Science.gov

Sample records for alkaloid natural products

  1. Indole alkaloid marine natural products: An established source of cancer drug leads with considerable promise for the control of parasitic, neurological and other diseases

    PubMed Central

    Gul, Waseem; Hamann, Mark T.

    2016-01-01

    The marine environment produces natural products from a variety of structural classes exhibiting activity against numerous disease targets. Historically marine natural products have largely been explored as anticancer agents. The indole alkaloids are a class of marine natural products that show unique promise in the development of new drug leads. This report reviews the literature on indole alkaloids of marine origin and also highlights our own research. Specific biological activities of indole alkaloids presented here include: cytotoxicity, antiviral, antiparasitic, anti-inflammatory, serotonin antagonism, Ca-releasing, calmodulin antagonism, and other pharmacological activities. PMID:16236327

  2. Exploring Cancer Therapeutics with Natural Products from African Medicinal Plants, Part II: Alkaloids, Terpenoids and Flavonoids.

    PubMed

    Nwodo, Justina N; Ibezim, Akachukwu; Simoben, Conrad V; Ntie-Kang, Fidele

    2016-01-01

    Cancer stands as second most common cause of disease-related deaths in humans. Resistance of cancer to chemotherapy remains challenging to both scientists and physicians. Medicinal plants are known to contribute significantly to a large population of Africa, which is to a very large extent linked to folkloric claims which is part of their livelihood. In this review paper, the potential of naturally occurring anti-cancer agents from African flora has been explored, with suggested modes of action, where such data is available. Literature search revealed plant-derived compounds from African flora showing anti-cancer and/or cytotoxic activities, which have been tested in vitro and in vivo. This corresponds to 400 compounds (from mildly active to very active) covering various compound classes. However, in this part II, we only discussed the three major compound classes which are: flavonoids, alkaloids and terpenoids. PMID:25991425

  3. Engineering an enantioselective amine oxidase for the synthesis of pharmaceutical building blocks and alkaloid natural products.

    PubMed

    Ghislieri, Diego; Green, Anthony P; Pontini, Marta; Willies, Simon C; Rowles, Ian; Frank, Annika; Grogan, Gideon; Turner, Nicholas J

    2013-07-24

    The development of cost-effective and sustainable catalytic methods for the production of enantiomerically pure chiral amines is a key challenge facing the pharmaceutical and fine chemical industries. This challenge is highlighted by the estimate that 40-45% of drug candidates contain a chiral amine, fueling a demand for broadly applicable synthetic methods that deliver target structures in high yield and enantiomeric excess. Herein we describe the development and application of a "toolbox" of monoamine oxidase variants from Aspergillus niger (MAO-N) which display remarkable substrate scope and tolerance for sterically demanding motifs, including a new variant, which exhibits high activity and enantioselectivity toward substrates containing the aminodiphenylmethane (benzhydrylamine) template. By combining rational structure-guided engineering with high-throughput screening, it has been possible to expand the substrate scope of MAO-N to accommodate amine substrates containing bulky aryl substituents. These engineered MAO-N biocatalysts have been applied in deracemization reactions for the efficient asymmetric synthesis of the generic active pharmaceutical ingredients Solifenacin and Levocetirizine as well as the natural products (R)-coniine, (R)-eleagnine, and (R)-leptaflorine. We also report a novel MAO-N mediated asymmetric oxidative Pictet-Spengler approach to the synthesis of (R)-harmicine. PMID:23808566

  4. Microbial production of plant benzylisoquinoline alkaloids

    PubMed Central

    Minami, Hiromichi; Kim, Ju-Sung; Ikezawa, Nobuhiro; Takemura, Tomoya; Katayama, Takane; Kumagai, Hidehiko; Sato, Fumihiko

    2008-01-01

    Benzylisoquinoline alkaloids, such as the analgesic compounds morphine and codeine, and the antibacterial agents berberine, palmatine, and magnoflorine, are synthesized from tyrosine in the Papaveraceae, Berberidaceae, Ranunculaceae, Magnoliaceae, and many other plant families. It is difficult to produce alkaloids on a large scale under the strict control of secondary metabolism in plants, and they are too complex for cost-effective chemical synthesis. By using a system that combines microbial and plant enzymes to produce desired benzylisoquinoline alkaloids, we synthesized (S)-reticuline, the key intermediate in benzylisoquinoline alkaloid biosynthesis, from dopamine by crude enzymes from transgenic Escherichia coli. The final yield of (S)-reticuline was 55 mg/liter within 1 h. Furthermore, we synthesized an aporphine alkaloid, magnoflorine, or a protoberberine alkaloid, scoulerine, from dopamine via reticuline by using different combination cultures of transgenic E. coli and Saccharomyces cerevisiae cells. The final yields of magnoflorine and scoulerine were 7.2 and 8.3 mg/liter culture medium. These results indicate that microbial systems that incorporate plant genes cannot only enable the mass production of scarce benzylisoquinoline alkaloids but may also open up pathways for the production of novel benzylisoquinoline alkaloids. PMID:18492807

  5. Naturally occurring bioactive Cyclobutane-containing (CBC) alkaloids in fungi, fungal endophytes, and plants.

    PubMed

    Dembitsky, Valery M

    2014-10-15

    This article focuses on the occurrence and biological activities of cyclobutane-containing (CBC) alkaloids obtained from fungi, fungal endophytes, and plants. Naturally occurring CBC alkaloids are of particular interest because many of these compounds display important biological activities and possess antitumour, antibacterial, antimicrobial, antifungal, and immunosuppressive properties. Therefore, these compounds are of great interest in the fields of medicine, pharmacology, medicinal chemistry, and the pharmaceutical industry. Fermentation and production of CBC alkaloids by fungi and/or fungal endophytes is also discussed. This review presents the structures and describes the activities of 98 CBC alkaloids. PMID:25442265

  6. Alkaloids Isolated from Natural Herbs as the Anticancer Agents

    PubMed Central

    Lu, Jin-Jian; Bao, Jiao-Lin; Chen, Xiu-Ping; Huang, Min; Wang, Yi-Tao

    2012-01-01

    Alkaloids are important chemical compounds that serve as a rich reservoir for drug discovery. Several alkaloids isolated from natural herbs exhibit antiproliferation and antimetastasis effects on various types of cancers both in vitro and in vivo. Alkaloids, such as camptothecin and vinblastine, have already been successfully developed into anticancer drugs. This paper focuses on the naturally derived alkaloids with prospective anticancer properties, such as berberine, evodiamine, matrine, piperine, sanguinarine, and tetrandrine, and summarizes the mechanisms of action of these compounds. Based on the information in the literature that is summarized in this paper, the use of alkaloids as anticancer agents is very promising, but more research and clinical trials are necessary before final recommendations on specific alkaloids can be made. PMID:22988474

  7. Natural products as potential human ether-a-go-go-related gene channel inhibitors - screening of plant-derived alkaloids.

    PubMed

    Schramm, Anja; Saxena, Priyanka; Chlebek, Jakub; Cahlíková, Lucie; Baburin, Igor; Hering, Steffen; Hamburger, Matthias

    2014-06-01

    Inhibition of the cardiac human ether-a-go-go-related gene channel is a problematic off-target pharmacological activity and, hence, a major safety liability in clinical practice. Several non-cardiac drugs have been restricted in their use, or even removed from the market due to this potentially fatal adverse effect. Comparatively little is known about the human ether-a-go-go-related gene inhibitory potential of plant-derived compounds. In the course of an ongoing human ether-a-go-go-related gene in vitro study, a total of 32 structurally diverse alkaloids of plant origin as well as two semi-synthetically obtained protoberberine derivatives were screened by means of an automated Xenopus oocyte assay. Protopine, (+)-bulbocapnine, (+)-N-methyllaurotetanine, (+)-boldine, (+)-chelidonine, (+)-corynoline, reserpine, and yohimbine reduced the human ether-a-go-go-related gene current by ≥ 50% at 100 µM, and were submitted to concentration-response experiments. Our data show that some widely occurring plant-derived alkaloids carry a potential risk for human ether-a-go-go-related gene toxicity. PMID:24963621

  8. Genome mining of ascomycetous fungi reveals their genetic potential for ergot alkaloid production.

    PubMed

    Gerhards, Nina; Matuschek, Marco; Wallwey, Christiane; Li, Shu-Ming

    2015-06-01

    Ergot alkaloids are important as mycotoxins or as drugs. Naturally occurring ergot alkaloids as well as their semisynthetic derivatives have been used as pharmaceuticals in modern medicine for decades. We identified 196 putative ergot alkaloid biosynthetic genes belonging to at least 31 putative gene clusters in 31 fungal species by genome mining of the 360 available genome sequences of ascomycetous fungi with known proteins. Detailed analysis showed that these fungi belong to the families Aspergillaceae, Clavicipitaceae, Arthrodermataceae, Helotiaceae and Thermoascaceae. Within the identified families, only a small number of taxa are represented. Literature search revealed a large diversity of ergot alkaloid structures in different fungi of the phylum Ascomycota. However, ergot alkaloid accumulation was only observed in 15 of the sequenced species. Therefore, this study provides genetic basis for further study on ergot alkaloid production in the sequenced strains. PMID:25796201

  9. Metabolic engineering for the production of plant isoquinoline alkaloids.

    PubMed

    Diamond, Andrew; Desgagné-Penix, Isabel

    2016-06-01

    Several plant isoquinoline alkaloids (PIAs) possess powerful pharmaceutical and biotechnological properties. Thus, PIA metabolism and its fascinating molecules, including morphine, colchicine and galanthamine, have attracted the attention of both the industry and researchers involved in plant science, biochemistry, chemical bioengineering and medicine. Currently, access and availability of high-value PIAs [commercialized (e.g. galanthamine) or not (e.g. narciclasine)] is limited by low concentration in nature, lack of cultivation or geographic access, seasonal production and risk of overharvesting wild plant species. Nevertheless, most commercial PIAs are still extracted from plant sources. Efforts to improve the production of PIA have largely been impaired by the lack of knowledge on PIA metabolism. With the development and integration of next-generation sequencing technologies, high-throughput proteomics and metabolomics analyses and bioinformatics, systems biology was used to unravel metabolic pathways allowing the use of metabolic engineering and synthetic biology approaches to increase production of valuable PIAs. Metabolic engineering provides opportunity to overcome issues related to restricted availability, diversification and productivity of plant alkaloids. Engineered plant, plant cells and microbial cell cultures can act as biofactories by offering their metabolic machinery for the purpose of optimizing the conditions and increasing the productivity of a specific alkaloid. In this article, is presented an update on the production of PIA in engineered plant, plant cell cultures and heterologous micro-organisms. PMID:26503307

  10. Structural and mechanistic bases of the anticancer activity of natural aporphinoid alkaloids.

    PubMed

    Liu, Yanjuan; Liu, Junxi; Di, Duolong; Li, Min; Fen, Yan

    2013-01-01

    Aporphinoid alkaloids, which encompass a large number of complicated structures, are an important group of natural products. The anticancer activity of aporphinoid alkaloids has become a hot pharmaceutical research area in recent years. Recent studies on the anticancer activity of these compounds are reviewed. The structure activity relationships (SARs) and anticancer mechanisms of aporphinoid alkaloids, as well as simple aporphine, oxoaporphine, dehydroaporphine and dimeric aporphine, have been summarized. The presence of a 1,2-methylenedioxy group and methylation of nitrogen are key features to the cytotoxicity of aporphinoid alkaloids. Oxidation and dehydrogenation of C7 could improve the anticancer activity. The contributions of chirality of hydrogen at C6a and the substitution pattern of other positions about aporphinoid alkaloids for anticancer activity remain unknown. Induced cancer cells apoptosis, prevention of cell proliferation, DNA topoisomerase inhibition, reducing the drug-resistant cellular side population (SP) or cancer stem cells (CSCs) and inhibition of epidermal growth factor receptor (EGFR) tyrosine kinase seem to play important roles in the molecular mechanisms of anticancer activity about aporphinoid alkaloids. PMID:23978138

  11. Diversification of ergot alkaloids in natural and modified fungi.

    PubMed

    Robinson, Sarah L; Panaccione, Daniel G

    2015-01-01

    Several fungi in two different families--the Clavicipitaceae and the Trichocomaceae--produce different profiles of ergot alkaloids, many of which are important in agriculture and medicine. All ergot alkaloid producers share early steps before their pathways diverge to produce different end products. EasA, an oxidoreductase of the old yellow enzyme class, has alternate activities in different fungi resulting in branching of the pathway. Enzymes beyond the branch point differ among lineages. In the Clavicipitaceae, diversity is generated by the presence or absence and activities of lysergyl peptide synthetases, which interact to make lysergic acid amides and ergopeptines. The range of ergopeptines in a fungus may be controlled by the presence of multiple peptide synthetases as well as by the specificity of individual peptide synthetase domains. In the Trichocomaceae, diversity is generated by the presence or absence of the prenyl transferase encoded by easL (also called fgaPT1). Moreover, relaxed specificity of EasL appears to contribute to ergot alkaloid diversification. The profile of ergot alkaloids observed within a fungus also is affected by a delayed flux of intermediates through the pathway, which results in an accumulation of intermediates or early pathway byproducts to concentrations comparable to that of the pathway end product. PMID:25609183

  12. Diversification of Ergot Alkaloids in Natural and Modified Fungi

    PubMed Central

    Robinson, Sarah L.; Panaccione, Daniel G.

    2015-01-01

    Several fungi in two different families––the Clavicipitaceae and the Trichocomaceae––produce different profiles of ergot alkaloids, many of which are important in agriculture and medicine. All ergot alkaloid producers share early steps before their pathways diverge to produce different end products. EasA, an oxidoreductase of the old yellow enzyme class, has alternate activities in different fungi resulting in branching of the pathway. Enzymes beyond the branch point differ among lineages. In the Clavicipitaceae, diversity is generated by the presence or absence and activities of lysergyl peptide synthetases, which interact to make lysergic acid amides and ergopeptines. The range of ergopeptines in a fungus may be controlled by the presence of multiple peptide synthetases as well as by the specificity of individual peptide synthetase domains. In the Trichocomaceae, diversity is generated by the presence or absence of the prenyl transferase encoded by easL (also called fgaPT1). Moreover, relaxed specificity of EasL appears to contribute to ergot alkaloid diversification. The profile of ergot alkaloids observed within a fungus also is affected by a delayed flux of intermediates through the pathway, which results in an accumulation of intermediates or early pathway byproducts to concentrations comparable to that of the pathway end product. PMID:25609183

  13. Oxidative stress and production of bioactive monoterpene indole alkaloids: biotechnological implications.

    PubMed

    Matsuura, Hélio Nitta; Rau, Mariana Ritter; Fett-Neto, Arthur Germano

    2014-02-01

    Monoterpene indole alkaloids (MIAs) encompass plant natural products with important pharmacological relevance. They include the anti-tumoral MIAs found in Catharanthus roseus and Camptotheca acuminata. The often low yields of bioactive alkaloids in plants has prompted research to identify the factors regulating MIA production. Oxidative stress is a general response associated with biotic and abiotic stresses leading to several secondary responses, including elicitation of MIA production. These changes in secondary metabolism may take place directly or via second messengers, such as Ca(2+) and reactive oxygen species (ROS). H2O2 is the main ROS that participates in MIA biosynthesis. This review analyzes the links between oxidative stress, elicitation of bioactive MIA production and their potential roles in antioxidant defense, as well as exploring the implications to developing biotechnological strategies relevant for alkaloid supply. PMID:24062135

  14. In vitro production of alkaloids: Factors, approaches, challenges and prospects

    PubMed Central

    Ahmad, Sayeed; Garg, Madhukar; Tamboli, Ennus Tajuddin; Abdin, M. Z.; Ansari, S. H.

    2013-01-01

    The wide diversity of plant secondary metabolites is largely used for the production of various pharmaceutical compounds. In vitro cell tissue or organ culture has been employed as a possible alternative to produce such industrial compounds. Tissue culture techniques provide continuous, reliable, and renewable source of valuable plant pharmaceuticals and might be used for the large-scale culture of the plant cells from which these secondary metabolites can be extracted. Alkaloids are one of the most important secondary metabolites known to play a vital role in various pharmaceutical applications leading to an increased commercial importance in recent years. The tissue culture techniques may be utilized to improve their production of alkaloids via somaclonal variations and genetic transformations. The focus of this review is toward the application of different tissue culture methods/techniques employed for the in vitro production of alkaloids with a systematic approach to improve their production. PMID:23922453

  15. Production of benzylisoquinoline alkaloids in Saccharomyces cerevisiae

    PubMed Central

    Hawkins, Kristy M; Smolke, Christina D

    2010-01-01

    The benzylisoquinoline alkaloids (BIAs) are a diverse class of metabolites that exhibit a broad range of pharmacological activities and are synthesized through plant biosynthetic pathways comprised of complex enzyme activities and regulatory strategies. We have engineered yeast to produce the key intermediate reticuline and downstream BIA metabolites from a commercially available substrate. An enzyme tuning strategy was implemented that identified activity differences between variants from different plants and determined optimal expression levels. By synthesizing both stereoisomer forms of reticuline and integrating enzyme activities from three plant sources and humans, we demonstrated the synthesis of metabolites in the sanguinarine/berberine and morphinan branches. We also demonstrated that a human P450 enzyme exhibits a novel activity in the conversion of (R)-reticuline to the morphinan alkaloid salutaridine. Our engineered microbial hosts offer access to a rich group of BIA molecules and associated activities that will be further expanded through synthetic chemistry and biology approaches. PMID:18690217

  16. Supramolecular complexations of natural products.

    PubMed

    Schneider, Hans-Jörg; Agrawal, Pawan; Yatsimirsky, Anatoly K

    2013-08-21

    Complexations of natural products with synthetic receptors as well as the use of natural products as host compounds are reviewed, with an emphasis on possible practical uses or on biomedical significance. Applications such as separation, sensing, enzyme monitoring, and protection of natural drugs are first outlined. We then discuss examples of complexes with all important classes of natural compounds, such as amino acids, peptides, nucleosides/nucleotides, carbohydrates, catecholamines, flavonoids, terpenoids/steroids, alkaloids, antibiotics and toxins. PMID:23703643

  17. The chemistry of isoindole natural products

    PubMed Central

    Speck, Klaus

    2013-01-01

    Summary This review highlights the chemical and biological aspects of natural products containing an oxidized or reduced isoindole skeleton. This motif is found in its intact or modified form in indolocarbazoles, macrocyclic polyketides (cytochalasan alkaloids), the aporhoeadane alkaloids, meroterpenoids from Stachybotrys species and anthraquinone-type alkaloids. Concerning their biological activity, molecular structure and synthesis, we have limited this review to the most inspiring examples. Within different congeners, we have selected a few members and discussed the synthetic routes in more detail. The putative biosynthetic pathways of the presented isoindole alkaloids are described as well. PMID:24204418

  18. Microbial Factories for the Production of Benzylisoquinoline Alkaloids.

    PubMed

    Narcross, Lauren; Fossati, Elena; Bourgeois, Leanne; Dueber, John E; Martin, Vincent J J

    2016-03-01

    Benzylisoquinoline alkaloids (BIAs) are a family of ∼2500 alkaloids with both potential and realized pharmaceutical value, including most notably the opiates such as codeine and morphine. Only a few BIAs accumulate readily in plants, which limits the pharmaceutical potential of the family. Shifting BIA production to microbial sources could provide a scalable and flexible source of these compounds in the future. This review details the current status of microbial BIA synthesis and derivatization, including rapid developments in the past 6 months culminating in the synthesis of opioids from glucose in a microbial host. PMID:26775900

  19. Exploring natural product chemistry and biology with multicomponent reactions. 5. Discovery of a novel tubulin-targeting scaffold derived from the rigidin family of marine alkaloids.

    PubMed

    Frolova, Liliya V; Magedov, Igor V; Romero, Anntherese E; Karki, Menuka; Otero, Isaiah; Hayden, Kathryn; Evdokimov, Nikolai M; Banuls, Laetitia Moreno Y; Rastogi, Shiva K; Smith, W Ross; Lu, Shi-Long; Kiss, Robert; Shuster, Charles B; Hamel, Ernest; Betancourt, Tania; Rogelj, Snezna; Kornienko, Alexander

    2013-09-12

    We developed synthetic chemistry to access the marine alkaloid rigidins and over 40 synthetic analogues based on the 7-deazaxanthine, 7-deazaadenine, 7-deazapurine, and 7-deazahypoxanthine skeletons. Analogues based on the 7-deazahypoxanthine skeleton exhibited nanomolar potencies against cell lines representing cancers with dismal prognoses, tumor metastases, and multidrug resistant cells. Studies aimed at elucidating the mode(s) of action of the 7-deazahypoxanthines in cancer cells revealed that they inhibited in vitro tubulin polymerization and disorganized microtubules in live HeLa cells. Experiments evaluating the effects of the 7-deazahypoxanthines on the binding of [(3)H]colchicine to tubulin identified the colchicine site on tubulin as the most likely target for these compounds in cancer cells. Because many microtubule-targeting compounds are successfully used to fight cancer in the clinic, we believe the new chemical class of antitubulin agents represented by the 7-deazahypoxanthine rigidin analogues have significant potential as new anticancer agents. PMID:23927793

  20. Exploring Natural Product Chemistry and Biology with Multicomponent Reactions. 5. Discovery of a Novel Tubulin-Targeting Scaffold Derived from the Rigidin Family of Marine Alkaloids

    PubMed Central

    Frolova, Liliya V.; Magedov, Igor V.; Romero, Anntherese E.; Karki, Menuka; Otero, Isaiah; Hayden, Kathryn; Evdokimov, Nikolai M.; Banuls, Laetitia Moreno Y.; Rastogi, Shiva K.; Smith, W. Ross; Lu, Shi-Long; Kiss, Robert; Shuster, Charles B.; Hamel, Ernest; Betancourt, Tania; Rogelj, Snezna; Kornienko, Alexander

    2014-01-01

    We developed synthetic chemistry to access the marine alkaloid rigidins and over forty synthetic analogues based on the 7-deazaxanthine, 7-deazaadenine, 7-deazapurine and 7-deazahypoxanthine skeletons. Analogues based on the 7-deazahypoxanthine skeleton exhibited nanomolar potencies against cell lines representing cancers with dismal prognoses, tumor metastases and multidrug resistant cells. Studies aimed at elucidating the mode(s) of action of the 7-deazahypoxanthines in cancer cells revealed that they inhibited in vitro tubulin polymerization and disorganized microtubules in live HeLa cells. Experiments evaluating the effects of the 7-deazahypoxanthines on the binding of [3H]colchicine to tubulin identified the colchicine site on tubulin as the most likely target for these compounds in cancer cells. Because many microtubule-targeting compounds are successfully used to fight cancer in the clinic, we believe the new chemical class of antitubulin agents represented by the 7-deazahypoxanthine rigidin analogues have significant potential as new anticancer agents. PMID:23927793

  1. Structure, Chemical Synthesis, and Biosynthesis of Prodiginine Natural Products.

    PubMed

    Hu, Dennis X; Withall, David M; Challis, Gregory L; Thomson, Regan J

    2016-07-27

    The prodiginine family of bacterial alkaloids is a diverse set of heterocyclic natural products that have likely been known to man since antiquity. In more recent times, these alkaloids have been discovered to span a wide range of chemical structures that possess a number of interesting biological activities. This review provides a comprehensive overview of research undertaken toward the isolation and structural elucidation of the prodiginine family of natural products. Additionally, research toward chemical synthesis of the prodiginine alkaloids over the last several decades is extensively reviewed. Finally, the current, evidence-based understanding of the various biosynthetic pathways employed by bacteria to produce prodiginine alkaloids is summarized. PMID:27314508

  2. Effects of a novel marine natural product: pyrano indolone alkaloid fibrinolytic compound on thrombolysis and hemorrhagic activities in vitro and in vivo.

    PubMed

    Yan, Ting; Wu, Wenhui; Su, Tongwei; Chen, Jiajie; Zhu, Quangang; Zhang, Chaoyan; Wang, Xiaoyu; Bao, Bin

    2015-08-01

    Fungi fibrinolytic compound 1 (FGFC1) is a novel marine natural product as a low-weight fibrinolytic pyranoindole molecule, whose thrombolytic effects were evaluated on FITC-fibrin (Fluorescein isothiocyanate, FITC) degradation methods in vitro and on acute pulmonary thromboembolism animal model in vivo. We determined the FGFC1 induced thrombolysis that stems from its fibrin(ogen)olytic activities as measured by fibrin(ogen) degradation products (FDPs) experiment, acute pulmonary thromboembolism animal model experiment, and euglobulin lysis assay. In vitro, measurement of FITC-fibrin degradation revealed that fibrin hydrolysis occurred in a concentration-dependent manner of FGFC1 from 5 to 25 μ mol/L. In vivo test of a classical acute pulmonary thromboembolism model in rat showed that when the injected dose was 5 mg/kg or above, FGFC1 was effective in dissolution of extrinsic FITC-fibrin induced blood clots. Euglobulin lysis time (ELT) in FGFC1-treated rats was shortened 30 s compared with rats in the positive control group, which were injected with clopidogrel sulfate and single-chain urokinase-type plasminogen activator. As compared to the control, FGFC1 (5-25 mg/kg) did not significantly alter the formation of fibrinogen and FDPs in vivo. Our research indicates that FGFC1 presents pharmacodynamic action in both the thrombolysis and the hemolytic procedure, which can be characterized by fibrinogenolysis in blood and FDPs in plasma. In vivo, increasing fibrinolytic doses of FGFC1 from 5 to 25 mg/kg did not induce fibrinogenolysis when compared with control group, this result corresponds to that FGFC1 did not induce the increasing of FDPs (compared with the saline-treated control). It indicates that the FGFC1 may act as a novel thrombolytic agent and represent an effective approach to the treatment of thrombus without significant risk of hemorrhagic activity. PMID:25475097

  3. Time course production of indole alkaloids by an endophytic strain of Penicillium brasilianum cultivated in rice.

    PubMed

    Fill, Taicia Pacheco; Asenha, Heloísa Briganti Rodrigues; Marques, Anna Silvia; Ferreira, Antônio Gilberto; Rodrigues-Fo, Edson

    2013-01-01

    During our studies concerning endophytic fungi, two indole alkaloids were co-produced with verruculogen by Penicillium brasilianum isolated from Melia azedarach (Meliaceae). The compounds were isolated by the use of combined chromatographic procedures and identified by physical methods, mainly 1D- and 2D-NMR experiments. This article also describes the production of verruculogen TR-2, first described for this species of Penicillium, and a verruculogen TR-2C-11 epimer, that is a novel fungal natural product. The kinetic production of verruculogen and verruculogen TR-2 produced by P. brasilianum were evaluated in order to understand the involvement of verruculogen TR-2 in verruculogen biosynthesis. PMID:22757643

  4. Production, detection, and purification of clavine-type ergot alkaloids.

    PubMed

    Wallwey, Christiane; Li, Shu-Ming

    2012-01-01

    Ergot alkaloids are indole derivatives with diverse structures and biological activities. This chapter describes the procedure from fungal cultivation to purified ergot alkaloids, as exemplified by fumigaclavine A in Penicillium commune. Furthermore, useful notes for working with purified ergot alkaloids are given. PMID:23065612

  5. Cytotoxicity of Naturally Occurring Isoquinoline Alkaloids of Different Structural Types.

    PubMed

    Chlebek, Jakub; Doskocil, Ivo; Hulcová, Daniela; Breiterová, Katerina; Šafratová, Marcela; Havelek, Radim; Habartová, Klára; Hošt'álková, Anna; Volštátová, Tereza; Cahlíková, Lucie

    2016-06-01

    Forty-six isoquinoline alkaloids, of eleven structural types isolated in our laboratory, have been evaluated for their cytotoxicity against two cancer cell lines (Caco-2 and Hep-G2 cancer cells), as well as against normal human lung fibroblast cells. Only scoulerine, aromoline, berbamine and parfumidine showed significant cytotoxic effects, but only scoulerine was active against both Caco-2 and Hep-G2 cells (IC50 values 6.44 ± 0.87 and 4.57 ± 0.42, respectively). Unfortunately, except for parfumidine, the other active alkaloids were also cytotoxic to the normal human lung fibroblast cells. PMID:27534109

  6. Purpurolic acid: A new natural alkaloid from Claviceps purpurea (Fr.) Tul.

    PubMed

    Roberts, Andrew; Beaumont, Claire; Manzarpour, Azita; Mantle, Peter

    2016-01-01

    A novel secondary metabolite from the sclerotia of Claviceps purpurea (Fr.) Tul. is described; the structure is based on (1)H and (13)C NMR spectroscopy and electrospray mass spectrometry. It has an elemental composition C10H16N2O7 and is comprised mainly of proline and alanine moieties, although without peptide linkage. Notably, these amino-acids are also components of the cyclic tripeptide side chain of several classic ergoline alkaloids. Designated as purpurolic acid, the new compound is the principal free amino-acid in ergot and its natural abundance exceeds that of the ergoline alkaloids with which it accumulates in parallel during parasitic development. In contrast, it does not accumulate in the fungus in axenic culture, even when ergotamine is synthesised. The extent to which the compound is a metabolite of other ergot fungi worldwide is unknown. Biological activity and metabolic significance also remain unknown, but purpurolic acid could become a biomarker for detection of ergot contamination in agricultural products of temperate latitudes. PMID:26693687

  7. Enzymatic and Chemo-Enzymatic Approaches Towards Natural and Non-Natural Alkaloids: Indoles, Isoquinolines, and Others

    NASA Astrophysics Data System (ADS)

    Stöckigt, Joachim; Chen, Zhong; Ruppert, Martin

    The multi-step enzyme catalysed biosyntheses of monoterpenoid indole and isoquinoline alkaloids are described. Special emphasis is placed on those pathways leading to alkaloids of pharmacological and medicinal significance which have been fully elucidated at the enzyme level. The successful identification and cloning of cDNAs of single enzymes and their application provides great opportunities to develop novel strategies for both in vitro and in vivo alkaloid production in whole plants or tissue cultures, as well as in microbial systems such as Escherichia coli and yeast.

  8. The Veratrum and Solanum alkaloids.

    PubMed

    Heretsch, Philipp; Giannis, Athanassios

    2015-01-01

    This survey on steroidal alkaloids of the Veratrum and Solanum family isolated between 1974 and 2014 includes 187 compounds and 197 references. New developments in the chemistry and biology of this family of natural products with a special focus on the medicinal relevance of the jervanine alkaloid cyclopamine are discussed. PMID:25845062

  9. Occurrence of halogenated alkaloids.

    PubMed

    Gribble, Gordon W

    2012-01-01

    Once considered to be isolation artifacts or chemical "mistakes" of nature, the number of naturally occurring organohalogen compounds has grown from a dozen in 1954 to >5000 today. Of these, at least 25% are halogenated alkaloids. This is not surprising since nitrogen-containing pyrroles, indoles, carbolines, tryptamines, tyrosines, and tyramines are excellent platforms for biohalogenation, particularly in the marine environment where both chloride and bromide are plentiful for biooxidation and subsequent incorporation into these electron-rich substrates. This review presents the occurrence of all halogenated alkaloids, with the exception of marine bromotyrosines where coverage begins where it left off in volume 61 of The Alkaloids. Whereas the biological activity of these extraordinary compounds is briefly cited for some examples, a future volume of The Alkaloids will present full coverage of this topic and will also include selected syntheses of halogenated alkaloids. Natural organohalogens of all types, especially marine and terrestrial halogenated alkaloids, comprise a rapidly expanding class of natural products, in many cases expressing powerful biological activity. This enormous proliferation has several origins: (1) a revitalization of natural product research in a search for new drugs, (2) improved compound characterization methods (multidimensional NMR, high-resolution mass spectrometry), (3) specific enzyme-based and other biological assays, (4) sophisticated collection methods (SCUBA and remote submersibles for deep ocean marine collections), (5) new separation and purification techniques (HPLC and countercurrent separation), (6) a greater appreciation of traditional folk medicine and ethobotany, and (7) marine bacteria and fungi as novel sources of natural products. Halogenated alkaloids are truly omnipresent in the environment. Indeed, one compound, Q1 (234), is ubiquitous in the marine food web and is found in the Inuit from their diet of whale

  10. Engineering strategies for the fermentative production of plant alkaloids in yeast

    PubMed Central

    Trenchard, Isis J.; Smolke, Christina D.

    2015-01-01

    Microbial hosts engineered for the biosynthesis of plant natural products offer enormous potential as powerful discovery and production platforms. However, the reconstruction of these complex biosynthetic schemes faces numerous challenges due to the number of enzymatic steps and challenging enzyme classes associated with these pathways, which can lead to issues in metabolic load, pathway specificity, and maintaining flux to desired products. Cytochrome P450 enzymes are prevalent in plant specialized metabolism and are particularly difficult to express heterologously. Here, we describe the reconstruction of the sanguinarine branch of the benzylisoquinoline alkaloid pathway in Saccharomyces cerevisiae, resulting in microbial biosynthesis of protoberberine, protopine, and benzophenanthridine alkaloids through to the end-product sanguinarine, which we demonstrate can be efficiently produced in yeast in the absence of the associated biosynthetic enzyme. We achieved titers of 676 µg/L stylopine, 548 µg/L cis-N-methylstylopine, 252 µg/L protopine, and 80 µg/L sanguinarine from the engineered yeast strains. Through our optimization efforts, we describe genetic and culture strategies supporting the functional expression of multiple plant cytochrome P450 enzymes in the context of a large multi-step pathway. Our results also provided insight into relationships between cytochrome P450 activity and yeast ER physiology. We were able to improve the production of critical intermediates by 32-fold through genetic techniques and an additional 45-fold through culture optimization. PMID:25981946

  11. Dimeric Cinchona alkaloids.

    PubMed

    Boratyński, Przemysław J

    2015-05-01

    Nature is full of dimeric alkaloids of various types from many plant families, some of them with interesting biological properties. However, dimeric Cinchona alkaloids were not isolated from any species but were products of designed partial chemical synthesis. Although the Cinchona bark is amongst the sources of oldest efficient medicines, the synthetic dimers found most use in the field of asymmetric synthesis. Prominent examples include the Sharpless dihydroxylation and aminohydroxylation ligands, and dimeric phase transfer catalysts. In this article the syntheses of Cinchona alkaloid dimers and oligomers are reviewed, and their structure and applications are outlined. Various synthetic routes exploit reactivity of the alkaloids at the central 9-hydroxyl group, quinuclidine, and quinoline rings, as well as 3-vinyl group. This availability of reactive sites, in combination with a plethora of linker molecules, contributes to the diversity of the products obtained. PMID:25586655

  12. Vinca alkaloids.

    PubMed

    Moudi, Maryam; Go, Rusea; Yien, Christina Yong Seok; Nazre, Mohd

    2013-11-01

    Vinca alkaloids are a subset of drugs obtained from the Madagascar periwinkle plant. They are naturally extracted from the pink periwinkle plant, Catharanthus roseus G. Don and have a hypoglycemic as well as cytotoxic effects. They have been used to treat diabetes, high blood pressure and have been used as disinfectants. The vinca alkaloids are also important for being cancer fighters. There are four major vinca alkaloids in clinical use: Vinblastine (VBL), vinorelbine (VRL), vincristine (VCR) and vindesine (VDS). VCR, VBL and VRL have been approved for use in the United States. Vinflunine is also a new synthetic vinca alkaloid, which has been approved in Europe for the treatment of second-line transitional cell carcinoma of the urothelium is being developed for other malignancies. Vinca alkaloids are the second-most-used class of cancer drugs and will stay among the original cancer therapies. Different researches and studies for new vinca alkaloid applications will be carried out in this regard. PMID:24404355

  13. Vinca Alkaloids

    PubMed Central

    Moudi, Maryam; Go, Rusea; Yien, Christina Yong Seok; Nazre, Mohd.

    2013-01-01

    Vinca alkaloids are a subset of drugs obtained from the Madagascar periwinkle plant. They are naturally extracted from the pink periwinkle plant, Catharanthus roseus G. Don and have a hypoglycemic as well as cytotoxic effects. They have been used to treat diabetes, high blood pressure and have been used as disinfectants. The vinca alkaloids are also important for being cancer fighters. There are four major vinca alkaloids in clinical use: Vinblastine (VBL), vinorelbine (VRL), vincristine (VCR) and vindesine (VDS). VCR, VBL and VRL have been approved for use in the United States. Vinflunine is also a new synthetic vinca alkaloid, which has been approved in Europe for the treatment of second-line transitional cell carcinoma of the urothelium is being developed for other malignancies. Vinca alkaloids are the second-most-used class of cancer drugs and will stay among the original cancer therapies. Different researches and studies for new vinca alkaloid applications will be carried out in this regard. PMID:24404355

  14. Safety concerns of herbal products and traditional Chinese herbal medicines: Dehydropyrrolizidine alkaloids and aristolochic acid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In many countries, including the United States, herbal supplements, tisanes and vegetable products, including traditional Chinese medicines, are largely unregulated and their content is not registered, monitored or verified. Consequently, potent plant toxins including dehydropyrrolizidine alkaloids ...

  15. Safety concerns of herbal products and traditional Chinese herbal medicines: Dehydopyrrolizidine alkaloids and aristolochic acid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In many countries, including the United States, herbal supplements, tisanes and vegetable products including traditional Chinese medicines are largely unregulated and their content is not registered, monitored or verified. Consequently potent plant toxins including dehydopyrrolizidine alkaloids and...

  16. Mechanistic Advances in Plant Natural Product Enzymes

    PubMed Central

    Usera, Aimee R.; O’Connor, Sarah E.

    2009-01-01

    Summary of Recent Advances The biosynthetic pathways of plant natural products offer an abundance of knowledge to scientists in many fields. Synthetic chemists can be inspired by the synthetic strategies that nature uses to construct these compounds. Chemical and biological engineers are working to reprogram these biosynthetic pathways to more efficiently produce valuable products. Finally, biochemists and enzymologists are interested in the detailed mechanisms of the complex transformations involved in construction of these natural products. Study of biosynthetic enzymes and pathways therefore has a wide-ranging impact. In recent years, many plant biosynthetic pathways have been characterized, particularly the pathways that are responsible for alkaloid biosynthesis. Here we highlight recently studied alkaloid biosynthetic enzymes that catalyze production of numerous complex medicinal compounds, as well as the specifier proteins in glucosinosolate biosynthesis, whose structure and mechanism of action are just beginning to be unraveled. PMID:19632140

  17. Natural Products from Mangrove Actinomycetes

    PubMed Central

    Xu, Dong-Bo; Ye, Wan-Wan; Han, Ying; Deng, Zi-Xin; Hong, Kui

    2014-01-01

    Mangroves are woody plants located in tropical and subtropical intertidal coastal regions. The mangrove ecosystem is becoming a hot spot for natural product discovery and bioactivity survey. Diverse mangrove actinomycetes as promising and productive sources are worth being explored and uncovered. At the time of writing, we report 73 novel compounds and 49 known compounds isolated from mangrove actinomycetes including alkaloids, benzene derivatives, cyclopentenone derivatives, dilactones, macrolides, 2-pyranones and sesquiterpenes. Attractive structures such as salinosporamides, xiamycins and novel indolocarbazoles are highlighted. Many exciting compounds have been proven as potential new antibiotics, antitumor and antiviral agents, anti-fibrotic agents and antioxidants. Furthermore, some of their biosynthetic pathways have also been revealed. This review is an attempt to consolidate and summarize the past and the latest studies on mangrove actinomycetes natural product discovery and to draw attention to their immense potential as novel and bioactive compounds for marine drugs discovery. PMID:24798926

  18. Current natural products with antihypertensive activity.

    PubMed

    Bai, Ren-Ren; Wu, Xiao-Ming; Xu, Jin-Yi

    2015-10-01

    Natural products have been an important source of new drugs, which also played a dominant role in the discovery and research of new drugs for the treatment of hypertension. This review article reviews the recent progress in the research and development of natural lead compounds with antihypertensive activity, including alkaloids, diterpenes, coumarins, flavonoids, and peptides. We summarized their structures, sources, as well as the antihypertensive mechanisms. These information provides instructive reference for the following structural modifications and optimization. PMID:26481372

  19. In vitro anticancer properties and biological evaluation of novel natural alkaloid jerantinine B.

    PubMed

    Qazzaz, Mohannad E; Raja, Vijay J; Lim, Kuan-Hon; Kam, Toh-Seok; Lee, Jong Bong; Gershkovich, Pavel; Bradshaw, Tracey D

    2016-01-28

    Natural products play a pivotal role in medicine especially in the cancer arena. Many drugs that are currently used in cancer chemotherapy originated from or were inspired by nature. Jerantinine B (JB) is one of seven novel Aspidosperma indole alkaloids isolated from the leaf extract of Tabernaemontana corymbosa. Preliminary antiproliferative assays revealed that JB and JB acetate significantly inhibited growth and colony formation, accompanied by time- and dose-dependent apoptosis induction in human cancer cell lines. JB significantly arrested cells at the G2/M cell cycle phase, potently inhibiting tubulin polymerisation. Polo-like kinase 1 (PLK1; an early trigger for the G2/M transition) was also dose-dependently inhibited by JB (IC50 1.5 µM). Furthermore, JB provoked significant increases in reactive oxygen species (ROS). Annexin V+ cell populations, dose-dependent accumulation of cleaved-PARP and caspase 3/7 activation, and reduced Bcl-2 and Mcl-1 expression confirm apoptosis induction. Preclinical in silico biopharmaceutical assessment of JB calculated rapid absorption and bioavailability >70%. Doses of 8-16 mg/kg JB were predicted to maintain unbound plasma concentrations >GI50 values in mice during efficacy studies. These findings advocate continued development of JB as a potential chemotherapeutic agent. PMID:26515390

  20. Design, synthesis and decoration of molecular scaffolds for exploitation in the production of alkaloid-like libraries.

    PubMed

    Craven, Philip; Aimon, Anthony; Dow, Mark; Fleury-Bregeot, Nicolas; Guilleux, Rachel; Morgentin, Remy; Roche, Didier; Kalliokoski, Tuomo; Foster, Richard; Marsden, Stephen P; Nelson, Adam

    2015-06-01

    The design, synthesis and decoration of six small molecule libraries is described. Each library was inspired by structures embedded in the framework of specific alkaloid natural products. The development of optimised syntheses of the required molecular scaffolds is described, in which reactions including Pd-catalysed aminoarylation and diplolar cycloadditions have been exploited as key steps. The synthesis of selected exemplar screening compounds is also described. In five cases, libraries were subsequently nominated for production on the basis of the scope and limitations of the validation work, as well as predicted molecular properties. In total, the research has led to the successful synthesis of >2500 novel alkaloid-like compounds for addition to the screening collection (the Joint European Compound Library, JECL) of the European Lead Factory. PMID:25600406

  1. De novo production of the plant-derived alkaloid strictosidine in yeast.

    PubMed

    Brown, Stephanie; Clastre, Marc; Courdavault, Vincent; O'Connor, Sarah E

    2015-03-17

    The monoterpene indole alkaloids are a large group of plant-derived specialized metabolites, many of which have valuable pharmaceutical or biological activity. There are ∼3,000 monoterpene indole alkaloids produced by thousands of plant species in numerous families. The diverse chemical structures found in this metabolite class originate from strictosidine, which is the last common biosynthetic intermediate for all monoterpene indole alkaloid enzymatic pathways. Reconstitution of biosynthetic pathways in a heterologous host is a promising strategy for rapid and inexpensive production of complex molecules that are found in plants. Here, we demonstrate how strictosidine can be produced de novo in a Saccharomyces cerevisiae host from 14 known monoterpene indole alkaloid pathway genes, along with an additional seven genes and three gene deletions that enhance secondary metabolism. This system provides an important resource for developing the production of more complex plant-derived alkaloids, engineering of nonnatural derivatives, identification of bottlenecks in monoterpene indole alkaloid biosynthesis, and discovery of new pathway genes in a convenient yeast host. PMID:25675512

  2. De novo production of the plant-derived alkaloid strictosidine in yeast

    PubMed Central

    Brown, Stephanie; Clastre, Marc; Courdavault, Vincent; O’Connor, Sarah E.

    2015-01-01

    The monoterpene indole alkaloids are a large group of plant-derived specialized metabolites, many of which have valuable pharmaceutical or biological activity. There are ∼3,000 monoterpene indole alkaloids produced by thousands of plant species in numerous families. The diverse chemical structures found in this metabolite class originate from strictosidine, which is the last common biosynthetic intermediate for all monoterpene indole alkaloid enzymatic pathways. Reconstitution of biosynthetic pathways in a heterologous host is a promising strategy for rapid and inexpensive production of complex molecules that are found in plants. Here, we demonstrate how strictosidine can be produced de novo in a Saccharomyces cerevisiae host from 14 known monoterpene indole alkaloid pathway genes, along with an additional seven genes and three gene deletions that enhance secondary metabolism. This system provides an important resource for developing the production of more complex plant-derived alkaloids, engineering of nonnatural derivatives, identification of bottlenecks in monoterpene indole alkaloid biosynthesis, and discovery of new pathway genes in a convenient yeast host. PMID:25675512

  3. Sarpagine and related alkaloids

    PubMed Central

    Namjoshi, Ojas A.; Cook, James M.

    2016-01-01

    The sarpagine-related macroline and ajmaline alkaloids share a common biosynthetic origin, and bear important structural similarities, as expected. These indole alkaloids are widely dispersed in 25 plant genera, principally in the Apocynaceae family. Very diverse and interesting biological properties have been reported for this group of natural products. Isolation of new sarpagine-related alkaloids as well as the asymmetric synthesis of these structurally complex molecules are of paramount importance to the synthetic and medicinal chemists. A total of 115 newly isolated sarpagine-related macroline and ajmaline alkaloids, along with their physicochemical properties have been included in this chapter. A general and efficient strategy for the synthesis of these monomeric alkaloids, as well as bisindoles has been presented, which involves application of the asymmetric Pictet–Spengler reaction (>98% ee) as a key step because of the ease of scale up of the tetracyclic template. Also included in this chapter are the syntheses of the sarpagine-related alkaloids, published since the year 2000. PMID:26827883

  4. How polyamine synthesis inhibitors and cinnamic acid affect tropane alkaloid production.

    PubMed

    Marconi, Patricia L; Alvarez, María A; Pitta-Alvarez, Sandra I

    2007-01-01

    Hairy roots of Brugmansia candida produce the tropane alkaloids scopolamine and hyoscyamine. In an attempt to divert the carbon flux from competing pathways and thus enhance productivity, the polyamine biosynthesis inhibitors cyclohexylamine (CHA) and methylglyoxal-bis-guanylhydrazone (MGBG) and the phenylalanine-ammonia-lyase inhibitor cinnamic acid were used. CHA decreased the specific productivity of both alkaloids but increased significantly the release of scopolamine (approx 500%) when it was added in the mid-exponential phase. However, when CHA was added for only 48 h during the exponential phase, the specific productivity of both alkaloids increased (approx 200%), favoring scopolamine. Treatment with MGBG was detrimental to growth but promoted release into the medium of both alkaloids. However, when it was added for 48 h during the exponential phase, MGBG increased the specific productivity (approx 200%) and release (250- 1800%) of both alkaloids. Cinnamic acid alone also favored release but not specific productivity. When a combination of CHA or MGBG with cinnamic acid was used, the results obtained were approximately the same as with each polyamine biosynthesis inhibitor alone, although to a lesser extent. Regarding root morphology, CHA inhibited growth of primary roots and ramification. However, it had a positive effect on elongation of lateral roots. PMID:17416978

  5. An analog of the natural steroidal alkaloid Cortistatin A potently suppresses Tat dependent HIV transcription

    PubMed Central

    Mousseau, Guillaume; Clementz, Mark A.; Bakeman, Wendy N.; Nagarsheth, Nisha; Cameron, Michael; Shi, Jun; Baran, Phil; Fromentin, Rémi; Chomont, Nicolas; Valente, Susana T.

    2012-01-01

    The human immunodeficiency virus type I (HIV) Tat protein, a potent activator of HIV gene expression, is essential for integrated viral genome expression and represents a potential antiviral target. Tat binds the 5′ terminal region of HIV mRNA’s stem-bulge-loop structure, the Trans-activation Responsive (TAR) element to activate transcription. We find that didehydro-Cortistatin A (dCA), an analogue of a natural steroidal alkaloid from a marine sponge inhibits Tat-mediated trans-activation of the integrated provirus by binding specifically to the TAR-binding domain of Tat. Working at subnanomolar concentrations, dCA reduces Tat mediated transcriptional initiation/elongation from the viral promoter to inhibit HIV-1 and HIV-2 replication in acutely and chronically infected cells. Importantly, dCA abrogates spontaneous viral particle release from CD4+T cells from virally suppressed subjects on highly active antiretroviral therapy (HAART). Thus, dCA defines a unique class of anti-HIV drugs that may inhibit viral production from stable reservoirs and reduce residual viremia during HAART. PMID:22817991

  6. Production of huperzine A and other Lycopodium alkaloids in Huperzia species grown under controlled conditions and in vitro.

    PubMed

    Ishiuchi, Kan'ichiro; Park, Jeong-Jin; Long, Robert M; Gang, David R

    2013-07-01

    A UPLC-MS method was developed for quantifying huperzine A (HupA), an anti-Alzheimer's disease (AD) drug candidate from the traditional Chinese medicine Qian Ceng Ta (Huperzia serrata), in samples of 11 Huperzia genus plants. The highest content of HupA was found in Huperzia pinifolia. The accumulation of various Lycopodium alkaloids was monitored in these tissues using high resolution Q-IMS-TOFMS analysis. Tissue culture of various Huperzia species has been achieved and production of HupA has been confirmed in the callus of H. pinifolia. Furthermore, it was established that the major alkaloid produced by the naturally grown plant and the callus of H. pinifolia changed dramatically from HupA to nankakurine B. PMID:23306162

  7. Biosynthetic pathways of ergot alkaloids.

    PubMed

    Gerhards, Nina; Neubauer, Lisa; Tudzynski, Paul; Li, Shu-Ming

    2014-01-01

    Ergot alkaloids are nitrogen-containing natural products belonging to indole alkaloids. The best known producers are fungi of the phylum Ascomycota, e.g., Claviceps, Epichloë, Penicillium and Aspergillus species. According to their structures, ergot alkaloids can be divided into three groups: clavines, lysergic acid amides and peptides (ergopeptines). All of them share the first biosynthetic steps, which lead to the formation of the tetracyclic ergoline ring system (except the simplest, tricyclic compound: chanoclavine). Different modifications on the ergoline ring by specific enzymes result in an abundance of bioactive natural products, which are used as pharmaceutical drugs or precursors thereof. From the 1950s through to recent years, most of the biosynthetic pathways have been elucidated. Gene clusters from several ergot alkaloid producers have been identified by genome mining and the functions of many of those genes have been demonstrated by knock-out experiments or biochemical investigations of the overproduced enzymes. PMID:25513893

  8. Biosynthetic Pathways of Ergot Alkaloids

    PubMed Central

    Gerhards, Nina; Neubauer, Lisa; Tudzynski, Paul; Li, Shu-Ming

    2014-01-01

    Ergot alkaloids are nitrogen-containing natural products belonging to indole alkaloids. The best known producers are fungi of the phylum Ascomycota, e.g., Claviceps, Epichloë, Penicillium and Aspergillus species. According to their structures, ergot alkaloids can be divided into three groups: clavines, lysergic acid amides and peptides (ergopeptines). All of them share the first biosynthetic steps, which lead to the formation of the tetracyclic ergoline ring system (except the simplest, tricyclic compound: chanoclavine). Different modifications on the ergoline ring by specific enzymes result in an abundance of bioactive natural products, which are used as pharmaceutical drugs or precursors thereof. From the 1950s through to recent years, most of the biosynthetic pathways have been elucidated. Gene clusters from several ergot alkaloid producers have been identified by genome mining and the functions of many of those genes have been demonstrated by knock-out experiments or biochemical investigations of the overproduced enzymes. PMID:25513893

  9. tRNA binding with anti-cancer alkaloids-nature of interaction and comparison with DNA-alkaloids adducts.

    PubMed

    Tyagi, Gunjan; Agarwal, Shweta; Mehrotra, Ranjana

    2015-01-01

    Vincristine and vinblastine are potent anti-proliferative compound whose mechanism of action inside a cell is not well elucidated and the basis of their differential cellular effect is also unknown. This work focuses towards understanding the interaction of vincristine and vinblastine with tRNA using spectroscopic approach. Fourier transform infrared (FTIR) spectroscopy, Fourier transform infrared difference spectroscopy and UV-visible spectroscopy were used to study the binding parameters of tRNA-alkaloids interaction. Both the vinca alkaloids interact with tRNA through external binding with some degree of intercalation into the nitrogenous bases. The alkaloids adduct formation did not alter the A-conformation of the biopolymer and vincristine-tRNA complexes were found to be more stable than that of vinblastine-tRNA complexes. The binding constants (K) estimated for VCR-tRNA and VBS-tRNA complexation are 3×10(2)M(-1) and 2.5×10(2)M(-1) respectively, which suggests low affinity of alkaloids to tRNA. The study recognizes tRNA binding properties of vital vinca alkaloids and contributes to a better understanding of their mechanism of action and could also help in identifying the reason behind their diverse action in a cell. PMID:25574589

  10. LCMS and GCMS for the screening of alkaloids in natural and in vitro extracts of Leucojum aestivum.

    PubMed

    Ptak, Agata; El Tahchy, Anna; Dupire, François; Boisbrun, Michel; Henry, Max; Chapleur, Yves; Moś, Maria; Laurain-Mattar, Dominique

    2009-01-01

    HPLC coupled to a mass spectrometer (MS) was used for the analysis of galanthamine and lycorine in natural extracts of Leucojum aestivum and in their in vitro cultures grown with a precursor (ACC), inhibitors (AgNO(3), STS), or an absorber (KMnO(4)) of ethylene. The maximum galanthamine (0.002%) and lycorine (0.02%) concentrations in tissue cultures were obtained in the presence of KMnO(4). GCMS was used to investigate underivatized alkaloid mixtures from L. aestivum. Seven alkaloids were identified in in vivo bulbs. KMnO(4) led to the highest diversity of alkaloids in tissue culture extracts. PMID:19117485

  11. Activities and Effects of Ergot Alkaloids on Livestock Physiology and Production.

    PubMed

    Klotz, James L

    2015-08-01

    Consumption of feedstuffs contaminated with ergot alkaloids has a broad impact on many different physiological mechanisms that alters the homeostasis of livestock. This change in homeostasis causes an increased sensitivity in livestock to perturbations in the ambient environment, resulting in an increased sensitivity to such stressors. This ultimately results in large financial losses in the form of production losses to livestock producers around the world. This review will focus on the underlying physiological mechanisms that are affected by ergot alkaloids that lead to decreases in livestock production. PMID:26226000

  12. Activities and Effects of Ergot Alkaloids on Livestock Physiology and Production

    PubMed Central

    Klotz, James L.

    2015-01-01

    Consumption of feedstuffs contaminated with ergot alkaloids has a broad impact on many different physiological mechanisms that alters the homeostasis of livestock. This change in homeostasis causes an increased sensitivity in livestock to perturbations in the ambient environment, resulting in an increased sensitivity to such stressors. This ultimately results in large financial losses in the form of production losses to livestock producers around the world. This review will focus on the underlying physiological mechanisms that are affected by ergot alkaloids that lead to decreases in livestock production. PMID:26226000

  13. Enhancement of alkaloid production in opium and California poppy by transactivation using heterologous regulatory factors.

    PubMed

    Apuya, Nestor R; Park, Joon-Hyun; Zhang, Liping; Ahyow, Maurice; Davidow, Patricia; Van Fleet, Jennifer; Rarang, Joel C; Hippley, Matthew; Johnson, Thomas W; Yoo, Hye-Dong; Trieu, Anthony; Krueger, Shannon; Wu, Chuan-yin; Lu, Yu-ping; Flavell, Richard B; Bobzin, Steven C

    2008-02-01

    Genes encoding regulatory factors isolated from Arabidopsis, soybean and corn have been screened to identify those that modulate the expression of genes encoding for enzymes involved in the biosynthesis of morphinan alkaloids in opium poppy (Papaver somniferum) and benzophenanthridine alkaloids in California poppy (Eschscholzia californica). In opium poppy, the over-expression of selected regulatory factors increased the levels of PsCOR (codeinone reductase), Ps4'OMT (S-adenosyl-l-methionine:3'-hydroxy-N-methylcoclaurine 4'-O-methyltransferase) and Ps6OMT [(R,S)-norcoclaurine 6-O-methyltransferase] transcripts by 10- to more than 100-fold. These transcriptional activations translated into an enhancement of alkaloid production in opium poppy of up to at least 10-fold. In California poppy, the transactivation effect of regulatory factor WRKY1 resulted in an increase of up to 60-fold in the level of EcCYP80B1 [(S)-N-methylcoclaurine 3'-hydroxylase] and EcBBE (berberine bridge enzyme) transcripts. As a result, the accumulations of selected alkaloid intermediates were enhanced up to 30-fold. The transactivation effects of other regulatory factors led to the accumulation of the same intermediates. These regulatory factors also led to the production of new alkaloids in California poppy callus culture. PMID:17961129

  14. 21 CFR 310.544 - Drug products containing active ingredients offered over-the-counter (OTC) for use as a smoking...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... lobeline sulfate or natural lobelia alkaloids or Lobelia inflata herb), menthol, methyl salicylate... drug product containing lobeline (in the form of lobeline sulfate or natural lobelia alkaloids...

  15. 21 CFR 310.544 - Drug products containing active ingredients offered over-the-counter (OTC) for use as a smoking...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... lobeline sulfate or natural lobelia alkaloids or Lobelia inflata herb), menthol, methyl salicylate... drug product containing lobeline (in the form of lobeline sulfate or natural lobelia alkaloids...

  16. 21 CFR 310.544 - Drug products containing active ingredients offered over-the-counter (OTC) for use as a smoking...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... lobeline sulfate or natural lobelia alkaloids or Lobelia inflata herb), menthol, methyl salicylate... drug product containing lobeline (in the form of lobeline sulfate or natural lobelia alkaloids...

  17. 21 CFR 310.544 - Drug products containing active ingredients offered over-the-counter (OTC) for use as a smoking...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... lobeline sulfate or natural lobelia alkaloids or Lobelia inflata herb), menthol, methyl salicylate... drug product containing lobeline (in the form of lobeline sulfate or natural lobelia alkaloids...

  18. 21 CFR 310.544 - Drug products containing active ingredients offered over-the-counter (OTC) for use as a smoking...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... lobeline sulfate or natural lobelia alkaloids or Lobelia inflata herb), menthol, methyl salicylate... drug product containing lobeline (in the form of lobeline sulfate or natural lobelia alkaloids...

  19. C19-Norditerpenoid Alkaloids from Aconitum szechenyianum and Their Effects on LPS-Activated NO Production.

    PubMed

    Wang, Fei; Yue, Zhenggang; Xie, Pei; Zhang, Li; Li, Zhen; Song, Bei; Tang, Zhishu; Song, Xiaomei

    2016-01-01

    Three new C19-norditerpenoid alkaloids (1-3), along with two known C19-norditerpenoid alkaloids (4-5) have been isolated from Aconitum szechenyianum. Their structures were established by extensive spectroscopic techniques and chemical methods as szechenyianine A (1), szechenyianine B (2), szechenyianine C (3), N-deethyl-3-acetylaconitine (4), and N-deethyldeoxyaconitine (5). Additionally, compounds 1-5 were tested for the inhibition of NO production on LPS-activated RAW264.7 cells with IC50 values of 36.62 ± 6.86, 3.30 ± 0.11, 7.46 ± 0.89, 8.09 ± 1.31, and 11.73 ± 1.94 μM, respectively, while the positive control drug dexamethasone showed inhibitory activity with IC50 value of 8.32 ± 1.45 μM. The structure-activity relationship of aconitine alkaloids were discussed. PMID:27598121

  20. Syntheses of Cyclic Guanidine-Containing Natural Products

    PubMed Central

    Ma, Yuyong; De, Saptarshi; Chen, Chuo

    2014-01-01

    Naturally occurring guanidine derivatives frequently display medicinally useful properties. Among them, the higher order pyrrole-imidazole alkaloids, the dragmacidins, the crambescidins/batzelladines, and the saxitoxins/tetradotoxins have stimulated the development of many new synthetic methods over the past decades. We provide here an overview of the syntheses of these cyclic guanidine-containing natural products. PMID:25684829

  1. Effects of solar UV radiation on alkaloid production in Erythroxylum novogranatense var. novogranatense

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cocaine-producing species of Erythroxylum have been cultivated in South America for centuries, yet little is know of environmental effects on alkaloid production in these species. Given the high incidence of UV radiation in the equatorial and high altitude environments in which cocaine-producing sp...

  2. Astonishing diversity of natural surfactants: 6. Biologically active marine and terrestrial alkaloid glycosides.

    PubMed

    Dembitsky, Valery M

    2005-11-01

    This review article presents 209 alkaloid glycosides isolated and identified from plants, microorganisms, and marine invertebrates that demonstrate different biological activities. They are of great interest, especially for the medicinal and/or pharmaceutical industries. These biologically active glycosides have good potential for future chemical preparation of compounds useful as antioxidants, anticancer, antimicrobial, and antibacterial agents. These glycosidic compounds have been subdivided into several groups, including: acridone; aporphine; benzoxazinoid; ergot; indole; enediyne alkaloidal antibiotics; glycosidic lupine alkaloids; piperidine, pyridine, pyrrolidine, and pyrrolizidine alkaloid glycosides; glycosidic quinoline and isoquinoline alkaloids; steroidal glycoalkaloids; and miscellaneous alkaloid glycosides. PMID:16459921

  3. Safety concerns of herbal products and traditional Chinese herbal medicines: dehydropyrrolizidine alkaloids and aristolochic acid.

    PubMed

    Stegelmeier, Bryan L; Brown, Ammon W; Welch, Kevin D

    2015-12-01

    In many countries, including the United States, herbal supplements, tisanes and vegetable products, including traditional Chinese medicines, are largely unregulated and their content is not registered, monitored or verified. Consequently, potent plant toxins including dehydropyrrolizidine alkaloids and other potential carcinogens can contaminate these products. As herbal and food supplement producers are left to their own means to determine the safety and purity of their products prior to marketing, disturbingly often good marketing practices currently in place are ignored and content is largely undocumented. Historical examples of poisoning and health issues relating to plant material containing dehydopyrrolizidine alkaloids and aristolochic acids were used as examples to demonstrate the risk and potential toxicity of herbal products, food supplements, or traditional medicines. More work is needed to educate consumers of the potential risk and require the industry to be more responsible to verify the content and insure the safety of their products. PMID:26152912

  4. Optimization of different process variables for the production of an indolizidine alkaloid, swainsonine from Metarhizium anisopliae.

    PubMed

    Singh, Digar; Kaur, Gurvinder

    2012-10-01

    Swainsonine is a polyhydroxylated indolizidine alkaloid having anticancer, antimetastatic, antiproliferative and immunomodulatory activities and also potential therapeutic applications against AIDS. In the present study, ten isolates of M. anisopliae were screened and enzyme assayed for the production of swainsonine in different media (Complex oatmeal, Czapekdox media with and without lysine (8% w/v) and Sabouraud dextrose broth (SDB)). Among these strains, ARSEF 1724 (UM8) was found to produce highest amount of swainsonine (1.34 μg/l) after 72 h of incubation under shake flask conditions at 180 rpm and 28 °C in complex oatmeal media. In order to maximize the yield of swainsonine the media composition including macro and micronutrients were optimized. The process variables including the chemical factors like carbon sources, nitrogen sources of both organic and inorganic nature and pH with constant inoculum size (1 × 10(8) spores/ml) were screened using classical one-factor-at-a-time (OFAT) approach to find their optimum levels. The present study shows that the nutrient requirement is specific for each strain of Metarhizium. Oatmeal extract (6%) was found to be the best supporting media along with nitrogen source, glucose (2%) as best carbon source and pH (~5) as the best for swainsonine production. PMID:22144370

  5. Natural products for cancer chemotherapy

    PubMed Central

    Demain, Arnold L.; Vaishnav, Preeti

    2011-01-01

    Summary For over 40 years, natural products have served us well in combating cancer. The main sources of these successful compounds are microbes and plants from the terrestrial and marine environments. The microbes serve as a major source of natural products with anti‐tumour activity. A number of these products were first discovered as antibiotics. Another major contribution comes from plant alkaloids, taxoids and podophyllotoxins. A vast array of biological metabolites can be obtained from the marine world, which can be used for effective cancer treatment. The search for novel drugs is still a priority goal for cancer therapy, due to the rapid development of resistance to chemotherapeutic drugs. In addition, the high toxicity usually associated with some cancer chemotherapy drugs and their undesirable side‐effects increase the demand for novel anti‐tumour drugs active against untreatable tumours, with fewer side‐effects and/or with greater therapeutic efficiency. This review points out those technologies needed to produce the anti‐tumour compounds of the future. PMID:21375717

  6. Natural Plant Alkaloid (Emetine) Inhibits HIV-1 Replication by Interfering with Reverse Transcriptase Activity.

    PubMed

    Chaves Valadão, Ana Luiza; Abreu, Celina Monteiro; Dias, Juliana Zanatta; Arantes, Pablo; Verli, Hugo; Tanuri, Amilcar; de Aguiar, Renato Santana

    2015-01-01

    Ipecac alkaloids are secondary metabolites produced in the medicinal plant Psychotria ipecacuanha. Emetine is the main alkaloid of ipecac and one of the active compounds in syrup of Ipecac with emetic property. Here we evaluated emetine's potential as an antiviral agent against Human Immunodeficiency Virus. We performed in vitro Reverse Transcriptase (RT) Assay and Natural Endogenous Reverse Transcriptase Activity Assay (NERT) to evaluate HIV RT inhibition. Emetine molecular docking on HIV-1 RT was also analyzed. Phenotypic assays were performed in non-lymphocytic and in Peripheral Blood Mononuclear Cells (PBMC) with HIV-1 wild-type and HIV-harboring RT-resistant mutation to Nucleoside Reverse Transcriptase Inhibitors (M184V). Our results showed that HIV-1 RT was blocked in the presence of emetine in both models: in vitro reactions with isolated HIV-1 RT and intravirion, measured by NERT. Emetine revealed a strong potential of inhibiting HIV-1 replication in both cellular models, reaching 80% of reduction in HIV-1 infection, with low cytotoxic effect. Emetine also blocked HIV-1 infection of RT M184V mutant. These results suggest that emetine is able to penetrate in intact HIV particles, and bind and block reverse transcription reaction, suggesting that it can be used as anti-HIV microbicide. Taken together, our findings provide additional pharmacological information on the potential therapeutic effects of emetine. PMID:26111177

  7. Search for Factors Related to the Indole Alkaloid Production in Cell Suspension Cultures of Tabernaemontana divaricata.

    PubMed

    Schripsema, J; Verpoorte, R

    1992-06-01

    Three strains derived from one cell line of a suspension culture of TABERNAEMONTANA DIVARICATA were obtained by subculturing on three different media: (i) Strain A: normal MS-medium (1), (ii) Strain S: medium in which the carbon source was starch instead of sucrose, and (iii) Strain N: medium in which the ammonium/nitrate ratio was changed from 1: 2 to 1:1. The alkaloid contents of all three strains were compared at each subculture for nearly one year. Strain N showed after its initiation a gradually increasing alkaloid production up to levels of about 500 microg/gDW. Strain A (on the original medium) showed a stable, but low alkaloid production (+/- 20 microg/gDW) while strain S turned into a non-producing line. The dissimilation curves, morphology, intracellular carbohydrates, and free amino acid pools of all three strains were determined. Strain N showed the highest biomass, the least dissimilation, most plastids, most intracellular carbohydrates, and high levels of arginine and glutamine, while strain S showed the lowest biomass, most dissimilation, no plastids, little intracellular carbohydrates, and high levels of arginine, phenylalanine, and tyrosine. The observed differences are discussed and evidence is provided that the differences are not caused by genetic instability. PMID:17226465

  8. Improving field production of ergot alkaloids by application of gametocide on rye host plants.

    PubMed

    Hanosová, Helena; Koprna, Radoslav; Valík, Josef; Knoppová, Lucie; Frébort, Ivo; Dzurová, Lenka; Galuszka, Petr

    2015-12-25

    Ergot alkaloids are widely used in the pharmaceutical industry in drug preparations for treating migraines and Parkinson's disease, inducing uterine contraction, and other purposes. Phytopathogenic fungi of the genus Claviceps (e.g. C. purpurea) comprise a major biological source of ergot alkaloids. Worldwide industrial production of these alkaloids derives almost equally from two biotechnological procedures: submerged culture of the fungus in fermenters and field parasitic production in dormant fungal organs known as sclerotia (also termed ergot). Ergot yields from field cultivation are greatly affected by weather and also can be much reduced by pollen contamination from imperfectly male-sterile rye, as only unfertilized ovaries can be infected by C. purpurea spores. Two substances with gametocidal effect - maleic hydrazide and 2-chloroethylphosphonic acid - were tested during three consecutive seasons in small field experiments for the ability to induce or amplify the male sterility of rye as well as the impacts on germination of C. purpurea spores and general vitality of rye host plants. Maleic hydrazide was proven to be a highly effective gametocide on both a fertile rye variety and a variety with imperfectly induced cytoplasmic male sterility. It showed negligible effect on germination of C. purpurea spores. Both accurate dosaging of the active gametocidal compound and timing of the application just 2-3 weeks before onset of anthesis proved crucial to achieving high ergot yield with minimum grain impurities. PMID:25639197

  9. Identification of legal highs--ergot alkaloid patterns in two Argyreia nervosa products.

    PubMed

    Paulke, Alexander; Kremer, Christian; Wunder, Cora; Wurglics, Mario; Schubert-Zsilavecz, Manfred; Toennes, Stefan W

    2014-09-01

    Nowadays psychoactive plants marketed as "legal highs" or "herbal highs" increase in popularity. One popular "legal high" are the seeds of the Hawaiian baby woodrose Argyreia nervosa (Synonym: Argyreia speciosa, Convolvolus speciosus). At present there exists no study on A. nervosa seeds or products, which are used by consumers. The quality of commercial available A. nervosa seeds or products is completely unknown. In the present study, a commercial available seed collection (five seeds labeled "flash of inspiration", FOI) was analyzed for ergot alkaloids together with an A. nervosa product (two preparations in capsule form, "druids fantasy", DF). For this purpose high performance liquid chromatography high resolution tandem mass spectrometry (HPLC-HRMS/MS) technique was employed. Besides the major ingredients such as lysergic acid amide (LSA) and ergometrine the well known A. nervosa compounds lysergol/elymoclavine/setoclavine, chanoclavine and the respective stereoisomers were detected in DF, while only LSA and ergometrine could be found in FOI. In addition, in DF lysergic acid was found, which has not been reported yet as ingredient of A. nervosa. In both products, DF as well as in FOI, LSA/LSA-isomers were dominant with 83-84% followed by ergometrine/ergometrinine with 10-17%. Therefore, LSA, followed by ergometrine/ergometrinine, could be confirmed to be the main ergot alkaloids present in A. nervosa seeds/products whereas the other ergot alkaloids seemed to be of minor importance (less than 6.1% in DF). The total ergot alkaloid amounts varied considerably between DF and FOI by a factor of 8.6 as well as the LSA concentration ranging from 3 μg (lowest amount in one FOI seed) to approximately 34 μg (highest amount in one DF capsule). Among the FOI seeds, the LSA concentration varied from approximately 3-15 μg per seed. Thus, the quality/potency of seeds/preparations depends on the amount of ergot alkaloids and the intensity of an expected trip is totally

  10. Engineered Biosynthesis of Natural Products in Heterologous Hosts

    PubMed Central

    Luo, Yunzi; Li, Bing-Zhi; Liu, Duo; Zhang, Lu; Chen, Yan; Jia, Bin; Zeng, Bo-Xuan; Zhao, Huimin; Yuan, Ying-Jin

    2015-01-01

    Natural products produced by microorganisms and plants are a major resource of antibacterial and anticancer drugs as well as industrially useful compounds. However, the native producers often suffer from low productivity and titers. Here we summarize the recent applications of heterologous biosynthesis for the production of several important classes of natural products such as terpenoids, flavonoids, alkaloids, and polyketides. In addition, we will discuss the new tools and strategies at multi-scale levels including gene, pathway, genome and community levels for highly efficient heterologous biosynthesis of natural products. PMID:25960127

  11. Elucidating steroid alkaloid biosynthesis in Veratrum californicum: production of verazine in Sf9 cells.

    PubMed

    Augustin, Megan M; Ruzicka, Dan R; Shukla, Ashutosh K; Augustin, Jörg M; Starks, Courtney M; O'Neil-Johnson, Mark; McKain, Michael R; Evans, Bradley S; Barrett, Matt D; Smithson, Ann; Wong, Gane Ka-Shu; Deyholos, Michael K; Edger, Patrick P; Pires, J Chris; Leebens-Mack, James H; Mann, David A; Kutchan, Toni M

    2015-06-01

    Steroid alkaloids have been shown to elicit a wide range of pharmacological effects that include anticancer and antifungal activities. Understanding the biosynthesis of these molecules is essential to bioengineering for sustainable production. Herein, we investigate the biosynthetic pathway to cyclopamine, a steroid alkaloid that shows promising antineoplastic activities. Supply of cyclopamine is limited, as the current source is solely derived from wild collection of the plant Veratrum californicum. To elucidate the early stages of the pathway to cyclopamine, we interrogated a V. californicum RNA-seq dataset using the cyclopamine accumulation profile as a predefined model for gene expression with the pattern-matching algorithm Haystack. Refactoring candidate genes in Sf9 insect cells led to discovery of four enzymes that catalyze the first six steps in steroid alkaloid biosynthesis to produce verazine, a predicted precursor to cyclopamine. Three of the enzymes are cytochromes P450 while the fourth is a γ-aminobutyrate transaminase; together they produce verazine from cholesterol. PMID:25939370

  12. Elucidating steroid alkaloid biosynthesis in Veratrum californicum: production of verazine in Sf9 cells

    PubMed Central

    Augustin, Megan M.; Ruzicka, Dan R.; Shukla, Ashutosh K.; Augustin, Jörg M.; Starks, Courtney M.; O’Neil-Johnson, Mark; McKain, Michael R.; Evans, Bradley S.; Barrett, Matt D.; Smithson, Ann; Wong, Gane Ka-Shu; Deyholos, Michael K.; Edger, Patrick P.; Pires, J. Chris; Leebens-Mack, James H.; Mann, David A.; Kutchan, Toni M.

    2015-01-01

    Summary Steroid alkaloids have been shown to elicit a wide range of pharmacological effects that include anticancer and antifungal activities. Understanding the biosynthesis of these molecules is essential to bioengineering for sustainable production. Herein, we investigate the biosynthetic pathway to cyclopamine, a steroid alkaloid that shows promising antineoplastic activities. Supply of cyclopamine is limited, as the current source is solely derived from wild collection of the plant Veratrum californicum. To elucidate the early stages of the pathway to cyclopamine, we interrogated a V. californicum RNA-seq dataset using the cyclopamine accumulation profile as a predefined model for gene expression with the pattern-matching algorithm Haystack. Refactoring candidate genes in Sf9 insect cells led to discovery of four enzymes that catalyze the first six steps in steroid alkaloid biosynthesis to produce verazine, a predicted precursor to cyclopamine. Three of the enzymes are cytochromes P450 while the fourth is a γ-aminobutyrate transaminase; together they produce verazine from cholesterol. PMID:25939370

  13. The effects of UV-B stress on the production of terpenoid indole alkaloids in Catharanthus roseus hairy roots.

    PubMed

    Binder, Bernard Y K; Peebles, Christie A M; Shanks, Jacqueline V; San, Ka-Yiu

    2009-01-01

    In nature, plants generate protective secondary metabolites in response to environmental stresses. Such metabolites include terpenoid indole alkaloids (TIAs), which absorb UV-B light and serve putatively to protect the plant from harmful radiation. Catharanthus roseus plants, multiple shoot cultures, and cell suspension cultures exposed to UV-B light show significant increases in the production of TIAs, including precursors to vinblastine and vincristine, which have proven effective in the treatment of leukemia and lymphoma. Here, the effect of UV-B light on C. roseus hairy roots was examined. Analysis of alkaloid concentrations up to 168 h after UV-B exposure shows significant increases in the concentrations of lochnericine and significant decreases in the concentration of hörhammericine over time (ANOVA, P < 0.05). Our results also indicate that increasing UV-B exposure time up to 20 min caused significant increases in lochnericine, serpentine, and ajmalicine and a decrease in hörhammericine (t-test, p < 0.05). PMID:19479674

  14. New Perspectives in the Chemistry of Marine Pyridoacridine Alkaloids

    PubMed Central

    Plodek, Alois; Bracher, Franz

    2016-01-01

    Secondary metabolites from marine organisms are a rich source of novel leads for drug development. Among these natural products, polycyclic aromatic alkaloids of the pyridoacridine type have attracted the highest attention as lead compounds for the development of novel anti-cancer and anti-infective drugs. Numerous sophisticated total syntheses of pyridoacridine alkaloids have been worked out, and many of them have also been extended to the synthesis of libraries of analogues of the alkaloids. This review summarizes the progress in the chemistry of pyridoacridine alkaloids that was made in the last one-and-a-half decades. PMID:26821033

  15. The Securinega alkaloids.

    PubMed

    Chirkin, Eqor; Atkatlian, William; Porée, François-Hugues

    2015-01-01

    Securinega alkaloids represent a family of plant secondary metabolites known for 50 years. Securinine (1), the most abundant and studied alkaloid of this series was isolated by Russian researchers in 1956. In the following years, French and Japanese scientists reported other Securinega compounds and extensive work was done to elucidate their intriguing structures. The homogeneity of this family relies mainly on its tetracyclic chemical backbone, which features a butenolide moiety (cycle D) and an azabicyclo[3.2.1]octane ring system (rings B and C). Interestingly, after a period of latency of 20 years, the Securinega topic reemerged as a prolific source of new natural structures and to date more than 50 compounds have been identified and characterized. The oligomeric subgroup gathering dimeric, trimeric, and tetrameric units is of particular interest. The unprecedented structure of the Securinega alkaloids was the subject of extensive synthetic efforts culminating in several efficient and elegant total syntheses. The botanical distribution of these alkaloids seems limited to the Securinega, Flueggea, Margaritaria, and Breynia genera (Phyllanthaceae). However, only a limited number of plant species have been considered for their alkaloid contents, and additional phytochemical as well as genetic studies are needed. Concerning the biosynthesis, experiments carried out with radiolabelled aminoacids allowed to identify lysine and tyrosine as the precursors of the piperidine ring A and the CD rings of securinine (1), respectively. Besides, plausible biosynthetic pathways were proposed for virosaine A (38) and B (39), flueggine A (46), and also the different oligomers flueggenine A-D (48-51), fluevirosinine A (56), and flueggedine (20). The case of nirurine (45) and secu'amamine (37) remains elusive and additional studies seem necessary to understand their mode of production. The scope of biological of activities of the Securinega alkaloids was mainly centered on the CNS

  16. Evaluation of Biosynthetic Pathway and Engineered Biosynthesis of Alkaloids.

    PubMed

    Kishimoto, Shinji; Sato, Michio; Tsunematsu, Yuta; Watanabe, Kenji

    2016-01-01

    Varieties of alkaloids are known to be produced by various organisms, including bacteria, fungi and plants, as secondary metabolites that exhibit useful bioactivities. However, understanding of how those metabolites are biosynthesized still remains limited, because most of these compounds are isolated from plants and at a trace level of production. In this review, we focus on recent efforts in identifying the genes responsible for the biosynthesis of those nitrogen-containing natural products and elucidating the mechanisms involved in the biosynthetic processes. The alkaloids discussed in this review are ditryptophenaline (dimeric diketopiperazine alkaloid), saframycin (tetrahydroisoquinoline alkaloid), strictosidine (monoterpene indole alkaloid), ergotamine (ergot alkaloid) and opiates (benzylisoquinoline and morphinan alkaloid). This review also discusses the engineered biosynthesis of these compounds, primarily through heterologous reconstitution of target biosynthetic pathways in suitable hosts, such as Escherichia coli, Saccharomyces cerevisiae and Aspergillus nidulans. Those heterologous biosynthetic systems can be used to confirm the functions of the isolated genes, economically scale up the production of the alkaloids for commercial distributions and engineer the biosynthetic pathways to produce valuable analogs of the alkaloids. In particular, extensive involvement of oxidation reactions catalyzed by oxidoreductases, such as cytochrome P450s, during the secondary metabolite biosynthesis is discussed in details. PMID:27548127

  17. A new phenanthridine alkaloid from Hymenocallis x festalis.

    PubMed

    Hohmann, J; Forgo, P; Szabó, P

    2002-12-01

    Investigation of the alkaloid fraction of the bulbs of Hymenocallis x festalis yielded a new natural product, 3-methoxy-8,9-methylenedioxy-3,4-dihydrophenanthridine (1). The structure was elucidated on the basis of spectroscopic data. PMID:12490249

  18. Naturally Occurring Carbazole Alkaloids from Murraya koenigii as Potential Antidiabetic Agents.

    PubMed

    Patel, Om P S; Mishra, Akansha; Maurya, Ranjani; Saini, Deepika; Pandey, Jyotsana; Taneja, Isha; Raju, Kanumuri S R; Kanojiya, Sanjeev; Shukla, Sanjeev K; Srivastava, Mahendra N; Wahajuddin, M; Tamrakar, Akhilesh K; Srivastava, Arvind K; Yadav, Prem P

    2016-05-27

    This study identified koenidine (4) as a metabolically stable antidiabetic compound, when evaluated in a rodent type 2 model (leptin receptor-deficient db/db mice), and showed a considerable reduction in the postprandial blood glucose profile with an improvement in insulin sensitivity. Biological studies were directed from the preliminary in vitro evaluation of the effects of isolated carbazole alkaloids (1-6) on glucose uptake and GLUT4 translocation in L6-GLUT4myc myotubes, followed by an investigation of their activity (2-5) in streptozotocin-induced diabetic rats. The effect of koenidine (4) on GLUT4 translocation was mediated by the AKT-dependent signaling pathway in L6-GLUT4myc myotubes. Moreover, in vivo pharmacokinetic studies of compounds 2 and 4 clearly showed that compound 4 was 2.7 times more bioavailable than compound 2, resulting in a superior in vivo efficacy. Therefore, these studies suggested that koenidine (4) may serve as a promising lead natural scaffold for managing insulin resistance and diabetes. PMID:27136692

  19. Microbial production of isoquinoline alkaloids as plant secondary metabolites based on metabolic engineering research

    PubMed Central

    SATO, Fumihiko; KUMAGAI, Hidehiko

    2013-01-01

    Plants produce a variety of secondary metabolites that possess strong physiological activities. Unfortunately, however, their production can suffer from a variety of serious problems, including low levels of productivity and heterogeneous quality, as well as difficulty in raw material supply. In contrast, microorganisms can be used to produce their primary and some of their secondary metabolites in a controlled environment, thus assuring high levels of efficiency and uniform quality. In an attempt to overcome the problems associated with secondary metabolite production in plants, we developed a microbial platform for the production of plant isoquinoline alkaloids involving the unification of the microbial and plant metabolic pathways into a single system. The potential applications of this system have also been discussed. PMID:23666088

  20. Elucidation of the DNA binding specificity of the natural plant alkaloid chelerythrine: a biophysical approach.

    PubMed

    Basu, Pritha; Suresh Kumar, Gopinatha

    2014-09-01

    Interaction of the anticancer plant alkaloid chelerythrine with four sequence specific synthetic polynucleotides was studied by spectroscopy and calorimetry experiments. The binding resulted in strong hypochromic and bathochromic effects in the absorption spectrum of the alkaloid, enhancement in the fluorescence with the AT polynucleotides and the homo-GC polynucleotide and quenching with the hetero-GC polynucleotide. Cooperative binding was observed with all the polynucleotides. Fluorescence polarization anisotropy, iodide quenching and viscosity results confirmed intercalative binding of the alkaloid. The binding resulted in the thermal stabilization of the polynucleotides and moderate perturbations in the B-conformation of the DNA. The high binding affinity values (∼10(6) M(-1)) evaluated from the spectroscopic data was in excellent agreement with those obtained from calorimetry. The binding was exothermic and favoured by negative standard molar enthalpy and positive standard molar entropic contributions in all cases other than homo-AT polynucleotide, where it was endothermic and entropy driven. Salt-dependent calorimetry data revealed that the binding reaction was driven mostly by non-polyelectrolytic forces. The magnitude of the negative heat capacity values confirmed the role of significant hydrophobic effects in the interaction profile of the alkaloid with the polynucleotides. The results revealed the specificity of chelerythrine to follow homo-GC>hetero-GC>hetero-AT=homo-AT polynucleotide. PMID:25010289

  1. Deoxyamphimedine, a pyridoacridine alkaloid, damages DNA via the production of reactive oxygen species.

    PubMed

    Marshall, Kathryn M; Andjelic, Cynthia D; Tasdemir, Deniz; Concepción, Gisela P; Ireland, Chris M; Barrows, Louis R

    2009-01-01

    Marine pyridoacridines are a class of aromatic chemicals that share an 11H-pyrido[4,3,2-mn]acridine skeleton. Pyridoacridine alkaloids display diverse biological activities including cytotoxicity, fungicidal and bactericidal properties, production of reactive oxygen species (ROS) and topoisomerase inhibition. These activities are often dependent on slight modifications to the pyridoacridine skeleton. Here we demonstrate that while structurally similar to neoamphimedine and amphimedine, the biological activity of deoxyamphimedine differs greatly. Deoxyamphimedine damages DNA in vitro independent of topoisomerase enzymes through the generation of reactive oxygen species. Its activity was decreased in low oxygen, with the removal of a reducing agent and in the presence of anti-oxidants. Deoxyamphimedine also showed enhanced toxicity in cells sensitive to single or double strand DNA breaks, consistent with the in vitro activity. PMID:19597581

  2. Natural Products for Antithrombosis

    PubMed Central

    Chen, Cen; Zhang, Qian; Wang, Feng-Qin; Hu, Yuan-Jia; Xia, Zhi-Ning

    2015-01-01

    Thrombosis is considered to be closely related to several diseases such as atherosclerosis, ischemic heart disease and stroke, as well as rheumatoid arthritis, hyperuricemia, and various inflammatory conditions. More and more studies have been focused on understanding the mechanism of molecular and cellular basis of thrombus formation as well as preventing thrombosis for the treatment of thrombotic diseases. In reality, there is considerable interest in the role of natural products and their bioactive components in the prevention and treatment of thrombosis related disorders. This paper briefly describes the mechanisms of thrombus formation on three aspects, including coagulation system, platelet activation, and aggregation, and change of blood flow conditions. Furthermore, the natural products for antithrombosis by anticoagulation, antiplatelet aggregation, and fibrinolysis were summarized, respectively. PMID:26075003

  3. Natural products as photoprotection.

    PubMed

    Saewan, Nisakorn; Jimtaisong, Ampa

    2015-03-01

    The rise in solar ultraviolet radiation on the earth's surface has led to a depletion of stratospheric ozone over recent decades, thus accelerating the need to protect human skin against the harmful effects of UV radiation such as erythema, edema, hyperpigmentation, photoaging, and skin cancer. There are many different ways to protect skin against UV radiation's harmful effects. The most popular way to reduce the amount of UV radiation penetrating the skin is topical application of sunscreen products that contain UV absorbing or reflecting active molecules. Based on their protection mechanism, the active molecules in sunscreens are broadly divided into inorganic and organic agents. Inorganic sunscreens reflect and scatter UV and visible radiation, while organic sunscreens absorb UV radiation and then re-emit energy as heat or light. These synthetic molecules have limited concentration according to regulation concern. Several natural compounds with UV absorption property have been used to substitute for or to reduce the quantity of synthetic sunscreen agents. In addition to UV absorption property, most natural compounds were found to act as antioxidants, anti-inflammatory, and immunomodulatory agents, which provide further protection against the damaging effects of UV radiation exposure. Compounds derived from natural sources have gained considerable attention for use in sunscreen products and have bolstered the market trend toward natural cosmetics. This adds to the importance of there being a wide selection of active molecules in sunscreen formulations. This paper summarizes a number of natural products derived from propolis, plants, algae, and lichens that have shown potential photoprotection properties against UV radiation exposure-induced skin damage. PMID:25582033

  4. NATURAL PRODUCTS FOR PEST MANAGEMENT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The topic of natural products as pesticides is reviewed, with a discussion of the advantages and disadvantages of adopting a natural product-based strategy for pesticide discovery. Current and past natural product and natural product-based herbicides, insecticides, fungicides, molluscicides, rodent...

  5. BIAdb: A curated database of benzylisoquinoline alkaloids

    PubMed Central

    2010-01-01

    Background Benzylisoquinoline is the structural backbone of many alkaloids with a wide variety of structures including papaverine, noscapine, codeine, morphine, apomorphine, berberine, protopine and tubocurarine. Many benzylisoquinoline alkaloids have been reported to show therapeutic properties and to act as novel medicines. Thus it is important to collect and compile benzylisoquinoline alkaloids in order to explore their usage in medicine. Description We extract information about benzylisoquinoline alkaloids from various sources like PubChem, KEGG, KNApSAcK and manual curation from literature. This information was processed and compiled in order to create a comprehensive database of benzylisoquinoline alkaloids, called BIAdb. The current version of BIAdb contains information about 846 unique benzylisoquinoline alkaloids, with multiple entries in term of source, function leads to total number of 2504 records. One of the major features of this database is that it provides data about 627 different plant species as a source of benzylisoquinoline and 114 different types of function performed by these compounds. A large number of online tools have been integrated, which facilitate user in exploring full potential of BIAdb. In order to provide additional information, we give external links to other resources/databases. One of the important features of this database is that it is tightly integrated with Drugpedia, which allows managing data in fixed/flexible format. Conclusions A database of benzylisoquinoline compounds has been created, which provides comprehensive information about benzylisoquinoline alkaloids. This database will be very useful for those who are working in the field of drug discovery based on natural products. This database will also serve researchers working in the field of synthetic biology, as developing medicinally important alkaloids using synthetic process are one of important challenges. This database is available from http

  6. Structure Determination of Natural Products by Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Biemann, Klaus

    2015-07-01

    I review laboratory research on the development of mass spectrometric methodology for the determination of the structure of natural products of biological and medical interest, which I conducted from 1958 to the end of the twentieth century. The methodology was developed by converting small peptides to their corresponding polyamino alcohols to make them amenable to mass spectrometry, thereby making it applicable to whole proteins. The structures of alkaloids were determined by analyzing the fragmentation of a known alkaloid and then using the results to deduce the structures of related compounds. Heparin-like structures were investigated by determining their molecular weights from the mass of protonated molecular ions of complexes with highly basic, synthetic peptides. Mass spectrometry was also employed in the analysis of lunar material returned by the Apollo missions. A miniaturized gas chromatograph mass spectrometer was sent to Mars on board of the two Viking 1976 spacecrafts.

  7. Structure Determination of Natural Products by Mass Spectrometry.

    PubMed

    Biemann, Klaus

    2015-01-01

    I review laboratory research on the development of mass spectrometric methodology for the determination of the structure of natural products of biological and medical interest, which I conducted from 1958 to the end of the twentieth century. The methodology was developed by converting small peptides to their corresponding polyamino alcohols to make them amenable to mass spectrometry, thereby making it applicable to whole proteins. The structures of alkaloids were determined by analyzing the fragmentation of a known alkaloid and then using the results to deduce the structures of related compounds. Heparin-like structures were investigated by determining their molecular weights from the mass of protonated molecular ions of complexes with highly basic, synthetic peptides. Mass spectrometry was also employed in the analysis of lunar material returned by the Apollo missions. A miniaturized gas chromatograph mass spectrometer was sent to Mars on board of the two Viking 1976 spacecrafts. PMID:26161970

  8. [Production of plant-derived natural products in yeast cells - A review].

    PubMed

    Wang, Dong; Dai, Zhubo; Zhang, Xueli

    2016-03-01

    Plant-derived natural products (PNPs) have been widely used in pharmaceutical and nutritional fields. So far, the main method to produce PNPs is extracting them from their original plants, however, there remains lots of problems. With the concept of synthetic biology, construction of yeast cell factories for production of PNPs provides an alternative way. In this review, we will focus on PNPs' market and application, research progress for production of artemisinin, research progress for production of terpenes, alkaloids and polyunsaturated fatty acid (PUFAs) and recent technology development to give a brief introduction of construction of yeast cells for production of PNPs. PMID:27382793

  9. Marine natural products.

    PubMed

    Blunt, John W; Copp, Brent R; Keyzers, Robert A; Munro, Murray H G; Prinsep, Michèle R

    2016-03-01

    This review covers the literature published in 2014 for marine natural products (MNPs), with 1116 citations (753 for the period January to December 2014) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1378 in 456 papers for 2014), together with the relevant biological activities, source organisms and country of origin. Reviews, biosynthetic studies, first syntheses, and syntheses that lead to the revision of structures or stereochemistries, have been included. PMID:26837534

  10. Marine natural products.

    PubMed

    Blunt, John W; Copp, Brent R; Keyzers, Robert A; Munro, Murray H G; Prinsep, Michèle R

    2014-01-17

    This review covers the literature published in 2012 for marine natural products, with 1035 citations (673 for the period January to December 2012) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1241 for 2012), together with the relevant biological activities, source organisms and country of origin. Biosynthetic studies, first syntheses, and syntheses that lead to the revision of structures or stereochemistries, have been included. PMID:24389707

  11. Marine natural products.

    PubMed

    Blunt, John W; Copp, Brent R; Keyzers, Robert A; Munro, Murray H G; Prinsep, Michèle R

    2015-02-01

    This review covers the literature published in 2013 for marine natural products (MNPs), with 982 citations (644 for the period January to December 2013) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1163 for 2013), together with the relevant biological activities, source organisms and country of origin. Reviews, biosynthetic studies, first syntheses, and syntheses that lead to the revision of structures or stereochemistries, have been included. PMID:25620233

  12. Marine natural products.

    PubMed

    Blunt, John W; Copp, Brent R; Keyzers, Robert A; Munro, Murray H G; Prinsep, Michèle R

    2013-02-01

    This review covers the literature published in 2011 for marine natural products, with 870 citations (558 for the period January to December 2011) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1152 for 2011), together with the relevant biological activities, source organisms and country of origin. Biosynthetic studies, first syntheses, and syntheses that lead to the revision of structures or stereochemistries, have been included. PMID:23263727

  13. Reconstituting Plant Secondary Metabolism in Saccharomyces cerevisiae for Production of High-Value Benzylisoquinoline Alkaloids.

    PubMed

    Pyne, M E; Narcross, L; Fossati, E; Bourgeois, L; Burton, E; Gold, N D; Martin, V J J

    2016-01-01

    Benzylisoquinoline alkaloids (BIAs) constitute a diverse class of plant secondary metabolites that includes the opiate analgesics morphine and codeine. Collectively, BIAs exhibit a myriad of pharmacological activities, including antimicrobial, antitussive, antispasmodic, and anticancer properties. Despite 2500 known BIA products, only a small proportion are currently produced though traditional crop-based manufacturing, as complex stereochemistry renders chemical synthesis of BIAs largely unfeasible. The advent of synthetic biology and sophisticated microbial engineering coupled with recent advances in the elucidation of plant BIA metabolic networks has provided growing motivation for producing high-value BIAs in microbial hosts. Here, we provide a technical basis for reconstituting BIA biosynthetic pathways in the common yeast Saccharomyces cerevisiae. Methodologies outlined in this chapter include fundamental techniques for expressing and assaying BIA biosynthetic enzymes, bioprospecting large libraries of BIA enzyme variants, and reconstituting and optimizing complete BIA formation pathways in yeast. To expedite construction of superior BIA-producing yeast strains, we emphasize high-throughput techniques. Finally, we identify fundamental challenges impeding deployment of yeast-based BIA production platforms and briefly outline future prospects to overcome such barriers. PMID:27417930

  14. Asexual endophytes in a native grass: Tradeoffs in mortality, growth, reproduction, and alkaloid production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Neotyphodium endophytes are asexual, seed-borne fungal symbionts that are thought to interact mutualistically with their grass hosts. Benefits include increased growth, reproduction, and resistance of herbivores via endophytic alkaloids. Although these benefits are well established in infected int...

  15. Production of imidazole alkaloids in cell cultures of jaborandi as affected by the medium pH.

    PubMed

    Andreazza, N L; Abreu, I N; Sawaya, A C H F; Eberlin, M N; Mazzafera, P

    2009-04-01

    The effect of pH (from 4.8 to 9.8) on the production of pilosine and pilocarpine and on their partition between cell and medium was studied in two lineages (P and PP) of Pilocarpus microphyllus cell suspension cultures. Highest mass accumulation was observed at high pHs and both lineages produced pilocarpine while only lineage PP produced pilosine. Both alkaloids were released in the medium but higher accumulation occurred in the cells. The highest production of pilocarpine was at pH 8.8-9.8 in both cell lineages. Other imidazole alkaloids were also identified in both lineages. At all pHs tested, the pH in the media cultures tended to stabilize around 6 after 10-15 days of cultivation. NO3(-) and NH4+ variation in the media might partially explain the pH stabilization. PMID:19066732

  16. Effect of ion pairing on the fluorescence of berberine, a natural isoquinoline alkaloid

    NASA Astrophysics Data System (ADS)

    Megyesi, Mónika; Biczók, László

    2007-10-01

    Effect of association with chloride or perchlorate anions on the fluorescence properties of berberine, a cationic isoquinoline alkaloid, has been studied. Interaction with Cl - caused more efficient fluorescence quenching; it significantly accelerated the radiationless deactivation and slowed down the radiative transition. Combined analysis of spectrophotometric, steady-state and time-resolved fluorescence results provided 1.5 × 10 5 M -1 for the equilibrium constant of ion pairing with Cl - in CH 2Cl 2. Both ion pairing and enrichment of the microenvironment of berberine in ions led to excited state quenching in solvents of medium polarity, but only the latter effect was observed in the presence of perchlorates in butyronitrile.

  17. Recent Advances on the Total Syntheses of Communesin Alkaloids and Perophoramidine.

    PubMed

    Trost, Barry M; Osipov, Maksim

    2015-11-01

    The communesin alkaloids are a diverse family of Penicillium-derived alkaloids. Their caged-polycyclic structure and intriguing biological profiles have made these natural products attractive targets for total synthesis. Similarly, the ascidian-derived alkaloid, perophoramidine, is structurally related to the communesins and has also become a popular target for total synthesis. This review serves to summarize the many elegant approaches that have been developed to access the communesin alkaloids and perophoramidine. Likewise, strategies to access the communesin ring system are reviewed. PMID:26353936

  18. Structural Diversity and Biological Activities of Indole Diketopiperazine Alkaloids from Fungi.

    PubMed

    Ma, Yang-Min; Liang, Xi-Ai; Kong, Yang; Jia, Bin

    2016-09-01

    Indole diketopiperazine alkaloids are secondary metabolites of microorganisms that are widely distributed in filamentous fungi, especially in the genera Aspergillus and Penicillium of the phylum Ascomycota or sac fungi. These alkaloids represent a group of natural products characterized by diversity in both chemical structures and biological activities. This review aims to summarize 166 indole diketopiperazine alkaloids from fungi published from 1944 to mid-2015. The emphasis is on diverse chemical structures within these alkaloids and their relevant biological activities. The aim is to assess which of these compounds merit further study for purposes of drug development. PMID:27538469

  19. Pest management with natural products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The 2012 Philadelphia ACS Symposium on Natural Products for Pest Management introduced recent discoveries and applications of natural products from insect, terrestrial plant, microbial, and synthetic sources for the management of insects, weeds, plant pathogenic microbes, and nematodes. The symposiu...

  20. Natural products: Emulation illuminates biosynthesis

    NASA Astrophysics Data System (ADS)

    Mercer, Jaron A. M.; Burns, Noah Z.

    2015-11-01

    A concise synthesis of the fungal natural product epicolactone suggests that this highly stereochemically complex yet racemic natural product may come from a cascade reaction between two polyhydroxylated arenes.

  1. Opportunities and Challenges for Natural Products as Novel Antituberculosis Agents.

    PubMed

    Farah, Shrouq I; Abdelrahman, Abd Almonem; North, E Jeffrey; Chauhan, Harsh

    2016-01-01

    Current tuberculosis (TB) treatment suffers from complexity of the dosage regimens, length of treatment, and toxicity risks. Many natural products have shown activity against drug-susceptible, drug-resistant, and latent/dormant Mycobacterium tuberculosis, the pathogen responsible for TB infections. Natural sources, including plants, fungi, and bacteria, provide a rich source of chemically diverse compounds equipped with unique pharmacological, pharmacokinetic, and pharmacodynamic properties. This review focuses on natural products as starting points for the discovery and development of novel anti-TB chemotherapy and classifies them based on their chemical nature. The classes discussed are divided into alkaloids, chalcones, flavonoids, peptides, polyketides, steroids, and terpenes. This review also highlights the importance of collaboration between phytochemistry, medicinal chemistry, and physical chemistry, which is very important for the development of these natural compounds. PMID:26565779

  2. Natural Products for Cancer Prevention

    PubMed Central

    Greenlee, Heather

    2013-01-01

    OBJECTIVES To review the clinical trial literature on the use and effects of natural products for cancer prevention. DATA SOURCES Clinical trials published in PubMed. CONCLUSION There is a growing body of literature on the use of natural products for cancer prevention. To date, few trials have demonstrated conclusive benefit. Current guidelines recommend against the use of natural products for cancer prevention. IMPLICATIONS FOR NURSING PRACTICE Clinicians should ask patients about their use of natural products and motivations for use. If patients are using natural products specifically for cancer prevention, they should be counseled on the current guidelines, as well as their options for other cancer prevention strategies. PMID:22281308

  3. Comparison of terpenoid indole alkaloid production and degradation in two cell lines of Tabernaemontana divaricata.

    PubMed

    Dagnino, D; Schripsema, J; Verpoorte, R

    1993-12-01

    Two cell lines of Tabernaemontana divaricata derived from the same suspension culture accumulate different amounts of the terpenoid indole alkaloids O-acetylvallesamine and voaphylline. [(15)N]O-acetylvallesamine and [(15)N]voaphylline were added to the suspension cultures to investigate whether the lack of accumulating capacity of one of the cell lines was due to a low biosynthetic ability or to high turnover rates. The difference was shown to be due to the inability of the cell culture to biosynthesize both alkaloids. Both cell lines were able to metabolize O-acetylvallesamine. This metabolisation occurred mainly during the stationary phase. The alkaloids added were chemically unstable under culture conditions. Under normal batch cell culture conditions chemical breakdown is thought to play a minor role in the total amount of compound transformed. PMID:24196295

  4. Activities and effects of ergot alkaloids on livestock physiology and production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ergot alkaloids can have a broad impact on many different physiological mechanisms that can alter the homeostasis of livestock exposed to these toxins through consumption of infested feedstuffs. This altered homeostasis causes an increased sensitivity in livestock to perturbations in the ambient env...

  5. Total synthesis, biosynthesis and biological profiles of clavine alkaloids.

    PubMed

    McCabe, Stephanie R; Wipf, Peter

    2016-07-01

    This review highlights noteworthy synthetic and biological aspects of the clavine subfamily of ergot alkaloids. Recent biosynthetic insights have laid the groundwork for a better understanding of the diverse biological pathways leading to these indole derivatives. Ergot alkaloids were among the first fungal-derived natural products identified, inspiring pharmaceutical applications in CNS disorders, migraine, infective diseases, and cancer. Pergolide, for example, is a semi-synthetic clavine alkaloid that has been used to treat Parkinson's disease. Synthetic activities have been particularly valuable to facilitate access to rare members of the Clavine family and empower medicinal chemistry research. Improved molecular target identification tools and a better understanding of signaling pathways can now be deployed to further extend the biological and medical utility of Clavine alkaloids. PMID:27215547

  6. Production of therapeutically relevant indolizidine alkaloids in Securinega suffruticosa in vitro shoots maintained in liquid culture systems.

    PubMed

    Raj, Danuta; Kokotkiewicz, Adam; Luczkiewicz, Maria

    2015-02-01

    Microshoot cultures of the Chinese medicinal plant Securinega suffruticosa (Pall.) Rehd. were established and evaluated for the presence of therapeutically relevant indolizidine alkaloids securinine (S) and allosecurinine (AS). The cultures were maintained in shake flasks (SFs) and a bubble column bioreactor (BCB) using the modified Murashige's shoot multiplication medium supplemented with 1.0 mg l(-1) benzyladenine (BA), 3.0 mg l(-1) 2-isopentenyladenine (2iP), and 0.3 mg l(-1) 1-naphthaleneacetic acid (NAA). The influence of light and medium supplementation strategies with biosynthesis precursor (lysine (LY)) and nutrient formulations (casein hydrolysate (CH) and coconut water (CW)) on biomass growth and alkaloid production were investigated. SF cultures grown in the presence of light yielded up to 6.02 mg g(-1) dry weight (DW) S and 3.70 mg g(-1) DW AS, corresponding to the respective productivities of 98.39 and 60.21 mg l(-1). Among feeding experiments, CW supplementation proved most effective for SF-grown shoots, increasing biomass yield and AS productivity by 52 and 44 %, respectively. Maximum concentrations of securinine (3.25 mg g(-1) DW) and allosecurinine (3.41 mg g(-1) DW) in BCB cultures were achieved in the case of 1.0 g l(-1) LY supplementation. These values corresponded to the productivities of 42.64 and 44.47 mg per bioreactor, respectively. PMID:25413794

  7. Alkaloid-derived molecules in low rank Argonne premium coals.

    SciTech Connect

    Winans, R. E.; Tomczyk, N. A.; Hunt, J. E.

    2000-11-30

    Molecules that are probably derived from alkaloids have been found in the extracts of the subbituminous and lignite Argonne Premium Coals. High resolution mass spectrometry (HRMS) and liquid chromatography mass spectrometry (LCMS) have been used to characterize pyridine and supercritical extracts. The supercritical extraction used an approach that has been successful for extracting alkaloids from natural products. The first indication that there might be these natural products in coals was the large number of molecules found containing multiple nitrogen and oxygen heteroatoms. These molecules are much less abundant in bituminous coals and absent in the higher rank coals.

  8. Atropurpuran – Missing Biosynthetic Link Leading to the Hetidine and Arcutine C20-Diterpenoid Alkaloids or an Oxidative Degradation Product?

    PubMed Central

    Weber, Manuel; Owens, Kyle; Sarpong, Richmond

    2015-01-01

    A possible biosynthetic link between atropurpuran, the hetidine diterpenoid alkaloids and the alkaloid arcutine and congeners is proposed. The feasibility of aspects of this biosynthesis, especially key 1,2-rearrangements, have been examined computationally. PMID:26028789

  9. Selective cytotoxicity of Pancratistatin-related natural Amaryllidaceae alkaloids: evaluation of the activity of two new compounds

    PubMed Central

    Griffin, Carly; Sharda, Natasha; Sood, Divya; Nair, Jerald; McNulty, James; Pandey, Siyaram

    2007-01-01

    Background Pancratistatin (PST), a compound extracted from an Amaryllidaceae (AMD) family plant, has been shown to specifically induce apoptosis in cancer cells with no/minimal toxic effect on normal cells. A systematic synthetic approach has indicated that the minimum cytotoxic pharmacophore comprises the trans-fused b/c-ring system containing the 2, 3, 4-triol unit in the C-ring. To further explore the structure-activity relationship of this group of compounds we have investigated the anti-cancer efficacy and specificity of two PST-related natural compounds, AMD4 and AMD5. Both of these compounds lack the polyhydroxylated lycorane element of PST instead having a methoxy-substuituted crinane skeleton. Results Our results indicate that AMD5 has efficacy and selectivity similar to PST, albeit at a 10-fold increased concentration. Interestingly AMD4 lacks apoptotic activity. Conclusion Our results indicate that the phenanthridone skeleton in natural Amaryllidaceae alkaloids may be a significant common element for selectivity against cancer cells; furthermore, the configuration of the methoxy-side groups is responsible for higher binding affinity to the target protein/s thus making for a more efficient anti-cancer agent. PMID:17550595

  10. Natural products and caries prevention.

    PubMed

    Cheng, Lei; Li, Jiyao; He, Libang; Zhou, Xuedong

    2015-01-01

    Dental caries is considered as the most common polymicrobial oral disease in the world. With the aim of developing alternative approaches to reduce or prevent the decay, numerous papers showed the potential anticaries activity of a number of natural products. The natural products with anticaries effects are selected from e.g. food, beverages, flowers or traditional herbs. Most of the effective components are proven to be polyphenol compounds. Many of the natural products are studied as antibacterial agents, while some of them are found to be effective in shifting the de-/remineralization balance. However, the mechanisms of the anticaries effects are still unclear for most of the natural products. In the future, more efforts need to be made to seek novel effective natural products via in vitro experiment, animal study and in situ investigations, as well as to enhance their anticaries effects with the help of novel technology like nanotechnology. PMID:25871417

  11. Screening and optimization of some inorganic salts for the production of ergot alkaloids from Penicillium species using surface culture fermentation process.

    PubMed

    Shahid, Memuna Ghafoor; Nadeem, Muhammad; Baig, Shahjehan; Cheema, Tanzeem Akbar; Atta, Saira; Ghafoor, Gul Zareen

    2016-03-01

    The present study deals with the production of ergot alkaloids from Penicillium commune and Penicillium citrinum, using surface culture fermentation process. Impact of various inorganic salts was tested on the production of ergot alkaloids during the optimization studies of fermentation medium such as impact of various concentration levels of succinic acid, ammonium chloride, MgSO4, FeSO4, ZnSO4, pH and the effect of various incubation time periods was also determined on the production of ergot alkaloids from Penicillium commune and Penicillium citrinum. Highest yield of ergot alkaloids was obtained when Penicillium commune and Penicillium citrinum that were grown on optimum levels of ingredients such as 2 g succinic acid, 1.5 and 2 g NH4Cl, 1.5 g MgSO4, 1 g FeSO4, 1 and 1.5 g ZnSO4 after 21 days of incubation time period using pH 5 at 25(°)C incubation temperature in the fermentation medium. Ergot alkaloids were determined using Spectrophotometry and Thin Layer Chromatography (TLC) techniques. PMID:27087069

  12. Tubulin-Interactive Natural Products as Anticancer Agents1

    PubMed Central

    Kingston, David G. I.

    2009-01-01

    This review provides an overview of the discovery, structures, and biological activities of anticancer natural products which act by inhibiting or promoting the assembly of tubulin to microtubules. The emphasis is on providing recent information on those compounds in clinical use or in advanced clinical trials. The vinca alkaloids, the combretastatins, NPI-2358, the halichondrin B analog eribulin, dolastatin 10, noscapine, hemiasterlin, and rhizoxin are discussed as tubulin polymerization inhibitors, while the taxanes and the epothilones are the major classes of tubulin polymerization promoters presented, with brief treatments of discodermolide, eleutherobin, and laulimalide. The challenges and future directions of tubulin-interactive natural products-based drug discovery programs are also discussed briefly. PMID:19125622

  13. Molecular Recognition of Natural Products by Resorc[4]arene Receptors.

    PubMed

    D'Acquarica, Ilaria; Ghirga, Francesca; Quaglio, Deborah; Cerreto, Antonella; Ingallina, Cinzia; Tafi, Andrea; Botta, Bruno

    2016-01-01

    This review is aimed at providing an overview of the up-to-now published literature on resorc[4]arene macrocycles exploited as artificial receptors for the molecular recognition of some classes of natural products. A concise illustration of the main synthetic strategies developed to afford the resorc[4]arene scaffold is followed by a report on the principles of the gas-phase investigation of recognition phenomena by mass spectrometry (MS). Emphasis is placed on gas-phase studies of diastereoisomeric complexes generated inside a Fourier transform-ion cyclotron resonance (FT-ICR) mass spectrometer by resorc[4]arene receptors towards a series of natural products, namely amino acids, amphetamine, ethanolamine neurotransmitters, dipeptides, vinca alkaloids and nucleosides. The literature outcomes discussed here, taken largely from our own revisited work, have been completed by references to other studies, in order to draw a broader picture of this rapidly evolving field of research. PMID:26654589

  14. Alkaloids Toxic to Livestock

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Alkaloids are a specific group of nitrogen-containing natural metabolites that enable plants to overcome temporary or continuous threats integral to their environment, while also controlling essential functions of growth and reproduction. These compounds are probably produced primarily to control f...

  15. Total synthesis of the Daphniphyllum alkaloid daphenylline

    NASA Astrophysics Data System (ADS)

    Lu, Zhaoyong; Li, Yong; Deng, Jun; Li, Ang

    2013-08-01

    The Daphniphyllum alkaloids are a large class of natural products isolated from a genus of evergreen plants widely used in Chinese herbal medicine. They display a remarkable range of biological activities, including anticancer, antioxidant, and vasorelaxation properties as well as elevation of nerve growth factor. Daphenylline is a structurally unique member among the predominately aliphatic Daphniphyllum alkaloids, and contains a tetrasubstituted arene moiety mounted on a sterically compact hexacyclic scaffold. Herein, we describe the first total synthesis of daphenylline. A gold-catalysed 6-exo-dig cyclization reaction and a subsequent intramolecular Michael addition reaction, inspired by Dixon's seminal work, were exploited to construct the bridged 6,6,5-tricyclic motif of the natural product at an early stage, and the aromatic moiety was forged through a photoinduced olefin isomerization/6π-electrocyclization cascade followed by an oxidative aromatization process.

  16. Recent applications of liquid chromatography-mass spectrometry in natural products bioanalysis.

    PubMed

    Xing, Jie; Xie, Chunfeng; Lou, Hongxiang

    2007-06-28

    Natural flavonoids, alkaloids, saponins and sesquiterpenoids have been extensively investigated because of their biological and physiological significances, as well as their promising clinical uses. It is necessary to monitor them or their metabolites in biological fluids for both pre-clinical studies and routine clinical uses. The successful hyphenation of LC and MS, which was thought as "the bird wants to marry with fish", has been conducted widely in biological samples analysis. This present paper reviewed the feasibility of LC-MS techniques in the identification and quantification of natural products (flavonoids, alkaloids, saponins and sesquiterpenoids) in biological fluids, dealing with sample preparation, LC techniques, suitability of different MS techniques. Perspective of LC-MS was also discussed to show the potential of this technology. The citations cover the period 2002-2006. We conclude that LC-MS is an extremely powerful tool for the analysis of natural products in biological samples. PMID:17317073

  17. Natural Products as Molecular Messengers*

    PubMed Central

    Meinwald, Jerrold

    2011-01-01

    The chemistry of naturally-occurring compounds has long been pursued in the search for medicines, dyes, pesticides, flavors, and fragrances. In addition, the deeper aim of understanding life itself as a chemical phenomenon has motivated generations of scientists. One consequence of such studies has been the realization that natural products often serve central roles as biological signaling agents. We consider natural products from the viewpoint of the organisms that produce and/or respond to them, and suggest how a naturally-occurring compound may acquire its role in chemical communication. PMID:21190370

  18. The Interaction of Telomeric DNA and C-myc22 G-Quadruplex with 11 Natural Alkaloids

    PubMed Central

    Ji, Xiaohui; Sun, Hongxia; Zhou, Huaxi; Xiang, Junfeng

    2012-01-01

    Telomeric DNA and C-myc22 are DNA G-quadruplex (G4)-forming sequences associated with tumorigenesis. Ligands that can facilitate the formation and increase the stabilization of G4 can halt tumor cell proliferation and have been regarded as potential anti-cancer drugs. In the present study, we have investigated the interaction of 11 natural alkaloids with G4 formed by telomeric DNA and C-myc22 sequences. Our results indicated that sanguinarine (San), palmatine (Pal), and berberine (Beb) of the first series (S1) can induce the formation of G4 as well as increase the stabilization ability. Daurisoline (S2-1), O-methyldauricine (S2-2), O-diacetyldaurisoline (S2-3), daurinoline (S2-4), dauricinoline (S2-5), N,N′-dimethyldauricine iodide (S2-6), and N,N′-dimethyldaurisoline iodide (S2-7) of the second series (S2) showed similar stabilization ability. We found that unsaturated ring C, N+ positively charged centers, and conjugated aromatic rings are key factors to increase the stabilization ability of S1, and we gave some advice on structure modification to S2 through structure-activity study. Besides, we found San and Pal to be cell cycle blocker in G1. San was speculated to bind to G4 through intercalation or end stacking. PMID:22480315

  19. Real encoded genetic algorithm and response surface methodology to optimize production of an indolizidine alkaloid, swainsonine, from Metarhizium anisopliae.

    PubMed

    Singh, Digar; Kaur, Gurvinder

    2013-09-01

    Response surface methodology (RSM) and artificial neural network-real encoded genetic algorithm (ANN-REGA) were employed to develop a process for fermentative swainsonine production from Metarhizium anisopliae (ARSEF 1724). The effect of finally screened process variables viz. inoculum size, oatmeal extract, glucose, and CaCl2 were investigated through central composite design and were further utilized for training sets in ANN with training and test R values of 0.99 and 0.94, respectively. ANN-REGA was finally employed to simulate the predictive swainsonine production with best evolved media composition. ANN-REGA predicted a more precise fermentation model with 103 % (shake flask) increase in alkaloid production compared to 75.62 % (shake flask) obtained with RSM model upon validation. PMID:23315485

  20. Natural Products as Aromatase Inhibitors

    PubMed Central

    Balunas, Marcy J.; Su, Bin; Brueggemeier, Robert W.; Kinghorn, A. Douglas

    2010-01-01

    With the clinical success of several synthetic aromatase inhibitors (AIs) in the treatment of postmenopausal estrogen receptor-positive breast cancer, researchers have also been investigating also the potential of natural products as AIs. Natural products from terrestrial and marine organisms provide a chemically diverse array of compounds not always available through current synthetic chemistry techniques. Natural products that have been used traditionally for nutritional or medicinal purposes (e.g., botanical dietary supplements) may also afford AIs with reduced side effects. A thorough review of the literature regarding natural product extracts and secondary metabolites of plant, microbial, and marine origin that have been shown to exhibit aromatase inhibitory activity is presented herein. PMID:18690828

  1. Evaluation of tobacco (Nicotiana tabacum L. cv. Petit Havana SR1) hairy roots for the production of geraniol, the first committed step in terpenoid indole alkaloid pathway.

    PubMed

    Ritala, Anneli; Dong, Lemeng; Imseng, Nicole; Seppänen-Laakso, Tuulikki; Vasilev, Nikolay; van der Krol, Sander; Rischer, Heiko; Maaheimo, Hannu; Virkki, Arho; Brändli, Johanna; Schillberg, Stefan; Eibl, Regine; Bouwmeester, Harro; Oksman-Caldentey, Kirsi-Marja

    2014-04-20

    The terpenoid indole alkaloids are one of the major classes of plant-derived natural products and are well known for their many applications in the pharmaceutical, fragrance and cosmetics industries. Hairy root cultures are useful for the production of plant secondary metabolites because of their genetic and biochemical stability and their rapid growth in hormone-free media. Tobacco (Nicotiana tabacum L. cv. Petit Havana SR1) hairy roots, which do not produce geraniol naturally, were engineered to express a plastid-targeted geraniol synthase gene originally isolated from Valeriana officinalis L. (VoGES). A SPME-GC-MS screening tool was developed for the rapid evaluation of production clones. The GC-MS analysis revealed that the free geraniol content in 20 hairy root clones expressing VoGES was an average of 13.7 μg/g dry weight (DW) and a maximum of 31.3 μg/g DW. More detailed metabolic analysis revealed that geraniol derivatives were present in six major glycoside forms, namely the hexose and/or pentose conjugates of geraniol and hydroxygeraniol, resulting in total geraniol levels of up to 204.3 μg/g DW following deglycosylation. A benchtop-scale process was developed in a 20-L wave-mixed bioreactor eventually yielding hundreds of grams of biomass and milligram quantities of geraniol per cultivation bag. PMID:24530945

  2. Molecular docking study of natural alkaloids as multi-targeted hedgehog pathway inhibitors in cancer stem cell therapy.

    PubMed

    Mayank; Jaitak, Vikas

    2016-06-01

    Cancer is responsible for millions of deaths throughout the world every year. Increased understanding as well as advancements in the therapeutic aspect seems suboptimal to restrict the huge deaths associated with cancer. The major cause responsible for this is high resistance as well as relapse rate associated with cancers. Several evidences indicated that cancer stem cells (CSC) are mainly responsible for the resistance and relapses associated with cancer. Furthermore, agents targeting a single protein seem to have higher chances of resistance than multitargeting drugs. According to the concept of network model, partial inhibition of multiple targets is more productive than single hit agents. Thus, by fusing both the premises that CSC and single hit anticancer drugs, both are responsible for cancer related resistances and screened alkaloids for the search of leads having CSC targeting ability as well as the capability to modulating multiple target proteins. The in silico experimental data indicated that emetine and cortistatin have the ability to modulate hedgehog (Hh) pathway by binding to sonic hedgehog (Hh), smoothened (Smo) and Gli protein, involved in maintenance CSCs. Furthermore, solamargine, solasonine and tylophorine are also seems to be good lead molecules targeting towards CSCs by modulating Hh pathway. Except solamargine and solasonine, other best lead molecules also showed acceptable in silico ADME profile. The predicted lead molecules can be suitably modified to get multitargeting CSC targeting agent to get rid of associate resistances. PMID:26278973

  3. Composition of the endophytic filamentous fungi associated with Cinchona ledgeriana seeds and production of Cinchona alkaloids.

    PubMed

    Maehara, Shoji; Agusta, Andria; Kitamura, Chinami; Ohashi, Kazuyoshi; Shibuya, Hirotaka

    2016-04-01

    Four kinds of endophytic filamentous fungi (code names: CLS-1, CLS-2, CLS-3, and CLS-4) associated with the seeds of Cinchona ledgeriana (Rubiaceae) from West Java, Indonesia, were isolated. All of the isolates were classified into Diaporthe spp. based on phylogenetic analysis of the nucleotide sequences of the internal transcribed spacers (ITS1 and ITS2) including the 5.8S ribosomal DNA region. All four of these endophytic fungi produce Cinchona alkaloids, mainly quinine and quinidine, in synthetic liquid medium. PMID:26645397

  4. Exploring cyanobacterial genomes for natural product biosynthesis pathways.

    PubMed

    Micallef, Melinda L; D'Agostino, Paul M; Al-Sinawi, Bakir; Neilan, Brett A; Moffitt, Michelle C

    2015-06-01

    Cyanobacteria produce a vast array of natural products, some of which are toxic to human health, while others possess potential pharmaceutical activities. Genome mining enables the identification and characterisation of natural product gene clusters; however, the current number of cyanobacterial genomes remains low compared to other phyla. There has been a recent effort to rectify this issue by increasing the number of sequenced cyanobacterial genomes. This has enabled the identification of biosynthetic gene clusters for structurally diverse metabolites, including non-ribosomal peptides, polyketides, ribosomal peptides, UV-absorbing compounds, alkaloids, terpenes and fatty acids. While some of the identified biosynthetic gene clusters correlate with known metabolites, genome mining also highlights the number and diversity of clusters for which the product is unknown (referred to as orphan gene clusters). A number of bioinformatic tools have recently been developed in order to predict the products of orphan gene clusters; however, in some cases the complexity of the cyanobacterial pathways makes the prediction problematic. This can be overcome by the use of mass spectrometry-guided natural product genome mining, or heterologous expression. Application of these techniques to cyanobacterial natural product gene clusters will be explored. PMID:25482899

  5. Identification of Indole Alkaloid Structural Units Important for Stimulus-Selective TRPM8 Inhibition: SAR Study of Naturally Occurring Iboga Derivatives.

    PubMed

    Terada, Yuko; Kitajima, Mariko; Taguchi, Fuyumi; Takayama, Hiromitsu; Horie, Syunji; Watanabe, Tatsuo

    2014-08-22

    The iboga alkaloid voacangine (1) has been reported previously to be the first stimulus-selective TRPM8 antagonist. In the present report, a structure-activity relationship (SAR) study is described on the effects of some naturally occurring indole alkaloid analogues on TRPM8 inhibition. Dihydrocatharanthine (10) and catharanthine (11) were found to be inhibitors of TRPM8 activity, and their IC50 values were equivalent to that of BCTC, a potent and representative TRPM8 antagonist. Furthermore, it was shown that the iboga moiety is the most crucial unit for TRPM8 blockade and that its stereostructure, as found in 1 but not in 10 and 11, is essential for chemical agonist-selective TRPM8 inhibition. These findings should provide useful information for synthesizing additional stimulus-selective and TRPM8-selective blockers. PMID:25052206

  6. Natural and experimental poisoning of goats with the pyrrolizidine alkaloid-producing plant Crotalaria retusa L

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crotalaria retusa L. (rattleweed), estimated to contain about 4.96% monocrotaline (MCT) in the seed, was associated with a natural poisoning outbreak in goats. The poisoning was experimentally reproduced by the administration of C. retusa seeds containing approximately 4.49% of MCT. Thus, 1 of 3 goa...

  7. The role of biocatalysis in the asymmetric synthesis of alkaloids

    PubMed Central

    2013-01-01

    Alkaloids are not only one of the most intensively studied classes of natural products, their wide spectrum of pharmacological activities also makes them indispensable drug ingredients in both traditional and modern medicine. Among the methods for their production, biotechnological approaches are gaining importance, and biocatalysis has emerged as an essential tool in this context. A number of chemo-enzymatic strategies for alkaloid synthesis have been developed over the years, in which the biotransformations nowadays take an increasingly ‘central’ role. This review summarises different applications of biocatalysis in the asymmetric synthesis of alkaloids and discusses how recent developments and novel enzymes render innovative and efficient chemo-enzymatic production routes possible. PMID:25580241

  8. Intramolecular nitrone dipolar cycloadditions: control of regioselectivity and synthesis of naturally-occurring spirocyclic alkaloids.

    PubMed

    Hodges, Alastair J; Adams, Joseph P; Bond, Andrew D; Holmes, Andrew B; Press, Neil J; Roughley, Stephen D; Ryan, John H; Saubern, Simon; Smith, Catherine J; Turnbull, Michael D; Newton, Annabella F

    2012-12-01

    The intramolecular nitrone dipolar cycloaddition of in situ-generated nitrones such as compound 26 has been used for the synthesis of cyclic isoxazolidines 27 and 29. The regioselectivity of the intramolecular cycloaddition depends on the nature of the terminal substituent on the dipolarophile. The influence of the substituent on the regioselectivity of the cycloaddition has been examined using several model systems and two methods of nitrone formation. These studies demonstrated that the cyano-substituent plays a special role in favouring the formation of the 6,6,5-ring fused adduct 27 under thermodynamically controlled conditions. The utility of the cyclo-adduct 57 (see Scheme 12) as a precursor for the naturally occurring histrionicotoxins is illustrated by the synthesis of three "unsymmetrical" (i.e. with each side chain bearing different functional groups) members of the histrionicotoxin family HTX-259A, HTX-285C and HTX-285E (2, 3 and 4 respectively). PMID:23051904

  9. Marine Natural Products as Models to Circumvent Multidrug Resistance.

    PubMed

    Long, Solida; Sousa, Emília; Kijjoa, Anake; Pinto, Madalena M M

    2016-01-01

    Multidrug resistance (MDR) to anticancer drugs is a serious health problem that in many cases leads to cancer treatment failure. The ATP binding cassette (ABC) transporter P-glycoprotein (P-gp), which leads to premature efflux of drugs from cancer cells, is often responsible for MDR. On the other hand, a strategy to search for modulators from natural products to overcome MDR had been in place during the last decades. However, Nature limits the amount of some natural products, which has led to the development of synthetic strategies to increase their availability. This review summarizes the research findings on marine natural products and derivatives, mainly alkaloids, polyoxygenated sterols, polyketides, terpenoids, diketopiperazines, and peptides, with P-gp inhibitory activity highlighting the established structure-activity relationships. The synthetic pathways for the total synthesis of the most promising members and analogs are also presented. It is expected that the data gathered during the last decades concerning their synthesis and MDR-inhibiting activities will help medicinal chemists develop potential drug candidates using marine natural products as models which can deliver new ABC transporter inhibitor scaffolds. PMID:27399665

  10. Formal total syntheses of classic natural product target molecules via palladium-catalyzed enantioselective alkylation

    PubMed Central

    Liu, Yiyang; Liniger, Marc; McFadden, Ryan M; Roizen, Jenny L; Malette, Jacquie; Reeves, Corey M; Behenna, Douglas C; Seto, Masaki; Kim, Jimin; Mohr, Justin T; Virgil, Scott C

    2014-01-01

    Summary Pd-catalyzed enantioselective alkylation in conjunction with further synthetic elaboration enables the formal total syntheses of a number of “classic” natural product target molecules. This publication highlights recent methods for setting quaternary and tetrasubstituted tertiary carbon stereocenters to address the synthetic hurdles encountered over many decades across multiple compound classes spanning carbohydrate derivatives, terpenes, and alkaloids. These enantioselective methods will impact both academic and industrial settings, where the synthesis of stereogenic quaternary carbons is a continuing challenge. PMID:25383121

  11. Formal total syntheses of classic natural product target molecules via palladium-catalyzed enantioselective alkylation.

    PubMed

    Liu, Yiyang; Liniger, Marc; McFadden, Ryan M; Roizen, Jenny L; Malette, Jacquie; Reeves, Corey M; Behenna, Douglas C; Seto, Masaki; Kim, Jimin; Mohr, Justin T; Virgil, Scott C; Stoltz, Brian M

    2014-01-01

    Pd-catalyzed enantioselective alkylation in conjunction with further synthetic elaboration enables the formal total syntheses of a number of "classic" natural product target molecules. This publication highlights recent methods for setting quaternary and tetrasubstituted tertiary carbon stereocenters to address the synthetic hurdles encountered over many decades across multiple compound classes spanning carbohydrate derivatives, terpenes, and alkaloids. These enantioselective methods will impact both academic and industrial settings, where the synthesis of stereogenic quaternary carbons is a continuing challenge. PMID:25383121

  12. Natural Products as Chemical Probes

    PubMed Central

    Carlson, Erin E.

    2010-01-01

    Natural products have evolved to encompass a broad spectrum of chemical and functional diversity. It is this diversity, along with their structural complexity, that enables nature’s small molecules to target a nearly limitless number of biological macromolecules and to often do so in a highly selective fashion. Because of these characteristics, natural products have seen great success as therapeutic agents. However, this vast pool of compounds holds much promise beyond the development of future drugs. These features also make them ideal tools for the study of biological systems. Recent examples of the use of natural products and their derivatives as chemical probes to explore biological phenomena and assemble biochemical pathways are presented here. PMID:20509672

  13. Synthesis of Polycyclic Natural Products

    SciTech Connect

    Tuan Hoang Nguyen

    2003-05-31

    With the continuous advancements in molecular biology and modern medicine, organic synthesis has become vital to the support and extension of those discoveries. The isolations of new natural products allow for the understanding of their biological activities and therapeutic value. Organic synthesis is employed to aid in the determination of the relationship between structure and function of these natural products. The development of synthetic methodologies in the course of total syntheses is imperative for the expansion of this highly interdisciplinary field of science. In addition to the practical applications of total syntheses, the structural complexity of natural products represents a worthwhile challenge in itself. The pursuit of concise and efficient syntheses of complex molecules is both gratifying and enjoyable.

  14. Activation and Desensitization of Peripheral Muscle and Neuronal Nicotinic Acetylcholine Receptors by Selected, Naturally-Occurring Pyridine Alkaloids.

    PubMed

    Green, Benedict T; Lee, Stephen T; Welch, Kevin D; Cook, Daniel; Kem, William R

    2016-01-01

    Teratogenic alkaloids can cause developmental defects due to the inhibition of fetal movement that results from desensitization of fetal muscle-type nicotinic acetylcholine receptors (nAChRs). We investigated the ability of two known teratogens, the piperidinyl-pyridine anabasine and its 1,2-dehydropiperidinyl analog anabaseine, to activate and desensitize peripheral nAChRs expressed in TE-671 and SH-SY5Y cells. Activation-concentration response curves for each alkaloid were obtained in the same multi-well plate. To measure rapid desensitization, cells were first exposed to five potentially-desensitizing concentrations of each alkaloid in log10 molar increments from 10 nM to 100 µM and then to a fixed concentration of acetylcholine (ACh), which alone produces near-maximal activation. The fifty percent desensitization concentration (DC50) was calculated from the alkaloid concentration-ACh response curve. Agonist fast desensitization potency was predicted by the agonist potency measured in the initial response. Anabaseine was a more potent desensitizer than anabasine. Relative to anabaseine, nicotine was more potent to autonomic nAChRs, but less potent to the fetal neuromuscular nAChRs. Our experiments have demonstrated that anabaseine is more effective at desensitizing fetal muscle-type nAChRs than anabasine or nicotine and, thus, it is predicted to be more teratogenic. PMID:27384586

  15. Activation and desensitization of peripheral muscle and neuronal nicotinic acetylcholine receptors by selected, naturally-occurring pyridine alkaloids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Teratogenic alkaloids can cause developmental defects due to inhibition of fetal movement that results from desensitization of fetal muscletype nicotinic acetylcholine receptors (nAChRs). We investigated the ability of two known teratogens, the piperidinyl-pyridine anabasine and its 1,2-dehydropiper...

  16. Activation and Desensitization of Peripheral Muscle and Neuronal Nicotinic Acetylcholine Receptors by Selected, Naturally-Occurring Pyridine Alkaloids

    PubMed Central

    Green, Benedict T.; Lee, Stephen T.; Welch, Kevin D.; Cook, Daniel; Kem, William R.

    2016-01-01

    Teratogenic alkaloids can cause developmental defects due to the inhibition of fetal movement that results from desensitization of fetal muscle-type nicotinic acetylcholine receptors (nAChRs). We investigated the ability of two known teratogens, the piperidinyl-pyridine anabasine and its 1,2-dehydropiperidinyl analog anabaseine, to activate and desensitize peripheral nAChRs expressed in TE-671 and SH-SY5Y cells. Activation-concentration response curves for each alkaloid were obtained in the same multi-well plate. To measure rapid desensitization, cells were first exposed to five potentially-desensitizing concentrations of each alkaloid in log10 molar increments from 10 nM to 100 µM and then to a fixed concentration of acetylcholine (ACh), which alone produces near-maximal activation. The fifty percent desensitization concentration (DC50) was calculated from the alkaloid concentration-ACh response curve. Agonist fast desensitization potency was predicted by the agonist potency measured in the initial response. Anabaseine was a more potent desensitizer than anabasine. Relative to anabaseine, nicotine was more potent to autonomic nAChRs, but less potent to the fetal neuromuscular nAChRs. Our experiments have demonstrated that anabaseine is more effective at desensitizing fetal muscle-type nAChRs than anabasine or nicotine and, thus, it is predicted to be more teratogenic. PMID:27384586

  17. EIA's Natural Gas Production Data

    EIA Publications

    2009-01-01

    This special report examines the stages of natural gas processing from the wellhead to the pipeline network through which the raw product becomes ready for transportation and eventual consumption, and how this sequence is reflected in the data published by the Energy Information Administration (EIA).

  18. Discovery of Novel Antiangiogenic Marine Natural Product Scaffolds.

    PubMed

    Ebrahim, Hassan Y; El Sayed, Khalid A

    2016-03-01

    Marine natural products (MNPs) are recognized for their structural complexity, diversity, and novelty. The vast majority of MNPs are pharmacologically relevant through their ability to modulate macromolecular targets underlying human diseases. Angiogenesis is a fundamental process in cancer progression and metastasis. Targeting angiogenesis through selective modulation of linked protein kinases is a valid strategy to discover novel effective tumor growth and metastasis inhibitors. An in-house marine natural products mini-library, which comprises diverse MNP entities, was submitted to the Lilly's Open Innovation Drug Discovery platform. Accepted structures were subjected to in vitro screening to discover mechanistically novel angiogenesis inhibitors. Active hits were subjected to additional angiogenesis-targeted kinase profiling. Some natural and semisynthetic MNPs, including multiple members of the macrolide latrunculins, the macrocyclic oxaquinolizidine alkaloid araguspongine C, and the sesquiterpene quinone puupehenone, showed promising results in primary and secondary angiogenesis screening modules. These hits inhibited vascular endothelial growth factor (VEGF)-mediated endothelial tube-like formation, with minimal cytotoxicity at relevant doses. Secondary kinase profiling identified six target protein kinases, all involved in angiogenesis signaling pathways. Molecular modeling and docking experiments aided the understanding of molecular binding interactions, identification of pharmacophoric epitopes, and deriving structure-activity relationships of active hits. Marine natural products are prolific resources for the discovery of chemically and mechanistically unique selective antiangiogenic scaffolds. PMID:26978377

  19. Discovery of Novel Antiangiogenic Marine Natural Product Scaffolds

    PubMed Central

    Ebrahim, Hassan Y.; El Sayed, Khalid A.

    2016-01-01

    Marine natural products (MNPs) are recognized for their structural complexity, diversity, and novelty. The vast majority of MNPs are pharmacologically relevant through their ability to modulate macromolecular targets underlying human diseases. Angiogenesis is a fundamental process in cancer progression and metastasis. Targeting angiogenesis through selective modulation of linked protein kinases is a valid strategy to discover novel effective tumor growth and metastasis inhibitors. An in-house marine natural products mini-library, which comprises diverse MNP entities, was submitted to the Lilly’s Open Innovation Drug Discovery platform. Accepted structures were subjected to in vitro screening to discover mechanistically novel angiogenesis inhibitors. Active hits were subjected to additional angiogenesis-targeted kinase profiling. Some natural and semisynthetic MNPs, including multiple members of the macrolide latrunculins, the macrocyclic oxaquinolizidine alkaloid araguspongine C, and the sesquiterpene quinone puupehenone, showed promising results in primary and secondary angiogenesis screening modules. These hits inhibited vascular endothelial growth factor (VEGF)-mediated endothelial tube-like formation, with minimal cytotoxicity at relevant doses. Secondary kinase profiling identified six target protein kinases, all involved in angiogenesis signaling pathways. Molecular modeling and docking experiments aided the understanding of molecular binding interactions, identification of pharmacophoric epitopes, and deriving structure-activity relationships of active hits. Marine natural products are prolific resources for the discovery of chemically and mechanistically unique selective antiangiogenic scaffolds. PMID:26978377

  20. Bis and tris indole alkaloids from marine organisms: new leads for drug discovery.

    PubMed

    Gupta, Leena; Talwar, Archna; Chauhan, Prem M S

    2007-01-01

    The marine organisms are a rich source of varied natural products with unique functionality. Marine natural products chemistry has undergone an explosive growth during the past three decades. A variety of natural products of new molecular structures with diverse biological activities have been reported from marine flora and fauna, thus ensuring motivation in the search of newer natural products. The bis and trisindole alkaloids are a class of marine natural products that show unique promise in the development of new drug leads. 3-hydroxy staurosporine 51, an indolo carbazole having powerful antiproliferative activity. Hamacanthin A 1 and B 2, pyrazinone alkaloids have significant antimicrobial activity. Coscinamides 60-62 and Chondriamides 63-65 an indolic enamides which have anti-HIV and cytotoxic activity respectively. Gelluisine A 66 and B 67, trisindole alkaloids have strong anti-serotonin activity and strong affinity with somatostatin and neuropeptide Y receptors in receptor-binding assays. This report reviews the literature on these alkaloids of marine origin and highlights the isolation, structure, latest synthesis and specific biological activities including cytotoxicity, antiviral, antiparasitic, serotonin antagonism and other pharmacological activities of sixty-nine bis and trisindole alkaloids. PMID:17627517

  1. The homalium alkaloids: isolation, synthesis, and absolute configuration assignment.

    PubMed

    Davies, Stephen G; Thomson, James E

    2015-01-01

    The structurally related natural products (-)-homaline, (-)-hopromine, (-)-hoprominol, and (-)-hopromalinol have been collectively termed the homalium alkaloids. All four alkaloids possess bis-ζ-azalactam structures, but differ only by the identities of the side chain on each lactam ring. Since their isolation (from the leaves of Homalium pronyense Guillaum found in the forests of New Caledonia), there have been several syntheses of homaline, hopromine, hoprominol, and hopromalinol in both racemic and enantiopure forms. The most highly yielding and versatile strategy for their synthesis employs the conjugate addition of an enantiopure lithium amide reagent to an α,β-unsaturated ester as the key stereodefining step. This methodology has been used in the syntheses of all four members of the homalium alkaloid family and their stereoisomers. PMID:25845060

  2. Bacterial symbionts and natural products

    PubMed Central

    Crawford, Jason M.; Clardy, Jon

    2011-01-01

    The study of bacterial symbionts of eukaryotic hosts has become a powerful discovery engine for chemistry. This highlight looks at four case studies that exemplify the range of chemistry and biology involved in these symbioses: a bacterial symbiont of a fungus and a marine invertebrate that produce compounds with significant anticancer activity, and bacterial symbionts of insects and nematodes that produce compounds that regulate multilateral symbioses. In the last ten years, a series of shocking revelations – the molecular equivalents of a reality TV show’s uncovering the true parents of a well known individual or a deeply hidden family secret – altered the study of genetically encoded small molecules, natural products for short. These revelations all involved natural products produced by bacterial symbionts, and while details differed, two main plot lines emerged: parentage, in which the real producers of well known natural products with medical potential were not the organisms from which they were originally discovered, and hidden relationships, in which bacterially produced small molecules turned out to be the unsuspected regulators of complex interactions. For chemists, these studies led to new molecules, new biosynthetic pathways, and an understanding of the biological functions these molecules fulfill. PMID:21594283

  3. 27 CFR 21.99 - Brucine alkaloid.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Brucine alkaloid. 21.99 Section 21.99 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL FORMULAS FOR DENATURED ALCOHOL AND RUM Specifications for Denaturants § 21.99 Brucine alkaloid. (a) Identification...

  4. Production of the alkaloid swainsonine by a fungal endosymbiont of the ascomycete order Chaetothyriales in the host Ipomoea carnea.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Some plant species within the Convolvulaceae (morning glory family) from South America, Africa, and Australia cause a neurologic disease in grazing livestock caused by swainsonine. These convolvulaceous species including Ipomoea carnea contain the indolizidine alkaloid swainsonine, an inhibitor of ...

  5. Antiplatelet properties of natural products.

    PubMed

    Vilahur, Gemma; Badimon, Lina

    2013-01-01

    Cardiovascular diseases (CVD) and its main underlying cause, atherothrombosis, are the major culprits of morbidity and mortality worldwide. Apart from the treatment of cardiovascular risk factors and the use of antithrombotic agents there is considerable interest in the role of natural food products and their bioactive components in the prevention and treatment of cardiovascular disorders. The consumption of healthy diets rich in functional foods, such as the Mediterranean diet, has shown to exert profound cardioprotective effects in the primary and secondary prevention of CVD. Moreover, accumulating data have attributed these beneficial effects, at least in part, to the modulation of key players in the pathogenesis of atherosclerosis, including amelioration in the lipid profile and vascular function and a decrease in oxidative stress and inflammation. Although with a much less clear picture, natural dietary compounds have also demonstrated to exert antiplatelet activities, further contributing to reduce the thrombotic risk. This article provides a brief overview of the atherothrombotic process to further provide an up-to-date review of the antiplatelet properties exerted by natural products and/or food-derived bioactive constituents - including ω-3 PUFA, olive oil, garlic and onions, tomatoes, mushrooms, polyphenol-rich beverages, and flavonol-rich cocoa - as well as to describe the mechanisms underlying these antiplatelet activities. PMID:23994642

  6. Amaryllidaceae Isocarbostyril Alkaloids and Their Derivatives as Promising Antitumor Agents

    PubMed Central

    Ingrassia, Laurent; Lefranc, Florence; Mathieu, Véronique; Darro, Francis; Kiss, Robert

    2008-01-01

    This review covers the isolation, total synthesis, biologic activity, and more particularly the in vitro and in vivo antitumor activities of naturally occurring isocarbostyril alkaloids from the Amaryllidaceae family. Starting from these natural products, new derivatives have been synthesized to explore structure-activity relationships within the chemical class and to obtain potential candidates for preclinical development. This approach appears to be capable of providing novel promising anticancer agents. PMID:18607503

  7. Monoterpenoid oxindole alkaloid production by Uncaria tomentosa (Willd) D.C. cell suspension cultures in a stirred tank bioreactor.

    PubMed

    Trejo-Tapia, Gabriela; Cerda-García-Rojas, Carlos M; Rodríguez-Monroy, Mario; Ramos-Valdivia, Ana C

    2005-01-01

    Cell growth, monoterpenoid oxindole alkaloid (MOA) production, and morphological properties of Uncaria tomentosa cell suspension cultures in a 2-L stirred tank bioreactor were investigated. U. tomentosa (cell line green Uth-3) was able to grow in a stirred tank at an impeller tip speed of 95 cm/s (agitation speed of 400 rpm), showing a maximum biomass yield of 11.9 +/- 0.6 g DW/L and a specific growth rate of 0.102 d(-1). U. tomentosa cells growing in a stirred tank achieved maximum volumetric and specific MOA concentration (467.7 +/- 40.0 microg/L, 44.6 +/- 5.2 microg/g DW) at 16 days of culture. MOA chemical profile of cell suspension cultures growing in a stirred tank resembled that of the plant. Depending on culture time, from the total MOA produced, 37-100% was found in the medium in the bioreactor culture. MOA concentration achieved in a stirred tank was up to 10-fold higher than that obtained in Erlenmeyer flasks (agitated at 110 rpm). In a stirred tank, average area of the single cells of U. tomentosa increased up to 4-fold, and elliptical form factor increased from 1.40 to 2.55, indicating enlargement of U. tomentosa single cells. This work presents the first report of U. tomentosa green cell suspension cultures that grow and produce MOA in a stirred tank bioreactor. PMID:15932257

  8. Antimalarial natural products: a review

    PubMed Central

    Mojab, Faraz

    2012-01-01

    Objective: Malaria is an infectious disease commonplace in tropical countries. For many years, major antimalarial drugs consisted of natural products, but since 1930s these drugs have been largely replaced with a series of synthetic drugs. This article tries to briefly indicate that some plants which previously were used to treat malaria, as a result of deficiencies of synthetic drugs, have revived into useful products once more. It also attempts to describe some tests which can be used to evaluate plant extracts for antimalarial activity. Materials and Methods: By referring to some recent literatures, data were collected about plants used for the treatment of malaria, evaluation of plant extracts for antimalarial activity, modes of action of natural antimalarial agents, and recent research on antimalarial plants in Iran and other countries. Results and Conclusion: There is an urgent need for the development of new treatments for malaria. Many countries have a vast precedence in the use of medicinal plants and the required knowledge spans many centuries. Although malaria is controlled in Iran, some researchers tend to study malaria and related subjects. In vitro biological tests for the detection of antimalarial activities in plant extracts are currently available. It is vital that the efficacy and safety of traditional medicines be validated and their active constituents be identified in order to establish reliable quality control measures. PMID:25050231

  9. Ergot alkaloids: toxicokinetics and vascular effects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Endophyte (Neotyphodium coenophialum)-infected tall fescue (Lolium arundinaceum) occupies nearly 15 million ha in the USA. Although this symbiosis is beneficial to the plant, it produces ergot alkaloids that are detrimental to livestock production. Livestock consuming the alkaloids elicit adverse ph...

  10. QM and QM/MD simulations of the Vinca alkaloids docked to tubulin.

    PubMed

    Kelly, Evan B; Tuszynski, Jack A; Klobukowski, M

    2011-09-01

    The Vinca alkaloids are a class of pharmaceutically relevant binary indole-indoline alkaloids based on and including natural extracts of the periwinkle plant, Catharanthus rosea. Two natural products, vinblastine and vincristine, have been in clinical use as important chemotherapy agents for over four decades. Two semi-synthetic Vinca alkaloids, vindesine and vinorelbine, are currently in investigational chemotherapy programs, and a third semi-synthetic, vinflunine, is in advanced clinical trials. In addition to these five compounds studied in the present work, there are hundreds of other natural and semi-synthetic Vinca alkaloids known, although most are not clinically advantageous. The Vinca alkaloids are anti-mitotic agents that affect the cellular protein tubulin and bind to a specific site known as the Vinca domain located on β-tubulin. While the Vinca domain is well established, the specific binding mode of each drug is not. However, there is much insight into the binding mode and this has provided a strong base of information to begin simulations and to make comparisons against. Complicating the issue, however, is the large size of the Vinca alkaloids and their complex molecular structure, including a rotatable single bond joining the indole and indoline portions of each compound. The differential geometric and tubulin-binding properties of the drugs are not fully known. In the present work, the projection of the potential energy surface on the major torsional angle was calculated at the semi-empirical AM1 level, through in vacuo geometry optimizations. QM/MD simulations were performed, with the drugs at the AM1 level, of each Vinca alkaloid free in TIP3P water, and also bound to β-tubulin. A single equilibrium structure, resembling a known crystallographic vinblastine structure, for the free drugs was found. Further, the 1Z2B crystal structure of vinblastine bound to tubulin appears to be a valid starting point for simulations of all five Vinca alkaloids

  11. Studies on search for bioactive natural products targeting TRAIL signaling leading to tumor cell apoptosis.

    PubMed

    Ishibashi, Masami; Ohtsuki, Takashi

    2008-09-01

    Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) induces apoptosis in many transformed cells but not in normal cells and, hence, has been expected as a new anticancer strategy. During our studies on search for bioactive natural products from various natural resources such as plants and microorganisms, we recently identified several natural products which exhibited activities related to TRAIL signaling. Dimeric sesquiterpenoids isolated from Zingiberaceous plant, Curcuma parviflora, showed enhancement activity of gene expression of TRAIL-receptor and TRAIL-receptor protein level. Several new isoflavone natural products, named brandisianins, were isolated from Leguminosaeous plant, Millettia brandisiana, by our screening study targeting TRAIL-receptor expression enhancement activity. A dihydroflavonol (BB1) that was extracted from Compositaeous plant, Blumea balsamifera, and fuligocandin B, a new anthranilylproline-indole alkaloid isolated from myxomycete were found to exhibit reversal effect of TRAIL resistance activity. PMID:18273883

  12. Syntheses of Denudatine Diterpenoid Alkaloids: Cochlearenine, N-Ethyl-1α-hydroxy-17-veratroyldictyzine, and Paniculamine.

    PubMed

    Kou, Kevin G M; Li, Beryl X; Lee, Jack C; Gallego, Gary M; Lebold, Terry P; DiPasquale, Antonio G; Sarpong, Richmond

    2016-08-31

    The denudatine-type diterpenoid alkaloids cochlearenine, N-ethyl-1α-hydroxy-17-veratroyldictyzine, and paniculamine have been synthesized for the first time (25, 26, and 26 steps from 16, respectively). These syntheses take advantage of a common intermediate (8) that we have previously employed in preparing aconitine-type natural products. The syntheses reported herein complete the realization of a unified strategy for the preparation of C20, C19, and C18 diterpenoid alkaloids. PMID:27525345

  13. Antiproliferative Activity of Amathaspiramide Alkaloids and Analogs.

    PubMed

    Shimokawa, Jun; Chiyoda, Koji; Umihara, Hirotatsu; Fukuyama, Tohru

    2016-08-01

    Assisted by the total syntheses of all the amathaspiramides, six natural products and four synthetic intermediates with partially fluctuating structures were prepared and subjected to a growth inhibition assay in four human cancer cell lines. The results showed amathaspiramides A, C, and E had moderate antiproliferative activity. Examination of the structure-activity relationship revealed the importance of the amine or imine substructure on the pyrrolidine moiety and the 8R stereochemistry on the N-acyl hemiaminal moiety for the antiproliferative activity of amathaspiramide alkaloids. PMID:27169437

  14. Total Synthesis of Natural Products Using Hypervalent Iodine Reagents

    NASA Astrophysics Data System (ADS)

    Maertens, Gaetan; L'homme, Chloe; Canesi, Sylvain

    2014-12-01

    We present a review of natural product syntheses accomplished in our laboratory during the last five years. Each synthetic route features a phenol dearomatization promoted by an environmentally benign hypervalent iodine reagent. The dearomatizations demonstrate the “aromatic ring umpolung” concept, and involve stereoselective remodeling of the inert unsaturations of a phenol into a highly functionalized key intermediate that may contain a quaternary carbon center and a prochiral dienone system. Several new oxidative strategies were employed, including transpositions (1,3-alkyl shift and Prins-pinacol), a polycyclization, an ipso rearrangement, and direct nucleophilic additions at the phenol para position. Several alkaloids, heterocyclic compounds, and a polycyclic core have been achieved, including sceletenone (a serotonin reuptake inhibitor), acetylaspidoalbidine (an antitumor agent), fortucine (antiviral and antitumor), erysotramidine (curare-like effect), platensimycin (an antibiotic), and the main core of a kaurane diterpene (immunosuppressive agent and stimulator of apoptosis). These concise and in some cases enantioselective syntheses effectively demonstrate the importance of hypervalent iodine reagents in the total synthesis of bioactive natural products.

  15. Total synthesis of natural products using hypervalent iodine reagents

    PubMed Central

    Maertens, Gaëtan; L'Homme, Chloé; Canesi, Sylvain

    2014-01-01

    We present a review of natural product syntheses accomplished in our laboratory during the last 5 years. Each synthetic route features a phenol dearomatization promoted by an environmentally benign hypervalent iodine reagent. The dearomatizations demonstrate the “aromatic ring umpolung” concept, and involve stereoselective remodeling of the inert unsaturations of a phenol into a highly functionalized key intermediate that may contain a quaternary carbon center and a prochiral dienone system. Several new oxidative strategies were employed, including transpositions (1,3-alkyl shift and Prins-pinacol), a polycyclization, an ipso rearrangement, and direct nucleophilic additions at the phenol para position. Several alkaloids, heterocyclic compounds, and a polycyclic core have been achieved, including sceletenone (a serotonin reuptake inhibitor), acetylaspidoalbidine (an antitumor agent), fortucine (antiviral and antitumor), erysotramidine (curare-like effect), platensimycin (an antibiotic), and the main core of a kaurane diterpene (immunosuppressive agent and stimulator of apoptosis). These concise and in some cases enantioselective syntheses effectively demonstrate the importance of hypervalent iodine reagents in the total synthesis of bioactive natural products. PMID:25601909

  16. Prevention of microbial communities: novel approaches based natural products.

    PubMed

    Mogosanu, George D; Grumezescu, Alexandru M; Huang, Keng-Shiang; Bejenaru, Ludovic E; Bejenaru, Cornelia

    2015-01-01

    Firmly attached to different living or non-living, solid or fluid surfaces rich in nutrients and moisture, microbial biofilm is a matter of great interest due to its major importance for the healthcare community. Depending on common strategies such as mutual protection and hibernation (quiescent bacteria), the resistance, survival and virulence of microbial communities have large implications for human pathology, clinical environment and biomedical devices. The microbial biofilm is continuously changing, stimulating inflammation, increasing vascular permeability and preventing the action of macrophages. About 80% of human infections affecting the gastrointestinal, genitourinary and respiratory systems, oral mucosa and teeth, eyes, middle ear and skin are caused by biofilm-associated microorganisms. Therefore, the search for modern strategies is even more important as microbial biofilms resistant to conventional antibiotics, antiseptics and disinfectants are involved in the frequent treatment failures of some chronic inflammatory diseases and wounds. Natural products containing secondary metabolites, such as aromatic compounds, sulphurated derivatives, terpenoids (essential oils) and alkaloids as quorum-sensing inhibitors and biofilm disruptors, are promising alternatives for the prophylaxis and treatment of chronic infections. Surface modification of medical devices with non-polar functionalized nanoparticles stabilizes the natural compounds antibiofilm activity and inhibits microbial adhesion and biofilm formation and growth for a longer period of time. In this regard, an interdisciplinary approach is needed due to the large number of natural derivatives alone or in combination with biocompatible and biodegradable micro-/ nano-engineered materials. PMID:25594287

  17. Enantiomeric Natural Products: Occurrence and Biogenesis**

    PubMed Central

    Finefield, Jennifer M.; Sherman, David H.; Kreitman, Martin; Williams, Robert M.

    2012-01-01

    In Nature, chiral natural products are usually produced in optically pure form; however, on occasion Nature is known to produce enantiomerically opposite metabolites. These enantiomeric natural products can arise in Nature from a single species, or from different genera and/or species. Extensive research has been carried out over the years in an attempt to understand the biogenesis of naturally occurring enantiomers, however, many fascinating puzzles and stereochemical anomalies still remain. PMID:22555867

  18. Natural products as sources for new pesticides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Natural products as pesticides have been reviewed from several perspectives in the past; however, no review has examined the impact of natural product and natural product-based pesticides, as a function of new active ingredient registrations with the Environmental Protection Agency (EPA), on the U.S...

  19. Chromium-induced tropane alkaloid production and H6H gene expression in Atropa belladonna L. (Solanaceae) in vitro-propagated plantlets.

    PubMed

    Vakili, Bahareh; Karimi, Farah; Sharifi, Mozafar; Behmanesh, Mehrdad

    2012-03-01

    Hyoscyamine and scopolamine tropane alkaloids found in several solanaceous plants are anticholinergic drugs. Hyoscyamine 6β-hydroxylase (H6H) catalyzes two consecutive oxidation reactions. The first reaction is the hydroxylation of hyoscyamine to 6β-hydroxyhyoscyamine and the second is epoxidation of 6β-hydroxyhyoscyamine yielding scopolamine that is the final metabolite in the tropane alkaloid biosynthetic pathway. The effects of trivalent chromium as KCr (SO4)(2) on the production of tropane alkaloids and the expression of hyoscyamine 6β-hydroxylase gene (h6h) were studied in micro-propagated Atropa belladonna L. plantlets. The results showed that chromium treatment decreased the growth parameters (weights and lengths of the plantlets) and chlorophyll contents and increased proline contents. Moreover, semiquantitave RT-PCR analysis showed that the transcript level of H6H increased under chromium treatment. This treatment also increased hyoscyamine and scopolamine contents as shown by HPLC analysis. Changes of scopolamine contents correlate with the expression levels of h6h gene under different concentrations of chromium. PMID:22305072

  20. Quantitative analysis of substituted N,N-dimethyl-tryptamines in the presence of natural type XII alkaloids.

    PubMed

    Ivanova, Bojidarka; Spiteller, Michael

    2012-10-01

    This paper reports the qualitative and quantitative analysis (QA) of mixtures of hallucinogens, N,N-dimethyltryptamine (DMT) (1), 5-methoxy- (la) and 5-hydroxy-N,N-dimethyltryptamine (1b) in the presence of beta-carbolines (indole alkaloids of type XII) ((2), (3) and (5)}. The validated electronic absorption spectroscopic (EAs) protocol achieved a concentration limit of detection (LOD) of 7.2.10(-7) mol/L {concentration limit of quantification (LOQ) of 24.10(-7) mol/L) using bands (lambda max within 260+/-0.23-262+/-0.33 nm. Metrology, including accuracy, measurement repeatability, measurement precision, trueness of measurement, and reproducibility of the measurements are presented using N,N-dimethyltryptamine (DMA) as standard. The analytical quantities of mixtures of alkaloids 4, 6 and 7 are: lambda max 317+/-0.45, 338+/-0.69 and 430+/-0.09 for 4 (LOD, 8.6.10(-7) mol/L; LOQ, 28.66(6), mol/L), as well as 528+/-0.75 nm for 6 and 7 (LOD, 8.2.10(-7) mol/L; LOQ, 27.33(3), mol/L), respectively. The partially validated protocols by high performance liquid chromatography (HPLC), electrospray ionization (ESI), mass spectrometry (MS), both in single and tandem operation (MS/MS) mode, as well as matrix/assisted laser desorption/ionization (MALDI) MS are elaborated. The Raman spectroscopic (RS) protocol for analysis of psychoactive substances, characterized by strong fluorescence RS profile was developed, with the detection limits being discussed. The known synergistic effect leading to increase the psychoactive and hallucinogenic properties and the reported acute poisoning cases from 1-7, make the present study emergent, since as well the current lack of analytical data and the herein metrology obtained contributed to the elaboration of highly selective and precise analytical protocols, which would be of interest in the field of criminal forensic analysis. PMID:23156988

  1. The influence of Agrobacterium rhizogenes on induction of hairy roots and ß-carboline alkaloids production in Tribulus terrestris L.

    PubMed

    Sharifi, Sara; Sattari, Taher Nejad; Zebarjadi, Alireza; Majd, Ahmad; Ghasempour, Hamidreza

    2014-01-01

    We have developed an efficient transformation system for Tribulus terrestris L., an important medicinal plant, using Agrobacterium rhizogenes strains AR15834 and GMI9534 to generate hairy roots. Hairy roots were formed directly from the cut edges of leaf explants 10-14 days after inoculation with the Agrobacterium with highest frequency transformation being 49 %, which was achieved using Agrobacterium rhizogenes AR15834 on hormone-free MS medium after 28 days inoculation. PCR analysis showed that rolB genes of Ri plasmid of A. rhizogenes were integrated and expressed into the genome of transformed hairy roots. Isolated transgenic hairy roots grew rapidly on MS medium supplemented with indole-3-butyric acid. They showed characteristics of transformed roots such as fast growth and high lateral branching in comparison with untransformed roots. Isolated control and transgenic hairy roots grown in liquid medium containing IBA were analyzed to detect ß-carboline alkaloids by High Performance Thin Layer Chromatograghy (HPTLC). Harmine content was estimated to be 1.7 μg g(-1) of the dried weight of transgenic hairy root cultures at the end of 50 days of culturing. The transformed roots induced by AR15834 strain, spontaneously, dedifferentiated as callus on MS medium without hormone. Optimum callus induction and shoot regeneration of transformed roots in vitro was achieved on MS medium containing 0.4 mg L(-1) naphthaleneacetic acid and 2 mg L(-1) 6-benzylaminopurine (BAP) after 50 days. The main objective of this investigation was to establish hairy roots in this plant by using A. rhizogenes to synthesize secondary products at levels comparable to the wild-type roots. PMID:24554840

  2. Misassigned natural products and their revised structures.

    PubMed

    Yoo, Hye-Dong; Nam, Sang-Jip; Chin, Young-Won; Kim, Min-Sun

    2016-02-01

    Natural products are a major pipeline for drug development and are responsible for more than 50 % of drugs on the market. NMR is a fundamental and powerful tool for the structure determination of natural products. It is essential to provide unambiguous chemical structure information on natural products in drug development research, including the structure-activity relationship, derivatization and pharmacokinetic/pharmacodynamic studies. Advancement of NMR instruments has made it possible to deal with nanomole-scale natural products for structure elucidation, but misinterpretation of NMR spectra still occurs. We review 21 natural products with revised chemical structures and the methods used for those revisions. PMID:26310208

  3. Biogenetically inspired synthesis and skeletal diversification of indole alkaloids

    NASA Astrophysics Data System (ADS)

    Mizoguchi, Haruki; Oikawa, Hideaki; Oguri, Hiroki

    2014-01-01

    To access architecturally complex natural products, chemists usually devise a customized synthetic strategy for constructing a single target skeleton. In contrast, biosynthetic assembly lines often employ divergent intramolecular cyclizations of a polyunsaturated common intermediate to produce diverse arrays of scaffolds. With the aim of integrating such biogenetic strategies, we show the development of an artificial divergent assembly line generating unprecedented numbers of scaffold variations of terpenoid indole alkaloids. This approach not only allows practical access to multipotent intermediates, but also enables systematic diversification of skeletal, stereochemical and functional group properties without structural simplification of naturally occurring alkaloids. Three distinct modes of [4+2] cyclizations and two types of redox-mediated annulations provided divergent access to five skeletally distinct scaffolds involving iboga-, aspidosperma-, andranginine- and ngouniensine-type skeletons and a non-natural variant within six to nine steps from tryptamine. The efficiency of our approach was demonstrated by successful total syntheses of (±)-vincadifformine, (±)-andranginine and (-)-catharanthine.

  4. Natural products and anti-inflammatory activity.

    PubMed

    Yuan, Gaofeng; Wahlqvist, Mark L; He, Guoqing; Yang, Min; Li, Duo

    2006-01-01

    The aim of this review paper was to summarise some commonly available natural products and their anti-inflammatory activity. We have collected data from MEDLINE, Current Contents and scientific journals, which included 92 publications. There are numerous natural products detailed in this literature; however we have summarized a few of the most commonly available and potent ones. In this paper, the natural products with anti-inflammatory activity including curcumin, parthenolide, cucurbitacins, 1,8-cineole, pseudopterosins, lyprinol, bromelain, flavonoids, saponins, marine sponge natural products and Boswellia serrata gum resin were reviewed. Natural products play a significant role in human health in relation to the prevention and treatment of inflammatory conditions. Further studies are being conducted to investigate the mechanism of action, metabolism, safety and long term side effect of these natural products, as well as interactions between these natural products with food and drug components. PMID:16672197

  5. Modern plant metabolomics: advanced natural product gene discoveries, improved technologies, and future prospects.

    PubMed

    Sumner, Lloyd W; Lei, Zhentian; Nikolau, Basil J; Saito, Kazuki

    2015-02-01

    Plant metabolomics has matured and modern plant metabolomics has accelerated gene discoveries and the elucidation of a variety of plant natural product biosynthetic pathways. This review covers the approximate period of 2000 to 2014, and highlights specific examples of the discovery and characterization of novel genes and enzymes associated with the biosynthesis of natural products such as flavonoids, glucosinolates, terpenoids, and alkaloids. Additional examples of the integration of metabolomics with genome-based functional characterizations of plant natural products that are important to modern pharmaceutical technology are also reviewed. This article also provides a substantial review of recent technical advances in mass spectrometry imaging, nuclear magnetic resonance imaging, integrated LC-MS-SPE-NMR for metabolite identifications, and X-ray crystallography of microgram quantities for structural determinations. The review closes with a discussion on the future prospects of metabolomics related to crop species and herbal medicine. PMID:25342293

  6. Modern plant metabolomics: Advanced natural product gene discoveries, improved technologies, and future prospects

    SciTech Connect

    Sumner, Lloyd W.; Lei, Zhentian; Nikolau, Basil J.; Saito, Kazuki

    2014-10-24

    Plant metabolomics has matured and modern plant metabolomics has accelerated gene discoveries and the elucidation of a variety of plant natural product biosynthetic pathways. This study highlights specific examples of the discovery and characterization of novel genes and enzymes associated with the biosynthesis of natural products such as flavonoids, glucosinolates, terpenoids, and alkaloids. Additional examples of the integration of metabolomics with genome-based functional characterizations of plant natural products that are important to modern pharmaceutical technology are also reviewed. This article also provides a substantial review of recent technical advances in mass spectrometry imaging, nuclear magnetic resonance imaging, integrated LC-MS-SPE-NMR for metabolite identifications, and x-ray crystallography of microgram quantities for structural determinations. The review closes with a discussion on the future prospects of metabolomics related to crop species and herbal medicine.

  7. Modern plant metabolomics: Advanced natural product gene discoveries, improved technologies, and future prospects

    DOE PAGESBeta

    Sumner, Lloyd W.; Lei, Zhentian; Nikolau, Basil J.; Saito, Kazuki

    2014-10-24

    Plant metabolomics has matured and modern plant metabolomics has accelerated gene discoveries and the elucidation of a variety of plant natural product biosynthetic pathways. This study highlights specific examples of the discovery and characterization of novel genes and enzymes associated with the biosynthesis of natural products such as flavonoids, glucosinolates, terpenoids, and alkaloids. Additional examples of the integration of metabolomics with genome-based functional characterizations of plant natural products that are important to modern pharmaceutical technology are also reviewed. This article also provides a substantial review of recent technical advances in mass spectrometry imaging, nuclear magnetic resonance imaging, integrated LC-MS-SPE-NMR formore » metabolite identifications, and x-ray crystallography of microgram quantities for structural determinations. The review closes with a discussion on the future prospects of metabolomics related to crop species and herbal medicine.« less

  8. Cameroonian Medicinal Plants: Pharmacology and Derived Natural Products

    PubMed Central

    Kuete, Victor; Efferth, Thomas

    2010-01-01

    Many developing countries including Cameroon have mortality patterns that reflect high levels of infectious diseases and the risk of death during pregnancy and childbirth, in addition to cancers, cardiovascular diseases and chronic respiratory diseases that account for most deaths in the developed world. Several medicinal plants are used traditionally for their treatment. In this review, plants used in Cameroonian traditional medicine with evidence for the activities of their crude extracts and/or derived products have been discussed. A considerable number of plant extracts and isolated compounds possess significant antimicrobial, anti-parasitic including antimalarial, anti-proliferative, anti-inflammatory, anti-diabetes, and antioxidant effects. Most of the biologically active compounds belong to terpenoids, phenolics, and alkaloids. Terpenoids from Cameroonian plants showed best activities as anti-parasitic, but rather poor antimicrobial effects. The best antimicrobial, anti-proliferative, and antioxidant compounds were phenolics. In conclusion, many medicinal plants traditionally used in Cameroon to treat various ailments displayed good activities in vitro. This explains the endeavor of Cameroonian research institutes in drug discovery from indigenous medicinal plants. However, much work is still to be done to standardize methodologies and to study the mechanisms of action of isolated natural products. PMID:21833168

  9. Natural Products: An Independent Study Project

    ERIC Educational Resources Information Center

    Griffin, Roger W., Jr.

    1974-01-01

    Described is an independent study project for students in chemistry at New College, Sarasota, Florida. Six students collected and analyzed local plants to determine content of alkaloids, terpenes, and flavonoids. (RH)

  10. Recent Advances in Natural Product Discovery

    PubMed Central

    Luo, Yunzi; Cobb, Ryan E.; Zhao, Huimin

    2014-01-01

    Natural products have been and continue to be the source and inspiration for a substantial fraction of human therapeutics. Although the pharmaceutical industry has largely turned its back on natural product discovery efforts, such efforts continue to flourish in academia with promising results. Natural products have traditionally been identified from a top-down perspective, but more recently genomics- and bioinformatics-guided bottom-up approaches have provided powerful alternative strategies. Here we review recent advances in natural product discovery from both angles, including diverse sampling and innovative culturing and screening approaches, as well as genomics-driven discovery and genetic manipulation techniques for both native and heterologous expression. PMID:25260043

  11. Tetrandrine, a plant alkaloid, inhibits the production of tumour necrosis factor-alpha (cachectin) hy human monocytes.

    PubMed Central

    Ferrante, A; Seow, W K; Rowan-Kelly, B; Thong, Y H

    1990-01-01

    Human mononuclear leucocytes (MNL) or the adherent fraction (monocytes) produced tumour necrosis factor-alpha (TNF-alpha) (by ELISA) in culture when stimulated with killed Staphylococcus aureus. The bisbenzylisoquinoline alkaloid, tetrandrine inhibited the capacity of MNL and monocytes to produce TNF-alpha at a concentration range of 0.1 to 5 micrograms/ml. Tetrandrine may be potentially useful in the treatment of inflammatory diseases in which TNF-alpha plays a major role. PMID:2357850

  12. A Palladium-Catalyzed Vinylcyclopropane (3 + 2) Cycloaddition Approach to the Melodinus Alkaloids

    PubMed Central

    Goldberg, Alexander F. G.; Stoltz, Brian M.

    2011-01-01

    A palladium-catalyzed (3 + 2) cycloaddition of a vinylcyclopropane and a β-nitrostyrene are employed to rapidly assemble the cyclopentane core of the Melodinus alkaloids. The ABCD ring system of the natural product family is prepared in six steps from commercially available materials. PMID:21786746

  13. The chemistry and biology of guanidine natural products.

    PubMed

    Berlinck, Roberto G S; Romminger, Stelamar

    2016-03-01

    Covering: 2012 to 2014. Previous review: Nat. Prod. Rep., 2012, 29, 1382The present review discusses the isolation, structure determination, synthesis, biosynthesis and biological activities of secondary metabolites bearing a guanidine group. Topics include non-ribosomal peptides, alkaloids, guanidine-bearing terpenes, polyketides and shikimic acid derivatives from natural sources. A critical analysis of some yet underdeveloped aspects of guanidine metabolites is also presented. PMID:26689539

  14. Salicylic acid restrains nickel toxicity, improves antioxidant defence system and enhances the production of anticancer alkaloids in Catharanthus roseus (L.).

    PubMed

    Idrees, Mohd; Naeem, M; Aftab, Tariq; Khan, M Masroor A; Moinuddin

    2013-05-15

    Salicylic acid (SA) has been reported to ameliorate various stresses in plants. In order to explore the role of SA under nickel (Ni) stress, thirty-days old plants of periwinkle (Catharanthus roseus L.) were supplied with eight treatments comprising basal application of Ni (0, 50, 100 and 150 mg kg(-1)) and foliar application of SA (0 and 10(-5)M) under net house conditions. Ni application significantly reduced the growth attributes including plant height, leaf-area index and fresh and dry weights of shoot and root. Increasing Ni concentration led to a gradual decrease in photosynthetic parameters and activities of nitrate reductase and carbonic anhydrase. The plants, undergoing Ni stress, exhibited a significant increase in the activity of superoxide dismutase, catalase and peroxidase together with an increase in electrolyte leakage and proline content. Total alkaloid content was also declined in Ni-treated plants. Foliar application of SA (10(-5)M) reduced the deleterious effects of Ni on plant growth, accelerating the restoration of growth processes. SA also improved the total alkaloid content under normal as well as adverse conditions. Foliar spray of SA significantly improved the content of anticancer alkaloids vincristine (by 22.2%) and vinblastine (by 50.0%) in plants treated with 150 mg kg(-1) of Ni. PMID:23597961

  15. Super Natural II--a database of natural products.

    PubMed

    Banerjee, Priyanka; Erehman, Jevgeni; Gohlke, Björn-Oliver; Wilhelm, Thomas; Preissner, Robert; Dunkel, Mathias

    2015-01-01

    Natural products play a significant role in drug discovery and development. Many topological pharmacophore patterns are common between natural products and commercial drugs. A better understanding of the specific physicochemical and structural features of natural products is important for corresponding drug development. Several encyclopedias of natural compounds have been composed, but the information remains scattered or not freely available. The first version of the Supernatural database containing ∼ 50,000 compounds was published in 2006 to face these challenges. Here we present a new, updated and expanded version of natural product database, Super Natural II (http://bioinformatics.charite.de/supernatural), comprising ∼ 326,000 molecules. It provides all corresponding 2D structures, the most important structural and physicochemical properties, the predicted toxicity class for ∼ 170,000 compounds and the vendor information for the vast majority of compounds. The new version allows a template-based search for similar compounds as well as a search for compound names, vendors, specific physical properties or any substructures. Super Natural II also provides information about the pathways associated with synthesis and degradation of the natural products, as well as their mechanism of action with respect to structurally similar drugs and their target proteins. PMID:25300487

  16. Counting on natural products for drug design

    NASA Astrophysics Data System (ADS)

    Rodrigues, Tiago; Reker, Daniel; Schneider, Petra; Schneider, Gisbert

    2016-06-01

    Natural products and their molecular frameworks have a long tradition as valuable starting points for medicinal chemistry and drug discovery. Recently, there has been a revitalization of interest in the inclusion of these chemotypes in compound collections for screening and achieving selective target modulation. Here we discuss natural-product-inspired drug discovery with a focus on recent advances in the design of synthetically tractable small molecules that mimic nature's chemistry. We highlight the potential of innovative computational tools in processing structurally complex natural products to predict their macromolecular targets and attempt to forecast the role that natural-product-derived fragments and fragment-like natural products will play in next-generation drug discovery.

  17. Various alkaloid profiles in decoctions of Banisteriopsis caapi.

    PubMed

    Callaway, J C

    2005-06-01

    Twenty nine decoctions of Banisteriopsis caapi from four different sources and one specimen of B. caapi paste were analyzed for N,N-dimethyltryptamine (DMT), tetrahydroharmine (THH), harmaline and harmine. Other plants were also used in the preparation of these products, typically Psychotria viridis, which provides DMT. There were considerable variations in alkaloid profiles, both within and between sample sources. DMT was not detected in all samples. Additional THH may be formed from both harmine and harmaline during the preparation of these products. The alkaloid composition of one decoction sample did not change significantly after standing at room temperature for 80 days, but the initial acidic pH was neutralized by natural fermentation after 50 days. PMID:16149328

  18. Improvement of benzylisoquinoline alkaloid productivity by overexpression of 3'-hydroxy-N-methylcoclaurine 4'-O-methyltransferase in transgenic Coptis japonica plants.

    PubMed

    Inui, Takayuki; Kawano, Noriaki; Shitan, Nobukazu; Yazaki, Kazufumi; Kiuchi, Fumiyuki; Kawahara, Nobuo; Sato, Fumihiko; Yoshimatsu, Kayo

    2012-01-01

    Coptis japonica (Cj) rhizomes are used as a crude drug for gastroenteritis, since they accumulate antimicrobial berberine. Berberine also shows various useful bioactivities, including cholesterol-lowering activity. Unfortunately, Cj is a slow-growing plant and more than 5 years are required to obtain a crude drug suitable for the Japanese Pharmacopoeia. To improve alkaloid productivity, we overexpressed the 3'-hydroxy-N-methylcoclaurine 4'-O-methyltransferase (4'OMT) gene in Cj. We established the transgenic plant (named CjHE4') by introducing one copy of Cj4'OMT by Agrobacterium-mediated transformation. The successful overexpression of 4'OMT was confirmed in all tissues of CjHE4' by real-time polymerase chain reaction (PCR) analysis. HPLC analysis revealed that the berberine content of CjHE4' leaves and roots cultivated for 4 months was increased to 2.7- and 2.0-fold, respectively, compared with non-transgenic wild-type (CjWT), and these inductions of alkaloids were stable for at least 20 months. Furthermore, in CjHE4' cultivated for 20 months, the berberine content in medicinal parts, stems and rhizomes was significantly increased (1.6-fold). As a consequence, increased amounts of alkaloids in CjHE4' resulted in the improvement of berberine yields (1.5-fold), whereas CjHE4' showed slower growth than CjWT. These results indicated that 4'OMT is one of the key-step enzymes in berberine biosynthesis and is useful for metabolic engineering in Cj. PMID:22687397

  19. Functional chromatographic technique for natural product isolation†

    PubMed Central

    Lau, Eric C.; Mason, Damian J.; Eichhorst, Nicole; Engelder, Pearce; Mesa, Celestina; Kithsiri Wijeratne, E. M.; Gunaherath, G. M. Kamal B.; Leslie Gunatilaka, A. A.

    2015-01-01

    Natural product discovery arises through a unique interplay between chromatographic purification and biological assays. Currently, most techniques used for natural product purification deliver leads without a defined biological action. We now describe a technique, referred to herein as functional chromatography, that deploys biological affinity as the matrix for compound isolation. PMID:25588099

  20. Total Synthesis of the Akuammiline Alkaloid Picrinine

    PubMed Central

    2015-01-01

    We report the first total synthesis of the complex akuammiline alkaloid picrinine, which was first isolated nearly five decades ago. Our synthetic approach features a concise assembly of the [3.3.1]-azabicyclic core, a key Fischer indolization reaction to forge the natural product’s carbon framework, and a series of delicate late-stage transformations to complete the synthesis. Our synthesis of picrinine also constitutes a formal synthesis of the related polycyclic alkaloid strictamine. PMID:24597784

  1. Cyclopeptide Alkaloids from Hymenocardia acida.

    PubMed

    Tuenter, Emmy; Exarchou, Vassiliki; Baldé, Aliou; Cos, Paul; Maes, Louis; Apers, Sandra; Pieters, Luc

    2016-07-22

    Four cyclopeptide alkaloids (1-4) were isolated from the root bark of Hymenocardia acida by means of semipreparative HPLC with DAD and ESIMS detection and conventional separation methods. Structure elucidation was performed by spectroscopic means. In addition to the known compound hymenocardine (1), three other alkaloids were isolated for the first time from a natural source. These included a hymenocardine derivative with a hydroxy group instead of a carbonyl group that was named hymenocardinol (2), as well as hymenocardine N-oxide (3) and a new cyclopeptide alkaloid containing an unusual histidine moiety named hymenocardine-H (4). The isolated cyclopeptide alkaloids were tested for their antiplasmodial activity and cytotoxicity. All four compounds showed moderate antiplasmodial activity, with IC50 values ranging from 12.2 to 27.9 μM, the most active one being hymenocardine N-oxide (3), with an IC50 value of 12.2 ± 6.6 μM. Compounds 2-4 were found not to be cytotoxic against MRC-5 cells (IC50 > 64.0 μM), but hymenocardine (1) showed some cytotoxicity, with an IC50 value of 51.1 ± 17.2 μM. PMID:27351950

  2. Bioactive natural products from novel microbial sources.

    PubMed

    Challinor, Victoria L; Bode, Helge B

    2015-09-01

    Despite the importance of microbial natural products for human health, only a few bacterial genera have been mined for the new natural products needed to overcome the urgent threat of antibiotic resistance. This is surprising, given that genome sequencing projects have revealed that the capability to produce natural products is not a rare feature among bacteria. Even the bacteria occurring in the human microbiome produce potent antibiotics, and thus potentially are an untapped resource for novel compounds, potentially with new activities. This review highlights examples of bacteria that should be considered new sources of natural products, including anaerobes, pathogens, and symbionts of humans, insects, and nematodes. Exploitation of these producer strains, combined with advances in modern natural product research methodology, has the potential to open the way for a new golden age of microbial therapeutics. PMID:26509922

  3. Terpenoid-Alkaloids: Their Biosynthetic Twist of Fate and Total Synthesis

    PubMed Central

    Cherney, Emily C.; Baran, Phil S.

    2015-01-01

    Terpenes and alkaloids are ever-growing classes of natural products that provide new molecular structures which inspire chemists and possess a broad range of biological activity. Terpenoid-alkaloids originate from the same prenyl units that construct terpene skeletons. However, during biosynthesis, a nitrogen atom (or atoms) is introduced in the form of β-aminoethanol, ethylamine, or methylamine. Nitrogen incorporation can occur either before, during, or after the cyclase phase. The outcome of this unique biosynthesis is the formation of natural products containing unprecedented structures. These complex structural motifs expose current limitations in organic chemistry, thus providing opportunities for invention. This review focuses on total syntheses of terpenoid-alkaloids and unique issues presented by this class of natural products. More specifically, it examines how these syntheses relate to the way terpenoid-alkaloids are made in Nature. Developments in chemistry that have facilitated these syntheses are emphasized, as well as chemical technology needed to conquer those that evade synthesis. PMID:26207071

  4. Analysis of 32 toxic natural substances in herbal products by liquid chromatography quadrupole linear ion trap mass spectrometry.

    PubMed

    Zeng, Yun; Quek, Yi-Ling; Kee, Chee-Leong; Low, Min-Yong; Bloodworth, Bosco C; Ge, Xiaowei

    2015-11-10

    In this study, an LC-MS/MS EPI method was developed for simultaneous determination of 32 toxic natural substances in herbal products. The analytes include aconite alkaloids, lobelia alkaloids, solanaceous alkaloids, digitalis steroid glycosides, strychnine, tetrahydropalmatine etc. They werecommonly used in herbal products. The target analytes were extracted from the samples using theQuEChERS method and analysed using AB SCIEX QTRAP 5500 coupled with Agilent HPLC 1260. Thecolumn used was biphenyl reversed phase analytical column. Mobile phase A and B were deionizedwater and methanol respectively, both containing 5mM ammonium formate and 0.1% formic acid. TheMRM-IDA-EPI method enabled quantification and confirmation of the analytes in a single run. The EPIwas used for the qualitative analysis while the MRM was used for the quantitative analysis. Limits ofdetection were determined to be below 10μg/kg for the majority of the analytes. The recoveries forthose commonly detected natural substances were in the acceptable range of 70-120%. PMID:26210743

  5. Novel mitochondria-targeted compounds composed of natural constituents: conjugates of plant alkaloids berberine and palmatine with plastoquinone.

    PubMed

    Chernyak, B V; Antonenko, Y N; Galimov, E R; Domnina, L V; Dugina, V B; Zvyagilskaya, R A; Ivanova, O Yu; Izyumov, D S; Lyamzaev, K G; Pustovidko, A V; Rokitskaya, T I; Rogov, A G; Severina, I I; Simonyan, R A; Skulachev, M V; Tashlitsky, V N; Titova, E V; Trendeleva, T A; Shagieva, G S

    2012-09-01

    Novel mitochondria-targeted compounds composed entirely of natural constituents have been synthesized and tested in model lipid membranes, in isolated mitochondria, and in living human cells in culture. Berberine and palmatine, penetrating cations of plant origin, were conjugated by nonyloxycarbonylmethyl residue with the plant electron carrier and antioxidant plastoquinone. These conjugates (SkQBerb, SkQPalm) and their analogs lacking the plastoquinol moiety (C10Berb and C10Palm) penetrated across planar bilayer phospholipid membrane in their cationic forms and accumulated in isolated mitochondria or in mitochondria in living human cells in culture. Reduced forms of SkQBerb and SkQPalm inhibited lipid peroxidation in isolated mitochondria at nanomolar concentrations. In isolated mitochondria and in living cells, the berberine and palmatine moieties were not reduced, so antioxidant activity belonged exclusively to the plastoquinol moiety. In human fibroblasts, nanomolar SkQBerb and SkQPalm prevented fragmentation of mitochondria and apoptosis induced by exogenous hydrogen peroxide. At higher concentrations, conjugates of berberine and palmatine induced proton transport mediated by free fatty acids both in model and in mitochondrial membrane. In mitochondria this process was facilitated by the adenine nucleotide carrier. As an example of application of the novel mitochondria-targeted antioxidants SkQBerb and SkQPalm to studies of signal transduction, we discuss induction of cell cycle arrest, differentiation, and morphological normalization of some tumor cells. We suggest that production of oxygen radicals in mitochondria is necessary for growth factors-MAP-kinase signaling, which supports proliferation and transformed phenotype. PMID:23157257

  6. Natural products: Hunting microbial metabolites

    NASA Astrophysics Data System (ADS)

    Schmidt, Eric W.

    2015-05-01

    Symbiotic bacteria synthesize many specialized small molecules; however, establishing the role these chemicals play in human health and disease has been difficult. Now, the chemical structure and mechanism of the Escherichia coli product colibactin provides insight into the link between this secondary metabolite and colorectal cancer.

  7. Natural Products for Pest Management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Most organisms synthesize secondary products with biological activity that is useful in their defense. Defense can be against vertebrates, arthropods, mollusks, plants (both algal and higher plants), and microbes. Many of these compounds have been used from ancient times to the present as pharmace...

  8. Natural Products from the Lithistida: A Review of the Literature since 2000

    PubMed Central

    Winder, Priscilla L.; Pomponi, Shirley A.; Wright, Amy E.

    2011-01-01

    Lithistid sponges are known to produce a diverse array of compounds ranging from polyketides, cyclic and linear peptides, alkaloids, pigments, lipids, and sterols. A majority of these structurally complex compounds have very potent and interesting biological activities. It has been a decade since a thorough review has been published that summarizes the literature on the natural products reported from this amazing sponge order. This review provides an update on the current taxonomic classification of the Lithistida, describes structures and biological activities of 131 new natural products, and discusses highlights from the total syntheses of 16 compounds from marine sponges of the Order Lithistida providing a compilation of the literature since the last review published in 2002. PMID:22363244

  9. Tropane and ergot alkaloids in grain-based products for infants and young children in the Netherlands in 2011-2014.

    PubMed

    Mulder, Patrick P J; Pereboom-de Fauw, Diana P K H; Hoogenboom, Ron L A P; de Stoppelaar, Joyce; de Nijs, Monique

    2015-01-01

    An LC-MS/MS multi-method was developed to simultaneously quantify ergot alkaloids (EAs) and tropane alkaloids (TAs) in 113 cereal-based food for infants and young children. To assess yearly variation, samples were collected in 2011, 2012 and 2014. EAs were detected in 54% and TAs in 22% of the samples. Mean EA levels in the three sampling years were 10.6, 6.2 and 8.6 µg kg(-1), respectively (maximum: 115.4 µg kg(-1)), indicating that exposure to EAs would not have exceeded the health-based guidance values set by EFSA in 2012. Mean TA levels were 3.9, 2.4 and 0.4 µg kg(-1), respectively (maximum: 80.8 µg kg(-1)). The acute reference dose for TAs, derived by EFSA in 2013, would have been exceeded by young children when consuming some of the products sampled in 2011-2012. TA levels had decreased drastically in 2014, possibly due to measures taken by producers as response to the EFSA Opinion. PMID:26367777

  10. Targeting Nuclear Receptors with Marine Natural Products

    PubMed Central

    Yang, Chunyan; Li, Qianrong; Li, Yong

    2014-01-01

    Nuclear receptors (NRs) are important pharmaceutical targets because they are key regulators of many metabolic and inflammatory diseases, including diabetes, dyslipidemia, cirrhosis, and fibrosis. As ligands play a pivotal role in modulating nuclear receptor activity, the discovery of novel ligands for nuclear receptors represents an interesting and promising therapeutic approach. The search for novel NR agonists and antagonists with enhanced selectivities prompted the exploration of the extraordinary chemical diversity associated with natural products. Recent studies involving nuclear receptors have disclosed a number of natural products as nuclear receptor ligands, serving to re-emphasize the translational possibilities of natural products in drug discovery. In this review, the natural ligands of nuclear receptors will be described with an emphasis on their mechanisms of action and their therapeutic potentials, as well as on strategies to determine potential marine natural products as nuclear receptor modulators. PMID:24473166

  11. Indole Alkaloids from Marine Sources as Potential Leads against Infectious Diseases

    PubMed Central

    França, Paulo H. B.; Barbosa, Daniel P.; da Silva, Daniel L.; Ribeiro, Êurica A. N.; Santana, Antônio E. G.; Santos, Bárbara V. O.; Barbosa-Filho, José M.; Quintans, Jullyana S. S.; Barreto, Rosana S. S.; Quintans-Júnior, Lucindo J.; de Araújo-Júnior, João X.

    2014-01-01

    Indole alkaloids comprise a large and complex class of natural products found in a variety of marine sources. Infectious diseases remain a major threat to public health, and in the absence of long-term protective vaccines, the control of these infectious diseases is based on a small number of chemotherapeutic agents. Furthermore, the emerging resistance against these drugs makes it urgently necessary to discover and develop new, safe and, effective anti-infective agents. In this regard, the aim of this review is to highlight indole alkaloids from marine sources which have been shown to demonstrate activity against infectious diseases. PMID:24995289

  12. hERG Blockade by Iboga Alkaloids.

    PubMed

    Alper, Kenneth; Bai, Rong; Liu, Nian; Fowler, Steven J; Huang, Xi-Ping; Priori, Silvia G; Ruan, Yanfei

    2016-01-01

    The iboga alkaloids are a class of naturally occurring and synthetic compounds, some of which modify drug self-administration and withdrawal in humans and preclinical models. Ibogaine, the prototypic iboga alkaloid that is utilized clinically to treat addictions, has been associated with QT prolongation, torsades de pointes and fatalities. hERG blockade as IKr was measured using the whole-cell patch clamp technique in HEK 293 cells. This yielded the following IC50 values: ibogaine manufactured by semisynthesis via voacangine (4.09 ± 0.69 µM) or by extraction from T. iboga (3.53 ± 0.16 µM); ibogaine's principal metabolite noribogaine (2.86 ± 0.68 µM); and voacangine (2.25 ± 0.34 µM). In contrast, the IC50 of 18-methoxycoronaridine, a product of rational synthesis and current focus of drug development was >50 µM. hERG blockade was voltage dependent for all of the compounds, consistent with low-affinity blockade. hERG channel binding affinities (K i) for the entire set of compounds, including 18-MC, ranged from 0.71 to 3.89 µM, suggesting that 18-MC binds to the hERG channel with affinity similar to the other compounds, but the interaction produces substantially less hERG blockade. In view of the extended half-life of noribogaine, these results may relate to observations of persistent QT prolongation and cardiac arrhythmia at delayed intervals of days following ibogaine ingestion. The apparent structure-activity relationships regarding positions of substitutions on the ibogamine skeleton suggest that the iboga alkaloids might provide an informative paradigm for investigation of the structural biology of the hERG channel. PMID:25636206

  13. Structure-Activity Relationships of the Bioactive Thiazinoquinone Marine Natural Products Thiaplidiaquinones A and B

    PubMed Central

    Harper, Jacquie L.; Khalil, Iman M.; Shaw, Lisa; Bourguet-Kondracki, Marie-Lise; Dubois, Joëlle; Valentin, Alexis; Barker, David; Copp, Brent R.

    2015-01-01

    In an effort to more accurately define the mechanism of cell death and to establish structure-activity relationship requirements for the marine meroterpenoid alkaloids thiaplidiaquinones A and B, we have evaluated not only the natural products but also dioxothiazine regioisomers and two precursor quinones in a range of bioassays. While the natural products were found to be weak inducers of ROS in Jurkat cells, the dioxothiazine regioisomer of thiaplidiaquinone A and a synthetic precursor to thiaplidiaquinone B were found to be moderately potent inducers. Intriguingly, and in contrast to previous reports, the mechanism of Jurkat cell death (necrosis vs. apoptosis) was found to be dependent upon the positioning of one of the geranyl sidechains in the compounds with thiaplidiaquinone A and its dioxothiazine regioisomer causing death dominantly by necrosis, while thiaplidiaquinone B and its dioxothiazine isomer caused cell death via apoptosis. The dioxothiazine regioisomer of thiaplidiaquinone A exhibited more potent in vitro antiproliferative activity against human tumor cells, with NCI sub-panel selectivity towards melanoma cell lines. The non-natural dioxothiazine regioisomers were also more active in antiplasmodial and anti-farnesyltransferase assays than their natural product counterparts. The results highlight the important role that natural product total synthesis can play in not only helping understand the structural basis of biological activity of natural products, but also the discovery of new bioactive scaffolds. PMID:26266415

  14. Structure-Activity Relationships of the Bioactive Thiazinoquinone Marine Natural Products Thiaplidiaquinones A and B.

    PubMed

    Harper, Jacquie L; Khalil, Iman M; Shaw, Lisa; Bourguet-Kondracki, Marie-Lise; Dubois, Joëlle; Valentin, Alexis; Barker, David; Copp, Brent R

    2015-08-01

    In an effort to more accurately define the mechanism of cell death and to establish structure-activity relationship requirements for the marine meroterpenoid alkaloids thiaplidiaquinones A and B, we have evaluated not only the natural products but also dioxothiazine regioisomers and two precursor quinones in a range of bioassays. While the natural products were found to be weak inducers of ROS in Jurkat cells, the dioxothiazine regioisomer of thiaplidiaquinone A and a synthetic precursor to thiaplidiaquinone B were found to be moderately potent inducers. Intriguingly, and in contrast to previous reports, the mechanism of Jurkat cell death (necrosis vs. apoptosis) was found to be dependent upon the positioning of one of the geranyl sidechains in the compounds with thiaplidiaquinone A and its dioxothiazine regioisomer causing death dominantly by necrosis, while thiaplidiaquinone B and its dioxothiazine isomer caused cell death via apoptosis. The dioxothiazine regioisomer of thiaplidiaquinone A exhibited more potent in vitro antiproliferative activity against human tumor cells, with NCI sub-panel selectivity towards melanoma cell lines. The non-natural dioxothiazine regioisomers were also more active in antiplasmodial and anti-farnesyltransferase assays than their natural product counterparts. The results highlight the important role that natural product total synthesis can play in not only helping understand the structural basis of biological activity of natural products, but also the discovery of new bioactive scaffolds. PMID:26266415

  15. New Synthetic Methods for Hypericum Natural Products

    SciTech Connect

    Insik Jeon

    2006-12-12

    Organic chemistry has served as a solid foundation for interdisciplinary research areas, such as molecular biology and medicinal chemistry. An understanding of the biological activities and structural elucidations of natural products can lead to the development of clinically valuable therapeutic options. The advancements of modern synthetic methodologies allow for more elaborate and concise natural product syntheses. The theme of this study centers on the synthesis of natural products with particularly challenging structures and interesting biological activities. The synthetic expertise developed here will be applicable to analog syntheses and to other research problems.

  16. Biodegradation potential of a modified natural product

    SciTech Connect

    Sajjad, W.

    1996-12-31

    Biodegradation potential of a modified natural product for treating petroleum contaminated soils was investigated along with some commercially available microbial cultures in three different scales from a laboratory to pilot to case studies. The modified natural product is lignocellulosic in nature and proprietary product of a company in Iowa. The production process of this product involves mechanical size reduction, blending/coating, and aerobic digestion of hay, corn cob residue, straw or crop residue in presence of poultry manure. The degradation kinetics of the petroleum products in the contaminated soils were measured both directly and indirectly. Residual petroleum products in different soils (treated and untreated) at various time periods were quantified by gas chromatographic (GC) analysis on extracted samples. The indirect assessment of the kinetics of biological activity involved the measurement of CO{sub 2} evolved from flasks (250 ml capacity) containing contaminated soil (about 50 ml) with various treatments. The results indicated that the biodegradation kinetics of petroleum products in the contaminated soils were significantly improved by treatment with this modified natural product. In most cases tested, this product performed significantly better than the available commercial bacterial cultures for biological removal of petroleum products from contaminated soils. This study also demonstrated the significance of temperature and moisture content in biodegradation kinetics.

  17. Quantitative and qualitative transcriptome analysis of four industrial strains of Claviceps purpurea with respect to ergot alkaloid production.

    PubMed

    Majeská Čudejková, Mária; Vojta, Petr; Valík, Josef; Galuszka, Petr

    2016-09-25

    The fungus Claviceps purpurea is a biotrophic phytopathogen widely used in the pharmaceutical industry for its ability to produce ergot alkaloids (EAs). The fungus attacks unfertilized ovaries of grasses and forms sclerotia, which represent the only type of tissue where the synthesis of EAs occurs. The biosynthetic pathway of EAs has been extensively studied; however, little is known concerning its regulation. Here, we present the quantitative transcriptome analysis of the sclerotial and mycelial tissues providing a comprehensive view of transcriptional differences between the tissues that produce EAs and those that do not produce EAs and the pathogenic and non-pathogenic lifestyle. The results indicate metabolic changes coupled with sclerotial differentiation, which are likely needed as initiation factors for EA biosynthesis. One of the promising factors seems to be oxidative stress. Here, we focus on the identification of putative transcription factors and regulators involved in sclerotial differentiation, which might be involved in EA biosynthesis. To shed more light on the regulation of EA composition, whole transcriptome analysis of four industrial strains differing in their alkaloid spectra was performed. The results support the hypothesis proposing the composition of the amino acid pool in sclerotia to be an important factor regulating the final structure of the ergopeptines produced by Claviceps purpurea. PMID:26827914

  18. Antimalarial benzylisoquinoline alkaloid from the rainforest tree Doryphora sassafras.

    PubMed

    Buchanan, Malcolm S; Davis, Rohan A; Duffy, Sandra; Avery, Vicky M; Quinn, Ronald J

    2009-08-01

    Mass-directed isolation of the CH(2)Cl(2)/MeOH extract of Doryphora sassafras resulted in the purification of a new benzylisoquinoline alkaloid, 1-(4-hydroxybenzyl)-6,7-methylenedioxy-2-methylisoquinolinium trifluoroacetate (1), and the known aporphine alkaloid (S)-isocorydine (2). The structures of 1 and 2 were determined by 1D and 2D NMR and MS data analyses. The compounds were isolated during a drug discovery program aimed at identifying new antimalarial leads from a prefractionated natural product library. When tested against two different strains of the parasite Plasmodium falciparum (3D7 and Dd2), 1 displayed IC(50) values of 3.0 and 4.4 microM, respectively. Compound 1 was tested for cytotoxicity toward a human embryonic kidney cell line (HEK293) and displayed no activity at 120 microM. PMID:19637893

  19. Natural antioxidants in meat and poultry products.

    PubMed

    Karre, Liz; Lopez, Keyla; Getty, Kelly J K

    2013-06-01

    In response to recent claims that synthetic antioxidants have the potential to cause toxicological effects and consumers' increased interest in purchasing natural products, the meat and poultry industry has been seeking sources of natural antioxidants. Due to their high phenolic compound content, fruits and other plant materials provide a good alternative to conventional antioxidants. Plum, grape seed extract, cranberry, pomegranate, bearberry, pine bark extract, rosemary, oregano, and other spices functions as antioxidants in meat and poultry products. Pomegranate, pine bark extract, cinnamon, and cloves have exhibited stronger antioxidant properties than some synthetic options. Plum products, grape seed extract, pine bark extract, rosemary, and some spices all have been shown to affect the color of finished meat or poultry products; however, in some products such as pork sausage or uncured meats, an increase in red color may be desired. When selecting a natural antioxidant, sensory and quality impact on the product should be considered to achieve desired traits. PMID:23501254

  20. Cancer wars: Natural products strike back

    NASA Astrophysics Data System (ADS)

    Basmadjian, Christine; Zhao, Qian; Djehal, Amel; Bentouhami, Embarek; Nebigil, Canan; Johnson, Roger; Serova, Maria; De Gramont, Armand; Faivre, Sandrine; Raymond, Eric; Désaubry, Laurent

    2014-05-01

    Natural products have historically been a mainstay source of anticancer drugs, but in the 90’s they fell out of favor in pharmaceutical companies with the emergence of targeted therapies, which rely on antibodies or small synthetic molecules identified by high throughput screening. Although targeted therapies greatly improved the treatment of a few cancers, the benefit has remained disappointing for many sol¬¬id tumors, which revitalized the interest in natural products. With the approval of rapamycin in 2007, twelve novel natural product derivatives have been brought to market. The present review describes the discovery and development of these new anticancer drugs and highlights the peculiarities of natural product and new trends in this exciting field of drug discovery.

  1. Cancer wars: natural products strike back

    PubMed Central

    Basmadjian, Christine; Zhao, Qian; Bentouhami, Embarek; Djehal, Amel; Nebigil, Canan G.; Johnson, Roger A.; Serova, Maria; de Gramont, Armand; Faivre, Sandrine; Raymond, Eric; Désaubry, Laurent G.

    2014-01-01

    Natural products have historically been a mainstay source of anticancer drugs, but in the 90's they fell out of favor in pharmaceutical companies with the emergence of targeted therapies, which rely on antibodies or small synthetic molecules identified by high throughput screening. Although targeted therapies greatly improved the treatment of a few cancers, the benefit has remained disappointing for many solid tumors, which revitalized the interest in natural products. With the approval of rapamycin in 2007, 12 novel natural product derivatives have been brought to market. The present review describes the discovery and development of these new anticancer drugs and highlights the peculiarities of natural product and new trends in this exciting field of drug discovery. PMID:24822174

  2. Neurotoxic Alkaloids: Saxitoxin and Its Analogs

    PubMed Central

    Wiese, Maria; D’Agostino, Paul M.; Mihali, Troco K.; Moffitt, Michelle C.; Neilan, Brett A.

    2010-01-01

    Saxitoxin (STX) and its 57 analogs are a broad group of natural neurotoxic alkaloids, commonly known as the paralytic shellfish toxins (PSTs). PSTs are the causative agents of paralytic shellfish poisoning (PSP) and are mostly associated with marine dinoflagellates (eukaryotes) and freshwater cyanobacteria (prokaryotes), which form extensive blooms around the world. PST producing dinoflagellates belong to the genera Alexandrium, Gymnodinium and Pyrodinium whilst production has been identified in several cyanobacterial genera including Anabaena, Cylindrospermopsis, Aphanizomenon Planktothrix and Lyngbya. STX and its analogs can be structurally classified into several classes such as non-sulfated, mono-sulfated, di-sulfated, decarbamoylated and the recently discovered hydrophobic analogs—each with varying levels of toxicity. Biotransformation of the PSTs into other PST analogs has been identified within marine invertebrates, humans and bacteria. An improved understanding of PST transformation into less toxic analogs and degradation, both chemically or enzymatically, will be important for the development of methods for the detoxification of contaminated water supplies and of shellfish destined for consumption. Some PSTs also have demonstrated pharmaceutical potential as a long-term anesthetic in the treatment of anal fissures and for chronic tension-type headache. The recent elucidation of the saxitoxin biosynthetic gene cluster in cyanobacteria and the identification of new PST analogs will present opportunities to further explore the pharmaceutical potential of these intriguing alkaloids. PMID:20714432

  3. An introduction to natural products isolation.

    PubMed

    Sarker, Satyajit D; Nahar, Lutfun

    2012-01-01

    Natural products, well known for unique chemical diversity and bioactivity, have continued to offer templates for the development of novel scaffolds of drugs. With the remarkable developments in the areas of separation science, spectroscopic techniques, microplate-based ultrasensitive in vitro assays and high-throughput screening (HTS) technologies, natural products research has gained momentum in recent years. The pre-isolation analyses of crude extracts or fraction from different natural matrices, isolation, online detection and dereplication of natural products, studies on chemotaxonomy and biosynthesis, chemical finger-printing, quality control of herbal products, and metabolomic studies have now become much easier than ever before because of the availability of a number of modern sophisticated hyphenated techniques, e.g., GC-MS, LC-PDA, LC-MS, LC-FTIR, LC-NMR, LC-NMR-MS, and CE-MS. This introductory chapter presents a general overview of the processes involved in natural products research, starting from extraction and isolation to elucidation of the structures of purified natural products and their bioactivity. PMID:22367891

  4. Engineering microbial hosts for production of bacterial natural products.

    PubMed

    Zhang, Mingzi M; Wang, Yajie; Ang, Ee Lui; Zhao, Huimin

    2016-08-27

    Covering up to end 2015Microbial fermentation provides an attractive alternative to chemical synthesis for the production of structurally complex natural products. In most cases, however, production titers are low and need to be improved for compound characterization and/or commercial production. Owing to advances in functional genomics and genetic engineering technologies, microbial hosts can be engineered to overproduce a desired natural product, greatly accelerating the traditionally time-consuming strain improvement process. This review covers recent developments and challenges in the engineering of native and heterologous microbial hosts for the production of bacterial natural products, focusing on the genetic tools and strategies for strain improvement. Special emphasis is placed on bioactive secondary metabolites from actinomycetes. The considerations for the choice of host systems will also be discussed in this review. PMID:27072804

  5. Cytotoxic Guanidine Alkaloids from a French Polynesian Monanchora n. sp. Sponge.

    PubMed

    El-Demerdash, Amr; Moriou, Céline; Martin, Marie-Thérèse; Rodrigues-Stien, Alice de Souza; Petek, Sylvain; Demoy-Schneider, Marina; Hall, Kathryn; Hooper, John N A; Debitus, Cécile; Al-Mourabit, Ali

    2016-08-26

    Four bicyclic and three pentacyclic guanidine alkaloids (1-7) were isolated from a French Polynesian Monanchora n. sp. sponge, along with the known alkaloids monalidine A (8), enantiomers 9-11 of known natural product crambescins, and the known crambescidins 12-15. Structures were assigned by spectroscopic data interpretation. The relative and absolute configurations of the alkaloids were established by analysis of (1)H NMR and NOESY spectra and by circular dichroism analysis. The new norcrambescidic acid (7) corresponds to interesting biosynthetic variation within the pentacyclic core. All compounds exhibited antiproliferative and cytotoxic efficacy against KB, HCT116, HL60, MRC5, and B16F10 cancer cells, with IC50 values ranging from 4 nM to 10 μM. PMID:27419263

  6. Enantiospecific Synthesis and Biological Investigations of a Nuphar Alkaloid: Proposed Structure of a Castoreum Component

    PubMed Central

    Seki, Hajime; Georg, Gunda I.

    2014-01-01

    An enantiospecific synthesis of a Nuphar alkaloid was achieved in 9 steps from N-Boc-(L)-proline. The alkaloid is a minor component of castoreum, the dried scent glands of the beaver. During the course of our study, the stereochemistry of three synthetic intermediates was verified by X-ray analysis, which contributes to resolving existing discrepancies among the literature reports regarding the synthesis of this particular compound. Based on our synthesis, we propose the structure of the natural product. Also, intrigued by castoreum’s therapeutic effect, which was used in ancient Greece and Rome for gynecological and other purposes, biological screening was conducted. We found that the alkaloid has affinity for the oxytocin receptor. PMID:25395879

  7. Isolation of Cells Specialized in Anticancer Alkaloid Metabolism by Fluorescence-Activated Cell Sorting.

    PubMed

    Carqueijeiro, Inês; Guimarães, Ana Luísa; Bettencourt, Sara; Martínez-Cortés, Teresa; Guedes, Joana G; Gardner, Rui; Lopes, Telma; Andrade, Cláudia; Bispo, Cláudia; Martins, Nuno Pimpão; Andrade, Paula; Valentão, Patrícia; Valente, Inês M; Rodrigues, José A; Duarte, Patrícia; Sottomayor, Mariana

    2016-08-01

    Plant specialized metabolism often presents a complex cell-specific compartmentation essential to accomplish the biosynthesis of valuable plant natural products. Hence, the disclosure and potential manipulation of such pathways may depend on the capacity to isolate and characterize specific cell types. Catharanthus roseus is the source of several medicinal terpenoid indole alkaloids, including the low-level anticancer vinblastine and vincristine, for which the late biosynthetic steps occur in specialized mesophyll cells called idioblasts. Here, the optical, fluorescence, and alkaloid-accumulating properties of C. roseus leaf idioblasts are characterized, and a methodology for the isolation of idioblast protoplasts by fluorescence-activated cell sorting is established, taking advantage of the distinctive autofluorescence of these cells. This achievement represents a crucial step for the development of differential omic strategies leading to the identification of candidate genes putatively involved in the biosynthesis, pathway regulation, and transmembrane transport leading to the anticancer alkaloids from C. roseus. PMID:27356972

  8. Enantiospecific Synthesis and Biological Investigations of a Nuphar Alkaloid: Proposed Structure of a Castoreum Component.

    PubMed

    Seki, Hajime; Georg, Gunda I

    2014-06-01

    An enantiospecific synthesis of a Nuphar alkaloid was achieved in 9 steps from N-Boc-(L)-proline. The alkaloid is a minor component of castoreum, the dried scent glands of the beaver. During the course of our study, the stereochemistry of three synthetic intermediates was verified by X-ray analysis, which contributes to resolving existing discrepancies among the literature reports regarding the synthesis of this particular compound. Based on our synthesis, we propose the structure of the natural product. Also, intrigued by castoreum's therapeutic effect, which was used in ancient Greece and Rome for gynecological and other purposes, biological screening was conducted. We found that the alkaloid has affinity for the oxytocin receptor. PMID:25395879

  9. Two Faces of Alkaloids

    NASA Astrophysics Data System (ADS)

    Dostál, Jirí

    2000-08-01

    Alkaloids can occur in two forms, denoted as ammonium salts and free bases. These forms differ substantially in their properties and in some cases in their structures. The article discusses and compares the salts and free bases of six well-known alkaloids: nicotine, morphine, cocaine, sanguinarine, allocryptopine, and magnoflorine. Relevance for the biological and medical uses of these compounds is emphasized.

  10. Amaryllidaceae and Sceletium alkaloids.

    PubMed

    Jin, Zhong

    2013-06-01

    Covering: July 2010 to June 2012. Previous review: Nat. Prod. Rep., 2011, 28, 1126-1142. Recent progress on the isolation, identification, biological activity and synthetic studies of structurally diverse alkaloids from plants of the family Amaryllidaceae is summarized in this review. In addition, the structurally related alkaloids isolated from Sceletium species are discussed as well. PMID:23644557

  11. Alkaloids from Chasmanthera dependens.

    PubMed

    Ohiri, F C; Verpoorte, R; Baerheim Svendsen, A

    1982-12-01

    A phytochemical investigation of the stem of Chasmanthera dependens Hochst led to the isolation and identification of five quaternary alkaloids: jatrorrhizine, columbamine, pseudocolumbamine, magnoflorine and palmatine and nine tertiary non-phenolic alkaloids: tetrahydropalmatine, liriodenine, lysicamine, oxoglaucine, glaucine, anonaine, nornuciferine, norglaucine and O,O-dimethylcorytuberine. PMID:17396979

  12. A new monoterpenoid oxindole alkaloid from Hamelia patens micropropagated plantlets.

    PubMed

    Paniagua-Vega, David; Cerda-García-Rojas, Carlos M; Ponce-Noyola, Teresa; Ramos-Valdivia, Ana C

    2012-11-01

    Chemical studies on Hamelia patens (Rubiaceae) micropropagated plantlets allowed production of a new monoterpenoid oxindole alkaloid, named (-)-hameline (7), together with eight known alkaloids, tetrahydroalstonine (1), aricine (2), pteropodine (3), isopteropodine (4), uncarine F (5), speciophylline (6), palmirine (8), and rumberine (9). The structure of the new alkaloid was assigned on the basis of 1D and 2D NMR spectroscopy, mass spectrometry, and molecular modeling. PMID:23285803

  13. Toxicosis by Plant Alkaloids in Humans and Animals in Colombia.

    PubMed

    Diaz, Gonzalo J

    2015-12-01

    Due to its tropical location, chains of mountains, inter-Andean valleys, Amazon basin area, eastern plains and shores on both the Atlantic and Pacific Oceans, Colombia has many ecosystems and the second largest plant biodiversity in the world. Many plant species, both native and naturalized, are currently recognized as toxic for both animals and humans, and some of them are known to cause their toxic effects due to their alkaloid content. Among these, there are plants containing the hepatotoxic pyrrolizidine alkaloids, neurotoxins such as the indolizidine alkaloid swainsonine and the piperidine alkaloids coniine and γ-coniceine and tropane alkaloids. Unfortunately, the research in toxic plants in Colombia is not nearly proportional to its plant biodiversity and the scientific information available is only very scarce. The present review aims at summarizing the scarce information about plant alkaloid toxicosis in animals and humans in Colombia. PMID:26690479

  14. Toxicosis by Plant Alkaloids in Humans and Animals in Colombia

    PubMed Central

    Diaz, Gonzalo J.

    2015-01-01

    Due to its tropical location, chains of mountains, inter-Andean valleys, Amazon basin area, eastern plains and shores on both the Atlantic and Pacific Oceans, Colombia has many ecosystems and the second largest plant biodiversity in the world. Many plant species, both native and naturalized, are currently recognized as toxic for both animals and humans, and some of them are known to cause their toxic effects due to their alkaloid content. Among these, there are plants containing the hepatotoxic pyrrolizidine alkaloids, neurotoxins such as the indolizidine alkaloid swainsonine and the piperidine alkaloids coniine and γ-coniceine and tropane alkaloids. Unfortunately, the research in toxic plants in Colombia is not nearly proportional to its plant biodiversity and the scientific information available is only very scarce. The present review aims at summarizing the scarce information about plant alkaloid toxicosis in animals and humans in Colombia. PMID:26690479

  15. How EIA Estimates Natural Gas Production

    EIA Publications

    2004-01-01

    The Energy Information Administration (EIA) publishes estimates monthly and annually of the production of natural gas in the United States. The estimates are based on data EIA collects from gas producing states and data collected by the U. S. Minerals Management Service (MMS) in the Department of Interior. The states and MMS collect this information from producers of natural gas for various reasons, most often for revenue purposes. Because the information is not sufficiently complete or timely for inclusion in EIA's Natural Gas Monthly (NGM), EIA has developed estimation methodologies to generate monthly production estimates that are described in this document.

  16. Naturally occurring products in cancer therapy

    PubMed Central

    Rajesh, E.; Sankari, Leena S.; Malathi, L.; Krupaa, Jayasri R.

    2015-01-01

    Natural products have been used for the treatment of various diseases and are becoming an important research area for drug discovery. These products, especially phytochemicals have been extensively studies and have exhibited anti-carcinogenic activities by interfering with the initiation, development and progression of cancer through the modulation of various mechanisms including cellular proliferation, differentiation, apoptosis, angiogenesis, and metastasis. This concept is gaining attention because it is a cost-effective alternative to cancer treatment. In this article, we have discussed some of the naturally occurring products used in cancer treatment. PMID:26015704

  17. Recent Developments in the Isolation, Synthesis, and Bioactivities of Bispyrroloquinone Alkaloids of Marine Origin

    PubMed Central

    Nijampatnam, Bhavitavya; Dutta, Shilpa; Velu, Sadanandan E.

    2016-01-01

    The ocean continues to provide a plethora of unique scaffolds capable of remarkable biological applications. A large number of pyrroloiminoquinone alkaloids, including discorhabdins, epinardins, batzellines, makaluvamines, and veiutamine have already been isolated from marine organisms. A class of pyrroloiminoquinone-related alkaloids known as bispyrroloquinones is the focus of this review. This family of marine alkaloids, which contain an aryl substituted bispyrroloquinone ring system, includes three subclasses of alkaloids namely, wakayin, tsitsikammamines A-B and zyzzyanones A-D. Both wakayin and the tsitsikammamines contain a tetracyclic fused bispyrroloiminoquinone ring system, while zyzzyanones contain a fused tricyclic bispyrroloquinone ring system. The unique chemical structures of these marine natural products and their diverse biological properties, including antifungal and antimicrobial activity, as well as the potent, albeit generally nonspecific and universal cytotoxicities, have attracted great interest of synthetic chemists over the past three decades. Tsitsikammamines, wakayin, and several of their analogues show inhibition of topoisomerases. One additional possible mechanism of anticancer activity of tsitsikammamines analogues that was discovered recently is through the inhibition of indoleamine 2,3-dioxygenase, an enzyme involved in tumoral immune resistance. This review discusses the isolation, synthesis, and bioactivities of bispyrroloquinone alkaloids and their analogues. PMID:26253489

  18. Recent advances in isolation, synthesis, and evaluation of bioactivities of bispyrroloquinone alkaloids of marine origin.

    PubMed

    Nijampatnam, Bhavitavya; Dutta, Shilpa; Velu, Sadanandan E

    2015-08-01

    The ocean continues to provide a plethora of unique scaffolds capable of remarkable biological applications. A large number of pyrroloiminoquinone alkaloids, including discorhabdins, epinardins, batzellines, makaluvamines, and veiutamine, have been isolated from various marine organisms. A class of pyrroloiminoquinone-related alkaloids, known as bispyrroloquinones, is the focus of this review article. This family of marine alkaloids, which contain an aryl substituted bispyrroloquinone ring system, includes three subclasses of alkaloids namely, wakayin, tsitsikammamines A-B, and zyzzyanones A-D. Both wakayin and the tsitsikammamines contain a tetracyclic fused bispyrroloiminoquinone ring system, while zyzzyanones contain a fused tricyclic bispyrroloquinone ring system. The unique chemical structures of these marine natural products and their diverse biological properties, including antifungal and antimicrobial activity, as well as the potent, albeit generally nonspecific and universal cytotoxicities, have attracted great interest of synthetic chemists over the past three decades. Tsitsikammamines, wakayin, and several of their analogs show inhibition of topoisomerases. One additional possible mechanism of anticancer activity of tsitsikammamines analogs that has been discovered recently is through the inhibition of indoleamine 2, 3-dioxygenase, an enzyme involved in tumoral immune resistance. This review discusses the isolation, synthesis, and evaluation of bioactivities of bispyrroloquinone alkaloids and their analogs. PMID:26253489

  19. Natural product discovery: past, present, and future.

    PubMed

    Katz, Leonard; Baltz, Richard H

    2016-03-01

    Microorganisms have provided abundant sources of natural products which have been developed as commercial products for human medicine, animal health, and plant crop protection. In the early years of natural product discovery from microorganisms (The Golden Age), new antibiotics were found with relative ease from low-throughput fermentation and whole cell screening methods. Later, molecular genetic and medicinal chemistry approaches were applied to modify and improve the activities of important chemical scaffolds, and more sophisticated screening methods were directed at target disease states. In the 1990s, the pharmaceutical industry moved to high-throughput screening of synthetic chemical libraries against many potential therapeutic targets, including new targets identified from the human genome sequencing project, largely to the exclusion of natural products, and discovery rates dropped dramatically. Nonetheless, natural products continued to provide key scaffolds for drug development. In the current millennium, it was discovered from genome sequencing that microbes with large genomes have the capacity to produce about ten times as many secondary metabolites as was previously recognized. Indeed, the most gifted actinomycetes have the capacity to produce around 30-50 secondary metabolites. With the precipitous drop in cost for genome sequencing, it is now feasible to sequence thousands of actinomycete genomes to identify the "biosynthetic dark matter" as sources for the discovery of new and novel secondary metabolites. Advances in bioinformatics, mass spectrometry, proteomics, transcriptomics, metabolomics and gene expression are driving the new field of microbial genome mining for applications in natural product discovery and development. PMID:26739136

  20. Using Genomics for Natural Product Structure Elucidation.

    PubMed

    Tietz, Jonathan I; Mitchell, Douglas A

    2016-01-01

    Natural products (NPs) are the most historically bountiful source of chemical matter for drug development-especially for anti-infectives. With insights gleaned from genome mining, interest in natural product discovery has been reinvigorated. An essential stage in NP discovery is structural elucidation, which sheds light not only on the chemical composition of a molecule but also its novelty, properties, and derivatization potential. The history of structure elucidation is replete with techniquebased revolutions: combustion analysis, crystallography, UV, IR, MS, and NMR have each provided game-changing advances; the latest such advance is genomics. All natural products have a genetic basis, and the ability to obtain and interpret genomic information for structure elucidation is increasingly available at low cost to non-specialists. In this review, we describe the value of genomics as a structural elucidation technique, especially from the perspective of the natural product chemist approaching an unknown metabolite. Herein we first introduce the databases and programs of interest to the natural products chemist, with an emphasis on those currently most suited for general usability. We describe strategies for linking observed natural product-linked phenotypes to their corresponding gene clusters. We then discuss techniques for extracting structural information from genes, illustrated with numerous case examples. We also provide an analysis of the biases and limitations of the field with recommendations for future development. Our overview is not only aimed at biologically-oriented researchers already at ease with bioinformatic techniques, but also, in particular, at natural product, organic, and/or medicinal chemists not previously familiar with genomic techniques. PMID:26456468

  1. Computational approaches to natural product discovery

    PubMed Central

    Medema, Marnix H.; Fischbach, Michael A.

    2016-01-01

    From the earliest Streptomyces genome sequences, the promise of natural product genome mining has been captivating: genomics and bioinformatics would transform compound discovery from an ad hoc pursuit to a high-throughput endeavor. Until recently, however, genome mining has advanced natural product discovery only modestly. Here, we argue that the development of algorithms to mine the continuously increasing amounts of (meta)genomic data will enable the promise of genome mining to be realized. We review computational strategies that have been developed to identify biosynthetic gene clusters in genome sequences and predict the chemical structures of their products. We then discuss networking strategies that can systematize large volumes of genetic and chemical data, and connect genomic information to metabolomic and phenotypic data. Finally, we provide a vision of what natural product discovery might look like in the future, specifically considering long-standing questions in microbial ecology regarding the roles of metabolites in interspecies interactions. PMID:26284671

  2. Reactivity of vinca alkaloids during water chlorination processes: Identification of their disinfection by-products by high-resolution quadrupole-Orbitrap mass spectrometry.

    PubMed

    Negreira, Noelia; Regueiro, Jorge; López de Alda, Miren; Barceló, Damià

    2016-02-15

    Concerns about the presence of anticancer drugs in the environment are rapidly increasing mainly due to their growing use in the developed countries and their known cytotoxic effects. Vinca alkaloids are widely used in cancer therapy; however, very scarce information is available on their occurrence, environmental fate and toxicological effects on aquatic organisms. Even less attention has been paid to their potential transformation products, which can exert higher toxicity than the parent compounds. Thus, in the present work, the reactivity of vincristine, vinblastine, vinorelbine and its metabolite 4-O-deacetyl vinorelbine during water chlorination processes has been investigated for the first time. Under the studied chlorination conditions, vincristine was fairly stable whereas vinblastine, vinorelbine and 4-O-deacetyl vinorelbine were quickly degraded. A total of sixty-five disinfection by-products were tentatively identified by ultra-high performance liquid chromatography coupled to high-resolution hybrid quadrupole-Orbitrap tandem mass spectrometry. Among them, twenty by-products corresponded to mono-chlorinated compounds, eight to di-chlorinated compounds and two to tri-chlorinated compounds, which may be of major environmental concern. Other disinfection by-products involved hydroxylation and oxidation reactions. Although the structures of these by-products could not be positively confirmed due to lack of commercial standards, their chemical formulas and product ions can be added to databases, which will allow their screening in future monitoring studies. PMID:26674693

  3. Fluorescence lifetimes of some Rauwolfia alkaloids

    NASA Astrophysics Data System (ADS)

    Hidalgo, J.; Arjona, D. Gonzalez; Roldan, E.; Sanchez, M.

    1986-03-01

    The natural fluorescence lifetimes of the following Rauwolfia alkaloids, Reserpine, Rescinnamine, Corynanthine, Yohimbine, --- Ajmalicine, Serpentine and Ajmaline, have been calculated from a modified form of the Strickler-Berg equation. The actual lifetimes were derived from the quantum yields and the calculated natural lifetimes.

  4. Total Synthesis of Alkaloid 205B

    PubMed Central

    2015-01-01

    Concise and highly stereocontrolled total syntheses of racemic and enantiopure frog alkaloid 205B (1) were accomplished in 11 steps from 4-methoxypyridines 6 and 7 in overall yields of 8 and 8%, respectively. The assembly of the core of the natural product relies on a stereoselective Tsuji–Trost allylic amination reaction and a ring-closing metathesis. The synthesis features the use of an N-acylpyridinium salt reaction to introduce the first stereocenter and an unprecedented trifluoroacetic anhydride-mediated addition of an allylstannane to a vinylogous amide with complete facial selectivity. Deoxygenation of the C4 ketone proved difficult but was accomplished via a modified Barton–McCombie reaction in the presence of a catalytic amount of diphenyl diselenide. PMID:25180567

  5. [Our investigation on the chemistry of biologically active natural products. With the object of exploitation for structure determination methods, and elucidation of vital function].

    PubMed

    Komori, T

    1993-03-01

    Our investigation on the chemistry of biologically active natural products during the last 40 years since 1953 are reviewed in this paper. The following subjects are discussed: I. photochemical relationship between rhodopsin and compounds related to areca alkaloid, II. furanoid diterpenoid constituents from dioscoreaceae plants and colombo root, III. field desorption and fast atom bombardment mass spectrometry of biologically active natural glycosides and glycosphingolipids, IV. investigation of biologically active marine natural products, 1) constituents of steroid glycoside sulfates from Asteroidea, 2) spine toxins from Acanthaster planci, 3) constituents of triterpenoid glycoside sulfates from Holothuroidea, 4) constituents of isoprenoids from Opisthobranchia and Octocorallia, 5) constituents of glycosphingolipids from Asteroidea. PMID:8509990

  6. Synthetic Biological Approaches to Natural Product Biosynthesis

    PubMed Central

    Winter, Jaclyn M; Tang, Yi

    2012-01-01

    Small molecules produced in Nature continue to be an inspiration for the development of new therapeutic agents. These natural products possess exquisite chemical diversity, which gives rise to their wide range of biological activities. In their host organism, natural products are assembled and modified by dedicated biosynthetic pathways that Nature has meticulously developed. Often times, the complex structures or chemical modifications instated by these pathways are difficult to replicate using traditional synthetic methods. An alternative approach for creating or enhancing the structural variation of natural products is through combinatorial biosynthesis. By rationally reprogramming and manipulating the biosynthetic machinery responsible for their production, unnatural metabolites that were otherwise inaccessible can be obtained. Additionally, new chemical structures can be synthesized or derivatized by developing the enzymes that carry out these complicated chemical reactions into biocatalysts. In this review, we will discuss a variety of combinatorial biosynthetic strategies, their technical challenges, and highlight some recent (since 2007) examples of rationally designed unnatural metabolites, as well as platforms that have been established for the production and modification of clinically important pharmaceutical compounds. PMID:22221832

  7. Psychoactive natural products: overview of recent developments.

    PubMed

    Ujváry, István

    2014-01-01

    Natural psychoactive substances have fascinated the curious mind of shamans, artists, scholars and laymen since antiquity. During the twentieth century, the chemical composition of the most important psychoactive drugs, that is opium, cannabis, coca and "magic mushrooms", has been fully elucidated. The mode of action of the principal ingredients has also been deciphered at the molecular level. In the past two decades, the use of herbal drugs, such as kava, kratom and Salvia divinorum, began to spread beyond their traditional geographical and cultural boundaries. The aim of the present paper is to briefly summarize recent findings on the psychopharmacology of the most prominent psychoactive natural products. Current knowledge on a few lesser-known drugs, including bufotenine, glaucine, kava, betel, pituri, lettuce opium and kanna is also reviewed. In addition, selected cases of alleged natural (or semi-natural) products are also mentioned. PMID:24695249

  8. Early state research on antifungal natural products.

    PubMed

    Negri, Melyssa; Salci, Tânia P; Shinobu-Mesquita, Cristiane S; Capoci, Isis R G; Svidzinski, Terezinha I E; Kioshima, Erika Seki

    2014-01-01

    Nosocomial infections caused by fungi have increased greatly in recent years, mainly due to the rising number of immunocompromised patients. However, the available antifungal therapeutic arsenal is limited, and the development of new drugs has been slow. Therefore, the search for alternative drugs with low resistance rates and fewer side effects remains a major challenge. Plants produce a variety of medicinal components that can inhibit pathogen growth. Studies of plant species have been conducted to evaluate the characteristics of natural drug products, including their sustainability, affordability, and antimicrobial activity. A considerable number of studies of medicinal plants and alternative compounds, such as secondary metabolites, phenolic compounds, essential oils and extracts, have been performed. Thus, this review discusses the history of the antifungal arsenal, surveys natural products with potential antifungal activity, discusses strategies to develop derivatives of natural products, and presents perspectives on the development of novel antifungal drug candidates. PMID:24609016

  9. Countercurrent Separation of Natural Products: An Update

    PubMed Central

    2015-01-01

    This work assesses the current instrumentation, method development, and applications in countercurrent chromatography (CCC) and centrifugal partition chromatography (CPC), collectively referred to as countercurrent separation (CCS). The article provides a critical review of the CCS literature from 2007 since our last review (J. Nat. Prod.2008, 71, 1489–1508), with a special emphasis on the applications of CCS in natural products research. The current state of CCS is reviewed in regard to three continuing topics (instrumentation, solvent system development, theory) and three new topics (optimization of parameters, workflow, bioactivity applications). The goals of this review are to deliver the necessary background with references for an up-to-date perspective of CCS, to point out its potential for the natural product scientist, and thereby to induce new applications in natural product chemistry, metabolome, and drug discovery research involving organisms from terrestrial and marine sources. PMID:26177360

  10. Supercritical fluid extraction in natural products analyses.

    PubMed

    Nahar, Lutfun; Sarker, Satyajit D

    2012-01-01

    Supercritical fluids (SCFs) are increasingly replacing the organic solvents, e.g., n-hexane, chloroform, dichloromethane, or methanol, that are conventionally used in industrial extraction, purification, and recrystallization operations because of regulatory and environmental pressures on hydrocarbon and ozone-depleting emissions. In natural products extraction and isolation, supercritical fluid extraction (SFE), especially employing supercritical CO(2), has become a popular choice. Sophisticated modern technologies allow precise regulation of changes in temperature and pressure, and thus manipulation of solvating property of the SCF, which helps the extraction of natural products of a wide range of polarities. This chapter deals mainly with the application of the SFE technology in the natural products extraction and isolation, and outlines various methodologies with specific examples. PMID:22367893

  11. Natural Product Sugar Biosynthesis and Enzymatic Glycodiversification**

    PubMed Central

    Thibodeaux, Christopher J.; Melançon, Charles E.; Liu, Hung-wen

    2009-01-01

    Many biologically active small molecule natural products produced by microorganisms derive their activities from sugar substituents. Changing the structures of these sugars can have a profound impact on the biological properties of the parent compounds. This realization has inspired attempts to derivatize the sugar moieties of these natural products through exploitation of the sugar biosynthetic machinery. This approach requires an understanding of the biosynthetic pathway of each target sugar and detailed mechanistic knowledge of the key enzymes. Scientists have begun to unravel the biosynthetic logic behind the assembly of many glycosylated natural products, and have found that a core set of enzyme activities is mixed and matched to synthesize the diverse sugar structures observed in nature. Remarkably, many of these sugar biosynthetic enzymes and glycosyltransferases also exhibit relaxed substrate specificity. The promiscuity of these enzymes has prompted efforts to modify the sugar structures and/or alter the glycosylation patterns of natural products via metabolic pathway engineering and/or enzymatic glycodiversification. In applied biomedical research, these studies will enable the development of new glycosylation tools and generate novel glycoforms of secondary metabolites with useful biological activity. PMID:19058170

  12. Efficient syntheses of permethylated derivatives of neolamellarin A, a pyrrolic marine natural product

    NASA Astrophysics Data System (ADS)

    Yin, Ruijuan; Jiang, Long; Wan, Shengbiao; Jiang, Tao

    2015-04-01

    The pyrrole-derived alkaloids with marine origin, especially their permethyl derivatives, have unique structures and promising biological activities. Marine natural product neolamellarins are a collection of lamellarin-like phenolic pyrrole compounds, which can inhibit hypoxia-induced HIF-1 activation. Many pyrrole-derived lamellarin-like alkaloids show potent MDR reversing activity. In this study, five permethylated derivatives of neolamellarin A were synthesized with their MDR reversing activity studied in order to identify new MDR reversal agents. A convergent strategy was adopted to synthesize the permethylated derivatives of neolamellarin A. Pyrrole was first converted into a corresponding N-trisisopropylsilyl (TIPS)-substituted derivative, then through iodination afforded 3,4-diiodinated pyrrole compound. The key intermediate, 3,4-disubstituent-1 H-pyrrole, was obtained through desilylation of 3,4-disubstituent-1-TIPS pyrrole, which was prepared from 3,4-diiodinated pyrrole derivative and aryl boronic acid ester through Suzuki cross-coupling reaction between them. Then, the intermediate, 3,4-disubstituent-1 H-pyrrole, reacted with fresh phenylacetyl chloride under n-BuLi/THF condition afforded the target compounds. Finally, we obtained five novel pyrrolic compounds, permethylated derivatives of neolamellarin A 16a-e, in 30%-37% yield through five step reactions. The bioactivity testing of these compounds are in process.

  13. Antiviral Natural Products and Herbal Medicines

    PubMed Central

    Lin, Liang-Tzung; Hsu, Wen-Chan; Lin, Chun-Ching

    2014-01-01

    Viral infections play an important role in human diseases, and recent outbreaks in the advent of globalization and ease of travel have underscored their prevention as a critical issue in safeguarding public health. Despite the progress made in immunization and drug development, many viruses lack preventive vaccines and efficient antiviral therapies, which are often beset by the generation of viral escape mutants. Thus, identifying novel antiviral drugs is of critical importance and natural products are an excellent source for such discoveries. In this mini-review, we summarize the antiviral effects reported for several natural products and herbal medicines. PMID:24872930

  14. Boosting Sensitivity in Liquid Chromatography–Fourier Transform Ion Cyclotron Resonance–Tandem Mass Spectrometry for Product Ion Analysis of Monoterpene Indole Alkaloids

    PubMed Central

    Nakabayashi, Ryo; Tsugawa, Hiroshi; Kitajima, Mariko; Takayama, Hiromitsu; Saito, Kazuki

    2015-01-01

    In metabolomics, the analysis of product ions in tandem mass spectrometry (MS/MS) is noteworthy to chemically assign structural information. However, the development of relevant analytical methods are less advanced. Here, we developed a method to boost sensitivity in liquid chromatography–Fourier transform ion cyclotron resonance–tandem mass spectrometry analysis (MS/MS boost analysis). To verify the MS/MS boost analysis, both quercetin and uniformly labeled 13C quercetin were analyzed, revealing that the origin of the product ions is not the instrument, but the analyzed compounds resulting in sensitive product ions. Next, we applied this method to the analysis of monoterpene indole alkaloids (MIAs). The comparative analyses of MIAs having indole basic skeleton (ajmalicine, catharanthine, hirsuteine, and hirsutine) and oxindole skeleton (formosanine, isoformosanine, pteropodine, isopteropodine, rhynchophylline, isorhynchophylline, and mitraphylline) identified 86 and 73 common monoisotopic ions, respectively. The comparative analyses of the three pairs of stereoisomers showed more than 170 common monoisotopic ions in each pair. This method was also applied to the targeted analysis of MIAs in Catharanthus roseus and Uncaria rhynchophylla to profile indole and oxindole compounds using the product ions. This analysis is suitable for chemically assigning features of the metabolite groups, which contributes to targeted metabolome analysis. PMID:26734034

  15. Boosting Sensitivity in Liquid Chromatography-Fourier Transform Ion Cyclotron Resonance-Tandem Mass Spectrometry for Product Ion Analysis of Monoterpene Indole Alkaloids.

    PubMed

    Nakabayashi, Ryo; Tsugawa, Hiroshi; Kitajima, Mariko; Takayama, Hiromitsu; Saito, Kazuki

    2015-01-01

    In metabolomics, the analysis of product ions in tandem mass spectrometry (MS/MS) is noteworthy to chemically assign structural information. However, the development of relevant analytical methods are less advanced. Here, we developed a method to boost sensitivity in liquid chromatography-Fourier transform ion cyclotron resonance-tandem mass spectrometry analysis (MS/MS boost analysis). To verify the MS/MS boost analysis, both quercetin and uniformly labeled (13)C quercetin were analyzed, revealing that the origin of the product ions is not the instrument, but the analyzed compounds resulting in sensitive product ions. Next, we applied this method to the analysis of monoterpene indole alkaloids (MIAs). The comparative analyses of MIAs having indole basic skeleton (ajmalicine, catharanthine, hirsuteine, and hirsutine) and oxindole skeleton (formosanine, isoformosanine, pteropodine, isopteropodine, rhynchophylline, isorhynchophylline, and mitraphylline) identified 86 and 73 common monoisotopic ions, respectively. The comparative analyses of the three pairs of stereoisomers showed more than 170 common monoisotopic ions in each pair. This method was also applied to the targeted analysis of MIAs in Catharanthus roseus and Uncaria rhynchophylla to profile indole and oxindole compounds using the product ions. This analysis is suitable for chemically assigning features of the metabolite groups, which contributes to targeted metabolome analysis. PMID:26734034

  16. [Fast analysis of indole alkaloids from Evodiae fructus by supercritical fluid chromatography].

    PubMed

    Li, Zhenyu; Fu, Qing; Li, Kuiyong; Liang, Tu; Jin, Yu

    2014-05-01

    A fast chromatographic separation of indole alkaloids from Evodiae fructus was developed by supercritical fluid chromatography (SFC). The initial screening of four stationary phases was investigated with a standard mixture of evodiamine and rutaecarpine, and a complex sample of indole alkaloids prepared from Evodiae fructus as probes. Later, the effects of chromatographic parameters on separation were studied including injection volume, organic modifier, additive, temperature and back pressure. The injection volume had significant impact on the peak shape. With the additives in the mobile phase, slight changes in peak shape and retention time were observed in separation. Variation in organic modifier led to dramatic change in chromatographic behavior. Both decreased temperature and increased back pressure shortened the retention time. Finally, a fast analytical method using SFC, on a Waters ACQUITY UPC2 BEH column, methanol as modifier, under 35 degrees C and 2.07 x 10(7) Pa, was developed to separate a complex sample of indole alkaloids in less than 15 min. Another rapid approach for the separation of a complex sample of indole alkaloids was developed by using ultra-high performance liquid chromatography (UHPLC). As a result, SFC can be used in the separation of natural products, giving high performance, good resolution and fast analysis speed. The difference in selectivity with UHPLC can be used to the development of natural product separation. PMID:25185311

  17. Effect of Chromium on Antioxidant Potential of Catharanthus roseus Varieties and Production of Their Anticancer Alkaloids: Vincristine and Vinblastine

    PubMed Central

    Tandon, Pramod Kumar; Khatoon, Sayyada

    2014-01-01

    Catharanthus roseus (L.) G. Don, a medicinal plant, has a very important place in the traditional as well as modern pharmaceutical industry. Two common varieties of this plant rosea and alba are named so because of pink and white coloured flowers, respectively. This plant comprises of about 130 terpenoid indole alkaloids and two of them, vincristine and vinblastine, are common anticancer drugs. The effect of chromium (Cr) on enzymatic and non-enzymatic antioxidant components and on secondary metabolites vincristine and vinblastine was studied under pot culture conditions of both varieties of C. roseus. Antioxidant responses of these varieties were analyzed under 0, 10, 50, and 100 μM chromium (Cr) level in order to investigate the plant's protective mechanisms against Cr induced oxidative stress. The results indicated that Cr affects all the studied parameters and decreases growth performance. However, vincristine and vinblastine contents were increased under Cr stress. Results are quite encouraging, as this plant shows good antioxidant potential and increased the level of active constituents under Cr stress. PMID:24734252

  18. Effect of chromium on antioxidant potential of Catharanthus roseus varieties and production of their anticancer alkaloids: vincristine and vinblastine.

    PubMed

    Rai, Vartika; Tandon, Pramod Kumar; Khatoon, Sayyada

    2014-01-01

    Catharanthus roseus (L.) G. Don, a medicinal plant, has a very important place in the traditional as well as modern pharmaceutical industry. Two common varieties of this plant rosea and alba are named so because of pink and white coloured flowers, respectively. This plant comprises of about 130 terpenoid indole alkaloids and two of them, vincristine and vinblastine, are common anticancer drugs. The effect of chromium (Cr) on enzymatic and non-enzymatic antioxidant components and on secondary metabolites vincristine and vinblastine was studied under pot culture conditions of both varieties of C. roseus. Antioxidant responses of these varieties were analyzed under 0, 10, 50, and 100  μM chromium (Cr) level in order to investigate the plant's protective mechanisms against Cr induced oxidative stress. The results indicated that Cr affects all the studied parameters and decreases growth performance. However, vincristine and vinblastine contents were increased under Cr stress. Results are quite encouraging, as this plant shows good antioxidant potential and increased the level of active constituents under Cr stress. PMID:24734252

  19. Metabolic Engineering for the Production of Natural Products

    PubMed Central

    Pickens, Lauren B.; Tang, Yi; Chooi, Yit-Heng

    2014-01-01

    Natural products and natural product derived compounds play an important role in modern healthcare as frontline treatments for many diseases and as inspiration for chemically synthesized therapeutics. With advances in sequencing and recombinant DNA technology, many of the biosynthetic pathways responsible for the production of these chemically complex and pharmaceutically valuable compounds have been elucidated. With an ever expanding toolkit of biosynthetic components, metabolic engineering is an increasingly powerful method to improve natural product titers and generate novel compounds. Heterologous production platforms have enabled access to pathways from difficult to culture strains; systems biology and metabolic modeling tools have resulted in increasing predictive and analytic capabilities; advances in expression systems and regulation have enabled the fine-tuning of pathways for increased efficiency, and characterization of individual pathway components has facilitated the construction of hybrid pathways for the production of new compounds. These advances in the many aspects of metabolic engineering have not only yielded fascinating scientific discoveries but also make it an increasingly viable approach for the optimization of natural product biosynthesis. PMID:22432617

  20. An automated Genomes-to-Natural Products platform (GNP) for the discovery of modular natural products

    PubMed Central

    Johnston, Chad W.; Skinnider, Michael A.; Wyatt, Morgan A.; Li, Xiang; Ranieri, Michael R. M.; Yang, Lian; Zechel, David L.; Ma, Bin; Magarvey, Nathan A.

    2015-01-01

    Bacterial natural products are a diverse and valuable group of small molecules, and genome sequencing indicates that the vast majority remain undiscovered. The prediction of natural product structures from biosynthetic assembly lines can facilitate their discovery, but highly automated, accurate, and integrated systems are required to mine the broad spectrum of sequenced bacterial genomes. Here we present a genome-guided natural products discovery tool to automatically predict, combinatorialize and identify polyketides and nonribosomal peptides from biosynthetic assembly lines using LC–MS/MS data of crude extracts in a high-throughput manner. We detail the directed identification and isolation of six genetically predicted polyketides and nonribosomal peptides using our Genome-to-Natural Products platform. This highly automated, user-friendly programme provides a means of realizing the potential of genetically encoded natural products. PMID:26412281

  1. Coal or natural gas for ecofuel production

    SciTech Connect

    Geertsema, A.

    1998-07-01

    The paper reviews the technology of the Fischer-Tropsch synthesis used in the Sasal plant in South Africa. It discusses environmental aspects and economics of new FT facilities for the production of diesel fuels. Several projects are briefly described which use this technology for natural gas conversion.

  2. New Methodology for Natural Gas Production Estimates

    EIA Publications

    2010-01-01

    A new methodology is implemented with the monthly natural gas production estimates from the EIA-914 survey this month. The estimates, to be released April 29, 2010, include revisions for all of 2009. The fundamental changes in the new process include the timeliness of the historical data used for estimation and the frequency of sample updates, both of which are improved.

  3. Chocolate: A Marvelous Natural Product of Chemistry

    ERIC Educational Resources Information Center

    Tannenbaum, Ginger

    2004-01-01

    The study of chocolate, a natural product, can be beneficial for the chemistry students as they ask frequently about the relevancy of their chemistry classes. The history of chocolate, its chemical and physical changes during processing, its composition, different crystalline forms, tempering and its viscosity are discussed.

  4. Marine Natural Products as Prototype Agrochemical Agents

    PubMed Central

    Peng, Jiangnan; Shen, Xiaoyu; El Sayed, Khalid A.; Dunbar, D. C Harles; Perry, Tony L.; Wilkins, Scott P.; Hamann, Mark T.; Bobzin, Steve; Huesing, Joseph; Camp, Robin; Prinsen, Mike; Krupa, Dan; Wideman, Margaret A.

    2016-01-01

    In the interest of identifying new leads that could serve as prototype agrochemical agents, 18 structurally diverse marine-derived compounds were examined for insecticidal, herbicidal, and fungicidal activities. Several new classes of compounds have been shown to be insecticidal, herbicidal, and fungicidal, which suggests that marine natural products represent an intriguing source for the discovery of new agrochemical agents. PMID:12670165

  5. Natural Products for Chemoprevention of Breast Cancer

    PubMed Central

    Ko, Eun-Yi; Moon, Aree

    2015-01-01

    Breast cancer is the primary cause of cancer death in women. Although current therapies have shown some promise against breast cancer, there is still no effective cure for the majority of patients in the advanced stages of breast cancer. Development of effective agents to slow, reduce, or reverse the incidence of breast cancer in high-risk women is necessary. Chemoprevention of breast cancer by natural products is advantageous, as these compounds have few side effects and low toxicity compared to synthetic compounds. In the present review, we summarize natural products which exert chemopreventive activities against breast cancer, such as curcumin, sauchinone, lycopene, denbinobin, genipin, capsaicin, and ursolic acid. This review examines the current knowledge about natural compounds and their mechanisms that underlie breast cancer chemopreventive activity both in vitro and in vivo. The present review may provide information on the use of these compounds for the prevention of breast cancer. PMID:26734584

  6. Marine Indole Alkaloids

    PubMed Central

    Netz, Natalie; Opatz, Till

    2015-01-01

    Marine indole alkaloids comprise a large and steadily growing group of secondary metabolites. Their diverse biological activities make many compounds of this class attractive starting points for pharmaceutical development. Several marine-derived indoles were found to possess cytotoxic, antineoplastic, antibacterial and antimicrobial activities, in addition to the action on human enzymes and receptors. The newly isolated indole alkaloids of marine origin since the last comprehensive review in 2003 are reported, and biological aspects will be discussed. PMID:26287214

  7. Marine Indole Alkaloids.

    PubMed

    Netz, Natalie; Opatz, Till

    2015-08-01

    Marine indole alkaloids comprise a large and steadily growing group of secondary metabolites. Their diverse biological activities make many compounds of this class attractive starting points for pharmaceutical development. Several marine-derived indoles were found to possess cytotoxic, antineoplastic, antibacterial and antimicrobial activities, in addition to the action on human enzymes and receptors. The newly isolated indole alkaloids of marine origin since the last comprehensive review in 2003 are reported, and biological aspects will be discussed. PMID:26287214

  8. Antifungal alkaloids and limonoid derivatives from Dictamnus dasycarpus.

    PubMed

    Zhao, W; Wolfender, J L; Hostettmann, K; Xu, R; Qin, G

    1998-01-01

    From the root bark of Dictamnus dasycarpus (Rutaceae), four limonoid derivatives, two furoquinoline alkaloids, five limonoids, two sesquiterpenes and three steroids were isolated and their structures elucidated on the basis of various spectroscopic methods. Among the identified compounds, one was determined to be a new natural product, 6 beta-hydroxyfraxinellone, while six compounds were found to be active against the plant pathogenic fungus Cladosporium cucumerinum. The relationship between the structures of limonoid derivatives and their inhibitory activity against fungal growth was investigated. PMID:9429316

  9. Natural products in modern life science

    PubMed Central

    Göransson, Ulf; Alsmark, Cecilia; Wedén, Christina; Backlund, Anders

    2010-01-01

    With a realistic threat against biodiversity in rain forests and in the sea, a sustainable use of natural products is becoming more and more important. Basic research directed against different organisms in Nature could reveal unexpected insights into fundamental biological mechanisms but also new pharmaceutical or biotechnological possibilities of more immediate use. Many different strategies have been used prospecting the biodiversity of Earth in the search for novel structure–activity relationships, which has resulted in important discoveries in drug development. However, we believe that the development of multidisciplinary incentives will be necessary for a future successful exploration of Nature. With this aim, one way would be a modernization and renewal of a venerable proven interdisciplinary science, Pharmacognosy, which represents an integrated way of studying biological systems. This has been demonstrated based on an explanatory model where the different parts of the model are explained by our ongoing research. Anti-inflammatory natural products have been discovered based on ethnopharmacological observations, marine sponges in cold water have resulted in substances with ecological impact, combinatory strategy of ecology and chemistry has revealed new insights into the biodiversity of fungi, in depth studies of cyclic peptides (cyclotides) has created new possibilities for engineering of bioactive peptides, development of new strategies using phylogeny and chemography has resulted in new possibilities for navigating chemical and biological space, and using bioinformatic tools for understanding of lateral gene transfer could provide potential drug targets. A multidisciplinary subject like Pharmacognosy, one of several scientific disciplines bridging biology and chemistry with medicine, has a strategic position for studies of complex scientific questions based on observations in Nature. Furthermore, natural product research based on intriguing scientific

  10. Natural products in modern life science.

    PubMed

    Bohlin, Lars; Göransson, Ulf; Alsmark, Cecilia; Wedén, Christina; Backlund, Anders

    2010-06-01

    With a realistic threat against biodiversity in rain forests and in the sea, a sustainable use of natural products is becoming more and more important. Basic research directed against different organisms in Nature could reveal unexpected insights into fundamental biological mechanisms but also new pharmaceutical or biotechnological possibilities of more immediate use. Many different strategies have been used prospecting the biodiversity of Earth in the search for novel structure-activity relationships, which has resulted in important discoveries in drug development. However, we believe that the development of multidisciplinary incentives will be necessary for a future successful exploration of Nature. With this aim, one way would be a modernization and renewal of a venerable proven interdisciplinary science, Pharmacognosy, which represents an integrated way of studying biological systems. This has been demonstrated based on an explanatory model where the different parts of the model are explained by our ongoing research. Anti-inflammatory natural products have been discovered based on ethnopharmacological observations, marine sponges in cold water have resulted in substances with ecological impact, combinatory strategy of ecology and chemistry has revealed new insights into the biodiversity of fungi, in depth studies of cyclic peptides (cyclotides) has created new possibilities for engineering of bioactive peptides, development of new strategies using phylogeny and chemography has resulted in new possibilities for navigating chemical and biological space, and using bioinformatic tools for understanding of lateral gene transfer could provide potential drug targets. A multidisciplinary subject like Pharmacognosy, one of several scientific disciplines bridging biology and chemistry with medicine, has a strategic position for studies of complex scientific questions based on observations in Nature. Furthermore, natural product research based on intriguing scientific

  11. Potential of Plant-Derived Natural Products in the Treatment of Leukemia and Lymphoma

    PubMed Central

    Lucas, David M.; Still, Patrick C.; Pérez, Lynette Bueno; Grever, Michael R.; Kinghorn, A. Douglas

    2010-01-01

    Hematologic malignancies account for a substantial percentage of cancers worldwide, and the heterogeneity and biological characteristics of leukemias and lymphomas present unique therapeutic challenges. Although treatment options exist for most of these diseases, many types remain incurable and the emergence of drug resistance is pervasive. Thus, novel treatment approaches are essential to improve outcome. Nearly half of the agents used in cancer therapy today are either natural products or derivatives of natural products. The enormous chemical diversity in nature, coupled with millennia of biological selection, has generated a vast and underexplored reservoir of unique chemical structures with biologic activity. This review will describe the investigation and application of natural products derived from higher plants in the treatment of leukemia and lymphoma and the rationale behind these efforts. In addition to the approved vinca alkaloids and the epipodophyllotoxin derivatives, a number of other plant compounds have shown promise in clinical trials and in preclinical investigations. In particular, we will focus on the discovery and biological evaluation of the plant-derived agent silvestrol, which shows potential for additional development as a new therapeutic agent for B-cell malignancies including chronic lymphocytic leukemia. PMID:20370646

  12. Spectroscopic and quantum chemical analysis of a natural product - Hayatin hydrochloride

    NASA Astrophysics Data System (ADS)

    Mishra, Rashmi; Srivastava, Anubha; Tandon, Poonam; Jain, Sudha

    2015-08-01

    Majority of drugs in use today are natural products, natural product mimics or semi synthetic derivatives. Therefore in recent times, focus on plant research has increased all over the world and large body of evidence has been collected to show immense potential of medicinal plants used in various traditional systems. Therefore, in the present communication to aid that research, structural and spectroscopic analysis of a natural product, an alkaloid Hayatin hydrochloride was performed. Both ab initio Hartree-Fock and density functional theory employing B3LYP with complete relaxation in the potential energy surface using 6-311G (d,p) basis set were used for the calculations. The vibrational frequencies were calculated and scaled values were compared with experimental FT-IR and micro-Raman spectra. The complete assignments were performed on the basis of potential energy distribution. The structure-activity relationship has also been interpreted by mapping electrostatic potential surface, which are valuable information for the quality control of medicines and drug-receptor interactions. Electronic properties have been analysed employing TD-DFT for both gaseous and solvent phase. The calculated HOMO and LUMO energies show that charge transfer occurs within the molecule. Stability of the molecule arising from hyper conjugative interactions, charge delocalization has been analyzed using natural bond orbital (NBO) analysis.

  13. Alkaloids and athlete immune function: caffeine, theophylline, gingerol, ephedrine, and their congeners.

    PubMed

    Senchina, David S; Hallam, Justus E; Kohut, Marian L; Nguyen, Norah A; Perera, M Ann d N

    2014-01-01

    Plant alkaloids are found in foods, beverages, and supplements consumed by athletes for daily nutrition, performance enhancement, and immune function improvement. This paper examined possible immunomodulatory roles of alkaloids in exercise contexts, with a focus on human studies. Four representative groups were scrutinized: (a) caffeine (guaranine, mateine); (b) theophylline and its isomers, theobromine and paraxanthine; (c) ginger alkaloids including gingerols and shogaol; and (d) ephedra alkaloids such as ephedrine and pseudoephedrine. Emerging or prospective alkaloid sources (Goji berry, Noni berry, and bloodroot) were also considered. Human in vitro and in vivo studies on alkaloids and immune function were often conflicting. Caffeine may be immunomodulatory in vivo depending on subject characteristics, exercise characteristics, and immune parameters measured. Caffeine may exhibit antioxidant capacities. Ginger may exert in vivo anti-inflammatory effects in certain populations, but it is unclear whether these effects are due to alkaloids or other biochemicals. Evidence for an immunomodulatory role of alkaloids in energy drinks, cocoa, or ephedra products in vivo is weak to nonexistent. For alkaloid sources derived from plants, variability in the reviewed studies may be due to the presence of unrecognized alkaloids or non-alkaloid compounds (which may themselves be immunomodulatory), and pre-experimental factors such as agricultural or manufacturing differences. Athletes should not look to alkaloids or alkaloid-rich sources as a means of improving immune function given their inconsistent activities, safety concerns, and lack of commercial regulation. PMID:24974722

  14. Exploring the links between natural products and bacterial assemblages in the sponge Aplysina aerophoba.

    PubMed

    Sacristán-Soriano, Oriol; Banaigs, Bernard; Casamayor, Emilio O; Becerro, Mikel A

    2011-02-01

    The sponge Aplysina aerophoba produces a large diversity of brominated alkaloids (BAs) and hosts a complex microbial assemblage. Although BAs are located within sponge cells, the enzymes that bind halogen elements to organic compounds have been exclusively described in algae, fungi, and bacteria. Bacterial communities within A. aerophoba could therefore be involved in the biosynthesis of these compounds. This study investigates whether changes in both the concentration of BAs and the bacterial assemblages are correlated in A. aerophoba. To do so, we quantified major natural products using high-performance liquid chromatography and analyzed bacterial assemblages using denaturing gradient gel electrophoresis on the 16S rRNA gene. We identified multiple associations between bacteria and natural products, including a strong relationship between a Chloroflexi phylotype and aplysinamisin-1 and between an unidentified bacterium and aerophobin-2 and isofistularin-3. Our results suggest that these bacteria could either be involved in the production of BAs or be directly affected by them. To our knowledge, this is one of the first reports that find a significant correlation between natural products and bacterial populations in any benthic organism. Further investigating these associations will shed light on the organization and functioning of host-endobiont systems such as Aplysina aerophoba. PMID:21115701

  15. Probing chemical space with alkaloid-inspired libraries.

    PubMed

    McLeod, Michael C; Singh, Gurpreet; Plampin, James N; Rane, Digamber; Wang, Jenna L; Day, Victor W; Aubé, Jeffrey

    2014-02-01

    Screening of small-molecule libraries is an important aspect of probe and drug discovery science. Numerous authors have suggested that bioactive natural products are attractive starting points for such libraries because of their structural complexity and sp(3)-rich character. Here, we describe the construction of a screening library based on representative members of four families of biologically active alkaloids (Stemonaceae, the structurally related cyclindricine and lepadiformine families, lupin and Amaryllidaceae). In each case, scaffolds were based on structures of the naturally occurring compounds or a close derivative. Scaffold preparation was pursued following the development of appropriate enabling chemical methods. Diversification provided 686 new compounds suitable for screening. The libraries thus prepared had structural characteristics, including sp(3) content, comparable to a basis set of representative natural products and were highly rule-of-five compliant. PMID:24451589

  16. Probing chemical space with alkaloid-inspired libraries

    NASA Astrophysics Data System (ADS)

    McLeod, Michael C.; Singh, Gurpreet; Plampin, James N.; Rane, Digamber; Wang, Jenna L.; Day, Victor W.; Aubé, Jeffrey

    2014-02-01

    Screening of small-molecule libraries is an important aspect of probe and drug discovery science. Numerous authors have suggested that bioactive natural products are attractive starting points for such libraries because of their structural complexity and sp3-rich character. Here, we describe the construction of a screening library based on representative members of four families of biologically active alkaloids (Stemonaceae, the structurally related cyclindricine and lepadiformine families, lupin and Amaryllidaceae). In each case, scaffolds were based on structures of the naturally occurring compounds or a close derivative. Scaffold preparation was pursued following the development of appropriate enabling chemical methods. Diversification provided 686 new compounds suitable for screening. The libraries thus prepared had structural characteristics, including sp3 content, comparable to a basis set of representative natural products and were highly rule-of-five compliant.

  17. European Directive fragrances in natural products.

    PubMed

    Scheman, Andrew; Scheman, Nicole; Rakowski, Ella-Marie

    2014-01-01

    Information on the presence of European Directive fragrance (EUF) allergens in plants and foods is important for numerous reasons. If an individual is allergic to an EUF and is avoiding fragrance, it is possible that they may still be exposed to the allergen in a natural product. In addition, because many of these allergens are also found in foods, it is possible that ingestion of a food containing the allergen may induce systemic contact allergy. Finally, individuals with lip dermatitis may react to contact with foods that contain the allergen. In this article, we have used the data available to identify which plants and foods contain EUF. When available, concentrations of EUF in natural products are provided. The goal of this article is to narrow down the list of botanicals to avoid for specific EUF allergies. PMID:24603515

  18. Advanced biomaterials development from "natural products".

    PubMed

    Baier, R E

    1988-04-01

    Natural substances and structures can serve increasingly well as biomedical products, given recent advances in understanding of requirements for biocompatibility and of methods for their preservation and surface tailoring. A successful example is the derivation of limb salvaging vessels, used in arterial reconstructive surgery, from human umbilical cords. There are numerous opportunities for additional product development from the umbilical cords' main ingredient, Wharton's gel, ranging from biolubricants to wound-healing aids. Major problems yet to be overcome with natural starting materials are their propensity for calcification and eventual biodeterioration. Surface modification of biomaterials to exhibit desired degrees of interaction with contacting viable tissues promises the greatest beneficial results. General principles of bioadhesion have broad applicability, predicting material behavior in environments as diverse as blood, saliva, and seawater. PMID:3058928

  19. Genome Mining for Ribosomally Synthesized Natural Products

    PubMed Central

    Velásquez, Juan E.; van der Donk, Wilfred

    2011-01-01

    In recent years, the number of known peptide natural products that are synthesized via the ribosomal pathway has rapidly grown. Taking advantage of sequence homology among genes encoding precursor peptides or biosynthetic proteins, in silico mining of genomes combined with molecular biology approaches has guided the discovery of a large number of new ribosomal natural products, including lantipeptides, cyanobactins, linear thiazole/oxazole-containing peptides, microviridins, lasso peptides, amatoxins, cyclotides, and conopeptides. In this review, we describe the strategies used for the identification of these ribosomally-synthesized and posttranslationally modified peptides (RiPPs) and the structures of newly identified compounds. The increasing number of chemical entities and their remarkable structural and functional diversity may lead to novel pharmaceutical applications. PMID:21095156

  20. Accelerated solvent extraction for natural products isolation.

    PubMed

    Mottaleb, Mohammad A; Sarker, Satyajit D

    2012-01-01

    Accelerated solvent extraction (ASE(®)), first introduced in 1995, is an automated rapid extraction technique that utilizes common solvents at elevated temperature and pressure, and thereby increases the efficiency of extraction of organic compounds from solid and semisolid matrices. ASE(®) allows extractions for sample sizes 1-100 g in minutes, reduces solvent uses dramatically, and can be applied to a wide range of matrices, including natural products. PMID:22367894

  1. Standardization for natural product synthetic biology.

    PubMed

    Zhao, Huimin; Medema, Marnix H

    2016-08-27

    Standardization is one of the foundational features of modern-day engineering, and the use of standardized parts and processes is a key element that distinguishes bona fide synthetic biology from traditional genetic engineering. Here, we discuss the role of standardization in natural product synthetic biology, focusing on standardization of data on biosynthetic pathways and gene clusters, as well as the role of standardization in the process of biosynthetic gene cluster engineering. PMID:27313083

  2. Mass spectrometry in natural product chemistry.

    PubMed

    Clayton, E; Hill, H C; Reed, R I

    1966-01-01

    Some mass spectrometric techniques are described which seem applicable to investigating problems in natural product chemistry. One example is of a sample of 5 mcg of a compound being identified by comparison with an authentic sample of prostaglandin derivative. Compared were mass, ion content, and structure. In the prostaglandin/unknown substance comparison, high-resolution mass spectrometry resolved a quandary: apparent additional ions present in the unknown substance were shown to be an impurity. PMID:12262324

  3. Natural and Heterologous Production of Bacteriocins

    NASA Astrophysics Data System (ADS)

    Cintas, Luis M.; Herranz, Carmen; Hernández, Pablo E.

    Bacteriocins are ribosomally synthesized antimicrobial peptides produced by bacteria, and their use as natural and nontoxic food preservatives has been the source of considerable interest for the research community. In addition, bacteriocins have been investigated for their potential use in human and veterinary applications and in the animal production field. In the native bacterial strain, most bacteriocins are synthesized as biologically inactive precursors, with N-terminal extensions, that are cleaved concomitantly during export of the bacteriocin by dedicated ABC transporters, or the general secretory pathway (GSP) or Sec-dependent pathway. However, a few bacteriocins are synthesized without an N-terminal extension, and others are circularized through a head-to-tail peptide bond, complicating the elucidation of their processing and transport across the cytoplasmic membrane. The high cost of synthetic bacteriocin synthesis and their low yields from many natural producers recommends the exploration of recombinant microbial systems for the heterologous production of bacteriocins. Other advantages of such systems include production of bacteriocins in safer hosts, increased bacteriocin production, control of bacteriocin gene expression, production of food ingredients with antimicrobial activity, construction of multibacteriocinogenic strains with a wider antagonistic spectrum, a better adaptation of the selected hosts to food environments, and providing antagonistic properties to lactic acid bacteria (LAB) used as starter, protective, or probiotic cultures. The recombinant production of bacteriocins mostly relies on the use of expression vectors that replicate in Gram-negative bacteria, Gram-positive bacteria, and yeasts, whereas the production of bacteriocins in heterologous LAB hosts may be essentially based on the expression of native biosynthetic genes, by exchanging or replacing leader peptides and/or dedicated processing and secretion systems (ABC transporters

  4. Evidences of Herbal Medicine-Derived Natural Products Effects in Inflammatory Lung Diseases.

    PubMed

    Santana, Fernanda Paula R; Pinheiro, Nathalia M; Mernak, Márcia Isabel B; Righetti, Renato F; Martins, Mílton A; Lago, João H G; Lopes, Fernanda D T Q Dos Santos; Tibério, Iolanda F L C; Prado, Carla M

    2016-01-01

    Pulmonary inflammation is a hallmark of many respiratory diseases such as asthma, chronic obstructive pulmonary disease (COPD), and acute respiratory syndrome distress (ARDS). Most of these diseases are treated with anti-inflammatory therapy in order to prevent or to reduce the pulmonary inflammation. Herbal medicine-derived natural products have been used in folk medicine and scientific studies to evaluate the value of these compounds have grown in recent years. Many substances derived from plants have the biological effects in vitro and in vivo, such as flavonoids, alkaloids, and terpenoids. Among the biological activities of natural products derived from plants can be pointed out the anti-inflammatory, antiviral, antiplatelet, antitumor anti-allergic activities, and antioxidant. Although many reports have evaluated the effects of these compounds in experimental models, studies evaluating clinical trials are scarce in the literature. This review aims to emphasize the effects of these different natural products in pulmonary diseases in experimental models and in humans and pointing out some possible mechanisms of action. PMID:27445433

  5. Evidences of Herbal Medicine-Derived Natural Products Effects in Inflammatory Lung Diseases

    PubMed Central

    Mernak, Márcia Isabel B.; Martins, Mílton A.; Lago, João H. G.; Tibério, Iolanda F. L. C.

    2016-01-01

    Pulmonary inflammation is a hallmark of many respiratory diseases such as asthma, chronic obstructive pulmonary disease (COPD), and acute respiratory syndrome distress (ARDS). Most of these diseases are treated with anti-inflammatory therapy in order to prevent or to reduce the pulmonary inflammation. Herbal medicine-derived natural products have been used in folk medicine and scientific studies to evaluate the value of these compounds have grown in recent years. Many substances derived from plants have the biological effects in vitro and in vivo, such as flavonoids, alkaloids, and terpenoids. Among the biological activities of natural products derived from plants can be pointed out the anti-inflammatory, antiviral, antiplatelet, antitumor anti-allergic activities, and antioxidant. Although many reports have evaluated the effects of these compounds in experimental models, studies evaluating clinical trials are scarce in the literature. This review aims to emphasize the effects of these different natural products in pulmonary diseases in experimental models and in humans and pointing out some possible mechanisms of action. PMID:27445433

  6. Biogenetically-Inspired Total Synthesis of Epidithiodiketopiperazines and Related Alkaloids

    PubMed Central

    2015-01-01

    Conspectus Natural products chemistry has historically been the prime arena for the discovery of new chemical transformations and the fountain of insights into key biological processes. It remains a fervent incubator of progress in the fields of chemistry and biology and an exchange mediating the flow of ideas between these allied fields of science. It is with this ethos that our group has taken an interest in and pursued the synthesis of a complex family of natural products termed the dimeric epipolythiodiketopiperazine (ETP) alkaloids. We present here an Account of the highly complex target molecules to which we pegged our ambitions, our systematic and relentless efforts toward those goals, the chemistry we developed in their pursuit, and the insight we have gained for their translational potential as potent anticancer molecules. The dimeric ETP alkaloids are fungal metabolites that feature a highly complex molecular architecture comprising a densely functionalized core structure with many stereogenic centers, six of which are fully substituted, and a pair of vicinal quaternary carbon stereocenters, decorated on polycyclic architectures in addition to the unique ETP motif that has been recognized as acid-, base-, and redox-sensitive. A cyclo-dipeptide consisting of an essential tryptophan residue and a highly variable ancillary amino acid lies at the core of these structures; investigation of the transformations that take this simplistic core to the complex alkaloids lies at the heart of our research program. The dimeric epidithiodiketopiperazine alkaloids have largely resisted synthesis on account of their complexity since the 1970s when the founding members of this class, chaetocin A (HauserD. et al. Helv. Chim. Acta1970, 53, 10615448218) and verticillin A (KatagiriK. et al. J. Antibiot.1970, 23, 4205465723), were first isolated. This was despite their potent cytotoxic and bacteriostatic activities, which were well appreciated at the time of their discovery. In

  7. Biogenetically-inspired total synthesis of epidithiodiketopiperazines and related alkaloids.

    PubMed

    Kim, Justin; Movassaghi, Mohammad

    2015-04-21

    Natural products chemistry has historically been the prime arena for the discovery of new chemical transformations and the fountain of insights into key biological processes. It remains a fervent incubator of progress in the fields of chemistry and biology and an exchange mediating the flow of ideas between these allied fields of science. It is with this ethos that our group has taken an interest in and pursued the synthesis of a complex family of natural products termed the dimeric epipolythiodiketopiperazine (ETP) alkaloids. We present here an Account of the highly complex target molecules to which we pegged our ambitions, our systematic and relentless efforts toward those goals, the chemistry we developed in their pursuit, and the insight we have gained for their translational potential as potent anticancer molecules. The dimeric ETP alkaloids are fungal metabolites that feature a highly complex molecular architecture comprising a densely functionalized core structure with many stereogenic centers, six of which are fully substituted, and a pair of vicinal quaternary carbon stereocenters, decorated on polycyclic architectures in addition to the unique ETP motif that has been recognized as acid-, base-, and redox-sensitive. A cyclo-dipeptide consisting of an essential tryptophan residue and a highly variable ancillary amino acid lies at the core of these structures; investigation of the transformations that take this simplistic core to the complex alkaloids lies at the heart of our research program. The dimeric epidithiodiketopiperazine alkaloids have largely resisted synthesis on account of their complexity since the 1970s when the founding members of this class, chaetocin A ( Hauser , D. et al. Helv. Chim. Acta 1970 , 53 , 1061 ) and verticillin A ( Katagiri , K. et al. J. Antibiot. 1970 , 23 , 420 ), were first isolated. This was despite their potent cytotoxic and bacteriostatic activities, which were well appreciated at the time of their discovery. In the past

  8. Belladonna Alkaloid Combinations and Phenobarbital

    MedlinePlus

    Belladonna alkaloid combinations and phenobarbital are used to relieve cramping pains in conditions such as irritable bowel syndrome and ... Belladonna alkaloid combinations and phenobarbital come as a regular tablet, a slow-acting tablet, capsule, and liquid to take ...

  9. Cytotoxicity of Hymenocallis expansa alkaloids.

    PubMed

    Antoun, M D; Mendoza, N T; Ríos, Y R; Proctor, G R; Wickramaratne, D B; Pezzuto, J M; Kinghorn, A D

    1993-08-01

    From the bulbs and leaves of Hymenocallis expansa (Amaryllidaceae), three alkaloid constituents were identified: (+)-tazettine, (+)-hippeastrine, and (-)-haemanthidine. These alkaloids demonstrated significant cytotoxicity when tested against a panel of human and murine tumor cell lines. PMID:8229020

  10. Short and Scalable Total Synthesis of Myrioneuron Alkaloids (±)-α,β-Myrifabral A and B.

    PubMed

    Song, Dengpeng; Wang, Zhengshen; Mei, Ruoming; Zhang, Weiwei; Ma, Donghui; Xu, Dengyu; Xie, Xingang; She, Xuegong

    2016-02-19

    The first total synthesis of the Myrioneuron alkaloids (±)-α,β-myrifabral A and B has been accomplished in only four steps from conveniently available starting materials. This short synthesis relied on the use of a key tandem Mannich/amidation reaction to rapidly construct the core framework and two carbon stereocenters. The synthetic route allows for large scale preparation of these promising natural products against the hepatitis C virus (HCV). PMID:26848989

  11. Uncaria tomentosa alkaloidal fraction reduces paracellular permeability, IL-8 and NS1 production on human microvascular endothelial cells infected with dengue virus.

    PubMed

    Lima-Junior, Raimundo Sousa; Mello, Cintia da Silva; Siani, Antonio Carlos; Valente, Ligia M Marino; Kubelka, Claire Fernandes

    2013-11-01

    Dengue is the major Arbovirus in the world, annually causing morbidity and death. Severe dengue is associated with changes in the endothelial barrier function due to the production of inflammatory mediators by immune cells and by the endothelium. Dengue virus (DENV) replicates efficiently in human endothelial cells in vitro and elicits immune responses resulting in endothelial permeability. Uncaria tomentosa (Willd.) DC.(Rubiaceae), known as cat's claw, has been used in folk medicine for the treatment of a wide-array of symptoms, and several scientific studies reported its antiviral, immunomodulatory, anti-inflammatory and antioxidant properties. Here we infected a human lineage of dermal microvascular endothelial cells (HMEC-1) with DENV-2 and treated it with an alkaloidal fraction from U. tomentosa bark (AFUT). We showed antiviral and immunomodulatory activities of U. tomentosa by determining the NS1 antigen and IL-8 in supernatant of DENV-2 infected HMEC-1. Furthermore, by measurement of transendothelial electrical resistance (TEER) we demonstrated, for the first time, that a plant derivative contributed to the reduction of paracellular permeability in DENV-2 infected HMEC-1. We also showed that IL-8 contributed significantly to the induction of permeability. Although further investigations should be conducted before a new drug can be suggested, our in vitro data support evidence that AFUT could be potentially useful in developing a treatment for severe dengue. PMID:24427938

  12. Biosynthesis of Fungal Indole Alkaloids

    PubMed Central

    Xu, Wei; Gavia, Diego J.; Tang, Yi

    2014-01-01

    This review provides a summary of recent research advances in elucidating the biosynthesis of fungal indole alkaloids. Different strategies used to incorporate and derivatize the indole/indoline moieties in various families of fungal indole alkaloids will be discussed, including tryptophan-containing nonribosomal peptides and polyketide-nonribosomal peptide hybrids; and alkaloids derived from other indole building blocks. This review also includes discussion regarding the downstream modifications that generate chemical and structural diversity among indole alkaloids. PMID:25180619

  13. Ether bridge formation in loline alkaloid biosynthesis

    PubMed Central

    Pan, Juan; Bhardwaj, Minakshi; Faulkner, Jerome R.; Nagabhyru, Padmaja; Charlton, Nikki D.; Higashi, Richard M.; Miller, Anne-Frances; Young, Carolyn A.; Grossman, Robert B.; Schardl, Christopher L.

    2014-01-01

    Lolines are potent insecticidal agents produced by endophytic fungi of cool-season grasses. These alkaloids are composed of a pyrrolizidine ring system and an uncommon ether bridge linking carbons 2 and 7. Previous results indicated that 1-aminopyrrolizidine was a pathway intermediate. We used RNA interference to knock down expression of lolO, resulting in the accumulation of a novel alkaloid identified as exo-1-acetamidopyrrolizidine based on high-resolution MS and NMR. Genomes of endophytes differing in alkaloid profiles were sequenced, revealing that those with mutated lolO accumulated exo-1-acetamidopyrrolizidine but no lolines. Heterologous expression of wild-type lolO complemented a lolO mutant, resulting in the production of N-acetylnorloline. These results indicated that the non-heme iron oxygenase, LolO, is required for ether bridge formation, probably through oxidation of exo-1-acetamidopyrrolizidine. PMID:24374065

  14. Lycorine alkaloids from Hymenocallis littoralis.

    PubMed

    Lin, L Z; Hu, S F; Chai, H B; Pengsuparp, T; Pezzuto, J M; Cordell, G A; Ruangrungsi, N

    1995-11-01

    From Hymenocallis littoralis, one new alkaloid, named littoraline, together with 13 known lycorine alkaloids and one lignan, were isolated. The structure and NMR assignments of this new alkaloid were determined by 1D and 2D NMR techniques. Littoraline showed inhibitory activity of HIV reverse transcriptase, and lycorine and haemanthamine showed potent in vitro cytotoxicity. PMID:7492374

  15. [Effect produced by the alkaloid fraction of Mimosa tenuiflora (tepescohuite) on the peristaltic reflex of the guinea pig ileum].

    PubMed

    Meckes-Lozoya, M; Lozoya, X; González, J L; Martínez, M

    1990-01-01

    An alkaloidal fraction was obtained from Mimosa tenuiflora (Willd.) Poir (tepescohuite) trunk bark. The product contained mainly an indolealkylamine and three minor alkaloids. This fraction inhibited the peristaltic reflex in the guinea-pig isolated ileum in vitro. PMID:2103706

  16. Neurotrophic Natural Products: Chemistry and Biology

    PubMed Central

    Xu, Jing; Lacoske, Michelle H.

    2014-01-01

    Neurodegenerative diseases and spinal cord injury affect approximately 50 million people worldwide, bringing the total healthcare cost to over 600 billion dollars per year. Nervous system growth factors, that is, neurotrophins, are a potential solution to these disorders, since they could promote nerve regeneration. An average of 500 publications per year attests to the significance of neurotrophins in biomedical sciences and underlines their potential for therapeutic applications. Nonetheless, the poor pharmacokinetic profile of neurotrophins severely restricts their clinical use. On the other hand, small molecules that modulate neurotrophic activity offer a promising therapeutic approach against neurological disorders. Nature has provided an impressive array of natural products that have potent neurotrophic activities. This Review highlights the current synthetic strategies toward these compounds and summarizes their ability to induce neuronal growth and rehabilitation. It is anticipated that neurotrophic natural products could be used not only as starting points in drug design but also as tools to study the next frontier in biomedical sciences: the brain activity map project. PMID:24353244

  17. Production of natural products through metabolic engineering of Saccharomyces cerevisiae.

    PubMed

    Krivoruchko, Anastasia; Nielsen, Jens

    2015-12-01

    Many high-value metabolites are produced in nature by organisms that are not ideal for large-scale production. Therefore, interest exists in expressing the biosynthetic pathways of these compounds in organisms that are more suitable for industrial production. Recent years have seen developments in both the discovery of various biosynthetic pathways, as well as development of metabolic engineering tools that allow reconstruction of complex pathways in microorganisms. In the present review we discuss recent advances in reconstruction of the biosynthetic pathways of various high-value products in the yeast Saccharomyces cerevisiae, a commonly used industrial microorganism. Key achievements in the production of different isoprenoids, aromatics and polyketides are presented and the metabolic engineering strategies underlying these accomplishments are discussed. PMID:25544013

  18. Targeting Mycobacterial Enzymes with Natural Products.

    PubMed

    Sieniawska, Elwira

    2015-10-22

    Tuberculosis (TB) is a recurring threat to contemporary civilization. It affects not only those within developing countries, but has also appeared again in places where it was once considered eradicated. TB co-infection in patients infected by HIV is, at the time of writing, the most common cause of death. In the field of searching for new antimycobacterial drug leads, compounds of natural origin still remain a promising source. The review is intended to gather information about natural products (metabolites of plants, fungi, bacteria, and marine sponges) that show activity against mycobacterial enzymes. Here, natural metabolites are presented as being inhibitors/activators of the mycobacterial enzymes involved in mycobacterial growth in vitro (ClpC1, ClpP, MurE ligase, mycothiol S-conjugate amidase, β-ketoacyl-ACP synthase, InhA) and in vivo, as regards the host cell (PtpB). Each enzyme is briefly described so as to generate an understanding of its role in mycobacterial growth and engender a perception of the mechanism of action of the studied natural compounds. Furthermore, after the introduction of the enzyme, its inhibitors are listed and exactly characterized. PMID:26441042

  19. Microbial production of natural raspberry ketone.

    PubMed

    Beekwilder, Jules; van der Meer, Ingrid M; Sibbesen, Ole; Broekgaarden, Mans; Qvist, Ingmar; Mikkelsen, Joern D; Hall, Robert D

    2007-10-01

    Raspberry ketone is an important compound for the flavour industry. It is frequently used in products such as soft drinks, sweets, puddings and ice creams. The compound can be produced by organic synthesis. Demand for "natural" raspberry ketone is growing considerably. However, this product is extremely expensive. Consequently, there is a remaining desire to better understand how raspberry ketone is synthesized in vivo, and which genes and enzymes are involved. With this information we will then be in a better position to design alternative production strategies such as microbial fermentation. This article focuses on the identification and application of genes potentially linked to raspberry ketone synthesis. We have isolated candidate genes from both raspberry and other plants, and these have been introduced into bacterial and yeast expression systems. Conditions have been determined that result in significant levels of raspberry ketone, up to 5 mg/L. These results therefore lay a strong foundation for a potentially renewable source of "natural" flavour compounds making use of plant genes. PMID:17722151

  20. Phylogenetic Approaches to Natural Product Structure Prediction

    PubMed Central

    Ziemert, Nadine; Jensen, Paul R.

    2015-01-01

    Phylogenetics is the study of the evolutionary relatedness among groups of organisms. Molecular phylogenetics uses sequence data to infer these relationships for both organisms and the genes they maintain. With the large amount of publicly available sequence data, phylogenetic inference has become increasingly important in all fields of biology. In the case of natural product research, phylogenetic relationships are proving to be highly informative in terms of delineating the architecture and function of the genes involved in secondary metabolite biosynthesis. Polyketide synthases and nonribosomal peptide synthetases provide model examples in which individual domain phylogenies display different predictive capacities, resolving features ranging from substrate specificity to structural motifs associated with the final metabolic product. This chapter provides examples in which phylogeny has proven effective in terms of predicting functional or structural aspects of secondary metabolism. The basics of how to build a reliable phylogenetic tree are explained along with information about programs and tools that can be used for this purpose. Furthermore, it introduces the Natural Product Domain Seeker, a recently developed Web tool that employs phylogenetic logic to classify ketosynthase and condensation domains based on established enzyme architecture and biochemical function. PMID:23084938

  1. Analysis of Ergot Alkaloids.

    PubMed

    Crews, Colin

    2015-06-01

    The principles and application of established and newer methods for the quantitative and semi-quantitative determination of ergot alkaloids in food, feed, plant materials and animal tissues are reviewed. The techniques of sampling, extraction, clean-up, detection, quantification and validation are described. The major procedures for ergot alkaloid analysis comprise liquid chromatography with tandem mass spectrometry (LC-MS/MS) and liquid chromatography with fluorescence detection (LC-FLD). Other methods based on immunoassays are under development and variations of these and minor techniques are available for specific purposes. PMID:26046699

  2. Analysis of Ergot Alkaloids

    PubMed Central

    Crews, Colin

    2015-01-01

    The principles and application of established and newer methods for the quantitative and semi-quantitative determination of ergot alkaloids in food, feed, plant materials and animal tissues are reviewed. The techniques of sampling, extraction, clean-up, detection, quantification and validation are described. The major procedures for ergot alkaloid analysis comprise liquid chromatography with tandem mass spectrometry (LC-MS/MS) and liquid chromatography with fluorescence detection (LC-FLD). Other methods based on immunoassays are under development and variations of these and minor techniques are available for specific purposes. PMID:26046699

  3. Relationship between Platelet PPARs, cAMP Levels, and P-Selectin Expression: Antiplatelet Activity of Natural Products

    PubMed Central

    Fuentes, Eduardo; Palomo, Iván

    2013-01-01

    Platelets are no longer considered simply as cells participating in thrombosis. In atherosclerosis, platelets are regulators of multiple processes, with the recruitment of inflammatory cells towards the lesion sites, inflammatory mediators release, and regulation of endothelial function. The antiplatelet therapy has been used for a long time in an effort to prevent and treat cardiovascular diseases. However, limited efficacy in some patients, drug resistance, and side effects are limitations of current antiplatelet therapy. In this context, a large number of natural products (polyphenols, terpenoids, alkaloids, and fatty acids) have been reported with antiplatelet activity. In this sense, the present paper describes mechanisms of antiplatelet action of natural products on platelet P-selectin expression through cAMP levels and its role as peroxisome proliferator-activated receptors agonists. PMID:24324520

  4. A new tropane alkaloid from the leaves of Erythroxylum subsessile isolated by pH-zone-refining counter-current chromatography.

    PubMed

    Cruz, Rodrigo Alves Soares; Almeida, Henrique; Fernandes, Caio Pinho; Joseph-Nathan, Pedro; Rocha, Leandro; Leitão, Gilda Guimarães

    2016-04-01

    Tropane alkaloids are bioactive metabolites with great importance in the pharmaceutical industry and the most important class of natural products found in the Erythroxylum genus. However, these compounds are usually separated by traditional chromatographic techniques, in which the sample is progressively purified in multiple chromatographic steps, resulting in a time- and solvent-consuming procedure. In this work we present the isolation of a novel alkaloid, 6β,7β-dibenzoyloxytropan-3α-ol, together with the two known 3α-benzoyloxynortropan-6β-ol and 3α,6β-dibenzoyloxytropane alkaloids, directly from the crude alkaloid fraction from the leaves of Erythroxylum subsessile, by using a single run pH-zone-refining counter-current chromatography method. The ethyl acetate/water (1:1, v/v) biphasic solvent system with triethylamine and HCl as retention and eluter agents, respectively, was used to isolate tropane alkaloids for the first time. The structures of the isolated alkaloids were elucidated by spectroscopic methods. PMID:26888377

  5. Oxindole alkaloids from Uncaria tomentosa induce apoptosis in proliferating, G0/G1-arrested and bcl-2-expressing acute lymphoblastic leukaemia cells.

    PubMed

    Bacher, Nicole; Tiefenthaler, Martin; Sturm, Sonja; Stuppner, Hermann; Ausserlechner, Michael J; Kofler, Reinhard; Konwalinka, Günther

    2006-03-01

    Natural products are still an untapped source of promising lead compounds for the generation of antineoplastic drugs. Here, we investigated for the first time the antiproliferative and apoptotic effects of highly purified oxindole alkaloids, namely isopteropodine (A1), pteropodine (A2), isomitraphylline (A3), uncarine F (A4) and mitraphylline (A5) obtained from Uncaria tomentosa, a South American Rubiaceae, on human lymphoblastic leukaemia T cells (CCRF-CEM-C7H2). Four of the five tested alkaloids inhibited proliferation of acute lymphoblastic leukaemia cells. Furthermore, the antiproliferative effect of the most potent alkaloids pteropodine (A2) and uncarine F (A4) correlated with induction of apoptosis. After 48 h, 100 micromol/l A2 or A4 increased apoptotic cells by 57%. CEM-C7H2 sublines with tetracycline-regulated expression of bcl-2, p16ink4A or constitutively expressing the cowpox virus protein crm-A were used for further studies of the apoptosis-inducing properties of these alkaloids. Neither overexpression of bcl-2 or crm-A nor cell-cycle arrest in G0/G1 phase by tetracycline-regulated expression of p16INK4A could prevent alkaloid-induced apoptosis. Our results show the strong apoptotic effects of pteropodine and uncarine F on acute leukaemic lymphoblasts and recommend the alkaloids for further studies in xenograft models. PMID:16445836

  6. Dithiolopyrrolone Natural Products: Isolation, Synthesis and Biosynthesis

    PubMed Central

    Qin, Zhiwei; Huang, Sheng; Yu, Yi; Deng, Hai

    2013-01-01

    Dithiolopyrrolones are a class of antibiotics that possess the unique pyrrolinonodithiole (4H-[1,2] dithiolo [4,3-b] pyrrol-5-one) skeleton linked to two variable acyl groups. To date, there are approximately 30 naturally occurring dithiolopyrrolone compounds, including holomycin, thiolutin, and aureothricin, and more recently thiomarinols, a unique class of hybrid marine bacterial natural products containing a dithiolopyrrolone framework linked by an amide bridge with an 8-hydroxyoctanoyl chain linked to a monic acid. Generally, dithiolopyrrolone antibiotics have broad-spectrum antibacterial activity against various microorganisms, including Gram-positive and Gram-negative bacteria, and even parasites. Holomycin appeared to be active against rifamycin-resistant bacteria and also inhibit the growth of the clinical pathogen methicillin-resistant Staphylococcus aureus N315. Its mode of action is believed to inhibit RNA synthesis although the exact mechanism has yet to be established in vitro. A recent work demonstrated that the fish pathogen Yersinia ruckeri employs an RNA methyltransferase for self-resistance during the holomycin production. Moreover, some dithiolopyrrolone derivatives have demonstrated promising antitumor activities. The biosynthetic gene clusters of holomycin have recently been identified in S. clavuligerus and characterized biochemically and genetically. The biosynthetic gene cluster of thiomarinol was also identified from the marine bacterium Pseudoalteromonas sp. SANK 73390, which was uniquely encoded by two independent pathways for pseudomonic acid and pyrrothine in a novel plasmid. The aim of this review is to give an overview about the isolations, characterizations, synthesis, biosynthesis, bioactivities and mode of action of this unique family of dithiolopyrrolone natural products, focusing on the period from 1940s until now. PMID:24141227

  7. Natural products from microbes associated with insects.

    PubMed

    Beemelmanns, Christine; Guo, Huijuan; Rischer, Maja; Poulsen, Michael

    2016-01-01

    Here we review discoveries of secondary metabolites from microbes associated with insects. We mainly focus on natural products, where the ecological role has been at least partially elucidated, and/or the pharmaceutical properties evaluated, and on compounds with unique structural features. We demonstrate that the exploration of specific microbial-host interactions, in combination with multidisciplinary dereplication processes, has emerged as a successful strategy to identify novel chemical entities and to shed light on the ecology and evolution of defensive associations. PMID:26977191

  8. Natural products from microbes associated with insects

    PubMed Central

    Guo, Huijuan; Rischer, Maja; Poulsen, Michael

    2016-01-01

    Summary Here we review discoveries of secondary metabolites from microbes associated with insects. We mainly focus on natural products, where the ecological role has been at least partially elucidated, and/or the pharmaceutical properties evaluated, and on compounds with unique structural features. We demonstrate that the exploration of specific microbial–host interactions, in combination with multidisciplinary dereplication processes, has emerged as a successful strategy to identify novel chemical entities and to shed light on the ecology and evolution of defensive associations. PMID:26977191

  9. Identification of a Noroxomaritidine Reductase with Amaryllidaceae Alkaloid Biosynthesis Related Activities.

    PubMed

    Kilgore, Matthew B; Holland, Cynthia K; Jez, Joseph M; Kutchan, Toni M

    2016-08-01

    Amaryllidaceae alkaloids are a large group of plant natural products with over 300 documented structures and diverse biological activities. Several groups of Amaryllidaceae alkaloids including the hemanthamine- and crinine-type alkaloids show promise as anticancer agents. Two reduction reactions are required for the production of these compounds: the reduction of norcraugsodine to norbelladine and the reduction of noroxomaritidine to normaritidine, with the enantiomer of noroxomaritidine dictating whether the derivatives will be the crinine-type or hemanthamine-type. It is also possible for the carbon-carbon double bond of noroxomaritidine to be reduced, forming the precursor for maritinamine or elwesine depending on the enantiomer reduced to an oxomaritinamine product. In this study, a short chain alcohol dehydrogenase/reductase that co-expresses with the previously discovered norbelladine 4'-O-methyltransferase from Narcissus sp. and Galanthus spp. was cloned and expressed in Escherichia coli Biochemical analyses and x-ray crystallography indicates that this protein functions as a noroxomaritidine reductase that forms oxomaritinamine from noroxomaritidine through a carbon-carbon double bond reduction. The enzyme also reduces norcraugsodine to norbelladine with a 400-fold lower specific activity. These studies identify a missing step in the biosynthesis of this pharmacologically important class of plant natural products. PMID:27252378

  10. Multimodular biocatalysts for natural product assembly

    NASA Astrophysics Data System (ADS)

    Schwarzer, Dirk; Marahiel, Mohamed A.

    2001-03-01

    Nonribosomal peptides and polyketides represent a large class of natural products that show an extreme structural diversity and broad pharmacological relevance. They are synthesized from simple building blocks such as amino or carboxy acids and malonate derivatives on multimodular enzymes called nonribosomal peptide synthetases (NRPSs) and polyketide synthases (PKSs), respectively. Although utilizing different substrates, NRPSs and PKSs show striking similarities in the modular architecture of their catalytic domains and product assembly-line mechanism. Among these compounds are well known antibiotics (penicillin, vancomycin and erythromycin) as well as potent immunosuppressive agents (cyclosporin, rapamycin and FK 506). This review focuses on the modular organization of NRPSs, PKSs and mixed NRPS/PKS systems and how modules and domains that build up the biosynthetic templates can be exploited for the rational design of recombinant enzymes capable of synthesizing novel compounds.

  11. Synthetic biology of fungal natural products

    PubMed Central

    Mattern, Derek J.; Valiante, Vito; Unkles, Shiela E.; Brakhage, Axel A.

    2015-01-01

    Synthetic biology is an ever-expanding field in science, also encompassing the research area of fungal natural product (NP) discovery and production. Until now, different aspects of synthetic biology have been covered in fungal NP studies from the manipulation of different regulatory elements and heterologous expression of biosynthetic pathways to the engineering of different multidomain biosynthetic enzymes such as polyketide synthases or non-ribosomal peptide synthetases. The following review will cover some of the exemplary studies of synthetic biology in filamentous fungi showing the capacity of these eukaryotes to be used as model organisms in the field. From the vast array of different NPs produced to the ease for genetic manipulation, filamentous fungi have proven to be an invaluable source for the further development of synthetic biology tools. PMID:26284053

  12. Fungal natural products in research and development.

    PubMed

    Schueffler, Anja; Anke, Timm

    2014-10-01

    To date approximately 100 000 fungal species are known although far more than one million are expected. The variety of species and the diversity of their habitats, some of them less exploited, allow the conclusion that fungi continue to be a rich source of new metabolites. Besides the conventional fungal isolates, an increasing interest in endophytic and in marine-derived fungi has been noticed. In addition new screening strategies based on innovative chemical, biological, and genetic approaches have led to novel fungal metabolites in recent years. The present review focuses on new fungal natural products published from 2009 to 2013 highlighting the originality of the structures and their biological potential. Furthermore synthetic products based on fungal metabolites as well as new developments in the uses or the biological activity of known compounds or new derivatives are discussed. PMID:25122538

  13. Plant cell culture strategies for the production of natural products

    PubMed Central

    Ochoa-Villarreal, Marisol; Howat, Susan; Hong, SunMi; Jang, Mi Ok; Jin, Young-Woo; Lee, Eun-Kyong; Loake, Gary J.

    2016-01-01

    Plants have evolved a vast chemical cornucopia to support their sessile lifestyles. Man has exploited this natural resource since Neolithic times and currently plant-derived chemicals are exploited for a myriad of applications. However, plant sources of most high-value natural products (NPs) are not domesticated and therefore their production cannot be undertaken on an agricultural scale. Further, these plant species are often slow growing, their populations limiting, the concentration of the target molecule highly variable and routinely present at extremely low concentrations. Plant cell and organ culture constitutes a sustainable, controllable and environmentally friendly tool for the industrial production of plant NPs. Further, advances in cell line selection, biotransformation, product secretion, cell permeabilisation, extraction and scale-up, among others, are driving increases in plant NP yields. However, there remain significant obstacles to the commercial synthesis of high-value chemicals from these sources. The relatively recent isolation, culturing and characterisation of cambial meristematic cells (CMCs), provides an emerging platform to circumvent many of these potential difficulties. [BMB Reports 2016; 49(3): 149-158] PMID:26698871

  14. Natural Products: Insights into Leishmaniasis Inflammatory Response

    PubMed Central

    Rodrigues, Igor A.; Mazotto, Ana Maria; Cardoso, Verônica; Alves, Renan L.; Amaral, Ana Claudia F.; Silva, Jefferson Rocha de Andrade; Pinheiro, Anderson S.; Vermelho, Alane B.

    2015-01-01

    Leishmaniasis is a vector-borne disease that affects several populations worldwide, against which there are no vaccines available and the chemotherapy is highly toxic. Depending on the species causing the infection, the disease is characterized by commitment of tissues, including the skin, mucous membranes, and internal organs. Despite the relevance of host inflammatory mediators on parasite burden control, Leishmania and host immune cells interaction may generate an exacerbated proinflammatory response that plays an important role in the development of leishmaniasis clinical manifestations. Plant-derived natural products have been recognized as bioactive agents with several properties, including anti-protozoal and anti-inflammatory activities. The present review focuses on the antileishmanial activity of plant-derived natural products that are able to modulate the inflammatory response in vitro and in vivo. The capability of crude extracts and some isolated substances in promoting an anti-inflammatory response during Leishmania infection may be used as part of an effective strategy to fight the disease. PMID:26538837

  15. Amorfrutins are potent antidiabetic dietary natural products.

    PubMed

    Weidner, Christopher; de Groot, Jens C; Prasad, Aman; Freiwald, Anja; Quedenau, Claudia; Kliem, Magdalena; Witzke, Annabell; Kodelja, Vitam; Han, Chung-Ting; Giegold, Sascha; Baumann, Matthias; Klebl, Bert; Siems, Karsten; Müller-Kuhrt, Lutz; Schürmann, Annette; Schüler, Rita; Pfeiffer, Andreas F H; Schroeder, Frank C; Büssow, Konrad; Sauer, Sascha

    2012-05-01

    Given worldwide increases in the incidence of obesity and type 2 diabetes, new strategies for preventing and treating metabolic diseases are needed. The nuclear receptor PPARγ (peroxisome proliferator-activated receptor gamma) plays a central role in lipid and glucose metabolism; however, current PPARγ-targeting drugs are characterized by undesirable side effects. Natural products from edible biomaterial provide a structurally diverse resource to alleviate complex disorders via tailored nutritional intervention. We identified a family of natural products, the amorfrutins, from edible parts of two legumes, Glycyrrhiza foetida and Amorpha fruticosa, as structurally new and powerful antidiabetics with unprecedented effects for a dietary molecule. Amorfrutins bind to and activate PPARγ, which results in selective gene expression and physiological profiles markedly different from activation by current synthetic PPARγ drugs. In diet-induced obese and db/db mice, amorfrutin treatment strongly improves insulin resistance and other metabolic and inflammatory parameters without concomitant increase of fat storage or other unwanted side effects such as hepatoxicity. These results show that selective PPARγ-activation by diet-derived ligands may constitute a promising approach to combat metabolic disease. PMID:22509006

  16. Cyclobutane-Containing Alkaloids: Origin, Synthesis, and Biological Activities

    PubMed Central

    Sergeiko, Anastasia; Poroikov, Vladimir V; Hanuš, Lumir O; Dembitsky, Valery M

    2008-01-01

    Present review describes research on novel natural cyclobutane-containing alkaloids isolated from terrestrial and marine species. More than 60 biological active compounds have been confirmed to have antimicrobial, antibacterial, antitumor, and other activities. The structures, synthesis, origins, and biological activities of a selection of cyclobutane-containing alkaloids are reviewed. With the computer program PASS some additional biological activities are also predicted, which point toward new possible applications of these compounds. This review emphasizes the role of cyclobutane-containing alkaloids as an important source of leads for drug discovery. PMID:19696873

  17. Immunoassay of alkaloids

    NASA Astrophysics Data System (ADS)

    Volkov, S. K.

    1993-08-01

    A survey is presented of literature data concerning the development and applications of the immunochemical methods for the assay of alkaloids — one of the classes of physiologically active compounds of plant origin most widely used in medical practice. The bibliography includes 141 references.

  18. Natural product synthesis at the interface of chemistry and biology

    PubMed Central

    2014-01-01

    Nature has evolved to produce unique and diverse natural products that possess high target affinity and specificity. Natural products have been the richest sources for novel modulators of biomolecular function. Since the chemical synthesis of urea by Wöhler, organic chemists have been intrigued by natural products, leading to the evolution of the field of natural product synthesis over the past two centuries. Natural product synthesis has enabled natural products to play an essential role in drug discovery and chemical biology. With the introduction of novel, innovative concepts and strategies for synthetic efficiency, natural product synthesis in the 21st century is well poised to address the challenges and complexities faced by natural product chemistry and will remain essential to progress in biomedical sciences. PMID:25043880

  19. Simple Indolizidine and Quinolizidine Alkaloids.

    PubMed

    Michael, Joseph P

    2016-01-01

    This review of simple indolizidine and quinolizidine alkaloids (i.e., those in which the parent bicyclic systems are in general not embedded in polycyclic arrays) is an update of the previous coverage in Volume 55 of this series (2001). The present survey covers the literature from mid-1999 to the end of 2013; and in addition to aspects of the isolation, characterization, and biological activity of the alkaloids, much emphasis is placed on their total synthesis. A brief introduction to the topic is followed by an overview of relevant alkaloids from fungal and microbial sources, among them slaframine, cyclizidine, Steptomyces metabolites, and the pantocins. The important iminosugar alkaloids lentiginosine, steviamine, swainsonine, castanospermine, and related hydroxyindolizidines are dealt with in the subsequent section. The fourth and fifth sections cover metabolites from terrestrial plants. Pertinent plant alkaloids bearing alkyl, functionalized alkyl or alkenyl substituents include dendroprimine, anibamine, simple alkaloids belonging to the genera Prosopis, Elaeocarpus, Lycopodium, and Poranthera, and bicyclic alkaloids of the lupin family. Plant alkaloids bearing aryl or heteroaryl substituents include ipalbidine and analogs, secophenanthroindolizidine and secophenanthroquinolizidine alkaloids (among them septicine, julandine, and analogs), ficuseptine, lasubines, and other simple quinolizidines of the Lythraceae, the simple furyl-substituted Nuphar alkaloids, and a mixed quinolizidine-quinazoline alkaloid. The penultimate section of the review deals with the sizable group of simple indolizidine and quinolizidine alkaloids isolated from, or detected in, ants, mites, and terrestrial amphibians, and includes an overview of the "dietary hypothesis" for the origin of the amphibian metabolites. The final section surveys relevant alkaloids from marine sources, and includes clathryimines and analogs, stellettamides, the clavepictines and pictamine, and bis

  20. USDA-Kentucky Report: Forage-Animal Production Research Unit (FAPRU) Investigations: Tall Fescue Alkaloids and Toxicosis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Forage-Animal Production Research Unit is involved in several research projects addressing the problem of Tall Fescue toxicosis. This is a toxic situation in grazing cattle and other animals as they consume tall fescue grass which is infected with a fungus. Cattle will grow poorly and in sever...

  1. [Vinca alkaloid and MDR1].

    PubMed

    Takigawa, Nagio; Tanimoto, Mitsune

    2008-07-01

    Vinca alkaloids inhibit microtubule formation by binding to tubulin. There are four clinically available vinca alkaloids including vincristine, vinblastine, vindesine, and vinorelbine. P-glycoprotein(P-gp)is the one of the efflux adenosine triphosphate(ATP)-binding cassette family transporters and is the encoded product of MDR1 gene. P-gp is overexpressed not only in tumor cells resistant to multiple anticancer agents but also found in normal cells such as liver, gastrointestinal tract and kidney, working as a biological defense mechanism. Single nucleotide polymorphisms for MDR1 in exon 12(1236), exon 21(2677), and exon 26(3435)have been well studied. Although C1236T and C3435T do not change the amino acid, G2677T and G2677A result in amino acid substitution of Ala893Ser and Ala893Thr, respectively. In the use of haplotypes to predict vincristine pharmacokinetics, the correlation between the haplotypes and the elimination half-life was reported. Many studies of the relationship between polymorphism/haplotype for MDR1 and pharmacodynamics including efficacy and toxicity of chemotherapy have been explored. PMID:18633246

  2. Historical variation of structural novelty in a natural product library.

    PubMed

    Kong, De-Xin; Guo, Ming-Yue; Xiao, Zhi-Hong; Chen, Ling-Ling; Zhang, Hong-Yu

    2011-11-01

    To evaluate the potential of natural products as novel structure suppliers, a historical analysis was performed on the structural novelty of a natural product library, viz., the Chapman & Hall/CRC Dictionary of Natural Products. The results show that although the unexplored natural product universe is still ample, it is more and more difficult to find novel agents from nature, with the discovery probability of novel structures and scaffolds being lower than 50% in the near future, which mainly results from the intrinsic redundancy of natural products and, thus, is unlikely to be reversed merely through technical progresses. PMID:22083910

  3. Reactive oxygen species regulate alkaloid metabolism in undifferentiated N. tabacum cells.

    PubMed

    Sachan, Nita; Rogers, Dennis T; Yun, Kil-Young; Littleton, John M; Falcone, Deane L

    2010-05-01

    Plants produce an immense number of natural products and undifferentiated cells from various plant tissues have long been considered an ideal source for their synthesis. However, undifferentiated plant cells often either lose their biosynthetic capacity over time or exhibit immediate repression of the required pathways once dedifferentiated. In this study, freshly prepared callus tissue was employed to further investigate the regulation of a natural product pathway in undifferentiated tobacco cells. Putrescine N-methyltransferase (PMT) is a pathway-specific enzyme required in nicotinic alkaloid production in Nicotiana species. Callus derived from transgenic Nicotiana tabacum plants harboring PMT promoter-GUS fusions were used to study factors that influence PMT expression. Under normal callus growth conditions in the presence of light and auxin, PMT promoter activity was strongly repressed. Conversely, dark conditions and the absence of auxin were found to upregulate PMT promoter activity, with light being dominant to the repressive effects of auxin. Since reactive oxygen species (ROS) are known by-products of photosynthesis and have been implicated in signaling, their involvement was investigated in transgenic callus by treatment with the ROS scavenger, dimethylthiourea, or catalase. Under highly repressive conditions for alkaloid synthesis, including normal culture conditions in the light, both ROS scavengers resulted in significant induction of PMT promoter activity. Moreover, treatment of callus with catalase resulted in the upregulation of PMT promoter activity and alkaloid accumulation in this tissue. These results suggest that ROS impact the regulation of the alkaloid pathway in undifferentiated cells and have implications for regulation of the pathway in other plant tissues. PMID:20217418

  4. Natural product derived immune-regulatory agents.

    PubMed

    Talmadge, James E

    2016-08-01

    We can now declare that the clinical goal of immune intervention as a therapeutic strategy for neoplastic, infectious, autoimmune and inflammatory diseases, has been achieved and in many instances obtained regulatory approval. Although, interest in and optimism for this approach has fluctuated, in the last 20years, immunotherapy has progressed from trials with crude microbial mixtures and extracts to the sophisticated use of pure cultured bacterial, synthetized active moieties identified from crude extracts, analogues therefrom and agonists and antagonists identified during screening resulting in reproducible pharmacologically active compounds with multiple mechanisms of action. Our current understanding of the mechanism of action for immunoregulatory agents contributes to the future discovery of improved strategies to use these and future immunotherapies. In this review we have identified and discussed, those drugs that have been approved and or are in clinical development as immunoregulatory agents, emphasizing those derived from or associated with natural product. PMID:26968760

  5. Natural products: a safest approach for obesity.

    PubMed

    Vasudeva, Neeru; Yadav, Neerja; Sharma, Surendra Kumar

    2012-06-01

    Obesity is recognized as a social problem, associated with serious health risks and increased mortality. Numerous trials have been conducted to find and develop new anti-obesity drugs through herbal sources to minimize adverse reactions associated with the present anti-obesity drugs. The use of natural products as medicine has been documented for hundreds of years in various traditional systems of medicines throughout the world. This review focuses on the medicinal plants such as Achyranthus aspera, Camellia sinensis, Emblica officinalis, Garcinia cambogia, Terminalia arjuna, etc., being used traditionally in Ayurvedic, Unani, Siddha and Chinese, etc., systems of medicine. The review also highlights recent reported phytochemicals such as escins, perennisosides, dioscin, gracillin, etc., and the various extracts of the plants like Nelumbo nucifera, Panax japonicas, Cichorium intybus, Cyperus rotundus, Paeonia suffruticosa, etc., which have been successfully identified for the treatment of obesity. PMID:22821661

  6. Spectroscopic Characterization of a Natural Product: Anethole

    NASA Astrophysics Data System (ADS)

    Barber, Victoria P.; Newby, Josh J.

    2013-06-01

    Anethole [(E)-1-methoxy-4-(1-propenyl)benzene] is a natural product molecule that is commonly recognized as the flavor component of anise, fennel, and licorice. Early jet-cooled spectroscopy of anethole showed the existence of two possible conformations, but did not address details of the vibronic structure. Here, we report the jet-cooled, laser-induced fluorescence and single vibronic level fluorescence spectra of anethole. Analysis of the spectra confirms the existence of two rotamers in the expansion that differ by the relative orientation of the methoxy and propenyl groups. The observed vibronic activity is similar to that of styrene and indicates planar symmetry of both rotamers. Vibrational assignments of anethole are assisted by density functional theory calculations and the results are compared with the analogous motions in styrene. V. H. Grassian, E. R. Bernstein, H. V. Secor and J. I. Seeman J. Phys. Chem. {93, 3470 (1989).

  7. Novel Chemical Space Exploration via Natural Products

    PubMed Central

    Rosén, Josefin; Gottfries, Johan; Muresan, Sorel; Backlund, Anders; Oprea, Tudor I.

    2009-01-01

    Natural products (NPs) are a rich source of novel compound classes and new drugs. In the present study we have used the chemical space navigation tool ChemGPS-NP to evaluate the chemical space occupancy by NPs and bioactive medicinal chemistry compounds from the database WOMBAT. The two sets differ notable in coverage of chemical space, and tangible lead-like NPs were found to cover regions of chemical space that lack representation in WOMBAT. Property based similarity calculations were performed to identify NP neighbours of approved drugs. Several of the NPs revealed by this method, were confirmed to exhibit the same activity as their drug neighbours. The identification of leads from a NP starting point may prove a useful strategy for drug discovery, in the search for novel leads with unique properties. PMID:19265440

  8. CO Methanation for Synthetic Natural Gas Production.

    PubMed

    Kambolis, Anastasios; Schildhauer, Tilman J; Kröcher, Oliver

    2015-01-01

    Energy from woody biomass could supplement renewable energy production towards the replacement of fossil fuels. A multi-stage process involving gasification of wood and then catalytic transformation of the producer gas to synthetic natural gas (SNG) represents progress in this direction. SNG can be transported and distributed through the existing pipeline grid, which is advantageous from an economical point of view. Therefore, CO methanation is attracting a great deal of attention and much research effort is focusing on the understanding of the process steps and its further development. This short review summarizes recent efforts at Paul Scherrer Institute on the understanding of the reaction mechanism, the catalyst deactivation, and the development of catalytic materials with benign properties for CO methanation. PMID:26598405

  9. Natural Products as a Foundation for Drug Discovery

    PubMed Central

    Beutler, John A.

    2009-01-01

    Natural products have contributed to the development of many drugs for diverse indications. While most U.S. pharmaceutical companies have reduced or eliminated their in-house natural product groups, new paradigms and new enterprises have evolved to carry on a role for natural products in the pharmaceutical industry. Many of the reasons for the decline in popularity of natural products are being addressed by the development of new techniques for screening and production. This overview aims to inform pharmacologists of current strategies and techniques that make natural products a viable strategic choice for inclusion in drug discovery programs. PMID:20161632

  10. Recent and projected increases in atmospheric carbon dioxide and the potential impacts on growth and alkaloid production in wild poppy (Papaver setigerum DC.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the current study, we quantified changes in the growth and alkaloid content of wild poppy, (P. setigerum) as a function of recent and projected changes in global atmospheric carbon dioxide concentration, [CO2]. The experimental [CO2] values (300, 400, 500 and 600 µmol mol-1) correspond roughly t...

  11. Chocolate: A Marvelous Natural Product of Chemistry

    NASA Astrophysics Data System (ADS)

    Tannenbaum, Ginger

    2004-08-01

    Chocolate is a natural product as ubiquitous as television. Of course, it is eaten, but it is also found in air fresheners, marking pens, flavoring in a multitude of products including soda pop, and as an aroma in "chocolate-dyed" T-shirts. However, most of us are completely unaware of the complex chemical reactions that take place to produce chocolate and the necessary technology that has evolved to produce chocolate and all its byproducts. Processing results in a mixture of many components, an interesting contrast to most of the simple, one-step reactions introduced at the high school level. This article is a survey of chocolate from tree to table. After a brief introduction to the history of chocolate and how and where it is grown, the manufacturing process is examined, and the chemistry is explored. A bit of the jargon used in the industry is mentioned. Cocoa butter is a significant ingredient in chocolate, and an investigation of it introduces triglycerides, fatty acids, polymorphic behavior, and molecular packing of the fats in chocolate and how they affect the tempering process. There is a brief discussion of chocolate's non-Newtonian behavior and the resulting challenges presented in the manufacturing process. See Featured Molecules Featured on the Cover

  12. Use of natural health products in children

    PubMed Central

    Pike, Andrea; Etchegary, Holly; Godwin, Marshall; McCrate, Farah; Crellin, John; Mathews, Maria; Law, Rebecca; Newhook, Leigh Anne; Kinden, Jody

    2013-01-01

    Abstract Objective To gain a more thorough understanding of why parents choose to give their children natural health products (NHPs), parents’ sources of information about NHPs, and the extent of disclosure and conversation with family doctors about the use of NHPs. Design Qualitative study. Setting Newfoundland and Labrador. Participants Parents of children who were using NHPs (N = 20). Methods Individual, semistructured interviews were carried out with parents to obtain a better understanding of the reasoning behind the use of NHPs. Key themes emerging from the qualitative data were identified according to a number of criteria, including relevance to the research objectives, frequency with which a theme was mentioned, relative importance of the themes based on the amount of text taken up to address an issue, and emphasis (eg, emphatic or emotional speech). Main findings The types of NHPs used by parents participating in this study varied, except for the use of multivitamins. In addition, use of the products themselves was variable and inconsistent. Parents reported few concerns about the use of NHPs. The most commonly reported source of information about NHPs was family and friends. Most participants had not spoken to their family doctors about the use of NHPs. Conclusion Participants considered NHPs to be “natural” and seemed to equate this assessment with safety. This might explain why these parents sought advice and information from family and friends rather than from their family doctors and often failed to disclose the use of NHPs to their children’s family doctors. PMID:23946044

  13. The quest for new mild and selective modifications of natural structures: laccase-catalysed oxidation of ergot alkaloids leads to unexpected stereoselective C-4 hydroxylation.

    PubMed

    Chirivì, Cosimo; Fontana, Gabriele; Monti, Daniela; Ottolina, Gianluca; Riva, Sergio; Danieli, Bruno

    2012-08-13

    Laccase-catalysed oxidation of ergot alkaloids in the absence of chemical mediators allowed the unexpected isolation of the mono-hydroxylated derivatives of compounds 2-7. Structure determination by NMR techniques clearly indicated that hydroxylation took place at the C-4 benzylic position. Quite notably, the proposed protocol allowed, for the first time, functionalisation at the C-4 position of the ergoline skeleton. Depending on the absence or on the presence of a C-10 α-methoxy substituent, hydroxylation was either stereoselective (furnishing C-4α OH derivatives) or gave rise to a C-4α/C-4β OH mixture in a 2:1 ratio, respectively. PMID:22777708

  14. Ergot Alkaloids Produced by Endophytic Fungi of the Genus Epichloë

    PubMed Central

    Guerre, Philippe

    2015-01-01

    The development of fungal endophytes of the genus Epichloë in grasses results in the production of different groups of alkaloids, whose mechanism and biological spectrum of toxicity can differ considerably. Ergot alkaloids, when present in endophyte-infected tall fescue, are responsible for “fescue toxicosis” in livestock, whereas indole-diterpene alkaloids, when present in endophyte-infected ryegrass, are responsible for “ryegrass staggers”. In contrast, peramine and loline alkaloids are deterrent and/or toxic to insects. Other toxic effects in livestock associated with the consumption of endophyte-infected grass that contain ergot alkaloids include the “sleepy grass” and “drunken horse grass” diseases. Although ergovaline is the main ergopeptine alkaloid produced in endophyte-infected tall fescue and is recognized as responsible for fescue toxicosis, a number of questions still exist concerning the profile of alkaloid production in tall fescue and the worldwide distribution of tall fescue toxicosis. The purpose of this review is to present ergot alkaloids produced in endophyte-infected grass, the factors of variation of their level in plants, and the diseases observed in the mammalian species as relate to the profiles of alkaloid production. In the final section, interactions between ergot alkaloids and drug-metabolizing enzymes are presented as mechanisms that could contribute to toxicity. PMID:25756954

  15. Ergot alkaloids produced by endophytic fungi of the genus Epichloë.

    PubMed

    Guerre, Philippe

    2015-03-01

    The development of fungal endophytes of the genus Epichloë in grasses results in the production of different groups of alkaloids, whose mechanism and biological spectrum of toxicity can differ considerably. Ergot alkaloids, when present in endophyte-infected tall fescue, are responsible for "fescue toxicosis" in livestock, whereas indole-diterpene alkaloids, when present in endophyte-infected ryegrass, are responsible for "ryegrass staggers". In contrast, peramine and loline alkaloids are deterrent and/or toxic to insects. Other toxic effects in livestock associated with the consumption of endophyte-infected grass that contain ergot alkaloids include the "sleepy grass" and "drunken horse grass" diseases. Although ergovaline is the main ergopeptine alkaloid produced in endophyte-infected tall fescue and is recognized as responsible for fescue toxicosis, a number of questions still exist concerning the profile of alkaloid production in tall fescue and the worldwide distribution of tall fescue toxicosis. The purpose of this review is to present ergot alkaloids produced in endophyte-infected grass, the factors of variation of their level in plants, and the diseases observed in the mammalian species as relate to the profiles of alkaloid production. In the final section, interactions between ergot alkaloids and drug-metabolizing enzymes are presented as mechanisms that could contribute to toxicity. PMID:25756954

  16. Analysis of rye grains and rye meals for ergot alkaloids.

    PubMed

    Lauber, U; Schnaufer, R; Gredziak, M; Kiesswetter, Y

    2005-12-01

    Due to the exceptionally hot and dry summer in 2003 the ergot of that harvest was rather small and could only be separated from normal grain with increased efforts. Based on a clean-up procedure of Wolffet al. (1) and of Kluget al. (2), a HPLC-FLD-method for the determination of 12 ergot alkaloids (6 "In"-, 6 "Inin"-forms) was established and modified. Actually reference substances are commercially available only for 5 selected alkaloids. Because of the instability of the alkaloids a new standard preparation procedure was tested and implemented. The maximum allowed impurity with ergot (0.05%=1000 μg alkaloids/kg) was exceeded in samples of harvest 2003. Except for one sample, all exceedings were detected in conventionally grown products, unlike organically grown products. PMID:23605398

  17. An insight into purine, tyrosine and tryptophan derived marine antineoplastic alkaloids.

    PubMed

    Palkar, Mahesh B; Rane, Rajesh A; Thapliyal, Neeta; Shaikh, Mahamadhanif S; Alwan, Wesam S; Jain, Kavita S; Karunanidhi, Sivanandhan; Patel, Harun M; Hampannavar, Girish A; Karpoormath, Rajshekhar

    2015-01-01

    There is an ever-increasing need for the development of new drugs with safe and improved profile for the treatment of cancer. From time immemorial, nature has been considered as an abundant source of medicinal compounds having therapeutic properties. An enormous chemical diversity is present in thousands and millions of species of microorganisms, marine organisms, plants and animals that can act as potential therapeutic agents against various types of human cancer. Literature survey revealed that many alkaloids isolated from marine cyanobacteria, fungi, algae, sponges and tunicates displayed a wide range of anticancer properties like antiproliferative, antiangiogenic, induction of apoptosis, promoting cytotoxicity by inhibition of topoisomerase activities and tubulin polymerization. In this context, bastadins derived from tyrosine-based alkaloids have been reported as one the important class of anticancer agents. In particular bastadin 6 (24), seems to be a promising natural lead compound for the development of marine natural product-based anticancer therapeutic agents. This review mainly highlights the pharmacologically active scaffolds like purine, tyrosine and tryptophan containing marine alkaloids that exhibit biological activity, including anti-angiogenesis, cytotoxicity and anticancer activity. PMID:25553433

  18. Challenges of conducting clinical trials of natural products to combat cancer.

    PubMed

    Paller, Channing J; Denmeade, Samuel R; Carducci, Michael A

    2016-06-01

    Numerous drugs that the US Food and Drug Administration (FDA) has approved for use in cancer therapy are derived from plants, including taxanes such as paclitaxel and vinca alkaloids such as vinblastine. Dietary supplements are another category of natural products that are widely used by patients with cancer, but without the FDA-reviewed evidence of safety and efficacy--be it related to survival, palliation, symptom mitigation, and/or immune system enhancement-that is required for therapy approval. Nearly half of patients in the United States with cancer report that they started taking new dietary supplements after being given a diagnosis of cancer. Oncologists are challenged in providing advice to patients about which supplements are safe and effective to use to treat cancer or the side effects of cancer therapy, and which supplements are antagonistic to standard treatment with chemotherapy, radiation, and/or immunotherapy. Despite the large number of trials that have been launched, the FDA has not approved any dietary supplement or food to prevent cancer, halt its growth, or prevent its recurrence. In this article, we review the primary challenges faced by researchers attempting to conduct rigorous trials of natural products, including shortages of funding due to lack of patentability, manufacturing difficulties, contamination, and lack of product consistency. We also highlight the methods used by dietary supplement marketers to persuade patients that a supplement is effective (or at least safe) even without FDA approval, as well as the efforts of the US government to protect the health and safety of its citizens by ensuring that the information used to market natural products is accurate. We close with a summary of the most widely used databases of information about the safety, efficacy, and interactions of dietary supplements. PMID:27379814

  19. Quinolizidine alkaloids from Lupinus lanatus

    NASA Astrophysics Data System (ADS)

    Neto, Alexandre T.; Oliveira, Carolina Q.; Ilha, Vinicius; Pedroso, Marcelo; Burrow, Robert A.; Dalcol, Ionara I.; Morel, Ademir F.

    2011-10-01

    In this study, one new quinolizidine alkaloid, lanatine A ( 1), together with three other known alkaloids, 13-α- trans-cinnamoyloxylupanine ( 2), 13-α-hydroxylupanine ( 3), and (-)-multiflorine ( 4) were isolated from the aerial parts of Lupinus lanatus (Fabaceae). The structures of alkaloids 1- 4 were elucidated by spectroscopic data analysis. The stereochemistry of 1 was determined by single crystal X-ray analysis. Bayesian statistical analysis of the Bijvoet differences suggests the absolute stereochemistry of 1. In addition, the antimicrobial potential of alkaloids 1- 4 is also reported.

  20. A Historical Overview of Natural Products in Drug Discovery

    PubMed Central

    Dias, Daniel A.; Urban, Sylvia; Roessner, Ute

    2012-01-01

    Historically, natural products have been used since ancient times and in folklore for the treatment of many diseases and illnesses. Classical natural product chemistry methodologies enabled a vast array of bioactive secondary metabolites from terrestrial and marine sources to be discovered. Many of these natural products have gone on to become current drug candidates. This brief review aims to highlight historically significant bioactive marine and terrestrial natural products, their use in folklore and dereplication techniques to rapidly facilitate their discovery. Furthermore a discussion of how natural product chemistry has resulted in the identification of many drug candidates; the application of advanced hyphenated spectroscopic techniques to aid in their discovery, the future of natural product chemistry and finally adopting metabolomic profiling and dereplication approaches for the comprehensive study of natural product extracts will be discussed. PMID:24957513

  1. Structure and Function of Macroalgal Natural Products.

    PubMed

    Young, Ryan M; Schoenrock, Kathryn M; von Salm, Jacqueline L; Amsler, Charles D; Baker, Bill J

    2015-01-01

    Since the initial discovery of marine phyco-derived secondary metabolites in the 1950s there has been a rapid increase in the description of new algal natural products. These metabolites have multiple ecological roles as well as commercial value as potential drugs or lead compounds. With the emergence of resistance to our current arsenal of drugs as well as the development of new chemotherapies for currently untreatable diseases, new compounds must be sourced. As outlined in this chapter algae produce a diverse range of chemicals many of which have potential for the treatment of human afflictions.In this chapter we outline the classes of metabolites produced by this chemically rich group of organisms as well as their respective ecological roles in the environment. Algae are found in nearly every environment on earth, with many of these organisms possessing the ability to shape the ecosystem they inhabit. With current challenges to climate stability, understanding how these important organisms interact with their environment as well as one another might afford better insight into how they respond to a changing climate. PMID:26108497

  2. Marine Natural Products as Novel Antioxidant Prototypes

    PubMed Central

    Takamatsu, Satoshi; Hodges, Tyler W.; Rajbhandari, Ira; Gerwick, William H.; Hamann, Mark T.; Nagle, Dale G.

    2016-01-01

    Pure natural products isolated from marine sponges, algae, and cyanobacteria were examined for antioxidant activity using a 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) solution-based chemical assay and a 2′,7′-dichlorodihydrofluorescein diacetate (DCFH-DA) cellular-based assay. The DCFH system detects only antioxidants that penetrate cellular membranes. Potent antioxidants were identified and the results from each system compared. The algal metabolites cymopol (1), avrainvilleol (3), and fragilamide (4), and the invertebrate constituent puupehenone (5) showed strong antioxidant activity in both systems. Several compounds were active in the DPPH assay but significantly less active in the DCFH system. The green algal metabolite 7-hydroxycymopol (2) was isolated from Cymopolia barbata and its structure determined. Compound 2 was significantly less active in the DCFH system than cymopol (1). The sponge metabolites (1S)-(+)-curcuphenol (6), aaptamine (7), isoaaptamine (8), and curcudiol (9) and the cyanobacterial pigment scytonemin (10) showed strong antioxidant activity in the DPPH assay, but were relatively inactive in the DCFH system. Thus, cellular uptake dramatically affects the potential significance of antioxidants discovered using only the DPPH assay. The apparent “proantioxidants” hormothamnione A diacetate (11) and Laurencia monomer diacetate (12) require metabolic activation for antioxidant activity. Significant advantages are achieved using both a solution- and cellular-based assay to discover new antioxidants. PMID:12762791

  3. Natural Products That Target Cancer Stem Cells.

    PubMed

    Moselhy, Jim; Srinivasan, Sowmyalakshmi; Ankem, Murali K; Damodaran, Chendil

    2015-11-01

    The cancer stem cell model suggests that tumor initiation is governed by a small subset of distinct cells with stem-like character termed cancer stem cells (CSCs). CSCs possess properties of self-renewal and intrinsic survival mechanisms that contribute to resistance of tumors to most chemotherapeutic drugs. The failure to eradicate CSCs during the course of therapy is postulated to be the driving force for tumor recurrence and metastasis. Recent studies have focused on understanding the unique phenotypic properties of CSCs from various tumor types, as well as the signaling pathways that underlie self-renewal and drug resistance. Natural products (NPs) such as those derived from botanicals and food sources may modulate vital signaling pathways involved in the maintenance of CSC phenotype. The Wingless/Integrated (WNT), Hedgehog, Notch and PI3K/AKT/mTOR pathways have all been associated with quiescence and self-renewal of CSCs, as well as execution of CSC function including differentiation, multidrug resistance and metastasis. Recent studies evaluating NPs against CSC support the epidemiological evidence linking plant-based diets with reduced malignancy rates. This review covers the key aspects of NPs as modulators of CSC fate. PMID:26503998

  4. Natural products and the aging process.

    PubMed

    Ergin, Volkan; Bali, Elif Burcu; Hariry, Reza Ebrahimi; Karasu, Cimen

    2013-12-01

    Abstract Literature surveys show that the most of the research that have been conducted on the effect of herbal remedies on many tissue pathologies, including metabolic disturbances, cardiovascular decline, neurodegeneration, cataract, diabetic retinopathy and skin inflammation, all lead to an accelerated aging process. The increased carbonylation of proteins (carbonyl stress) disturbing their function has been indicated as an underlying mechanism of cellular senescence and age-related diseases. Because it is also linked to the carbonyl stress, aging chronic disease and inflammation plays an important role in understanding the clinical implications of cellular stress response and relevant markers. Greater knowledge of the molecular and cellular mechanisms involved in several pathologies associated with aging would provide a better understanding to help us to develop suitable strategies, use specific targets to mitigate the effect of human aging, prevent particularly chronic degenerative diseases and improve quality of life. However, research is lacking on the herbal compounds affecting cellular aging signaling as well as studies regarding the action mechanism(s) of natural products in prevention of the age-related disease. This review provides leads for identifying new medicinal agents or potential phytochemical drugs from plant sources for the prevention or delaying cellular aging processes and the treatment of some disorders related with accelerated body aging. PMID:25436747

  5. A divergent approach to the synthesis of the yohimbinoid alkaloids venenatine and alstovenine

    NASA Astrophysics Data System (ADS)

    Lebold, Terry P.; Wood, Jessica L.; Deitch, Josh; Lodewyk, Michael W.; Tantillo, Dean J.; Sarpong, Richmond

    2013-02-01

    The yohimbinoid alkaloids continue to receive considerable attention from the synthetic community because of their interesting chemical structures and varied biological activity. Although there are several elegant syntheses of certain members of this group of alkaloids, a truly unified approach has yet to be developed. In short, general approaches to this compound class are hampered by a lack of complete control in setting the C(3) stereocentre at a late stage. Herein, we report that a functionalized hydrindanone enables a divergent strategy that builds on existing precedent to address this long-standing challenge. Utilizing an aminonitrile intermediate, the stereochemistry at C(3) of the yohimbinoid skeleton can be controlled effectively in a Pictet-Spengler reaction. We applied this approach to the first total syntheses of the C(3) epimeric natural products venenatine and alstovenine.

  6. Northalrugosidine is a Bisbenzyltetrahydroisoquinoline Alkaloid from Thalictrum alpinum with in Vivo Antileishmanial Activity

    PubMed Central

    Naman, C. Benjamin; Gupta, Gaurav; Varikuti, Sanjay; Chai, Heebyung; Doskotch, Raymond W.; Satoskar, Abhay R.; Kinghorn, A. Douglas

    2015-01-01

    Screening of a plant-derived natural product library led to the observation of in vitro antileishmanial activity by three bisbenzyltetrahydroisoquinoline alkaloids (1-3) that were purified previously from Thalictrum alpinum. A spectroscopic study of the active compounds was conducted to confirm their identities. Of the compounds tested, northalrugosidine (1) showed the most potent in vitro activity against Leishmania donovani promastigotes (0.28 μM), and the highest selectivity (29.3–fold) versus its general cytotoxicity against HT-29 human colon adenocarcinoma cells. Northalrugosidine was tested in vivo using a murine model of visceral leishmaniasis, resulting in the observation of a dose-dependent reduction to the parasitic burden in the liver and spleen without overt toxicity effects at 2.8, 5.6, and 11.1 mg/kg per animal when administered intravenously. This represents the first report of a bisbenzyltetrahydroisoquinoline alkaloid with in vivo efficacy against visceral leishmaniasis. PMID:25629555

  7. Collective Synthesis and Biological Evaluation of Tryptophan-Based Dimeric Diketopiperazine Alkaloids.

    PubMed

    Tadano, Shinji; Sugimachi, Yukihiro; Sumimoto, Michinori; Tsukamoto, Sachiko; Ishikawa, Hayato

    2016-01-22

    A concise two one-pot synthesis of WIN 64821, eurocristatine, 15,15'-bis-epi-eurocristatine, ditryptophenaline, ditryptoleucine A, WIN 64745, cristatumin C, asperdimin, naseseazine A, and naseseazine B is detailed, based on a unique bioinspired dimerization reaction of tryptophan derivatives in aqueous acidic solution and a one-pot procedure for the construction of diketopiperazine rings. Total yields of these alkaloid syntheses were from 10 up to 27 %. In addition, 1'-(2-phenylethylene)-ditryptophenaline was synthesized by using three one-pot operations. The studies detailed herein provided synthesized natural products for inhibitory activities of ubiquitin-specific protease 7 (USP7) and foam cell formation in macrophages. The newly listed biological evaluation for tryptophan-based dimeric diketopiperazine alkaloids discovered 15,15'-bis-epi-eurocristatine, 1'-(2-phenylethylene)-ditryptophenaline, and WIN 64745 as new drug candidates. PMID:26598794

  8. Volatiles, a glutarimide alkaloid and antimicrobial effects of Croton pullei (Euphorbiaceae).

    PubMed

    Peixoto, Rosana N S; Guilhon, Giselle M S P; das Graças B Zoghbi, Maria; Araújo, Isabella S; Uetanabaro, Ana Paula T; Santos, Lourivaldo S; do S B Brasil, Davi

    2013-01-01

    Chemical investigation of Croton pullei (Euphorbiaceae) collected in the Brazilian Amazon region was revisited. The chemical composition of the essential oils of leaves and stems was analyzed by GC/MS. It was found that both the oils comprise mainly terpenes, among which linalool was the major one (24.90 and 39.72%, respectively). Phytochemical investigation of the stem methanol extract led to the isolation of a new natural product from the glutarimide alkaloid group named N-[2,6-dioxo-1-(2-phenylethyl)-3-piperidinyl]-acetamide, confirming that C. pullei is a rich source of this class of alkaloids. The hexane and methanol extracts of the stems of C. pullei showed moderate antibacterial and antifungal activity and the highest inhibition was observed when the methanol extract was tested against Staphylococcus aureus CCMB 262 and CCMB 263. PMID:23481881

  9. A divergent approach to the synthesis of the yohimbinoid alkaloids venenatine and alstovenine

    PubMed Central

    Lebold, Terry P.; Wood, Jessica L.; Deitch, Josh; Lodewyk, Michael W.; Tantillo, Dean J.; Sarpong, Richmond

    2012-01-01

    The yohimbinoid alkaloids have received considerable attention from the synthetic community due to their interesting chemical structures and varied biological activity. Although there have been several elegant syntheses of certain members of this group of alkaloids, a truly unified approach has yet to be developed. In short, general approaches to this compound class have been hampered by a lack of complete control in setting the C(3) stereocenter at a late stage. Herein, we report that a functionalized hydrindanone enables a divergent strategy that builds on precedent from Stork, which addresses this long standing challenge. Utilizing an aminonitrile intermediate, the stereochemistry at C(3) of the yohimbinoid skeleton can be effectively controlled in a Pictet-Spengler reaction. This approach has been applied to the first total syntheses of the C(3) epimeric natural products venenatine and alstovenine. PMID:23344433

  10. Interspecific transfer of pyrrolizidine alkaloids: An unconsidered source of contaminations of phytopharmaceuticals and plant derived commodities.

    PubMed

    Nowak, Melanie; Wittke, Carina; Lederer, Ines; Klier, Bernhard; Kleinwächter, Maik; Selmar, Dirk

    2016-12-15

    Many plant derived commodities contain traces of toxic pyrrolizidine alkaloids (PAs). The main source of these contaminations seems to be the accidental co-harvest of PA-containing weeds. Yet, based on the insights of the newly described phenomenon of the horizontal transfer of natural products, it is very likely that the PA-contaminations may also be due to an uptake of the alkaloids from the soil, previously being leached out from rotting PA-plants. The transfer of PAs was investigated using various herbs, which had been mulched with dried plant material from Senecio jacobaea. All of the acceptor plants exhibited marked concentrations of PAs. The extent and the composition of the imported PAs was dependent on the acceptor plant species. These results demonstrate that PAs indeed are leached out from dried Senecio material into the soil and confirm their uptake by the roots of the acceptor plants and the translocation into the leaves. PMID:27451168

  11. General access to the vinca and tacaman alkaloids using a Rh(II)-catalyzed cyclization/cycloaddition cascade.

    PubMed

    England, Dylan B; Padwa, Albert

    2008-04-01

    The total synthesis of several members of the vinca and tacaman classes of indole alkaloids has been accomplished. The central step in the synthesis consists of an intramolecular [3+2]-cycloaddition reaction of an alpha-diazo indoloamide which delivers the pentacyclic skeleton of the natural product in excellent yield. The acid lability of the oxabicyclic structure was exploited to establish the trans-D/E ring fusion of (+/-)-3H-epivincamine (3). Finally, a base induced keto-amide ring contraction was utilized to generate the E-ring of the natural product. A variation of the cascade sequence of reactions used to synthesize (+/-)-3H-epivincamine was also employed for the synthesis of the tacaman alkaloids (+/-)-tacamonine and (+/-)-apotacamine. PMID:18318547

  12. Alkaloids of Thalictrum XXVII. New hypotensive aporphine-benzylisoquinoline derived dimeric alkaloids from Thalictrum minus race B.

    PubMed

    Liao, W T; Beal, J L; Wu, W N; Doskotch, R W

    1978-01-01

    The roots of T. minus race B have yielded, in addition to adiantifoline (1) previously isolated from this source, two new related alkaloids, thaliadine (2) and thaliadanine (5). Both were assigned complete structures by spectral methods and by chemical interconversion to adiantifoline or its product. O-Desmethyladiantifoline should have structure 14, rather than the previously reported 5. All three isolated alkaloids show hypotensive activity in rabbits, and thaliadanine (5) has antimicrobial activity against Mycobacterium smegmatis. PMID:672464

  13. The impact of enzyme engineering upon natural product glycodiversification

    PubMed Central

    Williams, Gavin J; Gantt, Richard W; Thorson, Jon S

    2015-01-01

    Glycodiversification of natural products is an effective strategy for small molecule drug development. Recently, improved methods for chemo-enzymatic synthesis of glycosyl donors has spurred the characterization of natural product glycosyltransferases (GTs), revealing that the substrate specificity of many naturally occurring GTs as too stringent for use in glycodiversification. Protein engineering of natural product GTs has emerged as an attractive approach to overcome this limitation. This review highlights recent progress in the engineering/evolution of enzymes relevant to natural product glycodiversification with a particular focus upon GTs. PMID:18678278

  14. STRATEGIES FOR THE USE OF NATURAL PRODUCTS FOR WEED MANAGEMENT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Natural products have not been utilized as extensively for weed management as they have been for insect and plant pathogen management, but there are several notable successes such as glufosinate and the natural product-derived triketone herbicides. The two fundamental approaches to the use of natur...

  15. Plant-like biosynthesis of isoquinoline alkaloids in Aspergillus fumigatus.

    PubMed

    Baccile, Joshua A; Spraker, Joseph E; Le, Henry H; Brandenburger, Eileen; Gomez, Christian; Bok, Jin Woo; Macheleidt, Juliane; Brakhage, Axel A; Hoffmeister, Dirk; Keller, Nancy P; Schroeder, Frank C

    2016-06-01

    Natural product discovery efforts have focused primarily on microbial biosynthetic gene clusters (BGCs) containing large multimodular polyketide synthases and nonribosomal peptide synthetases; however, sequencing of fungal genomes has revealed a vast number of BGCs containing smaller NRPS-like genes of unknown biosynthetic function. Using comparative metabolomics, we show that a BGC in the human pathogen Aspergillus fumigatus named fsq, which contains an NRPS-like gene lacking a condensation domain, produces several new isoquinoline alkaloids known as the fumisoquins. These compounds derive from carbon-carbon bond formation between two amino acid-derived moieties followed by a sequence that is directly analogous to isoquinoline alkaloid biosynthesis in plants. Fumisoquin biosynthesis requires the N-methyltransferase FsqC and the FAD-dependent oxidase FsqB, which represent functional analogs of coclaurine N-methyltransferase and berberine bridge enzyme in plants. Our results show that BGCs containing incomplete NRPS modules may reveal new biosynthetic paradigms and suggest that plant-like isoquinoline biosynthesis occurs in diverse fungi. PMID:27065235

  16. Discovery of a P450-catalyzed step in vindoline biosynthesis: a link between the aspidosperma and eburnamine alkaloids.

    PubMed

    Kellner, Franziska; Geu-Flores, Fernando; Sherden, Nathaniel H; Brown, Stephanie; Foureau, Emilien; Courdavault, Vincent; O'Connor, Sarah E

    2015-05-01

    Here we report the discovery of a cytochrome P450 that is required for the biosynthesis of vindoline, a plant-derived natural product used for semi-synthesis of several anti-cancer drugs. This enzyme catalyzes the formation of an epoxide that can undergo rearrangement to yield the vincamine-eburnamine backbone, thereby providing evidence for the long-standing hypothesis that the aspidosperma- and eburnamine-type alkaloids are biosynthetically related. PMID:25850027

  17. Sequential Sonagashira and Larock Indole Synthesis Reactions in a General Strategy To Prepare Biologically Active β-Carboline-Containing Alkaloids

    PubMed Central

    2015-01-01

    A general synthetic approach to β-carboline-containing alkaloids was developed. Two consecutive palladium-mediated processes, a Sonagashira coupling and a Larock indole annulation reaction, are central to the method. The scope of the approach was investigated and found to be amenable for constructing a variety of biologically significant natural products and also for preparing substituted analogues for optimization and analysis of their biological properties. PMID:25393979

  18. Stress enhances the synthesis of secondary plant products: the impact of stress-related over-reduction on the accumulation of natural products.

    PubMed

    Selmar, Dirk; Kleinwächter, Maik

    2013-06-01

    Spice and medicinal plants grown under water deficiency conditions reveal much higher concentrations of relevant natural products compared with identical plants of the same species cultivated with an ample water supply. For the first time, experimental data related to this well-known phenomenon have been collected and a putative mechanistic concept considering general plant physiological and biochemical aspects is presented. Water shortage induces drought stress-related metabolic responses and, due to stomatal closure, the uptake of CO2 decreases significantly. As a result, the consumption of reduction equivalents (NADPH + H(+)) for CO2 fixation via the Calvin cycle declines considerably, generating a large oxidative stress and an oversupply of reduction equivalents. As a consequence, metabolic processes are shifted towards biosynthetic activities that consume reduction equivalents. Accordingly, the synthesis of reduced compounds, such as isoprenoids, phenols or alkaloids, is enhanced. PMID:23612932

  19. Synthesis and SAR of vinca alkaloid analogues.

    PubMed

    Voss, Matthew E; Ralph, Jeffery M; Xie, Dejian; Manning, David D; Chen, Xinchao; Frank, Anthony J; Leyhane, Andrew J; Liu, Lei; Stevens, Jason M; Budde, Cheryl; Surman, Matthew D; Friedrich, Thomas; Peace, Denise; Scott, Ian L; Wolf, Mark; Johnson, Randall

    2009-02-15

    Versatile intermediates 12'-iodovinblastine, 12'-iodovincristine and 11'-iodovinorelbine were utilized as substrates for transition metal based chemistry which led to the preparation of novel analogues of the vinca alkaloids. The synthesis of key iodo intermediates, their transformation into final products, and the SAR based upon HeLa and MCF-7 cell toxicity assays is presented. Selected analogues 27 and 36 show promising anticancer activity in the P388 murine leukemia model. PMID:19147348

  20. Accumulation of ergot alkaloids during conidiophore development in Aspergillus fumigatus.

    PubMed

    Mulinti, Prashanthi; Allen, Natalie A; Coyle, Christine M; Gravelat, Fabrice N; Sheppard, Donald C; Panaccione, Daniel G

    2014-01-01

    Production of ergot alkaloids in the opportunistic fungal pathogen Aspergillus fumigatus is restricted to conidiating cultures. These cultures typically accumulate several pathway intermediates at concentrations comparable to that of the pathway end product. We investigated the contribution of different cell types that constitute the multicellular conidiophore of A. fumigatus to the production of ergot alkaloid pathway intermediates versus the pathway end product, fumigaclavine C. A relatively minor share (11 %) of the ergot alkaloid yield on a molar basis was secreted into the medium, whereas the remainder was associated with the conidiating colonies. Entire conidiating cultures (containing hyphae, vesicle of conidiophore, phialides of conidiophore, and conidia) accumulated higher levels of the pathway intermediate festuclavine and lower levels of the pathway end product fumigaclavine C than did isolated, abscised conidia, indicating that conidiophores and/or hyphae have a quantitatively different ergot alkaloid profile compared to that of conidia. Differences in alkaloid accumulation among cell types also were indicated by studies with conidiophore development mutants. A ∆medA mutant, in which conidiophores are numerous but develop poorly, accumulated higher levels of pathway intermediates than did the wildtype or a complemented ∆medA mutant. A ∆stuA mutant, which grows mainly as hyphae and produces very few, abnormal conidiophores, produced no detectable ergot alkaloids. The data indicated heterogeneous spatial distribution of ergot alkaloid pathway intermediates versus pathway end product in conidiating cultures of A. fumigatus. This skewed distribution may reflect differences in abundance or activity of pathway enzymes among cell types of those conidiating cultures. PMID:23925951

  1. AGROCHEMICAL DISCOVERY: FINDING NEW FUNGICIDES FROM NATURAL PRODUCTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The continuing development of fungicide resistance in plant and human pathogens necessitates the discovery and development of new fungicides. Discovery and evaluation of natural product fungicides is largely dependent upon the availability of miniaturized antifungal bioassays. Essentials for natur...

  2. Automatic alkaloid removal system.

    PubMed

    Yahaya, Muhammad Rizuwan; Hj Razali, Mohd Hudzari; Abu Bakar, Che Abdullah; Ismail, Wan Ishak Wan; Muda, Wan Musa Wan; Mat, Nashriyah; Zakaria, Abd

    2014-01-01

    This alkaloid automated removal machine was developed at Instrumentation Laboratory, Universiti Sultan Zainal Abidin Malaysia that purposely for removing the alkaloid toxicity from Dioscorea hispida (DH) tuber. It is a poisonous plant where scientific study has shown that its tubers contain toxic alkaloid constituents, dioscorine. The tubers can only be consumed after it poisonous is removed. In this experiment, the tubers are needed to blend as powder form before inserting into machine basket. The user is need to push the START button on machine controller for switching the water pump ON by then creating turbulence wave of water in machine tank. The water will stop automatically by triggering the outlet solenoid valve. The powders of tubers are washed for 10 minutes while 1 liter of contaminated water due toxin mixture is flowing out. At this time, the controller will automatically triggered inlet solenoid valve and the new water will flow in machine tank until achieve the desire level that which determined by ultra sonic sensor. This process will repeated for 7 h and the positive result is achieved and shows it significant according to the several parameters of biological character ofpH, temperature, dissolve oxygen, turbidity, conductivity and fish survival rate or time. From that parameter, it also shows the positive result which is near or same with control water and assuming was made that the toxin is fully removed when the pH of DH powder is near with control water. For control water, the pH is about 5.3 while water from this experiment process is 6.0 and before run the machine the pH of contaminated water is about 3.8 which are too acid. This automated machine can save time for removing toxicity from DH compared with a traditional method while less observation of the user. PMID:24783795

  3. Developing a drug-like natural product library.

    PubMed

    Quinn, Ronald J; Carroll, Anthony R; Pham, Ngoc B; Baron, Paul; Palframan, Meredith E; Suraweera, Lekha; Pierens, Gregory K; Muresan, Sorel

    2008-03-01

    Addressing drug-like/lead-like properties of biologically active small molecules early in a lead generation program is the current paradigm within the drug discovery community. Lipinski's "rule of five" has become the most commonly used tool to assess the relationship between structures and drug-like properties. Sixty percent of the 126 140 unique compounds in The Dictionary of Natural Products had no violations of Lipinski's "rule of five". We have isolated 814 natural products based on their expected drug-like/lead-like properties to generate a natural product library (NPL) in which 85% of the isolated compounds had no Lipinski violations. The library demonstrates the feasibility of obtaining natural products known for rich chemical diversity with the required physicochemical properties for drug discovery. The knowledge generated in creation of the library of structurally characterized pure natural products may provide opportunities to front-load lead-like property space in natural product drug discovery programs. PMID:18257534

  4. Marine Natural Products: A Way to New Drugs

    PubMed Central

    2009-01-01

    The investigation of marine natural products (low molecular weight bioregulators) is a rapidly developing scientific field at the intersection of biology and chemistry. Investigations aimed at detecting, identifying, and understanding the structure of marine natural products have led to the discovery of 20,000 new substances, including those characterized by an extremely high physiological activity. Some results and prospects of works aimed at creating new drugs on the basis of marine natural products are discussed herein. PMID:22649599

  5. Use of natural health products in children

    PubMed Central

    Godwin, Marshall; McCrate, Farah; Newhook, Leigh Anne; Pike, Andrea; Crellin, John; Law, Rebecca; Mathews, Maria; Chowdhury, Nurun L.

    2013-01-01

    Abstract Objective To determine the experiences of family physicians in Newfoundland and Labrador with parents’ use of natural health products (NHPs) for their children and to assess physicians’ attitudes toward use of NHPs in children. Design A survey using the Dillman approach. Setting Newfoundland and Labrador. Participants All family physicians in the province. Main outcome measures Physician demographic characteristics; whether physicians inquire about the use of NHPs in children; the degree to which they think patients disclose use of NHPs in children; whether they counsel parents about the potential benefits or harms of NHPs; their own opinions about the usefulness of NHPs; whether they recommend NHPs in children and for what reasons; and the particular NHPs they have seen used in children and for what reasons. Results A total of 159 (33.1%) family physicians responded; 65.4% were men, 71.7% were Canadian medical graduates, and 46.5% practised in rural areas. Overall, 18.8% of family physicians said they regularly or frequently asked about NHP use; 24.7% counseled patients about potential harms. Only 1.9% of physicians believed NHPs were usually beneficial, but a similarly small number (8.4%) thought they were usually harmful. Most respondents were somewhat neutral; 59.7% said they never recommend NHPs for children, and a further 37.0% said they would only “sometimes” recommend NHPs. Conclusion Most physicians believed that NHPs were probably of little benefit but not likely to be harmful. Most NHPs used were vitamins and minerals. Physicians recognized that NHPs were often used by parents for children, but in general they believed NHPs had little effect on their day-to-day medical practices. Thirty-eight (24.7%) of the 154 physicians had at least once recommended an NHP (including vitamins) for their pediatric patients. Physicians believed that parents did not often disclose use of NHPs for their children, but at the same time physicians generally

  6. Secondary metabolomics: natural products mass spectrometry goes global.

    PubMed

    Kersten, Roland D; Dorrestein, Pieter C

    2009-08-21

    A global LC-MS metabolite analysis of wild-type Pseudomonas auerigunosa and mutants targeting the natural product pyochelin revealed the production of previously unknown metabolites, the 2-alkyl-4,5-dihydrothiazole-4-carboxylates. PMID:19817465

  7. Heterozygous P53 knockout mouse model for dehydropyrrolizidine alkaloid-induced carcinogenesis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dehydropyrrolizidine alkaloids are a large, structurally diverse group of plant-derived protoxins that are potentially carcinogenic. With worldwide significance, these alkaloids can contaminate or be naturally present in the human food supply. To develop a small animal model that may be used to com...

  8. Genetics, Genomics and Evolution of Ergot Alkaloid Diversity

    PubMed Central

    Young, Carolyn A.; Schardl, Christopher L.; Panaccione, Daniel G.; Florea, Simona; Takach, Johanna E.; Charlton, Nikki D.; Moore, Neil; Webb, Jennifer S.; Jaromczyk, Jolanta

    2015-01-01

    The ergot alkaloid biosynthesis system has become an excellent model to study evolutionary diversification of specialized (secondary) metabolites. This is a very diverse class of alkaloids with various neurotropic activities, produced by fungi in several orders of the phylum Ascomycota, including plant pathogens and protective plant symbionts in the family Clavicipitaceae. Results of comparative genomics and phylogenomic analyses reveal multiple examples of three evolutionary processes that have generated ergot-alkaloid diversity: gene gains, gene losses, and gene sequence changes that have led to altered substrates or product specificities of the enzymes that they encode (neofunctionalization). The chromosome ends appear to be particularly effective engines for gene gains, losses and rearrangements, but not necessarily for neofunctionalization. Changes in gene expression could lead to accumulation of various pathway intermediates and affect levels of different ergot alkaloids. Genetic alterations associated with interspecific hybrids of Epichloë species suggest that such variation is also selectively favored. The huge structural diversity of ergot alkaloids probably represents adaptations to a wide variety of ecological situations by affecting the biological spectra and mechanisms of defense against herbivores, as evidenced by the diverse pharmacological effects of ergot alkaloids used in medicine. PMID:25875294

  9. Genetics, genomics and evolution of ergot alkaloid diversity.

    PubMed

    Young, Carolyn A; Schardl, Christopher L; Panaccione, Daniel G; Florea, Simona; Takach, Johanna E; Charlton, Nikki D; Moore, Neil; Webb, Jennifer S; Jaromczyk, Jolanta

    2015-04-01

    The ergot alkaloid biosynthesis system has become an excellent model to study evolutionary diversification of specialized (secondary) metabolites. This is a very diverse class of alkaloids with various neurotropic activities, produced by fungi in several orders of the phylum Ascomycota, including plant pathogens and protective plant symbionts in the family Clavicipitaceae. Results of comparative genomics and phylogenomic analyses reveal multiple examples of three evolutionary processes that have generated ergot-alkaloid diversity: gene gains, gene losses, and gene sequence changes that have led to altered substrates or product specificities of the enzymes that they encode (neofunctionalization). The chromosome ends appear to be particularly effective engines for gene gains, losses and rearrangements, but not necessarily for neofunctionalization. Changes in gene expression could lead to accumulation of various pathway intermediates and affect levels of different ergot alkaloids. Genetic alterations associated with interspecific hybrids of Epichloë species suggest that such variation is also selectively favored. The huge structural diversity of ergot alkaloids probably represents adaptations to a wide variety of ecological situations by affecting the biological spectra and mechanisms of defense against herbivores, as evidenced by the diverse pharmacological effects of ergot alkaloids used in medicine. PMID:25875294

  10. [New natural products from the marine-derived Aspergillus fungi-A review].

    PubMed

    Zhao, Chengying; Liu, Haishan; Zhu, Weiming

    2016-03-01

    Marine-derived fungi were the main source of marine microbial natural products (NPs) due to their complex genetic background, chemodiversity and high yield of NPs. According to our previous survey for marine microbial NPs from 2010 to 2013, Aspergillus fungi have received the most of attention among all the marine-derived fungi, which accounted for 31% NPs of the marine fungal origins. This paper reviewed the sources, chemical structures and bioactivites of all the 512 new marine NPs of Aspergillus fungal origins from 1992 to 2014. These marine NPs have diverse chemical structures including polyketides, fatty acids, sterols and terpenoids, alkaloids, peptides, and so on, 36% of which displayed bioactivities such as cytotoxicity, antimicrobial activity, antioxidant and insecticidal activity. Nitrogen compounds are the major secondary metabolites accounting for 52% NPs from the marine-derived Aspergillus fungi. Nitrogen compounds are also the class with the highest ratio of bioactive compounds, 40% of which are bioactive. Plinabulin, a dehydrodiketopiperazine derivative of halimide had been ended its phase II trial and has received its phase III study from the third quarter of 2015 for the treatment of advanced, metastatic non-small cell lung cancer. PMID:27382779

  11. Time-Dependent Inhibition of CYP2C19 by Isoquinoline Alkaloids: In Vitro and In Silico Analysis.

    PubMed

    Salminen, Kaisa A; Rahnasto-Rilla, Minna; Väänänen, Raija; Imming, Peter; Meyer, Achim; Horling, Aline; Poso, Antti; Laitinen, Tuomo; Raunio, Hannu; Lahtela-Kakkonen, Maija

    2015-12-01

    The cytochrome P450 2C19 (CYP2C19) enzyme plays an important role in the metabolism of many commonly used drugs. Relatively little is known about CYP2C19 inhibitors, including compounds of natural origin, which could inhibit CYP2C19, potentially causing clinically relevant metabolism-based drug interactions. We evaluated a series (N = 49) of structurally related plant isoquinoline alkaloids for their abilities to interact with CYP2C19 enzyme using in vitro and in silico methods. We examined several common active alkaloids found in herbal products such as apomorphine, berberine, noscapine, and papaverine, as well as the previously identified mechanism-based inactivators bulbocapnine, canadine, and protopine. The IC50 values of the alkaloids ranged from 0.11 to 210 µM, and 42 of the alkaloids were confirmed to be time-dependent inhibitors of CYP2C19. Molecular docking and three-dimensional quantitative structure-activity relationship analysis revealed key interactions of the potent inhibitors with the enzyme active site. We constructed a comparative molecular field analysis model that was able to predict the inhibitory potency of a series of independent test molecules. This study revealed that many of these isoquinoline alkaloids do have the potential to cause clinically relevant drug interactions. These results highlight the need for studying more profoundly the potential interactions between drugs and herbal products. When further refined, in silico methods can be useful in the high-throughput prediction of P450 inhibitory potential of pharmaceutical compounds. PMID:26400396

  12. Claviceps nigricans and Claviceps grohii: their alkaloids and phylogenetic placement.

    PubMed

    Pazoutová, Sylvie; Olsovská, Jana; Sulc, Miroslav; Chudícková, Milada; Flieger, Miroslav

    2008-06-01

    Claviceps purpurea, C. grohii, C. zizaniae, C. cyperi, and C. nigricans are closely related ergot fungi and form a monophyletic clade inside the genus Claviceps. Analysis of alkaloid content in C. nigricans sclerotia using UPLC detected ergocristine (1), ergosine (2), alpha-ergocryptine (3), and ergocristam (4). Alkaloids 1, 3, and 4 were found in the sclerotia of C. grohii. The content of 4 in the mixture of alkaloids from C. nigricans and C. grohii (over 8% and over 20%, respectively) was unusually high. Submerged shaken cultures of C. nigricans produced no alkaloids, whereas C. grohii culture formed small amounts (15 mg L (-1)) of extracellular clavines and 1. In the previously used HPLC method the ergocristam degradation product could have been obscured by the ergosine peak. Therefore sclerotia of a C. purpurea habitat-specific population G2 with the dominant production of 1 and 2 have been reanalyzed, but no 4 was detected. The phylogeny of the C. purpurea-related species group is discussed with regard to alkaloid-specific nonribosomal peptide synthetase duplication leading to the production of two main ergopeptines instead of a single product. PMID:18461998

  13. Natural Products and Dietary Prevention of Cancer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The concept of cancer prevention was first introduced in studies using the natural form of vitamin A in the prevention of epithelial cancers. Ever since, research on cancer prevention has grown and become a rather specialized field study. Cancer is a multistage process, and takes several years for...

  14. New natural products as new leads for antibacterial drug discovery.

    PubMed

    Brown, Dean G; Lister, Troy; May-Dracka, Tricia L

    2014-01-15

    Natural products have been a rich source of antibacterial drugs for many decades, but investments in this area have declined over the past two decades. The purpose of this review article is to provide a recent survey of new natural product classes and the mechanisms by which they work. PMID:24388805

  15. Harnessing natural product assembly lines: structure, promiscuity, and engineering.

    PubMed

    Ladner, Christopher C; Williams, Gavin J

    2016-03-01

    Many therapeutically relevant natural products are biosynthesized by the action of giant mega-enzyme assembly lines. By leveraging the specificity, promiscuity, and modularity of assembly lines, a variety of strategies has been developed that enables the biosynthesis of modified natural products. This review briefly summarizes recent structural advances related to natural product assembly lines, discusses chemical approaches to probing assembly line structures in the absence of traditional biophysical data, and surveys efforts that harness the inherent or engineered promiscuity of assembly lines for the synthesis of non-natural polyketides and non-ribosomal peptide analogues. PMID:26527577

  16. Biocatalysts from alkaloid producing plants.

    PubMed

    Kries, Hajo; O'Connor, Sarah E

    2016-04-01

    Metabolic pathways leading to benzylisoquinoline and monoterpene indole alkaloids in plants are revealing remarkable new reactions. Understanding of the enzymes involved in alkaloid biosynthesis provides access to a variety of applications in biocatalysis and bioengineering. In chemo-enzymatic settings, plant biocatalysts can transform medically important scaffolds. Additionally, synthetic biologists are taking alkaloid pathways as templates to assemble pathways in microorganisms that are tailored to the needs of medicinal chemistry. In light of these many recent discoveries, it is expected that plants will continue to be a source of novel biocatalysts for the foreseeable future. PMID:26773811

  17. Discovery and Assembly Line Biosynthesis of the Lymphostin Pyrroloquinoline Alkaloid Family of mTOR Inhibitors in Salinispora Bacteria

    PubMed Central

    Miyanaga, Akimasa; Janso, Jeffrey E.; McDonald, Leonard; He, Min; Liu, Hongbo; Barbieri, Laurel; Eustáquio, Alessandra S.; Fielding, Elisha N.; Carter, Guy T.; Jensen, Paul R.; Feng, Xidong; Leighton, Margaret; Koehn, Frank E.; Moore, Bradley S.

    2011-01-01

    The pyrroloquinoline alkaloid family of natural products that includes the immunosuppressant lymphostin has long been postulated to arise from tryptophan. We now report the molecular basis of lymphostin biosynthesis in three marine Salinispora species that maintain conserved biosynthetic gene clusters harboring a hybrid nonribosomal peptide synthetase-polyketide synthase central to lymphostin assembly. Through a series of experiments involving gene mutations, stable isotope profiling, and natural product discovery, we report the assembly line biosynthesis of lymphostin and nine new analogues that exhibit potent mTOR inhibitory activity. PMID:21815669

  18. Feeding responses to selected alkaloids by gypsy moth larvae, Lymantria dispar (L.)

    NASA Astrophysics Data System (ADS)

    Shields, Vonnie D. C.; Rodgers, Erin J.; Arnold, Nicole S.; Williams, Denise

    2006-03-01

    Deterrent compounds are important in influencing the food selection of many phytophagous insects. Plants containing deterrents, such as alkaloids, are generally unfavored and typically avoided by many polyphagous lepidopteran species, including the gypsy moth Lymantria dispar (L.) (Lepidoptera: Lymantriidae). We tested the deterrent effects of eight alkaloids using two-choice feeding bioassays. Each alkaloid was applied at biologically relevant concentrations to glass fiber disks and leaf disks from red oak trees ( Quercus rubra) (L.), a plant species highly favored by these larvae. All eight alkaloids tested on glass fiber disks were deterrent to varying degrees. When these alkaloids were applied to leaf disks, only seven were still deterrent. Of these seven, five were less deterrent on leaf disks compared with glass fiber disks, indicating that their potency was dramatically reduced when they were applied to leaf disks. The reduction in deterrency may be attributed to the phagostimulatory effect of red oak leaves in suppressing the negative deterrent effect of these alkaloids, suggesting that individual alkaloids may confer context-dependent deterrent effects in plants in which they occur. This study provides novel insights into the feeding behavioral responses of insect larvae, such as L. dispar, to selected deterrent alkaloids when applied to natural vs artificial substrates and has the potential to suggest deterrent alkaloids as possible candidates for agricultural use.

  19. Marinopyrroles: Unique Drug Discoveries Based on Marine Natural Products.

    PubMed

    Li, Rongshi

    2016-01-01

    Natural products provide a successful supply of new chemical entities (NCEs) for drug discovery to treat human diseases. Approximately half of the NCEs are based on natural products and their derivatives. Notably, marine natural products, a largely untapped resource, have contributed to drug discovery and development with eight drugs or cosmeceuticals approved by the U.S. Food and Drug Administration and European Medicines Agency, and ten candidates undergoing clinical trials. Collaborative efforts from drug developers, biologists, organic, medicinal, and natural product chemists have elevated drug discoveries to new levels. These efforts are expected to continue to improve the efficiency of natural product-based drugs. Marinopyrroles are examined here as a case study for potential anticancer and antibiotic agents. PMID:26332654

  20. Natural Products Version 2.0: Connecting Genes to Molecules

    PubMed Central

    Walsh, Christopher T.; Fischbach, Michael A.

    2009-01-01

    Natural products have played a prominent role in the history of organic chemistry, and they continue to be important as drugs, biological probes, and targets of study for synthetic and analytical chemists. In this perspective, we explore how connecting Nature’s small molecules to the genes that encode them has sparked a renaissance in natural product research, focusing primarily on the biosynthesis of polyketides and nonribosomal peptides. We survey monomer biogenesis, coupling chemistries from templated and non-templated pathways, and the broad set of tailoring reactions and hybrid pathways that give rise to the diverse scaffolds and functionalization patterns of natural products. We conclude by considering two questions: What would it take to find all natural product scaffolds? What kind of scientists will be studying natural products in the future? PMID:20121095

  1. Bioactive natural products from Papua New Guinea marine sponges.

    PubMed

    Noro, Jeffery C; Kalaitzis, John A; Neilan, Brett A

    2012-10-01

    The discovery of novel natural products for drug development relies heavily upon a rich biodiversity, of which the marine environment is an obvious example. Marine natural product research has spawned several drugs and many other candidates, some of which are the focus of current clinical trials. The sponge megadiversity of Papua New Guinea is a rich but underexplored source of bioactive natural products. Here, we review some of the many natural products derived from PNG sponges with an emphasis on those with interesting biological activity and, therefore, drug potential. Many bioactive natural products discussed here appear to be derived from non-ribosomal peptide and polyketide biosynthesis pathways, strongly suggesting a microbial origin of these compounds. With this in mind, we also explore the notion of sponge-symbiont biosynthesis of these bioactive compounds and present examples to support the working hypothesis. PMID:23081914

  2. Capturing Biological Activity in Natural Product Fragments by Chemical Synthesis

    PubMed Central

    Crane, Erika A.

    2016-01-01

    Abstract Natural products have had an immense influence on science and have directly led to the introduction of many drugs. Organic chemistry, and its unique ability to tailor natural products through synthesis, provides an extraordinary approach to unlock the full potential of natural products. In this Review, an approach based on natural product derived fragments is presented that can successfully address some of the current challenges in drug discovery. These fragments often display significantly reduced molecular weights, reduced structural complexity, a reduced number of synthetic steps, while retaining or even improving key biological parameters such as potency or selectivity. Examples from various stages of the drug development process up to the clinic are presented. In addition, this process can be leveraged by recent developments such as genome mining, antibody–drug conjugates, and computational approaches. All these concepts have the potential to identify the next generation of drug candidates inspired by natural products. PMID:26833854

  3. The Structural Biology of Enzymes Involved in Natural Product Glycosylation

    PubMed Central

    Singh, Shanteri; Phillips, George N.

    2012-01-01

    The glycosylation of microbial natural products often dramatically influences the biological and/or pharmacological activities of the parental metabolite. Over the past decade, crystal structures of several enzymes involved in the biosynthesis and attachment of novel sugars found appended to natural products have emerged. In many cases, these studies have paved the way to a better understanding of the corresponding enzyme mechanism of action and have served as a starting point for engineering variant enzymes to facilitate to production of differentially-glycosylated natural products. This review specifically summarizes the structural studies of bacterial enzymes involved in biosynthesis of novel sugar nucleotides. PMID:22688446

  4. Phytochemical genomics of the Madagascar periwinkle: Unravelling the last twists of the alkaloid engine.

    PubMed

    Dugé de Bernonville, Thomas; Clastre, Marc; Besseau, Sébastien; Oudin, Audrey; Burlat, Vincent; Glévarec, Gaëlle; Lanoue, Arnaud; Papon, Nicolas; Giglioli-Guivarc'h, Nathalie; St-Pierre, Benoit; Courdavault, Vincent

    2015-05-01

    The Madagascar periwinkle produces a large palette of Monoterpenoid Indole Alkaloids (MIAs), a class of complex alkaloids including some of the most valuable plant natural products with precious therapeutical values. Evolutionary pressure on one of the hotspots of biodiversity has obviously turned this endemic Malagasy plant into an innovative alkaloid engine. Catharanthus is a unique taxon producing vinblastine and vincristine, heterodimeric MIAs with complex stereochemistry, and also manufactures more than 100 different MIAs, some shared with the Apocynaceae, Loganiaceae and Rubiaceae members. For over 60 years, the quest for these powerful anticancer drugs has inspired biologists, chemists, and pharmacists to unravel the chemistry, biochemistry, therapeutic activity, cell and molecular biology of Catharanthus roseus. Recently, the "omics" technologies have fuelled rapid progress in deciphering the last secret of strictosidine biosynthesis, the central precursor opening biosynthetic routes to several thousand MIA compounds. Dedicated C. roseus transcriptome, proteome and metabolome databases, comprising organ-, tissue- and cell-specific libraries, and other phytogenomic resources, were developed for instance by PhytoMetaSyn, Medicinal Plant Genomic Resources and SmartCell consortium. Tissue specific library screening, orthology comparison in species with or without MIA-biochemical engines, clustering of gene expression profiles together with various functional validation strategies, largely contributed to enrich the toolbox for plant synthetic biology and metabolic engineering of MIA biosynthesis. PMID:25146650

  5. Challenges and Triumphs to Genomics-Based Natural Product Discovery

    PubMed Central

    Jensen, Paul R.; Chavarria, Krystle L.; Fenical, William; Moore, Bradley S.; Ziemert, Nadine

    2013-01-01

    Genome sequencing is rapidly changing the field of natural products research by providing opportunities to assess the biosynthetic potential of strains prior to chemical analysis or biological testing. Ready access to sequence data is driving the development of new bioinformatic tools and methods to identify the products of silent or cryptic pathways. While genome mining has fast become a useful approach to natural product discovery, it has also become clear that identifying pathways of interest is much easier than finding the associated products. This has led to bottlenecks in the discovery process that must be overcome for the potential of genomics-based natural product discovery to be fully realized. In this perspective, we address some of these challenges in the context of our work with the marine actinomycete genus Salinispora, which is proving to be a useful model with which to apply genome mining as an approach to natural product discovery. PMID:24104399

  6. Spatial and Temporal Control of Fungal Natural Product Synthesis

    PubMed Central

    Lim, Fang Yun; Keller, Nancy P.

    2014-01-01

    Despite their oftentimes-elusive ecological role, fungal natural products have, for better or worse, impacted our daily lives tremendously owing to their diverse and potent bioactive properties. This Janus-faced nature of fungal natural products inevitably ushered in a field of research dedicated towards understanding the ecology, organisms, genes, enzymes, and biosynthetic pathways that give rise to this arsenal of diverse and complex chemistry. Ongoing research in fungal secondary metabolism has not only increased our appreciation for fungal natural products as an asset but also sheds light on the pivotal role that these once-regarded “metabolic wastes” play in fungal biology, defense, and stress response in addition to their potential contributions towards human mycoses. Full orchestration of secondary metabolism requires not only the seamless coordination between temporal and spatial control of SM-associated machineries (e.g. enzymes, cofactors, intermediates, and end-products) but also integration of these machineries into primary metabolic processes and established cellular mechanisms. An intriguing, but little known aspect of microbial natural product synthesis lies in the spatial organization of both pathway intermediates and enzymes responsible for the production of these compounds. In this highlight, we summarize some major breakthroughs in understanding the genes and regulation of fungal natural product synthesis and introduce the current state of knowledge on the spatial and temporal control of fungal natural product synthesis. PMID:25142354

  7. Using Video Production in Teaching Natural History.

    ERIC Educational Resources Information Center

    Fink, Linda S.

    1997-01-01

    Describes a course that uses video production projects to entice lower level students into independent field investigation, reinforce their scientific curiosity, and build their confidence in the value of their own observations. Discusses the rationale behind using video, the lab structure, the success of this approach, and logistics and…

  8. Toxicity of ergovaline, the tall fescue ergot alkaloid, to Pratylenchus scribneri

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Neotyphodium infected tall fescue produces a variety of secondary metabolites that are toxic and/or grazing deterrents. Alkaloid production has been related to defense against vertebrate and insect pests, in particular plant-parasitic nematodes. The ergot and pyrrollizidine (loline) alkaloids are ...

  9. Plant alkaloids that cause developmental defects through the disruption of cholinergic neurotransmission

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The exposure of a developing embryo or fetus to alkaloids from plants, plant products, or plant extracts has the potential to cause developmental defects in humans and animals. These defects may have multiple causes but those induced by piperidine and quinolizidine alkaloids arise from the inhibiti...

  10. Alkaloids of Litsea wightiana1.

    PubMed

    Bhakuni, D S; Gupta, S

    1983-05-01

    Six aporphine alkaloids glaucine, boldine, norboldine, isoboldine, norcorydine and laurotetanine have been isolated from the ethanolic extract of the stems of LITSEA WIGHTIANA in which spasmolytic, hypothermic and blood pressure lowering activities have been confirmed. PMID:17404942

  11. Coal or natural gas for ecofuel production

    SciTech Connect

    Geertsema, A.

    1998-04-01

    Given the extensive available resources of coal and, to a lesser extent, natural gas, the challenge to access these resources in a way that balances growth and conservation in a responsible way, is a tough technological task. On the one hand there is the inadverterable and undesirable liberation of CO{sub 2} when carbon is used and on the other hand it is reasonable to assume that hydrocarbon liquids will, for the foreseeable future, remain the backbone of the supply of energy to automotive vehicles. It is therefore necessary that options for improved environmental performance of such fuels are developed and considered for application where the economics would permit it.

  12. An Ergot Alkaloid Biosynthesis Gene and Clustered Hypothetical Genes from Aspergillus fumigatus†

    PubMed Central

    Coyle, Christine M.; Panaccione, Daniel G.

    2005-01-01

    The ergot alkaloids are a family of indole-derived mycotoxins with a variety of significant biological activities. Aspergillus fumigatus, a common airborne fungus and opportunistic human pathogen, and several fungi in the relatively distant taxon Clavicipitaceae (clavicipitaceous fungi) produce different sets of ergot alkaloids. The ergot alkaloids of these divergent fungi share a four-member ergoline ring but differ in the number, type, and position of the side chains. Several genes required for ergot alkaloid production are known in the clavicipitaceous fungi, and these genes are clustered in the genome of the ergot fungus Claviceps purpurea. We investigated whether the ergot alkaloids of A. fumigatus have a common biosynthetic and genetic origin with those of the clavicipitaceous fungi. A homolog of dmaW, the gene controlling the determinant step in the ergot alkaloid pathway of clavicipitaceous fungi, was identified in the A. fumigatus genome. Knockout of dmaW eliminated all known ergot alkaloids from A. fumigatus, and complementation of the mutation restored ergot alkaloid production. Clustered with dmaW in the A. fumigatus genome are sequences corresponding to five genes previously proposed to encode steps in the ergot alkaloid pathway of C. purpurea, as well as additional sequences whose deduced protein products are consistent with their involvement in the ergot alkaloid pathway. The corresponding genes have similarities in their nucleotide sequences, but the orientations and positions within the cluster of several of these genes differ. The data indicate that the ergot alkaloid biosynthetic capabilities in A. fumigatus and the clavicipitaceous fungi had a common origin. PMID:15933009

  13. Plant Natural Products Targeting Bacterial Virulence Factors.

    PubMed

    Silva, Laura Nunes; Zimmer, Karine Rigon; Macedo, Alexandre José; Trentin, Danielle Silva

    2016-08-24

    Decreased antimicrobial efficiency has become a global public health issue. The paucity of new antibacterial drugs is evident, and the arsenal against infectious diseases needs to be improved urgently. The selection of plants as a source of prototype compounds is appropriate, since plant species naturally produce a wide range of secondary metabolites that act as a chemical line of defense against microorganisms in the environment. Although traditional approaches to combat microbial infections remain effective, targeting microbial virulence rather than survival seems to be an exciting strategy, since the modulation of virulence factors might lead to a milder evolutionary pressure for the development of resistance. Additionally, anti-infective chemotherapies may be successfully achieved by combining antivirulence and conventional antimicrobials, extending the lifespan of these drugs. This review presents an updated discussion of natural compounds isolated from plants with chemically characterized structures and activity against the major bacterial virulence factors: quorum sensing, bacterial biofilms, bacterial motility, bacterial toxins, bacterial pigments, bacterial enzymes, and bacterial surfactants. Moreover, a critical analysis of the most promising virulence factors is presented, highlighting their potential as targets to attenuate bacterial virulence. The ongoing progress in the field of antivirulence therapy may therefore help to translate this promising concept into real intervention strategies in clinical areas. PMID:27437994

  14. Development of an Enantioselective Route towards the Lycopodium Alkaloids: Total Synthesis of Lycopodine

    PubMed Central

    Yang, Hua; Carter, Rich G.

    2010-01-01

    Synthesis of a C15-desmethyl tricycle core of lycopodine has been accomplished. Key steps in the synthetic sequence include organocatalytic, intramolecular Michael addition of a keto sulfone and a tandem 1,3-sulfonyl shift / Mannich cyclization to construct the tricyclic core ring system. Synthetic work towards this natural product family led to the development of N-(p-dodecylphenylsulfonyl)-2-pyrrolidinecarboxamide – an organocatalyst which facilitiates enantioselective, intramolecular Michael additions. A detailed mechanistic discussion is provided for both the intramolecular Michael addition and the sulfone rearrangement. Finally, the application of these discoveries to the enantioselective total synthesis of alkaloid lycopodine is described. PMID:20586477

  15. Biotransformation of huperzine A by a fungal endophyte of Huperzia serrata furnished sesquiterpenoid-alkaloid hybrids.

    PubMed

    Ying, You-Min; Shan, Wei-Guang; Zhan, Zha-Jun

    2014-09-26

    Biotransformation of huperzine A (hupA) by a fungal endophyte, Ceriporia lacerate HS-ZJUT-C13A, afforded compounds 1-5 and three tremulane sesquiterpenoids, 6-8. Huptremules A-D (1-4) feature unusual sesquiterpenoid-alkaloid hybrid structures that integrate the characteristics of fungal metabolites (tremulane sesquiterpenoids) and the exogenous substrate (hupA). These results support the use of fungal endophytes as biocatalysts for the biotransformation of natural products, particularly those originating from the host plant. PMID:25222040

  16. Fungi as a source of natural coumarins production.

    PubMed

    Costa, Tania Maria; Tavares, Lorena Benathar Ballod; de Oliveira, Débora

    2016-08-01

    Natural coumarins and derivatives are compounds that occur naturally in several organisms (plant, bacteria, and fungi) consisting of fused benzene and α-pyrone rings. These compounds show high technological potential applications in agrochemical, food, pharmaceuticals, and cosmetics industries. Therefore, the need for bulk production of coumarins and the advancement of the chemical and pharmaceutical industries led to the development of synthetic coumarin. However, biotransformation process, synthetic bioengineering, metabolic engineering, and bioinformatics have proven effective in the production of natural products. Today, these biological systems are recognized as green chemistry innovation and business strategy. This review article aims to report the potential of fungi for synthesis of coumarin. These microorganisms are described as a source of natural products capable of synthesizing many bioactive metabolites. The features, classification, properties, and industrial applications of natural coumarins as well as new molecules obtained by basidiomycetes and ascomycetes fungi are reported in order to explore a topic not yet discussed in the scientific literature. PMID:27364626

  17. Genomic mining for Aspergillus natural products.

    PubMed

    Bok, Jin Woo; Hoffmeister, Dirk; Maggio-Hall, Lori A; Murillo, Renato; Glasner, Jeremy D; Keller, Nancy P

    2006-01-01

    The genus Aspergillus is renowned for its ability to produce a myriad of bioactive secondary metabolites. Although the propensity of biosynthetic genes to form contiguous clusters greatly facilitates assignment of putative secondary metabolite genes in the completed Aspergillus genomes, such analysis cannot predict gene expression and, ultimately, product formation. To circumvent this deficiency, we have examined Aspergillus nidulans microarrays for expressed secondary metabolite gene clusters by using the transcriptional regulator LaeA. Deletion or overexpression of laeA clearly identified numerous secondary metabolite clusters. A gene deletion in one of the clusters eliminated the production of the antitumor compound terrequinone A, a metabolite not described, from A. nidulans. In this paper, we highlight that LaeA-based genome mining helps decipher the secondary metabolome of Aspergilli and provides an unparalleled view to assess secondary metabolism gene regulation. PMID:16426969

  18. Comprehensive curation and analysis of fungal biosynthetic gene clusters of published natural products.

    PubMed

    Li, Yong Fuga; Tsai, Kathleen J S; Harvey, Colin J B; Li, James Jian; Ary, Beatrice E; Berlew, Erin E; Boehman, Brenna L; Findley, David M; Friant, Alexandra G; Gardner, Christopher A; Gould, Michael P; Ha, Jae H; Lilley, Brenna K; McKinstry, Emily L; Nawal, Saadia; Parry, Robert C; Rothchild, Kristina W; Silbert, Samantha D; Tentilucci, Michael D; Thurston, Alana M; Wai, Rebecca B; Yoon, Yongjin; Aiyar, Raeka S; Medema, Marnix H; Hillenmeyer, Maureen E; Charkoudian, Louise K

    2016-04-01

    Microorganisms produce a wide range of natural products (NPs) with clinically and agriculturally relevant biological activities. In bacteria and fungi, genes encoding successive steps in a biosynthetic pathway tend to be clustered on the chromosome as biosynthetic gene clusters (BGCs). Historically, "activity-guided" approaches to NP discovery have focused on bioactivity screening of NPs produced by culturable microbes. In contrast, recent "genome mining" approaches first identify candidate BGCs, express these biosynthetic genes using synthetic biology methods, and finally test for the production of NPs. Fungal genome mining efforts and the exploration of novel sequence and NP space are limited, however, by the lack of a comprehensive catalog of BGCs encoding experimentally-validated products. In this study, we generated a comprehensive reference set of fungal NPs whose biosynthetic gene clusters are described in the published literature. To generate this dataset, we first identified NCBI records that included both a peer-reviewed article and an associated nucleotide record. We filtered these records by text and homology criteria to identify putative NP-related articles and BGCs. Next, we manually curated the resulting articles, chemical structures, and protein sequences. The resulting catalog contains 197 unique NP compounds covering several major classes of fungal NPs, including polyketides, non-ribosomal peptides, terpenoids, and alkaloids. The distribution of articles published per compound shows a bias toward the study of certain popular compounds, such as the aflatoxins. Phylogenetic analysis of biosynthetic genes suggests that much chemical and enzymatic diversity remains to be discovered in fungi. Our catalog was incorporated into the recently launched Minimum Information about Biosynthetic Gene cluster (MIBiG) repository to create the largest known set of fungal BGCs and associated NPs, a resource that we anticipate will guide future genome mining and

  19. Molecular Cloning and Characterization of a Vacuolar Class III Peroxidase Involved in the Metabolism of Anticancer Alkaloids in Catharanthus roseus1[C

    PubMed Central

    Costa, Maria Manuela R.; Hilliou, Frederique; Duarte, Patrícia; Pereira, Luís Gustavo; Almeida, Iolanda; Leech, Mark; Memelink, Johan; Barceló, Alfonso Ros; Sottomayor, Mariana

    2008-01-01

    Catharanthus roseus produces low levels of two dimeric terpenoid indole alkaloids, vinblastine and vincristine, which are widely used in cancer chemotherapy. The dimerization reaction leading to α-3′,4′-anhydrovinblastine is a key regulatory step for the production of the anticancer alkaloids in planta and has potential application in the industrial production of two semisynthetic derivatives also used as anticancer drugs. In this work, we report the cloning, characterization, and subcellular localization of an enzyme with anhydrovinblastine synthase activity identified as the major class III peroxidase present in C. roseus leaves and named CrPrx1. The deduced amino acid sequence corresponds to a polypeptide of 363 amino acids including an N-terminal signal peptide showing the secretory nature of CrPrx1. CrPrx1 has a two-intron structure and is present as a single gene copy. Phylogenetic analysis indicates that CrPrx1 belongs to an evolutionary branch of vacuolar class III peroxidases whose members seem to have been recruited for different functions during evolution. Expression of a green fluorescent protein-CrPrx1 fusion confirmed the vacuolar localization of this peroxidase, the exact subcellular localization of the alkaloid monomeric precursors and dimeric products. Expression data further supports the role of CrPrx1 in α-3′,4′-anhydrovinblastine biosynthesis, indicating the potential of CrPrx1 as a target to increase alkaloid levels in the plant. PMID:18065566

  20. Multicomponent Therapeutics of Berberine Alkaloids

    PubMed Central

    Luo, Jiaoyang; Yan, Dan; Yang, Meihua; Dong, Xiaoping; Xiao, Xiaohe

    2013-01-01

    Although berberine alkaloids (BAs) are reported to be with broad-spectrum antibacterial and antiviral activities, the interactions among BAs have not been elucidated. In the present study, methicillin-resistant Staphylococcus aureus (MRSA) was chosen as a model organism, and modified broth microdilution was applied for the determination of the fluorescence absorption values to calculate the anti-MRSA activity of BAs. We have initiated four steps to seek the optimal combination of BAs that are (1) determining the anti-MRSA activity of single BA, (2) investigating the two-component combination to clarify the interactions among BAs by checkerboard assay, (3) investigating the multicomponent combination to determine the optimal ratio by quadratic rotation-orthogonal combination design, and (4) in vivo and in vitro validation of the optimal combination. The results showed that the interactions among BAs are related to their concentrations. The synergetic combinations included “berberine and epiberberine,” “jatrorrhizine and palmatine” and “jatrorrhizine and coptisine”; the antagonistic combinations included “coptisine and epiberberine”. The optimal combination was berberine : coptisine : jatrorrhizine : palmatine : epiberberine = 0.702 : 0.863 : 1 : 0.491 : 0.526, and the potency of the optimal combination on cyclophosphamide-immunocompromised mouse model was better than the natural combinations of herbs containing BAs. PMID:23634170

  1. Native and engineered promoters in natural product discovery.

    PubMed

    Myronovskyi, Maksym; Luzhetskyy, Andriy

    2016-08-27

    Covers the period up to 2016Bacterial-based natural products have long represented a promising resource for the development of commercially relevant therapeutics, and more than two thirds of these products have been developed from members of the genus Streptomyces. The extensive sequencing of bacterial genomes suggests that the majority of gene clusters encoding natural products are silent and not expressed under standard laboratory conditions. However, these clusters can be activated through systematic exchanges between native transcriptionally silent promoters and transcriptionally active promoters. Therefore, the availability of well-studied constitutive and inducible promoters is of the utmost importance for identifying natural products encoded by silent gene clusters. This manuscript provides an overview of the promoter control elements for streptomycetes and examples of their successful application in refactoring the biosynthetic pathways of natural products. PMID:27438486

  2. Gastroprotective activity of alkaloid extract and 2-phenylquinoline obtained from the bark of Galipea longiflora Krause (Rutaceae).

    PubMed

    Zanatta, Francielle; Gandolfi, Renan Becker; Lemos, Marivane; Ticona, Juan Carlos; Gimenez, Alberto; Clasen, Bruna Kurz; Cechinel Filho, Valdir; de Andrade, Sérgio Faloni

    2009-07-15

    As part of our continuing search for bioactive natural products from plants, the present study was carried out in order to evaluate the gastroprotective properties of alkaloid extract and 2-phenylquinoline obtained from the bark of Galipea longiflora (Rutaceae). Anti-ulcer assays were performed using the following protocols in mice: nonsteroidal anti-inflammatory drug (NSAID)/bethanecol-induced ulcer, ethanol/HCl-induced ulcer, and stress-induced ulcer. The effects of the extract on gastric content volume, pH and total acidity were also evaluated, using the pylorus ligated model. Treatment using doses of 50, 125 and 250 mg/kg of G. longiflora alkaloid extract and positive controls (omeprazol or cimetidine) significantly diminished the lesion index, total lesion area, and percentage of lesion, in comparison with the negative control groups in all the models evaluated. Regarding the model of gastric secretion, a reduction in volume of gastric juice and total acidity was observed, as well as an increase in gastric pH. The main alkaloid of the plant, 2-phenylquinoline, was also evaluated in the ethanol-induced ulcer model. The results showed that at a dose of 50 mg/kg, it significantly inhibited ulcerative lesions. However, this effect was less than that of the alkaloid extract. All these results taken together show that G. longiflora displays gastroprotective activity, as evidenced by its significant inhibition of the formation of ulcers induced by different models. There are indications that mechanisms involved in anti-ulcer activity are related to a decrease in gastric secretion and an increase in gastric mucus content. Also, there is evidence of involvement of NO in the gastroprotector mechanisms. These effects may be attributed, at least in part, to the presence of some alkaloids, particularly 2-phenylquinoline. PMID:19497430

  3. Accessing the Hidden Majority of Marine Natural Products Through Metagenomics

    PubMed Central

    Donia, Mohamed S.; Ruffner, Duane E.; Cao, Sheng

    2012-01-01

    Tiny marine animals represent an untapped reservoir for undiscovered, bioactive natural products. However, their small size and extreme chemical variability preclude traditional chemical approaches to discovering new bioactive compounds. Here, we use a metagenomic method to directly discover and rapidly access cyanobactin class natural products from these variable samples, providing proof-of-concept for genome based discovery and supply of marine natural products. We also address practical optimization of complex, multistep ribosomal peptide pathways in heterologous hosts, which is still very challenging. The resulting methods and concepts will be applicable to ribosomal peptide and other biosynthetic pathways. PMID:21542088

  4. [Simple and rapid screening for psychotropic natural products using Direct Analysis in Real Time (DART)-TOFMS].

    PubMed

    Kawamura, Maiko; Kikura-Hanajiri, Ruri; Goda, Yukihiro

    2009-06-01

    Direct Analysis in Real Time (DART) is a novel ionization technique that provides for the rapid ionization of small molecules under ambient conditions. To investigate the trend of non-controlled psychotropic plants of abuse in Japan, a rapid screening method, without sample preparation, was developed using DART-time of flight mass spectrometer (TOFMS) for plant products. The major psychotropic constituents of these products were determined using liquid chromatography-mass spectrometry (LC/MS). As a result of the DART-TOFMS analyses of 36 products, the protonated molecular ions [M+H](+), corresponding to 6 kinds of major hallucinogenic constituents (mescaline, salvinorin A, N,N-dimethyltryptamine, harmine, harmaline and lysergamide), were detected in 21 products. It was possible to estimate their accurate elemental compositions through exact mass measurements. These results were consistent with those of the LC/MS analyses and the contents of the 6 psychotropic constituents were in the range from 0.05 to 45 microg/mg. Typical controlled narcotic drugs, tetrahydrocannabinol, opioid alkaloids and psilocin were also directly detected in marijuana cigarette, opium gum and magic mushroom respectively. Although it is difficult to estimate the matrix effects caused by other plant ingredients, the DART-TOFMS could be useful as a simple and rapid screening method for the targeted psychotropic natural products, because it provides the molecular information of the target compounds without time-consuming extraction and pre-treatment steps. PMID:19483414

  5. Natural products-friends or foes?

    PubMed

    Margină, Denisa; Ilie, Mihaela; Grădinaru, Daniela; Androutsopoulos, Vasilis P; Kouretas, Demetrios; Tsatsakis, Aristidis M

    2015-08-01

    A trend in the general population has been observed in recent years regarding the orientation toward preventive measures in health; in this context the increased interest from the users and researchers concerning the active effect of food supplements on the health state and on longevity, is noticeable. All over the world, the consumption of natural foods and of vegetal supplements has increased spectacularly over the last 5-10 years. The decreased prevalence of cardio-vascular diseases associated with Mediterranean diet, as well as the French paradox convinced researchers to scientifically document the beneficial outcomes pointed out by traditional use of plants, and to try to develop supplements that would have the same positive effects as these noticed for diet components. The intense research dedicated to this topic revealed the fact that food supplements are linked to some problematic aspects, such as toxicological side effects when associated with classical synthetic drugs. The food supplement-drug interactions are submitted to complex issues regarding pharmacokinetic interactions leading to changes in absorption, distribution, metabolism and excretion processes with direct impact on effect and toxicological potential. The present review based on recent literature aims at discussing the food-drug interactions with direct impact on efficacy and toxicity of drugs. PMID:25980574

  6. Production of Substitute Natural Gas from Coal

    SciTech Connect

    Andrew Lucero

    2009-01-31

    The goal of this research program was to develop and demonstrate a novel gasification technology to produce substitute natural gas (SNG) from coal. The technology relies on a continuous sequential processing method that differs substantially from the historic methanation or hydro-gasification processing technologies. The thermo-chemistry relies on all the same reactions, but the processing sequences are different. The proposed concept is appropriate for western sub-bituminous coals, which tend to be composed of about half fixed carbon and about half volatile matter (dry ash-free basis). In the most general terms the process requires four steps (1) separating the fixed carbon from the volatile matter (pyrolysis); (2) converting the volatile fraction into syngas (reforming); (3) reacting the syngas with heated carbon to make methane-rich fuel gas (methanation and hydro-gasification); and (4) generating process heat by combusting residual char (combustion). A key feature of this technology is that no oxygen plant is needed for char combustion.

  7. Taxonomy, Physiology, and Natural Products of Actinobacteria.

    PubMed

    Barka, Essaid Ait; Vatsa, Parul; Sanchez, Lisa; Gaveau-Vaillant, Nathalie; Jacquard, Cedric; Klenk, Hans-Peter; Clément, Christophe; Ouhdouch, Yder; van Wezel, Gilles P

    2016-03-01

    Actinobacteria are Gram-positive bacteria with high G+C DNA content that constitute one of the largest bacterial phyla, and they are ubiquitously distributed in both aquatic and terrestrial ecosystems. Many Actinobacteria have a mycelial lifestyle and undergo complex morphological differentiation. They also have an extensive secondary metabolism and produce about two-thirds of all naturally derived antibiotics in current clinical use, as well as many anticancer, anthelmintic, and antifungal compounds. Consequently, these bacteria are of major importance for biotechnology, medicine, and agriculture. Actinobacteria play diverse roles in their associations with various higher organisms, since their members have adopted different lifestyles, and the phylum includes pathogens (notably, species of Corynebacterium, Mycobacterium, Nocardia, Propionibacterium, and Tropheryma), soil inhabitants (e.g., Micromonospora and Streptomyces species), plant commensals (e.g., Frankia spp.), and gastrointestinal commensals (Bifidobacterium spp.). Actinobacteria also play an important role as symbionts and as pathogens in plant-associated microbial communities. This review presents an update on the biology of this important bacterial phylum. PMID:26609051

  8. Natural and within-farmland biodiversity enhances crop productivity.

    PubMed

    Carvalheiro, Luísa Gigante; Veldtman, Ruan; Shenkute, Awraris Getachew; Tesfay, Gebreamlak Bezabih; Pirk, Christian Walter Werner; Donaldson, John Sydney; Nicolson, Susan Wendy

    2011-03-01

    Ongoing expansion of large-scale agriculture critically threatens natural habitats and the pollination services they offer. Creating patches with high plant diversity within farmland is commonly suggested as a measure to benefit pollinators. However, farmers rarely adopt such practice, instead removing naturally occurring plants (weeds). By combining pollinator exclusion experiments with analysis of honeybee behaviour and flower-visitation webs, we found that the presence of weeds allowed pollinators to persist within sunflower fields, maximizing the benefits of the remaining patches of natural habitat to productivity of this large-scale crop. Weed diversity increased flower visitor diversity, hence ameliorating the measured negative effects of isolation from natural habitat. Although honeybees were the most abundant visitors, diversity of flower visitors enhanced honeybee movement, being the main factor influencing productivity. Conservation of natural patches combined with promoting flowering plants within crops can maximize productivity and, therefore, reduce the need for cropland expansion, contributing towards sustainable agriculture. PMID:21244594

  9. Raman spectra of carotenoids in natural products.

    PubMed

    Withnall, Robert; Chowdhry, Babur Z; Silver, Jack; Edwards, Howell G M; de Oliveira, Luiz F C

    2003-08-01

    Resonance Raman spectra of naturally occurring carotenoids have been obtained from nautilus, periwinkle (Littorina littorea) and clam shells under 514.5 nm excitation and these spectra are compared with the resonance Raman spectra obtained in situ from tomatoes, carrots, red peppers and saffron. The tomatoes, carrots and red peppers gave rise to resonance Raman spectra exhibiting a nu1 band at ca. 1520 cm(-1), in keeping with its assignment to carotenoids with ca. nine conjugated carbon-carbon double bonds in their main chains, whereas the resonance Raman spectrum of saffron showed a nu1 band at 1537 cm(-1) which can be assigned to crocetin, having seven conjugated carbon-carbon double bonds. A correlation between nu1 wavenumber location and effective conjugated chain length has been used to interpret the data obtained from the shells, and the wavenumber position (1522 cm(-1)) of the nu1 band of the carotenoid in the orange clam shell suggests that it contains nine conjugated double bonds in the main chain. However, the black periwinkle and nautilus shells exhibit nu1 bands at 1504 and 1496 cm(-1), respectively. On the basis of the correlation between nu1 wavenumber location and effective conjugated chain length, this indicates that they contain carotenoids with longer conjugated chains, the former having ca. 11 double bonds and the latter ca. 13 or even more. Raman spectra of the nautilus, periwinkle and clam shells also exhibited a strong band at 1085 cm(-1) and a doublet with components at 701 and 705 cm(-1), which can be assigned to biogenic calcium carbonate in the aragonite crystallographic form. PMID:12909134

  10. Raman spectra of carotenoids in natural products

    NASA Astrophysics Data System (ADS)

    Withnall, Robert; Chowdhry, Babur Z.; Silver, Jack; Edwards, Howell G. M.; de Oliveira, Luiz F. C.

    2003-08-01

    Resonance Raman spectra of naturally occurring carotenoids have been obtained from nautilus, periwinkle ( Littorina littorea) and clam shells under 514.5 nm excitation and these spectra are compared with the resonance Raman spectra obtained in situ from tomatoes, carrots, red peppers and saffron. The tomatoes, carrots and red peppers gave rise to resonance Raman spectra exhibiting a ν1 band at ca. 1520 cm -1, in keeping with its assignment to carotenoids with ca. nine conjugated carboncarbon double bonds in their main chains, whereas the resonance Raman spectrum of saffron showed a ν1 band at 1537 cm -1 which can be assigned to crocetin, having seven conjugated carboncarbon double bonds. A correlation between ν1 wavenumber location and effective conjugated chain length has been used to interpret the data obtained from the shells, and the wavenumber position (1522 cm -1) of the ν1 band of the carotenoid in the orange clam shell suggests that it contains nine conjugated double bonds in the main chain. However, the black periwinkle and nautilus shells exhibit ν1 bands at 1504 and 1496 cm -1, respectively. On the basis of the correlation between ν1 wavenumber location and effective conjugated chain length, this indicates that they contain carotenoids with longer conjugated chains, the former having ca. 11 double bonds and the latter ca. 13 or even more. Raman spectra of the nautilus, periwinkle and clam shells also exhibited a strong band at 1085 cm -1 and a doublet with components at 701 and 705 cm -1, which can be assigned to biogenic calcium carbonate in the aragonite crystallographic form.

  11. Geographic distribution of three alkaloid chemotypes of Croton lechleri.

    PubMed

    Milanowski, Dennis J; Winter, Rudolph E K; Elvin-Lewis, Memory P F; Lewis, Walter H

    2002-06-01

    Three known alkaloids, isoboldine (2), norisoboldine (1), and magnoflorine (8), have been isolated for the first time from Croton lechleri, a source of the wound healing latex "sangre de grado". An HPLC system was developed, and a large number of latex and leaf samples of C. lechleri from 22 sites in northern Peru and Ecuador were analyzed to gain an understanding of the natural variation in alkaloid content for the species. Up to six alkaloids were found to occur in the leaves including, in addition to those listed above, thaliporphine (3), glaucine (4), and taspine (9), whereas the latex contained only 9. Taspine (9) is the component that has been previously found to be responsible for the wound healing activity of C. lechleri latex, and its mean concentration throughout the range examined was found to be 9% of the latex by dry weight. In addition, three chemotypes are defined based on the alkaloid content of the leaves, and the geographic distribution of these chemotypes is discussed along with a quantitative analysis of the alkaloid content as a function of chemotype. PMID:12088421

  12. Use of Brown Algae to Demonstrate Natural Products Techniques.

    ERIC Educational Resources Information Center

    Porter, Lee A.

    1985-01-01

    Background information is provided on the natural products found in marine organisms in general and the brown algae in particular. Also provided are the procedures needed to isolate D-mannitol (a primary metabolite) and cholesterol from brown algae. (JN)

  13. Brevetoxin Degradation and By-Product Formation via Natural Sunlight

    PubMed Central

    Hardman, Ron C.; Cooper, William J.; Bourdelais, Andrea J.; Gardinali, Piero; Baden, Daniel G.

    2010-01-01

    We investigated the effects of solar radiation on brevetoxin (PbTx2). Our findings suggest that natural sunlight mediates brevetoxin (PbTx2) degradation and results in brevetoxin by-product formation via photochemical processes. PMID:26436141

  14. Protein Engineering Towards Natural Product Synthesis and Diversification

    PubMed Central

    Zabala, Angelica O.; Cacho, Ralph A.; Tang, Yi

    2014-01-01

    A dazzling array of enzymes is used by nature in making structurally complex natural products. These enzymes constitute a molecular toolbox that may be used in the construction and fine-tuning of pharmaceutically active molecules. Aided by technological advancements in protein engineering, it is now possible to tailor the activities and specificities of these enzymes as biocatalysts in the production of both natural products and their unnatural derivatives. These efforts are crucial in drug discovery and development, where there is a continuous quest for more potent agents. Both rational and random evolution techniques have been utilized in engineering these enzymes. This review will highlight some examples from several large families of natural products. PMID:22006344

  15. Mining the Metabiome: Identifying Novel Natural Products from Microbial Communities

    PubMed Central

    Milshteyn, Aleksandr; Schneider, Jessica S.; Brady, Sean F.

    2014-01-01

    Summary Microbial-derived natural products provide the foundation for most of the chemotherapeutic arsenal available to contemporary medicine. In the face of a dwindling pipeline of new lead structures identified by traditional culturing techniques and an increasing need for new therapeutics, surveys of microbial biosynthetic diversity across environmental metabiomes have revealed enormous reservoirs of as yet untapped natural products chemistry. In this review we touch on the historical context of microbial natural product discovery and discuss innovations and technological advances that are facilitating culture-dependent and culture-independent access to new chemistry from environmental microbiomes with the goal of re-invigorating the small molecule therapeutics discovery pipeline. We highlight the successful strategies that have emerged and some of the challenges that must be overcome to enable the development of high-throughput methods for natural product discovery from complex microbial communities. PMID:25237864

  16. Diterpene alkaloids and diterpenes from Spiraea japonica and their anti-tobacco mosaic virus activity.

    PubMed

    Ma, Yuan; Mao, Xin-Ying; Huang, Lie-Jun; Fan, Yi-Min; Gu, Wei; Yan, Chen; Huang, Tao; Zhang, Jian-Xin; Yuan, Chun-Mao; Hao, Xiao-Jiang

    2016-03-01

    Five new naturally occurring natural products, including two atisine-type diterpene alkaloids (1 and 2), two atisane-type diterpenes (3 and 4), and a new natural product spiramine C2 (5), along with nine known ones (6-14), were isolated from the ethanolic extracts of the whole plant of Spiraea japonica var. acuminata Franch. Their structures were elucidated by extensive spectroscopic analysis. The anti-tobacco mosaic virus (TMV) activities of all the compounds were evaluated by the conventional half-leaf method. Six compounds (2, 3, 6, 7, 11, and 12) exhibited moderate activities at 100 μg/mL with inhibition rates in the range of 69.4-92.9%, which were higher than that of the positive control, ningnanmycin. Their preliminary structure-activity relationships were also discussed. PMID:26625838

  17. A Series of β-Carboline Alkaloids from the Seeds of Peganum harmala Show G-Quadruplex Interactions.

    PubMed

    Wang, Kai-Bo; Li, Da-Hong; Hu, Ping; Wang, Wen-Jing; Lin, Clement; Wang, Jian; Lin, Bin; Bai, Jiao; Pei, Yue-Hu; Jing, Yong-Kui; Li, Zhan-Lin; Yang, Danzhou; Hua, Hui-Ming

    2016-07-15

    In this study, we screened 17 medicinal plants for binding activity to G-quadruplex d(TTGGGTT)4 by (1)H NMR spectroscopy and found that the crude extract of Peganum harmala L. seeds showed the most potential binding activity. Subsequently, (1)H NMR- and bioassay-guided isolation of the extract of P. harmala L. was performed to obtain four pairs of partially racemized β-carboline alkaloids, pegaharmines A-D (1-4). Their structures and absolute configurations were determined by extensive NMR analyses, X-ray crystallography, ECD calculations, and CD exciton chirality approaches. Interestingly, pegaharmine D (4), which showed the strongest G-quadruplex interaction, exhibited significant cytotoxic activity against three cancer cell lines. This work contributed a practical strategy for the discovery of novel G-quadruplex ligands from natural products and provided potential insights for using β-carboline alkaloids as anticancer lead compounds specifically targeting G-quadruplexes. PMID:27340903

  18. Isocoumarins, miraculous natural products blessed with diverse pharmacological activities.

    PubMed

    Saeed, Aamer

    2016-06-30

    Isocoumarins are lactonic natural products abundant in microbes and higher plants. These are considered an amazing scaffold consecrated with more or less all types of pharmacological applications. This review is complementary to the earlier reviews and aims to focus the overlooked aspects of their fascinating chemistry with special emphasis on their classification and diverse biological activities with some SAR conclusions. The most recent available literature on the structural diversity and biological activity of these natural products has been reviewed. PMID:27155563

  19. Anti-Enterovirus 71 Agents of Natural Products.

    PubMed

    Wang, Liyan; Wang, Junfeng; Wang, Lishu; Ma, Shurong; Liu, Yonghong

    2015-01-01

    This review, with 42 references, presents the fascinating area of anti-enterovirus 71 natural products over the last three decades for the first time. It covers literature published from 2005-2015 and refers to compounds isolated from biogenic sources. In total, 58 naturally-occurring anti-EV71 compounds are recorded. PMID:26370955

  20. Bioactive activities of natural products against herpesvirus infection.

    PubMed

    Son, Myoungki; Lee, Minjung; Sung, Gi-Ho; Lee, Taeho; Shin, Yu Su; Cho, Hyosun; Lieberman, Paul M; Kang, Hyojeung

    2013-10-01

    More than 90% of adults have been infected with at least one human herpesvirus, which establish long-term latent infection for the life of the host. While anti-viral drugs exist that limit herpesvirus replication, many of these are ineffective against latent infection. Moreover, drug-resistant strains of herpesvirus emerge following chemotherapeutic treatment. For example, resistance to acyclovir and related nucleoside analogues can occur when mutations arise in either HSV thymidine kinase or DNA polymerases. Thus, there exists an unmet medical need to develop new anti-herpesvirus agents with different mechanisms of action. In this Review, we discuss the promise of anti-herpetic substances derived from natural products including extracts and pure compounds from potential herbal medicines. One example is Glycyrrhizic acid isolated from licorice that shows promising antiviral activity towards human gammaherpesviruses. Secondly, we discuss anti-herpetic mechanisms utilized by several natural products in molecular level. While nucleoside analogues inhibit replicating herpesviruses in lytic replication, some natural products can disrupt the herpesvirus latent infection in the host cell. In addition, natural products can stimulate immune responses against herpesviral infection. These findings suggest that natural products could be one of the best choices for development of new treatments for latent herpesvirus infection, and may provide synergistic anti-viral activity when supplemented with nucleoside analogues. Therefore, it is important to identify which natural products are more efficacious anti-herpetic agents, and to understand the molecular mechanism in detail for further advance in the anti-viral therapies. PMID:24173639

  1. Genotoxicity of pyrrolizidine alkaloids.

    PubMed

    Chen, Tao; Mei, Nan; Fu, Peter P

    2010-04-01

    Pyrrolizidine alkaloids (PAs) are common constituents of many plant species around the world. PA-containing plants are probably the most common poisonous plants affecting livestock and wildlife. They can inflict harm to humans through contaminated food sources, herbal medicines and dietary supplements. Half of the identified PAs are genotoxic and many of them are tumorigenic. The mutagenicity of PAs has been extensively studied in different biological systems. Upon metabolic activation, PAs produce DNA adducts, DNA cross-linking, DNA breaks, sister chromatid exchange, micronuclei, chromosomal aberrations, gene mutations and chromosome mutations in vivo and in vitro. PAs induced mutations in the cII gene of rat liver and in the p53 and K-ras genes of mouse liver tumors. It has been suggested that all PAs produce a set of (+/-)-6,7-dihydro-7-hydroxy-1-hydroxymethyl-5H-pyrrolizine-derived DNA adducts and similar types of gene mutations. The signature types of mutations are G : C --> T : A transversion and tandem base substitutions. Overall, PAs are mutagenic in vivo and in vitro and their mutagenicity appears to be responsible for the carcinogenesis of PAs. PMID:20112250

  2. Natural Product Biosynthesis in Escherichia coli: Mentha Monoterpenoids.

    PubMed

    Toogood, H S; Tait, S; Jervis, A; Ní Cheallaigh, A; Humphreys, L; Takano, E; Gardiner, J M; Scrutton, N S

    2016-01-01

    The era of synthetic biology heralds in a new, more "green" approach to fine chemical and pharmaceutical drug production. It takes the knowledge of natural metabolic pathways and builds new routes to chemicals, enables nonnatural chemical production, and/or allows the rapid production of chemicals in alternative, highly performing organisms. This route is particularly useful in the production of monoterpenoids in microorganisms, which are naturally sourced from plant essential oils. Successful pathways are constructed by taking into consideration factors such as gene selection, regulatory elements, host selection and optimization, and metabolic considerations of the host organism. Seamless pathway construction techniques enable a "plug-and-play" switching of genes and regulatory parts to optimize the metabolic functioning in vivo. Ultimately, synthetic biology approaches to microbial monoterpenoid production may revolutionize "natural" compound formation. PMID:27417932

  3. Biotechnological production of natural zero-calorie sweeteners.

    PubMed

    Philippe, Ryan N; De Mey, Marjan; Anderson, Jeff; Ajikumar, Parayil Kumaran

    2014-04-01

    The increasing public awareness of adverse health impacts from excessive sugar consumption has created increasing interest in plant-derived, natural low-calorie or zero-calorie sweeteners. Two plant species which contain natural sweeteners, Stevia rebaudiana and Siraitia grosvenorii, have been extensively profiled to identify molecules with high intensity sweetening properties. However, sweetening ability does not necessarily make a product viable for commercial applications. Some criteria for product success are proposed to identify which targets are likely to be accepted by consumers. Limitations of plant-based production are discussed, and a case is put forward for the necessity of biotechnological production methods such as plant cell culture or microbial fermentation to meet needs for commercial-scale production of natural sweeteners. PMID:24503452

  4. Selective molecular sequestration with concurrent natural product functionalization and derivatization: from crude natural product extracts to a single natural product derivative in one step.

    PubMed

    Krchňák, Viktor; Zajíček, Jaroslav; Miller, Patricia A; Miller, Marvin J

    2011-12-16

    A resin-bound nitroso compound sequestered a single unexpected component from crude plant seed extracts. Several plants, including Piper nigrum, Eugenia caryophyllata, and Pimenta dioica, were extracted with organic solvent in the presence of a nitroso-containing resin. The nitroso resin selectively sequestered a single compound, β-caryophyllene, via a chemo- and regioselective ene reaction. The ene product was released from the resin, and proper selection of the solid-phase linker and cleavage cocktail allowed concomitant further transformation of the primary ene product to a novel functionalized polycycle. Preliminary studies indicate that the new hydroxylamine-containing natural product derivatives have antibiotic activity. PMID:22059469

  5. Selective Molecular Sequestration with Concurrent Natural Product Functionalization and Derivatization: From Crude Natural Product Extracts to a Single Natural Product Derivative in One Step

    PubMed Central

    Krchňák, Viktor; Zajíček, Jaroslav; Miller, Patricia A.; Miller, Marvin J.

    2011-01-01

    A resin-bound nitroso compound sequestered a single unexpected component from crude plant seed extracts. Several plants, including Piper nigrum, Eugenia caryophyllata, and Pimenta dioica, were extracted with organic solvent in the presence of a nitroso-containing resin. The nitroso resin selectively sequestered a single compound, β-caryophyllene, via a chemo and regioselective ene reaction. The ene product was released from the resin and proper selection of the solid-phase linker and cleavage cocktail allowed concomitant further transformation of the primary ene product to a novel functionalized polycycle. Preliminary studies indicate that the new hydroxylamine-containing natural product derivatives have antibiotic activity. PMID:22059469

  6. A strategy for complex dimer formation when biomimicry fails: total synthesis of ten coccinellid alkaloids.

    PubMed

    Sherwood, Trevor C; Trotta, Adam H; Snyder, Scott A

    2014-07-01

    Although dimeric natural products can often be synthesized in the laboratory by directly merging advanced monomers, these approaches sometimes fail, leading instead to non-natural architectures via incorrect unions. Such a situation arose during our studies of the coccinellid alkaloids, when attempts to directly dimerize Nature's presumed monomeric precursors in a putative biomimetic sequence afforded only a non-natural analogue through improper regiocontrol. Herein, we outline a unique strategy for dimer formation that obviates these difficulties, one which rapidly constructs the coccinellid dimers psylloborine A and isopsylloborine A through a terminating sequence of two reaction cascades that generate five bonds, five rings, and four stereocenters. In addition, a common synthetic intermediate is identified which allows for the rapid, asymmetric formal or complete total syntheses of eight monomeric members of the class. PMID:24959981

  7. Indole alkaloids of Rauwolfia reflexa. Carbon-13 nuclear magnetic resonance structural analysis of the bis(indole) alkaloid flexicorine

    SciTech Connect

    Chatterjee, A.; Ghosh, A.K.; Hagaman, E.W.

    1982-01-01

    The /sup 13/C NMR spectra analysis of the new bis(indole) alkaloid flexicorine and of its chemically modified derivatives were used to determine the structure of the natural base. Flexicorine is, apparently, the first 10'-hydroxy N'-unsubstituted indoline which preferentially exists in the original iminoquinone form. 2 tables.

  8. Natural fiber production, harvesting, and preliminary processing: options and opportunities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The utilization of natural fibers and plant oils in bio-products introduces numerous logistical challenges not typically encountered with non-agricultural resources. Once it has been determined that a plant material is suitable for commercial development, the production, harvesting, and processing s...

  9. Natural product-based nanomedicine: recent advances and issues.

    PubMed

    Watkins, Rebekah; Wu, Ling; Zhang, Chenming; Davis, Richey M; Xu, Bin

    2015-01-01

    Natural products have been used in medicine for many years. Many top-selling pharmaceuticals are natural compounds or their derivatives. These plant- or microorganism-derived compounds have shown potential as therapeutic agents against cancer, microbial infection, inflammation, and other disease conditions. However, their success in clinical trials has been less impressive, partly due to the compounds' low bioavailability. The incorporation of nanoparticles into a delivery system for natural products would be a major advance in the efforts to increase their therapeutic effects. Recently, advances have been made showing that nanoparticles can significantly increase the bioavailability of natural products both in vitro and in vivo. Nanotechnology has demonstrated its capability to manipulate particles in order to target specific areas of the body and control the release of drugs. Although there are many benefits to applying nanotechnology for better delivery of natural products, it is not without issues. Drug targeting remains a challenge and potential nanoparticle toxicity needs to be further investigated, especially if these systems are to be used to treat chronic human diseases. This review aims to summarize recent progress in several key areas relevant to natural products in nanoparticle delivery systems for biomedical applications. PMID:26451111

  10. Natural product-based nanomedicine: recent advances and issues

    PubMed Central

    Watkins, Rebekah; Wu, Ling; Zhang, Chenming; Davis, Richey M; Xu, Bin

    2015-01-01

    Natural products have been used in medicine for many years. Many top-selling pharmaceuticals are natural compounds or their derivatives. These plant- or microorganism-derived compounds have shown potential as therapeutic agents against cancer, microbial infection, inflammation, and other disease conditions. However, their success in clinical trials has been less impressive, partly due to the compounds’ low bioavailability. The incorporation of nanoparticles into a delivery system for natural products would be a major advance in the efforts to increase their therapeutic effects. Recently, advances have been made showing that nanoparticles can significantly increase the bioavailability of natural products both in vitro and in vivo. Nanotechnology has demonstrated its capability to manipulate particles in order to target specific areas of the body and control the release of drugs. Although there are many benefits to applying nanotechnology for better delivery of natural products, it is not without issues. Drug targeting remains a challenge and potential nanoparticle toxicity needs to be further investigated, especially if these systems are to be used to treat chronic human diseases. This review aims to summarize recent progress in several key areas relevant to natural products in nanoparticle delivery systems for biomedical applications. PMID:26451111

  11. Environmental policy and regulatory constraints to natural gas production.

    SciTech Connect

    Elcock, D.

    2004-12-17

    For the foreseeable future, most of the demand for natural gas in the United States will be met with domestic resources. Impediments, or constraints, to developing, producing, and delivering these resources can lead to price increases or supply disruptions. Previous analyses have identified lack of access to natural gas resources on federal lands as such an impediment. However, various other environmental constraints, including laws, regulations, and implementation procedures, can limit natural gas development and production on both federal and private lands. This report identifies and describes more than 30 environmental policy and regulatory impediments to domestic natural gas production. For each constraint, the source and type of impact are presented, and when the data exist, the amount of gas affected is also presented. This information can help decision makers develop and support policies that eliminate or reduce the impacts of such constraints, help set priorities for regulatory reviews, and target research and development efforts to help the nation meet its natural gas demands.

  12. Biosynthesis of Phosphonic and Phosphinic Acid Natural Products

    PubMed Central

    Metcalf, William W.; van der Donk, Wilfred A.

    2009-01-01

    Natural products containing carbon-phosphorus bonds (phosphonic and phosphinic acids) have found widespread use in medicine and agriculture. Recent years have seen a renewed interest in the biochemistry and biology of these compounds with the cloning of the biosynthetic gene clusters for several family members. This review discusses the commonalities and differences in the molecular logic that lies behind the biosynthesis of these compounds. The current knowledge regarding the metabolic pathways and enzymes involved in the production of a number of natural products, including the approved antibiotic fosfomycin, the widely used herbicide phosphinothricin, and the clinical candidate for treatment of malaria FR900098, is presented. Many of the enzymes involved in the biosynthesis of these compounds catalyze chemically and biologically unprecedented transformations and a wealth of new biochemistry has been revealed through their study. These studies have also suggested new strategies for natural product discovery. PMID:19489722

  13. Effects of root isoquinoline alkaloids from Hydrastis canadensis on Fusarium oxysporum isolated from Hydrastis root tissue.

    PubMed

    Tims, Michael c; Batista, Charisma

    2007-07-01

    Goldenseal (Hydrastis canadensis L.) is a popular medicinal plant distributed widely in North America. The rhizome, rootlets, and root hairs produce medicinally active alkaloids. Berberine, one of the Hydrastis alkaloids, has shown antifungal activity. The influence of a combination of the major Hydrastis alkaloids on the plant rhizosphere fungal ecology has not been investigated. A bioassay was developed to study the effect of goldenseal isoquinoline alkaloids on three Fusarium isolates, including the two species isolated from Hydrastis rhizosphere. The findings suggest that the Hydrastis root extract influences macroconidia germination, but that only the combined alkaloids--berberine, canadine, and hydrastine--appear to synergistically stimulate production of the mycotoxin zearalenone in the Fusarium oxysporum isolate. The Hydrastis root rhizosphere effect provided a selective advantage to the Fusarium isolates closely associated with the root tissue in comparison with the Fusarium isolate that had never been exposed to Hydrastis. PMID:17549565

  14. Antimicrobial activity of benzylisoquinoline alkaloids.

    PubMed

    Villar, A; Mares, M; Rios, J L; Canton, E; Gobernado, M

    1987-04-01

    The antimicrobial in vitro activity of 14 benzylisoquinoline alkaloids was investigated by agar diffusion and agar dilution methods against several genera of microorganisms that included Streptococcus, Staphylococcus, Bacillus, Lysteria, Escherichia, Salmonella, Klebsiella, Pseudomonas, Enterobacter, Serratia, Shigella, Mycobacterium and Candida. Anolobine was the most active compound against grampositive bacteria with MIC90 between 12 and 50 mg/l; less active were anonaine, lysicamine and liriodenine. All the alkaloids of the noraporphine and oxoaporphine groups, with the exception of isopiline, showed activity against Mycobacterium phlei (MIC 6-25 mg/l). Candida albicans ATCC26555 was inhibited by anonaine, nornantenine and xylopine (MIC 3-12 mg/l). None of the alkaloids tested had a significant activity against gramnegative rods. The action against susceptible microorganisms was bactericidal. PMID:3615557

  15. Does species diversity limit productivity in natural grassland communities?

    USGS Publications Warehouse

    Grace, J.B.; Anderson, T.M.; Smith, M.D.; Seabloom, E.; Andelman, S.J.; Meche, G.; Weiher, E.; Allain, L.K.; Jutila, H.; Sankaran, M.; Knops, J.; Ritchie, M.; Willig, M.R.

    2007-01-01

    Theoretical analyses and experimental studies of synthesized assemblages indicate that under particular circumstances species diversity can enhance community productivity through niche complementarity. It remains unclear whether this process has important effects in mature natural ecosystems where competitive feedbacks and complex environmental influences affect diversity-productivity relationships. In this study, we evaluated diversity-productivity relationships while statistically controlling for environmental influences in 12 natural grassland ecosystems. Because diversity-productivity relationships are conspicuously nonlinear, we developed a nonlinear structural equation modeling (SEM) methodology to separate the effects of diversity on productivity from the effects of productivity on diversity. Meta-analysis was used to summarize the SEM findings across studies. While competitive effects were readily detected, enhancement of production by diversity was not. These results suggest that the influence of small-scale diversity on productivity in mature natural systems is a weak force, both in absolute terms and relative to the effects of other controls on productivity. ?? 2007 Blackwell Publishing Ltd/CNRS.

  16. Rotational Investigation of Tropane Alkaloids

    NASA Astrophysics Data System (ADS)

    Cocinero, Emilio J.; Lesarri, Alberto; Ecija, Patricia; Grabow, Jens-Uwe; Fernández, Jose A.; Castano, Fernando

    2010-06-01

    We report an investigation of the rotational spectrum of several tropane alkaloids using the new Balle-Flygare-type FT-MW spectrometer built at the University of the Basque Country. The initial work focused on the azabicycles of tropinone, scopine and scopoline, vaporized using heating methods. For tropinone the spectrum confirmed the presence of equatorial and axial conformers originated by the inversion of the N-methyl group, with the tropane motif adopting a distorted chair configuration. The determination of substitution and effective structures for the two conformers included the 13C, 15N and 18O isotopomers observed in natural abundance. The structures revealed the flexibility and structural changes associated to the N-methyl inversion, mostly a flattening at the nitrogen atom and a simultaneous rising of the carbonyl group in the axial form. The investigation of scopine gave an intense spectrum, but it was inconsistent with the structural models expected for this molecule. The carrier of the new spectrum was later identified as scopoline, generated in situ by an intramolecular reaction at the moderate temperatures of the nozzle. A single conformation was detected for scopoline, with an ether bridge seriously distorting the tropane motif. E. J. Cocinero, A. Lesarri, P. écija, J.-U. Grabow, J. A. Fernández, F. Castaño, in publication, 2010 E. J. Cocinero, A. Lesarri, P. Écija, J.-U. Grabow, J. A. Fernández, F. Castaño, Phys. Chem. Chem. Phys.,in press, 2010

  17. Ergot Alkaloids: Toxicokinetics and Vascular Effects in Grazing Animals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Endophyte- (Neotyphodium coenophialum) infected tall fescue (Lolium arundinaceum) occupies nearly 14 million ha within the USA. Although the endophyte-forage association is beneficial to the plant’s survival and production, it is detrimental to grazing livestock as a consequence of ergot alkaloid p...

  18. Natural products for treatment of bone erosive diseases: The effects and mechanisms on inhibiting osteoclastogenesis and bone resorption.

    PubMed

    An, Jing; Hao, Dingjun; Zhang, Qian; Chen, Bo; Zhang, Rui; Wang, Yi; Yang, Hao

    2016-07-01

    Excessive bone resorption plays a central role on the development of bone erosive diseases, including osteoporosis, rheumatoid arthritis, and periodontitis. Osteoclasts, bone-resorbing multinucleated cells, are differentiated from hemopoietic progenitors of the monocyte/macrophage lineage. Regulation of osteoclast differentiation is considered an effective therapeutic target to the treatment of pathological bone loss. Natural plant-derived products, with potential therapeutic and preventive activities against bone-lytic diseases, have received increasing attention in recent years because of their whole regulative effects and specific pharmacological activities, which are more suitable for long-term use than chemically synthesized medicines. In this review, we summarized the detailed research progress on the active compounds derived from medical plants with potential anti-resorptive effects and their molecular mechanisms on inhibiting osteoclast formation and function. The active ingredients derived from natural plants that are efficacious in suppressing osteoclastogenesis and bone resorption include flavonoids, terpenoids (sesquiterpenoids, diterpenoids, triterpenoids), glycosides, lignans, coumarins, alkaloids, polyphenols, limonoids, quinones and others (steroid, oxoxishhone, fatty acid). Studies have shown that above natural products exert the inhibitory effects via regulating many factors involved in the process of osteoclast differentiation and bone resorption, including the essential cytokines (RANKL, M-CSF), transcription factors (NFATc1, c-Fos), signaling pathways (NF-κB, MAPKs, Src/PI3K/Akt, the calcium ion signaling), osteoclast-specific genes (TRAP, CTSK, MMP-9, integrin β3, OSCAR, DC-STAMP, Atp6v0d2) and local factors (ROS, LPS, NO). The development of osteoclast-targeting natural products is of great value for the prevention or treatment of bone diseases and for bone regenerative medicine. PMID:27131574

  19. Computer-Aided Drug Design of Bioactive Natural Products.

    PubMed

    Prachayasittikul, Veda; Worachartcheewan, Apilak; Shoombuatong, Watshara; Songtawee, Napat; Simeon, Saw; Prachayasittikul, Virapong; Nantasenamat, Chanin

    2015-01-01

    Natural products have been an integral part of sustaining civilizations because of their medicinal properties. Past discoveries of bioactive natural products have relied on serendipity, and these compounds serve as inspiration for the generation of analogs with desired physicochemical properties. Bioactive natural products with therapeutic potential are abundantly available in nature and some of them are beyond exploration by conventional methods. The effectiveness of computational approaches as versatile tools for facilitating drug discovery and development has been recognized for decades, without exception, in the case of natural products. In the post-genomic era, scientists are bombarded with data produced by advanced technologies. Thus, rendering these data into knowledge that is interpretable and meaningful becomes an essential issue. In this regard, computational approaches utilize the existing data to generate knowledge that provides valuable understanding for addressing current problems and guiding the further research and development of new natural-derived drugs. Furthermore, several medicinal plants have been continuously used in many traditional medicine systems since antiquity throughout the world, and their mechanisms have not yet been elucidated. Therefore, the utilization of computational approaches and advanced synthetic techniques would yield great benefit to improving the world's health population and well-being. PMID:25961523

  20. Culture-independent discovery of natural products from soil metagenomes.

    PubMed

    Katz, Micah; Hover, Bradley M; Brady, Sean F

    2016-03-01

    Bacterial natural products have proven to be invaluable starting points in the development of many currently used therapeutic agents. Unfortunately, traditional culture-based methods for natural product discovery have been deemphasized by pharmaceutical companies due in large part to high rediscovery rates. Culture-independent, or "metagenomic," methods, which rely on the heterologous expression of DNA extracted directly from environmental samples (eDNA), have the potential to provide access to metabolites encoded by a large fraction of the earth's microbial biosynthetic diversity. As soil is both ubiquitous and rich in bacterial diversity, it is an appealing starting point for culture-independent natural product discovery efforts. This review provides an overview of the history of soil metagenome-driven natural product discovery studies and elaborates on the recent development of new tools for sequence-based, high-throughput profiling of environmental samples used in discovering novel natural product biosynthetic gene clusters. We conclude with several examples of these new tools being employed to facilitate the recovery of novel secondary metabolite encoding gene clusters from soil metagenomes and the subsequent heterologous expression of these clusters to produce bioactive small molecules. PMID:26586404

  1. The Traditional Medicine and Modern Medicine from Natural Products.

    PubMed

    Yuan, Haidan; Ma, Qianqian; Ye, Li; Piao, Guangchun

    2016-01-01

    Natural products and traditional medicines are of great importance. Such forms of medicine as traditional Chinese medicine, Ayurveda, Kampo, traditional Korean medicine, and Unani have been practiced in some areas of the world and have blossomed into orderly-regulated systems of medicine. This study aims to review the literature on the relationship among natural products, traditional medicines, and modern medicine, and to explore the possible concepts and methodologies from natural products and traditional medicines to further develop drug discovery. The unique characteristics of theory, application, current role or status, and modern research of eight kinds of traditional medicine systems are summarized in this study. Although only a tiny fraction of the existing plant species have been scientifically researched for bioactivities since 1805, when the first pharmacologically-active compound morphine was isolated from opium, natural products and traditional medicines have already made fruitful contributions for modern medicine. When used to develop new drugs, natural products and traditional medicines have their incomparable advantages, such as abundant clinical experiences, and their unique diversity of chemical structures and biological activities. PMID:27136524

  2. Potential antimalarials from African natural products: A reviw

    PubMed Central

    Lawal, Bashir; Shittu, Oluwatosin Kudirat; Kabiru, Adamu Yusuf; Jigam, Ali Audu; Umar, Maimuna Bello; Berinyuy, Eustace Bonghan; Alozieuwa, Blessing Uchenna

    2015-01-01

    Malaria remains an overwhelming infectious disease with significant health challenges in African and other endemic countries globally. Resistance to antimalarial drugs has become one of the most momentous challenges to human health, and thus has necessitated the hunt for new and effective drugs. Consequently, few decades have witnessed a surfeit of research geared to validate the effectiveness of commonly used traditionally medicines against malaria fever. The present review work focuses on documenting natural products from African whose activity has been reported in vivo or in vitro against malaria parasite. Literature was collected using electronic search of published articles (Google Scholar, PubMed, Medline, Sciencedirect, and Science domain) that report on antiplasmodial activity of natural products from differernts Africa region. A total of 652 plant taxa from 146 families, 134 isolated antimalarial compounds from 39 plants species, 2 herbal formulations and 4 insect/products were found to be reported in literature from 1996 to 2015. Plants species from family Asteraceae (11.04%), Fababceae (8.128%), Euphorbiaceae (5.52%), Rubiaceas (5.52%), and Apocyanaceae (5.214%), have received more scientific validation than others. African natural products possess remarkable healing properties as revealed in the various citations as promising antimalarial agents. Some of these natural products from Africa demonstrate high, promising or low activities against Plasmodium parasite. This study also shows that natural products from Africa have a huge amount of novel antimalarial compounds that could serve as a leads for the development of new and effective antiplasmodial drugs. However, in a view of bridging the gap in knowledge, clinical validation of these natural products are of paramount importance. PMID:26649238

  3. Engineered Biosynthesis of Medicinally Important Plant Natural Products in Microorganisms.

    PubMed

    Zhang, Shuwei; Wang, Siyuan; Zhan, Jixun

    2016-01-01

    Plants produce structurally and functionally diverse natural products. Some of these compounds possess promising health-benefiting properties, such as resveratrol (antioxidant) curcumin (anti-inflammatory, anti-allergic and anticancer), paclitaxel (anticancer) and artemisinin (antimalarial). These compounds are produced through particular biosynthetic pathways in the plants. While supply of these medicinally important molecules relies on extraction from the producing species, recent years have seen significant advances in metabolic engineering of microorganisms for the production of plant natural products. Escherichia coli and Saccharomyces cerevisiae are the two most widely used heterologous hosts for expression of enzymes and reconstitution of plant natural product biosynthetic pathways. Total biosynthesis of many plant polyketide natural products such as curcumin and piceatannol in microorganisms has been achieved. While the late biosynthetic steps of more complex molecules such as paclitaxel and artemisinin remain to be understood, reconstitution of their partial biosynthetic pathways and microbial production of key intermediates have been successful. This review covers recent advances in understanding and engineering the biosynthesis of plant polyketides and terpenoids in microbial hosts. PMID:26456465

  4. The alkaloid profiles of Lupinus sulphureus.

    PubMed

    Cook, Daniel; Lee, Stephen T; Gardner, Dale R; Pfister, James A; Welch, Kevin D; Green, Benedict T; Davis, T Zane; Panter, Kip E

    2009-02-25

    Lupines are common plants on the rangelands in the western United States. Lupines contain alkaloids that can be toxic and teratogenic causing congenital birth defects (crooked calf disease). One such lupine, Lupinus sulphureus, occurs in parts of Oregon, Washington, and British Columbia. Specimens of L. sulphureus from field collections and herbaria were evaluated taxonomically and by chemical means. A total of seven distinct alkaloid profiles and the individual alkaloids associated with each profile were identified. Each alkaloid profile was unique in its geographical distribution and its potential risk to livestock. In conclusion, taxonomic classification is not sufficient to determine risk, as chemical characterization of the alkaloids must also be performed. PMID:19182952

  5. Chemoenzymatic and Bioenzymatic Synthesis of Carbohydrate Containing Natural Products

    NASA Astrophysics Data System (ADS)

    Ostash, Bohdan; Yan, Xiaohui; Fedorenko, Victor; Bechthold, Andreas

    The domain of bioactive natural products contains many oligosaccharides and aglycones decorated with various sugars. Glycan moieties influence essential aspects of biology of small molecules, such as mode of action, target recognition, pharmacokinetics, stability, and others. Methods of generation of novel glycosylated natural products are therefore of great value, as they, for example, may help fight human diseases more efficiently or provide healthier diet. This review covers the existing literature published mainly over the last decade that deals with biology-based approaches to novel glycoforms. Both genetic manipulations of biosynthesis of glycoconjugates and chemoenzymatic synthesis of novel "sweet" molecules are reviewed here. Wherever available, relationships between carbohydrate portions of the natural products and their biological activities are highlighted.

  6. Recent advances in deep-sea natural products.

    PubMed

    Skropeta, Danielle; Wei, Liangqian

    2014-08-01

    Covering: 2009 to 2013. This review covers the 188 novel marine natural products described since 2008, from deep-water (50->5000 m) marine fauna including bryozoa, chordata, cnidaria, echinodermata, microorganisms, mollusca and porifera. The structures of the new compounds and details of the source organism, depth of collection and country of origin are presented, along with any relevant biological activities of the metabolites. Where reported, synthetic studies on the deep-sea natural products have also been included. Most strikingly, 75% of the compounds were reported to possess bioactivity, with almost half exhibiting low micromolar cytotoxicity towards a range of human cancer cell lines, along with a significant increase in the number of microbial deep-sea natural products reported. PMID:24871201

  7. Perylenequinone Natural Products: Enantioselective Synthesis of the Oxidized Pentacyclic Core‡

    PubMed Central

    Mulrooney, Carol A.; Morgan, Barbara J.; Li, Xiaolin; Kozlowski, Marisa C.

    2009-01-01

    An enantioselective approach to the perylenequinone core found in the mold perylenequinone natural products is outlined. Specifically, the first asymmetric syntheses of helical chiral perylenequinones absent any additional stereogenic centers are described. Key elements of the synthetic venture include a catalytic enantioselective biaryl coupling, a PIFA-induced naphthalene hydroxylation, and a palladium-mediated aromatic decarboxylation. Transfer of the binaphthalene axial stereochemistry to the perylenequinone helical stereochemistry proceeded with good fidelity. Furthermore, the resultant perylenequinones were shown to possess sufficient atropisomeric stability to be viable intermediates in the biogenesis of the perylenequinone natural products. This stability supports the use of the helical axis as a stereochemical relay in synthesis of the natural products containing additional stereochemical centers. PMID:19894746

  8. Dietary Natural Products for Prevention and Treatment of Liver Cancer

    PubMed Central

    Zhou, Yue; Li, Ya; Zhou, Tong; Zheng, Jie; Li, Sha; Li, Hua-Bin

    2016-01-01

    Liver cancer is the most common malignancy of the digestive system with high death rate. Accumulating evidences suggests that many dietary natural products are potential sources for prevention and treatment of liver cancer, such as grapes, black currant, plum, pomegranate, cruciferous vegetables, French beans, tomatoes, asparagus, garlic, turmeric, ginger, soy, rice bran, and some edible macro-fungi. These dietary natural products and their active components could affect the development and progression of liver cancer in various ways, such as inhibiting tumor cell growth and metastasis, protecting against liver carcinogens, immunomodulating and enhancing effects of chemotherapeutic drugs. This review summarizes the potential prevention and treatment activities of dietary natural products and their major bioactive constituents on liver cancer, and discusses possible mechanisms of action. PMID:26978396

  9. In Situ Natural Product Discovery via an Artificial Marine Sponge

    PubMed Central

    La Clair, James J.; Loveridge, Steven T.; Tenney, Karen; O'Neil–Johnson, Mark; Chapman, Eli; Crews, Phillip

    2014-01-01

    There is continuing international interest in exploring and developing the therapeutic potential of marine–derived small molecules. Balancing the strategies for ocean based sampling of source organisms versus the potential to endanger fragile ecosystems poses a substantial challenge. In order to mitigate such environmental impacts, we have developed a deployable artificial sponge. This report provides details on its design followed by evidence that it faithfully recapitulates traditional natural product collection protocols. Retrieving this artificial sponge from a tropical ecosystem after deployment for 320 hours afforded three actin–targeting jasplakinolide depsipeptides that had been discovered two decades earlier using traditional sponge specimen collection and isolation procedures. The successful outcome achieved here could reinvigorate marine natural products research, by producing new environmentally innocuous sources of natural products and providing a means to probe the true biosynthetic origins of complex marine–derived scaffolds. PMID:25004127

  10. Plant extracts as natural antioxidants in meat and meat products.

    PubMed

    Shah, Manzoor Ahmad; Bosco, Sowriappan John Don; Mir, Shabir Ahmad

    2014-09-01

    Antioxidants are used to minimize the oxidative changes in meat and meat products. Oxidative changes may have negative effects on the quality of meat and meat products, causing changes in their sensory and nutritional properties. Although synthetic antioxidants have already been used but in recent years, the demand for natural antioxidants has been increased mainly because of adverse effects of synthetic antioxidants. Thus most of the recent investigations have been directed towards the identification of natural antioxidants from various plant sources. Plant extracts have been prepared using different solvents and extraction methods. Grape seed, green tea, pine bark, rosemary, pomegranate, nettle and cinnamon have exhibited similar or better antioxidant properties compared to some synthetic ones. This review provides the recent information on plant extracts used as natural antioxidants in meat and meat products, specifically red meat. PMID:24824531

  11. Covalent interaction of ascorbic acid with natural products

    PubMed Central

    Kesinger, Nicholas G.; Stevens, Jan F.

    2009-01-01

    While ascorbic acid (Vitamin C) is mostly known as a cofactor for proline hydroxylase and as a biological antioxidant, it also forms covalent bonds with natural products which we here refer to as ‘ascorbylation’. A number of natural products containing an ascorbate moiety has been isolated and characterized from a variety of biological sources, ranging from marine algae to flowering plants. Most of these compounds are formed as a result of nucleophilic substitution or addition by ascorbate, e.g. the ascorbigens from Brassica species are ascorbylated indole derivatives. Some ascorbylated tannins appear to be formed from electrophilic addition to dehydroascorbic acid. There are also examples of annulations of ascorbate with dietary polyphenols, e.g., epigallocatechin gallate (EGCG) and resveratrol derivatives. Herein is a survey of thirty-three ascorbylated natural products and their reported biological activities. PMID:19875138

  12. In situ natural product discovery via an artificial marine sponge.

    PubMed

    La Clair, James J; Loveridge, Steven T; Tenney, Karen; O'Neil-Johnson, Mark; Chapman, Eli; Crews, Phillip

    2014-01-01

    There is continuing international interest in exploring and developing the therapeutic potential of marine-derived small molecules. Balancing the strategies for ocean based sampling of source organisms versus the potential to endanger fragile ecosystems poses a substantial challenge. In order to mitigate such environmental impacts, we have developed a deployable artificial sponge. This report provides details on its design followed by evidence that it faithfully recapitulates traditional natural product collection protocols. Retrieving this artificial sponge from a tropical ecosystem after deployment for 320 hours afforded three actin-targeting jasplakinolide depsipeptides that had been discovered two decades earlier using traditional sponge specimen collection and isolation procedures. The successful outcome achieved here could reinvigorate marine natural products research, by producing new environmentally innocuous sources of natural products and providing a means to probe the true biosynthetic origins of complex marine-derived scaffolds. PMID:25004127

  13. Genomic basis for natural product biosynthetic diversity in the actinomycetes†

    PubMed Central

    Nett, Markus; Ikeda, Haruo; Moore, Bradley S.

    2010-01-01

    The phylum Actinobacteria hosts diverse high G + C, Gram-positive bacteria that have evolved a complex chemical language of natural product chemistry to help navigate their fascinatingly varied lifestyles. To date, 71 Actinobacteria genomes have been completed and annotated, with the vast majority representing the Actinomycetales, which are the source of numerous antibiotics and other drugs from genera such as Streptomyces, Saccharopolyspora and Salinispora. These genomic analyses have illuminated the secondary metabolic proficiency of these microbes – underappreciated for years based on conventional isolation programs – and have helped set the foundation for a new natural product discovery paradigm based on genome mining. Trends in the secondary metabolomes of natural product-rich actinomycetes are highlighted in this review article, which contains 199 references. PMID:19844637

  14. Dietary Natural Products for Prevention and Treatment of Liver Cancer.

    PubMed

    Zhou, Yue; Li, Ya; Zhou, Tong; Zheng, Jie; Li, Sha; Li, Hua-Bin

    2016-03-01

    Liver cancer is the most common malignancy of the digestive system with high death rate. Accumulating evidences suggests that many dietary natural products are potential sources for prevention and treatment of liver cancer, such as grapes, black currant, plum, pomegranate, cruciferous vegetables, French beans, tomatoes, asparagus, garlic, turmeric, ginger, soy, rice bran, and some edible macro-fungi. These dietary natural products and their active components could affect the development and progression of liver cancer in various ways, such as inhibiting tumor cell growth and metastasis, protecting against liver carcinogens, immunomodulating and enhancing effects of chemotherapeutic drugs. This review summarizes the potential prevention and treatment activities of dietary natural products and their major bioactive constituents on liver cancer, and discusses possible mechanisms of action. PMID:26978396

  15. [Synthetic Studies of Bioactive Heterocyclic Natural Products and Fused Heterocyclic Compounds Based on the Thermal Electrocyclic or Azaelectocyclic Reaction of 6π-Electron or Aza-6π-electron Systems].

    PubMed

    Hibino, Satoshi

    2016-01-01

    Since 1979, synthetic studies of bioactive heterocyclic natural products and condensed heteroaromatic compounds based on the thermal electrocyclic reaction of 6π-electron or aza-6π-electron systems incorporating the double bond of the principal aromatic or heteroaromatic ring have been conducted by our research group. In this review, five types of electrocyclic and azaelectrocyclic reaction are described: 1) the synthesis of the carbazole alkaloids hyellazole and 6-chlorohyellazole through the electrocyclic reaction of 2,3-bisalkenylindoles; 2) synthetic studies of the pyridocarbazole alkaloids ellipticine and olivacine through the electrocyclic reactions of the indole-2,3- and pyridine-3,4-quinodimethane intermediates; 3) synthetic studies of polysubstituted carbazole alkaloids through the allene-mediated electrocyclic reactions involving the indole 2,3-bond; 4) synthetic studies of fused pyridine rings through the azaelectrocyclic reaction of the 1-aza-6π-electron system using the oxime or oxime ether; and 5) synthetic studies of fused pyridine rings through the azaelectrocyclic reaction of the 2-aza-6π-electron system using a carbodiimide or isocyanate. PMID:27040345

  16. A Strategy for Complex Dimer Formation When Biomimicry Fails: Total Synthesis of Ten Coccinellid Alkaloids

    PubMed Central

    2015-01-01

    Although dimeric natural products can often be synthesized in the laboratory by directly merging advanced monomers, these approaches sometimes fail, leading instead to non-natural architectures via incorrect unions. Such a situation arose during our studies of the coccinellid alkaloids, when attempts to directly dimerize Nature’s presumed monomeric precursors in a putative biomimetic sequence afforded only a non-natural analogue through improper regiocontrol. Herein, we outline a unique strategy for dimer formation that obviates these difficulties, one which rapidly constructs the coccinellid dimers psylloborine A and isopsylloborine A through a terminating sequence of two reaction cascades that generate five bonds, five rings, and four stereocenters. In addition, a common synthetic intermediate is identified which allows for the rapid, asymmetric formal or complete total syntheses of eight monomeric members of the class. PMID:24959981

  17. NATURAL PRODUCTS: A CONTINUING SOURCE OF NOVEL DRUG LEADS

    PubMed Central

    Cragg, Gordon M.; Newman, David J.

    2013-01-01

    1. Background Nature has been a source of medicinal products for millennia, with many useful drugs developed from plant sources. Following discovery of the penicillins, drug discovery from microbial sources occurred and diving techniques in the 1970s opened the seas. Combinatorial chemistry (late 1980s), shifted the focus of drug discovery efforts from Nature to the laboratory bench. 2. Scope of Review This review traces natural products drug discovery, outlining important drugs from natural sources that revolutionized treatment of serious diseases. It is clear Nature will continue to be a major source of new structural leads, and effective drug development depends on multidisciplinary collaborations. 3. Major Conclusions The explosion of genetic information led not only to novel screens, but the genetic techniques permitted the implementation of combinatorial biosynthetic technology and genome mining. The knowledge gained has allowed unknown molecules to be identified. These novel bioactive structures can be optimized by using combinatorial chemistry generating new drug candidates for many diseases. 4 General Significance: The advent of genetic techniques that permitted the isolation / expression of biosynthetic cassettes from microbes may well be the new frontier for natural products lead discovery. It is now apparent that biodiversity may be much greater in those organisms. The numbers of potential species involved in the microbial world are many orders of magnitude greater than those of plants and multi-celled animals. Coupling these numbers to the number of currently unexpressed biosynthetic clusters now identified (>10 per species) the potential of microbial diversity remains essentially untapped. PMID:23428572

  18. Structural and quantitative analysis of Equisetum alkaloids.

    PubMed

    Cramer, Luise; Ernst, Ludger; Lubienski, Marcus; Papke, Uli; Schiebel, Hans-Martin; Jerz, Gerold; Beuerle, Till

    2015-08-01

    Equisetum palustre L. is known for its toxicity for livestock. Several studies in the past addressed the isolation and identification of the responsible alkaloids. So far, palustrine (1) and N(5)-formylpalustrine (2) are known alkaloids of E. palustre. A HPLC-ESI-MS/MS method in combination with simple sample work-up was developed to identify and quantitate Equisetum alkaloids. Besides the two known alkaloids six related alkaloids were detected in different Equisetum samples. The structure of the alkaloid palustridiene (3) was derived by comprehensive 1D and 2D NMR experiments. N(5)-Acetylpalustrine (4) was also thoroughly characterized by NMR for the first time. The structure of N(5)-formylpalustridiene (5) is proposed based on mass spectrometry results. Twenty-two E. palustre samples were screened by a HPLC-ESI-MS/MS method after development of a simple sample work-up and in most cases the set of all eight alkaloids were detected in all parts of the plant. A high variability of the alkaloid content and distribution was found depending on plant organ, plant origin and season ranging from 88 to 597mg/kg dried weight. However, palustrine (1) and the alkaloid palustridiene (3) always represented the main alkaloids. For the first time, a comprehensive identification, quantitation and distribution of Equisetum alkaloids was achieved. PMID:25823584

  19. Exploiting the reversibility of natural product glycosyltransferase-catalyzed reactions.

    PubMed

    Zhang, Changsheng; Griffith, Byron R; Fu, Qiang; Albermann, Christoph; Fu, Xun; Lee, In-Kyoung; Li, Lingjun; Thorson, Jon S

    2006-09-01

    Glycosyltransferases (GTs), an essential class of ubiquitous enzymes, are generally perceived as unidirectional catalysts. In contrast, we report that four glycosyltransferases from two distinct natural product biosynthetic pathways-calicheamicin and vancomycin-readily catalyze reversible reactions, allowing sugars and aglycons to be exchanged with ease. As proof of the broader applicability of these new reactions, more than 70 differentially glycosylated calicheamicin and vancomycin variants are reported. This study suggests the reversibility of GT-catalyzed reactions may be general and useful for generating exotic nucleotide sugars, establishing in vitro GT activity in complex systems, and enhancing natural product diversity. PMID:16946071

  20. Microscale Methodology for Structure Elucidation of Natural Products

    PubMed Central

    Molinski, Tadeusz F.

    2010-01-01

    1. Summary of Recent Advances Advances in microscale spectroscopic techniques, particularly microcryoprobe NMR, allow discovery and structure elucidation of new molecules down to only a few nanomole. Newer methods for utilizing circular dichroism (CD) have pushed the limits of detection to picomole levels. NMR and CD methods are complementary to the task of elucidation of complete stereostructures of complex natural products. Together, integrated microprobe NMR spectroscopy, microscale degradation and synthesis, are synergistic tools for discovery of bioactive natural products and have opened new realm for discovery among extreme sources including compounds from uncultured microbes, rare invertebrates and environmental samples. PMID:20880694

  1. The Manzamines as an Example of the Unique Structural Classes Available for the Discovery and Optimization of Infectious Disease Controls Based on Marine Natural Products

    PubMed Central

    Hamann, Mark T.

    2016-01-01

    Natural products have served humankind as drug leads for thousands of years. In the last century natural products have not only served as drugs but have inspired the generation of countless synthetic drugs and drug-leads around natural product pharmacophores. There are no disease targets for which natural products have played a more significant role than in the case of malaria and other parasitic diseases. In this review the significance of the manzamine class of marine alkaloids is presented as an example of the future utility of the oceans in the development of antiparasitics. The manzamines represent one of the few new structural classes identified in recent decades with potential for the control of malaria and tuberculosis. While considerable work remains to successfully optimize this class of drug-leads the novel pharmacophore and significant metabolic stability combined with a rapid onset of action and long half-life all strongly support further investigations of this group of potential drug candidates. PMID:17346180

  2. Alkaloids from marine invertebrates as important leads for anticancer drugs discovery and development.

    PubMed

    Imperatore, Concetta; Aiello, Anna; D'Aniello, Filomena; Senese, Maria; Menna, Marialuisa

    2014-01-01

    The present review describes research on novel natural antitumor alkaloids isolated from marine invertebrates. The structure, origin, and confirmed cytotoxic activity of more than 130 novel alkaloids belonging to several structural families (indoles, pyrroles, pyrazines, quinolines, and pyridoacridines), together with some of their synthetic analogs, are illustrated. Recent discoveries concerning the current state of the potential and/or development of some of them as new drugs, as well as the current knowledge regarding their modes of action, are also summarized. A special emphasis is given to the role of marine invertebrate alkaloids as an important source of leads for anticancer drug discovery. PMID:25490431

  3. Two unprecedented dibromotyrosine-derived alkaloids from the Brazilian endemic marine sponge Aplysina caissara.

    PubMed

    Saeki, Beatriz M; Granato, Ana Claudia; Berlinck, Roberto G S; Magalhães, Alviclér; Schefer, Alexandre B; Ferreira, Antonio G; Pinheiro, Ulisses S; Hajdu, Eduardo

    2002-05-01

    Two new bromotyrosine-derived alkaloids, caissarine A (1) and caissarine B (2), along with three known biogenetically related alkaloids, aeroplysinin-1, fistularin-3, and the artifact of isolation 2-(3,5-dibromo-4-dimethoxy-1-hydroxy-2,5-cyclohexadien-1-yl)ethanamide, have been isolated from Aplysina caissara, an endemic species of marine sponge from the Southeastern Brazilian coast. The alkaloids have been identified by analysis of spectroscopic data. While caissarine A has a 2-hydroxyagmatine moiety in its structure, caissarin B is the first naturally occurring compound encompassing the unprecedented 1,7-diamino-3-hydroxyheptane moiety. PMID:12027773

  4. Quaternary alkaloids of tinospora species.

    PubMed

    Bisset, N G; Nwaiwu, J

    1983-08-01

    The occurrence of quaternary alkaloids in TINOSPORA (and PARABAENA) species (Menispermaceae) has been studied. The main components were generally the protoberberine bases berberine and palmatine, with jatrorrhizine an occasional minor constituent, and the aporphine base magnoflorine. Choline was also often present. Only magnoflorine was detected in the PARABAENA material examined. PMID:17404996

  5. Complexity Generation during Natural Product Biosynthesis using Redox Enzymes

    PubMed Central

    Wang, Peng; Gao, Xue; Tang, Yi

    2012-01-01

    Redox enzymes such as FAD-dependent and cytochrome P450 oxygenases play indispensible roles in generating structural complexity during natural product biosynthesis. In the pre-assembly steps, redox enzymes can convert garden variety primary metabolites into unique starter and extender building blocks. In the post-assembly tailoring steps, redox cascades can transform nascent scaffolds into structurally complex final products. In this review, we will discuss several recently characterized redox enzymes in the biosynthesis of polyketides and nonribosomal peptides. PMID:22564679

  6. Using singlet oxygen to synthesize polyoxygenated natural products from furans.

    PubMed

    Montagnon, Tamsyn; Tofi, Maria; Vassilikogiannakis, Georgios

    2008-08-01

    [Reaction: see text]. Singlet oxygen is a powerful tool in the armament of the synthetic organic chemist and possibly in that of nature itself. In this Account, we illustrate a small selection of the many ways singlet oxygen can be harnessed in the laboratory to aid in the construction of the complex molecular motifs found in natural products. A more philosophical question is also addressed: namely, how much do singlet oxygen oxidations influence the biogenesis of these natural products? All the synthetic examples surveyed in this Account can be characterized as belonging to the same class because they all involve the oxidation of a substituted furan nucleus by singlet oxygen. Readily accessible and relatively simple furans can be transformed into a host of complex motifs present in a diverse range of natural products by the action of singlet-oxygen-mediated reaction sequences. These reactions are highly advantageous because they frequently deliver a rapid and dramatic increase in molecular complexity in high yield. Furthermore, an unusually wide structural diversity is exhibited by the molecular motifs obtained from these reaction sequences. For example, relatively minor modifications to the starting substrate and to the reaction conditions may lead to products as variable as spiroketal lactones, 3-keto-tetrahydrofurans, various types of bis-spiroketals, 4-hydroxy cyclopentenones, or spiroperoxylactones. In addition, two more specialized examples are discussed in this Account. The core of the prunolide molecules and the chinensine family of natural products were rapidly synthesized using effective and short singlet oxygen mediated strategies; this adds weight to the assertion that singlet oxygen is a very effective moderator of complex cascade reaction sequences. We also show how our synthetic investigations have provided evidence that these same strategies might be used in the biogenesis of these molecules. In the cases of the chinensines and the

  7. Idaho Habitat and Natural Production Monitoring : Annual Report 1989.

    SciTech Connect

    Kiefer, Russell B.; Forster, Katharine A.

    1991-01-01

    Project 83-7 was established under the Northwest Power Planning Council's 1982 Fish and Wildlife Program to monitor natural production of anadromous fish, evaluate Bonneville Power Administration (BPA) habitat improvement projects, and develop a credit record for off-site mitigation projects in Idaho. Project 83-7 is divided into two subprojects: general and intensive monitoring. Primary objectives of the general monitoring subproject (Part 1) are to determine natural production increases due to habitat improvement projects in terms of parr production and to determine natural production status and trends in Idaho. The second objective is accomplished by combining parr density data from monitoring and evaluation of BPA habitat projects and from other Idaho Department of Fish and Game (IDFG) management and research activities. Primary objectives of the intensive monitoring subproject (Part 2) are to determine the number of returning chinook and steelhead adults necessary to achieve optimal smolt production and to develop mitigation accounting based on increases in smolt production. Two locations are being intensively studied to meet these objectives. Field work began in 1987 in the upper Salmon River and Crooked River (South Fork Clearwater River tributary). 22 refs., 10 figs., 17 tabs.

  8. Tyrosine Aminotransferase Contributes to Benzylisoquinoline Alkaloid Biosynthesis in Opium Poppy1[W

    PubMed Central

    Lee, Eun-Jeong; Facchini, Peter J.

    2011-01-01

    Tyrosine aminotransferase (TyrAT) catalyzes the transamination of l-Tyr and α-ketoglutarate, yielding 4-hydroxyphenylpyruvic acid and l-glutamate. The decarboxylation product of 4-hydroxyphenylpyruvic acid, 4-hydroxyphenylacetaldehyde, is a precursor to a large and diverse group of natural products known collectively as benzylisoquinoline alkaloids (BIAs). We have isolated and characterized a TyrAT cDNA from opium poppy (Papaver somniferum), which remains the only commercial source for several pharmaceutical BIAs, including codeine, morphine, and noscapine. TyrAT belongs to group I pyridoxal 5′-phosphate (PLP)-dependent enzymes wherein Schiff base formation occurs between PLP and a specific Lys residue. The amino acid sequence of TyrAT showed considerable homology to other putative plant TyrATs, although few of these have been functionally characterized. Purified, recombinant TyrAT displayed a molecular mass of approximately 46 kD and a substrate preference for l-Tyr and α-ketoglutarate, with apparent Km values of 1.82 and 0.35 mm, respectively. No specific requirement for PLP was detected in vitro. Liquid chromatography-tandem mass spectrometry confirmed the conversion of l-Tyr to 4-hydroxyphenylpyruvate. TyrAT gene transcripts were most abundant in roots and stems of mature opium poppy plants. Virus-induced gene silencing was used to evaluate the contribution of TyrAT to BIA metabolism in opium poppy. TyrAT transcript levels were reduced by at least 80% in silenced plants compared with controls and showed a moderate reduction in total alkaloid content. The modest correlation between transcript levels and BIA accumulation in opium poppy supports a role for TyrAT in the generation of alkaloid precursors, but it also suggests the occurrence of other sources for 4-hydroxyphenylacetaldehyde. PMID:21949209

  9. Production of hydrogen by thermocatalytic cracking of natural gas

    SciTech Connect

    Muradov, N.Z.

    1995-09-01

    It is universally accepted that in the next few decades hydrogen production will continue to rely on fossil fuels (primarily, natural gas). On the other hand, the conventional methods of hydrogen production from natural gas (for example, steam reforming) are complex multi-step processes. These processes also result in the emission of large quantities of CO{sub 2} into the atmosphere that produce adverse ecological effects. One alternative is the one-step thermocatalytic cracking (TCC) (or decomposition) of natural gas into hydrogen and carbon. Preliminary analysis indicates that the cost of hydrogen produced by thermal decomposition of natural gas is somewhat lower than the conventional processes after by-product carbon credit is taken. In the short term, this process can be used for on-site production of hydrogen-methane mixtures in gas-filling stations and for CO{sub x}-free production of hydrogen for fuel cell driven prime movers. The experimental data on the thermocatalytic cracking of methane over various catalysts and supports in a wide range of temperatures (500-900{degrees}C) are presented in this paper. Two types of reactors were designed and built at FSEC: continuous flow and pulse fix bed catalytic reactors. The temperature dependence of the hydrogen production yield using oxide type catalysts was studied. Alumina-supported Ni- and Fe-catalysts demonstrated relatively high efficiency in the methane cracking reaction at moderate temperatures (600-800{degrees}C). Kinetic curves of hydrogen production over metal and metal oxide catalysts at different temperatures are presented in the paper. Fe-catalyst demonstrated good stability (for several hours), whereas alumina-supported Pt-catalyst rapidly lost its catalytic activity.

  10. The Synthesis of Quinolone Natural Products from Pseudonocardia sp.

    PubMed Central

    Salvaggio, Flavia; Hodgkinson, James T.; Carro, Laura; Geddis, Stephen M.; Galloway, Warren R. J. D.; Welch, Martin

    2015-01-01

    Abstract The synthesis of four quinolone natural products from the actinomycete Pseudonocardia sp. is reported. The key step involved a sp2–sp3 Suzuki–Miyaura reaction between a common boronic ester lateral chain and various functionalised quinolone cores. The quinolones slowed growth of E. coli and S. aureus by inducing extended lag phases.

  11. The Utility of Metabolomics in Natural Product and Biomarker Characterization

    PubMed Central

    Cox, Daniel G.; Oh, Joonseok; Keasling, Adam; Colson, Kim

    2014-01-01

    Background Metabolomics is a well-established rapidly developing research field involving quantitative and qualitative metabolite assessment within biological systems. Recent improvements in metabolomics technologies reveal the unequivocal value of metabolomics tools in natural products discovery, gene-function analysis, systems biology and diagnostic platforms. Scope of review We review of some of the prominent metabolomics methodologies employed in data acquisition and analysis of natural products and disease-related biomarkers. Major conclusions This review demonstrates that metabolomics represents a highly adaptable technology with diverse applications ranging from environmental toxicology to disease diagnosis. Metabolomic analysis is shown to provide a unique snapshot of the functional genetic status of an organism by examining its biochemical profile, with relevance toward resolving phylogenetic associations involving horizontal gene transfer and distinguishing subgroups of genera possessing high genetic homology, as well as an increasing role in both elucidating biosynthetic transformations of natural products and detecting preclinical biomarkers of numerous disease states. General significance This review expands the interest in multiplatform combinatorial metabolomic analysis. The applications reviewed range from phylogenetic assignment, biosynthetic transformations of natural products, and the detection of preclinical biomarkers. PMID:25151044

  12. Anticancer agent-based marine natural products and related compounds.

    PubMed

    Chen, Jian-Wei; Wu, Qi-Hao; Rowley, David C; Al-Kareef, Ammar M Q; Wang, Hong

    2015-01-01

    Marine natural products constitute a huge reservoir of anticancer agents. Consequently during the past decades, several marine anticancer compounds have been isolated, identified, and approved for anticancer treatment or are under trials. In this article the sources, structure, bioactivities, mode of actions, and analogs of some promising marine and derived anticancer compounds have been discussed. PMID:25559315

  13. Natural Products for the Treatment of Type 2 Diabetes Mellitus.

    PubMed

    Ríos, José Luis; Francini, Flavio; Schinella, Guillermo R

    2015-08-01

    Type 2 diabetes mellitus is a metabolic disease characterized by persistent hyperglycemia. High blood sugar can produce long-term complications such as cardiovascular and renal disorders, retinopathy, and poor blood flow. Its development can be prevented or delayed in people with impaired glucose tolerance by implementing lifestyle changes or the use of therapeutic agents. Some of these drugs have been obtained from plants or have a microbial origin, such as galegine isolated from Galega officinalis, which has a great similarity to the antidiabetic drug metformin. Picnogenol, acarbose, miglitol, and voglibose are other antidiabetic products of natural origin. This review compiles the principal articles on medicinal plants used for treating diabetes and its comorbidities, as well as mechanisms of natural products as antidiabetic agents. Inhibition of α-glucosidase and α-amylase, effects on glucose uptake and glucose transporters, modification of mechanisms mediated by the peroxisome proliferator-activated receptor, inhibition of protein tyrosine phosphatase 1B activity, modification of gene expression, and activities of hormones involved in glucose homeostasis such as adiponectin, resistin, and incretin, and reduction of oxidative stress are some of the mechanisms in which natural products are involved. We also review the most relevant clinical trials performed with medicinal plants and natural products such as aloe, banaba, bitter melon, caper, cinnamon, cocoa, coffee, fenugreek, garlic, guava, gymnema, nettle, sage, soybean, green and black tea, turmeric, walnut, and yerba mate. Compounds of high interest as potential antidiabetics are: fukugetin, palmatine, berberine, honokiol, amorfrutins, trigonelline, gymnemic acids, gurmarin, and phlorizin. PMID:26132858

  14. Natural-product synthesis: Stitching together palau'amine

    NASA Astrophysics Data System (ADS)

    Romo, Daniel

    2010-03-01

    The long-awaited first total synthesis of the structurally intriguing natural product palau'amine has now been achieved. The synthesis features cascade reactions and an 'across ring' stitching of a 'macropalau'amine', and sets the bar for future efforts towards an enantioselective variant.

  15. Genomes to natural products PRediction Informatics for Secondary Metabolomes (PRISM).

    PubMed

    Skinnider, Michael A; Dejong, Chris A; Rees, Philip N; Johnston, Chad W; Li, Haoxin; Webster, Andrew L H; Wyatt, Morgan A; Magarvey, Nathan A

    2015-11-16

    Microbial natural products are an invaluable source of evolved bioactive small molecules and pharmaceutical agents. Next-generation and metagenomic sequencing indicates untapped genomic potential, yet high rediscovery rates of known metabolites increasingly frustrate conventional natural product screening programs. New methods to connect biosynthetic gene clusters to novel chemical scaffolds are therefore critical to enable the targeted discovery of genetically encoded natural products. Here, we present PRISM, a computational resource for the identification of biosynthetic gene clusters, prediction of genetically encoded nonribosomal peptides and type I and II polyketides, and bio- and cheminformatic dereplication of known natural products. PRISM implements novel algorithms which render it uniquely capable of predicting type II polyketides, deoxygenated sugars, and starter units, making it a comprehensive genome-guided chemical structure prediction engine. A library of 57 tailoring reactions is leveraged for combinatorial scaffold library generation when multiple potential substrates are consistent with biosynthetic logic. We compare the accuracy of PRISM to existing genomic analysis platforms. PRISM is an open-source, user-friendly web application available at http://magarveylab.ca/prism/. PMID:26442528

  16. Genomes to natural products PRediction Informatics for Secondary Metabolomes (PRISM)

    PubMed Central

    Skinnider, Michael A.; Dejong, Chris A.; Rees, Philip N.; Johnston, Chad W.; Li, Haoxin; Webster, Andrew L. H.; Wyatt, Morgan A.; Magarvey, Nathan A.

    2015-01-01

    Microbial natural products are an invaluable source of evolved bioactive small molecules and pharmaceutical agents. Next-generation and metagenomic sequencing indicates untapped genomic potential, yet high rediscovery rates of known metabolites increasingly frustrate conventional natural product screening programs. New methods to connect biosynthetic gene clusters to novel chemical scaffolds are therefore critical to enable the targeted discovery of genetically encoded natural products. Here, we present PRISM, a computational resource for the identification of biosynthetic gene clusters, prediction of genetically encoded nonribosomal peptides and type I and II polyketides, and bio- and cheminformatic dereplication of known natural products. PRISM implements novel algorithms which render it uniquely capable of predicting type II polyketides, deoxygenated sugars, and starter units, making it a comprehensive genome-guided chemical structure prediction engine. A library of 57 tailoring reactions is leveraged for combinatorial scaffold library generation when multiple potential substrates are consistent with biosynthetic logic. We compare the accuracy of PRISM to existing genomic analysis platforms. PRISM is an open-source, user-friendly web application available at http://magarveylab.ca/prism/. PMID:26442528

  17. Mechanism Targeted Discovery of Antitumor Marine Natural Products

    PubMed Central

    Nagle, Dale G.; Zhou, Yu-Dong; Mora, Flor D.; Mohammed, Kaleem A.; Kim, Yong-Pil

    2010-01-01

    Antitumor drug discovery programs aim to identify chemical entities for use in the treatment of cancer. Many strategies have been used to achieve this objective. Natural products have always played a major role in anticancer medicine and the unique metabolites produced by marine organisms have increasingly become major players in antitumor drug discovery. Rapid advances have occurred in the understanding of tumor biology and molecular medicine. New insights into mechanisms responsible for neoplastic disease are significantly changing the general philosophical approach towards cancer treatment. Recently identified molecular targets have created exciting new means for disrupting tumor-specific cell signaling, cell division, energy metabolism, gene expression, drug resistance, and blood supply. Such tumor-specific treatments could someday decrease our reliance on traditional cytotoxicity-based chemotherapy and provide new less toxic treatment options with significantly fewer side effects. Novel molecular targets and state-of-the-art molecular mechanism-based screening methods have revitalized antitumor research and these changes are becoming an ever-increasing component of modern antitumor marine natural products research. This review describes marine natural products identified using tumor-specific mechanism-based assays for regulators of angiogenesis, apoptosis, cell cycle, macromolecule synthesis, mitochondrial respiration, mitosis, multidrug efflux, and signal transduction. Special emphasis is placed on natural products directly discovered using molecular mechanism-based screening. PMID:15279579

  18. Natural products with health benefits from marine biological resources

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ocean is the cradle of lives, which provides a diverse array of intriguing natural products that has captured scientists’ attention in the past few decades due to their significant and extremely potent biological activities. In addition to being rich sources for pharmaceutical drugs, marine nat...

  19. Use of space for development of commercial plant natural products

    NASA Astrophysics Data System (ADS)

    Draeger, Norman A.

    1997-01-01

    Plant experiments conducted in environments where conditions are carefully controlled reveal fundamental information about physiological processes. An important environmental parameter is gravity, the effects of which may be better understood in part through experiments conducted in space. New insights gained can be used to develop commercial plant natural products in industries such as pharmaceuticals and biocontrol.

  20. Use of space for development of commercial plant natural products

    SciTech Connect

    Draeger, N.A.

    1997-01-01

    Plant experiments conducted in environments where conditions are carefully controlled reveal fundamental information about physiological processes. An important environmental parameter is gravity, the effects of which may be better understood in part through experiments conducted in space. New insights gained can be used to develop commercial plant natural products in industries such as pharmaceuticals and biocontrol. {copyright} {ital 1997 American Institute of Physics.}

  1. Biological Activity of Recently Discovered Halogenated Marine Natural Products

    PubMed Central

    Gribble, Gordon W.

    2015-01-01

    This review presents the biological activity—antibacterial, antifungal, anti-parasitic, antiviral, antitumor, antiinflammatory, antioxidant, and enzymatic activity—of halogenated marine natural products discovered in the past five years. Newly discovered examples that do not report biological activity are not included. PMID:26133553

  2. Natural product derived insecticides: discovery and development of spinetoram.

    PubMed

    Galm, Ute; Sparks, Thomas C

    2016-03-01

    This review highlights the importance of natural product research and industrial microbiology for product development in the agricultural industry, based on examples from Dow AgroSciences. It provides an overview of the discovery and development of spinetoram, a semisynthetic insecticide derived by a combination of a genetic block in a specific O-methylation of the rhamnose moiety of spinosad coupled with neural network-based QSAR and synthetic chemistry. It also emphasizes the key role that new technologies and multidisciplinary approaches play in the development of current spinetoram production strains. PMID:26582335

  3. Fishing for Nature's Hits: Establishment of the Zebrafish as a Model for Screening Antidiabetic Natural Products

    PubMed Central

    Tabassum, Nadia; Tai, Hongmei; Jung, Da-Woon; Williams, Darren R.

    2015-01-01

    Diabetes mellitus affects millions of people worldwide and significantly impacts their quality of life. Moreover, life threatening diseases, such as myocardial infarction, blindness, and renal disorders, increase the morbidity rate associated with diabetes. Various natural products from medicinal plants have shown potential as antidiabetes agents in cell-based screening systems. However, many of these potential “hits” fail in mammalian tests, due to issues such as poor pharmacokinetics and/or toxic side effects. To address this problem, the zebrafish (Danio rerio) model has been developed as a “bridge” to provide an experimentally convenient animal-based screening system to identify drug candidates that are active in vivo. In this review, we discuss the application of zebrafish to drug screening technologies for diabetes research. Specifically, the discovery of natural product-based antidiabetes compounds using zebrafish will be described. For example, it has recently been demonstrated that antidiabetic natural compounds can be identified in zebrafish using activity guided fractionation of crude plant extracts. Moreover, the development of fluorescent-tagged glucose bioprobes has allowed the screening of natural product-based modulators of glucose homeostasis in zebrafish. We hope that the discussion of these advances will illustrate the value and simplicity of establishing zebrafish-based assays for antidiabetic compounds in natural products-based laboratories. PMID:26681965

  4. Biosynthesis and Function of Polyacetylenes and Allied Natural Products

    PubMed Central

    Minto, Robert E.; Blacklock, Brenda J.

    2008-01-01

    Polyacetylenic natural products are a substantial class of often unstable compounds containing a unique carbon-carbon triple bond functionality, that are intriguing for their wide variety of biochemical and ecological functions, economic potential, and surprising mode of biosynthesis. Isotopic tracer experiments between 1960 and 1990 demonstrated that the majority of these compounds are derived from fatty acid and polyketide precursors. During the past decade, research into the metabolism of polyacetylenes has swiftly advanced, driven by the cloning of the first genes responsible for polyacetylene biosynthesis in plants, moss, fungi, and actinomycetes, and the initial characterization of the gene products. The current state of knowledge of the biochemistry and molecular genetics of polyacetylenic secondary metabolic pathways will be presented together with an up-to-date survey of new terrestrial and marine natural products, their known biological activities, and a discussion of their likely metabolic origins. PMID:18387369

  5. Manipulating Natural Product Biosynthetic Pathways via DNA Assembler

    PubMed Central

    Shao, Zengyi; Zhao, Huimin

    2014-01-01

    DNA assembler is an efficient synthetic biology method for constructing and manipulating biochemical pathways. The rapidly increasing number of sequenced genomes provides a rich source for discovery of gene clusters involved in synthesizing new natural products. However, both discovery and economical production are hampered by our limited knowledge in manipulating most organisms and the corresponding pathways. By taking advantage of yeast in vivo homologous recombination, DNA assembler synthesizes an entire expression vector containing the target biosynthetic pathway and the genetic elements needed for DNA maintenance and replication. Here we use the spectinabilin clusters originated from two hosts as examples to illustrate the guidelines of using DNA assembler for cluster characterization and silent cluster activation. Such strategies offer unprecedented versatility in cluster manipulation, bypass the traditional laborious strategies to elicit pathway expression, and provide a new platform for de novo cluster assembly and genome mining for discovering new natural products. PMID:24903884

  6. Hyphenated techniques and their applications in natural products analysis.

    PubMed

    Sarker, Satyajit D; Nahar, Lutfun

    2012-01-01

    A technique where a separation technique is coupled with an online spectroscopic detection technology is known as hyphenated technique, e.g., GC-MS, LC-PDA, LC-MS, LC-FTIR, LC-NMR, LC-NMR-MS, and CE-MS. Recent advances in hyphenated analytical techniques have remarkably widened their applications to the analysis of complex biomaterials, especially natural products. This chapter focuses on the applications of hyphenated techniques to pre-isolation and isolation of natural products, dereplication, online partial identification of compounds, chemotaxonomic studies, chemical finger-printing, quality control of herbal products, and metabolomic studies, and presents specific examples. However, a particular emphasis has been given on the hyphenated techniques that involve an LC as the separation tool. PMID:22367902

  7. Australine, a pyrrolizidine alkaloid that inhibits amyloglucosidase and glycoprotein processing

    SciTech Connect

    Tropea, J.E.; Molyneux, R.J.; Kaushal, G.P.; Pan, Y.T.; Mitchell, M.; Elbein, A.D. )

    1989-03-07

    Australine is a polyhydroxylated pyrrolizidine alkaloid that was isolated from the seeds of the Australian tree Castanospermum australe and characterized by NMR and X-ray diffraction analysis. Since swainsonine and catanospermine are polyhydroxylated indolizidine alkaloids that inhibit specific glycosidases, the authors tested australine against a variety of exoglycosidases to determine whether it would inhibit any of these enzymes. This alkaloid proved to be a good inhibitor of the {alpha}-glucosidase amyloglucosidase (50% inhibition at 5.8 {mu}M), but it did not inhibit {beta}-glucosidase, {alpha}- or {beta}-mannosidase, or {alpha}- or {beta}-galactosidase. The inhibition of amyloglucosidase was of a competitive nature. Australine also inhibited the glycoprotein processing enzyme glucosidase I, but had only slight activity toward glucosidase II. When incubated with cultured cells, this alkaloid inhibited glycoprotein processing at the glucosidase I step and caused the accumulation of glycoproteins with Glc{sub 3}Man{sub 7-9}(GlcNAc){sub 2}-oligosaccharides.

  8. Alkaloids: an overview of their antibacterial, antibiotic-enhancing and antivirulence activities.

    PubMed

    Cushnie, T P Tim; Cushnie, Benjamart; Lamb, Andrew J

    2014-11-01

    With reports of pandrug-resistant bacteria causing untreatable infections, the need for new antibacterial therapies is more pressing than ever. Alkaloids are a large and structurally diverse group of compounds that have served as scaffolds for important antibacterial drugs such as metronidazole and the quinolones. In this review, we highlight other alkaloids with development potential. Natural, semisynthetic and synthetic alkaloids of all classes are considered, looking first at those with direct antibacterial activity and those with antibiotic-enhancing activity. Potent examples include CJ-13,136, a novel actinomycete-derived quinolone alkaloid with a minimum inhibitory concentration of 0.1 ng/mL against Helicobacter pylori, and squalamine, a polyamine alkaloid from the dogfish shark that renders Gram-negative pathogens 16- to >32-fold more susceptible to ciprofloxacin. Where available, information on toxicity, structure-activity relationships, mechanisms of action and in vivo activity is presented. The effects of alkaloids on virulence gene regulatory systems such as quorum sensing and virulence factors such as sortases, adhesins and secretion systems are also described. The synthetic isoquinoline alkaloid virstatin, for example, inhibits the transcriptional regulator ToxT in Vibrio cholerae, preventing expression of cholera toxin and fimbriae and conferring in vivo protection against intestinal colonisation. The review concludes with implications and limitations of the described research and directions for future research. PMID:25130096

  9. Anti-inflammatory Activity of Pyrrolizidine Alkaloids from the Leaves of Madhuca pasquieri (Dubard).

    PubMed

    Hoang, Le Son; Tran, Manh Hung; Lee, Joo Sang; To, Dao Cuong; Nguyen, Van Thu; Kim, Jeong Ah; Lee, Jeong Hyung; Woo, Mi Hee; Min, Byung Sun

    2015-01-01

    A novel pyrrolizidine alkaloids, madhumidine A (1), and two known alkaloids, lindelofidine benzoic acid ester (2) and minalobine B (3) were isolated from the leaves of Madhuca pasquieri (Dubard) H. J. LAM. The chemical structures of these alkaloids were established mainly by NMR techniques and mass spectrometry. Their anti-inflammatory activity was evaluated against lipopolysaccharide-induced nitric oxide production in macrophage RAW264.7 cell. In addition, the cytotoxic activity of all isolated compounds was tested against a panel of cancer cell lines. PMID:26027474

  10. Influence of Some Heavy Metals on Growth, Alkaloid Content and Composition in Catharanthus roseus L.

    PubMed Central

    Srivastava, N. K.; Srivastava, A. K.

    2010-01-01

    Shoot biomass production, alkaloid content and composition as influence by cadmium, manganese, nickel and lead at uniform dose of 5 mM were investigated in Catharanthus roseus plants grown in sand culture. Treatment with Mn, Ni, and Pb significantly enhanced total root alkaloid accumulation. Cd and Ni treatment resulted in two-fold where as Pb treatment resulted in three fold increase in serpentine content of roots. The non-significant affect on biomass suggests that plants can withstand metal stress at the level tested with positive affect on root alkaloid content. PMID:21969751

  11. Emergence of diversity and stereochemical outcomes in the biosynthetic pathways of cyclobutane-centered marine alkaloid dimers.

    PubMed

    Beniddir, Mehdi A; Evanno, Laurent; Joseph, Delphine; Skiredj, Adam; Poupon, Erwan

    2016-07-28

    Covering: up to 2016Dictazoles and sceptrins are singular metabolites of marine origin. The present dichotomic case study provides a comprehensive perspective on these cyclobutane-centered alkaloids and their respective families. Indeed, their upstream and downstream chemistry are both treated herein. Relevant isolation reports and bio-inspired total syntheses are used to decipher the currently admitted biosynthetic hypotheses as well as the emergence of diversity in the two series. This review proposes a transversal vision of the topic, where most aspects of natural product chemistry have a critical importance. PMID:27220412

  12. Pro-toxic dehydropyrrolizidine alkaloids in the traditional Andean herbal medicine “asmachilca”

    PubMed Central

    Colegate, Steven M.; Boppré, Michael; Monzón, Julio; Betz, Joseph M.

    2015-01-01

    -oxide content in the botanical components of asmachilca varied from 0.4 – 0.9% (w/dw, dry weight) based on equivalents of lycopsamine. The mean pyrrolizidine alkaloid content of a hot water infusion of a commercial asmachilca herbal tea bag was 2.2 ± 0.5 mg lycopsamine equivalents. Morphological and chemical evidence showed that asmachilca is prepared from different plant species. Conclusions All asmachilca samples and the herbal tea infusions contained toxicologically-relevant concentrations of pro-toxic 1,2-dehydropyrrolizidine alkaloid esters and, therefore, present a risk to the health of humans. This raises questions concerning the ongoing unrestricted availability of such products on the Peruvian and international market. In addition to medical surveys of consumers of asmachilca, in the context of chronic disease potentially associated with ingestion of the dehydropyrrolizidine alkaloids, the botanical origins of asmachilca preparations require detailed elucidation. PMID:26087231

  13. Leaf herbivory and nutrients increase nectar alkaloids.

    PubMed

    Adler, Lynn S; Wink, Michael; Distl, Melanie; Lentz, Amanda J

    2006-08-01

    Correlations between traits may constrain ecological and evolutionary responses to multispecies interactions. Many plants produce defensive compounds in nectar and leaves that could influence interactions with pollinators and herbivores, but the relationship between nectar and leaf defences is entirely unexplored. Correlations between leaf and nectar traits may be mediated by resources and prior damage. We determined the effect of nutrients and leaf herbivory by Manduca sexta on Nicotiana tabacum nectar and leaf alkaloids, floral traits and moth oviposition. We found a positive phenotypic correlation between nectar and leaf alkaloids. Herbivory induced alkaloids in nectar but not in leaves, while nutrients increased alkaloids in both tissues. Moths laid the most eggs on damaged, fertilized plants, suggesting a preference for high alkaloids. Induced nectar alkaloids via leaf herbivory indicate that species interactions involving leaf and floral tissues are linked and should not be treated as independent phenomena in plant ecology or evolution. PMID:16913940

  14. Chemistry and pharmacology of analgesic indole alkaloids from the rubiaceous plant, Mitragyna speciosa.

    PubMed

    Takayama, Hiromitsu

    2004-08-01

    The leaves of a tropical plant, Mitragyna speciosa KORTH (Rubiaceae), have been traditionally used as a substitute for opium. Phytochemical studies of the constituents of the plant growing in Thailand and Malaysia have led to the isolation of several 9-methoxy-Corynanthe-type monoterpenoid indole alkaloids, including new natural products. The structures of the new compounds were elucidated by spectroscopic and/or synthetic methods. The potent opioid agonistic activities of mitragynine, the major constituent of this plant, and its analogues were found in in vitro and in vivo experiments and the mechanisms underlying the analgesic activity were clarified. The essential structural features of mitragynines, which differ from those of morphine and are responsible for the analgesic activity, were elucidated by pharmacological evaluation of the natural and synthetic derivatives. Among the mitragynine derivatives, 7-hydroxymitragynine, a minor constituent of M. speciosa, was found to exhibit potent antinociceptive activity in mice. PMID:15304982

  15. Imidazole alkaloids from Lepidium meyenii.

    PubMed

    Cui, Baoliang; Zheng, Bo Lin; He, Kan; Zheng, Qun Yi

    2003-08-01

    Two new imidazole alkaloids (lepidiline A and lepidiline B) have been isolated from a root extract of Lepidium meyenii with the common name Maca and identified as 1,3-dibenzyl-4,5-dimethylimidazolium chloride (1) and 1,3-dibenzyl-2,4,5-trimethylimidazolium chloride (2), respectively. The structures of these two new compounds were determined by spectroscopic methods, as well as single-crystal X-ray diffraction performed on compound 1. PMID:12932133

  16. Bacterial Alkaloids Prevent Amoebal Predation.

    PubMed

    Klapper, Martin; Götze, Sebastian; Barnett, Robert; Willing, Karsten; Stallforth, Pierre

    2016-07-25

    Bacterial defense mechanisms have evolved to protect bacteria against predation by nematodes, predatory bacteria, or amoebae. We identified novel bacterial alkaloids (pyreudiones A-D) that protect the producer, Pseudomonas fluorescens HKI0770, against amoebal predation. Isolation, structure elucidation, total synthesis, and a proposed biosynthetic pathway for these structures are presented. The generation of P. fluorescens gene-deletion mutants unable to produce pyreudiones rendered the bacterium edible to a variety of soil-dwelling amoebae. PMID:27294402

  17. Cholinesterase inhibitory activity of isoquinoline alkaloids from three Cryptocarya species (Lauraceae).

    PubMed

    Wan Othman, Wan Nurul Nazneem; Liew, Sook Yee; Khaw, Kooi Yeong; Murugaiyah, Vikneswaran; Litaudon, Marc; Awang, Khalijah

    2016-09-15

    Alzheimer's disease is the most common form of dementia among older adults. Acetylcholinesterase and butyrylcholinesterase are two enzymes involved in the breaking down of the neurotransmitter acetylcholine. Inhibitors for these enzymes have potential to prolong the availability of acetylcholine. Hence, the search for such inhibitors especially from natural products is needed in developing potential drugs for Alzheimer's disease. The present study investigates the cholinesterase inhibitory activity of compounds isolated from three Cryptocarya species towards acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Nine alkaloids were isolated; (+)-nornantenine 1, (-)-desmethylsecoantofine 2, (+)-oridine 3, (+)-laurotetanine 4 from the leaves of Cryptocarya densiflora BI., atherosperminine 5, (+)-N-methylisococlaurine 6, (+)-N-methyllaurotetanine 7 from the bark of Cryptocarya infectoria Miq., 2-methoxyatherosperminine 8 and (+)-reticuline 9 from the bark of Cryptocarya griffithiana Wight. In general, most of the alkaloids showed higher inhibition towards BChE as compared to AChE. The phenanthrene type alkaloid; 2-methoxyatherosperminine 8, exhibited the most potent inhibition against BChE with IC50 value of 3.95μM. Analysis of the Lineweaver-Burk (LB) plot of BChE activity over a range of substrate concentration suggested that 2-methoxyatherosperminine 8 exhibited mixed-mode inhibition with an inhibition constant (Ki) of 6.72μM. Molecular docking studies revealed that 2-methoxyatherosperminine 8 docked well at the choline binding site and catalytic triad of hBChE (butyrylcholinesterase from Homo sapiens); hydrogen bonding with Tyr 128 and His 438 residues respectively. PMID:27492195

  18. Marine natural products: a new wave of drugs?

    PubMed Central

    Montaser, Rana; Luesch, Hendrik

    2011-01-01

    The largely unexplored marine world that presumably harbors the most biodiversity may be the vastest resource to discover novel ‘validated’ structures with novel modes of action that cover biologically relevant chemical space. Several challenges, including the supply problem and target identification, need to be met for successful drug development of these often complex molecules; however, approaches are available to overcome the hurdles. Advances in technologies such as sampling strategies, nanoscale NMR for structure determination, total chemical synthesis, fermentation and biotechnology are all crucial to the success of marine natural products as drug leads. We illustrate the high degree of innovation in the field of marine natural products, which in our view will lead to a new wave of drugs that flow into the market and pharmacies in the future. PMID:21882941

  19. Dereplication of natural products using minimal NMR data inputs.

    PubMed

    Williams, Russell B; O'Neil-Johnson, Mark; Williams, Antony J; Wheeler, Patrick; Pol, Rostislav; Moser, Arvin

    2015-10-21

    A strategy for the dereplication of a complete or a partial structure using (1)H NMR, (1)H-(13)C HSQC and (1)H-(1)H COSY spectral data, a molecular formula composition range and structural fragments against a massive database of about 22 million compounds is considered. As the increasing availability of public online databases containing natural products continues to grow the potential of utilizing these resources for dereplication purposes increases. This work examines approaches for NMR dereplication of natural products and includes a comparison with approaches for molecular formula and mass-based dereplication. The strategy is an application of computer-assisted structure elucidation using ACD/Structure Elucidator and data obtained from the ChemSpider database hosted by the Royal Society of Chemistry. PMID:26381222

  20. Pyrrolizidine alkaloids in human diet.

    PubMed

    Prakash, A S; Pereira, T N; Reilly, P E; Seawright, A A

    1999-07-15

    Pyrrolizidine alkaloids are the leading plant toxins associated with disease in humans and animals. Upon ingestion, metabolic activation in liver converts the parent compounds into highly reactive electrophiles capable of reacting with cellular macromolecules forming adducts which may initiate acute or chronic toxicity. The pyrrolizidine alkaloids present a serious health risk to human populations that may be exposed to them through contamination of foodstuffs or when plants containing them are consumed as medicinal herbs. Some pyrrolizidine alkaloids (PA) adducts are persistent in animal tissue and the metabolites may be re-released and cause damage long after the initial period of ingestion. PAs are also known to act as teratogens and abortifacients. Chronic ingestion of plants containing PAs has also led to cancer in experimental animals and metabolites of several PAs have been shown to be mutagenic in the Salmonella typhimurium/mammalian microsome system. However, no clinical association has yet been found between human cancer and exposure to PAs. Based on the extensive reports on the outcome of human exposure available in the literature, we conclude that while humans face the risk of veno-occlusive disease and childhood cirrhosis PAs are not carcinogenic to humans. PMID:10415431

  1. Antimicrobial activity of natural products against Helicobacter pylori: a review.

    PubMed

    Bonifácio, Bruna Vidal; dos Santos Ramos, Matheus Aparecido; da Silva, Patricia Bento; Bauab, Taís Maria

    2014-01-01

    Throughout the genetic and physiological evolution of microorganisms, the microbiological sciences have been expanding the introduction of new therapeutic trials against microbial diseases. Special attention has been paid to the bacterium Helicobacter pylori, which induces gastric infections capable of causing damage, ranging from acute and chronic gastritis to the development of gastric cancer and death. The use of compounds with natural origins has gained popularity in scientific research focused on drug innovation against H. pylori because of their broad flexibility and low toxicity. The aim of this study was to describe the use of natural products against H. pylori in order to clarify important parameters for related fields. The study demonstrated the vast therapeutic possibilities for compounds originating from natural sources and revealed the need for innovations from future investigations to expand the therapeutic arsenal in the fight against H. pylori infection. PMID:25406585

  2. NMR Quantitation of Natural Products at the Nanomole-Scale

    PubMed Central

    Dalisay, Doralyn S.; Molinski, Tadeusz F.

    2009-01-01

    We describe a simple and accurate method for quantitation by solvent 13C-satellites (QSCS), of very small amounts of natural products using microprobe NMR spectroscopy. The method takes advantage of integration of 13C satellite peaks of deuterated solvents, in particular CDCl3, that have favorable intensities for measurements of samples in NMR microcoils and microprobe tubes in the 1–200 nanomole range. PMID:19399996

  3. Mass spectrometry of Natural Products: Current, Emerging and Future Technologies

    PubMed Central

    Bouslimani, Amina; Sanchez, Laura M; Garg, Neha; Dorrestein, Pieter C

    2014-01-01

    Although mass spectrometry is a century old technology, we are entering into an exciting time for the analysis of molecular information directly from complex biological systems. In this viewpoint article, we highlight emerging mass spectrometric methods and tools used by the natural product community and give a perspective of future directions where the mass spectrometry field is migrating towards over the next decade. PMID:24801551

  4. Development of new methods in organic synthesis and their applications to the synthesis of biologically interesting natural products.

    PubMed

    Hamada, Yasumasa

    2012-01-01

    2,6-Dimethyl-9-Aryl-9-phosphabicyclo[3.3.1]nonanes (9-PBN and 9-NapBN) and the chiral diaminophosphine oxides (DIAPHOXs) derived from aspartic acid have been introduced as useful ligands and preligands, respectively, for transition metal-catalyzed asymmetric synthesis. anti-Selective asymmetric hydrogenation of α-amino-β-ketoesters using Ru-, Rh-, Ir-, and Ni-catalysts through dynamic kinetic resolution have been developed for the first time, producing efficiently important anti β-hydroxy-α-amino acids. The total synthesis of several biologically active natural products was achieved by use of the transition metal-catalyzed reaction using DIAPHOX, anti-selective asymmetric hydrogenation, and reactions developed by us. Synthesis of tangutorine, an antitumor indole alkaloid, has been enantioselectively achieved for the first time. Enantioselective synthesis of a martinelline chiral core was accomplished using the asymmetric tandem Michael-Aldol reaction as a key step developed by us. This synthesis represents the formal total synthesis of martinelline and martinellic acid. Papuamide B was synthesized through the elucidation of unknown stereostructures by using the anti-selective asymmetric hydrogenation and reactions developed by us. PMID:22223369

  5. Rationale for a natural products approach to herbicide discovery.

    PubMed

    Dayan, Franck E; Owens, Daniel K; Duke, Stephen O

    2012-04-01

    Weeds continue to evolve resistance to all the known modes of herbicidal action, but no herbicide with a new target site has been commercialized in nearly 20 years. The so-called 'new chemistries' are simply molecules belonging to new chemical classes that have the same mechanisms of action as older herbicides (e.g. the protoporphyrinogen-oxidase-inhibiting pyrimidinedione saflufenacil or the very-long-chain fatty acid elongase targeting sulfonylisoxazoline herbicide pyroxasulfone). Therefore, the number of tools to manage weeds, and in particular those that can control herbicide-resistant weeds, is diminishing rapidly. There is an imminent need for truly innovative classes of herbicides that explore chemical spaces and interact with target sites not previously exploited by older active ingredients. This review proposes a rationale for a natural-products-centered approach to herbicide discovery that capitalizes on the structural diversity and ingenuity afforded by these biologically active compounds. The natural process of extended-throughput screening (high number of compounds tested on many potential target sites over long periods of times) that has shaped the evolution of natural products tends to generate molecules tailored to interact with specific target sites. As this review shows, there is generally little overlap between the mode of action of natural and synthetic phytotoxins, and more emphasis should be placed on applying methods that have proved beneficial to the pharmaceutical industry to solve problems in the agrochemical industry. PMID:22232033

  6. An Update on Natural Products with Carbonic Anhydrase Inhibitory Activity.

    PubMed

    Karioti, Anastasia; Carta, Fabrizio; Supuran, Claudiu T

    2016-01-01

    Carbonic anhydrases (CAs, EC 4.2.1.1) catalyze the fundamental reaction of CO2 hydration in all living organisms, being actively involved in the regulation of a plethora of patho/physiological processes. They represent a typical example of enzyme convergent evolution, as six genetically unrelated families of such enzymes were described so far. It is more than 70 years that synthetic compounds, mainly sulfonamides, have been used in clinical practice as diuretics and systemic acting antiglaucoma drugs. Recent studies using natural product libraries and isolated constituents from natural sources (such as fungi and plants) have disclosed novel chemotypes possessing carbonic anhydrase inhibition activities. These natural sources offer new opportunities in the search for new and more effective carbonic anhydrase inhibitors, and may serve as new leads for the design and development of future drugs. This review will discuss the most recent advances in the search of naturally occurring products and their synthetic derivatives that inhibit the CAs and their mechanisms of action at molecular level. Plant extracts are not considered in the present review. PMID:26654592

  7. Interactions between Natural Health Products and Oral Anticoagulants: Spontaneous Reports in the Italian Surveillance System of Natural Health Products

    PubMed Central

    Paoletti, Angelica; Gallo, Eugenia; Benemei, Silvia; Vietri, Michele; Lapi, Francesco; Volpi, Roberta; Menniti-Ippolito, Francesca; Gori, Luigi; Mugelli, Alessandro; Firenzuoli, Fabio; Vannacci, Alfredo

    2011-01-01

    Introduction. The safety of vitamin K antagonists (VKA) use can be compromised by many popular herbal supplements taken by individuals. The literature reports that 30% of warfarin-treated patients self-medicates with herbs. Possible interactions represent an health risk. We aimed to identify all herbs-oral anticoagulants interactions collected in the Italian database of suspected adverse reactions to “natural health” products. Methods. The Italian database of spontaneous reports of suspected adverse reactions to natural products was analyzed to address herb-VKAs interactions. Results. From 2002 to 2009, we identified 12 reports with 7 cases of INR reduction in patients treated with warfarin (n = 3) and acenocoumarol (n = 4), and 5 cases of INR increase (all warfarin associated). It was reported 8 different herbal products as possibly interacting. Discussion. Our study confirms the risk of interactions, highlighting the difficulty to characterize them and their mechanisms and, finally, prevent their onset. The reported data underline the urgent need of healthcare providers being aware of the possible interaction between natural products and VKA, also because of the critical clinical conditions affecting patients. This is the first step to have the best approach to understand possible INR alterations linked to herb-VKA interaction and to rightly educate patients in treatment with VKA. PMID:21274401

  8. Alkaloids from Glaucium flavum from Sardinia.

    PubMed

    Petitto, Valentina; Serafini, Mauro; Gallo, Francesca Romana; Multari, Giuseppina; Nicoletti, Marcello

    2010-07-01

    Glaucium flavum collected in Sardinia was studied using a phytochemical approach in order to evaluate its alkaloid composition and obtain a comparison with the alkaloid contents of the same species in populations of other geographic proveniences. In fact, different chemoecotypes of G. flavum have been identified, on the basis of their particular content and composition in alkaloids, in accordance with the different distribution areas. The analysis showed that Sardinian G. flavum contains a homogeneous alkaloid pattern of aporphyne type, significantly different from those reported for populations from other parts of Europe. PMID:20552526

  9. Automated genome mining of ribosomal peptide natural products

    SciTech Connect

    Mohimani, Hosein; Kersten, Roland; Liu, Wei; Wang, Mingxun; Purvine, Samuel O.; Wu, Si; Brewer, Heather M.; Pasa-Tolic, Ljiljana; Bandeira, Nuno; Moore, Bradley S.; Pevzner, Pavel A.; Dorrestein, Pieter C.

    2014-07-31

    Ribosomally synthesized and posttranslationally modified peptides (RiPPs), especially from microbial sources, are a large group of bioactive natural products that are a promising source of new (bio)chemistry and bioactivity (1). In light of exponentially increasing microbial genome databases and improved mass spectrometry (MS)-based metabolomic platforms, there is a need for computational tools that connect natural product genotypes predicted from microbial genome sequences with their corresponding chemotypes from metabolomic datasets. Here, we introduce RiPPquest, a tandem mass spectrometry database search tool for identification of microbial RiPPs and apply it for lanthipeptide discovery. RiPPquest uses genomics to limit search space to the vicinity of RiPP biosynthetic genes and proteomics to analyze extensive peptide modifications and compute p-values of peptide-spectrum matches (PSMs). We highlight RiPPquest by connection of multiple RiPPs from extracts of Streptomyces to their gene clusters and by the discovery of a new class III lanthipeptide, informatipeptin, from Streptomyces viridochromogenes DSM 40736 as the first natural product to be identified in an automated fashion by genome mining. The presented tool is available at cy-clo.ucsd.edu.

  10. Effects of Stevia rebaudiana natural products on rat liver mitochondria.

    PubMed

    Kelmer Bracht, A; Alvarez, M; Bracht, A

    1985-03-15

    The effects of several natural products extracted from the leaves of Stevia rebaudiana on rat liver mitochondria were investigated. The compounds used were stevioside (a non-caloric sweetener), steviolbioside, isosteviol and steviol. Total aqueous extracts of the leaves were also investigated. S. rebaudiana natural products inhibited oxidative phosphorylation, ATPase activity NADH-oxidase activity, succinate-oxidase activity, succinate dehydrogenase, and L-glutamate dehydrogenase. The ADP/O ratio was decreased. Substrate respiration (state II respiration) was increased at low concentrations (up to 0.5 mM) and inhibited at higher concentrations (1 mM or more). In uncoupled mitochondria, inhibition of substrate respiration was the only effect observed. Net proton ejection induced by succinate and swelling induced by several substrates were inhibited. Of the compounds investigated, the sweet principle stevioside was less active. It was concluded that, in addition to the inhibitory effects, S. rebaudiana natural products may also act as uncouplers of oxidative phosphorylation. The possible physiologic consequences of the ingestion of stevioside and S. rebaudiana aqueous extracts are discussed. PMID:2858211

  11. Natural Products as a Source for Novel Antibiotics.

    PubMed

    Moloney, Mark G

    2016-08-01

    Natural products have historically been of crucial importance in the identification and development of antibacterial agents. Interest in these systems has waned in recent years, but the rapid emergence of resistant bacterial strains has forced their re-evaluation as a route to identify novel chemical skeletons with antibacterial activity for elaboration in drug development. This overview examines the current situation, highlights new natural product systems which have been found, together with re-examination of some old ones, and new technologies for their identification. While natural products certainly have the potential to re-emerge as a key start-point in antibacterial drug discovery, reports of new or reinvestigated structures need to be supported with sufficient quality chemical (solubility, stability), biochemical (including toxicity in particular, along with target information) and microbiological [minimum inhibitory concentration (MIC) and resistance frequency] validation data to assist in the identification of promising hit structures and to avoid wasted effort from trawling over already cultivated territory. This is particularly important in a resource-limited research environment. PMID:27267698

  12. Indolizidine 239Q and Quinolizidine 275I. Major alkaloids in two Argentinian bufonid toads (Melanophryniscus)

    PubMed Central

    Daly, John W.; Garraffo, H. Martin; Spande, Thomas F.; Yeh, Herman J. C.; Peltzer, Paola M.; Cacivio, Pedro; Baldo, J. Diego; Faivovich, Julián

    2008-01-01

    Alkaloid profiles in skin of poison frogs/toads (Dendrobatidae, Mantellidae, Bufonidae, and Myobatrachidae) are highly dependent on diet and hence on the nature of habitat. Extracts of the two species of toads (Melanophryniscus klappenbachi and M. cupreuscapularis) from similar habitats in the Corrientes/Chaco Provinces of Argentina have similar profiles of alkaloids, which differ considerably from profiles from other Melanophryniscus species from Brazil, Uruguay and Argentina. Structures of two major alkaloids 239Q (1) and 275I (2) were determined by mass, FTIR, and NMR spectral analysis as 5Z,9Z-3-(1-hydroxybutyl)-5-propylindolizidine and 6Z,10E-4,6-di(pent-4-enyl) quinolizidine, respectively. A third alkaloid, 249F (3), is postulated to be a homopumiliotoxin with an unprecedented conjugated exocyclic diene moiety. PMID:18848574

  13. Pharmacological and therapeutic effects of Peganum harmala and its main alkaloids

    PubMed Central

    Moloudizargari, Milad; Mikaili, Peyman; Aghajanshakeri, Shahin; Asghari, Mohammad Hossein; Shayegh, Jalal

    2013-01-01

    Wild Syrian rue (Peganum harmala L. family Zygophyllaceae) is well-known in Iran and various parts of this plant including, its seeds, bark, and root have been used as folk medicine. Recent years of research has demonstrated different pharmacological and therapeutic effects of P. harmala and its active alkaloids, especially harmine and harmaline. Analytical studies on the chemical composition of the plant show that the most important constituents of this plant are beta-carboline alkaloids such as harmalol, harmaline, and harmine. Harmine is the most studied among these naturally occurring alkaloids. In addition to P. harmala (Syrian rue), these beta-carbolines are present in many other plants such as Banisteria caapi and are used for the treatment of different diseases. This article reviews the traditional uses and pharmacological effects of total extract and individual active alkaloids of P. harmala (Syrian rue). PMID:24347928

  14. Structure-Activity Relationship of Benzophenanthridine Alkaloids from Zanthoxylum rhoifolium Having Antimicrobial Activity

    PubMed Central

    Tavares, Luciana de C.; Zanon, Graciane; Weber, Andréia D.; Neto, Alexandre T.; Mostardeiro, Clarice P.; Da Cruz, Ivana B. M.; Oliveira, Raul M.; Ilha, Vinicius; Dalcol, Ionara I.; Morel, Ademir F.

    2014-01-01

    Zanthoxylum rhoifolium (Rutaceae) is a plant alkaloid that grows in South America and has been used in Brazilian traditional medicine for the treatment of different health problems. The present study was designed to evaluate the antimicrobial activity of the steam bark crude methanol extract, fractions, and pure alkaloids of Z. rhoifolium. Its stem bark extracts exhibited a broad spectrum of antimicrobial activity, ranging from 12.5 to 100 µg/mL using bioautography method, and from 125 to 500 µg/mL in the microdilution bioassay. From the dichloromethane basic fraction, three furoquinoline alkaloids (1–3), and nine benzophenanthridine alkaloids (4–12) were isolated and the antimicrobial activity of the benzophenanthridine alkaloids is discussed in terms of structure-activity relationships. The alkaloid with the widest spectrum of activity was chelerythrine (10), followed by avicine (12) and dihydrochelerythrine (4). The minimal inhibitory concentrations of chelerythrine, of 1.50 µg/mL for all bacteria tested, and between 3.12 and 6.25 µg/mL for the yeast tested, show this compound to be a more powerful antimicrobial agent when compared with the other active alkaloids isolated from Z. rhoifolium. To verify the potential importance of the methylenedioxy group (ring A) of these alkaloids, chelerythrine was selected to represent the remainder of the benzophenanthridine alkaloids isolated in this work and was subjected to a demethylation reaction giving derivative 14. Compared to chelerythrine, the derivative (14) was less active against the tested bacteria and fungi. Kinetic measurements of the bacteriolytic activities of chelerythrine against the bacteria Bacillus subtilis (Gram-positive) and Escherichia coli (Gram-negative) were determined by optical density based on real time assay, suggesting that its mechanism of action is not bacteriolytic. The present study did not detect hemolytic effects of chelerythrine on erythrocytes and found a protective effect

  15. Natural gas production problems : solutions, methodologies, and modeling.

    SciTech Connect

    Rautman, Christopher Arthur; Herrin, James M.; Cooper, Scott Patrick; Basinski, Paul M.; Olsson, William Arthur; Arnold, Bill Walter; Broadhead, Ronald F.; Knight, Connie D.; Keefe, Russell G.; McKinney, Curt; Holm, Gus; Holland, John F.; Larson, Rich; Engler, Thomas W.; Lorenz, John Clay

    2004-10-01

    Natural gas is a clean fuel that will be the most important domestic energy resource for the first half the 21st centtuy. Ensuring a stable supply is essential for our national energy security. The research we have undertaken will maximize the extractable volume of gas while minimizing the environmental impact of surface disturbances associated with drilling and production. This report describes a methodology for comprehensive evaluation and modeling of the total gas system within a basin focusing on problematic horizontal fluid flow variability. This has been accomplished through extensive use of geophysical, core (rock sample) and outcrop data to interpret and predict directional flow and production trends. Side benefits include reduced environmental impact of drilling due to reduced number of required wells for resource extraction. These results have been accomplished through a cooperative and integrated systems approach involving industry, government, academia and a multi-organizational team within Sandia National Laboratories. Industry has provided essential in-kind support to this project in the forms of extensive core data, production data, maps, seismic data, production analyses, engineering studies, plus equipment and staff for obtaining geophysical data. This approach provides innovative ideas and technologies to bring new resources to market and to reduce the overall environmental impact of drilling. More importantly, the products of this research are not be location specific but can be extended to other areas of gas production throughout the Rocky Mountain area. Thus this project is designed to solve problems associated with natural gas production at developing sites, or at old sites under redevelopment.

  16. Non-alkaloids extract from Stemona sessilifolia enhances the activity of chemotherapeutic agents through P-glycoprotein-mediated multidrug-resistant cancer cells.

    PubMed

    Han, Lu; Ma, Yang-Mei; An, Li; Zhang, Qiao; Wang, Chang-Li; Zhao, Qing-Chun

    2016-01-01

    One of the major impediments to the successful treatment of cancer is the development of resistant cancer cells, which could cause multidrug resistance (MDR), and overexpression of ABCB1/P-glycoprotein (P-gp) is one of the most common causes of MDR in cancer cells. Recently, natural products or plant-derived chemicals have been investigated more and more widely as potential multidrug-resistant (MDR) reversing agents. The current study demonstrated for the first time that non-alkaloids extract from Stemona sessilifolia significantly reversed the resistance of chemotherapeutic agents, adriamycin, paclitaxel and vincristine to MCF-7/ADR cells compared with MCF-7/S cells in a dose-dependent manner. The results obtained from these studies indicated that the non-alkaloids extract from S. sessilifolia plays an important role in reversing MDR of cancer as a P-gp modulator in vitro and may be effective in the treatment of multidrug-resistant cancers. PMID:26190165

  17. Studies on the synthesis and opioid agonistic activities of mitragynine-related indole alkaloids: discovery of opioid agonists structurally different from other opioid ligands.

    PubMed

    Takayama, Hiromitsu; Ishikawa, Hayato; Kurihara, Mika; Kitajima, Mariko; Aimi, Norio; Ponglux, Dhavadee; Koyama, Fumi; Matsumoto, Kenjiro; Moriyama, Tomoyuki; Yamamoto, Leonard T; Watanabe, Kazuo; Murayama, Toshihiko; Horie, Syunji

    2002-04-25

    Mitragynine (1) is a major alkaloidal component in the Thai traditional medicinal herb, Mitragyna speciosa, and has been proven to exhibit analgesic activity mediated by opioid receptors. By utilizing this natural product as a lead compound, synthesis of some derivatives, evaluations of the structure-activity relationship, and surveys of the intrinsic activities and potencies on opioid receptors were performed with guinea pig ileum. The affinities of some compounds for mu-, delta-, and kappa-receptors were determined in a receptor binding assay. The essential structural moieties in the Corynanthe type indole alkaloids for inducing the opioid agonistic activity were also clarified. The oxidative derivatives of mitragynine, i.e., mitragynine pseudoindoxyl (2) and 7-hydroxymitragynine (12), were found as opioid agonists with higher potency than morphine in the experiment with guinea pig ileum. In addition, 2 induced an analgesic activity in the tail flick test in mice. PMID:11960505

  18. Photofragmentation mechanisms in protonated chiral cinchona alkaloids.

    PubMed

    Kumar, Sunil; Lucas, Bruno; Fayeton, Jacqueline; Scuderi, Debora; Alata, Ivan; Broquier, Michel; Barbu-Debus, Katia Le; Lepère, Valeria; Zehnacker, Anne

    2016-08-10

    The photo-stability of protonated cinchona alkaloids is studied in the gas phase by a multi-technique approach. A multi-coincidence technique is used to demonstrate that the dissociation is a direct process. Two dissociation channels are observed. They result from the C8-C9 cleavage, accompanied or not by hydrogen migration. The branching ratio between the two photo-fragments is different for the two pseudo-enantiomers quinine and quinidine. Mass spectrometry experiments coupling UV photo-dissociation of the reactants and structural characterization of the ionic photo-products by Infra-Red Multiple Photo-Dissociation (IRMPD) spectroscopy provide unambiguous information on their structure. In addition, quantum chemical calculations allow proposing a reactive scheme and discussing it in terms of the ground-state geometry of the reactant. PMID:27477216

  19. Insect natural products and processes: new treatments for human disease.

    PubMed

    Ratcliffe, Norman A; Mello, Cicero B; Garcia, Eloi S; Butt, Tariq M; Azambuja, Patricia

    2011-10-01

    In this overview, some of the more significant recent developments in bioengineering natural products from insects with use or potential use in modern medicine are described, as well as in utilisation of insects as models for studying essential mammalian processes such as immune responses to pathogens. To date, insects have been relatively neglected as sources of modern drugs although they have provided valuable natural products, including honey and silk, for at least 4-7000 years, and have featured in folklore medicine for thousands of years. Particular examples of Insect Folk Medicines will briefly be described which have subsequently led through the application of molecular and bioengineering techniques to the development of bioactive compounds with great potential as pharmaceuticals in modern medicine. Insect products reviewed have been derived from honey, venom, silk, cantharidin, whole insect extracts, maggots, and blood-sucking arthropods. Drug activities detected include powerful antimicrobials against antibiotic-resistant bacteria and HIV, as well as anti-cancer, anti-angiogenesis and anti-coagulant factors and wound healing agents. Finally, the many problems in developing these insect products as human therapeutic drugs are considered and the possible solutions emerging to these problems are described. PMID:21658450

  20. Biosynthesis of ambiguine indole alkaloids in cyanobacterium Fischerella ambigua.

    PubMed

    Hillwig, Matthew L; Zhu, Qin; Liu, Xinyu

    2014-02-21

    Ambiguines belong to a family of hapalindole-type indole alkaloid natural products, with many of the members possessing up to eight consecutive carbon stereocenters in a fused pentacyclic 6-6-6-5-7 ring scaffold. Here, we report the identification of a 42 kbp ambiguine (amb) biosynthetic gene cluster that harbors 32 protein-coding genes in its native producer Fischerella ambigua UTEX1903. Association of the amb cluster with ambiguine biosynthesis was confirmed by both bioinformatic analysis and in vitro characterizations of enzymes responsible for 3-((Z)-2'-isocyanoethenyl) indole and geranyl pyrophosphate biosynthesis and a C-2 indole dimethylallyltransferase that regiospecifically tailors hapalindole G to ambiguine A. The presence of five nonheme iron-dependent oxygenase coding genes (including four Rieske-type oxygenases) within the amb cluster suggests late-stage C-H activations are likely responsible for the structural diversities of ambiguines by regio- and stereospecific chlorination, hydroxylation, epoxidation, and sp(2)-sp(3) C-C bond formation. PMID:24180436