Sample records for alkaloid harmine inhibits

  1. Genotoxic effects of structurally related beta-carboline alkaloids.

    PubMed

    Picada, J N; da Silva, K V; Erdtmann, B; Henriques, A T; Henriques, J A

    1997-10-06

    beta-Carboline alkaloids, found in medicinal plants, tobacco smoke and well-cooked foods, have shown a variety of actions in biological systems related to their interaction with DNA. Therefore, these alkaloids can be considered potentially mutagenic. In this work, the genotoxic, mutagenic, and cytotoxic activities of three aromatic beta-carboline alkaloids (harman, harmine, and harmol) and two dihydro-beta-carboline alkaloids (harmaline and harmalol) were evaluated by means of the Salmonella/microsome assay (Salmonella typhimurium TA98, TA97, TA100, and TA102) and SOS chromotest (Escherichia coli PQ37) with and without metabolic activation. Moreover, harman and harmine were analyzed by the micronucleus assay in vivo. It was shown that genotoxicity was inhibited by the addition of S9 mix for aromatic beta-carbolines harman and harmol in TA97. However, harmine showed signs of mutagenicity only in the presence of S9 mix in TA98 and TA97 frameshift strains. In the SOS chromotest, only harman induced SOS functions in the absence of S9 mix. Dihydro-beta-carbolines were not genotoxic in any of the microorganisms used. The negative responses obtained in the micronucleus assay indicated that harman and harmine were not able to induce chromosomal mutations.

  2. Effects of the Natural β-Carboline Alkaloid Harmine, a Main Constituent of Ayahuasca, in Memory and in the Hippocampus: A Systematic Literature Review of Preclinical Studies.

    PubMed

    Dos Santos, Rafael G; Hallak, Jaime E C

    2017-01-01

    Harmine is a natural β-carboline alkaloid found in several botanical species, such as the Banisteriopsis caapi vine used in the preparation of the hallucinogenic beverage ayahuasca and the seeds of Syrian rue (Peganum harmala). Preclinical studies suggest that harmine may have neuroprotective and cognitive-enhancing effects, and retrospective/observational investigations of the mental health of long-term ayahuasca users suggest that prolonged use of this harmine-rich hallucinogen is associated with better neuropsychological functioning. Thus, in order to better investigate these possibilities, we performed a systematic literature review of preclinical studies analyzing the effects of harmine on hippocampal neurons and in memory-related behavioral tasks in animal models. We found two studies involving hippocampal cell cultures and nine studies using animal models. Harmine administration was associated with neuroprotective effects such as reduced excitotoxicity, inflammation, and oxidative stress, and increased brain-derived neurotrophic factor (BDNF) levels. Harmine also improved memory/learning in several animal models. These effects seem be mediated by monoamine oxidase or acetylcholinesterase inhibition, upregulation of glutamate transporters, decreases in reactive oxygen species, increases in neurotrophic factors, and anti-inflammatory effects. The neuroprotective and cognitive-enhancing effects of harmine should be further investigated in both preclinical and human studies.

  3. Harmine blocks herpes simplex virus infection through downregulating cellular NF-κB and MAPK pathways induced by oxidative stress.

    PubMed

    Chen, Deyan; Su, Airong; Fu, Yuxuan; Wang, Xiaohui; Lv, Xiaowen; Xu, Wentao; Xu, Shijie; Wang, Huanru; Wu, Zhiwei

    2015-11-01

    Herpes simplex virus types 1 and 2 (HSV-1 and -2) are highly prevalent in many populations and therapeutic options are limited. Both viruses can establish latency by maintaining viral genomes in neurons of sensory ganglia. Primary or recurrent HSV infections may lead to deleterious outcomes: HSV-1 infection may result in corneal blindness and encephalitis and HSV-2 infection leads to herpes genitalis. While no effective vaccine is available, acyclovir is widely used for therapy, which targets and inhibits viral DNA polymerase. Although acyclovir is of low toxicity, resistant strains arise due to persistent use, mainly in immune compromised patients. In our effort to identify new HSV inhibitory molecules, harmine was found to potently inhibit HSV infection. Harmine, a beta-carbon alkaloid with an indole core structure and a pyridine ring, is widely distributed in plants. Earlier studies showed that harmine exhibited pharmacological activities such as antifungal, antimicrobial, antitumor, antiplasmodial and antioxidants. In the current study, we showed that harmine was a potent inhibitor of HSV-2 infection in vitro assays with EC50 value at around 1.47μM and CC50 value at around 337.10μM. The HSV RNA transcription, protein synthesis, and virus titers were reduced by the presence of harmine in a dose dependent manner. Further study on the mechanism of the anti-HSV activity showed that harmine blocked HSV-induced ROS production and the upregulated cytokine/chemokine expression, but our evidence showed that the inhibition of viral replication was unlikely mediated by the blocking of ROS production. We demonstrated that harmine significantly reduced HSV-2-induced NF-κB activation, as well as IκB-α degradation and p65 nuclear translocation. We found that harmine also inhibited HSV-2-mediated p38 kinase and c-Jun N-terminal kinases (JNK) phosphorylation. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Effects of harmine, an acetylcholinesterase inhibitor, on spatial learning and memory of APP/PS1 transgenic mice and scopolamine-induced memory impairment mice.

    PubMed

    He, Dandan; Wu, Hui; Wei, Yue; Liu, Wei; Huang, Fei; Shi, Hailian; Zhang, Beibei; Wu, Xiaojun; Wang, Changhong

    2015-12-05

    Harmine, a β-carboline alkaloid present in Peganum harmala with a wide spectrum of pharmacological activities, has been shown to exert strong inhibition against acetylcholinesterase in vitro. However, whether it can rescue the impaired cognition has not been elucidated yet. In current study, we examined its effects on scopolamine-induced memory impairment mice and APP/PS1 transgenic mice, one of the models for Alzheimer's disease, using Morris Water Maze test. In addition, whether harmine could penetrate blood brain barrier, interact with and inhibit acetylcholinesterase, and activate downstream signaling network was also investigated. Our results showed that harmine (20mg/kg) administered by oral gavage for 2 weeks could effectively enhance the spatial cognition of C57BL/6 mice impaired by intraperitoneal injection of scopolamine (1mg/kg). Meanwhile, long-term consumption of harmine (20mg/kg) for 10 weeks also slightly benefited the impaired memory of APP/PS1 mice. Furthermore, harmine could pass through blood brain barrier, penetrate into the brain parenchyma shortly after oral administration, and modulate the expression of Egr-1, c-Jun and c-Fos. Molecular docking assay disclosed that harmine molecule could directly dock into the catalytic active site of acetylcholinesterase, which was partially confirmed by its in vivo inhibitory activity on acetylcholinesterase. Taken together, all these results suggested that harmine could ameliorate impaired memory by enhancement of cholinergic neurotransmission via inhibiting the activity of acetylcholinesterase, which may contribute to its clinical use in the therapy of neurological diseases characterized with acetylcholinesterase deficiency. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. TOXICOKINETICS OF TREMOROGENIC NATURAL PRODUCTS, HARMANE AND HARMINE, IN MALE SPRAGUE-DAWLEY RATS

    PubMed Central

    Guan, Yongbiao; Louis, Elan D.; Zheng, Wei

    2016-01-01

    Tremorogenic β-carboline alkaloids are present in foodstuffs and beverages. Acute exposure to β-carboline derivatives causes severe tremor; however, the disposition of these dietary contaminants remains unclear. This study was performed to evaluate toxicokinetics of harmane and harmine, two major β-carboline alkaloids, in rats. Blood concentrations of both toxicants were quantified by high-performance liquid chromatography (HPLC). Following an intravenous injection (0.5 mg/ kg), the concentration–time profiles of harmane or harmine fit well with a two-compartment model. While both compounds had comparable elimination t1/ 2β (24 and 26 min for harmane and harmine, respectively), the systemic clearance (CLs) for harmine (103.2 ml/ kg/ml) was two times greater than that for harmane (52.2 ml/ kg/ml). Accordingly, the area under the blood concentration–time curve (AUC) in harmane-treated rats was 2.7-fold greater than that in harmine-treated rats. Harmine appeared to distribute to tissues better than harmane, with a larger volume of distribution (Vd) (3.9 and 1.6 L/ kg for harmine and harmane, respectively). After an oral dose (20 mg/ kg), the absolute bioavailability (F) was 19% for harmane and 3% for harmine. Harmane was absorbed more slowly (lower Ka), yet more completely (higher Cmax, AUC, and F) than harmine. An oral administration of harmane resulted in blood harmine whose formation accounted for 13% of the ingested harmane, indicating a biotransformation of harmane to harmine. These results suggest that harmane is absorbed into the systemic circulation more completely than harmine. Upon entering the body, harmane can be metabolized to form harmine; the latter may better distribute to the tissue compartment. PMID:11766171

  6. Toxicokinetics of tremorogenic natural products, harmane and harmine, in male Sprague-Dawley rats.

    PubMed

    Guan, Y; Louis, E D; Zheng, W

    2001-12-21

    Tremorogenic beta-carboline alkaloids are present in foodstuffs and beverages. Acute exposure to beta-carboline derivatives causes severe tremor; however, the disposition of these dietary contaminants remains unclear. This study was performed to evaluate toxicokinetics of harmane and harmine, two major beta-carboline alkaloids, in rats. Blood concentrations of both toxicants were quantified by high-performance liquid chromatography (HPLC). Following an intravenous injection (0.5 mg/kg), the concentration-time profiles of harmane or harmine fit well with a two-compartment model. While both compounds had comparable elimination t 1/2beta (24 and 26 min for harmane and harmine, respectively), the systemic clearance (CLs) for harmine (103.2 ml/kg/ml) was two times greater than that for harmane (52.2 ml/kg/ml). Accordingly, the area under the blood concentration-time curve (AUC) in harmane-treated rats was 2.7-fold greater than that in harmine-treated rats. Harmine appeared to distribute to tissues better than harmane, with a larger volume of distribution (V,d) (3.9 and 1.6 L/kg for harmine and harmane, respectively). After an oral dose (20 mg/kg), the absolute bioavailability (F) was 19% for harmane and 3% for harmine. Harmane was absorbed more slowly (lower Ka), yet more completely (higher Cmax' AUC, and F) than harmine. An oral administration of harmane resulted in blood harmine whose formation accounted for 13% of the ingested harmane, indicating a biotransformation of harmane to harmine. These results suggest that harmane is absorbed into the systemic circulation more completely than harmine. Upon entering the body, harmane can be metabolized to form harmine; the latter may better distribute to the tissue compartment.

  7. Determination of N,N-dimethyltryptamine and beta-carboline alkaloids in human plasma following oral administration of Ayahuasca.

    PubMed

    Yritia, Mercedes; Riba, Jordi; Ortuño, Jordi; Ramirez, Ariel; Castillo, Araceli; Alfaro, Yolanda; de la Torre, Rafael; Barbanoj, Manel J

    2002-11-05

    Ayahuasca is a South American psychotropic beverage prepared from plants native to the Amazon River Basin. It combines the hallucinogenic agent and 5-HT(2A/2C) agonist N,N-dimethyltryptamine (DMT) with beta-carboline alkaloids showing monoamine oxidase-inhibiting properties. In the present paper, an analytical methodology for the plasma quantification of the four main alkaloids present in ayahuasca plus two major metabolites is described. DMT was extracted by liquid-liquid extraction with n-pentane and quantified by gas chromatography with nitrogen-phosphorus detection. Recovery was 74%, and precision and accuracy were better than 9.9%. The limit of quantification (LOQ) was 1.6 ng/ml. Harmine, harmaline, and tetrahydroharmine (THH), the three main beta-carbolines present in ayahuasca, and harmol and harmalol (O-demethylation metabolites of harmine and harmaline, respectively) were measured in plasma by means of high-performance liquid chromatography (HPLC) with fluorescence detection. Sample preparation was accomplished by solid-phase extraction, which facilitated the automation of the process. All five beta-carbolines were measured using a single detector by switching wavelengths. Separation of harmol and harmalol required only slight changes in the chromatographic conditions. Method validation demonstrated good recoveries, above 87%, and accuracy and precision better than 13.4%. The LOQ was 0.5 ng/ml for harmine, 0.3 ng/ml for harmaline, 1.0 ng/ml for THH, and 0.3 ng/ml for harmol and harmalol. Good linearity was observed in the concentration ranges evaluated for DMT (2.5-50 ng/ml) and the beta-carbolines (0.3-100 ng/ml). The gas chromatography and HPLC methods described allowed adequate characterization of the pharmacokinetics of the four main alkaloids present in ayahuasca, and also of two major beta-carboline metabolites not previously described in the literature.

  8. In vitro activity of the beta-carboline alkaloids harmane, harmine, and harmaline toward parasites of the species Leishmania infantum.

    PubMed

    Di Giorgio, C; Delmas, F; Ollivier, E; Elias, R; Balansard, G; Timon-David, P

    2004-01-01

    Harmane, harmine, and harmaline were investigated for their in vitro antileishmanial activity toward parasites of the species Leishmania infantum. Harmane and Harmine displayed a moderate antiproliferative activity toward human monocytes and exerted a weak antileishmanial activity toward both the promastigote and the amastigote forms of the parasite. Their mechanism of action on the promastigote form of the parasite involved interactions with DNA metabolism leading to an accumulation of parasites in the S-G(2)M phases of the cell-cycle. Harmaline, at the contrary, was deprived from toxicity toward human cells and Leishmania promastigotes, however it exerted a strong antileishmanial activity toward the intracellular amastigote form of the parasite. This property was shown to partly result from the capacity of the molecule to prevent parasite internalization within macrophages by inhibiting Leishmania PKC activity.

  9. Cerebroprotective effect of isolated harmine alkaloids extracts of seeds of Peganum harmala L. on sodium nitrite-induced hypoxia and ethanol-induced neurodegeneration in young mice.

    PubMed

    Biradar, S M; Joshi, Hanumanthachar; Tarak, K C

    2013-12-01

    The aim of the study was to isolate the harmine alkaloids from the seeds of Peganum harmala (TAPH) and its cerebroprotective effect on cognitive deficit mice. The tested doses of TAPH were screened for Sodium nitrite induced hypoxia and Ethanol induced neurodegeneration using behavioral models. The TAPH was found to be non-neurotoxic and Psychoactive by preventing the motor impairment and increasing the locomotion activity of animals in Rota rod and Actophotometer respectively. TAPH (5, 2.5 and 1.25 mg kg(-1) p.o.) significantly (p < 0.001) protected the Sodium nitrite induced memory impairment by decreasing the time require to find the water bottle in special water bottle case model. In Elevated Plus Maze (EPM) and Passive Shock Avoidance paradigm (PSA) the TAPH shown improved acquisition and retention memory significantly (p < 0.001) by decreasing the Transverse Latency Time (TLT) and increasing the Step Down Latency (SDL), respectively in dose dependent manner. The results were well supported by biochemical parameters, by inhibiting the Acetylcholinestrase (p < 0.01) activity, increasing the GSH (p < 0.001) level and decreasing the TBARS (p < 0.001) level of whole brain. Moreover TAPH has shown the significant Monoamine oxidase-A (MAO-A) inhibition action (p < 0.001), hence it reduces the metabolism of epinephrine, 5-HT and other monoamines and enhances the action of these neurotransmitters indirectly; this adrenergic system plays an important role in learning and memory. Further, TAPH (5 mg kg(-1)) protect the DNA fragmentation of frontotemporal cortex of the brain from hypoxic effect induced by Sodium nitrite in Gel Electrophoresis studies. The results were comparable to their respective standards. Hence, harmine alkaloids are potential enough to utilize in the management of Neurodegenerative disorders of the type Alzheimer's diseases.

  10. Quantitation of N,N-dimethyltryptamine and harmala alkaloids in human plasma after oral dosing with ayahuasca.

    PubMed

    Callaway, J C; Raymon, L P; Hearn, W L; McKenna, D J; Grob, C S; Brito, G S; Mash, D C

    1996-10-01

    Harmine, harmaline, tetrahydroharmine (THH), and N,N-dimethyltryptamine (DMT) were quantitated in plasma from 15 healthy male volunteers after the ingestion of ayahuasca, a beverage that has been used for religious purposes in Brazil since pre-Columbian times. A growing awareness of the interest in this ancient shamanistic practice in modern urban cultures and the widespread popular dissemination of the inebriant effects and type and sources of the plant admixtures used to prepare the beverage have provided additional impetus for this study. The three harmala alkaloids were quantitated from protein-precipitated plasma by high-performance liquid chromatography using fluorescence detection. Recovery from blank human plasma was quantitative, and the limit of quantitation (LOQ) was below 2 ng/mL of plasma for each of the harmala alkaloids. Standard concentrations ranged from 10 to 250 ng/mL for harmine and THH and from 1.0 to 25.0 ng/mL for harmaline, respectively. Linearity was observed for harmine, harmaline, and THH within these respective ranges. The highest concentrations of harmala alkaloids in human plasma were found to be 222.3 ng/mL for harmine, 134.5 ng/mL for THH, and 9.4 ng/mL for harmaline. DMT was quantitated by gas chromatography using nitrogen-phosphorus detection after liquid-liquid extraction with diphenhydramine as an internal standard. DMT recovery was quantitative, and the limit of detection and LOQ were 0.5 and 5 ng/mL, respectively. Linearity for DMT was observed from 5 to 1000 ng/mL. The one-step extraction method for DMT and the protein precipitation method for the three harmala alkaloids afford rapid, sensitive, and quantitative analyses of these alkaloids with minimal analyte loss. The analytical methods also may be applicable to other matrices, including whole blood and urine samples and homogenized tissue specimens. These are the first reported observations of DMT and harmala alkaloids in plasma after ritual ingestion of ayahuasca.

  11. Effects of tryptophan derivatives and β-carboline alkaloids on radiation- and peroxide-induced transformations of ethanol

    NASA Astrophysics Data System (ADS)

    Sverdlov, R. L.; Brinkevich, S. D.; Shadyro, O. I.

    2014-05-01

    The subject of this study was investigation of interactions of tryptophan and its derivatives, including structurally related β-carboline alkaloids with oxygen- and carbon-centered radicals being formed during radiation- and peroxide-induced transformations of ethanol. It was shown that the above named compounds suppressed recombination and disproportionation reactions of α-hydroxyethyl radicals. The inhibitory effects of tryptophan, 5-hydroxytryptophan and serotonin were mainly realized by means of reduction and addition reactions, while those of β-carboline alkaloids - harmine, harmane and harmaline - were due to oxidation reactions. Melatonin displayed low reactivity towards α-hydroxyethyl radicals. Tryptophan derivatives and β-carboline alkaloids were found to inhibit radiation-induced oxidation of ethanol while being virtually not used up. The low transformation yields of tryptophan, 5-hydroxytryptophan and serotonin, as well as β-carboline alkaloids, indicate their capability of regeneration, which could occur on interaction of tryptophan with О-2 and НО2, or on oxidation of α-hydroxyethyl radicals by β-carboline alkaloids.

  12. Spectrofluorimetric determination of stoichiometry and association constants of the complexes of harmane and harmine with beta-cyclodextrin and chemically modified beta-cyclodextrins.

    PubMed

    Martín, L; León, A; Olives, A I; Del Castillo, B; Martín, M A

    2003-06-13

    The association characteristics of the inclusion complexes of the beta-carboline alkaloids harmane and harmine with beta-cyclodextrin (beta-CD) and chemically modified beta-cyclodextrins such as hydroxypropyl-beta-cyclodextrin (HPbeta-CD), 2,3-di-O-methyl-beta-cyclodextrin (DMbeta-CD) and 2,3,6-tri-O-methyl-beta-cyclodextrin (TMbeta-CD) are described. The association constants vary from 112 for harmine/DMbeta-CD to 418 for harmane/HPbeta-CD. The magnitude of the interactions between the host and the guest molecules depends on the chemical and geometrical characteristics of the guest molecules and therefore the association constants vary for the different cyclodextrin complexes. The steric hindrance is higher in the case of harmine due to the presence of methoxy group on the beta-carboline ring. The association obtained for the harmane complexes is stronger than the one observed for harmine complexes except in the case of harmine/TMbeta-CD. Important differences in the association constants were observed depending on the experimental variable used in the calculations (absolute value of fluorescence intensity or the ratio between the fluorescence intensities corresponding to the neutral and cationic forms). When fluorescence intensity values were considered, the association constants were higher than when the ratio of the emission intensity for the cationic and neutral species was used. These differences are a consequence of the co-existence of acid-base equilibria in the ground and in excited states together with the complexation equilibria. The existence of a proton transfer reaction in the excited states of harmane or harmine implies the need for the experimental dialysis procedure for separation of the complexes from free harmane or harmine. Such methodology allows quantitative results for stoichiometry determinations to be obtained, which show the existence of both 1:1 and 1:2 beta-carboline alkaloid:CD complexes with different solubility properties.

  13. Determination of harmane and harmine in human blood using reversed-phased high-performance liquid chromatography and fluorescence detection.

    PubMed

    Zheng, W; Wang, S; Barnes, L F; Guan, Y; Louis, E D

    2000-03-15

    A number of tremorogenic beta-carboline alkaloids have been found in common plant-derived foodstuffs, beverages, and inhaled substances. Because of their natural presence in the food chain, there is a growing concern regarding the potential risks of certain essential tremors associated with the long-term, low-level dietary exposure to these alkaloids. The purpose of this study was to develop an effective analytical method to determine blood levels of two major beta-carboline derivatives, harmane and harmine. Human blood was extracted with ethyl acetate and methyl-t-butyl ether (2:98) under an alkaline condition. After evaporation of organic solvent, the samples were reconstructed in methanol. The samples were fractionated on a 250 x 4.6-mm C18 reversed-phase column with an isocratic mobile system consisting of 17.5 mM potassium phosphate buffer (ph 6.5) and methanol (30:70), followed by an on-line fluorescence detection. The method had the detection limit to determine 206 and 81 pg/ml of harmane and harmine, respectively, in 10 ml of human blood. The intraday precision (C.V.) at 25 ng/ml was less than 6.7 and 3.4% for harmane and harmine, respectively. The interday precision was 7.3% for harmane and 5.4% for harmine. The method has proven sensitive, reproducible, and thus useful for both laboratory and clinical studies of beta-carboline toxicities. Copyright 2000 Academic Press.

  14. Determination of Harmane and Harmine in Human Blood Using Reversed-Phased High-Performance Liquid Chromatography and Fluorescence Detection

    PubMed Central

    Zheng, Wei; Wang, Shunzhen; Barnes, Livia F.; Guan, Yongbiao; Louis, Elan D.

    2014-01-01

    A number of tremorogenic β-carboline alkaloids have been found in common plant-derived foodstuffs, beverages, and inhaled substances. Because of their natural presence in the food chain, there is a growing concern regarding the potential risks of certain essen tial tremors associated with the long-term low-level dietary exposure to these alkaloids. The purpose of this study was to develop an effective analytical method to determine blood levels of two major β-car boline derivatives, harmane and harmine. Human blood was extracted with ethyl acetate and methyl-t-butyl ether (2:98) under an alkaline condition. After evaporation of organic solvent, the samples were re- constructed in methanol. The samples were fraction ated on a 250 × 4.6-mm C18 reversed-phase column with an isocratic mobile system consisting of 17.5 mM potassium phosphate buffer (ph 6.5) and methanol (30: 70), followed by an on-line fluorescence detection. The method had the detection limit to determine 206 and 81 pg/ml of harmane and harmine, respectively, in 10 ml of human blood. The intraday precision (C.V.) at 25 ng/ml was less than 6.7 and 3.4% for harmane and harmine, respectively. The interday precision was 7.3% for harmane and 5.4% for harmine. The method has proven sensitive, reproducible, and thus useful for both laboratory and clinical studies of β-carboline toxicities. PMID:10706780

  15. Antitrichomonal activity of Peganum harmala alkaloid extract against trichomoniasis in pigeon (Columba livia domestica).

    PubMed

    Tabari, M A; Youssefi, M R; Moghadamnia, A A

    2017-06-01

    1. This study was designed to evaluate the antitrichomonal effects of P. harmala alkaloid extract against T. gallinae, both in vitro and in vivo, as well as comparing it to that of metronidazole, conventional antitrichomonal medication and harmine and harmaline, the two alkaloids present in P. harmala. 2. T. gallinae were collected by the wet mount method from infected free-living pigeons. The in vitro assay was performed using multi-well plates containing test compounds in final concentrations of 5, 10, 15, 20, 30, 50 or 100 μg/ml. The in vivo assay was done on 60 experimentally infected pigeons dosed with metronidazole at 50 mg/kg body weight (BW) or alkaloids at 25 mg/kg BW. 3. The 24 h minimum inhibitory concentration (MIC) of alkaloid extract was 15 µg/ml while that of metronidazole was 50 µg/ml. Harmine and harmaline revealed 24 h MIC of 30 and 100 µg/ml, respectively. Treatment of infected pigeons with alkaloids led to a full recovery after 3 d but with metronidazole total eradication of trophozoites was not achieved. 4. In conclusion, data of the present study suggested P. harmala is a potent natural anti-trichomonal agent, effective against T. gallinae.

  16. [Screening of harmine tolerance/degrading bacteria from camel rumen].

    PubMed

    An, Dengdi; Zhu, Yanlei; Tang, Jing; Ye, Yongxia; Zeng, Xianchun

    2010-08-01

    Peganum harmala, a famous traditional Chinese drug, contains a variety of alkaloids and toxic for many animals. Camels mainly live in desert or semi-desert areas, with the robust gastrointestine system in digesting various feed including toxic plants without disease symptoms. Camel rumen content was used as the inoculant to inoculate medium M98-5 which contains 100 mg x L(-1) harmin and cultivated for 5 days. Upto 5 subculturings, strains that could degrading or tolerant harmine were isolated. Their conversion activity was determined by thin-layer chromatography. The taxonomic position of the strains were identified based on 16S rRNA sequences analysis. 15 out of the 29 isolates have harmine degrading activity. Most of the isolates are identified as the members of the Genera Lactobacillus (16 strains, 55%), Shigella (7 strains, 24%) and Bacillus (4 strains, 13.8%). Only one strain belong to genus Enterococcus and one belong to genus Megasphaera. The results indicated that the harmine tolerance/degrading communities of camel rumen are limited and only Lactobacillus have harmine-degrading activity.

  17. Simultaneous determination of alkaloids and flavonoids from aerial parts of Passiflora species and dietary supplements using UPLC-UV-MS and HPTLC

    USDA-ARS?s Scientific Manuscript database

    A rapid UPLC method was developed for the simultaneous analysis of five indole alkaloids (harmalol, harmol, harmane, harmaline and harmine) and four flavonoids (orientin, isoorientin, vitexin, and isovitexin) from the aerial parts of Passiflora incarnata L. (Passifloracea), different species of Pass...

  18. Ritualistic Use of Ayahuasca versus Street Use of Similar Substances Seized by the Police: A Key Factor Involved in the Potential for Intoxications and Overdose?

    PubMed

    Lanaro, Rafael; Calemi, Débora Bressanim de Aquino; Togni, Loraine Rezende; Costa, José Luiz; Yonamine, Maurício; Cazenave, Silvia de Oliveira Santos; Linardi, Alessandra

    2015-01-01

    The ritualistic use of ayahuasca is becoming a global phenomenon. This beverage contains a combination of monoamine oxidase inhibitors (harmine, harmaline, and tetrahydroharmine) and N,N-dimethyltryptamine, the main substance responsible for its visionary effect. The recreational use of similar alkaloids and N,N-dimethyltryptamine has increased in recent years, mainly because of their hallucinogenic effects. In the present study, the concentrations of psychoactive alkaloids in three powder samples seized by the São Paulo State Police and nine ayahuasca aqueous extracts were analyzed by HPLC-DAD in an attempt to distinguish between illicit drugs and the religious beverage. The alkaloids detected (μg/mL) in the ayahuasca aqueous extracts were N,N-dimethyltryptamine (402-2070.3), harmaline (27.5-181.3), harmine (294.5-2893.8), and tetrahydroharmine (849.5-2052.5), whereas, of the three powder samples, one contained only N,N-dimethyltryptamine (82% and 2% w/w, respectively) while the other contained only harmaline (16%, w/w) and harmine (12%, w/w). The ritualistic use of ayahuasca involves oral intake and the probability of overdose is minimized by serotonergic stimulation of vagal pathways, leading to vomiting and diarrhea. In contrast, the recreational use of N,N-dimethyltryptamine involves consumption mainly by smoking or inhalation, both of which markedly increase its bioavailability and the potential for intoxications.

  19. The alkaloids of Banisteriopsis caapi, the plant source of the Amazonian hallucinogen Ayahuasca, stimulate adult neurogenesis in vitro.

    PubMed

    Morales-García, Jose A; de la Fuente Revenga, Mario; Alonso-Gil, Sandra; Rodríguez-Franco, María Isabel; Feilding, Amanda; Perez-Castillo, Ana; Riba, Jordi

    2017-07-13

    Banisteriopsis caapi is the basic ingredient of ayahuasca, a psychotropic plant tea used in the Amazon for ritual and medicinal purposes, and by interested individuals worldwide. Animal studies and recent clinical research suggests that B. caapi preparations show antidepressant activity, a therapeutic effect that has been linked to hippocampal neurogenesis. Here we report that harmine, tetrahydroharmine and harmaline, the three main alkaloids present in B. caapi, and the harmine metabolite harmol, stimulate adult neurogenesis in vitro. In neurospheres prepared from progenitor cells obtained from the subventricular and the subgranular zones of adult mice brains, all compounds stimulated neural stem cell proliferation, migration, and differentiation into adult neurons. These findings suggest that modulation of brain plasticity could be a major contribution to the antidepressant effects of ayahuasca. They also expand the potential application of B. caapi alkaloids to other brain disorders that may benefit from stimulation of endogenous neural precursor niches.

  20. Relationship Between Blood Harmane and Harmine Concentrations in Familial Essential Tremor, Sporadic Essential Tremor and Controls

    PubMed Central

    Louis, Elan D.; Jiang, Wendy; Gerbin, Marina; Mullaney, Mary M.; Zheng, Wei

    2010-01-01

    Introduction Harmane, a potent tremor-producing β-carboline alkaloid, may play a role in the etiology of essential tremor (ET). Blood harmane concentrations are elevated in ET cases compared with controls yet the basis for this elevation remains unknown. Decreased metabolic conversion (harmane to harmine) is one possible explanation. Using a sample of >500 individuals, we hypothesized that defective metabolic conversion of harmane to harmine might underlie the observed elevated harmane concentration in ET, and therefore expected to find a higher harmane to harmine ratio in familial ET than in sporadic ET or controls. Methods Blood harmane and harmine concentrations were quantified by high performance liquid chromatography. Results There were 78 familial ET cases, 187 sporadic ET cases, and 276 controls. Blood harmane and harmine concentrations were correlated with one another (Spearman’s r = 0.24, p < 0.001). The mean (±SD) harmane/harmine ratio = 23.4 ± 90.9 (range = 0.1 – 987.5). The harmane/harmine ratio was highest in familial ET (46.7 ± 140.4), intermediate in sporadic ET (28.3 ± 108.1), and lowest in controls (13.5 ± 50.3)(p = 0.03). In familial ET cases, there was no association between this ratio and tremor severity (Spearman’s r = 0.08, p=0.48) or tremor duration (Spearman’s r = 0.14, p = 0.24). Conclusion The basis for the elevated blood harmane concentration, particularly in familial ET, is not known, although the current findings (highest harmane/harmine ratio in familial ET cases) lends support to the possibility that it could be the result of a genetically-driven reduction in harmane metabolism. PMID:20708029

  1. Relationship between blood harmane and harmine concentrations in familial essential tremor, sporadic essential tremor and controls.

    PubMed

    Louis, Elan D; Jiang, Wendy; Gerbin, Marina; Mullaney, Mary M; Zheng, Wei

    2010-12-01

    Harmane, a potent tremor-producing β-carboline alkaloid, may play a role in the etiology of essential tremor (ET). Blood harmane concentrations are elevated in ET cases compared with controls yet the basis for this elevation remains unknown. Decreased metabolic conversion (harmane to harmine) is one possible explanation. Using a sample of >500 individuals, we hypothesized that defective metabolic conversion of harmane to harmine might underlie the observed elevated harmane concentration in ET, and therefore expected to find a higher harmane to harmine ratio in familial ET than in sporadic ET or controls. Blood harmane and harmine concentrations were quantified by high performance liquid chromatography. There were 78 familial ET cases, 187 sporadic ET cases, and 276 controls. Blood harmane and harmine concentrations were correlated with one another (Spearman's r=0.24, p<0.001). The mean (±SD) harmane/harmine ratio=23.4±90.9 (range=0.1-987.5). The harmane/harmine ratio was highest in familial ET (46.7±140.4), intermediate in sporadic ET (28.3±108.1), and lowest in controls (13.5±50.3) (p=0.03). In familial ET cases, there was no association between this ratio and tremor severity (Spearman's r=0.08, p=0.48) or tremor duration (Spearman's r=0.14, p=0.24). The basis for the elevated blood harmane concentration, particularly in familial ET, is not known, although the current findings (highest harmane/harmine ratio in familial ET cases) lends support to the possibility that it could be the result of a genetically-driven reduction in harmane metabolism. Copyright © 2010 Elsevier Inc. All rights reserved.

  2. Human pharmacology of ayahuasca: subjective and cardiovascular effects, monoamine metabolite excretion, and pharmacokinetics.

    PubMed

    Riba, Jordi; Valle, Marta; Urbano, Gloria; Yritia, Mercedes; Morte, Adelaida; Barbanoj, Manel J

    2003-07-01

    The effects of the South American psychotropic beverage ayahuasca on subjective and cardiovascular variables and urine monoamine metabolite excretion were evaluated, together with the drug's pharmacokinetic profile, in a double-blind placebo-controlled clinical trial. This pharmacologically complex tea, commonly obtained from Banisteriopsis caapi and Psychotria viridis, combines N,N-dimethyltryptamine (DMT), an orally labile psychedelic agent showing 5-hydroxytryptamine2A agonist activity, with monoamine oxidase (MAO)-inhibiting beta-carboline alkaloids (harmine, harmaline, and tetrahydroharmine). Eighteen volunteers with prior experience in the use of psychedelics received single oral doses of encapsulated freeze-dried ayahuasca (0.6 and 0.85 mg of DMT/kg of body weight) and placebo. Ayahuasca produced significant subjective effects, peaking between 1.5 and 2 h, involving perceptual modifications and increases in ratings of positive mood and activation. Diastolic blood pressure showed a significant increase at the high dose (9 mm Hg at 75 min), whereas systolic blood pressure and heart rate were moderately and nonsignificantly increased. Cmax values for DMT after the low and high ayahuasca doses were 12.14 ng/ml and 17.44 ng/ml, respectively. Tmax (median) was observed at 1.5 h after both doses. The Tmax for DMT coincided with the peak of subjective effects. Drug administration increased urinary normetanephrine excretion, but, contrary to the typical MAO-inhibitor effect profile, deaminated monoamine metabolite levels were not decreased. This and the negligible harmine plasma levels found suggest a predominantly peripheral (gastrointestinal and liver) site of action for harmine. MAO inhibition at this level would suffice to prevent first-pass metabolism of DMT and allow its access to systemic circulation and the central nervous system.

  3. Antidepressive and anxiolytic effects of ayahuasca: a systematic literature review of animal and human studies.

    PubMed

    Dos Santos, Rafael G; Osório, Flávia L; Crippa, José Alexandre S; Hallak, Jaime E C

    2016-03-01

    To conduct a systematic literature review of animal and human studies reporting anxiolytic or antidepressive effects of ayahuasca or some of its isolated alkaloids (dimethyltryptamine, harmine, tetrahydroharmine, and harmaline). Papers published until 3 April 2015 were retrieved from the PubMed, LILACS and SciELO databases following a comprehensive search strategy and using a predetermined set of criteria for article selection. Five hundred and fourteen studies were identified, of which 21 met the established criteria. Studies in animals have shown anxiolytic and antidepressive effects of ayahuasca, harmine, and harmaline, and experimental studies in humans and mental health assessments of experienced ayahuasca consumers also suggest that ayahuasca is associated with reductions in anxiety and depressive symptoms. A pilot study reported rapid antidepressive effects of a single ayahuasca dose in six patients with recurrent depression. Considering the need for new drugs that produce fewer adverse effects and are more effective in reducing anxiety and depression symptomatology, the described effects of ayahuasca and its alkaloids should be further investigated.

  4. Structure-Based Design and Synthesis of Harmine Derivatives with Different Selectivity Profiles in Kinase versus Monoamine Oxidase Inhibition.

    PubMed

    Bálint, Balázs; Wéber, Csaba; Cruzalegui, Francisco; Burbridge, Mike; Kotschy, Andras

    2017-06-21

    Dual-specificity tyrosine-phosphorylation-regulated kinase 1A (DYRK1A) is an emerging biological target with implications in diverse therapeutic areas such as neurological disorders (Down syndrome, in particular), metabolism, and oncology. Harmine, a natural product that selectively inhibits DYRK1A amongst kinases, could serve as a tool compound to better understand the biological processes that arise from DYRK1A inhibition. On the other hand, harmine is also a potent inhibitor of monoamine oxidase A (MAO-A). Using structure-based design, we synthesized a collection of harmine analogues with tunable selectivity toward these two enzymes. Modifications at the 7-position typically decreased affinity for DYRK1A, whereas substitution at the 9-position had a similar effect on MAO-A inhibition but DYRK1A inhibition was maintained. The resulting collection of compounds can help to understand the biological role of DYRK1A and also to assess the interference in the biological effect originating in MAO-A inhibition. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Identification of N,N-dimethyltryptamine and beta-carbolines in psychotropic ayahuasca beverage.

    PubMed

    Gambelunghe, Cristiana; Aroni, Kyriaki; Rossi, Riccardo; Moretti, Luca; Bacci, Mauro

    2008-10-01

    Recently many people have shown great interest in traditional indigenous practices and popular medicine, involving the ingestion of natural psychotropic drugs. We received a request to analyze and determine the nature of a dark green liquid with a dark brown plant sediment, which the police had seized at an airport and inside the home of a person belonging to the 'Santo Daime' religious movement. Gas chromatography/mass spectrometry analysis of the extract identified N,N-dimethyltryptamine, a potent hallucinogen, and the beta-carboline alkaloids harmine and harmaline, revealing monoamine oxidase A-inhibiting properties. These substances are typical components of Ayahuasca, a South American psychotropic beverage obtained by boiling the bark of the liana Banisteriopsis caapi together with the leaves of various admixture plants, principally Psychotria viridis.

  6. Metabolism and disposition of N,N-dimethyltryptamine and harmala alkaloids after oral administration of ayahuasca.

    PubMed

    Riba, Jordi; McIlhenny, Ethan H; Valle, Marta; Bouso, José Carlos; Barker, Steven A

    2012-01-01

    Ayahuasca is an Amazonian psychotropic plant tea obtained from Banisteriopsis caapi, which contains β-carboline alkaloids, chiefly harmine, harmaline and tetrahydroharmine. The tea usually incorporates the leaves of Psychotria viridis or Diplopterys cabrerana, which are rich in N,N-dimethyltryptamine (DMT), a psychedelic 5-HT(2A/1A/2C) agonist. The β-carbolines reversibly inhibit monoamine-oxidase (MAO), effectively preventing oxidative deamination of the orally labile DMT and allowing its absorption and access to the central nervous system. Despite increased use of the tea worldwide, the metabolism and excretion of DMT and the β-carbolines has not been studied systematically in humans following ingestion of ayahuasca. In the present work, we used an analytical method involving high performance liquid chromatography (HPLC)/electrospray ionization (ESI)/selected reaction monitoring (SRM)/tandem mass spectrometry(MS/MS) to characterize the metabolism and disposition of ayahuasca alkaloids in humans. Twenty-four-hour urine samples were obtained from 10 healthy male volunteers following administration of an oral dose of encapsulated freeze-dried ayahuasca (1.0 mg DMT/kg body weight). Results showed that less than 1% of the administered DMT dose was excreted unchanged. Around 50% was recovered as indole-3-acetic acid but also as DMT-N-oxide (10%) and other MAO-independent compounds. Recovery of DMT plus metabolites reached 68%. Harmol, harmalol, and tetrahydroharmol conjugates were abundant in urine. However, recoveries of each harmala alkaloid plus its O-demethylated metabolite varied greatly between 9 and 65%. The present results show the existence in humans of alternative metabolic routes for DMT other than biotransformation by MAO. Also that O-demethylation plus conjugation is an important but probably not the only metabolic route for the harmala alkaloids in humans. Copyright © 2012 John Wiley & Sons, Ltd.

  7. Effects of Ayahuasca and its Alkaloids on Drug Dependence: A Systematic Literature Review of Quantitative Studies in Animals and Humans.

    PubMed

    Nunes, Amanda A; Dos Santos, Rafael G; Osório, Flávia L; Sanches, Rafael F; Crippa, José Alexandre S; Hallak, Jaime E C

    2016-01-01

    Recently, the anti-addictive potential of ayahuasca, a dimethyltryptamine(DMT)- and β-carboline-rich hallucinogenic beverage traditionally used by indigenous groups of the Northwest Amazon and currently by syncretic churches worldwide, has received increased attention. To better evaluate this topic, we performed a systematic literature review using the PubMed database to find quantitative studies (using statistical analysis) that assessed the effects of ayahuasca or its components in drug-related symptoms or disorders. We found five animal studies (using harmaline, harmine, or ayahuasca) and five observational studies of regular ayahuasca consumers. All animal studies showed improvement of biochemical or behavioral parameters related to drug-induced disorders. Of the five human studies, four reported significant reductions of dependence symptoms or substance use, while one did not report significant results. The mechanisms responsible for the anti-addictive properties of ayahuasca and its alkaloids are not clarified, apparently involving both peripheral MAO-A inhibition by the β-carbolines and central agonism of DMT at 5-HT2A receptors expressed in brain regions related to the regulation of mood and emotions. Although results are promising, controlled studies are needed to replicate these preliminary findings.

  8. Monoamine Oxidase-A Inhibition and Associated Antioxidant Activity in Plant Extracts with Potential Antidepressant Actions

    PubMed Central

    Guillén, Hugo

    2018-01-01

    Monoamine oxidase (MAO) catalyzes the oxidative deamination of amines and neurotransmitters and is involved in mood disorders, depression, oxidative stress, and adverse pharmacological reactions. This work studies the inhibition of human MAO-A by Hypericum perforatum, Peganum harmala, and Lepidium meyenii, which are reported to improve and affect mood and mental conditions. Subsequently, the antioxidant activity associated with the inhibition of MAO is determined in plant extracts for the first time. H. perforatum inhibited human MAO-A, and extracts from flowers gave the highest inhibition (IC50 of 63.6 μg/mL). Plant extracts were analyzed by HPLC-DAD-MS and contained pseudohypericin, hypericin, hyperforin, adhyperforin, hyperfirin, and flavonoids. Hyperforin did not inhibit human MAO-A and hypericin was a poor inhibitor of this isoenzyme. Quercetin and flavonoids significantly contributed to MAO-A inhibition. P. harmala seed extracts highly inhibited MAO-A (IC50 of 49.9 μg/L), being a thousand times more potent than H. perforatum extracts owing to its content of β-carboline alkaloids (harmaline and harmine). L. meyenii root (maca) extracts did not inhibit MAO-A. These plants may exert protective actions related to antioxidant effects. Results in this work show that P. harmala and H. perforatum extracts exhibit antioxidant activity associated with the inhibition of MAO (i.e., lower production of H2O2). PMID:29568754

  9. An ELISA DYRK1A non-radioactive kinase assay suitable for the characterization of inhibitors

    PubMed Central

    Liu, Yong; Adayev, Tatyana; Hwang, Yu-Wen

    2017-01-01

    The DYRK1A (dual specificity tyrosine phosphorylation-regulated kinase 1A) gene encodes a proline-directed Ser/Thr kinase. Elevated expression and/or altered distribution of the kinase have been implicated in the neurological impairments associated with Down syndrome (DS) and Alzheimer’s disease (AD). Consequently, DYRK1A inhibition has been of significant interest as a potential strategy for therapeutic intervention of DS and AD. Many classes of novel inhibitors have been described in the past decade. Although non-radioactive methods for analyzing DYRK1A inhibition have been developed, methods employing radioactive tracers are still commonly used for quantitative characterization of DYRK1A inhibitors. Here, we present a non-radioactive ELISA assay based on the detection of DYRK1A-phosphorylated dynamin 1a fragment using a phosphorylation site-specific antibody. The assay was verified by the use of two well-characterized DYRK1A inhibitors, epigallocatechin gallate (EGCG) and harmine. The IC 50s for EGCG and harmine determined by the ELISA method were found to be comparable to those previously measured by radioactive tracing methods.  Furthermore, we determined the mode of inhibition for EGCG and harmine by a modification of the ELISA assay. This assay confirms the mode of inhibition of EGCG (non-ATP-competitive) and harmine (ATP-competitive), as previously determined. We conclude that the ELISA platform demonstrated here is a viable alternative to the traditional radioactive tracer assays for analyzing DYRK1A inhibitors. PMID:28163906

  10. Photochemistry of the alkaloids eudistomin N (6-bromo-nor-harmane) and eudistomin O (8-bromo-nor-harmane) and other bromo-beta-carbolines.

    PubMed

    Tarzi, Olga I; Erra-Balsells, Rosa

    2005-07-01

    The UV-absorption, fluorescence excitation and emission spectra of the alkaloids eudistomin N (6-bromo-nor-harmane) and eudistomin O (8-bromo-nor-harmane) were described. In order to perform a comparative analysis, we also studied other bromo-beta-carbolines and the corresponding non-substituted-carboline. Thus, 6-bromo-, 8-bromo-, 6,8-dibromo-, 3,6-dibromo- and 3,6,8-tribromo-derivatives of nor-harmane, harmane and harmine were studied. These studies were performed in EtOH and in EtOH + 1% perchloric acid solutions (pa). Furthermore, fluorescence quantum yields (phi(f)) in acetonitrile and acetonitrile + 1% perchloric acid solutions at 298 K were measured. The HOMO and LUMO energy, the positions (lambda(max)) and oscillator strength (f) of the (1)S(1) <--(1)S(0) band for all the neutral and protonated beta-carbolines studied was calculated and compared with the experimental data. The pK(a) values in aqueous solution for eudistomin N and O (6-bromo- and 8-bromo-nor-harmane), for 6-bromo-, 8-bromo- and 6,8-dibromo-harmane, and for 6-bromo- and 8-bromo-harmine were spectrophotometrically measured (pK((a)(H(2)O))) . The change of the acid-base character of these compounds on going from the ground state (pK(a)) to the first electronic excited singlet state (pK(a)(*)) as DeltapK(a) = pK(a)(*)-pK(a) = 0.625 Deltanu /T, in ethanol solution at 298 K were calculated (DeltapK(a(EtOH))). Proton affinities (PA) for all the compounds studied defined as minus the enthalpy change of the reaction M+H(+)--> MH(+) (gas state) were calculated. Basicity relative to pyridine (DeltaH(rPy)) defined as the enthalpy change of the isodesmic reaction MH(+) + Py--> M + PyH(+) (gas state) was also calculated. The effect of bromine as substituent on the properties of the beta-carboline moiety in nor-harmane, harmane and harmine is discussed.

  11. Antifungal activity of β-carbolines on Penicillium digitatum and Botrytis cinerea.

    PubMed

    Olmedo, Gabriela M; Cerioni, Luciana; González, M Micaela; Cabrerizo, Franco M; Rapisarda, Viviana A; Volentini, Sabrina I

    2017-04-01

    β-carbolines (βCs) are alkaloids widely distributed in nature that have demonstrated antimicrobial properties. Here, we tested in vitro six βCs against Penicillium digitatum and Botrytis cinerea, causal agents of postharvest diseases on fruit and vegetables. Full aromatic βCs (harmine, harmol, norharmane and harmane) exhibited a marked inhibitory effect on conidia germination at concentrations between 0.5 and 1 mM, while dihydro-βCs (harmalina and harmalol) only caused germination delay. Harmol showed the highest inhibitory effect on both fungal pathogens. After 24 h of exposure to 1 mM harmol, conidia revealed a severe cellular damage, exhibiting disorganized cytoplasm and thickened cell wall. Harmol antimicrobial effect was fungicidal on B. cinerea, while it was fungistatic on P. digitatum. Conidia membrane permeabilization was detected in treatments with harmol at sub-inhibitory and inhibitory concentrations, for both pathogens. In addition, residual infectivity of P. digitatum on lemons and B. cinerea on blueberries was significantly reduced after exposure to this alkaloid. It also inhibited mycelial growth, preventing sporulation at the highest concentration tested. These results indicate that harmol might be a promising candidate as a new antifungal molecule to control causal agents of fruit diseases. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Bacillus species (BT42) isolated from Coffea arabica L. rhizosphere antagonizes Colletotrichum gloeosporioides and Fusarium oxysporum and also exhibits multiple plant growth promoting activity.

    PubMed

    Kejela, Tekalign; Thakkar, Vasudev R; Thakor, Parth

    2016-11-18

    Colletotrichum and Fusarium species are among pathogenic fungi widely affecting Coffea arabica L., resulting in major yield loss. In the present study, we aimed to isolate bacteria from root rhizosphere of the same plant that is capable of antagonizing Colletotrichum gloeosporioides and Fusarium oxysporum as well as promotes plant growth. A total of 42 Bacillus species were isolated, one of the isolates named BT42 showed maximum radial mycelial growth inhibition against Colletotrichum gloeosporioides (78%) and Fusarium oxysporum (86%). BT42 increased germination of Coffee arabica L. seeds by 38.89%, decreased disease incidence due to infection of Colletotrichum gloeosporioides to 2.77% and due to infection of Fusarium oxysporum to 0 (p < 0.001). The isolate BT42 showed multiple growth-promoting traits. The isolate showed maximum similarity with Bacillus amyloliquefaciens. Bacillus species (BT42), isolated in the present work was found to be capable of antagonizing the pathogenic effects of Colletotrichum gloeosporioides and Fusarium oxysporum. The mechanism of action of inhibition of the pathogenic fungi found to be synergistic effects of secondary metabolites, lytic enzymes, and siderophores. The major inhibitory secondary metabolite identified as harmine (β-carboline alkaloids).

  13. Gas chromatographic analysis of dimethyltryptamine and beta-carboline alkaloids in ayahuasca, an Amazonian psychoactive plant beverage.

    PubMed

    Pires, Ana Paula Salum; De Oliveira, Carolina Dizioli Rodrigues; Moura, Sidnei; Dörr, Felipe Augusto; Silva, Wagner Abreu E; Yonamine, Mauricio

    2009-01-01

    Ayahuasca is obtained by infusing the pounded stems of Banisteriopsis caapi in combination with the leaves of Psychotria viridis. P. viridis is rich in the psychedelic indole N,N-dimethyltryptamine, whereas B. caapi contains substantial amounts of beta-carboline alkaloids, mainly harmine, harmaline and tetrahydroharmine, which are monoamine-oxidase inhibitors. Because of differences in composition in ayahuasca preparations, a method to measure their main active constituents is needed. To develop a gas chromatographic method for the simultaneous determination of dimethyltryptamine and the main beta-carbolines found in ayahuasca preparations. The alkaloids were extracted by means of solid phase extraction (C(18)) and detected by gas chromatography with nitrogen/phosphorous detector. The lower limit of quantification (LLOQ) was 0.02 mg/mL for all analytes. The calibration curves were linear over a concentration range of 0.02-4.0 mg/mL (r(2 )> 0.99). The method was also precise (RSD < 10%). A simple gas chromatographic method to determine the main alkaloids found in ayahuasca was developed and validated. The method can be useful to estimate administered doses in animals and humans for further pharmacological and toxicological investigations of ayahuasca. Copyright (c) 2009 John Wiley & Sons, Ltd.

  14. Harmine treatment enhances short-term memory in old rats: Dissociation of cognition and the ability to perform the procedural requirements of maze testing.

    PubMed

    Mennenga, Sarah E; Gerson, Julia E; Dunckley, Travis; Bimonte-Nelson, Heather A

    2015-01-01

    Harmine is a naturally occurring monoamine oxidase inhibitor that has recently been shown to selectively inhibit the dual-specificity tyrosine-(Y)-phosphorylation-regulated kinase 1A (DYRK1A). We investigated the cognitive effects of 1mg (low) Harmine and 5mg (high) Harmine using the delayed-match-to-sample (DMS) asymmetrical 3-choice water maze task to evaluate spatial working and recent memory, and the Morris water maze task (MM) to test spatial reference memory. Animals were also tested on the visible platform task, a water-escape task with the same motor, motivational, and reinforcement components as the other tasks used to evaluate cognition, but differing in its greater simplicity and that the platform was visible above the surface of the water. A subset of the Harmine-high treated animals showed clear motor impairments on all behavioral tasks, and the visible platform task confirmed a lack of competence to perform the procedural components of water maze testing. After excluding animals from the high dose group that could not perform the procedural components of a swim task, it was revealed that both high- and low-dose treatment with Harmine enhanced performance on the latter portion of DMS testing, but had no effect on MM performance. Thus, this study demonstrates the importance of confirming motor and visual competence when studying animal cognition, and verifies the one-day visible platform task as a reliable measure of ability to perform the procedural components necessary for completion of a swim task. Copyright © 2014. Published by Elsevier Inc.

  15. Analogous β-Carboline Alkaloids Harmaline and Harmine Ameliorate Scopolamine-Induced Cognition Dysfunction by Attenuating Acetylcholinesterase Activity, Oxidative Stress, and Inflammation in Mice

    PubMed Central

    Li, Shu-Ping; Wang, Yu-Wen; Qi, Sheng-Lan; Zhang, Yun-Peng; Deng, Gang; Ding, Wen-Zheng; Ma, Chao; Lin, Qi-Yan; Guan, Hui-Da; Liu, Wei; Cheng, Xue-Mei; Wang, Chang-Hong

    2018-01-01

    The analogous β-carboline alkaloids, harmaline (HAL) and harmine (HAR), possess a variety of biological properties, including acetylcholinesterase (AChE) inhibitory activity, antioxidant, anti-inflammatory, and many others, and have great potential for treating Alzheimer’s disease (AD). However, studies have showed that the two compounds have similar structures and in vitro AChE inhibitory activities but with significant difference in bioavailability. The objective of this study was to comparatively investigate the effects of HAL and HAR in memory deficits of scopolamine-induced mice. In the present study, mice were pretreated with HAL (2, 5, and 10 mg/kg), HAR (10, 20, and 30 mg/kg) and donepezil (5 mg/kg) by intragastrically for 7 days, and were daily intraperitoneal injected with scopolamine (1 mg/kg) to induce memory deficits and then subjected to behavioral evaluation by Morris water maze. To further elucidate the underlying mechanisms of HAL and HAR in improving learning and memory, the levels of various biochemical factors and protein expressions related to cholinergic function, oxidative stress, and inflammation were examined. The results showed that HAL and HAR could effectively ameliorate memory deficits in scopolamine-induced mice. Both of them exhibited an enhancement in cholinergic function by inhibiting AChE and inducing choline acetyltransferase (ChAT) activities, and antioxidant defense via increasing the antioxidant enzymes activities of superoxide dismutase and glutathione peroxidase, and reducing maleic diadehyde production, and anti-inflammatory effects through suppressing myeloperoxidase, tumor necrosis factor α, and nitric oxide as well as modulation of critical neurotransmitters such as acetylcholine (ACh), choline (Ch), L-tryptophan (L-Trp), 5-hydroxytryptamine (5-HT), γ-aminobutyric acid (γ-GABA), and L-glutamic acid (L-Glu). Furthermore, the regulations of HAL on cholinergic function, inflammation, and neurotransmitters were more striking than those of HAR, and HAL manifested a comparable antioxidant capacity to HAR. Remarkably, the effective dosage of HAL (2 mg/kg) was far lower than that of HAR (20 mg/kg), which probably due to the evidently differences in the bioavailability and metabolic stability of the two analogs. Taken together, all these results revealed that HAL may be a promising candidate compound with better anti-amnesic effects and pharmacokinetic characteristics for the treatments of AD and related diseases. PMID:29755345

  16. [11C]Harmine Binding to Brain Monoamine Oxidase A: Test-Retest Properties and Noninvasive Quantification.

    PubMed

    Zanderigo, Francesca; D'Agostino, Alexandra E; Joshi, Nandita; Schain, Martin; Kumar, Dileep; Parsey, Ramin V; DeLorenzo, Christine; Mann, J John

    2018-02-08

    Inhibition of the isoform A of monoamine oxidase (MAO-A), a mitochondrial enzyme catalyzing deamination of monoamine neurotransmitters, is useful in treatment of depression and anxiety disorders. [ 11 C]harmine, a MAO-A PET radioligand, has been used to study mood disorders and antidepressant treatment. However, [ 11 C]harmine binding test-retest characteristics have to date only been partially investigated. Furthermore, since MAO-A is ubiquitously expressed, no reference region is available, thus requiring arterial blood sampling during PET scanning. Here, we investigate [ 11 C]harmine binding measurements test-retest properties; assess effects of using a minimally invasive input function estimation on binding quantification and repeatability; and explore binding potentials estimation using a reference region-free approach. Quantification of [ 11 C]harmine distribution volume (V T ) via kinetic models and graphical analyses was compared based on absolute test-retest percent difference (TRPD), intraclass correlation coefficient (ICC), and identifiability. The optimal procedure was also used with a simultaneously estimated input function in place of the measured curve. Lastly, an approach for binding potentials quantification in absence of a reference region was evaluated. [ 11 C]harmine V T estimates quantified using arterial blood and kinetic modeling showed average absolute TRPD values of 7.7 to 15.6 %, and ICC values between 0.56 and 0.86, across brain regions. Using simultaneous estimation (SIME) of input function resulted in V T estimates close to those obtained using arterial input function (r = 0.951, slope = 1.073, intercept = - 1.037), with numerically but not statistically higher test-retest difference (range 16.6 to 22.0 %), but with overall poor ICC values, between 0.30 and 0.57. Prospective studies using [ 11 C]harmine are possible given its test-retest repeatability when binding is quantified using arterial blood. Results with SIME of input function show potential for simplifying data acquisition by replacing arterial catheterization with one arterial blood sample at 20 min post-injection. Estimation of [ 11 C]harmine binding potentials remains a challenge that warrants further investigation.

  17. Developments in harmine pharmacology--implications for ayahuasca use and drug-dependence treatment.

    PubMed

    Brierley, Daniel I; Davidson, Colin

    2012-12-03

    Ayahuasca is a hallucinogenic botanical mixture originating in the Amazon area where it is used ritually, but is now being taken globally. The 2 main constituents of ayahuasca are N,N-dimethyltryptamine (DMT), a hallucinogen, and harmine, a monoamine oxidase inhibitor (MAOI) which attenuates the breakdown of DMT, which would otherwise be broken down very quickly after oral consumption. Recent developments in ayahuasca use include the sale of these compounds on the internet and the substitution of related botanical (anahuasca) or synthetic (pharmahuasca) compounds to achieve the same desired hallucinogenic effects. One intriguing result of ayahuasca use appears to be improved mental health and a reduction in recidivism to alternate (alcohol, cocaine) drug use. In this review we discuss the pharmacology of ayahuasca, with a focus on harmine, and suggest pharmacological mechanisms for the putative reduction in recidivism to alcohol and cocaine misuse. These pharmacological mechanisms include MAOI, effects at 5-HT(2A) and imidazoline receptors and inhibition of dual-specificity tyrosine-phosphorylation regulated kinase 1A (DYRK1A) and the dopamine transporter. We also speculate on the therapeutic potential of harmine in other CNS conditions. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. A rapid and simple method for the determination of psychoactive alkaloids by CE-UV: application to Peganum Harmala seed infusions.

    PubMed

    Tascón, Marcos; Benavente, Fernando; Vizioli, Nora M; Gagliardi, Leonardo G

    2017-04-01

    The β-carboline alkaloids of the harmala (HAlks) group are compounds widely spread in many natural sources, but found at relatively high levels in some specific plants like Peganum harmala (Syrian rue) or Banisteriopsis caapi. HAlks are a reversible Mono Amino Oxidase type A Inhibitor (MAOI) and, as a consequence, these plants or their extracts can be used to produce psychotropic effects when are combined with psychotropic drugs based on amino groups. Since the occurrence and the levels of the HAlks in natural sources are subject to significant variability, more widespread use is not clinical but recreational or ritual, for example B. caapi is a known part of the Ayahuasca ritual mixture. The lack of simple methods to control the variable levels of these compounds in natural sources restricts the possibilities to dose in strict quantities and, as a consequence, limits its use with pharmacological or clinical purposes. In this work, we present a fast, simple, and robust method of quantifying simultaneously the six HAlks more frequently found in plants, i.e., harmine, harmaline, harmol, harmalol, harmane, and norharmane, by capillary electrophoresis instruments equipped with the more common detector UV. The method is applied to analyze these HAlks in P. Harmala seeds infusion which is a frequent intake form for these HAlks. The method is validated in three different instruments in order to evaluate the transferability and to compare the performances between them. In this case, harmaline, harmine, and harmol were found in the infusion samples. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  19. Pharmacokinetic study of harmane and its 10 metabolites in rat after intravenous and oral administration by UPLC-ESI-MS/MS.

    PubMed

    Li, Shuping; Teng, Liang; Liu, Wei; Cheng, Xuemei; Jiang, Bo; Wang, Zhengtao; Wang, Chang-Hong

    2016-09-01

    Context The β-carboline alkaloid harmane is widely distributed in common foods, beverages and hallucinogenic plants. Harmane exerts potential in therapies for Alzheimer's and depression diseases. However, little information on its dynamic metabolic profiles and pharmacokinetics in vivo is currently available. Objective This study investigates the dynamic metabolic profiles and pharmacokinetic properties of harmane and its metabolites in rats in vivo. Materials and methods A highly selective, sensitive and rapid ultra-performance liquid chromatography combined with electrospray ionization tandem mass spectrometry (UPLC-ESI-MS/MS) method was developed and well-validated for simultaneous quantitative determination of harmane and its uncertain endogenous metabolite harmine, as well as for semiquantitative determination of 10 harmane metabolites in rats after intravenous injection and oral administration of harmane at 1.0 and 30.0 mg/kg, respectively. Results The calibration curves of harmane and harmine showed excellent linearity within the concentration range of 1-2000 ng/mL with acceptable accuracy, precision, selectivity, recovery, matrix effect and stability. Ten metabolites, including harmane but not harmine, were detected and identified after intravenous and oral administration of harmane. The absolute bioavailability of harmane following an oral dose was 19.41 ± 3.97%. According to the AUC0-t values of all the metabolites, the metabolic levels of phase II metabolites were higher than those of phase I metabolites, and the sulphation pathways were the dominant metabolic routes for harmane in both routes of administration. Discussion and conclusion The pharmacokinetic properties of harmane and its 10 metabolites in rats were determined. Sulphate conjugation was the predominant metabolic process of harmane in rats.

  20. Isoform selectivity of harmine-conjugated 1,2,3-triazoles against human monoamine oxidase.

    PubMed

    Haider, Saqlain; Alhusban, Manal; Chaurasiya, Narayan D; Tekwani, Babu L; Chittiboyina, Amar G; Khan, Ikhlas A

    2018-05-23

    There is little information available on the monoamine oxidase isoform selectivity of N-alkyl harmine analogs, which exhibit a myriad of activities including monoamine oxidase isoform A (MAO-A), tyrosine-phosphorylation-regulated kinase (DYRK1A) and cytotoxicity to several select cancer cell lines. Compounds 3e and 4c exhibited an IC 50 of 0.83 ± 0.03 and 0.43 ± 0.002 μM against MAO-A and an IC 50 of 0.26 ± 0.04 and 0.36 ± 0.001 μM against MAO-B, respectively. Molecular docking studies revealed π-π interactions between the synthesized molecules and aromatic amino acid residues. Conclusion & future perspective: The current study delineates the structural requirements for MAO-A selectivity and such information may be helpful in designing selective analogs for kinase, DYRK1A and harmine-based cytotoxics without apparent MAO enzyme inhibition.

  1. Determination of phytochemicals, antioxidant activity and total phenolic content in Andrographis paniculata using chromatographic methods.

    PubMed

    Kurzawa, Marzanna; Filipiak-Szok, Anna; Kłodzińska, Ewa; Szłyk, Edward

    2015-07-15

    Antioxidant activity, total phenolics content and selected phytochemicals (alkaloids and andrographolides) were determined in Andrographis paniculata and in dietary supplements containing this plant. Antioxidant activity was measured by FRAP, CUPRAC and DPPH procedures and ranged from 503.36 to 6164.09μmol TE/100g d.m. depending on methods, part of plant and kind of dietary supplement. The total phenolics (175.13-1723.79mg GAE/100g) and andrographolides content (19.44-85.13mg/g) in the studied samples were correlated with antioxidant activities determined by CUPRAC, FRAP and DPPH (r>0.95, p<0.05 level). Purine alkaloids: caffeine, theobromine, theophylline and indole alkaloids: harmine, harmane, harmol, yohimbine, brucine and strychnine were detected in the studied samples by different chromatographic techniques (HPLC-DAD, LC-MS/MS, GC-MS). The total alkaloids content in APs-roots and APs-leaves varies from 50.71±0.36mg/g d.m. to 78.71±0.48mg/g d.m., respectively, whereas for dietary supplements (Pn and DK) TAC was found between 19.52±0.15mg/g and 22.18±0.15mg/g d.m.. The highest concentration of andrographolides was found in A. paniculata leaves, whereas the lowest in dietary supplement Pn. Moreover principal component analysis, cluster analysis and one-way ANOVA follow by Duncan's tests were also performed. Copyright © 2015. Published by Elsevier B.V.

  2. Microwave-assisted extraction of three bioactive alkaloids from Peganum harmala L. and their acaricidal activity against Psoroptes cuniculi in vitro.

    PubMed

    Shang, Xiaofei; Guo, Xiao; Li, Bing; Pan, Hu; Zhang, Jiyu; Zhang, Yu; Miao, Xiaolou

    2016-11-04

    Peganum harmala L. is a perennial herbaceous, glabrous plant that grows in semi-arid conditions, steppe areas and sandy soils. It is used to treat fever, diarrhoea, subcutaneous tumours, arthralgia, rheumatism, cough, amnesia and parasitic diseases in folk medicines. In this paper, we aimed to develop a simpler and faster method for the extraction of three alkaloids from Peganum harmala L. than other conventional methods by optimizing the parameters of a microwave-assisted extraction (MAE) method, and to investigate the acaricidal activities of three compounds against Psoroptes cuniculi. After optimizing the operating parameters with the single factor experiment and a Box-Behnken design combined with a response-surface methodology, a MAE method was developed for extracting the alkaloids from the seeds, and a high-performance liquid chromatography was used to quantify these compounds. An in vitro experiments were used to study the acaricidal activities. The optimal conditions of MAE method were as follows: liquid-to-solid ratio 31.3:1mL/g, ethanol concentration 75.5%, extraction time 10.1min, temperature 80.7°C, and microwave power 600W. Compared to the heat reflux extraction (HRE, 60min) and the ultrasonic-assisted extraction (UAE, 30min) methods, MAE method require the shortest time (10min) and obtain the highest yield of three compounds (61.9mg/g). Meanwhile, the LT 50 values for the vasicine (1.25 and 2.5mg/mL), harmaline (1.25 and 2.5mg/mL), harmine (1.25 and 2.5mg/mL) and MAE extract (100mg/mL) against Psoroptes cuniculi were 12.188h, 9.791h, 11.994h, 10.095h, 11.293h, 9.273h and 17.322h, respectively. The MAE method developed exhibited the highest extraction yield within the shortest time and thus could be used to extract the active compounds from Peganum harmala L. on an industrial basis. As the active compounds of Peganum harmala L., vasicine, harmalin and harmine presented the marked acaricidal activities against Psoroptes cuniculi, and could be widely applied for the treatments of acariasis in animals. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. Isolation, Identification, and Xanthine Oxidase Inhibition Activity of Alkaloid Compound from Peperomia pellucida

    NASA Astrophysics Data System (ADS)

    Fachriyah, E.; Ghifari, M. A.; Anam, K.

    2018-04-01

    The research of the isolation and xanthine oxidation inhibition activity of alkaloid compound from Peperomia pellucida has been carried out. Alkaloid extract is isolated by column chromatography and preparative TLC. Alkaloid isolate is identified spectroscopically by UV-Vis spectrophotometer, FT-IR, and LC-MS/MS. Xanthine oxidase inhibition activity is carried out by in vitro assay. The result showed that the alkaloid isolated probably has piperidine basic structure. The alkaloid isolate has N-H, C-H, C = C, C = O, C-N, C-O-C groups and the aromatic ring. The IC50 values of ethanol and alkaloid extract are 71.6658 ppm and 76.3318 ppm, respectively. Alkaloid extract of Peperomia pellucida showed higher activity than ethanol extract.

  4. Chemical fingerprint and simultaneous determination of alkaloids and flavonoids in aerial parts of genus Peganum indigenous to China based on HPLC-UV: application of analysis on secondary metabolites accumulation.

    PubMed

    Wen, Fangfang; Cheng, Xuemei; Liu, Wei; Xuan, Min; Zhang, Lei; Zhao, Xin; Shan, Meng; Li, Yan; Teng, Liang; Wang, Zhengtao; Wang, Changhong

    2014-12-01

    The aerial parts of genus Peganum are officially used in traditional Chinese medicine. The paper aims to establish a high-performance liquid chromatography (HPLC) method for fingerprint analysis and simultaneous determination of three alkaloids and two flavonoids in aerial parts of genus Peganum, and to analyze accumulative difference of secondary metabolites in inter-species, individuals of plants, inter-/intra-population and from different growing seasons. HPLC analysis was performed on a C18 column with gradient elution using 0.1% trifloroacetic acid and acetonitrile as mobile phase and detected at 265 nm, by conventional methodology validation. For fingerprint analysis, the RSDs of relative retention time and relative peak area of the characteristic peaks were within 0.07-0.78 and 0.94-9.09%, respectively. For simultaneous determination of vasicine, harmaline, harmine, deacetylpeganetin and peganetin, all calibration curves showed good linearity (r > 0.9990) within the test range. The relative standard deviations of precision, repeatability and stability test did not exceed 2.37, 2.68 and 2.67%, respectively. The average recoveries for the five analytes were between 96.47 and 101.20%. HPLC fingerprints play a minor role in authenticating and differentiating the herbs of different species of genus Peganum. However, the secondary metabolites levels of alkaloids and flavonoids in aerial parts of genus Peganum rely on species-, habitat-, and growth season-dependent accumulation. Copyright © 2014 John Wiley & Sons, Ltd.

  5. Short Communication: Evaluation of antimicrobial activities of Harmine, Harmaline, Nicotine and their complexes.

    PubMed

    Salman, Saad; Idrees, Fariha; Pervaiz, Sadia; Shah, Fahad Hassan; Badshah, Sareer; Abdullah; Usman, Mohammad; Halimi, Sm Ashhad; Idrees, Jawaria

    2016-07-01

    Harmine, Harmaline, Nicotine and its various complexes synthesized have been characterized by physical, spectral and analytical methods and curtained for in-vitro antimicrobial activity against different bacterial and fungal species at two different concentrations i.e.100μ/100µl and 200μ/100µl dose level respectively. Analysis showed that Nicotine, Zinc-Nico, Cd-Nico, Hg-Nico, Ni-Nico, Cu-Nico, Co-Nico, Harmine, and Harmaline having conc. of 100ug/ 100ul had antibacterial activity on zero, 5, 4, 10, zero, 5, 7, zero, zero strain of bacteria having an average of zero (SD=0.0000), 15.2000 (SD=1.30384), 18.2500 (SD=3.30404), 20.2000 (SD=1.39841), zero (SD=0.0000), 14.6000 (SD=0.89443), 15.8571 (SD=1.34519), zero (SD=0.0000), zero (SD=0.0000) respectively. Zinc (II) chloride, Cadmium (II) Iodide, Mercury (II) chloride, Nickel (II) chloride, Copper (II) chloride, Cobalt (II) chloride, Mercury (II) chloride, Mercury (II) harmine, Mercury (II) harmaline at 100ug/100ul is valid for 7, 8, 9, 2, 7, 8, 9, 10, 8 strains of bacteria with an average of 7.1429 (SD=1.06904), 10.0000 (SD=5.01427), 14.8889 (SD=6.00925), 6.0000 (SD=0.0000), 8.5714 (SD=4.27618), 8.2500 (SD=0.88641), 14.8889 (SD=6.00925), 18.6000 (SD=2.45855), 18.5000 (SD=1.85164) respectively. The above given compounds at the conc. of 200 μ/100ul is valid for 10, 9, 10, 8, 8, 10, 10, 10, 10 strains of bacteria with an average of 8.1 (SD=1.66333), 11.7778 (SD=5.28625), 16.1000 (SD=6.36745), 6.5000 (SD=0.92582), 9.7500 (SD=4.43203), 9.9000 (SD=2.76687), 16.1000 (SD=6.36745), 22.0000 (SD=2.44949), 20.4000 (SD=2.75681) respectively. The above given compounds at conc. of 200 μ/100ul showed antibacterial action on 3, 8, 8, 10, 3, 9, 8, zero, 3 strains of bacteria with an average of 14(SD=0.000), 16.8750 (SD=1.35620), 18.2500 (SD=3.45378), 22.7000 (SD=1.82878), 14.3333 (SD=0.57735), 16.7778 (SD=1.71594), zero (SD=0.000), 12.0000 (SD=1.00000) respectively. Hence according to the average value of the zone of inhibition, maximum antibacterial activity at 100-200ug/100ul is of Hg-Nico and Mercury salt; Mercury (II) harmine having an average of 20.2000 (SD=1.39841)-22.7000 (SD=1.82878) and 18.6000 (SD=2.45855)-22.0000 (SD=2.44949). Minimum antibacterial activity at 100-200ug/100ul is Nicotine100, Nicotine-Nico100, Harmine 100,Harmaline 100, Harmine 200 having zero average (SD=0.000).

  6. In vitro monoamine oxidase inhibition potential of alpha-methyltryptamine analog new psychoactive substances for assessing possible toxic risks.

    PubMed

    Wagmann, Lea; Brandt, Simon D; Kavanagh, Pierce V; Maurer, Hans H; Meyer, Markus R

    2017-04-15

    Tryptamines have emerged as new psychoactive substances (NPS), which are distributed and consumed recreationally without preclinical studies or safety tests. Within the alpha-methylated tryptamines, some of the psychoactive effects of the prototypical alpha-methyltryptamine (AMT) have been described decades ago and a contributing factor of its acute toxicity appears to involve the inhibition of monoamine oxidase (MAO). However, detailed information about analogs is scarce. Therefore, thirteen AMT analogs were investigated for their potential to inhibit MAO. An in vitro assay analyzed using hydrophilic interaction liquid chromatography-high resolution-tandem mass spectrometry was developed and validated. The AMT analogs were incubated with recombinant human MAO-A or B and kynuramine, a non-selective MAO substrate to determine the IC 50 values. The known MAO-A inhibitors 5-(2-aminopropyl)indole (5-IT), harmine, harmaline, yohimbine, and the MAO-B inhibitor selegiline were tested for comparison. AMT and all analogs showed MAO-A inhibition properties with IC 50 values between 0.049 and 166μM, whereas four analogs inhibited also MAO-B with IC 50 values between 82 and 376μM. 7-Me-AMT provided the lowest IC 50 value against MAO-A comparable to harmine and harmaline and was identified as a competitive MAO-A inhibitor. Furthermore, AMT, 7-Me-AMT, and nine further analogs inhibited MAO activity in human hepatic S9 fraction used as model for the human liver which expresses both isoforms. The obtained results suggested that MAO inhibition induced by alpha-methylated tryptamines might be clinically relevant concerning possible serotonergic and adrenergic effects and interactions with drugs (of abuse) particularly acting as monoamine reuptake inhibitors. However, as in vitro assays have only limited conclusiveness, further studies are needed. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Composition, standardization and chemical profiling of Banisteriopsis caapi, a plant for the treatment of neurodegenerative disorders relevant to Parkinson's disease.

    PubMed

    Wang, Yan-Hong; Samoylenko, Volodymyr; Tekwani, Babu L; Khan, Ikhlas A; Miller, Loren S; Chaurasiya, Narayan D; Rahman, Md Mostafizur; Tripathi, Lalit M; Khan, Shabana I; Joshi, Vaishali C; Wigger, Frank T; Muhammad, Ilias

    2010-04-21

    Banisteriopsis caapi, a woody vine from the Amazonian basin, is popularly known as an ingredient of a sacred drink ayahuasca, widely used throughout the Amazon as a medicinal tea for healing and spiritual exploration. The usefulness of Banisteriopsis caapi has been established for alleviating symptoms of neurological disorders including Parkinson's disease. Primary objective of this study was to develop the process for preparing standardized extracts of Banisteriopsis caapi to achieve high potency for inhibition of human monoamine oxidases (MAO) and antioxidant properties. The aqueous extracts prepared from different parts of the plant collected from different geographical locations and seasons were analyzed by HPLC for principal bioactive markers. The extracts were simultaneously tested in vitro for inhibition of human MAOs and antioxidant activity for analysis of correlation between phytochemical composition of the extracts and bioactivities. Reversed-phase HPLC with photodiode array detection was employed to profile the alkaloidal and non-alkaloidal components of the aqueous extract of Banisteriopsis caapi. The Banisteriopsis caapi extracts and standardized compositions were tested in vitro for inhibition of recombinant preparations of human MAO-A and MAO-B. In vitro cell-based assays were employed for evaluation of antioxidant property and mammalian cell cytotoxicity of these preparations. Among the different aerial parts, leaves, stems/large branches and stem bark of Banisteriopsis caapi, HPLC analysis revealed that most of the dominant chemical and bioactive markers (1, 2, 5, 7-9) were present in high concentrations in dried bark of large branch. A library of HPLC chromatograms has also been generated as a tool for fingerprinting and authentication of the studied Banisteriopsis caapi species. The correlation between potency of MAO inhibition and antioxidant activity with the content of the main active constituents of the aqueous Banisteriopsis caapi extracts and standardized compositions was established. Phytochemical analysis of regular/commercial Banisteriopsis caapi dried stems, obtained from different sources, showed a similar qualitative HPLC profile, but relatively low content of dominant markers 1, 2, 7, and 9, which led to decreased MAO inhibitory and antioxidant potency compared to Banisteriopsis caapi Da Vine. The ethnopharmacological use of bark of matured stem/large branch of Banisteriopsis caapi as well as whole matured stem is supported by the results obtained in this investigation. Among various constituents of Banisteriopsis caapi, harmine (7), harmaline (6) and tetrahydroharmine (5) are responsible for MAO-A inhibition, while two major proanthocyanidines, epicatechin (8) and procyanidine B2 (9) produce antioxidant effects. The compounds 1-9 can serve as reliable markers for identification and standardization of Banisteriopsis caapi aerial parts, collected in different seasons and/or from different geographical regions. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  8. Composition, Standardization and Chemical Profiling of Banisteriopsis caapi, a Plant for the Treatment of Neurodegenerative Disorders Relevant to Parkinson’s Disease†

    PubMed Central

    Wang, Yan-Hong; Samoylenko, Volodymyr; Tekwani, Babu L.; Khan, Ikhlas A.; Miller, Loren S.; Chaurasiya, Narayan D.; Rahman, Md. Mostafizur; Tripathi, Lalit M.; Khan, Shabana I.; Joshi, Vaishali C.; Wigger, Frank T.; Muhammad, Ilias

    2010-01-01

    Ethnopharmacological relevance Banisteriopsis caapi, a woody vine from the Amazonian basin, is popularly known as an ingredient of a sacred drink ayahuasca, widely used throughout the Amazon as a medicinal tea for healing and spiritual exploration. The usefulness of B. caapi has been established for alleviating symptoms of neurological disorders including Parkinson’s disease. Aim of the study Primary objective of this study was to develop the process for preparing standardized extracts of B. caapi to achieve high potency for inhibition of human monoamine oxidases (MAO) and antioxidant properties. The aqueous extracts prepared from different parts of the plant collected from different geographical locations and seasons were analyzed by HPLC for principal bioactive markers. The extracts were simultaneously tested in vitro for inhibition of human MAOs and antioxidant activity for analysis of correlation between phytochemical composition of the extracts and bioactivities. Materials and methods Reversed-phase HPLC with photodiode array detection was employed to profile the alkaloidal and non-alkaloidal components of the aqueous extract of B. caapi. The B. caapi extracts and standardized compositions were tested in vitro for inhibition of recombinant preparations of human MAO-A and MAO-B. In vitro cell-based assays were employed for evaluation of antioxidant property and mammalian cell cytotoxicity of these preparations. Results Among the different aerial parts, leaves, stems/large branches and stem bark of B. caapi, HPLC analysis revealed that most of the dominant chemical and bioactive markers (1, 2, 5, 7-9) were present in high concentrations in dried bark of large branch. A library of HPLC chromatograms has also been generated as a tool for fingerprinting and authentication of the studied B. caapi species. The correlation between potency of MAO inhibition and antioxidant activity with the content of the main active constituents of the aqueous B. caapi extracts and standardized compositions was established. Phytochemical analysis of regular/ commercial B. caapi dried stems, obtained from different sources, showed a similar qualitative HPLC profile, but relatively low content of dominant markers 1, 2, 7, and 9, which led to decreased MAO inhibitory and antioxidant potency compared to B. caapi Da Vine. Conclusion The ethnopharmacological use of bark of matured stem/large branch of B. caapi as well as whole matured stem is supported by the results obtained in this investigation. Among various constituents of B. caapi, harmine (7), harmaline (6) and tetrahydroharmine (5) are responsible for MAO-A inhibition, while two major proanthocyanidines, epicatechin (8) and procyanidine B2 (9) produce antioxidant effects. The compounds 1-9 can serve as reliable markers for identification and standardization of B.caapi aerial parts, collected in different seasons and/or from different geographical regions. PMID:20219660

  9. Identification of Plant-derived Alkaloids with Therapeutic Potential for Myotonic Dystrophy Type I*

    PubMed Central

    Herrendorff, Ruben; Faleschini, Maria Teresa; Stiefvater, Adeline; Erne, Beat; Wiktorowicz, Tatiana; Kern, Frances; Hamburger, Matthias; Potterat, Olivier; Kinter, Jochen; Sinnreich, Michael

    2016-01-01

    Myotonic dystrophy type I (DM1) is a disabling neuromuscular disease with no causal treatment available. This disease is caused by expanded CTG trinucleotide repeats in the 3′ UTR of the dystrophia myotonica protein kinase gene. On the RNA level, expanded (CUG)n repeats form hairpin structures that sequester splicing factors such as muscleblind-like 1 (MBNL1). Lack of available MBNL1 leads to misregulated alternative splicing of many target pre-mRNAs, leading to the multisystemic symptoms in DM1. Many studies aiming to identify small molecules that target the (CUG)n-MBNL1 complex focused on synthetic molecules. In an effort to identify new small molecules that liberate sequestered MBNL1 from (CUG)n RNA, we focused specifically on small molecules of natural origin. Natural products remain an important source for drugs and play a significant role in providing novel leads and pharmacophores for medicinal chemistry. In a new DM1 mechanism-based biochemical assay, we screened a collection of isolated natural compounds and a library of over 2100 extracts from plants and fungal strains. HPLC-based activity profiling in combination with spectroscopic methods were used to identify the active principles in the extracts. The bioactivity of the identified compounds was investigated in a human cell model and in a mouse model of DM1. We identified several alkaloids, including the β-carboline harmine and the isoquinoline berberine, that ameliorated certain aspects of the DM1 pathology in these models. Alkaloids as a compound class may have potential for drug discovery in other RNA-mediated diseases. PMID:27298317

  10. Differential effects of sugar-mimic alkaloids in mulberry latex on sugar metabolism and disaccharidases of Eri and domesticated silkworms: enzymatic adaptation of Bombyx mori to mulberry defense.

    PubMed

    Hirayama, Chikara; Konno, Kotaro; Wasano, Naoya; Nakamura, Masatoshi

    2007-12-01

    Mulberry leaves (Morus spp.) exude latex rich in sugar-mimic alkaloids, 1,4-dideoxy-1,4-imino-d-arabinitol (d-AB1) and 1-deoxynojirimycin (DNJ), as a defense against herbivorous insects. Sugar-mimic alkaloids are inhibitors of sugar-metabolizing enzymes, and are toxic to the Eri silkworm, Samia ricini, a generalist herbivore, but not at all to the domesticated silkworm, Bombyx mori, a mulberry specialist. To address the phenomena, we fed both larvae diets containing different sugar sources (sucrose, glucose or none) with or without sugar-mimic alkaloids from mulberry latex. In S. ricini, addition of sugar-mimic alkaloids to the sucrose (the major sugar in mulberry leaves) diet reduced both growth and the absorption ratio of sugar, but it reduced neither in B. mori. The midgut soluble sucrase activity of S. ricini was low and inhibited by very low concentrations of sugar-mimic alkaloids (IC(50)=0.9-8.2microM), but that of B. mori was high and not inhibited even by very high concentrations (IC(50)>1000microM) of sugar-mimic alkaloids. In S. ricini, the addition of sugar-mimic alkaloids to the glucose diet still had considerable negative effects on growth, although it did not reduce the absorption ratio of glucose. The hemolymph of S. ricini fed sugar-mimic alkaloids contained sugar-mimic alkaloids. The trehalose concentration in the hemolymph increased significantly in S. ricini fed sugar-mimic alkaloids, but not in B. mori. The trehalase activities of S. ricini were lower and inhibited by lower concentrations of sugar-mimic alkaloids than those of B. mori. These results suggest that sugar-mimic alkaloids in mulberry latex exert toxicity to S. ricini larvae first by inhibiting midgut sucrase and digestion of sucrose, and secondly, after being absorbed into hemolymph, by inhibiting trehalase and utilization of trehalose, the major blood sugar. Further, our results reveal that B. mori larvae evolved enzymatic adaptation to mulberry defense by developing sucrase and trehalase that are insensitive to sugar-mimic alkaloids.

  11. Determination of Tryptamines and β-Carbolines in Ayahuasca Beverage Consumed During Brazilian Religious Ceremonies.

    PubMed

    Santos, Mônica Cardoso; Navickiene, Sandro; Gaujac, Alain

    2017-05-01

    Ayahuasca is a potent hallucinogenic beverage prepared from Banisteriopsis caapi in combination with other psychoactive plants. N,N-dimethyltryptamine, tryptamine, harmine, harmaline, harmalol, and tetrahydroharmine were quantified in ayahuasca samples using a simple and low-cost method based on SPE and LC with UV diode-array detection. The experimental variables that affect the SPE method, such as type of solid phase and nature of solvent, were optimized. The method showed good linearity (r > 0.9902) and repeatability (RSD < 0.8%) for alkaloid compounds, with an LOD of 0.12 mg/L. The proposed method was used to analyze 20 samples from an ayahuasca cooking process from a religious group located in the municipality of Fortaleza, state of Ceará, Brazil. The results showed that concentrations of the target compounds ranged from 0.3 to 36.7 g/L for these samples.

  12. Indole alkaloids of Psychotria as multifunctional cholinesterases and monoamine oxidases inhibitors.

    PubMed

    Passos, Carolina S; Simões-Pires, Claudia A; Nurisso, Alessandra; Soldi, Tatiane C; Kato, Lucilia; de Oliveira, Cecilia M A; de Faria, Emiret O; Marcourt, Laurence; Gottfried, Carmem; Carrupt, Pierre-Alain; Henriques, Amélia T

    2013-02-01

    Thirteen Psychotria alkaloids were evaluated regarding their interactions with acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and monoamine oxidases A and B (MAO-A and MAO-B), which are enzymatic targets related with neurodegenerative diseases. Two quaternary β-carboline alkaloids, prunifoleine and 14-oxoprunifoleine, inhibited AChE, BChE and MAO-A with IC(50) values corresponding to 10 and 3.39 μM for AChE, 100 and 11 μM for BChE, and 7.41 and 6.92 μM for MAO-A, respectively. Both compounds seem to behave as noncompetitive AChE inhibitors and time-dependent MAO-A inhibitors. In addition, the monoterpene indole alkaloids (MIAs) angustine, vallesiachotamine lactone, E-vallesiachotamine and Z-vallesiachotamine inhibited BChE and MAO-A with IC(50) values ranging from 3.47 to 14 μM for BChE inhibition and from 0.85 to 2.14 μM for MAO-A inhibition. Among the tested MIAs, angustine is able to inhibit MAO-A in a reversible and competitive way while the three vallesiachotamine-like alkaloids display a time-dependent inhibition on this target. Docking calculations were performed in order to understand the binding mode between the most active ligands and the selected targets. Taken together, our findings established molecular details of AChE, BChE and MAO-A inhibition by quaternary β-carboline alkaloids and MIAs from Psychotria, suggesting these secondary metabolites are scaffolds for the development of multifunctional compounds against neurodegeneration. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Synthesis and mechanisms of action of novel harmine derivatives as potential antitumor agents

    PubMed Central

    Zhang, Xiao-Fei; Sun, Rong-qin; Jia, Yi-fan; Chen, Qing; Tu, Rong-Fu; Li, Ke-ke; Zhang, Xiao-Dong; Du, Run-Lei; Cao, Ri-hui

    2016-01-01

    A series of novel harmine derivatives bearing a benzylindine substituent in position-1 of β-carboline ring were synthesized and evaluated as antitumor agents. The N2-benzylated β-carboline derivatives 3a–g represented the most interesting anticancer activities and compound 3c was found to be the most active agent to diverse cancer cell lines such as gastric carcinoma, melanoma and colorectal cancer. Notably, compound 3c showed low toxicity to normal cells. The treatment significantly induced cell apoptosis. Mechanistically, PI3K/AKT signaling pathway mediated compound 3c-induced apoptosis. Compound 3c inhibited phosphorylation of AKT and promoted the production of reactive oxygen species (ROS). The ROS scavenger, LNAC and GSH, could disturb the effect of compound 3c induced apoptosis and PI3K activity inhibitor LY294002 synergistically enhanced compound 3c efficacy. Moreover, the results from nude mice xenograft model showed that compound 3c treatment effectively inhibited tumor growth and decreased tumor weight. Collectively, our results demonstrated that compound 3c exerts apoptotic effect in cancer cells via suppression of phosphorylated AKT and evocation of ROS generation, which suggested that compound 3c might be served as a promising therapeutic agent for cancer treatment. PMID:27625151

  14. Inhibition of hematopoietic prostaglandin D2 Synthase (H-PGDS) by an alkaloid extract from Combretum molle

    PubMed Central

    2014-01-01

    Background Hematopoietic prostaglandin D2 synthase (H-PGDS, GST Sigma) is a member of the glutathione S-transferase super family of enzymes that catalyses the conjugation of electrophilic substances with reduced glutathione. The enzyme catalyses the conversion of PGH2 to PGD2 which mediates inflammatory responses. The inhibition of H-PGDS is of importance in alleviating damage to tissues due to unwarranted synthesis of PGD2. Combretum molle has been used in African ethno medicinal practices and has been shown to reduce fever and pain. The effect of C. molle alkaloid extract on H-PGDS was thus, investigated. Methods H-PGDS was expressed in Escherichia coli XL1-Blue cells and purified using nickel immobilized metal affinity chromatography. The effect of C. molle alkaloid extract on H-PGDS activity was determined with 1-chloro-2, 4-dinitrobenzene (CDNB) as substrate. The effect of C. molle alkaloid extract with time on H-PGDS was determined. The mechanism of inhibition was then investigated using CDNB and glutathione (GSH) as substrates. Results A specific activity of 24 μmol/mg/min was obtained after H-PGDS had been purified. The alkaloid extract exhibited a 70% inhibition on H-PGDS with an IC50 of 13.7 μg/ml. C. molle alkaloid extract showed an uncompetitive inhibition of H-PGDS with Ki = 41 μg/ml towards GSH, and non-competitive inhibition towards CDNB with Ki = 7.7 μg/ml and Ki′ = 9.2 μg/ml. Conclusion The data shows that C. molle alkaloid extract is a potent inhibitor of H-PGDS. This study thus supports the traditional use of the plant for inflammation. PMID:24996417

  15. Inhibition of hematopoietic prostaglandin D2 synthase (H-PGDS) by an alkaloid extract from Combretum molle.

    PubMed

    Moyo, Rejoice; Chimponda, Theresa; Mukanganyama, Stanley

    2014-07-05

    Hematopoietic prostaglandin D2 synthase (H-PGDS, GST Sigma) is a member of the glutathione S-transferase super family of enzymes that catalyses the conjugation of electrophilic substances with reduced glutathione. The enzyme catalyses the conversion of PGH2 to PGD2 which mediates inflammatory responses. The inhibition of H-PGDS is of importance in alleviating damage to tissues due to unwarranted synthesis of PGD2. Combretum molle has been used in African ethno medicinal practices and has been shown to reduce fever and pain. The effect of C. molle alkaloid extract on H-PGDS was thus, investigated. H-PGDS was expressed in Escherichia coli XL1-Blue cells and purified using nickel immobilized metal affinity chromatography. The effect of C. molle alkaloid extract on H-PGDS activity was determined with 1-chloro-2, 4-dinitrobenzene (CDNB) as substrate. The effect of C. molle alkaloid extract with time on H-PGDS was determined. The mechanism of inhibition was then investigated using CDNB and glutathione (GSH) as substrates. A specific activity of 24 μmol/mg/min was obtained after H-PGDS had been purified. The alkaloid extract exhibited a 70% inhibition on H-PGDS with an IC50 of 13.7 μg/ml. C. molle alkaloid extract showed an uncompetitive inhibition of H-PGDS with Ki = 41 μg/ml towards GSH, and non-competitive inhibition towards CDNB with Ki = 7.7 μg/ml and Ki' = 9.2 μg/ml. The data shows that C. molle alkaloid extract is a potent inhibitor of H-PGDS. This study thus supports the traditional use of the plant for inflammation.

  16. Relationships among Ergot Alkaloids, Cytochrome P450 Activity, and Beef Steer Growth

    NASA Astrophysics Data System (ADS)

    Rosenkrans, Charles; Ezell, Nicholas

    2015-03-01

    Determining a grazing animal’s susceptibility to ergot alkaloids has been a research topic for decades. Our objective was to determine if the Promega™ P450-Glo assay could be used to indirectly detect ergot alkaloids or their metabolites in urine of steers. The first experiment validated the effects of ergot alkaloids [0, 20, and 40 μM of ergotamine (ET), dihydroergotamine (DHET), and ergonovine (EN)] on human CYP3A4 using the P450-Glo assay (Promega™ V9800). With this assay, luminescence is directly proportional to CYP450 activity. Relative inhibition of in vitro cytochrome P450 activity was affected (P < 0.001) by an interaction between alkaloids and concentration. That interaction resulted in no concentration effect of EN, but within ET and DHET 20 and 40 µM concentrations inhibited CYP450 activity when compared with controls. In experiment 2, urine was collected from Angus-sired crossbred steers (n = 39; 216 ± 2.6 d of age; 203 ± 1.7 kg) after grazing tall fescue pastures for 105 d. Non-diluted urine was added to the Promega™ P450-Glo assay, and observed inhibition (3.7 % ± 2.7 of control). Urine content of total ergot alkaloids (331.1 ng/mg of creatinine ± 325.7) was determined using enzyme linked immunosorbent assay. Urine inhibition of CYP450 activity and total alkaloids were correlated (r = -0.31; P < 0.05). Steers were genotyped at CYP450 single nucleotide polymorphism, C994G. Steer genotype affected (P < 0.03) inhibition of CYP450 activity by urine; heterozygous steers had the least amount of CYP450 inhibition suggesting that genotyping cattle may be a method of identifying animals that are susceptible to ergot alkaloids. Although, additional research is needed, we demonstrate that the Promega™ P450-Glo assay is sensitive to ergot alkaloids and urine from steers grazing tall fescue. With some refinement the P450-Glo assay has potential as a tool for screening cattle for their exposure to fescue toxins.

  17. Effects of harmane and other β-carbolines on apomorphine-induced licking behavior in rat.

    PubMed

    Farzin, Davood; Haghparast, Abbas; Motaman, Shirine; Baryar, Faegheh; Mansouri, Nazanin

    2011-04-01

    Harmane, harmine and norharmane are β-carboline compounds which have been referred to as inverse agonists of benzodiazepine receptors. The effect of these compounds on apomorphine-induced licking behavior was studied in rats. Subcutaneous (s.c.) injection of apomorphine (0.5 mg/kg) induced licking. The licking behavior was counted with a hand counter and recorded for a period of 75 min by direct observation. Intraperitoneal (i.p.) injections of harmane (1.25-5 mg/kg), harmine (2.5-10 mg/kg) and norharmane (1.25-5 mg/kg) significantly reduced the licking behavior. In rats pretreated with reserpine (5 mg/kg, i.p., 18 h before the test), the effects of harmane (4 mg/kg, i.p.), harmine (7.8 mg/kg, i.p.) and norharmane (2.5 mg/kg, i.p.) were unchanged. When flumazenil (2 mg/kg, i.p.) was administered 20 min before apomorphine, it was able to antagonize the effects of harmane, harmine and norharmane. It was concluded that the β-carbolines harmane, harmine and norharmane reduce the licking behavior via an inverse agonistic mechanism located in the benzodiazepine receptors. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Alkaloid profiles and acetylcholinesterase inhibitory activities of Fumaria species from Bulgaria.

    PubMed

    Vrancheva, Radka Z; Ivanov, Ivan G; Aneva, Ina Y; Dincheva, Ivayla N; Badjakov, Ilian K; Pavlov, Atanas I

    2016-01-01

    GC-MS analysis of alkaloid profiles of five Fumaria species, naturally grown in Bulgaria (F. officinalis, F. thuretii, F. kralikii, F. rostellata and F. schrammii) and analysis of acetylcholinesterase inhibitory activity of alkaloid extracts were performed. Fourteen isoquinoline alkaloids were identified, with the principle ones being protopine, cryptopine, sinactine, parfumine, fumariline, fumarophycine, and fumaritine. Protopine contents, defined by HPLC analysis varied between 210.6 ± 8.8 μg/g DW (F. schrammii) and 334.5 ± 7.1 μg/g DW. (F. rostellata). While all of the investigated alkaloid extracts significantly inhibited acetylcholinesterase activity, the F. kralikii demonstrated the highest level of inhibition (IC(50) 0.13 ± 0.01 mg extract/mL).

  19. The kinase DYRK1A reciprocally regulates the differentiation of Th17 and regulatory T cells

    PubMed Central

    Khor, Bernard; Gagnon, John D; Goel, Gautam; Roche, Marly I; Conway, Kara L; Tran, Khoa; Aldrich, Leslie N; Sundberg, Thomas B; Paterson, Alison M; Mordecai, Scott; Dombkowski, David; Schirmer, Melanie; Tan, Pauline H; Bhan, Atul K; Roychoudhuri, Rahul; Restifo, Nicholas P; O'Shea, John J; Medoff, Benjamin D; Shamji, Alykhan F; Schreiber, Stuart L; Sharpe, Arlene H; Shaw, Stanley Y; Xavier, Ramnik J

    2015-01-01

    The balance between Th17 and T regulatory (Treg) cells critically modulates immune homeostasis, with an inadequate Treg response contributing to inflammatory disease. Using an unbiased chemical biology approach, we identified a novel role for the dual specificity tyrosine-phosphorylation-regulated kinase DYRK1A in regulating this balance. Inhibition of DYRK1A enhances Treg differentiation and impairs Th17 differentiation without affecting known pathways of Treg/Th17 differentiation. Thus, DYRK1A represents a novel mechanistic node at the branch point between commitment to either Treg or Th17 lineages. Importantly, both Treg cells generated using the DYRK1A inhibitor harmine and direct administration of harmine itself potently attenuate inflammation in multiple experimental models of systemic autoimmunity and mucosal inflammation. Our results identify DYRK1A as a physiologically relevant regulator of Treg cell differentiation and suggest a broader role for other DYRK family members in immune homeostasis. These results are discussed in the context of human diseases associated with dysregulated DYRK activity. DOI: http://dx.doi.org/10.7554/eLife.05920.001 PMID:25998054

  20. Anticholinesterase inhibitory activity of quaternary alkaloids from Tinospora crispa.

    PubMed

    Yusoff, Mashitah; Hamid, Hazrulrizawati; Houghton, Peter

    2014-01-20

    Quaternary alkaloids are the major alkaloids isolated from Tinospora species. A previous study pointed to the necessary presence of quaternary nitrogens for strong acetylcholinesterase (AChE) inhibitory activity in such alkaloids. Repeated column chromatography of the vine of Tinospora crispa extract led to the isolation of one new protoberberine alkaloid, 4,13-dihydroxy-2,8,9-trimethoxydibenzo[a,g]quinolizinium (1), along with six known alkaloids-dihydrodiscretamine (2), columbamine (3), magnoflorine (4), N-formylannonaine (5), N-formylnornuciferine (6), and N-trans-feruloyltyramine (7). The seven compounds were isolated and structurally elucidated by spectroscopic analysis. Two known alkaloids, namely, dihydrodiscretamine and columbamine are reported for the first time for this plant. The compounds were tested for AChE inhibitory activity using Ellman's method. In the AChE inhibition assay, only columbamine (3) showed strong activity with IC50 48.1 µM. The structure-activity relationships derived from these results suggest that the quaternary nitrogen in the skeleton has some effect, but that a high degree of methoxylation is more important for acetylcholinesterase inhibition.

  1. Phosphorylated Derivatives of Alkaloids and Nitrogen-containing Heterocycles — Cholinesterase Inhibitors

    NASA Astrophysics Data System (ADS)

    Sadykov, Abid S.; Dalimov, D. N.; Godovikov, Nikolai N.

    1983-10-01

    The review deals with the synthesis and anticholinesterase activities of phosphorylated derivatives of certain alkaloids and nitrogen-containing heterocycles. It is shown that the conformational properties of the alkaloid and nitrogen-containing heterocycle residues in the composition of the organophosphorus inhibitor (OPI) molecule play an important role in the inhibition of the catalytic activity of cholinesterases. The type of inhibition of cholinesterases also varies as a function of chemical structure. The bibliography includes 45 references.

  2. Species susceptibility to locoweed poisoning and evaluation of chicks as a small animal model of poisoning

    USDA-ARS?s Scientific Manuscript database

    Locoweed poisoning has largely been attributed to the effects of mannosidase inhibiting swainsonine. However, there are many plants that contain mixtures of swainsonine and other glycosidase inhibiting alkaloids such as calystegines, castanospermine, and other minor alkaloids or metabolites like le...

  3. Piperidine, pyridine alkaloid inhibition of fetal movement in a day 40 pregnant goat model

    USDA-ARS?s Scientific Manuscript database

    The inhibition of fetal movement is one mechanism behind the development of multiple congenital contracture-type defects and cleft palate in developing fetuses of humans and animals. In this study, we tested the alkaloids anabasine, lobeline, and myosmine for agonist actions, and sensitivity to alp...

  4. Agonist mediated fetal muscle-type nicotinic acetylcholine receptor desensitization

    USDA-ARS?s Scientific Manuscript database

    The exposure of a developing embryo or fetus to teratogenic alkaloids from plants has the potential to cause developmental defects in livestock due to the inhibition of fetal movement by alkaloids. The mechanism behind the inhibition of fetal movement is the desensitization of fetal muscle-type nico...

  5. Alkaloid extracts of Ficus species and palm oil-derived tocotrienols synergistically inhibit proliferation of human cancer cells.

    PubMed

    Abubakar, Ibrahim Babangida; Lim, Kuan-Hon; Loh, Hwei-San

    2015-01-01

    Tocotrienols have been reported to possess anticancer effects other than anti-inflammatory and antioxidant activities. This study explored the potential synergism of antiproliferative effects induced by individual alkaloid extracts of Ficus fistulosa, Ficus hispida and Ficus schwarzii combined with δ- and γ-tocotrienols against human brain glioblastoma (U87MG), lung adenocarcinoma (A549) and colorectal adenocarcinoma (HT-29) cells. Cell viability and morphological results demonstrated that extracts containing a mixture of alkaloids from the leaves and bark of F. schwarzii inhibited the proliferation of HT-29 cells, whereas the alkaloid extracts of F. fistulosa inhibited the proliferation of both U87MG and HT-29 cells and showed synergism in combined treatments with either δ- or γ-tocotrienol resulting in 2.2-34.7 fold of reduction in IC50 values of tocotrienols. The observed apoptotic cell characteristics in conjunction with the synergistic antiproliferative effects of Ficus species-derived alkaloids and tocotrienols assuredly warrant future investigations towards the development of a value-added chemotherapeutic regimen against cancers.

  6. Complete inhibition of fetal movement in the day 40 pregnant goat model by the piperidine alkaloid anabasine but not related alkaloids

    USDA-ARS?s Scientific Manuscript database

    Four chemically similar alkaloids, anabasine, anabaseine, epibatidine and dimethylphenylpiperazinium (DMPP), are potent nicotinic acetylcholine receptor agonists of fetal muscle nicotinic acetylcholine receptors in human TE-671 cells. Based on results with these cells, we hypothesized that these alk...

  7. Synephrine inhibits eotaxin-1 expression via the STAT6 signaling pathway.

    PubMed

    Roh, Kyung-Baeg; Kim, Il-Hyun; Kim, Young-Soo; Lee, Myungjae; Lee, Jung-A; Jung, Eunsun; Park, Deokhoon

    2014-08-08

    Citrus contain various flavonoids and alkaloids that have multiple biological activities. It is known that the immature Citrus contains larger amounts of bioactive components, than do the mature plants. Although Citrus flavonoids are well known for their biological activities, Citrus alkaloids have not previously been assessed. In this study, we identified synephrine alkaloids as an active compound from immature Citrus unshiu, and investigated the effect of synephrine on eotaxin-1 expression. Eotaxin-1 is a potent chemoattractant for eosinophils, and a critical mediator, during the development of eosinophilic inflammation. We found that synephrine significantly inhibited IL-4-induced eotaxin-1 expression. This synephrine effect was mediated through the inhibition of STAT6 phosphorylation in JAK/STAT signaling. We also found that eosinophil recruitment induced by eotaxin-1 overexpression was inhibited by synephrine. Taken together, these findings indicate that inhibiting IL-4-induced eotaxin-1 expression by synephrine occurs primarily through the suppression of eosinophil recruitment, which is mediated by inhibiting STAT6 phosphorylation.

  8. Anagyrine desensitization of peripheral nicotinic acetylcholine receptors. A potential biomarker of quinolizidine alkaloid teratogenesis in cattle.

    USDA-ARS?s Scientific Manuscript database

    Anagyrine, a teratogenic quinolizidine alkaloid found in certain Lupinus spp., has been proposed to undergo metabolism by pregnant cattle to a piperidine alkaloid which acts inhibit fetal movement, the putative mechanism behind crooked calf syndrome. The objective of this study was to test the hypot...

  9. Personality, psychopathology, life attitudes and neuropsychological performance among ritual users of Ayahuasca: a longitudinal study.

    PubMed

    Bouso, José Carlos; González, Débora; Fondevila, Sabela; Cutchet, Marta; Fernández, Xavier; Ribeiro Barbosa, Paulo César; Alcázar-Córcoles, Miguel Ángel; Araújo, Wladimyr Sena; Barbanoj, Manel J; Fábregas, Josep Maria; Riba, Jordi

    2012-01-01

    Ayahuasca is an Amazonian psychoactive plant beverage containing the serotonergic 5-HT(2A) agonist N,N-dimethyltryptamine (DMT) and monoamine oxidase-inhibiting alkaloids (harmine, harmaline and tetrahydroharmine) that render it orally active. Ayahuasca ingestion is a central feature in several Brazilian syncretic churches that have expanded their activities to urban Brazil, Europe and North America. Members of these groups typically ingest ayahuasca at least twice per month. Prior research has shown that acute ayahuasca increases blood flow in prefrontal and temporal brain regions and that it elicits intense modifications in thought processes, perception and emotion. However, regular ayahuasca use does not seem to induce the pattern of addiction-related problems that characterize drugs of abuse. To study the impact of repeated ayahuasca use on general psychological well-being, mental health and cognition, here we assessed personality, psychopathology, life attitudes and neuropsychological performance in regular ayahuasca users (n = 127) and controls (n = 115) at baseline and 1 year later. Controls were actively participating in non-ayahuasca religions. Users showed higher Reward Dependence and Self-Transcendence and lower Harm Avoidance and Self-Directedness. They scored significantly lower on all psychopathology measures, showed better performance on the Stroop test, the Wisconsin Card Sorting Test and the Letter-Number Sequencing task from the WAIS-III, and better scores on the Frontal Systems Behavior Scale. Analysis of life attitudes showed higher scores on the Spiritual Orientation Inventory, the Purpose in Life Test and the Psychosocial Well-Being test. Despite the lower number of participants available at follow-up, overall differences with controls were maintained one year later. In conclusion, we found no evidence of psychological maladjustment, mental health deterioration or cognitive impairment in the ayahuasca-using group.

  10. Personality, Psychopathology, Life Attitudes and Neuropsychological Performance among Ritual Users of Ayahuasca: A Longitudinal Study

    PubMed Central

    Bouso, José Carlos; González, Débora; Fondevila, Sabela; Cutchet, Marta; Ribeiro Barbosa, Paulo César; Alcázar-Córcoles, Miguel Ángel; Araújo, Wladimyr Sena; Fábregas, Josep Maria; Riba, Jordi

    2012-01-01

    Ayahuasca is an Amazonian psychoactive plant beverage containing the serotonergic 5-HT2A agonist N,N-dimethyltryptamine (DMT) and monoamine oxidase-inhibiting alkaloids (harmine, harmaline and tetrahydroharmine) that render it orally active. Ayahuasca ingestion is a central feature in several Brazilian syncretic churches that have expanded their activities to urban Brazil, Europe and North America. Members of these groups typically ingest ayahuasca at least twice per month. Prior research has shown that acute ayahuasca increases blood flow in prefrontal and temporal brain regions and that it elicits intense modifications in thought processes, perception and emotion. However, regular ayahuasca use does not seem to induce the pattern of addiction-related problems that characterize drugs of abuse. To study the impact of repeated ayahuasca use on general psychological well-being, mental health and cognition, here we assessed personality, psychopathology, life attitudes and neuropsychological performance in regular ayahuasca users (n = 127) and controls (n = 115) at baseline and 1 year later. Controls were actively participating in non-ayahuasca religions. Users showed higher Reward Dependence and Self-Transcendence and lower Harm Avoidance and Self-Directedness. They scored significantly lower on all psychopathology measures, showed better performance on the Stroop test, the Wisconsin Card Sorting Test and the Letter-Number Sequencing task from the WAIS-III, and better scores on the Frontal Systems Behavior Scale. Analysis of life attitudes showed higher scores on the Spiritual Orientation Inventory, the Purpose in Life Test and the Psychosocial Well-Being test. Despite the lower number of participants available at follow-up, overall differences with controls were maintained one year later. In conclusion, we found no evidence of psychological maladjustment, mental health deterioration or cognitive impairment in the ayahuasca-using group. PMID:22905130

  11. Antidepressant-like effect of harmane and other beta-carbolines in the mouse forced swim test.

    PubMed

    Farzin, Davood; Mansouri, Nazanin

    2006-07-01

    The purpose of the present study was to determine the effects of harmane, norharmane and harmine on the immobility time in the mouse forced swim test (FST) - an animal model of depression. After 30 min of the beta-carbolines injections, mice were placed individually in a vertical glass cylinder (height, 25 cm; diameter, 12 cm) containing water about 15 cm deep at 22+/-1 degrees C and forced to swim. Treatment of animals with harmane (5-15 mg/kg, i.p.), norharmane (2.5-10 mg/kg, i.p.) and harmine (5-15 mg/kg, i.p.) reduced dose-dependently the time of immobility. Their antidepressant-like effects were not affected by pretreatment with reserpine at the dose of 5 mg/kg, i.p., 18 h before the test, which did not modify the immobility time. Conversely, when flumazenil (5 mg/kg, i.p.) was administered 30 min before the test, it was able to antagonize completely the antidepressant-like effects of harmane, norharmane and harmine. It was concluded that harmane, norharmane and harmine reduce the immobility time in this test, suggesting an antidepressant-like effect, via an inverse-agonistic mechanism located in the benzodiazepine receptors.

  12. Alkaloids as Cyclooxygenase Inhibitors in Anticancer Drug Discovery.

    PubMed

    Hashmi, Muhammad Ali; Khan, Afsar; Farooq, Umar; Khan, Sehroon

    2018-01-01

    Cancer is the leading cause of death worldwide and anticancer drug discovery is a very hot area of research at present. There are various factors which control and affect cancer, out of which enzymes like cyclooxygenase-2 (COX-2) play a vital role in the growth of tumor cells. Inhibition of this enzyme is a very useful target for the prevention of various types of cancers. Alkaloids are a diverse group of naturally occurring compounds which have shown great COX-2 inhibitory activity both in vitro and in vivo. In this mini-review, we have discussed different alkaloids with COX-2 inhibitory activities and anticancer potential which may act as leads in modern anticancer drug discovery. Different classes of alkaloids including isoquinoline alkaloids, indole alkaloids, piperidine alkaloids, quinazoline alkaloids, and various miscellaneous alkaloids obtained from natural sources have been discussed in detail in this review. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. Palmatine, a protoberberine alkaloid, inhibits both Ca2+- and cAMP-activated Cl− secretion in isolated rat distal colon

    PubMed Central

    Wu, D Z; Yuan, J Y; Shi, H L; Hu, Z B

    2008-01-01

    Background and purpose: The protoberberine alkaloid berberine has been reported to inhibit colonic Cl− secretion. However, it is not known if other protoberberine alkaloids share these effects. We have therefore selected another protoberberine alkaloid, palmatine, to assess its effects on active ion transport across rat colonic epithelium. Experimental approach: Rat colonic mucosa was mounted in Ussing chambers and short circuit current (I SC), apical Cl− current and basolateral K+ current were recorded. Intracellular cAMP content was determined by an enzyme immunoassay. Intracellular Ca2+ concentration was measured with Fura-2 AM. Key results: Palmatine inhibited carbachol-induced Ca2+-activated Cl− secretion and the carbachol-induced increase of intracellular Ca2+ concentration. Palmatine also inhibited cAMP-activated Cl− secretion induced by prostaglandin E2 (PGE2) or forskolin. Palmatine prevented the elevation of intracellular cAMP by forskolin. Determination of apical Cl− currents showed that palmatine suppressed the forskolin-stimulated, apical cAMP-activated Cl− current but not the carbachol-stimulated apical Ca2+-activated Cl− current. Following permeabilization of apical membranes with nystatin, we found that palmatine inhibited a carbachol-stimulated basolateral K+ current that was sensitive to charybdotoxin and resistant to chromanol 293B. However, the forskolin-stimulated basolateral K+ current inhibited by palmatine was specifically blocked by chromanol 293B and not by charybdotoxin. Conclusions and implications: Palmatine attenuated Ca2+-activated Cl− secretion through inhibiting basolateral charybdotoxin-sensitive, SK4 K+ channels, whereas it inhibited cAMP-activated Cl− secretion by inhibiting apical CFTR Cl− channels and basolateral chromanol 293B-sensitive, KvLQT1 K+ channels. PMID:18204477

  14. Fetal muscle-type nicotinic acetylcholine receptor activation in TE-671 cells and inhibition of fetal movement in a day 40 pregnant goat model by optical isomers of the piperidine alkaloid coniine.

    PubMed

    Green, Benedict T; Lee, Stephen T; Welch, Kevin D; Pfister, James A; Panter, Kip E

    2013-01-01

    Coniine is an optically active toxic piperidine alkaloid and nicotinic acetylcholine receptor (nAChR) agonist found in poison hemlock (Conium maculatum L.). Coniine teratogenicity is hypothesized to be attributable to the binding, activation, and prolonged desensitization of fetal muscle-type nAChR, which results in the complete inhibition of fetal movement. However, pharmacological evidence of coniine actions at fetal muscle-type nAChR is lacking. The present study compared (-)-coniine, (+)-coniine, and nicotine for the ability to inhibit fetal movement in a day 40 pregnant goat model and in TE-671 cells that express fetal muscle-type nAChR. Furthermore, α-conotoxins (CTx) EI and GI were used to antagonize the actions of (+)- and (-)-coniine in TE-671 cells. (-)-Coniine was more effective at eliciting electrical changes in TE-671 cells and inhibiting fetal movement than was (+)-coniine, suggesting stereoselectivity by the receptor. The pyridine alkaloid nicotine did not inhibit fetal movement in a day 40 pregnant goat model, suggesting agonist specificity for the inhibition of fetal movement. Low concentrations of both CTxs potentiated the TE-671 cell response and higher concentrations of CTx EI, and GI antagonized the actions of both coniine enantiomers demonstrating concentration-dependent coagonism and selective antagonism. These results provide pharmacological evidence that the piperidine alkaloid coniine is acting at fetal muscle-type nAChR in a concentration-dependent manner.

  15. Staphylococcal enterotoxin A gene-carrying Staphylococcus aureus isolated from foods and its control by crude alkaloid from papaya leaves.

    PubMed

    Handayani, Lita; Faridah, Didah Nur; Kusumaningrum, Harsi D

    2014-11-01

    Staphylococcus aureus is a known pathogen causing intoxication by producing enterotoxins in food. Staphylococcal enterotoxin A is one of the enterotoxins commonly implicated in staphylococcal food poisoning. The ability of crude alkaloid extract from papaya leaves to inhibit the growth of S. aureus and staphylococcal enterotoxin A synthesis was investigated. Staphylococcal enterotoxin A gene-carrying S. aureus was isolated from raw milk and ready-to-eat foods. Crude alkaloid was extracted from ground, dried papaya leaves using ultrasonic-assisted extraction, and a MIC of the alkaloid was determined by the broth macrodilution method. Furthermore, S. aureus isolate was exposed to the crude alkaloid extract at one- and twofold MIC, and the expression of sea was subsequently analyzed using a quantitative reverse transcription real-time PCR. Ten isolates of S. aureus were obtained, and nine of those isolates were sea carriers. The yield of crude alkaloid extract was 0.48 to 1.82% per dry weight of papaya leaves. A MIC of crude alkaloid to S. aureus was 0.25 mg/ml. After exposure to the alkaloid at 0.25 and 0.5 mg/ml for 2 h, a significant increase in cycle threshold values of sea was observed. The sea was expressed 29 and 41 times less when S. aureus was exposed to crude alkaloid at one- and twofold MIC, respectively. This study revealed that crude alkaloid of papaya leaves could control staphylococcal enterotoxin A gene-carrying S. aureus by suppressing the expression of sea, in addition to the ability to inhibit the growth of S. aureus. The expression of sea was successfully quantified.

  16. Identification, occurrence and activity of quinazoline alkaloids in Peganum harmala.

    PubMed

    Herraiz, Tomás; Guillén, Hugo; Arán, Vicente J; Salgado, Antonio

    2017-05-01

    Peganum harmala L. is a medicinal plant from the Mediterranean region and Asia currently used for recreative psychoactive purposes (Ayahuasca analogue), and increasingly involved in toxic cases. Its psychopharmacological and toxicological properties are attributed to quinazoline and β-carboline alkaloids. In this work three major quinazoline alkaloids were isolated from P. harmala extracts and characterized as peganine (vasicine), deoxypeganine (deoxyvasicine) and a novel compound identified by HPLC-DAD-MS and NMR as peganine β-d-glucopyranosyl-(1 → 6)-β-d-glucopyranoside (peganine glycoside). Peganine appeared in flowers and leaves in high levels; high amounts of deoxypeganine and peganine were found in immature and green fruits whereas peganine and peganine glycoside accumulated in high amount in dry seeds reaching up to 1 and 3.9% (w/w), respectively. Roots and stems contained low amount of quinazolines. Seeds extracts containing both quinazoline and β-carboline alkaloids potently inhibited human monoamine oxidase (MAO)-A. However, quinazoline alkaloids did not contribute to MAO inhibition that was due to β-carbolines, suggesting that MAO-related psychoactive or toxic actions do not arise from quinazolines. Quinazoline alkaloids were poor radical scavengers in the ABTS assay whereas seed extracts had good activity. Quinazoline alkaloids are known to exert bronchodilator and abortifacient actions, and could contribute to such effects reported in P. harmala. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Alkaloid profiling and anticholinesterase activity of South American Lycopodiaceae species.

    PubMed

    Konrath, Eduardo Luis; Ortega, María Gabriela; de Loreto Bordignon, Sérgio; Apel, Miriam Anders; Henriques, Amélia Teresinha; Cabrera, José Luis

    2013-02-01

    The alkaloid extracts of four Huperzia and one Lycopodiella species, from Brazilian habitats, were tested for their in vitro anticholinesterase activities. IC(50) values showed a potent acetylcholinesterase inhibition for H. reflexa (0.11 ± 0.05 μg/mL), followed by H. quadrifariata (2.0 ± 0.3 μg/mL), H. acerosa (5.5 ± 0.9 μg/mL), H. heterocarpon (25.6 ± 2.7 μg/mL) and L. cernua (42.6 ± 1.5 μg/mL). A lower inhibition of butyrylcholinesterase was observed for all species with the exception of H. heterocarpon (8.3 ± 0.9 μg/mL), whose alkaloid extract presented a selectivity for pseudocholinesterase. Moreover, the chemical study of the bioactive extracts performed by GC-MS, revealed the presence of a number of Lycopodium alkaloids belonging to the lycopodane, flabellidane and cernuane groups. Surprisingly, the potent acetylcholinesterase inhibitors huperzines A and B were not detected in the extracts, suggesting that other alkaloids may be responsible for such an effect.

  18. Modulation of CYPs, P-gp, and PXR by Eschscholzia californica (California Poppy) and Its Alkaloids.

    PubMed

    Manda, Vamshi K; Ibrahim, Mohamed A; Dale, Olivia R; Kumarihamy, Mallika; Cutler, Stephen J; Khan, Ikhlas A; Walker, Larry A; Muhammad, Ilias; Khan, Shabana I

    2016-04-01

    Eschscholzia californica, a native US plant, is traditionally used as a sedative, analgesic, and anxiolytic herb. With the rapid rise in the use of herbal supplements together with over-the-counter and prescription drugs, the risk for potential herb-drug interactions is also increasing. Most of the clinically relevant pharmacokinetic drug interactions occur due to modulation of cytochrome P450 enzymes (CYPs), P-glycoprotein, and the pregnane X receptor by concomitantly used herbs. This study aimed to determine the effects of an EtOH extract, aqueous extract (tea), basic CHCl3 fractions, and isolated major alkaloids, namely protopine (1), escholtzine (2), allocryptopine (3), and californidine (4), of E. californica on the activity of cytochrome P450s, P-glycoprotein and the pregnane X receptor. The EtOH extract and fractions showed strong time-dependent inhibition of CYP 3A4, CYP 2C9, and CYP 2C19, and reversible inhibition of CYP 2D6. Among the alkaloids, escholtzine (2) and allocryptopine (3) exhibited time-dependent inhibition of CYP 3A4, CYP 2C9, and CYP 2C19 (IC50 shift ratio > 2), while protopine (1) and allocryptopine (3) showed reversible inhibition of CYP 2D6 enzyme. A significant activation of the pregnane X receptor (> 2-fold) was observed with the EtOH extract, basic CHCl3 fraction, and alkaloids (except protopine), which resulted into an increased expression of mRNA and the activity of CYP 3A4 and CYP 1A2. The expression of P-glycoprotein was unaffected. However, aqueous extract (tea) and its main alkaloid californidine (4) did not affect cytochrome P450s, P-glycoprotein, or the pregnane X receptor. This data suggests that EtOH extract of E. californica and its major alkaloids have a potential of causing interactions with drugs that are metabolized by cytochrome P450s, while the tea seems to be safer. Georg Thieme Verlag KG Stuttgart · New York.

  19. Determination of beta-carboline alkaloids in foods and beverages by high-performance liquid chromatography with electrochemical detection at a glassy carbon electrode modified with carbon nanotubes.

    PubMed

    Agüí, Lourdes; Peña-Farfal, Carlos; Yáñez-Sedeño, Paloma; Pingarrón, José M

    2007-03-07

    Simple and sensitive methods for the separation and quantification of beta-carboline alkaloids in foods and beverages by HPLC with electrochemical detection at carbon nanotubes-modified glassy carbon electrodes (CNTs-GCE) are reported. Electrode modification with multi-wall CNTs produced an improved amperometric response to beta-carbolines, in spite of the working medium consisting of methanol:acetonitrile: 0.05 mol L(-1) Na(2)HPO(4) solution of pH 9.0 (20:20:60). On the contrary to that observed at a bare GCE, a good repeatability of the amperometric measurements carried out at +900 mV versus Ag/AgCl (R.S.D. of 3.2% for i(p), n=20) was achieved at the CNTs-GCE. Using an Ultrabase C(18) column and isocratic elution with the above mentioned mobile phase, a complete resolution of the chromatographic peaks for harmalol, harmaline, norharmane, harmane and harmine, was achieved. Calibration graphs over the 0.25-100 microM range with detection limits ranging between 4 and 19 ng mL(-1), were obtained. The HPLC-ED at CNTs-GCE method was applied to the analysis of beer, coffee and cheese samples, spiked with beta-carbolines at concentration levels corresponding to those may be found in the respective samples. The steps involved in sample treatment, such as extraction and clean-up, were optimized for each type of sample. Recoveries ranging between 92 and 102% for beer, 92 and 101% for coffee, and 88 and 100% for cheese, at sub-microg mL(-1) or g(-1) analytes concentration levels were achieved.

  20. Cholinesterase and Prolyl Oligopeptidase Inhibitory Activities of Alkaloids from Argemone platyceras (Papaveraceae).

    PubMed

    Siatka, Tomáš; Adamcová, Markéta; Opletal, Lubomír; Cahlíková, Lucie; Jun, Daniel; Hrabinová, Martina; Kuneš, Jiří; Chlebek, Jakub

    2017-07-14

    Alzheimer's disease is an age-related, neurodegenerative disorder, characterized by cognitive impairment and restrictions in activities of daily living. This disease is the most common form of dementia with complex multifactorial pathological mechanisms. Many therapeutic approaches have been proposed. Among them, inhibition of acetylcholinesterase, butyrylcholinesterase, and prolyl oligopeptidase can be beneficial targets in the treatment of Alzheimer's disease. Roots, along with aerial parts of Argemone platyceras , were extracted with ethanol and fractionated on an alumina column using light petrol, chloroform and ethanol. Subsequently, repeated preparative thin-layer chromatography led to the isolation of (+)-laudanosine, protopine, (-)-argemonine, allocryptopine, (-)-platycerine, (-)-munitagine, and (-)-norargemonine belonging to pavine, protopine and benzyltetrahydroisoquinoline structural types. Chemical structures of the isolated alkaloids were elucidated by optical rotation, spectroscopic and spectrometric analysis (NMR, MS), and comparison with literature data. (+)-Laudanosine was isolated from A. platyceras for the first time. Isolated compounds were tested for human blood acetylcholinesterase, human plasma butyrylcholinesterase and recombinant prolyl oligopeptidase inhibitory activity. The alkaloids inhibited the enzymes in a dose-dependent manner. The most active compound (-)-munitagine, a pavine alkaloid, inhibited both acetylcholinesterase and prolyl oligopeptidase with IC 50 values of 62.3 ± 5.8 µM and 277.0 ± 31.3 µM, respectively.

  1. One bis-indole alkaloid-voacamine from Voacanga africana Stapf: biological activity evaluation of PTP1B in vitro utilizing enzymology method based on SPRi expriment.

    PubMed

    Wang, Yan-Qiu; Li, Hong-Xiang; Liu, Xiao-Chun; Zhao, Jin-Shuang; Liu, Rong-Qiang; Huai, Wen-Ying; Ding, Wei-Jun; Zhang, Tian-E; Deng, Yun

    2018-05-31

    One known bis-indole alkaloid-voacamine was isolated from Voacanga africana Stapf and Surface Plasmon Resonance imaging (SPRi) exprement showed that this alkaloid could be combine with Protein Tyrosine Phosphatase1B (PTP1B). Then the PTP1B activity inhibition experiment display that the compound showed an outstanding promoting activity to PTP1B.

  2. Protein tyrosine phosphatase 1B inhibitory activity of alkaloids from Rhizoma Coptidis and their molecular docking studies.

    PubMed

    Choi, Jae Sue; Ali, Md Yousof; Jung, Hyun Ah; Oh, Sang Ho; Choi, Ran Joo; Kim, Eon Ji

    2015-08-02

    Rhizoma Coptidis (the rhizome of Coptis chinensis Franch) has commonly been used for treatment of diabetes mellitus in traditional Chinese medicine due to its blood sugar-lowering properties and therapeutic benefits which highly related to the alkaloids therein. However, a limited number of studies focused on the Coptis alkaloids other than berberine. In the present study, we investigated the anti-diabetic potential of Coptis alkaloids, including berberine (1), epiberberine (2), magnoflorine (3), and coptisine (4), by evaluating the ability of these compounds to inhibit protein tyrosine phosphatase 1B (PTP1B), and ONOO(-)-mediated protein tyrosine nitration. We scrutinized the potentials of Coptis alkaloids as PTP1B inhibitors via enzyme kinetics and molecular docking simulation. The Coptis alkaloids 1-4 exhibited remarkable inhibitory activities against PTP1B with the IC50 values of 16.43, 24.19, 28.14, and 51.04 μM, respectively, when compared to the positive control ursolic acid. These alkaloids also suppressed ONOO(-)-mediated tyrosine nitration effectively in a dose dependent manner. In addition, our kinetic study using the Lineweaver-Burk and Dixon plots revealed that 1 and 2 showed a mixed-type inhibition against PTP1B, while 3 and 4 noncompetitively inhibited PTP1B. Moreover, molecular docking simulation of these compounds demonstrated negative binding energies (Autodock 4.0=-6.7 to -7.8 kcal/mol; Fred 2.0=-59.4 to -68.2 kcal/mol) and a high proximity to PTP1B residues, including Phe182 and Asp181 in the WPD loop, Cys215 in the active sites and Tyr46, Arg47, Asp48, Val49, Ser216, Ala217, Gly218, Ile219, Gly220, Arg221 and Gln262 in the pocket site, indicating a higher affinity and tighter binding capacity of these alkaloids for the active site of the enzyme. Our results clearly indicate the promising anti-diabetic potential of Coptis alkaloids as inhibitors on PTP1B as well as suppressors of ONOO(-)-mediated protein tyrosine nitration, and thus hold promise as therapeutic agents for the treatment of diabetes and related disease. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  3. Piperidine, pyridine alkaloid inhibition of fetal movement in a day 40 pregnant goat model.

    PubMed

    Green, Benedict T; Lee, Stephen T; Welch, Kevin D; Pfister, James A; Panter, Kip E

    2013-08-01

    Inhibition of fetal movement is one mechanism behind the development of multiple congenital contracture-type defects in developing fetuses of humans and animals. We tested the alkaloids anabasine, lobeline, and myosmine for agonist actions, and sensitivity to alpha conotoxins EI and GI blockade at fetal muscle-type nicotinic acetylcholine receptors (nAChR) expressed by TE-671 cells. We also determined if the alkaloids decreased fetal movement in an IV dosed, day 40 pregnant goat model. In TE-671 cells, all three alkaloids elicited concentration-dependent changes in membrane potential sensing dye fluorescence. 1.0 μM alpha conotoxin GI shifted the concentration-effect curves of anabasine and myosmine to the right, and decreased maximal responses. Neither of the conotoxins blocked the actions of lobeline in TE-671 cells. In the day 40 pregnant goats, 0.8 mg/kg anabasine abolished fetal movement at 30 and 60 min after dosing and fetal movement was reduced by lobeline and myosmine. The blockade of anabasine and myosmine actions in TE-671 cells by alpha conotoxin GI indicates that they are agonists at fetal muscle-type nAChR. All three alkaloids did significantly decrease fetal movement in the day 40 pregnant goat model suggesting a potential for these alkaloids to cause multiple congenital contracture-type defects in developing fetuses. Published by Elsevier Ltd.

  4. Potential benefits of phytochemicals against Alzheimer's disease.

    PubMed

    Wightman, Emma L

    2017-05-01

    Our current therapeutic drugs for Alzheimer's disease are predominantly derived from the alkaloid class of plant phytochemicals. These drugs, such as galantamine and rivastigmine, attenuate the decline in the cholinergic system but, as the alkaloids occupy the most dangerous end of the phytochemical spectrum (indeed they function as feeding deterrents and poisons to other organisms within the plant itself), they are often associated with unpleasant side effects. In addition, these cholinesterase inhibiting alkaloids target only one system in a disorder, which is typified by multifactorial deficits. The present paper will look at the more benign terpene (such as Ginkgo biloba, Ginseng, Melissa officinalis (lemon balm) and Salvia lavandulaefolia (sage)) and phenolic (such as resveratrol) phytochemicals; arguing that they offer a safer alternative and that, as well as demonstrating efficacy in cholinesterase inhibition, these phytochemicals are able to target other salient systems such as cerebral blood flow, free radical scavenging, anti-inflammation, inhibition of amyloid-β neurotoxicity, glucoregulation and interaction with other neurotransmitters (such as γ-aminobutyric acid) and signalling pathways (e.g. via kinase enzymes).

  5. Activation and desensitization of peripheral muscle and neuronal nicotinic acetylcholine receptors by selected, naturally-occurring pyridine alkaloids

    USDA-ARS?s Scientific Manuscript database

    Teratogenic alkaloids can cause developmental defects due to inhibition of fetal movement that results from desensitization of fetal muscletype nicotinic acetylcholine receptors (nAChRs). We investigated the ability of two known teratogens, the piperidinyl-pyridine anabasine and its 1,2-dehydropiper...

  6. Cholinesterase inhibitory activity of isoquinoline alkaloids from three Cryptocarya species (Lauraceae).

    PubMed

    Wan Othman, Wan Nurul Nazneem; Liew, Sook Yee; Khaw, Kooi Yeong; Murugaiyah, Vikneswaran; Litaudon, Marc; Awang, Khalijah

    2016-09-15

    Alzheimer's disease is the most common form of dementia among older adults. Acetylcholinesterase and butyrylcholinesterase are two enzymes involved in the breaking down of the neurotransmitter acetylcholine. Inhibitors for these enzymes have potential to prolong the availability of acetylcholine. Hence, the search for such inhibitors especially from natural products is needed in developing potential drugs for Alzheimer's disease. The present study investigates the cholinesterase inhibitory activity of compounds isolated from three Cryptocarya species towards acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Nine alkaloids were isolated; (+)-nornantenine 1, (-)-desmethylsecoantofine 2, (+)-oridine 3, (+)-laurotetanine 4 from the leaves of Cryptocarya densiflora BI., atherosperminine 5, (+)-N-methylisococlaurine 6, (+)-N-methyllaurotetanine 7 from the bark of Cryptocarya infectoria Miq., 2-methoxyatherosperminine 8 and (+)-reticuline 9 from the bark of Cryptocarya griffithiana Wight. In general, most of the alkaloids showed higher inhibition towards BChE as compared to AChE. The phenanthrene type alkaloid; 2-methoxyatherosperminine 8, exhibited the most potent inhibition against BChE with IC50 value of 3.95μM. Analysis of the Lineweaver-Burk (LB) plot of BChE activity over a range of substrate concentration suggested that 2-methoxyatherosperminine 8 exhibited mixed-mode inhibition with an inhibition constant (Ki) of 6.72μM. Molecular docking studies revealed that 2-methoxyatherosperminine 8 docked well at the choline binding site and catalytic triad of hBChE (butyrylcholinesterase from Homo sapiens); hydrogen bonding with Tyr 128 and His 438 residues respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Pyrrole alkaloids from the fruits of Morus alba.

    PubMed

    Kim, Seon Beom; Chang, Bo Yoon; Hwang, Bang Yeon; Kim, Sung Yeon; Lee, Mi Kyeong

    2014-12-15

    Phytochemical investigation of the fruits of Morus alba afforded seventeen pyrrole alkaloids including five new compounds. The structures of five new pyrrole alkaloids, named morroles B-F (4, 5, 7, 16 and 17), were determined on the basis of spectroscopic interpretations. 4-[Formyl-5-(hydroxymethyl)-1H-pyrrol-1-yl]butanoate (2) was synthesized by chemical reaction but first isolated from nature. Among isolated compounds, compounds 6 and 14 significantly inhibited pancreatic lipase activity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Marine-Derived 2-Aminoimidazolone Alkaloids. Leucettamine B-Related Polyandrocarpamines Inhibit Mammalian and Protozoan DYRK & CLK Kinases

    PubMed Central

    Loaëc, Nadège; Attanasio, Eletta; Villiers, Benoît; Durieu, Emilie; Tahtouh, Tania; Cam, Morgane; Alencar, Aline; Roué, Mélanie; Bourguet-Kondracki, Marie-Lise; Proksch, Peter; Limanton, Emmanuelle; Guiheneuf, Solène; Carreaux, François; Bazureau, Jean-Pierre; Klautau, Michelle

    2017-01-01

    A large diversity of 2-aminoimidazolone alkaloids is produced by various marine invertebrates, especially by the marine Calcareous sponges Leucetta and Clathrina. The phylogeny of these sponges and the wide scope of 2-aminoimidazolone alkaloids they produce are reviewed in this article. The origin (invertebrate cells, associated microorganisms, or filtered plankton), physiological functions, and natural molecular targets of these alkaloids are largely unknown. Following the identification of leucettamine B as an inhibitor of selected protein kinases, we synthesized a family of analogues, collectively named leucettines, as potent inhibitors of DYRKs (dual-specificity, tyrosine phosphorylation regulated kinases) and CLKs (cdc2-like kinases) and potential pharmacological leads for the treatment of several diseases, including Alzheimer’s disease and Down syndrome. We assembled a small library of marine sponge- and ascidian-derived 2-aminoimidazolone alkaloids, along with several synthetic analogues, and tested them on a panel of mammalian and protozoan kinases. Polyandrocarpamines A and B were found to be potent and selective inhibitors of DYRKs and CLKs. They inhibited cyclin D1 phosphorylation on a DYRK1A phosphosite in cultured cells. 2-Aminoimidazolones thus represent a promising chemical scaffold for the design of potential therapeutic drug candidates acting as specific inhibitors of disease-relevant kinases, and possibly other disease-relevant targets. PMID:29039762

  9. Marine-Derived 2-Aminoimidazolone Alkaloids. Leucettamine B-Related Polyandrocarpamines Inhibit Mammalian and Protozoan DYRK & CLK Kinases.

    PubMed

    Loaëc, Nadège; Attanasio, Eletta; Villiers, Benoît; Durieu, Emilie; Tahtouh, Tania; Cam, Morgane; Davis, Rohan A; Alencar, Aline; Roué, Mélanie; Bourguet-Kondracki, Marie-Lise; Proksch, Peter; Limanton, Emmanuelle; Guiheneuf, Solène; Carreaux, François; Bazureau, Jean-Pierre; Klautau, Michelle; Meijer, Laurent

    2017-10-17

    A large diversity of 2-aminoimidazolone alkaloids is produced by various marine invertebrates, especially by the marine Calcareous sponges Leucetta and Clathrina . The phylogeny of these sponges and the wide scope of 2-aminoimidazolone alkaloids they produce are reviewed in this article. The origin (invertebrate cells, associated microorganisms, or filtered plankton), physiological functions, and natural molecular targets of these alkaloids are largely unknown. Following the identification of leucettamine B as an inhibitor of selected protein kinases, we synthesized a family of analogues, collectively named leucettines, as potent inhibitors of DYRKs (dual-specificity, tyrosine phosphorylation regulated kinases) and CLKs (cdc2-like kinases) and potential pharmacological leads for the treatment of several diseases, including Alzheimer's disease and Down syndrome. We assembled a small library of marine sponge- and ascidian-derived 2-aminoimidazolone alkaloids, along with several synthetic analogues, and tested them on a panel of mammalian and protozoan kinases. Polyandrocarpamines A and B were found to be potent and selective inhibitors of DYRKs and CLKs. They inhibited cyclin D1 phosphorylation on a DYRK1A phosphosite in cultured cells. 2-Aminoimidazolones thus represent a promising chemical scaffold for the design of potential therapeutic drug candidates acting as specific inhibitors of disease-relevant kinases, and possibly other disease-relevant targets.

  10. Vindogentianine, a hypoglycemic alkaloid from Catharanthus roseus (L.) G. Don (Apocynaceae).

    PubMed

    Tiong, Soon Huat; Looi, Chung Yeng; Arya, Aditya; Wong, Won Fen; Hazni, Hazrina; Mustafa, Mohd Rais; Awang, Khalijah

    2015-04-01

    Vindogentianine, a new indole alkaloid together with six known alkaloids, vindoline, vindolidine, vindolicine, vindolinine, perivine and serpentine were isolated from leaf extract (DA) of Catharanthus roseus (L.) G. Don. Their structures were elucidated by spectroscopic methods; NMR, MS, UV and IR. Vindogentianine is a dimer containing a vindoline moiety coupled to a gentianine moiety. After 24h incubation, vindogentianine exhibited no cytotoxic effect in C2C12 mouse myoblast and β-TC6 mouse pancreatic cells (IC50>50μg/mL). Real-time cell proliferation monitoring also indicated vindogentianine had little or no effect on C2C12 mouse myoblast cell growth at the highest dose tested (200μg/mL), without inducing cell death. Vindogentianine exhibited potential hypoglycemic activity in β-TC6 and C2C12 cells by inducing higher glucose uptake and significant in vitro PTP-1B inhibition. However, in vitro α-amylase and α-glucosidase inhibition assay showed low inhibition under treatment of vindogentianine. This suggests that hypoglycemic activity of vindogentianine may be due to the enhancement of glucose uptake and PTP-1B inhibition, implying its therapeutic potential against type 2 diabetes. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Nantenine alkaloid presents anticonvulsant effect on two classical animal models.

    PubMed

    Ribeiro, R A; Leite, J R

    2003-01-01

    The present study investigated the anticonvulsant and convulsant profiles of nantenine, an aporphine alkaloid found in several vegetal species. At lower doses (20-50 mg/kg, i.p.) the alkaloid proved to be effective in inhibiting pentylenotetrazol- (PTZ 100 mg/kg, s.c.) and maximal electroshock-induced seizures (80 mA, 50 pulses/s, 0.2 s), suggesting its potential as an anticonvulsant drug. However, at higher doses (> or = 75 mg/kg, i.p.) a convulsant activity was observed. Comparing the present in vivo nantenine effects on seizures with previous in vitro biphasic action on Na+, K+-ATPase activity, the convulsant effect appears to be related to inhibition of these phosphatase at high doses whereas anticonvulsant effect, observed at low doses, seems attributable to its stimulation and the resultant decrease of Ca2+-influx into the cell.

  12. Marine sponge alkaloids as a source of anti-bacterial adjuvants

    PubMed Central

    Melander, Roberta J.; Liu, Hong-bing; Stephens, Matthew D.; Bewley, Carole A.; Melander, Christian

    2018-01-01

    Novel approaches that do not rely upon developing microbicidal compounds are sorely needed to combat multidrug resistant (MDR) bacteria. The potential of marine secondary metabolites to serve as a source of non-traditional anti-bacterial agents is demonstrated by showing that pyrrole-imidazole alkaloids inhibit biofilm formation and suppress antibiotic resistance. PMID:27876320

  13. The non-competitive blockade of GABAA receptors by an aqueous extract of water hemlock (Cicuta douglassi) tubers

    USDA-ARS?s Scientific Manuscript database

    Teratogenic alkaloids can cause developmental defects due to the inhibition of fetal movement from the desensitization of fetal muscle-type nicotinic acetylcholine receptors (nAChR). In this study, we tested the hypothesis that the piperidine alkaloid anabaseine a 1,2-dehydropiperidine and anabasin...

  14. Ergopeptines bromocriptine and ergovaline and the dopamine type-2 receptor inhibitor domperidone inhibit bovine equilibrative nucleoside transporter 1-like activity

    USDA-ARS?s Scientific Manuscript database

    Forages infected with Neotyphodium coenophialum produce ergot alkaloids that alter the systemic physiology of cattle such that reproduction, lactation, and growth are decreased. Ergopeptines are one predominant class of ergot alkaloids. However, aside from their interactions with biogenic amine rece...

  15. Alkaloids from psychotria target sirtuins: in silico and in vitro interaction studies.

    PubMed

    Sacconnay, Lionel; Ryckewaert, Lucie; Dos Santos Passos, Carolina; Guerra, Maria Cristina; Kato, Lucilia; Alves de Oliveira, Cecilia Maria; Henriques, Amélia; Carrupt, Pierre-Alain; Simões-Pires, Claudia; Nurisso, Alessandra

    2015-04-01

    Epigenetic enzymes such as histone deacetylases play a crucial role in the development of ageing-related diseases. Among the 18 histone deacetylase isoforms found in humans, class III histone deacetylases, also known as sirtuins, seem to be promising targets for treating neurodegenerative conditions. Recently, Psychotria alkaloids, mainly monoterpene indoles, have been reported for their inhibitory properties against central nervous system cholinesterase and monoamine oxidase proteins. Given the multifunctional profile of these alkaloids in the central nervous system, and the fact that the indole scaffold has been previously associated with sirtuin inhibition, we hypothesized that these indole derivatives could also interact with sirtuins. In the present study, alkaloids previously isolated from Psychotria spp. were evaluated for their potential interaction with human sirtuin 1 and sirtuin 2 by molecular docking and molecular dynamics simulation approaches. The in silico results allowed for the selection of five potentially active compounds, namely, prunifoleine, 14-oxoprunifoleine, E-vallesiachotamine, Z-vallesiachotamine, and vallesiachotamine lactone. The sirtuin inhibition of these compounds was confirmed in vitro in a dose-response manner, with preliminary information on their pharmacokinetics properties. Georg Thieme Verlag KG Stuttgart · New York.

  16. The study of chemical composition and pharmacological action of the alkaloid from plants of Lycoris Herb

    NASA Astrophysics Data System (ADS)

    Ji, Y. B.; Wei, C.; Xin, G. S.

    2017-12-01

    Recently, studies on Lycoris type alkaloids received the attention of scholars home and abroad. Lycoris type contains lots of alkaloids, it can be divided into seven types according to its molecular structure, including Lycorine, Crinine, Galanthamine, Tazettine, Narciclasine, Lycorenine, Homolycorine and Montanine. Researches have shown that Lycoris type possess multiple phamocology activity, such as strong anti-tumor activity of human breast cancer cell (MCF-7), human leukemia cell(HL-60); and strong inhibition effect of flu virus, measles virus, polio virus and SARS virus; Besides, Lycorine type has strong anti-Acetylcholinesterase effect. In a word, Lycorine type, Lycoris type alkaloids carries multiple pharmacology effect and is a promising substance.

  17. The Plant Alkaloid Camptothecin as a Novel Antifouling Compound for Marine Paints: Laboratory Bioassays and Field Trials.

    PubMed

    Feng, Dan Qing; He, Jian; Chen, Si Yu; Su, Pei; Ke, Cai Huan; Wang, Wei

    2018-06-02

    The extensive use of copper and booster biocides in antifouling (AF) paints has raised environmental concerns and the need to develop new AF agents. In the present study, 18 alkaloids derived from terrestrial plants were initially evaluated for AF activity using laboratory bioassays with the bryozoan Bugula neritina and the barnacle Balanus albicostatus. The results showed that 4 of the 18 alkaloids were effective in inhibiting larval settlement of B. neritina, with an EC 50 range of 6.18 to 43.11 μM, and 15 of the 18 alkaloids inhibited larval settlement of B. albicostatus, with EC 50 values ranging from 1.18 to 67.58 μM. Field trials that incorporated five alkaloids respectively into paints with 20% w/w indicated an in situ AF efficiency of evodiamine, strychnine, camptothecin (CPT), and cepharanthine, with the most potent compound being CPT, which also exhibited stronger AF efficiency than the commercial antifoulants cuprous oxide and zinc pyrithione in the field over a period of 12 months. Further field trials with different CPT concentrations (0.1 to 20% w/w) in the paints suggested a concentration-dependent AF performance in the natural environment, and the effective concentrations to significantly inhibit settlement of biofoulers in the field were ≥ 0.5% w/w (the efficiency of 0.5% w/w lasted for 2 months). Moreover, CPT toxicity against the crustacean Artemia salina, the planktonic microalgae Phaeodactylum tricornutum and Isochrysis galbana, was examined. The results showed that 24 h LC 50 of CPT against A. salina was 20.75 μM, and 96 h EC 50 (growth inhibition) values of CPT to P. tricornutum and I. galbana were 55.81 and 6.29 μM, respectively, indicating that CPT was comparatively less toxic than several commercial antifoulants previously reported. Our results suggest the novel potential application of CPT as an antifoulant.

  18. Total alkaloids of Rubus alceifolius Poir inhibit tumor angiogenesis through suppression of the Notch signaling pathway in a mouse model of hepatocellular carcinoma.

    PubMed

    Zhao, Jinyan; Lin, Wei; Cao, Zhiyun; Zhuang, Qunchuan; Zheng, Liangpu; Peng, Jun; Hong, Zhenfeng

    2015-01-01

    Angiogenesis, which has a critical role in human tumor growth and development, is tightly regulated by the Notch signaling pathway. Total alkaloids are active components of the plant Rubus alceifolius Poir, which is used for the treatment of various types of cancer. A previous study by our group showed that the total alkaloids of Rubus alceifolius Poir (TARAP) induced hepatocellular carcinoma (HCC) cell apoptosis through the activation of the mitochondria-dependent pathway in vitro and in vivo, as well as inhibited angiogenesis in a chick embryo chorioallantoic membrane model. In the present study, to further analyze the specific mechanisms underlying the antitumor activity of TARAP, a HCC xenograft mouse model was used to assess the effect of TARAP on angiogenesis in vivo. TARAP was found to suppress the expression of vascular endothelial growth factor (VEGF) A and VEGF receptor-2 in tumor tissues, which resulted in the inhibition of tumor angiogenesis. In addition, TARAP treatment was observed to inhibit the expression of Notch1, delta-like ligand 4 and jagged 1, which are key mediators of the Notch signaling pathway. The present study identified that the inhibition of tumor angiogenesis through the suppression of the Notch signaling pathway may be one of the mechanisms through which TARAP may be effective in the treatment of cancer.

  19. Effect of Alkaloids Isolated from Phyllodium pulchellum on Monoamine Levels and Monoamine Oxidase Activity in Rat Brain.

    PubMed

    Cai, Lu; Wang, Chao; Huo, Xiao-Kui; Dong, Pei-Pei; Zhang, Bao-Jing; Zhang, Hou-Li; Huang, Shan-Shan; Zhang, Bo; Yu, Sheng-Ming; Zhong, Ming; Ma, Xiao-Chi

    2016-01-01

    Phyllodium pulchellum (P. pulchellum) is a folk medicine with a significant number of bioactivities. The aim of this study was to investigate the effects displayed by alkaloids fractions, isolated from the roots of P. pulchellum, on neurotransmitters monoamine levels and on monoamine oxidase (MAO) activity. Six alkaloids, which had indolealkylamine or β-carboline skeleton, were obtained by chromatographic technologies and identified by spectroscopic methods such as NMR and MS. After treatment with alkaloids of P. pulchellum, the reduction of DA levels (54.55%) and 5-HT levels (35.01%) in rat brain was observed by HPLC-FLD. The effect of alkaloids on the monoamines metabolism was mainly related to MAO inhibition, characterized by IC50 values of 37.35 ± 6.41 and 126.53 ± 5.39 μg/mL for MAO-A and MAO-B, respectively. The acute toxicity indicated that P. pulchellum extract was nontoxic.

  20. Arginine decarboxylase as the source of putrescine for tobacco alkaloids

    NASA Technical Reports Server (NTRS)

    Tiburcio, A. F.; Galston, A. W.

    1986-01-01

    The putrescine which forms a part of nicotine and other pyrrolidine alkaloids is generally assumed to arise through the action of ornithine decarboxylase (ODC). However, we have previously noted that changes in the activity of arginine decarboxylase (ADC), an alternate source of putrescine, parallel changes in tissue alkaloids, while changes in ODC activity do not. This led us to undertake experiments to permit discrimination between ADC and ODC as enzymatic sources of putrescine destined for alkaloids. Two kinds of evidence presented here support a major role for ADC in the generation of putrescine going into alkaloids: (a) A specific 'suicide inhibitor' of ADC effectively inhibits the biosynthesis of nicotine and nornicotine in tobacco callus, while the analogous inhibitor of ODC is less effective, and (b) the flow of 14C from uniformly labelled arginine into nicotine is much more efficient than that from ornithine.

  1. Butyrylcholinesterase, lipoxygenase inhibiting and antifungal alkaloids from Isatis tinctoria.

    PubMed

    Ahmad, Ijaz; Fatima, Itrat

    2008-06-01

    Phytochemical investigations on the alkaloidal fraction of the whole plant of the Isatis tinctoria led to the isolation of the alkaloids 1-6. Compounds 3, 2 were found to be potent butyrylcholinesterase and lipoxygenase enzymes inhibitors in a concentration-dependent manner with the IC(50) values 16.3 +/- 0.06 and 19.7 +/- 0.03 microM against BChE and 30.6 +/- 0.02 and 33.7 +/- 0.05 microM against LOX, respectively. The compounds (1-6) showed significant antifungal activity against Trichophyton schoen leinii, Aspergillus niger, Candida albicans, Trichophyton simii, and Macrophomina phaseolina.

  2. Glutarimide alkaloids and a terpenoid benzoquinone from Cordia globifera.

    PubMed

    Parks, Joshua; Gyeltshen, Thinley; Prachyawarakorn, Vilailak; Mahidol, Chulabhorn; Ruchirawat, Somsak; Kittakoop, Prasat

    2010-05-28

    Three new compounds, a meroterpene (2) having a cyclopropane moiety named globiferane and glutarimide alkaloids named cordiarimides A (3) and B (4), were isolated from the roots of Cordia globifera. Compounds 2-4 exhibited weak cytotoxic activity. Cordiarimide B (4) exhibited radical scavenging activity, as it inhibited superoxide anion radical formation in the xanthine/xanthine oxidase (XXO) assay, and also suppressed superoxide anion generation in differentiated HL-60 human promyelocytic leukemia cells when induced by 12-O-tetradecanoylphorbol-13-acetate (TPA). This is the first report on the presence of glutarimide alkaloids in the genus Cordia.

  3. Extracts of Crinum latifolium inhibit the cell viability of mouse lymphoma cell line EL4 and induce activation of anti-tumour activity of macrophages in vitro.

    PubMed

    Nguyen, Hoang-Yen T; Vo, Bach-Hue T; Nguyen, Lac-Thuy H; Bernad, Jose; Alaeddine, Mohamad; Coste, Agnes; Reybier, Karine; Pipy, Bernard; Nepveu, Françoise

    2013-08-26

    Crinum latifolium L. (CL) leaf extracts have been traditionally used in Vietnam and are now used all over the world for the treatment of prostate cancer. However, the precise cellular mechanisms of the action of CL extracts remain unclear. To examine the effects of CL samples on the anti-tumour activity of peritoneal murine macrophages. The properties of three extracts (aqueous, flavonoid, alkaloid), one fraction (alkaloid), and one pure compound (6-hydroxycrinamidine) obtained from CL, were studied (i) for redox capacities (DPPH and bleaching beta-carotene assays), (ii) on murine peritoneal macrophages (MTT assay) and on lymphoma EL4-luc2 cells (luciferine assay) for cytotoxicity, (iii) on macrophage polarization (production of ROS and gene expression by PCR), and (iv) on the tumoricidal functions of murine peritoneal macrophages (lymphoma cytotoxicity by co-culture with syngeneic macrophages). The total flavonoid extract with a high antioxidant activity (IC50=107.36 mg/L, DPPH assay) showed an inhibitory action on cancer cells. Alkaloid extracts inhibited the proliferation of lymphoma cells either by directly acting on tumour cells or by activating of the tumoricidal functions of syngeneic macrophages. The aqueous extract induced mRNA expression of tumour necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin 6 (IL-6) indicating differentiation of macrophages into pro-inflammatory M1 polarized macrophages. The total flavonoid, alkaloid extracts and an alkaloid fraction induced the expression of the formyl peptide receptor (FPR) on the surface of the polarized macrophages that could lead to the activation of macrophages towards the M1 phenotype. Aqueous and flavonoid extracts enhanced NADPH quinine oxido-reductase 1 (NQO1) mRNA expression in polarized macrophages which could play an important role in cancer chemoprevention. All the samples studied were non-toxic to normal living cells and the pure alkaloid tested, 6-hydroxycrinamidine, was not active in any of the models investigated. Our results indicate that CL extracts and alkaloid fraction (but not pure 6-hydroxycrinamidine) inhibit the proliferation of lymphoma cells in multiple pathways. Our results are in accordance with traditional usage and encourage further studies and in vivo assays. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  4. Alkaloid fraction of Uncaria rhynchophylla protects against N-methyl-D-aspartate-induced apoptosis in rat hippocampal slices.

    PubMed

    Lee, Jongseok; Son, Dongwook; Lee, Pyeongjae; Kim, Sun-Yeou; Kim, Hocheol; Kim, Chang-Ju; Lim, Eunhee

    2003-09-04

    Uncaria rhynchophylla is a medicinal herb which has sedative and anticonvulsive effects and has been applied in the treatment of epilepsy in Oriental medicine. In this study, the effect of alkaloid fraction of U. rhynchophylla against N-methyl-D-aspartate (NMDA)-induced neuronal cell death was investigated. Pretreatment with an alkaloid fraction of U. rhynchophylla for 1 h decreased the degree of neuronal damage induced by NMDA exposure in cultured hippocampal slices and also inhibited NMDA-induced enhanced expressions of apoptosis-related genes such as c-jun, p53, and bax. In the present study, the alkaloid fraction of U. rhynchophylla was shown to have a protective property against NMDA-induced cytotoxicity by suppressing the NMDA-induced apoptosis in rat hippocampal slices.

  5. [Chemoprotective effect of the alkaloid extract of Melocactus bellavistensis against colon cancer induced in rats using 1,2-dimethylhydrazine].

    PubMed

    Ríos-León, Karla; Fuertes-Ruiton, Cesar; Arroyo, Jorge; Ruiz, Julio

    2017-01-01

    To determine the toxicity and chemoprotective effect of the alkaloid extract of Melocactus bellavistensis against colon cancer induced in rats using 1,2-dimethylhydrazine (DMH). The alkaloid extract was obtained from the fleshy part of M. bellavistensis, and an acute toxicity test was then carried out on 30 mice of the Balb C57 strain. To assess its chemoprotective effect, colon cancer was induced in 45 Holtzman rats using DMH according to the following experimental design: one control group received 2 mL/kg sodium polysorbate, and four groups received 20 mg/kg DMH plus 0, 1, 5, or 10 mg/kg M. bellavistensis alkaloid extract. With a sample of 5 g of alkaloid extract, an LD50 greater than 1000 mg/mL was determined in the acute toxicity test. Histological indicators revealed that the 5 and 10 mg/kg doses had significant anti-tumor activity with 100% neoplasia inhibition against DMH- induced colon cancer in rats. Under experimental conditions, the alkaloid extract of M. bellavistensis has a chemoprotective effect against DMH-induced colon cancer in rats.

  6. Gastroprotective activity of alkaloid extract and 2-phenylquinoline obtained from the bark of Galipea longiflora Krause (Rutaceae).

    PubMed

    Zanatta, Francielle; Gandolfi, Renan Becker; Lemos, Marivane; Ticona, Juan Carlos; Gimenez, Alberto; Clasen, Bruna Kurz; Cechinel Filho, Valdir; de Andrade, Sérgio Faloni

    2009-07-15

    As part of our continuing search for bioactive natural products from plants, the present study was carried out in order to evaluate the gastroprotective properties of alkaloid extract and 2-phenylquinoline obtained from the bark of Galipea longiflora (Rutaceae). Anti-ulcer assays were performed using the following protocols in mice: nonsteroidal anti-inflammatory drug (NSAID)/bethanecol-induced ulcer, ethanol/HCl-induced ulcer, and stress-induced ulcer. The effects of the extract on gastric content volume, pH and total acidity were also evaluated, using the pylorus ligated model. Treatment using doses of 50, 125 and 250 mg/kg of G. longiflora alkaloid extract and positive controls (omeprazol or cimetidine) significantly diminished the lesion index, total lesion area, and percentage of lesion, in comparison with the negative control groups in all the models evaluated. Regarding the model of gastric secretion, a reduction in volume of gastric juice and total acidity was observed, as well as an increase in gastric pH. The main alkaloid of the plant, 2-phenylquinoline, was also evaluated in the ethanol-induced ulcer model. The results showed that at a dose of 50 mg/kg, it significantly inhibited ulcerative lesions. However, this effect was less than that of the alkaloid extract. All these results taken together show that G. longiflora displays gastroprotective activity, as evidenced by its significant inhibition of the formation of ulcers induced by different models. There are indications that mechanisms involved in anti-ulcer activity are related to a decrease in gastric secretion and an increase in gastric mucus content. Also, there is evidence of involvement of NO in the gastroprotector mechanisms. These effects may be attributed, at least in part, to the presence of some alkaloids, particularly 2-phenylquinoline.

  7. [Effects of Total Alkaloids of Harmaline on Learning and Memory in Vascular Dementia Rats].

    PubMed

    Zhang, Xiao-shuang; Sun, Jian-ning; Yu, Hui-ling

    2015-11-01

    To investigate the effects of total alkaloids of harmaline on learning and memory in vascular dementia rats, and its mechanism. The model rats of vascular dementia were established with bilateral carotid artery ligation. After 30 days, the model rats were randomly divided into six groups: sham group, model group, nicergoline tablets 7 mg/kg group, and 25, 12.5 and 6.25 mg/kg dose groups of total alkaloids of harmaline, the rats were given medicine for 30 days. Learning and memory abilities were tested by Morris water maze, histomorphology in hippocampal CA1 area were observed by HE staining, BAX and BCL-2 protein expression in hippocampal CA1 area were detected by immunohistochemistry. Compared with model group, 25 mg/kg group of total alkaloids of harmaline shortened the incubation period in the third and fourth day significantly, 12.5 mg/kg group of total alkaloids of harmaline shortened the incubation period in the fourth day. 25 and 12.5 mg/kg groups of total alkaloids of harmaline significantly increased the times crossing the target. Total alkaloids of harmaline improved the neurons pathological changes of rat in the hippocampus CA1 area, 25 and 12.5 mg/kg of total alkaloids of harmaline downregulated the expression of apoptosis proteins BAX, upregulated the protein expression of BCL-2. Total alkaloids of harmaline can improve the learning and memory abilities in vascular dementia rats, which probably is related to inhibiting apoptosis of hippocampus cell.

  8. Effect of Alkaloids Isolated from Phyllodium pulchellum on Monoamine Levels and Monoamine Oxidase Activity in Rat Brain

    PubMed Central

    Cai, Lu; Wang, Chao; Dong, Pei-pei; Zhang, Bao-jing; Zhang, Hou-Li; Huang, Shan-shan; Zhang, Bo; Yu, Sheng-ming; Zhong, Ming; Ma, Xiao-Chi

    2016-01-01

    Phyllodium pulchellum (P. pulchellum) is a folk medicine with a significant number of bioactivities. The aim of this study was to investigate the effects displayed by alkaloids fractions, isolated from the roots of P. pulchellum, on neurotransmitters monoamine levels and on monoamine oxidase (MAO) activity. Six alkaloids, which had indolealkylamine or β-carboline skeleton, were obtained by chromatographic technologies and identified by spectroscopic methods such as NMR and MS. After treatment with alkaloids of P. pulchellum, the reduction of DA levels (54.55%) and 5-HT levels (35.01%) in rat brain was observed by HPLC-FLD. The effect of alkaloids on the monoamines metabolism was mainly related to MAO inhibition, characterized by IC50 values of 37.35 ± 6.41 and 126.53 ± 5.39 μg/mL for MAO-A and MAO-B, respectively. The acute toxicity indicated that P. pulchellum extract was nontoxic. PMID:27195015

  9. Alkaloids as a source of potential anticholinesterase inhibitors for the treatment of Alzheimer's disease.

    PubMed

    Konrath, Eduardo Luis; Passos, Carolina dos Santos; Klein, Luiz Carlos; Henriques, Amélia T

    2013-12-01

    The inhibition of acetylcholinesterase (AChE), the key enzyme in the breakdown of acetylcholine, is currently the main pharmacological strategy available for Alzheimer's disease (AD). In this sense, many alkaloids isolated from natural sources, such as physostigmine, have been long recognized as acetyl- and butyrylcholinesterase (BChE) inhibitors. Since the approval of galantamine for the treatment of AD patients, the search for new anticholinesterase alkaloids has escalated, leading to promising candidates such as huperzine A. This review aims to summarize recent advances in current knowledge on alkaloids as AChE and BChE inhibitors, highlighting structure-activity relationship (SAR) and docking studies. Natural alkaloids belonging to the steroidal/triterpenoidal, quinolizidine, isoquinoline and indole classes, mainly distributed within Buxaceae, Amaryllidaceae and Lycopodiaceae, are considered important sources of alkaloids with anti-enzymatic properties. Investigations into the possible SARs for some active compounds are based on molecular modelling studies, predicting the mode of interaction of the molecules with amino acid residues in the active site of the enzymes. Following this view, an increasing interest in achieving more potent and effective analogues makes alkaloids good chemical templates for the development of new cholinesterase inhibitors. The anticholinesterase activity of alkaloids, together with their structural diversity and physicochemical properties, makes them good candidate agents for the treatment of AD. © 2013 Royal Pharmaceutical Society.

  10. Fetal-muscle type nicotinic acetylcholine receptor activation in TE-671 cells, and inhibition of fetal movement in a day 40 pregnant goat model by optical isomers of the piperidine alkaloid coniine

    USDA-ARS?s Scientific Manuscript database

    Coniine is an optically active toxic piperidine alkaloid and nicotinic acetylcholine receptor (nAChR) agonist found in poison hemlock (Conium maculatum L.). Coniine teratogenicity is hypothesized to be due to the binding, activation, and prolonged desensitization of fetal muscle-type nAChR which re...

  11. Opiate alkaloids antagonize postsynaptic glycine and GABA responses: correlation with convulsant action.

    PubMed

    Werz, M A; Macdonald, R L

    1982-03-18

    Opiate alkaloid and opioid peptide actions on spontaneous neuronal activity and postsynaptic amino acid responsiveness were assessed using intracellular recording techniques applied to murine spinal cord neurons in primary dissociated cell culture. Application of opiates was by superfusion and amino acids by iontophoresis. Glycine and GABA but not glutamate responses were antagonized by the opiate alkaloids. Since opiate effects on glycine and GABA responses were not naloxone-reversible, only weakly stereospecific, and not produced by the opioid peptide [D-Ala2]-Met-enkephalinamide, it is unlikely that these effects were mediated by opiate receptors. Opiate depression of glycine inhibition was correlated with the induction of paroxysmal depolarizations in cultured spinal cord neurons, suggesting that antagonism of inhibitory amino acid transmission may underlie the convulsant actions of high concentrations of the opiate alkaloids.

  12. Protective effects of total alkaloids from Dendrobium crepidatum against LPS-induced acute lung injury in mice and its chemical components.

    PubMed

    Hu, Yang; Ren, Jie; Wang, Lei; Zhao, Xin; Zhang, Mian; Shimizu, Kuniyoshi; Zhang, Chaofeng

    2018-05-01

    Dendrobium crepidatum was one of the sources of Herba Dendrobii, a famous and precious traditional Chinese medicine. Indolizine-type alkaloids are the main characteristic ingredients of D. crepidatum, which possesses a variety of changeable skeletons. In the present study, we found that the total alkaloids of D. crepidatum (TAD) can inhibit the production of nitric oxide (NO) in lipopolysaccharide (LPS)-activated macrophages and showed protective effects against LPS-induced acute lung injury (ALI) in mice through downregulating the TLR4-mediated MyD88/MAPK signaling pathway. Further phytochemical study showed that six previously undescribed indolizine-type compounds, including a racemic mixture (dendrocrepidine A-E) were isolated from TAD. Meanwhile, dendrocrepidine F was separated into a pair of enantiomers by a chiral chromatography, and their absolute configurations were assigned by single-crystal X-ray diffraction analysis. The isomer (-)-dendrocrepidine F showed higher anti-inflammatory effects by inhibiting NO production in LPS-treated macrophages with an IC 50 value of 13.3 μM. Taken together, indolizine-type alkaloids are the active components of D. crepidatum through downregulating the TLR4-mediated pathway, indicating some kind of therapy of TAD for ALI treatment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Sampangine inhibits heme biosynthesis in both yeast and human

    USDA-ARS?s Scientific Manuscript database

    The azaoxoaporphine alkaloid sampangine exhibits strong antiproliferation activity in various organisms. Previous studies suggested that it somehow affects heme metabolism and stimulates production of reactive oxygen species (ROS). In this study, we show that inhibition of heme biosynthesis is the p...

  14. How polyamine synthesis inhibitors and cinnamic acid affect tropane alkaloid production.

    PubMed

    Marconi, Patricia L; Alvarez, María A; Pitta-Alvarez, Sandra I

    2007-01-01

    Hairy roots of Brugmansia candida produce the tropane alkaloids scopolamine and hyoscyamine. In an attempt to divert the carbon flux from competing pathways and thus enhance productivity, the polyamine biosynthesis inhibitors cyclohexylamine (CHA) and methylglyoxal-bis-guanylhydrazone (MGBG) and the phenylalanine-ammonia-lyase inhibitor cinnamic acid were used. CHA decreased the specific productivity of both alkaloids but increased significantly the release of scopolamine (approx 500%) when it was added in the mid-exponential phase. However, when CHA was added for only 48 h during the exponential phase, the specific productivity of both alkaloids increased (approx 200%), favoring scopolamine. Treatment with MGBG was detrimental to growth but promoted release into the medium of both alkaloids. However, when it was added for 48 h during the exponential phase, MGBG increased the specific productivity (approx 200%) and release (250- 1800%) of both alkaloids. Cinnamic acid alone also favored release but not specific productivity. When a combination of CHA or MGBG with cinnamic acid was used, the results obtained were approximately the same as with each polyamine biosynthesis inhibitor alone, although to a lesser extent. Regarding root morphology, CHA inhibited growth of primary roots and ramification. However, it had a positive effect on elongation of lateral roots.

  15. Inhibition on cholinesterase and tyrosinase by alkaloids and phenolics from Aristotelia chilensis leaves.

    PubMed

    Cespedes, Carlos L; Balbontin, Cristian; Avila, Jose G; Dominguez, Mariana; Alarcon, Julio; Paz, Cristian; Burgos, Viviana; Ortiz, Leandro; Peñaloza-Castro, Ignacio; Seigler, David S; Kubo, Isao

    2017-11-01

    It is reported in this study the effect of isolates from leaves of Aristotelia chilensis as inhibitors of acetylcholinesterase (AChE), butyrylcholinesterase (BChE) and tyrosinase enzymes. The aim of the paper was to evaluate the activity of A. chilensis towards different enzymes. In addition to pure compounds, extracts rich in alkaloids and phenolics were tested. The most active F5 inhibited AChE (79.5% and 89.8% at 10.0 and 20.0 μg/mL) and against BChE (89.5% and 97.8% at 10.0 and 20.0 μg/mL), showing a strong mixed-type inhibition against AChE and BChE. F3 (a mixture of flavonoids and phenolics acids), showed IC 50 of 90.7 and 59.6 μg/mL of inhibitory activity against AChE and BChE, inhibiting the acetylcholinesterase competitively. Additionally, F3 showed and high potency as tyrosinase inhibitor with IC 50 at 8.4 μg/mL. Sample F4 (anthocyanidins and phenolic composition) presented a complex, mixed-type inhibition of tyrosinase with a IC 50 of 39.8 μg/mL. The findings in this investigation show that this natural resource has a strong potential for future research in the search of new phytotherapeutic treatments for cholinergic deterioration ailments avoiding the side effects of synthetic drugs. This is the first report as cholinesterases and tyrosinase inhibitors of alkaloids and phenolics from A. chilensis leaves. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Photophysical and Photochemical Properties of Naturally Occurring normelinonine F and Melinonine F Alkaloids and Structurally Related N(2)- and/or N(9)-methyl-β-carboline Derivatives.

    PubMed

    Rasse-Suriani, Federico A O; García-Einschlag, Fernando S; Rafti, Matías; Schmidt De León, Tobías; David Gara, Pedro M; Erra-Balsells, Rosa; Cabrerizo, Franco M

    2018-01-01

    In the present work, we have synthesized and fully characterized the photophysical and photochemical properties of a selected group of N-methyl-β-carboline derivatives (9-methyl-β-carbolines and iodine salts of 2-methyl- and 2,9-dimethyl-β-carbolinium) in aqueous solutions, in the pH range 4.0-14.5. Moreover, despite the quite extensive studies reported in the literature regarding the overall photophysical behavior of N-unsubstituted βCs, this work constitutes the first full and unambiguous characterization of anionic species of N-unsubstituted βCs (norharmane, harmane and harmine), present in aqueous solution under highly alkaline conditions (pH > 13.0). Acid dissociation constants (K a ), thermal stabilities, room temperature UV-visible absorption and fluorescence emission and excitation spectra, fluorescence quantum yields (Ф F ) and fluorescence lifetimes (τ F ), as well as quantum yields of singlet oxygen production (Ф Δ ) have been measured for all the studied compounds. Furthermore, for the first time to our knowledge, chemometric techniques (MCR-ALS and PARAFAC) were applied on these systems, providing relevant information about the equilibria and species involved. The impact of all the foregoing observations on the biological role, as well as the potential biotechnological applications of these compounds, is discussed. © 2017 The American Society of Photobiology.

  17. Protopine from Corydalis ternata has anticholinesterase and antiamnesic activities.

    PubMed

    Kim, S R; Hwang, S Y; Jang, Y P; Park, M J; Markelonis, G J; Oh, T H; Kim, Y C

    1999-04-01

    While screening extracts of natural products in search of anticholinesterase activity, we found that a total methanolic extract of the tuber of Corydalis ternata (Papaveraceae) showed significant inhibitory effects on acetylcholinesterase. Further fractionation of this extract using acetylcholinesterase inhibition as the parameter screened resulted in the isolation and purification of an alkaloid, protopine. Protopine inhibited acetylcholinesterase activity in a dose-dependent manner. The concentration required for 50% inhibition was 50 microM. The anti-acetylcholinesterase activity of protopine was specific reversible and competitive in manner. Furthermore, when mice were pretreated with protopine, the alkaloid significantly alleviated scopolamine-induced memory impairment. In fact, protopine had an efficacy almost identical to that of velnacrine, a tacrine derivative developed by a major drug manufacturer to treat Alzheimer's disease, at an identical therapeutic concentration. We suggest, therefore, that protopine has both anti-acetylcholinesterase and antiamnesic properties that may ultimately hold significant therapeutic value in alleviating certain memory impairments observed in dementia.

  18. Epiberberine, a natural protoberberine alkaloid, inhibits urease of Helicobacter pylori and jack bean: Susceptibility and mechanism.

    PubMed

    Tan, Lihua; Li, Cailan; Chen, Hanbin; Mo, Zhizhun; Zhou, Jiangtao; Liu, Yuhong; Ma, Zhilin; Xu, Yuyao; Yang, Xiaobo; Xie, Jianhui; Su, Ziren

    2017-12-15

    In our previous study, Rhizoma Coptidis extract was found to exert more potent inhibitory effect than its major component berberine towards urease from Helicobacter pylori (HPU) and jack bean (JBU). In continuation of our work, the present study was designed to further comparatively investigate the urease inhibitory activities of five major protoberberine alkaloids in Rhizoma Coptidis, namely berberine, palmatine, coptisine, epiberberine, jateorhizine to identify the bioactive constituent, and illuminate the potential mechanism of action. Results indicated that the five protoberberine alkaloids acted as concentration-dependent inactivators of urease with IC 50 values ranging between 3.0 and 5087μM for HPU and 2.3->10,000μM for JBU, respectively. Notably, epiberberine (EB) was found to be the most potent inhibitor against both ureases with IC 50 values of 3.0±0.01μM for HPU and 2.3±0.01μM for JBU, which was more effective than the standard urease inhibitor, acetohydroxamic acid (83±0.01μM for HPU and 22±0.01μM for JBU, respectively). Further kinetic analysis revealed that the type of EB inhibition against HPU was slow-binding and uncompetitive, with K i of 10.6±0.01μM, while slow-binding and competitive against JBU with K i of 4.6±0.01μM. Addition of thiol reagents, such as l-cysteine, glutathione and dithiothreitol, significantly abolished the inhibition, while Ni 2+ competitive inhibitors, boric acid and sodium fluoride, synergetically inhibited urease with EB, indicating the obligatory role of the active site sulfhydryl group for the inhibition. In addition, binding of EB with the urease proved to be reversible, as about 65% and 90% enzymatic activity of HPU and JBU, respectively, could be restored by dithiothreitol application. These findings highlighted the potential role of Rhizoma Coptidis protoberberine alkaloids, especially EB, as a lead urease inhibitor in the treatment of diseases associated with ureolytic bacteria. Thus, EB had good potential for further development into a promising therapeutic approach for the treatment of urease-related diseases. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Increased milk production by Holstein cows consuming endophyte-infected fescue seed during the dry period.

    USDA-ARS?s Scientific Manuscript database

    Ergot alkaloids in endophyte-infected grasses inhibit prolactin (PRL) secretion and may reduce milk production of cows consuming endophyte-infected grasses. We hypothesized that consumption of endophyte-infected fescue during the dry period inhibits mammary differentiation and subsequent milk produ...

  20. Geissoschizine methyl ether, a corynanthean-type indole alkaloid from Uncaria rhynchophylla as a potential acetylcholinesterase inhibitor.

    PubMed

    Yang, Zhong-Duo; Duan, Dong-Zhu; Du, Juan; Yang, Ming-Jun; Li, Shuo; Yao, Xiao-Jun

    2012-01-01

    Geissoschizine methyl ether (1), a newly discovered strong acetylcholinesterase (AChE) inhibitor, along with six weakly active alkaloids, vallesiachotamine (2), hisuteine (3), hirsutine (4), isorhynchophylline (5), cisocorynoxeine (6) and corynoxeine (7) have been isolated from Uncaria rhynchophylla. Geissoschizine methyl ether (1) inhibited 50% of AChE activity at concentrations of 3.7 ± 0.3 µg mL(-1) while the IC(50) value of physostigmine as a standard was 0.013 ± 0.002 µg mL(-1). The mode of AChE inhibition by 1 was reversible and non-competitive. In addition, molecular modelling was performed to explore the binding mode of inhibitor 1 at the active site of AChE.

  1. Anti-inflammatory and antioxidant activities of cat's claw (Uncaria tomentosa and Uncaria guianensis) are independent of their alkaloid content.

    PubMed

    Sandoval, M; Okuhama, N N; Zhang, X J; Condezo, L A; Lao, J; Angeles', F M; Musah, R A; Bobrowski, P; Miller, M J S

    2002-05-01

    Cat's claw is an herbal medicine from the Amazon that is used widely to treat inflammatory disorders. The purpose of this study was to characterize the antioxidative and antiinflammatory properties of cat's claw, Uncaria tomentosa (UT) and Uncaria guianensis (UG). Alkaloids and flavanols were determined using reversed-phase HPLC; scavenging of 1,1-diphenyl-2-picrilhydrazyl (DPPH), hydroxyl radicals, and lipid peroxidation by spectrophotometry; and TNFalpha production by ELISA. Anti-inflammatory activity was assessed in vitro by inhibition of TNFalpha and nitrite production from RAW 264.7 cells exposed to LPS (50 ng/ml) and in vivo using the indomethacin-induced gastritis model. Apoptosis was assessed using the TUNEL technique and TNFalpha mRNA by in situ RT-PCR. In each of the antioxidant assays tested, UG was more potent than UT (P < 0.01). The total oxindole and pentacyclic alkaloid content of UT was 35-fold > UG. The IC50 value for inhibition of TNFalpha production was significantly (P < 0.01) higher for UT (14.1 ng/ml) vs UG (9.5 ng/ml), yet at concentrations that were considerable lower than that required for antioxidant activity. Non-alkaloid HPLC fractions from UT decreased LPS-induced TNFalpha and nitrite production in RAW 264.7 cells (P < 0.01) at a concentration range comparable to the parent botanical. Oral pretreatment for 3 d with UT protected against indomethacin-induced gastritis, and prevented TNFalpha mRNA expression and apoptosis. These results indicate that while both species of cat's claw provide effective antioxidant and anti-inflammatory activities, U. guianensis is more potent. In conclusion, the presence of oxindole or pentacyclic alkaloids did not influence the antioxidant and anti-inflammatory properties of cat's claw.

  2. CYP2C19 progress curve analysis and mechanism-based inactivation by three methylenedioxyphenyl compounds.

    PubMed

    Salminen, Kaisa A; Meyer, Achim; Imming, Peter; Raunio, Hannu

    2011-12-01

    Several in vitro criteria were used to assess whether three methylenedioxyphenyl (MDP) compounds, the isoquinoline alkaloids bulbocapnine, canadine, and protopine, are mechanism-based inactivators of CYP2C19. The recently reported fluorometric CYP2C19 progress curve analysis approach was applied first to determine whether these alkaloids demonstrate time-dependent inhibition. In this experiment, bulbocapnine, canadine, and protopine displayed time dependence and saturation in their inactivation kinetics with K(I) and k(inact) values of 72.4 ± 14.7 μM and 0.38 ± 0.036 min(-1), 2.1 ± 0.63 μM and 0.18 ± 0.015 min(-1), and 7.1 ± 2.3 μM and 0.24 ± 0.021 min(-1), respectively. Additional studies were performed to determine whether other specific criteria for mechanism-based inactivation were fulfilled: NADPH dependence, irreversibility, and involvement of a catalytic step in the enzyme inactivation. CYP2C19 activity was not significantly restored by dialysis when it had been inactivated by the alkaloids in the presence of a NADPH-regenerating system, and a metabolic-intermediate complex-associated increase in absorbance at approximately 455 nm was observed. In conclusion, the CYP2C19 progress curve analysis method revealed time-dependent inhibition by these alkaloids, and additional experiments confirmed its quasi-irreversible nature. This study revealed that the CYP2C19 progress curve analysis method is useful for identifying novel mechanism-based inactivators and yields a wealth of information in one run. The alkaloids bulbocapnine, canadine, and protopine, present in herbal medicines, are new mechanism-based inactivators and the first MDP compounds exhibiting quasi-irreversible inactivation of CYP2C19.

  3. Identification and Quantification of the Main Active Anticancer Alkaloids from the Root of Glaucium flavum

    PubMed Central

    Bournine, Lamine; Bensalem, Sihem; Wauters, Jean-Noël; Iguer-Ouada, Mokrane; Maiza-Benabdesselam, Fadila; Bedjou, Fatiha; Castronovo, Vincent; Bellahcène, Akeila; Tits, Monique; Frédérich, Michel

    2013-01-01

    Glaucium flavum is used in Algerian folk medicine to remove warts (benign tumors). Its local appellations are Cheqiq el-asfar and Qarn el-djedyane. We have recently reported the anti-tumoral activity of Glaucium flavum root alkaloid extract against human cancer cells, in vitro and in vivo. The principal identified alkaloid in the extract was protopine. This study aims to determine which component(s) of Glaucium flavum root extract might possess potent antitumor activity on human cancer cells. Quantitative estimation of Glaucium flavum alkaloids was realized by HPLC-DAD. Glaucium flavum effect on human normal and cancer cell viability was determined using WST-1 assay. Quantification of alkaloids in Glaucium flavum revealed that the dried root part contained 0.84% of protopine and 0.07% of bocconoline (w/w), while the dried aerial part contained only 0.08% of protopine, glaucine as the main alkaloid, and no bocconoline. In vitro evaluation of the growth inhibitory activity on breast cancer and normal cells demonstrated that purified protopine did not reproduce the full cytotoxic activity of the alkaloid root extract on cancer cell lines. On the other hand, bocconoline inhibited strongly the viability of cancer cells with an IC50 of 7.8 μM and only a low cytotoxic effect was observed against normal human cells. Our results showed for the first time that protopine is the major root alkaloid of Glaucium flavum. Finally, we are the first to demonstrate a specific anticancer effect of Glaucium flavum root extract against breast cancer cells, which can be attributed, at least in part, to bocconoline. PMID:24317429

  4. Identification and quantification of the main active anticancer alkaloids from the root of Glaucium flavum.

    PubMed

    Bournine, Lamine; Bensalem, Sihem; Wauters, Jean-Noël; Iguer-Ouada, Mokrane; Maiza-Benabdesselam, Fadila; Bedjou, Fatiha; Castronovo, Vincent; Bellahcène, Akeila; Tits, Monique; Frédérich, Michel

    2013-12-02

    Glaucium flavum is used in Algerian folk medicine to remove warts (benign tumors). Its local appellations are Cheqiq el-asfar and Qarn el-djedyane. We have recently reported the anti-tumoral activity of Glaucium flavum root alkaloid extract against human cancer cells, in vitro and in vivo. The principal identified alkaloid in the extract was protopine. This study aims to determine which component(s) of Glaucium flavum root extract might possess potent antitumor activity on human cancer cells. Quantitative estimation of Glaucium flavum alkaloids was realized by HPLC-DAD. Glaucium flavum effect on human normal and cancer cell viability was determined using WST-1 assay. Quantification of alkaloids in Glaucium flavum revealed that the dried root part contained 0.84% of protopine and 0.07% of bocconoline (w/w), while the dried aerial part contained only 0.08% of protopine, glaucine as the main alkaloid, and no bocconoline. In vitro evaluation of the growth inhibitory activity on breast cancer and normal cells demonstrated that purified protopine did not reproduce the full cytotoxic activity of the alkaloid root extract on cancer cell lines. On the other hand, bocconoline inhibited strongly the viability of cancer cells with an IC50 of 7.8 µM and only a low cytotoxic effect was observed against normal human cells. Our results showed for the first time that protopine is the major root alkaloid of Glaucium flavum. Finally, we are the first to demonstrate a specific anticancer effect of Glaucium flavum root extract against breast cancer cells, which can be attributed, at least in part, to bocconoline.

  5. Mycobacterium tuberculosis and cholinesterase inhibitors from Voacanga globosa.

    PubMed

    Macabeo, Allan Patrick G; Vidar, Warren S; Chen, Xinyu; Decker, Michael; Heilmann, Jörg; Wan, Baojie; Franzblau, Scott G; Galvez, Elano V; Aguinaldo, Ma Alicia M; Cordell, Geoffrey A

    2011-07-01

    Globospiramine (1), a new spirobisindole alkaloid possessing an Aspidosperma-Aspidosperma skeleton, together with deoxyvobtusine (2), deoxyvobtusine lactone (3), vobtusine lactone (4) and lupeol (5), were isolated and identified from Voacanga globosa through a bioassay-guided purification. The gross structure and absolute stereochemistry of 1 were established by circular dichroism spectroscopy, HR-MS and unambiguous NMR spectroscopic experiments. In addition, a new biogenetic pathway for the formation of the spiro-Aspidosperma-Aspidosperma skeleton is proposed. Alkaloid 1 showed potent antituberculosis activity against Mycobacterium tuberculosis H(37)Rv as evidenced in microplate Alamar blue assay (MIC = 4 μg/mL) and low-oxygen recovery assay (LORA (MIC = 5.2 μg/mL). The bisindole alkaloids also exhibited promising activity against acetylcholinesterase and, especially butyrylcholinesterase, with deoxyvobtusine (2) (IC(50) = 6.2 μM) as the most strongly inhibiting compound. This study extends the variety of alkaloid structural platforms which exhibit antimycobacterial and anticholinesterase activity. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  6. Pharmacological evaluation of total alkaloids from nux vomica: effect of reducing strychnine contents.

    PubMed

    Chen, Jun; Qu, Yange; Wang, Dongyue; Peng, Pei; Cai, Hao; Gao, Ying; Chen, Zhipeng; Cai, Baochang

    2014-04-10

    The aim of the study was to investigate the possibility of improving the therapeutic efficacy of the total alkaloid fraction (TAF) extracted from processed nux vomica by reducing the strychnine contents. Most strychnine was removed from TAF to obtain the modified total alkaloid fraction (MTAF). The toxicity and pharmacokinetics of TAF and MTAF were further investigated and compared besides their antitumor, analgesic and anti-inflammatory activities. The results showed that the ratios of brucine to strychnine were 1:2.05 and 2.2:1 for TAF and MTAF, respectively, and the toxicity of TAF was about 3.17-fold higher than that of MTAF. Compared to brucine alone, the elimination of brucine was found to be inhibited by other alkaloids in TAF or MTAF except strychnine. Significantly increased pharmacological activities when administered by the oral route were obtained with MTAF in comparison to TAF and nux vomica powder (NVP). In summary, MTAF might replace NVP and TAF in the clinical application of Chinese medicine to obtain much higher efficacy.

  7. Nelumbo nucifera leaves extracts inhibit mouse airway smooth muscle contraction.

    PubMed

    Yang, Xiao; Xue, Lu; Zhao, Qingyang; Cai, Congli; Liu, Qing-Hua; Shen, Jinhua

    2017-03-20

    Alkaloids extracted from lotus leaves (AELL) can relax vascular smooth muscle. However, whether AELL has a similar relaxant role on airway smooth muscle (ASM) remains unknown. This study aimed to explore the relaxant property of AELL on ASM and the underlying mechanism. Alkaloids were extracted from dried lotus leaves using the high temperature rotary evaporation extraction method. The effects of AELL on mouse ASM tension were studied using force measuring and patch-clamp techniques. It was found that AELL inhibited the high K + or acetylcholine chloride (ACh)-induced precontraction of mouse tracheal rings by 64.8 ± 2.9%, or 48.8 ± 4.7%, respectively. The inhibition was statistically significant and performed in a dose-dependent manner. Furthermore, AELL-induced smooth muscle relaxation was partially mediated by blocking voltage-dependent Ca 2+ channels (VDCC) and non-selective cation channels (NSCC). AELL, which plays a relaxant role in ASM, might be a new complementary treatment to treat abnormal contractions of the trachea and asthma.

  8. In vitro vasodilator mechanisms of the indole alkaloids rhynchophylline and isorhynchophylline, isolated from the hook of Uncaria rhynchophylla (Miquel).

    PubMed

    Zhang, Wen-Bo; Chen, Chang-Xun; Sim, Si-Mui; Kwan, Chiu-Yin

    2004-02-01

    Rhynchophylline (Rhy) and isorhynchophylline (Isorhy), indole alkaloids from Uncaria hooks, reportedly exert hypotensive and vasodilatory effects, but the mechanism of action is unclear. We therefore investigated the relaxant effects of these two isomeric alkaloids in rat arteries in vitro, in particular in respect of the various functional Ca2+ pathways. Both Rhy and Isorhy relaxed aortic rings precontracted with phenylephrine (PE, 1 microM) in a dose-dependent manner (3-300 microM). Removal of endothelium and preincubation with L-NAME (300 microM) slightly inhibited but did not prevent the relaxant response. These results indicate that Rhy and Isorhy act largely in an endothelium-independent manner. Unlike nicardipine, both alkaloids not only inhibited the contraction induced by 60 mM KCl (IC50 20-30 microM), but also that induced by PE and U46619, albeit to a lesser extent (IC50 100 and 200 microM, respectively). These results suggest that Rhy and Isorhy may act via multiple Ca2+ pathways. In contrast to their inhibitory effects on KCl-induced and receptor-mediated contractions, where both isomers were comparably potent, Rhy was more potent than Isorhy at higher concentrations (>100 microM) in inhibiting both caffeine (25 mM)- and cyclopiazonic acid (CPA, 30 microM)-induced contractions. Similar results observed with caffeine in Ca2+-containing medium were also observed in Ca2+-free medium. However, 0.1-0.3 microM nicardipine (which completely inhibited KCl-induced contraction) had no significant inhibitory effect on CPA-induced contractions. Taken together, these results indicate discrimination between these two isomers with respect to Ca2+-induced Ca2+ release and non-L-type Ca2+ channel, but not for IP3-induced Ca2+ release and L-type Ca2+ channels. Similar relaxant responses to KCl- and caffeine-induced contractions were seen when these two alkaloids were tested on the smaller mesenteric and renal arteries. In conclusion, the vasodilatory effects of Rhy and Isorhy are largely endothelium independent and are mediated by L-type Ca2+ channels. At higher concentrations, they also affect other Ca2+-handling pathways, although to a lesser extent. While there is no discrimination between the two isomers with respect to the contraction induced by KCl or agonists (PE and U46619), differential effects between Rhy and Isorhy were seen on caffeine- and CPA-induced contractions.

  9. Consumption of endophyte-infected fescue seed during the dry period and lactation affects mammary gland gene expression in dairy cows

    USDA-ARS?s Scientific Manuscript database

    Ergot alkaloids in endophyte-infected grasses inhibit prolactin (PRL) secretion and reduce milk production when fed to lactating cows. However, we have shown this affect is temporal in that pre-partum consumption of inflected seed throughout the dry period does not inhibit subsequent milk productio...

  10. Lupines, poison-hemlock and Nicotiana spp: toxicity and teratogenicity in livestock.

    PubMed

    Panter, K E; James, L F; Gardner, D R

    1999-02-01

    Many species of lupines contain quinolizidine or piperidine alkaloids known to be toxic or teratogenic to livestock. Poison-hemlock (Conium maculatum) and Nicotiana spp. including N. tabacum and N. glauca contain toxic and teratogenic piperidine alkaloids. The toxic and teratogenic effects from these plant species have distinct similarities including maternal muscular weakness and ataxia and fetal contracture-type skeletal defects and cleft palate. It is believed that the mechanism of action of the piperidine and quinolizidine alkaloid-induced teratogenesis is the same; however, there are some differences in incidence, susceptible gestational periods, and severity between livestock species. Wildlife species have also been poisoned after eating poison-hemlock but no terata have been reported. The most widespread problem for livestock producers in recent times has been lupine-induced "crooked calf disease." Crooked calf disease is characterized as skeletal contracture-type malformations and occasional cleft palate in calves after maternal ingestion of lupines containing the quinolizidine alkaloid anagyrine during gestation days 40-100. Similar malformations have been induced in cattle and goats with lupines containing the piperidine alkaloids ammodendrine, N-methyl ammodendrine, and N-acetyl hystrine and in cattle, sheep, goats, and pigs with poison-hemlock containing predominantly coniine or gamma-coniceine and N. glauca containing anabasine. Toxic and teratogenic effects have been linked to structural aspects of these alkaloids, and the mechanism of action is believed to be associated with an alkaloid-induced inhibition of fetal movement during specific gestational periods. This review presents a historical perspective, description and distribution of lupines, poison-hemlock and Nicotiana spp., toxic and teratogenic effects and management information to reduce losses.

  11. Development and Validation of an UPLC-MS/MS Method for Pharmacokinetic Comparison of Five Alkaloids from JinQi Jiangtang Tablets and Its Monarch Drug Coptidis Rhizoma

    PubMed Central

    Sun, Lili; Ding, Feifei; You, Guangjiao; Liu, Han; Wang, Meng; Ren, Xiaoliang; Deng, Yanru

    2017-01-01

    JinQi Jiangtang (JQJT) tablets, a Chinese patent medicine approved by the State Food and Drug Administration, are composed of Coptidis Rhizoma, Astragali Radix, and Lonicerae Japonicae Flos, and have a significant effect on diabetes. Coptidis Rhizoma is monarch drug in the prescription. The aim of the present study was to investigate and compare the pharmacokinetics of multiple ingredients from JQJT tablets and Coptidis Rhizoma extract (CRE) following oral administration in rats. Five alkaloids: coptisine chloride, epiberberine chloride, berberine chloride, jatrorrhizine chloride, and palmatine chloride, were simultaneously determined in rat plasma using established and validated ultra-high performance liquid chromatography mass spectrometry (UPLC-MS/MS). Significant pharmacokinetic differences were observed for the five alkaloids after a single administration of CRE and JQJT tablets. Compared with CRE, the Cmax values of palmatine chloride and jatrorrhizine chloride were decreased significantly, the AUC0–t values of four alkaloids (all except jatrorrhizine chloride) were notably decreased, and the mean residence times of all five alkaloids were significantly decreased after administration of JQJT tablets. The results indicated that the absorption characteristics of the five alkaloids from Coptidis Rhizoma would be influenced by the compatibility of Astragali Radix or Lonicerae Japonicae Flos from JQJT tablets, such that absorption was inhibited and elimination was accelerated. In conclusion, the developed strategy was suitable for the comparison of five alkaloids from JinQi Jiangtang tablets and its monarch drug, which could be valuable for compatibility studies of traditional Chinese medicines. PMID:29286316

  12. Inhibition of Hepatocellular Carcinoma by Total Alkaloids of Rubus alceifolius Poir Involves Suppression of Hedgehog Signaling.

    PubMed

    Zhao, Jinyan; Liu, Liya; Wan, Yun; Zhang, Yuchen; Zhuang, Qunchuan; Zhong, Xiaoyong; Hong, Zhenfeng; Peng, Jun

    2015-07-01

    We evaluated the effects of total alkaloids of Rubus alceifolius Poir (TARAP) on the migration and invasion of hepatocellular carcinoma (HCC) and furthermore investigated the possible molecular mechanisms mediating its anticancer activity. We implanted nude mice with human HCC HepG2 cells and fed them with vehicle (physiological saline) or 3 g/kg/day dose of TARAP 5 days per week for 21 days. We determined the in vitro effect of TARAP on the migration and invasion of HepG2 cells by transwell assay. We evaluated SHH signaling components' (SHH, PTCH, SMO, and Gli1) expression levels by reverse transcriptase-polymerase chain reaction and immunohistochemistry. Activity of the matrix metalloproteinases (MMPs) in supernatants was analyzed by zymography. The expression of the MMPs and their specific tissue inhibitor (tissue inhibitor of matrix metalloproteinases, TIMP-1, 2) in HCC tissues was detected by immunohistochemistry. We discovered that TARAP inhibited hepatocellular migration and invasion in a dose-dependent manner in vitro. In addition, TARAP decreased the expression of SHH, PTCH, SMO, and Gli1 in HCC mouse tumors at both transcriptional and translational levels. Moreover, TARAP inhibited the activity of MMP2 and MMP9. We found that TARAP reduced the expression of MMP2 and MMP9, as well as the tissue inhibitor of MMPs. Our study showed that TARAP inhibits HCC migration and invasion likely through suppression of the hedgehog pathway. This may, in part, explain its anticancer properties. These results suggest that total alkaloids in Rubus alceifolius may have potential as a novel antimetastasis drug in the treatment of HCC. © The Author(s) 2015.

  13. Determination of pharmacological levels of harmane, harmine and harmaline in mammalian brain tissue, cerebrospinal fluid and plasma by high-performance liquid chromatography with fluorimetric detection.

    PubMed

    Moncrieff, J

    1989-11-24

    Increased blood aldehyde levels, as occur in alcohol intoxication, could lead to the formation of beta-carbolines such as harmane by condensation with indoleamines. Endogenous beta-carbolines, therefore, should occur in specific brain areas where indoleamine concentrations are high, whilst exogenous beta-carbolines should exhibit an even distribution. The author presents direct and sensitive methods for assaying the beta-carbolines harmane, harmine and harmaline in brain tissue, cerebrospinal fluid and plasma at picogram sample concentrations using reversed-phase high-performance liquid chromatography with fluorimetric detection and minimal sample preparation. Using these assay methods, it was found that the distribution of beta-carbolines from a source exogenous to the brain results in a relatively even distribution within the brain tissue.

  14. Antioxidant and anticholinesterase potential of diterpenoid alkaloids from Aconitum heterophyllum.

    PubMed

    Ahmad, Hanif; Ahmad, Shujaat; Shah, Syed Adnan Ali; Latif, Abdul; Ali, Mumtaz; Khan, Farman Ali; Tahir, Muhammad Nawaz; Shaheen, Farzana; Wadood, Abdul; Ahmad, Manzoor

    2017-07-01

    Extensive chromatographic separations performed on the basic (pH=8-10) chloroform soluble fraction of Aconitum heterophyllum resulted in the isolation of three new diterpenoid alkaloids, 6β-Methoxy, 9β-dihydroxylheteratisine (1), 1α,11,13β-trihydroxylhetisine (2), 6,15β-dihydroxylhetisine (3), and the known compounds iso-atisine (4), heteratisine (5), hetisinone (6), 19-epi-isoatisine (7), and atidine (8). Structures of the isolated compounds were established by means of mass and NMR spectroscopy as well as single crystal X-ray crystallography. Compounds 1-8 were screened for their antioxidant and enzyme inhibition activities followed by in silico studies to find out the possible inhibitory mechanism of the tested compounds. This work is the first report demonstrating significant antioxidant and anticholinesterase potentials of diterpenoid alkaloids isolated from a natural source. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. The killer of Socrates: Coniine and Related Alkaloids in the Plant Kingdom.

    PubMed

    Hotti, Hannu; Rischer, Heiko

    2017-11-14

    Coniine, a polyketide-derived alkaloid, is poisonous to humans and animals. It is a nicotinic acetylcholine receptor antagonist, which leads to inhibition of the nervous system, eventually causing death by suffocation in mammals. Coniine's most famous victim is Socrates who was sentenced to death by poison chalice containing poison hemlock in 399 BC. In chemistry, coniine holds two historical records: It is the first alkaloid the chemical structure of which was established (in 1881), and that was chemically synthesized (in 1886). In plants, coniine and twelve closely related alkaloids are known from poison hemlock ( Conium maculatum L.), and several Sarracenia and Aloe species. Recent work confirmed its biosynthetic polyketide origin. Biosynthesis commences by carbon backbone formation from butyryl-CoA and two malonyl-CoA building blocks catalyzed by polyketide synthase. A transamination reaction incorporates nitrogen from l-alanine and non-enzymatic cyclization leads to γ-coniceine, the first hemlock alkaloid in the pathway. Ultimately, reduction of γ-coniceine to coniine is facilitated by NADPH-dependent γ-coniceine reductase. Although coniine is notorious for its toxicity, there is no consensus on its ecological roles, especially in the carnivorous pitcher plants where it occurs. Lately there has been renewed interest in coniine's medical uses particularly for pain relief without an addictive side effect.

  16. Pharmacological and Toxicological Profile of Harmane-β-Carboline Alkaloid: Friend or Foe.

    PubMed

    Khan, Haroon; Patel, Seema; Kamal, Mohammad A

    2017-01-01

    The plant secondary metabolites have an outstanding therapeutic potential and success over the years. In fact, it is the foundation of numerous clinically used drugs. Similarly, these is a general perception that these products are inherent safety. However, such products might have toxic/unwanted lethal effects therefore, along with biological relevance, toxicological evaluation is equally important for clinical applications. Therefore, harmane- β-carboline alkaloid was investigated for both therapeutic and toxicological potential. The literature related to the therapeutic/toxicological effects of the alkaloid was searched using various scientific data bases including Google, ScienceDirect, PubMed, SpringerLink, ASC. The peer reviewed articles were only selected. The harmane-β-carboline alkaloid has shown several pharmacological activities such as antianxiety, antidepressant, antiplatelet, antidiabetic, acetylcholinesterase and myeloperoxidase inhibition, antioxidant, antiparasitic, hypotensive, morphine withdrawal syndrome alleviation, and antinociceptive effects. On the other hand, it exhibited tremorogenic effect, for a symptom of Parkinson's disease. Adverse effect of the alkaloid on learning and memory have also been observed. All together, it is, concluded in this review that harmane elicited marked pharmacological effects but simultaneously, it possessed some serious side effects that could be the primary hurdle in the way of its clinical testing. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  17. Mechanisms of growth inhibition of Phytomonas serpens by the alkaloids tomatine and tomatidine.

    PubMed

    Medina, Jorge Mansur; Rodrigues, Juliany Cola Fernandes; Moreira, Otacilio C; Atella, Geórgia; Souza, Wanderley de; Barrabin, Hector

    2015-02-01

    Phytomonas serpens are flagellates in the family Trypanosomatidae that parasitise the tomato plant (Solanum lycopersicum L.), which results in fruits with low commercial value. The tomato glycoalkaloid tomatine and its aglycone tomatidine inhibit the growth of P. serpens in axenic cultures. Tomatine, like many other saponins, induces permeabilisation of the cell membrane and a loss of cell content, including the cytosolic enzyme pyruvate kinase. In contrast, tomatidine does not cause permeabilisation of membranes, but instead provokes morphological changes, including vacuolisation. Phytomonas treated with tomatidine show an increased accumulation of labelled neutral lipids (BODYPY-palmitic), a notable decrease in the amount of C24-alkylated sterols and an increase in zymosterol content. These results are consistent with the inhibition of 24-sterol methyltransferase (SMT), which is an important enzyme that is responsible for the methylation of sterols at the 24 position. We propose that the main target of tomatidine is the sterols biosynthetic pathway, specifically, inhibition of the 24-SMT. Altogether, the results obtained in the present paper suggest a more general effect of alkaloids in trypanosomatids, which opens potential therapeutic possibilities for the treatment of the diseases caused by these pathogens.

  18. Mechanisms of growth inhibition of Phytomonas serpens by the alkaloids tomatine and tomatidine

    PubMed Central

    Medina, Jorge Mansur; Rodrigues, Juliany Cola Fernandes; Moreira, Otacilio C; Atella, Geórgia; de Souza, Wanderley; Barrabin, Hector

    2015-01-01

    Phytomonas serpens are flagellates in the family Trypanosomatidae that parasitise the tomato plant (Solanum lycopersicum L.), which results in fruits with low commercial value. The tomato glycoalkaloid tomatine and its aglycone tomatidine inhibit the growth of P. serpens in axenic cultures. Tomatine, like many other saponins, induces permeabilisation of the cell membrane and a loss of cell content, including the cytosolic enzyme pyruvate kinase. In contrast, tomatidine does not cause permeabilisation of membranes, but instead provokes morphological changes, including vacuolisation. Phytomonas treated with tomatidine show an increased accumulation of labelled neutral lipids (BODYPY-palmitic), a notable decrease in the amount of C24-alkylated sterols and an increase in zymosterol content. These results are consistent with the inhibition of 24-sterol methyltransferase (SMT), which is an important enzyme that is responsible for the methylation of sterols at the 24 position. We propose that the main target of tomatidine is the sterols biosynthetic pathway, specifically, inhibition of the 24-SMT. Altogether, the results obtained in the present paper suggest a more general effect of alkaloids in trypanosomatids, which opens potential therapeutic possibilities for the treatment of the diseases caused by these pathogens. PMID:25742263

  19. Total Alkaloids of Sophora alopecuroides Inhibit Growth and Induce Apoptosis in Human Cervical Tumor HeLa Cells In vitro.

    PubMed

    Li, Jian-Guang; Yang, Xiao-Yi; Huang, Wei

    2016-05-01

    Uygur females of Xinjiang have the higher incidence of cervical tumor in the country. Alkaloids are the major active ingredients in Sophora alopecuroides, and its antitumor effect was recognized by the medical profession. Xinjiang is the main site of S. alopecuroides production in China so these plants are abundant in the region. Studies on the antitumor properties of total alkaloids of S. alopecuroides (TASA) can take full use of the traditional folk medicine in antitumor unique utility. To explore the effects of TASA on proliferation and apoptosis of human cervical tumor HeLa cells in vitro. TASA was extracted, purified, and each monomer component was analyzed by high-performance liquid chromatography. The effect of TASA at different concentrations on the survival of HeLa cells was determined after 24 h using the Cell Counting Kit-8. In addition, cells were photographed using an inverted microscope to document morphological changes. The effect of TASA on apoptotic rate of HeLa cells was assessed by flow cytometry. Monomers of TASA were found to be sophoridine, matrine, and sophocarpine. On treatment with 8.75 mg/ml of TASA, more than 50% of HeLa cells died, and cell death rate increased further with longer incubation. The apoptotic rates of HeLa cells in the experimental groups were 16.0% and 33.3% at concentrations of 6.25 mg/ml and 12.50 mg/ml, respectively. TASA can induce apoptosis in cervical tumor HeLa cells, and it has obvious inhibitory effects on cell growth. Total alkaloids of Sophora alopecuroides (TASA) exhibits anti-human cervical tumor propertiesMonomer component of TASA was analyzed by high-performance liquid chromatography, and its main effect component are sophoridine, matrine, and sophocarpineTASA inhibits growth and induces apoptosis in HeLa cells. Abbreviations used: TASA: Total alkaloids of S. alopecuroides, CCK-8: Cell Counting Kit-8, FBS: Fetal bovine serum, PBS: Phosphate buffered saline, DMEM: Dulbecco's modified Eagle medium.

  20. Screening of Alkaloidal Fraction of Conium maculatum L. Aerial Parts for Analgesic and Antiinflammatory Activity

    PubMed Central

    Madaan, Reecha; Kumar, S.

    2012-01-01

    Conium maculatum Linn. (Umbelliferae) has been traditionally used in the treatment of spasmodic disorders, and to relieve nervous excitation, rheumatic pains in the old and feeble, pain in stomach, pain of gastric ulcer, nervousness and restlessness. Alkaloids have long been considered as bioactive group of constituents present in C. maculatum. Despite a long tradition of use, C. maculatum has not been evaluated pharmacologically to validate its traditional claims for analgesic and antiinflammatory activities. Thus, the present investigations were undertaken with an objective to evaluate alkaloidal fraction of C. maculatum aerial parts for analgesic and antiinflammatory activities. Test doses (100 or 200 mg/kg, p.o.) of alkaloidal fraction were evaluated for analgesic activity using tail flick test and antiinflammatory activity using carrageenan-induced paw oedema test in rats. Morphine (5 mg/kg, p.o.) and indomethacin (5 mg/kg, p.o.) were used as standard analgesic and antiinflammatory drugs, respectively. Alkaloidal fraction of the plant exhibited significant analgesic activity at a dose of 200 mg/kg as it showed significant increase in tail flicking reaction time with respect to the control during 2 h intervals of observation. It also exhibited significant antiinflammatory activity at a dose of 200 mg/kg as it inhibited paw oedema in rats to 71% and reduced the paw volume one-fourth to the control during 1st h of the study. The present investigations suggest that alkaloids are responsible for analgesic and antiinflammatory activities of C. maculatum. PMID:23716876

  1. Screening of Alkaloidal Fraction of Conium maculatum L. Aerial Parts for Analgesic and Antiinflammatory Activity.

    PubMed

    Madaan, Reecha; Kumar, S

    2012-09-01

    Conium maculatum Linn. (Umbelliferae) has been traditionally used in the treatment of spasmodic disorders, and to relieve nervous excitation, rheumatic pains in the old and feeble, pain in stomach, pain of gastric ulcer, nervousness and restlessness. Alkaloids have long been considered as bioactive group of constituents present in C. maculatum. Despite a long tradition of use, C. maculatum has not been evaluated pharmacologically to validate its traditional claims for analgesic and antiinflammatory activities. Thus, the present investigations were undertaken with an objective to evaluate alkaloidal fraction of C. maculatum aerial parts for analgesic and antiinflammatory activities. Test doses (100 or 200 mg/kg, p.o.) of alkaloidal fraction were evaluated for analgesic activity using tail flick test and antiinflammatory activity using carrageenan-induced paw oedema test in rats. Morphine (5 mg/kg, p.o.) and indomethacin (5 mg/kg, p.o.) were used as standard analgesic and antiinflammatory drugs, respectively. Alkaloidal fraction of the plant exhibited significant analgesic activity at a dose of 200 mg/kg as it showed significant increase in tail flicking reaction time with respect to the control during 2 h intervals of observation. It also exhibited significant antiinflammatory activity at a dose of 200 mg/kg as it inhibited paw oedema in rats to 71% and reduced the paw volume one-fourth to the control during 1(st) h of the study. The present investigations suggest that alkaloids are responsible for analgesic and antiinflammatory activities of C. maculatum.

  2. Sauroxine reduces memory retention in rats and impairs hippocampal long-term potentiation generation.

    PubMed

    Vallejo, Mariana; Carlini, Valeria; Gabach, Laura; Ortega, M G; L Cabrera, José; de Barioglio, Susana Rubiales; Pérez, Mariela; Agnese, Alicia M

    2017-07-01

    In the present paper it was investigated the role of sauroxine, an alkaloid of Phlegmariurus saururus, as a modulator of some types of learning and memory, considering the potential nootropic properties previously reported for the alkaloid extract and the main alkaloid sauroine. Sauroxine was isolated by means of an alkaline extraction, purified by several chromatographic techniques, and assayed in electrophysiological experiments on rat hippocampus slices, tending towards the elicitation of the long-term potentiation (LTP) phenomena. It was also studied the effects of intrahippocampal administration of sauroxine on memory retention in vivo using a Step-down test. Being the bio distribution of a drug an important parameter to be considered, the concentration of sauroxine in rat brain was determined by GLC-MS. Sauroxine blocked LTP generation at both doses used, 3.65 and 3.610 -2 μM. In the behavioral test, the animals injected with this alkaloid (3.6510 -3 nmol) exhibited a significant decrease on memory retention compared with control animals. It was also showed that sauroxine reached the brain (3.435μg/g tissue), after an intraperitoneal injection, displaying its ability to cross the blood-brain barrier. Thus, sauroxine demonstrated to exert an inhibition on these mnemonic phenomena. The effect here established for 1 is defeated by other constituents according to the excellent results obtained for P. saururus alkaloid extract as well as for the isolated alkaloid sauroine. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  3. Phytochemical and ethnomedicinal study of Huperzia species used in the traditional medicine of Saraguros in Southern Ecuador; AChE and MAO inhibitory activity.

    PubMed

    Armijos, Chabaco; Gilardoni, Gianluca; Amay, Luis; Lozano, Antonio; Bracco, Francesco; Ramirez, Jorge; Bec, Nicole; Larroque, Christian; Finzi, Paola Vita; Vidari, Giovanni

    2016-12-04

    This study concerns seven Huperzia species (Lycopodiaceae), namely H. brevifolia, H. columnaris, H. compacta, H. crassa, H. espinosana, H. tetragona, H. weberbaueri, which are considered sacred plants by the Saraguro community, living in the Southern Andes of Ecuador; these plants are widely used in traditional medicine and ritual ceremonies. The plants were selected on the basis of written interviews with 10 visionary healers (yachak) (2 women, 8 men), indicated as the most credible by the Saraguro Healers Council. The Informant Consensus Factor (F ic ) was determined. The first phytochemical study of the plants was performed by standard procedures, while the AChE and MAO-A inhibition by fractions enriched in high MW alkaloids, was measured in vitro. i) to investigate the uses of some Huperzia plants in healing and magical-religious practices of Saraguros; ii) to identify the main components of plant hydromethanolic extracts; iiì) to test the effects of alkaloidal fractions on the activity of two enzymes linked to mental health. All the interviewed Saraguro yachak showed a high consensus about the uses of the seven Huperzia plants as purgatives and against supernatural diseases, such as the "espanto" (startle). In admixtures with other plants, some species also induce a state of trance or hallucinations in participants in magical-religious rituals. GC-MS of the volatile alkaloid fractions allowed the identification of some lycodine-type and lycopodine-type alkaloids (1-5) in H. compacta, H. columnaris, and H. tetragona. The flavones selgin) (6) and tricin (7) were isolated from H. brevifolia and H. espinosana. Tricin (7) was also detected in the other five species. The rare serratene triterpenes serratenediol (8) serratenediol-3-O-acetate (9), 21-episerratenediol (10), and 21-episerratenediol-3-O-acetate (11) were isolated from H. crassa. In addition, the presence of an unprecedented group of high molecular weight alkaloids has been determined. Alkaloid fractions of H. brevifolia, H. compacta, H. espinosana, and H. tetragona significantly inhibited AChE and MAO-A activities in vitro. The first phytochemical and ethnopharmacological study of seven Huperzia plants, widely used by Saraguro healers, led to the identification of several alkaloids and triterpenoids with different remarkable biological activities. In addition, alkaloid fractions exhibited a significant AChE and MAO-A inhibitory activity. These results may support the use of these plants in brews prepared for inducing psychoactive effects in participants in magical-religious ceremonies. This study confirms the rich traditional medical knowledge of Saraguro healers which must be documented and preserved for future generations. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. Differences between Angus and Holstein cattle in the Lupinus leucophyllus induced inhibition of fetal activity.

    PubMed

    Green, Benedict T; Panter, Kip E; Lee, Stephen T; Welch, Kevin D; Pfister, James A; Gardner, Dale R; Stegelmeier, Bryan L; Davis, T Zane

    2015-11-01

    Calves with congenital defects born to cows that have grazed teratogenic Lupinus spp. during pregnancy can suffer from what is termed crooked calf syndrome. Crooked calf syndrome defects include cleft palate, spinal column defects and limb malformations formed by alkaloid-induced inhibition of fetal movement. In this study, we tested the hypothesis that there are differences in fetal activity of fetuses carried by Holstein verses Angus heifers orally dosed with 1.1 g/kg dried ground Lupinus leucophyllus. Fetal activity was monitored via transrectal ultrasonography and maternal serum was analyzed for specific lupine alkaloids. There were more (P < 0.05) movements in fetuses of Holstein heifers than those in Angus heifers at eight and 12 h after oral dosing. In addition to serum alkaloid toxicokinetic differences, the Holstein heifers had significantly lower serum concentrations of anagyrine at 2, 4, and 8 h after oral dosing than Angus heifers. Holstein heifers also had significantly greater serum concentrations of lupanine at 12, 18 and 24 h after dosing than the Angus heifers. These results suggest that there are breed differences in susceptibility to lupine-induced crooked calf syndrome. These differences may also be used to discover genetic markers that identify resistant animals, thus facilitating selective breeding of resistant herds. Published by Elsevier Ltd.

  5. Antioxidant Properties of Berberis aetnensis C. Presl (Berberidaceae) Roots Extract and Protective Effects on Astroglial Cell Cultures

    PubMed Central

    Campisi, Agata; Bonfanti, Roberta; Raciti, Giuseppina; Amodeo, Andrea; Mastrojeni, Silvana; Ragusa, Salvatore; Iauk, Liliana

    2014-01-01

    Berberis aetnensis C. Presl (Berberidaceae) is a bushy-spiny shrub common on Mount Etna (Sicily). We demonstrated that the alkaloid extract of roots of B. aetnensis C. Presl contains prevalently berberine and berbamine, possesses antimicrobial properties, and was able to counteract the upregulation evoked by glutamate of tissue transglutaminase in primary rat astroglial cell cultures. Until now, there are no reports regarding antioxidant properties of B. aetnensis C. Presl collected in Sicily. Air-dried, powdered roots of B. aetnensis C. Presl were extracted, identified, and quantified by HPLC. We assessed in cellular free system its effect on superoxide anion, radicals scavenging activity of antioxidants against free radicals like the 1,1-diphenyl-2-picrylhydrazyl radical, and the inhibition of xanthine oxidase activity. In primary rat astroglial cell cultures, exposed to glutamate, we evaluated the effect of the extract on glutathione levels and on intracellular production of reactive oxygen species generated by glutamate. The alkaloid extract of B. aetnensis C. Presl inhibited superoxide anion, restored to control values, the decrease of GSH levels, and the production of reactive oxygen species. Potent antioxidant activities of the alkaloid extract of roots of B. aetnensis C. Presl may be one of the mechanisms by which the extract is effective against health disorders associated to oxidative stress. PMID:25177720

  6. Antioxidant properties of Berberis aetnensis C. Presl (Berberidaceae) roots extract and protective effects on astroglial cell cultures.

    PubMed

    Campisi, Agata; Acquaviva, Rosaria; Bonfanti, Roberta; Raciti, Giuseppina; Amodeo, Andrea; Mastrojeni, Silvana; Ragusa, Salvatore; Iauk, Liliana

    2014-01-01

    Berberis aetnensis C. Presl (Berberidaceae) is a bushy-spiny shrub common on Mount Etna (Sicily). We demonstrated that the alkaloid extract of roots of B. aetnensis C. Presl contains prevalently berberine and berbamine, possesses antimicrobial properties, and was able to counteract the upregulation evoked by glutamate of tissue transglutaminase in primary rat astroglial cell cultures. Until now, there are no reports regarding antioxidant properties of B. aetnensis C. Presl collected in Sicily. Air-dried, powdered roots of B. aetnensis C. Presl were extracted, identified, and quantified by HPLC. We assessed in cellular free system its effect on superoxide anion, radicals scavenging activity of antioxidants against free radicals like the 1,1-diphenyl-2-picrylhydrazyl radical, and the inhibition of xanthine oxidase activity. In primary rat astroglial cell cultures, exposed to glutamate, we evaluated the effect of the extract on glutathione levels and on intracellular production of reactive oxygen species generated by glutamate. The alkaloid extract of B. aetnensis C. Presl inhibited superoxide anion, restored to control values, the decrease of GSH levels, and the production of reactive oxygen species. Potent antioxidant activities of the alkaloid extract of roots of B. aetnensis C. Presl may be one of the mechanisms by which the extract is effective against health disorders associated to oxidative stress.

  7. Antioxidative properties of harmane and beta-carboline alkaloids.

    PubMed

    Tse, S Y; Mak, I T; Dickens, B F

    1991-07-15

    beta-Carboline alkaloids are derived as a result of condensation between indoleamine (e.g. tryptamine) and short-chain carboxylic acid (e.g. pyruvic acid) or aldehyde (e.g. acetaldehyde), a reaction that occurs readily at room temperature. These compounds have been found endogenously in human and animal tissues and may be formed as a byproduct of secondary metabolism: their endogenous functions however, are not well understood. Indoles and tryptophan derivatives exhibit antioxidative actions by scavenging free radicals and forming resonance stabilized indolyl radicals. Harmane and related compounds exhibited concentration-dependent inhibition of lipid peroxidation (measured as thiobarbiturate reactive products) in a hepatic microsomal preparation incubated with either enzymatic dependent (Fe3+ ADP/NADPH) or non-enzymatic dependent (Fe3+ ADP/dihydroxyfumarate) oxygen radical producing systems. Alkaloids with hydroxyl substitution and a partially desaturated pyridyl ring were found to have the highest antioxidative potencies. Substitution of a hydroxyl group by a methoxyl group at the 6-position resulted in a decrease of greater than 10-fold in the antioxidative activities. Harmane showed high efficacy in an enzymatic system but low efficacy in a non-enzymatic system. The antioxidative effects of harmane in the former system may be attributed to its ability to inhibit oxidative enzymes in the microsomal system. These results suggest that beta-carbolines may also serve as endogenous antioxidants.

  8. [The metabolic fingerprint of the compatibility of Radix Aconite and Radix Paeoniae Alba and its effect on CYP450 enzymes].

    PubMed

    Bi, Yun-Feng; Zheng, Zhong; Pi, Zi-Feng; Liu, Zhi-Qiang; Song, Feng-Rui

    2014-12-01

    Using a UPLC-MS/MS (MRM) and cocktail probe substrates method, the metabolic fingerprint of the compatibility of Radix Aconite (RA) and Radix Paeoniae Alba (RPA) and its effect on CYP450 enzymes were investigated. These main CYP isoforms include CYP 1A2, CYP 2C, CYP 2E1, CYP 2D and CYP 3A. Compared with the inhibition effect of RA decoctions on CYP450 isoforms, their co-decoctions of RA and RPA with different proportions can decrease RA' inhibition on CYP3A, CYP2D, CYP2C and CYP1A2, but can not reduce RA' effect on CYP2E1. The metabolic fingerprints of RA decoction and co-decoctions with different proportions of RPA in CYP450 of rat liver were analyzed by UPLC-MS. Compared with the metabolic fingerprints of RA decoction, the intensity of diester-diterpenoid aconitum alkaloids decreased significantly, while the intensity of monoester-diterpenoid alkaloids significantly increased in the metabolic fingerprints of co-decoctions of RA and RPA. The results suggest that RA coadministration with RPA increased the degradation of toxic alkaloid and show the effect of toxicity reducing and efficacy enhancing.

  9. Identification of cellular and molecular factors determining the response of cancer cells to six ergot alkaloids.

    PubMed

    Mrusek, Marco; Seo, Ean-Jeong; Greten, Henry Johannes; Simon, Michael; Efferth, Thomas

    2015-02-01

    Ergot alkaloids are psychoactive and vasoconstricting agents of the fungus Claviceps purpurea causing poisoning such as ergotism in medieval times (St. Anthony's Fire). This class of substances also inhibits tumor growth in vitro and in vivo, though the underlying mechanisms are unclear as yet. We investigated six ergot alkaloids (agroclavine, ergosterol, ergocornin E, ergotamine, dihydroergocristine, and 1-propylagroclavine tartrate) for their cytotoxicity towards tumor cell lines of the National Cancer Institute, USA. 1-Propylagroclavine tartrate (1-PAT) revealed the strongest cytotoxicity. Out of 76 clinically established anticancer drugs, cross-resistance was found between the ergot alkaloids and 6/7 anti-hormonal drugs (=85.7 %) and 5/15 DNA-alkylating drugs (=33.3 %). The IC50 values for the six alkaloids were not correlated to well-known determinants of drug resistance, such as proliferative activity (as measured by cell doubling times, PCNA expression, and cell cycle distribution), the multidrug resistance-mediating P-glycoprotein/MDR1 and expression or mutations of oncogenes and tumor suppressor genes (EGFR, RAS, TP53). While resistance of control drugs (daunorubicin, cisplatin, erlotinib) correlated with these classical resistance mechanisms, ergot alkaloids did not. Furthermore, COMPARE and hierarchical cluster analyses were performed of mRNA microarray data to identify genes correlating with sensitivity or resistance to 1-PAT. Twenty-three genes were found with different biological functions (signal transducers, RNA metabolism, ribosome constituents, cell cycle and apoptosis regulators etc.). The expression of only 3/66 neuroreceptor genes correlated with the IC50 values for 1-PAT, suggesting that the psychoactive effects of ergot alkaloids may not play a major role for the cytotoxic activity against cancer cells. In conclusion, the cytotoxicity of ergot alkaloids is not involved in classical mechanisms of drug resistance opening the possibility to bypass resistance and to treat otherwise drug-resistant and refractory tumors. The modes of action are multifactorial, which is a typical feature of many natural compounds.

  10. Protective effects of alginate–chitosan microspheres loaded with alkaloids from Coptis chinensis Franch. and Evodia rutaecarpa (Juss.) Benth. (Zuojin Pill) against ethanol-induced acute gastric mucosal injury in rats

    PubMed Central

    Wang, Qiang-Song; Zhu, Xiao-Ning; Jiang, Heng-Li; Wang, Gui-Fang; Cui, Yuan-Lu

    2015-01-01

    Zuojin Pill (ZJP), a traditional Chinese medicine formula, consists of Coptis chinensis Franch. and Evodia rutaecarpa (Juss.) Benth. in a ratio of 6:1 (w/w) and was first recorded in “Danxi’s experiential therapy” for treating gastrointestinal disorders in the 15th century. However, the poor solubility of alkaloids from ZJP restricted the protective effect in treating gastritis and gastric ulcer. The aim of the study was to investigate the protective mechanism of mucoadhesive microspheres loaded with alkaloids from C. chinensis Franch. and E. rutaecarpa (Juss.) Benth. on ethanol-induced acute gastric mucosal injury in rats. Surface morphology, particle size, drug loading, encapsulation efficiency, in vitro drug release, mucoadhesiveness, and fluorescent imaging of the microspheres in gastrointestinal tract were studied. The results showed that the mucoadhesive microspheres loaded with alkaloids could sustain the release of drugs beyond 12 hours and had gastric mucoadhesive property with 82.63% retention rate in vitro. The fluorescence tracer indicated high retention of mucoadhesive microspheres within 12 hours in vivo. The mucoadhesive microspheres loaded with alkaloids could reduce the gastric injury by decreasing the mucosal lesion index, increasing the percentage of inhibition and increasing the amount of mucus in the gastric mucosa in an ethanol-induced gastric mucosal injury rat model. Moreover, the mucoadhesive microspheres loaded with alkaloids reduce the inflammatory response by decreasing the levels of tumor necrosis factor-α (TNF-α), interleukin 1β (IL-1β), downregulating the mRNA expression of inducible nitric oxide synthase, TNF-α, and IL-1β in gastric mucosa. All the results indicate that mucoadhesive microspheres loaded with alkaloids could not only increase the residence time of alkaloids in rat stomach, but also exert gastroprotective effects through reducing the inflammatory response on ethanol-induced gastric mucosal damage. Thus, these microspheres could be developed as a potential controlled release drug for treatment of gastric ulcer. PMID:26640368

  11. Indole Alkaloids Inhibiting Neural Stem Cell from Uncaria rhynchophylla.

    PubMed

    Wei, Xin; Jiang, Li-Ping; Guo, Ying; Khan, Afsar; Liu, Ya-Ping; Yu, Hao-Fei; Wang, Bei; Ding, Cai-Feng; Zhu, Pei-Feng; Chen, Ying-Ying; Zhao, Yun-Li; Chen, Yong-Bing; Wang, Yi-Fen; Luo, Xiao-Dong

    2017-10-01

    Uncaria rhynchophylla is commonly recognized as a traditional treatment for dizziness, cerebrovascular diseases, and nervous disorders in China. Previously, the neuro-protective activities of the alkaloids from U. rhynchophylla were intensively reported. In current work, three new indole alkaloids (1-3), identified as geissoschizic acid (1), geissoschizic acid N 4 -oxide (2), and 3β-sitsirikine N 4 -oxide (3), as well as 26 known analogues were isolated from U. rhynchophylla. However, in the neural stem cells (NSCs) proliferation assay for all isolated compounds, geissoschizic acid (1), geissoschizic acid N 4 -oxide (2), isocorynoxeine (6), isorhynchophylline (7), (4S)-akuammigine N-oxide (8), and (4S)-rhynchophylline N-oxide (10) showed unexpected inhibitory activities at 10 μM. Unlike previous neuro-protective reports, as a warning or caution, our finding showcased a clue for possible NSCs toxicity and the neural lesions risk of U. rhynchophylla, while the structure-activity relationships of the isolated compounds were discussed also.

  12. Total alkaloids of Rubus alceifolius Poir shows anti-angiogenic activity in vivo and in vitro.

    PubMed

    Zhao, Jinyan; Lin, Wei; Zhuang, Qunchuan; Zhong, Xiaoyong; Cao, Zhiyun; Hong, Zhenfeng; Peng, Jun

    2014-11-01

    Total alkaloids is an active ingredient of the natural plant Rubus alceifolius Poir, commonly used for the treatment of various cancers. Antitumor effects may be mediated through anti-angiogenic mechanisms. As such, the goal of the present study was to investigate and evaluate the effect of total alkaloids in Rubus alceifolius Poir (TARAP) on tumor angiogenesis and investigate the underlying molecular mechanisms of TARAP action in vivo and in vitro. A chick embryo chorioallantoic membrane (CAM) assay was used to assess angiogenesis in vivo. An MTT assay was performed to determine the viability of human umbilical vein endothelial cells (HUVECs) with and without treatment. Cell cycle progression of HUVECs was examined by FACS analysis with propidium iodide staining. HUVEC migration was determined using a scratch wound method. Tube formation of HUVECs was assessed with an ECMatrix gel system, and mRNA and protein expression of VEGF-A in both HUVECs and HepG2 human hepatocellular carcinoma cells were examined by RT-PCR and ELISA, respectively. Our results showed that TARAP inhibited angiogenesis in the CAM model in vivo and inhibited HUVEC proliferation via blocking cell cycle G1 to S progression in a dose- and time-dependent manners in vitro. Moreover, TARAP inhibited HUVEC migration and tube formation and downregulated mRNA and protein expression of VEGF-A in both HepG2 cells and HUVECs. Our findings suggest that the anti-angiogenic activity of TARAP may partly contribute to its antitumor properties and may be valuable for the treatment of diseases involving pathologic angiogenesis such as cancer. © The Author(s) 2014.

  13. Simultaneous determination of intestinal permeability and potential drug interactions of complex mixtures using Caco-2 cells and high-resolution mass spectrometry: Studies with Rauwolfia serpentina extract.

    PubMed

    Flynn, Thomas J; Vohra, Sanah N

    2018-06-25

    Caco-2 cells are a commonly used model for estimating the intestinal bioavailability of single chemical entity pharmaceuticals. Caco-2 cells, when induced with calcitriol, also express other biological functions such as phase I (CYP) and phase II (glucuronosyltransferases) drug metabolizing enzymes which are relevant to drug-supplement interactions. Intestinal bioavailability is an important factor in the overall safety assessment of products consumed orally. Foods, including herbal dietary supplements, are complex substances with multiple chemical components. Because of potential interactions between components of complex mixtures, more reliable safety assessments can be obtained by studying the commercial products "as consumed" rather than by testing individual chemical components one at a time. The present study evaluated the apparent intestinal permeability (P app ) of a model herbal extract, Rauwolfia serpentina, using both whole plant extracts and the individual purified Rauwolfia alkaloids. All test compounds, endpoint substrates, and their metabolites were quantified using liquid chromatography and high-resolution mass spectrometry. The P app values for individual Rauwolfia alkaloids were comparable whether measured individually or as components of the complete extract. Both Rauwolfia extract and all individual Rauwolfia alkaloids except yohimbine inhibited CYP3A4 activity (midazolam 1'-hydroxylation). Both Rauwolfia extract and all individual Rauwolfia alkaloids except corynanthine and reserpic acid significantly increased glucuronosyltransferase activity (glucuronidation of 4-methylumbelliferone). The positive control, ketoconazole, significantly inhibited both CYP3A4 and glucuronosyltransferase activities. These findings suggest that the Caco-2 assay is capable of simultaneously identifying both bioavailability and potentially hazardous intestinal drug-supplement interactions in complex mixtures. Published by Elsevier B.V.

  14. The Interference of Selected Cytotoxic Alkaloids with the Cytoskeleton: An Insight into Their Modes of Action.

    PubMed

    Wang, Xiaojuan; Tanaka, Mine; Krstin, Sonja; Peixoto, Herbenya Silva; Wink, Michael

    2016-07-12

    Alkaloids, the largest group among the nitrogen-containing secondary metabolites of plants, usually interact with several molecular targets. In this study, we provide evidence that six cytotoxic alkaloids (sanguinarine, chelerythrine, chelidonine, noscapine, protopine, homoharringtonine), which are known to affect neuroreceptors, protein biosynthesis and nucleic acids, also interact with the cellular cytoskeleton, such as microtubules and actin filaments, as well. Sanguinarine, chelerythrine and chelidonine depolymerized the microtubule network in living cancer cells (Hela cells and human osteosarcoma U2OS cells) and inhibited tubulin polymerization in vitro with IC50 values of 48.41 ± 3.73, 206.39 ± 4.20 and 34.51 ± 9.47 μM, respectively. However, sanguinarine and chelerythrine did not arrest the cell cycle while 2.5 μM chelidonine arrested the cell cycle in the G₂/M phase with 88.27% ± 0.99% of the cells in this phase. Noscapine and protopine apparently affected microtubule structures in living cells without affecting tubulin polymerization in vitro, which led to cell cycle arrest in the G2/M phase, promoting this cell population to 73.42% ± 8.31% and 54.35% ± 11.26% at a concentration of 80 μM and 250.9 μM, respectively. Homoharringtonine did not show any effects on microtubules and cell cycle, while the known microtubule-stabilizing agent paclitaxel was found to inhibit tubulin polymerization in the presence of MAPs in vitro with an IC50 value of 38.19 ± 3.33 μM. Concerning actin filaments, sanguinarine, chelerythrine and chelidonine exhibited a certain effect on the cellular actin filament network by reducing the mass of actin filaments. The interactions of these cytotoxic alkaloids with microtubules and actin filaments present new insights into their molecular modes of action.

  15. Inhibitory activities of the alkaloids from Coptidis Rhizoma against aldose reductase.

    PubMed

    Jung, Hyun Ah; Yoon, Na Young; Bae, Hyun Ju; Min, Byung-Sun; Choi, Jae Sue

    2008-11-01

    As part of our ongoing search of natural sources for therapeutic and preventive agents for diabetic complications, the rat lens aldose reductase (RLAR) inhibitory effect of Coptidis Rhizoma (the rhizome of Coptis chinensis Franch) was evaluated. Its extract and fractions exhibited broad and moderate RLAR inhibitory activities of 38.9 approximately 67.5 microg/mL. In an attempt to identify bioactive components, six quaternary protoberberine-type alkaloids (berberine, palmatine, jateorrhizine, epiberberine, coptisine, and groenlandicine) and one quaternary aporphine-type alkaloid (magnoflorine) were isolated from the most active n-BuOH fraction, and the chemical structures therein were elucidated on the basis of spectroscopic evidence and comparison with published data. The anti-diabetic complications capacities of seven C. chinensis-derived alkaloids were evaluated via RLAR and human recombinant AR (HRAR) inhibitory assays. Although berberine and palmatine were previously reported as prime contributors to AR inhibition, these two major components exhibited no AR inhibitory effects at a higher concentration of 50 microg/ml in the present study. Conversely, epiberberine, coptisine, and groenlandicine exhibited moderate inhibitory effects with IC(50) values of 100.1, 118.4, 140.1 microM for RLAR and 168.1, 187.3, 154.2 microM for HRAR. The results clearly indicated that the presence of the dioxymethylene group in the D ring and the oxidized form of the dioxymethylene group in the A ring were partly responsible for the AR inhibitory activities of protoberberine-type alkaloids. Therefore, Coptidis Rhizoma, and the alkaloids contained therein, would clearly have beneficial uses in the development of therapeutic and preventive agents for diabetic complications and diabetes mellitus.

  16. Crystal structure, phytochemical study and enzyme inhibition activity of Ajaconine and Delectinine

    NASA Astrophysics Data System (ADS)

    Ahmad, Shujaat; Ahmad, Hanif; Khan, Hidayat Ullah; Shahzad, Adnan; Khan, Ezzat; Ali Shah, Syed Adnan; Ali, Mumtaz; Wadud, Abdul; Ghufran, Mehreen; Naz, Humera; Ahmad, Manzoor

    2016-11-01

    The Crystal structure, comparative DFT study and phytochemical investigation of atisine type C-20 diterpenoid alkaloid ajaconine (1) and lycoctonine type C-19 diterpenoid alkaloid delectinine (2) is reported here. These compounds were isolated from Delphinium chitralense. Both the natural products 1 and 2 crystallize in orthorhombic crystal system with identical space group of P212121. The geometric parameters of both compounds were calculated with the help of DFT using B3LYP/6-31+G (p) basis set and HOMO-LUMO energies, optimized band gaps, global hardness, ionization potential, electron affinity and global electrophilicity are calculated. The compounds 1 and 2 were screened for acetyl cholinesterase and butyryl cholinesterase inhibition activities in a dose dependent manner followed by molecular docking to explore the possible inhibitory mechanism of ajaconine (1) and delectinine (2). The IC50 values of tested compounds against AChE were observed as 12.61 μM (compound 1) and 5.04 μM (compound 2). The same experiments were performed for inhibition of BChE and IC50 was observed to be 10.18 μM (1) and 9.21 μM (2). Promising inhibition activity was shown by both the compounds against AChE and BChE in comparison with standard drugs available in the market such as allanzanthane and galanthamine. The inhibition efficiency of both the natural products was determined in a dose dependent manner.

  17. Piperine, a piperidine alkaloid from Piper nigrum re-sensitizes P-gp, MRP1 and BCRP dependent multidrug resistant cancer cells.

    PubMed

    Li, Sen; Lei, Yu; Jia, Yingjie; Li, Na; Wink, Michael; Ma, Yonggang

    2011-12-15

    Over-expression of P-gp, MRP1 and BCRP in tumor cells is one of the important mechanisms leading to multidrug resistance (MDR), which impairs the efficacy of chemotherapy. P-gp, MRP1 and BCRP are ABC (ATP-Binding Cassette) transporters, which can expel a variety of lipophilic anti-cancer drugs and protect tumor cells. During a screening of MDR reversal agents among alkaloids of various structural types, a piperidine alkaloid, piperine (a main piperidine alkaloid in Piper nigurm) was identified as an inhibitor. Piperine can potentiate the cytotoxicity of anti-cancer drugs in resistant sublines, such as MCF-7/DOX and A-549/DDP, which were derived from MCF-7 and A-549 cell lines. At a concentration of 50 μM piperine could reverse the resistance to doxorubicin 32.16 and 14.14 folds, respectively. It also re-sensitized cells to mitoxantrone 6.98 folds. In addition, long-term treatment of cells by piperine inhibits transcription of the corresponding ABC transporter genes. These results suggest that piperine can reverse MDR by multiple mechanisms and it may be a promising lead compound for future studies. Copyright © 2011 Elsevier GmbH. All rights reserved.

  18. Evaluation of the effects of several zoanthamine-type alkaloids on the aggregation of human platelets.

    PubMed

    Villar, Rosa M; Gil-Longo, José; Daranas, Antonio H; Souto, María L; Fernández, José J; Peixinho, Solange; Barral, Miguel A; Santafé, Gilmar; Rodríguez, Jaime; Jiménez, Carlos

    2003-05-15

    Ten zoanthamine-type alkaloids from two marine zoanthids belonging to the Zoanthus genus (Zoanthus nymphaeus and Zoanthus sp.) along with one semisynthetic derivative were evaluated for their antiplatelet activities on human platelet aggregation induced by several stimulating agents. 11-Hydroxyzoanthamine (11) and a synthetic derivative of norzoanthamine (16) showed strong inhibition against thrombin-, collagen- and arachidonic acid-induced aggregation, zoanthenol (15) displayed a selective inhibitory activity induced by collagen, while zoanthaminone (10) behaved as a potent aggregant agent. These evaluations allowed us to deduce several structure-activity relationships and suggest some mechanisms of action for this type of compounds.

  19. Anti-addiction drug ibogaine inhibits hERG channels: a cardiac arrhythmia risk!

    PubMed Central

    Boehm, Stefan; Sandtner, Walter; Hilber, Karlheinz

    2016-01-01

    Ibogaine, an alkaloid derived from the African shrub Tabernanthe iboga, has shown promising anti-addictive properties in animals. Anecdotal evidence suggests that ibogaine is also anti-addictive in humans. Thus, it alleviates drug craving and impedes relapse of drug use. Although not licensed as therapeutic drug, and despite evidence that ibogaine may disturb the rhythm of the heart, this alkaloid is currently used as an anti-addiction drug in alternative medicine. Here we report that therapeutic concentrations of ibogaine reduce currents through human ERG potassium channels. Thereby, we provide a mechanism by which ibogaine may generate life-threatening cardiac arrhythmias. PMID:22458604

  20. Banisteriopsis caapi, a unique combination of MAO inhibitory and antioxidative constituents for the activities relevant to neurodegenerative disorders and Parkinson’s disease

    PubMed Central

    Samoylenko, Volodymyr; Rahman, Md. Mostafizur; Tekwani, Babu L.; Tripathi, Lalit M.; Wang, Yan-Hong; Khan, Shabana I.; Khan, Ikhlas A.; Miller, Loren S.; Joshi, Vaishali C.; Muhammad, Ilias

    2009-01-01

    Aim of the study Parkinson’s disease is a neurological disorder mostly effecting the elder population of the world. Currently there is no definitive treatment or cure for this disease. Therefore, in this study the composition and constituents of the aqueous extract of B. caapi for monoamine oxidases (MAO) inhibitory and antioxidant activities were assessed, which are relevant to the prevention of neurological disorders, including Parkinsonism. Materials and methods The aqueous extract of B. caapi stems was standardized and then fractionated using reversed-phase (RP) chromatography. Pure compounds were isolated either by reversed-phase (RP) chromatography or centrifugal preparative TLC, using a Chromatotron®. Structure elucidation was carried out by 1D and 2D NMR, Mass, IR and Circular Dichroism spectroscopy and chemical derivatization. Chemical profiling of the extract was carried out with RP-HPLC. The inhibitory activity of MAO-A, MAO-B, acetylcholinesterase, butyrylcholinesterase and catechol-O-methyl transferase enzymes, as well as antioxidant and cytotoxic activities of both B. caapi extract and isolated compounds were evaluated. Results An examination of the aqueous extracts of B. caapi cultivar Da Vine yielded two new alkaloidal glycosides, named banistenoside A (1) and banistenoside B (2), containing “azepino[1,2-a]tetrahydro-β-carboline” unique carbon framework. One additional new natural tetrahydronorharmine (4), four known β-carbolines harmol (3), tetrahydroharmine (5), harmaline (6) and harmine (7), two known proanthocyanidines (−)-epicatechin (8) and (−)-procyanidin B2 (9), and a new disaccharide β-D-fructofuranosyl-(2→5)-fructopyranose (14) together with known sacharose (15) and β-D-glucose (16) were also isolated. In addition, the acetates of 1, 2, 8, 9, 14 and 15 (compounds 10–13, 17, 18) were also prepared. Harmaline (6) and harmine (7) showed potent in vitro inhibitory activity against recombinant human brain monoamine oxidase (MAO) -A and -B enzymes (IC50 2.5 and 2.0 nM, and 25 and 20 µM, respectively), and (−)-epicatechin (8) and (−)-procyanidin B2 (9) showed potent antioxidant and moderate MAO-B inhibitory activities (IC50 <0.13 and 0.57 µg/mL, and 65 and 35 µM). HPLC analysis revealed that most of the dominant chemical and bioactive markers (1, 2, 5, 7–9) were present in high concentrations in dried bark of large branch. Analysis of regular/commercial B. caapi dried stems showed a similar qualitative HPLC pattern, but relatively low content of dominant markers 1, 2, 7, and 9, which led to decreased MAO inhibitory and antioxidant potency. Conclusion Collectively, these results give additional basis to the existing claim of B. caapi stem extract for the treatment of Parkinsonism, including other neurodegenerative disorders. PMID:19879939

  1. Banisteriopsis caapi, a unique combination of MAO inhibitory and antioxidative constituents for the activities relevant to neurodegenerative disorders and Parkinson's disease.

    PubMed

    Samoylenko, Volodymyr; Rahman, Md Mostafizur; Tekwani, Babu L; Tripathi, Lalit M; Wang, Yan-Hong; Khan, Shabana I; Khan, Ikhlas A; Miller, Loren S; Joshi, Vaishali C; Muhammad, Ilias

    2010-02-03

    Parkinson's disease is a neurological disorder mostly effecting the elder population of the world. Currently there is no definitive treatment or cure for this disease. Therefore, in this study the composition and constituents of the aqueous extract of Banisteriopsis caapi for monoamine oxidases (MAO) inhibitory and antioxidant activities were assessed, which are relevant to the prevention of neurological disorders, including Parkinsonism. The aqueous extract of Banisteriopsis caapi stems was standardized and then fractionated using reversed-phase (RP) chromatography. Pure compounds were isolated either by reversed-phase (RP) chromatography or centrifugal preparative TLC, using a Chromatotron. Structure elucidation was carried out by 1D and 2D NMR, Mass, IR and Circular Dichroism spectroscopy and chemical derivatization. Chemical profiling of the extract was carried out with RP-HPLC. The inhibitory activity of MAO-A, MAO-B, acetylcholinesterase, butyrylcholinesterase and catechol-O-methyl transferase enzymes, as well as antioxidant and cytotoxic activities of both Banisteriopsis caapi extract and isolated compounds was evaluated. An examination of the aqueous extracts of Banisteriopsis caapi cultivar Da Vine yielded two new alkaloidal glycosides, named banistenoside A (1) and banistenoside B (2), containing "azepino[1,2-a]tetrahydro-beta-carboline" unique carbon framework. One additional new natural tetrahydronorharmine (4), four known beta-carbolines harmol (3), tetrahydroharmine (5), harmaline (6) and harmine (7), two known proanthocyanidines (-)-epicatechin (8) and (-)-procyanidin B2 (9), and a new disaccharide beta-d-fructofuranosyl-(2-->5)-fructopyranose (14) together with known sacharose (15) and beta-d-glucose (16) were also isolated. In addition, the acetates of 1, 2, 8, 9, 14 and 15 (compounds 10-13, 17, 18) were also prepared. Harmaline (6) and harmine (7) showed potent in vitro inhibitory activity against recombinant human brain monoamine oxidase (MAO)-A and -B enzymes (IC(50) 2.5 and 2.0 nM, and 25 and 20 microM, respectively), and (-)-epicatechin (8) and (-)-procyanidin B2 (9) showed potent antioxidant and moderate MAO-B inhibitory activities (IC(50)<0.13 and 0.57 microg/mL, and 65 and 35 microM). HPLC analysis revealed that most of the dominant chemical and bioactive markers (1, 2, 5, 7-9) were present in high concentrations in dried bark of large branch. Analysis of regular/commercial Banisteriopsis caapi dried stems showed a similar qualitative HPLC pattern, but relatively low content of dominant markers 1, 2, 7, and 9, which led to decreased MAO inhibitory and antioxidant potency. Collectively, these results give additional basis to the existing claim of Banisteriopsis caapi stem extract for the treatment of Parkinsonism, including other neurodegenerative disorders. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.

  2. Monoamine oxidase inhibition by monoterpene indole alkaloids and fractions obtained from Psychotria suterella and Psychotria laciniata.

    PubMed

    Dos Santos Passos, Carolina; Soldi, Tatiane Cristina; Torres Abib, Renata; Anders Apel, Miriam; Simões-Pires, Cláudia; Marcourt, Laurence; Gottfried, Carmem; Henriques, Amélia Teresinha

    2013-06-01

    Alkaloid fractions of Psychotria suterella (SAE) and Psychotria laciniata (LAE) as well as two monoterpene indole alkaloids (MIAs) isolated from these fractions were evaluated against monoamine oxidases (MAO-A and -B) obtained from rat brain mitochondria. SAE and LAE were analysed by HPLC-PDA and UHPLC/HR-TOF-MS leading to the identification of the compounds 1, 2, 3 and 4, whose identity was confirmed by NMR analyses. Furthermore, SAE and LAE were submitted to the enzymatic assays, showing a strong activity against MAO-A, characterized by IC(50) values of 1.37 ± 1.05 and 2.02 ± 1.08 μg/mL, respectively. Both extracts were also able to inhibit MAO-B, but in higher concentrations. In a next step, SAE and LAE were fractionated by RP-MPLC affording three and four major fractions, respectively. The RP-MPLC fractions were subsequently tested against MAO-A and -B. The RP-MPLC fractions SAE-F3 and LAE-F4 displayed a strong inhibition against MAO-A with IC(50) values of 0.57 ± 1.12 and 1.05 ± 1.15 μg/mL, respectively. The MIAs 1 and 2 also inhibited MAO-A (IC(50) of 50.04 ± 1.09 and 132.5 ± 1.33 μg/mL, respectively) and -B (IC(50) of 306.6 ± 1.40 and 162.8 ± 1.26 μg/mL, respectively), but in higher concentrations when compared with the fractions. This is the first work describing the effects of MIAs found in neotropical species of Psychotria on MAO activity. The results suggest that species belonging to this genus could consist of an interesting source in the search for new MAO inhibitors.

  3. Intestinal anti-inflammatory effects of total alkaloid extract from Fumaria capreolata in the DNBS model of mice colitis and intestinal epithelial CMT93 cells.

    PubMed

    Bribi, Noureddine; Algieri, Francesca; Rodriguez-Nogales, Alba; Vezza, Teresa; Garrido-Mesa, Jose; Utrilla, María Pilar; Del Mar Contreras, María; Maiza, Fadila; Segura-Carretero, Antonio; Rodriguez-Cabezas, Maria Elena; Gálvez, Julio

    2016-08-15

    Fumaria capreolata L. (Papaveraceae) is a botanical drug used in North Africa for its gastro-intestinal and anti-inflammatory properties. It is characterized for the presence of several alkaloids that could be responsible for some of its effects, including an immunomodulatory activity. To test in vivo the intestinal anti-inflammatory properties of the total alkaloid fraction extracted from the aerial parts of F. capreolata (AFC), and to evaluate its effects on an intestinal epithelial cell line. AFC was chemically characterized by liquid chromatography coupled to diode array detection and high resolution mass spectrometry. Different doses of AFC (25, 50 and 100mg/kg) were assayed in the DNBS model of experimental colitis in mice, and the colonic damage was evaluated both histologically and biochemically. In addition, in vitro experiments were performed with this alkaloid fraction on the mouse intestinal epithelial cell line CMT93 stimulated with LPS. The chemical analysis of AFC revealed the presence of 23 alkaloids, being the most abundants stylopine, protopine and coptisine. Oral administration of AFC produced a significant inhibition of the release and the expression of IL-6 and TNF-α in the colonic tissue. It also suppressed in vivo the transcription of other pro-inflammatory mediators such as IL-1β, iNOS, IL-12 and IL-17. Furthermore, AFC showed an immunomodulatory effect in vitro since it was able to inhibit the mRNA expression of IL-6, TNF-α and ICAM-1. Moreover, the beneficial effect of AFC in the colitic mice could also be associated with the normalization of the expression of MUC-2 and ZO-1, which are important for the intestinal epithelial integrity. The present study suggests that AFC, containing 1.3% of stylopine and 0.9% of protopine, significantly exerted intestinal anti-inflammatory effects in an experimental model of mouse colitis. This fact could be related to a modulation of the intestinal immune response and a restoration of the intestinal epithelial function. Copyright © 2016 Elsevier GmbH. All rights reserved.

  4. The selectivity of protein kinase inhibitors: a further update

    PubMed Central

    Bain, Jenny; Plater, Lorna; Elliott, Matt; Shpiro, Natalia; Hastie, C. James; Mclauchlan, Hilary; Klevernic, Iva; Arthur, J. Simon C.; Alessi, Dario R.; Cohen, Philip

    2007-01-01

    The specificities of 65 compounds reported to be relatively specific inhibitors of protein kinases have been profiled against a panel of 70–80 protein kinases. On the basis of this information, the effects of compounds that we have studied in cells and other data in the literature, we recommend the use of the following small-molecule inhibitors: SB 203580/SB202190 and BIRB 0796 to be used in parallel to assess the physiological roles of p38 MAPK (mitogen-activated protein kinase) isoforms, PI-103 and wortmannin to be used in parallel to inhibit phosphatidylinositol (phosphoinositide) 3-kinases, PP1 or PP2 to be used in parallel with Src-I1 (Src inhibitor-1) to inhibit Src family members; PD 184352 or PD 0325901 to inhibit MKK1 (MAPK kinase-1) or MKK1 plus MKK5, Akt-I-1/2 to inhibit the activation of PKB (protein kinase B/Akt), rapamycin to inhibit TORC1 [mTOR (mammalian target of rapamycin)–raptor (regulatory associated protein of mTOR) complex], CT 99021 to inhibit GSK3 (glycogen synthase kinase 3), BI-D1870 and SL0101 or FMK (fluoromethylketone) to be used in parallel to inhibit RSK (ribosomal S6 kinase), D4476 to inhibit CK1 (casein kinase 1), VX680 to inhibit Aurora kinases, and roscovitine as a pan-CDK (cyclin-dependent kinase) inhibitor. We have also identified harmine as a potent and specific inhibitor of DYRK1A (dual-specificity tyrosine-phosphorylated and -regulated kinase 1A) in vitro. The results have further emphasized the need for considerable caution in using small-molecule inhibitors of protein kinases to assess the physiological roles of these enzymes. Despite being used widely, many of the compounds that we analysed were too non-specific for useful conclusions to be made, other than to exclude the involvement of particular protein kinases in cellular processes. PMID:17850214

  5. Camptotheca acuminata 10-hydroxycamptothecin O-methyltransferase: an alkaloid biosynthetic enzyme coopted from flavonoid metabolism.

    PubMed

    Salim, Vonny; Jones, A Daniel; DellaPenna, Dean

    2018-04-22

    The medicinal plant Camptotheca acuminata accumulates camptothecin, 10-hydroxycamptothecin, and 10-methoxycamptothecin as its major bioactive monoterpene indole alkaloids. Here, we describe identification and functional characterization of 10-hydroxycamptothecin O-methyltransferase (Ca10OMT), a member of the Diverse subclade of Class II OMTs. Ca10OMT is highly active toward both its alkaloid substrate and a wide range of flavonoids in vitro and in this way contrasts with other alkaloid OMTs in the subclade that only utilize alkaloid substrates. Ca10OMT shows a strong preference for the A-ring 7-OH of flavonoids, which is structurally equivalent to the 10-OH of 10-hydroxycamptothecin. The substrates of other alkaloid OMTs in the subclade bear little similarity to flavonoids, but the 3-D positioning of the 7-OH, A- and C-rings of flavonoids is nearly identical to the 10-OH, A- and B-rings of 10-hydroxycamptothecin. This structural similarity likely explains the retention of flavonoid OMT activity by Ca10OMT and also why kaempferol and quercetin aglycones are potent inhibitors of its 10-hydroxycamptothecin activity. The catalytic promiscuity and strong inhibition of Ca10OMT by flavonoid aglycones in vitro prompted us to investigate the potential physiological roles of the enzyme in vivo. Based on its regioselectivity, kinetic parameters and absence of 7-OMT flavonoids in vivo, we conclude that the major and likely only substrate of Ca10OMT in vivo is 10-hydroxycamptothecin. This is likely accomplished by Ca10OMT being kept spatially separated at the tissue levels from potentially inhibitory flavonoid aglycones, and flavonoid aglycones being rapidly glycosylated to non-inhibitory flavonoid glycosides. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  6. Efficacy evaluation of a Chinese bitter tea (Ilex latifolia Thunb.) via analyses of its main components.

    PubMed

    Hu, Ting; He, Xiao-Wei; Jiang, Jian-Guo; Xu, Xi-Lin

    2014-05-01

    In order to evaluate the health effects of Ilex latifolia Thunb., a Chinese bitter tea widely consumed as a health beverage, flavonoids, saponins, polysaccharides and alkaloids were extracted from its leaves and their in vitro antioxidant activity, anticomplement system activity, antiproliferative effects against human cervical carcinoma Hela cells, and anti-inflammatory effects against mouse macrophage RAW 264.7 cells were analyzed. Results showed that the polysaccharides exhibited a considerable inhibition of the complement system, the hemolysis inhibition rate reached 98% at a concentration of 0.8 mg mL(-1), which was clearly higher than that of the positive control (heparin sodium). The total flavonoids displayed significant DPPH scavenging activity and an inhibition effect on the generation of NO in LPS-induced RAW 264.7 macrophages. In addition, the total saponins showed a better antiproliferative effect against Hela cells, and the total alkaloids exhibited a high reducing power. It is obvious that I. latifolia has a variety of nutritional and health functions which are attributed to its different components. The analysis method presented in this research can suggest lessons for analysis of other plant foods.

  7. Chemo-enzymatic synthesis of physiologically modified avenanthramides

    USDA-ARS?s Scientific Manuscript database

    Avenanthramides are a group of phenolic alkaloids produced, among food crops, uniquely by oats. These metabolites function as phytoalexins in vegetative tissue and they are produced in the grain where their function is unknown. In vitro the avenanthramides inhibit the activation of nuclear factor ka...

  8. Marine guanidine alkaloids crambescidins inhibit tumor growth and activate intrinsic apoptotic signaling inducing tumor regression in a colorectal carcinoma zebrafish xenograft model.

    PubMed

    Roel, María; Rubiolo, Juan A; Guerra-Varela, Jorge; Silva, Siguara B L; Thomas, Olivier P; Cabezas-Sainz, Pablo; Sánchez, Laura; López, Rafael; Botana, Luis M

    2016-12-13

    The marine environment constitutes an extraordinary resource for the discovery of new therapeutic agents. In the present manuscript we studied the effect of 3 different sponge derived guanidine alkaloids, crambescidine-816, -830, and -800. We show that these compounds strongly inhibit tumor cell proliferation by down-regulating cyclin-dependent kinases 2/6 and cyclins D/A expression while up-regulating the cell cyclin-dependent kinase inhibitors -2A, -2D and -1A. We also show that these guanidine compounds disrupt tumor cell adhesion and cytoskeletal integrity promoting the activation of the intrinsic apoptotic signaling, resulting in loss of mitochondrial membrane potential and concomitant caspase-3 cleavage and activation. The crambescidin 816 anti-tumor effect was fnally assayed in a zebrafish xenotransplantation model confirming its potent antitumor activity against colorectal carcinoma in vivo.Considering these results crambescidins could represent promising natural anticancer agents and therapeutic tools.

  9. Marine guanidine alkaloids crambescidins inhibit tumor growth and activate intrinsic apoptotic signaling inducing tumor regression in a colorectal carcinoma zebrafish xenograft model

    PubMed Central

    Roel, María; Rubiolo, Juan A.; Guerra-Varela, Jorge; Silva, Siguara B. L.; Thomas, Olivier P.; Cabezas-Sainz, Pablo; Sánchez, Laura; López, Rafael; Botana, Luis M.

    2016-01-01

    The marine environment constitutes an extraordinary resource for the discovery of new therapeutic agents. In the present manuscript we studied the effect of 3 different sponge derived guanidine alkaloids, crambescidine-816, -830, and -800. We show that these compounds strongly inhibit tumor cell proliferation by down-regulating cyclin-dependent kinases 2/6 and cyclins D/A expression while up-regulating the cell cyclin-dependent kinase inhibitors -2A, -2D and -1A. We also show that these guanidine compounds disrupt tumor cell adhesion and cytoskeletal integrity promoting the activation of the intrinsic apoptotic signaling, resulting in loss of mitochondrial membrane potential and concomitant caspase-3 cleavage and activation. The crambescidin 816 anti-tumor effect was fnally assayed in a zebrafish xenotransplantation model confirming its potent antitumor activity against colorectal carcinoma in vivo. Considering these results crambescidins could represent promising natural anticancer agents and therapeutic tools. PMID:27825113

  10. Effect of caricapryl-99 seed alkaloid extract on the serum levels of sex hormones and pituitary gonadotrophins in male albino rats.

    PubMed

    Udoh, P B; Udoh, F V; Umoren, E B; James, U W; Okeke, C P; Agwu, B

    2009-06-01

    Activity of alkaloid extract of caricapryl-99 seeds [Carica papaya Linn seeds] on the serum levels of steroid hormones was studied in adult male albino rats. Three tolerated doses obtained from the graph of percentage toxicity [10, 50 and 150 mg/kg] were separately administered orally, daily for three days to three groups of male rats [n=5] while group four of 5 rats received the vehicle [corn oil] as control. The results showed that 10 mg/kg/d caused increase serum levels of FSH and estrogen but decrease in the serum levels of LH and testosterone compared to control; 50 mg/kg/d elevated the serum levels of FSH, estrogen but inhibited testosterone; while 150 mg/kg/d pretreatments caused a significant decrease [p<0.01] in the serum levels of FSH, LH and testosterone. The results suggest that caricapryl-99 treatment inhibited the serum level of the androgen, testosterone which might result in a male infertility.

  11. Complement inhibiting properties of dragon's blood from Croton draco.

    PubMed

    Tsacheva, Ivanka; Rostan, Joerg; Iossifova, Tania; Vogler, Bernhard; Odjakova, Mariela; Navas, Hernan; Kostova, Ivanka; Kojouharova, Michaela; Kraus, Wolfgang

    2004-01-01

    The latex of Croton draco, its extracts and several latex components have been investigated for their influence on both classical (CP) and alternative (AP) activation pathways of the complement system using a hemolytic assay. The best inhibition was found for the classical pathway. The latex, ethyl acetate and ethyl ether extracts exhibited extremely high inhibition on the CP (94, 90 and 77%, respectively) at a concentration of 1 mg/ml. The flavonoid myricitrin, the alkaloid taspine and the cyclopeptides P1 and P2 showed high inhibition on CP (83, 91, 78 and 63%, respectively) at a concentration of 0.9 mM.

  12. Design, synthesis and biological evaluation of hybrids of β-carboline and salicylic acid as potential anticancer and apoptosis inducing agents

    PubMed Central

    Xu, Qi-Bing; Chen, Xiang-Fan; Feng, Jiao; Miao, Jie-Fei; Liu, Ji; Liu, Feng-Tao; Niu, Bi-Xi; Cai, Jin-Yang; Huang, Chao; Zhang, Yanan; Ling, Yong

    2016-01-01

    A novel series of hybrids (7a-l, 8a-l) from β-carboline and salicylic acid (SA) were designed and synthesized, and their in vitro biological activities were evaluated. Most of the hybrids displayed potent antiproliferative activity against five cancer cell lines in vitro, showing potencies superior to 5-FU and harmine. In particular, compound 8h selectively inhibited proliferation of liver cancer SMMC-7721 cells but not normal liver LO2 cells, and displayed greater inhibitory selectivity than intermediate 5h and SA. 8h also induced cancer cell apoptosis in an Annexin V-FITC/propidium iodide flow cytometry assay, and triggered the mitochondrial/caspase apoptosis by decreasing mitochondrial membrane potential which was associated with up-regulation of Bax, down-regulation of Bcl-2 and activation levels of the caspase cascade in a concentration-dependent manner. Our findings suggest that the β-carboline/SA hybrids may hold greater promise as therapeutic agents for the intervention of human cancers. PMID:27824091

  13. Dragmacidin G, a Bioactive Bis-Indole Alkaloid from a Deep-Water Sponge of the Genus Spongosorites.

    PubMed

    Wright, Amy E; Killday, K Brian; Chakrabarti, Debopam; Guzmán, Esther A; Harmody, Dedra; McCarthy, Peter J; Pitts, Tara; Pomponi, Shirley A; Reed, John K; Roberts, Bracken F; Rodrigues Felix, Carolina; Rohde, Kyle H

    2017-01-11

    A deep-water sponge of the genus Spongosorites has yielded a bis-indole alkaloid which we have named dragmacidin G. Dragmacidin G was first reported by us in the patent literature and has recently been reported by Hitora et al. from a sponge of the genus Lipastrotheya . Dragmacidin G is the first in this series of compounds to have a pyrazine ring linking the two indole rings. It also has a rare N -(2-mercaptoethyl)-guanidine side chain. Dragmacidin G shows a broad spectrum of biological activity including inhibition of methicillin-resistant Staphylococcus aureus , Mycobacterium tuberculosis , Plasmodium falciparum, and a panel of pancreatic cancer cell lines.

  14. Dragmacidin G, a Bioactive Bis-Indole Alkaloid from a Deep-Water Sponge of the Genus Spongosorites

    PubMed Central

    Wright, Amy E.; Killday, K. Brian; Chakrabarti, Debopam; Guzmán, Esther A.; Harmody, Dedra; McCarthy, Peter J.; Pitts, Tara; Pomponi, Shirley A.; Reed, John K.; Roberts, Bracken F.; Rodrigues Felix, Carolina; Rohde, Kyle H.

    2017-01-01

    A deep-water sponge of the genus Spongosorites has yielded a bis-indole alkaloid which we have named dragmacidin G. Dragmacidin G was first reported by us in the patent literature and has recently been reported by Hitora et al. from a sponge of the genus Lipastrotheya. Dragmacidin G is the first in this series of compounds to have a pyrazine ring linking the two indole rings. It also has a rare N-(2-mercaptoethyl)-guanidine side chain. Dragmacidin G shows a broad spectrum of biological activity including inhibition of methicillin-resistant Staphylococcus aureus, Mycobacterium tuberculosis, Plasmodium falciparum, and a panel of pancreatic cancer cell lines. PMID:28085024

  15. Natural products with hypoglycemic, hypotensive, hypocholesterolemic, antiatherosclerotic and antithrombotic activities.

    PubMed

    Wang, H X; Ng, T B

    1999-01-01

    This article reviews compounds of botanical origin which are capable of lowering plasma levels of glucose and cholesterol and blood pressure, as well as compounds inhibiting atherosclerosis and thrombosis. Hypoglycemic natural products comprise flavonoids, xanthones, triterpenoids, alkaloids, glycosides, alkyldisulfides, aminobutyric acid derivatives, guanidine, polysaccharides and peptides. Hypotensive compounds include flavonoids, diterpenes, alkaloids, glycosides, polysaccharides and proteins. Among natural products with hypocholesterolemic activity are beta-carotene, lycopene, cycloartenol, beta-sitosterol, sitostanol, saponin, soybean protein, indoles, dietary fiber, propionate, mevinolin (beta-hydroxy-beta-methylglutaryl coenzyme A reductase inhibitor) and polysaccharides. Heparins, flavonoids, tocotrienols, beta-hydroxy-beta-methylglutaryl coenzyme A reductase inhibitors (statins), garlic compounds and fungal proteases exert antithrombotic action. Statins and garlic compounds also possess antiatherosclerotic activity.

  16. [Protective effect of Uncaria rhynchophylla total alkaloids pretreatment on hippocampal neurons after acute hypoxia].

    PubMed

    Liu, Wei; Zhang, Zhao-qin; Zhao, Xiao-min; Gao, Yun-sheng

    2006-05-01

    To investigate the effect of Uncaria rhynchophylla total alkaloids (RTA) pretreatment on the voltage-gated sodium currents of the rat hippocampal neurons after acute hypoxia. Primary cultured hippocampal neurons were divided into RTA pre-treated and non-pretreated groups. Patch clamp whole-cell recording was used to compare the voltage-gated sodium current amplitude and threshold with those before hypoxia. After acute hypoxia, sodium current amplitude was significantly decreased and its threshold was upside. RTA pretreatment could inhibit the reduction of sodium current amplitude. RTA pretreatment alleviates the acute hypoxia-induced change of sodium currents, which may be one of the mechanisms for protective effect of RTA on cells.

  17. Antinociceptive effects of the extracts of Xylopia parviflora bark and its alkaloidal components in experimental animals.

    PubMed

    Nishiyama, Yumi; Moriyasu, Masataka; Ichimaru, Momoyo; Iwasa, Kinuko; Kato, Atsushi; Mathenge, Simon G; Chalo Mutiso, Patrick B; Juma, Francis D

    2010-01-01

    In the present study, we attempted to elucidate the antinociceptive activity of Xylopia parviflora bark using the acetic acid-induced writhing test, hot plate test, and formalin test in mice. The MeOH extract (100 and 200 mg/kg, administered intraperitoneally (i.p.)) had an antinociceptive effect demonstrated by its inhibitory effects on writhing number induced by acetic acid. Three alkaloidal fractions exhibited significant antinociceptive effects in three animal models; the chloroform-soluble fraction, including secondary and tertiary alkaloids, exhibited the strongest effect. This result supported its use in folk medicine as an analgesic agent. We tested the main alkaloids of these fractions for their antinociceptive effects to clarify the active components. (+)-Corytuberine (6.3 and 12.5 mg/kg, i.p.) showed very strong activity, had a significant antinociceptive effect in the acetic acid-induced writhing test (with 49.4 and 98.9% reduction of writhes), in the hot plate test, and in the formalin test (with 55.4 and 90.6% inhibition during the first phase, and 73.9 and 99.9% during the second phase, respectively). (+)-Glaucine (12.5 and 25 mg/kg, i.p.) showed strong activity in three animal models, too. The activity of these compounds was also observed following oral administration in the acetic acid-induced writhing test.

  18. Uncaria alkaloids reverse ABCB1-mediated cancer multidrug resistance

    PubMed Central

    Huang, Bao-Yuan; Zeng, Yu; Li, Ying-Jie; Huang, Xiao-Jun; Hu, Nan; Yao, Nan; Chen, Min-Feng; Yang, Zai-Gang; Chen, Zhe-Sheng; Zhang, Dong-Mei; Zeng, Chang-Qing

    2017-01-01

    The overexpression of ATP-binding cassette (ABC) transporters is the main cause of cancer multidrug resistance (MDR), which leads to chemotherapy failure. Uncaria alkaloids are the major active components isolated from uncaria, which is a common Chinese herbal medicine. In this study, the MDR-reversal activities of uncaria alkaloids, including rhynchophylline, isorhynchophylline, corynoxeine, isocorynoxeine (Icory), hirsutine and hirsuteine, were screened; they all exhibited potent reversal efficacy when combined with doxorubicin. Among them, Icory significantly sensitized ABCB1-overexpressing HepG2/ADM and MCF-7/ADR cells to vincristine, doxorubicin and paclitaxel, but not to the non-ABCB1 substrate cisplatin. Noteworthy, Icory selectively reversed ABCB1-overexpressing MDR cancer cells but not ABCC1- or ABCG2-mediated MDR. Further mechanistic study revealed that Icory increased the intracellular accumulation of doxorubicin in ABCB1-overexpressing cells by blocking the efflux function of ABCB1. Instead of inhibiting ABCB1 expression and localization, Icory acts as a substrate of the ABCB1 transporter by competitively binding to substrate binding sites. Collectively, these results indicated that Icory reversed ABCB1-mediated MDR by suppressing its efflux function, and it would be beneficial to increase the efficacy of these types of uncaria alkaloids and develop them to be selective ABCB1-mediated MDR-reversal agents. PMID:28534954

  19. Anti-inflammatory and anti-arthritic activity of total flavonoids of the roots of Sophora flavescens.

    PubMed

    Jin, Jeong Ho; Kim, Ju Sun; Kang, Sam Sik; Son, Kun Ho; Chang, Hyun Wook; Kim, Hyun Pyo

    2010-02-17

    The roots of Sophora flavescens have long been used in Chinese medicine for the treatment of fever, inflammatory disorders, ulcers and skin burns. Sophora flavescens contains flavonoids and alkaloids. This study was conducted to develop a plant-based anti-inflammatory agent focused on chronic inflammatory disorders. To accomplish this, the alkaloid-free prenylated flavonoid-enriched fraction (PFS) of rhizomes of Sophora flavescens was prepared and its in vitro and in vivo anti-inflammatory activities were then evaluated for the first time. The inhibitory activity of PFS on PGE(2), NO, IL-6 and TNF-alpha production of lipopolysaccharide (LPS)-treated RAW 264.7 cells was measured. Additionally, adjuvant-induced arthritis in rats was used as an animal model of chronic inflammation to establish the in vivo anti-inflammatory effects of PFS. PFS inhibited cyclooxygenase-2 (COX-2)-catalyzed PGE(2) and inducible nitric oxide synthase (iNOS)-catalyzed NO production by lipopolysaccharide (LPS)-treated RAW 264.7 cells at 10-50 microg/ml, and these effects primarily occurred via COX-2 inhibition and iNOS down-regulation, respectively. PFS also inhibited IL-6 and TNF-alpha production. When tested against adjuvant-induced arthritis in rats (chronic inflammation), PFS strongly inhibited arthritic inflammation when administered orally at doses of 10-100mg/kg/day. In addition, PFS administered orally potently inhibited acetic acid-induced writhing in mice. Our results suggest that PFS inhibits chronic inflammatory response and the inhibition of proinflammatory molecules such as COX-2, iNOS and IL-6 may contribute, at least in part, to the anti-inflammatory activity in vivo. Overall, these results indicate that PFS from Sophora flavescens may have the potential for treatment of chronic inflammatory disorders such as rheumatoid arthritis. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.

  20. Maternal ingestion of Ipomoea carnea: Effects on goat-kid bonding and behavior

    USDA-ARS?s Scientific Manuscript database

    Ipomoea carnea is a toxic plant found in Brazil and other tropical and subtropical countries and often causes poisoning of livestock. The plant contains the alkaloids swainsonine and calystegines, which inhibit key cellular enzymes and cause systematic cell death. This study evaluated the behavioral...

  1. Neonate behavior in goats is affected by maternal ingestion of Ipomoea carnea

    USDA-ARS?s Scientific Manuscript database

    Ipomoea carnea is a toxic plant that grows in tropical areas, and is readily consumed by grazing goats. The plant contains the alkaloids swainsonine and calystegines, which inhibit cellular enzymes and cause systematic cell death. This study evaluated the behavioral effects on dams and kids of prena...

  2. Preliminary phytochemical screening and alpha-glucosidase inhibitory activity of Philippine taro (Colocasia esculenta (L.) Schott var. PSB-VG #9)

    NASA Astrophysics Data System (ADS)

    Lebosada, Richemae Grace R.; Librando, Ivy L.

    2017-01-01

    The study was conducted to determine the anti-hyperglycemic property in terms of α-glucosidase inhibitory activity of the various parts (corm, leaf and petiole) of Colocasia esculenta (L.) Schott var. PSB-VG #9. Each of the plant parts were extracted with 95% ethanol and concentrated using a rotary evaporator at 40 °C. The crude extracts were screened for the presence of alkaloids, flavonoids, glycosides and saponins using Thin Layer Chromatography. The α-glucosidase inhibitory activity of the crude extracts (50 mg/L) were assayed spectrophotometrically using a microplate reader. The results of the phytochemical screening revealed the presence of alkaloids, flavonoids, and saponins in the leaf part while flavonoids and saponins were detected in the petiole and only saponins were present in the corm. The assay showed that the percentage α-glucosidase inhibition of the 50 mg/L ethanolic crude extract of the corm, leaves and petiole of C. esculenta are 68.03, 71.64 and 71.39%, respectively. Statistical analysis shows significant differences in the α-glucosidase inhibition among the various plant parts. It can be concluded that the ethanolic crude extracts of the different parts of C. esculenta (L.) Schott var. PSB-VG #9 exhibited inhibitory activity against α-glucosidase and the presence of phytochemicals like alkaloids, flavonoids and saponins may have contributed greatly to the inhibitory activity of the plant extract and can be further subjected for isolation of the therapeutically active compounds with antidiabetes potency.

  3. Polyphenolic Composition and Antioxidant Activities of 6 New Turmeric (Curcuma Longa L.) Accessions.

    PubMed

    Chinedum, Eleazu; Kate, Eleazu; Sonia, Chukwuma; Ironkwe, Adanma; Andrew, Igwe

    2015-01-01

    The phytochemical composition and antioxidant capacities of 6 new NRCRI turmeric (Curcuma longa L.) accessions (39, 35, 60, 30, 50 and 41) were determined using standard techniques. The moisture contents of the tumeric samples ranged from 15.75 to 47.80% and the curcumin contents of the turmeric samples fell within the range of curcumin obtained from turmeric in other countries of the world. Furthermore, the turmeric accessions contained considerable amounts of antioxidants (measured using 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical and reducing power assays), alkaloids, flavonoids, anthocyanins, and phenolics. There was significant correlation between the anthocyanin contents of the tumeric accessions versus their alkaloid (0.744) and flavonoid contents (0.986) suggesting an additive effect between the anthocyanins and alkaloids in turmeric; significant correlation between the inhibition of the turmeric accessions on DPPH radical versus their flavonoid (0.892) and anthocyanin (0.949) contents and significant correlation between the reducing power of the turmeric accessions versus their flavonoid (0.973) and anthocyanin (0.974) contents suggesting that anthocyanins as flavonoids largely contribute to the antioxidant activities of turmeric. The positive regression recorded between inhibition of DPPH radical by the turmeric accessions and quercetin versus reducing power (R2 = 0.852) suggest that any of these methods could be used to assess the antioxidant activities of tumeric. Finally, the study indicated the potentials of the turmeric accessions especially accessions 30 and 50 as promising sources of antioxidants.

  4. Synthetic studies of the zoanthamine alkaloids: the total syntheses of norzoanthamine and zoanthamine.

    PubMed

    Yoshimura, Fumihiko; Sasaki, Minoru; Hattori, Izumi; Komatsu, Kei; Sakai, Mio; Tanino, Keiji; Miyashita, Masaaki

    2009-07-06

    The zoanthamine alkaloids, a type of heptacyclic marine alkaloid isolated from colonial zoanthids of the genus Zoanthus sp., have distinctive biological and pharmacological properties in addition to their unique chemical structures with stereochemical complexity. Namely, norzoanthamine (1) can suppress the loss of bone weight and strength in ovariectomized mice and has been expected as a promising candidate for a new type of antiosteoporotic drug, while zoanthamine (2) has exhibited potent inhibitory activity toward phorbol myristate-induced inflammation in addition to powerful analgesic effects. Recently, norzoanthamine derivatives were demonstrated to inhibit strongly the growth of P-388 murine leukemia cell lines, in addition to their potent antiplatelet activities on human platelet aggregation. Their distinctive biological properties, combined with novel chemical structures, make this family of alkaloids extremely attractive targets for chemical synthesis. However, the chemical synthesis of the zoanthamine alkaloids has been impeded owing to their densely functionalized complex stereostructures. In this paper, we report the first and highly efficient total syntheses of norzoanthamine (1) and zoanthamine (2) in full detail, which involve stereoselective synthesis of the requisite triene (18) for an intramolecular Diels-Alder reaction via the sequential three-component coupling reactions, the key intramolecular Diels-Alder reaction, and subsequent crucial bis-aminoacetalization as the key steps. Ultimately, we achieved the total synthesis of norzoanthamine (1) in 41 steps with an overall yield of 3.5 % (an average of 92 % yield each step) and that of zoanthamine (2) in 43 steps with an overall yield of 2.2 % (an average of 91 % yield each step) starting from (R)-5-methylcyclohexenone (3), respectively.

  5. In vitro anticancer properties and biological evaluation of novel natural alkaloid jerantinine B.

    PubMed

    Qazzaz, Mohannad E; Raja, Vijay J; Lim, Kuan-Hon; Kam, Toh-Seok; Lee, Jong Bong; Gershkovich, Pavel; Bradshaw, Tracey D

    2016-01-28

    Natural products play a pivotal role in medicine especially in the cancer arena. Many drugs that are currently used in cancer chemotherapy originated from or were inspired by nature. Jerantinine B (JB) is one of seven novel Aspidosperma indole alkaloids isolated from the leaf extract of Tabernaemontana corymbosa. Preliminary antiproliferative assays revealed that JB and JB acetate significantly inhibited growth and colony formation, accompanied by time- and dose-dependent apoptosis induction in human cancer cell lines. JB significantly arrested cells at the G2/M cell cycle phase, potently inhibiting tubulin polymerisation. Polo-like kinase 1 (PLK1; an early trigger for the G2/M transition) was also dose-dependently inhibited by JB (IC50 1.5 µM). Furthermore, JB provoked significant increases in reactive oxygen species (ROS). Annexin V+ cell populations, dose-dependent accumulation of cleaved-PARP and caspase 3/7 activation, and reduced Bcl-2 and Mcl-1 expression confirm apoptosis induction. Preclinical in silico biopharmaceutical assessment of JB calculated rapid absorption and bioavailability >70%. Doses of 8-16 mg/kg JB were predicted to maintain unbound plasma concentrations >GI50 values in mice during efficacy studies. These findings advocate continued development of JB as a potential chemotherapeutic agent. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  6. Protopine inhibits heterotypic cell adhesion in MDA-MB-231 cells through down-regulation of multi-adhesive factors.

    PubMed

    He, Kai; Gao, Jian-Li

    2014-01-01

    A Chinese herb Corydalis yanhusuo W.T. Wang that showed anticancer and anti-angiogenesis effects in our previous studies was presented for further studies. In the present study, we studied the anticancer proliferation and adhesion effects of five alkaloids which were isolated from Corydalis yanhusuo. MTT dose response curves, cell migration assay, cell invasion assay, as well as three types of cell adhesive assay were performed on MDA-MB-231 human breast cancer cells. The mechanism of the compounds on inhibiting heterotypic cell adhesion were further explored by determining the expression of epidermal growth factor receptor (EGFR), Intercellular adhesion molecule 1 (ICAM-1), αv-integrin, β1-integrin and β5-integrin by western blotting assay. In five tested alkaloids, only protopine exhibited anti-adhesive and anti-invasion effects in MDA-MB-231 cells, which contributed to the anti-metastasis effect of Corydalis yanhusuo. The results showed that after treatment with protopine for 90 min, the expression of EGFR, ICAM-1, αv-integrin, β1-integrin and β5-integrin were remarkably reduced. The present results suggest that protopine seems to inhibit the heterotypic cell adhesion between MDA-MB-231 cells, and human umbilical vein endothelial cells by changing the expression of adhesive factors.

  7. Effects of Total Alkaloids of Sophora alopecuroides on Biofilm Formation in Staphylococcus epidermidis

    PubMed Central

    Li, Xue; Guan, Cuiping; He, Yulong; Wang, Yujiong

    2016-01-01

    Staphylococcus epidermidis (S. epidermidis) is an opportunistic pathogen with low pathogenicity and a cause of the repeated outbreak of bovine mastitis in veterinary clinical settings. In this report, a biofilm model of S. epidermidis was generated and the minimal inhibitory concentration (MIC) and sub-MIC (SMIC) on bacterial cultures were assessed for the following agents: total alkaloids of Sophora alopecuroides (TASA), ciprofloxacin (CIP), and erythromycin (ERY). The formation and characteristic parameters of biofilm were analyzed in terms of XTT assay, silver staining, and confocal laser scanning microscope (CLSM). Results showed that a sub-MIC of TASA could inhibit 50% biofilm of bacterial activity, while 250-fold MIC of CIP and ERY MICs only inhibited 50% and 47% of biofilm formation, respectively. All three agents could inhibit the biofilm formation at an early stage, but TASA showed a better inhibitory effect on the late stage of biofilm thickening. A morphological analysis using CLSM further confirmed the destruction of biofilm by these agents. These results thus suggest that TASA has an inhibitory effect on biofilm formation of clinic S. epidermidis, which may be a potential agent warranted for further study on the treatment prevention of infection related to S. epidermidis in veterinary clinic. PMID:27413745

  8. Effect of total alkaloids from Alstonia scholaris on airway inflammation in rats.

    PubMed

    Zhao, Yun-Li; Shang, Jian-Hua; Pu, Shi-Biao; Wang, Heng-Shan; Wang, Bei; Liu, Lu; Liu, Ya-Ping; Shen, Hong-Mei; Luo, Xiao-Dong

    2016-02-03

    Alstonia scholaris (Apocynaceae) have been traditionally used for treatment of respiratory diseases in "dai" ethnopharmacy for hundreds years, especially for cough, asthma, phlegm, chronic obstructive pulmonary disease and so on. The formulas including the leaf extract have also been prescribed in hospitals and sold over the retail pharmacies. A. scholaris is used as a traditional herbal medicine for the treatment of respiratory tract inflammation. However, there is no scientific evidence to validate the use of total alkaloids of A. scholaris in the literature. Here, we investigated the protective activity of total alkaloids (TA), extracted from the leaves of Alstonia scholaris, against lipopolysaccharide (LPS)-induced airway inflammation (AI) in rats. 200 μg/μL LPS was instilled intratracheally in each rat, and then the modeling animals were divided into six groups (n=10, each) randomly: sham group, LPS group, Dexamethasone [1.5mg/kg, intra-gastricly (i.g.)] group, and three different doses (7.5, 15, and 30 mg/kg, i.g.) of total alkaloids-treated groups. Corresponding drugs or vehicles were orally administered once per day for 7 days consecutively. The concentration of albumin (ALB), alkaline phosphatase (AKP), lactate dehydrogenase (LDH), and the number of inflammatory cells in bronchoalveolar lavage fluid (BALF) were determined by fully automatic biochemical analyzer and blood counting instrument. Nitric oxide (NO) level, malondialdehyde (MDA) content, and superoxide dismutase (SOD) activities were examined by multiskan spectrum, and histological change in the lungs was analyzed by H.E. staining. The levels of inflammatory cytokine tumor necrosis factor-α (TNF-α) and interleukin-8 (IL-8) were measured using ELISA. Total alkaloids decreased the percentage of neutrophil, number of WBC, levels of ALB, AKP and LDH in the BALF, while increased the content of ALB in serum. It also improved SOD activity and increased NO level in the lungs, serum and BALF, and reduced the concentration of MDA in the lungs. Total alkaloids also inhibited the production of inflammatory cytokines TNF-α and IL-8 in the BALF and lung. Finally, histopathological examination indicated that total alkaloids attenuated tissue injury of the lungs in LPS-induced AI. Total alkaloids have an inhibitory effect against LPS-induced airway inflammation in rats. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  9. Anti-addiction drug ibogaine inhibits hERG channels: a cardiac arrhythmia risk.

    PubMed

    Koenig, Xaver; Kovar, Michael; Boehm, Stefan; Sandtner, Walter; Hilber, Karlheinz

    2014-03-01

    Ibogaine, an alkaloid derived from the African shrub Tabernanthe iboga, has shown promising anti-addictive properties in animals. Anecdotal evidence suggests that ibogaine is also anti-addictive in humans. Thus, it alleviates drug craving and impedes relapse of drug use. Although not licensed as therapeutic drug, and despite evidence that ibogaine may disturb the rhythm of the heart, this alkaloid is currently used as an anti-addiction drug in alternative medicine. Here, we report that therapeutic concentrations of ibogaine reduce currents through human ether-a-go-go-related gene potassium channels. Thereby, we provide a mechanism by which ibogaine may generate life-threatening cardiac arrhythmias. © 2012 The Authors, Addiction Biology © 2012 Society for the Study of Addiction.

  10. A multidisciplinary overview of intoxicating snuff rituals in the western hemisphere.

    PubMed

    de Smet, P A

    1985-03-01

    Part one of the paper discusses ethnobotanical, chemical and general pharmacological aspects of intoxicating snuff rituals in the western hemisphere. Four categories of ritual snuff ingredients arise from this multidisciplinary approach: It is well established that the plant contains one or more psychoactive principles and the Indian use of the plant as a ritual snuff ingredient is confirmed or quite probable: Anadenanthera, Erythroxylum, Nicotiana, Virola; It is well established that the plant contains one or more psychoactive principles, but the Indian use of the plant as a ritual snuff ingredient is not well recorded or even unlikely: Banisteriopsis, Cannabis, Datura, Ilex guayusa; The Indian use of the plant as a ritual snuff ingredient is confirmed or quite probable, but it is not well established that the plant contains one or more psychoactive principles: Justicia pectoralis, Pagamea macrophylla, Tanaecium nocturnum; The Indian use of the plant as a ritual snuff ingredient is not well recorded, and it is not well established that the plant contains one or more psychoactive principles: Acorus calamus, Capsicum, Macquira sclerophylla, Piper interitum. Part two of the paper discusses the nasal pharmacokinetics and efficacy of possible ritual snuff constituents. The literature yields convincing clinical evidence that atropine, cocaine, nicotine and scopolamine are effective following nasal application, but experimental confirmation of the efficacy of nasal tryptamine alkaloids is still awaited. In self-experiments, 6.4 mg/kg of caffeine produced substantial plasma levels via the nasal route, but 0.5 mg/kg of harmine did not produce measurable plasma levels, when taken as a nasal powder. Without additional experiments, it is difficult to give a definite explanation for this negative result.

  11. Effects of prepartum ingestion of Ipomoea carnea on postpartum maternal and neonate behavior in goats

    USDA-ARS?s Scientific Manuscript database

    Ipomoea carnea (I. carnea) is a toxic plant that grows in tropical areas, and is readily consumed by grazing goats. The plant contains the alkaloids swainsonine and calystegines, which inhibit cellular enzymes and cause systematic cell death. This study evaluated the behavioral effects on dams and k...

  12. Consumption of endophyte-infected fescue seed during the dry period does not decrease milk production in the following lactation

    USDA-ARS?s Scientific Manuscript database

    Ergot alkaloids in endophyte-infected grasses inhibit prolactin (PRL) secretion and may reduce milk production of cows consuming endophyte-infected grasses. We investigated the effects of consuming endophyte-infected fescue during late lactation and the dry period on mammary growth, differentiation ...

  13. Isoliensinine, a Bioactive Alkaloid Derived from Embryos of Nelumbo nucifera, Induces Hepatocellular Carcinoma Cell Apoptosis through Suppression of NF-κB Signaling.

    PubMed

    Shu, Guangwen; Yue, Ling; Zhao, Wenhao; Xu, Chan; Yang, Jing; Wang, Shaobing; Yang, Xinzhou

    2015-10-14

    Isoliensinine (isolie) is an alkaloid produced by the edible plant Nelumbo nucifera. Here, we unveiled that isolie was able to provoke HepG2, Huh-7, and H22 hepatocellular carcinoma (HCC) cell apoptosis. Isolie decreased NF-κB activity and constitutive phosphorylation of NF-κB p65 subunit at Ser536 in HCC cells. Overexpression of p65 Ser536 phosphorylation mimics abrogated isolie-mediated HCC cell apoptosis. Furthermore, intraperitoneal injection of isolie inhibited the growth of Huh-7 xenografts in nude mice. Additionally, isolie given by both intraperitoneal injection and gavage diminished the proliferation of transplanted H22 cells in Kunming mice. Reduced tumor growth in vivo was associated with inhibited p65 phosphorylation at Ser536 and declined NF-κB activity in tumor tissues. Finally, we revealed that isolie was bioavailable in the blood of mice and exhibited no detectable toxic effects on tumor-bearing mice. Our data provided strong evidence for the anti-HCC effect of isolie.

  14. Bioassay-directed isolation and evaluation of Harmine from the terrestrial plant Peganum harmala L. for antibacterial activity against Flavobacterium columnare

    USDA-ARS?s Scientific Manuscript database

    The antibacterial activities of crude extracts obtained from the aerial portions and roots of Peganum harmala L. were evaluated against the common fish pathogenic bacteria species Edwardsiella ictaluri, Flavobacterium columnare, and Streptococcus iniae using a rapid bioassay. Enteric septicemia of c...

  15. Antispasmodic and relaxant activity of chelidonine, protopine, coptisine, and Chelidonium majus extracts on isolated guinea-pig ileum.

    PubMed

    Hiller, K O; Ghorbani, M; Schilcher, H

    1998-12-01

    Two ethanolic dry extracts from the herb Chelidonium majus L. with a defined content of the main alkaloids (chelidonine, protopine, and coptisisine) and the alkaloids themselves were studied in three different antispasmodic test models on isolated ileum of guinea-pigs. In the BaCl2-stimulated ileum, chelidonine and protopine exhibited the known papaverine-like musculotropic action, whereas coptisine (up to 3.0 x 10(-5) g/ml) was ineffective in this model. Both extracts were active with 53.5% and 49.0% relaxation at 5 x 10(-4) g/ml. The carbachol and the electric field stimulated contractions were antagonized by all three alkaloids. Coptisine showed competitive antagonist behaviour with a pA2 value of 5.95. Chelidonine and protopine exhibited a certain degree of non-competitive antagonism. In the electric field the antagonist activities decreased in the order protopine > coptisine > chelidonine. The concentrations of the chelidonium herb extracts for 50% inhibition of the carbachol and electrical field induced spasms were in the range of 2.5 to 5 x 10(-4) g/ml.

  16. Curine inhibits mast cell-dependent responses in mice.

    PubMed

    Ribeiro-Filho, Jaime; Leite, Fagner Carvalho; Costa, Hermann Ferreira; Calheiros, Andrea Surrage; Torres, Rafael Carvalho; de Azevedo, Carolina Trindade; Martins, Marco Aurélio; Dias, Celidarque da Silva; Bozza, Patrícia T; Piuvezam, Márcia Regina

    2014-09-11

    Curine is a bisbenzylisoquinoline alkaloid and the major constituent isolated from Chondrodendron platyphyllum, a plant that is used to treat inflammatory diseases in Brazilian folk medicine. This study investigates the effectiveness of curine on mast cell-dependent responses in mice. To induce mast cell-dependent responses, Swiss mice were subcutaneously sensitized with ovalbumin (OVA-12 μg/mouse) and Al(OH)3 in a 0.9% NaCl solution. Fifteen days later, the animals were challenged with OVA through different pathways. Alternatively, the animals were injected with compound 48/80 or histamine, and several parameters, including anaphylaxis, itching, edema and inflammatory mediator production, were analyzed. Promethazine, cromoglycate, and verapamil were used as control drugs, and all of the treatments were performed 1h before the challenges. Curine pre-treatment significantly inhibited the scratching behavior and the paw edema induced by either compound 48/80 or OVA, and this protective effect was comparable in magnitude with those associated with treatment with either cromoglycate or verapamil. In contrast, curine was a weak inhibitor of histamine-induced paw edema, which was completely inhibited by promethazine. Curine and verapamil significantly inhibited pleural protein extravasations and prostaglandin D2 (PGD2) and cysteinyl leukotrienes (CysLTs) production following allergen-induced pleurisy. Furthermore, like verapamil, curine inhibited the anaphylactic shock caused by either compound 48/80 or an allergen. In in vitro settings, these treatments also inhibited degranulation as well as PGD2 and CysLT production through IgE-dependent activation of the mast cell lineage RBL-2H3. Curine significantly inhibited immediate allergic reactions through mechanisms more related to mast cell stabilization and activation inhibition than interference with the pro-inflammatory effects of mast cell products. These findings are in line with the hypothesis that the alkaloid curine may be beneficial for the treatment of allergic disorders. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  17. Therapeutic effects of total alkaloids of Tripterygium wilfordii Hook f. on collagen-induced arthritis in rats.

    PubMed

    Zhang, Yuqin; Xu, Wei; Li, Huang; Zhang, Xun; Xia, Yufa; Chu, Kedan; Chen, Lidian

    2013-02-13

    Tripterygium wilfordii Hook f. is one of Traditional Chinese Medicines which is commonly used to treat rheumatoid arthritis (RA). The total alkaloids were the main constituent part of Tripterygium wilfordii Hook f. It has a great significance to study the effects of the total alkaloids of Tripterygium wilfordii Hook f. (ATW) on RA. This paper aims at investigating the therapeutic effect of ATW on RA and its possible mechanism, and providing a theoretical and experimental basis for the clinical use of ATW. The model of wistar rats of type II collagen-induced arthritis (CIA) was made, and the rats were perfused a stomach with ATW for 4 weeks continuously. Then the levels of interleukin (IL)-6, IL-8, tumor necrosis factor (TNF)-, in the serum of CIA rats were detected by enzyme linked immunosorbent assay (ELISA), and the joint pathological section of CIA rats was observed by hematoxylin and eosin (HE) staining method and the expression of IL-6, IL-8, nuclear factor kappa B (NF-κB), TNF-α were measure by immunohistochemistry staining method. Compared with model group, ATW could significantly reduce paw swelling and suppresse articular cartilage degenerated. The results also found that there was significant reduction levels of IL-6, IL-8 and TNF-α in serum of CIA rats treated with ATW and ATW inhibited the expression of IL-6, IL-8, NF-κB, TNF-α in synovial tissue. ATW not only could inhibit the symptom of CIA rats significantly but also could inhibit the production of IL-6, IL-8, TNF-α in serum and the expression of IL-6, IL-8, NF-κB and TNF-α in synovial tissue targeting the inflammatory. ATW would be a drug as a novel botanical drug for the treatment of RA. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  18. Liriodenine, an aporphine alkaloid from Enicosanthellum pulchrum, inhibits proliferation of human ovarian cancer cells through induction of apoptosis via the mitochondrial signaling pathway and blocking cell cycle progression.

    PubMed

    Nordin, Noraziah; Majid, Nazia Abdul; Hashim, Najihah Mohd; Rahman, Mashitoh Abd; Hassan, Zalila; Ali, Hapipah Mohd

    2015-01-01

    Enicosanthellum pulchrum is a tropical plant from Malaysia and belongs to the Annonaceae family. This plant is rich in isoquinoline alkaloids. In the present study, liriodenine, an isoquinoline alkaloid, was examined as a potential anticancer agent, particularly in ovarian cancer. Liriodenine was isolated by preparative high-performance liquid chromatography. Cell viability was performed to determine the cytotoxicity, whilst the detection of morphological changes was carried out by acridine orange/propidium iodide assay. Initial and late apoptosis was examined by Annexin V-fluorescein isothiocyanate and DNA laddering assays, respectively. The involvement of pathways was detected via caspase-3, caspase-8, and caspase-9 analyses. Confirmation of pathways was further performed in mitochondria using a cytotoxicity 3 assay. Apoptosis was confirmed at the protein level, including Bax, Bcl-2, and survivin, while interruption of the cell cycle was used for final validation of apoptosis. The result showed that liriodenine inhibits proliferation of CAOV-3 cells at 37.3 μM after 24 hours of exposure. Changes in cell morphology were detected by the presence of cell membrane blebbing, chromatin condensation, and formation of apoptotic bodies. Early apoptosis was observed by Annexin V-fluorescein isothiocyanate bound to the cell membrane as early as 24 hours. Liriodenine activated the intrinsic pathway by induction of caspase-3 and caspase-9. Involvement of the intrinsic pathway in the mitochondria could be seen, with a significant increase in mitochondrial permeability and cytochrome c release, whereas the mitochondrial membrane potential was decreased. DNA fragmentation occurred at 72 hours upon exposure to liriodenine. The presence of DNA fragmentation indicates the CAOV-3 cells undergo late apoptosis or final stage of apoptosis. Confirmation of apoptosis at the protein level showed overexpression of Bax and suppression of Bcl-2 and survivin. Liriodenine inhibits progression of the CAOV-3 cell cycle in S phase. These findings indicate that liriodenine could be considered as a promising anticancer agent.

  19. [Effects of micronutrient fertilizer application on yield and quality of Aconitum carmichaeli].

    PubMed

    Luo, Yi; Chen, Xingfu; Liu, Sha; Xiang, Dabing; Li, Jia; Shu, Guangming; Xia, Yanli

    2011-01-01

    To study the effects of Fe, Zn, B and Mn fertilizer with different ratio on the yield and quality of Aconitum carmichaeli. Field experiment with the uniform design was applied, the yield and the contents of the total alkaloids and diester-alkaloids were measured. Fe, Zn, B and Mn fertilizer of appropriate ratio could promote the growth of vegetative organs, increase the biomass, the content of alkaloids and the yield of Aconite significantly. Fe, Zn fertilizer of highly concentrated ratio increased the proportion of first sub-roots, but inhibited the growth of other vegetative organs, the number of roots was less than that with other treatments, so it was not conducive to the formation of production. High concentration of Mn was not conducive to the growth of underground of Aconite, its number of sub-roots was fewer, but the number of third sub-roots was more than that with other treatments, the yield was low. The yield treated with low concentration of B was 10% higher than that with high concentration, and the high concentration of B was not conducive to increase the content of the alkaloids. Among these treatments, The fourth treatment was the optimal combination, of which the volume of sub-roots was the largest and the most homogeneous, the growth of the vegetative organs was better and the accumulation of dry matters was more, the yield of this treatment was 10,754.7 kg x hm(-2), which was increased by 14.9%, and the content of alkaloid was increased by 13.9%. The ratio of 4 is the best treatment for high yield and quality cultivation of Aconite.

  20. Concentration-dependent actions of piperidine alkaloids on the inhibition of fetal movement in day 40 pregnant goats and comparison to cell-based models

    USDA-ARS?s Scientific Manuscript database

    Anabasine and anabaseine are potent and effective agonists at nicotinic acetylcholine receptors (nAChR). Anabasine in livestock species is teratogenic and has been shown to cause developmental defects that include arthrogyrposis, kyposis, lordosis, scoliosis, and torticollis. We have postulated that...

  1. Using an enzyme linked immunosorbent assay (ELISA) and a protein phosphatase inhibition assay (PPIA) for the detection of microcystins and nodularins.

    PubMed

    Carmichael, W W; An, J

    1999-01-01

    Cyanotoxins produced by cyanobacteria (blue-green algae) include potent neurotoxins and hepatotoxins. The hepatotoxins include cyclic peptide microcystins and nodularins plus the alkaloid cylindrospermopsins. Among the cyanotoxins the microcystins have proven to be the most widespread, and are most often implicated in animal and human poisonings. This paper presents a practical guide to two widely used methods for detecting and quantifying microcystins and nodularins in environmental samples-the enzyme linked immunosorbant assay (ELISA) and the protein phosphatase inhibition assay (PPIA).

  2. Analgesic and antipyretic effects of Sansevieria trifasciata leaves.

    PubMed

    Anbu, Jeba Sunilson J; Jayaraj, P; Varatharajan, R; Thomas, John; Jisha, James; Muthappan, M

    2009-07-03

    The ethanol and water extracts of Sansevieria trifasciata leaves showed dose-dependent and significant (P < 0.05) increase in pain threshold in tail-immersion test. Moreover, both the extracts (100 - 200 mg/kg) exhibited a dose-dependent inhibition of writhing and also showed a significant (P < 0.001) inhibition of both phases of the formalin pain test. The ethanol extract (200 mg/kg) significantly (P < 0.01) reversed yeast-induced fever. Preliminary phytochemical screening of the extracts showed the presence of alkaloids, flavonoids, saponins, glycosides, terpenoids, tannins, proteins and carbohydrates.

  3. Antimutagenic activity of extracts of leaves of four common edible vegetable plants in Nigeria (west Africa).

    PubMed

    Obaseiki-Ebor, E E; Odukoya, K; Telikepalli, H; Mitscher, L A; Shankel, D M

    1993-06-01

    Organic solvent extracts of leaves of 4 common edible vegetable plants--Bryophyllum pinnatum, Dialium guincense, Ocimum gratissimum and Vernonia amygdalina--had inhibitory activity for His- to His+ reverse-mutations induced by ethyl methanesulfonate acting on Salmonella typhimurium TA100. The concentrated ethyl acetate, methanol and petroleum ether extracts were heat-stable when dissolved in dimethyl sulfoxide. The Bryophyllum ethyl acetate extract was fractionated into alkaloidal/water-soluble, acids, polar lipid and non-polar lipid fractions. The polar and non-polar lipid fractions inhibited reversion mutations induced by ethyl methanesulfonate acting on TA100 or TA102, and were also active against reversions induced by 4-nitro-O-phenylenediamine and 2-aminofluorene in TA98. The alkaloidal/water-soluble and the acid fractions had no appreciable antimutagenic activities.

  4. Berberine induces autophagy in glioblastoma by targeting the AMPK/mTOR/ULK1-pathway

    PubMed Central

    Wang, Jiwei; Qi, Qichao; Feng, Zichao; Zhang, Xin; Huang, Bin; Chen, Anjing; Prestegarden, Lars; Li, Xingang; Wang, Jian

    2016-01-01

    There is an urgent need for new therapeutic strategies for patients with glioblastoma multiforme (GBM). Previous studies have shown that berberine (BBR), a natural plant alkaloid, has potent anti-tumor activity. However, the mechanisms leading to cancer cell death have not been clearly elucidated. In this study, we show that BBR has profound effects on the metabolic state of GBM cells, leading to high autophagy flux and impaired glycolytic capacity. Functionally, these alterations reduce the invasive properties, proliferative potential and induce apoptotic cell death. The molecular alterations preceding these changes are characterized by inhibition of the AMPK/mTOR/ULK1 pathway. Finally, we demonstrate that BBR significantly reduces tumor growth in vivo, demonstrating the potential clinical benefits for autophagy modulating plant alkaloids in cancer therapy. PMID:27557493

  5. Curine inhibits eosinophil activation and airway hyper-responsiveness in a mouse model of allergic asthma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ribeiro-Filho, Jaime; Laboratório de Imunofarmacologia, Departamento de Fisiologia e Patologia, UFPB, João Pessoa, Paraíba; Calheiros, Andrea Surrage

    Allergic asthma is a chronic inflammatory airway disease with increasing prevalence around the world. Current asthma therapy includes drugs that usually cause significant side effects, justifying the search for new anti-asthmatic drugs. Curine is a bisbenzylisoquinoline alkaloid that modulates calcium influx in many cell types; however, its anti-allergic and putative toxic effects remain to be elucidated. Our aim was to investigate the effects of curine on eosinophil activation and airway hyper-responsiveness (AHR) and to characterize its potential toxic effects. We used a mouse model of allergic asthma induced by sensitization and challenge with ovalbumin (OVA) to evaluate the anti-allergic effectsmore » of oral treatment with curine. The oral administration of curine significantly inhibited eosinophilic inflammation, eosinophil lipid body formation and AHR in animals challenged with OVA compared with animals in the untreated group. The curine treatment also reduced eotaxin and IL-13 production triggered by OVA. Verapamil, a calcium channel antagonist, had similar anti-allergic properties, and curine pre-treatment inhibited the calcium-induced tracheal contractile response ex-vivo, suggesting that the mechanism by which curine exerts its effects is through the inhibition of a calcium-dependent response. A toxicological evaluation showed that orally administered curine did not significantly alter the biochemical, hematological, behavioral and physical parameters measured in the experimental animals compared with saline-treated animals. In conclusion, curine showed anti-allergic activity through mechanisms that involve inhibition of IL-13 and eotaxin and of Ca{sup ++} influx, without inducing evident toxicity and as such, has the potential for the development of anti-asthmatic drugs. - Highlights: • Curine is a bisbenzylisoquinoline alkaloid from Chondrodendron platyphyllum. • Curine inhibits eosinophil influx and activation and airway hyper-responsiveness. • Curine mechanisms involve inhibition of Ca{sup 2+} influx, and IL-13 and eotaxin secretion. • No significant toxicity was observed in mice orally treated with curine for 7 days. • Curine has the potential for the development of anti-asthmatic drugs.« less

  6. [Effects of rhynchophylla alkaloids on vascular adventitial fibroblast apoptosis and proliferation in the thoracic aorta of spontaneously hypertensive rats].

    PubMed

    Dai, Guo-Hua; Sun, Jing-Chang; Qi, Dong-Mei

    2012-09-01

    To study the effects of rhynchophylline, isorhynchophylline, and rhynchophylla alkaloids on the vascular adventitial fibroblasts (VAF) apoptosis and proliferation in thoracic aorta of spontaneously hypertensive rats (SHR), and on the Bcl-2, Bax, c-Fos, c-Myc, laminin (LN), and fibronectin (FN). Forty 8-week old male SHR were randomly divided into five groups, i. e., the model group, the captopril group (17.5 mg/kg), the isorhynchophylline group (5.0 mg/kg), the rhynchophylline group (5.0 mg/kg), and the rhynchophylla alkaloids group (50.0 mg/kg), 8 in each group. In addition, eight 8-week old male Wistar rats were selected as the normal group. Equal volume of normal saline was given to rats in the normal group and the model group by gastrogavage. Rats in the rest groups were perfused with isovolumic medication solution (10 mL/kg), six days per week for eight successive weeks. The dosage of drugs was adjusted according to the change of body weight. The VAF apoptosis rate of the thoracic aorta was measured by Annexin V-FITC combined with PI dyeing and flow cytometry. The protein expressions of thoracic aortic Bcl-2, Bax, c-Myc, c-Fos, FN, and LN were detected by immunohistochemical assay. The adventitial transforming growth factor beta1 (TGF-beta1) mRNA expression in the thoracic aorta was detected by in situ hybridization method. Compared with the model group, the tail arterial systolic pressure decreased, the VAF apoptosis and the protein expression of Bax increased, Bcl-2, c-Fos, FN, LN, and TGF-beta1 mRNA all decreased in the thoracic aorta of SHR in each treatment group after 4-and 8-week of intervention. Rhynchophylline, isorhynchophylline, and rhynchophylla alkaloids could inhibit the protein expression of c-Myc with statistical difference (P<0.05, P<0.01). Compared with the captopril group, there was no statistical difference in decreasing the tail arterial systolic pressure, the protein expression of c-Fos and the mRNA expression of TGF-beta1 among the rhynchophylline group, the isorhynchophylline group, and the rhynchophylla alkaloids group (P>0.05). There was statistical difference in increased VAF apoptosis and decreased protein expressions of Bcl-2, c-Myc, and LN (P<0.05, P<0.01). There was statistical difference in increased protein expression of Bax between the rhynchophylline group and the isorhynchophylline group (P<0.05, P<0.01). There was statistical difference in decreased protein expression of FN in the isorhynchophylline group (P<0.05). There was no significant difference among the rhynchophylline group, the isorhynchophylline group, or the rhynchophylla alkaloids group (P>0.05). Rhynchophylline, isorhynchophylline, and rhynchophylla alkaloids might promote the VAF apoptosis in the thoracic aorta of SHR by regulating the protein expressions of Bcl-2 and Bax. They might inhibit the VAF proliferation by restraining protein expressions of c-Fos, c-Myc, and TGF-beta1 mRNA. They also might improve the thoracic aorta wall reconstruction and decrease the tail arterial systolic pressure by down-regulating the protein expressions of FN and LN, and attenuating the deposition of extracellular matrix.

  7. Structural insights into cholinesterases inhibition by harmane β-carbolinium derivatives: a kinetics-molecular modeling approach.

    PubMed

    Torres, Juliana M; Lira, Aline F; Silva, Daniel R; Guzzo, Lucas M; Sant'Anna, Carlos M R; Kümmerle, Arthur E; Rumjanek, Victor M

    2012-09-01

    The natural indole alkaloids, the β-carbolines, are often associated with cholinesterase inhibition, especially their quaternary salts, which frequently have higher activity than the free bases. Due to lack of information explaining this fact in the literature, the cholinesterase inhibition by the natural product harmane and its two β-carbolinium synthetic derivative salts (N-methyl and N-ethyl) was explored, together with a combination of kinetics and a molecular modeling approach. The results, mainly for the β-carbolinium salts, demonstrated a noncompetitive inhibition profile, ruling out previous findings which associated cholinesterase inhibition by β-carbolinium salts to a possible mimicking of the choline moiety of the natural substrate, acetylcholine. Molecular modeling studies corroborate this kind of inhibition through analyses of inhibitor/enzyme and inhibitor/substrate/enzyme complexes of both enzymes. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. In Vitro and In Vivo Characterization of the Alkaloid Nuciferine.

    PubMed

    Farrell, Martilias S; McCorvy, John D; Huang, Xi-Ping; Urban, Daniel J; White, Kate L; Giguere, Patrick M; Doak, Allison K; Bernstein, Alison I; Stout, Kristen A; Park, Su Mi; Rodriguiz, Ramona M; Gray, Bradley W; Hyatt, William S; Norwood, Andrew P; Webster, Kevin A; Gannon, Brenda M; Miller, Gary W; Porter, Joseph H; Shoichet, Brian K; Fantegrossi, William E; Wetsel, William C; Roth, Bryan L

    2016-01-01

    The sacred lotus (Nelumbo nucifera) contains many phytochemicals and has a history of human use. To determine which compounds may be responsible for reported psychotropic effects, we used in silico predictions of the identified phytochemicals. Nuciferine, an alkaloid component of Nelumbo nucifera and Nymphaea caerulea, had a predicted molecular profile similar to antipsychotic compounds. Our study characterizes nuciferine using in vitro and in vivo pharmacological assays. Nuciferine was first characterized in silico using the similarity ensemble approach, and was followed by further characterization and validation using the Psychoactive Drug Screening Program of the National Institute of Mental Health. Nuciferine was then tested in vivo in the head-twitch response, pre-pulse inhibition, hyperlocomotor activity, and drug discrimination paradigms. Nuciferine shares a receptor profile similar to aripiprazole-like antipsychotic drugs. Nuciferine was an antagonist at 5-HT2A, 5-HT2C, and 5-HT2B, an inverse agonist at 5-HT7, a partial agonist at D2, D5 and 5-HT6, an agonist at 5-HT1A and D4 receptors, and inhibited the dopamine transporter. In rodent models relevant to antipsychotic drug action, nuciferine blocked head-twitch responses and discriminative stimulus effects of a 5-HT2A agonist, substituted for clozapine discriminative stimulus, enhanced amphetamine induced locomotor activity, inhibited phencyclidine (PCP)-induced locomotor activity, and rescued PCP-induced disruption of prepulse inhibition without induction of catalepsy. The molecular profile of nuciferine was similar but not identical to that shared with several approved antipsychotic drugs suggesting that nuciferine has atypical antipsychotic-like actions.

  9. Effects of MAO inhibition and a combination of minor alkaloids, β-carbolines, and acetaldehyde on nicotine self-administration in adult male rats*

    PubMed Central

    Smith, Tracy T.; Schaff, Matthew B.; Rupprecht, Laura E.; Schassburger, Rachel L.; Buffalari, Deanne M.; Murphy, Sharon E.; Sved, Alan F.; Donny, Eric C.

    2015-01-01

    Introduction Although nicotine is the primary reinforcing constituent in cigarettes, there is evidence that other constituents in cigarette smoke may interact with nicotine to reinforce smoking behavior. Methods The present experiments investigated whether a novel combination of these cigarette smoke constituents would increase nicotine self-administration in adult male rats. The constituents included five minor alkaloids (anabasine, nornicotine, cotinine, myosmine, and anatabine), two β-carbolines (harman and norharman), and acetaldehyde. All doses were indexed to be proportional to concentrations in cigarette smoke given a standard dose of nicotine used in rodent self-administration, or ten times higher than this standard. To model MAO inhibition seen in chronic smokers, some groups received separate injections of tranylcypromine prior to each self-administration session. Results Tranylcypromine increased low-dose nicotine self-administration independent of other smoke constituents, which had no effect on self-administration behavior. The effect of tranylcypromine was confirmed across a large range of reinforcement schedules. The effect of tranylcypromine on low-dose nicotine self-administration was observed regardless of whether the injection was delivered 1-hr or 23-hrs prior to the self-administration session, consistent with the interpretation that MAO inhibition was responsible for the increase in self-administration, instead of acute off-target effects. Conclusions These data suggest that this cocktail of constituents does not significantly alter the primary reinforcing effects of nicotine, but constituents that inhibit MAO may increase the primary reinforcing effects of nicotine, especially at low doses. PMID:26257022

  10. Antinociceptive activities of 70% methanol extract of evodiae fructus (fruit of Evodia rutaecarpa var. bodinieri) and its alkaloidal components.

    PubMed

    Matsuda, H; Wu, J X; Tanaka, T; Iinuma, M; Kubo, M

    1997-03-01

    The effects of 70% methanol extract (EA-ext) from Evodiae Fructus (EA) consisting of dried fruits of Evodia rutaecarpa var. bodinieri (Rutaceae) on nociceptive responses were investigated. Oral administration of 50 or 200 mg/kg EA-ext had the same antinociceptive effect on writhing responses as induced by acetic acid. Its major alkaloidal constituents, evodiamine and rutaecarpine also had the antinociceptive effect. EA-ext significantly decreased the frequency of licking behavior within a unit of time at the late phase without affecting that of the early phase in the formalin test. EA-ext also increased nociceptive threshold of the inflamed paw without increasing that in the non-inflamed paw in the Randall-Selitto test. Although EA-ext inhibited the rise of vascular permeability induced by acetic acid and the increase of paw edema induced by carrageenin, it was ineffective on nociceptive response in the hot plate test and on locomotor activity. These results suggest that EA possesses antinociceptive effects and its mode of action may be mediated by anti-inflammatory action, and that the antinociceptive constituents are only partially attributable to alkaloidal components mentioned above.

  11. Cyclooxygenase inhibitory compounds from Gymnosporia heterophylla aerial parts.

    PubMed

    Ochieng, Charles O; Opiyo, Sylvia A; Mureka, Edward W; Ishola, Ismail O

    2017-06-01

    Gymnosporia heterophylla (Celastraceae) is an African medicinal plants used to treat painful and inflammatory diseases with partial scientific validation. Solvent extractions followed by repeated chromatographic purification of the G. heterophylla aerial parts led to the isolation of one new β-dihydroagarofuran sesquiterpene alkaloid (1), and two triterpenes (2-3). In addition, eight known compounds including one β-dihydroagarofuran sesquiterpene alkaloid (4), and six triterpenes (5-10) were isolated. All structures were determined through extensive analysis of the NMR an MS data as well as by comparison with literature data. These compounds were evaluated for the anti-inflammatory activities against COX-1 and -2 inhibitory potentials. Most of the compound isolated showed non selective COX inhibitions except for 3-Acetoxy-1β-hydroxyLupe-20(29)-ene (5), Lup-20(29)-ene-1β,3β-diol (6) which showed COX-2 selective inhibition at 0.54 (1.85), and 0.45 (2.22) IC 50 , in mM (Selective Index), respectively. The results confirmed the presence of anti-inflammatory compounds in G. heterophylla which are important indicators for development of complementary medicine for inflammatory reactions; however, few could be useful as selective COX-2 inhibitor. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Taste thresholds and suprathreshold responses to tannin-rich plant extracts and quinine in a primate species (Microcebus murinus).

    PubMed

    Iaconelli, S; Simmen, B

    2002-11-01

    Theories of plant chemical defenses discriminate between quantitative digestibility reducers (e.g., tannins) and qualitative toxins (e.g., alkaloids). Since the differential effect on taste of these compounds is poorly known, we recorded ingestive responses of a primate species, Microcebus murinus, to four tannin-rich plant extracts and to quinine, by using the behavioral method of the "two-bottle test." The efficiency of tannic extracts at precipitating protein was measured with the blue BSA method. Inhibition taste thresholds for tannins added to a moderately sweet solution varied between 0.25 and 2 g/l. The threshold for quinine hydrochloride was 0.32 g/l. The profiles of the response/concentration curves established for these astringent and bitter substances were similar, with maximal inhibition of consumption occurring for near-threshold concentrations. The large amounts of quinine required to deter this small-bodied species from feeding were unexpected, given its unspecialized frugivorous/insectivorous diet. We propose that the taste responses of Microcebus to tannins have been shaped in relation to the widespread occurrence of efficient polyphenols in food plants, while low responsiveness to quinine reflects a low risk of ingesting toxic alkaloids when feeding on ripe fruits and insects.

  13. Ibogaine and the inhibition of acetylcholinesterase.

    PubMed

    Alper, Kenneth; Reith, Maarten E A; Sershen, Henry

    2012-02-15

    Ibogaine is a psychoactive monoterpine indole alkaloid extracted from the root bark of Tabernanthe iboga Baill. that is used globally in medical and nonmedical settings to treat drug and alcohol addiction, and is of interest as an ethnopharmacological prototype for experimental investigation and pharmaceutical development. The question of whether ibogaine inhibits acetylcholinesterase (AChE) is of pharmacological and toxicological significance. AChE activity was evaluated utilizing reaction with Ellman's reagent with physostigmine as a control. Ibogaine inhibited AChE with an IC(50) of 520±40 μM. Ibogaine's inhibition of AChE is physiologically negligible, and does not appear to account for observations of functional effects in animals and humans that might otherwise suggest the possible involvement of pathways linked to muscarinic acetylcholine transmission. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  14. Aqueous extracts of avocado pear (Persea americana Mill.) leaves and seeds exhibit anti-cholinesterases and antioxidant activities in vitro.

    PubMed

    Oboh, Ganiyu; Odubanjo, Veronica O; Bello, Fatai; Ademosun, Ayokunle O; Oyeleye, Sunday I; Nwanna, Emem E; Ademiluyi, Adedayo O

    2016-03-01

    Avocado pear (Persea americana Mill.) leaves and seeds are used in traditional medicine for the treatment/management of Alzheimer disease (AD); however, information on the mechanism of actions is limited. This study sought to investigate the effect of P. americana leaf and seed aqueous extracts on some enzymes linked with AD (acetylcholinesterase [AChE] and butyrylcholinesterase [BChE] activities) and their antioxidant potentials in vitro. The inhibitory effects of extracts on AChE and BChE activities and antioxidant potentials (inhibition of Fe2+- and sodium nitroprusside-induced thiobarbiturate reactive species [TBARS] production in rat brain homogenates, radicals [1,1-diphenyl-2-picrylhydrazyl, hydroxyl, and nitric oxide] scavenging and iron [Fe] chelation abilities) were investigated. Phenolic content and phytochemical screening were carried out. Alkaloid profile was also determined using gas chromatography coupled with flame ionization detector (GC-FID). The extracts inhibited AChE and BChE activities and prooxidant-induced TBARS production in a dose-dependent manner, with the seed extract having the highest inhibitory effect and the leaf extract exhibiting higher phenolic content and radical scavenging abilities, but lower Fe chelation ability compared with that of the seed. The phytochemical screening revealed the presence of saponins, alkaloids, and terpenoids in both extracts, whereas the total alkaloid profile was higher in the seed extract than in the leaf extract, as revealed by GC-FID. The anti-cholinesterase and antioxidant activities of avocado leaf and seed could be linked to their phytoconstituents and might be the possible mechanisms underlying their use as a cheap and natural treatment/management of AD. However, these extracts should be further investigated in vivo.

  15. Modulation of voltage-gated Na+ and K+ channels by pumiliotoxin 251D: a "joint venture" alkaloid from arthropods and amphibians.

    PubMed

    Vandendriessche, Thomas; Abdel-Mottaleb, Yousra; Maertens, Chantal; Cuypers, Eva; Sudau, Alexander; Nubbemeyer, Udo; Mebs, Dietrich; Tytgat, Jan

    2008-03-01

    Certain amphibians provide themselves with a chemical defense by accumulating lipophilic alkaloids into skin glands from dietary arthropods. Examples of such alkaloids are pumiliotoxins (PTXs). In general, PTXs are known as positive modulators of voltage-gated sodium channels (VGSCs). Unlike other PTXs, PTX 251D does not share this characteristic. However, mice and insect studies showed that PTX 251D is highly toxic and to date the basis of its toxicity remains unknown. In this work, we searched for the possible target of PTX 251D. The toxin was therefore made synthetically and tested on four VGSCs (mammalian rNa(v)1.2/beta(1), rNa(v)1.4/beta(1), hNa(v)1.5/beta(1) and insect Para/tipE) and five voltage-gated potassium channels (VGPCs) (mammalian rK(v)1.1-1.2, hK(v)1.3, hK(v)11.1 (hERG) and insect Shaker IR) expressed heterologously in Xenopus laevis oocytes, using the two-electrode voltage clamp technique. PTX 251D not only inhibited the Na(+) influx through the mammalian VGSCs but also affected the steady-state activation and inactivation. Interestingly, in the insect ortholog, the inactivation process was dramatically affected. Additionally, PTX 251D inhibited the K(+) efflux through all five tested VGPCs and slowed down the deactivation kinetics of the mammalian VGPCs. hK(v)1.3 was the most sensitive channel, with an IC(50) value 10.8+/-0.5 microM. To the best of our knowledge this is the first report of a PTX affecting VGPCs.

  16. Secondary Metabolites from Plants Inhibiting ABC Transporters and Reversing Resistance of Cancer Cells and Microbes to Cytotoxic and Antimicrobial Agents

    PubMed Central

    Wink, Michael; Ashour, Mohamed L.; El-Readi, Mahmoud Zaki

    2012-01-01

    Fungal, bacterial, and cancer cells can develop resistance against antifungal, antibacterial, or anticancer agents. Mechanisms of resistance are complex and often multifactorial. Mechanisms include: (1) Activation of ATP-binding cassette (ABC) transporters, such as P-gp, which pump out lipophilic compounds that have entered a cell, (2) Activation of cytochrome p450 oxidases which can oxidize lipophilic agents to make them more hydrophilic and accessible for conjugation reaction with glucuronic acid, sulfate, or amino acids, and (3) Activation of glutathione transferase, which can conjugate xenobiotics. This review summarizes the evidence that secondary metabolites (SM) of plants, such as alkaloids, phenolics, and terpenoids can interfere with ABC transporters in cancer cells, parasites, bacteria, and fungi. Among the active natural products several lipophilic terpenoids [monoterpenes, diterpenes, triterpenes (including saponins), steroids (including cardiac glycosides), and tetraterpenes] but also some alkaloids (isoquinoline, protoberberine, quinoline, indole, monoterpene indole, and steroidal alkaloids) function probably as competitive inhibitors of P-gp, multiple resistance-associated protein 1, and Breast cancer resistance protein in cancer cells, or efflux pumps in bacteria (NorA) and fungi. More polar phenolics (phenolic acids, flavonoids, catechins, chalcones, xanthones, stilbenes, anthocyanins, tannins, anthraquinones, and naphthoquinones) directly inhibit proteins forming several hydrogen and ionic bonds and thus disturbing the 3D structure of the transporters. The natural products may be interesting in medicine or agriculture as they can enhance the activity of active chemotherapeutics or pesticides or even reverse multidrug resistance, at least partially, of adapted and resistant cells. If these SM are applied in combination with a cytotoxic or antimicrobial agent, they may reverse resistance in a synergistic fashion. PMID:22536197

  17. A novel alkaloid, evodiamine causes nuclear localization of cytochrome-c and induces apoptosis independent of p53 in human lung cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohan, Vijay; Agarwal, Rajesh; Singh, Rana P., E-mail: ranaps@hotmail.com

    Lung cancer is the most frequently diagnosed malignancy that contributes to high proportion of deaths globally among patients who die due to cancer. Chemotherapy remains the common mode of treatment for lung cancer patients though with limited success. We assessed the biological effects and associated molecular changes of evodiamine, a plant alkaloid, on human lung cancer A549 and H1299 cells along with other epithelial cancer and normal lung SAEC cells. Our data showed that 20–40 μM evodiamine treatment for 24–48 h strongly (up to 73%, P < 0.001) reduced the growth and survival of these cancer cells. However, it also moderately inhibited growth and survivalmore » of SAEC cells. A strong inhibition (P < 0.001) was observed on clonogenicity of A549 cells. Further, evodiamine increased (4-fold) mitochondrial membrane depolarization with 6-fold increase in apoptosis and a slight increase in Bax/Bcl-2 ratio. It increased the cytochrome-c release from mitochondria into the cytosol as well as nucleus. Cytosolic cytochrome-c activated cascade of caspase-9 and caspase-3 intrinsic pathway, however, DR5 and caspase-8 extrinsic pathway was also activated which could be due to nuclear cytochrome-c. Pan-caspase inhibitor (z-VAD.fmk) partially reversed evodiamine induced apoptosis. An increase in p53 as well as its serine 15 phosphorylation was also observed. Pifithrin-α, a p53 inhibitor, slightly inhibited growth of A549 cells and under p53 inhibitory condition evodiamine-induced apoptosis could not be reversed. Together these findings suggest that evodiamine is a strong inducer of apoptosis in lung epithelial cancer cells independent of their p53 status and that could involve both intrinsic as well as extrinsic pathway of apoptosis. Thus evodiamine could be a potential anticancer agent against lung cancer. - Highlights: • Evodiamine, a novel plant alkaloid, relatively selectively inhibited growth and survival of human lung cancer cells. • Increased cancer cell apoptosis involving mitochondrial membrane depolarization. • Increased the cytochrome-c release from mitochondria into the cytosol as well as nucleus. • DR5 and caspase-8 extrinsic pathway was also activated in p53-independent manner. • Thus evodiamine could be a potential anticancer agent against lung cancer.« less

  18. Relationships Between Aphids (Insecta: Homoptera: Aphididae) and Slugs (Gastropoda: Stylommatophora: Agriolimacidae) Pests of Legumes (Fabaceae: Lupinus)

    PubMed Central

    Kozłowski, Jan; Strażyński, Przemysław; Jaskulska, Monika; Kozłowska, Maria

    2016-01-01

    Lupin plants are frequently damaged by various herbivorous invertebrates. Significant among these are slugs and aphids, which sometimes attack the same plants. Relationships between aphids, slugs and food plant are very interesting. Grazing by these pests on young plants can lead to significant yield losses. There is evidence that the alkaloids present in some lupin plants may reduce grazing by slugs, aphids and other invertebrates. In laboratory study was analyzed the relationships between aphid Aphis craccivora and slug Deroceras reticulatum pests of legumes Lupinus angustifolius. It was found that the presence of aphids significantly reduced slug grazing on the plants. The lupin cultivars with high alkaloid content were found to be less heavily damaged by D. reticulatum, and the development of A. craccivora was found to be inhibited on such plants. PMID:27324580

  19. The Ayurvedic plant Bacopa monnieri inhibits inflammatory pathways in the brain.

    PubMed

    Nemetchek, Michelle D; Stierle, Andrea A; Stierle, Donald B; Lurie, Diana I

    2017-02-02

    Bacopa monnieri (L) Wettst (common name, bacopa) is a medicinal plant used in Ayurveda, the traditional system of medicine of India, as a nootropic. It is considered to be a "medhya rasayana", an herb that sharpens the mind and the intellect. Bacopa is an important ingredient in many Ayurvedic herbal formulations designed to treat conditions such as memory loss, anxiety, poor cognition and loss of concentration. It has also been used in Ayurveda to treat inflammatory conditions such as arthritis. In modern biomedical studies, bacopa has been shown in animal models to inhibit the release of the pro-inflammatory cytokines TNF-α and IL-6. However, less is known regarding the anti-inflammatory activity of Bacopa in the brain. The current study examines the ability of Bacopa to inhibit the release of pro-inflammatory cytokines from microglial cells, the immune cells of the brain that participate in inflammation in the CNS. The effect of Bacopa on signaling enzymes associated with CNS inflammatory pathways was also studied. Various extracts of Bacopa were prepared and examined in the N9 microglial cell line in order to determine if they inhibited the release of the proinflammatory cytokines TNF-α and IL-6. Extracts were also tested in cell free assays as inhibitors of caspase-1 and matrix metalloproteinase-3 (enzymes associated with inflammation) and caspase-3, which has been shown to cleave protein Tau, an early event in the development of Alzheimer's disease. The tea, infusion, and alkaloid extracts of bacopa, as well as Bacoside A significantly inhibited the release of TNF-α and IL-6 from activated N9 microglial cells in vitro. In addition, the tea, infusion, and alkaloid extracts of Bacopa effectively inhibited caspase 1 and 3, and matrix metalloproteinase-3 in the cell free assay. Bacopa inhibits the release of inflammatory cytokines from microglial cells and inhibits enzymes associated with inflammation in the brain. Thus, Bacopa can limit inflammation in the CNS, and offers a promising source of novel therapeutics for the treatment of many CNS disorders. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. The Ayurvedic plant Bacopa Monnieri inhibits inflammatory pathways in the brain

    PubMed Central

    Nemetchek, Michelle D.; Stierle, Andrea A.; Stierle, Donald B.; Lurie, Diana I.

    2016-01-01

    Ethnopharmacological Relevance Bacopa monnieri (L) Wettst (common name, bacopa) is a medicinal plant used in Ayurveda, the traditional system of medicine of India, as a nootropic. It is considered to be a “medhya rasayana”, an herb that sharpens the mind and the intellect. Bacopa is an important ingredient in many Ayurvedic herbal formulations designed to treat conditions such as memory loss, anxiety, poor cognition and loss of concentration. It has also been used in Ayurveda to treat inflammatory conditions such as arthritis. In modern biomedical studies, bacopa has been shown in animal models to inhibit the release of the pro-inflammatory cytokines TNF-α and IL-6. However, less is known regarding the anti-inflammatory activity of Bacopa in the brain. Aim Of The Study The current study examines the ability of Bacopa to inhibit the release of pro-inflammatory cytokines from microglial cells, the immune cells of the brain that participate in inflammation in the CNS. The effect of Bacopa on signaling enzymes associated with CNS inflammatory pathways was also studied. Materials And Methods Various extracts of Bacopa were prepared and examined in the N9 microglial cell line in order to determine if they inhibited the release of the proinflammatory cytokines TNF-α and IL-6. Extracts were also tested in cell free assays as inhibitors of caspase-1 and matrix metalloproteinase-3 (enzymes associated with inflammation) and caspase-3, which has been shown to cleave protein Tau, an early event in the development of Alzheimer's disease. Results The tea, infusion, and alkaloid extracts of bacopa, as well as Bacoside A significantly inhibited the release of TNF-α and IL-6 from activated N9 microglial cells in vitro. In addition, the tea, infusion, and alkaloid extracts of Bacopa effectively inhibited caspase 1 and 3, and matrix metalloproteinase-3 in the cell free assay. Conclusions Bacopa inhibits the release of inflammatory cytokines from microglial cells and inhibits enzymes associated with inflammation in the brain. Thus, Bacopa can limit inflammation in the CNS, and offers a promising source of novel therapeutics for the treatment of many CNS disorders. PMID:27473605

  1. Liriodenine, an aporphine alkaloid from Enicosanthellum pulchrum, inhibits proliferation of human ovarian cancer cells through induction of apoptosis via the mitochondrial signaling pathway and blocking cell cycle progression

    PubMed Central

    Nordin, Noraziah; Majid, Nazia Abdul; Hashim, Najihah Mohd; Rahman, Mashitoh Abd; Hassan, Zalila; Ali, Hapipah Mohd

    2015-01-01

    Enicosanthellum pulchrum is a tropical plant from Malaysia and belongs to the Annonaceae family. This plant is rich in isoquinoline alkaloids. In the present study, liriodenine, an isoquinoline alkaloid, was examined as a potential anticancer agent, particularly in ovarian cancer. Liriodenine was isolated by preparative high-performance liquid chromatography. Cell viability was performed to determine the cytotoxicity, whilst the detection of morphological changes was carried out by acridine orange/propidium iodide assay. Initial and late apoptosis was examined by Annexin V-fluorescein isothiocyanate and DNA laddering assays, respectively. The involvement of pathways was detected via caspase-3, caspase-8, and caspase-9 analyses. Confirmation of pathways was further performed in mitochondria using a cytotoxicity 3 assay. Apoptosis was confirmed at the protein level, including Bax, Bcl-2, and survivin, while interruption of the cell cycle was used for final validation of apoptosis. The result showed that liriodenine inhibits proliferation of CAOV-3 cells at 37.3 μM after 24 hours of exposure. Changes in cell morphology were detected by the presence of cell membrane blebbing, chromatin condensation, and formation of apoptotic bodies. Early apoptosis was observed by Annexin V-fluorescein isothiocyanate bound to the cell membrane as early as 24 hours. Liriodenine activated the intrinsic pathway by induction of caspase-3 and caspase-9. Involvement of the intrinsic pathway in the mitochondria could be seen, with a significant increase in mitochondrial permeability and cytochrome c release, whereas the mitochondrial membrane potential was decreased. DNA fragmentation occurred at 72 hours upon exposure to liriodenine. The presence of DNA fragmentation indicates the CAOV-3 cells undergo late apoptosis or final stage of apoptosis. Confirmation of apoptosis at the protein level showed overexpression of Bax and suppression of Bcl-2 and survivin. Liriodenine inhibits progression of the CAOV-3 cell cycle in S phase. These findings indicate that liriodenine could be considered as a promising anticancer agent. PMID:25792804

  2. A Post-Final Assignment for the Methods Course: Providing an Incentive to Professional Growth for Future Teachers.

    ERIC Educational Resources Information Center

    Bentley, Michael L.

    This paper describes J. Rosengren's post-final assignment and M. Harmin's truth signs activity that were incorporated into a secondary science methods course for preservice teachers. The strength of the post-final assignment is that it is a strategy for extending student learning past the end of a course and even beyond the initial teaching…

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Guoli; Yao, Guangmin; Zhan, Guanqun

    We previously reported the isolation of a novel Amaryllidaceae alkaloid, N-methylhemeanthidine chloride (NMHC), from Zephyranthes candida, which exhibits potent cytotoxicity in a spectrum of tumor cells. However, the mechanism of action remains unclear. Using multiple cell lines derived from human pancreatic cancer, one of the most mortal and refractory human malignancies, we further studied the NMHC-mediated cytotoxicity and found that it induced drastic cytotoxicity in pancreatic cancer cells whereas an insignificant effect on a noncancerous cell line. The NMHC-mediated growth inhibition was more severe than the first-line chemotherapeutic agent gemcitabine, leading to cell cycle arrest, apoptotic death and decreased glycolysis.more » NMHC exerted its function through down-regulating AKT activation, and the ectopic expression of activated AKT rescued the growth inhibition. Consistently, NMHC injections in a pancreatic cancer xenograft model manifested the anti-tumor effect in vivo. Engrafted tumor cells underwent AKT attenuation and apoptotic death upon treatments. As such, we here demonstrate the AKT inhibition may be one of the mechanisms by which NMHC decreases tumor cell survival rate in vitro and in vivo. Our data thereby suggest that NMHC holds great promise as a potent chemotherapeutic agent against pancreatic cancer and sheds new light on obtaining such agents from natural products toward therapeutic purposes. - Highlights: • N-methylhemeanthidine chloride (NMHC) is a novel Amaryllidaceae alkaloid. • NMHC exhibits potent anti-neoplastic activity. • NMHC leads to cell cycle arrest, apoptotic death and decreased metabolism. • NMHC down-regulates the AKT signaling pathway.« less

  4. Heme oxygenase-1 induction by (S)-enantiomer of YS-51 (YS-51S), a synthetic isoquinoline alkaloid, inhibits nitric oxide production and nuclear factor-kappaB translocation in ROS 17/2.8 cells activated with inflammatory stimulants.

    PubMed

    Chaea, Han-Jung; Kim, Hyung-Ryong; Kang, Young Jin; Hyun, Kwang Chul; Kim, Hye Jung; Seo, Han Geuk; Lee, Jae Heun; Yun-Choi, Hye Sook; Chang, Ki Churl

    2007-12-05

    Activation of the inducible nitric oxide synthase (iNOS) pathway contributes to inflammation-induced osteoporosis by suppressing bone formation and causing osteoblast apoptosis. We investigated the mechanism of action by which YS-51S, a synthetic isoquinoline alkaloid, inhibits iNOS expression and nitric oxide (NO) production in ROS 17/28 osteoblast cells activated with the mixture of TNF-alpha, IFN-gamma and LPS (MIX). YS-51S, concentration- and time-dependently, increased heme oxygenase (HO-1) expression. Treatment with YS-51S 1 h prior to MIX significantly reduced MIX-induced NO production and iNOS expression with the IC50 to NO production of 47+/-3.3 microM. Electrophoretic mobility shift assay (EMSA) and western blot analysis showed that YS-51S inhibited MIX-mediated activation and translocation of NF-kappaB to nucleus by suppressing the degradation of its inhibitory protein IkappaBalpha in cytoplasm. YS-51S also reduced NF-kappaB-luciferase activity. In addition, an HO-1 inhibitor ZnPPIX, antagonized the inhibitory effect of YS-51S on iNOS expression and DNA strand break induced by MIX, indicating prevention of NO production by YS-51S is associated with HO-1 activity. Moreover, YS-51S inhibited the oxidation of cytochrome c(2+) by peroxynitrite (PN). Our results indicated that YS-51S may be beneficial in NO-mediated inflammatory conditions such as rheumatoid arthritis by alleviating iNOS expression and NO-mediated cell death of osteoblast with 1) inducing HO-1 expression, 2) interfering the activation of NF-kappaB and 3) quenching of PN.

  5. PLA2 mediated arachidonate free radicals: PLA2 inhibition and neutralization of free radicals by anti-oxidants--a new role as anti-inflammatory molecule.

    PubMed

    Nanda, B L; Nataraju, A; Rajesh, R; Rangappa, K S; Shekar, M A; Vishwanath, B S

    2007-01-01

    PLA2 enzyme catalyses the hydrolysis of cellular phospholipids at the sn-2 position to liberate arachidonic acid and lysophospholipid to generate a family of pro-inflammatory eicosanoids and platelet activating factor. The generation of pro-inflammatory eicosanoids involves a series of free radical intermediates with simultaneous release of reactive oxygen species (superoxide and hydroxyl radicals). Reactive oxygen species formed during arachidonic acid metabolism generates lipid peroxides and the cytotoxic products such as 4-hydroxy nonenal and acrolein, which induces cellular damage. Thus PLA2 catalyzes the rate-limiting step in the production of pro-inflammatory eicosanoids and free radicals. These peroxides and reactive oxygen species in turn activates PLA2 enzyme and further attenuates the inflammatory process. Therefore scavenging these free radicals and inhibition of PLA2 enzyme simultaneously by a single molecule such as antioxidants is of great therapeutic relevance for the development of anti-inflammatory molecules. PLA2 enzymes have been classified into calcium dependent cPLA2 and sPLA2 and calcium independent iPLA2 forms. In several inflammatory diseases sPLA2 group IIA is the most abundant isoform identified. This isoform is therefore targeted for the development of anti-inflammatory molecules. Many secondary metabolites from plants and marine sponges exhibit both anti-inflammatory and antioxidant properties. Some of them include flavonoids, terpenes and alkaloids. But in terms of PLA2 inhibition and antioxidant activity, the structural aspects of flavonoids are well studied rather than terpenes and alkaloids. In this line, molecules having both anti-oxidant and PLA2 inhibitions are reviewed. A single molecule with dual activities may prove to be a powerful anti-inflammatory drug.

  6. Norisoboldine, an alkaloid from Radix linderae, inhibits NFAT activation and attenuates 2,4-dinitrofluorobenzene-induced dermatitis in mice.

    PubMed

    Gao, Shuang; Li, Wencai; Lin, Guochao; Liu, Guangrong; Deng, Wenjuan; Zhai, Chuntao; Bian, Chunliang; He, Gaiying; Hu, Zhenlin

    2016-10-01

    The nuclear factor of activated T-cells (NFAT) is a family of transcription factors, essential for T-cell activation. Norisoboldine (NOR), an isoquinoline alkaloid from Radix linderae, has been demonstrated to possess anti-inflammatory activity. This study examines NOR's effect on NFAT activation and its therapeutic potential for atopic dermatitis (AD). The transcriptional activity of NFAT was examined with luciferase reporter assay, using K562-luc cells, stimulated with 20 ng/mL PMA plus 1 μM ionomycin. NFAT dephosphorylation was examined by immuno-blotting in K562-luc cells and Jurkat cells. Interleukin-2 (IL-2) expression in Jurkat cells was examined by real-time PCR. A mouse model of dermatitis, induced by 2,4-dinitrochlorobenzene (DNCB), was used to test NOR's therapeutic potential for AD. NOR, dose-dependently, inhibited PMA and ionomycin-induced NFAT reporter gene expression in K562-luc cells in the range of 2-50 μM. NOR also inhibited PMA and ionomycin-induced NFAT dephosphorylation in K562-luc cells and Jurkat cells. Consequently, NOR suppressed PMA plus ionomycin-induced IL-2 expression in Jurkat cells. The administration of NOR (10 mg/kg, i.p.), alleviated DNCB-induced dermatitis in mice, by the reduction of ear swelling and attenuation of inflammatory infiltration into ear tissue. Moreover, mRNA levels of INF-γ, TNF-α, IL-4 and IL-6 in ears of NOR-treated mice were reduced by 78.4, 77.8, 72.3 and 73.9%, respectively, compared with untreated controls. This study demonstrates that NOR inhibits NFAT activation in T-cells and alleviates AD-like inflammatory reaction in a DNCB-induced dermatitis model, highlighting NOR as a potential therapeutic agent for AD.

  7. The effect of 7, 8-methylenedioxylycoctonine-type diterpenoid alkaloids on the toxicity of tall larkspur (Delphinium spp.) in cattle.

    PubMed

    Welch, K D; Green, B T; Gardner, D R; Cook, D; Pfister, J A; Panter, K E

    2012-07-01

    Delphinium spp. contain numerous norditerpenoid alkaloids which are structurally delineated as 7, 8-methylenedioxylycoctonine (MDL) and N-(methylsuccinimido) anthranoyllycoctonine (MSAL)-type alkaloids. The toxicity of many tall larkspur species has been primarily attributed to their increased concentration of MSAL-type alkaloids, such as methyllycaconitine (MLA), which are typically 20 times more toxic than MDL-type alkaloids. However, the less toxic MDL-type alkaloids are often more abundant than MSAL-type alkaloids in most Delphinium barbeyi and Delphinium occidentale populations. Previous research demonstrated that MDL-type alkaloids increase the acute toxicity of MSAL-type alkaloids. In this study, we examined the role of MDL-type alkaloids on the overall toxicity of tall larkspur plants to cattle while controlling for the exact dose of MSAL-type alkaloids. Cattle were dosed with plant material from 2 different populations of tall larkspur containing either almost exclusively MDL- or MSAL-type alkaloids. These 2 plant populations were combined to create mixtures with ratios of 0.3:1, 1:1, 5:1, and 10:1 MDL- to MSAL-type alkaloids. The dose that elicited similar clinical signs of poisoning in mice and cattle was determined for each mixture on the basis of the MSAL-type alkaloid content. As the ratio of MDL- to MSAL-type alkaloids increased, the amount of MSAL-type alkaloids required to elicit clinical signs decreased. These results indicate that the less toxic MDL-type alkaloids in tall larkspur exacerbate the toxicity of the MSAL-type alkaloids. Consequently, both the amount of MSAL-type alkaloids and the amount of total alkaloids should be fully characterized to determine more accurately the relative toxicity of tall larkspur plant material.

  8. Novel synthetic organic compounds inspired from antifeedant marine alkaloids as potent bacterial biofilm inhibitors.

    PubMed

    Rane, Rajesh A; Karpoormath, Rajshekhar; Naphade, Shital S; Bangalore, Pavankumar; Shaikh, Mahamadhanif; Hampannavar, Girish

    2015-08-01

    In this paper, we have reported seventeen novel synthetic organic compounds derived from marine bromopyrrole alkaloids, exhibiting potential inhibition of biofilm produced by Gram-positive bacteria. Compound 5f with minimumbiofilm inhibitory concentration(MBIC) of 0.39, 0.78 and 3.125 μg/mL against MSSA, MRSA and SE respectively, emerged as promising anti-biofilm lead compounds. In addition, compounds 5b, 5c, 5d, 5e, 5f, 5h, 5i and 5j revealed equal potency as that of the standard drug Vancomycin (MBIC = 3.125 μg/mL) against Streptococcus epidermidis. Notably, most of the synthesized compounds displayed better potency than Vancomycin indicating their potential as inhibitors of bacterial biofilm. The cell viability assay for the most active hybrid confirms its anti-virulence properties which need to be further researched. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Nano strategies for berberine delivery, a natural alkaloid of Berberis.

    PubMed

    Mirhadi, Elaheh; Rezaee, Mehdi; Malaekeh-Nikouei, Bizhan

    2018-08-01

    Berberine, as a phytochemical component of some medicinal Chinese herbs (most frequently Berberis vulgaris), is an isoquinoline alkaloid with many therapeutic effects including anti-viral, anti-microbial, anti-diarrhea, anti-inflammatory and anti-tumor effects. Berberine has some significant effects on type 2 diabetes through adenosine monophosphate-activated protein kinase activation, glycolysis stimulation, and mitochondrial function inhibition which subsequently improves both lipid and glucose metabolism. Some other effects of berberine on congestive heart failure, cardiac arrhythmia and hypertension have been reported. Beside the beneficial effects of berberine, some limitations including poor aqueous solubility, slight absorption, and low bioavailability have hindered its applications. To overcome these limitations, nanotechnology has been considered as main strategy. This review describes different types of nanocarriers (polymeric based, magnetic mesoporous silica based, lipid based, dendrimer based, graphene based, silver and gold nanoparticles) have been used for encapsulation of berberine. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  10. Relationships Between Aphids (Insecta: Homoptera: Aphididae) and Slugs (Gastropoda: Stylommatophora: Agriolimacidae) Pests of Legumes (Fabaceae: Lupinus).

    PubMed

    Kozłowski, Jan; Strażyński, Przemysław; Jaskulska, Monika; Kozłowska, Maria

    2016-01-01

    Lupin plants are frequently damaged by various herbivorous invertebrates. Significant among these are slugs and aphids, which sometimes attack the same plants. Relationships between aphids, slugs and food plant are very interesting. Grazing by these pests on young plants can lead to significant yield losses. There is evidence that the alkaloids present in some lupin plants may reduce grazing by slugs, aphids and other invertebrates. In laboratory study was analyzed the relationships between aphid Aphis craccivora and slug Deroceras reticulatum pests of legumes Lupinus angustifolius. It was found that the presence of aphids significantly reduced slug grazing on the plants. The lupin cultivars with high alkaloid content were found to be less heavily damaged by D. reticulatum, and the development of A. craccivora was found to be inhibited on such plants. © The Author 2016. Published by Oxford University Press on behalf of the Entomological Society of America.

  11. Synthesis of novel flavonoid alkaloids as α-glucosidase inhibitors.

    PubMed

    Zhen, Jing; Dai, Yujie; Villani, Tom; Giurleo, Daniel; Simon, James E; Wu, Qingli

    2017-10-15

    A series of novel flavonoid alkaloids were synthesized with different flavonoids and attached nitrogen-containing moieties. These new compounds were screened for inhibitory activity of α-glucosidase, among which compound 23 was found to show the lowest IC 50 of 4.13μM. Kinetic analysis indicates that the synthesized compounds 15 and 23 inhibit the enzyme in a non-competitive model with Ki value of 37.8±0.8μM and 13.2±0.6μM. Further docking studies suggest that the preferred binding pocket is close to the catalytic center, correlating to the experimental results. Structure activity relationship studies (SAR) indicate that 4'-hyroxyl group and the 4-position carbonyl group in the flavonoid structure are important for this biological activity. Addition of extra hydrogen bonding and hydrophobic groups on ring A would increase the inhibitory activity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Protoberberine alkaloids and their reversal activity of P-gp expressed multidrug resistance (MDR) from the rhizome of Coptis japonica Makino.

    PubMed

    Min, Yong Deuk; Yang, Min Cheol; Lee, Kyu Ha; Kim, Kyung Ran; Choi, Sang Un; Lee, Kang Ro

    2006-09-01

    Six protoberberine alkaloids were isolated from the chloroform layer of the rhizome of Coptis japonica Makino (Ranunculaceae). The structures of the isolated compounds were determined to be 6-([1,3]dioxolo[4,5-g]isoquinoline-5-carbonyl)-2,3-dimethoxy-benzoic acid methyl ester (1), oxyberberine (2), 8-oxo-epiberberine (3), 8-oxocoptisine (4), berberine (5) and palmatine (6) by physicochemical and spectroscopic methods. The compound 3 (8-oxo-epiberberine) was first isolated from natural sources. The compounds were tested for cytotoxicity against five tumor cell lines in vitro by SRB method, and also tested for the MDR reversal activities. Compound 4 was of significant P-gp MDR inhibition activity with ED50 value 0.018 microg/mL in MES-SA/DX5 cell and 0.0005 microg/mL in HCT15 cell, respectively.

  13. Bioactive metabolites from the mycelia of the basidiomycete Hericium erinaceum.

    PubMed

    Lu, Qiang-Qiang; Tian, Jun-Mian; Wei, Jing; Gao, Jin-Ming

    2014-01-01

    Seven known compounds, three diketopiperazine alkaloids, 12β-hydroxyverruculogen TR-2 (1), fumitremorgin C (2) and methylthiogliotoxin (5), two hetero-spirocyclic γ-lactam alkaloids, pseurotin A (3) and FD-838 (4), and cerevisterol (6) and herierin IV (7), were isolated from the mycelia of the basidiomycete Hericium erinaceum and identified by spectroscopic analyses. The antioxidant and antifungal activities of compounds 1-6 were evaluated. The results indicated that compounds 1, 3 and 6 exhibited potential antioxidant activity against DPPH (2, 2-diphenyl-1-picrylhydrazyl) radical with their IC50 data of ca. 12 μM, compared with positive control tertiary butylhydroquinone. In addition, compound 4 significantly inhibited the growth of two plant fungal pathogens Botrytis cinerea and Glomerella cingulata with an minimum inhibitory concentration of 6.25 μM for each, similar to that of the positive fungicide, carbendazim. Compounds 1-5 were isolated from the genus Hericium for the first time.

  14. Nature as a source of metabolites with cholinesterase-inhibitory activity: an approach to Alzheimer's disease treatment.

    PubMed

    Pinho, Brígida R; Ferreres, Federico; Valentão, Patrícia; Andrade, Paula B

    2013-12-01

    Alzheimer's disease (AD) is the most common cause of dementia, being responsible for high healthcare costs and familial hardships. Despite the efforts of researchers, no treatment able to delay or stop AD progress exists. Currently, the available treatments are only symptomatic, cholinesterase inhibitors being the most widely used drugs. Here we describe several natural compounds with anticholinesterase (acetylcholinesterase and butyrylcholinesterase) activity and also some synthetic compounds whose structures are based on those of natural compounds. Galantamine and rivastigmine are two cholinesterase inhibitors used in therapeutics: galantamine is a natural alkaloid that was extracted for the first time from Galanthus nivalis L., while rivastigmine is a synthetic alkaloid, the structure of which is modelled on that of natural physostigmine. Alkaloids include a high number of compounds with anticholinesterases activity at the submicromolar range. Quinones and stilbenes are less well studied regarding cholinesterase inhibition, although some of them, such as sargaquinoic acid or (+)-α-viniferin, show promising activity. Among flavonoids, flavones and isoflavones are the most potent compounds. Xanthones and monoterpenes are generally weak cholinesterase inhibitors. Nature is an almost endless source of bioactive compounds. Several natural compounds have anticholinesterase activity and others can be used as leader compounds for the synthesis of new drugs. © 2013 Royal Pharmaceutical Society.

  15. Potato plants with genetically engineered tropane alkaloid precursors.

    PubMed

    Küster, Nadine; Rosahl, Sabine; Dräger, Birgit

    2017-02-01

    Solanum tuberosum tropinone reductase I reduced tropinone in vivo. Suppression of tropinone reductase II strongly reduced calystegines in sprouts. Overexpression of putrescine N -methyltransferase did not alter calystegine accumulation. Calystegines are hydroxylated alkaloids formed by the tropane alkaloid pathway. They accumulate in potato (Solanum tuberosum L., Solanaceae) roots and sprouting tubers. Calystegines inhibit various glycosidases in vitro due to their sugar-mimic structure, but functions of calystegines in plants are not understood. Enzymes participating in or competing with calystegine biosynthesis, including putrescine N-methyltransferase (PMT) and tropinone reductases (TRI and TRII), were altered in their activity in potato plants by RNA interference (RNAi) and by overexpression. The genetically altered potato plants were investigated for the accumulation of calystegines and for intermediates of their biosynthesis. An increase in N-methylputrescine provided by DsPMT expression was not sufficient to increase calystegine accumulation. Overexpression and gene knockdown of StTRI proved that S. tuberosum TRI is a functional tropinone reductase in vivo, but no influence on calystegine accumulation was observed. When StTRII expression was suppressed by RNAi, calystegine formation was severely compromised in the transformed plants. Under phytochamber and green house conditions, the StTRII RNAi plants did not show phenotypic alterations. Further investigation of calystegines function in potato plants under natural conditions is enabled by the calystegine deprived StTRII RNAi plants.

  16. A chemical with proven clinical safety rescues Down-syndrome-related phenotypes in through DYRK1A inhibition.

    PubMed

    Kim, Hyeongki; Lee, Kyu-Sun; Kim, Ae-Kyeong; Choi, Miri; Choi, Kwangman; Kang, Mingu; Chi, Seung-Wook; Lee, Min-Sung; Lee, Jeong-Soo; Lee, So-Young; Song, Woo-Joo; Yu, Kweon; Cho, Sungchan

    2016-08-01

    DYRK1A is important in neuronal development and function, and its excessive activity is considered a significant pathogenic factor in Down syndrome and Alzheimer's disease. Thus, inhibition of DYRK1A has been suggested to be a new strategy to modify the disease. Very few compounds, however, have been reported to act as inhibitors, and their potential clinical uses require further evaluation. Here, we newly identify CX-4945, the safety of which has been already proven in the clinical setting, as a potent inhibitor of DYRK1A that acts in an ATP-competitive manner. The inhibitory potency of CX-4945 on DYRK1A (IC50=6.8 nM) in vitro was higher than that of harmine, INDY or proINDY, which are well-known potent inhibitors of DYRK1A. CX-4945 effectively reverses the aberrant phosphorylation of Tau, amyloid precursor protein (APP) and presenilin 1 (PS1) in mammalian cells. To our surprise, feeding with CX-4945 significantly restored the neurological and phenotypic defects induced by the overexpression of minibrain, an ortholog of human DYRK1A, in the Drosophila model. Moreover, oral administration of CX-4945 acutely suppressed Tau hyperphosphorylation in the hippocampus of DYRK1A-overexpressing mice. Our research results demonstrate that CX-4945 is a potent DYRK1A inhibitor and also suggest that it has therapeutic potential for DYRK1A-associated diseases. © 2016. Published by The Company of Biologists Ltd.

  17. DYRK1A is a novel negative regulator of cardiomyocyte hypertrophy.

    PubMed

    Kuhn, Christian; Frank, Derk; Will, Rainer; Jaschinski, Christoph; Frauen, Robert; Katus, Hugo A; Frey, Norbert

    2009-06-19

    Activation of the phosphatase calcineurin and its downstream targets, transcription factors of the NFAT family, results in cardiomyocyte hypertrophy. Recently, it has been shown that the dual specificity tyrosine (Y) phosphorylation-regulated kinase 1A (DYRK1A) is able to antagonize calcineurin signaling by directly phosphorylating NFATs. We thus hypothesized that DYRK1A might modulate the hypertrophic response of cardiomyocytes. In a model of phenylephrine-induced hypertrophy, adenovirus-mediated overexpression of DYKR1A completely abrogated the hypertrophic response and significantly reduced the expression of the natriuretic peptides ANF and BNP. Furthermore, DYRK1A blunted cardiomyocyte hypertrophy induced by overexpression of constitutively active calcineurin and attenuated the induction of the hypertrophic gene program. Conversely, knockdown of DYRK1A, utilizing adenoviruses encoding for a specific synthetic miRNA, resulted in an increase in cell surface area accompanied by up-regulation of ANF- mRNA. Similarly, treatment of cardiomyocytes with harmine, a specific inhibitor of DYRK1A, revealed cardiomyocyte hypertrophy on morphological and molecular level. Moreover, constitutively active calcineurin led to robust induction of an NFAT-dependent luciferase reporter, whereas DYRK1A attenuated calcineurin-induced reporter activation in cardiomyocytes. Conversely, both knockdown and pharmacological inhibition of DYRK1A significantly augmented the effect of calcineurin in this assay. In summary, we identified DYRK1A as a novel negative regulator of cardiomyocyte hypertrophy. Mechanistically, this effect appears to be mediated via inhibition of NFAT transcription factors.

  18. DYRK1A Is a Novel Negative Regulator of Cardiomyocyte Hypertrophy*

    PubMed Central

    Kuhn, Christian; Frank, Derk; Will, Rainer; Jaschinski, Christoph; Frauen, Robert; Katus, Hugo A.; Frey, Norbert

    2009-01-01

    Activation of the phosphatase calcineurin and its downstream targets, transcription factors of the NFAT family, results in cardiomyocyte hypertrophy. Recently, it has been shown that the dual specificity tyrosine (Y) phosphorylation-regulated kinase 1A (DYRK1A) is able to antagonize calcineurin signaling by directly phosphorylating NFATs. We thus hypothesized that DYRK1A might modulate the hypertrophic response of cardiomyocytes. In a model of phenylephrine-induced hypertrophy, adenovirus-mediated overexpression of DYKR1A completely abrogated the hypertrophic response and significantly reduced the expression of the natriuretic peptides ANF and BNP. Furthermore, DYRK1A blunted cardiomyocyte hypertrophy induced by overexpression of constitutively active calcineurin and attenuated the induction of the hypertrophic gene program. Conversely, knockdown of DYRK1A, utilizing adenoviruses encoding for a specific synthetic miRNA, resulted in an increase in cell surface area accompanied by up-regulation of ANF- mRNA. Similarly, treatment of cardiomyocytes with harmine, a specific inhibitor of DYRK1A, revealed cardiomyocyte hypertrophy on morphological and molecular level. Moreover, constitutively active calcineurin led to robust induction of an NFAT-dependent luciferase reporter, whereas DYRK1A attenuated calcineurin-induced reporter activation in cardiomyocytes. Conversely, both knockdown and pharmacological inhibition of DYRK1A significantly augmented the effect of calcineurin in this assay. In summary, we identified DYRK1A as a novel negative regulator of cardiomyocyte hypertrophy. Mechanistically, this effect appears to be mediated via inhibition of NFAT transcription factors. PMID:19372220

  19. Carpobrotus edulis methanol extract inhibits the MDR efflux pumps, enhances killing of phagocytosed S. aureus and promotes immune modulation.

    PubMed

    Ordway, Diane; Hohmann, Judit; Viveiros, Miguel; Viveiros, Antonio; Molnar, Joseph; Leandro, Clara; Arroz, Maria Jorge; Gracio, Maria Amelia; Amaral, Leonard

    2003-05-01

    Although alkaloids from the family Aizoaceae have anticancer activity, species of this family have received little attention. Because these alkaloids also exhibit properties normally associated with compounds that have activity at the level of the plasma membrane, a methanol extract of Carpobrotus edulis, a common plant found along the Portuguese coast, was studied for properties normally associated with plasma membrane active compounds. The results of this study show that the extract is non-toxic at concentrations that inhibit a verapamil sensitive efflux pump of L5178 mouse T cell lymphoma cell line thereby rendering these multi-drug resistant cells susceptible to anticancer drugs. These non-toxic concentrations also prime THP-1 human monocyte-derived macrophages to kill ingested Staphylococcus aureus and to promote the release of lymphokines associated with cellular immune functions. The extract also induces the proliferation of THP-1 cells within 1 day of exposure to quantities normally associated with phytohaemagglutinin. The potential role of the compound(s) isolated from this plant in cancer biology is intriguing and is currently under investigation. It is supposed that the resistance modifier and immunomodulatory effect of this plant extract can be exploited in the experimental chemotherapy of cancer and bacterial or viral infections. Copyright 2003 John Wiley & Sons, Ltd.

  20. Crystal structure of norcoclaurine-6-O-methyltransferase, a key rate-limiting step in the synthesis of benzylisoquinoline alkaloids.

    PubMed

    Robin, Adeline Y; Giustini, Cécile; Graindorge, Matthieu; Matringe, Michel; Dumas, Renaud

    2016-09-01

    Growing pharmaceutical interest in benzylisoquinoline alkaloids (BIA) coupled with their chemical complexity make metabolic engineering of microbes to create alternative platforms of production an increasingly attractive proposition. However, precise knowledge of rate-limiting enzymes and negative feedback inhibition by end-products of BIA metabolism is of paramount importance for this emerging field of synthetic biology. In this work we report the structural characterization of (S)-norcoclaurine-6-O-methyltransferase (6OMT), a key rate-limiting step enzyme involved in the synthesis of reticuline, the final intermediate to be shared between the different end-products of BIA metabolism, such as morphine, papaverine, berberine and sanguinarine. Four different crystal structures of the enzyme from Thalictrum flavum (Tf 6OMT) were solved: the apoenzyme, the complex with S-adenosyl-l-homocysteine (SAH), the complexe with SAH and the substrate and the complex with SAH and a feedback inhibitor, sanguinarine. The Tf 6OMT structural study provides a molecular understanding of its substrate specificity, active site structure and reaction mechanism. This study also clarifies the inhibition of Tf 6OMT by previously suggested feedback inhibitors. It reveals its high and time-dependent sensitivity toward sanguinarine. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  1. Effects of hirsutine, an antihypertensive indole alkaloid from Uncaria rhynchophylla, on intracellular calcium in rat thoracic aorta.

    PubMed

    Horie, S; Yano, S; Aimi, N; Sakai, S; Watanabe, K

    1992-01-01

    The effects of hirsutine, an indole alkaloid from Uncaria rhynchophylla (MIQ.) Jackson, on cytosolic Ca2+ level ([Ca2+]cyt) were studied by using fura-2-Ca2+ fluorescence in smooth muscle of the isolated rat aorta. Noradrenaline and high K+ solution produced a sustained increase in [Ca2+]cyt. Application of hirsutine after the increases in [Ca2+]cyt induced by noradrenaline and high K+ notably decreased [Ca2+]cyt, suggesting that hirsutine inhibits Ca2+ influx mainly through a voltage-dependent Ca2+ channel. Furthermore, the effect of hirsutine on intracellular Ca2+ store was studied by using contractile responses to caffeine under the Ca(2+)-free nutrient condition in the rat aorta. When hirsutine was added at 30 microM before caffeine treatment, the agent slightly but significantly reduced the caffeine-induced contraction. When added during Ca2+ loading, hirsutine definitely augmented the contractile response to caffeine. These results suggest that hirsutine inhibits Ca2+ release from the Ca2+ store and increases Ca2+ uptake into the Ca2+ store, leading to a reduction of intracellular Ca2+ level. It is concluded that hirsutine reduces intracellular Ca2+ level through its effect on the Ca2+ store as well as through its effect on the voltage-dependent Ca2+ channel.

  2. Hirsutine, an indole alkaloid of Uncaria rhynchophylla, inhibits inflammation-mediated neurotoxicity and microglial activation.

    PubMed

    Jung, Hwan Yong; Nam, Kyong Nyon; Woo, Byung-Choel; Kim, Kyoo-Pil; Kim, Sung-Ok; Lee, Eunjoo H

    2013-01-01

    Chronic microglial activation endangers neuronal survival through the release of various pro-inflammatory and neurotoxic factors. As such, negative regulators of microglial activation have been considered as potential therapeutic candidates to reduce the risk of neurodegeneration associated with inflammation. Uncaria rhynchophylla (U. rhynchophylla) is a traditional oriental herb that has been used for treatment of disorders of the cardiovascular and central nervous systems. Hirsutine (HS), one of the major indole alkaloids of U. rhynchophylla, has demonstrated neuroprotective potential. The aim of the present study was to examine the efficacy of HS in the repression of inflammation-induced neurotoxicity and microglial cell activation. In organotypic hippocampal slice cultures, HS blocked lipopolysaccharide (LPS)-related hippocampal cell death and production of nitric oxide (NO), prostaglandin (PG) E2 and interleukin-1β. HS was demonstrated to effectively inhibit LPS-induced NO release from cultured rat brain microglia. The compound reduced the LPS-stimulated production of PGE2 and intracellular reactive oxygen species. HS significantly decreased LPS-induced phosphorylation of the mitogen-activated protein kinases and Akt signaling proteins. In conclusion, HS reduces the production of various neurotoxic factors in activated microglial cells and possesses neuroprotective activity in a model of inflammation-induced neurotoxicity.

  3. Hirsutine, an Indole Alkaloid of Uncaria rhynchophylla, Inhibits Late Step in Dengue Virus Lifecycle.

    PubMed

    Hishiki, Takayuki; Kato, Fumihiro; Tajima, Shigeru; Toume, Kazufumi; Umezaki, Masahito; Takasaki, Tomohiko; Miura, Tomoyuki

    2017-01-01

    Dengue virus (DENV) is transmitted to humans by Aedes mosquitoes and is a public health issue worldwide. No antiviral drugs specific for treating dengue infection are currently available. To identify novel DENV inhibitors, we analyzed a library of 95 compounds and 120 extracts derived from crude drugs (herbal medicines). In the primary screening, A549 cells infected with DENV-1 were cultured in the presence of each compound and extract at a final concentration of 10 μM (compound) and 100 μg/mL (extract), and reduction of viral focus formation was assessed. Next, we eliminated compounds and extracts which were cytotoxic using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Hirsutine, an indole alkaloid of Uncaria rhynchophylla , was identified as a potent anti-DENV compound exhibiting high efficacy and low cytotoxicity. Hirsutine showed antiviral activity against all DENV serotypes. Time-of-drug-addition and time-of-drug-elimination assays indicated that hirsutine inhibits the viral particle assembly, budding, or release step but not the viral translation and replication steps in the DENV lifecycle. A subgenomic replicon system was used to confirm that hirsutine does not restrict viral genome RNA replication. Hirsutine is a novel DENV inhibitor and potential candidate for treating dengue fever.

  4. Hirsutine, an Indole Alkaloid of Uncaria rhynchophylla, Inhibits Late Step in Dengue Virus Lifecycle

    PubMed Central

    Hishiki, Takayuki; Kato, Fumihiro; Tajima, Shigeru; Toume, Kazufumi; Umezaki, Masahito; Takasaki, Tomohiko; Miura, Tomoyuki

    2017-01-01

    Dengue virus (DENV) is transmitted to humans by Aedes mosquitoes and is a public health issue worldwide. No antiviral drugs specific for treating dengue infection are currently available. To identify novel DENV inhibitors, we analyzed a library of 95 compounds and 120 extracts derived from crude drugs (herbal medicines). In the primary screening, A549 cells infected with DENV-1 were cultured in the presence of each compound and extract at a final concentration of 10 μM (compound) and 100 μg/mL (extract), and reduction of viral focus formation was assessed. Next, we eliminated compounds and extracts which were cytotoxic using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Hirsutine, an indole alkaloid of Uncaria rhynchophylla, was identified as a potent anti-DENV compound exhibiting high efficacy and low cytotoxicity. Hirsutine showed antiviral activity against all DENV serotypes. Time-of-drug-addition and time-of-drug-elimination assays indicated that hirsutine inhibits the viral particle assembly, budding, or release step but not the viral translation and replication steps in the DENV lifecycle. A subgenomic replicon system was used to confirm that hirsutine does not restrict viral genome RNA replication. Hirsutine is a novel DENV inhibitor and potential candidate for treating dengue fever. PMID:28912773

  5. Aaptamine, an alkaloid from the sponge Aaptos suberitoides, functions as a proteasome inhibitor.

    PubMed

    Tsukamoto, Sachiko; Yamanokuchi, Rumi; Yoshitomi, Makiko; Sato, Kohei; Ikeda, Tsuyoshi; Rotinsulu, Henki; Mangindaan, Remy E P; de Voogd, Nicole J; van Soest, Rob W M; Yokosawa, Hideyoshi

    2010-06-01

    Aaptamine (1), isoaaptamine (2), and demethylaaptamine (3) were isolated from the marine sponge Aaptossuberitoides collected in Indonesia as inhibitors of the proteasome. They inhibited the chymotrypsin-like and caspase-like activities of the proteasome with IC(50) values of 1.6-4.6 microg/mL, while they showed less inhibition of the trypsin-like activity of the proteasome. The three compounds showed cytotoxic activities against HeLa cells, but their cytotoxicity did not correlate with their potency as proteasome inhibitors, strongly suggesting that their proteasomal inhibitory activity is dispensable to their cytotoxicity. Copyright 2010 Elsevier Ltd. All rights reserved.

  6. The novel antihyperglycaemic action of Hunteria umbellata seed fractions mediated via intestinal glucose uptake inhibition.

    PubMed

    Adeneye, A A; Adeyemi, O O; Agbaje, E O; Sofidiya, M O

    2012-01-01

    The present study evaluated the antihyperglycaemic effect and mechanism of action of fractions of the aqueous seed extract of Hunteria umbellata (K. Schum.) Hallier f. (HU) in normal and alloxan-induced hyperglycaemic rats. HU was partitioned in chloroform, acetyl acetate and butan-1-ol to give chloroform fraction (HU c), ethyl acetate fraction (HU e), butanol fraction (HU b) and the "residue" (HU m), respectively. 200 mg/kg of each of these fraction dissolved in 5% Tween 20 in distilled water was investigated for its acute oral hypoglycaemic effects in normal rats over 6 hours while its repeated dose antihyperglycaemic effect was evaluated in alloxan-induced hyperglycaemic rats over 5 days. In addition, 50 mg/kg of the crude alkaloid fraction (HU Af) extracted from HU was evaluated for its possible antihyperglycaemic activity in alloxaninduced hyperglycaemic rats using oral glucose tolerance test (OGTT) over 6 hours. Using the solvent system, distilled water-butanol-ammonium hydroxide (2:15:1, v/v/v), HU b was chromatographed and stained with Dragendorff's reagent for confirmatory qualitative analysis for alkaloids. Results showed that oral pre-treatment with 200 mg/kg of HU e, HU b and HU m resulted in a significant (p<0.05, p<0.001) time dependent hypoglycaemic effect, with the butan-1-ol fraction HU causing the most significant (p<0.001) hypoglycaemic effect. In the alloxan-induced hyperglycaemic rats, repeated oral treatment with 200 mg/kg of same HU fractions for 5 days resulted in significant (p<0.05) decreases in the fasting blood glucose concentrations with the most significant (p<0.01) antihyperglycaemic effect also recorded for HU b. Similarly, oral pretreatment with 50 mg/kg of HU Af significantly (p<0.05, p<0.01 and p<0.001) attenuated an increase in the post-absorptive glucose concentration at 1(st) - 6(th) h in the alloxan-induced hyperglycaemic OGTT model. In addition, alkaloid was present in most of the separated spots on the TLC plate. In conclusion, results of this study showed that HU contains a relative high amount of alkaloids which could have accounted for the antihyperglycaemic action of HU that was mediated via intestinal glucose uptake inhibition.

  7. Alkaloids in Marine Algae

    PubMed Central

    Güven, Kasım Cemal; Percot, Aline; Sezik, Ekrem

    2010-01-01

    This paper presents the alkaloids found in green, brown and red marine algae. Algal chemistry has interested many researchers in order to develop new drugs, as algae include compounds with functional groups which are characteristic from this particular source. Among these compounds, alkaloids present special interest because of their pharmacological activities. Alkaloid chemistry has been widely studied in terrestrial plants, but the number of studies in algae is insignificant. In this review, a detailed account of macro algae alkaloids with their structure and pharmacological activities is presented. The alkaloids found in marine algae may be divided into three groups: 1. Phenylethylamine alkaloids, 2. Indole and halogenated indole alkaloids, 3. Other alkaloids. PMID:20390105

  8. K-targeted strategy for isolation of phenolic alkaloids of Nelumbo nucifera Gaertn by counter-current chromatography using lysine as a pH regulator.

    PubMed

    Wang, Yanyan; Zhang, Lihong; Zhou, Hui; Guo, Xiuyun; Wu, Shihua

    2017-03-24

    Counter-current chromatography (CCC) is an efficient liquid-liquid partition chromatography technique without support matrix. Despite there are many significant advancements in the CCC separation of natural products especially for non-ionic neutral compounds, CCC isolation of ionic compounds including alkaloids is still a challenging process guide by classical partition coefficients (K) or distribution ratio (K C ) because their partition coefficient could not be equal to distribution ratio in common ionic conditions. Here, taking the extract of embryo of the seed of Nelumbo nucifera Gaertn as sample, we introduced a modified K-targeted strategy for isolation of phenolic alkaloids by use of lysine as a pH regulator. The results indicated that if the mass of basic regulators such as aqueous ammonia and lysine added into the solvent system were high enough to inhibit the ionization of the targeted alkaloids, the distribution ratio of targets with ionic and non-ionic molecular forms got stable and might not been changed as the concentration of the pH regulator. In this case, the distribution ratio of target was almost equal to the partition coefficient. Thus, the targets could be isolated by K-targeted CCC separation through adding a certain amount pH regulators into the solvent system. Further experiments also showed that the sample concentration was an important factor on the distribution ratio of targets. Meanwhile, CCC experiments indicated that lysine was more suitable than aqueous ammonia for the separation of phenolic alkaloids because the chemical property of lysine-target complex in the CCC fractions was more stable. Therefore, the preparative CCC separation was performed using 20mM lysine as a pH regulator with more than 800mg injection mass. After simple back-extraction with dichloromethane, the lysine in the CCC fraction was removed completely and pure isoliensinine and neferine were obtained. In summary, the whole results indicated that the modified K-targeted CCC strategy using lysine as the pH regulator was efficient for isolation of phenolic alkaloids from crude plant extracts. It not only provided a practical strategy for the isolation of neferine and its analogues, but also introduced a powerful method to resolve the peak skewing (leading or tailing) in CCC separation of ionic compounds. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Biparental defensive endowment of eggs with acquired plant alkaloid in the moth Utetheisa ornatrix.

    PubMed Central

    Dussourd, D E; Ubik, K; Harvis, C; Resch, J; Meinwald, J; Eisner, T

    1988-01-01

    The eggs of Utetheisa ornatrix contain pyrrolizidine alkaloids. These compounds are contributed by both parents, who sequester them as larvae from their food plants. Females receive alkaloid from the males at mating, apparently by seminal infusion, and transmit this alkaloid together with alkaloid of their own to the eggs. Field and laboratory tests showed that the alkaloids protect eggs from predators. The alkaloidal contribution of the male, although smaller than that of the female, itself provides significant egg protection. A previously identified pheromone, derived by the male from the alkaloid and emitted during precopulatory behavior, may announce the male alkaloidal worth to the female. PMID:3413071

  10. 1,2,3,4-Tetrahydroisoquinolines as inhibitors of HIV-1 integrase and human LEDGF/p75 interaction.

    PubMed

    George, Anu; Gopi Krishna Reddy, Alavala; Satyanarayana, Gedu; Raghavendra, Nidhanapati K

    2018-06-01

    Alkaloids are a class of organic compounds with a wide range of biological properties, including anti-HIV activity. The 1,2,3,4-tetrahydroisoquinoline is a ubiquitous structural motif of many alkaloids. Using a short and an efficient route for synthesis, a series of 1,2,3,4-tetrahydroisoquinolines/isoquinolines was developed. These compounds have been analysed for their ability to inhibit an important interaction between HIV-1 integrase enzyme (IN) and human LEDGF/p75 protein (p75) which assists in the viral integration into the active genes. A lead compound 6d is found to inhibit the LEDGF/p75-IN interaction in vitro with an IC 50 of ~10 μm. Molecular docking analysis of the isoquinoline 6d reveals its interactions with the LEDGF/p75-binding residues of IN. Based on an order of addition experiment, the binding of 6d or LEDGF/p75 to IN is shown to be mutually exclusive. Also, the activity of 6d in vitro is found to be unaffected by the presence of a non-specific DNA. As reported earlier for the inhibitors of LEDGF/p75-IN interaction, 6d exhibits a potent inhibition of both the early and late stages of HIV-1 replication. Compound 6d differing from the known inhibitors in the chemical moieties and interactions with CCD could potentially be explored further for developing small molecule inhibitors of LEDGF/p75-IN interaction having a higher potency. © 2018 John Wiley & Sons A/S.

  11. [Effects of steaming and baking on content of alkaloids in Aconite Lateralis Radix (Fuzi)].

    PubMed

    Yang, Chang-lin; Huang, Zhi-fang; Zhang, Yi-han; Liu, Yu-hong; Liu, Yun-huan; Chen, Yan; Yi, Jin-hai

    2014-12-01

    To study the effect of steaming and baking process on contents of alkaloids in Aconite Lateralis Radix (Fuzi), 13 alkaloids were analyzed by UPLC-MS/MS equipped with ESI ion source in MRM mode. In steaming process, the contents of diester-diterpenoid alkaloids decreased rapidly, the contents of monoester-diterpenoid alkaloids firstly increased, reached the peak at 40 min, and then deceased gradually. The contents of aconine alkaloids (mesaconine, aconine and hypaconine) increased all the time during processing, while the contents of fuziline, songorine, karacoline, salsolionl were stable or slightly decreased. In baking process, dynamic variations of alkaloids were different from that in the steaming process. Diester-diterpenoid alkaloids were degraded slightly slower than in steaming process. Monoester-diterpenoid alkaloids, aconine alkaloids and the total alkaloids had been destroyed at different degrees, their contents were significantly lower than the ones in steaming Fuzi at the same processing time. This experiment revealed the dynamic variations of alkaloids in the course of steaming and baking. Two processing methods which can both effectively remove the toxic ingredients and retain the active ingredients are simple and controllable, and are valuable for popularization and application.

  12. Biosynthesis and Regulation of Bioprotective Alkaloids in the Gramineae Endophytic Fungi with Implications for Herbivores Deterrents.

    PubMed

    Luo, Hongping; Xie, Longxiang; Zeng, Jie; Xie, Jianping

    2015-12-01

    Four kinds of bioprotective alkaloids-peramine, loline, ergot alkaloid, indole-diterpenes, produced by grass-fungal endophyte symbioses, are deterrents or toxic to vertebrate and invertebrate herbivores. Ergot alkaloids have pharmacological properties and widely are used clinically. The regulation of alkaloids biosynthesis is under intensive study to improve the yield for better agricultural and medicinal application. In this paper, we summarize the structure, related genes, regulation, and toxicity of alkaloids. We focus on the biosynthesis and the regulation network of alkaloids.

  13. Genetic variation of piperidine alkaloids in Pinus ponderosa: a common garden study.

    PubMed

    Gerson, Elizabeth A; Kelsey, Rick G; St Clair, J Bradley

    2009-02-01

    Previous measurements of conifer alkaloids have revealed significant variation attributable to many sources, environmental and genetic. The present study takes a complementary and intensive, common garden approach to examine genetic variation in Pinus ponderosa var. ponderosa alkaloid production. Additionally, this study investigates the potential trade-off between seedling growth and alkaloid production, and associations between topographic/climatic variables and alkaloid production. Piperidine alkaloids were quantified in foliage of 501 nursery seedlings grown from seed sources in west-central Washington, Oregon and California, roughly covering the western half of the native range of ponderosa pine. A nested mixed model was used to test differences among broad-scale regions and among families within regions. Alkaloid concentrations were regressed on seedling growth measurements to test metabolite allocation theory. Likewise, climate characteristics at the seed sources were also considered as explanatory variables. Quantitative variation from seedling to seedling was high, and regional variation exceeded variation among families. Regions along the western margin of the species range exhibited the highest alkaloid concentrations, while those further east had relatively low alkaloid levels. Qualitative variation in alkaloid profiles was low. All measures of seedling growth related negatively to alkaloid concentrations on a natural log scale; however, coefficients of determination were low. At best, annual height increment explained 19.4 % of the variation in ln(total alkaloids). Among the climate variables, temperature range showed a negative, linear association that explained 41.8 % of the variation. Given the wide geographic scope of the seed sources and the uniformity of resources in the seedlings' environment, observed differences in alkaloid concentrations are evidence for genetic regulation of alkaloid secondary metabolism in ponderosa pine. The theoretical trade-off with seedling growth appeared to be real, however slight. The climate variables provided little evidence for adaptive alkaloid variation, especially within regions.

  14. Medicinal uses, phytochemistry and pharmacology of the genus Uncaria.

    PubMed

    Zhang, Qian; Zhao, Jiao Jiao; Xu, Jian; Feng, Feng; Qu, Wei

    2015-09-15

    The genus Uncaria belongs to the family Rubiaceae, which mainly distributed in tropical regions, such as Southeast Asia, Africa and Southeast America. Their leaves and hooks have long been thought to have healing powers and are already being tested as a treatment for asthma, cancer, cirrhosis, diabetes, hypertension, stroke and rheumatism. The present review aims to provide systematically reorganized information on the ethnopharmacology, phytochemistry and pharmacology of the genus Uncaria to support for further therapeutic potential of this genus. To better understanding this genus, information on the stereo-chemistry and structure-activity relationships in indole alkaloids is also represented. The literature study of this review is based on various databases search (SCIFinder, Science Direct, CNKI, Wiley online library, Spring Link, Web of Science, PubMed, Wanfang Data, Medalink, Google scholar, ACS, Tropicos, Council of Heads of Australasian Herbaria, The New York Botanical Garden, African Plants Database at Genera Botanical Garden, The Plant List and SEINet) and library search for Biological Abstract and some local books on ethnopharmacology. 19 species of the genus Uncaria are found to be important folk medicines in China, Malaysia, Phillippines, Africa and Southeast America, etc, and have been served for the treatment of asthma, rheumatism, hyperpyrexia, hypertension and headaches, etc. More than 200 compounds have been isolated from Uncaria, including indole alkaloids, triterpenes, flavonoids, phenols, phenylpropanoids, etc. As characteristic constituents, indole alkaloids have been considered as main efficacy component for hypertension, epilepsy, depressant, Parkinson's disease and Alzheimer's disease. In addition, pharmacokinetic and metabolism investigation reveal that the indole alkaloids are likely to be absorbed, metabolized and excreted at early time points. Moreover, the specific inhibition of CYP isozymes can regulate their hydroxylation metabolites at C-10 and C-11. Preliminary investigations on pharmacological properties of the Uncaria species have enlightened their efficacious remedy for hypertension, asthma, cancer, diabetes, rheumatism and neurodegenerative diseases. To ensure the safety and effectiveness in clinical application, research on bioactive compounds, pharmacological mechanisms and toxicity of the genus Uncaria as well as the stereo-chemistry and structure-activity relationships of indole alkaloids seem very important. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  15. Quorum Quenching and Antimicrobial Activity of Goldenseal (Hydrastis canadensis) against Methicillin-Resistant Staphylococcus aureus (MRSA)

    PubMed Central

    Cech, Nadja B.; Junio, Hiyas A.; Ackermann, Laynez W.; Kavanaugh, Jeffrey S.; Horswill, Alexander R.

    2015-01-01

    The popular herbal remedy goldenseal (Hydrastis canadensis L.) is traditionally used to treat skin infections. With this study, we show activity of H. canadensis extracts in vitro against methicillin-resistant Staphylococcus aureus (MRSA). An extract from H. canadensis leaves demonstrated more potent antimicrobial activity than the alkaloid berberine alone (MICs of 75 µg/mL and 150 µg/mL, respectively). LC-MS detected alkaloids and efflux-pump inhibitory flavonoids in the extract, and the latter may explain the enhanced efficacy of the extract compared to berberine alone. We also show evidence of anti-virulence activity as a second mechanism by which H. canadensis acts against S. aureus. The H. canadensis leaf extract (but not the isolated alkaloids berberine, hydrastine, and canadine) demonstrated quorum quenching activity against several clinically relevant MRSA isolates (USA300 strains). Our data suggest that this occurs by attenuation of signal transduction through the AgrCA two-component system. Consistent with this observation, the extract inhibited toxin production by MRSA, and prevented damage by MRSA to keratinocyte cells in vitro. Collectively, our results show that H. canadensis leaf extracts possess a mixture of constituents that act against MRSA via several different mechanisms. These findings lend support for the traditional application of crude H. canadensis extracts in the treatment of prevention of infection. PMID:22814821

  16. Evodia alkaloids suppress gluconeogenesis and lipogenesis by activating the constitutive androstane receptor.

    PubMed

    Yu, Lushan; Wang, Zhangting; Huang, Minmin; Li, Yingying; Zeng, Kui; Lei, Jinxiu; Hu, Haihong; Chen, Baian; Lu, Jing; Xie, Wen; Zeng, Su

    2016-09-01

    The constitutive androstane receptor (CAR) is a key sensor in xenobiotic detoxification and endobiotic metabolism. Increasing evidence suggests that CAR also plays a role in energy metabolism by suppressing the hepatic gluconeogenesis and lipogenesis. In this study, we investigated the effects of two evodia alkaloids, rutaecarpine (Rut) and evodiamine (Evo), on gluconeogenesis and lipogenesis through their activation of the human CAR (hCAR). We found that both Rut and Evo exhibited anti-lipogenic and anti-gluconeogenic effects in the hyperlipidemic HepG2 cells. Both compounds can potently activate hCAR, and treatment of cells with hCAR antagonists reversed the anti-lipogenic and anti-gluconeogenic effects of Rut and Evo. The anti-gluconeogenic effect of Rut and Evo was due to the CAR-mediated inhibition of the recruitment of forkhead box O1 (FoxO1) and hepatocyte nuclear factor 4α (HNF4α) onto the phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase) gene promoters. In vivo, we showed that treatment of mice with Rut improved glucose tolerance in a CAR-dependent manner. Our results suggest that the evodia alkaloids Rut and Evo may have a therapeutic potential for the treatment of hyperglycemia and type 2 diabetes. This article is part of a Special Issue entitled: Xenobiotic nuclear receptors: New Tricks for An Old Dog, edited by Dr. Wen Xie. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Utility of an appropriate reporter assay: Heliotrine interferes with GAL4/upstream activation sequence-driven reporter gene systems.

    PubMed

    Luckert, Claudia; Hessel, Stefanie; Lampen, Alfonso; Braeuning, Albert

    2015-10-15

    Reporter gene assays are widely used for the assessment of transcription factor activation following xenobiotic exposure of cells. A critical issue with such assays is the possibility of interference of test compounds with the test system, for example, by direct inhibition of the reporter enzyme. Here we show that the pyrrolizidine alkaloid heliotrine interferes with reporter signals derived from GAL4-based nuclear receptor transactivation assays by a mechanism independent of luciferase enzyme inhibition. These data highlight the necessity to conduct proper control experiments in order to avoid perturbation of reporter assays by test chemicals. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Effect of cortex mori on pharmacokinetic profiles of main isoflavonoids from pueraria lobata in rat plasma.

    PubMed

    Xiao, Bingxin; Sun, Zengxian; Sun, Shu Yang; Dong, Jie; Li, Yanli; Gao, Shan; Pang, Jie; Chang, Qi

    2017-09-14

    Radix pueraria (the root of pueraria lobata (Wild.) Ohwi.), which contains a class of isoflavonoids as the main active components, as well as cortex mori (the root bark of Morus alba L), which contains abundant active alkaloids, have been employed for the treatment of diabetes in traditional Chinese medicine for centuries. In previous studies, pharmacodynamic synergistic reactions have been observed in compatible application of pueraria lobata isoflavonoids extracts (PLF) and cortex mori alkaloids extracts (CME) for inhibiting α-glycosidase activity. It has also been demonstrated that PLF can effectively slow down the absorption of active alkaloid from CME, so as to produce a higher effective concentration in small intestine for depressing the elevation of postprandial blood glucose through inhibiting α-glycosidase activity. In this study, the hypoglycemic effect of PLF, CME or CME-PLF mixture (the mixture of CME and PLF at a ratio of 1:6.3) was further evaluated through in vivo glucose tolerance studies. And the effect of CME on pharmacokinetic profiles of main isoflavonoids from PLF in rat plasma was investigated to further underlie compatibility mechanism of the two herbs. Four groups of rats received an oral dose of starch solution alone or simultaneously with drugs by gavage feeding. The blood samples were collected to determine glucose concentrations by glucose oxidase method. In addition, another two groups of rats were orally administered with PLF or CME-PLF. The plasma samples were collected and assayed using an LC/MS/MS method for comparatively pharmacokinetic studies of five main isoflavonoids. For starch loading, co-administration of CME-PLF resulted in more potent inhibition effects on glucose responses compared to those by CME or PLF in rat. The isoflavonoids from PLF were rapidly absorbed, presenting similarly low concentrations in plasma. When CME was added, the C max and AUC of all the five isoflavonoids were increased. A phenomenon of double peaks was found for all analysts. The elimination rates of all the detected isoflavonoids were also slowed down with extension of t 1/2. CONCLUSIONS: CME has been found to increase the absorption and delay the elimination of main isoflavonoids from PLF, which might result in higher concentrations of circulating active compounds for anti diabetes. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  19. Alkaloids in bufonid toads (melanophryniscus): temporal and geographic determinants for two argentinian species.

    PubMed

    Daly, J W; Wilham, J M; Spande, T F; Garraffo, H M; Gil, R R; Silva, G L; Vaira, M

    2007-04-01

    Bufonid toads of the genus Melanophryniscus represent one of several lineages of anurans with the ability to sequester alkaloids from dietary arthropods for chemical defense. The alkaloid profile for Melanophryniscus stelzneri from a location in the province of Córdoba, Argentina, changed significantly over a 10-year period, probably indicating changes in availability of alkaloid-containing arthropods. A total of 29 alkaloids were identified in two collections of this population. Eight alkaloids were identified in M. stelzneri from another location in the province of Córdoba. The alkaloid profiles of Melanophryniscus rubriventris collected from four locations in the provinces of Salta and Jujuy, Argentina, contained 44 compounds and differed considerably between locations. Furthermore, alkaloid profiles of M. stelzneri and M. rubriventris strongly differed, probably reflecting differences in the ecosystem and hence in availability of alkaloid-containing arthropods.

  20. Alkaloids in the human food chain--natural occurrence and possible adverse effects.

    PubMed

    Koleva, Irina I; van Beek, Teris A; Soffers, Ans E M F; Dusemund, Birgit; Rietjens, Ivonne M C M

    2012-01-01

    Alkaloid-containing plants are an intrinsic part of the regular Western diet. The present paper summarizes the occurrence of alkaloids in the food chain, their mode of action and possible adverse effects including a safety assessment. Pyrrolizidine alkaloids are a reason for concern because of their bioactivation to reactive alkylating intermediates. Several quinolizidine alkaloids, β-carboline alkaloids, ergot alkaloids and steroid alkaloids are active without bioactivation and mostly act as neurotoxins. Regulatory agencies are aware of the risks and have taken or are considering appropriate regulatory actions for most alkaloids. These vary from setting limits for the presence of a compound in feed, foods and beverages, trying to define safe upper limits, advising on a strategy aiming at restrictions in use, informing the public to be cautious or taking specific plant varieties from the market. For some alkaloids known to be present in the modern food chain, e.g., piperine, nicotine, theobromine, theophylline and tropane alkaloids risks coming from the human food chain are considered to be low if not negligible. Remarkably, for many alkaloids that are known constituents of the modern food chain and of possible concern, tolerable daily intake values have so far not been defined. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. BREEDING EXPERIMENTS ON MEDICINAL PLANTS. 27. ROENTGEN MUTATIONS AND ACTIVE SUBSTANCE CONTENT IN DATURA (in German)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steinegger, E.; Zbinden, F.

    1961-10-01

    The changes in alkaloid content of the Datura stramonium var. godronii are considered. About 1000 plants cultivated from irradiated and nonlrradiated seeds were examined for changes in total alkaloid content. In about 1.5% of the plants the alknloid content changed considerably, the decreases being more marked than the increases. Completely alkaloid-free plants, however, were not produced, in spite of the fact that occasionally the alkaloid content was so low that it could no longer be determined. There were two groups of mutants with increased alkaloid content. Some pharmaceutically important plants with higher total alkaloid production per plant and with loweredmore » alkaloid drug yield had double chromosome numbers and proved to be autotetraploid. However, the alkaloid contents of these plants were not higher than those of the artificially cultivated polyploids. The alkaloid content was evaluated by paper chromatography, which made possible the extraction of minute amounts of water- soluble basic amines as well as preventing the secondary changes of alkaloids. New alkaloids were not detected. Scopolamine content was found to decrease with age of the plant. In some mutants a reciprocal change in the amounts of some alkaloids could be demonstrated. A mutant containing a large amount of cuskohygrine was detected. (BBB)« less

  2. Vinpocetine Inhibits Streptococcus pneumoniae–Induced Upregulation of Mucin MUC5AC Expression via Induction of MKP-1 Phosphatase in the Pathogenesis of Otitis Media

    PubMed Central

    Lee, Ji-Yun; Komatsu, Kensei; Lee, Byung-Cheol; Miyata, Masanori; O’Neill Bohn, Ashley; Xu, Haidong

    2015-01-01

    Mucin overproduction is a hallmark of otitis media (OM). Streptococcus pneumoniae is one of the most common bacterial pathogens causing OM. Mucin MUC5AC plays an important role in mucociliary clearance of bacterial pathogens. However, if uncontrolled, excessive mucus contributes significantly to conductive hearing loss. Currently, there is a lack of effective therapeutic agents that suppress mucus overproduction. In this study, we show that a currently existing antistroke drug, vinpocetine, a derivative of the alkaloid vincamine, inhibited S. pneumoniae–induced mucin MUC5AC upregulation in cultured middle ear epithelial cells and in the middle ear of mice. Moreover, vinpocetine inhibited MUC5AC upregulation by inhibiting the MAPK ERK pathway in an MKP-1–dependent manner. Importantly, ototopical administration of vinpocetine postinfection inhibited MUC5AC expression and middle ear inflammation induced by S. pneumoniae and reduced hearing loss and pneumococcal loads in a well-established mouse model of OM. Thus, these studies identified vinpocetine as a potential therapeutic agent for inhibiting mucus production in the pathogenesis of OM. PMID:25972475

  3. Catharanthus alkaloids XXXII: isolation of alkaloids from Catharanthus trichophyllus roots and structure elucidation of cathaphylline.

    PubMed

    Cordell, G A; Farnsworth, N R

    1976-03-01

    Further examination of the cytotoxic alkaloid fractions of Catharanthus trichophyllus roots afforded nine alkaloids. Two of these alkaloids, lochnericine and horhammericine, are responsible for part of the cytotoxic activity. The structure elucidation of cathaphylline, a new beta-anilino acrylate derivative, is described.

  4. Establishment of a search library about benzylisoquinoline alkaloids based on selective separation on the binaphthyl column and standard analysis on C18 column.

    PubMed

    Liu, Qiaoxia; Zhou, Binbin; Wang, Xinliang; Ke, Yanxiong; Jin, Yu; Yin, Lihui; Liang, Xinmiao

    2012-12-01

    A search library about benzylisoquinoline alkaloids was established based on preparation of alkaloid fractions from Rhizoma coptidis, Cortex phellodendri, and Rhizoma corydalis. In this work, two alkaloid fractions from each herbal medicine were first prepared based on selective separation on the "click" binaphthyl column. And then these alkaloid fractions were analyzed on C18 column by liquid chromatography coupled with tandem mass spectrometry. Many structure-related compounds were included in these alkaloids fractions, which led to easy separation and good MS response in further work. Therefore, a search library of 52 benzylisoquinoline alkaloids was established, which included eight aporphine, 19 tetrahydroprotoberberine, two protopine, two benzyltetrahydroisoquinoline, and 21 protoberberine alkaloids. The information of the search library contained compound names, structures, retention times, accurate masses, fragmentation pathways of benzylisoquionline alkaloids, and their sources from three herbal medicines. Using such a library, the alkaloids, especially those trace and unknown components in some herbal medicine could be accurately and quickly identified. In addition, the distribution of benzylisoquinoline alkaloids in the herbal medicines could be also summarized by searching the source samples in the library. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Application of the central composite design to optimize the preparation of novel micelles of harmine.

    PubMed

    Bei, Yong-Yan; Zhou, Xiao-Feng; You, Ben-Gang; Yuan, Zhi-Qiang; Chen, Wei-Liang; Xia, Peng; Liu, Yang; Jin, Yong; Hu, Xiao-Juan; Zhu, Qiao-Ling; Zhang, Chun-Ge; Zhang, Xue-Nong; Zhang, Liang

    2013-01-01

    Lactose-palmitoyl-trimethyl-chitosan (Lac-TPCS), a novel amphipathic self-assembled polymer, was synthesized for administration of insoluble drugs to reduce their adverse effects. The central composite design was used to study the preparation technique of harmine (HM)-loaded self-assembled micelles based on Lac-TPCS (Lac-TPCS/HM). Three preparation methods and single factors were screened, including solvent type, HM amount, hydration volume, and temperature. The optimal preparation technique was identified after investigating the influence of two independent factors, namely, HM amount and hydration volume, on four indexes, ie, encapsulation efficiency (EE), drug-loading amount (LD), particle size, and polydispersity index (PDI). Analysis of variance showed a high coefficient of determination of 0.916 to 0.994, thus ensuring a satisfactory adjustment of the predicted prescription. The maximum predicted values of the optimal prescription were 91.62%, 14.20%, 183.3 nm, and 0.214 for EE, LD, size, and PDI, respectively, when HM amount was 1.8 mg and hydration volume was 9.6 mL. HM-loaded micelles were successfully characterized by Fourier-transform infrared spectroscopy, differential scanning calorimetry, X-ray diffraction, and a fluorescence-quenching experiment. Sustained release of Lac-TPCS/HM reached 65.3% in 72 hours at pH 7.4, while free HM released about 99.7% under the same conditions.

  6. Azaglycomimetics: Natural Occurrence, Biological Activity, and Application

    NASA Astrophysics Data System (ADS)

    Asano, Naoki

    A large number of alkaloids mimicking the structures of monosaccharides or oligosaccharides have been isolated from plants and microorganisms. The sugar mimicking alkaloids with a nitrogen in the ring are called azasugars or iminosugars. Naturally occurring azasugars are classified into five structural classes: polyhydroxylated piperidines, pyrrolidines, indolizidines, pyrrolizidines, and nortropanes. They are easily soluble in water because of their polyhydroxylated structures and inhibit glycosidases because of a structural resemblance to the sugar moiety of the natural substrate. Glycosidases are involved in a wide range of anabolic and catabolic processes, such as digestion, lysosomal catabolism of glycoconjugates, biosynthesis of glycoproteins, and the endoplasmic reticulum (ER) quality control and ER-associated degradation of glycoproteins. Hence, modifying or blocking these processes in vivo by inhibitors is of great interest from a therapeutic point of view. Azasugars are an important class of glycosidase inhibitors and are arousing great interest for instance as antidiabetics, antiobesity drugs, antivirals, and therapeutic agents for some genetic disorders. This review describes the recent studies on isolation, characterization, glycosidase inhibitory activity, and therapeutic application of azaglycomimetics.

  7. The endogenous alkaloid harmane: acidifying and activity-reducing effects on hippocampal neurons in vitro.

    PubMed

    Bonnet, Udo; Scherbaum, Norbert; Wiemann, Martin

    2008-02-15

    The endogenous alkaloid harmane is enriched in plasma of patients with neurodegenerative or addictive disorders. As harmane affects neuronal activity and viability and because both parameters are strongly influenced by intracellular pH (pH(i)), we tested whether effects of harmane are correlated with altered pH(i) regulation. Pyramidal neurons in the CA3 field of hippocampal slices were investigated under bicarbonate-buffered conditions. Harmane (50 and 100 microM) reversibly decreased spontaneous firing of action potentials and caffeine-induced bursting of CA3 neurons. In parallel experiments, 50 and 100 microM harmane evoked a neuronal acidification of 0.12+/-0.08 and 0.18+/-0.07 pH units, respectively. Recovery from intracellular acidification subsequent to an ammonium prepulse was also impaired, suggesting an inhibition of transmembrane acid extrusion by harmane. Harmane may modulate neuronal functions via altered pH(i)-regulation. Implications of these findings for neuronal survival are discussed.

  8. In vitro evaluation of the schistosomicidal effect of the extracts, fractions and major 3-hydroxy-2,6-dialkyl-substituted piperidine alkaloids from the flowers of Senna spectabilis (Fabaceae).

    PubMed

    de Castro, Andreísa Teixeira; Castro, Aline Pereira; Silva, Matheus Siqueira; de Souza, Isabella Maria Monteiro; Martins-Souza, Raquel Lopes; Chagas-Paula, Daniela Aparecida; Coelho, Luiz Felipe Leomil; da Silva Bolzani, Vanderlan; Pivatto, Marcos; Viegas, Claudio; Marques, Marcos José

    2016-09-01

    In this work, we present the in vitro schistosomicidal activity evaluation of the most active dichloromethane fraction (FDm) (ED50=83.5μg/mL) and of a mixture of the major alkaloids ((-)-cassine/(-)-spectaline, C/E) (ED50=37.4μg/mL) from the flowers of Senna spectabilis against adult worms and cercariae. We also demonstrate other toxic effects including paralysis of the adult worms, inhibition of the secretory activity, tegument lesions and cercaricidal activity. In the association test of Praziquantel (PZQ)-C/E, we observed up to 80% mortality of Schistosoma mansoni in comparison to PZQ monotherapy. Due to the diversity of the toxic effects, the schistosomicidal activity of C/E is likely a result of a multitarget mechanism involving the tegument, secretory system and neuromotor action. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Dietary alkaloid sequestration in a poison frog: an experimental test of alkaloid uptake in Melanophryniscus stelzneri (Bufonidae).

    PubMed

    Hantak, Maggie M; Grant, Taran; Reinsch, Sherri; McGinnity, Dale; Loring, Marjorie; Toyooka, Naoki; Saporito, Ralph A

    2013-12-01

    Several lineages of brightly colored anurans independently evolved the ability to secrete alkaloid-containing defensive chemicals from granular glands in the skin. These species, collectively referred to as 'poison frogs,' form a polyphyletic assemblage that includes some species of Dendrobatidae, Mantellidae, Myobatrachidae, Bufonidae, and Eleutherodactylidae. The ability to sequester alkaloids from dietary arthropods has been demonstrated experimentally in most poison frog lineages but not in bufonid or eleutherodactylid poison frogs. As with other poison frogs, species of the genus Melanophryniscus (Bufonidae) consume large numbers of mites and ants, suggesting they might also sequester defensive alkaloids from dietary sources. To test this hypothesis, fruit flies dusted with alkaloid/nutritional supplement powder were fed to individual Melanophryniscus stelzneri in two experiments. In the first experiment, the alkaloids 5,8-disubstituted indolizidine 235B' and decahydroquinoline were administered to three individuals for 104 days. In the second experiment, the alkaloids 3,5-disubstituted indolizidine 239Q and decahydroquinoline were given to three frogs for 153 days. Control frogs were fed fruit flies dusted only with nutritional supplement. Gas chromatography/mass spectrometry analyses revealed that skin secretions of all experimental frogs contained alkaloids, whereas those of all control frogs lacked alkaloids. Uptake of decahydroquinoline was greater than uptake of 5,8-disubstituted indolizidine, and uptake of 3,5-disubstituted indolizidine was greater than uptake of decahydroquinoline, suggesting greater uptake efficiency of certain alkaloids. Frogs in the second experiment accumulated a greater amount of alkaloid, which corresponds to the longer duration and greater number of alkaloid-dusted fruit flies that were consumed. These findings provide the first experimental evidence that bufonid poison frogs sequester alkaloid-based defenses from dietary sources.

  10. An integrated strategy for the systematic characterization and discovery of new indole alkaloids from Uncaria rhynchophylla by UHPLC/DAD/LTQ-Orbitrap-MS.

    PubMed

    Pan, Huiqin; Yang, Wenzhi; Zhang, Yibei; Yang, Min; Feng, Ruihong; Wu, Wanying; Guo, Dean

    2015-08-01

    The exploration of new chemical entities from herbal medicines may provide candidates for the in silico screening of drug leads. However, this significant work is hindered by the presence of multiple classes of plant metabolites and many re-discovered structures. This study presents an integrated strategy that uses ultrahigh-performance liquid chromatography/linear ion-trap quadrupole/Orbitrap mass spectrometry (UHPLC/LTQ-Orbitrap-MS) coupled with in-house library data for the systematic characterization and discovery of new potentially bioactive molecules. Exploration of the indole alkaloids from Uncaria rhynchophylla (UR) is presented as a model study. Initially, the primary characterization of alkaloids was achieved using mass defect filtering and neutral loss filtering. Subsequently, phytochemical isolation obtained 14 alkaloid compounds as reference standards, including a new one identified as 16,17-dihydro-O-demethylhirsuteine by NMR analyses. The direct-infusion fragmentation behaviors of these isolated alkaloids were studied to provide diagnostic structural information facilitating the rapid differentiation and characterization of four different alkaloid subtypes. Ultimately, after combining the experimental results with a survey of an in-house library containing 129 alkaloids isolated from the Uncaria genus, a total of 92 alkaloids (60 free alkaloids and 32 alkaloid O-glycosides) were identified or tentatively characterized, 56 of which are potential new alkaloids for the Uncaria genus. Hydroxylation on ring A, broad variations in the C-15 side chain, new N-oxides, and numerous O-glycosides, represent the novel features of the newly discovered indole alkaloid structures. These results greatly expand our knowledge of UR chemistry and are useful for the computational screening of potentially bioactive molecules from indole alkaloids. Graphical Abstract A four-step integrated strategy for the systematic characterization and efficient discovery of new indole alkaloids from Uncaria rhynchophylla.

  11. Chemical defense: Bestowal of a nuptial alkaloidal garment by a male moth on its mate

    PubMed Central

    Conner, William E.; Boada, Ruth; Schroeder, Frank C.; González, Andrés; Meinwald, Jerrold; Eisner, Thomas

    2000-01-01

    Males of the moth Cosmosoma myrodora (Arctiidae) acquire pyrrolizidine alkaloid by feeding on the excrescent fluids of certain plants (for instance, Eupatorium capillifolium). They incorporate the alkaloid systemically and as a result are protected against spiders. The males have a pair of abdominal pouches, densely packed with fine cuticular filaments, which in alkaloid-fed males are alkaloid laden. The males discharge the filaments on the female in bursts during courtship, embellishing her with alkaloid as a result. The topical investiture protects the female against spiders. Alkaloid-free filaments, from alkaloid-deprived males, convey no such protection. The males also transmit alkaloid to the female by seminal infusion. The systemic alkaloid thus received, which itself may contribute to the female's defense against spiders, is bestowed in part by the female on the eggs. Although paternal contribution to egg defense had previously been demonstrated for several arctiid moths, protective nuptial festooning of a female by its mate, such as is practiced by C. myrodora, appears to be without parallel among insects. PMID:11114202

  12. Genetic variation of piperidine alkaloids in Pinus ponderosa: a common garden study

    PubMed Central

    Gerson, Elizabeth A.; Kelsey, Rick G.; St Clair, J. Bradley

    2009-01-01

    Background and Aims Previous measurements of conifer alkaloids have revealed significant variation attributable to many sources, environmental and genetic. The present study takes a complementary and intensive, common garden approach to examine genetic variation in Pinus ponderosa var. ponderosa alkaloid production. Additionally, this study investigates the potential trade-off between seedling growth and alkaloid production, and associations between topographic/climatic variables and alkaloid production. Methods Piperidine alkaloids were quantified in foliage of 501 nursery seedlings grown from seed sources in west-central Washington, Oregon and California, roughly covering the western half of the native range of ponderosa pine. A nested mixed model was used to test differences among broad-scale regions and among families within regions. Alkaloid concentrations were regressed on seedling growth measurements to test metabolite allocation theory. Likewise, climate characteristics at the seed sources were also considered as explanatory variables. Key Results Quantitative variation from seedling to seedling was high, and regional variation exceeded variation among families. Regions along the western margin of the species range exhibited the highest alkaloid concentrations, while those further east had relatively low alkaloid levels. Qualitative variation in alkaloid profiles was low. All measures of seedling growth related negatively to alkaloid concentrations on a natural log scale; however, coefficients of determination were low. At best, annual height increment explained 19·4 % of the variation in ln(total alkaloids). Among the climate variables, temperature range showed a negative, linear association that explained 41·8 % of the variation. Conclusions Given the wide geographic scope of the seed sources and the uniformity of resources in the seedlings' environment, observed differences in alkaloid concentrations are evidence for genetic regulation of alkaloid secondary metabolism in ponderosa pine. The theoretical trade-off with seedling growth appeared to be real, however slight. The climate variables provided little evidence for adaptive alkaloid variation, especially within regions. PMID:19010800

  13. Tetrandrine has anti-adipogenic effect on 3T3-L1 preadipocytes through the reduced expression and/or phosphorylation levels of C/EBP-α, PPAR-γ, FAS, perilipin A, and STAT-3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jang, Byeong-Churl, E-mail: jangbc123@gw.kmu.ac.kr

    Tetrandrine is a bisbenzylisoquinoline alkaloid isolated from the roots of Stephania tetrandra S. Moore and has been shown to possess anti-inflammatory and anti-cancerous activities. In this study, the effect of tetrandrine on adipogenesis in 3T3-L1 preadipocytes was investigated. Tetrandrine at 10 μM concentration strongly inhibited lipid accumulation and triglyceride (TG) synthesis during the differentiation of 3T3-L1 preadipocytes into adipocytes. On mechanistic levels, tetrandrine reduced not only the expressions of CCAAT/enhancer-binding protein-α (C/EBP-α), peroxisome proliferator-activated receptor-γ (PPAR-γ), fatty acid synthase (FAS), and perilipin A but also the phosphorylation levels of signal transducer and activator of transcription-3 (STAT-3) during 3T3-L1 adipocyte differentiation. Tetrandrinemore » also reduced the mRNA expression of leptin, but not adiponectin, during 3T3-L1 adipocyte differentiation. Collectively, these findings show that tetrandrine has strong anti-adipogenic effect on 3T3-L1 preadipocytes and the effect is largely attributable to the reduced expression and/or phosphorylation levels of C/EBP-α, PPAR-γ, FAS, perilipin A, and STAT-3. - Highlights: • Tetrandrine, a bisbenzylisoquinoline alkaloid, inhibits adipogenesis. • Tetrandrine inhibits C/EBP-α, PPAR-γ, FAS, perilipin A, and STAT-3 in 3T3-L1 adipocytes. • Tetrandrine reduces leptin, but not adiponectin, expression in 3T3-L1 adipocytes. • Tetrandrine may thus have therapeutic potential against obesity.« less

  14. Anti-addiction drug ibogaine inhibits voltage-gated ionic currents: A study to assess the drug's cardiac ion channel profile☆

    PubMed Central

    Koenig, Xaver; Kovar, Michael; Rubi, Lena; Mike, Agnes K.; Lukacs, Peter; Gawali, Vaibhavkumar S.; Todt, Hannes; Hilber, Karlheinz; Sandtner, Walter

    2013-01-01

    The plant alkaloid ibogaine has promising anti-addictive properties. Albeit not licenced as a therapeutic drug, and despite hints that ibogaine may perturb the heart rhythm, this alkaloid is used to treat drug addicts. We have recently reported that ibogaine inhibits human ERG (hERG) potassium channels at concentrations similar to the drugs affinity for several of its known brain targets. Thereby the drug may disturb the heart's electrophysiology. Here, to assess the drug's cardiac ion channel profile in more detail, we studied the effects of ibogaine and its congener 18-Methoxycoronaridine (18-MC) on various cardiac voltage-gated ion channels. We confirmed that heterologously expressed hERG currents are reduced by ibogaine in low micromolar concentrations. Moreover, at higher concentrations, the drug also reduced human Nav1.5 sodium and Cav1.2 calcium currents. Ion currents were as well reduced by 18-MC, yet with diminished potency. Unexpectedly, although blocking hERG channels, ibogaine did not prolong the action potential (AP) in guinea pig cardiomyocytes at low micromolar concentrations. Higher concentrations (≥ 10 μM) even shortened the AP. These findings can be explained by the drug's calcium channel inhibition, which counteracts the AP-prolonging effect generated by hERG blockade. Implementation of ibogaine's inhibitory effects on human ion channels in a computer model of a ventricular cardiomyocyte, on the other hand, suggested that ibogaine does prolong the AP in the human heart. We conclude that therapeutic concentrations of ibogaine have the propensity to prolong the QT interval of the electrocardiogram in humans. In some cases this may lead to cardiac arrhythmias. PMID:23707769

  15. Anti-addiction drug ibogaine inhibits voltage-gated ionic currents: a study to assess the drug's cardiac ion channel profile.

    PubMed

    Koenig, Xaver; Kovar, Michael; Rubi, Lena; Mike, Agnes K; Lukacs, Peter; Gawali, Vaibhavkumar S; Todt, Hannes; Hilber, Karlheinz; Sandtner, Walter

    2013-12-01

    The plant alkaloid ibogaine has promising anti-addictive properties. Albeit not licensed as a therapeutic drug, and despite hints that ibogaine may perturb the heart rhythm, this alkaloid is used to treat drug addicts. We have recently reported that ibogaine inhibits human ERG (hERG) potassium channels at concentrations similar to the drugs affinity for several of its known brain targets. Thereby the drug may disturb the heart's electrophysiology. Here, to assess the drug's cardiac ion channel profile in more detail, we studied the effects of ibogaine and its congener 18-Methoxycoronaridine (18-MC) on various cardiac voltage-gated ion channels. We confirmed that heterologously expressed hERG currents are reduced by ibogaine in low micromolar concentrations. Moreover, at higher concentrations, the drug also reduced human Nav1.5 sodium and Cav1.2 calcium currents. Ion currents were as well reduced by 18-MC, yet with diminished potency. Unexpectedly, although blocking hERG channels, ibogaine did not prolong the action potential (AP) in guinea pig cardiomyocytes at low micromolar concentrations. Higher concentrations (≥ 10 μM) even shortened the AP. These findings can be explained by the drug's calcium channel inhibition, which counteracts the AP-prolonging effect generated by hERG blockade. Implementation of ibogaine's inhibitory effects on human ion channels in a computer model of a ventricular cardiomyocyte, on the other hand, suggested that ibogaine does prolong the AP in the human heart. We conclude that therapeutic concentrations of ibogaine have the propensity to prolong the QT interval of the electrocardiogram in humans. In some cases this may lead to cardiac arrhythmias. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Alkaloids from single skins of the Argentinian toad Melanophryniscus rubriventris (ANURA, BUFONIDAE): An unexpected variability in alkaloid profiles and a profusion of new structures.

    PubMed

    Garraffo, H Martin; Andriamaharavo, Nirina R; Vaira, Marcos; Quiroga, María F; Heit, Cecilia; Spande, Thomas F

    2012-12-01

    GC-MS analysis of single-skins of ten Melanophryniscus rubriventris toads (five collections of two toads each) captured during their breeding season in NW Argentina has revealed a total of 127 alkaloids of which 56 had not been previously detected in any frog or toad. Included among these new alkaloids are 23 new diastereomers of previously reported alkaloids. What is particularly distinguishing about the alkaloid profiles of these ten collections is the occurrence of many of the alkaloids, whether known or new to us, in only one of the ten skins sampled, despite two skins being obtained from each breeding site of the five populations. Many of the alkaloids are of classes known to have structures with branched-chains (e.g. pumiliotoxins and tricyclic structures) that are considered to derive from dietary mites. A large number of previously reported and new alkaloids are also of unclassified structures. Only a very few 3,5-disubstituted-indolizidine or -pyrrolizidine alkaloids are observed that have a straight-chain carbon skeleton and are likely derived from ant prey. The possible relationship of these collections made during the toad's brief breeding episodes to sequestration of dietary arthropods and individual alkaloid profiles is discussed.

  17. Ergot Alkaloids Produced by Endophytic Fungi of the Genus Epichloë

    PubMed Central

    Guerre, Philippe

    2015-01-01

    The development of fungal endophytes of the genus Epichloë in grasses results in the production of different groups of alkaloids, whose mechanism and biological spectrum of toxicity can differ considerably. Ergot alkaloids, when present in endophyte-infected tall fescue, are responsible for “fescue toxicosis” in livestock, whereas indole-diterpene alkaloids, when present in endophyte-infected ryegrass, are responsible for “ryegrass staggers”. In contrast, peramine and loline alkaloids are deterrent and/or toxic to insects. Other toxic effects in livestock associated with the consumption of endophyte-infected grass that contain ergot alkaloids include the “sleepy grass” and “drunken horse grass” diseases. Although ergovaline is the main ergopeptine alkaloid produced in endophyte-infected tall fescue and is recognized as responsible for fescue toxicosis, a number of questions still exist concerning the profile of alkaloid production in tall fescue and the worldwide distribution of tall fescue toxicosis. The purpose of this review is to present ergot alkaloids produced in endophyte-infected grass, the factors of variation of their level in plants, and the diseases observed in the mammalian species as relate to the profiles of alkaloid production. In the final section, interactions between ergot alkaloids and drug-metabolizing enzymes are presented as mechanisms that could contribute to toxicity. PMID:25756954

  18. Formicine ants: An arthropod source for the pumiliotoxin alkaloids of dendrobatid poison frogs

    PubMed Central

    Saporito, Ralph A.; Garraffo, H. Martin; Donnelly, Maureen A.; Edwards, Adam L.; Longino, John T.; Daly, John W.

    2004-01-01

    A remarkable diversity of bioactive lipophilic alkaloids is present in the skin of poison frogs and toads worldwide. Originally discovered in neotropical dendrobatid frogs, these alkaloids are now known from mantellid frogs of Madagascar, certain myobatrachid frogs of Australia, and certain bufonid toads of South America. Presumably serving as a passive chemical defense, these alkaloids appear to be sequestered from a variety of alkaloid-containing arthropods. The pumiliotoxins represent a major, widespread, group of alkaloids that are found in virtually all anurans that are chemically defended by the presence of lipophilic alkaloids. Identifying an arthropod source for these alkaloids has been a considerable challenge for chemical ecologists. However, an extensive collection of neotropical forest arthropods has now revealed a putative arthropod source of the pumiliotoxins. Here we report on the presence of pumiliotoxins in formicine ants of the genera Brachymyrmex and Paratrechina, as well as the presence of these ants in the stomach contents of the microsympatric pumiliotoxin-containing dendrobatid frog, Dendrobates pumilio. These pumiliotoxins are major alkaloids in D. pumilio, and Brachymyrmex and Paratrechina ants now represent the only known dietary sources of these toxic alkaloids. These findings further support the significance of ant-specialization and alkaloid sequestration in the evolution of bright warning coloration in poison frogs and toads. PMID:15128938

  19. [Comparative study on alkaloids of tissue-culture seedling and wild plant of Dendrobium huoshanense ].

    PubMed

    Chen, Nai-dong; Gao, Feng; Lin, Xin; Jin, Hui

    2014-06-01

    To compare the composition and content of alkaloid of Dendrobium huoshanense tissue-culture seedling and wild plant. A comparative evaluation on the quality was carried out by HPLC and TLC methods including the composition and the content of alkaloids. Remarkable variation existed in the two kinds of Dendrobium huoshanense. For the tissue-culture plant, only two alkaloids were checked out by both HPLC and TLC while four alkaloids were observed in the wild plant. The alkaloid content of tissue-culture seedling and wild plant was(0. 29 ± 0. 11)%o and(0. 43 ± 0. 15) %o,respectively. Distinguished difference is observed in both composition and content of alkaloids from the annual shoots of different provenances of Dendrobium huoshanense. It suggested that the quality of tissue-culture seedling of Dendrobium huoshanense might be inconsistent with the wild plant. Furthermore, the established alkaloids-knock-out HPLC method would provide a new research tool on quality control of Chinese medicinal materials which contain unknown alkaloids.

  20. [Exploration of toxicity reducing mechanism of aconite alkaloids during decoction process using liquid chromatography-mass spectrometry].

    PubMed

    Chen, Ping; Chen, Yimin; Chen, Jia; Tong, Hongbin; Xu, Zhiliang

    2013-11-01

    A high performance liquid chromatography-electrospray ionization mass spectrometry method was developed for the determination of aconite alkaloids. It was used to investigate the degradation of alkaloids of Radix Aconiti Lateralis Preparata during decoction. Six alkaline degradation products were identified, and the degradation regularity of diester-diterpenoid alkaloids was confirmed during the test using standards. The dynamic changes of the amount of aconite alkaloids in the decoction of Radix Aconiti Lateralis Preparata were supervised. Along with the increase of decoction time, the concentrations of diester-diterpenoid alkaloids and lipo-alkaloid decreased significantly. The results can provide a scientific basis for the safety use of aconite.

  1. Cancer Chemoprevention and Piperine: Molecular Mechanisms and Therapeutic Opportunities

    PubMed Central

    Rather, Rafiq A.; Bhagat, Madhulika

    2018-01-01

    Cancer is a genetic disease characterized by unregulated growth and dissemination of malignantly transformed neoplastic cells. The process of cancer development goes through several stages of biochemical and genetic alterations in a target cell. Several dietary alkaloids have been found to inhibit the molecular events and signaling pathways associated with various stages of cancer development and therefore are useful in cancer chemoprevention. Cancer chemoprevention has long been recognized as an important prophylactic strategy to reduce the burden of cancer on health care system. Cancer chemoprevention assumes the use of one or more pharmacologically active agents to block, suppress, prevent, or reverse the development of invasive cancer. Piperine is an active alkaloid with an excellent spectrum of therapeutic activities such as anti-oxidant, anti-inflammatory, immunomodulatory, anti-asthmatic, anti-convulsant, anti-mutagenic, antimycobacterial, anti-amoebic, and anti-cancer activities. In this article, we made an attempt to sum up the current knowledge on piperine that supports the chemopreventive potential of this dietary phytochemical. Many mechanisms have been purported to understand the chemopreventive action of piperine. Piperine has been reported to inhibit the proliferation and survival of many types of cancer cells through its influence on activation of apoptotic signaling and inhibition of cell cycle progression. Piperine is known to affect cancer cells in variety of other ways such as influencing the redox homeostasis, inhibiting cancer stem cell (CSC) self-renewal and modulation of ER stress and autophagy. Piperine can modify activity of many enzymes and transcription factors to inhibit invasion, metastasis, and angiogenesis. Piperine is a potent inhibitor of p-glycoprotein (P-gp) and has a significant effect on the drug metabolizing enzyme (DME) system. Because of its inhibitory influence on P-gp activity, piperine can reverse multidrug resistance (MDR) in cancer cells and acts as bioavailability enhancer for many chemotherapeutic agents. In this article, we emphasize the potential of piperine as a promising cancer chemopreventive agent and the knowledge we collected in this review can be applied in the strategic design of future researches particularly human intervention trials with piperine. PMID:29497610

  2. [Evaluation of anti-inflammatory activity of extracts from Siberian plants].

    PubMed

    Nesterova, Iu V; Povet'eva, T N; Aksinenko, S G; Suslov, N I; Gaĭdamovich, N N; Nagorniak, Iu G; Popova, E V; Kravtsova, S S; Andreeva, T I

    2009-01-01

    Experimental investigations have shown that water-alcohol extracts from plants containing alkaloids (Aconitum baikalense, Aconitum septentrionale, Delphinium elatum L., Conium maculatum) and salicylic acid (Filipendula ulmaria, Salix viminalis, Fragaria vesca, Rubus idaeus) inhibited the development of main symptoms of inflammation, viz. exudation, pain, fever, to the same extent as non-steroidal anti-inflammatory agents. The substances studied in this work may be used to develop new efficient pharmacological preparations for the treatment of different inflammatory conditions associated with severe pain syndrome.

  3. The Effects of Lasiocarpine, Retrorsine and Retronecine Pyrrole on Human Embryo Lung and Liver Cells in Culture

    PubMed Central

    Armstrong, Sylvia J.; Zuckerman, A. J.

    1972-01-01

    Retronecine pyrrole induces toxic changes both in human liver and lung cells. Lasiocarpine and retrorsine are toxic to liver cells but not to lung cells, which are unable to metabolize the pyrrolizidine alkaloids to pyrroles. The application of lasiocarpine to human liver cells in culture is followed by inhibition of DNA, RNA and protein synthesis; vacuolation of the cells, the prevention of mitosis and the formation of giant cells (“megalocytes”). PMID:5032089

  4. A natural anticancer agent thaspine targets human topoisomerase IB.

    PubMed

    Castelli, Silvia; Katkar, Prafulla; Vassallo, Oscar; Falconi, Mattia; Linder, Stig; Desideri, Alessandro

    2013-02-01

    The different steps of the topoisomerase I catalytic cycle have been analyzed in the presence of the plant alkaloid thaspine (1- (2-(Dimethylamino)ethyl)-3,8-dimethoxychromeno[5,4,3-cde]chromene-5,10-dione), known to induce apoptosis in colon carcinoma cells. The experiments indicate that thaspine inhibits both the cleavage and the religation steps of the enzyme reaction. The inhibition is reversible and the effect is enhanced upon pre-incubation. Molecular docking simulations of thaspine over topoisomerase I, in the presence or absence of the DNA substrate, show that thaspine, when interacting with the enzyme alone in the closed or in the open state, can bind in proximity of the active residues preventing the cleavage reaction, whilst when docked with the enzyme-DNA cleavable complex intercalates between the DNA bases in a way similar to that found for camptothecin, explaining its religation inhibition. These results unequivocally demonstrate that thaspine targets human topoisomerase I .

  5. Ibogaine, a noncompetitive inhibitor of serotonin transport, acts by stabilizing the cytoplasm-facing state of the transporter.

    PubMed

    Jacobs, Miriam T; Zhang, Yuan-Wei; Campbell, Scott D; Rudnick, Gary

    2007-10-05

    Ibogaine, a hallucinogenic alkaloid with purported anti-addiction properties, inhibited serotonin transporter (SERT) noncompetitively by decreasing V(max) with little change in the K(m) for serotonin (5-HT). Ibogaine also inhibited binding to SERT of the cocaine analog 2beta-2-carbomethoxy-3-(4-[(125)I]iodophenyl)tropane. However, inhibition of binding was competitive, increasing the apparent K(D) without much change in B(max). Ibogaine increased the reactivity of cysteine residues positioned in the proposed cytoplasmic permeation pathway of SERT but not at nearby positions out of that pathway. In contrast, cysteines placed at positions in the extracellular permeation pathway reacted at slower rates in the presence of ibogaine. These results are consistent with the proposal that ibogaine binds to and stabilizes the state of SERT from which 5-HT dissociates to the cytoplasm, in contrast with cocaine, which stabilizes the state that binds extracellular 5-HT.

  6. Ergot alkaloid transport across ruminant gastric tissues.

    PubMed

    Hill, N S; Thompson, F N; Stuedemann, J A; Rottinghaus, G W; Ju, H J; Dawe, D L; Hiatt, E E

    2001-02-01

    Ergot alkaloids cause fescue toxicosis when livestock graze endophyte-infected tall fescue. It is generally accepted that ergovaline is the toxic component of endophyte-infected tall fescue, but there is no direct evidence to support this hypothesis. The objective of this study was to examine relative and potential transport of ergoline and ergopeptine alkaloids across isolated gastric tissues in vitro. Sheep ruminal and omasal tissues were surgically removed and placed in parabiotic chambers. Equimolar concentrations of lysergic acid, lysergol, ergonovine, ergotamine, and ergocryptine were added to a Kreb's Ringer phosphate (KRP) solution on the mucosal side of the tissue. Tissue was incubated in near-physiological conditions for 240 min. Samples were taken from KRP on the serosal side of the chambers at times 0, 30, 60, 120, 180, and 240 min and analyzed for ergot alkaloids by competitive ELISA. The serosal KRP remaining after incubation was freeze-dried and the alkaloid species quantified by HPLC. The area of ruminal and omasal tissues was measured and the potential transportable alkaloids calculated by multiplying the moles of transported alkaloids per square centimeter of each tissue type by the surface area of the tissue. Studies were conducted to compare alkaloid transport in reticular, ruminal, and omasal tissues and to determine whether transport was active or passive. Ruminal tissue had greater ergot alkaloid transport potential than omasal tissue (85 vs 60 mmol) because of a larger surface area. The ruminal posterior dorsal sac had the greatest potential for alkaloid transport, but the other ruminal tissues were not different from one another. Alkaloid transport was less among reticular tissues than among ruminal tissues. Transport of alkaloids seemed to be an active process. The alkaloids with greatest transport potential were lysergic acid and lysergol. Ergopeptine alkaloids tended to pass across omasal tissues in greater quantities than across ruminal tissues, but their transport was minimal compared to lysergic acid and lysergol.

  7. Temporal and spatial variation in alkaloid levels in Achnatherum robustum, a native grass infected with the endophyte Neotyphodium.

    PubMed

    Faeth, Stanley H; Gardner, Dale R; Hayes, Cinnamon J; Jani, Andrea; Wittlinger, Sally K; Jones, Thomas A

    2006-02-01

    The native North American perennial grass Achnatherum robustum (Vasey) Barkworth [= Stipa robusta (Vasey) Scribn.] or sleepygrass is toxic and narcotic to livestock. The causative agents are alkaloidal mycotoxins produced from infections by a systemic and asexual Neotyphodium endophyte. Recent studies suggest that toxicity is limited across the range of sleepygrass in the Southwest USA. We sampled 17 populations of sleepygrass with varying distance from one focal population known for its high toxicity levels near Cloudcroft, NM, USA. For some, we sampled individual plants twice within the same growing season and over successive years (2001-2004). We also determined infection levels in each population. In general, all populations were highly infected, but infection levels were more variable near the focal population. Only infected plants within populations near the Cloudcroft area produced alkaloids. The ergot alkaloid, ergonovine, comprised the bulk of the alkaloids, with lesser amounts of lysergic and isolysergic acid amides and ergonovinine alkaloids. Levels of all alkaloids were positively correlated among individual plants within and between growing seasons. Infected plants that produced no alkaloids in 1 yr did not produce any alkaloids within the same growing season or in other years. Levels of alkaloids in sleepygrass populations declined with distance from the Cloudcroft population, although infection levels increased. Infected plants in populations in northern New Mexico and southern Colorado produced no alkaloids at all despite 100% infectivity. Our results suggest that only specific Neotyphodium haplotypes or specific Neotyphodium-grass combinations produce ergot alkaloids in sleepygrass. The Neotyphodium haplotype or host-endophyte combination that produces toxic levels of alkaloids appears restricted to one locality across the range of sleepygrass. Because of the wide variation in alkaloid levels among populations, interactions between the endophyte and host, and consequences for herbivores, competitors, and pathogens and other components of the community, are likely to vary widely across the geographic range of this native grass.

  8. Inhibitive effect of Xylopia ferruginea extract on the corrosion of mild steel in 1M HCl medium

    NASA Astrophysics Data System (ADS)

    Raja, Pandian Bothi; Rahim, Afidah Abdul; Osman, Hasnah; Awang, Khalijah

    2011-08-01

    The alkaloid content of the leaves and stem bark of Xylopia ferruginea plant was isolated and tested for its anticorrosion potential on mild steel corrosion in a hydrochloric acid medium by using electrochemical impedance spectroscopy, potentiodynamic polarization measurement, scanning electron microscopy (SEM), and Fourier transform infra red (FTIR) analysis. The experimental results reveal the effective anticorrosion potential of the plant extract. The mixed mode of action exhibited by the plant extract is evidenced from the polarization study. SEM images proof the formation of a protective layer over the mild steel surface, and this is supported by the FTIR study. The possible mode of the corrosion inhibition mechanism has also been discussed.

  9. The effect of body condition on disposition of alkaloids from silvery lupine (Lupinus argenteus pursh) in sheep.

    PubMed

    Lopez-Ortiz, S; Panter, K E; Pfister, J A; Launchbaugh, K L

    2004-09-01

    Several species of lupine (Lupinus spp.) are poisonous to livestock, producing death in sheep and "crooked calf disease" in cattle. Range livestock cope with poisonous plants through learned foraging strategies or mechanisms affecting toxicant disposition. When a toxic plant is eaten, toxicant clearance may be influenced by the animal's nutritional and/or physiological status. This research was conducted to determine whether differences in body condition or short-term nutritional supplementation of sheep altered the disposition of lupine alkaloids given as a single oral dose of ground silvery lupine (Lupinus argenteus) seed. Ewes in average body condition (ABC, n = 9) and low body condition (LBC, n = 10) received a single dose of ground lupine seeds including pods (8.5 g/kg BW) via gavage on the first day of the experiment, and were then randomly assigned to one of two nutritional supplement treatments. Blood samples were taken 0 to 60 h after dosing to compare blood alkaloid concentration and to evaluate alkaloid absorption and elimination profiles. Concentrations of total alkaloid and anagyrine, 5,6 dehydrolupanine, lupanine, and alkaloid E were measured in serum. These four alkaloids constituted 78 and 75% of the total alkaloid concentration in serum for LBC vs. ABC groups, respectively. Initial analysis indicated that short-term supplementation had no effect on alkaloid disposition, and supplementation was removed from the statistical model. The highest concentration of total alkaloids was observed 2 h after dosing. Overall, serum total alkaloid and anagyrine levels (area under the curve) were higher (P < 0.01) for sheep in the LBC group. Serum peak concentrations of total alkaloid and anagyrine were higher in LBC vs. ABC groups (P < 0.05). Serum elimination of anagyrine, unknown alkaloid E, and lupanine was decreased in LBC vs. ABC treatments (P < 0.05). These results demonstrate that body condition is important in the disposition of lupine alkaloids; however, further research is needed to determine the potential benefit, if any, that short-term nutritional supplementation might have on alkaloid disposition.

  10. Survival and development of Heliothis virescens (Lepidoptera: Noctuidae) larvae on isogenic tobacco lines with different levels of alkaloids.

    PubMed

    Jackson, D Michael; Johnson, A W; Stephenson, M G

    2002-12-01

    Levels of pyridine alkaloids were measured in 18 tobacco, Nicotiana tabacum L., entries from three parental isolines ('NC 95', 'SC 58', and 'Coker 139'), grown at Tifton, GA, Florence, SC, and Oxford, NC, in 1991. Levels of alkaloids in bud leaves (first fully unfolded leaf below the apical leaf bud) were negatively correlated to natural infestation ratings of tobacco budworm larvae, Heliothis virescens (F.), 7 wk after transplanting. For artificially infested bud leaves at Oxford, there was a significant negative correlation between levels of total alkaloids and larval weights after 1 wk of feeding. In 1992, four entries from the 'NC 95' isoline were grown at Oxford, and samples for alkaloid analyses were taken every 2 wk at several leaf positions on each plant. During weeks 4, 8, 12, and 16, second instar tobacco budworms were caged on individual, intact leaves inside perforated plastic bags in the field. The survival and development of tobacco budworm larvae after 1 wk were negatively correlated with levels of alkaloids at the various leaf positions. Larvae survived better and grew faster on the bud leaves of each entry where alkaloid levels were lower than they did on leaves further down the stalk where alkaloid levels were higher. More larvae survived on the lower leaves of the low alkaloid lines than on the lower leaves of the high alkaloid lines. Even moderate increases in pyridine alkaloids had negative effects on tobacco budworm survival and development. Nicotine constituted >97% of the pyridine alkaloids in the 'NC95' isoline each year.

  11. Qualitative and quantitative analysis of an alkaloid fraction from Piper longum L. using ultra-high performance liquid chromatography-diode array detector-electrospray ionization mass spectrometry.

    PubMed

    Li, Kuiyong; Fan, Yunpeng; Wang, Hui; Fu, Qing; Jin, Yu; Liang, Xinmiao

    2015-05-10

    In a previous research, an alkaloid fraction and 18 alkaloid compounds were prepared from Piper longum L. by series of purification process. In this paper, a qualitative and quantitative analysis method using ultra-high performance liquid chromatography-diode array detector-mass spectrometry (UHPLC-DAD-MS) was developed to evaluate the alkaloid fraction. Qualitative analysis of the alkaloid fraction was firstly completed by UHPLC-DAD method and 18 amide alkaloid compounds were identified. A further qualitative analysis of the alkaloid fraction was accomplished by UHPLC-MS/MS method. Another 25 amide alkaloids were identified according to their characteristic ions and neutral losses. At last, a quantitative method for the alkaloid fraction was established using four marker compounds including piperine, pipernonatine, guineensine and N-isobutyl-2E,4E-octadecadienamide. After the validation of this method, the contents of above four marker compounds in the alkaloid fraction were 57.5mg/g, 65.6mg/g, 17.7mg/g and 23.9mg/g, respectively. Moreover, the relative response factors of other three compounds to piperine were calculated. A comparative study between external standard quantification and relative response factor quantification proved no remarkable difference. UHPLC-DAD-MS method was demonstrated to be a powerful tool for the characterization of the alkaloid fraction from P. longum L. and the result proved that the quality of alkaloid fraction was efficiently improved after appropriate purification. Copyright © 2015. Published by Elsevier B.V.

  12. An ergot alkaloid biosynthesis gene and clustered hypothetical genes from Aspergillus fumigatus.

    PubMed

    Coyle, Christine M; Panaccione, Daniel G

    2005-06-01

    The ergot alkaloids are a family of indole-derived mycotoxins with a variety of significant biological activities. Aspergillus fumigatus, a common airborne fungus and opportunistic human pathogen, and several fungi in the relatively distant taxon Clavicipitaceae (clavicipitaceous fungi) produce different sets of ergot alkaloids. The ergot alkaloids of these divergent fungi share a four-member ergoline ring but differ in the number, type, and position of the side chains. Several genes required for ergot alkaloid production are known in the clavicipitaceous fungi, and these genes are clustered in the genome of the ergot fungus Claviceps purpurea. We investigated whether the ergot alkaloids of A. fumigatus have a common biosynthetic and genetic origin with those of the clavicipitaceous fungi. A homolog of dmaW, the gene controlling the determinant step in the ergot alkaloid pathway of clavicipitaceous fungi, was identified in the A. fumigatus genome. Knockout of dmaW eliminated all known ergot alkaloids from A. fumigatus, and complementation of the mutation restored ergot alkaloid production. Clustered with dmaW in the A. fumigatus genome are sequences corresponding to five genes previously proposed to encode steps in the ergot alkaloid pathway of C. purpurea, as well as additional sequences whose deduced protein products are consistent with their involvement in the ergot alkaloid pathway. The corresponding genes have similarities in their nucleotide sequences, but the orientations and positions within the cluster of several of these genes differ. The data indicate that the ergot alkaloid biosynthetic capabilities in A. fumigatus and the clavicipitaceous fungi had a common origin.

  13. An Ergot Alkaloid Biosynthesis Gene and Clustered Hypothetical Genes from Aspergillus fumigatus†

    PubMed Central

    Coyle, Christine M.; Panaccione, Daniel G.

    2005-01-01

    The ergot alkaloids are a family of indole-derived mycotoxins with a variety of significant biological activities. Aspergillus fumigatus, a common airborne fungus and opportunistic human pathogen, and several fungi in the relatively distant taxon Clavicipitaceae (clavicipitaceous fungi) produce different sets of ergot alkaloids. The ergot alkaloids of these divergent fungi share a four-member ergoline ring but differ in the number, type, and position of the side chains. Several genes required for ergot alkaloid production are known in the clavicipitaceous fungi, and these genes are clustered in the genome of the ergot fungus Claviceps purpurea. We investigated whether the ergot alkaloids of A. fumigatus have a common biosynthetic and genetic origin with those of the clavicipitaceous fungi. A homolog of dmaW, the gene controlling the determinant step in the ergot alkaloid pathway of clavicipitaceous fungi, was identified in the A. fumigatus genome. Knockout of dmaW eliminated all known ergot alkaloids from A. fumigatus, and complementation of the mutation restored ergot alkaloid production. Clustered with dmaW in the A. fumigatus genome are sequences corresponding to five genes previously proposed to encode steps in the ergot alkaloid pathway of C. purpurea, as well as additional sequences whose deduced protein products are consistent with their involvement in the ergot alkaloid pathway. The corresponding genes have similarities in their nucleotide sequences, but the orientations and positions within the cluster of several of these genes differ. The data indicate that the ergot alkaloid biosynthetic capabilities in A. fumigatus and the clavicipitaceous fungi had a common origin. PMID:15933009

  14. Comparative study of fourteen alkaloids from Uncaria rhynchophylla hooks and leaves using HPLC-diode array detection-atmospheric pressure chemical ionization/MS method.

    PubMed

    Qu, Jialin; Gong, Tianxing; Ma, Bin; Zhang, Lin; Kano, Yoshihiro; Yuan, Dan

    2012-01-01

    The purpose of the study is to compare alkaloid profile of Uncaria rhynchophylla hooks and leaves. Ten oxindole alkaloids and four glycosidic indole alkaloids were identified using HPLC-diode array detection (DAD) or LC-atmospheric pressure chemical ionization (APCI)-MS method, and a HPLC-UV method for simultaneous quantification of major alkaloids was validated. The hooks are characterized by high levels of four oxindole alkaloids rhynchophylline (R), isorhynchophylline (IR), corynoxeine (C) and isocorynoxeine (IC), while the leaves contained high level of two glycosidic indole alkaloids vincoside lactam (VL) and strictosidine (S). The presented methods have proven its usefulness in chemical characterization of U. rhynchophylla hooks and leaves.

  15. Total alkaloid content in various fractions of Tabernaemonata sphaerocarpa Bl. (Jembirit) leaves

    NASA Astrophysics Data System (ADS)

    Salamah, N.; Ningsih, D. S.

    2017-11-01

    Tabernaemontana sphaerocarpa Bl. (Jembirit) is one of the Apocynaceae family plants containing alkaloid compound. Traditionally, it is used as an anti-inflammatory medicine. It is found to have a new bisindole alkaloid compound that shows a potent cytotoxic activity in human cancer. This study aimed to know the total alkaloid content in some fractions of ethanolic extract of T. sphaerocarpa Bl. leaf powder was extracted by maceration method in 70% ethanol solvent. Then, the extract was fractionated in a separatory funnel using water, ethyl acetate, and hexane. The total alkaloid content in each fraction was analyzed with visible spectrophotometric methods based on the reaction with Bromocresol Green (BCG). The total alkaloids in water fraction and ethyl acetate fraction were (0.0312±0.0009)% and (0.0281±0.0014)%, respectively. Meanwhile, the total alkaloid content in hexane was not detected. The statistical analysis, performed in SPSS, resulted in a significant difference between the total alkaloids in water fraction and ethyl acetate fraction. The total alkaloid in water fraction of T. sphaerocarpa Bl. was higher than the one in ethyl acetate fraction.

  16. Discovery of talatisamine as a novel specific blocker for the delayed rectifier K+ channels in rat hippocampal neurons.

    PubMed

    Song, M-K; Liu, H; Jiang, H-L; Yue, J-M; Hu, G-Y; Chen, H-Z

    2008-08-13

    Blocking specific K+ channels has been proposed as a promising strategy for the treatment of neurodegenerative diseases. Using a computational virtual screening approach and electrophysiological testing, we found four Aconitum alkaloids are potent blockers of the delayed rectifier K+ channel in rat hippocampal neurons. In the present study, we first tested the action of the four alkaloids on the voltage-gated K+, Na+ and Ca2+ currents in rat hippocampal neurons, and then identified that talatisamine is a specific blocker for the delayed rectifier K+ channel. External application of talatisamine reversibly inhibited the delayed rectifier K+ current (IK) with an IC50 value of 146.0+/-5.8 microM in a voltage-dependent manner, but exhibited very slight blocking effect on the voltage-gated Na+ and Ca2+ currents even at the high concentration of 1-3 mM. Moreover, talatisamine exerted a significant hyperpolarizing shift of the steady-state activation, but did not influence the steady state inactivation of IK and its recovery from inactivation, suggesting that talatisamine had no allosteric action on IK channel and was a pure blocker binding to the external pore entry of the channel. Our present study made the first discovery of potent and specific IK channel blocker from Aconitum alkaloids. It has been argued that suppressing K+ efflux by blocking IK channel may be favorable for Alzheimer's disease therapy. Talatisamine can therefore be considered as a leading compound worthy of further investigations.

  17. [Alkaloids of Pausinystalia macroceras].

    PubMed

    Leboef, M; Cavé, A; Mangeney, P; Bouquet, A

    1981-04-01

    A study of the alkaloidal content of trunk-barks of Pausinystalia macroceras (K. Schum.) Pierre, Rubiaceae, resulted in the isolation of six alkaloids, five of which are indole alkaloids that belong to the yohimbane and heteroyohimbane groups; among them, yohimbine was found in major amount. Moreover, the levorotatory isomer of calycanthine, a quinoline dimeric tryptophane derived base, has been isolated for the first time. The phytochemical significance of calycanthine and related alkaloids is discussed.

  18. Identification of Oxygenated Fatty Acid as a Side Chain of Lipo-Alkaloids in Aconitum carmichaelii by UHPLC-Q-TOF-MS and a Database.

    PubMed

    Liang, Ying; Wu, Jian-Lin; Leung, Elaine Lai-Han; Zhou, Hua; Liu, Zhongqiu; Yan, Guanyu; Liu, Ying; Liu, Liang; Li, Na

    2016-03-31

    Lipo-alkaloid is a kind of C19-norditerpenoid alkaloid usually found in Aconitum species. Structurally, they contain an aconitane skeleton and one or two fatty acid moieties of 3-25 carbon chains with 1-6 unsaturated degrees. Analysis of the lipo-alkaloids in roots of Aconitum carmichaelii resulted in the isolation of six known pure lipo-alkaloids (A1-A6) and a lipo-alkaloid mixture (A7). The mixture shared the same aconitane skeleton of 14-benzoylmesaconine, but their side chains were determined to be 9-hydroxy-octadecadienoic acid, 13-hydroxy-octadecadienoic acid and 10-hydroxy-octadecadienoic acid, respectively, by MS/MS analysis after alkaline hydrolysis. To our knowledge, this is the first time of the reporting of the oxygenated fatty acids as the side chains in naturally-occurring lipo-alkaloids. In order to identify more lipo-alkaloids, a compound database was established based on various combinations between the aconitane skeleton and the fatty acid chain, and then, the identification of lipo-alkaloids was conducted using the database, UHPLC-Q-TOF-MS and MS/MS. Finally, 148 lipo-alkaloids were identified from A. carmichaelii after intensive MS/MS analysis, including 93 potential new compounds and 38 compounds with oxygenated fatty acid moieties.

  19. The ergot alkaloid gene cluster: functional analyses and evolutionary aspects.

    PubMed

    Lorenz, Nicole; Haarmann, Thomas; Pazoutová, Sylvie; Jung, Manfred; Tudzynski, Paul

    2009-01-01

    Ergot alkaloids and their derivatives have been traditionally used as therapeutic agents in migraine, blood pressure regulation and help in childbirth and abortion. Their production in submerse culture is a long established biotechnological process. Ergot alkaloids are produced mainly by members of the genus Claviceps, with Claviceps purpurea as best investigated species concerning the biochemistry of ergot alkaloid synthesis (EAS). Genes encoding enzymes involved in EAS have been shown to be clustered; functional analyses of EAS cluster genes have allowed to assign specific functions to several gene products. Various Claviceps species differ with respect to their host specificity and their alkaloid content; comparison of the ergot alkaloid clusters in these species (and of clavine alkaloid clusters in other genera) yields interesting insights into the evolution of cluster structure. This review focuses on recently published and also yet unpublished data on the structure and evolution of the EAS gene cluster and on the function and regulation of cluster genes. These analyses have also significant biotechnological implications: the characterization of non-ribosomal peptide synthetases (NRPS) involved in the synthesis of the peptide moiety of ergopeptines opened interesting perspectives for the synthesis of ergot alkaloids; on the other hand, defined mutants could be generated producing interesting intermediates or only single peptide alkaloids (instead of the alkaloid mixtures usually produced by industrial strains).

  20. Putrescine N-Methyltransferase in Cultured Roots of Hyoscyamus albus1

    PubMed Central

    Hibi, Naruhiro; Fujita, Toshihiro; Hatano, Mika; Hashimoto, Takashi; Yamada, Yasuyuki

    1992-01-01

    Biosynthesis of tropane alkaloids is thought to proceed by way of the diamine putrescine, followed by its methylation by putrescine N-methyltransferase (PMT; EC 2.1.1.53). High PMT activities were found in branch roots and/or cultured roots of several solanaceous plants. PMT was partially purified and characterized from cultured roots of Hyoscyamus albus that contain hyoscyamine as the main alkaloid. Initial velocity studies and product inhibition patterns of PMT are consistent with an ordered bi-bi mechanism, in which the Km values for putrescine and S-adenosyl-l-methionine are 277 and 203 μm, respectively, and the Ki value for S-adenosyl-l-homocysteine is 110 μm. PMT efficiently N-methylated amines that have at least two amino groups separated by three or four methylene groups. Monoamines were good competitive inhibitors of PMT, among which n-butylamine, cyclohexylamine, and exo-2-aminonorbornane were most inhibitory, with respective Ki values of 11.0, 9.1, and 10.0 μm. When n-butylamine was fed to root cultures of H. albus, the alkamine intermediates (tropinone, tropine, and pseudotropine) drastically decreased at 1 mm of the exogenous monoamine, and the hyoscyamine content decreased by 52% at 6 mm, whereas the contents of 6β-hydroxyhyoscyamine and scopolamine did not change. Free and conjugated forms of polyamines were also measured. The n-butylamine treatment caused a large increase in the putrescine content (especially in the conjugated pool), and the spermine content also increased slightly, whereas the spermidine content decreased slightly. The increase in the putrescine pool size (approximately 40 nmol/mg dry weight) was large enough to account for the decrease in the total alkaloid pool size. Similar results were also obtained in root cultures of Datura stramonium. These studies further support the role of PMT as the first committed enzyme specific to alkaloid biosynthesis. Images Figure 8 PMID:16653064

  1. Phytochemical and pharmacological investigation of Spiraea chamaedryfolia: a contribution to the chemotaxonomy of Spiraea genus.

    PubMed

    Kiss, Tivadar; Cank, Kristóf Bence; Orbán-Gyapai, Orsolya; Liktor-Busa, Erika; Zomborszki, Zoltán Péter; Rutkovska, Santa; Pučka, Irēna; Németh, Anikó; Csupor, Dezső

    2017-12-21

    Diterpene alkaloids are secondary plant metabolites and chemotaxonomical markers with a strong biological activity. These compounds are characteristic for the Ranunculaceae family, while their occurrence in other taxa is rare. Several species of the Spiraea genus (Rosaceae) are examples of this rarity. Screening Spiraea species for alkaloid content is a chemotaxonomical approach to clarify the classification and phylogeny of the genus. Novel pharmacological findings make further investigations of Spiraea diterpene alkaloids promising. Seven Spiraea species were screened for diterpene alkaloids. Phytochemical and pharmacological investigations were performed on Spiraea chamaedryfolia, the species found to contain diterpene alkaloids. Its alkaloid-rich fractions were found to exert a remarkable xanthine-oxidase inhibitory activity and a moderate antibacterial activity. The alkaloid distribution within the root was clarified by microscopic techniques.

  2. Alkaloid Cluster Gene ccsA of the Ergot Fungus Claviceps purpurea Encodes Chanoclavine I Synthase, a Flavin Adenine Dinucleotide-Containing Oxidoreductase Mediating the Transformation of N-Methyl-Dimethylallyltryptophan to Chanoclavine I ▿

    PubMed Central

    Lorenz, Nicole; Olšovská, Jana; Šulc, Miroslav; Tudzynski, Paul

    2010-01-01

    Ergot alkaloids are indole-derived secondary metabolites synthesized by the phytopathogenic ascomycete Claviceps purpurea. In wild-type strains, they are exclusively produced in the sclerotium, a hibernation structure; for biotechnological applications, submerse production strains have been generated by mutagenesis. It was shown previously that the enzymes specific for alkaloid biosynthesis are encoded by a gene cluster of 68.5 kb. This ergot alkaloid cluster consists of 14 genes coregulated and expressed under alkaloid-producing conditions. Although the role of some of the cluster genes in alkaloid biosynthesis could be confirmed by a targeted knockout approach, further functional analyses are needed, especially concerning the early pathway-specific steps up to the production of clavine alkaloids. Therefore, the gene ccsA, originally named easE and preliminarily annotated as coding for a flavin adenine dinucleotide-containing oxidoreductase, was deleted in the C. purpurea strain P1, which is able to synthesize ergot alkaloids in axenic culture. Five independent knockout mutants were analyzed with regard to alkaloid-producing capability. Thin-layer chromatography (TLC), ultrapressure liquid chromatography (UPLC), and mass spectrometry (MS) analyses revealed accumulation of N-methyl-dimethylallyltryptophan (Me-DMAT) and traces of dimethylallyltryptophan (DMAT), the first pathway-specific intermediate. Since other alkaloid intermediates could not be detected, we conclude that deletion of ccsA led to a block in alkaloid biosynthesis beyond Me-DMAT formation. Complementation with a ccsA/gfp fusion construct restored alkaloid biosynthesis. These data indicate that ccsA encodes the chanoclavine I synthase or a component thereof catalyzing the conversion of N-methyl-dimethylallyltryptophan to chanoclavine I. PMID:20118373

  3. Alkaloid cluster gene ccsA of the ergot fungus Claviceps purpurea encodes chanoclavine I synthase, a flavin adenine dinucleotide-containing oxidoreductase mediating the transformation of N-methyl-dimethylallyltryptophan to chanoclavine I.

    PubMed

    Lorenz, Nicole; Olsovská, Jana; Sulc, Miroslav; Tudzynski, Paul

    2010-03-01

    Ergot alkaloids are indole-derived secondary metabolites synthesized by the phytopathogenic ascomycete Claviceps purpurea. In wild-type strains, they are exclusively produced in the sclerotium, a hibernation structure; for biotechnological applications, submerse production strains have been generated by mutagenesis. It was shown previously that the enzymes specific for alkaloid biosynthesis are encoded by a gene cluster of 68.5 kb. This ergot alkaloid cluster consists of 14 genes coregulated and expressed under alkaloid-producing conditions. Although the role of some of the cluster genes in alkaloid biosynthesis could be confirmed by a targeted knockout approach, further functional analyses are needed, especially concerning the early pathway-specific steps up to the production of clavine alkaloids. Therefore, the gene ccsA, originally named easE and preliminarily annotated as coding for a flavin adenine dinucleotide-containing oxidoreductase, was deleted in the C. purpurea strain P1, which is able to synthesize ergot alkaloids in axenic culture. Five independent knockout mutants were analyzed with regard to alkaloid-producing capability. Thin-layer chromatography (TLC), ultrapressure liquid chromatography (UPLC), and mass spectrometry (MS) analyses revealed accumulation of N-methyl-dimethylallyltryptophan (Me-DMAT) and traces of dimethylallyltryptophan (DMAT), the first pathway-specific intermediate. Since other alkaloid intermediates could not be detected, we conclude that deletion of ccsA led to a block in alkaloid biosynthesis beyond Me-DMAT formation. Complementation with a ccsA/gfp fusion construct restored alkaloid biosynthesis. These data indicate that ccsA encodes the chanoclavine I synthase or a component thereof catalyzing the conversion of N-methyl-dimethylallyltryptophan to chanoclavine I.

  4. Vinpocetine inhibits Streptococcus pneumoniae-induced upregulation of mucin MUC5AC expression via induction of MKP-1 phosphatase in the pathogenesis of otitis media.

    PubMed

    Lee, Ji-Yun; Komatsu, Kensei; Lee, Byung-Cheol; Miyata, Masanori; O'Neill Bohn, Ashley; Xu, Haidong; Yan, Chen; Li, Jian-Dong

    2015-06-15

    Mucin overproduction is a hallmark of otitis media (OM). Streptococcus pneumoniae is one of the most common bacterial pathogens causing OM. Mucin MUC5AC plays an important role in mucociliary clearance of bacterial pathogens. However, if uncontrolled, excessive mucus contributes significantly to conductive hearing loss. Currently, there is a lack of effective therapeutic agents that suppress mucus overproduction. In this study, we show that a currently existing antistroke drug, vinpocetine, a derivative of the alkaloid vincamine, inhibited S. pneumoniae-induced mucin MUC5AC upregulation in cultured middle ear epithelial cells and in the middle ear of mice. Moreover, vinpocetine inhibited MUC5AC upregulation by inhibiting the MAPK ERK pathway in an MKP-1-dependent manner. Importantly, ototopical administration of vinpocetine postinfection inhibited MUC5AC expression and middle ear inflammation induced by S. pneumoniae and reduced hearing loss and pneumococcal loads in a well-established mouse model of OM. Thus, these studies identified vinpocetine as a potential therapeutic agent for inhibiting mucus production in the pathogenesis of OM. Copyright © 2015 by The American Association of Immunologists, Inc.

  5. Berberine inhibits enterovirus 71 replication by downregulating the MEK/ERK signaling pathway and autophagy.

    PubMed

    Wang, Huiqiang; Li, Ke; Ma, Linlin; Wu, Shuo; Hu, Jin; Yan, Haiyan; Jiang, Jiandong; Li, Yuhuan

    2017-01-11

    The MEK-ERK signaling pathway and autophagy play an important role for enterovirus71(EV71) replication. Inhibition of MEK-ERK signaling pathway and autophagy is shown to impair EV71 replication. Berberine (BBR), an isoquinoline alkaloid isolated from Berberis vulgaris L., has been reported to have ability to regulate this signaling pathway and autophagy. Herein, we want to determine whether berberine can inhibit EV71 infection by downregulating the MEK/ERK signaling pathway and autophagy. The antiviral effect of berberine was determined by cytopathic effect (CPE) assay, western blotting assay and qRT-PCR assay. The mechanism of BBR anti-virus was determined by western blotting assay and immunofluorescence assay. We showed that berberine does-dependently reduced EV71 RNA and protein synthesis, which was, at least in part, the result of inhibition of activation of MEK/ERK signaling pathway. Furthermore, we found that berberine suppressed the EV71-induced autophagy by activating AKT protein and inhibiting the phosphorylation of JNK and PI3KIII. BBR inhibited EV71 replication by downregulating autophagy and MEK/ERK signaling pathway. These findings suggest that BBR may be a potential agent or supplement against EV71 infection.

  6. Four new diterpenoid alkaloids from Aconitum japonicum subsp. subcuneatum.

    PubMed

    Yamashita, Hiroshi; Takeda, Keiko; Haraguchi, Machiko; Abe, Yuki; Kuwahara, Natsumi; Suzuki, Shota; Terui, Ayaka; Masaka, Takumi; Munakata, Naoko; Uchida, Mariko; Nunokawa, Masashi; Kaneda, Kyousuke; Goto, Masuo; Lee, Kuo-Hsiung; Wada, Koji

    2018-01-01

    Diterpenoid alkaloids with remarkable chemical properties and biological activities are frequently found in plants of the genera Aconitum, Delphinium, and Garrya. Accordingly, several diterpenoid alkaloid constituents of Aconitum and Delphinium plants as well as their derivatives exhibited cytotoxic activity against lung, prostate, nasopharyngeal, and vincristine-resistant nasopharyngeal cancer cell lines. Four new C 19 -diterpenoid alkaloids, 14-anisoyllasianine (1), 14-anisoyl-N-deethylaconine (2), N-deethylaljesaconitine A (3), and N-deethylnevadensine (4), together with 17 known C 19 - and C 20 -diterpenoid alkaloids, were isolated in a phytochemical investigation of rhizoma of Aconitum japonicum THUNB. subsp. subcuneatum (NAKAI) KADOTA. Their structures were elucidated by extensive spectroscopic methods including NMR (1D and 2D), IR, and MS (HRMS). Eight known diterpenoid alkaloids, lipoaconitine, lipomesaconitine, aconine, nevadenine, talatisamine, nevadensine, ryosenamine, and dehydrolucidusculine, were isolated the first time from A. japonicum subsp. subcuneatum. Three of the new C 19 -diterpenoid alkaloids (1, 3, 4) and six of the known diterpenoid alkaloids were evaluated for cytotoxic activity against five human tumor cell lines.

  7. Mechanism of the protective effects of the combined treatment with rhynchophylla total alkaloids and sinapine thiocyanate against a prothrombotic state caused by vascular endothelial cell inflammatory damage

    PubMed Central

    Li, Yunlun; Zhang, Xinya; Yang, Wenqing; Li, Chao; Chu, Yanjun; Jiang, Haiqiang; Shen, Zhenzhen

    2017-01-01

    The aim of the present study was to investigate the effect and the underlying mechanism of the combined treatment of rhynchophylla total alkaloids (RTA) and sinapine thiocyanate for protection against a prothrombotic state (PTS) associated with the tumor necrosis factor-alpha (TNF-α)-induced inflammatory injury of vascular endothelial cells (VECs). A TNF-α-induced VEC inflammatory injury model was established, and cell morphology of VECs was evaluated using scanning electron microscopy. In addition, reverse transcription-quantitative polymerase chain reaction and western blot analysis were performed to examine the mRNA and protein expression of coagulation-related factors, including nuclear factor-κB (NF-κB), transforming growth factor-β1 (TGF-β1), tissue factor (TF), plasminogen activator inhibitor (PAI-1), protease-activation receptors (PAR-1) and protein kinase C (PKC-α) in VECs. Combined treatment with RTA and sinapine thiocyanate was demonstrated to reduce, to a varying extent, the mRNA and protein expression of NF-κB, TGF-β1, TF, PAR-1, PKC-α and PAI-1. Furthermore, combined treatment with RTA and sinapine thiocyanate was able to downregulate the expression of coagulation-related factors in injured VECs, thereby inhibiting the PTS induced by vascular endothelial injury. The underlying mechanism is partially associated with the TF-mediated activation of the thrombin-receptor signaling pathway that suppresses coagulation during inflammation and balances fibrinolysis in order to inhibit fibrin generation and deposition. PMID:28587383

  8. Screening and characterization of selected drugs having antibacterial potential.

    PubMed

    Javed, Hina; Tabassum, Sobia; Erum, Shazia; Murtaza, Iram; Muhammad, Aish; Amin, Farhana; Nisar, Muhammad Farrukh

    2018-05-01

    Due to ever increasing antibiotic resistance offered by pathogenic bacterial strains and side effects of synthetic antibiotics, thereof, there is a need to explore the effective phytochemicals from natural resources. In order to help overcoming the problem of effective natural drug and the side effects posed by the use of the synthetic drugs, five different plants namely Thymus vulgaris, Lavandula angustifolia, Rosmarinus officinalis, Cymbopogon citratus and Achillea millefolium were selected to study their antibacterial potential. Antibacterial activity and minimum inhibitory concentration (MIC) checked against the selected bacterial strains. As compared to other test plants, ethanolic extract of Rosmarinus officinalis leaves showed the most promising inhibitory effect i.e: inhibition zone (18.17± 0.44mm) against Klebsiella pneumoniae and the lowest inhibition (15.5±0.29mm) against Pseudomonas aeruginosa and Escherichia coli (p<0.05). The MIC values were recorded in the range of 1 to 20mg/ml. Screening of the selected extracts for the test plants additionally indicate some unique variations. Results were further confirmed through TLC for alkaloids and terpenoids (15% sulphuric acid and Dragedroff's reagent) in ethanolic extract. Characterization of Rosmarinus officinalis of ethanolic extract was carried out using column chromatography. The appearance of orange crystals may indicate the presence of alkaloidal bioactive compounds which need to be further investigated. The tested plants may have a potential for fighting against some infectious diseases caused by selected human pathogenic bacterial strains. This knowledge may incite a gateway to effective drug search and so on.

  9. Mechanism of the protective effects of the combined treatment with rhynchophylla total alkaloids and sinapine thiocyanate against a prothrombotic state caused by vascular endothelial cell inflammatory damage.

    PubMed

    Li, Yunlun; Zhang, Xinya; Yang, Wenqing; Li, Chao; Chu, Yanjun; Jiang, Haiqiang; Shen, Zhenzhen

    2017-06-01

    The aim of the present study was to investigate the effect and the underlying mechanism of the combined treatment of rhynchophylla total alkaloids (RTA) and sinapine thiocyanate for protection against a prothrombotic state (PTS) associated with the tumor necrosis factor-alpha (TNF-α)-induced inflammatory injury of vascular endothelial cells (VECs). A TNF-α-induced VEC inflammatory injury model was established, and cell morphology of VECs was evaluated using scanning electron microscopy. In addition, reverse transcription-quantitative polymerase chain reaction and western blot analysis were performed to examine the mRNA and protein expression of coagulation-related factors, including nuclear factor-κB (NF-κB), transforming growth factor-β1 (TGF-β1), tissue factor (TF), plasminogen activator inhibitor (PAI-1), protease-activation receptors (PAR-1) and protein kinase C (PKC-α) in VECs. Combined treatment with RTA and sinapine thiocyanate was demonstrated to reduce, to a varying extent, the mRNA and protein expression of NF-κB, TGF-β1, TF, PAR-1, PKC-α and PAI-1. Furthermore, combined treatment with RTA and sinapine thiocyanate was able to downregulate the expression of coagulation-related factors in injured VECs, thereby inhibiting the PTS induced by vascular endothelial injury. The underlying mechanism is partially associated with the TF-mediated activation of the thrombin-receptor signaling pathway that suppresses coagulation during inflammation and balances fibrinolysis in order to inhibit fibrin generation and deposition.

  10. Effect of feeding fescue seed containing ergot alkaloid toxins on stallion spermatogenesis and sperm cells.

    PubMed

    Fayrer-Hosken, R; Stanley, A; Hill, N; Heusner, G; Christian, M; De La Fuente, R; Baumann, C; Jones, L

    2012-12-01

    The cellular effects of tall fescue grass-associated toxic ergot alkaloids on stallion sperm and colt testicular tissue were evaluated. This was a continuation of an initial experiment where the effects of toxic ergot alkaloids on the stallion spermiogram were investigated. The only spermiogram parameter in exposed stallions that was affected by the toxic ergot alkaloids was a decreased gel-free volume of the ejaculate. This study examined the effect of toxic ergot alkaloids on chilling and freezing of the stallion sperm cells. The effect of toxic ergot alkaloids on chilled extended sperm cells for 48 h at 5°C was to make the sperm cells less likely to undergo a calcium ionophore-induced acrosome reaction. The toxic ergot alkaloids had no effect on the freezability of sperm cells. However, if yearling colts were fed toxic ergot alkaloids, then the cytological analysis of meiotic chromosome synapsis revealed a significant increase in the proportion of pachytene spermatocytes showing unpaired sex chromosomes compared to control spermatocytes. There was little effect of ergot alkaloids on adult stallions, but there might be a significant effect on yearling colts. © 2012 Blackwell Verlag GmbH.

  11. Effect of Feeding Fescue Seed Containing Ergot Alkaloid Toxins on Stallion Spermatogenesis and Sperm Cells

    PubMed Central

    Fayrer-Hosken, R; Stanley, A; Hill, N; Heusner, G; Christian, M; Fuente, R De La; Baumann, C; Jones, L

    2012-01-01

    Contents The cellular effects of tall fescue grass–associated toxic ergot alkaloids on stallion sperm and colt testicular tissue were evaluated. This was a continuation of an initial experiment where the effects of toxic ergot alkaloids on the stallion spermiogram were investigated. The only spermiogram parameter in exposed stallions that was affected by the toxic ergot alkaloids was a decreased gel-free volume of the ejaculate. This study examined the effect of toxic ergot alkaloids on chilling and freezing of the stallion sperm cells. The effect of toxic ergot alkaloids on chilled extended sperm cells for 48 h at 5 °C was to make the sperm cells less likely to undergo a calcium ionophore–induced acrosome reaction. The toxic ergot alkaloids had no effect on the freezability of sperm cells. However, if yearling colts were fed toxic ergot alkaloids, then the cytological analysis of meiotic chromosome synapsis revealed a significant increase in the proportion of pachytene spermatocytes showing unpaired sex chromosomes compared to control spermatocytes. There was little effect of ergot alkaloids on adult stallions, but there might be a significant effect on yearling colts. PMID:22524585

  12. Clavine Alkaloids Gene Clusters of Penicillium and Related Fungi: Evolutionary Combination of Prenyltransferases, Monooxygenases and Dioxygenases

    PubMed Central

    Martín, Juan F.; Liras, Paloma

    2017-01-01

    The clavine alkaloids produced by the fungi of the Aspergillaceae and Arthrodermatacea families differ from the ergot alkaloids produced by Claviceps and Neotyphodium. The clavine alkaloids lack the extensive peptide chain modifications that occur in lysergic acid derived ergot alkaloids. Both clavine and ergot alkaloids arise from the condensation of tryptophan and dimethylallylpyrophosphate by the action of the dimethylallyltryptophan synthase. The first five steps of the biosynthetic pathway that convert tryptophan and dimethylallyl-pyrophosphate (DMA-PP) in chanoclavine-1-aldehyde are common to both clavine and ergot alkaloids. The biosynthesis of ergot alkaloids has been extensively studied and is not considered in this article. We focus this review on recent advances in the gene clusters for clavine alkaloids in the species of Penicillium, Aspergillus (Neosartorya), Arthroderma and Trychophyton and the enzymes encoded by them. The final products of the clavine alkaloids pathways derive from the tetracyclic ergoline ring, which is modified by late enzymes, including a reverse type prenyltransferase, P450 monooxygenases and acetyltransferases. In Aspergillus japonicus, a α-ketoglutarate and Fe2+-dependent dioxygenase is involved in the cyclization of a festuclavine-like unknown type intermediate into cycloclavine. Related dioxygenases occur in the biosynthetic gene clusters of ergot alkaloids in Claviceps purpurea and also in the clavine clusters in Penicillium species. The final products of the clavine alkaloid pathway in these fungi differ from each other depending on the late biosynthetic enzymes involved. An important difference between clavine and ergot alkaloid pathways is that clavine producers lack the enzyme CloA, a P450 monooxygenase, involved in one of the steps of the conversion of chanoclavine-1-aldehyde into lysergic acid. Bioinformatic analysis of the sequenced genomes of the Aspergillaceae and Arthrodermataceae fungi showed the presence of clavine gene clusters in Arthroderma species, Penicillium roqueforti, Penicillium commune, Penicillium camemberti, Penicillium expansum, Penicillium steckii and Penicillium griseofulvum. Analysis of the gene clusters in several clavine alkaloid producers indicates that there are gene gains, gene losses and gene rearrangements. These findings may be explained by a divergent evolution of the gene clusters of ergot and clavine alkaloids from a common ancestral progenitor six genes cluster although horizontal gene transfer of some specific genes may have occurred more recently. PMID:29186777

  13. Alkaloid profiles of Mimosa tenuiflora and associated methods of analysis

    USDA-ARS?s Scientific Manuscript database

    The alkaloid contents of the leaves and seeds of M. tenuiflora collected from northeastern Brazil were studied. Alkaloids were isolated by classical acid/base extraction procedures and by cation exchange solid phase extraction. The crude alkaloid fractions were then analysed by thin layer chromatogr...

  14. The serum concentrations of lupine alkaloids in orally-dosed Holstein cattle

    USDA-ARS?s Scientific Manuscript database

    Teratogenic alkaloid-containing Lupinus spp. cause significant losses to the cattle industry. Previous research has suggested that Holstein cattle clear toxic Delphinium alkaloids from their serum at a greater rate than beef cattle. The toxicokinetics of lupine alkaloids in Holsteins are not known...

  15. Secondary and tertiary isoquinoline alkaloids from Xylopia parviflora.

    PubMed

    Nishiyama, Yumi; Moriyasu, Masataka; Ichimaru, Momoyo; Iwasa, Kinuko; Kato, Atsushi; Mathenge, Simon G; Chalo Mutiso, Patrick B; Juma, Francis D

    2006-12-01

    From the secondary and tertiary alkaloidal fractions of the root and the bark of Xylopia parviflora (Annonaceae), the isoquinoline alkaloids, 10,11-dihydroxy-1,2-dimethoxynoraporphine and parvinine were isolated, along with 39 known alkaloids. Their structures were determined on the basis of analysis of spectroscopic data.

  16. Analysis of Alkaloids from Physalis peruviana by Capillary GC, Capillary GC-MS, and GC-FTIR.

    PubMed

    Kubwabo, C; Rollmann, B; Tilquin, B

    1993-04-01

    The alkaloid composition of the aerial parts and roots of PHYSALIS PERUVIANA was analysed by capillary GC (GC (2)), GC (2)-MS and GC (2)-FTIR. Eight alkaloids were identified, three of those alkaloids are 3beta-acetoxytropane and two N-methylpyrrolidinylhygrine isomers, which were not previously found in the genus PHYSALIS. A reproduction of the identification of alkaloids detected in the plant by the use of retention indices has been proposed.

  17. Parasitic fungus Claviceps as a source for biotechnological production of ergot alkaloids.

    PubMed

    Hulvová, Helena; Galuszka, Petr; Frébortová, Jitka; Frébort, Ivo

    2013-01-01

    Ergot alkaloids produced by the fungus Claviceps parasitizing on cereals, include three major groups: clavine alkaloids, d-lysergic acid and its derivatives and ergopeptines. These alkaloids are important substances for the pharmatech industry, where they are used for production of anti-migraine drugs, uterotonics, prolactin inhibitors, anti-Parkinson agents, etc. Production of ergot alkaloids is based either on traditional field cultivation of ergot-infected rye or on submerged cultures of the fungus in industrial fermentation plants. In 2010, the total production of these alkaloids in the world was about 20,000 kg, of which field cultivation contributed about 50%. This review covers the recent advances in understanding of the genetics and regulation of biosynthesis of ergot alkaloids, focusing on possible applications of the new knowledge to improve the production yield. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Alkaloid profiling of the traditional Chinese medicine Rhizoma corydalis using high performance liquid chromatography-tandem quadrupole time-of-flight mass spectrometry

    PubMed Central

    Sun, Mingqian; Liu, Jianxun; Lin, Chengren; Miao, Lan; Lin, Li

    2014-01-01

    Since alkaloids are the major active constituents of Rhizoma corydalis (RC), a convenient and accurate analytical method is needed for their identification and characterization. Here we report a method to profile the alkaloids in RC based on liquid chromatography-tandem quadrupole time-of-flight mass spectrometry (LC–Q-TOF-MS/MS). A total of 16 alkaloids belonging to four different classes were identified by comparison with authentic standards. The fragmentation pathway of each class of alkaloid was clarified and their differences were elucidated. Furthermore, based on an analysis of fragmentation pathways and alkaloid profiling, a rapid and accurate method for the identification of unknown alkaloids in RC is proposed. The method could also be useful for the quality control of RC. PMID:26579385

  19. Eating chemically defended prey: alkaloid metabolism in an invasive ladybird predator of other ladybirds (Coleoptera: Coccinellidae).

    PubMed

    Sloggett, J J; Davis, A J

    2010-01-15

    By comparison with studies of herbivore physiological adaptation to plant allelochemicals, work on predator physiological adaptation to potentially toxic prey has been very limited. Such studies are important in understanding how evolution could shape predator diets. An interesting question is the specificity of predator adaptation to prey allelochemicals, given that many predators consume diverse prey with different chemical defences. The ladybird Harmonia axyridis, an invasive species in America, Europe and Africa, is considered a significant predatory threat to native invertebrates, particularly other aphid-eating ladybirds of which it is a strong intraguild predator. Although ladybirds possess species-specific alkaloid defences, H. axyridis exhibits high tolerance for allospecific ladybird prey alkaloids. Nonetheless, it performs poorly on species with novel alkaloids not commonly occurring within its natural range. We examined alkaloid fate in H. axyridis larvae after consumption of two other ladybird species, one containing an alkaloid historically occurring within the predator's native range (isopropyleine) and one containing a novel alkaloid that does not (adaline). Our results indicate that H. axyridis rapidly chemically modifies the alkaloid to which it has been historically exposed to render it less harmful: this probably occurs outside of the gut. The novel, more toxic alkaloid persists in the body unchanged for longer. Our results suggest metabolic alkaloid specialisation, in spite of the diversity of chemically defended prey that the predator consumes. Physiological adaptations appear to have made H. axyridis a successful predator of other ladybirds; however, limitations are imposed by its physiology when it eats prey with novel alkaloids.

  20. Unravelling the architecture and dynamics of tropane alkaloid biosynthesis pathways using metabolite correlation networks.

    PubMed

    Nguyen, Thi-Kieu-Oanh; Jamali, Arash; Lanoue, Arnaud; Gontier, Eric; Dauwe, Rebecca

    2015-08-01

    The tropane alkaloid spectrum in Solanaceae is highly variable within and between species. Little is known about the topology and the coordination of the biosynthetic pathways leading to the variety of tropine and pseudotropine derived esters in the alkaloid spectrum, or about the metabolic dynamics induced by tropane alkaloid biosynthesis stimulating conditions. A good understanding of the metabolism, including all ramifications, is however necessary for the development of strategies to increase the abundance of pharmacologically interesting compounds such as hyoscyamine and scopolamine. The present study explores the tropane alkaloid metabolic pathways in an untargeted approach involving a correlation-based network analysis. Using GC-MS metabolite profiling, the variation and co-variation among tropane alkaloids and primary metabolites was monitored in 60 Datura innoxia Mill. individuals, of which half were exposed to tropane alkaloid biosynthesis stimulating conditions by co-culture with Agrobacterium rhizogenes. Considerable variation was evident in the relative proportions of the tropane alkaloids. Remodeling of the tropane alkaloid spectrum under co-culture with A. rhizogenes involved a specific and strong increase of hyoscyamine production and revealed that the accumulation of hyoscyamine, 3-tigloyloxy-6,7-epoxytropane, and 3-methylbutyryloxytropane was controlled independently of the majority of tropane alkaloids. Based on correlations between metabolites, we propose a biosynthetic origin of hygrine, the order of esterification of certain di-oxygenated tropanes, and that the rate of acetoxylation contributes to control of hyoscyamine production. Overall, this study shows that the biosynthesis of tropane alkaloids may be far more complex and finely controlled than previously expected. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Recent investigations of ergot alkaloids incorporated into plant and/or animal systems

    USDA-ARS?s Scientific Manuscript database

    Ergot alkaloids produced by fungi have a basic chemical structure but different chemical moieties at substituent sites resulting in various forms of alkaloids that are distinguishable from one another. Since the ergoline ring structure found in ergot alkaloids is similar to that of biogenic amines (...

  2. New alkaloids of the sarpagine group from Rauvolfia serpentina hairy root culture.

    PubMed

    Sheludko, Yuri; Gerasimenko, Irina; Kolshorn, Heinz; Stöckigt, Joachim

    2002-07-01

    Three new monoterpenoid indole alkaloids, 19(S),20(R)-dihydroperaksine (1), 19(S),20(R)-dihydroperaksine-17-al (2), and 10-hydroxy-19(S),20(R)-dihydroperaksine (3), along with 16 known alkaloids 4-19 were isolated from hairy root culture of Rauvolfia serpentina, and their structures were elucidated by 1D and 2D NMR analyses. Taking into account the stereochemistry of the new alkaloids and results of preliminary enzymatical studies, the putative biosynthetical relationships between the novel alkaloids are discussed.

  3. Isolation and structure elucidation of a new indole alkaloid from Rauvolfia serpentina hairy root culture: the first naturally occurring alkaloid of the raumacline group.

    PubMed

    Sheludko, Yuri; Gerasimenko, Irina; Kolshorn, Heinz; Stöckigt, Joachim

    2002-05-01

    A new monoterpenoid indole alkaloid, 10-hydroxy- N(alpha)-demethyl-19,20-dehydroraumacline ( 1), was isolated as a mixture of E- and Z-isomers from hairy root culture of Rauvolfia serpentina Benth. ex Kurz (Apocynaceae) and the structure was determined by 1D and 2D NMR analyses. The new indole alkaloid represents the first naturally occurring alkaloid of the raumacline group and its putative biosynthetical pathway is discussed.

  4. Quinolizidine alkaloids from Lupinus lanatus

    NASA Astrophysics Data System (ADS)

    Neto, Alexandre T.; Oliveira, Carolina Q.; Ilha, Vinicius; Pedroso, Marcelo; Burrow, Robert A.; Dalcol, Ionara I.; Morel, Ademir F.

    2011-10-01

    In this study, one new quinolizidine alkaloid, lanatine A ( 1), together with three other known alkaloids, 13-α- trans-cinnamoyloxylupanine ( 2), 13-α-hydroxylupanine ( 3), and (-)-multiflorine ( 4) were isolated from the aerial parts of Lupinus lanatus (Fabaceae). The structures of alkaloids 1- 4 were elucidated by spectroscopic data analysis. The stereochemistry of 1 was determined by single crystal X-ray analysis. Bayesian statistical analysis of the Bijvoet differences suggests the absolute stereochemistry of 1. In addition, the antimicrobial potential of alkaloids 1- 4 is also reported.

  5. Reassessing the cultural and psychopharmacological significance of Banisteriopsis caapi: preparation, classification and use among the Piaroa of Southern Venezuela.

    PubMed

    Rodd, Robin

    2008-09-01

    Recent attention to the monoamine oxidase inhibiting properties of Banisteriopsis caapi's harmala alkaloids has precluded a balanced assessment of B. caapi's overall significance to indigenous South American societies. Relatively little attention has been paid to the cultural contexts, local meanings and patterns of use of B. caapi among snuff-using societies, such as the Piaroa, who do not prepare decoctions containing N,N-dimethyltryptamine (DMT) admixtures. This article reviews the psychopharmacological literature on B. caapi in light of recent ethnographic work conducted among the Piaroa of southern Venezuela. Piaroa shamans use only B. caapi's cambium, identify at least five distinct varieties of B. caapi, and emphasise the plant's importance for heightening empathy. Some Piaroa people also attribute a range of extra-shamanic uses to B. caapi, including as a stimulant and hunting aid. In light of the psychopharmacological complexity of harmala alkaloids, and ethnographic evidence for a wide range of B. caapi uses,future research should reconsider B. caapi's cultural heritage and psychopharmacological potential as a stimulant and antidepressant-like substance.

  6. Inhibition of monoamine oxidase by derivatives of piperine, an alkaloid from the pepper plant Piper nigrum, for possible use in Parkinson's disease.

    PubMed

    Al-Baghdadi, Osamah B; Prater, Natalie I; Van der Schyf, Cornelis J; Geldenhuys, Werner J

    2012-12-01

    A series of compounds related to piperine and antiepilepsirine was screened in a monoamine oxidase A and B assay. Piperine is an alkaloid from the source plant of both black and white pepper grains, Piper nigrum. Piperine has been shown to have a wide range of activity, including MAO inhibitory activity. The z-factor for the screening assay was found to be greater than 0.8 for both assays. Notably, the compounds tested were selective towards MAO-B, with the most potent compound having an IC(50) of 498 nM. To estimate blood-brain barrier (BBB) permeability, we used a PAMPA assay, which suggested that the compounds are likely to penetrate the BBB. A fluorescent bovine serum albumin (BSA) high-throughput screening (HTS) binding assay showed an affinity of 8 μM for piperine, with more modest binding for other test compounds. Taken together, the data described here may be useful in gaining insight towards the design of selective MAO-B inhibitory compounds devoid of MAO-A activity. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Tachykinin-independent activity of capsaicin on in-vitro lamb detrusor.

    PubMed

    Tucci, Paolo; Evandri, Maria Grazia; Bolle, Paola

    2002-08-01

    The capsicum alkaloid capsaicin is an afferent fibre exciter. In the vesical bladder, capsaicin acts by releasing peptides stored in afferent fibres. The aim of this work was to verify the activity of capsaicin on in-vitro lamb urinary bladder and to ascertain whether this alkaloid evokes peptide release. Capsaicin relaxed about 80% of the lamb detrusor muscle preparations tested and contracted about 20%. Whereas neurokinin A and substance P antagonists, administered alone or together, left the contractile responses to capsaicin unchanged, atropine and tetrodotoxin totally inhibited contraction. Ruthenium red and indometacin abolished contractions and relaxation. The substance P and neurokinin A antagonists and the NO-synthesis inhibitor N omega-nitro-L-arginine methyl ester (L-NAME) left relaxation unchanged; conversely, the calcitonin gene-related peptide antagonist alpha h-CGRP (8-37) abolished this response. These results suggest that capsaicin relaxes lamb detrusor muscle not through tachykinins but by releasing CGRP from afferent fibres. Our observation that indometacin blocks the capsaicin response in in-vitro lamb urinary bladder also suggests a role of prostanoids.

  8. Estimation of total alkaloid in Chitrakadivati by UV-Spectrophotometer.

    PubMed

    Ajanal, Manjunath; Gundkalle, Mahadev B; Nayak, Shradda U

    2012-04-01

    Herbal formulation standardization by adopting newer technique is need of the hour in the field of Ayurvedic pharmaceutical industry. As very few reports exist. These kind of studies would certainly widen the herbal research area. Chitrakadivati is one such popular herbal formulation used in Ayurveda. Many of its ingredients are known for presence of alkaloids. Presence of alkaloid was tested qualitatively by Dragondroff's method then subjected to quantitative estimation by UV-Spectrophotometer. This method is based on the reaction between alkaloid and bromocresol green (BCG). Study discloses that out of 16 ingredients, 9 contain alkaloid. Chitrakadivati has shown 0.16% of concentration of alkaloid and which is significantly higher than it's individual ingredients.

  9. An In-Silico Investigation of Phytochemicals as Antiviral Agents Against Dengue Fever.

    PubMed

    Powers, Chelsea N; Setzer, William N

    2016-01-01

    A virtual screening analysis of our library of phytochemical structures with dengue virus protein targets has been carried out using a molecular docking approach. A total of 2194 plant-derived secondary metabolites have been docked. This molecule set comprised of 290 alkaloids (68 indole alkaloids, 153 isoquinoline alkaloids, 5 quinoline alkaloids, 13 piperidine alkaloids, 14 steroidal alkaloids, and 37 miscellaneous alkaloids), 678 terpenoids (47 monoterpenoids, 169 sesquiterpenoids, 265 diterpenoids, 81 steroids, and 96 triterpenoids), 20 aurones, 81 chalcones, 349 flavonoids, 120 isoflavonoids, 74 lignans, 58 stilbenoids, 169 miscellaneous polyphenolic compounds, 100 coumarins, 28 xanthones, 67 quinones, and 160 miscellaneous phytochemicals. Dengue virus protein targets examined included dengue virus protease (NS2B-NS3pro), helicase (NS3 helicase), methyltransferase (MTase), RNA-dependent RNA polymerase (RdRp), and the dengue virus envelope protein. Polyphenolic compounds, flavonoids, chalcones, and other phenolics were the most numerous of the strongly docking ligands for dengue virus protein targets.

  10. Analysis and modification of ergot alkaloid profiles in fungi.

    PubMed

    Panaccione, Daniel G; Ryan, Katy L; Schardl, Christopher L; Florea, Simona

    2012-01-01

    The ergot alkaloids are a family of secondary metabolites produced by a phylogenetically discontinuous group of fungi. Various members of the family are important in agriculture, where they accumulate in grain crops or forage grasses and adversely affect humans or animals who consume them. Other ergot alkaloids have been used clinically to treat a variety of diseases. Because of their significance in agriculture and medicine, the ability to detect and quantify these alkaloids from a variety of substrates is important. The primary analytical approach for these purposes has been high performance liquid chromatography. The ability to manipulate ergot alkaloid production in fungi, by transformation-mediated approaches, has been useful for studies on the biosynthesis of these alkaloids and may have practical application in agriculture and medicine. Such modifications have been informed by comparative genomic approaches, which have provided information on the gene clusters associated with ergot alkaloid biosynthesis. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Genome mining of ascomycetous fungi reveals their genetic potential for ergot alkaloid production.

    PubMed

    Gerhards, Nina; Matuschek, Marco; Wallwey, Christiane; Li, Shu-Ming

    2015-06-01

    Ergot alkaloids are important as mycotoxins or as drugs. Naturally occurring ergot alkaloids as well as their semisynthetic derivatives have been used as pharmaceuticals in modern medicine for decades. We identified 196 putative ergot alkaloid biosynthetic genes belonging to at least 31 putative gene clusters in 31 fungal species by genome mining of the 360 available genome sequences of ascomycetous fungi with known proteins. Detailed analysis showed that these fungi belong to the families Aspergillaceae, Clavicipitaceae, Arthrodermataceae, Helotiaceae and Thermoascaceae. Within the identified families, only a small number of taxa are represented. Literature search revealed a large diversity of ergot alkaloid structures in different fungi of the phylum Ascomycota. However, ergot alkaloid accumulation was only observed in 15 of the sequenced species. Therefore, this study provides genetic basis for further study on ergot alkaloid production in the sequenced strains.

  12. Toxicosis by Plant Alkaloids in Humans and Animals in Colombia

    PubMed Central

    Diaz, Gonzalo J.

    2015-01-01

    Due to its tropical location, chains of mountains, inter-Andean valleys, Amazon basin area, eastern plains and shores on both the Atlantic and Pacific Oceans, Colombia has many ecosystems and the second largest plant biodiversity in the world. Many plant species, both native and naturalized, are currently recognized as toxic for both animals and humans, and some of them are known to cause their toxic effects due to their alkaloid content. Among these, there are plants containing the hepatotoxic pyrrolizidine alkaloids, neurotoxins such as the indolizidine alkaloid swainsonine and the piperidine alkaloids coniine and γ-coniceine and tropane alkaloids. Unfortunately, the research in toxic plants in Colombia is not nearly proportional to its plant biodiversity and the scientific information available is only very scarce. The present review aims at summarizing the scarce information about plant alkaloid toxicosis in animals and humans in Colombia. PMID:26690479

  13. Development of a Terpenoid Alkaloid-like Compound Library Based on the Humulene Skeleton.

    PubMed

    Kikuchi, Haruhisa; Nishimura, Takehiro; Kwon, Eunsang; Kawai, Junya; Oshima, Yoshiteru

    2016-10-24

    Many natural terpenoid alkaloid conjugates show biological activity because their structures contain both sp 3 -rich terpenoid scaffolds and nitrogen-containing alkaloid scaffolds. However, their biosynthesis utilizes a limited set of compounds as sources of the terpenoid moiety. The production of terpenoid alkaloids containing various types of terpenoid moiety may provide useful, chemically diverse compound libraries for drug discovery. Herein, we report the construction of a library of terpenoid alkaloid-like compounds based on Lewis-acid-catalyzed transannulation of humulene diepoxide and subsequent sequential olefin metathesis. Cheminformatic analysis quantitatively showed that the synthesized terpenoid alkaloid-like compound library has a high level of three-dimensional-shape diversity. Extensive pharmacological screening of the library has led to the identification of promising compounds for the development of antihypolipidemic drugs. Therefore, the synthesis of terpenoid alkaloid-like compound libraries based on humulene is well suited to drug discovery. Synthesis of terpenoid alkaloid-like compounds based on several natural terpenoids is an effective strategy for producing chemically diverse libraries. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Overexpression of tropinone reductases alters alkaloid composition in Atropa belladonna root cultures.

    PubMed

    Richter, Ute; Rothe, Grit; Fabian, Anne-Katrin; Rahfeld, Bettina; Dräger, Birgit

    2005-02-01

    The medicinally applied tropane alkaloids hyoscyamine and scopolamine are produced in Atropa belladonna L. and in a small number of other Solanaceae. Calystegines are nortropane alkaloids that derive from a branching point in the tropane alkaloid biosynthetic pathway. In A. belladonna root cultures, calystegine molar concentration is 2-fold higher than that of hyoscyamine and scopolamine. In this study, two tropinone reductases forming a branching point in the tropane alkaloid biosynthesis were overexpressed in A. belladonna. Root culture lines with strong overexpression of the transcripts contained more enzyme activity of the respective reductase and enhanced enzyme products, tropine or pseudotropine. High pseudotropine led to an increased accumulation of calystegines in the roots. Strong expression of the tropine-forming reductase was accompanied by 3-fold more hyoscyamine and 5-fold more scopolamine compared with control roots, and calystegine levels were decreased by 30-90% of control. In some of the transformed root cultures, an increase of total tropane alkaloids was observed. Thus, transformation with cDNA of tropinone reductases successfully altered the ratio of tropine-derived alkaloids versus pseudotropine-derived alkaloids.

  15. Towards a Molecular Understanding of the Biosynthesis of Amaryllidaceae Alkaloids in Support of Their Expanding Medical Use

    PubMed Central

    Takos, Adam M.; Rook, Fred

    2013-01-01

    The alkaloids characteristically produced by the subfamily Amaryllidoideae of the Amaryllidaceae, bulbous plant species that include well know genera such as Narcissus (daffodils) and Galanthus (snowdrops), are a source of new pharmaceutical compounds. Presently, only the Amaryllidaceae alkaloid galanthamine, an acetylcholinesterase inhibitor used to treat symptoms of Alzheimer’s disease, is produced commercially as a drug from cultivated plants. However, several Amaryllidaceae alkaloids have shown great promise as anti-cancer drugs, but their further clinical development is restricted by their limited commercial availability. Amaryllidaceae species have a long history of cultivation and breeding as ornamental bulbs, and phytochemical research has focussed on the diversity in alkaloid content and composition. In contrast to the available pharmacological and phytochemical data, ecological, physiological and molecular aspects of the Amaryllidaceae and their alkaloids are much less explored and the identity of the alkaloid biosynthetic genes is presently unknown. An improved molecular understanding of Amaryllidaceae alkaloid biosynthesis would greatly benefit the rational design of breeding programs to produce cultivars optimised for the production of pharmaceutical compounds and enable biotechnology based approaches. PMID:23727937

  16. Antiamoebic and spasmolytic activities of extracts from some antidiarrhoeal traditional preparations used in Kinshasa, Congo.

    PubMed

    Tona, L; Kambu, K; Ngimbi, N; Mesia, K; Penge, O; Lusakibanza, M; Cimanga, K; De Bruyne, T; Apers, S; Totte, J; Pieters, L; Vlietinck, A J

    2000-03-01

    Three major extracts from some traditional preparations, based on medicinal plants, used as antidiarrhoeal agents were investigated for their putative antiamoebic and spasmolytic activities in vitro. Results indicated that both biological activities are concentrated in the polyphenolic fraction, and not in the saponin or alkaloid containing fractions. The most active polyphenolic extracts were those from Euphorbia hirta whole plant, leaves of Alchornea cordifolia, Crossopteryx febrifuga, Nauclea latifolia, Psidium guajava, Tithonia diversifolia, stem bark of Harungana madagascariensis, Mangifera indica, Maprounea africana and Psidium guajava, inhibiting Entamoeba histolytica growth with MAC < 10 micrograms/ml. The same extracts, at a concentration of 80 micrograms/ml in an organ bath, also exhibited more than 70% inhibition of acetylcholine and/or KCl solution-induced contractions on isolated guinea-pig ileum.

  17. Studies on the Inhibition of Mild Steel Corrosion by Rauvolfia serpentina in Acid Media

    NASA Astrophysics Data System (ADS)

    Bothi Raja, P.; Sethuraman, M. G.

    2010-07-01

    Alkaloid extract of Rauvolfia serpentina was tested as corrosion inhibitor for mild steel in 1 M HCl and H2SO4 using weight loss method at three different temperatures, viz., 303, 313, and 323 K, potentiodynamic polarization, electrochemical impedance spectroscopy and scanning electron microscope (SEM) studies. It is evident from the results of this study that R. serpentina effectively inhibits the corrosion in both the acids through adsorption process following Tempkin adsorption isotherm. The protection efficiency increased with increase in inhibitor concentration and temperature. Free energy of adsorption calculated from the temperature studies also revealed the chemisorption. The mixed mode of action exhibited by the inhibitor was confirmed by the polarization studies while SEM analysis substantiated the formation of protective layer over the mild steel surface.

  18. Mechanism of inhibition of cholinesterases by Huperzine A. (Reannouncement with new availability information)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ashani, Y.; Peggins, J.O.; Doctor, B.P.

    1992-04-30

    Huperzine A, an alkaloid isolated from Huperzia serrata was found to reversibly inhibit acetylcholinesterases (EC 3.1.7) and (EC 3.1.1.8) with i 3.1 on- and off-rates that depend on both the type and the source of enzyme. Long incubation of high concentrations of purified (1-8 PM) with huperzine-A did not show any chemical modification of huperzine-A. A low dissociation constant K sub 1 was obtained for mammalian acetylcholinesterase-huperzine (20-40 nM) compared to mammalian butyrylcholinesterase-huperzine (20-40 microns.) This indicates that the thermodynamic stability of huperzine-cholinesterase complex may depend on the number and type of aromatic amino acid residues in the catalytic pocketmore » region of the cholinesterase molecule.« less

  19. Lactam ergot alkaloids (ergopeptams) as predominant alkaloids in sclerotia of Claviceps purpurea from Norwegian wild grasses.

    PubMed

    Uhlig, Silvio; Petersen, Dirk

    2008-07-01

    Four major alkaloids in the extracts from sclerotia of Claviceps purpurea, picked from wild grasses, have been identified as lactam (non-cyclol) ergot alkaloids. The structural information was obtained from ion trap MS and NMR spectroscopy. The data for one of the lactam ergot alkaloids were coinciding with ergocristam [N-(lysergyl-valyl)-cyclo(phenylalanyl-prolyl)]. The structural information of two further lactam alkaloids was suggestive of either alpha- or beta-ergocryptam [N-(lysergyl-valyl)-cyclo(leucyl-prolyl) or N-(lysergyl-valyl)-cyclo(isoleucyl-prolyl)] and ergoannam [N-(lysergyl-leucyl)-cyclo(leucyl-prolyl) or N-(lysergyl-isoleucyl)-cyclo(isoleucyl-prolyl)]. The constitution of the fourth lactam ergot alkaloid corresponded to N-(lysergyl-isoleucyl)-cyclo(phenylalanyl-prolyl), a new ergopeptam, which has not been described before. Additionally, the cyclol-analogue of the new ergopeptam was detected in the extracts and has been identified on the basis of its product ion spectrum from fragmentation of [M+H](+). The study described in this paper shows that lactam ergot alkaloids may not only be minor products of ergopeptine biosynthesis, as has been suggested hitherto, but may be major biosynthetic endproducts for some ergot strains. This is also the first report demonstrating the production of an ergot alkaloid that contains isoleucine as the second amino acid, i.e. the N-(lysergyl-isoleucyl)-moiety, by parasitic, naturally growing C. purpurea. This unusual type of ergot alkaloid has so far only been found in saprophytic cultures of C. purpurea.

  20. Detection of Total Ergot Alkaloids in Cereal Flour and in Bread by a Generic Enzyme Immunoassay Method.

    PubMed

    Gross, Madeleine; Curtui, Valeriu; Usleber, Ewald

    2018-05-01

    Four sets of polyclonal antibodies against ergot alkaloids ergometrine, ergotamine, α-ergocryptine, and ergocornine were produced and characterized in a competitive direct or indirect enzyme immunoassay (EIA). Standard curve LODs were 0.03 ng/mL (ergometrine EIA) to 2.0 ng/mL (ergocornine EIA). Three EIAs were highly specific, whereas the ergometrine EIA had a broad specificity pattern and reacted, albeit weakly, with all seven major ergot alkaloids and their epimeric forms. Using the ergometrine EIA, a generic test system was established in which total ergot alkaloids are quantified by a standard curve for a toxin mixture composed of three alkaloids that matched the ergot alkaloid composition in naturally contaminated rye and wheat products. Sample extraction with acetonitrile-phosphate-buffered saline at pH 6.0 without further cleanup was sufficient for EIA analysis. The LODs for total ergot alkaloids were 20 ng/g in rye and wheat flour and 14 ng/g in bread. Recoveries were 85-110% (RSDs of 0.1-11.7%) at a concentration range of 50-1000 ng/g. The total ergot alkaloid EIA was validated by comparison with HPLC-fluorescence detection. Although some under- and overestimation by the total ergot alkaloid EIA was observed, it was suitable for the reliable identification of positive samples at 10-20 ng/g and for the determination of total ergot alkaloids in a concentration range between 100 and 1000 ng/g.

  1. Tandem Mass Spectrometry for Structural Identification of Sesquiterpene Alkaloids from the Stems of Dendrobium nobile Using LC-QToF.

    PubMed

    Wang, Yan-Hong; Avula, Bharathi; Abe, Naohito; Wei, Feng; Wang, Mei; Ma, Shuang-Cheng; Ali, Zulfiqar; Elsohly, Mahmoud A; Khan, Ikhlas A

    2016-05-01

    Dendrobium nobile is one of the fundamental herbs in traditional Chinese medicine. Sesquiterpene alkaloids are the main active components in this plant. Due to weak ultraviolet absorption and low content in D. nobile, these sesquiterpene alkaloids have not been extensively studied using chromatographic methods. Herein, tandem mass spectrometry combined with liquid chromatography separation provides a tool for the identification and characterization of the alkaloids from D. nobile. A total of nine sesquiterpene alkaloids were characterized by ultrahigh-performance liquid chromatography tandem mass spectrometry. These alkaloids can be classified into two subgroups that are represented by dendrobine and nobilonine. Tandem mass spectrometric studies revealed the fragmentation pathways of these two subgroup alkaloids that were used for the identification and characterization of other alkaloids in D. nobile. Characterization of these alkaloids using accurate mass and diagnostic fragments provided a reliable methodology for the analysis of D. nobile by ultrahigh-performance liquid chromatography tandem mass spectrometry. The limit of detection was defined as the signal-to-noise ratio equal to 3 : 1. Limits of detection of dendrobine and nobilonine were less than 30 ng/mL. The developed method was applied for the analysis of various Dendrobium species and related dietary supplements. Alkaloids were identified from D. nobile, but not detected from commercial samples including 13 other Dendrobium species and the 7 dietary supplements. Georg Thieme Verlag KG Stuttgart · New York.

  2. Digital Gene Expression Analysis Provides Insight into the Transcript Profile of the Genes Involved in Aporphine Alkaloid Biosynthesis in Lotus (Nelumbo nucifera)

    PubMed Central

    Yang, Mei; Zhu, Lingping; Li, Ling; Li, Juanjuan; Xu, Liming; Feng, Ji; Liu, Yanling

    2017-01-01

    The predominant alkaloids in lotus leaves are aporphine alkaloids. These are the most important active components and have many pharmacological properties, but little is known about their biosynthesis. We used digital gene expression (DGE) technology to identify differentially-expressed genes (DEGs) between two lotus cultivars with different alkaloid contents at four leaf development stages. We also predicted potential genes involved in aporphine alkaloid biosynthesis by weighted gene co-expression network analysis (WGCNA). Approximately 335 billion nucleotides were generated; and 94% of which were aligned against the reference genome. Of 22 thousand expressed genes, 19,000 were differentially expressed between the two cultivars at the four stages. Gene Ontology (GO) enrichment analysis revealed that catalytic activity and oxidoreductase activity were enriched significantly in most pairwise comparisons. In Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, dozens of DEGs were assigned to the categories of biosynthesis of secondary metabolites, isoquinoline alkaloid biosynthesis, and flavonoid biosynthesis. The genes encoding norcoclaurine synthase (NCS), norcoclaurine 6-O-methyltransferase (6OMT), coclaurine N-methyltransferase (CNMT), N-methylcoclaurine 3′-hydroxylase (NMCH), and 3′-hydroxy-N-methylcoclaurine 4′-O-methyltransferase (4′OMT) in the common pathways of benzylisoquinoline alkaloid biosynthesis and the ones encoding corytuberine synthase (CTS) in aporphine alkaloid biosynthetic pathway, which have been characterized in other plants, were identified in lotus. These genes had positive effects on alkaloid content, albeit with phenotypic lag. The WGCNA of DEGs revealed that one network module was associated with the dynamic change of alkaloid content. Eleven genes encoding proteins with methyltransferase, oxidoreductase and CYP450 activities were identified. These were surmised to be genes involved in aporphine alkaloid biosynthesis. This transcriptomic database provides new directions for future studies on clarifying the aporphine alkaloid pathway. PMID:28197160

  3. Poor permeability and absorption affect the activity of four alkaloids from Coptis.

    PubMed

    Cui, Han-Ming; Zhang, Qiu-Yan; Wang, Jia-Long; Chen, Jian-Long; Zhang, Yu-Ling; Tong, Xiao-Lin

    2015-11-01

    Coptidis rhizoma (Coptis) and its alkaloids exert various pharmacological functions in cells and tissues; however, the oral absorption of these alkaloids requires further elucidation. The present study aimed to examine the mechanism underlying the poor absorption of alkaloids, including berberine (BER), coptisine (COP), palmatine (PAL) and jatrorrhizine (JAT). An ultra‑performance liquid chromatography (UPLC) method was validated for the determination of BER, COP, PAL and JAT in the above experimental medium. In addition, the apparent oil‑water partition coefficient (Po/w); apparent permeability coefficient (Papp), determined using a parallel artificial membrane permeability assay (PAMPA) plate; membrane retention coefficient (R %); and effect of P‑glycoprotein (P‑gp) inhibitor on the Papp of the four alkaloids were investigated. The intestinal absorption rate constant (Ka) and absorption percentage (A %) of the four alkaloids were also determined. The results of the present study demonstrated that the Po/w of the four alkaloids in 0.1 mol·l‑1 HCl medium was significantly higher (P<0.01), compared with those of the alkaloids in phosphate buffer (pH 7.4). The Papp of BER was 1.0‑1.2x10‑6 cm·s‑1, determined using a PAMPA plate, and the Papp of BER, COP, PAL and JAT decreased sequentially. The concentrations of the four alkaloids on the apical‑to‑basolateral (AP‑BL) surface and the basolateral‑to‑apical (BL‑AP) surface increased in a linear manner, with increasing concentrations between 10 and 100 µmol. In addition, the transportation of BER on the BL‑AP surface was significantly faster (P<0.01), compared with that on the AP‑BL surface and, following the addition of verpamil (a P‑gp inhibitor), the Papp (AP‑BL) of the four alkaloids increased, whereas the Papp (BL‑AP) was significantly decreased (P<0.01). The rat intestinal perfusion experiment demonstrated that the four alkaloids were poorly absorbed; however, the Ka of BER was significantly higher, compared with the three other alkaloids. Furthermore, the A % and Ka provided evidence that the absorption of BER was increased in the jejunum, compared with in the ileum. In conclusion, the four alkaloids from Coptis appeared to be poorly absorbed, determined using a shake flask, pre‑coated PAMPA plates, a Caco‑2 cell monolayer model and intestinal perfusion; however, absorption was higher in the jejunum than in the ileum. Among the four alkaloids, the permeability of BER was markedly higher than the others, and P‑gp efflux had a significant effect on the absorption of those alkaloids.

  4. Piperine from black pepper inhibits activation-induced proliferation and effector function of T lymphocytes.

    PubMed

    Doucette, Carolyn D; Rodgers, Gemma; Liwski, Robert S; Hoskin, David W

    2015-11-01

    Piperine is a major alkaloid component of black pepper (Piper nigrum Linn), which is a widely consumed spice. Here, we investigated the effect of piperine on mouse T lymphocyte activation. Piperine inhibited polyclonal and antigen-specific T lymphocyte proliferation without affecting cell viability. Piperine also suppressed T lymphocyte entry into the S and G2 /M phases of the cell cycle, and decreased expression of G1 -associated cyclin D3, CDK4, and CDK6. In addition, piperine inhibited CD25 expression, synthesis of interferon-γ, interleukin (IL)-2, IL-4, and IL-17A, and the generation of cytotoxic effector cells. The inhibitory effect of piperine on T lymphocytes was associated with hypophosphorylation of Akt, extracellular signal-regulated kinase, and inhibitor of κBα, but not ZAP-70. The ability of piperine to inhibit several key signaling pathways involved in T lymphocyte activation and the acquisition of effector function suggests that piperine might be useful in the management of T lymphocyte-mediated autoimmune and chronic inflammatory disorders. © 2015 Wiley Periodicals, Inc.

  5. Sanguinarine interacts with chromatin, modulates epigenetic modifications, and transcription in the context of chromatin.

    PubMed

    Selvi B, Ruthrotha; Pradhan, Suman Kalyan; Shandilya, Jayasha; Das, Chandrima; Sailaja, Badi Sri; Shankar G, Naga; Gadad, Shrikanth S; Reddy, Ashok; Dasgupta, Dipak; Kundu, Tapas K

    2009-02-27

    DNA-binding anticancer agents cause alteration in chromatin structure and dynamics. We report the dynamic interaction of the DNA intercalator and potential anticancer plant alkaloid, sanguinarine (SGR), with chromatin. Association of SGR with different levels of chromatin structure was enthalpy driven with micromolar dissociation constant. Apart from DNA, it binds with comparable affinity with core histones and induces chromatin aggregation. The dual binding property of SGR leads to inhibition of core histone modifications. Although it potently inhibits H3K9 methylation by G9a in vitro, H3K4 and H3R17 methylation are more profoundly inhibited in cells. SGR inhibits histone acetylation both in vitro and in vivo. It does not affect the in vitro transcription from DNA template but significantly represses acetylation-dependent chromatin transcription. SGR-mediated repression of epigenetic marks and the alteration of chromatin geography (nucleography) also result in the modulation of global gene expression. These data, conclusively, show an anticancer DNA binding intercalator as a modulator of chromatin modifications and transcription in the chromatin context.

  6. Pyrrolizidine Alkaloids: Potential Role in the Etiology of Cancers, Pulmonary Hypertension, Congenital Anomalies, and Liver Disease.

    PubMed

    Edgar, John A; Molyneux, Russell J; Colegate, Steven M

    2015-01-20

    Large outbreaks of acute food-related poisoning, characterized by hepatic sinusoidal obstruction syndrome, hemorrhagic necrosis, and rapid liver failure, occur on a regular basis in some countries. They are caused by 1,2-dehydropyrrolizidine alkaloids contaminating locally grown grain. Similar acute poisoning can also result from deliberate or accidental consumption of 1,2-dehydropyrrolizidine alkaloid-containing herbal medicines, teas, and spices. In recent years, it has been confirmed that there is also significant, low-level dietary exposure to 1,2-dehydropyrrolizidine alkaloids in many countries due to consumption of common foods such as honey, milk, eggs, salads, and meat. The level of 1,2-dehydropyrrolizidine alkaloids in these foods is generally too low and too intermittent to cause acute toxicity. However, these alkaloids are genotoxic and can cause slowly developing chronic diseases such as pulmonary arterial hypertension, cancers, cirrhosis, and congenital anomalies, conditions unlikely to be easily linked with dietary exposure to 1,2-dehydropyrrolizidine alkaloids, especially if clinicians are unaware that such dietary exposure is occurring. This Perspective provides a comprehensive review of the acute and chronic toxicity of 1,2-dehydropyrrolizidine alkaloids and their potential to initiate certain chronic diseases, and suggests some associative considerations or indicators to assist in recognizing specific cases of diseases that may have resulted from dietary exposure to these hazardous natural substances. If it can be established that low-level dietary exposure to 1,2-dehydropyrrolizidine alkaloids is a significant cause of some of these costly and debilitating diseases, then this should lead to initiatives to reduce the level of these alkaloids in the food chain.

  7. Sodium ion channel alkaloid resistance does not vary with toxicity in aposematic Dendrobates poison frogs: An examination of correlated trait evolution

    PubMed Central

    Wang, Ian J.

    2018-01-01

    Spatial heterogeneity in the strength or agents of selection can lead to geographic variation in ecologically important phenotypes. Many dendrobatid frogs sequester alkaloid toxins from their diets and often exhibit fixed mutations at NaV1.4, a voltage-gated sodium ion channel associated with alkaloid toxin resistance. Yet previous studies have noted an absence of resistance mutations in individuals from several species known to sequester alkaloid toxins, suggesting possible intraspecific variation for alkaloid resistance in these species. Toxicity and alkaloid profiles vary substantially between populations in several poison frog species (genus Dendrobates) and are correlated with variation in a suite of related traits such as aposematic coloration. If resistance mutations are costly, due to alterations of channel gating properties, we expect that low toxicity populations will have reduced frequencies and potentially even the loss of resistance alleles. Here, we examine whether intraspecific variation in toxicity in three dendrobatid frogs is associated with intraspecific variation in alleles conferring toxin resistance. Specifically, we examine two species that display marked variation in toxicity throughout their native ranges (Dendrobates pumilio and D. granuliferus) and one species with reduced toxicity in its introduced range (D. auratus). However, we find no evidence for population-level variation in alkaloid resistance at NaV1.4. In fact, contrary to previous studies, we found that alkaloid resistance alleles were not absent in any populations of these species. All three species exhibit fixed alkaloid resistance mutations throughout their ranges, suggesting that these mutations are maintained even when alkaloid sequestration is substantially reduced. PMID:29534110

  8. Comparison of a specific HPLC determination of toxic aconite alkaloids in processed Radix aconiti with a titration method of total alkaloids.

    PubMed

    Csupor, Dezso; Borcsa, Botond; Heydel, Barbara; Hohmann, Judit; Zupkó, István; Ma, Yan; Widowitz, Ute; Bauer, Rudolf

    2011-10-01

    In traditional Chinese medicine, Aconitum (Ranunculaceae) roots are only applied after processing. Nevertheless, several cases of poisoning by improperly processed aconite roots have been reported. The aim of this study was to develop a reliable analytical method to assess the amount of toxic aconite alkaloids in commercial aconite roots, and to compare this method with the commonly used total alkaloid content determination by titration. The content of mesaconitine, aconitine, and hypaconitine in 16 commercial samples of processed aconite roots was determined by an HPLC method and the total alkaloid content by indirect titration. Five samples were selected for in vivo toxicological investigation. In most of the commercial samples, toxic alkaloids were not detectable, or only traces were found. In four samples, we could detect >0.04% toxic aconite alkaloids, the highest with a content of 0.16%. The results of HPLC analysis were compared with the results obtained by titration, and no correlation was found between the two methods. The in vivo results reassured the validity of the HPLC determination. Samples with mesaconitine, aconitine, and hypaconitine content below the HPLC detection limit still contained up to 0.2% alkaloids determined by titration. Since titration of alkaloids gives no information selectively on the aconitine-type alkaloid content and toxicity of aconite roots this method is not appropriate for safety assessment. The HPLC method developed by us provides a quick and reliable assessment of toxicity and should be considered as a purity test in pharmacopoeia monographs.

  9. Berberine potently attenuates intestinal polyps growth in ApcMin mice and familial adenomatous polyposis patients through inhibition of Wnt signalling

    PubMed Central

    Zhang, Junfang; Cao, Hailong; Zhang, Bing; Cao, Hanwei; Xu, Xiuqin; Ruan, Hang; Yi, Tingting; Tan, Li; Qu, Rui; Song, Gang; Wang, Bangmao; Hu, Tianhui

    2013-01-01

    As a traditional anti-inflammatory Chinese herbal medicine, Alkaloid berberine has been recently reported to exhibit anti-tumour effects against a wide spectrum of cancer. However, the mechanism was largely unknown. Gene chip array reveals that with berberine treatment, c-Myc, the target gene of Wnt pathway, was down-regulated 5.3-folds, indicating that berberine might inhibit Wnt signalling. TOPflash analysis revealed that Wnt activity was significantly reduced after berberine treatment, and the mechanism of which might be that berberine disrupted β-catenin transfer to nucleus through up-regulating the expression of adenomatous polyposis coli (APC) gene and stabilized APC-β-catenin complex. Berberine administration in ApcMin/+ mice exhibited fewer and smaller polyps in intestine, along with reduction in cyclin D1 and c-Myc expression. In clinical practice, oral administration of berberine also significantly reduced the familial adenomatous polyposis patients' polyp size along with the inhibition of cyclin D1 expression in polyp samples. These observations indicate that berberine inhibits colon tumour formation through inhibition of Wnt/β-catenin signalling and berberine might be a promising drug for the prevention of colon cancer. PMID:24015932

  10. Diterpenoid alkaloids from the roots of Aconitum brachypodum Diels.

    PubMed

    Yang, Li-Guo; Zhang, Ying-Jie; Xie, Jia-Ying; Xia, Wei-Jun; Zhang, Hai-Yuan; Tang, Meng-Yun; Mei, Shuang-Xi; Cui, Tao; Wang, Jing-Kun; Zhu, Zhao-Yun

    2016-09-01

    A new diterpenoid alkaloid, named bullatine H (1), along with 10 known diterpenoid alkaloids were isolated from the roots of Aconitum brachypodum Diels (Ranunculaceae). The structure of 1 was elucidated by analysis of its spectroscopic data. It should be noted that compound 1 is the first example with 11, 13-dioxygenated denudatine-type diterpenoid alkaloid isolated from Aconitum brachypodum.

  11. Analgesic activity of diterpene alkaloids from Aconitum baikalensis.

    PubMed

    Nesterova, Yu V; Povet'yeva, T N; Suslov, N I; Zyuz'kov, G N; Pushkarskii, S V; Aksinenko, S G; Schultz, E E; Kravtsova, S S; Krapivin, A V

    2014-08-01

    We compared analgesic activities of individual alkaloids extracted from Baikal aconite (Aconitum baikalensis): napelline, hypaconitine, songorine, mesaconitine, 12-epinapelline N-oxide. The detected analgesic activity was comparable to that of sodium metamizole. The mechanisms of analgesia were different in diterpene alkaloids of different structure. The antinociceptive effect of atisine alkaloids (12-epinapelline N-oxide, songorine) was naloxonedependent and realized via opioid receptor modulation.

  12. [Isolation of the ergot (Claviceps purpurea (Fr.) Tul., strain VKM-F-366D), producing the lactamic alkaloid ergocornam].

    PubMed

    Komarova, E L; Shain, S S; Sheĭchenko, V I

    2002-01-01

    A new ergot strain VKM-F-3662D producing lactamic alkaloid ergocornam with concomitant alkaloids valinamide and ergometrine was isolated during selective works with sclerotium MS-462, which was obtained from ergocryptine ergot strain VKM-F-2642D. The structure of these alkaloids was determined by 1H and 13C NMR.

  13. Application of Liquid Chromatography/Ion Trap Mass Spectrometry Technique to Determine Ergot Alkaloids in Grain Products

    PubMed Central

    Szymczyk, Krystyna; Jędrzejczak, Renata; Roszko, Marek

    2015-01-01

    Summary A liquid chromatography/ion trap mass spectrometry-based method to determine six ergot alkaloids and their isomers is presented. The samples were cleaned on neutral alumina-based solid-phase extraction cartridges. The following method parameters were obtained (depending on the analyte and spiking level): method recovery from 63.0 to 104.6%, relative standard deviation below 18%, linear range from 1 to 325 µg/kg, linear correlation coefficient not less than 0.98. The developed analytical procedure was applied to determine the levels of ergot alkaloids in 65 samples of selected rye-based food products (flour – 34 samples, bran – 12 samples, rye – 18 samples, flakes – 1 sample). Measurable levels of alkaloids were found in majority of the analysed samples, particularly in rye flour. Additionally, alkaloids were determined in ergot sclerotia isolated from rye grains. Total content was nearly 0.01% (97.9 mg/kg). However, the alkaloid profile was dominated by ergocristine at 45.6% (44.7 mg/kg), an alkaloid not commonly found in the tested food products. Ergocorninine at 0.2% (0.2 mg/kg) was the least abundant alkaloid. PMID:27904328

  14. Lolitrem B and Indole Diterpene Alkaloids Produced by Endophytic Fungi of the Genus Epichloë and Their Toxic Effects in Livestock.

    PubMed

    Philippe, Guerre

    2016-02-15

    Different group of alkaloids are produced during the symbiotic development of fungal endophytes of the genus Epichloë in grass. The structure and toxicity of the compounds vary considerably in mammalian herbivores and in crop pests. Alkaloids of the indole-diterpene group, of which lolitrem B is the most toxic, were first characterized in endophyte-infected perennial ryegrass, and are responsible for "ryegrass staggers." Ergot alkaloids, of which ergovaline is the most abundant ergopeptide alkaloid produced, are also found in ryegrass, but generally at a lower rate than lolitrem B. Other alkaloids such as lolines and peramine are toxic for crop pests but have weak toxicological properties in mammals. The purpose of this review is to present indole-diterpene alkaloids produced in endophyte infected ryegrass from the first characterization of ryegrass staggers to the determination of the toxicokinetics of lolitrem B and of their mechanism of action in mammals, focusing on the different factors that could explain the worldwide distribution of the disease. Other indole diterpene alkaloids than lolitrem B that can be found in Epichloë infected ryegrass, and their tremorgenic properties, are presented in the last section of this review.

  15. An In-Silico Investigation of Phytochemicals as Antiviral Agents Against Dengue Fever

    PubMed Central

    Powers, Chelsea N.; Setzer, William N.

    2016-01-01

    Abstract: A virtual screening analysis of our library of phytochemical structures with dengue virus protein targets has been carried out using a molecular docking approach. A total of 2194 plant-derived secondary metabolites have been docked. This molecule set comprised of 290 alkaloids (68 indole alkaloids, 153 isoquinoline alkaloids, 5 quinoline alkaloids, 13 piperidine alkaloids, 14 steroidal alkaloids, and 37 miscellaneous alkaloids), 678 terpenoids (47 monoterpenoids, 169 sesquiterpenoids, 265 diterpenoids, 81 steroids, and 96 triterpenoids), 20 aurones, 81 chalcones, 349 flavonoids, 120 isoflavonoids, 74 lignans, 58 stilbenoids, 169 miscellaneous polyphenolic compounds, 100 coumarins, 28 xanthones, 67 quinones, and 160 miscellaneous phytochemicals. Dengue virus protein targets examined included dengue virus protease (NS2B-NS3pro), helicase (NS3 helicase), methyltransferase (MTase), RNA-dependent RNA polymerase (RdRp), and the dengue virus envelope protein. Polyphenolic compounds, flavonoids, chalcones, and other phenolics were the most numerous of the strongly docking ligands for dengue virus protein targets. PMID:27151482

  16. Sarpagine and related alkaloids

    PubMed Central

    Namjoshi, Ojas A.; Cook, James M.

    2016-01-01

    The sarpagine-related macroline and ajmaline alkaloids share a common biosynthetic origin, and bear important structural similarities, as expected. These indole alkaloids are widely dispersed in 25 plant genera, principally in the Apocynaceae family. Very diverse and interesting biological properties have been reported for this group of natural products. Isolation of new sarpagine-related alkaloids as well as the asymmetric synthesis of these structurally complex molecules are of paramount importance to the synthetic and medicinal chemists. A total of 115 newly isolated sarpagine-related macroline and ajmaline alkaloids, along with their physicochemical properties have been included in this chapter. A general and efficient strategy for the synthesis of these monomeric alkaloids, as well as bisindoles has been presented, which involves application of the asymmetric Pictet–Spengler reaction (>98% ee) as a key step because of the ease of scale up of the tetracyclic template. Also included in this chapter are the syntheses of the sarpagine-related alkaloids, published since the year 2000. PMID:26827883

  17. Ergot Alkaloids and their Hallucinogenic Potential in Morning Glories.

    PubMed

    Steiner, Ulrike; Leistner, Eckhard

    2018-03-02

    Naturally occurring and semisynthetic ergot alkaloids play a role in health care or as recreational drugs in Western and indigenous Mexican societies. Evidence is summarized that ergot alkaloids present in Central American Convolvulaceae like Turbina corymbosa, Ipomoea violacea , and Ipomoea asarifolia are colonized by different species of a newly described clavicipitaceous fungal genus named Periglandula . The fungi are associated with peltate glandular trichomes on the adaxial leaf surface of its host plants. The Periglandula fungi are not yet culturable in vitro but were demonstrated to have the capacity to synthesize ergot alkaloids. The alkaloids do not remain in the fungal mycelium but are translocated via the glandular trichomes into their plant host. Both fungi and host benefit from a symbiotic lifestyle. In evolutionary terms the alkaloid biosynthetic gene cluster in the Periglandula/Ipomoea symbiosis is likely to have a conserved (basic) structure while biosynthetic ergot gene clusters within the genera Claviceps and Epichloe were under ecological selection for alkaloid diversification. Georg Thieme Verlag KG Stuttgart · New York.

  18. Occurrence of Ergot and Ergot Alkaloids in Western Canadian Wheat and Other Cereals.

    PubMed

    Tittlemier, Sheryl A; Drul, Dainna; Roscoe, Mike; McKendry, Twylla

    2015-07-29

    A new method was developed to analyze 10 ergot alkaloids in cereal grains. Analytes included both "ine" and "inine" type ergot alkaloids. Validation of the method showed it performed with good accuracy and precision and that minor enhancement due to matrix effects was present during LC-MS/MS analysis, but was mitigated by use of an internal standard. The method was used to survey durum and wheat harvested in 2011, a year in which ergot infection was particularly widespread in western Canada. A strong linear relationship between the concentration of ergot alkaloids and the presence of ergot sclerotia was observed. In addition, shipments of cereals from 2010-2012 were also monitored for ergot alkaloids. Concentrations of total ergot alkaloids in shipments were lower than observed in harvest samples, and averaged from 0.065 mg/kg in barley to 1.14 mg/kg in rye. In shipments, the concentration of ergot alkaloids was significantly lower in wheat of higher grades.

  19. [Analysis of effect of topographical conditions on content of total alkaloid in Coptidis Rhizoma in Chongqin, China].

    PubMed

    Liu, Xin; Huang, He; Yang, Yan-fang; Wu, He-zhen

    2014-12-01

    To study ecology suitability rank dividing of the total alkaloid content of Coptis Rhizoma for selecting artificial planting base and high-quality industrial raw material in Chongqing province. Based on the investigation of PCB and DEM data of Chongqing province, the relationship between the total alkaloid content in Coptis Rhizoma and topographical conditions was analyzed by statistical analysis. The geographic information systems (GIS)-based assessment and landscape ecological principles were applied to assess eco logy suitability areas of Coptis Rhizoma in Chongqing. slope, aspect and altitude are main topographical factors that affect the content of the total alkaloid content in Coptis Rhizoma The total alkaloid content in Coptis Rhizoma is higher in the lower altitude, shady slope and bigger slope areas. The total alkaloid content is higher in the south areas of Chongqing province and lower in the northeast. Terrain conditions of the southern region of Chongqing are most suitable for The accumulated of total alkaloid Coptis Rhizoma content.

  20. Piperidine alkaloids: human and food animal teratogens.

    PubMed

    Green, Benedict T; Lee, Stephen T; Panter, Kip E; Brown, David R

    2012-06-01

    Piperidine alkaloids are acutely toxic to adult livestock species and produce musculoskeletal deformities in neonatal animals. These teratogenic effects include multiple congenital contracture (MCC) deformities and cleft palate in cattle, pigs, sheep, and goats. Poisonous plants containing teratogenic piperidine alkaloids include poison hemlock (Conium maculatum), lupine (Lupinus spp.), and tobacco (Nicotiana tabacum) [including wild tree tobacco (Nicotiana glauca)]. There is abundant epidemiological evidence in humans that link maternal tobacco use with a high incidence of oral clefting in newborns; this association may be partly attributable to the presence of piperidine alkaloids in tobacco products. In this review, we summarize the evidence for piperidine alkaloids that act as teratogens in livestock, piperidine alkaloid structure-activity relationships and their potential implications for human health. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Bioactive alkaloids produced by fungi. I. Updates on alkaloids from the species of the genera Boletus, Fusarium and psilocybe.

    PubMed

    Mahmood, Zafar Alam; Ahmed, Syed Waseemuddin; Azhar, Iqbal; Sualeh, Mohammad; Baig, Mirza Tasawer; Zoha, Sms

    2010-07-01

    Fungi, in particular, are able in common with the higher plants and bacteria, to produce metabolites, including alkaloids. Alkaloids, along with other metabolites are the most important fungal metabolites from pharmaceutical and industrial point of view. Based on this observation, the authors of this review article have tried to provide an information on the alkaloids produced by the species of genera: Boletus, Fusarium and Psilocybef from 1981-2009. Thus the review would be helpful and provides valuable information for the researchers of the same field.

  2. Pro-toxic dehydropyrrolizidine alkaloids in the traditional Andean herbal medicine “asmachilca”

    PubMed Central

    Colegate, Steven M.; Boppré, Michael; Monzón, Julio; Betz, Joseph M.

    2015-01-01

    Ethnopharmacological relevance Asmachilca is a Peruvian medicinal herb preparation ostensibly derived from Eupatorium gayanum Wedd. = Aristeguietia gayana (Wedd.) R.M. King & H. Rob. (Asteraceae: Eupatorieae). Decoctions of the plant have a reported bronchodilation effect that is purported to be useful in the treatment of respiratory allergies, common cold and bronchial asthma. However, its attractiveness to pyrrolizidine alkaloid-pharmacophagous insects indicated a potential for toxicity for human consumers. Aim of the study To determine if commercial asmachilca samples, including fully processed herbal teas, contain potentially toxic 1,2-dehydropyrrolizidine alkaloids. Materials and methods Two brands of “Asmachilca” herbal tea bags and four other commercial samples of botanical materials for preparing asmachilca medicine were extracted and analyzed using HPLC-esi(+)MS and MS/MS for the characteristic retention times and mass spectra of known dehydropyrrolizidine alkaloids. Other suspected dehydropyrrolizidine alkaloids were tentatively identified based on MS/MS profiles and high resolution molecular weight determinations. Further structure elucidation of isolated alkaloids was based on 1D and 2D NMR spectroscopy. Results Asmachilca attracted many species of moths which are known to pharmacophagously gather dehydropyrrolizidine alkaloids. Analysis of 5 of the asmachilca samples revealed the major presence of the dehydropyrrolizidine alkaloid monoesters rinderine and supinine, and their N-oxides. The 6th sample was very similar but did not contain supinine or its N-oxide. Small quantities of other dehydropyrrolizidine alkaloid monoesters, including echinatine and intermedine, were also detected. In addition, two major metabolites, previously undescribed, were isolated and identified as dehydropyrrolizidine alkaloid monoesters with two “head-to-tail” linked viridifloric and/or trachelanthic acids. Estimates of total pyrrolizidine alkaloid and N-oxide content in the botanical components of asmachilca varied from 0.4 – 0.9% (w/dw, dry weight) based on equivalents of lycopsamine. The mean pyrrolizidine alkaloid content of a hot water infusion of a commercial asmachilca herbal tea bag was 2.2 ± 0.5 mg lycopsamine equivalents. Morphological and chemical evidence showed that asmachilca is prepared from different plant species. Conclusions All asmachilca samples and the herbal tea infusions contained toxicologically-relevant concentrations of pro-toxic 1,2-dehydropyrrolizidine alkaloid esters and, therefore, present a risk to the health of humans. This raises questions concerning the ongoing unrestricted availability of such products on the Peruvian and international market. In addition to medical surveys of consumers of asmachilca, in the context of chronic disease potentially associated with ingestion of the dehydropyrrolizidine alkaloids, the botanical origins of asmachilca preparations require detailed elucidation. PMID:26087231

  3. Cytotoxicity and accumulation of ergot alkaloids in human primary cells.

    PubMed

    Mulac, Dennis; Humpf, Hans-Ulrich

    2011-04-11

    Ergot alkaloids are secondary metabolites produced by fungi of the species Claviceps. Toxic effects after consumption of contaminated grains are described since mediaeval times. Of the more than 40 known ergot alkaloids six are found predominantly. These are ergotamine, ergocornine, ergocryptine, ergocristine, ergosine and ergometrine, along with their corresponding isomeric forms (-inine-forms). Toxic effects are known to be induced by an interaction of the ergot alkaloids as neurotransmitters, like dopamine or serotonin. Nevertheless data concerning cytotoxic effects are missing and therefore a screening of the six main ergot alkaloids was performed in human primary cells in order to evaluate the toxic potential. As it is well known that ergot alkaloids isomerize easily the stability was tested in the cell medium. Based on these results factors were calculated to correct the used concentration values to the biologically active lysergic (-ine) form. These factors range from 1.4 for the most stable compound ergometrine to 5.0 for the most unstable ergot alkaloid ergocristine. With these factors, reflecting the instability, several controverse literature data concerning the toxicity could be explained. To evaluate the cytotoxic effects of ergot alkaloids, human cells in primary culture were used. These cells remain unchanged in contrast to cell lines and the data allow a better comparison to the in vivo situation than using immortalized cell lines. To characterize the effects on primary cells, renal proximal tubule epithelial cells (RPTEC) and normal human astrocytes (NHA) were used. The parameters necrosis (LDH-release) and apoptosis (caspase-3-activation, DNA condensation and fragmentation) were distinguished. The results show that depending on the individual structure of the peptide ergot alkaloids the toxic properties change. While ergometrine as a lysergic acid amide did not show any effect, the peptide ergot alkaloids revealed a different toxic potential. Of all tested ergot alkaloids ergocristine was the most cytotoxic compound inducing apoptosis in human kidney cells starting at a concentration of 1μM in RPTEC. Uptake studies underline the cytotoxic properties, with an accumulation of peptide ergot alkaloids and no uptake of ergometrine. The results represent a new description of effects of ergot alkaloids regarding cytotoxicity and accumulation in human primary cells. For the first time apoptosis has been identified besides well described receptor effects. This gives a hint for a more complex mode of action of ergot alkaloids than described in literature so far. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  4. Fungistatic activity of Zanthoxylum rhoifolium Lam. bark extracts against fungal plant pathogens and investigation on mechanism of action in Botrytis cinerea.

    PubMed

    Carotenuto, Gennaro; Carrieri, Raffaele; Tarantino, Paola; Alfieri, Mariaevelina; Leone, Antonella; De Tommasi, Nunziatina; Lahoz, Ernesto

    2015-01-01

    Plant-derived compounds are emerging as an alternative choice to synthetic fungicides. Chloroform-methanol extract, obtained from the bark of Zanthoxylum rhoifolium, a member of Rutaceae, showed a fungistatic effect on Botrytis cinerea, Sclerotinia sclerotiorum, Alternaria alternata, Colletotrichum gloeosporioides and Clonostachys rosea, when added to the growth medium at different concentrations. A fraction obtained by gel separation and containing the alkaloid O-Methylcapaurine showed significant fungistatic effect against B. cinerea and S. sclerotiorum, two of the most destructive phytopathogenic fungi. The underlying mechanism of such an inhibition was further investigated in B. cinerea, a fungus highly prone to develop fungicide resistance, by analysing the expression levels of a set of genes (BcatrB, P450, CYP51 and TOR). O-Methylcapaurine inhibited the expression of all the analysed genes. In particular, the expression of BcatrB gene, encoding a membrane drug transporter involved in the resistance to a wide range of xenobiotic compounds, was strongly inhibited (91%).

  5. Antioxidant, antimicrobial and urease inhibiting activities of methanolic extracts from Cyphostemma digitatum stem and roots.

    PubMed

    Khan, Rasool; Saif, Abdullah Qasem; Quradha, Mohammed Mansour; Ali, Jawad; Rauf, Abdur; Khan, Ajmal

    2016-01-01

    Cyphostemma digitatum stem and roots extracts were investigated for antioxidant, antimicrobial, urease inhibition potential and phytochemical analysis. Phytochemical screening of the roots and stem extract revealed the presence of secondary metabolites including flavonoids, alkaloids, coumarins, saponins, terpenoids, tannins, carbohydrates/reducing sugars and phenolic compounds. The methanolic extracts of the roots displayed highest antioxidant activity (93.518%) against DPPH while the crude methanolic extract of the stem showed highest antioxidant activity (66.163%) at 100 μg/mL concentration. The methanolic extracts of both stem and roots were moderately active or even found to be less active against the selected bacterial and fungal strains (Tables S2 and S3). The roots extract (methanol) showed significant urease enzyme inhibition activity (IC50 = 41.2 ± 0.66; 0.2 mg/mL) while the stem extract was found moderately active (IC50 = 401.1 ± 0.58; 0.2 mg/mL) against thiourea (IC50 = 21.011; 0.2 mg/mL).

  6. Solamargine, a bioactive steroidal alkaloid isolated from Solanum aculeastrum induces non-selective cytotoxicity and P-glycoprotein inhibition.

    PubMed

    Burger, Trevor; Mokoka, Tsholofelo; Fouché, Gerda; Steenkamp, Paul; Steenkamp, Vanessa; Cordier, Werner

    2018-05-02

    Solanum aculeastrum fruits are used by some cancer sufferers as a form of alternative treatment. Scientific literature is scarce concerning its anticancer activity, and thus the aim of the study was to assess the in vitro anticancer and P-glycoprotein inhibitory potential of extracts of S. aculeastrum fruits. Furthermore, assessment of the combinational effect with doxorubicin was also done. The crude extract was prepared by ultrasonic maceration. Liquid-liquid extraction yielded one aqueous and two organic fractions. Bioactive constituents were isolated from the aqueous fraction by means of column chromatography, solid phase extraction and preparative thin-layer chromatography. Confirmation of bioactive constituent identity was done by nuclear magnetic resonance and ultra-performance liquid chromatography mass spectrometry. The crude extract and fractions were assessed for cytotoxicity and P-glycoprotein inhibition in both cancerous and non-cancerous cell lines using the sulforhodamine B and rhodamine-123 assays, respectively. Both the crude extract and aqueous fraction was cytotoxic to all cell lines, with the SH-SY5Y neuroblastoma cell line being most susceptible to exposure (IC 50  = 10.72 μg/mL [crude], 17.21 μg/mL [aqueous]). Dose-dependent P-glycoprotein inhibition was observed for the crude extract (5.9 to 18.9-fold at 100 μg/mL) and aqueous fraction (2.9 to 21.2 at 100 μg/mL). The steroidal alkaloids solamargine and solanine were identified. While solanine was not bioactive, solamargine displayed an IC 50 of 15.62 μg/mL, and 9.1-fold P-glycoprotein inhibition at 100 μg/mL against the SH-SY5Y cell line. Additive effects were noted for combinations of doxorubicin against the SH-SY5Y cell line. The crude extract and aqueous fraction displayed potent non-selective cytotoxicity and noteworthy P-glycoprotein inhibition. These effects were attributed to solamargine. P-glycoprotein inhibitory activity was only present at concentrations higher than those inducing cytotoxicity, and thus does not appear to be the likely mechanism for the enhancement of doxorubicin's cytotoxicity. Preliminary results suggest that non-selective cytotoxicity may hinder drug development, however, further assessment of the mode of cell death is necessary to determine the route forward.

  7. The effect of 7,8-methylenedioxylycoctonine-type diterpenoid alkaloids on the toxicity of methyllycaconitine in mice.

    PubMed

    Welch, K D; Panter, K E; Gardner, D R; Green, B T; Pfister, J A; Cook, D; Stegelmeier, B L

    2008-10-01

    Larkspur plants contain numerous norditerpenoid alkaloids, which include the 7,8-methylenedioxylycoctonine (MDL)-type alkaloids and the N-(methylsuccinimido)anthranoyllycoctonine (MSAL)-type alkaloids. The MSAL-type alkaloids are generally much more toxic (typically >20 times). Toxicity of many tall larkspurs, such as Delphinium barbeyi, has been attributed to its large concentration of MSAL-type alkaloids, including methyllycaconitine (MLA). However, the norditerpenoid alkaloids found in the greatest concentrations in most D. barbeyi populations are either deltaline or 14-O-acetyldictyocarpine (14-OAD), both less toxic MDL-type alkaloids. Although the individual toxicities of MLA, 14-OAD, and deltaline have been determined, the impact (additive or antagonistic) that large concentrations of deltaline or 14-OAD in the plant have on the toxicity of MLA is unknown. Consequently, the effect of MDL-type alkaloids on the toxicity of MLA was compared by using median lethal dose (LD(50)) and toxicokinetic profiles of the brainand muscle from mice receiving i.v. administration of these alkaloids, individually or in combination, at ratios of 1:1, 1:5, and 1:25 MLA to MDL-type alkaloids. The LD(50) for MLA alone was 4.4 +/- 0.7 mg/kg of BW, whereas the coadministration of MLA and deltaline at 1:1, 1:5, and 1:25 resulted in an LD(50) of 2.7, 2.5, and 1.9 mg/kg of BW, respectively. Similarly, the coadministration of MLA and 14-OAD at 1:1, 1:5, and 1:25 resulted in an LD(50) of 3.1, 2.2, and 1.5 mg/kg of BW, respectively. Coadministration of mixtures did not result in increased MLA bioavailability or alterations in clearance from the brain and muscle. Consequently, the increased toxicity of the mixtures was not a result of increased MLA bioavailability (based on the maximum concentrations observed) or alterations in MLA clearance from the brain and muscle, because these were unchanged. These results demonstrate that MDL-type alkaloids have an additive effect on MLA toxicity in mice and may also play a role in the overall toxicity of tall larkspur plants in cattle.

  8. Berberine suppresses in vitro migration and invasion of human SCC-4 tongue squamous cancer cells through the inhibitions of FAK, IKK, NF-kappaB, u-PA and MMP-2 and -9.

    PubMed

    Ho, Yung-Tsuan; Yang, Jai-Sing; Li, Tsai-Chung; Lin, Jen-Jyh; Lin, Jaung-Geng; Lai, Kuang-Chi; Ma, Chia-Yu; Wood, W Gibson; Chung, Jing-Gung

    2009-07-08

    There is increasing evidence that urokinase-type plasminogen activator (u-PA) and matrix metalloproteinases (MMPs) play an important role in cancer metastasis and angiogenesis. Inhibition of u-PA and MMPs could suppress migration and invasion of cancer cells. Berberine, one of the main constituents of the plant Rhizoma coptidis, is a type of isoquinoline alkaloid, reported to have anti-cancer effects in different human cancer cell lines. There is however, no available information on effects of berberine on migration and invasion of human tongue cancer cells. Here, we report that berberine inhibited migration and invasion of human SCC-4 tongue squamous carcinoma cells. This action was mediated by the p-JNK, p-ERK, p-p38, IkappaK and NF-kappaB signaling pathways resulting in inhibition of MMP-2 and -9 in human SCC-4 tongue squamous carcinoma cells. Our Western blowing analysis also showed that berberine inhibited the levels of urokinase-plasminogen activator (u-PA). These results suggest that berberine down-regulates u-PA, MMP-2 and -9 expressions in SCC-4 cells through the FAK, IKK and NF-kappaB mediated pathways and a novel function of berberine is to inhibit the invasive capacity of malignant cells.

  9. Plant-symbiotic fungi as chemical engineers: multi-genome analysis of the clavicipitaceae reveals dynamics of alkaloid loci.

    PubMed

    Schardl, Christopher L; Young, Carolyn A; Hesse, Uljana; Amyotte, Stefan G; Andreeva, Kalina; Calie, Patrick J; Fleetwood, Damien J; Haws, David C; Moore, Neil; Oeser, Birgitt; Panaccione, Daniel G; Schweri, Kathryn K; Voisey, Christine R; Farman, Mark L; Jaromczyk, Jerzy W; Roe, Bruce A; O'Sullivan, Donal M; Scott, Barry; Tudzynski, Paul; An, Zhiqiang; Arnaoudova, Elissaveta G; Bullock, Charles T; Charlton, Nikki D; Chen, Li; Cox, Murray; Dinkins, Randy D; Florea, Simona; Glenn, Anthony E; Gordon, Anna; Güldener, Ulrich; Harris, Daniel R; Hollin, Walter; Jaromczyk, Jolanta; Johnson, Richard D; Khan, Anar K; Leistner, Eckhard; Leuchtmann, Adrian; Li, Chunjie; Liu, JinGe; Liu, Jinze; Liu, Miao; Mace, Wade; Machado, Caroline; Nagabhyru, Padmaja; Pan, Juan; Schmid, Jan; Sugawara, Koya; Steiner, Ulrike; Takach, Johanna E; Tanaka, Eiji; Webb, Jennifer S; Wilson, Ella V; Wiseman, Jennifer L; Yoshida, Ruriko; Zeng, Zheng

    2013-01-01

    The fungal family Clavicipitaceae includes plant symbionts and parasites that produce several psychoactive and bioprotective alkaloids. The family includes grass symbionts in the epichloae clade (Epichloë and Neotyphodium species), which are extraordinarily diverse both in their host interactions and in their alkaloid profiles. Epichloae produce alkaloids of four distinct classes, all of which deter insects, and some-including the infamous ergot alkaloids-have potent effects on mammals. The exceptional chemotypic diversity of the epichloae may relate to their broad range of host interactions, whereby some are pathogenic and contagious, others are mutualistic and vertically transmitted (seed-borne), and still others vary in pathogenic or mutualistic behavior. We profiled the alkaloids and sequenced the genomes of 10 epichloae, three ergot fungi (Claviceps species), a morning-glory symbiont (Periglandula ipomoeae), and a bamboo pathogen (Aciculosporium take), and compared the gene clusters for four classes of alkaloids. Results indicated a strong tendency for alkaloid loci to have conserved cores that specify the skeleton structures and peripheral genes that determine chemical variations that are known to affect their pharmacological specificities. Generally, gene locations in cluster peripheries positioned them near to transposon-derived, AT-rich repeat blocks, which were probably involved in gene losses, duplications, and neofunctionalizations. The alkaloid loci in the epichloae had unusual structures riddled with large, complex, and dynamic repeat blocks. This feature was not reflective of overall differences in repeat contents in the genomes, nor was it characteristic of most other specialized metabolism loci. The organization and dynamics of alkaloid loci and abundant repeat blocks in the epichloae suggested that these fungi are under selection for alkaloid diversification. We suggest that such selection is related to the variable life histories of the epichloae, their protective roles as symbionts, and their associations with the highly speciose and ecologically diverse cool-season grasses.

  10. Development and Validation of a HPLC-ESI-MS/MS Method for Simultaneous Quantification of Fourteen Alkaloids in Mouse Plasma after Oral Administration of the Extract of Corydalis yanhusuo Tuber: Application to Pharmacokinetic Study.

    PubMed

    Du, Weijuan; Jin, Lisha; Li, Liping; Wang, Wei; Zeng, Su; Jiang, Huidi; Zhou, Hui

    2018-03-21

    The tuber of Corydalis yanhusuo is a famous traditional Chinese medicine and found to have potent pharmacological effects, such as antinociceptive, antitumor, antibacterial, anti-inflammatory, and anti-depressive activities. Although there are several methods to be developed for the analysis and detection of the bioactive ingredients' alkaloids, so far, only few prominent alkaloids could be quantified, and in vitro and in vivo changes of comprehensive alkaloids after oral administration are still little known. In this study, we first developed a simple and sensitive high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (HPLC-ESI-MS/MS) method to quantify the comprehensive alkaloids of extracts of C. yanhusuo in mouse plasma, using nitidine chloride as an internal standard. As results, at least fourteen alkaloids, including an aporphine (oxoglaucine), a protopine (protopine), five tertiary alkaloids (corydaline, tetrahydroberberine, tetrahydropalmatine, tetrahydrocolumbamine, and tetrahydrocoptisine) and seven quaternary alkaloids (columbamine, palmatine, berberine, epiberberine, coptisine, jatrorrhizine, and dehydrocorydaline) could be well quantified simultaneously in mouse plasma. The lower limits of quantification were greater than, or equal to, 0.67 ng/mL, and the average matrix effects ranged from 96.4% to 114.3%. The mean extraction recoveries of quality control samples were over 71.40%, and the precision and accuracy were within the acceptable limits. All the analytes were shown to be stable under different storage conditions. Then the established method was successfully applied to investigate the pharmacokinetics of these alkaloids after oral administration of the extract of Corydalis yanhusuo in mice. To the best of our knowledge, this is the first document to report the comprehensive and simultaneous analyses of alkaloids of C. yanhusuo in mouse plasma. It was efficient and useful for comprehensive pharmacokinetic and metabolomic analyses of these complex alkaloids after drug administration.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koenig, Xaver; Kovar, Michael; Rubi, Lena

    The plant alkaloid ibogaine has promising anti-addictive properties. Albeit not licenced as a therapeutic drug, and despite hints that ibogaine may perturb the heart rhythm, this alkaloid is used to treat drug addicts. We have recently reported that ibogaine inhibits human ERG (hERG) potassium channels at concentrations similar to the drugs affinity for several of its known brain targets. Thereby the drug may disturb the heart's electrophysiology. Here, to assess the drug's cardiac ion channel profile in more detail, we studied the effects of ibogaine and its congener 18-Methoxycoronaridine (18-MC) on various cardiac voltage-gated ion channels. We confirmed that heterologouslymore » expressed hERG currents are reduced by ibogaine in low micromolar concentrations. Moreover, at higher concentrations, the drug also reduced human Na{sub v}1.5 sodium and Ca{sub v}1.2 calcium currents. Ion currents were as well reduced by 18-MC, yet with diminished potency. Unexpectedly, although blocking hERG channels, ibogaine did not prolong the action potential (AP) in guinea pig cardiomyocytes at low micromolar concentrations. Higher concentrations (≥ 10 μM) even shortened the AP. These findings can be explained by the drug's calcium channel inhibition, which counteracts the AP-prolonging effect generated by hERG blockade. Implementation of ibogaine's inhibitory effects on human ion channels in a computer model of a ventricular cardiomyocyte, on the other hand, suggested that ibogaine does prolong the AP in the human heart. We conclude that therapeutic concentrations of ibogaine have the propensity to prolong the QT interval of the electrocardiogram in humans. In some cases this may lead to cardiac arrhythmias. - Highlights: • We study effects of anti-addiction drug ibogaine on ionic currents in cardiomyocytes. • We assess the cardiac ion channel profile of ibogaine. • Ibogaine inhibits hERG potassium, sodium and calcium channels. • Ibogaine’s effects on ion channels are a potential source of cardiac arrhythmias. • 18-Methoxycoronaridine has a lower affinity for cardiac ion channels than ibogaine.« less

  12. Indirubin, a bis-indole alkaloid binds to tubulin and exhibits antimitotic activity against HeLa cells in synergism with vinblastine.

    PubMed

    Mohan, Lakshmi; Raghav, Darpan; Ashraf, Shabeeba M; Sebastian, Jomon; Rathinasamy, Krishnan

    2018-06-05

    Indirubin, a bis-indole alkaloid used in traditional Chinese medicine has shown remarkable anticancer activity against chronic myelocytic leukemia. The present work was aimed to decipher the underlying molecular mechanisms responsible for its anticancer attributes. Our findings suggest that indirubin inhibited the proliferation of HeLa cells with an IC 50 of 40 μM and induced a mitotic block. At concentrations higher than its IC 50 , indirubin exerted a moderate depolymerizing effect on the interphase microtubular network and spindle microtubules in HeLa cells. Studies with goat brain tubulin indicated that indirubin bound to tubulin at a single site with a dissociation constant of 26 ± 3 μM and inhibited the in vitro polymerization of tubulin into microtubules in the presence of glutamate as well as microtubule-associated proteins. Molecular docking analysis and molecular dynamics simulation studies indicate that indirubin stably binds to tubulin at the interface of the α-β tubulin heterodimer. Further, indirubin stabilized the binding of colchicine on tubulin and promoted the cysteine residue modification by 5,5'-dithiobis-2-nitrobenzoic acid, indicating towards alteration of tubulin conformation upon binding. In addition, we found that indirubin synergistically enhanced the anti-mitotic and anti-proliferative activity of vinblastine, a known microtubule-targeted agent. Collectively our studies indicate that perturbation of microtubule polymerization dynamics could be one of the possible mechanisms behind the anti-cancer activities of indirubin. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  13. Antidiarrhoeal Activity of Musa paradisiaca Sap in Wistar Rats

    PubMed Central

    Yakubu, Musa T.; Nurudeen, Quadri O.; Salimon, Saoban S.; Yakubu, Monsurat O.; Jimoh, Rukayat O.; Nafiu, Mikhail O.; Akanji, Musbau A.; Oladiji, Adenike T.; Williams, Felicia E.

    2015-01-01

    The folkloric claim of Musa paradisiaca sap in the management of diarrhoea is yet to be substantiated or refuted with scientific data. Therefore, the aim of the current study was to screen the sap of M. paradisiaca for both its secondary metabolites and antidiarrhoeal activity at 0.25, 0.50, and 1.00 mL in rats. Secondary metabolites were screened using standard methods while the antidiarrhoeal activity was done by adopting the castor oil-induced diarrhoeal, castor oil-induced enteropooling, and gastrointestinal motility models. The sap contained flavonoids, phenolics, saponins, alkaloids, tannins, and steroids while cardiac glycosides, anthraquinones, triterpenes, cardenolides, and dienolides were not detected. In the castor oil-induced diarrhoeal model, the sap significantly (P < 0.05) prolonged the onset time of diarrhoea, decreased the number, fresh weight, and water content of feaces, and increased the inhibition of defecations. Na+-K+-ATPase activity in the small intestine increased significantly whereas nitric oxide content decreased. The decreases in the masses and volumes of intestinal fluid by the sap were accompanied by increase in inhibition of intestinal fluid content in the enteropooling model. The sap decreased the charcoal meal transit in the gastrointestinal motility model. In all the models, the 1.00 mL of the sap produced changes that compared well with the reference drugs. Overall, the antidiarrhoeal activity of Musa paradisiaca sap attributed to the presence of alkaloids, phenolics, flavonoids, and/or saponins which may involve, among others, enhancing fluid and electrolyte absorption through de novo synthesis of the sodium potassium ATPase and/or reduced nitric oxide levels. PMID:25893000

  14. Antidiarrhoeal Activity of Musa paradisiaca Sap in Wistar Rats.

    PubMed

    Yakubu, Musa T; Nurudeen, Quadri O; Salimon, Saoban S; Yakubu, Monsurat O; Jimoh, Rukayat O; Nafiu, Mikhail O; Akanji, Musbau A; Oladiji, Adenike T; Williams, Felicia E

    2015-01-01

    The folkloric claim of Musa paradisiaca sap in the management of diarrhoea is yet to be substantiated or refuted with scientific data. Therefore, the aim of the current study was to screen the sap of M. paradisiaca for both its secondary metabolites and antidiarrhoeal activity at 0.25, 0.50, and 1.00 mL in rats. Secondary metabolites were screened using standard methods while the antidiarrhoeal activity was done by adopting the castor oil-induced diarrhoeal, castor oil-induced enteropooling, and gastrointestinal motility models. The sap contained flavonoids, phenolics, saponins, alkaloids, tannins, and steroids while cardiac glycosides, anthraquinones, triterpenes, cardenolides, and dienolides were not detected. In the castor oil-induced diarrhoeal model, the sap significantly (P < 0.05) prolonged the onset time of diarrhoea, decreased the number, fresh weight, and water content of feaces, and increased the inhibition of defecations. Na(+)-K(+)-ATPase activity in the small intestine increased significantly whereas nitric oxide content decreased. The decreases in the masses and volumes of intestinal fluid by the sap were accompanied by increase in inhibition of intestinal fluid content in the enteropooling model. The sap decreased the charcoal meal transit in the gastrointestinal motility model. In all the models, the 1.00 mL of the sap produced changes that compared well with the reference drugs. Overall, the antidiarrhoeal activity of Musa paradisiaca sap attributed to the presence of alkaloids, phenolics, flavonoids, and/or saponins which may involve, among others, enhancing fluid and electrolyte absorption through de novo synthesis of the sodium potassium ATPase and/or reduced nitric oxide levels.

  15. Mechanism of hERG channel block by the psychoactive indole alkaloid ibogaine.

    PubMed

    Thurner, Patrick; Stary-Weinzinger, Anna; Gafar, Hend; Gawali, Vaibhavkumar S; Kudlacek, Oliver; Zezula, Juergen; Hilber, Karlheinz; Boehm, Stefan; Sandtner, Walter; Koenig, Xaver

    2014-02-01

    Ibogaine is a psychoactive indole alkaloid. Its use as an antiaddictive agent has been accompanied by QT prolongation and cardiac arrhythmias, which are most likely caused by human ether a go-go-related gene (hERG) potassium channel inhibition. Therefore, we studied in detail the interaction of ibogaine with hERG channels heterologously expressed in mammalian kidney tsA-201 cells. Currents through hERG channels were blocked regardless of whether ibogaine was applied via the extracellular or intracellular solution. The extent of inhibition was determined by the relative pH values. Block occurred during activation of the channels and was not observed for resting channels. With increasing depolarizations, ibogaine block grew and developed faster. Steady-state activation and inactivation of the channel were shifted to more negative potentials. Deactivation was slowed, whereas inactivation was accelerated. Mutations in the binding site reported for other hERG channel blockers (Y652A and F656A) reduced the potency of ibogaine, whereas an inactivation-deficient double mutant (G628C/S631C) was as sensitive as wild-type channels. Molecular drug docking indicated binding within the inner cavity of the channel independently of the protonation of ibogaine. Experimental current traces were fit to a kinetic model of hERG channel gating, revealing preferential binding of ibogaine to the open and inactivated state. Taken together, these findings show that ibogaine blocks hERG channels from the cytosolic side either in its charged form alone or in company with its uncharged form and alters the currents by changing the relative contribution of channel states over time.

  16. Integration of Transcriptome, Proteome and Metabolism Data Reveals the Alkaloids Biosynthesis in Macleaya cordata and Macleaya microcarpa

    PubMed Central

    Liu, Fuqing; Huang, Peng; Zhu, Pengcheng; Chen, Jinjun; Shi, Mingming; Guo, Fang; Cheng, Pi; Zeng, Jing; Liao, Yifang; Gong, Jing; Zhang, Hong-Mei; Wang, Depeng; Guo, An-Yuan; Xiong, Xingyao

    2013-01-01

    Background The Macleaya spp., including Macleaya cordata and Macleaya microcarpa, are traditional anti-virus, inflammation eliminating, and insecticide herb medicines for their isoquinoline alkaloids. They are also known as the basis of the popular natural animal food addictive in Europe. However, few studies especially at genomics level were conducted on them. Hence, we performed the Macleaya spp. transcriptome and integrated it with iTRAQ proteome analysis in order to identify potential genes involved in alkaloids biosynthesis. Methodology and Principal Findings We elaborately designed the transcriptome, proteome and metabolism profiling for 10 samples of both species to explore their alkaloids biosynthesis. From the transcriptome data, we obtained 69367 and 78255 unigenes for M. cordata and M. microcarpa, in which about two thirds of them were similar to sequences in public databases. By metabolism profiling, reverse patterns for alkaloids sanguinarine, chelerythrine, protopine, and allocryptopine were observed in different organs of two species. We characterized the expressions of enzymes in alkaloid biosynthesis pathways. We also identified more than 1000 proteins from iTRAQ proteome data. Our results strongly suggest that the root maybe the organ for major alkaloids biosynthesis of Macleaya spp. Except for biosynthesis, the alkaloids storage and transport were also important for their accumulation. The ultrastructure of laticifers by SEM helps us to prove the alkaloids maybe accumulated in the mature roots. Conclusions/Significance To our knowledge this is the first study to elucidate the genetic makeup of Macleaya spp. This work provides clues to the identification of the potential modulate genes involved in alkaloids biosynthesis in Macleaya spp., and sheds light on researches for non-model medicinal plants by integrating different high-throughput technologies. PMID:23326424

  17. Protective effects on vascular endothelial cell in N'-nitro-L-arginine (L-NNA)-induced hypertensive rats from the combination of effective components of Uncaria rhynchophylla and Semen Raphani.

    PubMed

    Li, Yunlun; Yang, Wenqing; Zhu, Qingjun; Yang, Jinguo; Wang, Zhen

    2015-08-01

    Endothelial dysfunction is closely associated with hypertension. Protection of vascular endothelial cell is the key to prevention and treatment of hypertension. Uncaria rhynchophylla total alkaloids and Semen Raphani soluble alkaloid, isolated from traditional Chinese medicine Uncaria rbyncbopbylla and Semen Raphani respectively, exhibit properties of anti-hypertension and protection of blood vessels. In the present study, we observed the protective effect of the combined use of Uncaria rhynchophylla total alkaloids and Semen Raphani soluble alkaloid to the vascular endothelial cell in N'-nitro-L-arginine-induced hypertensive rats and investigate the preliminary mechanism. Blood pressure was detected by non-invasive rats tail method to observe the anti-hypertension effect of drugs. Scanning electron microscopy was used to observe the integrity or shedding state of vascular endothelial cell. The amount of circulating endothelial cells and CD54 and CD62P expression on circulating endothelial cells were tested to evaluate the endothelium function. In this study, we found that the Uncaria rhynchophylla total alkaloids and Semen Raphani soluble alkaloid compatibility can effectively lower the blood pressure, improve the structural integrity of vascular endothelium, and significantly reduce the number of circulating endothelial cells. Furthermore, the mean fluorescence intensity of CD54 and CD62P expressed showed decrease after the intervention of Uncaria rhynchophylla total alkaloids and Semen Raphani soluble alkaloid compatibility. In conclusion, the combination of effective components of the Uncaria rhynchophylla total alkaloids and Semen Raphani soluble alkaloid demonstrated good antihypertension effect and vascular endothelium protective effect. The preliminary mechanism of the protective effect may attribute to relieve the overall low-grade inflammation.

  18. Harmaline Tremor: Underlying Mechanisms in a Potential Animal Model of Essential Tremor

    PubMed Central

    Handforth, Adrian

    2012-01-01

    Background Harmaline and harmine are tremorigenic β-carbolines that, on administration to experimental animals, induce an acute postural and kinetic tremor of axial and truncal musculature. This drug-induced action tremor has been proposed as a model of essential tremor. Here we review what is known about harmaline tremor. Methods Using the terms harmaline and harmine on PubMed, we searched for papers describing the effects of these β-carbolines on mammalian tissue, animals, or humans. Results Investigations over four decades have shown that harmaline induces rhythmic burst-firing activity in the medial and dorsal accessory inferior olivary nuclei that is transmitted via climbing fibers to Purkinje cells and to the deep cerebellar nuclei, then to brainstem and spinal cord motoneurons. The critical structures required for tremor expression are the inferior olive, climbing fibers, and the deep cerebellar nuclei; Purkinje cells are not required. Enhanced synaptic norepinephrine or blockade of ionic glutamate receptors suppresses tremor, whereas enhanced synaptic serotonin exacerbates tremor. Benzodiazepines and muscimol suppress tremor. Alcohol suppresses harmaline tremor but exacerbates harmaline-associated neural damage. Recent investigations on the mechanism of harmaline tremor have focused on the T-type calcium channel. Discussion Like essential tremor, harmaline tremor involves the cerebellum, and classic medications for essential tremor have been found to suppress harmaline tremor, leading to utilization of the harmaline model for preclinical testing of antitremor drugs. Limitations are that the model is acute, unlike essential tremor, and only approximately half of the drugs reported to suppress harmaline tremor are subsequently found to suppress tremor in clinical trials. PMID:23440018

  19. Distribution of monoamine oxidase proteins in human brain: implications for brain imaging studies

    PubMed Central

    Tong, Junchao; Meyer, Jeffrey H; Furukawa, Yoshiaki; Boileau, Isabelle; Chang, Li-Jan; Wilson, Alan A; Houle, Sylvain; Kish, Stephen J

    2013-01-01

    Positron emission tomography (PET) imaging of monoamine oxidases (MAO-A: [11C]harmine, [11C]clorgyline, and [11C]befloxatone; MAO-B: [11C]deprenyl-D2) has been actively pursued given clinical importance of MAOs in human neuropsychiatric disorders. However, it is unknown how well PET outcome measures for the different radiotracers are quantitatively related to actual MAO protein levels. We measured regional distribution (n=38) and developmental/aging changes (21 hours to 99 years) of both MAOs by quantitative immunoblotting in autopsied normal human brain. MAO-A was more abundant than MAO-B in infants, which was reversed as MAO-B levels increased faster before 1 year and, unlike MAO-A, kept increasing steadily to senescence. In adults, regional protein levels of both MAOs were positively and proportionally correlated with literature postmortem data of MAO activities and binding densities. With the exception of [11C]befloxatone (binding potential (BP), r=0.61, P=0.15), correlations between regional PET outcome measures of binding in the literature and MAO protein levels were good (P<0.01) for [11C]harmine (distribution volume, r=0.86), [11C]clorgyline (λk3, r=0.82), and [11C]deprenyl-D2 (λk3 or modified Patlak slope, r=0.78 to 0.87), supporting validity of the latter imaging measures. However, compared with in vitro data, the latter PET measures underestimated regional contrast by ∼2-fold. Further studies are needed to address cause of the in vivo vs. in vitro nonproportionality. PMID:23403377

  20. Alkaloids in plants and root cultures of Atropa belladonna overexpressing putrescine N-methyltransferase.

    PubMed

    Rothe, Grit; Hachiya, Akira; Yamada, Yasuyuki; Hashimoto, Takashi; Dräger, Birgit

    2003-09-01

    Putrescine N-methyltransferase (PMT) is the first alkaloid-specific enzyme for nicotine and tropane alkaloid formation. The pmt gene from Nicotiana tabacum was fused to the CaMV 35S promoter and integrated into the Atropa belladonna genome. Transgenic plants and derived root cultures were analysed for gene expression and for levels of alkaloids and their precursors. Scopolamine, hyoscyamine, tropine, pseudotropine, tropinone, and calystegines were found unaltered or somewhat decreased in pmt-overexpressing lines compared to controls. When root cultures were treated with 5% sucrose, calystegine levels were elevated in control roots, but were not affected in pmt-overexpressing roots. 1 microM auxin reduced calystegine levels in control roots, while in pmt-overexpressing roots all alkaloids remained unaltered. Expression level of pmt alone is apparently not limiting for tropane alkaloid formation in A. belladonna.

  1. Probing the transcriptome of Aconitum carmichaelii reveals the candidate genes associated with the biosynthesis of the toxic aconitine-type C19-diterpenoid alkaloids.

    PubMed

    Zhao, Dake; Shen, Yong; Shi, Yana; Shi, Xingqiao; Qiao, Qin; Zi, Shuhui; Zhao, Erqiang; Yu, Diqiu; Kennelly, Edward J

    2018-05-11

    Aconitum carmichaelii has long been used as a traditional Chinese medicine, and its processed lateral roots are known commonly as fuzi. Aconitine-type C 19 -diterpenoid alkaloids accumulating in the lateral roots are some of the main toxicants of this species, yet their biosynthesis remains largely unresolved. As a first step towards understanding the biosynthesis of aconitine-type C 19 -diterpenoid alkaloids, we performed de novo transcriptome assembly and analysis of rootstocks and leaf tissues of Aconitum carmichaelii by next-generation sequencing. A total of 525 unigene candidates were identified as involved in the formation of C 19 -diterpenoid alkaloids, including those encoding enzymes in the early steps of diterpenoid alkaloids scaffold biosynthetic pathway, such as ent-copalyl diphosphate synthases, ent-kaurene synthases, kaurene oxidases, cyclases, and key aminotransferases. Furthermore, candidates responsible for decorating of diterpenoid alkaloid skeletons were discovered from transcriptome sequencing of fuzi, such as monooxygenases, methyltransferase, and BAHD acyltransferases. In addition, 645 differentially expressed genes encoding transcription factors potentially related to diterpenoid alkaloids accumulation underground were documented. Subsequent modular domain structure phylogenetics and differential expression analysis led to the identification of BAHD acyltransferases possibly involved in the formation of acetyl and benzoyl esters of diterpenoid alkaloids, associated with the acute toxicity of fuzi. The transcriptome data provide the foundation for future research into the molecular basis for aconitine-type C 19 -diterpenoid alkaloids biosynthesis in A. carmichaelii. Copyright © 2018. Published by Elsevier Ltd.

  2. beta-Phenylethylamines and the isoquinoline alkaloids.

    PubMed

    Bentley, Kenneth W

    2005-04-01

    This review covers beta-phenylethylamines and isoquinoline alkaloids derived from them, including further products of oxidation, condensation with formaldehyde and rearrangement, some of which do not contain as isoquinoline system, together with napthylisoquinoline alkaloids, which have a different biogenetic origin. The occurrence of the alkaloids with the structures of new bases, together with their reactions and syntheses, are reported. The literature from July 2003 to June 2004 is reviewed, with 145 references cited.

  3. In Situ Histochemical Localisation of Alkaloids and Acetogenins in the Endosperm and Embryonic Axis of Annona Macroprophyllata Donn. Sm. Seeds During Germination

    PubMed Central

    Brechú-Franco, A.E.; Laguna-Hernández, G.; De la Cruz-Chacón, I.; González-Esquinca, A.R.

    2016-01-01

    Currently, the Annonaceae family is characterised by the production of acetogenins (ACGs), and also by the biosynthesis of alkaloids, primarily benzylisoquinolines derived from tyrosine. The objective of this study was to confirm the presence of alkaloids and acetogenins in the idioblasts of the endosperm and the embryonic axis of A. macroprophyllata seeds in germination. The Dragendorff, Dittmar, Ellram, and Lugol reagents were used to test for alkaloids, and Kedde’s reagent was used to determine the presence of acetogenins in fresh sections of the endosperm and embryonic axis of seeds after twelve days of germination. A positive reaction was observed for all the reagents, and the presence of alkaloids and acetogenins was confirmed in the idioblasts of the endosperm and those involved in the differentiation of the embryonic axis of the developing seedling. We concluded that the idioblasts store both metabolites, acetogenins and alkaloids. Beginning at differentiation, the idioblasts of the embryonic axis simultaneously biosynthesise acetogenins and alkaloids that are characteristic of the species during the development of the seedling. The method used here can be applied to histochemically confirm the presence of acetogenins and alkaloids in tissues and structures of the plant in different stages of its life cycle. PMID:26972713

  4. Ameliorative effect of alkaloid extract of Cyclea peltata (Poir.) Hook. f. & Thoms. roots (ACP) on APAP/CCl4 induced liver toxicity in Wistar rats and in vitro free radical scavenging property.

    PubMed

    Shine, Varghese Jancy; Latha, Panikamparambil Gopalakrishnan; Suja, Somasekharan Nair Rajam; Anuja, Gangadharan Indira; Raj, Gopan; Rajasekharan, Sreedharan Nair

    2014-02-01

    To evaluate the hepatoprotective and antioxidant properties of alkaloid extract of Cyclea peltata (C. peltata) against paracetamol/carbon tetra chloride induced liver damage in Wistar rats. In vivo paracetamol/carbon tetrachloride induced liver damage in Wistar rats, in vitro free radical scavenging studies, HPTLC estimation of tetrandrine and direct analysis in real time- mass spectrometry of alkaloid extract of C. peltata were used for the validation. The results showed that pretreatment with alkaloid extract of C. peltata caused significant reduction of serum glutamate pyruvate transaminase, serum glutamate oxaloacetate transaminase, serum alkaline phosphatase, serum cholesterol, liver malondialdehyde levels. The reduced glutathione, catalase, superoxide dismutase levels in liver were increased with alkaloid extract of C. peltata treatment. These results were almost comparable to silymarin and normal control. Histopathological studies also substantiated the biochemical findings. The in vitro hydroxyl, superoxide and DPPH scavenging study of alkaloid extract of C. peltata showed significant free radical scavenging property. The hepatoprotective property of alkaloid extract of C. peltata against paracetamol/carbon tetrachloride may be due the synergistic action of alkaloids especially tetrandrine, fangchinoline through free radical scavenging and thus preventing oxidative stress.

  5. Drug Delivery Systems and Combination Therapy by Using Vinca Alkaloids

    PubMed Central

    Lee, Chun-Ting; Huang, Yen-Wei; Yang, Chih-Hui; Huang, Keng-Shiang

    2015-01-01

    Developing new methods for chemotherapy drug delivery has become a topic of great concern. Vinca alkaloids are among the most widely used chemotherapy reagents for tumor therapy; however, their side effects are particularly problematic for many medical doctors. To reduce the toxicity and enhance the therapeutic efficiency of vinca alkaloids, many researchers have developed strategies such as using liposome-entrapped drugs, chemical- or peptide-modified drugs, polymeric packaging drugs, and chemotherapy drug combinations. This review mainly focuses on the development of a vinca alkaloid drug delivery system and the combination therapy. Five vinca alkaloids (eg, vincristine, vinblastine, vinorelbine, vindesine, and vinflunine) are reviewed. PMID:25877096

  6. [Relativity among starch quantity, polysaccharides content and total alkaloid content of Dendrobium loddigesii].

    PubMed

    Zhu, Hua; Teng, Jianbei; Cai, Yi; Liang, Jie; Zhu, Yilin; Wei, Tao

    2011-12-01

    To find out the relativity among starch quantity, polysaccharides content and total alkaloid content of Dendrobium loddigesii. Microscopy-counting process was applied to starch quantity statistics, sulfuric acid-anthrone colorimetry was used to assay polysaccharides content and bromocresol green colorimetry was used to assay alkaloid content. Pearson product moment correlation analysis, Kendall's rank correlation analysis and Spearman's concordance coefficient analysis were applied to study their relativity. Extremely significant positive correlation was found between starch quantity and polysaccharides content, and significant negative correlation between alkaloid content and starch quantity was discovered, as well was between alkaloid content and polysaccharides content.

  7. Alkaloid diversity in the leaves of Australian Flindersia (Rutaceae) species driven by adaptation to aridity.

    PubMed

    Robertson, Luke P; Hall, Casey R; Forster, Paul I; Carroll, Anthony R

    2018-05-04

    The genus Flindersia (Rutaceae) comprises 17 species of mostly Australian endemic trees. Although most species are restricted to rainforests, four have evolved to grow in semi-arid and arid environments. In this study, the leaf alkaloid diversity of rainforest and semi-arid/arid zone adapted Australian Flindersia were compared by LC/MS-MS and NMR spectroscopy. Contrary to expectations, Flindersia alkaloid diversity was strongly correlated with environmental aridity, where species predominating in drier regions produced more alkaloids than their wet rainforest congenerics. Rainforest species were also more chemically similar to each other than were the four semi-arid/arid zone species. There was a significant relationship between the presence of alkaloid structural classes and phylogenetic distance, suggesting that alkaloid profiles are influenced by both genetic and environmental factors. The results suggest that the radiation of Flindersia species out of the rainforest and into drier environments has promoted the evolution of unique alkaloid diversity. Plants growing in arid and semi-arid regions of Australia may represent an untapped source of undescribed specialised metabolites. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Alkaloids as important scaffolds in therapeutic drugs for the treatments of cancer, tuberculosis, and smoking cessation.

    PubMed

    Kittakoop, Prasat; Mahidol, Chulabhorn; Ruchirawat, Somsak

    2014-01-01

    Alkaloid molecules can act, depending on a type of amine functionality present in alkalods, as either hydrogenacceptor or hydrogen-donor for hydrogen bonding that is critically important for the interaction (binding) between targets (enzymes, proteins and receptors) and drugs (ligands). Because of this unique property, alkaloid scaffolds are therefore present in several drugs and lead compounds. This review highlights alkaloid scaffolds in drugs, particularly those recently approved in 2012; it also covers the scaffolds in leads and drug candidates which are in clinical trials and preclinical pipeline. The review focuses on three therapeutic areas including treatments of cancer, tuberculosis, and tobacco cessation. Alkaloid scaffolds in drugs and leads are inspired by those of naturally occurring alkaloids, and these scaffolds include pyridine, piperidine, quinoline, quinolinone, quinazoline, isoquinoline, indole, indolinone, isoindole, isoxazole, imidazole, indazole, thiazole, pyrazole, oxazolidinone, oxadiazole, and benzazepine. In addition to medicinal chemistry aspects, natural products possessing an individual alkaloid scaffold, as well as the mechanism of action of drugs and leads, are also discussed in this review.

  9. Alkaloid Profiling as an Approach to Differentiate Lupinus garfieldensis, Lupinus sabinianus and Lupinus sericeus.

    PubMed

    Cook, Daniel; Lee, Stephen T; Pfister, James A; Stonecipher, Clint A; Welch, Kevin D; Green, Benedict T; Panter, Kip E

    2012-01-01

    Many species in the Lupinus genus are poorly defined morphologically, potentially resulting in improper taxonomic identification. Lupine species may contain quinolizidine and/or piperidine alkaloids that can be acutely toxic and/or teratogenic, the latter resulting in crooked calf disease. To identify characteristic alkaloid profiles of Lupinus sabinianus, L. garfieldensis and L. sericeus which would aid in discriminating these species from each other and from L. sulphureus. Quinolizidine and piperidine alkaloids were extracted from herbarium specimens and recent field collections of L. sabinianus, L. garfieldensis and L. sericeus. The alkaloid composition of each species was defined using GC-FID and GC-MS and compared using multivariate statistics. Each of the three species investigated contained a diagnostic chemical fingerprint composed of quinolizidine and/or piperidine alkaloids. The alkaloid profiles of Lupinus sabinianus, L. garfieldensis and L. sericeus can be used as a tool to discriminate these species from each other and L. sulphureus as long as one considers locality of the collection in the case of L. sabinianus. Published 2011. This article is a US Government work and is in the public domain in the USA.

  10. Binary stress induces an increase in indole alkaloid biosynthesis in Catharanthus roseus

    PubMed Central

    Zhu, Wei; Yang, Bingxian; Komatsu, Setsuko; Lu, Xiaoping; Li, Ximin; Tian, Jingkui

    2015-01-01

    Catharanthus roseus is an important medicinal plant, which produces a variety of indole alkaloids of significant pharmaceutical relevance. In the present study, we aimed to investigate the potential stress-induced increase of indole alkaloid biosynthesis in C. roseus using proteomic technique. The contents of the detectable alkaloids ajmalicine, vindoline, catharanthine, and strictosidine in C. roseus were significantly increased under binary stress. Proteomic analysis revealed that the abundance of proteins related to tricarboxylic acid cycle and cell wall was largely increased; while, that of proteins related to tetrapyrrole synthesis and photosynthesis was decreased. Of note, 10-hydroxygeraniol oxidoreductase, which is involved in the biosynthesis of indole alkaloid was two-fold more abundant in treated group compared to the control. In addition, mRNA expression levels of genes involved in the indole alkaloid biosynthetic pathway indicated an up-regulation in their transcription in C. roseus under UV-B irradiation. These results suggest that binary stress might negatively affect the process of photosynthesis in C. roseus. In addition, the induction of alkaloid biosynthesis appears to be responsive to binary stress. PMID:26284098

  11. Maternally derived chemical defences are an effective deterrent against some predators of poison frog tadpoles (Oophaga pumilio).

    PubMed

    Stynoski, Jennifer L; Shelton, Georgia; Stynoski, Peter

    2014-05-01

    Parents defend their young in many ways, including provisioning chemical defences. Recent work in a poison frog system offers the first example of an animal that provisions its young with alkaloids after hatching or birth rather than before. But it is not yet known whether maternally derived alkaloids are an effective defence against offspring predators. We identified the predators of Oophaga pumilio tadpoles and conducted laboratory and field choice tests to determine whether predators are deterred by alkaloids in tadpoles. We found that snakes, spiders and beetle larvae are common predators of O. pumilio tadpoles. Snakes were not deterred by alkaloids in tadpoles. However, spiders were less likely to consume mother-fed O. pumilio tadpoles than either alkaloid-free tadpoles of the red-eyed treefrog, Agalychnis callidryas, or alkaloid-free O. pumilio tadpoles that had been hand-fed with A. callidryas eggs. Thus, maternally derived alkaloids reduce the risk of predation for tadpoles, but only against some predators. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  12. Quantification of Aconitum alkaloids in aconite roots by a modified RP-HPLC method.

    PubMed

    Jiang, Zhi-Hong; Xie, Ying; Zhou, Hua; Wang, Jing-Rong; Liu, Zhong-Qiu; Wong, Yuen-Fan; Cai, Xiong; Xu, Hong-Xi; Liu, Liang

    2005-01-01

    The three Aconitum alkaloids, aconitine (1), mesaconitine (2) and hypaconitine (3), are pharmacologically active but also highly toxic. A standardised method is needed for assessing the levels of these alkaloids in aconite roots in order to ensure the safe use of these plant materials as medicinal herbs. By optimising extraction, separation and measurement conditions, a reliable, reproducible and accurate method for the quantitative determination of all three Aconitum alkaloids in unprocessed and processed aconite roots has been developed. This method should be appropriate for use in the quality control of Aconitum products. The three Aconitum alkaloids were separated by a modified HPLC method employing a C18 column gradient eluted with acetonitrile and ammonium bicarbonate buffer. Quantification of Aconitum alkaloids, detected at 240 nm, in different batches of samples showed that the content of 1, 2 and 3 varied significantly. In general, the alkaloid content of unprocessed roots was higher than that of processed roots. These variations were considered to be the result of differences in species, processing methods and places of origin of the samples.

  13. Rapid Screening of Ergot Alkaloids in Sclerotia by MALDI-TOF Mass Spectrometry.

    PubMed

    Sivagnanam, Kumaran; Komatsu, Emy; Patrick, Susan; Rampitsch, Christoph; Perreault, Hélène; Gräfenhan, Tom

    2016-07-01

    Ergot is a common disease of wheat and other cereal grains that is predominantly caused by Claviceps purpurea in the field, often affecting crop yield in addition to the environment. Infected grain can be contaminated with dark sclerotia, which contain fungal metabolites such as ergot alkaloids. The occurrence of ergot alkaloids in cereal grain is a major health concern for humans and livestock. Effective and rapid screening of these mycotoxins is crucial for producers, processors, and consumers of cereal-based food and feed grain. Established methods of ergot alkaloid screening based on LC-MS or GC-MS require laborious processes. A novel method using matrix-assisted laser desorption ionization (MALDI)-time-of-flight (TOF) MS was developed to identify four ergot alkaloids. Using dihydroxybenzoic acid as the matrix, ergosine, ergocornine, ergocryptine, and ergocristine were readily detected in individual sclerotia of C. purpurea. The accuracy of the identified ergot alkaloids was further confirmed by tandem MS analysis. MALDI-TOF MS is suitable for high-throughput screening of ergot alkaloids because it permits rapid and accurate identification, simple sample preparation, and no derivatization or chromatographic separation.

  14. [Study on the separation process of pharmacological active total alkaloids from Chelidonium majus L. growing in Georgia].

    PubMed

    Bozhadze, A D; Vachnadze, V Iu; Dzhokhadze, M S; Berashvili, D T; Bakuridze, A Dzh

    2013-04-01

    In present article was studied the separation process of pharmacological active total alkaloids from Chelidonium majus L. growing in Georgia. Alkaloids were extracted from medicinal herbal material and separated by liquid extraction, diluents gas and a microfiltration through membrane equipment. The obtained A1, A2, A3 fractions were analyzed by GC/MS method; in all cases separation proceeds by the principle of extraction of the target alkaloids. It was concluded that the A1 is enriched with α and β cryptopins, and protopin, but homochelidonine and chelidonine are in low contents. As accompanying alkaloid is identified dihydrosanguinarine as an artifact; the A2 is enriched with the maximum contents of stylopine and protopin, but the poor contents of chelidonine and homochelidonine; the A3 is enriched with α and β cryptopins and maximum content of chelidonine. Extraction of alkaloids from Chelidonium majus L. proceeds selectively, but depending on a way of separation of the total alkaloids allows varying qualitative and quantitative consistence of the final product.

  15. Poisonous plants contaminating edible ones and toxic substances in plant foods. Part 3. Pyrrolizidine alkaloids from Heliotropium digynum Forssk. (= H. luteum, Poir.).

    PubMed

    Hammouda, F M; Rizk, A M; Ismail, S I; Atteya, S Z; Ghaleb, H A; Madkour, M K; Pohland, A E; Wood, G

    1984-10-01

    Investigation of the alkaloidal constituents of Heliotropium digynum resulted in the isolation of four alkaloids viz. heliotrine, europine, lasiocarpine and 7-angelylheliotrine. Moreover, HPLC and GLC showed the probable presence of heliotridine and some other unidentified minor constituents. A summary of the pharmacotoxicity and biological activity of the ethanolic extract, total alkaloids with special reference to heliotrine is presented.

  16. Beta-phenylethylamines and the isoquinoline alkaloids.

    PubMed

    Bentley, Kenneth W

    2003-06-01

    This review covers beta-phenylethylamines and isoquinoline alkaloids and compounds derived from them, including further products of oxidation, condensation with formaldehyde and rearrangement, some of which do not contain an isoquinoline system, together with naphthylisoquinoline alkaloids, which have a different biogenetic origin. The occurrence of the alkaloids, with the structures of new bases, together with their reactions, syntheses and biological activities are reported. The literature from July 2001 to June 2002 is reviewed, with 581 references cited.

  17. Alkaloids from Mongolian species Hypecoum lactiflorum Kar. et Kir. Pazij.

    PubMed

    Philipov, Stefan; Istatkova, Ralitsa; Denkova, Pavletta; Dangaa, Selenge; Samdan, Javzan; Krosnova, Marieta; Munkh-Amgalan, Chogsom

    2009-01-01

    A new secoberbine alkaloid (-)-N-methylcorydalisol was isolated from the aerial parts of Hypecoum lactiflorum Kar. et Kir. Pazij. (Papaveraceae) of Mongolian origin and was characterised. The known alkaloids of protopine and protoberberine type protopine, allocryptopine, (-)-N-methylcanadine and (-)-N-methylstylopine were also isolated. (-)-N-methylstylopine is a new alkaloid for the genus, while (-)-N-methylcanadine is new for the species. All structures were established by physical and spectral analysis.

  18. Five New Alkaloids from the Roots of Sophora flavescens.

    PubMed

    Zhang, Sheng-Yuan; Li, Wen; Nie, Hua; Liao, Mei; Qiu, Bo; Yang, Ya-Li; Chen, Yan-Fen

    2018-03-01

    Five new quinolizidine alkaloids, including three sparteine-type alkaloids (1 - 3) and two cytisine-type alkaloids (4 and 5), along with four known ones, were isolated from the roots of Sophora flavescens. Their structures were determined by extensive spectroscopic techniques including IR, UV, NMR, and HR-ESI-MS. All the compounds were evaluated for their antibacterial activities against Staphylococcus aureus and Escherichia coli. © 2018 Wiley-VHCA AG, Zurich, Switzerland.

  19. Lysergic acid amide as chemical marker for the total ergot alkaloids in rye flour - Determination by high-performance thin-layer chromatography-fluorescence detection.

    PubMed

    Oellig, Claudia

    2017-07-21

    Ergot alkaloids are generally determined by high-performance liquid chromatography (HPLC) coupled to fluorescence detection (FLD) or mass selective detection, analyzing the individual compounds. However, fast and easy screening methods for the determination of the total ergot alkaloid content are more suitable, since for monitoring only the sum of the alkaloids is relevant. The herein presented screening uses lysergic acid amide (LSA) as chemical marker, formed from ergopeptine alkaloids, and ergometrine for the determination of the total ergot alkaloids in rye with high-performance thin-layer chromatography-fluorescence detection (HPTLC-FLD). An ammonium acetate buffered extraction step was followed by liquid-liquid partition for clean-up before the ergopeptine alkaloids were selectively transformed to LSA and analyzed by HPTLC-FLD on silica gel with isopropyl acetate/methanol/water/25% ammonium hydroxide solution (80:10:3.8:1.1, v/v/v/v) as the mobile phase. The enhanced native fluorescence of LSA and unaffected ergometrine was used for quantitation without any interfering matrix. Limits of detection and quantitation were 8 and 26μg LSA/kg rye, which enables the determination of the total ergot alkaloids far below the applied quality criterion limit for rye. Close to 100% recoveries for different rye flours at relevant spiking levels were obtained. Thus, reliable results were guaranteed, and the fast and efficient screening for the total ergot alkaloids in rye offers a rapid alternative to the HPLC analysis of the individual compounds. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. [Analysis and evaluation of alkaloids and flavonoids in flower of Sophora flavescens from Shanxi province].

    PubMed

    Zhang, Huang-Qin; Zhu, Zhen-Hua; Qian, Da-Wei; Weng, Ze-Bin; Guo, Sheng; Duan, Jin-Ao; Lei, Zhen-Hong; Li, An-Ping

    2016-12-01

    This study intends to explore the potential resource-orientedutilization value of the flower of Sophora flavescents by analyzing alkaloids and flavonoids in the flower of S. flavescens from Shanxi province. This study established a rapid UPLC-TQ-MS/MS method that is used for determination of seven alkaloids and seven flavonoids in the flower of S.flavescens. The different florescences all have the seven detected alkaloids such as cytisine, oxy-matrine, oxy-sophocarpine, sophoridine, N-methylcytisine, matrine, sophocarpine.The total contents of detected alkaloids are as follows: flower buds 1.47%, primal flowers 1.34%, full bloomed flowers 1.17%, faded flowers 1.01%. The top three contents of alkaloids are N-methylcytisine , oxy-sophocarpine and oxymatrine, accounting for about 83% of the total amount of detected alkaloids. All the samples in different florescences have the seven detected flavonoids such as rutin, luteolin, quercetin, isoquercitrin, trifolirhizin, kurarinone, and kushenol I. The total contents of detected alkaloids are as follows: flower buds 495.2 μg•g⁻¹, primal flowers 313.7 μg•g⁻¹, faded flowers 224.2 μg•g⁻¹, full bloomed flowers 193.0 μg•g⁻¹. The content of luteolinis relatively higher than other detected flavonoids, accounting for about 89%-94% of the total amount of detected flavonoids. The results indicated that the flower of S.flavescens could be an important material resource to obtain the resourceful alkaloids. This result can provide scientific basis for resource-oriented utilization and industrial development of the flower of S. flavescens. Copyright© by the Chinese Pharmaceutical Association.

  1. Influence of 7,8-methylenedioxylycoctonine-type alkaloids on the toxic effects associated with ingestion of tall larkspur (Delphinium spp) in cattle.

    PubMed

    Welch, Kevin D; Green, Benedict T; Gardner, Dale R; Cook, Daniel; Pfister, James A; Stegelmeier, Bryan L; Panter, Kip E; Davis, T Zane

    2010-04-01

    To determine the contribution of 7,8-methylenedioxylycoctonine (MDL)-type alkaloids to the toxic effects of tall larkspur (Delphinium spp) consumption in cattle. Sixteen 2-year-old Angus steers. Plant material from 3 populations of tall larkspur that contained different concentration ratios of MDL-type-to-N-(methylsuccinimido) anthranoyllycoctonine (MSAL)-type alkaloids was collected, dried, and finely ground. For each plant population, a dose of ground plant material that would elicit similar clinical signs of toxicosis in cattle after oral administration was determined on the basis of the plants' MSAL-type alkaloid concentration. Cattle were treated via oral gavage with single doses of ground plant material from each of the 3 populations of tall larkspur; each animal underwent 1 to 3 single-dose treatments (> or = 21-day interval between treatments). Heart rate was recorded immediately before (baseline) and 24 hours after each larkspur treatment. Tall larkspur populations with a lower MDL-type-to-MSAL-type alkaloid concentration ratio required a greater amount of MSAL-type alkaloids to cause the expected clinical signs of toxicosis (including increased heart rate) in cattle. Results indicated that the typically less toxic MDL-type alkaloids contributed in a significant manner to the toxic effects of tall larkspur in steers. Consequently, both the concentration of MSAL-type alkaloids and the total concentration of MSAL- and MDL-type alkaloids should be determined when assessing the relative toxicity of tall larkspur populations. These results provide valuable information to determine the risk of toxicosis in cattle grazing on tall larkspur-infested rangelands.

  2. Larkspur (Delphinium spp.) poisoning in livestock.

    PubMed

    Pfister, J A; Gardner, D R; Panter, K E; Manners, G D; Ralphs, M H; Stegelmeier, B L; Schoch, T K

    1999-02-01

    Larkspurs (Delphinium spp.) are toxic plants that contain numerous diterpenoid alkaloids which occur as one of two structural types: (1) lycotonine, and (2) 7,8-methylenedioxylycoctonine (MDL-type). Among the lycoctonine type alkaloids are three N-(methylsuccinimido) anthranoyllycoctonine (MSAL-type) alkaloids which appear to be most toxic: methyllycaconitine (MLA), 14-deacetylnudicauline (DAN), and nudicauline. An ester function at C-18 is an important structural requirement for toxicity. Intoxication results from neuromuscular paralysis, as nicotinic acetylcholine receptors in the muscle and brain are blocked by toxic alkaloids. Clinical signs include labored breathing, rapid and irregular heartbeat, muscular weakness, and collapse. Toxic alkaloid concentration generally declines in tall larkspurs with maturation, but alkaloid concentration varies over years and from plant to plant, and is of little use for predicting consumption by cattle. Knowledge of toxic alkaloid concentration is valuable for management purposes when cattle begin to eat larkspur. Cattle generally begin consuming tall larkspur after flowering racemes are elongated, and consumption increases as larkspur matures. Weather is also a major factor in cattle consumption, as cattle tend to eat more larkspur during or just after summer storms. Management options that may be useful for livestock producers include conditioning cattle to avoid larkspur (food aversion learning), grazing tall larkspur ranges before flowering (early grazing) and after seed shatter (late grazing), grazing sheep before cattle, herbicidal control of larkspur plants, and drug therapy for intoxicated animals. Some potentially fruitful research avenues include examining alkaloid chemistry in low and plains larkspurs, developing immunologic methods for analyzing larkspur alkaloids, developing drug therapy, and devising grazing regimes specifically for low and plains larkspur.

  3. Optimization of yeast-based production of medicinal protoberberine alkaloids.

    PubMed

    Galanie, Stephanie; Smolke, Christina D

    2015-09-16

    Protoberberine alkaloids are bioactive molecules abundant in plant preparations for traditional medicines. Yeast engineered to express biosynthetic pathways for fermentative production of these compounds will further enable investigation of the medicinal properties of these molecules and development of alkaloid-based drugs with improved efficacy and safety. Here, we describe the optimization of a biosynthetic pathway in Saccharomyces cerevisiae for conversion of rac-norlaudanosoline to the protoberberine alkaloid (S)-canadine. This yeast strain is engineered to express seven heterologous enzymes, resulting in protoberberine alkaloid production from a simple benzylisoquinoline alkaloid precursor. The seven enzymes include three membrane-bound enzymes: the flavin-dependent oxidase berberine bridge enzyme, the cytochrome P450 canadine synthase, and a cytochrome P450 reductase. A number of strategies were implemented to improve flux through the pathway, including enzyme variant screening, genetic copy number variation, and culture optimization, that led to an over 70-fold increase in canadine titer up to 1.8 mg/L. Increased canadine titers enable extension of the pathway to produce berberine, a major constituent of several traditional medicines, for the first time in a microbial host. We also demonstrate that this strain is viable at pilot scale. By applying metabolic engineering and synthetic biology strategies for increased conversion of simple benzylisoquinoline alkaloids to complex protoberberine alkaloids, this work will facilitate chemoenzymatic synthesis or de novo biosynthesis of these and other high-value compounds using a microbial cell factory.

  4. Enrichment and purification of six Aconitum alkaloids from Aconiti kusnezoffii radix by macroporous resins and quantification by HPLC-MS.

    PubMed

    Liu, Jingjing; Li, Qing; Liu, Ran; Yin, Yidi; Chen, Xiaohui; Bi, Kaishun

    2014-06-01

    Aconitine, mesaconitine, hypaconitine, benzoylaconine, benzoylmesaconine and benzoylhypaconine are six main Aconitum alkaloids from traditional Chinese medicine, Aconiti kusnezoffii radix, which possess highly bioactive as well as highly toxic character for medicinal use. In the present study, for the purpose of better utilizing the toxic herbal material, the performance characteristics of NKA-II, D101, X-5, AB-8, S-8, HPD722 and HPD750 macroporous resins for the enrichment and purification of these six Aconitum alkaloids were critically evaluated. Results showed that NKA-II offered the best adsorption and desorption capacities for six Aconitum alkaloids among the seven macroporous resins tested, which were affected significantly by the pH value. Subsequently, dynamic adsorption and desorption experiments had been carried out with the column packed by NKA-II resin to optimize the separation process of six Aconitum alkaloids. After one run treatment with NKA-II resin, the content of total six Aconitum alkaloids were increased from 5.87% to 60.3%, the recovery was 75.8%. Meanwhile, a validated HPLC-MS method had been developed to qualitative and quantitative these six Aconitum alkaloids. This method would provide scientific references to the large-scale production of six Aconitum alkaloids from Aconiti kusnezoffii radix or other plants and might also expand the secure application of these highly toxic components for pharmacy. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. The effect of lysergic acid diethylamide, 5-hydroxytryptamine, and related compounds on the liver fluke, fasciola hepatica

    PubMed Central

    Mansour, T. E.

    1957-01-01

    The rhythmical activity of the liver fluke, Fasciola hepatica, was stimulated by 5-hydroxytryptamine and by lysergic acid diethylamide at very low concentrations. The effect was peripheral and was not mediated through the central ganglion. Other amines also stimulated rhythmical activity, the most potent being the indolamines. Bromolysergic acid diethylamide, and other analogues such as yohimbine, harmine, and dopamine depressed rhythmical movement and antagonized the stimulant action of 5-hydroxytryptamine and lysergic acid diethylamide. Evidence which suggests the presence of tryptamine receptors in the trematode is discussed. PMID:13489165

  6. [Anti-fungi activity of organic extracts from the tree Fagara monophylla (Rutaceae) in Venezuela].

    PubMed

    Gómez, Yrma; Gil, Katiuska; González, Elba; Farías, Luz Marina

    2007-01-01

    The tree Fagara monophylla ranges throughout Tropical America. The genus Fagara has a diversity of alkaloid compounds with antibiotic properties; nevertheless, there are few reports antifungal activity of its organic compounds. Organic extracts from Venezuelan F. monophylla were tested for antimicrobial activity against Aspergillus terreus, A. flavus, Penicillium digitatum, P. funiculosum, P. citrinum, Paecilomyces and Candida albicans. Minimal Inhibitory Concentration (MIC) was determined. The susceptibility trials of organic fractions (Hex., CH2Cl2 and MeOH) showed that the highest inhibition was presented by MeOH against A. flavus (55 mm), P. digitatum (60 mm), P. funiculosum (56 mm) and C. albicans (26 mm). The activities of MeOH/EtOAc fractions 1 and 2 suggest a combined effect against A. flavus, P. digitatum and P. funiculosum. The MIC of 1 MeOH/ EtOAc subfraction activity was lower against C. albicans (32 microg/ml) and moderate (128 microg/ml) against P. digitatum. This organic extract has a great antifungal potential. The phytochemical proves and TLC testing on the organic extract, and the MeOH/EtOAc subfraction, respectively, indicated the presence of alkaloid compounds.

  7. Allelopathic Potential of Switchgrass ( Panicum virgatum L.) on Perennial Ryegrass ( Lolium perenne L.) and Alfalfa ( Medicago sativa L.)

    NASA Astrophysics Data System (ADS)

    Shui, Junfeng; An, Yu; Ma, Yongqing; Ichizen, Nobumasa

    2010-10-01

    This study investigated allelopathy and its chemical basis in nine switchgrass ( Panicum virgatum L.) accessions. Perennial ryegrass ( Lolium perenne L.) and alfalfa ( Medicago sativa L.) were used as test species. Undiluted aqueous extracts (5 g plant tissue in 50 ml water) from the shoots and roots of most of the switchgrass accessions inhibited the germination and growth of the test species. However, the allelopathic effect of switchgrass declined when extracts were diluted 5- or 50-fold. Seedling growth was more sensitive than seed germination as an indicator of allelopathic effect. Allelopathic effect was related to switchgrass ecotype but not related to ploidy level. Upland accessions displayed stronger allelopathic potential than lowland accessions. The aqueous extract from one switchgrass accession was separated into phenols, organic acids, neutral chemicals, and alkaloids, and then these fractions were bioassayed to test for allelopathic potential. Alkaloids had the strongest allelopathic effect among the four chemical fractions. In summary, the results indicated that switchgrass has allelopathic potential; however, there is not enough evidence to conclude that allelopathic advantage is the main factor that has contributed to the successful establishment of switchgrass on China’s Loess Plateau.

  8. The alkaloid matrine of the root of Sophora flavescens prevents arrhythmogenic effect of ouabain.

    PubMed

    Zhou, Yuhong; Wu, Yun; Deng, Lin; Chen, Lanlan; Zhao, Dandan; Lv, Lifang; Chen, Xu; Man, Jinyu; Wang, Yansong; Shan, Hongli; Lu, Yanjie

    2014-06-15

    Matrine, a alkaloid of the root of Sophora flavescens, has multiple protective effects on the cardiovascular system including cardiac arrhythmias. However, the molecular and ionic mechanisms of matrine have not been well investigated. Our study aimed at to shed a light on the issue to investigate the antiarrhythmic effects of matrine by using ouabain to construct an arrhythmic model of cardiomyocytes. In this experiment, matrine significantly and dose-dependently increased the doses of ouabain required to induce cardiac arrhythmias and decreased the duration of arrhythmias in guinea pigs. In cardiomyocytes of guinea pigs, ouabain 10 μM prolonged action potential duration by 80% (p<0.05) and increased L-type Ca(2+) currents and Ca(2+) transients induced by KCl (p<0.05). Matrine 100 μM shortened the prolongation of APD and prevented the increase of L-type Ca(2+) currents and Ca(2+) transients induced by ouabain. Taken together, these findings provide the first evidence that matrine possessed arrhythmogenic effect of ouabain by inhibiting of L-type Ca(2+) currents and Ca(2+) overload in guinea pigs. Copyright © 2014 Elsevier GmbH. All rights reserved.

  9. Allelopathic potential of switchgrass (Panicum virgatum L.) on perennial ryegrass (Lolium perenne L.) and alfalfa (Medicago sativa L.).

    PubMed

    Shui, Junfeng; An, Yu; Ma, Yongqing; Ichizen, Nobumasa

    2010-10-01

    This study investigated allelopathy and its chemical basis in nine switchgrass (Panicum virgatum L.) accessions. Perennial ryegrass (Lolium perenne L.) and alfalfa (Medicago sativa L.) were used as test species. Undiluted aqueous extracts (5 g plant tissue in 50 ml water) from the shoots and roots of most of the switchgrass accessions inhibited the germination and growth of the test species. However, the allelopathic effect of switchgrass declined when extracts were diluted 5- or 50-fold. Seedling growth was more sensitive than seed germination as an indicator of allelopathic effect. Allelopathic effect was related to switchgrass ecotype but not related to ploidy level. Upland accessions displayed stronger allelopathic potential than lowland accessions. The aqueous extract from one switchgrass accession was separated into phenols, organic acids, neutral chemicals, and alkaloids, and then these fractions were bioassayed to test for allelopathic potential. Alkaloids had the strongest allelopathic effect among the four chemical fractions. In summary, the results indicated that switchgrass has allelopathic potential; however, there is not enough evidence to conclude that allelopathic advantage is the main factor that has contributed to the successful establishment of switchgrass on China's Loess Plateau.

  10. A new benzylisoquinoline alkaloid from Leontice altaica.

    PubMed

    Jenis, Janar; Nugroho, Alfarius Eko; Hashimoto, Akiyo; Deguchi, Jun; Hirasawa, Yusuke; Wong, Chin Piow; Kaneda, Toshio; Shirota, Osamu; Morita, Hiroshi

    2015-02-01

    A new benzylisoquinoline alkaloid, lincangenine-4-β-D-glucopyranoside (1), has been isolated from the roots of Leontice altaica, together with 5 known alkaloids. Its structure was elucidated on the basis of 1D and 2D NMR data, and chemical means.

  11. Actions of Piperidine Alkaloid Teratogens at Fetal Nicotinic Acetylcholine Receptors.

    USDA-ARS?s Scientific Manuscript database

    Teratogenic alkaloids are found in many species of plants including Conium maculatum L., Nicotiana glauca, Nicotiana tabaccum, and multiple Lupinus spp. Fetal musculoskeletal defects produced by alkaloids from these plants include arthrogyropisis, scoliosis, torticollis, kyposis, lordosis, and clef...

  12. De novo transcriptome sequencing and digital gene expression analysis predict biosynthetic pathway of rhynchophylline and isorhynchophylline from Uncaria rhynchophylla, a non-model plant with potent anti-alzheimer's properties.

    PubMed

    Guo, Qianqian; Ma, Xiaojun; Wei, Shugen; Qiu, Deyou; Wilson, Iain W; Wu, Peng; Tang, Qi; Liu, Lijun; Dong, Shoukun; Zu, Wei

    2014-08-12

    The major medicinal alkaloids isolated from Uncaria rhynchophylla (gouteng in chinese) capsules are rhynchophylline (RIN) and isorhynchophylline (IRN). Extracts containing these terpene indole alkaloids (TIAs) can inhibit the formation and destabilize preformed fibrils of amyloid β protein (a pathological marker of Alzheimer's disease), and have been shown to improve the cognitive function of mice with Alzheimer-like symptoms. The biosynthetic pathways of RIN and IRN are largely unknown. In this study, RNA-sequencing of pooled Uncaria capsules RNA samples taken at three developmental stages that accumulate different amount of RIN and IRN was performed. More than 50 million high-quality reads from a cDNA library were generated and de novo assembled. Sequences for all of the known enzymes involved in TIAs synthesis were identified. Additionally, 193 cytochrome P450 (CYP450), 280 methyltransferase and 144 isomerase genes were identified, that are potential candidates for enzymes involved in RIN and IRN synthesis. Digital gene expression profile (DGE) analysis was performed on the three capsule developmental stages, and based on genes possessing expression profiles consistent with RIN and IRN levels; four CYP450s, three methyltransferases and three isomerases were identified as the candidates most likely to be involved in the later steps of RIN and IRN biosynthesis. A combination of de novo transcriptome assembly and DGE analysis was shown to be a powerful method for identifying genes encoding enzymes potentially involved in the biosynthesis of important secondary metabolites in a non-model plant. The transcriptome data from this study provides an important resource for understanding the formation of major bioactive constituents in the capsule extract from Uncaria, and provides information that may aid in metabolic engineering to increase yields of these important alkaloids.

  13. Biogenetically-Inspired Total Synthesis of Epidithiodiketopiperazines and Related Alkaloids

    PubMed Central

    2015-01-01

    Conspectus Natural products chemistry has historically been the prime arena for the discovery of new chemical transformations and the fountain of insights into key biological processes. It remains a fervent incubator of progress in the fields of chemistry and biology and an exchange mediating the flow of ideas between these allied fields of science. It is with this ethos that our group has taken an interest in and pursued the synthesis of a complex family of natural products termed the dimeric epipolythiodiketopiperazine (ETP) alkaloids. We present here an Account of the highly complex target molecules to which we pegged our ambitions, our systematic and relentless efforts toward those goals, the chemistry we developed in their pursuit, and the insight we have gained for their translational potential as potent anticancer molecules. The dimeric ETP alkaloids are fungal metabolites that feature a highly complex molecular architecture comprising a densely functionalized core structure with many stereogenic centers, six of which are fully substituted, and a pair of vicinal quaternary carbon stereocenters, decorated on polycyclic architectures in addition to the unique ETP motif that has been recognized as acid-, base-, and redox-sensitive. A cyclo-dipeptide consisting of an essential tryptophan residue and a highly variable ancillary amino acid lies at the core of these structures; investigation of the transformations that take this simplistic core to the complex alkaloids lies at the heart of our research program. The dimeric epidithiodiketopiperazine alkaloids have largely resisted synthesis on account of their complexity since the 1970s when the founding members of this class, chaetocin A (HauserD. et al. Helv. Chim. Acta1970, 53, 10615448218) and verticillin A (KatagiriK. et al. J. Antibiot.1970, 23, 4205465723), were first isolated. This was despite their potent cytotoxic and bacteriostatic activities, which were well appreciated at the time of their discovery. In the past decade, an increasing number of studies have uncovered powerful new biological processes that these molecules can uniquely effect, such as the inhibition of histone methyltransferases by chaetocin A (GreinerD. et al. Nat. Chem. Biol.2005, 1, 14316408017). In fact, the complete collection of hexahydropyrroloindoline alkaloids features a diverse range of potent biological properties including cytotoxic, antitumor, antileukemic, antiviral, antibiotic, and antinematodal activities (JiangC.-S.; GuoY.-W.Mini-Rev. Med. Chem.2011, 11, 72821651467). This mélange of activities is reflective of their structural diversity. Under the precepts of retrobiosynthetic analysis, we have accomplished the syntheses of more than a dozen natural products, including members of the bionectin, calycanthaceous, chaetocin, gliocladin, naseseazine, and verticillin alkaloids. More importantly, these molecules have acted as venerable venues for the development of new strategies to address structural challenges including, but not limited to, C3–C3′ vicinal quaternary centers, heterodimeric linkages, C3–Csp2 linkages, diketopiperazine oxidation, stereoselective thiolation, homologue-specific polysulfidation, and C12-hydroxyl incorporation. Synthesis of these natural products has resulted in the structural confirmation, and sometimes revision such as the case of (+)-naseseazines A and B, as well as access to many plausible biogenetically relevant intermediates and new synthetic ETP derivatives. Furthermore, our studies have paved the way for the formulation of a comprehensive SAR profile and the identification of lead compounds with in vitro subnanomolar IC50’s against a broad range of cancer types. PMID:25843276

  14. Structure-Activity Relationship of Benzophenanthridine Alkaloids from Zanthoxylum rhoifolium Having Antimicrobial Activity

    PubMed Central

    Tavares, Luciana de C.; Zanon, Graciane; Weber, Andréia D.; Neto, Alexandre T.; Mostardeiro, Clarice P.; Da Cruz, Ivana B. M.; Oliveira, Raul M.; Ilha, Vinicius; Dalcol, Ionara I.; Morel, Ademir F.

    2014-01-01

    Zanthoxylum rhoifolium (Rutaceae) is a plant alkaloid that grows in South America and has been used in Brazilian traditional medicine for the treatment of different health problems. The present study was designed to evaluate the antimicrobial activity of the steam bark crude methanol extract, fractions, and pure alkaloids of Z. rhoifolium. Its stem bark extracts exhibited a broad spectrum of antimicrobial activity, ranging from 12.5 to 100 µg/mL using bioautography method, and from 125 to 500 µg/mL in the microdilution bioassay. From the dichloromethane basic fraction, three furoquinoline alkaloids (1–3), and nine benzophenanthridine alkaloids (4–12) were isolated and the antimicrobial activity of the benzophenanthridine alkaloids is discussed in terms of structure-activity relationships. The alkaloid with the widest spectrum of activity was chelerythrine (10), followed by avicine (12) and dihydrochelerythrine (4). The minimal inhibitory concentrations of chelerythrine, of 1.50 µg/mL for all bacteria tested, and between 3.12 and 6.25 µg/mL for the yeast tested, show this compound to be a more powerful antimicrobial agent when compared with the other active alkaloids isolated from Z. rhoifolium. To verify the potential importance of the methylenedioxy group (ring A) of these alkaloids, chelerythrine was selected to represent the remainder of the benzophenanthridine alkaloids isolated in this work and was subjected to a demethylation reaction giving derivative 14. Compared to chelerythrine, the derivative (14) was less active against the tested bacteria and fungi. Kinetic measurements of the bacteriolytic activities of chelerythrine against the bacteria Bacillus subtilis (Gram-positive) and Escherichia coli (Gram-negative) were determined by optical density based on real time assay, suggesting that its mechanism of action is not bacteriolytic. The present study did not detect hemolytic effects of chelerythrine on erythrocytes and found a protective effect considering the decrease in TBARS and AOPP (advanced oxidized protein products) levels when compared to the control group. PMID:24824737

  15. Plant-Symbiotic Fungi as Chemical Engineers: Multi-Genome Analysis of the Clavicipitaceae Reveals Dynamics of Alkaloid Loci

    PubMed Central

    Schardl, Christopher L.; Young, Carolyn A.; Hesse, Uljana; Amyotte, Stefan G.; Andreeva, Kalina; Calie, Patrick J.; Fleetwood, Damien J.; Haws, David C.; Moore, Neil; Oeser, Birgitt; Panaccione, Daniel G.; Schweri, Kathryn K.; Voisey, Christine R.; Farman, Mark L.; Jaromczyk, Jerzy W.; Roe, Bruce A.; O'Sullivan, Donal M.; Scott, Barry; Tudzynski, Paul; An, Zhiqiang; Arnaoudova, Elissaveta G.; Bullock, Charles T.; Charlton, Nikki D.; Chen, Li; Cox, Murray; Dinkins, Randy D.; Florea, Simona; Glenn, Anthony E.; Gordon, Anna; Güldener, Ulrich; Harris, Daniel R.; Hollin, Walter; Jaromczyk, Jolanta; Johnson, Richard D.; Khan, Anar K.; Leistner, Eckhard; Leuchtmann, Adrian; Li, Chunjie; Liu, JinGe; Liu, Jinze; Liu, Miao; Mace, Wade; Machado, Caroline; Nagabhyru, Padmaja; Pan, Juan; Schmid, Jan; Sugawara, Koya; Steiner, Ulrike; Takach, Johanna E.; Tanaka, Eiji; Webb, Jennifer S.; Wilson, Ella V.; Wiseman, Jennifer L.; Yoshida, Ruriko; Zeng, Zheng

    2013-01-01

    The fungal family Clavicipitaceae includes plant symbionts and parasites that produce several psychoactive and bioprotective alkaloids. The family includes grass symbionts in the epichloae clade (Epichloë and Neotyphodium species), which are extraordinarily diverse both in their host interactions and in their alkaloid profiles. Epichloae produce alkaloids of four distinct classes, all of which deter insects, and some—including the infamous ergot alkaloids—have potent effects on mammals. The exceptional chemotypic diversity of the epichloae may relate to their broad range of host interactions, whereby some are pathogenic and contagious, others are mutualistic and vertically transmitted (seed-borne), and still others vary in pathogenic or mutualistic behavior. We profiled the alkaloids and sequenced the genomes of 10 epichloae, three ergot fungi (Claviceps species), a morning-glory symbiont (Periglandula ipomoeae), and a bamboo pathogen (Aciculosporium take), and compared the gene clusters for four classes of alkaloids. Results indicated a strong tendency for alkaloid loci to have conserved cores that specify the skeleton structures and peripheral genes that determine chemical variations that are known to affect their pharmacological specificities. Generally, gene locations in cluster peripheries positioned them near to transposon-derived, AT-rich repeat blocks, which were probably involved in gene losses, duplications, and neofunctionalizations. The alkaloid loci in the epichloae had unusual structures riddled with large, complex, and dynamic repeat blocks. This feature was not reflective of overall differences in repeat contents in the genomes, nor was it characteristic of most other specialized metabolism loci. The organization and dynamics of alkaloid loci and abundant repeat blocks in the epichloae suggested that these fungi are under selection for alkaloid diversification. We suggest that such selection is related to the variable life histories of the epichloae, their protective roles as symbionts, and their associations with the highly speciose and ecologically diverse cool-season grasses. PMID:23468653

  16. An efficient and target-oriented sample enrichment method for preparative separation of minor alkaloids by pH-zone-refining counter-current chromatography.

    PubMed

    Feng, Rui-Hong; Hou, Jin-Jun; Zhang, Yi-Bei; Pan, Hui-Qin; Yang, Wenzhi; Qi, Peng; Yao, Shuai; Cai, Lu-Ying; Yang, Min; Jiang, Bao-Hong; Liu, Xuan; Wu, Wan-Ying; Guo, De-An

    2015-08-28

    An efficient and target-oriented sample enrichment method was established to increase the content of the minor alkaloids in crude extract by using the corresponding two-phase solvent system applied in pH-zone-refining counter-current chromatography. The enrichment and separation of seven minor indole alkaloids from Uncaria rhynchophylla (Miq.) Miq. ex Havil(UR) were selected as an example to show the advantage of this method. An optimized two-phase solvent system composed of n-hexane-ethyl acetate-methanol-water (3:7:1:9, v/v) was used in this study, where triethylamine (TEA) as the retainer and hydrochloric acid (HCl) as the eluter were added at the equimolar of 10mM. Crude alkaloids of UR dissolved in the corresponding upper phase (containing 10mM TEA) were extracted twice with lower phase (containing 10mM TEA) and lower phase (containing 10mM HCl), respectively, the second lower phase extract was subjected to pH-zone-refining CCC separation after alkalization and desalination. Finally, from 10g of crude alkaloids, 4g of refined alkaloids was obtained and the total content of seven target indole alkaloids was increased from 4.64% to 15.78%. Seven indole alkaloids, including 54mg isocorynoxeine, 21mg corynoxeine, 46mg isorhynchophylline, 35mg rhynchophylline, 65mg hirsutine, 51mg hirsuteine and 27mg geissoschizine methylether were all simultaneously separated from 2.5g of refined alkaloids, with the purity of 86.4%, 97.5%, 90.3%, 92.1%, 98.5%, 92.3%, and 92.8%, respectively. The total content and purities of the seven minor indole alkaloids were tested by HPLC and their chemical structures were elucidated by ESI-HRMS and (1)H NMR. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Total alkaloids of Rubus aleaefolius Poir inhibit hepatocellular carcinoma growth in vivo and in vitro via activation of mitochondrial-dependent apoptosis.

    PubMed

    Zhao, Jinyan; Chen, Xuzheng; Lin, Wei; Wu, Guangwen; Zhuang, Qunchuan; Zhong, Xiaoyong; Hong, Zhenfeng; Peng, Jun

    2013-03-01

    The aim of this study was to evaluate the therapeutic efficacy of Rubus aleaefolius Poir total alkaloids (TARAP) against hepatocellular carcinoma growth in vivo and in vitro, and to investigate the possible molecular mechanisms mediating its biological activity. Nude mice were implanted with HepG2 human hepatocellular carcinoma cells and fed with vehicle (physiological saline) or 3 g/kg/d dose of TARAP, 5 days per week, for 21 days. The in vivo efficacy of TARAP against tumor growth was investigated by evaluating its effect on tumor volume and tumor weight in mice with HCC xenografts and its adverse effect was determined by measuring the body weight gain. The in vitro effect of TARAP on the viability of HepG2 cells was determined by MTT assay. HepG2 cell morphology was observed via phase-contrast microscopy. Apoptosis in tumor tissues or in HepG2 cells was analyzed by TUNEL assay or FACS analysis with Annexin V/PI, respectively. The loss of mitochondrial membrane potential in HepG2 cells was determined via JC-1 staining followed by FACS analysis. Activation of caspase-9 and -3 in HepG2 cells was examined by a colorimetric assay. The mRNA and protein expression of Bcl-2 and Bax in tumor tissues were measured by RT-PCR and immunohistochemistry. TARAP reduced tumor volume and tumor weight, but had no effect on the body weight gain in HCC mice. TARAP decreased the viability of HepG2 cells and induced cell morphological changes in vitro in a dose- and time-dependent manner. In addition, TARAP induced apoptosis both in tumor tissues and in HepG2 cells. Moreover, TARAP treatment resulted in the collapse of mitochondrial membrane potential in HepG2 cells, as well as the activation of caspase-9 and -3. Furthermore, administration of TARAP increased the pro-apoptotic Bax/Bcl-2 ratio in HCC mouse tumors, at both transcriptional and translational levels. TARAP inhibits hepatocellular carcinoma growth both in vivo and in vitro probably through the activation of mitochondrial-dependent apoptosis, which may, in part, explain its anticancer activity. These results suggest that total alkaloids in Rubus aleaefolius Poir may be a potential novel therapeutic agent for the treatment of hepatocellular carcinoma and other cancers.

  18. Chemistry and Biology of the Pyrrole-Imidazole Alkaloids.

    PubMed

    Lindel, Thomas

    More than a decade after our last review on the chemistry of the pyrrole-imidazole alkaloids, it was time to analyze once more the developments in that field. The comprehensive article focusses on the total syntheses of pyrrole-imidazole alkaloids that have appeared since 2005. The classic monomeric pyrrole-imidazole alkaloids have all been synthesized, sometimes primarily to demonstrate the usefulness of a new method, as in the case of the related molecules agelastatin A and cyclooroidin with more than 15 syntheses altogether. The phakellin skeleton has been made more than 10 times, too, with a focus on the target structure itself. Thus, some of the pyrrole-imidazole alkaloids are now available in gram amounts, and the supply problem has been solved. The total synthesis of the dimeric pyrrole-imidazole alkaloids is still mostly in its pioneering phase with two routes to palau'amine and massadine discovered and three routes to the axinellamines and ageliferin. In addition, the review summarizes recent discoveries regarding the biological activity of the pyrrole-imidazole alkaloids. Regarding the biosynthesis of sceptrin, a pathway is proposed that starts from nagelamide I and proceeds via two electrocyclizations and reduction. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Development and validation of a rapid capillary zone electrophoresis method for the determination of aconite alkaloids in aconite roots.

    PubMed

    Song, Jing-Zheng; Han, Quan-Bin; Qiao, Chun-Feng; But, Paul Pui-Hay; Xu, Hong-Xi

    2010-01-01

    Aconites, with aconite alkaloids as the major therapeutic and toxic components, are used for the treatment of analgesic, antirheumatic and neurological symptoms. Quantification of the aconite alkaloids is important for the quality control of aconite-containing drugs. To establish a validated capillary zone electrophoresis (CZE) method for the simultaneous determination of six major alkaloids, namely aconitine, mesaconitine, hypaconitine, benzoylaconine, benzoylmesaconine and benzoylhypaconine, in crude and processed aconite roots. The CZE method was optimised and validated using a stability-indicating method. The optimised running buffer was a mixture of 200 mm Tris, 150 mm perchloric acid and 40% 1,4-dioxane (pH 7.8) with the capillary thermostated at 25 degrees C. Using the optimised method, six aconite alkaloids were well separated. The established method showed good precision, accuracy and recovery. Contents of these alkaloids in crude and processed aconites were determined and it was observed that the levels of individual alkaloids varied between samples. The developed CZE method was reliable for the quality control of aconites contained in herbal medicines. The method could also be used as an approach for toxicological studies.

  20. Genetics, Genomics and Evolution of Ergot Alkaloid Diversity

    PubMed Central

    Young, Carolyn A.; Schardl, Christopher L.; Panaccione, Daniel G.; Florea, Simona; Takach, Johanna E.; Charlton, Nikki D.; Moore, Neil; Webb, Jennifer S.; Jaromczyk, Jolanta

    2015-01-01

    The ergot alkaloid biosynthesis system has become an excellent model to study evolutionary diversification of specialized (secondary) metabolites. This is a very diverse class of alkaloids with various neurotropic activities, produced by fungi in several orders of the phylum Ascomycota, including plant pathogens and protective plant symbionts in the family Clavicipitaceae. Results of comparative genomics and phylogenomic analyses reveal multiple examples of three evolutionary processes that have generated ergot-alkaloid diversity: gene gains, gene losses, and gene sequence changes that have led to altered substrates or product specificities of the enzymes that they encode (neofunctionalization). The chromosome ends appear to be particularly effective engines for gene gains, losses and rearrangements, but not necessarily for neofunctionalization. Changes in gene expression could lead to accumulation of various pathway intermediates and affect levels of different ergot alkaloids. Genetic alterations associated with interspecific hybrids of Epichloë species suggest that such variation is also selectively favored. The huge structural diversity of ergot alkaloids probably represents adaptations to a wide variety of ecological situations by affecting the biological spectra and mechanisms of defense against herbivores, as evidenced by the diverse pharmacological effects of ergot alkaloids used in medicine. PMID:25875294

  1. Measurement of antiphotooxidative properties of isoquinoline alkaloids using transient thermal lens spectroscopy

    NASA Astrophysics Data System (ADS)

    Hung, J.; Castillo, J.; Laboren, I.; Rodríguez, M.; Hassegawa, M.

    2005-11-01

    The antiphotooxidative properties of boldine and chloride berberine were studied by time-resolved thermal lensing technique. These compounds belong to isoquinoline alkaloids possessing interesting biological activity (e.g. antibacterial, antimalarial, antitumor). Antiphotooxidative properties of the alkaloids were studied by mechanism of energy transference between powerful oxidizing agents such as singlet oxygen. Singlet oxygen was produced by energy transfer from chlorophyll-sensitized photooxidation of oil by exposure of high light intensities like laser. The lifetimes of singlet oxygen in dimethylsulfoxide, methanol and water were determined to confirm the assignment of the singlet molecular oxygen O II (1Δ g) in the experiments. In order to understand the effect of the alkaloids on active oxygen species, we carried out in detail an analysis of the thermal lensing signal. It was shown that the alkaloids can act as quenchers of singlet oxygen. To demonstrate the ability of the alkaloids to act efficient singlet oxygen acceptors, we have measured the fluorescence spectra of the studied alkaloids in the presence and in the absence of singlet oxygen. The antiphotooxidative activity of boldine and chloride berberine can be explained by the ability to quench singlet oxygen.

  2. Bovine lateral saphenous veins exposed to ergopeptine alkaloids do not relax

    USDA-ARS?s Scientific Manuscript database

    The ergot alkaloid ergovaline has demonstrated a persistent and sustained contractile response in several different vascular models. It was hypothesized that different alkaloids isolated from tall fescue (Lolium arundinaceum) will contribute to this contractile response differently. The objective wa...

  3. Bovine lateral saphenous veins exposed to ergopeptine alkaloids do not relax

    USDA-ARS?s Scientific Manuscript database

    The ergot alkaloid, ergovaline has demonstrated a persistent binding and sustained contractile response in several vascular models. It was hypothesized that different alkaloids isolated from tall fescue (Lolium arundinaceum) will contribute to this response differently. The objective was to compare ...

  4. Tall fescue seed extraction and partial purification of ergot alkaloids

    USDA-ARS?s Scientific Manuscript database

    Many substances in the tall fescue/endophyte association (Schedonorus arundinaceus/Epichloë coenophiala) have biological activity. Of these compounds only the ergot alkaloids are known to have significant mammalian toxicity and the predominant ergot alkaloids are ergovaline and ergovalinine. Because...

  5. Bisindole alkaloids from Tabernaemontana corymbosa.

    PubMed

    Zhang, Bing-Jie; Lu, Jing-Song; Bao, Mei-Fen; Zhong, Xiu-Hong; Ni, Ling; Wu, Jing; Cai, Xiang-Hai

    2018-05-11

    Continued study in bioactive monoterpenoid alkaloids led to the isolation of nine undescribed alkaloids, taberyunines A-I, together with 32 known ones from the aerial parts of Tabernaemontana corymbosa Roxb. ex Wall (Apocynaceae). Among the undescribed alkaloids, taberyunines A-G and H-I were assigned to Aspidosperma-Aspidosperma and Vobasinyl-Ibogan type bisindoles, respectively. Their structures were determined by NMR spectra, MS data and X-ray diffraction. Taberyunine B showed significant cytotoxicity against three cancer cell lines. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Detection of Pyrrolizidine Alkaloid DNA Adducts in Livers of Cattle Poisoned with Heliotropium europaeum.

    PubMed

    Fu, Peter P; Xia, Qingsu; He, Xiaobo; Barel, Shimon; Edery, Nir; Beland, Frederick A; Shimshoni, Jakob A

    2017-03-20

    Pyrrolizidine alkaloids are among the most common poisonous plants affecting livestock, wildlife, and humans. Exposure of humans and livestock to toxic pyrrolizidine alkaloids through the intake of contaminated food and feed may result in poisoning, leading to devastating epidemics. During February 2014, 73 mixed breed female beef cows from the Galilee region of Israel were accidently fed pyrrolizidine alkaloid contaminated hay for 42 days, resulting in the sudden death of 24 cows over a period of 63 days. The remaining cows were slaughtered 2.5 months after the last ingestion of the contaminated hay. In this study, we report the histopathological analysis of the livers from five of the slaughtered cows and quantitation of pyrrolizidine alkaloid-derived DNA adducts from their livers and three livers of control cows fed with feed free of weeds producing pyrrolizidine alkaloids. Histopathological examination revealed that the five cows suffered from varying degrees of bile duct proliferation, fibrosis, and megalocytosis. Selected reaction monitoring HPLC-ES-MS/MS analysis indicated that (±)-6,7-dihydro-7-hydroxy-1-hydroxymethyl-5H-pyrrolizine (DHP)-derived DNA adducts were formed in all five livers. The livers from the three control cows did not have any liver damage nor any indication of DHP-DNA adduct formed. These results confirm that the toxicity observed in these cattle was caused by pyrrolizidine alkaloid poisoning and that pyrrolizidine alkaloid-derived DNA adducts could still be detected and quantified in the livers of the chronically poisoned cows 2.5 months after their last exposure to the contaminated feed, suggesting that DHP-derived DNA adducts can serve as biomarkers for pyrrolizidine alkaloid exposure and poisoning.

  7. Fire ant alarm pheromone and venom alkaloids act in concert to attract parasitic phorid flies, Pseudacteon spp.

    PubMed

    Sharma, Kavita R; Fadamiro, Henry Y

    2013-11-01

    Pseudacteon tricuspis, Pseudacteon obtusus and Pseudacteon curvatus are three species of parasitic phorid flies (Diptera: Phoridae), which have been introduced as classical biological control agents of imported, Solenopsis fire ants (Hymenoptera: Formicidae) in the southern USA. Previous studies demonstrated the behavioral response of P. tricuspis to the venom alkaloids and alarm pheromone of the fire ant, S. invicta. In the present study, we compared the responses of P. tricuspis, P. obtusus and P. curvatus to Solenopsis invicta alarm pheromone, venom alkaloids, or a mixture of both chemicals in four-choice olfactometer bioassays. The main hypothesis tested was that the fire ant alarm pheromone and venom alkaloids act in concert to attract Pseudacteon phorid flies. Both sexes of all three Pseudacteon species were attracted to low doses of the fire ant alarm pheromone or venom alkaloids (i.e. 1 ant worker equivalent) alone. However, the flies were significantly more attracted to a mixture of both chemicals (i.e., 1:1 mixture of alarm pheromone+alkaloids) than to either chemical. The results suggest an additive rather than a synergistic effect of combining both chemicals. Comparing the fly species, P. tricuspis showed relatively greater attraction to cis alkaloids, whereas the alkaloid mixture (cis+trans) was preferred by P. obtusus and P. curvatus. In general, no key sexual differences were recorded, although females of P. tricuspis and P. obtusus showed slightly higher response than conspecific males to lower doses of the alarm pheromone. The ecological significance of these findings is discussed, and a host location model is proposed for parasitic phorid flies involving the use of fire ant alarm pheromone and venom alkaloids as long range and short range attractants, respectively. Published by Elsevier Ltd.

  8. An old yellow enzyme gene controls the branch point between Aspergillus fumigatus and Claviceps purpurea ergot alkaloid pathways.

    PubMed

    Coyle, Christine M; Cheng, Johnathan Z; O'Connor, Sarah E; Panaccione, Daniel G

    2010-06-01

    Ergot fungi in the genus Claviceps and several related fungal groups in the family Clavicipitaceae produce toxic ergot alkaloids. These fungi produce a variety of ergot alkaloids, including clavines as well as lysergic acid derivatives. Ergot alkaloids are also produced by the distantly related, opportunistic human pathogen Aspergillus fumigatus. However, this fungus produces festuclavine and fumigaclavines A, B, and C, which collectively differ from clavines of clavicipitaceous fungi in saturation of the last assembled of four rings in the ergoline ring structure. The two lineages are hypothesized to share early steps of the ergot alkaloid pathway before diverging at some point after the synthesis of the tricyclic intermediate chanoclavine-I. Disruption of easA, a gene predicted to encode a flavin-dependent oxidoreductase of the old yellow enzyme class, in A. fumigatus led to accumulation of chanoclavine-I and chanoclavine-I-aldehyde. Complementation of the A. fumigatus easA mutant with a wild-type allele from the same fungus restored the wild-type profile of ergot alkaloids. These data demonstrate that the product of A. fumigatus easA is required for incorporation of chanoclavine-I-aldehyde into more-complex ergot alkaloids, presumably by reducing the double bond conjugated to the aldehyde group, thus facilitating ring closure. Augmentation of the A. fumigatus easA mutant with a homologue of easA from Claviceps purpurea resulted in accumulation of ergot alkaloids typical of clavicipitaceous fungi (agroclavine, setoclavine, and its diastereoisomer isosetoclavine). These data indicate that functional differences in the easA-encoded old yellow enzymes of A. fumigatus and C. purpurea result in divergence of their respective ergot alkaloid pathways.

  9. An Old Yellow Enzyme Gene Controls the Branch Point between Aspergillus fumigatus and Claviceps purpurea Ergot Alkaloid Pathways▿

    PubMed Central

    Coyle, Christine M.; Cheng, Johnathan Z.; O'Connor, Sarah E.; Panaccione, Daniel G.

    2010-01-01

    Ergot fungi in the genus Claviceps and several related fungal groups in the family Clavicipitaceae produce toxic ergot alkaloids. These fungi produce a variety of ergot alkaloids, including clavines as well as lysergic acid derivatives. Ergot alkaloids are also produced by the distantly related, opportunistic human pathogen Aspergillus fumigatus. However, this fungus produces festuclavine and fumigaclavines A, B, and C, which collectively differ from clavines of clavicipitaceous fungi in saturation of the last assembled of four rings in the ergoline ring structure. The two lineages are hypothesized to share early steps of the ergot alkaloid pathway before diverging at some point after the synthesis of the tricyclic intermediate chanoclavine-I. Disruption of easA, a gene predicted to encode a flavin-dependent oxidoreductase of the old yellow enzyme class, in A. fumigatus led to accumulation of chanoclavine-I and chanoclavine-I-aldehyde. Complementation of the A. fumigatus easA mutant with a wild-type allele from the same fungus restored the wild-type profile of ergot alkaloids. These data demonstrate that the product of A. fumigatus easA is required for incorporation of chanoclavine-I-aldehyde into more-complex ergot alkaloids, presumably by reducing the double bond conjugated to the aldehyde group, thus facilitating ring closure. Augmentation of the A. fumigatus easA mutant with a homologue of easA from Claviceps purpurea resulted in accumulation of ergot alkaloids typical of clavicipitaceous fungi (agroclavine, setoclavine, and its diastereoisomer isosetoclavine). These data indicate that functional differences in the easA-encoded old yellow enzymes of A. fumigatus and C. purpurea result in divergence of their respective ergot alkaloid pathways. PMID:20435769

  10. Evidence for an ergot alkaloid gene cluster in Claviceps purpurea.

    PubMed

    Tudzynski, P; Hölter, K; Correia, T; Arntz, C; Grammel, N; Keller, U

    1999-02-01

    A gene (cpd1) coding for the dimethylallyltryptophan synthase (DMATS) that catalyzes the first specific step in the biosynthesis of ergot alkaloids, was cloned from a strain of Claviceps purpurea that produces alkaloids in axenic culture. The derived gene product (CPD1) shows only 70% similarity to the corresponding gene previously isolated from Claviceps strain ATCC 26245, which is likely to be an isolate of C. fusiformis. Therefore, the related cpd1 most probably represents the first C. purpurea gene coding for an enzymatic step of the alkaloid biosynthetic pathway to be cloned. Analysis of the 3'-flanking region of cpd1 revealed a second, closely linked ergot alkaloid biosynthetic gene named cpps1, which codes for a 356-kDa polypeptide showing significant similarity to fungal modular peptide synthetases. The protein contains three amino acid-activating modules, and in the second module a sequence is found which matches that of an internal peptide (17 amino acids in length) obtained from a tryptic digest of lysergyl peptide synthetase 1 (LPS1) of C. purpurea, thus confirming that cpps1 encodes LPS1. LPS1 activates the three amino acids of the peptide portion of ergot peptide alkaloids during D-lysergyl peptide assembly. Chromosome walking revealed the presence of additional genes upstream of cpd1 which are probably also involved in ergot alkaloid biosynthesis: cpox1 probably codes for an FAD-dependent oxidoreductase (which could represent the chanoclavine cyclase), and a second putative oxidoreductase gene, cpox2, is closely linked to it in inverse orientation. RT-PCR experiments confirm that all four genes are expressed under conditions of peptide alkaloid biosynthesis. These results strongly suggest that at least some genes of ergot alkaloid biosynthesis in C. purpurea are clustered, opening the way for a detailed molecular genetic analysis of the pathway.

  11. Enhancing Tropane Alkaloid Production Based on the Functional Identification of Tropine-Forming Reductase in Scopolia lurida, a Tibetan Medicinal Plant.

    PubMed

    Zhao, Kaihui; Zeng, Junlan; Zhao, Tengfei; Zhang, Haoxing; Qiu, Fei; Yang, Chunxian; Zeng, Lingjiang; Liu, Xiaoqiang; Chen, Min; Lan, Xiaozhong; Liao, Zhihua

    2017-01-01

    Scopolia lurida , a native herbal plant species in Tibet, is one of the most effective producers of tropane alkaloids. However, the tropane alkaloid biosynthesis in this plant species of interest has yet to be studied at the molecular, biochemical, and biotechnological level. Here, we report on the isolation and characterization of a putative short chain dehydrogenase (SDR) gene. Sequence analysis showed that SlTRI belonged to the SDR family. Phylogenetic analysis revealed that SlTRI was clustered with the tropine-forming reductases. SlTRI and the other TA-biosynthesis genes, including putrescine N-methyltransferase ( SlPMT ) and hyoscyamine 6 β -hydroxylase ( SlH6H ), were preferably or exclusively expressed in the S . lurida roots. The tissue profile of SlTRI suggested that this gene might be involved in tropane alkaloid biosynthesis. By using GC-MS, SlTRI was shown to catalyze the tropinone reduction to yield tropine, the key intermediate of tropane alkaloids. With the purified recombinant SlTRI from Escherichia coli , an enzymatic assay was carried out; its result indicated that SlTRI was a tropine-forming reductase. Finally, the role of SlTRI in promoting the tropane alkaloid biosynthesis was confirmed through metabolic engineering in S . lurida . Specifically, hairy root cultures of S . lurida were established to investigate the effects of SlTRI overexpression on tropane alkaloid accumulation. In the SlTRI -overexpressing root cultures, the hyoscyamine contents were 1.7- to 2.9-fold higher than those in control while their corresponding scopolamine contents were likewise elevated. In summary, this functional identification of SlTRI has provided for a better understanding of tropane alkaloid biosynthesis. It also provides a candidate gene for enhancing tropane alkaloid biosynthesis in S . lurida via metabolic engineering.

  12. Enhancing Tropane Alkaloid Production Based on the Functional Identification of Tropine-Forming Reductase in Scopolia lurida, a Tibetan Medicinal Plant

    PubMed Central

    Zhao, Kaihui; Zeng, Junlan; Zhao, Tengfei; Zhang, Haoxing; Qiu, Fei; Yang, Chunxian; Zeng, Lingjiang; Liu, Xiaoqiang; Chen, Min; Lan, Xiaozhong; Liao, Zhihua

    2017-01-01

    Scopolia lurida, a native herbal plant species in Tibet, is one of the most effective producers of tropane alkaloids. However, the tropane alkaloid biosynthesis in this plant species of interest has yet to be studied at the molecular, biochemical, and biotechnological level. Here, we report on the isolation and characterization of a putative short chain dehydrogenase (SDR) gene. Sequence analysis showed that SlTRI belonged to the SDR family. Phylogenetic analysis revealed that SlTRI was clustered with the tropine-forming reductases. SlTRI and the other TA-biosynthesis genes, including putrescine N-methyltransferase (SlPMT) and hyoscyamine 6β-hydroxylase (SlH6H), were preferably or exclusively expressed in the S. lurida roots. The tissue profile of SlTRI suggested that this gene might be involved in tropane alkaloid biosynthesis. By using GC-MS, SlTRI was shown to catalyze the tropinone reduction to yield tropine, the key intermediate of tropane alkaloids. With the purified recombinant SlTRI from Escherichia coli, an enzymatic assay was carried out; its result indicated that SlTRI was a tropine-forming reductase. Finally, the role of SlTRI in promoting the tropane alkaloid biosynthesis was confirmed through metabolic engineering in S. lurida. Specifically, hairy root cultures of S. lurida were established to investigate the effects of SlTRI overexpression on tropane alkaloid accumulation. In the SlTRI-overexpressing root cultures, the hyoscyamine contents were 1.7- to 2.9-fold higher than those in control while their corresponding scopolamine contents were likewise elevated. In summary, this functional identification of SlTRI has provided for a better understanding of tropane alkaloid biosynthesis. It also provides a candidate gene for enhancing tropane alkaloid biosynthesis in S. lurida via metabolic engineering. PMID:29085381

  13. Gastric and duodenal antiulcer activity of alkaloids: a review.

    PubMed

    de Sousa Falcão, Heloina; Leite, Jacqueline Alves; Barbosa-Filho, José Maria; de Athayde-Filho, Petrônio Filgueiras; de Oliveira Chaves, Maria Célia; Moura, Marcelo Dantas; Ferreira, Anderson Luiz; de Almeida, Ana Beatriz Albino; Souza-Brito, Alba Regina Monteiro; de Fátima Formiga Melo Diniz, Margareth; Batista, Leônia Maria

    2008-12-17

    Peptic ulcer disease is a deep gastrointestinal erosion disorder that involves the entire mucosal thickness and can even penetrate the muscular mucosa. Numerous natural products have been evaluated as therapeutics for the treatment of a variety of diseases, including this one. These products usually derive from plant and animal sources that contain active constituents such as alkaloids, flavonoids, terpenoids, tannins and others. The alkaloids are natural nitrogen-containing secondary metabolites mostly derived from amino acids and found in about 20% of plants. There has been considerable pharmacological research into the antiulcer activity of these compounds. In this work we review the literature on alkaloids with antiulcer activity, which covers about sixty-one alkaloids, fifty-five of which have activity against this disease when induced in animals.

  14. An in vitro AChE inhibition assay combined with UF-HPLC-ESI-Q-TOF/MS approach for screening and characterizing of AChE inhibitors from roots of Coptis chinensis Franch.

    PubMed

    Zhao, Hengqiang; Zhou, Siduo; Zhang, Minmin; Feng, Jinhong; Wang, Shanshan; Wang, Daijie; Geng, Yanling; Wang, Xiao

    2016-02-20

    In this study, an in vitro acetylcholinesterase (AChE) inhibition assay based on microplate reader combined with ultrafiltration high performance liquid chromatography-electrospray quadrupole time of flight mass (UF-HPLC-ESI-Q-TOF/MS) was developed for the rapid screening and identification of acetylcholinesterase inhibitors (AChEI) from roots of Coptis chinensis Franch. Incubation conditions such as enzyme concentration, incubation time, incubation temperature and co-solvent was optimized so as to get better screening results. Five alkaloids including columbamine, jatrorrhizine, coptisine, palmatine and berberine were found with AChE inhibition activity in the 80% ethanol extract of C. chinensis Franch. The screened compounds were identified by HPLC-DAD-ESI-Q-TOF/MS compared with the reference stands and literatures. The screened results were verified by in vitro AChE inhibition assays, palmatine showed the best AChE inhibitory activities with IC50 values of 36.6μM among the five compounds. Results of the present study indicated that the combinative method using in vitro AChE inhibition assay and UF-HPLC-ESI-Q-TOF/MS could be widely applied for rapid screening and identification of AChEI from complex TCM extract. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Lycorine inhibits lipopolysaccharide-induced iNOS and COX-2 up-regulation in RAW264.7 cells through suppressing P38 and STATs activation and increases the survival rate of mice after LPS challenge.

    PubMed

    Kang, Jingjing; Zhang, Yushun; Cao, Xiang; Fan, Jie; Li, Guilan; Wang, Qi; Diao, Ying; Zhao, Zhihui; Luo, Lan; Yin, Zhimin

    2012-01-01

    As a natural alkaloid extracted from Amaryllidaceae, lycorine shows various biological effects on tumor cells. Here we show that lycorine dose-dependently inhibited the LPS-induced up-regulation of nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) protein level in RAW264.7 cells. Besides, it also inhibited NO, PGE(2), TNF-α and IL-6 release from LPS-treated RAW264.7 cells. RT-PCR experiments showed that lycorine suppressed LPS-induced iNOS but not COX-2 gene expression. Moreover, lycorine decreased LPS-induced mortality in mice. Mechanistically, LPS-induced activation of P38 and STATs pathways was suppressed significantly by lycorine. In addition, lycorine did not interfere with the phosphorylation of ERK1/2, JNK1/2 and NF-κB pathways. In conclusion, lycorine inhibits LPS-induced production of pro-inflammatory mediators and increases the survival rate of mice after LPS challenge, suggesting that lycorine could play an anti-inflammatory role in response to LPS. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Inhibition of processing of plant N-linked oligosaccharides by castanospermine.

    PubMed

    Hori, H; Pan, Y T; Molyneux, R J; Elbein, A D

    1984-02-01

    Castanospermine (1,6,7,8-tetrahydroxyoctahydroindolizine) is a plant alkaloid that inhibits lysosomal alpha- and beta-glucosidase. It also inhibits processing of influenza viral glycoproteins by inhibiting glucosidase I and leads to altered glycoproteins with Glc3Man7GlcNAc2 structures. Castanospermine was tested as an inhibitor of glycoprotein processing in suspension-cultured soybean cells. Soybean cells were pulse-labeled with [2-3H]mannose and chased for varying periods in unlabeled medium. In normal cells, the initial glycopeptides contained oligosaccharides having Glc3Man9GlcNAc2 to Glc1Man9GlcNAc2 structures and these were trimmed during the chase to Man9GlcNac2 to Man7GlcNAc2 structures. In the presence of castanospermine, no trimming of glucose residues occurred although some mannose residues were apparently still removed. Thus, the major oligosaccharide in the glycopeptides of castanospermine-incubated cells after a 90-min chase was a Glc3Man7GlcNAc2 structure. Smaller amounts of Glc3Man6GlcNAc2 and Glc3Man5GlcNAc2 were also identified. Thus, in plant cells, castanospermine also prevents the removal of the outermost glucose residue.

  17. Identification of the quinolizidine alkaloids in Sophora leachiana

    USDA-ARS?s Scientific Manuscript database

    Sophora is a diverse genus representing herbs, shrubs, and trees that occurs throughout the world, primarily in the northern hemisphere. Sophora species contain a variety of quinolizidine alkaloids that are toxic and potentially teratogenic. However, there are no previous reports on the alkaloid c...

  18. 21 CFR 119.1 - Dietary supplements containing ephedrine alkaloids.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Dietary supplements containing ephedrine alkaloids... SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION DIETARY SUPPLEMENTS THAT PRESENT A SIGNIFICANT OR UNREASONABLE RISK § 119.1 Dietary supplements containing ephedrine alkaloids. Dietary supplements containing...

  19. 21 CFR 119.1 - Dietary supplements containing ephedrine alkaloids.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Dietary supplements containing ephedrine alkaloids... SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION DIETARY SUPPLEMENTS THAT PRESENT A SIGNIFICANT OR UNREASONABLE RISK § 119.1 Dietary supplements containing ephedrine alkaloids. Dietary supplements containing...

  20. 21 CFR 119.1 - Dietary supplements containing ephedrine alkaloids.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Dietary supplements containing ephedrine alkaloids... SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION DIETARY SUPPLEMENTS THAT PRESENT A SIGNIFICANT OR UNREASONABLE RISK § 119.1 Dietary supplements containing ephedrine alkaloids. Dietary supplements containing...

  1. 21 CFR 119.1 - Dietary supplements containing ephedrine alkaloids.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Dietary supplements containing ephedrine alkaloids... SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION DIETARY SUPPLEMENTS THAT PRESENT A SIGNIFICANT OR UNREASONABLE RISK § 119.1 Dietary supplements containing ephedrine alkaloids. Dietary supplements containing...

  2. Four alkaloids from Annona cherimola.

    PubMed

    Chen, C Y; Chang, F R; Pan, W B; Wu, Y C

    2001-04-01

    Four alkaloids, annocherine A, annocherine B, cherianoine, and romucosine H, along with one known alkaloid, artabonatine B, were isolated from the MeOH extract of the stems of Annona cherimola. Their structures were identified on the basis of both analysis of their spectral data and from chemical evidence.

  3. 21 CFR 119.1 - Dietary supplements containing ephedrine alkaloids.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Dietary supplements containing ephedrine alkaloids... SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION DIETARY SUPPLEMENTS THAT PRESENT A SIGNIFICANT OR UNREASONABLE RISK § 119.1 Dietary supplements containing ephedrine alkaloids. Dietary supplements containing...

  4. Recognition of pyrrolizidine alkaloid esters in the invasive aquatic plant Gymnocoronis spilanthoides (Asteraceae)

    USDA-ARS?s Scientific Manuscript database

    Introduction – The freshwater aquatic plant Gymnocoronis spilanthoides (Senegal tea plant, jazmín del bañado, Falscher Wasserfreund) is an invasive plant in many countries. Behavioural observations of pyrrolizidine alkaloid-pharmacophagous butterflies suggested the presence of pyrrolizidine alkaloid...

  5. Study on the Alkaloids in Tibetan Medicine Aconitum pendulum Busch by HPLC–MSn Combined with Column Chromatography

    PubMed Central

    Wang, Beibei; Dong, Jie; Ji, Jiaojiao; Yuan, Jiang; Wang, Jiali; Wu, Jiarui; Tan, Peng; Liu, Yonggang

    2016-01-01

    A rapid, convenient and effective identification method of alkaloids was established and an attempt on isolating and analyzing the alkaloids in Aconitum pendulum Busch was conducted successfully. In this article, four high-content components including deoxyaconitine, benzoylaconine, aconine and neoline were isolated by using column chromatography. HPLC–MSn was employed to deduce the regulations of fragmentation of diterpenoid alkaloids which displayed a characteristic behavior of loss of CO(28u), CH3COOH(60u), CH3OH(32u), H2O(18u) and C6H5COOH(122u). Then, according to fragmentation regulation of mass spectrometry, 42 alkaloids were found in A. pendulum. Among them, 38 compounds were identified and 29 alkaloids were reported for the first time for this herb. Therefore, this means that HPLC–MSn combined with column chromatography could work as an effective and reliable tool for rapid identification of the chemical components of herbal medicine. PMID:26896350

  6. Report on maloine, a new alkaloid discovered from G. maloi: Structural characterization and biological activity

    NASA Astrophysics Data System (ADS)

    Çela, Dorisa; Nepravishta, Ridvan; Lazari, Diamanto; Gaziano, Roberta; Moroni, Gabriella; Pica, Francesca; Paci, Maurizio; Abazi, Sokol

    2017-02-01

    Gymnospermium maloi Kit Tan, & Shuka is a new endemic species of the genus Gymnospermium Spach which has been described recently from the southern part of Albania. The members of this genus are poorly studied for what it concern the secondary metabolites in general and the class of alkaloids in particular. In fact from Gymnospermium genus, there are only few alkaloids characterized, (namely albertramine, albertidine, and albertine) isolated from G. albertii. Until now the chemical composition and the structure elucidation of other possible secondary metabolites, especially alkaloids, remain largely unknown. Here we report, for the first time, the structure of a new alkaloid isolated from G. maloi, designated by us as maloine, and obtained by the use of 2D homonuclear and heteronuclear NMR spectroscopy, FTIR, UV, Fluorescence and HPLC/MS spectra. The biological activity of the crude extract of Gymnospermium maloi and of its alkaloid maloine, was evaluated in vitro on human chronic myeloid leukemia cell line K562 and results herewith reported.

  7. Dynamic Variation Patterns of Aconitum Alkaloids in Daughter Root of Aconitum Carmichaelii (Fuzi) in the Decoction Process Based on the Content Changes of Nine Aconitum Alkaloids by HPLC- MS- MS

    PubMed Central

    Luo, Heng; Huang, Zhifang; Tang, Xiaolong; Yi, Jinhai; Chen, Shuiying; Yang, Andong; Yang, Jun

    2016-01-01

    The chemical components in the decoctions of Chinese herbal medicines are not always the same as those in the crude herbs because of the insolubility or instability of some compounds. In this work, a high-performance liquid chromatography (HPLC) coupled with electrospray ionization (ESI) tandem mass spectrometry method was developed to explore dynamic variation patterns of aconitum alkaloids in Fuzi during the process of decocting aconite root. The fragmentation patterns of aconitum alkaloids using ESI and collision-induced dissociation (CID) techniques were reported. This assay method was validated with respect to linearity (r2 > 0.9950), precision, repeatability, and accuracy (recovery rate between 94.6 and 107.9%).The result showed that the amounts of aconitum alkaloids in the decoction at different boiling time varied significantly. In the decoction process,the diester- type alkaloids in crude aconite roots have transformed into Benzoylaconines or aconines. PMID:27610167

  8. Antiviral activity of aconite alkaloids from Aconitum carmichaelii Debx.

    PubMed

    Xu, Weiming; Zhang, Min; Liu, Hongwu; Wei, Kun; He, Ming; Li, Xiangyang; Hu, Deyu; Yang, Song; Zheng, Yuguo

    2017-12-22

    Four diterpenoid alkaloids, namely, (a) hypaconitine, (b) songorine, (c) mesaconitine and (d) aconitine, were isolated from the ethanol root extract of Aconitum carmichaelii Debx. The antiviral activities of these alkaloids against tobacco mosaic virus (TMV) and cucumber mosaic virus (CMV) were evaluated. Antiviral activity test in vivo showed that compounds a and c, which were C19-diterpenoid alkaloids, showed inactivation efficacy values of 82.4 and 85.6% against TMV at 500 μg/mL, respectively. By contrast, compound c presented inactivation activity of 52.1% against CMV at 500 μg/mL, which was almost equal to that of the commercial Ningnanmycin (87.1% inactivation activity against TMV and 53.8% inactivation activity against CMV). C19-Diterpenoid alkaloids displayed moderate to high antiviral activity against TMV and CMV at 500 μg/mL, dosage plays an important role in antiviral activities. This paper is the first report on the evolution of aconite diterpenoid alkaloids for antiviral activity against CMV.

  9. Dynamic Variation Patterns of Aconitum Alkaloids in Daughter Root of Aconitum Carmichaelii (Fuzi) in the Decoction Process Based on the Content Changes of Nine Aconitum Alkaloids by HPLC- MS- MS.

    PubMed

    Luo, Heng; Huang, Zhifang; Tang, Xiaolong; Yi, Jinhai; Chen, Shuiying; Yang, Andong; Yang, Jun

    2016-01-01

    The chemical components in the decoctions of Chinese herbal medicines are not always the same as those in the crude herbs because of the insolubility or instability of some compounds. In this work, a high-performance liquid chromatography (HPLC) coupled with electrospray ionization (ESI) tandem mass spectrometry method was developed to explore dynamic variation patterns of aconitum alkaloids in Fuzi during the process of decocting aconite root. The fragmentation patterns of aconitum alkaloids using ESI and collision-induced dissociation (CID) techniques were reported. This assay method was validated with respect to linearity (r(2) > 0.9950), precision, repeatability, and accuracy (recovery rate between 94.6 and 107.9%).The result showed that the amounts of aconitum alkaloids in the decoction at different boiling time varied significantly. In the decoction process,the diester- type alkaloids in crude aconite roots have transformed into Benzoylaconines or aconines.

  10. Newly discovered ergot alkaloids in Sorghum ergot Claviceps africana occurring for the first time in Israel.

    PubMed

    Shimshoni, J A; Cuneah, O; Sulyok, M; Krska, R; Sionov, E; Barel, S; Meller Harel, Y

    2017-03-15

    Sorghum ergot is a disease caused commonly by C. africana. In 2015, ergot was identified for the first time in sorghum fields in Israel, leading to measures of eradication and quarantine. The aims of the study were to identify the ergot species by molecular and ergot alkaloid profile analysis, to determine the ergot alkaloid profile in pure honeydew and in infected sorghum silages and to estimate the safety of sorghum silages as a feed source. C. africana was rapidly and reliably identified by microscopical and molecular analysis. Dihydroergosine was identified as the major ergot alkaloid. Dihydrolysergol and dihydroergotamine were identified for the first time as significant ergot alkaloid components within the C. africana sclerotia, thereby providing for the first time a proof for the natural occurrence of dihydroergotamine. The sorghum silages were found to be safe for feed consumption, since the ergot alkaloids and the regulated mycotoxins were below their regulated limits. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Alkaloid production in Vernonia cinerea: Callus, cell suspension and root cultures.

    PubMed

    Maheshwari, Priti; Songara, Bharti; Kumar, Shailesh; Jain, Prachi; Srivastava, Kamini; Kumar, Anil

    2007-08-01

    Fast-growing callus, cell suspension and root cultures of Vernonia cinerea, a medicinal plant, were analyzed for the presence of alkaloids. Callus and root cultures were established from young leaf explants in Murashige and Skoog (MS) basal media supplemented with combinations of auxins and cytokinins, whereas cell suspension cultures were established from callus cultures. Maximum biomass of callus, cell suspension and root cultures were obtained in the medium supplemented with 1 mg/L alpha-naphthaleneacetic acid (NAA) and 5 mg/L benzylaminopurine (BA), 1.0 mg/L NAA and 0.1 mg/L BA and 1.5 mg/L NAA, respectively. The 5-week-old callus cultures resulted in maximum biomass and alkaloid contents (750 microg/g). Cell suspension growth and alkaloid contents were maximal in 20-day-old cultures and alkaloid contents were 1.15 mg/g. A 0.2-g sample of root tissue regenerated in semi-solid medium upon transfer to liquid MS medium containing 1.5 mg/L NAA regenerated a maximum increase in biomass of 6.3-fold over a period of 5 weeks. The highest root growth and alkaloid contents of 2 mg/g dry weight were obtained in 5-week-old cultures. Maximum alkaloid contents were obtained in root cultures in vitro compared to all others including the alkaloid content of in vivo obtained with aerial parts and roots (800 microg/g and 1.2 mg/g dry weight, respectively) of V. cinerea.

  12. Employing Two-stage Derivatisation and GC-MS to Assay for Cathine and Related Stimulant Alkaloids across the Celastraceae.

    PubMed

    Tembrock, Luke R; Broeckling, Corey D; Heuberger, Adam L; Simmons, Mark P; Stermitz, Frank R; Uvarov, Jessica M

    2017-07-01

    Catha edulis (qat, khat, mirra) is a woody plant species that is grown and consumed in East Africa and Yemen for its stimulant alkaloids cathinone, cathine and norephedrine. Two Celastraceae species, in addition to qat, have been noted for their stimulant properties in ethnobotanical literature. Recent phylogenetic reconstructions place four genera in a clade sister to Catha edulis, and these genera are primary candidates to search for cathine and related alkaloids. Determine if cathine or related alkaloids are present in species of Celastraceae other than Catha edulis. Leaf samples from 43 Celastraceae species were extracted in water followed by basification of the aqueous extract and partitioning with methyl-t-butyl ether to provide an alkaloid-enriched fraction. The extract was derivatised in a two-stage process and analysed using GC-MS for the presence of cathine. Related alkaloids and other metabolites in this alkaloid-enriched fraction were tentatively identified. Cathinone, cathine and norephedrine were not detected in any of the 43 Celastraceae species assayed other than Catha edulis. However, the phenylalanine- or tyrosine-derived alkaloid phenylethylamine was identified in five species. Nine species were found to be enriched for numerous sterol- and terpene-like compounds. These results indicate that cathine is unique to Catha edulis, and not the compound responsible for the stimulant properties reported in related Celastraceae species. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  13. Physiological Effects of Ergot Alkaloid and Indole-Diterpene Consumption on Sheep under Hot and Thermoneutral Ambient Temperature Conditions.

    PubMed

    Henry, Michelle L E; Kemp, Stuart; Dunshea, Frank R; Leury, Brian J

    2016-06-02

    A controlled feeding study was undertaken to determine the physiological and production effects of consuming perennial ryegrass alkaloids (fed via seed) under extreme heat in sheep. Twenty-four Merino ewe weaners (6 months; initial BW 30.8 ± 1.0 kg) were selected and the treatment period lasted 21 days following a 14 day acclimatisation period. Two levels of two factors were used. The first factor was alkaloid, fed at a nil (NilAlk) or moderate level (Alk; 80 μg/kg LW ergovaline and 20.5 μg/kg·LW lolitrem B). The second factor was ambient temperature applied at two levels; thermoneutral (TN; constant 21-22 °C) or heat (Heat; 9:00 AM-5:00 PM at 38 °C; 5:00 PM-9:00 AM at 21-22 °C), resulting in four treatments, NilAlk TN, NilAlk Heat, Alk TN and Alk Heat. Alkaloid consumption reduced dry matter intake ( p = 0.008), and tended to reduce liveweight ( p = 0.07). Rectal temperature and respiration rate were increased by both alkaloid and heat ( p < 0.05 for all). Respiration rate increased to severe levels when alkaloid and heat were combined, indicating the short term effects which may be occurring in perennial ryegrass toxicosis (PRGT) areas during severe weather conditions, a novel finding. When alkaloid ingestion and heat were administered separately, similar physiological responses occurred, indicating alkaloid ingestion causes a similar heat stress response to 38 °C heat.

  14. In vitro inhibition of Plasmodium falciparum by substances isolated from Amazonian antimalarial plants.

    PubMed

    de Andrade-Neto, Valter F; Pohlit, Adrian M; Pinto, Ana Cristina S; Silva, Ellen Cristina C; Nogueira, Karla L; Melo, Márcia R S; Henrique, Marycleuma C; Amorim, Rodrigo C N; Silva, Luis Francisco R; Costa, Mônica R F; Nunomura, Rita C S; Nunomura, Sergio M; Alecrim, Wilson D; Alecrim, M das Graças C; Chaves, F Célio M; Vieira, Pedro Paulo R

    2007-06-01

    In the present study, a quassinoid, neosergeolide, isolated from the roots and stems of Picrolemma sprucei (Simaroubaceae), the indole alkaloids ellipticine and aspidocarpine, isolated from the bark of Aspidosperma vargasii and A. desmanthum (Apocynaceae), respectively, and 4-nerolidylcatechol, isolated from the roots of Pothomorphe peltata (Piperaceae), all presented significant in vitro inhibition (more active than quinine and chloroquine) of the multi-drug resistant K1 strain of Plasmodium falciparum. Neosergeolide presented activity in the nanomolar range. This is the first report on the antimalarial activity of these known, natural compounds. This is also the first report on the isolation of aspidocarpine from A. desmanthum. These compounds are good candidates for pre-clinical tests as novel lead structures with the aim of finding new antimalarial prototypes and lend support to the traditional use of the plants from which these compounds are derived.

  15. Footprinting of Inhibitor Interactions of In Silico Identified Inhibitors of Trypanothione Reductase of Leishmania Parasite

    PubMed Central

    Venkatesan, Santhosh K.; Dubey, Vikash Kumar

    2012-01-01

    Structure-based virtual screening of NCI Diversity set II compounds was performed to indentify novel inhibitor scaffolds of trypanothione reductase (TR) from Leishmania infantum. The top 50 ranked hits were clustered using the AuPoSOM tool. Majority of the top-ranked compounds were Tricyclic. Clustering of hits yielded four major clusters each comprising varying number of subclusters differing in their mode of binding and orientation in the active site. Moreover, for the first time, we report selected alkaloids and dibenzothiazepines as inhibitors of Leishmania infantum TR. The mode of binding observed among the clusters also potentiates the probable in vitro inhibition kinetics and aids in defining key interaction which might contribute to the inhibition of enzymatic reduction of T[S] 2. The method provides scope for automation and integration into the virtual screening process employing docking softwares, for clustering the small molecule inhibitors based upon protein-ligand interactions. PMID:22550471

  16. Evaluation of some pharmacological activities of Budmunchiamine - A isolated from Albizia amara.

    PubMed

    Thippeswamy, Sreerangegowda; Mohana, Devihalli Chikkaiah; Abhishek, Rayasandra Umesh; Manjunath, Kiragandur

    2015-03-01

    The present investigations were aimed to evaluate the antimicrobial and antioxidant efficacies of budmunchiamine-A (BUA) of Albizia amara . The activity-guided isolation leaded to isolate the bioactive compound budmunchiamine-A from alkaloid extract of A. amara . The budmunchiamine-A showed significant broad-spectrum antimicrobial activity with zone of inhibition (ZOI), minimum inhibitory concentration (MIC) and minimum bactericidal/fungicidal concentration (MBC/MFC) values varied from 7.3 to 24.5 mm, 0.95 to 62.5 μg/mL, and 1.9 to 250 μg/mL, respectively. The budmunchiamine-A exhibited moderate antioxidant activity with inhibitory concentration 50% (IC 50 ) value of 400 μg/mL in 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay and percent inhibition of β-carotene/linoleic acid was 67.8%. The results suggest the possible use of budmunchiamine-A as a molecular entity for drug development in pharmaceutical industry.

  17. Evaluation of some pharmacological activities of Budmunchiamine - A isolated from Albizia amara

    PubMed Central

    Thippeswamy, Sreerangegowda; Mohana, Devihalli Chikkaiah; Abhishek, Rayasandra Umesh; Manjunath, Kiragandur

    2015-01-01

    The present investigations were aimed to evaluate the antimicrobial and antioxidant efficacies of budmunchiamine-A (BUA) of Albizia amara . The activity-guided isolation leaded to isolate the bioactive compound budmunchiamine-A from alkaloid extract of A. amara . The budmunchiamine-A showed significant broad-spectrum antimicrobial activity with zone of inhibition (ZOI), minimum inhibitory concentration (MIC) and minimum bactericidal/fungicidal concentration (MBC/MFC) values varied from 7.3 to 24.5 mm, 0.95 to 62.5 μg/mL, and 1.9 to 250 μg/mL, respectively. The budmunchiamine-A exhibited moderate antioxidant activity with inhibitory concentration 50% (IC 50 ) value of 400 μg/mL in 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay and percent inhibition of β-carotene/linoleic acid was 67.8%. The results suggest the possible use of budmunchiamine-A as a molecular entity for drug development in pharmaceutical industry. PMID:26221099

  18. Antiproliferative effect of isolated isoquinoline alkaloid from Mucuna pruriens seeds in hepatic carcinoma cells.

    PubMed

    Kumar, Pranesh; Rawat, Atul; Keshari, Amit K; Singh, Ashok K; Maity, Siddhartha; De, Arnab; Samanta, Amalesh; Saha, Sudipta

    2016-01-01

    The present study was undertaken to investigate the antiproliferative action of isolated M1 (6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid) from Mucuna pruriens seeds using human hepatic carcinoma cell line (Huh-7 cells). Initially, docking studies was performed to find out the binding affinities of M1 to caspase-3 and 8 enzymes. Later, cytotoxic action of M1 was measured by cell growth inhibition (MTT), followed by caspase-3 and 8 enzymes assay colorimetrically. Our results collectively suggested that M1 had strong binding affinity to caspase-8 in molecular modelling. M1 possessed antiproliferative activity on Huh-7 cells (EC50 = 13.97 μM) and also inhibited the action of caspase-8 enzyme, signified process of apoptosis. M1 was active against Huh-7 cells that may be useful for future hepatic cancer treatment.

  19. The role of L-DOPA in plants

    PubMed Central

    Soares, Anderson Ricardo; Marchiosi, Rogério; Siqueira-Soares, Rita de Cássia; Barbosa de Lima, Rogério; Dantas dos Santos, Wanderley; Ferrarese-Filho, Osvaldo

    2014-01-01

    Since higher plants regularly release organic compounds into the environment, their decay products are often added to the soil matrix and a few have been reported as agents of plant-plant interactions. These compounds, active against higher plants, typically suppress seed germination, cause injury to root growth and other meristems, and inhibit seedling growth. Mucuna pruriens is an example of a successful cover crop with several highly active secondary chemical agents that are produced by its seeds, leaves and roots. The main phytotoxic compound encountered is the non-protein amino acid L-3,4-dihydroxyphenylalanine (L-DOPA), which is used in treating the symptoms of Parkinson disease. In plants, L-DOPA is a precursor of many alkaloids, catecholamines, and melanin and is released from Mucuna into soils, inhibiting the growth of nearby plant species. This review summarizes knowledge regarding L-DOPA in plants, providing a brief overview about its metabolic actions. PMID:24598311

  20. Hypoglycemic effect of ethanolic extract of Musa sapientum on alloxan induced diabetes mellitus in rats and its relation with antioxidant potential.

    PubMed

    Dhanabal, S P; Sureshkumar, M; Ramanathan, M; Suresh, B

    2005-01-01

    The antihyperglycemic effect of ethanolic extract of flowers of Musa sapientum (Musaceae), a herb (used in Indian folklore medicine for the treatment of diabetes mellitus) in alloxan induced diabetic rats. Oral administration of the ethanolic extract showed significant (p < 0.001) blood glucose lowering effect at 200 mg/kg in alloxan induced diabetic rats (120 mg/kg, i.p.) and the extract was also found to significantly (p < 0.001) scavenge oxygen free radicals, viz., superoxide dismutase (SOD), catalase (CAT) and also protein, malondialdehyde and ascorbic acid in vivo. Musa sapientum induced blood sugar reduction may be due to possible inhibition of free radicals and subsequent inhibition of tissue damage induced by alloxan. The antidiabetic activity observed in this plant may be attributed to the presence of flavonoids, alkaloids, steroid and glycoside principles.

  1. Leptopyrine, new alkaloid from Leptopyrum fumarioides L. (Ranunculaceae).

    PubMed

    Doncheva, Tsvetelina; Solongo, Amgalan; Kostova, Nadezhda; Gerelt-Od, Yadamsuren; Selenge, Dangaa; Philipov, Stefan

    2015-01-01

    A new type of isoquinoline alkaloid leptopyrine was isolated from the aerial parts of Leptopyrum fumarioides L. (Ranunculaceae) of Mongolian origin. The known alkaloids protopine and thalifoline were isolated for the first time from this the species. All structures were established by physical and spectral analyses.

  2. Vinpocetine inhibits NF-kappaB-dependent inflammation via an IKK-dependent but PDE-independent mechanism.

    PubMed

    Jeon, Kye-Im; Xu, Xiangbin; Aizawa, Toru; Lim, Jae Hyang; Jono, Hirofumi; Kwon, Dong-Seok; Abe, Jun-Ichi; Berk, Bradford C; Li, Jian-Dong; Yan, Chen

    2010-05-25

    Inflammation is a hallmark of many diseases, such as atherosclerosis, chronic obstructive pulmonary disease, arthritis, infectious diseases, and cancer. Although steroids and cyclooxygenase inhibitors are effective antiinflammatory therapeutical agents, they may cause serious side effects. Therefore, developing unique antiinflammatory agents without significant adverse effects is urgently needed. Vinpocetine, a derivative of the alkaloid vincamine, has long been used for cerebrovascular disorders and cognitive impairment. Its role in inhibiting inflammation, however, remains unexplored. Here, we show that vinpocetine acts as an antiinflammatory agent in vitro and in vivo. In particular, vinpocetine inhibits TNF-alpha-induced NF-kappaB activation and the subsequent induction of proinflammatory mediators in multiple cell types, including vascular smooth muscle cells, endothelial cells, macrophages, and epithelial cells. We also show that vinpocetine inhibits monocyte adhesion and chemotaxis, which are critical processes during inflammation. Moreover, vinpocetine potently inhibits TNF-alpha- or LPS-induced up-regulation of proinflammatory mediators, including TNF-alpha, IL-1beta, and macrophage inflammatory protein-2, and decreases interstitial infiltration of polymorphonuclear leukocytes in a mouse model of TNF-alpha- or LPS-induced lung inflammation. Interestingly, vinpocetine inhibits NF-kappaB-dependent inflammatory responses by directly targeting IKK, independent of its well-known inhibitory effects on phosphodiesterase and Ca(2+) regulation. These studies thus identify vinpocetine as a unique antiinflammatory agent that may be repositioned for the treatment of many inflammatory diseases.

  3. Vinpocetine inhibits NF-κB–dependent inflammation via an IKK-dependent but PDE-independent mechanism

    PubMed Central

    Jeon, Kye-Im; Xu, Xiangbin; Aizawa, Toru; Lim, Jae Hyang; Jono, Hirofumi; Kwon, Dong-Seok; Berk, Bradford C.; Li, Jian-Dong; Yan, Chen

    2010-01-01

    Inflammation is a hallmark of many diseases, such as atherosclerosis, chronic obstructive pulmonary disease, arthritis, infectious diseases, and cancer. Although steroids and cyclooxygenase inhibitors are effective antiinflammatory therapeutical agents, they may cause serious side effects. Therefore, developing unique antiinflammatory agents without significant adverse effects is urgently needed. Vinpocetine, a derivative of the alkaloid vincamine, has long been used for cerebrovascular disorders and cognitive impairment. Its role in inhibiting inflammation, however, remains unexplored. Here, we show that vinpocetine acts as an antiinflammatory agent in vitro and in vivo. In particular, vinpocetine inhibits TNF-α–induced NF-κB activation and the subsequent induction of proinflammatory mediators in multiple cell types, including vascular smooth muscle cells, endothelial cells, macrophages, and epithelial cells. We also show that vinpocetine inhibits monocyte adhesion and chemotaxis, which are critical processes during inflammation. Moreover, vinpocetine potently inhibits TNF-α- or LPS-induced up-regulation of proinflammatory mediators, including TNF-α, IL-1β, and macrophage inflammatory protein-2, and decreases interstitial infiltration of polymorphonuclear leukocytes in a mouse model of TNF-α- or LPS-induced lung inflammation. Interestingly, vinpocetine inhibits NF-κB–dependent inflammatory responses by directly targeting IKK, independent of its well-known inhibitory effects on phosphodiesterase and Ca2+ regulation. These studies thus identify vinpocetine as a unique antiinflammatory agent that may be repositioned for the treatment of many inflammatory diseases. PMID:20448200

  4. Bioactivity-guided Isolation of Anti-inflammatory Constituents of the Rare Mushroom Calvatia nipponica in LPS-stimulated RAW264.7 Macrophages.

    PubMed

    Lee, Seulah; Lee, Dahae; Lee, Joo Chan; Kang, Ki Sung; Ryoo, Rhim; Park, Hyun-Ju; Kim, Ki Hyun

    2018-06-22

    Calvatia species, generally known as puffball mushrooms, are used both as sources of food as well as traditional medicine. Among the Calvatia genus, Calvatia nipponica (Agaricaceae) is one of the rarest species. Using bioassay-guided fractionation based on anti-inflammatory effects, five alkaloids (1 - 5), two phenolics (6 - 7) and a fatty acid methyl ester (8) were isolated from the fruiting bodies of C. nipponica. Compound 8 was identified from C. nipponica for the first time, and all isolates (1 - 8) were tested for inhibition of nitric oxide (NO) production in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. Compound 7 showed mild inhibition while compound 8 significantly inhibited NO production with an IC 50 value of 27.50±0.08 μM. The mechanism of NO inhibition of compound 7 was simulated by molecular docking analysis against nitric oxide synthase (iNOS), which revealed the interactions of 7 with the key amino acid residue and the heme in the active site. With the most potent inhibition against LPS-induced inflammation, compound 8 was further investigated with respect to its mechanism of action, and the activity was found to be mediated through the inhibition of iNOS and COX-2 expression. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  5. Beta2-adrenoceptor-mediated tracheal relaxation induced by higenamine from Nandina domestica Thunberg.

    PubMed

    Tsukiyama, Muneo; Ueki, Takuro; Yasuda, Yoichi; Kikuchi, Hiroko; Akaishi, Tatsuhiro; Okumura, Hidenobu; Abe, Kazuho

    2009-10-01

    The fruit of Nandina domestica Thunberg (ND, Berberidaceae) has been used to improve cough and breathing difficulties in Japan for many years, but very little is known about the constituent of ND responsible for this effect. We have recently reported that the crude extract from ND (NDE) inhibits histamine- and serotonin-induced contraction of isolated guinea pig trachea, and the inhibitory activity was not explained by nantenine, a well-known alkaloid isolated from ND. To explore other constituent(s) of NDE with tracheal smooth muscle relaxant activity, we fractionated NDE and assessed the pharmacological effects of the fractions using isolated guinea pig tracheal ring preparations. NDE was introduced into a polyaromatic absorbent resin column and stepwise eluted to yield five fractions, among which only the 40 % methanol fraction was active in relaxing tracheal smooth muscle precontracted with histamine. Further separation of the 40 % methanol fraction with high-performance liquid chromatography yielded multiple subfractions, one of which was remarkably active in relaxing histamine-precontracted trachea. Chemical analysis with a time-of-flight mass spectrometer and nuclear magnetic resonance spectrometer identified the constituent of the most active subfraction as higenamine, a benzyltetrahydroisoquinoline alkaloid. The potency and efficacy of the active constituent from NDE in relaxing trachea were almost equivalent to synthetic higenamine. In addition, the effect of the active constituent from NDE was competitively inhibited by the selective beta (2)-adrenoceptor antagonist ICI 118,551. These results indicate that the major constituent responsible for the effect of NDE is higenamine, which probably causes the tracheal relaxation through stimulation of beta (2) adrenoceptors. Georg Thieme Verlag KG Stuttgart-New York.

  6. Alkaloids from Piper nigrum Exhibit Antiinflammatory Activity via Activating the Nrf2/HO-1 Pathway.

    PubMed

    Ngo, Quynh Mai Thi; Tran, Phuong Thao; Tran, Manh Hung; Kim, Jeong Ah; Rho, Seong Soo; Lim, Chi-Hwan; Kim, Jin-Cheol; Woo, Mi Hee; Choi, Jae Sui; Lee, Jeong-Hyung; Min, Byung Sun

    2017-04-01

    In the present study, ten alkaloids, namely chabamide (1), pellitorine (2), retrofractamide A (3), pyrroperine (4), isopiperolein B (5), piperamide C9:1 (8E) (6), 6,7-dehydrobrachyamide B (7), 4,5-dihydropiperine (8), dehydropipernonaline (9), and piperine (10), were isolated from the fruits of Piper nigrum. Among these, chabamide (1), pellitorine (2), retrofractamide A (3), isopiperolein B (5), and 6,7-dehydrobrachyamide B (7) exhibited significant inhibitory activity on lipopolysaccharide-induced nitric oxide (NO) production in RAW264.7 cells, with IC 50 values of 6.8, 14.5, 30.2, 23.7, and 38.5 μM, respectively. Furthermore, compound 1 inhibited lipopolysaccharide-induced NO production in bone marrow-derived macrophages with IC 50 value of 9.5 μM. Consistent with NO inhibition, treatment of RAW264.7 cells with chabamide (1), pellitorine (2), and 6,7-dehydrobrachyamide B (7) suppressed expression of inducible NO synthase and cyclooxygenase-2. Chabamide (1), pellitorine (2), and 6,7-dehydrobrachyamide B (7) induced heme-oxygenase-1 expression at the transcriptional level. In addition, compound 1 induced the nuclear translocation of nuclear factor-E2-related factor 2 (Nrf2) and upregulated the expression of Nrf2 target genes, NAD(P)H:quinone oxidoreductase 1 and γ-glutamyl cysteine synthetase catalytic subunit, in a concentration-dependent manner in RAW264.7 cells. These findings suggest that chabamide (1) from P. nigrum exert antiinflammatory effects via the activation of the Nrf2/heme-oxygenase-1 pathway; hence, it might be a promising candidate for the treatment of inflammatory diseases. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  7. Lower Monoamine Oxidase-A Total Distribution Volume in Impulsive and Violent Male Offenders with Antisocial Personality Disorder and High Psychopathic Traits: An [11C] Harmine Positron Emission Tomography Study

    PubMed Central

    Kolla, Nathan J; Matthews, Brittany; Wilson, Alan A; Houle, Sylvain; Michael Bagby, R; Links, Paul; Simpson, Alexander I; Hussain, Amina; Meyer, Jeffrey H

    2015-01-01

    Antisocial personality disorder (ASPD) often presents with highly impulsive, violent behavior, and pathological changes in the orbitofrontal cortex (OFC) and ventral striatum (VS) are implicated. Several compelling reasons support a relationship between low monoamine oxidase-A (MAO-A), an enzyme that regulates neurotransmitters, and ASPD. These include MAO-A knockout models in rodents evidencing impulsive aggression and positron emission tomography (PET) studies of healthy subjects reporting associations between low brain MAO-A levels and greater impulsivity or aggression. However, a fundamental gap in the literature is that it is unknown whether brain MAO-A levels are low in more severe, clinical disorders of impulsivity, such as ASPD. To address this issue, we applied [11C] harmine PET to measure MAO-A total distribution volume (MAO-A VT), an index of MAO-A density, in 18 male ASPD participants and 18 age- and sex-matched controls. OFC and VS MAO-A VT were lower in ASPD compared with controls (multivariate analysis of variance (MANOVA): F2,33=6.8, P=0.003; OFC and VS MAO-A VT each lower by 19%). Similar effects were observed in other brain regions: prefrontal cortex, anterior cingulate cortex, dorsal putamen, thalamus, hippocampus, and midbrain (MANOVA: F7,28=2.7, P=0.029). In ASPD, VS MAO-A VT was consistently negatively correlated with self-report and behavioral measures of impulsivity (r=−0.50 to −0.52, all P-values<0.05). This study is the first to demonstrate lower brain MAO-A levels in ASPD. Our results support an important extension of preclinical models of impulsive aggression into a human disorder marked by pathological aggression and impulsivity. PMID:26081301

  8. Lower Monoamine Oxidase-A Total Distribution Volume in Impulsive and Violent Male Offenders with Antisocial Personality Disorder and High Psychopathic Traits: An [(11)C] Harmine Positron Emission Tomography Study.

    PubMed

    Kolla, Nathan J; Matthews, Brittany; Wilson, Alan A; Houle, Sylvain; Bagby, R Michael; Links, Paul; Simpson, Alexander I; Hussain, Amina; Meyer, Jeffrey H

    2015-10-01

    Antisocial personality disorder (ASPD) often presents with highly impulsive, violent behavior, and pathological changes in the orbitofrontal cortex (OFC) and ventral striatum (VS) are implicated. Several compelling reasons support a relationship between low monoamine oxidase-A (MAO-A), an enzyme that regulates neurotransmitters, and ASPD. These include MAO-A knockout models in rodents evidencing impulsive aggression and positron emission tomography (PET) studies of healthy subjects reporting associations between low brain MAO-A levels and greater impulsivity or aggression. However, a fundamental gap in the literature is that it is unknown whether brain MAO-A levels are low in more severe, clinical disorders of impulsivity, such as ASPD. To address this issue, we applied [(11)C] harmine PET to measure MAO-A total distribution volume (MAO-A VT), an index of MAO-A density, in 18 male ASPD participants and 18 age- and sex-matched controls. OFC and VS MAO-A VT were lower in ASPD compared with controls (multivariate analysis of variance (MANOVA): F2,33=6.8, P=0.003; OFC and VS MAO-A VT each lower by 19%). Similar effects were observed in other brain regions: prefrontal cortex, anterior cingulate cortex, dorsal putamen, thalamus, hippocampus, and midbrain (MANOVA: F7,28=2.7, P=0.029). In ASPD, VS MAO-A VT was consistently negatively correlated with self-report and behavioral measures of impulsivity (r=-0.50 to -0.52, all P-values<0.05). This study is the first to demonstrate lower brain MAO-A levels in ASPD. Our results support an important extension of preclinical models of impulsive aggression into a human disorder marked by pathological aggression and impulsivity.

  9. Livestock Poisoning with Pyrrolizidine Alkaloid Containing Plants (Senecio, Crotalaria, Cynoglossum, Amsinckia, Heliotropium and Echium spp.)

    USDA-ARS?s Scientific Manuscript database

    Pyrrolizidine alkaloids (PAs) are potent liver toxins that have been identified in over 6,000 plants throughout the world. Alkaloids are nitrogen-based compounds with potent biological activity. About half of the identified PAs are toxic and several cause cancer (carcinogenic). PA-containing plants...

  10. The Actions of Piperidine Alkaloids at Fetal Muscle-Type and Autonomic-Type Nicotinic Acetylcholine Receptors

    USDA-ARS?s Scientific Manuscript database

    Piperidine alkaloids are found in many species of plants including Conium maculatum, Nicotiana spp., and Lupinus spp. A pharmacodynamic comparison was made of the alkaloids ammodendrine, anabasine, anabaseine, and coniine in; SH-SY5Y cells which express autonomic-type nicotinic acetylcholine recept...

  11. Plant alkaloids that cause developmental defects through the disruption of cholinergic neurotransmission

    USDA-ARS?s Scientific Manuscript database

    The exposure of a developing embryo or fetus to alkaloids from plants, plant products, or plant extracts has the potential to cause developmental defects in humans and animals. These defects may have multiple causes but those induced by piperidine and quinolizidine alkaloids arise from the inhibiti...

  12. Studies on the teratogenicity of anabasine in a rat model

    USDA-ARS?s Scientific Manuscript database

    A number of plant toxins have been shown to be teratogenic to livestock. The teratogenic action of some of these alkaloids is mediated by nicotinic acetylcholine receptors (nAChR). However, for many of these alkaloids it is difficult to obtain sufficient quantities of individual alkaloids to perform...

  13. Plant-symbiotic fungi as chemical engineers: multi-genome analysis of the Clavicipitaceae reveals dynamics of alkaloid loci

    USDA-ARS?s Scientific Manuscript database

    The fungal family Clavicipitaceae includes plant symbionts and pathogens that produce neurotropic alkaloids with diverse effects on vertebrate and invertebrate animals. For example, ergot alkaloids are historically linked to mass poisonings (St. Anthony's fire) and sociological effects such as the ...

  14. The toxicity of Poison Dart Frog alkaloids against the Fire Ant (Solenopsis invicta)

    USDA-ARS?s Scientific Manuscript database

    Hundreds of alkaloids, representing over 20 structural classes, have been identified from the skin of neotropical poison frogs (Dendrobatidae). These alkaloids are derived from arthropod prey of the frogs, and are generally are believed to deter vertebrate predators. We developed a method to put ind...

  15. Vasoconstrictive responses of the testicular and caudal arteries in bulls exposed to ergot alkaloids from tall fescue

    USDA-ARS?s Scientific Manuscript database

    Color Doppler ultasonography was used to evaluate vasoconstrictive responses of the testicular artery in yearling bulls to ergot alkaloids. Ergot alkaloid-induced constriction of the testicular artery could disrupt thermoregulation of the testes and reduce bull fertility. Luminal areas of the test...

  16. Alkaloids from Isopyrum thalictroides L.

    PubMed

    Istatkova, Ralitsa; Philipov, Stefan

    2004-06-01

    Two new aporphine-benzylisoquinoline alkaloids thaliphine and isothaliphine with a new type of ether bridge were isolated from the roots and rhyzomes of Isopyrum thalictroides L. (Ranunculaceae). Their structures were established by physical and spectral analysis. The known alkaloid N-methylglaucine was isolated for the first time from a plant of the family Ranunculaceae.

  17. Cyclobutane-Containing Alkaloids: Origin, Synthesis, and Biological Activities

    PubMed Central

    Sergeiko, Anastasia; Poroikov, Vladimir V; Hanuš, Lumir O; Dembitsky, Valery M

    2008-01-01

    Present review describes research on novel natural cyclobutane-containing alkaloids isolated from terrestrial and marine species. More than 60 biological active compounds have been confirmed to have antimicrobial, antibacterial, antitumor, and other activities. The structures, synthesis, origins, and biological activities of a selection of cyclobutane-containing alkaloids are reviewed. With the computer program PASS some additional biological activities are also predicted, which point toward new possible applications of these compounds. This review emphasizes the role of cyclobutane-containing alkaloids as an important source of leads for drug discovery. PMID:19696873

  18. A new strain of Claviceps purpurea accumulating tetracyclic clavine alkaloids.

    PubMed

    Schumann, B; Erge, D; Maier, W; Gröger, D

    1982-05-01

    A new strain of Claviceps was isolated from a blokked mutant of Claviceps purpurea. This strain accumulates substantial amounts of clavine alkaloids (2 g/l). The alkaloid fraction is composed of chanoclavine-I ( approximately 10%) and a mixture of agroclavine/elymoclavine (90%). Most suitable for alkaloid production in submerged culture is an ammoncitrate/sucrose medium. The genealogy of the new strain, designated Pepty 695/ch-I is the following one: Pepty 695/S (ergotoxine producer) --> Pepty 695/ch (secoergoline producer) --> Pepty 695/ch-I (tetracyclic clavine producer).

  19. Ergot alkaloids produced by submerged cultures of Claviceps zizaniae.

    PubMed

    Kantorová, Michaela; Kolínská, Renata; Pazoutová, Sylvie; Honzátko, Ales; Havlícek, Vladimír; Flieger, Miroslav

    2002-07-01

    Two ergopeptine alkaloids, alpha-ergocryptine (1) and its C(8) epimer alpha-ergocryptinine, have been isolated from the mycelium and fermentation broth of submerged cultures of Claviceps zizaniae CCM 8240. The structure of 1 was determined by HPLC/positive ion APCI MS and NMR analysis. Alkaloid concentrations of 10 microg/mL in 14-day-old fermentation broth and 1 mg/g of dry mycelium mass were found. These results are of considerable biotechnological interest since these were the only detectable alkaloids produced. Toxicity of naturally occurring sclerotia of C. zizaniae cannot be excluded.

  20. [Ibogaine--the substance for treatment of toxicomania. Neurochemical and pharmacological action].

    PubMed

    Kazlauskas, Saulius; Kontrimaviciūte, Violeta; Sveikata, Audrius

    2004-01-01

    The review of scientific literature, concerning the indol alkaloid Ibogaine, which is extracted from the bush Tabernanthe Iboga, is presented in this article. Used as a stimulating factor for hundred of years in non-traditional medicine, this alkaloid could be important for modern pharmacology because of potential anti-addictive properties. The mechanism of action of this alkaloid is closely related to different neurotransmitting systems. Studies with animals allow concluding that Ibogaine or medicines based on this alkaloid can be used for treatment of drug dependencies.

  1. Metabolite fingerprinting of Camptotheca acuminata and the HPLC-ESI-MS/MS analysis of camptothecin and related alkaloids.

    PubMed

    Montoro, Paola; Maldini, Mariateresa; Piacente, Sonia; Macchia, Mario; Pizza, Cosimo

    2010-01-20

    The major phytochemical constituents, namely, alkaloids, flavonoids and ellagic acid derivatives, of leaves of Camptotheca acuminata were identified using high performance liquid chromatography (HPLC) coupled with electrospray mass spectrometry (ESI-MS) in extracts of plants cultivated in Italy and collected at different growth stages. Alkaloids related to camptothecin were identified and quantified by HPLC coupled with ESI-tandem mass spectrometry (MS/MS) employing, respectively, an ion trap and a triple quadrupole mass analyser. The fragmentation patterns of alkaloids related to camptothecin were analysed and a specific Multiple Reaction Monitoring HPLC-MS/MS method was developed for the quantitative determination of these constituents. The described method provides high sensitivity and specificity for the characterisation and quantitative determination of the alkaloids in C. acuminata.

  2. Microcalorimetry studies of the antimicrobial actions of Aconitum alkaloids*

    PubMed Central

    Shi, Yan-bin; Liu, Lian; Shao, Wei; Wei, Ting; Lin, Gui-mei

    2015-01-01

    The metabolic activity of organisms can be measured by recording the heat output using microcalorimetry. In this paper, the total alkaloids in the traditional Chinese medicine Radix Aconiti Lateralis were extracted and applied to Escherichia coli and Staphylococcus aureus. The effect of alkaloids on bacteria growth was studied by microcalorimetry. The power-time curves were plotted with a thermal activity monitor (TAM) air isothermal microcalorimeter and parameters such as growth rate constant (μ), peak-time (Tm), inhibitory ratio (I), and enhancement ratio (E) were calculated. The relationships between the concentration of Aconitum alkaloids and μ of E. coli or S. aureus were discussed. The results showed that Aconitum alkaloids had little effect on E. coli and had a potentially inhibitory effect on the growth of S. aureus. PMID:26238544

  3. Distinct sesquiterpene pyridine alkaloids from in Salvadoran and Peruvian Celastraceae species.

    PubMed

    Callies, Oliver; Núñez, Marvin J; Perestelo, Nayra R; Reyes, Carolina P; Torres-Romero, David; Jiménez, Ignacio A; Bazzocchi, Isabel L

    2017-10-01

    As part of a bioprospecting program aimed at the discovery of undescribed natural products from Salvadoran and Peruvian flora, the phytochemical investigations of four Celastraceae species, Celastrus vulcanicola, Maytenus segoviarum, Maytenus jeslkii, and Maytenus cuzcoina, were performed. The current study reports the isolation and structural characterization of five previously undescribed macrolide sesquiterpene pyridine alkaloids, named vulcanicoline-A, cuzcoinine, vulcanicoline-B, jelskiine, and vulcanicoline-C, along with sixteen known alkaloids. The structures of the alkaloids were established by spectrometric and extensive 1D and 2D NMR spectroscopic analysis, including COSY, HSQC, HMBC, and ROESY experiments. The absolute configurations of alkaloids were proposed based on optical rotation sign, and biogenetic considerations. This study represents the first phytochemical analysis of Maytenus segoviarum. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Analysis of the Impact of Isoquinoline Alkaloids, Derived from Macleaya cordata Extract, on the Development and Innate Immune Response in Swine and Poultry.

    PubMed

    Ni, Hengjia; Martínez, Yordan; Guan, Guiping; Rodríguez, Román; Más, Dairon; Peng, Hanhui; Valdivié Navarro, Manuel; Liu, Gang

    2016-01-01

    Medicinal extract has been chronicled extensively in traditional Chinese medicine. Isoquinoline alkaloids, extract of Macleaya cordata (Willd.) R. Br., have been used as feed additive in both swine and poultry. Dietary supplementation with isoquinoline alkaloids increases feed intake and weight gain. In addition, recent researches have demonstrated that isoquinoline alkaloids can regulate metabolic processes, innate immune system, and digestive functioning in animals. This review summarizes the latest scientific researches on isoquinoline alkaloids which are extracted from Macleaya cordata (Willd.) R. Br. This review specifically focuses on its role as a feed supplement and its associated impact on growth performance and innate immune system, as well as its capacity to act as a substitute for oral antibiotics.

  5. Analysis of the Impact of Isoquinoline Alkaloids, Derived from Macleaya cordata Extract, on the Development and Innate Immune Response in Swine and Poultry

    PubMed Central

    Martínez, Yordan; Rodríguez, Román; Más, Dairon; Peng, Hanhui; Valdivié Navarro, Manuel

    2016-01-01

    Medicinal extract has been chronicled extensively in traditional Chinese medicine. Isoquinoline alkaloids, extract of Macleaya cordata (Willd.) R. Br., have been used as feed additive in both swine and poultry. Dietary supplementation with isoquinoline alkaloids increases feed intake and weight gain. In addition, recent researches have demonstrated that isoquinoline alkaloids can regulate metabolic processes, innate immune system, and digestive functioning in animals. This review summarizes the latest scientific researches on isoquinoline alkaloids which are extracted from Macleaya cordata (Willd.) R. Br. This review specifically focuses on its role as a feed supplement and its associated impact on growth performance and innate immune system, as well as its capacity to act as a substitute for oral antibiotics. PMID:28042566

  6. Purification, cloning, functional expression and characterization of perakine reductase: the first example from the AKR enzyme family, extending the alkaloidal network of the plant Rauvolfia.

    PubMed

    Sun, Lianli; Ruppert, Martin; Sheludko, Yuri; Warzecha, Heribert; Zhao, Yu; Stöckigt, Joachim

    2008-07-01

    Perakine reductase (PR) catalyzes an NADPH-dependent step in a side-branch of the 10-step biosynthetic pathway of the alkaloid ajmaline. The enzyme was cloned by a "reverse-genetic" approach from cell suspension cultures of the plant Rauvolfia serpentina (Apocynaceae) and functionally expressed in Escherichia coli as the N-terminal His(6)-tagged protein. PR displays a broad substrate acceptance, converting 16 out of 28 tested compounds with reducible carbonyl function which belong to three substrate groups: benzaldehyde, cinnamic aldehyde derivatives and monoterpenoid indole alkaloids. The enzyme has an extraordinary selectivity in the group of alkaloids. Sequence alignments define PR as a new member of the aldo-keto reductase (AKR) super family, exhibiting the conserved catalytic tetrad Asp52, Tyr57, Lys84, His126. Site-directed mutagenesis of each of these functional residues to an alanine residue results in >97.8% loss of enzyme activity, in compounds of each substrate group. PR represents the first example of the large AKR-family which is involved in the biosynthesis of plant monoterpenoid indole alkaloids. In addition to a new esterase, PR significantly extends the Rauvolfia alkaloid network to the novel group of peraksine alkaloids.

  7. Identification and simultaneous quantification of five alkaloids in Piper longum L. by HPLC-ESI-MS(n) and UFLC-ESI-MS/MS and their application to Piper nigrum L.

    PubMed

    Liu, Hao-Long; Luo, Rong; Chen, Xiao-Qing; Ba, Yin-Ying; Zheng, Li; Guo, Wei-Wei; Wu, Xia

    2015-06-15

    A simple, effective and suitable UFLC-ESI-MS/MS method was firstly developed to simultaneously determine five characteristic constituents (piperine, piperlonguminine, Δα,β-dihydropiperlonguminine, pellitorine and piperanine) of Piper longum L. The total alkaloids of P. longum L. was prepared. The alkaloid contents of Piper nigrum L. and P. longum L. were compared. The analysis was carried out in multiple reaction monitoring scan mode. The method showed a good specificity, linearity (R(2)>0.995), stability (RSD<2.53%), repeatability (RSD<2.58%), and recovery (90.0-103.5%). The limits of detection and limits of quantification of five alkaloids were in the range of 0.02-0.03 and 0.05-0.10 ng/mL, respectively. The intra- and inter-day precision was less than 9.30% and 9.55%, respectively. The validation results confirmed that the method could simultaneously determine the target alkaloids in the sample. Furthermore, the identities of the alkaloids were verified by HPLC-ESI-MS/MS. Compared with P. nigrum, P. longum had lower piperine content but was enriched in the other four alkaloids. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Chemical UPLC-ESI-MS/MS profiling of aconitum alkaloids and their metabolites in rat plasma and urine after oral administration of Aconitum carmichaelii Debx. Root extract.

    PubMed

    Zhang, Mingjie; Wang, Manman; Liang, Jiajia; Wen, Yongqing; Xiong, Zhili

    2018-02-01

    In this paper, an ultra high performance liquid chromatography tandem mass spectrometric (UPLC-ESI-MS/MS) method in positive ion mode was established to systematically identify and to compare the major aconitum alkaloids and their metabolites in rat plasma and urine after oral administration of Fuzi extract. A total twenty-nine components including twenty-five C19-diterpenoid alkaloids and four C20-diterpenoid alkaloids were identified in Fuzi extract. Thirteen of the parent components and five metabolites were detected in rat plasma and sixteen parent compounds and six metabolites in urine. These parent components found in rat plasma and urine were mainly C19-diterpenoid alkaloids. All of the metabolites in vivo were demethylated metabolites (phase I metabolites), which suggested that demethylation was the major metabolic pathway of aconitum alkaloids in vivo. A comparison of the parent components in rat plasma and urine revealed that 3-deoxyacontine was found in plasma but not in urine, while kalacolidine, senbusine and 16-β-hydroxycardiopetaline existed in urine but not in plasma, which indicated that most alkaloids components were disposed and excreted in prototype form. This research provides some important information for further metabolic investigations of Fuzi in vivo. Copyright © 2017 John Wiley & Sons, Ltd.

  9. Permeability of ergot alkaloids across the blood-brain barrier in vitro and influence on the barrier integrity

    PubMed Central

    Mulac, Dennis; Hüwel, Sabine; Galla, Hans-Joachim; Humpf, Hans-Ulrich

    2012-01-01

    Scope Ergot alkaloids are secondary metabolites of Claviceps spp. and they have been in the focus of research for many years. Experiments focusing on ergotamine as a former migraine drug referring to the ability to reach the brain revealed controversial results. The question to which extent ergot alkaloids are able to cross the blood-brain barrier is still not answered. Methods and results In order to answer this question we have studied the ability of ergot alkaloids to penetrate the blood-brain barrier in a well established in vitro model system using primary porcine brain endothelial cells. It could clearly be demonstrated that ergot alkaloids are able to cross the blood-brain barrier in high quantities in only a few hours. We could further identify an active transport for ergometrine as a substrate for the BCRP/ABCG2 transporter. Investigations concerning barrier integrity properties have identified ergocristinine as a potent substance to accumulate in these cells ultimately leading to a weakened barrier function. Conclusion For the first time we could show that the so far as biologically inactive described 8-(S) isomers of ergot alkaloids seem to have an influence on barrier integrity underlining the necessity for a risk assessment of ergot alkaloids in food and feed. PMID:22147614

  10. Nicotinic plant poisoning.

    PubMed

    Schep, Leo J; Slaughter, Robin J; Beasley, D Michael G

    2009-09-01

    A wide range of plants contain nicotinic and nicotinic-like alkaloids. Of this diverse group, those that have been reported to cause human poisoning appear to have similar mechanisms of toxicity and presenting patients therefore have comparable toxidromes. This review describes the taxonomy and principal alkaloids of plants that contain nicotinic and nicotinic-like alkaloids, with particular focus on those that are toxic to humans. The toxicokinetics and mechanisms of toxicity of these alkaloids are reviewed and the clinical features and management of poisoning due to these plants are described. This review was compiled by systematically searching OVID MEDLINE and ISI Web of Science. This identified 9,456 papers, excluding duplicates, all of which were screened. Reviewed plants and their principal alkaloids. Plants containing nicotine and nicotine-like alkaloids that have been reported to be poisonous to humans include Conium maculatum, Nicotiana glauca and Nicotiana tabacum, Laburnum anagyroides, and Caulophyllum thalictroides. They contain the toxic alkaloids nicotine, anabasine, cytisine, n-methylcytisine, coniine, n-methylconiine, and gamma-coniceine. These alkaloids act agonistically at nicotinic-type acetylcholine (cholinergic) receptors (nAChRs). The nicotinic-type acetylcholine receptor can vary both in its subunit composition and in its distribution within the body (the central and autonomic nervous systems, the neuromuscular junctions, and the adrenal medulla). Agonistic interaction at these variable sites may explain why the alkaloids have diverse effects depending on the administered dose and duration of exposure. Nicotine and nicotine-like alkaloids are absorbed readily across all routes of exposure and are rapidly and widely distributed, readily traversing the blood-brain barrier and the placenta, and are freely distributed in breast milk. Metabolism occurs predominantly in the liver followed by rapid renal elimination. Following acute exposure, symptoms typically follow a biphasic pattern. The early phase consists of nicotinic cholinergic stimulation resulting in symptoms such as abdominal pain, hypertension, tachycardia, and tremors. The second inhibitory phase is delayed and often heralded by hypotension, bradycardia, and dyspnea, finally leading to coma and respiratory failure. Supportive care is the mainstay of management with primary emphasis on cardiovascular and respiratory support to ensure recovery. Exposure to plants containing nicotine and nicotine-like alkaloids can lead to severe poisoning but, with prompt supportive care, patients should make a full recovery.

  11. Inhibitory Mechanisms of Human CYPs by Three Alkaloids Isolated from Traditional Chinese Herbs.

    PubMed

    Zhao, Yong; Hellum, Bent Håvard; Liang, Aihua; Nilsen, Odd Georg

    2015-06-01

    The three purified herbal compounds tetrahydropalmatine (Tet), neferine and berberine (Ber) were explored in vitro for basic inhibition mechanisms towards recombinant human CYP1A2, CYP2D6 and CYP3A4 metabolic activities. Phenacetin, dextromethorphan and testosterone, respectively, were used as CYP1A2, CYP2D6 and CYP3A4 substrates, and their metabolites were determined by validated HPLC methodologies. Positive inhibition controls were used. Mechanism-based (irreversible) inhibition was assessed by time-dependent and nicotinamide adenine dinucleotide phosphate-dependent and reversible inhibition by Lineweaver-Burk plot assessments. Inhibition mechanisms were also assessed by computerized interaction prediction by using the Discovery Studio CDOCKER software (Accelrys, San Diego, CA, USA). Tetrahydropalmatine showed a mechanism-based inhibition of both CYP1A2 and CYP2D6, and Ber of CYP2D6. Neferine and Ber both showed a nonmechanistic inhibition of CYP1A2. All compounds showed a similar and significant mechanism-based inhibition of CYP3A4. Tetrahydropalmatine and Ber demonstrated both reversible and irreversible inhibition of CYP2D6 and CYP3A4. Tetrahydropalmatine and Ber displayed H-bond and several Pi-bond connections with specific amino acid residues of CYP1A2, CYP2D6 and CYP3A4, giving further knowledge to the identified reversible and irreversible herb-drug interactions. Tetrahydropalmatine and Ber should be considered for herb-drug interactions in clinical therapy until relevant clinical studies are available. Copyright © 2015 John Wiley & Sons, Ltd.

  12. Inhibition of Eukaryotic Translation by the Antitumor Natural Product Agelastatin A.

    PubMed

    McClary, Brandon; Zinshteyn, Boris; Meyer, Mélanie; Jouanneau, Morgan; Pellegrino, Simone; Yusupova, Gulnara; Schuller, Anthony; Reyes, Jeremy Chris P; Lu, Junyan; Guo, Zufeng; Ayinde, Safiat; Luo, Cheng; Dang, Yongjun; Romo, Daniel; Yusupov, Marat; Green, Rachel; Liu, Jun O

    2017-05-18

    Protein synthesis plays an essential role in cell proliferation, differentiation, and survival. Inhibitors of eukaryotic translation have entered the clinic, establishing the translation machinery as a promising target for chemotherapy. A recently discovered, structurally unique marine sponge-derived brominated alkaloid, (-)-agelastatin A (AglA), possesses potent antitumor activity. Its underlying mechanism of action, however, has remained unknown. Using a systematic top-down approach, we show that AglA selectively inhibits protein synthesis. Using a high-throughput chemical footprinting method, we mapped the AglA-binding site to the ribosomal A site. A 3.5 Å crystal structure of the 80S eukaryotic ribosome from S. cerevisiae in complex with AglA was obtained, revealing multiple conformational changes of the nucleotide bases in the ribosome accompanying the binding of AglA. Together, these results have unraveled the mechanism of inhibition of eukaryotic translation by AglA at atomic level, paving the way for future structural modifications to develop AglA analogs into novel anticancer agents. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Novel phenanthridine (PHE-4i) derivative inhibits carrageenan-induced rat hind paw oedema through suppression of hydrogen sulfide.

    PubMed

    George, Leema; Ramasamy, Tamizhselvi; Manickam, Venkatraman; Iyer, Sathiyanarayanan Kulathu; Radhakrishnan, Vidya

    2016-08-01

    This study was conducted to assess the anti-inflammatory effect of a novel synthesized phenanthridine alkaloid (PHE-4i) and to examine the possible involvement of hydrogen sulfide (H2S) in anti-inflammatory mechanism. The synthesized phenanthridine derivative PHE-4i (2, 5, and 10 mg/kg) was administered intraperitoneally to rats. One hour following treatment, inflammation was induced by intraplantar injection of carrageenan (1 %), in the hind paw. Paw volume as the index of inflammation was measured before and after carrageenan injection. Neutrophil sequestration into the hind paw was quantified by measuring tissue myeloperoxidase (MPO) activity and was compared for the inhibition of H2S production. Pretreatment with PHE-4i significantly reduced carrageenan-induced hind paw weight, MPO activity, leukocyte infiltration, and H2S production in a dose-dependent manner (p < 0.001). These results indicate that the anti-inflammatory effect of PHE-4i on carrageenan-induced rat paw oedema could be via the inhibition of the gaseous mediator H2S.

  14. Antibacterial activity of cinnamon ethanol extract (cinnamomum burmannii) and its application as a mouthwash to inhibit streptococcus growth

    NASA Astrophysics Data System (ADS)

    Waty, Syahdiana; Suryanto, Dwi; Yurnaliza

    2018-03-01

    Cinnamon bark has been commonly used as spicy and traditional medicine. It contains several antibacterial compounds such as flavonoids, saponins, and cinnamaldehyde. Several studies have been done to know the antibacterial effect on bacteria such as Streptococcus in vitro. This study aimed to examine the antibacterial activity of cinnamon ethanol extract against Streptococcus and its application as mouthwash to inhibit the bacteria. The cinnamon bark was macerated followed by extracted in 80% ethanol. Bacterial samples were isolated from dental plaque of patients visiting dental clinic drg. Syahdiana Waty in Medan, North Sumatra. The isolates were identified using Vitek 2 compact. Secondary metabolites were detected using previously described method. Antibacterial assay was done at extract concentration of 6.25%, 12.5%, and 25%. The result showed that alkaloids, flavonoids, saponins, and glycoside were detected in the extract. Nine bacterial species were identified as Streptococcus mitis, S. sanguinis, S. salivarius, S. pluranimalium, S. pneumoniae, S. alactolyticus, Kocuria rosea, Kocuria kristinae, and Spingomonas paucimolis. It showed that the extract of Cinnamon bark significantly inhibited Streptococcus growth, and it was effective as mouthwash.

  15. Ovicidal and larvicidal activity of extracts of Opuntia ficus-indica against gastrointestinal nematodes of naturally infected sheep.

    PubMed

    Féboli, Aline; Laurentiz, Antonio C; Soares, Suelen C S; Augusto, Jeferson G; Anjos, Luciano A; Magalhães, Lizandra G; Filardi, Rosemeire S; Laurentiz, Rosangela S

    2016-08-15

    This study describes the in vitro anthelmintic activity of extracts from Opuntia ficus indica against gastrointestinal nematodes of sheep. The anthelmintic activity was evaluated by inhibition of egg hatching, larval development and larval migration assays. The residual aqueous fractions from cladodes and fruits showed higher ovicidal activity with EC50 values of 7.2mg/mL and 1.5mg/mL, respectively. The aqueous, hexane, and ethyl acetate fractions from fruits and the aqueous fraction from cladodes inhibited 100% of larval development at the lowest concentration tested (1.56mg/mL). The crude cladode and fruit ethanolic extracts inhibited larval migration and showed EC50 values of 0.74mg/mL and 0.27mg/mL, respectively. Phytochemical screening detected high concentrations of alkaloids, tannins, flavonoids, and saponins in the fruits and cladodes. The results demonstrated that O. ficus exhibits anthelmintic activity in vitro, suggesting that, beyond its nutritional potential, this plant can also be an ally for parasite control in sheep. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Screening of metabolites secondary compounds in extract of moringa fruit and determination of inhibitory effect on growth of the fungus Candida albicans

    NASA Astrophysics Data System (ADS)

    Nuryanti, Siti; Puspitasari, Dwi Juli

    2017-08-01

    Moringa (Moringa oleifera Lamk) is a nutritious plant that can cure various diseases. Parts of this plant like leave, root, flower, and fruit can be used as a traditional medicine. The research about screening of secondary metabolites in moringa extracts and the determination of their inhibitory effect on growth of the fungus Candida albicans have been done. This research was conducted by extracting the moringa fruit with various solvent with different polarity namely hexane, distilled water and ethanol. The fungal inhibition test was done by well-difuse method. Suspensions of Candida albicans was standardized by 0.5 Mc Farland standard. The results showed that the extracts of Moringa with distilled water provided the greatest inhibition on the growth of the fungus Candida albicans compared to moringa fruit extracted by ethanol and hexane. The percentages inhibition of Moringa extracts on the growth of the Candida albicans with distilled water, ethanol and hexane solvents were 89.90%, 57.90% and 8.97% respectively. Phytochemical screening test showed that the moringa fruit contain alkaloids, flavonoids and steroids.

  17. Oxymatrine Inhibits Proliferation and Migration While Inducing Apoptosis in Human Glioblastoma Cells

    PubMed Central

    Wang, Baocheng; Wang, Jiajia; Li, Qifeng; Meng, Wei

    2016-01-01

    Oxymatrine (OMT), an alkaloid derived from the traditional Chinese medicine herb Sophora flavescens Aiton, has been shown to exhibit anticancer properties on various types of cancer cells. In this study, we investigate the anticancer properties of OMT on human glioblastoma (GBM) cells and evaluate their underlying mechanisms. MTT assays were performed and demonstrated that OMT significantly inhibits the proliferation of GBM cells. Flow cytometry suggested that OMT at a concentration of 10−5 M may induce apoptosis in U251 and A172 cells. Western blot analyses demonstrated a significant increase in the expression of Bax and caspase-3 and a significant decrease in expression of Bcl-2 in both U251 and A172 cells. Additionally, OMT was found by transwell and high-content screening assays to decrease the migratory ability of the evaluated GBM cells. These findings suggest that the antitumor effects of OMT may be the result of inhibition of cell proliferation and migration and the induction of apoptosis by regulating the expression of apoptosis-associated proteins. OMT may represent a novel anticancer therapy for the treatment of GBM. PMID:27957488

  18. An Efficient High-performance Liquid Chromatography Combined with Electrospray Ionization Tandem Mass Spectrometry Method to Elaborate the Changes of Components Between the Raw and Processed Radix Aconitum kusnezoffii

    PubMed Central

    Wang, Beibei; Ji, Jiaojiao; Zhao, Shuang; Dong, Jie; Tan, Peng; Na, Shengsang; Liu, Yonggang

    2016-01-01

    Background: Crude radix Aconitum kusnezoffii (RAK) has great toxicity. Traditional Chinese medicine practice proved that processing may decrease its toxicity. In our previous study, we had established a new method of RAK processing (Paozhi). However, the mechanism is yet not perfect. Objective: To explore the related mechanism of processing through comparing the chemical contents. Materials and Methods: A new processing method of RAK named stoving (Hong Zhi) was used. In particular, RAK was stored at 110°C for 8 h, and then high performance liquid chromatography combined with electrospray ionization tandem mass spectrometry (HPLC-ESI-MSn) was developed for the detection of the alkaloids of the crude and processed RAK decoction pieces. Results: Thirty components of the crude RAK were discovered, among which, 23 alkaloids were identified. Meanwhile, 23 ingredients were detected in the processed RAK decoction pieces, among which, 20 alkaloids were determined yet. By comparison, eight alkaloids were found in both crude and processed RAK decoction pieces, 15 alkaloids were not found in the crude RAK, however, 10 new constituents yield after processing, which are 10-OH-hypaconine, 10-OH-mesaconine, isomer of bullatine A, 14-benzoyl-10-OH-mesaconine, 14-benzoyl-10-OH-aconine, 14-benzoyl-10-OH-hypaconine, dehydrated aconitine, 14-benzoylaconine, chuanfumine, dehydrated mesaconitine. Conclusion: The present study showed that significant change of alkaloids was detected in RAK before and after processing. Among them, the highly toxic diester alkaloids decreased and the less toxic monoester alkaloids increased. Moreover, the concentration changes significantly. HPLC-ESI-MSn are Efficient to elaborate the mechanism of reduction of toxicity and enhancement efficacy after processing. SUMMARY Stoving is a simple and effective method for the processing of radix Aconitum kusnezoffii.In the positive mode, the characteristic fragmentations of Aconitum alkaloids were obtained.The highly toxic alkaloids have decreased, and the new constituents appeared, which has explained successfully the processing mechanism of radix Aconitum kusnezoffii in chemistry. PMID:27019554

  19. The mechanistic basis for noncompetitive ibogaine inhibition of serotonin and dopamine transporters.

    PubMed

    Bulling, Simon; Schicker, Klaus; Zhang, Yuan-Wei; Steinkellner, Thomas; Stockner, Thomas; Gruber, Christian W; Boehm, Stefan; Freissmuth, Michael; Rudnick, Gary; Sitte, Harald H; Sandtner, Walter

    2012-05-25

    Ibogaine, a hallucinogenic alkaloid proposed as a treatment for opiate withdrawal, has been shown to inhibit serotonin transporter (SERT) noncompetitively, in contrast to all other known inhibitors, which are competitive with substrate. Ibogaine binding to SERT increases accessibility in the permeation pathway connecting the substrate-binding site with the cytoplasm. Because of the structural similarity between ibogaine and serotonin, it had been suggested that ibogaine binds to the substrate site of SERT. The results presented here show that ibogaine binds to a distinct site, accessible from the cell exterior, to inhibit both serotonin transport and serotonin-induced ionic currents. Ibogaine noncompetitively inhibited transport by both SERT and the homologous dopamine transporter (DAT). Ibogaine blocked substrate-induced currents also in DAT and increased accessibility of the DAT cytoplasmic permeation pathway. When present on the cell exterior, ibogaine inhibited SERT substrate-induced currents, but not when it was introduced into the cytoplasm through the patch electrode. Similar to noncompetitive transport inhibition, the current block was not reversed by increasing substrate concentration. The kinetics of inhibitor binding and dissociation, as determined by their effect on SERT currents, indicated that ibogaine does not inhibit by forming a long-lived complex with SERT, but rather binds directly to the transporter in an inward-open conformation. A kinetic model for transport describing the noncompetitive action of ibogaine and the competitive action of cocaine accounts well for the results of the present study.

  20. The Mechanistic Basis for Noncompetitive Ibogaine Inhibition of Serotonin and Dopamine Transporters*

    PubMed Central

    Bulling, Simon; Schicker, Klaus; Zhang, Yuan-Wei; Steinkellner, Thomas; Stockner, Thomas; Gruber, Christian W.; Boehm, Stefan; Freissmuth, Michael; Rudnick, Gary; Sitte, Harald H.; Sandtner, Walter

    2012-01-01

    Ibogaine, a hallucinogenic alkaloid proposed as a treatment for opiate withdrawal, has been shown to inhibit serotonin transporter (SERT) noncompetitively, in contrast to all other known inhibitors, which are competitive with substrate. Ibogaine binding to SERT increases accessibility in the permeation pathway connecting the substrate-binding site with the cytoplasm. Because of the structural similarity between ibogaine and serotonin, it had been suggested that ibogaine binds to the substrate site of SERT. The results presented here show that ibogaine binds to a distinct site, accessible from the cell exterior, to inhibit both serotonin transport and serotonin-induced ionic currents. Ibogaine noncompetitively inhibited transport by both SERT and the homologous dopamine transporter (DAT). Ibogaine blocked substrate-induced currents also in DAT and increased accessibility of the DAT cytoplasmic permeation pathway. When present on the cell exterior, ibogaine inhibited SERT substrate-induced currents, but not when it was introduced into the cytoplasm through the patch electrode. Similar to noncompetitive transport inhibition, the current block was not reversed by increasing substrate concentration. The kinetics of inhibitor binding and dissociation, as determined by their effect on SERT currents, indicated that ibogaine does not inhibit by forming a long-lived complex with SERT, but rather binds directly to the transporter in an inward-open conformation. A kinetic model for transport describing the noncompetitive action of ibogaine and the competitive action of cocaine accounts well for the results of the present study. PMID:22451652

Top