other type A trichothecene-producing species. However, the relationships of F. goolgardi to the other species varied depending on whether phylogenies were inferred from RPB1 and RPB2, the 12-gene TRI cluster, the two-gene TRI1-TRI16 locus, or the single-gene TRI101 locus. Phylogenies based on different TRI loci resolved isolates with different chemotypes into distinct clades, even though only the TRI1-TRI16 locus is responsible for structural variation at C-8. Sequence analysis indicated that TRI1 and TRI16 are functional in F. goolgardi isolates with the DAS-NEO-T2 chemotype, but non-functional in isolates with DAS chemotype due to the presence of premature stop codons caused by a point mutation. PMID:26556373

  12. Ecdysteroid biosynthesis in varroa mites: identification of halloween genes from the biosynthetic pathway

    USDA-ARS?s Scientific Manuscript database

    Biosynthesis of ecdysteroids involves sequential enzymatic hydroxylations by microsomal enzymes and mitochondrial cytochrome P450’s. Enzymes of the pathway are collectively known as Halloween genes. Complete sequences for three Halloween genes, spook (Vdspo), disembodied (Vddib) and shade (Vdshd), w...

  13. The Genome of Tolypocladium inflatum: Evolution, Organization, and Expression of the Cyclosporin Biosynthetic Gene Cluster

    PubMed Central

    Bushley, Kathryn E.; Raja, Rajani; Jaiswal, Pankaj; Cumbie, Jason S.; Nonogaki, Mariko; Boyd, Alexander E.; Owensby, C. Alisha; Knaus, Brian J.; Elser, Justin; Miller, Daniel; Di, Yanming; McPhail, Kerry L.; Spatafora, Joseph W.

    2013-01-01

    The ascomycete fungus Tolypocladium inflatum, a pathogen of beetle larvae, is best known as the producer of the immunosuppressant drug cyclosporin. The draft genome of T. inflatum strain NRRL 8044 (ATCC 34921), the isolate from which cyclosporin was first isolated, is presented along with comparative analyses of the biosynthesis of cyclosporin and other secondary metabolites in T. inflatum and related taxa. Phylogenomic analyses reveal previously undetected and complex patterns of homology between the nonribosomal peptide synthetase (NRPS) that encodes for cyclosporin synthetase (simA) and those of other secondary metabolites with activities against insects (e.g., beauvericin, destruxins, etc.), and demonstrate the roles of module duplication and gene fusion in diversification of NRPSs. The secondary metabolite gene cluster responsible for cyclosporin biosynthesis is described. In addition to genes necessary for cyclosporin biosynthesis, it harbors a gene for a cyclophilin, which is a member of a family of immunophilins known to bind cyclosporin. Comparative analyses support a lineage specific origin of the cyclosporin gene cluster rather than horizontal gene transfer from bacteria or other fungi. RNA-Seq transcriptome analyses in a cyclosporin-inducing medium delineate the boundaries of the cyclosporin cluster and reveal high levels of expression of the gene cluster cyclophilin. In medium containing insect hemolymph, weaker but significant upregulation of several genes within the cyclosporin cluster, including the highly expressed cyclophilin gene, was observed. T. inflatum also represents the first reference draft genome of Ophiocordycipitaceae, a third family of insect pathogenic fungi within the fungal order Hypocreales, and supports parallel and qualitatively distinct radiations of insect pathogens. The T. inflatum genome provides additional insight into the evolution and biosynthesis of cyclosporin and lays a foundation for further investigations of the role

  14. The genome of tolypocladium inflatum: evolution, organization, and expression of the cyclosporin biosynthetic gene cluster.

    PubMed

    Bushley, Kathryn E; Raja, Rajani; Jaiswal, Pankaj; Cumbie, Jason S; Nonogaki, Mariko; Boyd, Alexander E; Owensby, C Alisha; Knaus, Brian J; Elser, Justin; Miller, Daniel; Di, Yanming; McPhail, Kerry L; Spatafora, Joseph W

    2013-06-01

    The ascomycete fungus Tolypocladium inflatum, a pathogen of beetle larvae, is best known as the producer of the immunosuppressant drug cyclosporin. The draft genome of T. inflatum strain NRRL 8044 (ATCC 34921), the isolate from which cyclosporin was first isolated, is presented along with comparative analyses of the biosynthesis of cyclosporin and other secondary metabolites in T. inflatum and related taxa. Phylogenomic analyses reveal previously undetected and complex patterns of homology between the nonribosomal peptide synthetase (NRPS) that encodes for cyclosporin synthetase (simA) and those of other secondary metabolites with activities against insects (e.g., beauvericin, destruxins, etc.), and demonstrate the roles of module duplication and gene fusion in diversification of NRPSs. The secondary metabolite gene cluster responsible for cyclosporin biosynthesis is described. In addition to genes necessary for cyclosporin biosynthesis, it harbors a gene for a cyclophilin, which is a member of a family of immunophilins known to bind cyclosporin. Comparative analyses support a lineage specific origin of the cyclosporin gene cluster rather than horizontal gene transfer from bacteria or other fungi. RNA-Seq transcriptome analyses in a cyclosporin-inducing medium delineate the boundaries of the cyclosporin cluster and reveal high levels of expression of the gene cluster cyclophilin. In medium containing insect hemolymph, weaker but significant upregulation of several genes within the cyclosporin cluster, including the highly expressed cyclophilin gene, was observed. T. inflatum also represents the first reference draft genome of Ophiocordycipitaceae, a third family of insect pathogenic fungi within the fungal order Hypocreales, and supports parallel and qualitatively distinct radiations of insect pathogens. The T. inflatum genome provides additional insight into the evolution and biosynthesis of cyclosporin and lays a foundation for further investigations of the role

  15. Overexpression of the brassinosteroid biosynthetic gene DWF4 in Brassica napus simultaneously increases seed yield and stress tolerance

    PubMed Central

    Sahni, Sangita; Prasad, Bishun D.; Liu, Qing; Grbic, Vojislava; Sharpe, Andrew; Singh, Surinder P.; Krishna, Priti

    2016-01-01

    As a resource allocation strategy, plant growth and defense responses are generally mutually antagonistic. Brassinosteroid (BR) regulates many aspects of plant development and stress responses, however, genetic evidence of its integrated effects on plant growth and stress tolerance is lacking. We overexpressed the Arabidopsis BR biosynthetic gene AtDWF4 in the oilseed plant Brassica napus and scored growth and stress response phenotypes. The transgenic B. napus plants, in comparison to wild type, displayed increased seed yield leading to increased overall oil content per plant, higher root biomass and root length, significantly better tolerance to dehydration and heat stress, and enhanced resistance to necrotrophic fungal pathogens Leptosphaeria maculans and Sclerotinia sclerotiorum. Transcriptome analysis supported the integrated effects of BR on growth and stress responses; in addition to BR responses associated with growth, a predominant plant defense signature, likely mediated by BES1/BZR1, was evident in the transgenic plants. These results establish that BR can interactively and simultaneously enhance abiotic and biotic stress tolerance and plant productivity. The ability to confer pleiotropic beneficial effects that are associated with different agronomic traits suggests that BR–related genes may be important targets for simultaneously increasing plant productivity and performance under stress conditions. PMID:27324083

  16. Overexpression of the brassinosteroid biosynthetic gene DWF4 in Brassica napus simultaneously increases seed yield and stress tolerance.

    PubMed

    Sahni, Sangita; Prasad, Bishun D; Liu, Qing; Grbic, Vojislava; Sharpe, Andrew; Singh, Surinder P; Krishna, Priti

    2016-06-21

    As a resource allocation strategy, plant growth and defense responses are generally mutually antagonistic. Brassinosteroid (BR) regulates many aspects of plant development and stress responses, however, genetic evidence of its integrated effects on plant growth and stress tolerance is lacking. We overexpressed the Arabidopsis BR biosynthetic gene AtDWF4 in the oilseed plant Brassica napus and scored growth and stress response phenotypes. The transgenic B. napus plants, in comparison to wild type, displayed increased seed yield leading to increased overall oil content per plant, higher root biomass and root length, significantly better tolerance to dehydration and heat stress, and enhanced resistance to necrotrophic fungal pathogens Leptosphaeria maculans and Sclerotinia sclerotiorum. Transcriptome analysis supported the integrated effects of BR on growth and stress responses; in addition to BR responses associated with growth, a predominant plant defense signature, likely mediated by BES1/BZR1, was evident in the transgenic plants. These results establish that BR can interactively and simultaneously enhance abiotic and biotic stress tolerance and plant productivity. The ability to confer pleiotropic beneficial effects that are associated with different agronomic traits suggests that BR-related genes may be important targets for simultaneously increasing plant productivity and performance under stress conditions.

  17. Ultraviolet Radiation-Elicited Enhancement of Isoflavonoid Accumulation, Biosynthetic Gene Expression, and Antioxidant Activity in Astragalus membranaceus Hairy Root Cultures.

    PubMed

    Jiao, Jiao; Gai, Qing-Yan; Wang, Wei; Luo, Meng; Gu, Cheng-Bo; Fu, Yu-Jie; Ma, Wei

    2015-09-23

    In this work, Astragalus membranaceus hairy root cultures (AMHRCs) were exposed to ultraviolet radiation (UV-A, UV-B, and UV-C) for promoting isoflavonoid accumulation. The optimum enhancement for isoflavonoid production was achieved in 34-day-old AMHRCs elicited by 86.4 kJ/m(2) of UV-B. The resulting isoflavonoid yield was 533.54 ± 13.61 μg/g dry weight (DW), which was 2.29-fold higher relative to control (232.93 ± 3.08 μg/g DW). UV-B up-regulated the transcriptional expressions of all investigated genes involved in isoflavonoid biosynthetic pathway. PAL and C4H were found to be two potential key genes that controlled isoflavonoid biosynthesis. Moreover, a significant increase was noted in antioxidant activity of extracts from UV-B-elicited AMHRCs (IC50 values = 0.85 and 1.08 mg/mL) in comparison with control (1.38 and 1.71 mg/mL). Overall, this study offered a feasible elicitation strategy to enhance isoflavonoid accumulation in AMHRCs and also provided a basis for metabolic engineering of isoflavonoid biosynthesis in the future.

  18. Isolation of Cells Specialized in Anticancer Alkaloid Metabolism by Fluorescence-Activated Cell Sorting1[OPEN

    PubMed Central

    Guimarães, Ana Luísa; Martínez-Cortés, Teresa; Guedes, Joana G.; Lopes, Telma; Andrade, Cláudia; Bispo, Cláudia; Andrade, Paula; Rodrigues, José A.

    2016-01-01

    Plant specialized metabolism often presents a complex cell-specific compartmentation essential to accomplish the biosynthesis of valuable plant natural products. Hence, the disclosure and potential manipulation of such pathways may depend on the capacity to isolate and characterize specific cell types. Catharanthus roseus is the source of several medicinal terpenoid indole alkaloids, including the low-level anticancer vinblastine and vincristine, for which the late biosynthetic steps occur in specialized mesophyll cells called idioblasts. Here, the optical, fluorescence, and alkaloid-accumulating properties of C. roseus leaf idioblasts are characterized, and a methodology for the isolation of idioblast protoplasts by fluorescence-activated cell sorting is established, taking advantage of the distinctive autofluorescence of these cells. This achievement represents a crucial step for the development of differential omic strategies leading to the identification of candidate genes putatively involved in the biosynthesis, pathway regulation, and transmembrane transport leading to the anticancer alkaloids from C. roseus. PMID:27356972

  19. The carotenoid biosynthetic and catabolic genes in wheat and their association with yellow pigments.

    PubMed

    Colasuonno, Pasqualina; Lozito, Maria Luisa; Marcotuli, Ilaria; Nigro, Domenica; Giancaspro, Angelica; Mangini, Giacomo; De Vita, Pasquale; Mastrangelo, Anna Maria; Pecchioni, Nicola; Houston, Kelly; Simeone, Rosanna; Gadaleta, Agata; Blanco, Antonio

    2017-01-31

    In plants carotenoids play an important role in the photosynthetic process and photo-oxidative protection, and are the substrate for the synthesis of abscisic acid and strigolactones. In addition to their protective role as antioxidants and precursors of vitamin A, in wheat carotenoids are important as they influence the colour (whiteness vs. yellowness) of the grain. Understanding the genetic basis of grain yellow pigments, and identifying associated markers provide the basis for improving wheat quality by molecular breeding. Twenty-four candidate genes involved in the biosynthesis and catabolism of carotenoid compounds have been identified in wheat by comparative genomics. Single nucleotide polymorphisms (SNPs) found in the coding sequences of 19 candidate genes allowed their chromosomal location and accurate map position on two reference consensus maps to be determined. The genome-wide association study based on genotyping a tetraploid wheat collection with 81,587 gene-associated SNPs validated quantitative trait loci (QTLs) previously detected in biparental populations and discovered new QTLs for grain colour-related traits. Ten carotenoid genes mapped in chromosome regions underlying pigment content QTLs indicating possible functional relationships between candidate genes and the trait. The availability of linked, candidate gene-based markers can facilitate breeding wheat cultivars with desirable levels of carotenoids. Identifying QTLs linked to carotenoid pigmentation can contribute to understanding genes underlying carotenoid accumulation in the wheat kernels. Together these outputs can be combined to exploit the genetic variability of colour-related traits for the nutritional and commercial improvement of wheat products.

  20. The biosynthetic gene cluster of the maytansinoid antitumor agent ansamitocin from Actinosynnema pretiosum

    PubMed Central

    Yu, Tin-Wein; Bai, Linquan; Clade, Dorothee; Hoffmann, Dietmar; Toelzer, Sabine; Trinh, Khue Q.; Xu, Jun; Moss, Steven J.; Leistner, Eckhard; Floss, Heinz G.

    2002-01-01

    Maytansinoids are potent antitumor agents found in plants and microorganisms. To elucidate their biosynthesis at the biochemical and genetic level and to set the stage for their structure modification through genetic engineering, we have cloned two gene clusters required for the biosynthesis of the maytansinoid, ansamitocin, from a cosmid library of Actinosynnema pretiosum ssp. auranticum ATCC 31565. This is a rare case in which the genes involved in the formation of a secondary metabolite are dispersed in separate regions in an Actinomycete. A set of genes, asm22–24, asm43–45, and asm47, was identified for the biosynthesis of the starter unit, 3-amino-5-hydroxybenzoic acid (AHBA). Remarkably, there are two AHBA synthase gene homologues, which may have different functions in AHBA formation. Four type I polyketide synthase genes, asmA–D, followed by the downloading asm9, together encode eight homologous sets of enzyme activities (modules), each catalyzing a specific round of chain initiation, elongation, or termination steps, which assemble the ansamitocin polyketide backbone. Another set of genes, asm13–17, encodes the formation of an unusual “methoxymalonate” polyketide chain extension unit that, notably, seems to be synthesized on a dedicated acyl carrier protein rather than as a CoA thioester. Additional ORFs are involved in postsynthetic modifications of the initial polyketide synthase product, which include methylations, an epoxidation, an aromatic chlorination, and the introduction of acyl and carbamoyl groups. Tentative functions of several asm genes were confirmed by inactivation and heterologous expression. PMID:12060743

  1. Developmental and Genotypic Variation in Leaf Wax Content and Composition, and in Expression of Wax Biosynthetic Genes in Brassica oleracea var. capitata

    PubMed Central

    Laila, Rawnak; Robin, Arif Hasan Khan; Yang, Kiwoung; Park, Jong-In; Suh, Mi Chung; Kim, Juyoung; Nou, Ill-Sup

    2017-01-01

    Cuticular waxes act as a protective barrier against environmental stresses. In the present study, we investigated developmental and genotypic variation in wax formation of cabbage lines, with a view to understand the related morphology, genetics and biochemistry. Our studies revealed that the relative expression levels of wax biosynthetic genes in the first-formed leaf of the highest-wax line remained constantly higher but were decreased in other genotypes with leaf aging. Similarly, the expression of most of the tested genes exhibited decrease from the inner leaves to the outer leaves of 5-month-old cabbage heads in the low-wax lines in contrast to the highest-wax line. In 10-week-old plants, expression of wax biosynthetic genes followed a quadratic function and was generally increased in the early developing leaves but substantially decreased at the older leaves. The waxy compounds in all cabbage lines were predominately C29-alkane, -secondary alcohol, and -ketone. Its deposition was increased with leaf age in 5-month-old plants. The high-wax lines had dense, prominent and larger crystals on the leaf surface compared to low-wax lines under scanning electron microscopy. Principal component analysis revealed that the higher expression of LTP2 genes in the lowest-wax line and the higher expression of CER3 gene in the highest-wax line were probably associated with the comparatively lower and higher wax content in those two lines, respectively. This study furthers our understanding of the relationships between the expression of wax biosynthetic genes and the wax deposition in cabbage lines. Highlight: In cabbage, expression of wax-biosynthetic genes was generally decreased in older and senescing leaves, while wax deposition was increased with leaf aging, and C29-hydrocarbon was predominant in the wax crystals. PMID:28119701

  2. Comparison of loline alkaloid gene clusters across fungal endophytes: predicting the co-regulatory sequence motifs and the evolutionary history.

    PubMed

    Kutil, Brandi L; Greenwald, Charles; Liu, Gang; Spiering, Martin J; Schardl, Christopher L; Wilkinson, Heather H

    2007-10-01

    LOL, a fungal secondary metabolite gene cluster found in Epichloë and Neotyphodium species, is responsible for production of insecticidal loline alkaloids. To analyze the genetic architecture and to predict the evolutionary history of LOL, we compared five clusters from four fungal species (single clusters from Epichloë festucae, Neotyphodium sp. PauTG-1, Neotyphodium coenophialum, and two clusters we previously characterized in Neotyphodium uncinatum). Using PhyloCon to compare putative lol gene promoter regions, we have identified four motifs conserved across the lol genes in all five clusters. Each motif has significant similarity to known fungal transcription factor binding sites in the TRANSFAC database. Conservation of these motifs is further support for the hypothesis that the lol genes are co-regulated. Interestingly, the history of asexual Neotyphodium spp. includes multiple interspecific hybridization events. Comparing clusters from three Neotyphodium species and E. festucae allowed us to determine which Epichloë ancestors are the most likely contributors of LOL in these asexual species. For example, while no present day Epichloë typhina isolates are known to produce lolines, our data support the hypothesis that the E. typhina ancestor(s) of three asexual endophyte species contained a LOL gene cluster. Thus, these data support a model of evolution in which the polymorphism in loline alkaloid production phenotypes among endophyte species is likely due to the loss of the trait over time.

  3. Comparative analysis of transcription factor gene families from Papaver somniferum: identification of regulatory factors involved in benzylisoquinoline alkaloid biosynthesis.

    PubMed

    Agarwal, Parul; Pathak, Sumya; Lakhwani, Deepika; Gupta, Parul; Asif, Mehar Hasan; Trivedi, Prabodh Kumar

    2016-05-01

    Opium poppy (Papaver somniferum L.), known for biosynthesis of several therapeutically important benzylisoquinoline alkaloids (BIAs), has emerged as the premier organism to study plant alkaloid metabolism. The most prominent molecules produced in opium poppy include narcotic analgesic morphine, the cough suppressant codeine, the muscle relaxant papaverine and the anti-microbial agent sanguinarine and berberine. Despite several health benefits, biosynthesis of some of these molecules is very low due to tight temporal and spatial regulation of the genes committed to their biosynthesis. Transcription factors, one of the prime regulators of secondary plant product biosynthesis, might be involved in controlled biosynthesis of BIAs in P. somniferum. In this study, identification of members of different transcription factor gene families using transcriptome datasets of 10 cultivars of P. somniferum with distinct chemoprofile has been carried out. Analysis suggests that most represented transcription factor gene family in all the poppy cultivars is WRKY. Comparative transcriptome analysis revealed differential expression pattern of the members of a set of transcription factor gene families among 10 cultivars. Through analysis, two members of WRKY and one member of C3H gene family were identified as potential candidates which might regulate thebaine and papaverine biosynthesis, respectively, in poppy.

  4. Isolation, Characterization, and Heterologous Expression of the Novel Lantibiotic Epicidin 280 and Analysis of Its Biosynthetic Gene Cluster

    PubMed Central

    Heidrich, Christoph; Pag, Ulrike; Josten, Michaele; Metzger, Jörg; Jack, Ralph W.; Bierbaum, Gabriele; Jung, Günther; Sahl, Hans-Georg

    1998-01-01

    Epicidin 280 is a novel type A lantibiotic produced by Staphylococcus epidermidis BN 280. During C18 reverse-phase high-performance liquid chromatography two epicidin 280 peaks were obtained; the two compounds had molecular masses of 3,133 ± 1.5 and 3,136 ± 1.5 Da, comparable antibiotic activities, and identical amino acid compositions. Amino acid sequence analysis revealed that epicidin 280 exhibits 75% similarity to Pep5. The strains that produce epicidin 280 and Pep5 exhibit cross-immunity, indicating that the immunity peptides cross-function in antagonization of both lantibiotics. The complete epicidin 280 gene cluster was cloned and was found to comprise at least five open reading frames (eciI, eciA, eciP, eciB, and eciC, in that order). The proteins encoded by these open reading frames exhibit significant sequence similarity to the biosynthetic proteins of the Pep5 operon of Staphylococcus epidermidis 5. A gene for an ABC transporter, which is present in the Pep5 gene cluster but is necessary only for high yields (G. Bierbaum, M. Reis, C. Szekat, and H.-G. Sahl, Appl. Environ. Microbiol. 60:4332–4338, 1994), was not detected. Instead, upstream of the immunity gene eciI we found an open reading frame, eciO, which could code for a novel lantibiotic modification enzyme involved in reduction of an N-terminally located oxopropionyl residue. Epicidin 280 produced by the heterologous host Staphylococcus carnosus TM 300 after introduction of eciIAPBC (i.e., no eciO was present) behaved homogeneously during reverse-phase chromatography. PMID:9726851

  5. Biosynthetic gene cluster of cetoniacytone A, an unusual aminocyclitol from the endosymbiotic Bacterium Actinomyces sp. Lu 9419.

    PubMed

    Wu, Xiumei; Flatt, Patricia M; Xu, Hui; Mahmud, Taifo

    2009-01-26

    A gene cluster responsible for the biosynthesis of the antitumor agent cetoniacytone A was identified in Actinomyces sp. strain Lu 9419, an endosymbiotic bacterium isolated from the intestines of the rose chafer beetle (Cetonia aurata). The nucleotide sequence analysis of the 46 kb DNA region revealed the presence of 31 complete ORFs, including genes predicted to encode a 2-epi-5-epi-valiolone synthase (CetA), a glyoxalase/bleomycin resistance protein (CetB), an acyltransferase (CetD), an FAD-dependent dehydrogenase (CetF2), two oxidoreductases (CetF1 and CetG), two aminotransferases (CetH and CetM), and a pyranose oxidase (CetL). CetA has previously been demonstrated to catalyze the cyclization of sedoheptulose 7-phosphate to the cyclic intermediate, 2-epi-5-epi-valiolone. In this report, the glyoxalase/bleomycin resistance protein homolog CetB was identified as a 2-epi-5-epi-valiolone epimerase (EVE), a new member of the vicinal oxygen chelate (VOC) superfamily. The 24 kDa recombinant histidine-tagged CetB was found to form a homodimer; each monomer contains two betaalphabetabetabeta scaffolds that form a metal binding site with two histidine and two glutamic acid residues. A BLAST search using the newly isolated cet biosynthetic genes revealed an analogous suite of genes in the genome of Frankia alni ACN14a, suggesting that this plant symbiotic nitrogen-fixing bacterium is capable of producing a secondary metabolite related to the cetoniacytones.

  6. Duplication of teichoic acid biosynthetic genes in Staphylococcus aureus leads to functionally redundant poly(ribitol phosphate) polymerases.

    PubMed

    Pereira, Mark P; D'Elia, Michael A; Troczynska, Justyna; Brown, Eric D

    2008-08-01

    Wall teichoic acids are anionic phosphate-rich polymers that are part of the complex meshwork of carbohydrates that make up the gram-positive cell wall. These polymers are essential to the proper rod-shaped morphology of Bacillus subtilis and have been shown to be an important virulence determinant in the nosocomial opportunistic pathogen Staphylococcus aureus. Together, sequence-based studies, in vitro experiments with biosynthetic proteins, and analyses of the chemical structure of wall teichoic acid have begun to shed considerable light on our understanding of the biogenesis of this polymer. Nevertheless, some paradoxes remain unresolved. One of these involves a putative duplication of genes linked to CDP-ribitol synthesis (tarI'J' and tarIJ) as well as poly(ribitol phosphate) polymerization (tarK and tarL) in S. aureus. In the work reported here, we performed careful studies of the dispensability of each gene and discovered a functional redundancy in the duplicated gene clusters. We were able to create mutants in either of the putative ribitol phosphate polymerases (encoded by tarK and tarL) without affecting teichoic acid levels in the S. aureus cell wall. Although genes linked to CDP-ribitol synthesis are also duplicated, a null mutant in only one of these (tarI'J') could be obtained, while tarIJ remained essential. Suppression analysis of the tarIJ null mutant indicated that the mechanism of dysfunction in tarI'J' is due to poor translation of the TarJ' enzyme, which catalyzes the rate-limiting step in CDP-ribitol formation. This work provides new insights into understanding the complex synthetic steps of the ribitol phosphate polymer in S. aureus and has implications on specifically targeting enzymes involved in polymer biosynthesis for antimicrobial design.

  7. Inhibitory Effect of Cinnamaldehyde, Citral, and Eugenol on Aflatoxin Biosynthetic Gene Expression and Aflatoxin B1 Biosynthesis in Aspergillus flavus.

    PubMed

    Liang, Dandan; Xing, Fuguo; Selvaraj, Jonathan Nimal; Liu, Xiao; Wang, Limin; Hua, Huijuan; Zhou, Lu; Zhao, Yueju; Wang, Yan; Liu, Yang

    2015-12-01

    In order to reveal the inhibitory effects of cinnamaldehyde, citral, and eugenol on aflatoxin biosynthesis, the expression levels of 5 key aflatoxin biosynthetic genes were evaluated by real-time PCR. Aspergillus flavus growth and AFB1 production were completely inhibited by 0.80 mmol/L of cinnamaldehyde and 2.80 mmol/L of citral. However, at lower concentration, cinnamaldehyde (0.40 mmol/L), eugenol (0.80 mmol/L), and citral (0.56 mmol/L) significantly reduced AFB1 production with inhibition rate of 68.9%, 95.4%, and 41.8%, respectively, while no effect on fungal growth. Real-time PCR showed that the expressions of aflR, aflT, aflD, aflM, and aflP were down-regulated by cinnamaldehyde (0.40 mmol/L), eugenol (0.80 mmol/L), and citral (0.56 mmol/L). In the presence of cinnamaldehyde, AflM was highly down-regulated (average of 5963 folds), followed by aflP, aflR, aflD, and aflT with the average folds of 55, 18, 6.5, and 5.8, respectively. With 0.80 mmol/L of eugenol, aflP was highly down-regulated (average of 2061-folds), followed by aflM, aflR, aflD, and aflT with average of 138-, 15-, 5.2-, and 4.8-folds reduction, respectively. With 0.56 mmol/L of citral, aflT was completely inhibited, followed by aflM, aflP, aflR, and aflD with average of 257-, 29-, 3.5-, and 2.5-folds reduction, respectively. These results suggest that the reduction in AFB1 production by cinnamaldehyde, eugenol, and citral at low concentration may be due to the down-regulations of the transcription level of aflatoxin biosynthetic genes. Cinnamaldehyde and eugenol may be employed successfully as a good candidate in controlling of toxigenic fungi and subsequently contamination with aflatoxins in practice. © 2015 Institute of Food Technologists®

  8. Binary stress induces an increase in indole alkaloid biosynthesis in Catharanthus roseus

    PubMed Central

    Zhu, Wei; Yang, Bingxian; Komatsu, Setsuko; Lu, Xiaoping; Li, Ximin; Tian, Jingkui

    2015-01-01

    Catharanthus roseus is an important medicinal plant, which produces a variety of indole alkaloids of significant pharmaceutical relevance. In the present study, we aimed to investigate the potential stress-induced increase of indole alkaloid biosynthesis in C. roseus using proteomic technique. The contents of the detectable alkaloids ajmalicine, vindoline, catharanthine, and strictosidine in C. roseus were significantly increased under binary stress. Proteomic analysis revealed that the abundance of proteins related to tricarboxylic acid cycle and cell wall was largely increased; while, that of proteins related to tetrapyrrole synthesis and photosynthesis was decreased. Of note, 10-hydroxygeraniol oxidoreductase, which is involved in the biosynthesis of indole alkaloid was two-fold more abundant in treated group compared to the control. In addition, mRNA expression levels of genes involved in the indole alkaloid biosynthetic pathway indicated an up-regulation in their transcription in C. roseus under UV-B irradiation. These results suggest that binary stress might negatively affect the process of photosynthesis in C. roseus. In addition, the induction of alkaloid biosynthesis appears to be responsive to binary stress. PMID:26284098

  9. Discovery of diversity in xylan biosynthetic genes by transcriptional profiling of a heteroxylan containing mucilaginous tissue

    PubMed Central

    Jensen, Jacob K.; Johnson, Nathan; Wilkerson, Curtis G.

    2013-01-01

    The exact biochemical steps of xylan backbone synthesis remain elusive. In Arabidopsis, three non-redundant genes from two glycosyltransferase (GT) families, IRX9 and IRX14 from GT43 and IRX10 from GT47, are candidates for forming the xylan backbone. In other plants, evidence exists that different tissues express these three genes at widely different levels, which suggests that diversity in the makeup of the xylan synthase complex exists. Recently we have profiled the transcripts present in the developing mucilaginous tissue of psyllium (Plantago ovata Forsk). This tissue was found to have high expression levels of an IRX10 homolog, but very low levels of the two GT43 family members. This contrasts with recent wheat endosperm tissue profiling that found a relatively high abundance of the GT43 family members. We have performed an in-depth analysis of all GTs genes expressed in four developmental stages of the psyllium mucilagenous layer and in a single stage of the psyllium stem using RNA-Seq. This analysis revealed several IRX10 homologs, an expansion in GT61 (homologs of At3g18170/At3g18180), and several GTs from other GT families that are highly abundant and specifically expressed in the mucilaginous tissue. Our current hypothesis is that the four IRX10 genes present in the mucilagenous tissues have evolved to function without the GT43 genes. These four genes represent some of the most divergent IRX10 genes identified to date. Conversely, those present in the psyllium stem are very similar to those in other eudicots. This suggests these genes are under selective pressure, likely due to the synthesis of the various xylan structures present in mucilage that has a different biochemical role than that present in secondary walls. The numerous GT61 family members also show a wide sequence diversity and may be responsible for the larger number of side chain structures present in the psyllium mucilage. PMID:23761806

  10. Coresistance to Isoniazid and Ethionamide Maps to Mycothiol Biosynthetic Genes in Mycobacterium bovis▿

    PubMed Central

    Vilchèze, Catherine; Av-Gay, Yossef; Barnes, S. Whitney; Larsen, Michelle H.; Walker, John R.; Glynne, Richard J.; Jacobs, William R.

    2011-01-01

    A search to identify new mechanisms of isoniazid resistance in Mycobacterium bovis led to the isolation of mutants defective in mycothiol biosynthesis due to mutations in genes coding for the glycosyltransferase (mshA) or the cysteine ligase (mshC). These mutants showed low-level resistance to isoniazid but were highly resistant to ethionamide. This study further illustrates that mutations in mycothiol biosynthesis genes may contribute to isoniazid or ethionamide resistance across mycobacterial species. PMID:21709101

  11. Identification of phenylpropanoid biosynthetic genes and phenylpropanoid accumulation by transcriptome analysis of Lycium chinense.

    PubMed

    Zhao, Shicheng; Tuan, Pham Anh; Li, Xiaohua; Kim, Yeon Bok; Kim, Hyeran; Park, Chun Geon; Yang, Jingli; Li, Cheng Hao; Park, Sang Un

    2013-11-19

    Lycium chinense is well known in traditional Chinese herbal medicine for its medicinal value and composition, which have been widely studied for decades. However, further research on Lycium chinense is limited due to the lack of transcriptome and genomic information. The transcriptome of L. chinense was constructed by using an Illumina HiSeq 2000 sequencing platform. All 56,526 unigenes with an average length of 611 nt and an N50 equaling 848 nt were generated from 58,192,350 total raw reads after filtering and assembly. Unigenes were assembled by BLAST similarity searches and annotated with Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) orthology identifiers. Using these transcriptome data, the majority of genes that are associated with phenylpropanoid biosynthesis in L. chinense were identified. In addition, phenylpropanoid biosynthesis-related gene expression and compound content in different organs were analyzed. We found that most phenylpropanoid genes were highly expressed in the red fruits, leaves, and flowers. An important phenylpropanoid, chlorogenic acid, was also found to be extremely abundant in leaves. Using Illumina sequencing technology, we have identified the function of novel homologous genes that regulate metabolic pathways in Lycium chinense.

  12. Pictet–Spengler reaction-based biosynthetic machinery in fungi

    PubMed Central

    Yan, Wei; Ge, Hui Ming; Wang, Gang; Jiang, Nan; Mei, Ya Ning; Jiang, Rong; Li, Sui Jun; Chen, Chao Jun; Jiao, Rui Hua; Xu, Qiang; Ng, Seik Weng; Tan, Ren Xiang

    2014-01-01

    The Pictet–Spengler (PS) reaction constructs plant alkaloids such as morphine and camptothecin, but it has not yet been noticed in the fungal kingdom. Here, a silent fungal Pictet–Spenglerase (FPS) gene of Chaetomium globosum 1C51 residing in Epinephelus drummondhayi guts is described and ascertained to be activable by 1-methyl-l-tryptophan (1-MT). The activated FPS expression enables the PS reaction between 1-MT and flavipin (fungal aldehyde) to form “unnatural” natural products with unprecedented skeletons, of which chaetoglines B and F are potently antibacterial with the latter inhibiting acetylcholinesterase. A gene-implied enzyme inhibition (GIEI) strategy has been introduced to address the key steps for PS product diversifications. In aggregation, the work designs and validates an innovative approach that can activate the PS reaction-based fungal biosynthetic machinery to produce unpredictable compounds of unusual and novel structure valuable for new biology and biomedicine. PMID:25425666

  13. Towards a molecular understanding of the biosynthesis of amaryllidaceae alkaloids in support of their expanding medical use.

    PubMed

    Takos, Adam M; Rook, Fred

    2013-05-31

    The alkaloids characteristically produced by the subfamily Amaryllidoideae of the Amaryllidaceae, bulbous plant species that include well know genera such as Narcissus (daffodils) and Galanthus (snowdrops), are a source of new pharmaceutical compounds. Presently, only the Amaryllidaceae alkaloid galanthamine, an acetylcholinesterase inhibitor used to treat symptoms of Alzheimer's disease, is produced commercially as a drug from cultivated plants. However, several Amaryllidaceae alkaloids have shown great promise as anti-cancer drugs, but their further clinical development is restricted by their limited commercial availability. Amaryllidaceae species have a long history of cultivation and breeding as ornamental bulbs, and phytochemical research has focussed on the diversity in alkaloid content and composition. In contrast to the available pharmacological and phytochemical data, ecological, physiological and molecular aspects of the Amaryllidaceae and their alkaloids are much less explored and the identity of the alkaloid biosynthetic genes is presently unknown. An improved molecular understanding of Amaryllidaceae alkaloid biosynthesis would greatly benefit the rational design of breeding programs to produce cultivars optimised for the production of pharmaceutical compounds and enable biotechnology based approaches.

  14. Towards a Molecular Understanding of the Biosynthesis of Amaryllidaceae Alkaloids in Support of Their Expanding Medical Use

    PubMed Central

    Takos, Adam M.; Rook, Fred

    2013-01-01

    The alkaloids characteristically produced by the subfamily Amaryllidoideae of the Amaryllidaceae, bulbous plant species that include well know genera such as Narcissus (daffodils) and Galanthus (snowdrops), are a source of new pharmaceutical compounds. Presently, only the Amaryllidaceae alkaloid galanthamine, an acetylcholinesterase inhibitor used to treat symptoms of Alzheimer’s disease, is produced commercially as a drug from cultivated plants. However, several Amaryllidaceae alkaloids have shown great promise as anti-cancer drugs, but their further clinical development is restricted by their limited commercial availability. Amaryllidaceae species have a long history of cultivation and breeding as ornamental bulbs, and phytochemical research has focussed on the diversity in alkaloid content and composition. In contrast to the available pharmacological and phytochemical data, ecological, physiological and molecular aspects of the Amaryllidaceae and their alkaloids are much less explored and the identity of the alkaloid biosynthetic genes is presently unknown. An improved molecular understanding of Amaryllidaceae alkaloid biosynthesis would greatly benefit the rational design of breeding programs to produce cultivars optimised for the production of pharmaceutical compounds and enable biotechnology based approaches. PMID:23727937

  15. Cloning, nucleotide sequence, and regulation of Schizosaccharomyces pombe thi4, a thiamine biosynthetic gene.

    PubMed

    Zurlinden, A; Schweingruber, M E

    1994-11-01

    thi4 mutants of Schizosaccharomyces pombe exhibit defective thiamine biosynthesis, and thi4 mutations define a gene which is believed to be involved in the phosphorylation of 4-amino-5-hydroxymethyl-2-methylpyrimidine or 5-(2-hydroxyethyl)-4-methylthiazole and/or in the coupling of the two phosphorylated precursors to thiamine monophosphate (A. M. Schweingruber, J. Dlugonski, E. Edenharter, and M. E. Schweingruber, Curr. Genet. 19:249-254, 1991). The thi4 gene was cloned by functional complementation of a thi4 mutant and physically mapped on the left arm of chromosome I close to the genetic marker gln1. The thi4-carrying DNA fragment shows an open reading frame encoding a protein of 518 amino acids and a calculated molecular mass of 55.6 kDa. The appearance of thi4 mRNA is strongly repressed by thiamine and to a lesser extent by 5-(2-hydroxyethyl)-4-methylthiazole. thi4 mRNA production is under the control of the thi1 gene-encoded transcription factor and of the negative regulators encoded by genes tnr1, tnr2, and tnr3. thi4 is expressed and regulated in manners similar to those of other S. pombe genes involved in thiamine metabolism, including thi2, thi3, and pho4.

  16. Light and dark modulation of chlorophyll biosynthetic genes in response to temperature.

    PubMed

    Mohanty, Sasmita; Grimm, Bernhard; Tripathy, Baishnab C

    2006-08-01

    Temperature and light significantly influence chloroplast development and chlorophyll biosynthesis. To understand the mechanism of the modulation of chlorophyll biosynthesis, the levels of transcripts and proteins of many enzymatic steps of tetrapyrrole biosynthesis in wheat and cucumber were simultaneously examined. The effect of low (chill-stress) as well as high (heat-stress) temperatures on dark- and light-grown seedlings was monitored. The protochlorophyllide oxidoreductase (POR) content was greatly reduced in response to light in control and heat-stressed seedlings. However, the POR level was not reduced in light-exposed chill-stressed seedlings. The genes for glutamate semialdehyde aminotransferase (gsa; cucumber), glutamyl-tRNA reductase (GluTR; cucumber), 5-aminolevulinic acid dehydratase (Ala D; cucumber and wheat) and for a subunit of Mg-chelatase (Chl I; wheat) showed a reduced expression in cold stress compared to controls and heat-stress conditions. Although expression of the ferrochelatase gene (Fch) and geranylgeranyl reductase gene (Chl P) was upregulated in light, they were downregulated by both chill- and heat-stress. Interestingly, gsa and uroporphyrinogen decarboxylase gene (UroD) and gene product abundance was stimulated by light and heat-stress implying the presence of both light and heat-inducible elements in their promoters. This observation corroborates with the previous report of increased enzymatic activity of UroD in heat-stressed cucumber seedlings. The gsa and Uro D may play an important role in tolerance of the greening process of plants to heat-stress.

  17. Exploration of geosmin synthase from Streptomyces peucetius ATCC 27952 by deletion of doxorubicin biosynthetic gene cluster.

    PubMed

    Singh, Bijay; Oh, Tae-Jin; Sohng, Jae Kyung

    2009-10-01

    Thorough investigation of Streptomyces peucetius ATCC 27952 genome revealed a sesquiterpene synthase, named spterp13, which encodes a putative protein of 732 amino acids with significant similarity to S. avermitilis MA-4680 (SAV2163, GeoA) and S. coelicolor A3(2) (SCO6073). The proteins encoded by SAV2163 and SCO6073 produce geosmin in the respective strains. However, the spterp13 gene seemed to be silent in S. peucetius. Deletion of the doxorubicin gene cluster from S. peucetius resulted in increased cell growth rate along with detectable production of geosmin. When we over expressed the spterp13 gene in S. peucetius DM07 under the control of an ermE* promoter, 2.4 +/- 0.4-fold enhanced production of geosmin was observed.

  18. Next-generation sequencing approach for connecting secondary metabolites to biosynthetic gene clusters in fungi

    PubMed Central

    Cacho, Ralph A.; Tang, Yi; Chooi, Yit-Heng

    2015-01-01

    Genomics has revolutionized the research on fungal secondary metabolite (SM) biosynthesis. To elucidate the molecular and enzymatic mechanisms underlying the biosynthesis of a specific SM compound, the important first step is often to find the genes that responsible for its synthesis. The accessibility to fungal genome sequences allows the bypass of the cumbersome traditional library construction and screening approach. The advance in next-generation sequencing (NGS) technologies have further improved the speed and reduced the cost of microbial genome sequencing in the past few years, which has accelerated the research in this field. Here, we will present an example work flow for identifying the gene cluster encoding the biosynthesis of SMs of interest using an NGS approach. We will also review the different strategies that can be employed to pinpoint the targeted gene clusters rapidly by giving several examples stemming from our work. PMID:25642215

  19. Organ-specific expression of brassinosteroid-biosynthetic genes and distribution of endogenous brassinosteroids in Arabidopsis.

    PubMed

    Shimada, Yukihisa; Goda, Hideki; Nakamura, Ayako; Takatsuto, Suguru; Fujioka, Shozo; Yoshida, Shigeo

    2003-01-01

    Brassinosteroids (BRs) are steroidal plant hormones that are essential for growth and development. There is only limited information on where BRs are synthesized and used. We studied the organ specificity of BR biosynthesis in Arabidopsis, using two different approaches: We analyzed the expression of BR-related genes using real-time quantitative reverse transcriptase-polymerase chain reaction, and analyzed endogenous BRs using gas chromatography-mass spectrometry. Before starting this study, we cloned the second BR-6-oxidase (BR6ox2) gene from Arabidopsis and found that the encoded enzyme has the same substrate specificity as the enzyme encoded by the previously isolated 6-oxidase gene (BR6ox1) of Arabidopsis. Endogenous BRs and the expression of BR-related genes were detected in all organs tested. The highest level of endogenous BRs and the highest expression of the BR6ox1, BR6ox2, and DWF4 genes were observed in apical shoots, which contain actively developing tissues. These genes are important in BR biosynthesis because they encode the rate-limiting or farthest downstream enzyme in the BR biosynthesis pathway. The second highest level of endogenous BRs and expression of BR6ox1 and DWF4 were observed in siliques, which contains actively developing embryos and seeds. These findings indicate that BRs are synthesized in all organs tested, but are most actively synthesized in young, actively developing organs. In contrast, synthesis was limited in mature organs. Our observations are consistent with the idea that BRs function as the growth-promoting hormone in plants.

  20. Organ-Specific Expression of Brassinosteroid-Biosynthetic Genes and Distribution of Endogenous Brassinosteroids in Arabidopsis

    PubMed Central

    Shimada, Yukihisa; Goda, Hideki; Nakamura, Ayako; Takatsuto, Suguru; Fujioka, Shozo; Yoshida, Shigeo

    2003-01-01

    Brassinosteroids (BRs) are steroidal plant hormones that are essential for growth and development. There is only limited information on where BRs are synthesized and used. We studied the organ specificity of BR biosynthesis in Arabidopsis, using two different approaches: We analyzed the expression of BR-related genes using real-time quantitative reverse transcriptase-polymerase chain reaction, and analyzed endogenous BRs using gas chromatography-mass spectrometry. Before starting this study, we cloned the second BR-6-oxidase (BR6ox2) gene from Arabidopsis and found that the encoded enzyme has the same substrate specificity as the enzyme encoded by the previously isolated 6-oxidase gene (BR6ox1) of Arabidopsis. Endogenous BRs and the expression of BR-related genes were detected in all organs tested. The highest level of endogenous BRs and the highest expression of the BR6ox1, BR6ox2, and DWF4 genes were observed in apical shoots, which contain actively developing tissues. These genes are important in BR biosynthesis because they encode the rate-limiting or farthest downstream enzyme in the BR biosynthesis pathway. The second highest level of endogenous BRs and expression of BR6ox1 and DWF4 were observed in siliques, which contains actively developing embryos and seeds. These findings indicate that BRs are synthesized in all organs tested, but are most actively synthesized in young, actively developing organs. In contrast, synthesis was limited in mature organs. Our observations are consistent with the idea that BRs function as the growth-promoting hormone in plants. PMID:12529536

  1. Structural genes for thiamine biosynthetic enzymes (thiCEFGH) in Escherichia coli K-12.

    PubMed

    Vander Horn, P B; Backstrom, A D; Stewart, V; Begley, T P

    1993-02-01

    Escherichia coli K-12 synthesizes thiamine pyrophosphate (vitamin B1) de novo. Two precursors [4-methyl-5-(beta-hydroxyethyl)thiazole monophosphate and 4-amino-5-hydroxymethyl-2-methylpyrimidine pyrophosphate] are coupled to form thiamine monophosphate, which is then phosphorylated to make thiamine pyrophosphate. Previous studies have identified two classes of thi mutations, clustered at 90 min on the genetic map, which result in requirements for the thiazole or the hydroxymethylpryimidine. We report here our initial molecular genetic analysis of the thi cluster. We cloned the thi cluster genes and examined their organization, structure, and function by a combination of phenotypic testing, complementation analysis, polypeptide expression, and DNA sequencing. We found five tightly linked genes, designated thiCEFGH. The thiC gene product is required for the synthesis of the hydroxymethylpyrimidine. The thiE, thiF, thiG, and thiH gene products are required for synthesis of the thiazole. These mutants did not respond to 1-deoxy-D-threo-2-pentulose, indicating that they are blocked in the conversion of this precursor compound to the thiazole itself.

  2. The Unique Biosynthetic Route from Lupinus β-Conglutin Gene to Blad

    PubMed Central

    Monteiro, Sara; Freitas, Regina; Rajasekhar, Baru T.; Teixeira, Artur R.; Ferreira, Ricardo B.

    2010-01-01

    Background During seed germination, β-conglutin undergoes a major cycle of limited proteolysis in which many of its constituent subunits are processed into a 20 kDa polypeptide termed blad. Blad is the main component of a glycooligomer, accumulating exclusively in the cotyledons of Lupinus species, between days 4 and 12 after the onset of germination. Principal Findings The sequence of the gene encoding β-conglutin precursor (1791 nucleotides) is reported. This gene, which shares 44 to 57% similarity and 20 to 37% identity with other vicilin-like protein genes, includes several features in common with these globulins, but also specific hallmarks. Most notable is the presence of an ubiquitin interacting motif (UIM), which possibly links the unique catabolic route of β-conglutin to the ubiquitin/proteasome proteolytic pathway. Significance Blad forms through a unique route from and is a stable intermediary product of its precursor, β-conglutin, the major Lupinus seed storage protein. It is composed of 173 amino acid residues, is encoded by an intron-containing, internal fragment of the gene that codes for β-conglutin precursor (nucleotides 394 to 913) and exhibits an isoelectric point of 9.6 and a molecular mass of 20,404.85 Da. Consistent with its role as a storage protein, blad contains an extremely high proportion of the nitrogen-rich amino acids. PMID:20066045

  3. Genes of primary sulfate assimilation are part of the glucosinolate biosynthetic network in Arabidopsis thaliana.

    PubMed

    Yatusevich, Ruslan; Mugford, Sarah G; Matthewman, Colette; Gigolashvili, Tamara; Frerigmann, Henning; Delaney, Sean; Koprivova, Anna; Flügge, Ulf-Ingo; Kopriva, Stanislav

    2010-04-01

    Glucosinolates are plant secondary metabolites involved in responses to biotic stress. The final step of their synthesis is the transfer of a sulfo group from 3'-phosphoadenosine 5'-phosphosulfate (PAPS) onto a desulfo precursor. Thus, glucosinolate synthesis is linked to sulfate assimilation. The sulfate donor for this reaction is synthesized from sulfate in two steps catalyzed by ATP sulfurylase (ATPS) and adenosine 5'-phosphosulfate kinase (APK). Here we demonstrate that R2R3-MYB transcription factors, which are known to regulate both aliphatic and indolic glucosinolate biosynthesis in Arabidopsis thaliana, also control genes of primary sulfate metabolism. Using trans-activation assays we found that two isoforms of APK, APK1, and APK2, are regulated by both classes of glucosinolate MYB transcription factors; whereas two ATPS genes, ATPS1 and ATPS3, are differentially regulated by these two groups of MYB factors. In addition, we show that the adenosine 5'-phosphosulfate reductases APR1, APR2, and APR3, which participate in primary sulfate reduction, are also activated by the MYB factors. These observations were confirmed by analysis of transgenic lines with modulated expression levels of the glucosinolate MYB factors. The changes in transcript levels also affected enzyme activities, the thiol content and the sulfate reduction rate in some of the transgenic plants. Altogether the data revealed that the MYB transcription factors regulate genes of primary sulfate metabolism and that the genes involved in the synthesis of activated sulfate are part of the glucosinolate biosynthesis network.

  4. Transcriptome Profiling of Khat (Catha edulis) and Ephedra sinica Reveals Gene Candidates Potentially Involved in Amphetamine-Type Alkaloid Biosynthesis

    PubMed Central

    Groves, Ryan A.; Hagel, Jillian M.; Zhang, Ye; Kilpatrick, Korey; Levy, Asaf; Marsolais, Frédéric; Lewinsohn, Efraim; Sensen, Christoph W.; Facchini, Peter J.

    2015-01-01

    Amphetamine analogues are produced by plants in the genus Ephedra and by khat (Catha edulis), and include the widely used decongestants and appetite suppressants (1S,2S)-pseudoephedrine and (1R,2S)-ephedrine. The production of these metabolites, which derive from L-phenylalanine, involves a multi-step pathway partially mapped out at the biochemical level using knowledge of benzoic acid metabolism established in other plants, and direct evidence using khat and Ephedra species as model systems. Despite the commercial importance of amphetamine-type alkaloids, only a single step in their biosynthesis has been elucidated at the molecular level. We have employed Illumina next-generation sequencing technology, paired with Trinity and Velvet-Oases assembly platforms, to establish data-mining frameworks for Ephedra sinica and khat plants. Sequence libraries representing a combined 200,000 unigenes were subjected to an annotation pipeline involving direct searches against public databases. Annotations included the assignment of Gene Ontology (GO) terms used to allocate unigenes to functional categories. As part of our functional genomics program aimed at novel gene discovery, the databases were mined for enzyme candidates putatively involved in alkaloid biosynthesis. Queries used for mining included enzymes with established roles in benzoic acid metabolism, as well as enzymes catalyzing reactions similar to those predicted for amphetamine alkaloid metabolism. Gene candidates were evaluated based on phylogenetic relationships, FPKM-based expression data, and mechanistic considerations. Establishment of expansive sequence resources is a critical step toward pathway characterization, a goal with both academic and industrial implications. PMID:25806807

  5. Transcriptome profiling of khat (Catha edulis) and Ephedra sinica reveals gene candidates potentially involved in amphetamine-type alkaloid biosynthesis.

    PubMed

    Groves, Ryan A; Hagel, Jillian M; Zhang, Ye; Kilpatrick, Korey; Levy, Asaf; Marsolais, Frédéric; Lewinsohn, Efraim; Sensen, Christoph W; Facchini, Peter J

    2015-01-01

    Amphetamine analogues are produced by plants in the genus Ephedra and by khat (Catha edulis), and include the widely used decongestants and appetite suppressants (1S,2S)-pseudoephedrine and (1R,2S)-ephedrine. The production of these metabolites, which derive from L-phenylalanine, involves a multi-step pathway partially mapped out at the biochemical level using knowledge of benzoic acid metabolism established in other plants, and direct evidence using khat and Ephedra species as model systems. Despite the commercial importance of amphetamine-type alkaloids, only a single step in their biosynthesis has been elucidated at the molecular level. We have employed Illumina next-generation sequencing technology, paired with Trinity and Velvet-Oases assembly platforms, to establish data-mining frameworks for Ephedra sinica and khat plants. Sequence libraries representing a combined 200,000 unigenes were subjected to an annotation pipeline involving direct searches against public databases. Annotations included the assignment of Gene Ontology (GO) terms used to allocate unigenes to functional categories. As part of our functional genomics program aimed at novel gene discovery, the databases were mined for enzyme candidates putatively involved in alkaloid biosynthesis. Queries used for mining included enzymes with established roles in benzoic acid metabolism, as well as enzymes catalyzing reactions similar to those predicted for amphetamine alkaloid metabolism. Gene candidates were evaluated based on phylogenetic relationships, FPKM-based expression data, and mechanistic considerations. Establishment of expansive sequence resources is a critical step toward pathway characterization, a goal with both academic and industrial implications.

  6. Carotenoid profiling, in silico analysis and transcript profiling of miRNAs targeting carotenoid biosynthetic pathway genes in different developmental tissues of tomato.

    PubMed

    Koul, Archana; Yogindran, Sneha; Sharma, Deepak; Kaul, Sanjana; Rajam, Manchikatla Venkat; Dhar, Manoj K

    2016-11-01

    Carotenoid biosynthetic pathway is one of the highly significant and very well elucidated secondary metabolic pathways in plants. microRNAs are the potential regulators, widely known for playing a pivotal role in the regulation of various biological as well as metabolic processes. miRNAs may assist in the metabolic engineering of the secondary metabolites for the production of elite genotypes with increased biomass and content of various metabolites. miRNA mediated regulation of carotenoid biosynthetic genes has not been elucidated so far. To illustrate the potential regulatory role of miRNAs in carotenoid biosynthesis, transcript profiling of the known miRNAs and their possible target carotenoid genes was undertaken at eight different developmental stages of tomato, using stem-loop PCR approach combined with quantitative RT-PCR. The inter-relationship amongst carotenoid content, biosynthetic genes and miRNAs was studied in depth. Comparative expression profiles of miRNA and target genes showed variable expression in different tissues studied. The expression level of miRNAs and their target carotenoid genes displayed similar pattern in the vegetative tissues as compared to the reproductive ones, viz. fruit (different stages), indicating the possibility of regulation of carotenoid biosynthesis at various stages of fruit development. This was later confirmed by the HPLC analysis of the carotenoids. The present study has further enhanced the understanding of regulation of carotenoid biosynthetic pathway in plants. The identified miRNAs can be employed to manipulate the biosynthesis of different carotenoids, through metabolic engineering for the production of lycopene rich tomatoes.

  7. Cloning and Heterologous Expression of a Large-sized Natural Product Biosynthetic Gene Cluster in Streptomyces Species

    PubMed Central

    Nah, Hee-Ju; Pyeon, Hye-Rim; Kang, Seung-Hoon; Choi, Si-Sun; Kim, Eung-Soo

    2017-01-01

    Actinomycetes family including Streptomyces species have been a major source for the discovery of novel natural products (NPs) in the last several decades thanks to their structural novelty, diversity and complexity. Moreover, recent genome mining approach has provided an attractive tool to screen potentially valuable NP biosynthetic gene clusters (BGCs) present in the actinomycetes genomes. Since many of these NP BGCs are silent or cryptic in the original actinomycetes, various techniques have been employed to activate these NP BGCs. Heterologous expression of BGCs has become a useful strategy to produce, reactivate, improve, and modify the pathways of NPs present at minute quantities in the original actinomycetes isolates. However, cloning and efficient overexpression of an entire NP BGC, often as large as over 100 kb, remain challenging due to the ineffectiveness of current genetic systems in manipulating large NP BGCs. This mini review describes examples of actinomycetes NP production through BGC heterologous expression systems as well as recent strategies specialized for the large-sized NP BGCs in Streptomyces heterologous hosts. PMID:28360891

  8. The Glucosinolate Biosynthetic Gene AOP2 Mediates Feed-back Regulation of Jasmonic Acid Signaling in Arabidopsis.

    PubMed

    Burow, Meike; Atwell, Susanna; Francisco, Marta; Kerwin, Rachel E; Halkier, Barbara A; Kliebenstein, Daniel J

    2015-08-01

    Survival in changing and challenging environments requires an organism to efficiently obtain and use its resources. Due to their sessile nature, it is particularly critical for plants to dynamically optimize their metabolism. In plant primary metabolism, metabolic fine-tuning involves feed-back mechanisms whereby the output of a pathway controls its input to generate a precise and robust response to environmental changes. By contrast, few studies have addressed the potential for feed-back regulation of secondary metabolism. In Arabidopsis, accumulation of the defense compounds glucosinolates has previously been linked to genetic variation in the glucosinolate biosynthetic gene AOP2. AOP2 expression can increase the transcript levels of two known regulators (MYB28 and MYB29) of the pathway, suggesting that AOP2 plays a role in positive feed-back regulation controlling glucosinolate biosynthesis. We generated mutants affecting AOP2, MYB28/29, or both. Transcriptome analysis of these mutants identified a so far unrecognized link between AOP2 and jasmonic acid (JA) signaling independent of MYB28 and MYB29. Thus, AOP2 is part of a regulatory feed-back loop linking glucosinolate biosynthesis and JA signaling and thereby allows the glucosinolate pathway to influence JA sensitivity. The discovery of this regulatory feed-back loop provides insight into how plants optimize the use of resources for defensive metabolites.

  9. Triterpenoid Saponin Biosynthetic Pathway Profiling and Candidate Gene Mining of the Ilex asprella Root Using RNA-Seq

    PubMed Central

    Zheng, Xiasheng; Xu, Hui; Ma, Xinye; Zhan, Ruoting; Chen, Weiwen

    2014-01-01

    Ilex asprella, which contains abundant α-amyrin type triterpenoid saponins, is an anti-influenza herbal drug widely used in south China. In this work, we first analysed the transcriptome of the I. asprella root using RNA-Seq, which provided a dataset for functional gene mining. mRNA was isolated from the total RNA of the I. asprella root and reverse-transcribed into cDNA. Then, the cDNA library was sequenced using an Illumina HiSeq™ 2000, which generated 55,028,452 clean reads. De novo assembly of these reads generated 51,865 unigenes, in which 39,269 unigenes were annotated (75.71% yield). According to the structures of the triterpenoid saponins of I. asprella, a putative biosynthetic pathway downstream of 2,3-oxidosqualene was proposed and candidate unigenes in the transcriptome data that were potentially involved in the pathway were screened using homology-based BLAST and phylogenetic analysis. Further amplification and functional analysis of these putative unigenes will provide insight into the biosynthesis of Ilex triterpenoid saponins. PMID:24722569

  10. Triterpenoid saponin biosynthetic pathway profiling and candidate gene mining of the Ilex asprella root using RNA-Seq.

    PubMed

    Zheng, Xiasheng; Xu, Hui; Ma, Xinye; Zhan, Ruoting; Chen, Weiwen

    2014-04-09

    Ilex asprella, which contains abundant α-amyrin type triterpenoid saponins, is an anti-influenza herbal drug widely used in south China. In this work, we first analysed the transcriptome of the I. asprella root using RNA-Seq, which provided a dataset for functional gene mining. mRNA was isolated from the total RNA of the I. asprella root and reverse-transcribed into cDNA. Then, the cDNA library was sequenced using an Illumina HiSeq™ 2000, which generated 55,028,452 clean reads. De novo assembly of these reads generated 51,865 unigenes, in which 39,269 unigenes were annotated (75.71% yield). According to the structures of the triterpenoid saponins of I. asprella, a putative biosynthetic pathway downstream of 2,3-oxidosqualene was proposed and candidate unigenes in the transcriptome data that were potentially involved in the pathway were screened using homology-based BLAST and phylogenetic analysis. Further amplification and functional analysis of these putative unigenes will provide insight into the biosynthesis of Ilex triterpenoid saponins.

  11. Mutation of a Rice Gene Encoding a Phenylalanine Biosynthetic Enzyme Results in Accumulation of Phenylalanine and Tryptophan[W

    PubMed Central

    Yamada, Tetsuya; Matsuda, Fumio; Kasai, Koji; Fukuoka, Shuichi; Kitamura, Keisuke; Tozawa, Yuzuru; Miyagawa, Hisashi; Wakasa, Kyo

    2008-01-01

    Two distinct biosynthetic pathways for Phe in plants have been proposed: conversion of prephenate to Phe via phenylpyruvate or arogenate. The reactions catalyzed by prephenate dehydratase (PDT) and arogenate dehydratase (ADT) contribute to these respective pathways. The Mtr1 mutant of rice (Oryza sativa) manifests accumulation of Phe, Trp, and several phenylpropanoids, suggesting a link between the synthesis of Phe and Trp. Here, we show that the Mtr1 mutant gene (mtr1-D) encodes a form of rice PDT with a point mutation in the putative allosteric regulatory region of the protein. Transformed callus lines expressing mtr1-D exhibited all the characteristics of Mtr1 callus tissue. Biochemical analysis revealed that rice PDT possesses both PDT and ADT activities, with a preference for arogenate as substrate, suggesting that it functions primarily as an ADT. The wild-type enzyme is feedback regulated by Phe, whereas the mutant enzyme showed a reduced feedback sensitivity, resulting in Phe accumulation. In addition, these observations indicate that rice PDT is critical for regulating the size of the Phe pool in plant cells. Feeding external Phe to wild-type callus tissue and seedlings resulted in Trp accumulation, demonstrating a connection between Phe accumulation and Trp pool size. PMID:18487352

  12. A systematic analysis of biosynthetic gene clusters in the human microbiome reveals a common family of antibiotics

    PubMed Central

    Donia, Mohamed S.; Cimermancic, Peter; Schulze, Christopher J.; Wieland Brown, Laura C.; Martin, John; Mitreva, Makedonka; Clardy, Jon; Linington, Roger G.; Fischbach, Michael A.

    2014-01-01

    SUMMARY In complex biological systems, small molecules often mediate microbe-microbe and microbe-host interactions. Using a systematic approach, we identified 3,118 small molecule biosynthetic gene clusters (BGCs) in genomes of human-associated bacteria and studied their representation in 752 metagenomic samples from the NIH Human Microbiome Project. Remarkably, we discovered that BGCs for a class of antibiotics in clinical trials, thiopeptides, are widely distributed in genomes and metagenomes of the human microbiota. We purified and solved the structure of a new thiopeptide antibiotic, lactocillin, from a prominent member of the vaginal microbiota. We demonstrate that lactocillin has potent antibacterial activity against a range of Gram-positive vaginal pathogens, and we show that lactocillin and other thiopeptide BGCs are expressed in vivo by analyzing human metatranscriptomic sequencing data. Our findings illustrate the widespread distribution of small-molecule-encoding BGCs in the human microbiome, and they demonstrate the bacterial production of drug-like molecules in humans. PMID:25215495

  13. A systematic analysis of biosynthetic gene clusters in the human microbiome reveals a common family of antibiotics.

    PubMed

    Donia, Mohamed S; Cimermancic, Peter; Schulze, Christopher J; Wieland Brown, Laura C; Martin, John; Mitreva, Makedonka; Clardy, Jon; Linington, Roger G; Fischbach, Michael A

    2014-09-11

    In complex biological systems, small molecules often mediate microbe-microbe and microbe-host interactions. Using a systematic approach, we identified 3,118 small-molecule biosynthetic gene clusters (BGCs) in genomes of human-associated bacteria and studied their representation in 752 metagenomic samples from the NIH Human Microbiome Project. Remarkably, we discovered that BGCs for a class of antibiotics in clinical trials, thiopeptides, are widely distributed in genomes and metagenomes of the human microbiota. We purified and solved the structure of a thiopeptide antibiotic, lactocillin, from a prominent member of the vaginal microbiota. We demonstrate that lactocillin has potent antibacterial activity against a range of Gram-positive vaginal pathogens, and we show that lactocillin and other thiopeptide BGCs are expressed in vivo by analyzing human metatranscriptomic sequencing data. Our findings illustrate the widespread distribution of small-molecule-encoding BGCs in the human microbiome, and they demonstrate the bacterial production of drug-like molecules in humans. PAPERCLIP: Copyright © 2014 Elsevier Inc. All rights reserved.

  14. IMG-ABC: new features for bacterial secondary metabolism analysis and targeted biosynthetic gene cluster discovery in thousands of microbial genomes

    PubMed Central

    Hadjithomas, Michalis; Chen, I-Min A.; Chu, Ken; Huang, Jinghua; Ratner, Anna; Palaniappan, Krishna; Andersen, Evan; Markowitz, Victor; Kyrpides, Nikos C.; Ivanova, Natalia N.

    2017-01-01

    Secondary metabolites produced by microbes have diverse biological functions, which makes them a great potential source of biotechnologically relevant compounds with antimicrobial, anti-cancer and other activities. The proteins needed to synthesize these natural products are often encoded by clusters of co-located genes called biosynthetic gene clusters (BCs). In order to advance the exploration of microbial secondary metabolism, we developed the largest publically available database of experimentally verified and predicted BCs, the Integrated Microbial Genomes Atlas of Biosynthetic gene Clusters (IMG-ABC) (https://img.jgi.doe.gov/abc/). Here, we describe an update of IMG-ABC, which includes ClusterScout, a tool for targeted identification of custom biosynthetic gene clusters across 40 000 isolate microbial genomes, and a new search capability to query more than 700 000 BCs from isolate genomes for clusters with similar Pfam composition. Additional features enable fast exploration and analysis of BCs through two new interactive visualization features, a BC function heatmap and a BC similarity network graph. These new tools and features add to the value of IMG-ABC's vast body of BC data, facilitating their in-depth analysis and accelerating secondary metabolite discovery. PMID:27903896

  15. IMG-ABC: new features for bacterial secondary metabolism analysis and targeted biosynthetic gene cluster discovery in thousands of microbial genomes

    SciTech Connect

    Hadjithomas, Michalis; Chen, I-Min A.; Chu, Ken; Huang, Jinghua; Ratner, Anna; Palaniappan, Krishna; Andersen, Evan; Markowitz, Victor; Kyrpides, Nikos C.; Ivanova, Natalia N.

    2016-11-29

    Secondary metabolites produced by microbes have diverse biological functions, which makes them a great potential source of biotechnologically relevant compounds with antimicrobial, anti-cancer and other activities. The proteins needed to synthesize these natural products are often encoded by clusters of co-located genes called biosynthetic gene clusters (BCs). In order to advance the exploration of microbial secondary metabolism, we developed the largest publically available database of experimentally verified and predicted BCs, the Integrated Microbial Genomes Atlas of Biosynthetic gene Clusters (IMG-ABC) (https://img.jgi.doe.gov/abc/). Here, we describe an update of IMG-ABC, which includes ClusterScout, a tool for targeted identification of custom biosynthetic gene clusters across 40 000 isolate microbial genomes, and a new search capability to query more than 700 000 BCs from isolate genomes for clusters with similar Pfam composition. Additional features enable fast exploration and analysis of BCs through two new interactive visualization features, a BC function heatmap and a BC similarity network graph. These new tools and features add to the value of IMG-ABC's vast body of BC data, facilitating their in-depth analysis and accelerating secondary metabolite discovery.

  16. IMG-ABC: new features for bacterial secondary metabolism analysis and targeted biosynthetic gene cluster discovery in thousands of microbial genomes.

    PubMed

    Hadjithomas, Michalis; Chen, I-Min A; Chu, Ken; Huang, Jinghua; Ratner, Anna; Palaniappan, Krishna; Andersen, Evan; Markowitz, Victor; Kyrpides, Nikos C; Ivanova, Natalia N

    2017-01-04

    Secondary metabolites produced by microbes have diverse biological functions, which makes them a great potential source of biotechnologically relevant compounds with antimicrobial, anti-cancer and other activities. The proteins needed to synthesize these natural products are often encoded by clusters of co-located genes called biosynthetic gene clusters (BCs). In order to advance the exploration of microbial secondary metabolism, we developed the largest publically available database of experimentally verified and predicted BCs, the Integrated Microbial Genomes Atlas of Biosynthetic gene Clusters (IMG-ABC) (https://img.jgi.doe.gov/abc/). Here, we describe an update of IMG-ABC, which includes ClusterScout, a tool for targeted identification of custom biosynthetic gene clusters across 40 000 isolate microbial genomes, and a new search capability to query more than 700 000 BCs from isolate genomes for clusters with similar Pfam composition. Additional features enable fast exploration and analysis of BCs through two new interactive visualization features, a BC function heatmap and a BC similarity network graph. These new tools and features add to the value of IMG-ABC's vast body of BC data, facilitating their in-depth analysis and accelerating secondary metabolite discovery. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  17. Tropane and nicotine alkaloid biosynthesis-novel approaches towards biotechnological production of plant-derived pharmaceuticals.

    PubMed

    Oksman-Caldentey, Kirsi-Marja

    2007-08-01

    Many plants belonging to the Solanaceae family have been used as a source of pharmaceuticals for centuries because of their active principles, tropane and nicotine alkaloids. Tropane alkaloids, atropine, hyoscyamine and scopolamine, are among the oldest drugs in medicine. On the other hand nicotine, the addictive agent in tobacco, has only recently gained attention as a backbone for novel potential alkaloids to be used for certain neurological diseases. The biotechnological production of alkaloids utilizing plant cells as hosts would be an attractive option. However, to date very little success in this field has been gained because of the lack of understanding how these compounds are synthesized in a plant cell. Metabolic engineering attempts have already shown that when the rate-limiting steps of the biosynthetic pathway are completely known and the respective genes cloned, the exact regulation towards desired medicinal products will be possible in the near future. The new functional genomics tools, which combine transcriptome and metabolome data, will create a platform to better understand a whole system and to engineer the complex plant biosynthetic pathways. With the help of this technology, it is not only possible to produce known plant metabolites more effectively but also to make arrays of new compounds in plants and cell cultures.

  18. Complete conversion of antibiotic precursor to pristinamycin IIA by overexpression of Streptomyces pristinaespiralis biosynthetic genes.

    PubMed

    Sezonov, G; Blanc, V; Bamas-Jacques, N; Friedmann, A; Pernodet, J L; Guérineau, M

    1997-04-01

    A Streptomyces pristinaespiralis strain, which produces a streptogramin antibiotic pristinamycin II (PII) as a mixture of two biologically active molecules PIIB and PIIA, was genetically engineered to produce exclusively PIIA. The snaA,B genes, which encode a PIIA synthase that performs oxidation of the precursor (PIIB) to the final product (PIIA), were integrated in the chromosome of S. pristinaespiralis using an integrative derivative of the pSAM2 genetic element from Streptomyces ambofaciens. Integration was due to site-specific recombination at the attB site of S. pristinaespiralis, and no homologous recombination at the snaA,B locus was observed. The attB site of S. pristinaespiralis was sequenced and found to overlap the 3' end of a pro-tRNA gene. The integrants were stable in industrial conditions of pristinamycin production and showed no decrease in PII biosynthesis. Western blot analysis showed a constant production of the PIIA synthase in the overall fermentation process due to expression of the cloned snaA,B genes from the constitutive ermE promoter. This allows the complete conversion of the PIIB form into PIIA.

  19. Early phenylpropanoid biosynthetic steps in Cannabis sativa: link between genes and metabolites.

    PubMed

    Docimo, Teresa; Consonni, Roberto; Coraggio, Immacolata; Mattana, Monica

    2013-06-28

    Phenylalanine ammonia-lyase (PAL), Cinnamic acid 4-hydroxylase (C4H) and 4-Coumarate: CoA ligase (4CL) catalyze the first three steps of the general phenylpropanoid pathway whereas chalcone synthase (CHS) catalyzes the first specific step towards flavonoids production. This class of specialized metabolites has a wide range of biological functions in plant development and defence and a broad spectrum of therapeutic activities for human health. In this study, we report the isolation of hemp PAL and 4CL cDNA and genomic clones. Through in silico analysis of their deduced amino acid sequences, more than an 80% identity with homologues genes of other plants was shown and phylogenetic relationships were highlighted. Quantitative expression analysis of the four above mentioned genes, PAL and 4CL enzymatic activities, lignin content and NMR metabolite fingerprinting in different Cannabis sativa tissues were evaluated. Furthermore, the use of different substrates to assay PAL and 4CL enzymatic activities indicated that different isoforms were active in different tissues. The diversity in secondary metabolites content observed in leaves (mainly flavonoids) and roots (mainly lignin) was discussed in relation to gene expression and enzymatic activities data.

  20. Early Phenylpropanoid Biosynthetic Steps in Cannabis sativa: Link between Genes and Metabolites

    PubMed Central

    Docimo, Teresa; Consonni, Roberto; Coraggio, Immacolata; Mattana, Monica

    2013-01-01

    Phenylalanine ammonia-lyase (PAL), Cinnamic acid 4-hydroxylase (C4H) and 4-Coumarate: CoA ligase (4CL) catalyze the first three steps of the general phenylpropanoid pathway whereas chalcone synthase (CHS) catalyzes the first specific step towards flavonoids production. This class of specialized metabolites has a wide range of biological functions in plant development and defence and a broad spectrum of therapeutic activities for human health. In this study, we report the isolation of hemp PAL and 4CL cDNA and genomic clones. Through in silico analysis of their deduced amino acid sequences, more than an 80% identity with homologues genes of other plants was shown and phylogenetic relationships were highlighted. Quantitative expression analysis of the four above mentioned genes, PAL and 4CL enzymatic activities, lignin content and NMR metabolite fingerprinting in different Cannabis sativa tissues were evaluated. Furthermore, the use of different substrates to assay PAL and 4CL enzymatic activities indicated that different isoforms were active in different tissues. The diversity in secondary metabolites content observed in leaves (mainly flavonoids) and roots (mainly lignin) was discussed in relation to gene expression and enzymatic activities data. PMID:23812081

  1. Effects of white, blue, and red light-emitting diodes on carotenoid biosynthetic gene expression levels and carotenoid accumulation in sprouts of tartary buckwheat (Fagopyrum tataricum Gaertn.).

    PubMed

    Tuan, Pham Anh; Thwe, Aye Aye; Kim, Yeon Bok; Kim, Jae Kwang; Kim, Sun-Ju; Lee, Sanghyun; Chung, Sun-Ok; Park, Sang Un

    2013-12-18

    In this study, the optimum wavelengths of light required for carotenoid biosynthesis were determined by investigating the expression levels of carotenoid biosynthetic genes and carotenoid accumulation in sprouts of tartary buckwheat (Fagopyrum tataricum Gaertn.) exposed to white, blue, and red light-emitting diodes (LEDs). Most carotenoid biosynthetic genes showed higher expression in sprouts irradiated with white light at 8 days after sowing than in those irradiated with blue and red lights. The dominant carotenoids in tartary buckwheat sprouts were lutein and β-carotene. The richest accumulation of total carotenoids was observed in sprouts grown under white light (1282.63 μg g(-1) dry weight), which was relatively higher than that in sprouts grown under blue and red lights (940.86 and 985.54 μg g(-1), respectively). This study might establish an effective strategy for maximizing the production of carotenoids and other important secondary metabolites in tartary buckwheat sprouts by using LED technology.

  2. Are loline alkaloid levels regulated in grass endophytes by gene expression or substrate availability

    USDA-ARS?s Scientific Manuscript database

    Many cool-season grasses (Poaceae, subfam. Pooideae) possess seedborne fungal symbionts, the epichloae, known for their bioprotective properties, and especially for production of anti-insect alkaloids such as lolines. Asexual epichloae (Neotyphodium species) are primarily or entirely transmitted ver...

  3. Currencies of mutualisms: Sources of alkaloid genes in vertically transmitted epichloae

    USDA-ARS?s Scientific Manuscript database

    The epichloae (Epichloë and Neotyphodium species), a monophyletic group of fungi in the family Clavicipitaceae, are systemic symbionts of cool-season grasses (Poaceae subfamily Poöideae). Most epichloae are vertically transmitted in seeds (endophytes), and most produce alkaloids that attack nervous ...

  4. Cloning of the staurosporine biosynthetic gene cluster from Streptomyces sp. TP-A0274 and its heterologous expression in Streptomyces lividans.

    PubMed

    Onaka, Hiroyasu; Taniguchi, Shin-ichi; Igarashi, Yasuhiro; Furumai, Tamotsu

    2002-12-01

    Staurosporine is a representative member of indolocarbazole antibiotics. The entire staurosporine biosynthetic and regulatory gene cluster spanning 20-kb was cloned from Streptomyces sp. TP-A0274 and sequenced. The gene cluster consists of 14 ORFs and the amino acid sequence homology search revealed that it contains three genes, staO, staD, and staP, coding for the enzymes involved in the indolocarbazole aglycone biosynthesis, two genes, staG and staN, for the bond formation between the aglycone and deoxysugar, eight genes, staA, staB, staE, staJ, staI, staK, staMA, and staMB, for the deoxysugar biosynthesis and one gene, staR is a transcriptional regulator. Heterologous gene expression of a 38-kb fragment containing a complete set of the biosynthetic genes for staurosporine cloned into pTOYAMAcos confirmed its role in staurosporine biosynthesis. Moreover, the distribution of the gene for chromopyrrolic acid synthase, the key enzyme for the biosynthesis of indolocarbazole aglycone, in actinomycetes was investigated, and rebD homologs were shown to exist only in the strains producing indolocarbazole antibiotics.

  5. The hedgehog Pathway Gene shifted Functions together with the hmgcr-Dependent Isoprenoid Biosynthetic Pathway to Orchestrate Germ Cell Migration

    PubMed Central

    Deshpande, Girish; Zhou, Keren; Wan, Joy Y.; Friedrich, Jana; Jourjine, Nicholas; Smith, Daniel; Schedl, Paul

    2013-01-01

    The Drosophila embryonic gonad is assembled from two distinct cell types, the Primordial Germ Cells (PGCs) and the Somatic Gonadal Precursor cells (SGPs). The PGCs form at the posterior of blastoderm stage embryos and are subsequently carried inside the embryo during gastrulation. To reach the SGPs, the PGCs must traverse the midgut wall and then migrate through the mesoderm. A combination of local repulsive cues and attractive signals emanating from the SGPs guide migration. We have investigated the role of the hedgehog (hh) pathway gene shifted (shf) in directing PGC migration. shf encodes a secreted protein that facilitates the long distance transmission of Hh through the proteoglycan matrix after it is released from basolateral membranes of Hh expressing cells in the wing imaginal disc. shf is expressed in the gonadal mesoderm, and loss- and gain-of-function experiments demonstrate that it is required for PGC migration. Previous studies have established that the hmgcr-dependent isoprenoid biosynthetic pathway plays a pivotal role in generating the PGC attractant both by the SGPs and by other tissues when hmgcr is ectopically expressed. We show that production of this PGC attractant depends upon shf as well as a second hh pathway gene gγ1. Further linking the PGC attractant to Hh, we present evidence indicating that ectopic expression of hmgcr in the nervous system promotes the release/transmission of the Hh ligand from these cells into and through the underlying mesodermal cell layer, where Hh can contact migrating PGCs. Finally, potentiation of Hh by hmgcr appears to depend upon cholesterol modification. PMID:24068944

  6. Cyclic Lipopeptide Biosynthetic Genes and Products, and Inhibitory Activity of Plant-Associated Bacillus against Phytopathogenic Bacteria

    PubMed Central

    Mora, Isabel; Cabrefiga, Jordi; Montesinos, Emilio

    2015-01-01

    The antibacterial activity against bacterial plant pathogens and its relationships with the presence of the cyclic lipopeptide (cLP) biosynthetic genes ituC (iturin), bmyB (bacillomycin), fenD (fengycin) and srfAA (surfactin), and their corresponding antimicrobial peptide products have been studied in a collection of 64 strains of Bacillus spp. isolated from plant environments. The most frequent antimicrobial peptide (AMP) genes were bmyB, srfAA and fenD (34-50% of isolates). Most isolates (98.4%) produced surfactin isoforms, 90.6% iturins and 79.7% fengycins. The antibacterial activity was very frequent and generally intense among the collection of strains because 75% of the isolates were active against at least 6 of the 8 bacterial plant pathogens tested. Hierarchical and correspondence analysis confirmed the presence of two clearly differentiated groups. One group consisted of Bacillus strains that showed a strong antibacterial activity, presented several cLPs genes and produced several isoforms of cLPs simultaneously, mainly composed of B. subtilis and B. amyloliquefaciens, although the last one was exclusive to this group. Another group was characterized by strains with very low or none antibacterial activity, that showed one or none of the cLP genes and produced a few or none of the corresponding cLPs, and was the most heterogenous group including B. subtilis, B. licheniformis, B. megaterium, B. pumilus, B. cereus and B. thuringiensis, although the last two were exclusive to this group. This work demonstrated that the antagonistic capacity of plant-associated Bacillus against plant pathogenic bacteria is related to the presence of cLP genes and to the production of the corresponding cLPs, and it is mainly associated to the species B. subtilis and B. amyloliquefaciens. Our findings would help to increase the yield and efficiency of screening methods to obtain candidate strains to biocontrol agents with a mechanism of action relaying on the production of

  7. Analysis of the transcriptome of Panax notoginseng root uncovers putative triterpene saponin-biosynthetic genes and genetic markers

    PubMed Central

    2011-01-01

    Background Panax notoginseng (Burk) F.H. Chen is important medicinal plant of the Araliacease family. Triterpene saponins are the bioactive constituents in P. notoginseng. However, available genomic information regarding this plant is limited. Moreover, details of triterpene saponin biosynthesis in the Panax species are largely unknown. Results Using the 454 pyrosequencing technology, a one-quarter GS FLX titanium run resulted in 188,185 reads with an average length of 410 bases for P. notoginseng root. These reads were processed and assembled by 454 GS De Novo Assembler software into 30,852 unique sequences. A total of 70.2% of unique sequences were annotated by Basic Local Alignment Search Tool (BLAST) similarity searches against public sequence databases. The Kyoto Encyclopedia of Genes and Genomes (KEGG) assignment discovered 41 unique sequences representing 11 genes involved in triterpene saponin backbone biosynthesis in the 454-EST dataset. In particular, the transcript encoding dammarenediol synthase (DS), which is the first committed enzyme in the biosynthetic pathway of major triterpene saponins, is highly expressed in the root of four-year-old P. notoginseng. It is worth emphasizing that the candidate cytochrome P450 (Pn02132 and Pn00158) and UDP-glycosyltransferase (Pn00082) gene most likely to be involved in hydroxylation or glycosylation of aglycones for triterpene saponin biosynthesis were discovered from 174 cytochrome P450s and 242 glycosyltransferases by phylogenetic analysis, respectively. Putative transcription factors were detected in 906 unique sequences, including Myb, homeobox, WRKY, basic helix-loop-helix (bHLH), and other family proteins. Additionally, a total of 2,772 simple sequence repeat (SSR) were identified from 2,361 unique sequences, of which, di-nucleotide motifs were the most abundant motif. Conclusion This study is the first to present a large-scale EST dataset for P. notoginseng root acquired by next-generation sequencing (NGS

  8. Differential Expression of Anthocyanin Biosynthetic Genes in Relation to Anthocyanin Accumulation in the Pericarp of Litchi Chinensis Sonn

    PubMed Central

    Li, Xiao-Jing; Huang, Xu-Ming; Wang, Hui-Cong

    2011-01-01

    Litchi has diverse fruit color phenotypes, yet no research reflects the biochemical background of this diversity. In this study, we evaluated 12 litchi cultivars for chromatic parameters and pigments, and investigated the effects of abscisic acid, forchlorofenron (CPPU), bagging and debagging treatments on fruit coloration in cv. Feizixiao, an unevenly red cultivar. Six genes encoding chalcone synthase (CHS), chalcone isomerase (CHI), flavanone 3-hydroxylase (F3H), dihydroflavonol 4-reductase (DFR), anthocyanidin synthase (ANS) and UDP-glucose: flavonoid 3-O-glucosyltransferase (UFGT) were isolated from the pericarp of the fully red litchi cv. Nuomici, and their expression was analyzed in different cultivars and under the above mentioned treatments. Pericarp anthocyanin concentration varied from none to 734 mg m−2 among the 12 litchi cultivars, which were divided into three coloration types, i.e. non-red (‘Kuixingqingpitian’, ‘Xingqiumili’, ‘Yamulong’and ‘Yongxing No. 2′), unevenly red (‘Feizixiao’ and ‘Sanyuehong’) and fully red (‘Meiguili’, ‘Baila’, Baitangying’ ’Guiwei’, ‘Nuomici’ and ‘Guinuo’). The fully red type cultivars had different levels of anthocyanin but with the same composition. The expression of the six genes, especially LcF3H, LcDFR, LcANS and LcUFGT, in the pericarp of non-red cultivars was much weaker as compared to those red cultivars. Their expression, LcDFR and LcUFGT in particular, was positively correlated with anthocyanin concentrations in the pericarp. These results suggest the late genes in the anthocyanin biosynthetic pathway were coordinately expressed during red coloration of litchi fruits. Low expression of these genes resulted in absence or extremely low anthocyanin accumulation in non-red cultivars. Zero-red pericarp from either immature or CPPU treated fruits appeared to be lacking in anthocyanins due to the absence of UFGT expression. Among these six genes, only the expression of UFGT

  9. Differential expression of anthocyanin biosynthetic genes in relation to anthocyanin accumulation in the pericarp of Litchi chinensis Sonn.

    PubMed

    Wei, Yong-Zan; Hu, Fu-Chu; Hu, Gui-Bing; Li, Xiao-Jing; Huang, Xu-Ming; Wang, Hui-Cong

    2011-04-29

    Litchi has diverse fruit color phenotypes, yet no research reflects the biochemical background of this diversity. In this study, we evaluated 12 litchi cultivars for chromatic parameters and pigments, and investigated the effects of abscisic acid, forchlorofenron (CPPU), bagging and debagging treatments on fruit coloration in cv. Feizixiao, an unevenly red cultivar. Six genes encoding chalcone synthase (CHS), chalcone isomerase (CHI), flavanone 3-hydroxylase (F3H), dihydroflavonol 4-reductase (DFR), anthocyanidin synthase (ANS) and UDP-glucose: flavonoid 3-O-glucosyltransferase (UFGT) were isolated from the pericarp of the fully red litchi cv. Nuomici, and their expression was analyzed in different cultivars and under the above mentioned treatments. Pericarp anthocyanin concentration varied from none to 734 mg m(-2) among the 12 litchi cultivars, which were divided into three coloration types, i.e. non-red ('Kuixingqingpitian', 'Xingqiumili', 'Yamulong'and 'Yongxing No. 2'), unevenly red ('Feizixiao' and 'Sanyuehong') and fully red ('Meiguili', 'Baila', Baitangying' 'Guiwei', 'Nuomici' and 'Guinuo'). The fully red type cultivars had different levels of anthocyanin but with the same composition. The expression of the six genes, especially LcF3H, LcDFR, LcANS and LcUFGT, in the pericarp of non-red cultivars was much weaker as compared to those red cultivars. Their expression, LcDFR and LcUFGT in particular, was positively correlated with anthocyanin concentrations in the pericarp. These results suggest the late genes in the anthocyanin biosynthetic pathway were coordinately expressed during red coloration of litchi fruits. Low expression of these genes resulted in absence or extremely low anthocyanin accumulation in non-red cultivars. Zero-red pericarp from either immature or CPPU treated fruits appeared to be lacking in anthocyanins due to the absence of UFGT expression. Among these six genes, only the expression of UFGT was found significantly correlated with the

  10. Water-deficit inducible expression of a cytokinin biosynthetic gene IPT improves drought tolerance in cotton.

    PubMed

    Kuppu, Sundaram; Mishra, Neelam; Hu, Rongbin; Sun, Li; Zhu, Xunlu; Shen, Guoxin; Blumwald, Eduardo; Payton, Paxton; Zhang, Hong

    2013-01-01

    Water-deficit stress is a major environmental factor that limits agricultural productivity worldwide. Recent episodes of extreme drought have severely affected cotton production in the Southwestern USA. There is a pressing need to develop cotton varieties with improved tolerance to water-deficit stress for sustainable production in water-limited regions. One approach to engineer drought tolerance is by delaying drought-induced senescence via up-regulation of cytokinin biosynthesis. The isopentenyltransferase gene (IPT) that encodes a rate limiting enzyme in cytokinin biosynthesis, under the control of a water-deficit responsive and maturation specific promoter P(SARK) was introduced into cotton and the performance of the P(SARK)::IPT transgenic cotton plants was analyzed in the greenhouse and growth chamber conditions. The data indicate that P(SARK)::IPT-transgenic cotton plants displayed delayed senescence under water deficit conditions in the greenhouse. These plants produced more root and shoot biomass, dropped fewer flowers, maintained higher chlorophyll content, and higher photosynthetic rates under reduced irrigation conditions in comparison to wild-type and segregated non-transgenic lines. Furthermore, P(SARK)::IPT-transgenic cotton plants grown in growth chamber condition also displayed greater drought tolerance. These results indicate that water-deficit induced expression of an isopentenyltransferase gene in cotton could significantly improve drought tolerance.

  11. Anthocyanin accumulation and expression of anthocyanin biosynthetic genes in radish (Raphanus sativus).

    PubMed

    Park, Nam Il; Xu, Hui; Li, Xiaohua; Jang, In Hyuk; Park, Suhyoung; Ahn, Gil Hwan; Lim, Yong Pyo; Kim, Sun Ju; Park, Sang Un

    2011-06-08

    Radish [Raphanus sativus (Rs)] is an important dietary vegetable in Asian countries, especially China, Japan, and Korea. To elucidate the molecular mechanisms of anthocyanin accumulation in radish, the gene expression of enzymes directly involved in anthocyanin biosynthesis was analyzed. These genes include phenylalanine ammonia lyase (PAL), cinnamate 4-hydroxylase (C4H), 4-coumarate-CoA ligase (4CL), chalcone synthase (CHS), chalcone isomerase (CHI), flavanone 3-hydroxylase (F3H), dihydroflavonol reductase (DFR), and anthocyanidin synthase (ANS). RsDFR and RsANS were found to accumulate in the flesh or skin of two radish cultivars (Man Tang Hong and Hong Feng No.1). Radish skin contained higher CHS, CHI, and F3H transcript levels than radish flesh in all three cultivars. In the red radish, 16 anthocyanins were separated and identified by high-performance liquid chromatography (HPLC) and elctrospray ionization-tandem mass spectrometry (ESI-MS/MS). Some of them were acylated with coumaroyl, malonoyl, feruoyl, and caffeoyl moieties. Furthermore (-)-epicatechin and ferulic acid were also identified in the three cultivars.

  12. Cloning of an avilamycin biosynthetic gene cluster from Streptomyces viridochromogenes Tü57.

    PubMed Central

    Gaisser, S; Trefzer, A; Stockert, S; Kirschning, A; Bechthold, A

    1997-01-01

    A 65-kb region of DNA from Streptomyces viridochromogenes Tü57, containing genes encoding proteins involved in the biosynthesis of avilamycins, was isolated. The DNA sequence of a 6.4-kb fragment from this region revealed four open reading frames (ORF1 to ORF4), three of which are fully contained within the sequenced fragment. The deduced amino acid sequence of AviM, encoded by ORF2, shows 37% identity to a 6-methylsalicylic acid synthase from Penicillium patulum. Cultures of S. lividans TK24 and S. coelicolor CH999 containing plasmids with ORF2 on a 5.5-kb PstI fragment were able to produce orsellinic acid, an unreduced version of 6-methylsalicylic acid. The amino acid sequence encoded by ORF3 (AviD) is 62% identical to that of StrD, a dTDP-glucose synthase from S. griseus. The deduced amino acid sequence of AviE, encoded by ORF4, shows 55% identity to a dTDP-glucose dehydratase (StrE) from S. griseus. Gene insertional inactivation experiments of aviE abolished avilamycin production, indicating the involvement of aviE in the biosynthesis of avilamycins. PMID:9335272

  13. Vinca Alkaloids

    PubMed Central

    Moudi, Maryam; Go, Rusea; Yien, Christina Yong Seok; Nazre, Mohd.

    2013-01-01

    Vinca alkaloids are a subset of drugs obtained from the Madagascar periwinkle plant. They are naturally extracted from the pink periwinkle plant, Catharanthus roseus G. Don and have a hypoglycemic as well as cytotoxic effects. They have been used to treat diabetes, high blood pressure and have been used as disinfectants. The vinca alkaloids are also important for being cancer fighters. There are four major vinca alkaloids in clinical use: Vinblastine (VBL), vinorelbine (VRL), vincristine (VCR) and vindesine (VDS). VCR, VBL and VRL have been approved for use in the United States. Vinflunine is also a new synthetic vinca alkaloid, which has been approved in Europe for the treatment of second-line transitional cell carcinoma of the urothelium is being developed for other malignancies. Vinca alkaloids are the second-most-used class of cancer drugs and will stay among the original cancer therapies. Different researches and studies for new vinca alkaloid applications will be carried out in this regard. PMID:24404355

  14. IMG-ABC: new features for bacterial secondary metabolism analysis and targeted biosynthetic gene cluster discovery in thousands of microbial genomes

    DOE PAGES

    Hadjithomas, Michalis; Chen, I-Min A.; Chu, Ken; ...

    2016-11-29

    Secondary metabolites produced by microbes have diverse biological functions, which makes them a great potential source of biotechnologically relevant compounds with antimicrobial, anti-cancer and other activities. The proteins needed to synthesize these natural products are often encoded by clusters of co-located genes called biosynthetic gene clusters (BCs). In order to advance the exploration of microbial secondary metabolism, we developed the largest publically available database of experimentally verified and predicted BCs, the Integrated Microbial Genomes Atlas of Biosynthetic gene Clusters (IMG-ABC) (https://img.jgi.doe.gov/abc/). Here, we describe an update of IMG-ABC, which includes ClusterScout, a tool for targeted identification of custom biosynthetic genemore » clusters across 40 000 isolate microbial genomes, and a new search capability to query more than 700 000 BCs from isolate genomes for clusters with similar Pfam composition. Additional features enable fast exploration and analysis of BCs through two new interactive visualization features, a BC function heatmap and a BC similarity network graph. These new tools and features add to the value of IMG-ABC's vast body of BC data, facilitating their in-depth analysis and accelerating secondary metabolite discovery.« less

  15. Key biosynthetic gene subfamily recruited for pheromone production prior to the extensive radiation of Lepidoptera

    PubMed Central

    2008-01-01

    Background Moths have evolved highly successful mating systems, relying on species-specific mixtures of sex pheromone components for long-distance mate communication. Acyl-CoA desaturases are key enzymes in the biosynthesis of these compounds and to a large extent they account for the great diversity of pheromone structures in Lepidoptera. A novel desaturase gene subfamily that displays Δ11 catalytic activities has been highlighted to account for most of the unique pheromone signatures of the taxonomically advanced ditrysian species. To assess the mechanisms driving pheromone evolution, information is needed about the signalling machinery of primitive moths. The currant shoot borer, Lampronia capitella, is the sole reported primitive non-ditrysian moth known to use unsaturated fatty-acid derivatives as sex-pheromone. By combining biochemical and molecular approaches we elucidated the biosynthesis paths of its main pheromone component, the (Z,Z)-9,11-tetradecadien-1-ol and bring new insights into the time point of the recruitment of the key Δ11-desaturase gene subfamily in moth pheromone biosynthesis. Results The reconstructed evolutionary tree of desaturases evidenced two ditrysian-specific lineages (the Δ11 and Δ9 (18C>16C)) to have orthologs in the primitive moth L. capitella despite being absent in Diptera and other insect genomes. Four acyl-CoA desaturase cDNAs were isolated from the pheromone gland, three of which are related to Δ9-desaturases whereas the fourth cDNA clusters with Δ11-desaturases. We demonstrated that this transcript (Lca-KPVQ) exclusively accounts for both steps of desaturation involved in pheromone biosynthesis. This enzyme possesses a Z11-desaturase activity that allows transforming the palmitate precursor (C16:0) into (Z)-11-hexadecenoic acid and the (Z)-9-tetradecenoic acid into the conjugated intermediate (Z,Z)-9,11-tetradecadienoic acid. Conclusion The involvement of a single Z11-desaturase in pheromone biosynthesis of a non

  16. Differential expression of isoflavone biosynthetic genes in soybean during water deficits.

    PubMed

    Gutierrez-Gonzalez, Juan J; Guttikonda, Satish K; Tran, Lam-Son Phan; Aldrich, Donavan L; Zhong, Rui; Yu, Oliver; Nguyen, Henry T; Sleper, David A

    2010-06-01

    Numerous environmental factors influence isoflavone accumulation and have long hampered their genetic dissection. Temperature and water regimes are two of the most significant abiotic factors. However, while the effects of temperature have been widely studied, little is known about how water scarcity might affect isoflavone concentration in seeds. Studies have shown that accumulation of isoflavones is promoted by well-watered conditions, but the molecular basis remains elusive. The length and severity of the water stress required to induce changes are also still unknown. In the present work, several intensities of water stress were evaluated at various critical stages for soybean [Glycine max (L.) Merr.] seed development, in both field and controlled environments. The results suggested that only long-term progressive drought, spanning most of the seed developmental stages, significantly decreased isoflavone content in seeds. The reduction is proportional to the intensity of the stress and appears to occur in a genotype-dependent manner. However, regardless of water regime, isoflavone compounds were mainly accumulated in the later seed developmental stages. Transcripts of the most important genes for isoflavone biosynthesis were also quantified from samples collected at key seed developmental stages under well-watered and long-term water deficit conditions. Expression of CHS7, CHS8 and IFS2 correlated with isoflavone accumulation under well-watered conditions. Interestingly, we found that the two isoflavone synthase genes in soybean (IFS1 and IFS2) showed different patterns of expression. The abundance of IFS1 transcripts was maintained at a constant rate, whereas IFS2 was down-regulated and highly correlated with isoflavone accumulation under both water deficit and well-watered conditions, suggesting IFS2 as a main contributor to isoflavone diminution under drought.

  17. Impacts of environmental stress on growth, secondary metabolite biosynthetic gene clusters and metabolite production of xerotolerant/xerophilic fungi.

    PubMed

    Medina, Angel; Schmidt-Heydt, Markus; Rodríguez, Alicia; Parra, Roberto; Geisen, Rolf; Magan, Naresh

    2015-08-01

    This paper examines the impact that single and interacting environmental stress factors have on tolerance mechanisms, molecular ecology and the relationship with secondary metabolite production by a group of mycotoxigenic species of economic importance. Growth of these fungi (Aspergillus flavus, A.ochraceus, A.carbonarius, Penicillium nordicum and P. verrucosum) is influenced by water and temperature interactions and type of solute used to induce water stress. Such abiotic stresses are overcome by the synthesis of increased amounts of low molecular weight sugar alcohols, especially glycerol and erythritol, to enable them to remain active under abiotic stress. This is accompanied by increased expression of sugar transporter genes, e.g., in A. flavus, which provides the nutritional means of tolerating such stress. The optimum conditions of water activity (a w) × temperature stress for growth are often different from those for secondary metabolite production. The genes for toxin production are clustered together and their relative expression is influenced by abiotic interacting stress factors. For example., A. flavus synthesises aflatoxins under water stress in non-ionic solutes. In contrast, P. nordicum specifically occupies a high salt (0.87 a w = 22% NaCl) niche such as cured meats, and produces ochratoxin A (OTA). There is differential and temporal expression of the genes in the secondary metabolite clusters in response to a w × temperature stress. We have used a microarray and integrated data on growth, relative expression of key genes in the biosynthetic pathways for secondary metabolite production and toxin production using a mixed growth model. This was used to correlate these factors and predict the toxin levels produced under different abiotic stress conditions. This system approach to integrate these different data sets and model the relationships could be a powerful tool for predicting the relative toxin production under extreme stress conditions

  18. Gene Discovery for Synthetic Biology: Exploring the Novel Natural Product Biosynthetic Capacity of Eukaryotic Microalgae.

    PubMed

    O'Neill, E C; Saalbach, G; Field, R A

    2016-01-01

    Eukaryotic microalgae are an incredibly diverse group of organisms whose sole unifying feature is their ability to photosynthesize. They are known for producing a range of potent toxins, which can build up during harmful algal blooms causing damage to ecosystems and fisheries. Genome sequencing is lagging behind in these organisms because of their genetic complexity, but transcriptome sequencing is beginning to make up for this deficit. As more sequence data becomes available, it is apparent that eukaryotic microalgae possess a range of complex natural product biosynthesis capabilities. Some of the genes concerned are responsible for the biosynthesis of known toxins, but there are many more for which we do not know the products. Bioinformatic and analytical techniques have been developed for natural product discovery in bacteria and these approaches can be used to extract information about the products synthesized by algae. Recent analyses suggest that eukaryotic microalgae produce many complex natural products that remain to be discovered. © 2016 Elsevier Inc. All rights reserved.

  19. Racemic alkaloids from the fungus Ganoderma cochlear.

    PubMed

    Wang, Xin-Long; Dou, Man; Luo, Qi; Cheng, Li-Zhi; Yan, Yong-Ming; Li, Rong-Tao; Cheng, Yong-Xian

    2017-01-01

    Seven pairs of new alkaloid enantiomers, ganocochlearines C-I (1, 3-8), and three pairs of known alkaloids were isolated from the fruiting bodies of Ganoderma cochlear. The chemical structures of new compounds were elucidated on the basis of 1D and 2D NMR data. The absolute configurations of compounds 1, 3-10 were assigned by ECD calculations. Biological activities of these isolates against renal fibrosis were accessed in rat normal or diseased renal interstitial fibroblast cells. Importantly, the plausible biosynthetic pathway for this class of alkaloids was originally proposed.

  20. Variation in Siderophore Biosynthetic Gene Distribution and Production across Environmental and Faecal Populations of Escherichia coli

    PubMed Central

    Porcelli, Ida; Sheppard, Samuel K.; Lucchini, Sacha

    2015-01-01

    Iron is essential for Escherichia coli growth and survival in the host and the external environment, but its availability is generally low due to the poor solubility of its ferric form in aqueous environments and the presence of iron-withholding proteins in the host. Most E. coli can increase access to iron by excreting siderophores such as enterobactin, which have a very strong affinity for Fe3+. A smaller proportion of isolates can generate up to 3 additional siderophores linked with pathogenesis; aerobactin, salmochelin, and yersiniabactin. However, non-pathogenic E. coli are also able to synthesise these virulence-associated siderophores. This raises questions about their role in the ecology of E. coli, beyond virulence, and whether specific siderophores might be linked with persistence in the external environment. Under the assumption that selection favours phenotypes that confer a fitness advantage, we compared siderophore production and gene distribution in E. coli isolated either from agricultural plants or the faeces of healthy mammals. This population-level comparison has revealed that under iron limiting growth conditions plant-associated isolates produced lower amounts of siderophores than faecal isolates. Additionally, multiplex PCR showed that environmental isolates were less likely to contain loci associated with aerobactin and yersiniabactin synthesis. Although aerobactin was linked with strong siderophore excretion, a significant difference in production was still observed between plant and faecal isolates when the analysis was restricted to strains only able to synthesise enterobactin. This finding suggests that the regulatory response to iron limitation may be an important trait associated with adaptation to the non-host environment. Our findings are consistent with the hypothesis that the ability to produce multiple siderophores facilitates E. coli gut colonisation and plays an important role in E. coli commensalism. PMID:25756870

  1. Variation in siderophore biosynthetic gene distribution and production across environmental and faecal populations of Escherichia coli.

    PubMed

    Searle, Laura J; Méric, Guillaume; Porcelli, Ida; Sheppard, Samuel K; Lucchini, Sacha

    2015-01-01

    Iron is essential for Escherichia coli growth and survival in the host and the external environment, but its availability is generally low due to the poor solubility of its ferric form in aqueous environments and the presence of iron-withholding proteins in the host. Most E. coli can increase access to iron by excreting siderophores such as enterobactin, which have a very strong affinity for Fe3+. A smaller proportion of isolates can generate up to 3 additional siderophores linked with pathogenesis; aerobactin, salmochelin, and yersiniabactin. However, non-pathogenic E. coli are also able to synthesise these virulence-associated siderophores. This raises questions about their role in the ecology of E. coli, beyond virulence, and whether specific siderophores might be linked with persistence in the external environment. Under the assumption that selection favours phenotypes that confer a fitness advantage, we compared siderophore production and gene distribution in E. coli isolated either from agricultural plants or the faeces of healthy mammals. This population-level comparison has revealed that under iron limiting growth conditions plant-associated isolates produced lower amounts of siderophores than faecal isolates. Additionally, multiplex PCR showed that environmental isolates were less likely to contain loci associated with aerobactin and yersiniabactin synthesis. Although aerobactin was linked with strong siderophore excretion, a significant difference in production was still observed between plant and faecal isolates when the analysis was restricted to strains only able to synthesise enterobactin. This finding suggests that the regulatory response to iron limitation may be an important trait associated with adaptation to the non-host environment. Our findings are consistent with the hypothesis that the ability to produce multiple siderophores facilitates E. coli gut colonisation and plays an important role in E. coli commensalism.

  2. Genomic clustering of cyanogenic glucoside biosynthetic genes aids their identification in Lotus japonicus and suggests the repeated evolution of this chemical defence pathway.

    PubMed

    Takos, Adam M; Knudsen, Camilla; Lai, Daniela; Kannangara, Rubini; Mikkelsen, Lisbeth; Motawia, Mohammed S; Olsen, Carl E; Sato, Shusei; Tabata, Satoshi; Jørgensen, Kirsten; Møller, Birger L; Rook, Fred

    2011-10-01

    Cyanogenic glucosides are amino acid-derived defence compounds found in a large number of vascular plants. Their hydrolysis by specific β-glucosidases following tissue damage results in the release of hydrogen cyanide. The cyanogenesis deficient1 (cyd1) mutant of Lotus japonicus carries a partial deletion of the CYP79D3 gene, which encodes a cytochrome P450 enzyme that is responsible for the first step in cyanogenic glucoside biosynthesis. The genomic region surrounding CYP79D3 contains genes encoding the CYP736A2 protein and the UDP-glycosyltransferase UGT85K3. In combination with CYP79D3, these genes encode the enzymes that constitute the entire pathway for cyanogenic glucoside biosynthesis. The biosynthetic genes for cyanogenic glucoside biosynthesis are also co-localized in cassava (Manihot esculenta) and sorghum (Sorghum bicolor), but the three gene clusters show no other similarities. Although the individual enzymes encoded by the biosynthetic genes in these three plant species are related, they are not necessarily orthologous. The independent evolution of cyanogenic glucoside biosynthesis in several higher plant lineages by the repeated recruitment of members from similar gene families, such as the CYP79s, is a likely scenario.

  3. Transcriptome exploration for further understanding of the tropane alkaloids biosynthesis in Anisodus acutangulus.

    PubMed

    Cui, Lijie; Huang, Fenfen; Zhang, Dasheng; Lin, Yuping; Liao, Pan; Zong, Jie; Kai, Guoyin

    2015-08-01

    Tropane alkaloids (TAs) such as anisodamine, anisodine, hyoscyamine and scopolamine are extensively used in clinical practice as anticholinergic agents. Anisodus acutangulus produces TAs in root tissue, and although several genes involved in scopolamine biosynthesis have been cloned, yet the biosynthetic pathway of TAs remains poorly understood. To further understand TAs biosynthesis mechanism, transcriptome analysis with deep RNA sequencing in A. acutangulus roots was performed in this study; 48 unigenes related to tropane, piperidine and pyridine alkaloid biosynthesis, 145 linked to the distribution of arginine to TAs biosynthesis, and 86 categorized to terpenoid backbone biosynthesis have been identified in pathway enrichment analyses with eukaryotic orthologous groups (KOG) and Kyoto encyclopedia of genes and genomes. Additionally, 82 unigenes annotated as cytochrome P450 family members seemed to be involved in secondary metabolism. Genes encoding littorine mutase/monooxygenase (CYP80F1), diamine oxidase (DAO), alcohol dehydrogenase (ADH) and aromatic amino acid aminotransferase (ArAT) may also play roles in TAs biosynthetic pathways. Furthermore, over 1,000 unigenes were identified as potential transcription factors of WRKY, AP2/ERF, MYB and bHLH families, which would be helpful to understand transcriptional regulation of secondary metabolite biosynthesis. These data enable novel insights into A. acutangulus transcriptome, updating the knowledge of TAs biosynthetic mechanism at molecular level.

  4. Nitric oxide enhances plant ultraviolet-B protection up-regulating gene expression of the phenylpropanoid biosynthetic pathway.

    PubMed

    Tossi, Vanesa; Amenta, Melina; Lamattina, Lorenzo; Cassia, Raúl

    2011-06-01

    The link between ultraviolet (UV)-B, nitric oxide (NO) and phenylpropanoid biosynthetic pathway (PPBP) was studied in maize and Arabidopsis. The transcription factor (TF) ZmP regulates PPBP in maize. A genetic approach using P-rr (ZmP+) and P-ww (ZmP⁻) maize lines demonstrate that: (1) NO protects P-rr leaves but not P-ww from UV-B-induced reactive oxygen species (ROS) and cell damage; (2) NO increases flavonoid and anthocyanin content and prevents chlorophyll loss in P-rr but not in P-ww and (3) the NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO) blocks the UV-B-induced expression of ZmP and their targets CHS and CHI suggesting that NO plays a key role in the UV-B-regulated PPBP. Involvement of endogenous NO was studied in Arabidopsis nitric oxide dioxygenase (NOD) plants that express a NO dioxygenase gene under the control of a dexamethasone (DEX)-inducible promoter. Expression of HY5 and MYB12, TFs involved in PPBP regulation, was induced by UV-B, reduced by DEX in NOD plants and recovered by subsequent NO treatment. C4H regulates synapate esters synthesis and is UV-B-induced in a NO-independent pathway. Data indicate that UV-B perception increases NO concentration, which protects plant against UV-B by two ways: (1) scavenging ROS; and (2) up-regulating the expression of HY5, MYB12 and ZmP, resulting in the PPBP activation.

  5. Transcriptional activation of the Azotobacter vinelandii polyhydroxybutyrate biosynthetic genes phbBAC by PhbR and RpoS.

    PubMed

    Hernandez-Eligio, Alberto; Castellanos, Mildred; Moreno, Soledad; Espín, Guadalupe

    2011-11-01

    We previously showed that in Azotobacter vinelandii, accumulation of polyhydroxybutyrate (PHB) occurs mainly during the stationary phase, and that a mutation in phbR, encoding a transcriptional regulator of the AraC family, reduces PHB accumulation. In this study, we characterized the roles of PhbR and RpoS, a central regulator during stationary phase in bacteria, in the regulation of expression of the PHB biosynthetic operon phbBAC and phbR. We showed that inactivation of rpoS reduced PHB accumulation, similar to the phbR mutation, and inactivation of both rpoS and phbR resulted in an inability to produce PHB. We carried out expression studies with the wild-type, and the rpoS, phbR and double rpoS-phbR mutant strains, using quantitative RT-PCR, as well as phbB : : gusA and phbR : : gusA gene fusions. These studies showed that both PhbR and RpoS act as activators of phbB and phbR, and revealed a role for PhbR as an autoactivator. We also demonstrated that PhbR binds specifically to two almost identical 18 bp sites, TGTCACCAA-N(4)-CACTA and TGTCACCAA-N(4)-CAGTA, present in the phbB promoter region. The activation of phbB and phbR transcription by RpoS reported here is in agreement with the observation that accumulation of PHB in A. vinelandii occurs mainly during the stationary phase.

  6. CYP99A3: Functional identification of a diterpene oxidase from the momilactone biosynthetic gene cluster in rice

    PubMed Central

    Wang, Qiang; Hillwig, Matthew L.; Peters, Reuben J.

    2013-01-01

    SUMMARY Rice (Oryza sativa) produces momilactone diterpenoids as both phytoalexins and allelochemicals. Strikingly, the rice genome contains a biosynthetic gene cluster for momilactone production, located on rice chromosome 4, which contains two cytochromes P450 mono-oxygenases, CYP99A2 and CYP99A3, with undefined roles; although it has been previously shown that RNAi double knock-down of this pair of closely related CYP reduced momilactone accumulation. Here we attempted biochemical characterization of CYP99A2 and CYP99A3, which ultimately was achieved by complete gene recoding, enabling functional recombinant expression in bacteria. With these synthetic gene constructs it was possible to demonstrate that, while CYP99A2 does not exhibit significant activity with diterpene substrates, CYP99A3 catalyzes consecutive oxidations of the C19 methyl group of the momilactone precursor syn-pimara-7,15-diene to form, sequentially, syn-pimaradien-19-ol, syn-pimaradien-19-al and syn-pimaradien-19-oic acid. These are presumably intermediates in momilactone biosynthesis, as a C19 carboxylic acid moiety is required for formation of the core 19,6-γ-lactone ring structure. We further were able to detect syn-pimaradien-19-oic acid in rice plants, which indicates physiological relevance for the observed activity of CYP99A3. In addition, we found that CYP99A3 also oxidized syn-stemod-13(17)-ene at C19 to produce, sequentially, syn-stemoden-19-ol, syn-stemoden-19-al and syn-stemoden-19-oic acid, albeit with lower catalytic efficiency than with syn-pimaradiene. Although the CYP99A3 syn-stemodene derived products were not detected in planta, these results nevertheless provide a hint at the currently unknown metabolic fate of this diterpene in rice. Regardless of any wider role, our results strongly indicate that CYP99A3 acts as a multifunctional diterpene oxidase in momilactone biosynthesis. PMID:21175892

  7. Sulphate as a xylem-borne chemical signal precedes the expression of ABA biosynthetic genes in maize roots.

    PubMed

    Ernst, Laura; Goodger, Jason Q D; Alvarez, Sophie; Marsh, Ellen L; Berla, Bert; Lockhart, Eric; Jung, Jiyul; Li, Pinghua; Bohnert, Hans J; Schachtman, Daniel P

    2010-07-01

    Recent reports suggest that early sensing of soil water stress by plant roots and the concomitant reduction in stomatal conductance may not be mediated by root-sourced abscisic acid (ABA), but that other xylem-borne chemicals may be the primary stress signal(s). To gain more insight into the role of root-sourced ABA, the timing and location of the expression of genes for key enzymes involved in ABA biosynthesis in Zea mays roots was measured and a comprehensive analysis of root xylem sap constituents from the early to the later stages of water stress was conducted. Xylem sap and roots were sampled from plants at an early stage of water stress when only a reduction in leaf conductance was measured, as well as at later stages when leaf xylem pressure potential decreased. It was found that the majority of ABA biosynthetic genes examined were only significantly expressed in the elongation region of roots at a later stage of water stress. Apart from ABA, sulphate was the only xylem-borne chemical that consistently showed significantly higher concentrations from the early to the later stages of stress. Moreover, there was an interactive effect of ABA and sulphate in decreasing maize transpiration rate and Vicia faba stomatal aperture, as compared to ABA alone. The expression of a sulphate transporter gene was also analysed and it was found that it had increased in the elongation region of roots from the early to the later stages of water stress. Our results support the suggestion that in the early stage of water stress, increased levels of ABA in xylem sap may not be due to root biosynthesis, ABA glucose ester catabolism or pH-mediated redistribution, but may be due to shoot biosynthesis and translocation to the roots. The analysis of xylem sap mineral content and bioassays indicate that the anti-transpirant effect of the ABA reaching the stomata at the early stages of water stress may be enhanced by the increased concentrations of sulphate in the xylem which is also

  8. The Securinega alkaloids.

    PubMed

    Chirkin, Eqor; Atkatlian, William; Porée, François-Hugues

    2015-01-01

    Securinega alkaloids represent a family of plant secondary metabolites known for 50 years. Securinine (1), the most abundant and studied alkaloid of this series was isolated by Russian researchers in 1956. In the following years, French and Japanese scientists reported other Securinega compounds and extensive work was done to elucidate their intriguing structures. The homogeneity of this family relies mainly on its tetracyclic chemical backbone, which features a butenolide moiety (cycle D) and an azabicyclo[3.2.1]octane ring system (rings B and C). Interestingly, after a period of latency of 20 years, the Securinega topic reemerged as a prolific source of new natural structures and to date more than 50 compounds have been identified and characterized. The oligomeric subgroup gathering dimeric, trimeric, and tetrameric units is of particular interest. The unprecedented structure of the Securinega alkaloids was the subject of extensive synthetic efforts culminating in several efficient and elegant total syntheses. The botanical distribution of these alkaloids seems limited to the Securinega, Flueggea, Margaritaria, and Breynia genera (Phyllanthaceae). However, only a limited number of plant species have been considered for their alkaloid contents, and additional phytochemical as well as genetic studies are needed. Concerning the biosynthesis, experiments carried out with radiolabelled aminoacids allowed to identify lysine and tyrosine as the precursors of the piperidine ring A and the CD rings of securinine (1), respectively. Besides, plausible biosynthetic pathways were proposed for virosaine A (38) and B (39), flueggine A (46), and also the different oligomers flueggenine A-D (48-51), fluevirosinine A (56), and flueggedine (20). The case of nirurine (45) and secu'amamine (37) remains elusive and additional studies seem necessary to understand their mode of production. The scope of biological of activities of the Securinega alkaloids was mainly centered on the CNS

  9. Identification and Analysis of the Biosynthetic Gene Cluster Encoding the Thiopeptide Antibiotic Cyclothiazomycin in Streptomyces hygroscopicus 10-22▿ †

    PubMed Central

    Wang, Jiang; Yu, Yi; Tang, Kexuan; Liu, Wen; He, Xinyi; Huang, Xi; Deng, Zixin

    2010-01-01

    Thiopeptide antibiotics are an important class of natural products resulting from posttranslational modifications of ribosomally synthesized peptides. Cyclothiazomycin is a typical thiopeptide antibiotic that has a unique bridged macrocyclic structure derived from an 18-amino-acid structural peptide. Here we reported cloning, sequencing, and heterologous expression of the cyclothiazomycin biosynthetic gene cluster from Streptomyces hygroscopicus 10-22. Remarkably, successful heterologous expression of a 22.7-kb gene cluster in Streptomyces lividans 1326 suggested that there is a minimum set of 15 open reading frames that includes all of the functional genes required for cyclothiazomycin production. Six genes of these genes, cltBCDEFG flanking the structural gene cltA, were predicted to encode the enzymes required for the main framework of cyclothiazomycin, and two enzymes encoded by a putative operon, cltMN, were hypothesized to participate in the tailoring step to generate the tertiary thioether, leading to the final cyclization of the bridged macrocyclic structure. This rigorous bioinformatics analysis based on heterologous expression of cyclothiazomycin resulted in an ideal biosynthetic model for us to understand the biosynthesis of thiopeptides. PMID:20154110

  10. Neurotoxic Alkaloids: Saxitoxin and Its Analogs

    PubMed Central

    Wiese, Maria; D’Agostino, Paul M.; Mihali, Troco K.; Moffitt, Michelle C.; Neilan, Brett A.

    2010-01-01

    Saxitoxin (STX) and its 57 analogs are a broad group of natural neurotoxic alkaloids, commonly known as the paralytic shellfish toxins (PSTs). PSTs are the causative agents of paralytic shellfish poisoning (PSP) and are mostly associated with marine dinoflagellates (eukaryotes) and freshwater cyanobacteria (prokaryotes), which form extensive blooms around the world. PST producing dinoflagellates belong to the genera Alexandrium, Gymnodinium and Pyrodinium whilst production has been identified in several cyanobacterial genera including Anabaena, Cylindrospermopsis, Aphanizomenon Planktothrix and Lyngbya. STX and its analogs can be structurally classified into several classes such as non-sulfated, mono-sulfated, di-sulfated, decarbamoylated and the recently discovered hydrophobic analogs—each with varying levels of toxicity. Biotransformation of the PSTs into other PST analogs has been identified within marine invertebrates, humans and bacteria. An improved understanding of PST transformation into less toxic analogs and degradation, both chemically or enzymatically, will be important for the development of methods for the detoxification of contaminated water supplies and of shellfish destined for consumption. Some PSTs also have demonstrated pharmaceutical potential as a long-term anesthetic in the treatment of anal fissures and for chronic tension-type headache. The recent elucidation of the saxitoxin biosynthetic gene cluster in cyanobacteria and the identification of new PST analogs will present opportunities to further explore the pharmaceutical potential of these intriguing alkaloids. PMID:20714432

  11. Comprehensive annotation of secondary metabolite biosynthetic genes and gene clusters of Aspergillus nidulans, A. fumigatus, A. niger and A. oryzae

    PubMed Central

    2013-01-01

    Background Secondary metabolite production, a hallmark of filamentous fungi, is an expanding area of research for the Aspergilli. These compounds are potent chemicals, ranging from deadly toxins to therapeutic antibiotics to potential anti-cancer drugs. The genome sequences for multiple Aspergilli have been determined, and provide a wealth of predictive information about secondary metabolite production. Sequence analysis and gene overexpression strategies have enabled the discovery of novel secondary metabolites and the genes involved in their biosynthesis. The Aspergillus Genome Database (AspGD) provides a central repository for gene annotation and protein information for Aspergillus species. These annotations include Gene Ontology (GO) terms, phenotype data, gene names and descriptions and they are crucial for interpreting both small- and large-scale data and for aiding in the design of new experiments that further Aspergillus research. Results We have manually curated Biological Process GO annotations for all genes in AspGD with recorded functions in secondary metabolite production, adding new GO terms that specifically describe each secondary metabolite. We then leveraged these new annotations to predict roles in secondary metabolism for genes lacking experimental characterization. As a starting point for manually annotating Aspergillus secondary metabolite gene clusters, we used antiSMASH (antibiotics and Secondary Metabolite Analysis SHell) and SMURF (Secondary Metabolite Unknown Regions Finder) algorithms to identify potential clusters in A. nidulans, A. fumigatus, A. niger and A. oryzae, which we subsequently refined through manual curation. Conclusions This set of 266 manually curated secondary metabolite gene clusters will facilitate the investigation of novel Aspergillus secondary metabolites. PMID:23617571

  12. Comparative study of withanolide production and the related transcriptional responses of biosynthetic genes in fungi elicited cell suspension culture of Withania somnifera in shake flask and bioreactor.

    PubMed

    Ahlawat, Seema; Saxena, Parul; Ali, Athar; Khan, Shazia; Abdin, Malik Z

    2017-02-17

    Ashwagandha (Withania somnifera) is one of the most reputed medicinal plants in the traditional medicinal system. In this study, cell suspension culture of W. somnifera was elicited with cell homogenates of fungi (A. alternata, F. solani, V. dahliae and P. indica) in shake flask and the major withanolides like withanolide A, withaferin A and withanone were analysed. Simultaneously expression levels of key pathway genes from withanolides biosynthetic pathways were also checked via quantitative PCR in shake flask as well as in bioreactor. The results show that highest gene expression of 10.8, 5.8, 4.9, and 3.3 folds were observed with HMGR among all the expressed genes in cell suspension cultures with cell homogenates of 3% P. indica, 5% V. dahliae, 3% A. alternata and 3% F. solani, respectively, in comparison to the control in shake flask. Optimized concentration of cell homogenate of P. indica (3% v/v) was added to the growing culture in 5.0-l bioreactor under optimized up-scaling conditions and harvested after 22 days. The genes of MVA, MEP and withanolides biosynthetic pathways like HMGR, SS, SE, CAS, FPPS, DXR and DXS were up-regulated by 12.5, 4.9, 2.18, 4.65, 2.34, 1.89 and 1.4 folds, respectively in bioreactor. The enhancement of biomass (1.13 fold) and withanolides [withanolide A (1.7), withaferin A (1.5), and withanone (1.5) folds] in bioreactor in comparison to shake flask was also found to be in line with the up-regulation of genes of withanolide biosynthetic pathways.

  13. Application of an Efficient Gene Targeting System Linking Secondary Metabolites to their Biosynthetic Genes in Aspergillus terreus

    SciTech Connect

    Guo, Chun-Jun; Knox, Benjamin P.; Sanchez, James F.; Chiang, Yi-Ming; Bruno, Kenneth S.; Wang, Clay C.

    2013-07-19

    Nonribosomal peptides (NRPs) are natural products biosynthesized by NRP synthetases. A kusA-, pyrG- mutant strain of Aspergillusterreus NIH 2624 was developed that greatly facilitated the gene targeting efficiency in this organism. Application of this tool allowed us to link four major types of NRP related secondary metabolites to their responsible genes in A. terreus. In addition, an NRP related melanin synthetase was also identified in this species.

  14. Polyamine biosynthetic diversity in plants and algae.

    PubMed

    Fuell, Christine; Elliott, Katherine A; Hanfrey, Colin C; Franceschetti, Marina; Michael, Anthony J

    2010-07-01

    Polyamine biosynthesis in plants differs from other eukaryotes because of the contribution of genes from the cyanobacterial ancestor of the chloroplast. Plants possess an additional biosynthetic route for putrescine formation from arginine, consisting of the enzymes arginine decarboxylase, agmatine iminohydrolase and N-carbamoylputrescine amidohydrolase, derived from the cyanobacterial ancestor. They also synthesize an unusual tetraamine, thermospermine, that has important developmental roles and which is evolutionarily more ancient than spermine in plants and algae. Single-celled green algae have lost the arginine route and are dependent, like other eukaryotes, on putrescine biosynthesis from the ornithine. Some plants like Arabidopsis thaliana and the moss Physcomitrella patens have lost ornithine decarboxylase and are thus dependent on the arginine route. With its dependence on the arginine route, and the pivotal role of thermospermine in growth and development, Arabidopsis represents the most specifically plant mode of polyamine biosynthesis amongst eukaryotes. A number of plants and algae are also able to synthesize unusual polyamines such as norspermidine, norspermine and longer polyamines, and biosynthesis of these amines likely depends on novel aminopropyltransferases similar to thermospermine synthase, with relaxed substrate specificity. Plants have a rich repertoire of polyamine-based secondary metabolites, including alkaloids and hydroxycinnamic amides, and a number of polyamine-acylating enzymes have been recently characterised. With the genetic tools available for Arabidopsis and other model plants and algae, and the increasing capabilities of comparative genomics, the biological roles of polyamines can now be addressed across the plant evolutionary lineage.

  15. Construction and utilization of carotenoid reporter systems: identification of chromosomal integration sites that support suitable expression of biosynthetic genes and pathways.

    PubMed

    Sharpe, Pamela L; DiCosimo, Deana J

    2012-01-01

    In order to metabolically engineer microorganisms to produce compounds of interest, it is often desirable to integrate foreign genes into the chromosome of the host. However, the consequences of these genetic alterations are not always predictable. The use of a reporter system can often assist in determining chromosomal locations for optimal expression of foreign biosynthetic genes. The method described here involves the construction and utilization of promoterless carotenoid transposons, which provides a colorimetric screen for identifying the best chromosomal integration sites for the expression of the genes of interest. The transposons (pUTmTn5::392W and pUTmTn5::392) contain the carotenoid genes required for the production of canthaxanthin and astaxanthin, respectively. Thus, when promoterless transposons insert into the host's genome, the color of the colonies will vary based on their chromosomal location. There is a correlation between the color intensity of the colonies and the expression of the carotenoid transposon. The transposon insertion site can be determined via direct chromosomal sequencing. This sequence information is used to guide the site-specific integration of biosynthetic genes and pathways of interest.

  16. The role of phloem sieve elements and laticifers in the biosynthesis and accumulation of alkaloids in opium poppy.

    PubMed

    Samanani, Nailish; Alcantara, Joenel; Bourgault, Richard; Zulak, Katherine G; Facchini, Peter J

    2006-08-01

    The benzylisoquinoline alkaloids of opium poppy, including the narcotic analgesics morphine and codeine, accumulate in the multinucleate cytoplasm of specialized laticifers that accompany vascular tissues throughout the plant. In mature opium poppy plants, immunofluorescence labeling using specific antibodies showed that four alkaloid biosynthetic enzymes, (S)-norcoclaurine 6-O-methyltransferase (6OMT), (S)-coclaurine N-methyltransferase (CNMT), (S)-3'-hydroxy-N-methylcoclaurine-4'-O-methyltransferase (4'OMT) and salutaridinol-7-O-acetyltransferase (SAT) were restricted to sieve elements of the phloem adjacent or proximal to laticifers. The identity of sieve elements was confirmed by (i) the specific immunogold labeling of the characteristic cytoplasm of this cell type, (ii) the co-localization of a sieve element-specific H(+)-ATPase with all biosynthetic enzymes and (iii) the strict association of sieve plates with immunofluorescent cells. The localization of laticifers was demonstrated antibodies specific to major latex protein (MLP), which is characteristic of this cell type. In situ hybridization using antisense RNA probes for 6OMT, CNMT, 4'OMT and SAT showed that the corresponding gene transcripts were found in the companion cell paired with each sieve element. Seven benzylisoquinoline alkaloid biosynthetic enzymes, (S)-N-methylcoclaurine 3'-hydroxylase (CYP80B1), berberine bridge enzyme, codeinone reductase, 6OMT, CNMT, 4'OMT and SAT were localized by immunofluorescence labeling to the sieve elements in the root and hypocotyl of opium poppy seedlings. The abundance of these enzymes increased rapidly between 1 and 3 days after seed germination. The localization of seven biosynthetic enzymes to the sieve elements provides strong support for the unique, cell type-specific biosynthesis of benzylisoquinoline alkaloids in the opium poppy.

  17. Contributions of vertical descent, horizontal transfer and gene loss to the distribution of mycotoxin biosynthetic gene clusters in Fusarium

    USDA-ARS?s Scientific Manuscript database

    The genus Fusarium produces a diverse array of mycotoxins and other secondary metabolites, but individual species contribute to only a small fraction of this diversity. Here, we employed comparative genomic and phylogenetic analyses to investigate the distribution and evolution of gene clusters resp...

  18. Incomplete sterols and hopanoids pathways in ciliates: gene loss and acquisition during evolution as a source of biosynthetic genes.

    PubMed

    Tomazic, Mariela L; Poklepovich, Tomas J; Nudel, Clara B; Nusblat, Alejandro D

    2014-05-01

    Polycyclic triterpenoids, such as sterols and hopanoids, are essential components of plasmatic membrane in eukaryotic organisms. Although it is generally assumed that ciliates do not synthesize sterols, and many of them are indeed auxotrophic, a large set of annotated genomic sequences and experimental data from recently studied organisms indicate that they can carry putative genes and respond to the presence/absence of precursors in various ways. The pre-squalene pathway, for instance, is largely present in all sequenced ciliates except in Ichthyophthirius multifiliis; although Paramecium tetraurelia lacks the squalene synthase and Oxytricha trifallax the squalene hopene synthase, in addition to the former. On the other hand, the post-squalene pathway, requiring oxygen in several steps, is mostly incomplete in all ciliates analyzed. Nevertheless, a number of predicted genes, with high sequence similarity to C-4 methyl oxidase/s, C-14 demethylase, C-5 and C-7 desaturases and C-24 reductase of sterols are found in Tetrahymena and Paramecium, and scattered in other Stichotrichia ciliates. Moreover, several of these sequences are present in multiples paralogs, like the C-7 desaturase in Paramecium, that carries six versions of the only one present in Tetrahymena. The phylogenetic analyses suggest a mixed origin for the genes involved in the biosynthesis of sterols and surrogates in this phylum; while the genes encoding enzymes of the pre-squalene pathway are most likely of bacterial origin, those involved in the post-squalene pathway, including the processing of sterols obtained from the environment, may have been partially retained or acquired indistinctly from lower eukaryotes or prokaryotes. This particular combination of diverse gene/s acquisition patterns allows for survival in conditions of poor oxygen availability, in which tetrahymanol and other hopanoids may be advantageous, but also conditions of excess oxygen availability and abundant sterols, in which the

  19. Hydroxycinnamic acids and UV-B depletion: Profiling and biosynthetic gene expression in flesh and peel of wild-type and hp-1.

    PubMed

    Calvenzani, Valentina; Castagna, Antonella; Ranieri, Annamaria; Tonelli, Chiara; Petroni, Katia

    2015-06-01

    Hydroxycinnamic acids (HCAs) are phenolic compounds widely found in most plant families. Aim of the present work was to investigate their accumulation and biosynthetic gene expression in presence or absence of UV-B radiation in tomato fruits of wild-type and hp-1, a mutant characterized by exaggerated photoresponsiveness and increased fruit pigmentation. Gene expression and HCAs content were higher in hp-1 than in wild type peel and UV-B depletion determined a decrease in HCAs accumulation in wild-type and an increase in hp-1 fruits, generally in accordance with biosynthetic gene expression. In flesh, despite a similar transcript level of most genes between the two genotypes, HCAs content was generally higher in wild type than in hp-1, although remaining at a lower level with respect to wild type peel. Under UV-B depletion, a general reduction of HCAs content was observed in wild-type flesh, whereas an increase in the content of p-coumaric acid and caffeic acid was observed in hp-1 flesh.

  20. Functional characterisation of a tropine-forming reductase gene from Brugmansia arborea, a woody plant species producing tropane alkaloids.

    PubMed

    Qiang, Wei; Xia, Ke; Zhang, Qiaozhuo; Zeng, Junlan; Huang, Yuanshe; Yang, Chunxian; Chen, Min; Liu, Xiaoqiang; Lan, Xiaozhong; Liao, Zhihua

    2016-07-01

    Brugmansia arborea is a woody plant species that produces tropane alkaloids (TAs). The gene encoding tropine-forming reductase or tropinone reductase I (BaTRI) in this plant species was functionally characterised. The full-length cDNA of BaTRI encoded a 272-amino-acid polypeptide that was highly similar to tropinone reductase I from TAs-producing herbal plant species. The purified 29kDa recombinant BaTRI exhibited maximum reduction activity at pH 6.8-8.0 when tropinone was used as substrate; it also exhibited maximum oxidation activity at pH 9.6 when tropine was used as substrate. The Km, Vmax and Kcat values of BaTRI for tropinone were 2.65mM, 88.3nkatmg(-1) and 2.93S(-1), respectively, at pH 6.4; the Km, Vmax and Kcat values of TRI from Datura stramonium (DsTRI) for tropinone were respectively 4.18mM, 81.20nkatmg(-1) and 2.40S(-1) at pH 6.4. At pH 6.4, 6.8 and 7.0, BaTRI had a significantly higher activity than DsTRI. Analogues of tropinone, 4-methylcyclohexanone and 3-quinuclidinone hydrochloride, were also used to investigate the enzymatic kinetics of BaTRI. The Km, Vmax and Kcat values of BaTRI for tropine were 0.56mM, 171.62nkat.mg(-1) and 5.69S(-1), respectively, at pH 9.6; the Km, Vmax and Kcat values of DsTRI for tropine were 0.34mM, 111.90nkatmg(-1) and 3.30S(-1), respectively, at pH 9.6. The tissue profiles of BaTRI differed from those in TAs-producing herbal plant species. BaTRI was expressed in all examined organs but was most abundant in secondary roots. Finally, tropane alkaloids, including hyoscyamine, anisodamine and scopolamine, were detected in various organs of B. arborea by HPLC. Interestingly, scopolamine constituted most of the tropane alkaloids content in B. arborea, which suggests that B. arborea is a scopolamine-rich plant species. The scopolamine content was much higher in the leaves and stems than in other organs. The gene expression and TAs accumulation suggest that the biosynthesis of hyoscyamine, especially scopolamine, occurred not

  1. Differential gene expression in liver and small intestine from lactating rats compared to age-matched virgin controls detects increased mRNA of cholesterol biosynthetic genes

    PubMed Central

    2011-01-01

    Background Lactation increases energy demands four- to five-fold, leading to a two- to three-fold increase in food consumption, requiring a proportional adjustment in the ability of the lactating dam to absorb nutrients and to synthesize critical biomolecules, such as cholesterol, to meet the dietary needs of both the offspring and the dam. The size and hydrophobicity of the bile acid pool increases during lactation, implying an increased absorption and disposition of lipids, sterols, nutrients, and xenobiotics. In order to investigate changes at the transcriptomics level, we utilized an exon array and calculated expression levels to investigate changes in gene expression in the liver, duodenum, jejunum, and ileum of lactating dams when compared against age-matched virgin controls. Results A two-way mixed models ANOVA was applied to detect differentially expressed genes. Significance calls were defined as a p < 0.05 for the overall physiologic state effect (lactation vs. control), and a within tissue pairwise comparison of p < 0.01. The proportion of false positives, an estimate of the ratio of false positives in the list of differentially expressed genes, was calculated for each tissue. The number of differentially expressed genes was 420 in the liver, 337 in the duodenum, 402 in the jejunum, and 523 in the ileum. The list of differentially expressed genes was in turn analyzed by Ingenuity Pathways Analysis (IPA) to detect biological pathways that were overrepresented. In all tissues, sterol regulatory element binding protein (Srebp)-regulated genes involved in cholesterol synthesis showed increased mRNA expression, with the fewest changes detected in the jejunum. We detected increased Scap mRNA in the liver only, suggesting an explanation for the difference in response to lactation between the liver and small intestine. Expression of Cyp7a1, which catalyzes the rate limiting step in the bile acid biosynthetic pathway, was also significantly increased in liver. In

  2. Nucleotide sequence analysis reveals linked N-acetyl hydrolase, thioesterase, transport, and regulatory genes encoded by the bialaphos biosynthetic gene cluster of Streptomyces hygroscopicus.

    PubMed Central

    Raibaud, A; Zalacain, M; Holt, T G; Tizard, R; Thompson, C J

    1991-01-01

    Nucleotide sequence analysis of a 5,000-bp region of the bialaphos antibiotic production (bap) gene cluster defined five open reading frames (ORFs) which predicted structural genes in the order bah, ORF1, ORF2, and ORF3 followed by the regulatory gene, brpA (H. Anzai, T. Murakami, S. Imai, A. Satoh, K. Nagaoka, and C.J. Thompson, J. Bacteriol. 169:3482-3488, 1987). The four structural genes were translationally coupled and apparently cotranscribed from an undefined promoter(s) under the positive control of the brpA gene product. S1 mapping experiments indicated that brpA was transcribed by two promoters (brpAp1 and brpAp2) which initiate transcription 150 and 157 bp upstream of brp A within an intergenic region and at least one promoter further upstream within the bap gene cluster (brpAp3). All three transcripts were present at low levels during exponential growth and increased just before the stationary phase. The levels of the brpAp3 band continued to increase at the onset of stationary phase, whereas brpAp1-and brpAp2-protected fragments showed no further change. BrpA contained a possible helix-turn-helix motif at its C terminus which was similar to the C-terminal regulatory motif found in the receiver component of a family of two-component transcriptional activator proteins. This motif was not associated with the N-terminal domain conserved in other members of the family. The structural gene cluster sequenced began with bah, encoding a bialaphos acetylhydrolase which removes the N-acetyl group from bialaphos as one of the final steps in the biosynthetic pathway. The observation that Bah was similar to a rat and to a bacterial (Acinetobacter calcoaceticus) lipase probably reflects the fact that the ester bonds of triglycerides and the amide bond linking acetate to phosphinothricin are similar and hydrolysis is catalyzed by structurally related enzymes. This was followed by two regions encoding ORF1 and ORF2 which were similar to each other (48% nucleotide

  3. A relA/spoT homologous gene from Streptomyces coelicolor A3(2) controls antibiotic biosynthetic genes.

    PubMed

    Martínez-Costa, O H; Arias, P; Romero, N M; Parro, V; Mellado, R P; Malpartida, F

    1996-05-03

    A 0.972-kilobase pair DNA fragment from Streptomyces lividans that induces the production of the blue-pigmented antibiotic actinorhodine in S. lividans when cloned on a multicopy plasmid has led to the isolation of a 4-kilobase pair DNA fragment from Streptomyces coelicolor containing homologous sequence. Computer-assisted analysis of the DNA sequence revealed three putative open reading frames (ORFs), ORF1, ORF2, and ORF3. ORF2 extends beyond the sequenced DNA fragment, and its deduced product shares no similarities with any other known proteins in the data bases. ORF3 is also truncated, and its 41-amino acid C-terminal product is identical to the S. coelicolor adenine phosphoribosyltransferase. The 847-amino acid ORF1 protein, with a predicted molecular mass of 94.2 kDa, strongly resembled the relA and spoT gene products from Escherichia coli and the homologs from Vibrio sp. strain S14, Haemophilus influenzae, Streptococcus equisimilis H46A, and Mycoplasma genitalium. Unlike these proteins, the ORF1 amino acid sequence analysis revealed the presence of a putative ATP/GTP-binding domain. A mutant was generated by deleting most of the ORF1 gene that showed an actinorhodine-nonproducing phenotype, while undecylprodigiosin and the calcium-dependent antibiotic were unaffected. The mutant strain grew at a much lower rate than the wild-type strain, and spore formation was delayed. When the gene was propagated on a low copy number vector, not only was actinorhodine production restored, but actinorhodine and undecylprodigiosin production was enhanced in both the mutant and wild-type and morphological differentiation returned to wild-type characteristics. (p)ppGpp synthetase activity was not detected in purified ribosomes from the ORF1-deleted mutant, while it was restored by complementation of this strain.

  4. Diterpenoid alkaloids.

    PubMed

    Wang, Feng-Peng; Chen, Qiao-Hong; Liu, Xiao-Yu

    2010-04-01

    The lasting attention that researchers have devoted to diterpenoid alkaloids is due to their various bioactivities and toxicities, structural complexity, and intriguing chemistry. From 1998 to the end of 2008, more than 300 new diterpenoid alkaloids were isolated from Nature. This review focuses on their structural relationships, and investigations into their chemical reactions, synthesis, and biological activities. A table that lists the names, plant sources, and structural types is given along with 363 references.

  5. ClbM is a versatile, cation-promiscuous MATE transporter found in the colibactin biosynthetic gene cluster.

    PubMed

    Mousa, Jarrod J; Newsome, Rachel C; Yang, Ye; Jobin, Christian; Bruner, Steven D

    2017-01-22

    Multidrug transporters play key roles in cellular drug resistance to toxic molecules, yet these transporters are also involved in natural product transport as part of biosynthetic clusters in bacteria and fungi. The genotoxic molecule colibactin is produced by strains of virulent and pathobiont Escherichia coli and Klebsiella pneumoniae. In the biosynthetic cluster is a multidrug and toxic compound extrusion protein (MATE) proposed to transport the prodrug molecule precolibactin across the cytoplasmic membrane, for subsequent cleavage by the peptidase ClbP and cellular export. We recently determined the X-ray structure of ClbM, and showed preliminary data suggesting its specific role in precolibactin transport. Here, we define a functional role of ClbM by examining transport capabilities under various biochemical conditions. Our data indicate ClbM responds to sodium, potassium, and rubidium ion gradients, while also having substantial transport activity in the absence of alkali cations.

  6. The Double-Bond Configuration of Corynanthean Alkaloids and Its Impact on Monoterpenoid Indole Alkaloid Biosynthesis.

    PubMed

    Eckermann, Ruben; Gaich, Tanja

    2016-04-11

    Experimental evidence is provided for the coherence of the double-bond geometry and the occurrence of "secondary cyclizations" in the biosynthesis of monoterpenoid indole alkaloids. Biosynthetically, akuammiline, C-mavacurine, and Strychnos alkaloids are proposed to be derived from the corynanthean alkaloid geissoschizine, a key intermediate in the biosynthetic pathway of these monoterpenoid indole alkaloids. This process occurs by so-called "secondary cyclizations" from geissoschizine or its derivatives. Although corynanthean alkaloids like geissoschizine incorporate E or Z double bonds located at C19-C20, the alkaloids downstream in the biosynthesis exclusively exhibit the E double bond. This study shows that secondary cyclizations preferentially occur with the E isomer of geissoschizine or its derivatives. This is attributed to the flexibility of the quinolizidine system of the corynanthean alkaloids, which can adopt a cis or trans conformation. For the secondary cyclization to take place, the cis-quinolizidine conformation is required. Experimental evidence supports the hypothesis that the E double bond of geissoschizine induces the cis conformation, whereas the Z double bond induces the trans conformation, which prohibits secondary cyclization of the Z compounds.

  7. Detection of biosynthetic gene and phytohormone production by endophytic actinobacteria associated with Solanum lycopersicum and their plant-growth-promoting effect.

    PubMed

    Passari, Ajit Kumar; Chandra, Preeti; Zothanpuia; Mishra, Vineet Kumar; Leo, Vincent Vineeth; Gupta, Vijai Kumar; Kumar, Brijesh; Singh, Bhim Pratap

    2016-10-01

    In the present study, fifteen endophytic actinobacterial isolates recovered from Solanum lycopersicum were studied for their antagonistic potential and plant-growth-promoting (PGP) traits. Among them, eight isolates showed significant antagonistic and PGP traits, identified by amplification of the 16S rRNA gene. Isolate number DBT204, identified as Streptomyces sp., showed multiple PGP traits tested in planta and improved a range of growth parameters in seedlings of chili (Capsicum annuum L.) and tomato (S. lycopersicum L.). Further, genes of indole acetic acid (iaaM) and 1-aminocyclopropane-1-carboxylate (ACC) deaminase (acdS) were successively amplified from five strains. Six antibiotics (trimethoprim, fluconazole, chloramphenicol, nalidixic acid, rifampicin and streptomycin) and two phytohormones [indole acetic acid (IAA) and kinetin (KI)] were detected and quantified in Streptomyces sp. strain DBT204 using UPLC-ESI-MS/MS. The study indicates the potential of these PGP strains for production of phytohormones and shows the presence of biosynthetic genes responsible for production of secondary metabolites. It is the first report showing production of phytohormones (IAA and KI) by endophytic actinobacteria having PGP and biosynthetic potential. We propose Streptomyces sp. strain DBT204 for inoculums production and development of biofertilizers for enhancing growth of chili and tomato seedlings. Copyright © 2016 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  8. Inhibitory effect of eugenol on aflatoxin B1 production in Aspergillus parasiticus by downregulating the expression of major genes in the toxin biosynthetic pathway.

    PubMed

    Jahanshiri, Zahra; Shams-Ghahfarokhi, Masoomeh; Allameh, Abdolamir; Razzaghi-Abyaneh, Mehdi

    2015-07-01

    Aflatoxin contamination of grains and agro-products is a serious food safety issue and a significant economic concern worldwide. In the present study, the effects of eugenol on Aspergillus parasiticus growth and aflatoxin production were studied in relation to the expression of some essential genes involved in aflatoxin biosynthetic pathway. The fungus was cultured in presence of serial two-fold concentrations of eugenol (15.62-500 μg mL(-1)) for 3 days at 28 °C. Mycelia dry weight was determined as an index of fungal growth, while aflatoxin production was assessed by high performance liquid chromatography. The expression of aflatoxin biosynthetic genes including ver-1, nor-1, pksA, omtA and aflR were evaluated by real-time PCR. Eugenol strongly inhibited A. parasiticus growth in the range of 19.16-95.83 % in a dose-dependent manner. Aflatoxin B1 production was also inhibited by the compound in the range of 15.07-98.0 %. The expressions of ver-1, nor-1, pksA, omtA and aflR genes were significantly suppressed by eugenol at concentrations of 62.5 and 125 μg mL(-1). These results indicate that eugenol may be considered as a good candidate to control toxigenic fungal growth and the subsequent contamination of food, feed and agricultural commodities by carcinogenic aflatoxins.

  9. Genome mining of the Streptomyces avermitilis genome and development of genome-minimized hosts for heterologous expression of biosynthetic gene clusters.

    PubMed

    Ikeda, Haruo; Kazuo, Shin-ya; Omura, Satoshi

    2014-02-01

    To date, several actinomycete genomes have been completed and annotated. Among them, Streptomyces microorganisms are of major pharmaceutical interest because they are a rich source of numerous secondary metabolites. S. avermitilis is an industrial microorganism used for the production of an anthelmintic agent, avermectin, which is a commercially important antiparasitic agent in human and veterinary medicine, and agricultural pesticides. Genome analysis of S. avermitilis provides significant information for not only industrial applications but also understanding the features of this genus. On genome mining of S. avermitilis, the microorganism has been found to harbor at least 38 secondary metabolic gene clusters and 46 insertion sequence (IS)-like sequences on the genome, which have not been searched so far. A significant use of the genome data of Streptomyces microorganisms is the construction of a versatile host for heterologous expression of exogenous biosynthetic gene clusters by genetic engineering. Since S. avermitilis is used as an industrial microorganism, the microorganism is already optimized for the efficient supply of primary metabolic precursors and biochemical energy to support multistep biosynthesis. The feasibility of large-deletion mutants of S. avermitilis has been confirmed by heterologous expression of more than 20 exogenous biosynthetic gene clusters.

  10. An efficient approach to finding Siraitia grosvenorii triterpene biosynthetic genes by RNA-seq and digital gene expression analysis.

    PubMed

    Tang, Qi; Ma, Xiaojun; Mo, Changming; Wilson, Iain W; Song, Cai; Zhao, Huan; Yang, Yanfang; Fu, Wei; Qiu, Deyou

    2011-07-05

    Siraitia grosvenorii (Luohanguo) is an herbaceous perennial plant native to southern China and most prevalent in Guilin city. Its fruit contains a sweet, fleshy, edible pulp that is widely used in traditional Chinese medicine. The major bioactive constituents in the fruit extract are the cucurbitane-type triterpene saponins known as mogrosides. Among them, mogroside V is nearly 300 times sweeter than sucrose. However, little is known about mogrosides biosynthesis in S. grosvenorii, especially the late steps of the pathway. In this study, a cDNA library generated from of equal amount of RNA taken from S. grosvenorii fruit at 50 days after flowering (DAF) and 70 DAF were sequenced using Illumina/Solexa platform. More than 48,755,516 high-quality reads from a cDNA library were generated that was assembled into 43,891 unigenes. De novo assembly and gap-filling generated 43,891 unigenes with an average sequence length of 668 base pairs. A total of 26,308 (59.9%) unique sequences were annotated and 11,476 of the unique sequences were assigned to specific metabolic pathways by the Kyoto Encyclopedia of Genes and Genomes. cDNA sequences for all of the known enzymes involved in mogrosides backbone synthesis were identified from our library. Additionally, a total of eighty-five cytochrome P450 (CYP450) and ninety UDP-glucosyltransferase (UDPG) unigenes were identified, some of which appear to encode enzymes responsible for the conversion of the mogroside backbone into the various mogrosides. Digital gene expression profile (DGE) analysis using Solexa sequencing was performed on three important stages of fruit development, and based on their expression pattern, seven CYP450s and five UDPGs were selected as the candidates most likely to be involved in mogrosides biosynthesis. A combination of RNA-seq and DGE analysis based on the next generation sequencing technology was shown to be a powerful method for identifying candidate genes encoding enzymes responsible for the

  11. An efficient approach to finding Siraitia grosvenorii triterpene biosynthetic genes by RNA-seq and digital gene expression analysis

    PubMed Central

    2011-01-01

    Background Siraitia grosvenorii (Luohanguo) is an herbaceous perennial plant native to southern China and most prevalent in Guilin city. Its fruit contains a sweet, fleshy, edible pulp that is widely used in traditional Chinese medicine. The major bioactive constituents in the fruit extract are the cucurbitane-type triterpene saponins known as mogrosides. Among them, mogroside V is nearly 300 times sweeter than sucrose. However, little is known about mogrosides biosynthesis in S. grosvenorii, especially the late steps of the pathway. Results In this study, a cDNA library generated from of equal amount of RNA taken from S. grosvenorii fruit at 50 days after flowering (DAF) and 70 DAF were sequenced using Illumina/Solexa platform. More than 48,755,516 high-quality reads from a cDNA library were generated that was assembled into 43,891 unigenes. De novo assembly and gap-filling generated 43,891 unigenes with an average sequence length of 668 base pairs. A total of 26,308 (59.9%) unique sequences were annotated and 11,476 of the unique sequences were assigned to specific metabolic pathways by the Kyoto Encyclopedia of Genes and Genomes. cDNA sequences for all of the known enzymes involved in mogrosides backbone synthesis were identified from our library. Additionally, a total of eighty-five cytochrome P450 (CYP450) and ninety UDP-glucosyltransferase (UDPG) unigenes were identified, some of which appear to encode enzymes responsible for the conversion of the mogroside backbone into the various mogrosides. Digital gene expression profile (DGE) analysis using Solexa sequencing was performed on three important stages of fruit development, and based on their expression pattern, seven CYP450s and five UDPGs were selected as the candidates most likely to be involved in mogrosides biosynthesis. Conclusion A combination of RNA-seq and DGE analysis based on the next generation sequencing technology was shown to be a powerful method for identifying candidate genes encoding

  12. Fungal endophytes of Catharanthus roseus enhance vindoline content by modulating structural and regulatory genes related to terpenoid indole alkaloid biosynthesis

    PubMed Central

    Pandey, Shiv S.; Singh, Sucheta; Babu, C. S. Vivek; Shanker, Karuna; Srivastava, N. K.; Shukla, Ashutosh K.; Kalra, Alok

    2016-01-01

    Not much is known about the mechanism of endophyte-mediated induction of secondary metabolite production in Catharanthus roseus. In the present study two fungal endophytes, Curvularia sp. CATDLF5 and Choanephora infundibulifera CATDLF6 were isolated from the leaves of the plant that were found to enhance vindoline content by 229–403%. The isolated endophytes did not affect the primary metabolism of the plant as the maximum quantum efficiency of PSII, net CO2 assimilation, plant biomass and starch content of endophyte-inoculated plants was similar to endophyte-free control plants. Expression of terpenoid indole alkaloid (TIA) pathway genes, geraniol 10-hydroxylase (G10H), tryptophan decarboxylase (TDC), strictosidine synthase (STR), 16-hydoxytabersonine-O-methyltransferase (16OMT), desacetoxyvindoline-4-hydroxylase (D4H), deacetylvindoline-4-O-acetyltransferase (DAT) were upregulated in endophyte-inoculated plants. Endophyte inoculation upregulated the expression of the gene for transcriptional activator octadecanoid-responsive Catharanthus AP2-domain protein (ORCA3) and downregulated the expression of Cys2/His2-type zinc finger protein family transcriptional repressors (ZCTs). The gene for the vacuolar class III peroxidase (PRX1), responsible for coupling vindoline and catharanthine, was upregulated in endophyte-inoculated plants. These endophytes may enhance vindoline production by modulating the expression of key structural and regulatory genes of vindoline biosynthesis without affecting the primary metabolism of the host plant. PMID:27220774

  13. Monoterpene Indole Alkaloids from the Fruit of Tabernaemontana litoralis and Differential Alkaloid Composition in Various Fruit Components.

    PubMed

    Qu, Yang; Simonescu, Razvan; De Luca, Vincenzo

    2016-12-23

    Two new monoterpene indole alkaloids, isoakuammiline (1) and 18-hydroxypseudovincadifformine (2), and five known alkaloids, coronaridine (3), heyneanine (4), 3,19-oxidocoronaridine (5), tabersonine, and strictosidine, were identified from the fruit of Tabernaemontana litoralis. The structures of the alkaloids were determined using NMR and MS data analyses. While 18-hydroxypseudovincadifformine (2) showed a new hydroxylation pattern, isoakuammiline (1) revealed a novel skeleton for monoterpene indole alkaloids. In spite of the isolation of stemmadenine from the fruit tissues in other Tabernaemontana species, this vital biosynthetic precursor of iboga, aspidosperma, and pseudoaspidosperma skeletons was not found in T. litoralis.

  14. Engineering biosynthesis of the anticancer alkaloid noscapine in yeast

    PubMed Central

    Li, Yanran; Smolke, Christina D.

    2016-01-01

    Noscapine is a potential anticancer drug isolated from the opium poppy Papaver somniferum, and genes encoding enzymes responsible for the synthesis of noscapine have been recently discovered to be clustered on the genome of P. somniferum. Here, we reconstitute the noscapine gene cluster in Saccharomyces cerevisiae to achieve the microbial production of noscapine and related pathway intermediates, complementing and extending previous in planta and in vitro investigations. Our work provides structural validation of the secoberberine intermediates and the description of the narcotoline-4′-O-methyltransferase, suggesting this activity is catalysed by a unique heterodimer. We also reconstitute a 14-step biosynthetic pathway of noscapine from the simple alkaloid norlaudanosoline by engineering a yeast strain expressing 16 heterologous plant enzymes, achieving reconstitution of a complex plant pathway in a microbial host. Other engineered yeasts produce previously inaccessible pathway intermediates and a novel derivative, thereby advancing protoberberine and noscapine related drug discovery. PMID:27378283

  15. Engineering biosynthesis of the anticancer alkaloid noscapine in yeast.

    PubMed

    Li, Yanran; Smolke, Christina D

    2016-07-05

    Noscapine is a potential anticancer drug isolated from the opium poppy Papaver somniferum, and genes encoding enzymes responsible for the synthesis of noscapine have been recently discovered to be clustered on the genome of P. somniferum. Here, we reconstitute the noscapine gene cluster in Saccharomyces cerevisiae to achieve the microbial production of noscapine and related pathway intermediates, complementing and extending previous in planta and in vitro investigations. Our work provides structural validation of the secoberberine intermediates and the description of the narcotoline-4'-O-methyltransferase, suggesting this activity is catalysed by a unique heterodimer. We also reconstitute a 14-step biosynthetic pathway of noscapine from the simple alkaloid norlaudanosoline by engineering a yeast strain expressing 16 heterologous plant enzymes, achieving reconstitution of a complex plant pathway in a microbial host. Other engineered yeasts produce previously inaccessible pathway intermediates and a novel derivative, thereby advancing protoberberine and noscapine related drug discovery.

  16. Pyocyanine Biosynthetic Genes in Clinical and Environmental Isolates of Pseudomonas aeruginosa and Detection of Pyocyanine’s Antimicrobial Effects with or without Colloidal Silver Nanoparticles

    PubMed Central

    Nowroozi, Jamileh; Akhavan Sepahi, Abbas; Rashnonejad, Afrooz

    2012-01-01

    Objective: Pyocyanine plays an important role in the pathogenesis of Pseudomonas aeruginosa, (P. aeruginosa) and is known to have inhibitory and bactericidal effects. This study has aimed to detect the phenazine biosynthetic operon (phz ABCDEFG) and two phenazine modifying genes (phzM and phzS) by polymerase chain reaction (PCR) and detection of its possible protein bands by sodium dodecyl sulfate - polyacrylamide gel electrophoresis (SDS-PAGE). The antimicrobial effects of pyocyanine alone and mixed with colloidal silver nanoparticles were studied. Materials and Methods: In this descriptive study, clinical and environmental species of P. aeruginosa were isolated by thioglycollate medium culture and cetrimide agar, respectively. The existence of a phenazine biosynthetic operon and two phenazine modifying genes as well as their protein products were confirmed by PCR and SDS-PAGE, respectively. Pyocyanine was extracted with chloroform and its antimicrobial effects against bacteria such as; Escherichia coli (E. coli), P. aeruginosaand Staphylococcus aureus (S. aureus) bacteria and yeast Candida albicans (C. albicans) were tested using well, spot and disk diffusion methods. Results: In this study, 3 out of 48 clinical strains were unable to produce pyocyanine on cetrimide and Mueller Hinton (MH) agar. Two strains did not have phenazine modifying gene bands. Another strain did not have the possible protein band of the phzM gene. Pyocyanine had antimicrobial effects against the microbial strains, which increased in the presence of silver nanoparticles. Conclusion: According to the results of the present study, some P. aeruginosa strains are unable to produce pyocyanine due to the absence of the phzM or phzS genes. Therefore, these genes have an important role in pyocyanine production in P. aeruginosa. Pyocyanine shows synergistic antimicrobial effects in the presence of silver nanoparticles against microbial strains. PMID:23626932

  17. The Actinomycin Biosynthetic Gene Cluster of Streptomyces chrysomallus: a Genetic Hall of Mirrors for Synthesis of a Molecule with Mirror Symmetry ▿

    PubMed Central

    Keller, Ullrich; Lang, Manuel; Crnovcic, Ivana; Pfennig, Frank; Schauwecker, Florian

    2010-01-01

    A gene cluster was identified which contains genes involved in the biosynthesis of actinomycin encompassing 50 kb of contiguous DNA on the chromosome of Streptomyces chrysomallus. It contains 28 genes with biosynthetic functions and is bordered on both sides by IS elements. Unprecedentedly, the cluster consists of two large inverted repeats of 11 and 13 genes, respectively, with four nonribosomal peptide synthetase genes in the middle. Nine genes in each repeat have counterparts in the other, in the same arrangement but in the opposite orientation, suggesting an inverse duplication of one of the arms during the evolution of the gene cluster. All of the genes appear to be organized into operons, each corresponding to a functional section of actinomycin biosynthesis, such as peptide assembly, regulation, resistance, and biosynthesis of the precursor of the actinomycin chromophore 4-methyl-3-hydroxyanthranilic acid (4-MHA). For 4-MHA synthesis, functional analysis revealed genes that encode pathway-specific isoforms of tryptophan dioxygenase, kynurenine formamidase, and hydroxykynureninase, which are distinct from the corresponding enzyme activities of cellular tryptophan catabolism in their regulation and in part in their substrate specificity. Phylogenetic analysis indicates that the pathway-specific tryptophan metabolism in Streptomyces most probably evolved divergently from the normal pathway of tryptophan catabolism to provide an extra or independent supply of building blocks for the synthesis of tryptophan-derived secondary metabolites. PMID:20304989

  18. Antiprotozoal and antioxidant alkaloids from Alternanthera littoralis.

    PubMed

    Koolen, Hector H F; Pral, Elizabeth M F; Alfieri, Silvia C; Marinho, Jane V N; Serain, Alessandra F; Hernández-Tasco, Alvaro J; Andreazza, Nathalia L; Salvador, Marcos J

    2017-02-01

    Five alkaloids, in addition to hydroxytyrosol and uridine, were isolated from aerial parts of Alternanthera littoralis P. Beauv. Among the isolated compounds, alternamide A was an unusual tricyclic alkaloid with a bridged benzoazepine core. All isolated alkaloids have a catechol moiety, indicating a possible common biosynthetic route. Their structures were established by 1D and 2D NMR spectroscopy in combination with extensive tandem MS experiments by collisional induced dissociation (CID). The antiprotozoal activity of the isolated compounds was assayed against trypomastigote forms of Trypanosoma cruzi and amastigotes of Leishmania amazonensis. Alternamine A was the most active compound, reducing markedly the viability of both parasites. Antioxidant capacities evaluated by ORACFL assay showed that the isolated alkaloids (mainly alternamide B) contributed to the high activity recorded for the ethanolic crude extract; possibly, the catechol moiety present in all structures plays a central role in this result.

  19. Seamless stitching of biosynthetic gene cluster containing type I polyketide synthases using Red/ET mediated recombination for construction of stably co-existing plasmids.

    PubMed

    Su, Chun; Zhao, Xin-Qing; Wang, Hai-Na; Qiu, Rong-Guo; Tang, Li

    2015-01-10

    Type I polyketides are natural products with diverse functions that are important for medical and agricultural applications. Manipulation of large biosynthetic gene clusters containing type I polyketide synthases (PKS) for heterologous expression is difficult due to the existence of conservative sequences of PKS in multiple modules. Red/ET mediated recombination has permitted rapid manipulation of large fragments; however, it requires insertion of antibiotic selection marker in the cassette, raising the problem of interference of expression by leaving "scar" sequence. Here, we report a method for precise seamless stitching of large polyketide biosynthetic gene cluster using a 48.4kb fragment containing type I PKS involved in fostriecin biosynthesis as an example. rpsL counter-selection was used to assist seamless stitching of large fragments, where we have overcome both the size limitations and the restriction on endonuclease sites during the Red/ET recombination. The compatibility and stability of the co-existing vectors (p184 and pMT) which respectively accommodate 16kb and 32.4kb inserted fragments were demonstrated. The procedure described here is efficient for manipulation of large DNA fragments for heterologous expression. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Identification of the specific sequence recognized by Penicillium citrinum MlcR, a GAL4-type transcriptional activator of ML-236B (compactin) biosynthetic genes.

    PubMed

    Baba, S; Nihira, T; Hosobuchi, M

    2008-09-01

    MlcR is a pathway-specific transcriptional activator of the ML-236B biosynthetic genes in Penicillium citrinum. The MlcR-binding sequences were identified by an in vitro gel-shift assay and an in vivo reporter assay for the region between mlcA and mlcC as a model. The gel-shift assay showed that recombinant MlcR bound to the DNA sequence 5'-ACGGCGTTATTCGG-3' and most of the bases in this motif were required for the interaction between MlcR and DNA. In the reporter assay using beta-glucuronidase (GUS), substitution of the bases in this binding sequence resulted in the drastic reduction of GUS activities. These data clearly indicate that this MlcR-binding sequence is essential for the transcriptional activation of mlcA and mlcC in P. citrinum. Similar motifs were found in other loci of the ML-236B biosynthetic gene cluster and the consensus-binding motif for MlcR was predicted to be a direct repeat, 5'-WCGG-N(6)-TCGG-3'.

  1. Defects in D-rhamnosyl residue biosynthetic genes affect lipopolysaccharide structure, motility, and cell-surface hydrophobicity in Pseudomonas syringae pathovar glycinea race 4.

    PubMed

    Chiku, Kazuhiro; Tsunemi, Kazuhiko; Yamamoto, Masanobu; Ohnishi-Kameyama, Mayumi; Yoshida, Mitsuru; Ishii, Tadashi; Taguchi, Fumiko; Iwaki, Masako; Ichinose, Yuki; Ono, Hiroshi

    2013-01-01

    D-rhamnose (D-Rha) residue is a major component of lipopolysaccharides (LPSs) in strains of the phytopathogen Pseudomonas syringae pathovar glycinea. To investigate the effects of a deficiency in GDP-D-rhamnose biosynthetic genes on LPS structure and pathogenicity, we generated three mutants defective in D-Rha biosynthetic genes, encoding proteins GDP-D-mannose 4,6-dehydratase (GMD), GDP-4-keto-6-deoxy-D-mannose reductase (RMD), and a putative α-D-rhamnosyltransferase (WbpZ) in P. syringae pv. glycinea race 4. The Δgmd, Δrmd, and ΔwbpZ mutants had a reduced O-antigen polysaccharide consisting of D-Rha residues as compared with the wild type (WT). The swarming motility of the Δgmd, Δrmd, and ΔwbpZ mutant strains decreased and hydrophobicity and adhesion ability increased as compared with WT. Although the mutants had truncated O-antigen polysaccharides, and altered surface properties, they showed virulence to soybean, as WT did.

  2. Identification and characterization of lbpA, an indigoidine biosynthetic gene in the γ-butyrolactone signaling system of Streptomyces lavendulae FRI-5.

    PubMed

    Pait, Ivy Grace Umadhay; Kitani, Shigeru; Kurniawan, Yohanes Novi; Asa, Maeda; Iwai, Takashi; Ikeda, Haruo; Nihira, Takuya

    2017-10-01

    Streptomyces lavendulae FRI-5 produces the blue pigment indigoidine and other secondary metabolites (d-cycloserine and nucleoside antibiotics). The production of these useful compounds is controlled by a signaling cascade mediated by the γ-butyrolactone autoregulator IM-2. Previously we revealed that the far regulatory island includes the IM-2 receptor, the IM-2 biosynthetic enzyme, and several transcriptional regulators, and that it contributes to the regulation of indigoidine production in response to the signaling molecule. Here, we found that the vicinity of the far regulatory island includes the putative gene cluster for the biosynthesis of indigoidine and unidentified compounds, and demonstrated that the expression of the gene cluster is under the control of the IM-2 regulatory system. Heterologous expression of lbpA, encoding a plausible nonribosomal peptide synthetase, in the versatile model host Streptomyces avermitilis SUKA22 led to indigoidine production, which was enhanced dramatically by feeding of the indigoidine precursor l-glutamine. These results confirmed that LbpA is an indigoidine biosynthetic enzyme in the IM-2 signaling cascade. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  3. Banana fruit VQ motif-containing protein5 represses cold-responsive transcription factor MaWRKY26 involved in the regulation of JA biosynthetic genes

    PubMed Central

    Ye, Yu-Jie; Xiao, Yun-Yi; Han, Yan-Chao; Shan, Wei; Fan, Zhong-Qi; Xu, Qun-Gang; Kuang, Jian-Fei; Lu, Wang-Jin; Lakshmanan, Prakash; Chen, Jian-Ye

    2016-01-01

    Most harvested fruits and vegetables are stored at low temperature but many of them are highly sensitive to chilling injury. Jasmonic acid (JA), a plant hormone associated with various stress responses, is known to reduce chilling injury in fruits. However, little is known about the transcriptional regulation of JA biosynthesis in relation to cold response of fruits. Here, we show the involvement of a Group I WRKY transcription factor (TF) from banana fruit, MaWRKY26, in regulating JA biosynthesis. MaWRKY26 was found to be nuclear-localized with transcriptional activation property. MaWRKY26 was induced by cold stress or by methyl jasmonate (MeJA), which enhances cold tolerance in banana fruit. More importantly, MaWRKY26 transactivated JA biosynthetic genes MaLOX2, MaAOS3 and MaOPR3 via binding to their promoters. Further, MaWRKY26 physically interacted with a VQ motif-containing protein MaVQ5, and the interaction attenuated MaWRKY26-induced transactivation of JA biosynthetic genes. These results strongly suggest that MaVQ5 might act as a repressor of MaWRKY26 in activating JA biosynthesis. Taken together, our findings provide new insights into the transcriptional regulation of JA biosynthesis in response to cold stress and a better understanding of the molecular aspects of chilling injury in banana fruit. PMID:27004441

  4. Genetic analysis of the Erwinia chrysanthemi 3937 chrysobactin iron-transport system: characterization of a gene cluster involved in uptake and biosynthetic pathways.

    PubMed

    Franza, T; Enard, C; van Gijsegem, F; Expert, D

    1991-06-01

    Twenty of the twenty-two MudII1734 insertions impairing the chrysobactin iron-assimilation system of Erwinia chrysanthemi 3937 were localized to a 50 kbp genomic insert contained in the R-prime plasmid, R'4 (Enard et al., 1988). Using the conjugative plasmid pULB110 (RP4::mini-Mu) and the generalized transducing phage phi EC2, we located this iron-transport region and the two unlinked mutations on the chromosome linkage map. Chrysobactin is a catechol-type siderophore and, as we have previously observed with the entA locus of Escherichia coli, the E. chrysanthemi-derived R'4 was found to complement E. coli entB and entE mutations. A 2.9 kb EcoRi and a 4.8 kb BamHI fragment in the R'4 sharing homology with the E. coli entCEBAP15 operon DNA were subcloned. These fragments were used as DNA/DNA hybridization probes to screen a wild-type gene library, yielding a recombinant cosmid (pEC7) able to complement mutations disrupting the 2,3-dihydroxybenzoic acid biosynthetic pathway in both Erwinia and Escherichia spp. as well as the E. coli entE mutation. Physical mapping of the genomic MudII1734 insertions corresponding to these mutations led to the identification of a cluster of genes confined to a DNA sequence of about 10 kb required for both biosynthetic and receptor functions.

  5. Silencing the Transcriptional Repressor, ZCT1, Illustrates the Tight Regulation of Terpenoid Indole Alkaloid Biosynthesis in Catharanthus roseus Hairy Roots

    PubMed Central

    Rizvi, Noreen F.; Weaver, Jessica D.; Cram, Erin J.; Lee-Parsons, Carolyn W. T.

    2016-01-01

    The Catharanthus roseus plant is the source of many valuable terpenoid indole alkaloids (TIAs), including the anticancer compounds vinblastine and vincristine. Transcription factors (TFs) are promising metabolic engineering targets due to their ability to regulate multiple biosynthetic pathway genes. To increase TIA biosynthesis, we elicited the TIA transcriptional activators (ORCAs and other unidentified TFs) with the plant hormone, methyl jasmonate (MJ), while simultaneously silencing the expression of the transcriptional repressor ZCT1. To silence ZCT1, we developed transgenic hairy root cultures of C. roseus that expressed an estrogen-inducible Zct1 hairpin for activating RNA interference. The presence of 17β-estradiol (5μM) effectively depleted Zct1 in hairy root cultures elicited with MJ dosages that either optimize or inhibit TIA production (250 or 1000μM). However, silencing Zct1 was not sufficient to increase TIA production or the expression of the TIA biosynthetic genes (G10h, Tdc, and Str), illustrating the tight regulation of TIA biosynthesis. The repression of the TIA biosynthetic genes at the inhibitory MJ dosage does not appear to be solely regulated by ZCT1. For instance, while Zct1 and Zct2 levels decreased through activating the Zct1 hairpin, Zct3 levels remained elevated. Since ZCT repressors have redundant yet distinct functions, silencing all three ZCTs may be necessary to relieve their repression of alkaloid biosynthesis. PMID:27467510

  6. Biosynthetic Anthracycline Variants

    NASA Astrophysics Data System (ADS)

    Niemi, Jarmo; Metsä-Ketelä, Mikko; Schneider, Gunter; Mäntsälä, Pekka

    In addition to synthetic and semisynthetic methods, new anthracycline structures have been generated by biosynthetic methods: genetic engineering of Streptomyces production strains, bioconversion and chemoenzymatic synthesis. In this review, we discuss the set of molecules potentially producible by biosynthetic methods and which structures have so far been realized. Biosynthetic variation in the anthracycline molecule manifests itself either as structure changes in the tetracyclic aglycone, or as variation in glycosylation. Understanding the biosynthetic sequence and knowledge of the substrate specificities of the enzymes participating in it enable rational generation of new anthracycline diversity. Future possibilities include protein engineering of the biosynthetic enzymes to improve the production of new structural combinations.

  7. The putative elaiophylin biosynthetic gene cluster in Streptomyces sp. DSM4137 is adjacent to genes encoding adenosylcobalamin-dependent methylmalonyl CoA mutase and to genes for synthesis of cobalamin.

    PubMed

    Haydock, Stephen F; Mironenko, Tatiana; Ghoorahoo, Haroun I; Leadlay, Peter F

    2004-09-30

    A type I PKS gene probe obtained from RAPB of the rapamycin producer Streptomyces hygroscopicus, strongly hybridised to 92 out of 1120 cosmids from a genomic library of the elaiophylin-producing strain Streptomyces sp. DSM4137. Partial cosmid sequencing suggested the presence of 10 separate sequences encoding type I PKS genes. One entire DNA sequence was obtained and found exactly to match the gene organisation expected for the biosynthesis of the unusual macrodiolide polyketide elaiophylin. The putative elaiophylin gene cluster contains five large open-reading frames encoding typical modular polyketide synthases, which together catalyse the synthesis of the octaketide monomer of elaiophylin. Other genes were identified that would be required for provision of the ethylmalonate extender unit, for the synthesis and attachment of 2-deoxy-L-fucose and in regulation, or in export of the product. Immediately adjacent to the putative elaiophylin biosynthetic gene cluster is a 30-kbp region containing the gene for adenosylcobalamin-dependent methylmalonyl CoA mutase and also genes involved in the biosynthesis of the cobalamin cofactor. Analysis of the latter gene set confirms the view that cbiD of the anaerobic pathway and cobF in the aerobic pathway catalyse the same methylation of precorrin-5. The proximity of these genes to the putative elaiophylin gene cluster can best be rationalised if in this organism succinyl-CoA is a significant source of the methylmalonate units for complex polyketide biosynthesis.

  8. Effect of Temperature-Shift and Temperature-Constant Cultivation on the Monacolin K Biosynthetic Gene Cluster Expression in Monascus sp.

    PubMed Central

    Lin, Lin; Li, Zhenjing; Wu, Huijia; Chen, Mianhua

    2017-01-01

    Summary In this study, the effects of temperature-shift (from 30 to 25 °C) and temperature-constant (at 30 °C) cultivation on the mass of Monascus fuliginosus CG-6 mycelia and concentration of the produced monacolin K (MK) were monitored. The expression levels of the MK biosynthetic genes of M. fuliginosus CG-6 at constant and variable culture temperatures were analysed by real-time quantitative polymerase chain reaction (RT-qPCR). The total protein was collected and determined by liquid chromatography-electrospray ionisation with tandem mass spectrometry (LC-ESI-MS/MS). Results showed that the maximum mycelial mass in temperature-shift cultivation was only 0.477 g of dry cell mass per dish, which was lower than that in temperature-constant cultivation (0.581 g of dry cell mass per dish); however, the maximum concentration of MK in temperature-shift cultivation (34.5 µg/mL) was 16 times higher than that in temperature-constant cultivation at 30 °C (2.11 µg/mL). Gene expression analysis showed that the expression of the MK biosynthetic gene cluster at culture temperature of 25 °C was higher than that at 30 °C, which was similar to the trend of the MK concentration, except for individual MK B and MK C genes. Analysis of differential protein expression revealed that 2016 proteins were detected by LC-ESI-MS/MS. The expression level of efflux pump protein coded by the MK I gene exhibited the same upregulated trend as the expression of MK I in temperature-shift cultivation. Temperature-shift cultivation enhanced the expression of proteins in the secondary metabolite production pathway, but suppressed the expression of proteins involved in the mycelial growth. PMID:28559732

  9. Transcription of Genes in the Biosynthetic Pathway for Fumonisin Mycotoxins Is Epigenetically and Differentially Regulated in the Fungal Maize Pathogen Fusarium verticillioides

    PubMed Central

    Visentin, I.; Montis, V.; Döll, K.; Alabouvette, C.; Tamietti, G.; Karlovsky, P.

    2012-01-01

    When the fungal pathogen Gibberella moniliformis (anamorph, Fusarium verticillioides) colonizes maize and maize-based products, it produces class B fumonisin (FB) mycotoxins, which are a significant threat to human and animal health. FB biosynthetic enzymes and accessory proteins are encoded by a set of clustered and cotranscribed genes collectively named FUM, whose molecular regulation is beginning to be unraveled by researchers. FB accumulation correlates with the amount of transcripts from the key FUM genes, FUM1, FUM21, and FUM8. In fungi in general, gene expression is often partially controlled at the chromatin level in secondary metabolism; when this is the case, the deacetylation and acetylation (and other posttranslational modifications) of histones are usually crucial in the regulation of transcription. To assess whether epigenetic factors regulate the FB pathway, we monitored FB production and FUM1, FUM21, and FUM8 expression in the presence of a histone deacetylase inhibitor and verified by chromatin immunoprecipitation the relative degree of histone acetylation in the promoter regions of FUM1, FUM21, and FUM8 under FB-inducing and noninducing conditions. Moreover, we generated transgenic F. verticillioides strains expressing GFP under the control of the FUM1 promoter to determine whether its strength under FB-inducing and noninducing conditions was influenced by its location in the genome. Our results indicate a clear and differential role for chromatin remodeling in the regulation of FUM genes. This epigenetic regulation can be attained through the modulation of histone acetylation at the level of the promoter regions of the key biosynthetic genes FUM1 and FUM21, but less so for FUM8. PMID:22117026

  10. Variation in Fumonisin and Ochratoxin Production Associated with Differences in Biosynthetic Gene Content in Aspergillus niger and A. welwitschiae Isolates from Multiple Crop and Geographic Origins

    PubMed Central

    Susca, Antonia; Proctor, Robert H.; Morelli, Massimiliano; Haidukowski, Miriam; Gallo, Antonia; Logrieco, Antonio F.; Moretti, Antonio

    2016-01-01

    The fungi Aspergillus niger and A. welwitschiae are morphologically indistinguishable species used for industrial fermentation and for food and beverage production. The fungi also occur widely on food crops. Concerns about their safety have arisen with the discovery that some isolates of both species produce fumonisin (FB) and ochratoxin A (OTA) mycotoxins. Here, we examined FB and OTA production as well as the presence of genes responsible for synthesis of the mycotoxins in a collection of 92 A. niger/A. welwitschiae isolates from multiple crop and geographic origins. The results indicate that (i) isolates of both species differed in ability to produce the mycotoxins; (ii) FB-nonproducing isolates of A. niger had an intact fumonisin biosynthetic gene (fum) cluster; (iii) FB-nonproducing isolates of A. welwitschiae exhibited multiple patterns of fum gene deletion; and (iv) OTA-nonproducing isolates of both species lacked the ochratoxin A biosynthetic gene (ota) cluster. Analysis of genome sequence data revealed a single pattern of ota gene deletion in the two species. Phylogenetic analysis suggest that the simplest explanation for this is that ota cluster deletion occurred in a common ancestor of A. niger and A. welwitschiae, and subsequently both the intact and deleted cluster were retained as alternate alleles during divergence of the ancestor into descendent species. Finally, comparison of results from this and previous studies indicate that a majority of A. niger isolates and a minority of A. welwitschiae isolates can produce FBs, whereas, a minority of isolates of both species produce OTA. The comparison also suggested that the relative abundance of each species and frequency of FB/OTA-producing isolates can vary with crop and/or geographic origin. PMID:27667988

  11. Variation in Fumonisin and Ochratoxin Production Associated with Differences in Biosynthetic Gene Content in Aspergillus niger and A. welwitschiae Isolates from Multiple Crop and Geographic Origins.

    PubMed

    Susca, Antonia; Proctor, Robert H; Morelli, Massimiliano; Haidukowski, Miriam; Gallo, Antonia; Logrieco, Antonio F; Moretti, Antonio

    2016-01-01

    The fungi Aspergillus niger and A. welwitschiae are morphologically indistinguishable species used for industrial fermentation and for food and beverage production. The fungi also occur widely on food crops. Concerns about their safety have arisen with the discovery that some isolates of both species produce fumonisin (FB) and ochratoxin A (OTA) mycotoxins. Here, we examined FB and OTA production as well as the presence of genes responsible for synthesis of the mycotoxins in a collection of 92 A. niger/A. welwitschiae isolates from multiple crop and geographic origins. The results indicate that (i) isolates of both species differed in ability to produce the mycotoxins; (ii) FB-no