Science.gov

Sample records for alkane carbon number

  1. A molecular dynamics study of the effect of thermal boundary conductance on thermal transport of ideal crystal of n-alkanes with different number of carbon atoms

    NASA Astrophysics Data System (ADS)

    Rastgarkafshgarkolaei, Rouzbeh; Zeng, Yi; Khodadadi, J. M.

    2016-05-01

    Phase change materials such as n-alkanes that exhibit desirable characteristics such as high latent heat, chemical stability, and negligible supercooling are widely used in thermal energy storage applications. However, n-alkanes have the drawback of low thermal conductivity values. The low thermal conductivity of n-alkanes is linked to formation of randomly oriented nano-domains of molecules in their solid structure that is responsible for excessive phonon scattering at the grain boundaries. Thus, understanding the thermal boundary conductance at the grain boundaries can be crucial for improving the effectiveness of thermal storage systems. The concept of the ideal crystal is proposed in this paper, which describes a simplified model such that all the nano-domains of long-chain n-alkanes are artificially aligned perfectly in one direction. In order to study thermal transport of the ideal crystal of long-chain n-alkanes, four (4) systems (C20H42, C24H50, C26H54, and C30H62) are investigated by the molecular dynamics simulations. Thermal boundary conductance between the layers of ideal crystals is determined using both non-equilibrium molecular dynamics (NEMD) and equilibrium molecular dynamics (EMD) simulations. Both NEMD and EMD simulations exhibit no significant change in thermal conductance with the molecular length. However, the values obtained from the EMD simulations are less than the values from NEMD simulations with the ratio being nearly three (3) in most cases. This difference is due to the nature of EMD simulations where all the phonons are assumed to be in equilibrium at the interface. Thermal conductivity of the n-alkanes in three structures including liquid, solid, and ideal crystal is investigated utilizing NEMD simulations. Our results exhibit a very slight rise in thermal conductivity values as the number of carbon atoms of the chain increases. The key understanding is that thermal transport can be significantly altered by how the molecules and the

  2. Classification of ester oils according to their Equivalent Alkane Carbon Number (EACN) and asymmetry of fish diagrams of C10E4/ester oil/water systems.

    PubMed

    Ontiveros, Jesús F; Pierlot, Christel; Catté, Marianne; Molinier, Valérie; Pizzino, Aldo; Salager, Jean-Louis; Aubry, Jean-Marie

    2013-08-01

    The phase behavior of well-defined C10E4/ester oil/water systems versus temperature was investigated. Fifteen ester oils were studied and their Equivalent Alkane Carbon Numbers (EACNs) were determined from the so-called fish-tail temperature T* of the fish diagrams obtained with an equal weight amount of oil and water (f(w)=0.5). The influence of the chemical structure of linear monoester on EACN was quantitatively rationalized in terms of ester bonds position and total carbon number, and explained by the influence of these polar oils on the "effective" packing parameter of the interfacial surfactant, which takes into account its entire physicochemical environment. In order to compare the behaviors of typical mono-, di-, and triester oils, three fish diagrams were entirely plotted with isopropyl myristate, bis (2-ethylhexyl) adipate, and glycerol trioctanoate. When the number of ester bonds increases, a more pronounced asymmetry of the three-phase body of the fish diagram with respect to T* is observed. In this case, T* is much closer to the upper limit temperature Tu than to the lower limit temperature Tl of the three-phase zone. This asymmetry is suggested to be linked to an increased solubility of the surfactant in the oil phase, which decreases the surfactant availability for the interfacial pseudo-phase. As a consequence, the asymmetry depends on the water-oil ratio, and a method is proposed to determine the fw value at which T* is located at the mean value of Tu and Tl.

  3. Heats of immersion of active carbon and carbon black in n-alcohols and n-alkanes

    SciTech Connect

    Isirikyan, A.A.; Polyakov, N.S.; Tatarinova, L.I.

    1994-07-01

    The heats of immersion Q{sub i} of microporous carbon and nonporous carbon black in n-alcohols and n-alkanes are equal for molecules with the same number of carbon atoms n and increase linearly with an increase in n. The structure of the liquid-solid interface is similar for two types of liquids: only the hydrocarbon radicals are closely adjacent to the hydrophobic carbon surface, and the OH alcohol groups are directed toward the bulk of the adsorbate. The heat of immersion Q{sub is} of the alcohols and alkanes per unit carbon surface is 120 + n, mJ/m{sup 2}. The Q{sub is} values for the alcohols and alkanes with n varying from 1 to 16 can be used for the determination of the specific surface area s of any nonporous or mesoporous carbon adsorbent: s = Q{sub i}/Q{sub is}.

  4. Biosynthetic and environmental effects on the stable carbon isotopic compositions of anteiso- (3-methyl) and iso- (2-methyl) alkanes in tobacco leaves.

    PubMed

    Grice, Kliti; Lu, Hong; Zhou, Youping; Stuart-Williams, Hilary; Farquhar, Graham D

    2008-11-01

    Nicotiana tabacum is the only plant known to synthesise large quantities of anteiso- (3-methyl) alkanes and iso- (2-methyl) alkanes. We investigated the carbon isotope ratios of individual long-chain n-alkanes, anteiso- and iso-alkanes (in the C(29)-C(33) carbon number range) extracted from tobacco grown in chambers under controlled conditions to confirm the pathway used by the tobacco plant to synthesise these particular lipids and to examine whether environmental data are recorded in these compounds. Tobacco was grown under differing temperatures, water availabilities and light intensities in order to control its stable carbon isotope ratios and evaluate isotopic fractionations associated with the synthesis of these particular lipids. The anteiso-alkanes were found to have a predominant even-carbon number distribution (maximising at C(32)), whereas the iso-alkanes exhibit an odd-carbon number distribution (maximising at C(31)). Iso-alkanes were relatively more abundant than the anteiso-alkanes and only two anteiso-alkanes (C(30) and C(32)) were observed. The anteiso-alkanes and iso-alkanes were found to be enriched in (13)C by 2.8-4.3 per thousand and 0-1.8 per thousand compared to the n-alkanes, respectively, consistent with different biosynthetic precursors. The assumed precursor for the odd-carbon-numbered iso-alkanes is iso-butyryl-CoA (a C(4) unit derived from valine) followed by subsequent elongation of C(2) units and then decarboxylation. The assumed precursor for even-carbon-numbered anteiso-alkanes is alpha-methylbutyryl-CoA (a C(5) unit derived from isoleucine) and subsequent elongation by C(2) units followed by decarboxylation. The ratio of carbon atoms derived from alpha-methylbutyryl-CoA and subsequent C(2) units (from malonyl-CoA) is 1:5 for the biosynthesis of a C(30)anteiso-alkane. The ratio of carbon atoms derived from iso-butyryl-CoA and subsequent C(2) units (from malonyl-CoA) is 4:25 for the synthesis of a C(29)iso-alkane. An order of (13)C

  5. Molecular simulation and macroscopic modeling of the diffusion of hydrogen, carbon monoxide and water in heavy n-alkane mixtures.

    PubMed

    Makrodimitri, Zoi A; Unruh, Dominik J M; Economou, Ioannis G

    2012-03-28

    The self-diffusion coefficient of hydrogen (H(2)), carbon monoxide (CO) and water (H(2)O) in n-alkanes was studied by molecular dynamics simulation. Diffusion in a few pure n-alkanes (namely n-C(8), n-C(20), n-C(64) and n-C(96)) was examined. In addition, binary n-C(12)-n-C(96) mixtures with various compositions as well as more realistic five- and six-n-alkane component mixtures were simulated. In all cases, the TraPPE united atom force field was used for the n-alkane molecules. The force field for the mixture of n-alkanes was initially validated against experimental density values and was shown to be accurate. Moreover, macroscopic correlations for predicting diffusion coefficient of H(2), CO and H(2)O in n-alkanes and mixtures of n-alkanes were developed. The functional form of the correlation was based on the rough hard sphere theory (RHS). The correlation was applied to simulation data and an absolute average deviation (AAD) of 5.8% for pure n-alkanes and 3.4% for n-alkane mixtures was obtained. Correlation parameters vary in a systematic way with carbon number and so they can be used to provide predictions in the absence of any experimental or molecular simulation data. Finally, in order to reduce the number of adjustable parameters, for the n-alkane mixtures the "pseudo-carbon number" approach was used. This approach resulted in relatively higher deviation from MD simulation data (AAD of 18.2%); however, it provides a convenient and fast method to predict diffusion coefficients. The correlations developed here are expected to be useful for engineering calculations related to the design of the Gas-to-Liquid process.

  6. The Number of High-Energy Bands in the Photoelectron Spectrum of Alkanes

    NASA Astrophysics Data System (ADS)

    Merris, Russell; Gutman, Ivan

    2000-12-01

    It was observed that within the Bieri-Dill-Heilbronner-Schmelzer model for the calculation of the ion-ization energies of alkanes CnH2n+2, there are exactly n C2s -electron energy levels lying below the degenerate α-ß manifold. We now show that, indeed, this regularity is obeyed by practically all alkane species. Exceptions do exist, but they must possess a (chemically infeasible) group of more than six mutually connected quaternary carbon atoms.

  7. Long chain n-alkanes and their carbon isotopes in lichen species from western Hubei Province: implication for geological records

    NASA Astrophysics Data System (ADS)

    Huang, Xianyu; Xue, Jiantao; Guo, Shouyu

    2012-03-01

    Five coticolous lichen samples were collected from western Hubei Province of China to analyze the long chain n-alkanes and their carbon isotope compositions. The n-alkanes range in carbon number from C17 to C33 with strong odd-over-even predominance between C21 and C33. Lichens are dominated by n-C29 in the samples of Dajiuhu, Shennongjia Mountain, but by both n-C23 and n-C29 at Qizimei Mountain. This difference may result from the different environmental conditions in these two sites. The δ 13C values of long chain n-alkanes in lichen samples show the signature of C3 plants. Based on compoundspecific carbon isotopic values and previous results, we state that alkane homologs >C23 mainly originate from the symbiotic fungi, while symbiotic algae only contribute trace amount of long chain alkanes. Of great interesting is the occurrence of long chain 3-methylalkanes in the Qizimei samples. These anteiso compounds range from C24 to C32, displaying obvious even-over-odd predominance. This study reveals that the association of long chain 3-methylalkanes with n-C23 alkane might be used as proxies to reconstruct the paleoecological implications of lichens in Earth history.

  8. Reprint of "Stable hydrogen and carbon isotopic compositions of long-chain (C21-C33) n-alkanes and n-alkenes in insects"

    NASA Astrophysics Data System (ADS)

    Chikaraishi, Yoshito; Kaneko, Masanori; Ohkouchi, Naohiko

    2013-06-01

    We report the molecular and stable isotopic (δD and δ13C) compositions of long-chain n-alkanes in common insects including the cabbage butterfly, swallowtail, wasp, hornet, grasshopper, and ladybug. Insect n-alkanes are potential candidates of the contamination of soil and sedimentary n-alkanes that are believed to be derived from vascular plant waxes. Long-chain n-alkanes (range C21-33; maximum C23-C29) are found to be abundant in the insects (31-781 μg/dry g), with a carbon preference index (CPI) of 5.1-31.5 and an average chain length (ACL) of 24.9-29.3. The isotopic compositions (mean ± 1σ, n = 33) of the n-alkanes are -195 ± 16‰ for hydrogen and -30.6 ± 2.4‰ for carbon. The insect n-alkanes are depleted in D by approximately 30-40‰ compared with wax n-alkanes from C3 (-155 ± 25‰) and C4 vascular plants (-167 ± 13‰), whereas their δ13C values fall between those of C3 (-36.2 ± 2.4‰) and C4 plants (-20.3 ± 2.4‰). Thus, the contribution of insect-derived n-alkanes to soil and sediment could potentially shift δD records of n-alkanes toward more negative values and potentially muddle the assumed original C3/C4 balance in the δ13C records of the soil and sedimentary n-alkanes. n-Alkenes are also found in three insects (swallowtail, wasp and hornet). They are more depleted in D relative to the same carbon numbered n-alkanes (δDn-alkene - δDn-alkane = -17 ± 16‰), but the δ13C values are almost identical to those of the n-alkanes (δ13Cn-alkene - δ13Cn-alkane = 0.1 ± 0.2‰). These results suggest that these n-alkenes are desaturated products of the same carbon numbered n-alkanes.

  9. Stable hydrogen and carbon isotopic compositions of long-chain (C21-C33) n-alkanes and n-alkenes in insects

    NASA Astrophysics Data System (ADS)

    Chikaraishi, Yoshito; Kaneko, Masanori; Ohkouchi, Naohiko

    2012-10-01

    We report the molecular and stable isotopic (δD and δ13C) compositions of long-chain n-alkanes in common insects including the cabbage butterfly, swallowtail, wasp, hornet, grasshopper, and ladybug. Insect n-alkanes are potential candidates of the contamination of soil and sedimentary n-alkanes that are believed to be derived from vascular plant waxes. Long-chain n-alkanes (range C21-33; maximum C23-C29) are found to be abundant in the insects (31-781 μg/dry g), with a carbon preference index (CPI) of 5.1-31.5 and an average chain length (ACL) of 24.9-29.3. The isotopic compositions (mean ± 1σ, n = 33) of the n-alkanes are -195 ± 16‰ for hydrogen and -30.6 ± 2.4‰ for carbon. The insect n-alkanes are depleted in D by approximately 30-40‰ compared with wax n-alkanes from C3 (-155 ± 25‰) and C4 vascular plants (-167 ± 13‰), whereas their δ13C values fall between those of C3 (-36.2 ± 2.4‰) and C4 plants (-20.3 ± 2.4‰). Thus, the contribution of insect-derived n-alkanes to soil and sediment could potentially shift δD records of n-alkanes toward more negative values and potentially muddle the assumed original C3/C4 balance in the δ13C records of the soil and sedimentary n-alkanes. n-Alkenes are also found in three insects (swallowtail, wasp and hornet). They are more depleted in D relative to the same carbon numbered n-alkanes (δDn-alkene - δDn-alkane = -17 ± 16‰), but the δ13C values are almost identical to those of the n-alkanes (δ13Cn-alkene - δ13Cn-alkane = 0.1 ± 0.2‰). These results suggest that these n-alkenes are desaturated products of the same carbon numbered n-alkanes.

  10. Molecular dynamics simulations of transport and separation of carbon dioxide-alkane mixtures in carbon nanopores.

    PubMed

    Firouzi, Mahnaz; Nezhad, Kh Molaai; Tsotsis, Theodore T; Sahimi, Muhammad

    2004-05-01

    The configurational-bias Monte Carlo method, which is used for efficient generation of molecular models of n-alkane chains, is combined for the first time with the dual control-volume grand-canonical molecular-dynamics simulation, which has been developed for studying transport of molecules in pores under an external potential gradient, to investigate transport and separation of binary mixtures of n-alkanes, as well as mixtures of CO2 and n-alkanes, in carbon nanopores. The effect of various factors, such as the temperature of the system, the composition of the mixture, and the pore size, on the separation of the mixtures is investigated. We also report the preliminary results of an experimental study of transport and separation of some of the same mixtures in a carbon molecular-sieve membrane with comparable pore sizes. The results indicate that, for the mixtures considered in this paper, even in very small carbon nanopores the energetic effects still play a dominant role in the transport and separation properties of the mixtures, whereas in a real membrane they are dominated by the membrane's morphological characteristics. As a result, for the mixtures considered, a single pore may be a grossly inadequate model of a real membrane, and hence one must resort to three-dimensional molecular pore network models of the membrane.

  11. Branched aliphatic alkanes with quaternary substituted carbon atoms in modern and ancient geologic samples.

    SciTech Connect

    Kenig, F.; Simons, D.-J. H.; Crich, D.; Cowen, J. P.; Ventura, G. T.; Rehbein-Khalily, T.; Brown, T. C.; Anderson, K. B.; Chemistry; Univ. of Illinois at Chicago; Univ. of Hawaii

    2003-01-01

    A pseudohomologous series of branched aliphatic alkanes with a quaternary substituted carbon atom (BAQCs, specifically 2,2-di-methylalkanes and 3,3- and 5,5-diethylalkanes) were identified in warm (65{sup o}C) deep-sea hydrothermal waters and Late Cretaceous black shales. 5,5-Diethylalkanes were also observed in modern and Holocene marine shelf sediments and in shales spanning the last 800 million years of the geological record. The carbon number distribution of BAQCs indicates a biological origin. These compounds were observed but not identified in previous studies of 2.0 billion- to 2.2 billion-year-old metasediments and were commonly misidentified in other sediment samples, indicating that BAQCs are widespread in the geological record. The source organisms of BAQCs are unknown, but their paleobiogeographic distribution suggests that they have an affinity for sulfides and might be nonphotosynthetic sulfide oxidizers.

  12. Photocatalytic acceptorless alkane dehydrogenation: scope, mechanism, and conquering deactivation with carbon dioxide.

    PubMed

    Chowdhury, Abhishek Dutta; Julis, Jennifer; Grabow, Kathleen; Hannebauer, Bernd; Bentrup, Ursula; Adam, Martin; Franke, Robert; Jackstell, Ralf; Beller, Matthias

    2015-01-01

    Alkane dehydrogenation is of special interest for basic science but also offers interesting opportunities for industry. The existing dehydrogenation methodologies make use of heterogeneous catalysts, which suffer from harsh reaction conditions and a lack of selectivity, whereas homogeneous methodologies rely mostly on unsolicited waste generation from hydrogen acceptors. Conversely, acceptorless photochemical alkane dehydrogenation in the presence of trans-Rh(PMe3 )2 (CO)Cl can be regarded as a more benign and atom efficient alternative. However, this methodology suffers from catalyst deactivation over time. Herein, we provide a detailed investigation of the trans-Rh(PMe3 )2 (CO)Cl-photocatalyzed alkane dehydrogenation using spectroscopic and theoretical investigations. These studies inspired us to utilize CO2 to prevent catalyst deactivation, which leads eventually to improved catalyst turnover numbers in the dehydrogenation of alkanes that include liquid organic hydrogen carriers.

  13. Molecular simulation of diffusion of hydrogen, carbon monoxide, and water in heavy n-alkanes.

    PubMed

    Makrodimitri, Zoi A; Unruh, Dominik J M; Economou, Ioannis G

    2011-02-17

    The self-diffusion and mutual diffusion coefficients of hydrogen (H(2)), carbon monoxide (CO), and water (H(2)O) in n-alkanes were studied by molecular dynamics simulation. n-Alkane molecules were modeled based on the TraPPE united atom force field. NPT molecular dynamics (MD) simulations were performed for n-C(12) to n-C(96) at different temperature and pressure values to validate the accuracy of the force field. In all cases, good agreement was obtained between literature experimental data and model predictions for the density and structure properties of the n-alkanes. Subsequently, the self-diffusion coefficient of the three light components in the various n-alkanes was calculated at different temperatures. Model predictions were in very good agreement with limited experimental data. Furthermore, the Maxwell-Stefan diffusion coefficients of H(2) and CO in two n-alkanes, namely n-C(12) and n-C(28), were calculated based on long MD NVT simulations for different solute concentrations in the n-alkanes. Finally, the Fick diffusion coefficient of the components was calculated as a product of the Maxwell-Stefan diffusion coefficient and a thermodynamic factor. The latter was estimated from the statistical associating fluid theory (SAFT). The Fick diffusion coefficient was found to be higher than the Maxwell-Stefan diffusion coefficient for H(2) and CO in n-C(28). The empirical Darken equation was used to estimate the Maxwell-Stefan diffusion coefficient, and calculations were found to be in good agreement with simulation results.

  14. Assessing carbon and hydrogen isotopic fractionation of diesel fuel n-alkanes during progressive evaporation.

    PubMed

    Muhammad, Syahidah A; Hayman, Alan R; Van Hale, Robert; Frew, Russell D

    2015-01-01

    Compound-specific isotope analysis offers potential for fingerprinting of diesel fuels, however, possible confounding effects of isotopic fractionation due to evaporation need to be assessed. This study measured the fractionation of the stable carbon and hydrogen isotopes in n-alkane compounds in neat diesel fuel during evaporation. Isotope ratios were measured using a continuous flow gas chromatograph/isotope ratio mass spectrometer. Diesel samples were progressively evaporated at 24 ± 2°C for 21 days. Increasing depletion of deuterium in nC12-nC17 alkanes in the remaining liquid with increasing carbon chain length was observed. Negligible carbon isotope fractionation was observed. Preferential vaporization was measured for the shorter chain n-alkanes and the trend decreased with increasing chain length. The decrease in δ(2) H values indicates the preferential vaporization of the isotopically heavier species consistent with available quantitative data for hydrocarbons. These results are most important in the application of stable isotope technology to forensic analysis of diesel.

  15. Carbon and hydrogen isotopic composition of methane and C2+ alkanes in electrical spark discharge: implications for identifying sources of hydrocarbons in terrestrial and extraterrestrial settings.

    PubMed

    Telling, Jon; Lacrampe-Couloume, Georges; Sherwood Lollar, Barbara

    2013-05-01

    The low-molecular-weight alkanes--methane, ethane, propane, and butane--are found in a wide range of terrestrial and extraterrestrial settings. The development of robust criteria for distinguishing abiogenic from biogenic alkanes is essential for current investigations of Mars' atmosphere and for future exobiology missions to other planets and moons. Here, we show that alkanes synthesized during gas-phase radical recombination reactions in electrical discharge experiments have values of δ(2)H(methane)>δ(2)H(ethane)>δ(2)H(propane), similar to those of the carbon isotopes. The distribution of hydrogen isotopes in gas-phase radical reactions is likely due to kinetic fractionations either (i) from the preferential incorporation of (1)H into longer-chain alkanes due to the more rapid rate of collisions of the smaller (1)H-containing molecules or (ii) by secondary ion effects. Similar δ(13)C(C1-C2+) and δ(2)H(C1-C2+) patterns may be expected in a range of extraterrestrial environments where gas-phase radical reactions dominate, including interstellar space, the atmosphere and liquid hydrocarbon lakes of Saturn's moon Titan, and the outer atmospheres of Jupiter, Saturn, Neptune, and Uranus. Radical recombination reactions at high temperatures and pressures may provide an explanation for the combined reversed δ(13)C(C1-C2+) and δ(2)H(C1-C2+) patterns of terrestrial alkanes documented at a number of high-temperature/pressure crustal sites.

  16. Alkane distribution and carbon isotope composition in fossil leaves: An interpretation of plant physiology in the geologic past

    NASA Astrophysics Data System (ADS)

    Graham, H. V.; Freeman, K. H.

    2014-12-01

    The relative chain-length distribution and carbon-isotope composition of n-alkanes extracted from sedimentary rocks are important geochemical tools for investigating past terrestrial ecosystems. Alkanes preserved in ancient sediments are assumed to be contemporaneous, derived from the same ecosystem, and integrated from the biomass present on the landscape at the time of deposition. Further, there is an underlying assumption that ancient plants exhibited the same metabolic and physiological responses to climate conditions that are observed for modern plants. Interpretations of alkane abundances and isotopic signatures are complicated by the strong influence of phylogenetic affiliation and ecological factors, such as canopy structure. A better understanding of how ecosystem and taxa influence alkane properties, including homologue abundance patterns and leaf-lipid carbon isotope fractionation would help strengthen paleoecological interpretations based on these widely employed plant biomarkers. In this study, we analyze the alkane chain-length distribution and carbon-isotope composition of phytoleim and alkanes (d13Cleaf and d13Clipid) extracted from a selection of Cretaceous and Paleocene fossil leaves from the Guaduas and Cerrejon Formations of Colombia. These data were compared with data for the same families in a modern analogue biome. Photosynthetic and biosynthetic fractionation (∆leaf and elipid) values determined from the fossil material indicate carbon metabolism patterns were similar to modern plants. Fossil data were incorporated in a biomass-weighted mixing model to represent the expected lipid complement of sediment arising from this ecosystem and compared with alkane measurements from the rock matrix. Modeled and observed isotopic and abundance patterns match well for alkane homologs most abundant in plants (i.e., n-C27 to n-C33). The model illustrates the importance of understanding biases in litter flux and taphonomic pressures inherent in the

  17. Binary and ternary adsorption of n-alkane mixtures on activated carbon

    SciTech Connect

    Kalies, G.; Braeuer, P.; Messow, U.

    1999-06-15

    The adsorption isotherms of the binary n-alkane mixtures n-hexane/n-octane, n-octane/n-tetradecane, and n-hexane/n-tetradecane on the activated carbon TA 95 are measured at 298 K and described with mathematical functions. About 40 experimental values of the adsorption excess of the ternary mixture n-hexane/n-octane/n-tetradecane on activated carbon TA 95 at 298 K are gas chromatographically measured inside the ternary triangle. The ternary data are represented in the three-dimensional space with the help of transformation of coordinates and by utilization of the conception of the quasi-two-component representation of the mole fractions. A consistency test for the specific wetting Gibbs energies calculated from the binary data is carried out. The possibilities for a mathematical prediction of ternary data from adsorption data for the constituent binary mixtures are proved.

  18. Molecular dynamics insight to phase transition in n-alkanes with carbon nanofillers

    NASA Astrophysics Data System (ADS)

    Rastogi, Monisha; Vaish, Rahul

    2015-05-01

    The present work aims to investigate the phase transition, dispersion and diffusion behavior of nanocomposites of carbon nanotube (CNT) and straight chain alkanes. These materials are potential candidates for organic phase change materials(PCMs) and have attracted flurry of research recently. Accurate experimental evaluation of the mass, thermal and transport properties of such composites is both difficult as well as economically taxing. Additionally it is crucial to understand the factors that results in modification or enhancement of their characteristic at atomic or molecular level. Classical molecular dynamics approach has been extended to elucidate the same. Bulk atomistic models have been generated and subjected to rigorous multistage equilibration. To reaffirm the approach, both canonical and constant-temperature, constant- pressure ensembles were employed to simulate the models under consideration. Explicit determination of kinetic, potential, non-bond and total energy assisted in understanding the enhanced thermal and transport property of the nanocomposites from molecular point of view. Crucial parameters including mean square displacement and simulated self diffusion coefficient precisely define the balance of the thermodynamic and hydrodynamic interactions. Radial distribution function also reflected the density variation, strength and mobility of the nanocomposites. It is expected that CNT functionalization could improve the dispersion within n-alkane matrix. This would further ameliorate the mass and thermal properties of the composite. Additionally, the determined density was in good agreement with experimental data. Thus, molecular dynamics can be utilized as a high throughput technique for theoretical investigation of nanocomposites PCMs.

  19. Molecular dynamics insight to phase transition in n-alkanes with carbon nanofillers

    SciTech Connect

    Rastogi, Monisha; Vaish, Rahul

    2015-05-15

    The present work aims to investigate the phase transition, dispersion and diffusion behavior of nanocomposites of carbon nanotube (CNT) and straight chain alkanes. These materials are potential candidates for organic phase change materials(PCMs) and have attracted flurry of research recently. Accurate experimental evaluation of the mass, thermal and transport properties of such composites is both difficult as well as economically taxing. Additionally it is crucial to understand the factors that results in modification or enhancement of their characteristic at atomic or molecular level. Classical molecular dynamics approach has been extended to elucidate the same. Bulk atomistic models have been generated and subjected to rigorous multistage equilibration. To reaffirm the approach, both canonical and constant-temperature, constant- pressure ensembles were employed to simulate the models under consideration. Explicit determination of kinetic, potential, non-bond and total energy assisted in understanding the enhanced thermal and transport property of the nanocomposites from molecular point of view. Crucial parameters including mean square displacement and simulated self diffusion coefficient precisely define the balance of the thermodynamic and hydrodynamic interactions. Radial distribution function also reflected the density variation, strength and mobility of the nanocomposites. It is expected that CNT functionalization could improve the dispersion within n-alkane matrix. This would further ameliorate the mass and thermal properties of the composite. Additionally, the determined density was in good agreement with experimental data. Thus, molecular dynamics can be utilized as a high throughput technique for theoretical investigation of nanocomposites PCMs.

  20. Growth factor controls on the distribution and carbon isotope composition of n-alkanes in leaf wax

    NASA Astrophysics Data System (ADS)

    Jia, C.; Xie, S.; Huang, X.

    2012-12-01

    Cuticular wax plays pivotal physiological and ecological roles in the interactions between plants and the environments in which they grow. Plant-derived long-chain alkanes are more resistant to decay than other biochemical polymers. n-Alkane distributions (Carbon Preference Index (CPI) values and Average Chain Length (ACL) values) and carbon isotopic values are used widely in palaeoenvironmental reconstruction. However, there is little information available on how growth stages of the plant might influence the abundance of n-alkanes in the natural environment. In this study, we analyzed n-alkane distributions and carbon isotope data from two tree species (Cinnamomum camphora (L.) Presl. and Liquidambar formosana Hance) collected monthly from 2009 to 2011 in Nanwang Shan, Wuhan, Hubei Province. CPI values for n-alkanes from C. camphora remained stable in autumn and winter but fluctuated dramatically during spring and autumn each year. Positive correlations between CPI values and the relative content of (C27+C29) were observed in both sun and shade leaves of C. camphora from April to July. In L. formosana, CPI values decreased gradually from April to December. A similar trend was observed in all three years suggesting that growth stages rather than temperature or relative humidity affected the CPI values on a seasonal timescale. In the samples of L. formosana ACL values were negatively correlated with CPI values in the growing season (from April to July) and positively correlated with CPI values in the other seasons. The δ13C values of C29 and C31 n-alkanes displayed more negative carbon isotopic values in autumn and winter compared with leaves sampled at the start of the growing season from both trees. The δ13C values of C29 and C31 n-alkanes of L. formosana decreased from April to December. These results demonstrate the importance of elucidating the growing factors that influence the distribution and δ13C values of alkanes in modern leaves prior to using CPI

  1. Inhibitory potency of 4-carbon alkanes and alkenes toward CYP2E1 activity.

    PubMed

    Hartman, Jessica H; Miller, Grover P; Boysen, Gunnar

    2014-04-06

    CYP2E1 has been implicated in the bioactivation of many small molecules into reactive metabolites which form adducts with proteins and DNA, and thus a better understanding of the molecular determinants of its selectivity are critical for accurate toxicological predictions. In this study, we determined the potency of inhibition of human CYP2E1 for various 4-carbon alkanes, alkenes and alcohols. In addition, known CYP2E1 substrates and inhibitors including 4-methylpyrazole, aniline, and dimethylnitrosamine were included to determine their relative potencies. Of the 1,3-butadiene-derived metabolites studied, 3,4-epoxy-1-butene was the strongest inhibitor with an IC50 of 110 μM compared to 1700 μM and 6600 μM for 1,2-butenediol and 1,2:3,4-diepoxybutane, respectively. Compared to known inhibitors, inhibitory potency of 3,4-epoxy-1-butene is between 4-methylpyrazole (IC50 = 1.8 μM) and dimethylnitrosamine (IC50 = 230 μM). All three butadiene metabolites inhibit CYP2E1 activity through a simple competitive mechanism. Among the 4-carbon compounds studied, the presence and location of polar groups seems to influence inhibitory potency. To further examine this notion, the investigation was extended to include structurally and chemically similar analogues, including propylene oxide and various butane alcohols. Those results demonstrated preferential recognition of CYP2E1 toward the type and location of polar and hydrophobic structural elements. Taken together, CYP2E1 metabolism may be modified in vivo by exposure to 4-carbon compounds, such as drugs, and nutritional constituents, a finding that highlights the complexity of exposure to mixtures.

  2. Prediction of carbon-13 NMR chemical shift of alkanes with rooted path vector.

    PubMed

    Zhou, L P; Sun, L L; Yu, Y; Lu, W; Li, Z L

    2006-11-01

    Systematic studies were further made on graph theory in quantitative structure-spectrum relationships (QSSR) for various areas of spectroscopies. Chemical shifts (CS) in alkanes for carbon-13 nuclear magnetic resonance (13C NMR) were well correlated with a set of novel molecular graph indices, called the rooted path vector of various lengths, as several multivariate regression equations as following:CS=3.022+5.336P1+7.356P2-1.648P3+0.83859P4+0.210P5-0.138P6-0.506P7+2.486P8-1.669P9; n=402, m=9, R=0.944, RCV=0.9413, S.D.=3.333, F=358.343, U=35833.211, Q=4355.422 for all types (primary, secondly, tertiary, quaternary as well as methane) of carbon atoms CS=0.983+6.811P1+7.584P2-2.029P3+0.809P4+0.106P5+0.043P6-0.124P7+1.715P8-1.101P9; n=374, m=9, R=0.975, RCV=0.9737, S.D.=2.303, F=773.372, U=36912.109, Q=1930.363 for primary, secondly, tertiary (including methane) carbon atoms; and CS=27.819+2.351P2+0.549P3-0.440P4+0.170P5-0.050P6; n=27, m=5, R=0.992, RCV=0.9674, S.D.=0.324, F=265.418, U=138.891, Q=2.198 for quaternary carbon atoms, respectively. Quite good estimation and prediction results were obtained from the quantitative molecular modeling and the performance of multiple linear regression (MLR) equations were tested to work well through cross-validation (CV) with the leave-one-out (LOO) procedure.

  3. Optimizing carbon efficiency of jet fuel range alkanes from cellulose co-fed with polyethylene via catalytically combined processes.

    PubMed

    Zhang, Xuesong; Lei, Hanwu; Zhu, Lei; Zhu, Xiaolu; Qian, Moriko; Yadavalli, Gayatri; Yan, Di; Wu, Joan; Chen, Shulin

    2016-08-01

    Enhanced carbon yields of renewable alkanes for jet fuels were obtained through the catalytic microwave-induced co-pyrolysis and hydrogenation process. The well-promoted ZSM-5 catalyst had high selectivity toward C8-C16 aromatic hydrocarbons. The raw organics with improved carbon yield (∼44%) were more principally lumped in the jet fuel range at the catalytic temperature of 375°C with the LDPE to cellulose (representing waste plastics to lignocellulose) mass ratio of 0.75. It was also observed that the four species of raw organics from the catalytic microwave co-pyrolysis were almost completely converted into saturated hydrocarbons; the hydrogenation process was conducted in the n-heptane medium by using home-made Raney Ni catalyst under a low-severity condition. The overall carbon yield (with regards to co-reactants of cellulose and LDPE) of hydrogenated organics that mostly match jet fuels was sustainably enhanced to above 39%. Meanwhile, ∼90% selectivity toward jet fuel range alkanes was attained.

  4. Carbon Isotopic Fractionation Associated with Cyanobacterial Biomarkers: 2-Methylhopanoids and Methyl-Branched Alkanes

    NASA Technical Reports Server (NTRS)

    Jahnke, L. L.; Summons, R. E.; Hope, J. M.; Cullings, K. W.

    2001-01-01

    This paper reports the carbon isotopic fractionations associated with the biosynthesis of biomarker lipids in a number of cyanobacteria obtained from culture collections and isolated from the coniform mats of Yellowstone National Park. Additional information is contained in the original extended abstract.

  5. Carbon Isotopes of Alkanes in Hydrothermal Abiotic Organic Synthesis Processes at High Temperatures and Pressures: An Experimental Study

    NASA Technical Reports Server (NTRS)

    Fu, Qi; Socki, Richard A.; Niles, Paul B.

    2010-01-01

    Observation of methane in the Martian atmosphere has been reported by different detection techniques [1-4]. With more evidence showing extensive water-rock interaction in Martian history [5-7], abiotic formation by Fischer-Tropsch Type (FTT) synthesis during serpentization reactions may be one possible process responsible for methane generation on Mars [8, 9]. While the experimental studies performed to date leave little doubt that chemical reactions exist for the abiotic synthesis of organic compounds by mineral surface-catalyzed reactions [10-12], little is known about the reaction pathways by which CO2 and/or CO are reduced under hydrothermal conditions. Carbon and hydrogen isotope measurements of alkanes have been used as an effective tool to constrain the origin and reaction pathways of hydrocarbon formation. Alkanes generated by thermal breakdown of high molecular weight organic compounds have carbon and hydrogen isotopic signatures completely distinct from those formed abiotically [13-15]. Recent experimental studies, however, showed that different abiogenic hydrocarbon formation processes (e.g., polymerization vs. depolymerization) may have different carbon and hydrogen isotopic patterns [16]. Results from previous experiments studying decomposition of higher molecular weight organic compounds (lignite) also suggested that pressure could be a crucial factor affecting fractionation of carbon isotopes [17]. Under high pressure conditions, no experimental data are available describing fractionation of carbon isotope during mineral catalyzed FTT synthesis. Thus, hydrothermal experiments present an excellent opportunity to provide the requisite carbon isotope data. Such data can also be used to identify reaction pathways of abiotic organic synthesis under experimental conditions.

  6. DITERMINAL OXIDATION OF LONG-CHAIN ALKANES BY BACTERIA1

    PubMed Central

    Kester, A. S.; Foster, J. W.

    1963-01-01

    Kester, A. S. (The University of Texas, Austin) and J. W. Foster. Diterminal oxidation of long-chain alkanes by bacteria. J. Bacteriol. 85:859–869. 1963.—A corynebacterial organism capable of growing in mineral salts with individual pure alkanes as carbon sources produces a series of acids from the C10-C14 alkanes. They have been isolated in pure form and identified as monoic, ω-hydroxy monoic, and dioic acids containing the same number of carbon atoms as the substrate alkane. Oxidation took place at both terminal methyl groups—“diterminal oxidation.” Appropriate labeling experiments indicate that omega oxidation of fatty acids occurs in this organism and that an oxygenation with O2 occurs. Images PMID:14044955

  7. Physiological function of the Pseudomonas putida PpG6 (Pseudomonas oleovorans) alkane hydroxylase: monoterminal oxidation of alkanes and fatty acids.

    PubMed Central

    Nieder, M; Shapiro, J

    1975-01-01

    Pseudomonas putida PpG6 is able to utilize purified n-alkanes of six to ten carbon atoms for growth. It can also grow on the primary terminal oxidation products of these alkanes and on 1-dodecanol but not on the corresponding 2-ketones or 1,6-hexanediol, adipic acid, or pimelic acid. Revertible point mutants can be isolated which have simultaneously lost the ability to grow on all five n-alkane growth substrates but which can still grow on octanol or nonanol. An acetate-negative mutant defective in isocitrate lysase activity is unable to grow on even-numbered alkanes and fatty acids. Analysis of double mutants defective in acetate and propionate or in acetate and glutarate metabolism shows that alkane carbon is assimilated only via acetyl-coenzyme A and propionyl-coenzyme A. These results support the following conclusions: (i) The n-alkane growth specificity of P. putida PpG6 is due to the substrate specificity of whole-cell alkane hydroxylation; (ii) there is a single alkane hydroxylase enzyme complex; (iii) the physiological role of this complex is to initiate the monoterminal oxidation of alkane chains; and (iv) straight-chain fatty acids from butyric through nonanoic are degraded exclusively by beta-oxidation from the carboxyl end of the molecule. PMID:804473

  8. Biomarkers and compound-specific stable carbon isotope of n-alkanes in crude oils from Eastern Llanos Basin, Colombia

    NASA Astrophysics Data System (ADS)

    Cortes, Jorge E.; Rincon, Jose M.; Jaramillo, Jose M.; Philp, R. Paul; Allen, Jon

    2010-03-01

    Representative samples of crude oils from Cusiana, Cupiagua, Apiay, Castilla and Chichimene fields in the Eastern Llanos Basin of Colombia were analyzed to determine its compound-specific stable carbon isotope composition (CSIA) using gas chromatography-isotopic ratio-mass spectrometry (GC-IRMS). GC-IRMS analyses of n-alkanes allowed differentiating between Cretaceous and Cretaceous/Tertiary oil samples. Cretaceous sourced samples have δ13C-enriched values than Cretaceous/Tertiary sourced samples; the heavier isotope composition of these samples is due to their major terrigenous organic matter input. Their isotope distribution patterns suggest significant algal and/or bacterial contribution (marine origin). The analysis of the n-alkane fractions by GC-IRMS confirms that the organic matter has marine origin in those samples from Cusiana, Cupiagua and Apiay while Castilla and Chichimene have marine origin with terrestrial inputs. The results were confirmed by gas chromatography/FID and gas chromatography/mass spectrometry (GC/MS). Basic geochemical composition show that samples from Cupiagua/Cusiana fields and Apiay/Castilla/Chichimene fields in the Llanos basin, Colombia present different characteristics reflecting a specific for each depositional environment.

  9. Combustion Characteristics of Liquid Normal Alkane Fuels in a Model Combustor of Supersonic Combustion Ramjet Engine

    NASA Astrophysics Data System (ADS)

    今村, 宰; 石川, 雄太; 鈴木, 俊介; 福本, 皓士郎; 西田, 俊介; 氏家, 康成; 津江, 光洋

    Effect of kinds of one-component n-alkane liquid fuels on combustion characteristics was investigated experimentally using a model combustor of scramjet engine. The inlet condition of a model combustor is 2.0 of Mach number, up to 2400K of total temperature, and 0.38MPa of total pressure. Five kinds of n-alkane are tested, of which carbon numbers are 7, 8, 10, 13, and 16. They are more chemically active and less volatile with an increase of alkane carbon number. Fuels are injected to the combustor in the upstream of cavity with barbotage nitrogen gas and self-ignition performance was investigated. The result shows that self-ignition occurs with less equivalence ratio when alkane carbon number is smaller. This indicates that physical characteristic of fuel, namely volatile of fuel, is dominant for self-ignition behavior. Effect on flame-holding performance is also examined with adding pilot hydrogen and combustion is kept after cutting off pilot hydrogen with the least equivalence ratio where alkane carbon number is from 8 to 10. These points are discussed qualitatively from the conflict effect of chemical and physical properties on alkane carbon number.

  10. Evaluating Carbon Isotope Signature of Bulk Organic Matter and Plant Wax Derived n-alkanes from Lacustrine Sediments as Climate Proxies along the Western Side of the Andes

    NASA Astrophysics Data System (ADS)

    Contreras, S.; Werne, J. P.; Araneda, A.; Conejero, C. A.

    2015-12-01

    Sedimentary carbon isotope values (δ13C) of bulk organic matter and long chain (C25 to C35) n-alkanes are among the most long-lived and widely utilized proxies of organic matter and vegetation source. The carbon distribution (e.g. average carbon chain length, ACL) and isotope signature from long chain n-alkanes had been intensively used on paleoclimate studies because they are less influenced by diagenesis, differential preservation of compound classes, and changes in the sources of organic matter than bulk δ13C values. Recently, studies of modern plant n-alkanes have challenged the use of carbon distribution and carbon isotope signature from sedimentary n-alkanes as reliable indicators of vegetation and climate change. The climate in central-south western South America (SA) is projected to become significantly warmer and drier over the next several decades to centuries in response to anthropogenically driven warming. Paleolimnological studies along western SA are critical to obtain more realistic and reliable regional reconstructions of past climate and environments, including vegetation and water budget variability. Here we discuss bulk δ13C, distribution and δ13C in long chain n-alkanes from a suite of ~40 lake surface sediment (core-top) samples spanning the transition from a Mediterranean climate with a patchwork of cultivated vegetation, pastureland, conifers in central Chile to a rainy temperate climate dominated by broadleaf deciduous and evergreen forest. Data are compared to the latitudinal and orographic climatic trends of the Andes based on the climatology (e.g. precipitation and temperature) of the locations of all lakes involved in this study, using monthly gridded reanalysis products of the Climate Forecast System Reanalysis (CFSR), based on the NCEP global forecast model and meteorological stations available in the region, from January 1979 to December 2010 with a 0.5° horizontal resolution.

  11. Activation of carbon-hydrogen bonds in alkanes and other organic molecules using organotransition metal complexes

    SciTech Connect

    Bergman, R.G.

    1991-10-01

    We have recently begun to investigate the interaction of C-H activating iridium and rhodium complexes with functionalized organic molecules, to determine the effect of functional groups on the process, as well as to investigate the propensity of Ir and Rh to insert into C-H versus other types of X-H bonds. Recent experiments have demonstrated that xenon liquefied at -70{degrees}C and 10 atm pressure serves as an inert solvent for the C-H oxidative addition reaction. We have been able to prepare and isolate, for the first time, C-H oxidative addition products formed from high-melting solid substrates such as naphthalene, adamantane, and even cubane; the latter case represents the first observation of C-H oxidative addition at a tertiary C-H bond. Liquid xenon has also allowed us to carry out more conveniently the C-H oxidative addition reactions of low-boiling gases that are difficult to liquefy, such as methane. Recently we have also been able to carry out analogous studies in the gas phase. Under these conditions, naked'' rather than solvated Cp*Rh(CO) is formed, and this species reacts with cyclohexane at nearly gas-kinetic rates. Under the conditions, collision between Cp*Rh(CO) and cyclohexane is the slowest step in the overall C-H activation process. In contrast, in solution association of solvent with free Cp*Rh(CO) is so rapid that the step involving C-H bond cleavage in the coordinated alkane complex becomes rate-determining. 3 refs., 5 figs.

  12. Activation of carbon-hydrogen bonds in alkanes and other organic molecules using organotransition metal complexes

    SciTech Connect

    Bergman, R.G.

    1991-10-01

    We have recently begun to investigate the interaction of C-H activating iridium and rhodium complexes with functionalized organic molecules, to determine the effect of functional groups on the process, as well as to investigate the propensity of Ir and Rh to insert into C-H versus other types of X-H bonds. Recent experiments have demonstrated that xenon liquefied at -70{degrees}C and 10 atm pressure serves as an inert solvent for the C-H oxidative addition reaction. We have been able to prepare and isolate, for the first time, C-H oxidative addition products formed from high-melting solid substrates such as naphthalene, adamantane, and even cubane; the latter case represents the first observation of C-H oxidative addition at a tertiary C-H bond. Liquid xenon has also allowed us to carry out more conveniently the C-H oxidative addition reactions of low-boiling gases that are difficult to liquefy, such as methane. Recently we have also been able to carry out analogous studies in the gas phase. Under these conditions, ``naked`` rather than solvated Cp*Rh(CO) is formed, and this species reacts with cyclohexane at nearly gas-kinetic rates. Under the conditions, collision between Cp*Rh(CO) and cyclohexane is the slowest step in the overall C-H activation process. In contrast, in solution association of solvent with free Cp*Rh(CO) is so rapid that the step involving C-H bond cleavage in the coordinated alkane complex becomes rate-determining. 3 refs., 5 figs.

  13. Theoretical study of the rhenium–alkane interaction in transition metal–alkane σ-complexes

    PubMed Central

    Cobar, Erika A.; Khaliullin, Rustam Z.; Bergman, Robert G.; Head-Gordon, Martin

    2007-01-01

    Metal–alkane binding energies have been calculated for [CpRe(CO)2](alkane) and [(CO)2M(C5H4)CC(C5H4)M(CO)2](alkane), where M = Re or Mn. Calculated binding energies were found to increase with the number of metal–alkane interaction sites. In all cases examined, the manganese–alkane binding energies were predicted to be significantly lower than those for the analogous rhenium–alkane complexes. The metal (Mn or Re)–alkane interaction was predicted to be primarily one of charge transfer, both from the alkane to the metal complex (70–80% of total charge transfer) and from the metal complex to the alkane (20–30% of the total charge transfer). PMID:17442751

  14. Theoretical study of the rhenium-alkane interaction in transition metal-alkane sigma-complexes.

    PubMed

    Cobar, Erika A; Khaliullin, Rustam Z; Bergman, Robert G; Head-Gordon, Martin

    2007-04-24

    Metal-alkane binding energies have been calculated for [CpRe(CO)2](alkane) and [(CO)2M(C5H4)C[triple bond]C(C5H4)M(CO)2](alkane), where M = Re or Mn. Calculated binding energies were found to increase with the number of metal-alkane interaction sites. In all cases examined, the manganese-alkane binding energies were predicted to be significantly lower than those for the analogous rhenium-alkane complexes. The metal (Mn or Re)-alkane interaction was predicted to be primarily one of charge transfer, both from the alkane to the metal complex (70-80% of total charge transfer) and from the metal complex to the alkane (20-30% of the total charge transfer).

  15. Room temperature dehydrogenation of ethane, propane, linear alkanes C4-C8, and some cyclic alkanes by titanium-carbon multiple bonds.

    PubMed

    Crestani, Marco G; Hickey, Anne K; Gao, Xinfeng; Pinter, Balazs; Cavaliere, Vincent N; Ito, Jun-Ichi; Chen, Chun-Hsing; Mindiola, Daniel J

    2013-10-02

    The transient titanium neopentylidyne, [(PNP)Ti≡C(t)Bu] (A; PNP(-)≡N[2-P(i)Pr2-4-methylphenyl]2(-)), dehydrogenates ethane to ethylene at room temperature over 24 h, by sequential 1,2-CH bond addition and β-hydrogen abstraction to afford [(PNP)Ti(η(2)-H2C═CH2)(CH2(t)Bu)] (1). Intermediate A can also dehydrogenate propane to propene, albeit not cleanly, as well as linear and volatile alkanes C4-C6 to form isolable α-olefin complexes of the type, [(PNP)Ti(η(2)-H2C═CHR)(CH2(t)Bu)] (R = CH3 (2), CH2CH3 (3), (n)Pr (4), and (n)Bu (5)). Complexes 1-5 can be independently prepared from [(PNP)Ti═CH(t)Bu(OTf)] and the corresponding alkylating reagents, LiCH2CHR (R = H, CH3(unstable), CH2CH3, (n)Pr, and (n)Bu). Olefin complexes 1 and 3-5 have all been characterized by a diverse array of multinuclear NMR spectroscopic experiments including (1)H-(31)P HOESY, and in the case of the α-olefin adducts 2-5, formation of mixtures of two diastereomers (each with their corresponding pair of enantiomers) has been unequivocally established. The latter has been spectroscopically elucidated by NMR via C-H coupled and decoupled (1)H-(13)C multiplicity edited gHSQC, (1)H-(31)P HMBC, and dqfCOSY experiments. Heavier linear alkanes (C7 and C8) are also dehydrogenated by A to form [(PNP)Ti(η(2)-H2C═CH(n)Pentyl)(CH2(t)Bu)] (6) and [(PNP)Ti(η(2)-H2C═CH(n)Hexyl)(CH2(t)Bu)] (7), respectively, but these species are unstable but can exchange with ethylene (1 atm) to form 1 and the free α-olefin. Complex 1 exchanges with D2C═CD2 with concomitant release of H2C═CH2. In addition, deuterium incorporation is observed in the neopentyl ligand as a result of this process. Cyclohexane and methylcyclohexane can be also dehydrogenated by transient A, and in the case of cyclohexane, ethylene (1 atm) can trap the [(PNP)Ti(CH2(t)Bu)] fragment to form 1. Dehydrogenation of the alkane is not rate-determining since pentane and pentane-d12 can be dehydrogenated to 4 and 4-d12 with comparable

  16. Carbon and Hydrogen Isotopic Composition of Plant Wax n-Alkanes: A Tool for Characterizing Soil Provenance in Forensic Science

    NASA Astrophysics Data System (ADS)

    Pedentchouk, N.; Wagner, T.; Jones, M.

    2009-04-01

    Forensic science is an integrative discipline that requires material evidence from diverse sources. Geochemical evidence derived from inorganic and organic substances is becoming increasingly popular among law enforcement agencies in industrialized countries. Previous investigations indicate that the relative distributions of individual plant-derived biomarkers found in soils are linked to the biomarker patterns found in the overlying vegetation. However, identification of soil provenance based on the distribution of plant-derived biomarkers for forensic purposes is inhibited by the fact that a significant number of terrestrial plant species have overlapping biomarker distributions. In order to enhance the resolving power of plant-derived biomarker signal, we propose to enhance the molecular approach by adding a stable isotope component, i.e. the delta13C/deltaD values of individual biomarkers. The first objective of this project is to determine the delta13C/deltaD signatures of n-alkanes derived from various higher plant types commonly growing in the UK. The second objective is to investigate whether the same species/plant types differ isotopically between two locations affected by different weather patterns in the UK: a relatively warmer and drier Norwich, Norfolk and a cooler and wetter Newcastle-upon-Tyne in NE England. The n-C29 alkane data from 14 tree species sampled during July 2007 and August 2008 in Newcastle show a clear negative trend between delta13C and deltaD values. When these data are plotted against each other, the six deciduous angiosperms (delta13C: c. -39 to -35 per mil; deltaD: c. -155 to -130 per mil) are completely separated from four evergreen angiosperms (delta13C: c. -33 to -28 per mil; deltaD: c. -195 to -165 per mil). The four gymnosperm species data plot between those of the deciduous and evergreen angiosperms. Because all 14 species in Newcastle experience the same environmental conditions, we suggest that the observed isotopic

  17. n-Alkanes in surficial sediments of Visakhapatnam harbour, east coast of India

    NASA Astrophysics Data System (ADS)

    Punyu, V. R.; Harji, R. R.; Bhosle, N. B.; Sawant, S. S.; Venkat, K.

    2013-04-01

    Surface sediments collected from 19 stations along Visakhapatnam harbour were analysed for organic carbon (OC), δ 13Coc, total lipids (TL), total hydrocarbon (THC), n-alkane concentration and composition. OC, δ 13Coc, TL and THC ranged from 0.6% to 7.6%, -29.3 to -23.8‰, 300 to 14,948 \\upmu g g - 1 dw, and 0.2 to 2,277 \\upmu g g - 1 dw, respectively. Predominance of even carbon numbers n-alkanes C12-C21 with carbon preference index (CPI) of <1 suggests major microbial influence. Fair abundance of odd carbon number n-alkanes in the range of C15-C22 and C23-C33 indicates some input from phytoplankton and terrestrial sources, respectively. Petrogenic input was evident from the presence of hopanes and steranes. The data suggest that organic matter (OM) sources varied spatially and were mostly derived from mixed source.

  18. Catalytic functionalization of methane and light alkanes in supercritical carbon dioxide.

    PubMed

    Fuentes, M Ángeles; Olmos, Andrea; Muñoz, Bianca K; Jacob, Kane; González-Núñez, M Elena; Mello, Rossella; Asensio, Gregorio; Caballero, Ana; Etienne, Michel; Pérez, Pedro J

    2014-08-25

    The development of catalytic methods for the effective functionalization of methane yet remains a challenge. The best system known to date is the so-called Catalytica Process based on the use of platinum catalysts to convert methane into methyl bisulfate with a TOF rate of 10(-3) s. In this contribution, we report a series of silver complexes containing perfluorinated tris(indazolyl)borate ligands that catalyze the functionalization of methane into ethyl propionate upon reaction with ethyl diazoacetate (EDA) by using supercritical carbon dioxide (scCO2) as the reaction medium. The employment of this reaction medium has also allowed the functionalization of ethane, propane, butane, and isobutane.

  19. Dietary accumulation and quantitative structure-activity relationships for depuration and biotransformation of short (C{sub 10}), medium (C{sub 14}), and long (C{sub 18}) carbon-chain polychlorinated alkanes by juvenile rainbow trout (Oncorhynchus mykiss)

    SciTech Connect

    Fisk, A.T.; Tomy, G.T.; Cymbalisty, C.D.; Muir, D.C.G.

    2000-06-01

    Juvenile rainbow trout (Oncorhynchus mykiss) were exposed to three [{sup 14}C]-polychlorinated alkanes at nominal concentrations of 1.5 and 15 {micro}g/g for 40 d, followed by 160 d of clean food, to measure bioaccumulation parameters and biotransformation. These PCSs are identical in carbon-chain length and chlorine content to industrial chlorinated paraffin products, although their method of synthesis differs from that of chlorinated paraffin products. Half-lives ranged from 26 to 91 d, biomagnification factors ranged from 0.9 to 2.8, and both exhibited increasing trends with increasing carbon-chain length. Data from this work and others on PCAs were used to determine biotransformation rates and to examine quantitative structure-activity relationships for bioaccumulation and biotransformation. Quantitative structure-activity relationships developed for half-life and biomagnification factor showed positive linear relationships with the number of carbon atoms, or chlorine atoms, of total carbon and chlorine atoms, and log K{sub ow}. The PCA biotransformation rates (per day) ranged from -0.00028 to 8.4 and exhibited negative relationships with the number of carbon atoms, of chlorine atoms, of total carbon and chlorine atoms, and log K{sub ow}. Results suggest that PCAs with a total number of carbon and chlorine atoms between 22 and 30 are slowly, or are not, biotransformed in juvenile rainbow trout. Increasing carbon-chain length and chlorine content result in greater bioaccumulation of PCAs by reducing partition-based (i.e., diffusion) and metabolic (i.e., biotransformation) elimination processes. High bioaccumulation potential and low biotransformation rates of medium (C{sub 14--18}) and long (C{sub 18--30}) carbon-chain PCAs and highly chlorinated PCAs indicate that information is needed regarding the environmental concentrations of these PCAs in aquatic food chains.

  20. Metal-organic framework for the separation of alkane isomers

    DOEpatents

    Long, Jeffrey R.; Herm, Zoey R.; Wiers, Brian M.; Krishna, Rajamani

    2017-01-10

    A metal organic framework Fe.sub.2(bdp).sub.3 (BDP.sup.2-=1,4-benzenedipyrazolate) with triangular channels is particularly suited for C5-C7 separations of alkanes according to the number of branches in the molecule rather than by carbon number. The metal-organic framework can offer pore geometries that is unavailable in zeolites or other porous media, facilitating distinct types of shape-based molecular separations.

  1. Chain length dependence of the thermodynamic properties of linear and cyclic alkanes and polymers.

    PubMed

    Huang, Dinghai; Simon, Sindee L; McKenna, Gregory B

    2005-02-22

    The specific heat capacity was measured with step-scan differential scanning calorimetry for linear alkanes from pentane (C(5)H(12)) to nonadecane (C(19)H(40)), for several cyclic alkanes, for linear and cyclic polyethylenes, and for a linear and a cyclic polystyrene. For the linear alkanes, the specific heat capacity in the equilibrium liquid state decreases as chain length increases; above a carbon number N of 10 (decane) the specific heat asymptotes to a constant value. For the cyclic alkanes, the heat capacity in the equilibrium liquid state is lower than that of the corresponding linear chains and increases with increasing chain length. At high enough molecular weights, the heat capacities of cyclic and linear molecules are expected to be equal, and this is found to be the case for the polyethylenes and polystyrenes studied. In addition, the thermal properties of the solid-liquid and the solid-solid transitions are examined for the linear and cyclic alkanes; solid-solid transitions are observed only in the odd-numbered alkanes. The thermal expansion coefficients and the specific volumes of the linear and cyclic alkanes are also calculated from literature data and compared with the trends in the specific heats.

  2. Adiabatic Coupling Constant of Nitrobenzene- n-Alkane Critical Mixtures. Evidence from Ultrasonic Spectra and Thermodynamic Data

    NASA Astrophysics Data System (ADS)

    Mirzaev, Sirojiddin Z.; Kaatze, Udo

    2016-09-01

    Ultrasonic spectra of mixtures of nitrobenzene with n-alkanes, from n-hexane to n-nonane, are analyzed. They feature up to two Debye-type relaxation terms with discrete relaxation times and, near the critical point, an additional relaxation term due to the fluctuations in the local concentration. The latter can be well represented by the dynamic scaling theory. Its amplitude parameter reveals the adiabatic coupling constant of the mixtures of critical composition. The dependence of this thermodynamic parameter upon the length of the n-alkanes corresponds to that of the slope in the pressure dependence of the critical temperature and is thus taken another confirmation of the dynamic scaling model. The change in the variation of the coupling constant and of several other mixture parameters with alkane length probably reflects a structural change in the nitrobenzene- n-alkane mixtures when the number of carbon atoms per alkane exceeds eight.

  3. Molecular mobility depending on chain length and thermally induced molecular motion of n-alkane/urea inclusion compounds

    NASA Astrophysics Data System (ADS)

    Nakaoki, Takahiko; Nagano, Hiromasa; Yanagida, Toshinori

    2004-08-01

    Solid-state high resolution 13C NMR was used to analyze the end group conformation and molecular mobility of n-alkanes in a urea host as a function of the carbon number of the n-alkane. It was shown that the chemical shift of the inner methylenes could be interpreted by the γ- gauche effect. Of further interest is our finding that the chemical shift of 3-methylene is independent of both chain length and temperature, a result indicating that the torsional rotation of the bond ω 3 between the 4-methylene and 5-methylene carbons is so inhibited that there is little gauche conformation. The chemical shift of the inner methylenes indicated a different tendency between the even- and the odd-numbered n-alkanes. The fact that the signals of the even-numbered n-alkanes were observed at a comparatively more upfield location than those of the odd-numbered ones indicated that the even-numbered n-alkane had a higher molecular mobility and tended to adopt a more gauche conformation. The decomposition temperature obtained by thermal analysis also suggested a difference between the even- and odd-numbered n-alkanes. The decomposition temperature of the even-numbered n-alkane/urea inclusion compounds was a little lower than that of the odd-numbered ones, a disparity corresponding to the higher molecular mobility of the n-alkane in the urea host. The spin-lattice relaxation time ( T1C) increased with increasing chain length for chains with less than the 14 carbon atoms but reached a constant value for all longer chains. This result is completely different from that for the n-alkane crystal, which gave a longer T1C depending on the chain length, and can be explained by a reduced intermolecular interaction between the n-alkane and the urea host. Clearly, T1C measurements can be applied to confirm the formation of inclusion compounds. However, the different T1C values between the methyl, 2-, 3-, and inner methylene carbons indicates that the n-alkane molecule does not rotate so fast

  4. Shape selective properties of the Al-fumarate metal-organic framework in the adsorption and separation of n-alkanes, iso-alkanes, cyclo-alkanes and aromatic hydrocarbons.

    PubMed

    Bozbiyik, Belgin; Lannoeye, Jeroen; De Vos, Dirk E; Baron, Gino V; Denayer, Joeri F M

    2016-01-28

    The primary goal of this work is to study the adsorption of a wide range of hydrocarbon adsorbates in the Al-fumarate metal-organic framework in order to identify and explore trends in adsorption behaviour that can be related to the sorbate's molecular properties and as well as the properties of this MOF. The pulse chromatographic technique was used to study the adsorption properties of C5-C8 linear, branched, cyclic and aromatic hydrocarbons in vapour phase at low coverage and at high temperatures (150-250 °C). Chromatograms of alkanes having the same number of carbon atoms (C5-C8) clearly show that the linear alkane is retained the longest over its branched and cyclic isomers. Moreover, xylene isomers are also clearly separated by Al-fumarate, with retention times increasing in the order: ortho-xylene < meta-xylene < para-xylene. Differences in adsorption enthalpy of more than 10 kJ mol(-1) between linear alkanes and their di/tri-branched or cyclo-alkane isomers were observed, clearly showing that steric effects imposed by the pore structure of the adsorbent cause the difference in adsorption between linear alkanes and their isomers. In conclusion, Al-fumarate behaves as a shape selective material with respect to structural isomers of linear alkanes, with properties resembling those of medium pore size zeolites.

  5. Determination of n-alkanes contamination in soil samples by micro gas chromatography functionalized by multi-walled carbon nanotubes.

    PubMed

    Li, Yubo; Zhang, Runzhou; Wang, Tao; Wang, Yonghuan; Xu, Tianbai; Li, Lingfeng; Zhao, Weijun; Dong, Shurong; Wang, Xiaozhi; Luo, Jikui

    2016-09-01

    A new method for separation of 11 n-alkanes: octane, o-nonane, n-decane, n-undecane, n-dodecane, n-tridecane, n-tetradecane, n-pentdecne, n-hexadecath, heptadecane, n-octadecane in soil samples was developed. Kuderna-Danish (K.D.) concentrator enrichment prior to ultrasonic extraction and the silicone chromatography column purification and with gas chromatography flame ionization detection (GC-FID) could be used for n-alkanes determination. The micro channels of open tubular column were fabricated onto a silicon wafer to replace the quartz capillary chromatographic column. The column structure and analysis parameters that affected the column separation were investigated and optimized. Under optimal conditions, the extract reagent was centrifuged and collected. A silicone chromatography column and a K.D. concentrator were used for further clean-up and enrichment. Using this method, the limits of detection (LOD) and limits of quantification (LOQ) were obtained in the range of 0.03-0.15 and 0.1-0.5 mg kg(-1) in soil samples, respectively. The relative standard deviation (RSD) was under 12%. The optimized procedure that presented good analytical performance (with recoveries ranging from 56.5% to 89.2%), was successfully applied to determine n-alkane content in farmland soil samples adjacent to a highway. The results showed that the MWCNTs-functionalized column is capable of separating the alkane contaminations with high resolution in about 3 min, which is much shorter than that of GC-MS and other conventional analytical methods, demonstrating its great potential for rapid analysis.

  6. CYP153A6, a Soluble P450 Oxygenase Catalyzing Terminal-Alkane Hydroxylation

    PubMed Central

    Funhoff, Enrico G.; Bauer, Ulrich; García-Rubio, Inés; Witholt, Bernard; van Beilen, Jan B.

    2006-01-01

    The first and key step in alkane metabolism is the terminal hydroxylation of alkanes to 1-alkanols, a reaction catalyzed by a family of integral-membrane diiron enzymes related to Pseudomonas putida GPo1 AlkB, by a diverse group of methane, propane, and butane monooxygenases and by some membrane-bound cytochrome P450s. Recently, a family of cytoplasmic P450 enzymes was identified in prokaryotes that allow their host to grow on aliphatic alkanes. One member of this family, CYP153A6 from Mycobacterium sp. HXN-1500, hydroxylates medium-chain-length alkanes (C6 to C11) to 1-alkanols with a maximal turnover number of 70 min−1 and has a regiospecificity of ≥95% for the terminal carbon atom position. Spectroscopic binding studies showed that C6-to-C11 aliphatic alkanes bind in the active site with Kd values varying from ∼20 nM to 3.7 μM. Longer alkanes bind more strongly than shorter alkanes, while the introduction of sterically hindering groups reduces the affinity. This suggests that the substrate-binding pocket is shaped such that linear alkanes are preferred. Electron paramagnetic resonance spectroscopy in the presence of the substrate showed the formation of an enzyme-substrate complex, which confirmed the binding of substrates observed in optical titrations. To rationalize the experimental observations on a molecular scale, homology modeling of CYP153A6 and docking of substrates were used to provide the first insight into structural features required for terminal alkane hydroxylation. PMID:16816194

  7. CYP153A6, a soluble P450 oxygenase catalyzing terminal-alkane hydroxylation.

    PubMed

    Funhoff, Enrico G; Bauer, Ulrich; García-Rubio, Inés; Witholt, Bernard; van Beilen, Jan B

    2006-07-01

    The first and key step in alkane metabolism is the terminal hydroxylation of alkanes to 1-alkanols, a reaction catalyzed by a family of integral-membrane diiron enzymes related to Pseudomonas putida GPo1 AlkB, by a diverse group of methane, propane, and butane monooxygenases and by some membrane-bound cytochrome P450s. Recently, a family of cytoplasmic P450 enzymes was identified in prokaryotes that allow their host to grow on aliphatic alkanes. One member of this family, CYP153A6 from Mycobacterium sp. HXN-1500, hydroxylates medium-chain-length alkanes (C6 to C11) to 1-alkanols with a maximal turnover number of 70 min(-1) and has a regiospecificity of > or =95% for the terminal carbon atom position. Spectroscopic binding studies showed that C6-to-C11 aliphatic alkanes bind in the active site with Kd values varying from approximately 20 nM to 3.7 microM. Longer alkanes bind more strongly than shorter alkanes, while the introduction of sterically hindering groups reduces the affinity. This suggests that the substrate-binding pocket is shaped such that linear alkanes are preferred. Electron paramagnetic resonance spectroscopy in the presence of the substrate showed the formation of an enzyme-substrate complex, which confirmed the binding of substrates observed in optical titrations. To rationalize the experimental observations on a molecular scale, homology modeling of CYP153A6 and docking of substrates were used to provide the first insight into structural features required for terminal alkane hydroxylation.

  8. Development of solid-phase microextraction fibers based on multi-walled carbon nanotubes for pre-concentration and analysis of alkanes in human breath.

    PubMed

    Tang, Zhentao; Liu, Yong; Duan, Yixiang

    2015-12-18

    In this work, a laboratory preparation method based on sol-gel technology was proposed to develop a new kind of SPME (solid phase microextraction) fibers. Multi-walled carbon nanotubes (MWCNT) were selected as sol-gel active organic component. Stainless steel wires were used as the substrate of the fibers. Instead of traditional modification methods, microwave induced plasma was used to modify the stainless steel wire surface, resulting in a significant improvement in chemical adhesion of the fiber substrate and coating. The MWCNT coating exhibited several good properties. Acceptable fiber-to-fiber reproducibility (RSD≤13%) and repeatability (RSD<7%) were obtained. End-tidal breath of 10 normal humans were collected by Bio-VOC(®) sampler and assayed by the optimized SPME-GC-MS method. The calibration curves were all linear (R(2)≥0.994) in the range from 0.03 to 403.3ppbv for five alkanes. Detection limits (down to 0.001ppbv) were about one order of magnitude better than those of commercial PDMS fibers. The recovery of the spiked alkanes in real breath sample at 1ppbv ranged from 89.71 to 101.08% and the relative standard deviations were less than 8%. These results demonstrated the feasibility and practicality of the proposed preparation procedure. Applications of the in-house fabricated fibers for human breath analysis were successfully verified.

  9. Overexpression of Arabidopsis ECERIFERUM1 Promotes Wax Very-Long-Chain Alkane Biosynthesis and Influences Plant Response to Biotic and Abiotic Stresses1[W

    PubMed Central

    Bourdenx, Brice; Bernard, Amélie; Domergue, Frédéric; Pascal, Stéphanie; Léger, Amandine; Roby, Dominique; Pervent, Marjorie; Vile, Denis; Haslam, Richard P.; Napier, Johnathan A.; Lessire, René; Joubès, Jérôme

    2011-01-01

    Land plant aerial organs are covered by a hydrophobic layer called the cuticle that serves as a waterproof barrier protecting plants against desiccation, ultraviolet radiation, and pathogens. Cuticle consists of a cutin matrix as well as cuticular waxes in which very-long-chain (VLC) alkanes are the major components, representing up to 70% of the total wax content in Arabidopsis (Arabidopsis thaliana) leaves. However, despite its major involvement in cuticle formation, the alkane-forming pathway is still largely unknown. To address this deficiency, we report here the characterization of the Arabidopsis ECERIFERUM1 (CER1) gene predicted to encode an enzyme involved in alkane biosynthesis. Analysis of CER1 expression showed that CER1 is specifically expressed in the epidermis of aerial organs and coexpressed with other genes of the alkane-forming pathway. Modification of CER1 expression in transgenic plants specifically affects VLC alkane biosynthesis: waxes of TDNA insertional mutant alleles are devoid of VLC alkanes and derivatives, whereas CER1 overexpression dramatically increases the production of the odd-carbon-numbered alkanes together with a substantial accumulation of iso-branched alkanes. We also showed that CER1 expression is induced by osmotic stresses and regulated by abscisic acid. Furthermore, CER1-overexpressing plants showed reduced cuticle permeability together with reduced soil water deficit susceptibility. However, CER1 overexpression increased susceptibility to bacterial and fungal pathogens. Taken together, these results demonstrate that CER1 controls alkane biosynthesis and is highly linked to responses to biotic and abiotic stresses. PMID:21386033

  10. Overexpression of Arabidopsis ECERIFERUM1 promotes wax very-long-chain alkane biosynthesis and influences plant response to biotic and abiotic stresses.

    PubMed

    Bourdenx, Brice; Bernard, Amélie; Domergue, Frédéric; Pascal, Stéphanie; Léger, Amandine; Roby, Dominique; Pervent, Marjorie; Vile, Denis; Haslam, Richard P; Napier, Johnathan A; Lessire, René; Joubès, Jérôme

    2011-05-01

    Land plant aerial organs are covered by a hydrophobic layer called the cuticle that serves as a waterproof barrier protecting plants against desiccation, ultraviolet radiation, and pathogens. Cuticle consists of a cutin matrix as well as cuticular waxes in which very-long-chain (VLC) alkanes are the major components, representing up to 70% of the total wax content in Arabidopsis (Arabidopsis thaliana) leaves. However, despite its major involvement in cuticle formation, the alkane-forming pathway is still largely unknown. To address this deficiency, we report here the characterization of the Arabidopsis ECERIFERUM1 (CER1) gene predicted to encode an enzyme involved in alkane biosynthesis. Analysis of CER1 expression showed that CER1 is specifically expressed in the epidermis of aerial organs and coexpressed with other genes of the alkane-forming pathway. Modification of CER1 expression in transgenic plants specifically affects VLC alkane biosynthesis: waxes of TDNA insertional mutant alleles are devoid of VLC alkanes and derivatives, whereas CER1 overexpression dramatically increases the production of the odd-carbon-numbered alkanes together with a substantial accumulation of iso-branched alkanes. We also showed that CER1 expression is induced by osmotic stresses and regulated by abscisic acid. Furthermore, CER1-overexpressing plants showed reduced cuticle permeability together with reduced soil water deficit susceptibility. However, CER1 overexpression increased susceptibility to bacterial and fungal pathogens. Taken together, these results demonstrate that CER1 controls alkane biosynthesis and is highly linked to responses to biotic and abiotic stresses.

  11. Solar photothermochemical alkane reverse combustion.

    PubMed

    Chanmanee, Wilaiwan; Islam, Mohammad Fakrul; Dennis, Brian H; MacDonnell, Frederick M

    2016-03-08

    A one-step, gas-phase photothermocatalytic process for the synthesis of hydrocarbons, including liquid alkanes, aromatics, and oxygenates, with carbon numbers (Cn) up to C13, from CO2 and water is demonstrated in a flow photoreactor operating at elevated temperatures (180-200 °C) and pressures (1-6 bar) using a 5% cobalt on TiO2 catalyst and under UV irradiation. A parametric study of temperature, pressure, and partial pressure ratio revealed that temperatures in excess of 160 °C are needed to obtain the higher Cn products in quantity and that the product distribution shifts toward higher Cn products with increasing pressure. In the best run so far, over 13% by mass of the products were C5+ hydrocarbons and some of these, i.e., octane, are drop-in replacements for existing liquid hydrocarbons fuels. Dioxygen was detected in yields ranging between 64% and 150%. In principle, this tandem photochemical-thermochemical process, fitted with a photocatalyst better matched to the solar spectrum, could provide a cheap and direct method to produce liquid hydrocarbons from CO2 and water via a solar process which uses concentrated sunlight for both photochemical excitation to generate high-energy intermediates and heat to drive important thermochemical carbon-chain-forming reactions.

  12. Solar photothermochemical alkane reverse combustion

    PubMed Central

    Chanmanee, Wilaiwan; Islam, Mohammad Fakrul; Dennis, Brian H.; MacDonnell, Frederick M.

    2016-01-01

    A one-step, gas-phase photothermocatalytic process for the synthesis of hydrocarbons, including liquid alkanes, aromatics, and oxygenates, with carbon numbers (Cn) up to C13, from CO2 and water is demonstrated in a flow photoreactor operating at elevated temperatures (180–200 °C) and pressures (1–6 bar) using a 5% cobalt on TiO2 catalyst and under UV irradiation. A parametric study of temperature, pressure, and partial pressure ratio revealed that temperatures in excess of 160 °C are needed to obtain the higher Cn products in quantity and that the product distribution shifts toward higher Cn products with increasing pressure. In the best run so far, over 13% by mass of the products were C5+ hydrocarbons and some of these, i.e., octane, are drop-in replacements for existing liquid hydrocarbons fuels. Dioxygen was detected in yields ranging between 64% and 150%. In principle, this tandem photochemical–thermochemical process, fitted with a photocatalyst better matched to the solar spectrum, could provide a cheap and direct method to produce liquid hydrocarbons from CO2 and water via a solar process which uses concentrated sunlight for both photochemical excitation to generate high-energy intermediates and heat to drive important thermochemical carbon-chain-forming reactions. PMID:26903631

  13. Liquid-liquid interfaces of semifluorinated alkane diblock copolymers with water, alkanes, and perfluorinated alkanes.

    SciTech Connect

    Perahia, Dvora, Dr.; Pierce, Flint; Tsige, Mesfin; Grest, Gary Stephen, Dr.

    2008-08-01

    The liquid-liquid interface between semifluorinated alkane diblock copolymers of the form F3C(CF2)n-1-(CH2)m-1CH3 and water, protonated alkanes, and perfluorinated alkanes are studied by fully atomistic molecular dynamics simulations. A modified version of the OPLS-AA (Optimized Parameter for Liquid Simulation All-Atom) force field of Jorgensen et al. has been used to study the interfacial behavior of semifluorinated diblocks. Aqueous interfaces are found to be sharp, with correspondingly large values of the interfacial tension. Due to the reduced hydrophobicity of the protonated block compared to the fluorinated block, hydrogen enhancement is observed at the interface. Water dipoles in the interfacial region are found to be oriented nearly parallel to the liquid-liquid interface. A number of protonated alkanes and perfluorinated alkanes are found to be mutually miscible with the semifluorinated diblocks. For these liquids, interdiffusion follows the expected Fickian behavior, and concentration-dependent diffusivities are determined.

  14. Liquid-liquid interfaces of semifluorinated alkane diblock copolymers with water, alkanes, and perfluorinated alkanes.

    PubMed

    Pierce, Flint; Tsige, Mesfin; Perahia, Dvora; Grest, Gary S

    2008-12-18

    The liquid-liquid interface between semifluorinated alkane diblock copolymers of the form F3C(CF2)n-1-(CH2)m-1CH3 and water, protonated alkanes, and perfluorinated alkanes are studied by fully atomistic molecular dynamics simulations. A modified version of the OPLS-AA (Optimized Parameter for Liquid Simulation All-Atom) force field of Jorgensen et al. has been used to study the interfacial behavior of semifluorinated diblocks. Aqueous interfaces are found to be sharp, with correspondingly large values of the interfacial tension. Due to the reduced hydrophobicity of the protonated block compared to the fluorinated block, hydrogen enhancement is observed at the interface. Water dipoles in the interfacial region are found to be oriented nearly parallel to the liquid-liquid interface. A number of protonated alkanes and perfluorinated alkanes are found to be mutually miscible with the semifluorinated diblocks. For these liquids, interdiffusion follows the expected Fickian behavior, and concentration-dependent diffusivities are determined.

  15. Multiple alkane hydroxylase systems in a marine alkane degrader, Alcanivorax dieselolei B-5.

    PubMed

    Liu, Chenli; Wang, Wanpeng; Wu, Yehui; Zhou, Zhongwen; Lai, Qiliang; Shao, Zongze

    2011-05-01

    Alcanivorax dieselolei strain B-5 is a marine bacterium that can utilize a broad range of n-alkanes (C(5) -C(36) ) as sole carbon source. However, the mechanisms responsible for this trait remain to be established. Here we report on the characterization of four alkane hydroxylases from A. dieselolei, including two homologues of AlkB (AlkB1 and AlkB2), a CYP153 homologue (P450), as well as an AlmA-like (AlmA) alkane hydroxylase. Heterologous expression of alkB1, alkB2, p450 and almA in Pseudomonas putida GPo12 (pGEc47ΔB) or P. fluorescens KOB2Δ1 verified their functions in alkane oxidation. Quantitative real-time RT-PCR analysis showed that these genes could be induced by alkanes ranging from C(8) to C(36) . Notably, the expression of the p450 and almA genes was only upregulated in the presence of medium-chain (C(8) -C(16) ) or long-chain (C(22) -C(36) ) n-alkanes, respectively; while alkB1 and alkB2 responded to both medium- and long-chain n-alkanes (C(12) -C(26) ). Moreover, branched alkanes (pristane and phytane) significantly elevated alkB1 and almA expression levels. Our findings demonstrate that the multiple alkane hydroxylase systems ensure the utilization of substrates of a broad chain length range.

  16. n-Alkanes and stable C, N isotopic compositions as identifiers of organic matter sources in Posidonia oceanica meadows of Alexandroupolis Gulf, NE Greece.

    PubMed

    Apostolopoulou, Maria-Venetia; Monteyne, Els; Krikonis, Konstantinos; Pavlopoulos, Kosmas; Roose, Patrick; Dehairs, Frank

    2015-10-15

    We analyzed n-alkane contents and their stable carbon isotope composition, as well as the carbon and nitrogen isotope composition (δ(13)C, δ(15)N) of sediment organic matter and different tissues of Posidonia oceanica seagrass sampled in Alexandroupolis Gulf (A.G.), north-eastern Greece, during 2007-2011. n-Alkane contents in P. oceanica and in sediments showed similar temporal trends, but relative to bulk organic carbon content, n-alkanes were much more enriched in sediments compared to seagrass tissue. Individual n-alkanes in sediments had similar values than seagrass roots and rhizomes and were more depleted in (13)C compared to seagrass leaves and sheaths, with δ(13)C values ranging from -35‰ to -28‰ and from -25‰ to -20‰, respectively. n-Alkane indexes such as the Carbon Preference Index, carbon number maximum, and n-alkane proxy 1 (C23+C25/C23+C25+C29+C31) indicate strong inputs of terrestrial organic matter, while the presence of unresolved complex mixtures suggests potential oil pollution in some sampled areas.

  17. Evaluation of interfacial mass transfer coefficient as a function of temperature and pressure in carbon dioxide/normal alkane systems

    NASA Astrophysics Data System (ADS)

    Nikkhou, Fatemeh; Keshavarz, Peyman; Ayatollahi, Shahab; Jahromi, Iman Raoofi; Zolghadr, Ali

    2015-04-01

    CO2 gas injection is known as one of the most popular enhanced oil recovery techniques for light and medium oil reservoirs, therefore providing an acceptable mass transfer mechanism for CO2-oil systems seems necessary. In this study, interfacial mass transfer coefficient has been evaluated for CO2-normal heptane and CO2-normal hexadecane systems using equilibrium and dynamic interfacial tension data, which have been measured using the pendant drop method. Interface mass transfer coefficient has been calculated as a function of temperature and pressure in the range of 313-393 K and 1.7-8.6 MPa, respectively. The results showed that the interfacial resistance is a parameter that can control the mass transfer process for some CO2-normal alkane systems, and cannot be neglected. Additionally, it was found that interface mass transfer coefficient increased with pressure. However, the variation of this parameter with temperature did not show a clear trend and it was strongly dependent on the variation of diffusivity and solubility of CO2 in the liquid phase.

  18. Determination of the n-alkane profile of epicuticular wax extracted from mature leaves of Cestrum nocturnum (Solanaceae: Solanales).

    PubMed

    Chowdhury, Nandita; Ghosh, Anupam; Bhattacharjee, Indranil; Laskar, Subrata; Chandra, Goutam

    2010-09-01

    An n-hexane extract of fresh, mature leaves of Cestrum nocturnum (Solanales: Solanaceae) containing thin layer epicuticular waxes was analysed by thin-layer chromatography, infrared and gas liquid chromatography using standard hydrocarbons. Seventeen long chain alkanes (n-C(18) to n-C(34)) were identified and quantified. Hentriacontane (n-C(31)) was established as the major n-alkane, while nonadecane (n-C(19)) was the least abundant component of the extracted wax fraction. The carbon preference index calculated for the sample was 1.30, showing an odd to even carbon number predominance.

  19. Adaptation of the hydrocarbonoclastic bacterium Alcanivorax borkumensis SK2 to alkanes and toxic organic compounds: a physiological and transcriptomic approach.

    PubMed

    Naether, Daniela J; Slawtschew, Slavtscho; Stasik, Sebastian; Engel, Maria; Olzog, Martin; Wick, Lukas Y; Timmis, Kenneth N; Heipieper, Hermann J

    2013-07-01

    The marine hydrocarbonoclastic bacterium Alcanivorax borkumensis is able to degrade mixtures of n-alkanes as they occur in marine oil spills. However, investigations of growth behavior and physiology of these bacteria when cultivated with n-alkanes of different chain lengths (C6 to C30) as the substrates are still lacking. Growth rates increased with increasing alkane chain length up to a maximum between C12 and C19, with no evident difference between even- and odd-numbered chain lengths, before decreasing with chain lengths greater than C19. Surface hydrophobicity of alkane-grown cells, assessed by determination of the water contact angles, showed a similar pattern, with maximum values associated with growth rates on alkanes with chain lengths between C11 and C19 and significantly lower values for cells grown on pyruvate. A. borkumensis was found to incorporate and modify the fatty acid intermediates generated by the corresponding n-alkane degradation pathway. Cells grown on distinct n-alkanes proved that A. borkumensis is able to not only incorporate but also modify fatty acid intermediates derived from the alkane degradation pathway. Comparing cells grown on pyruvate with those cultivated on hexadecane in terms of their tolerance toward two groups of toxic organic compounds, chlorophenols and alkanols, representing intensely studied organic compounds, revealed similar tolerances toward chlorophenols, whereas the toxicities of different n-alkanols were significantly reduced when hexadecane was used as a carbon source. As one adaptive mechanism of A. borkumensis to these toxic organic solvents, the activity of cis-trans isomerization of unsaturated fatty acids was proven. These findings could be verified by a detailed transcriptomic comparison between cultures grown on hexadecane and pyruvate and including solvent stress caused by the addition of 1-octanol as the most toxic intermediate of n-alkane degradation.

  20. Alkane production from biomass: chemo-, bio- and integrated catalytic approaches.

    PubMed

    Deneyer, Aron; Renders, Tom; Van Aelst, Joost; Van den Bosch, Sander; Gabriëls, Dries; Sels, Bert F

    2015-12-01

    Linear, branched and cyclic alkanes are important intermediates and end products of the chemical industry and are nowadays mainly obtained from fossil resources. In search for alternatives, biomass feedstocks are often presented as a renewable carbon source for the production of fuels, chemicals and materials. However, providing a complete market for all these applications seems unrealistic due to both financial and logistic issues. Despite the very large scale of current alkane-based fuel applications, biomass definitely has the potential to offer a partial solution to the fuel business. For the smaller market of chemicals and materials, a transition to biomass as main carbon source is more realistic and even probably unavoidable in the long term. The appropriate use and further development of integrated chemo- and biotechnological (catalytic) process strategies will be crucial to successfully accomplish this petro-to-bio feedstock transition. Furthermore, a selection of the most promising technologies from the available chemo- and biocatalytic tool box is presented. New opportunities will certainly arise when multidisciplinary approaches are further explored in the future. In an attempt to select the most appropriate biomass sources for each specific alkane-based application, a diagram inspired by van Krevelen is applied, taking into account both the C-number and the relative functionality of the product molecules.

  1. Cuticular and internal n-alkane composition of Lucilia sericata larvae, pupae, male and female imagines: application of HPLC-LLSD and GC/MS-SIM.

    PubMed

    Gołębiowski, M; Paszkiewicz, M; Grubba, A; Gąsiewska, D; Boguś, M I; Włóka, E; Wieloch, W; Stepnowski, P

    2012-08-01

    The composition of cuticular and internal n-alkanes in Lucilia sericata larvae, pupae, and male and female imagines were studied. The cuticular and internal lipid extracts were separated by HPLC-LLSD, after which the hydrocarbon fraction was identified by GC/MS in selected ion monitoring (SIM) and total ion current (TIC) modes. The cuticular lipids of the larvae contained seven n-alkanes from C23 to C31. The major n-alkane in L. sericata larvae was C29 (42.1%). The total cuticular n-alkane content in the cuticular lipids was 31.46 μg g-1 of the insect body. The internal lipids of L. sericata larvae contained five n-alkanes ranged from C25 to C31. The most abundant compound was C27 (61.71 μg g-1 of the insect body). Eighteen n-alkanes from C14 to C31 were identified in the cuticular lipids of the pupae. The most abundant n-alkanes ranged from C25 to C31; those with odd-numbered carbon chains were particularly abundant, the major one being C29:0 (59.5%). Traces of eight cuticular n-alkanes were present. The internal lipids of L. sericata pupae contained five n-alkanes, ranging from C25 to C31. The cuticular lipids of female imagines contained 17 n-alkanes from C12 to C30. Among the cuticular n-alkanes of females, C27 (47.5%) was the most abundant compound. Four n-alkanes, with only odd-numbered carbon chains, were identified in the internal lipids of females. The lipids from both sexes of L. sericata had similar n-alkane profiles. The cuticular lipids of adult males contained 16 n-alkanes ranging from C13 to C31. C27 (47.9%) was the most abundant cuticular n-alkanes in males. The same n-alkanes only with odd-numbered carbon chains and in smaller quantities of C27 (0.1%) were also identified in the internal lipids of males. The highest amounts of total cuticular n-alkanes were detected in males and females of L. sericata (330.4 and 158.93 μg g-1 of the insect body, respectively). The quantities of total cuticular alcohols in larvae and pupae were smaller (31.46

  2. Microbial biosynthesis of alkanes.

    PubMed

    Schirmer, Andreas; Rude, Mathew A; Li, Xuezhi; Popova, Emanuela; del Cardayre, Stephen B

    2010-07-30

    Alkanes, the major constituents of gasoline, diesel, and jet fuel, are naturally produced by diverse species; however, the genetics and biochemistry behind this biology have remained elusive. Here we describe the discovery of an alkane biosynthesis pathway from cyanobacteria. The pathway consists of an acyl-acyl carrier protein reductase and an aldehyde decarbonylase, which together convert intermediates of fatty acid metabolism to alkanes and alkenes. The aldehyde decarbonylase is related to the broadly functional nonheme diiron enzymes. Heterologous expression of the alkane operon in Escherichia coli leads to the production and secretion of C13 to C17 mixtures of alkanes and alkenes. These genes and enzymes can now be leveraged for the simple and direct conversion of renewable raw materials to fungible hydrocarbon fuels.

  3. New organic reference materials for hydrogen, carbon, and nitrogen stable isotope-ratio measurements: caffeines, n-alkanes, fatty acid methyl esters, glycines, L-valines, polyethylenes, and oils

    USGS Publications Warehouse

    Schimmelmann, Arndt; Qi, Haiping; Coplen, Tyler B.; Brand, Willi A.; Fong, Jon; Meier-Augenstein, Wolfram; Kemp, Helen F.; Toman, Blaza; Ackermann, Annika; Assonov, Sergey; Aerts-Bijma, Anita; Brejcha, Ramona; Chikaraishi, Yoshito; Darwish, Tamim; Elsner, Martin; Gehre, Matthias; Geilmann, Heike; Gröning, Manfred; Hélie, Jean-François; Herrero-Martín, Sara; Meijer, Harro A.J.; Sauer, Peter E.; Sessions, Alex L.; Werner, Roland A.

    2016-01-01

    An international project developed, quality-tested, and determined isotope−δ values of 19 new organic reference materials (RMs) for hydrogen, carbon, and nitrogen stable isotope-ratio measurements, in addition to analyzing pre-existing RMs NBS 22 (oil), IAEA-CH-7 (polyethylene foil), and IAEA-600 (caffeine). These new RMs enable users to normalize measurements of samples to isotope−δ scales. The RMs span a range of δ2HVSMOW-SLAP values from −210.8 to +397.0 mUr or ‰, for δ13CVPDB-LSVEC from −40.81 to +0.49 mUr and for δ15NAir from −5.21 to +61.53 mUr. Many of the new RMs are amenable to gas and liquid chromatography. The RMs include triads of isotopically contrasting caffeines, C16 n-alkanes, n-C20-fatty acid methyl esters (FAMEs), glycines, and l-valines, together with polyethylene powder and string, one n-C17-FAME, a vacuum oil (NBS 22a) to replace NBS 22 oil, and a 2H-enriched vacuum oil. A total of 11 laboratories from 7 countries used multiple analytical approaches and instrumentation for 2-point isotopic normalization against international primary measurement standards. The use of reference waters in silver tubes allowed direct normalization of δ2H values of organic materials against isotopic reference waters following the principle of identical treatment. Bayesian statistical analysis yielded the mean values reported here. New RMs are numbered from USGS61 through USGS78, in addition to NBS 22a. Because of exchangeable hydrogen, amino acid RMs currently are recommended only for carbon- and nitrogen-isotope measurements. Some amino acids contain 13C and carbon-bound organic 2H-enrichments at different molecular sites to provide RMs for potential site-specific isotopic analysis in future studies.

  4. Catalytic conversion of light alkanes

    SciTech Connect

    Lyons, J.E.

    1992-06-30

    The second Quarterly Report of 1992 on the Catalytic Conversion of Light Alkanes reviews the work done between April 1, 1992 and June 31, 1992 on the Cooperative Agreement. The mission of this work is to devise a new catalyst which can be used in a simple economic process to convert the light alkanes in natural gas to oxygenate products that can either be used as clean-burning, high octane liquid fuels, as fuel components or as precursors to liquid hydrocarbon uwspomdon fuel. During the past quarter we have continued to design, prepare, characterize and test novel catalysts for the mild selective reaction of light hydrocarbons with air or oxygen to produce alcohols directly. These catalysts are designed to form active metal oxo (MO) species and to be uniquely active for the homolytic cleavage of the carbon-hydrogen bonds in light alkanes producing intermediates which can form alcohols. We continue to investigate three molecular environments for the active catalytic species that we are trying to generate: electron-deficient macrocycles (PHASE I), polyoxometallates (PHASE II), and regular oxidic lattices including zeolites and related structures as well as other molecular surface structures having metal oxo groups (PHASE I).

  5. Increasing the octane number of gasoline using functionalized carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Kish, Sara Safari; Rashidi, Alimorad; Aghabozorg, Hamid Reza; Moradi, Leila

    2010-03-01

    The octane number is one of the characteristics of spark-ignition fuels such as gasoline. Octane number of fuels can be improved by addition of oxygenates such as ethanol, MTBE (methyl tert-butyl ether), TBF (tertiary butyl formate) and TBA (tertiary butyl alcohol) as well as their blends with gasoline that reduce the cost impact of fuels. Carbon nanotubes (CNTs) are as useful additives for increasing the octane number. Functionalized carbon nanotubes containing amide groups have a high reactivity and can react with many chemicals. These compounds can be solubilized in gasoline to increase the octane number. In this study, using octadecylamine and dodecylamine, CNTs were amidated and the amino-functionalized carbon nanotubes were added to gasoline. Research octane number analysis showed that these additives increase octane number of the desired samples. X-ray diffraction (XRD), Fourier transforms infrared (FTIR), X-ray photoelectron spectroscopy (XPS), and thermal gravimetry analyses (TGA) were used for characterization of the prepared functionalized carbon nanotubes.

  6. Expanding the alkane oxygenase toolbox: new enzymes and applications.

    PubMed

    van Beilen, Jan B; Funhoff, Enrico G

    2005-06-01

    As highly reduced hydrocarbons are abundant in the environment, enzymes that catalyze the terminal or subterminal oxygenation of alkanes are relatively easy to find. A number of these enzymes have been biochemically characterized in detail, because the potential of alkane hydroxylases to catalyze high added-value reactions is widely recognized. Nevertheless, the industrial application of these enzymes is restricted owing to the complex biochemistry, challenging process requirements, and the limited number of cloned and expressed enzymes. Rational and evolutionary engineering approaches have started to yield more robust and versatile enzyme systems, broadening the alkane oxygenase portfolio. In addition, metagenomic approaches provide access to many novel alkane oxygenase sequences.

  7. Rapid analysis of 13C in plant-wax n-alkanes for reconstruction of terrestrial vegetation signals from aquatic sediments

    NASA Astrophysics Data System (ADS)

    McDuffee, Kelsey E.; Eglinton, Timothy I.; Sessions, Alex L.; Sylva, Sean; Wagner, Thomas; Hayes, John M.

    2004-10-01

    Long-chain, odd-carbon-numbered C25 to C35n-alkanes are characteristic components of epicuticular waxes produced by terrestrial higher plants. They are delivered to aquatic systems via eolian and fluvial transport and are preserved in underlying sediments. The isotopic compositions of these products can serve as records of past vegetation. We have developed a rapid method for stable carbon isotopic analyses of total plant-wax n-alkanes using a novel, moving-wire system coupled to an isotope-ratio mass spectrometer (MW-irMS). The n-alkane fractions are prepared from sediment samples by (1) saponification and extraction with organic solvents, (2) chromatographic separation using silica gel, (3) isolation of straight-chain carbon skeletons using a zeolite molecular sieve, and (4) oxidation and removal of unsaturated hydrocarbons with RuO4. Short-chain n-alkanes of nonvascular plant origin (alkane fractions essentially free of interfering components. The δ13C values obtained by MW-irMS did not differ significantly from weighted averages of individual n-alkane δ13C values obtained by irmGC-MS. Isotopic variations in compound-class n-alkane fractions from a latitudinal transect of core-top sediments from the Southwest African margin (3°N-28°S) were congruent with those measured by compound-specific isotopic analyses of plant-wax n-alkanes. The amplitude of the variations was smaller, indicating contributions from non-plant-wax hydrocarbons, but the measurements revealed variations in carbon isotopic composition that are consistent with vegetation zones on the adjacent continent.

  8. Rapid analysis of 13C in plant-wax n-alkanes for reconstruction of terrestrial vegetation signals from aquatic sediments

    NASA Astrophysics Data System (ADS)

    McDuffee, Kelsey E.; Eglinton, Timothy I.; Sessions, Alex L.; Sylva, Sean; Wagner, Thomas; Hayes, John M.

    2004-10-01

    Long-chain, odd-carbon-numbered C25 to C35 n-alkanes are characteristic components of epicuticular waxes produced by terrestrial higher plants. They are delivered to aquatic systems via eolian and fluvial transport and are preserved in underlying sediments. The isotopic compositions of these products can serve as records of past vegetation. We have developed a rapid method for stable carbon isotopic analyses of total plant-wax n-alkanes using a novel, moving-wire system coupled to an isotope-ratio mass spectrometer (MW-irMS). The n-alkane fractions are prepared from sediment samples by (1) saponification and extraction with organic solvents, (2) chromatographic separation using silica gel, (3) isolation of straight-chain carbon skeletons using a zeolite molecular sieve, and (4) oxidation and removal of unsaturated hydrocarbons with RuO4. Short-chain n-alkanes of nonvascular plant origin (alkane fractions essentially free of interfering components. The δ13C values obtained by MW-irMS did not differ significantly from weighted averages of individual n-alkane δ13C values obtained by irmGC-MS. Isotopic variations in compound-class n-alkane fractions from a latitudinal transect of core-top sediments from the Southwest African margin (3°N-28°S) were congruent with those measured by compound-specific isotopic analyses of plant-wax n-alkanes. The amplitude of the variations was smaller, indicating contributions from non-plant-wax hydrocarbons, but the measurements revealed variations in carbon isotopic composition that are consistent with vegetation zones on the adjacent continent.

  9. Physisorption and chemisorption of alkanes and alkenes in H-FAU: a combined ab initio-statistical thermodynamics study.

    PubMed

    De Moor, Bart A; Reyniers, Marie-Françoise; Marin, Guy B

    2009-04-28

    The sorption in H-FAU zeolite of C4-C12 n-alkanes, and linear and branched C2-C8 alkenes has been quantified up to 800 K by combining QM-Pot(MP2//B3LYP) with statistical thermodynamics calculations. The physisorption strength increases linearly with increasing carbon number by 8.5 kJ mol(-1) and does not depend on the detailed alkane or alkene structure. Van der Waals interactions are dominant in physisorption, but alkenes are additionally stabilized by 20 kJ mol(-1) by formation of a pi-complex. Protonation of an alkene leads to the formation of alkoxides, which are more stable than the physisorbed species. As for physisorption a linear relation between the chemisorption energy and the carbon number is obtained. Protonation energies are independent of the carbon number but depend on the type of CC double bond being protonated. The relative stability difference between the secondary and tertiary alkoxides is 15 kJ mol(-1) in favor of the former. Both physisorption and chemisorption are accompanied with entropy losses which increase linearly with the carbon number. A typical compensation effect is obtained: the stronger the stabilization of the sorbed species the more pronounced the entropy loss. For temperatures ranging from 0 to 800 K, all of the derived linear relations expressing the physisorption and/or chemisorption enthalpy and entropy of the alkanes and the alkanes as function of the carbon number are independent of temperature. A good agreement between calculated and experimental values for alkanes is obtained at 500 K.

  10. Quantification of chemotaxis-related alkane accumulation in Acinetobacter baylyi using Raman microspectroscopy.

    PubMed

    Li, Hanbing; L Martin, Francis Luke; Zhang, Dayi

    2017-03-03

    Alkanes are one of the most widespread contaminants in the natural environment, primarily as a consequence of biological synthesis and oil spills. Many indigenous microbes metabolize alkanes, and the chemotaxis and accumulation in some strains has been identified. For the first time, we apply Raman microspectroscopy to identify such chemotaxis-related affinity, and quantify the alkane concentrations via spectral alterations. Raman spectral alterations were only found for the alkane chemo-attractant bacteria Acinetobacter baylyi ADP1, not for Pseudomonas fluorescence, which exhibits limited chemotaxis towards alkane. The significant alterations were attributed to the strong chemotactic ability of A. baylyi enhancing the affinity and accumulation of alkane molecules on cell membranes or cellular internalization. Spectral fingerprints of A. baylyi significantly altered after 1-h exposure to pure alkanes (dodecane or tetradecane) and alkane mixtures (mineral oil or crude oil), but not monocyclic aromatic hydrocarbons (MAHs) or polycyclic aromatic hydrocarbons (PAHs). A semi-log linear regression relationship between Raman spectral alterations and alkane concentrations showed its feasibility in quantifying alkane concentration in environmental samples. Pure alkanes or alkane mixtures exhibited different limits of detection and regression slopes, indicating that the chemotaxis-related alkane accumulation in A. baylyi is dependent on the carbon chain length. This work provides a novel biospectroscopy approach to characterize the chemotaxis-related alkane bioaccumulation, and has immense potential for fast and high-throughput screening bacterial chemotaxis.

  11. Modeling SOA production from the oxidation of intermediate volatility alkanes

    NASA Astrophysics Data System (ADS)

    Aumont, B.; Mouchel-Vallon, C.; Camredon, M.; Lee-Taylor, J.; Madronich, S.

    2012-12-01

    Secondary Organic Aerosols (SOA) production and ageing is a multigenerational oxidation process involving the formation of successive organic compounds with higher oxidation degree and lower vapour pressure. This process was investigated using the explicit oxidation model GECKO-A (Generator for Explicit Chemistry and Kinetics of Organics in the Atmosphere). Results for the C8-C24 n-alkane series show the expected trends, i.e. (i) SOA yield grows with the carbon backbone of the parent hydrocarbon, (ii) SOA yields decreases with the decreasing pre-existing organic aerosol concentration, (iii) the number of generations required to describe SOA production increases when the pre-existing organic aerosol concentration decreases. Most SOA contributors were found to be not oxidized enough to be categorized as highly oxygenated organic aerosols (OOA) but reduced enough to be categorized as hydrocarbon like organic aerosols (HOA). Branched alkanes are more prone to fragment in the early stage of the oxidation than their corresponding linear analogues. Fragmentation is expected to alter both the yield and the mean oxidation state of the SOA. Here, GECKO-A is applied to generate highly detailed oxidation schemes for various series of branched and cyclised alkanes. Branching and cyclisation effects on SOA yields and oxidation states will be examined.

  12. Environmental swap energy and role of configurational entropy in transfer of small molecules from water into alkanes

    NASA Astrophysics Data System (ADS)

    Smejtek, Pavel; Word, Robert C.

    2004-01-01

    We studied the effect of segmented solvent molecules on the free energy of transfer of small molecules from water into alkanes (hexane, heptane, octane, decane, dodecane, tetradecane, and hexadecane). For these alkanes we measured partition coefficients of benzene, 3-methylindole (3MI), 2,3,4,6-tetrachlorophenol (TeCP), and 2,4,6-tribromophenol (TriBP) at 3, 11, 20, 3, and 47 °C. For 3MI, TeCP, and TriBP the dependence of free energy of transfer on length of alkane chains was found to be very different from that for benzene. In contrast to benzene, the energy of transfer for 3MI, TeCP, and TriBP was independent of the number of carbons in alkanes. To interpret data, we used the classic Flory-Huggins (FH) theory of concentrated polymer solutions for the alkane phase. For benzene, the measured dependence of energy of transfer on the number of carbons in alkanes agreed well with predictions based on FH model in which the size of alkane segments was obtained from the ratio of molar volumes of alkanes and the solute. We show that for benzene, the energy of transfer can be divided into two components, one called environmental swap energy (ESE), and one representing the contribution of configurational entropy of alkane chains. For 3MI, TeCP, and TriBP the contribution of configurational entropy was not measurable even though the magnitude of the effect predicted from the FH model for short chain alkanes was as much as 20 times greater than experimental uncertainties. From the temperature dependence of ESE we obtained enthalpy and entropy of transfer for benzene, 3MI, TeCP, and TriBP. Experimental results are discussed in terms of a thermodynamic cycle considering creation of cavity, insertion of solute, and activation of solute-medium attractive interactions. Our results suggest that correcting experimental free energy of transfer by Flory-Huggins configurational entropy term is not generally appropriate and cannot be applied indiscriminately.

  13. Reflectance spectroscopy of organic compounds: 1. Alkanes

    USGS Publications Warehouse

    Clark, R.N.; Curchin, J.M.; Hoefen, T.M.; Swayze, G.A.

    2009-01-01

    Reflectance spectra of the organic compounds comprising the alkane series are presented from the ultraviolet to midinfrared, 0.35 to 15.5 /??m. Alkanes are hydrocarbon molecules containing only single carbon-carbon bonds, and are found naturally on the Earth and in the atmospheres of the giant planets and Saturn's moon, Titan. This paper presents the spectral properties of the alkanes as the first in a series of papers to build a spectral database of organic compounds for use in remote sensing studies. Applications range from mapping the environment on the Earth, to the search for organic molecules and life in the solar system and throughout the. universe. We show that the spectral reflectance properties of organic compounds are rich, with major diagnostic spectral features throughout the spectral range studied. Little to no spectral change was observed as a function of temperature and only small shifts and changes in the width of absorption bands were observed between liquids and solids, making remote detection of spectral properties throughout the solar system simpler. Some high molecular weight organic compounds contain single-bonded carbon chains and have spectra similar to alkanes even ' when they fall into other families. Small spectral differences are often present allowing discrimination among some compounds, further illustrating the need to catalog spectral properties for accurate remote sensing identification with spectroscopy.

  14. Adsorption of alkyltrimethylammonium bromides at water/alkane interfaces: competitive adsorption of alkanes and surfactants.

    PubMed

    Fainerman, V B; Mucic, N; Pradines, V; Aksenenko, E V; Miller, R

    2013-11-12

    The adsorption of members of the homologous series of alkyl trimethylammonium bromides (C(n)TAB) is studied at water/alkane interfaces by drop profile analysis tensiometry. The results are discussed in terms of a competitive adsorption process of alkane and surfactant molecules. A thermodynamic model, derived originally for the adsorption of surfactant mixtures, is adapted such that it describes a competitive adsorption of the surfactant molecules from the aqueous phase and alkane molecules from the oil phase. This new model involves the interspecies attraction coefficient, which mutually increases the adsorption activities of the alkane and C(n)TAB. The effects of the alkyl chain length n of C(n)TABs and the influence of the number of C atoms in the alkane chain are discussed, and the physical quantities are compared to those determined at the aqueous solution/air interface. The new theoretical model for aqueous solution/oil interfaces is also compared to a theory that does not consider the adsorption of alkane. The proposed new model demonstrates good agreement with the experimental data.

  15. Expanding the product profile of a microbial alkane biosynthetic pathway.

    PubMed

    Harger, Matthew; Zheng, Lei; Moon, Austin; Ager, Casey; An, Ju Hye; Choe, Chris; Lai, Yi-Ling; Mo, Benjamin; Zong, David; Smith, Matthew D; Egbert, Robert G; Mills, Jeremy H; Baker, David; Pultz, Ingrid Swanson; Siegel, Justin B

    2013-01-18

    Microbially produced alkanes are a new class of biofuels that closely match the chemical composition of petroleum-based fuels. Alkanes can be generated from the fatty acid biosynthetic pathway by the reduction of acyl-ACPs followed by decarbonylation of the resulting aldehydes. A current limitation of this pathway is the restricted product profile, which consists of n-alkanes of 13, 15, and 17 carbons in length. To expand the product profile, we incorporated a new part, FabH2 from Bacillus subtilis , an enzyme known to have a broader specificity profile for fatty acid initiation than the native FabH of Escherichia coli . When provided with the appropriate substrate, the addition of FabH2 resulted in an altered alkane product profile in which significant levels of n-alkanes of 14 and 16 carbons in length are produced. The production of even chain length alkanes represents initial steps toward the expansion of this recently discovered microbial alkane production pathway to synthesize complex fuels. This work was conceived and performed as part of the 2011 University of Washington international Genetically Engineered Machines (iGEM) project.

  16. Global Civil Aviation Black Carbon Particle Mass and Number Emissions

    NASA Astrophysics Data System (ADS)

    Stettler, M. E. J.

    2015-12-01

    Black carbon (BC) is a product of incomplete combustion emitted by aircraft engines. In the atmosphere, BC particles strongly absorb incoming solar radiation and influence cloud formation processes leading to highly uncertain, but likely net positive warming of the earth's atmosphere. At cruise altitude, BC particle number emissions can influence the concentration of ice nuclei that can lead to contrail formation, with significant and highly uncertainty climate impacts. BC particles emitted by aircraft engines also degrade air quality in the vicinity of airports and globally. A significant contribution to the uncertainty in environmental impacts of aviation BC emissions is the uncertainty in emissions inventories. Previous work has shown that global aviation BC mass emissions are likely to have been underestimated by a factor of three. In this study, we present an updated global BC particle number inventory and evaluate parameters that contribute to uncertainty using global sensitivity analysis techniques. The method of calculating particle number from mass utilises a description of the mobility of fractal aggregates and uses the geometric mean diameter, geometric standard deviation, mass-mobility exponent, primary particle diameter and material density to relate the particle number concentration to the total mass concentration. Model results show good agreement with existing measurements of aircraft BC emissions at ground level and at cruise altitude. It is hoped that the results of this study can be applied to estimate direct and indirect climate impacts of aviation BC emissions in future studies.

  17. Sophorolipids from Torulopsis bombicola: possible relation to alkane uptake.

    PubMed Central

    Ito, S; Inoue, S

    1982-01-01

    Torulopsis bombicola produces extracellular sophorolipids when it is grown on water-insoluble alkanes. Sophorolipids and related model compounds, which were not themselves used for growth, were found to stimulate markedly the growth of T. bombicola on alkanes. This stimulatory effect was restricted to growth on C10 to C20 alkanes, whereas no significantly influence was observed for growth on fatty alcohols, fatty acids, glucose, or glycerol. The nonionic methyl ester of the glycolipid supported the greatest cell yield. However, a number of synthetic nonionic surfactants were unable to replace the glycolipid. When organisms were grown on hexadecane, stimulation of growth by sophorolipids was observed almost exclusively with strains of Torulopsis yeasts. In contrast, the growth of other typical alkane-utilizing yeasts, such as candida and Pichia strains, was inhibited or not affected. It appears that sophorolipids are involved in alkane dissimilation by T. bombicola through an undetermined mechanism. PMID:7201782

  18. Regulation of alkane oxidation in Pseudomonas putida.

    PubMed Central

    Grund, A; Shapiro, J; Fennewald, M; Bacha, P; Leahy, J; Markbreiter, K; Nieder, M; Toepfer, M

    1975-01-01

    We have studied the appearance of whole-cell oxidizing activity for n-alkanes and their oxidation products in strains of Pseudomonas putida carrying the OCT plasmid. Our results indicate that the OCT plasmid codes for inducible alkane-hydroxylating and primary alcohol-dehydrogenating activities and that the chromosome codes for constitutive oxidizing activities for primary alcohols, aliphatic aldehydes, and fatty acids. Mutant isolation confirms the presence of an alcohol dehydrogenase locus on the OCT plasmid and indicated the presence of multiple alcohol and aldehyde dehydrogenase loci on the P. putida chromosome. Induction tests with various compounds indicate that inducer recognition has specificity for chain length and can be affected by the degree of oxidation of the carbon chain. Some inducers are neither growth nor respiration substrates. Growth tests with and without a gratuitous inducer indicate that undecane is not a growth substrate because it does not induce alkane hydroxylase activity. Using a growth test for determining induction of the plasmid alcohol dehydrogenase it is possible to show that heptane induces this activity in hydroxylase-negative mutants. This suggests that unoxidized alkane molecules are the physiological inducers of both plasmid activities. PMID:1150626

  19. State-dependent rotational diffusion of tetracene in n-alkanes. Evidence for a dominant energy relaxation pathway.

    PubMed

    Mize, Hannah E; Blanchard, G J

    2013-12-19

    We have investigated the rotational diffusion of tetracene in the n-alkanes octane through hexadecane. Emission from the S1 state was monitored following excitation to the S1 state or the S2 state. Our data show that fast, non-radiative relaxation from S2 to S1 gives rise to local heating in the immediate vicinity of the chromophore. This local heating effect exhibits a solvent aliphatic chain length dependence for solvents C11 and longer, where solvents with an even number of carbons behave differently than those with an odd number of carbons. These data shed light on the possible origin(s) of odd-even effects in n-alkanes and suggest that a dominant intermolecular relaxation pathway for excess vibrational energy involves the S1 chromophore ring breathing mode (ca. 1383 cm(-1)) and the solvent terminal methyl group rocking mode (1375 cm(-1)).

  20. Effect of varying the 1-4 intramolecular scaling factor in atomistic simulations of long-chain N-alkanes with the OPLS-AA model.

    PubMed

    Ye, Xianggui; Cui, Shengting; de Almeida, Valmor F; Khomami, Bamin

    2013-03-01

    A comprehensive molecular dynamics simulation study of n-alkanes using the optimized potential for liquid simulation with all-atoms (OPLS-AA) force field at ambient condition has been performed. Our results indicate that while simulations with the OPLS-AA force field accurately predict the liquid state mass density for n-alkanes with carbon number equal or less than 10, for n-alkanes with carbon number equal or exceeding 12, the OPLS-AA force field with the standard scaling factor for the 1-4 intramolecular Van der Waals and electrostatic interaction gives rise to a quasi-crystalline structure. We found that accurate predictions of the liquid state properties are obtained by successively reducing the aforementioned scaling factor for each increase of the carbon number beyond n-dodecane. To better understand the effects of reducing the scaling factor, its influence on the torsion potential profile, and the corresponding gauche-trans conformer distribution, heat of vaporization, melting point, and self-diffusion coefficient for n-dodecane were investigated. This relatively simple procedure enables more accurate predictions of the thermo-physical properties of longer n-alkanes.

  1. Effect of Varying the 1-4 Intramolecular Scaling Factor in Atomistic Simulations of Long-Chain N-alkanes with the OPLS-AA Model

    SciTech Connect

    de Almeida, Valmor F; Ye, Xianggui; Cui, Shengting; Khomami, Bamin

    2013-01-01

    A comprehensive molecular dynamics simulation study of n-alkanes using the Optimized Potential for Liquid Simulation-All Atoms (OPLS-AA) force field at ambient condition has been performed. Our results indicate that while simulations with the OPLS-AA force field accurately predict the liquid state mass density for n-alkanes with carbon number equal or less than 10, for n-alkanes with carbon number equal or exceeding 12, the OPLS-AA force field with the standard scaling factor for the 1-4 intramolecular Van der Waals and electrostatic interaction gives rise to a quasi-crystalline structure. We found that accurate predictions of the liquid state properties are obtained by successively reducing the aforementioned scaling factor for each increase of the carbon number beyond n-dodecane. To better un-derstand the effects of reducing the scaling factor, we analyzed the variation of the torsion potential pro-file with the scaling factor, and the corresponding impact on the gauche-trans conformer distribution, heat of vaporization, melting point, and self-diffusion coefficient for n-dodecane. This relatively simple procedure thus allows for more accurate predictions of the thermo-physical properties of longer n-alkanes.

  2. QSAR models for predicting in vivo aquatic toxicity of chlorinated alkanes to fish.

    PubMed

    Zvinavashe, Elton; van den Berg, Hans; Soffers, Ans E M F; Vervoort, Jacques; Freidig, Andreas; Murk, Albertinka J; Rietjens, Ivonne M C M

    2008-03-01

    Quantitative structure-activity relationship (QSAR) models are expected to play a crucial role in reducing the number of animals to be used for toxicity testing resulting from the adoption of the new European Union chemical control system called Registration, Evaluation, and Authorization of Chemicals (REACH). The objective of the present study was to generate in vitro acute toxicity data that could be used to develop a QSAR model to describe acute in vivo toxicity of chlorinated alkanes. Cytotoxicity of a series of chlorinated alkanes to Chinese hamster ovary (CHO) cells was observed at concentrations similar to those that have been shown previously to be toxic to fish. Strong correlations exist between the acute in vitro toxicity of the chlorinated alkanes and (i) hydrophobicity [modeled by the calculated log K ow (octanol-water partition coefficient); r (2) = 0.883 and r int (2) = 0.854] and (ii) in vivo acute toxicity to fish ( r (2) = 0.758). A QSAR model has been developed to predict in vivo acute toxicity to fish, based on the in vitro data and even on in silico log K ow data only. The developed QSAR model is applicable to chlorinated alkanes with up to 10 carbon atoms, up to eight chlorine atoms, and log K ow values lying within the range from 1.71 to 5.70. Out of the 100204 compounds on the European Inventory of Existing Chemicals (EINECS), our QSAR model covers 77 (0.1%) of them. Our findings demonstrate that in vitro experiments and even in silico calculations can replace animal experiments in the prediction of the acute toxicity of chlorinated alkanes.

  3. Photochemical dimerization and functionalization of alkanes, ethers, primary alcohols and silanes

    DOEpatents

    Crabtree, R.H.; Brown, S.H.

    1988-02-16

    The space-time yield and/or the selectivity of the photochemical dimerization of alkanes, ethers, primary alcohols and tertiary silanes with Hg and U.V. light is enhanced by refluxing the substrate in the irradiated reaction zone at a temperature at which the dimer product condenses and remains condensed promptly upon its formation. Cross-dimerization of the alkanes, ethers and silanes with primary alcohols is disclosed, as is the functionalization to aldehydes of the alkanes with carbon monoxide.

  4. Photochemical dimerization and functionalization of alkanes, ethers, primary alcohols and silanes

    DOEpatents

    Crabtree, Robert H.; Brown, Stephen H.

    1988-01-01

    The space-time yield and/or the selectivity of the photochemical dimerization of alkanes, ethers, primary alcohols and tertiary silanes with Hg and U.V. light is enhanced by refluxing the substrate in the irradiated reaction zone at a temperature at which the dimer product condenses and remains condensed promptly upon its formation. Cross-dimerization of the alkanes, ethers and silanes with primary alcohols is disclosed, as is the functionalization to aldehydes of the alkanes with carbon monoxide.

  5. Paleoclimate and Asian monsoon variability inferred from n-alkanes and their stable isotopes at lake Donggi Cona, NE Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Saini, Jeetendra; Guenther, Franziska; Mäusbacher, Roland; Gleixner, Gerd

    2015-04-01

    The Tibetan Plateau is one of the most extensive and sensitive region of elevated topography affecting global climate. The interplay between the Asian summer monsoon and the westerlies greatly influences the lake systems at the Tibetan Plateau. Despite a considerable number of research efforts in last decade, possible environmental reactions to change in monsoon dynamics are still not well understood. Here we present results from a sediment core of lake Donggi Cona, which dates back to late glacial period. Distinct organic geochemical proxies and stable isotopes are used to study the paleoenvironmental and hydrological changes in late glacial and Holocene period. Sedimentary n-alkanes of lake Donggi Cona are used as a proxy for paleoclimatic and monsoonal reconstruction. The hydrogen (δD) and carbon (δ13C) isotopes of n-alkanes are used as proxy for hydrological and phytoplankton productivity, respectively . Qualitative and quantitative analysis were performed for n-alkanes over the sediment core. δD proxy for sedimentary n-alkanes is used to infer lake water and rainfall signal. δD of (n-alkane C23) records the signal of the lake water, whereas δD of (n-alkane C29) record the precipitation signal, hence act as an appropriate proxy to track Asian monsoon. Long chain n-alkanes dominate over the sediment core while unsaturated mid chain n-alkenes have high abundance in some samples. From 18.4-13.8 cal ka BP, sample shows low organic productivity due to cold and arid climate. After 13.8-11.8 cal ka BP, slight increase in phytoplankton productivity indicate onset of weaker monsoon. From 11.8-6.8 cal ka BP, high content of organic matter indicates rise in productivity and strong monsoon with high inflow. After 6.8 cal ka BP, decrease in phytoplankton productivity indicating cooler climate and show terrestrial signal. Our results provide new insight into the variability of east Asian monsoon and changes in phytoplankton productivity for last 18.4 ka. Keywords: n-alkanes

  6. Isolating the non-polar contributions to the intermolecular potential for water-alkane interactions

    NASA Astrophysics Data System (ADS)

    Ballal, Deepti; Venkataraman, Pradeep; Fouad, Wael A.; Cox, Kenneth R.; Chapman, Walter G.

    2014-08-01

    Intermolecular potential models for water and alkanes describe pure component properties fairly well, but fail to reproduce properties of water-alkane mixtures. Understanding interactions between water and non-polar molecules like alkanes is important not only for the hydrocarbon industry but has implications to biological processes as well. Although non-polar solutes in water have been widely studied, much less work has focused on water in non-polar solvents. In this study we calculate the solubility of water in different alkanes (methane to dodecane) at ambient conditions where the water content in alkanes is very low so that the non-polar water-alkane interactions determine solubility. Only the alkane-rich phase is simulated since the fugacity of water in the water rich phase is calculated from an accurate equation of state. Using the SPC/E model for water and TraPPE model for alkanes along with Lorentz-Berthelot mixing rules for the cross parameters produces a water solubility that is an order of magnitude lower than the experimental value. It is found that an effective water Lennard-Jones energy ɛW/k = 220 K is required to match the experimental water solubility in TraPPE alkanes. This number is much higher than used in most simulation water models (SPC/E—ɛW/k = 78.2 K). It is surprising that the interaction energy obtained here is also higher than the water-alkane interaction energy predicted by studies on solubility of alkanes in water. The reason for this high water-alkane interaction energy is not completely understood. Some factors that might contribute to the large interaction energy, such as polarizability of alkanes, octupole moment of methane, and clustering of water at low concentrations in alkanes, are examined. It is found that, though important, these factors do not completely explain the anomalously strong attraction between alkanes and water observed experimentally.

  7. Isolating the non-polar contributions to the intermolecular potential for water-alkane interactions.

    PubMed

    Ballal, Deepti; Venkataraman, Pradeep; Fouad, Wael A; Cox, Kenneth R; Chapman, Walter G

    2014-08-14

    Intermolecular potential models for water and alkanes describe pure component properties fairly well, but fail to reproduce properties of water-alkane mixtures. Understanding interactions between water and non-polar molecules like alkanes is important not only for the hydrocarbon industry but has implications to biological processes as well. Although non-polar solutes in water have been widely studied, much less work has focused on water in non-polar solvents. In this study we calculate the solubility of water in different alkanes (methane to dodecane) at ambient conditions where the water content in alkanes is very low so that the non-polar water-alkane interactions determine solubility. Only the alkane-rich phase is simulated since the fugacity of water in the water rich phase is calculated from an accurate equation of state. Using the SPC/E model for water and TraPPE model for alkanes along with Lorentz-Berthelot mixing rules for the cross parameters produces a water solubility that is an order of magnitude lower than the experimental value. It is found that an effective water Lennard-Jones energy ε(W)/k = 220 K is required to match the experimental water solubility in TraPPE alkanes. This number is much higher than used in most simulation water models (SPC/E-ε(W)/k = 78.2 K). It is surprising that the interaction energy obtained here is also higher than the water-alkane interaction energy predicted by studies on solubility of alkanes in water. The reason for this high water-alkane interaction energy is not completely understood. Some factors that might contribute to the large interaction energy, such as polarizability of alkanes, octupole moment of methane, and clustering of water at low concentrations in alkanes, are examined. It is found that, though important, these factors do not completely explain the anomalously strong attraction between alkanes and water observed experimentally.

  8. Regioselective alkane hydroxylation with a mutant AlkB enzyme

    DOEpatents

    Koch, Daniel J.; Arnold, Frances H.

    2012-11-13

    AlkB from Pseudomonas putida was engineered using in-vivo directed evolution to hydroxylate small chain alkanes. Mutant AlkB-BMO1 hydroxylates propane and butane at the terminal carbon at a rate greater than the wild-type to form 1-propanol and 1-butanol, respectively. Mutant AlkB-BMO2 similarly hydroxylates propane and butane at the terminal carbon at a rate greater than the wild-type to form 1-propanol and 1-butanol, respectively. These biocatalysts are highly active for small chain alkane substrates and their regioselectivity is retained in whole-cell biotransformations.

  9. Determining and quantifying specific sources of light alkane

    NASA Astrophysics Data System (ADS)

    Bill, M.; Conrad, M. E.

    2015-12-01

    Determining and quantifying specific sources of emission of methane (an important greenhouse gas) and light alkanes from abandoned gas and oil wells, hydraulic fracturing or associated with CO2 sequestration are a challenge in determining their contribution to the atmospheric greenhouse gas budget or to identify source of groundwater contamination. Here, we review organic biogeochemistry proprieties and isotopic fingerprinting of C1-C5 alkanes to address this problem. For instance, the concentration ratios of CH4 to C2-C5 alkanes can be used to distinguish between thermogenic and microbial generated CH4. Together C and H isotopes of CH4 are used to differentiate bacterial generated sources and thermogenic CH4 and may also identify processes such as alteration and source mixing. Carbon isotope ratios pattern of C1-C5 alkanes highlight sources and oxidation processes in the gas reservoirs. Stable carbon isotope measurements are a viable tool for monitoring the degradation progress of methane and light hydrocarbons. The carbon isotope ratios of the reactants and products are independent of the concentration and only depend on the relative progress of the particular reaction. Oxidation/degradation of light alkanes are typically associated with increasing ð13C values. Isotopic mass balances offer the possibility to independently determine the fractions coming from microbial versus thermogenic and would also permit differentiation of the isotope fractionations associated with degradation. Unlike conventional concentration measurements, this approach is constrained by the different isotopic signatures of various sources and sinks.

  10. Interatomic Lennard-Jones potentials of linear and branched alkanes calibrated by Gibbs ensemble simulations for vapor-liquid equilibria

    NASA Astrophysics Data System (ADS)

    Chang, Jaeeon; Sandler, Stanley I.

    2004-10-01

    We propose Lennard-Jones potential parameters for interatomic interactions of linear and branched alkanes based on matching the results of Gibbs ensemble simulations of vapor-liquid equilibria to experimental data. The alkane model is similar as in the OPLS-AA [W. L. Jorgensen, D. S. Maxwell, and J. Tirado-Rives, J. Am. Chem. Soc. 118, 11225 (1996)], but multiple atom types for carbon based on the number of covalently bonded hydrogen atoms are necessary to accurately reproduce liquid densities and enthalpies of vaporization with the errors of 2.1% and 3.3%, respectively, for hydrocarbons of various chain lengths and structures. We find that the attraction energies of the carbon atoms are almost proportional to the number of covalent hydrogen atoms with each increasing the carbon energy parameter by ≈0.033 kcal/mol. Though the present force field outperforms the OPLS-AA force field for alkanes we studied, systematic deviations for vapor pressures are still observed with errors of 15%-30%, and critical temperatures are slightly underestimated. We think that these shortcomings are probably due to the inadequacy of the two-parameter Lennard-Jones potential, and especially its behavior at short distances.

  11. Sensitive detection of n-alkanes using a mixed ionization mode proton-transfer-reaction mass spectrometer

    NASA Astrophysics Data System (ADS)

    Amador-Muñoz, Omar; Misztal, Pawel K.; Weber, Robin; Worton, David R.; Zhang, Haofei; Drozd, Greg; Goldstein, Allen H.

    2016-11-01

    Proton-transfer-reaction mass spectrometry (PTR-MS) is a technique that is widely used to detect volatile organic compounds (VOCs) with proton affinities higher than water. However, n-alkanes generally have a lower proton affinity than water and therefore proton transfer (PT) by reaction with H3O+ is not an effective mechanism for their detection. In this study, we developed a method using a conventional PTR-MS to detect n-alkanes by optimizing ion source and drift tube conditions to vary the relative amounts of different primary ions (H3O+, O2+, NO+) in the reaction chamber (drift tube). There are very few studies on O2+ detection of alkanes and the mixed mode has never been proposed before. We determined the optimum conditions and the resulting reaction mechanisms, allowing detection of n-alkanes from n-pentane to n-tridecane. These compounds are mostly emitted by evaporative/combustion process from fossil fuel use. The charge transfer (CT) mechanism observed with O2+ was the main reaction channel for n-heptane and longer n-alkanes, while for n-pentane and n-hexane the main reaction channel was hydride abstraction (HA). Maximum sensitivities were obtained at low E / N ratios (83 Td), low water flow (2 sccm) and high O2+ / NO+ ratios (Uso = 180 V). Isotopic 13C contribution was taken into account by subtracting fractions of the preceding 12C ion signal based on the number of carbon atoms and the natural abundance of 13C (i.e., 5.6 % for n-pentane and 14.5 % for n-tridecane). After accounting for isotopic distributions, we found that PT cannot be observed for n-alkanes smaller than n-decane. Instead, protonated water clusters of n-alkanes (M ṡ H3O+) species were observed with higher abundance using lower O2+ and higher water cluster fractions. M ṡ H3O+ species are probably the source for the M + H+ species observed from n-decane to n-tridecane. Normalized sensitivities to O2+ or to the sum of O2++ NO+ were determined to be a good metric with which

  12. Degradation of alkanes by bacteria.

    PubMed

    Rojo, Fernando

    2009-10-01

    Pollution of soil and water environments by crude oil has been, and is still today, an important problem. Crude oil is a complex mixture of thousands of compounds. Among them, alkanes constitute the major fraction. Alkanes are saturated hydrocarbons of different sizes and structures. Although they are chemically very inert, most of them can be efficiently degraded by several microorganisms. This review summarizes current knowledge on how microorganisms degrade alkanes, focusing on the biochemical pathways used and on how the expression of pathway genes is regulated and integrated within cell physiology.

  13. Untypical even-to-odd predominance in the low-molecular n-alkanes of water, suspended matter, and bottom sediments in some regions of the Arctic Basin

    NASA Astrophysics Data System (ADS)

    Drozdova, Anastasia; Belyaev, Nikolay; Ponyaev, Mikhail

    2014-05-01

    Over the years, several studies have shown an unusual predominance of even-carbon number n-alkanes in dissolved and particulate phase samples and sediment samples from various regions of the World Ocean [Nachman, 1985; Nishimura and Baker, 1985; Elias et al., 1997]. Different possible sources were proposed such as diagenesis (diagenetic origin from co-occurring fatty acids and alcohols), direct microbial input, microbial degradation of algal detritus, etc. Some researchers, however, are incredulous about this phenomenon and consider relatively high content of even-carbon number n-alkanes as contamination during the experiments. We report here the results of GC and GC-MS analysis of water, suspended particulate matter and sediment samples collected during 7 marine and coastal scientific expeditions to the White and Kara Seas, and to the central Arctic Basin (2004-2013). Many of the above samples (more than 30) present n-alkane distribution with a strong even-carbon number predominance of n-C14H30, and n-C16H34. Maximum enrichment was observed in some suspended matter samples with predominance of n-C16H34. The origin of even-carbon number n-alkanes in marine ecosystems is still not clear. In Antarctic region n-C16 and n-C18 and other even chain n-alkanes were reported to be dominant in the samples of the sea-ice algae, zooplankton and fish [Green et al. 1997] however in the Arctic region this phenomenon has not been demonstrated yet. Increasing of bacteria number and δ13C values observed in course of the accompanying studies [Lein et al., 2013] suggest existence of mechanism of phytoplankton bacterial destruction in the Arctic ecosystems, leading to formation of even-carbon number n-alkanes. R.J. Nachman - Lipids, Vol. 20, No 9, pp. 629-633 (1985). M. Nishimura, E.W. Baker - Geochim. et Cosmochim. Acta, Vol. 50, pp. 299-305 (1986). V.O. Elias, B.R.T. Simoneit, J.N. Cardoso - Naturwissenschaften, Vol. 84, pp. 415-420 (1997). G. Green et al. - Marine Pollution

  14. Metabolism of Hydrocarbons in n-Alkane-Utilizing Anaerobic Bacteria.

    PubMed

    Wilkes, Heinz; Buckel, Wolfgang; Golding, Bernard T; Rabus, Ralf

    2016-01-01

    The glycyl radical enzyme-catalyzed addition of n-alkanes to fumarate creates a C-C-bond between two concomitantly formed stereogenic carbon centers. The configurations of the two diastereoisomers of the product resulting from n-hexane activation by the n-alkane-utilizing denitrifying bacterium strain HxN1, i.e. (1-methylpentyl)succinate, were assigned as (2S,1'R) and (2R,1'R). Experiments with stereospecifically deuterated n-(2,5-2H2)hexanes revealed that exclusively the pro-S hydrogen atom is abstracted from C2 of the n-alkane by the enzyme and later transferred back to C3 of the alkylsuccinate formed. These results indicate that the alkylsuccinate-forming reaction proceeds with an inversion of configuration at the carbon atom (C2) of the n-alkane forming the new C-C-bond, and thus stereochemically resembles a SN2-type reaction. Therefore, the reaction may occur in a concerted manner, which may avoid the highly energetic hex-2-yl radical as an intermediate. The reaction is associated with a significant primary kinetic isotope effect (kH/kD ≥3) for hydrogen, indicating that the homolytic C-H-bond cleavage is involved in the first irreversible step of the reaction mechanism. The (1-methylalkyl)succinate synthases of n-alkane-utilizing anaerobic bacteria apparently have very broad substrate ranges enabling them to activate not only aliphatic but also alkyl-aromatic hydrocarbons. Thus, two denitrifiers and one sulfate reducer were shown to convert the nongrowth substrate toluene to benzylsuccinate and further to the dead-end product benzoyl-CoA. For this purpose, however, the modified β-oxidation pathway known from alkylbenzene-utilizing bacteria was not employed, but rather the pathway used for n-alkane degradation involving CoA ligation, carbon skeleton rearrangement and decarboxylation. Furthermore, various n-alkane- and alkylbenzene-utilizing denitrifiers and sulfate reducers were found to be capable of forming benzyl alcohols from diverse alkylbenzenes

  15. The genome sequence of Desulfatibacillum alkenivorans AK-01: a blueprint for anaerobic alkane oxidation.

    PubMed

    Callaghan, A V; Morris, B E L; Pereira, I A C; McInerney, M J; Austin, R N; Groves, J T; Kukor, J J; Suflita, J M; Young, L Y; Zylstra, G J; Wawrik, B

    2012-01-01

    Desulfatibacillum alkenivorans AK-01 serves as a model organism for anaerobic alkane biodegradation because of its distinctive biochemistry and metabolic versatility. The D. alkenivorans genome provides a blueprint for understanding the genetic systems involved in alkane metabolism including substrate activation, CoA ligation, carbon-skeleton rearrangement and decarboxylation. Genomic analysis suggested a route to regenerate the fumarate needed for alkane activation via methylmalonyl-CoA and predicted the capability for syntrophic alkane metabolism, which was experimentally verified. Pathways involved in the oxidation of alkanes, alcohols, organic acids and n-saturated fatty acids coupled to sulfate reduction and the ability to grow chemolithoautotrophically were predicted. A complement of genes for motility and oxygen detoxification suggests that D. alkenivorans may be physiologically adapted to a wide range of environmental conditions. The D. alkenivorans genome serves as a platform for further study of anaerobic, hydrocarbon-oxidizing microorganisms and their roles in bioremediation, energy recovery and global carbon cycling.

  16. OH-initiated heterogeneous oxidation of cholestane: a model system for understanding the photochemical aging of cyclic alkane aerosols.

    PubMed

    Zhang, Haofei; Ruehl, Christopher R; Chan, Arthur W H; Nah, Theodora; Worton, David R; Isaacman, Gabriel; Goldstein, Allen H; Wilson, Kevin R

    2013-11-27

    Aerosols containing aliphatic hydrocarbons play a substantial role in the urban atmosphere. Cyclic alkanes constitute a large fraction of aliphatic hydrocarbon emissions originating from incomplete combustion of diesel fuel and motor oil. In the present study, cholestane (C27H48) is used as a model system to examine the OH-initiated heterogeneous oxidation pathways of cyclic alkanes in a photochemical flow tube reactor. Oxidation products are collected on filters and analyzed by a novel soft ionization two-dimensional gas chromatography/mass spectrometry technique. The analysis reveals that the first-generation functionalization products (cholestanones, cholestanals, and cholestanols) are the dominant reaction products that account for up to 70% by mass of the total speciated compounds. The ratio of first-generation carbonyls to alcohols is near unity at every oxidation level. Among the cholestanones/cholestanals, 55% are found to have the carbonyl group on the rings of the androstane skeleton, while 74% of cholestanols have the hydroxyl group on the rings. Particle-phase oxidation products with carbon numbers less than 27 (i.e., "fragmentation products") and higher-generation functionalization products are much less abundant. Carbon bond cleavage was found to occur only on the side chain. Tertiary-carbon alkoxy radicals are suggested to play an important role in governing both the distribution of functionalization products (via alkoxy radical isomerization and reaction with oxygen) and the fragmentation products (via alkoxy radical decomposition). These results provide new insights into the oxidation mechanism of cyclic alkanes.

  17. Geomicrobiological linkages between short-chain alkane consumption and sulfate reduction rates in seep sediments

    PubMed Central

    Bose, Arpita; Rogers, Daniel R.; Adams, Melissa M.; Joye, Samantha B.; Girguis, Peter R.

    2013-01-01

    Marine hydrocarbon seeps are ecosystems that are rich in methane, and, in some cases, short-chain (C2–C5) and longer alkanes. C2–C4 alkanes such as ethane, propane, and butane can be significant components of seeping fluids. Some sulfate-reducing microbes oxidize short-chain alkanes anaerobically, and may play an important role in both the competition for sulfate and the local carbon budget. To better understand the anaerobic oxidation of short-chain n-alkanes coupled with sulfate-reduction, hydrocarbon-rich sediments from the Gulf of Mexico (GoM) were amended with artificial, sulfate-replete seawater and one of four n-alkanes (C1–C4) then incubated under strict anaerobic conditions. Measured rates of alkane oxidation and sulfate reduction closely follow stoichiometric predictions that assume the complete oxidation of alkanes to CO2 (though other sinks for alkane carbon likely exist). Changes in the δ13C of all the alkanes in the reactors show enrichment over the course of the incubation, with the C3 and C4 incubations showing the greatest enrichment (4.4 and 4.5‰, respectively). The concurrent depletion in the δ13C of dissolved inorganic carbon (DIC) implies a transfer of carbon from the alkane to the DIC pool (−3.5 and −6.7‰ for C3 and C4 incubations, respectively). Microbial community analyses reveal that certain members of the class Deltaproteobacteria are selectively enriched as the incubations degrade C1–C4 alkanes. Phylogenetic analyses indicate that distinct phylotypes are enriched in the ethane reactors, while phylotypes in the propane and butane reactors align with previously identified C3–C4 alkane-oxidizing sulfate-reducers. These data further constrain the potential influence of alkane oxidation on sulfate reduction rates (SRRs) in cold hydrocarbon-rich sediments, provide insight into their contribution to local carbon cycling, and illustrate the extent to which short-chain alkanes can serve as electron donors and govern microbial

  18. Geomicrobiological linkages between short-chain alkane consumption and sulfate reduction rates in seep sediments.

    PubMed

    Bose, Arpita; Rogers, Daniel R; Adams, Melissa M; Joye, Samantha B; Girguis, Peter R

    2013-01-01

    Marine hydrocarbon seeps are ecosystems that are rich in methane, and, in some cases, short-chain (C2-C5) and longer alkanes. C2-C4 alkanes such as ethane, propane, and butane can be significant components of seeping fluids. Some sulfate-reducing microbes oxidize short-chain alkanes anaerobically, and may play an important role in both the competition for sulfate and the local carbon budget. To better understand the anaerobic oxidation of short-chain n-alkanes coupled with sulfate-reduction, hydrocarbon-rich sediments from the Gulf of Mexico (GoM) were amended with artificial, sulfate-replete seawater and one of four n-alkanes (C1-C4) then incubated under strict anaerobic conditions. Measured rates of alkane oxidation and sulfate reduction closely follow stoichiometric predictions that assume the complete oxidation of alkanes to CO2 (though other sinks for alkane carbon likely exist). Changes in the δ(13)C of all the alkanes in the reactors show enrichment over the course of the incubation, with the C3 and C4 incubations showing the greatest enrichment (4.4 and 4.5‰, respectively). The concurrent depletion in the δ(13)C of dissolved inorganic carbon (DIC) implies a transfer of carbon from the alkane to the DIC pool (-3.5 and -6.7‰ for C3 and C4 incubations, respectively). Microbial community analyses reveal that certain members of the class Deltaproteobacteria are selectively enriched as the incubations degrade C1-C4 alkanes. Phylogenetic analyses indicate that distinct phylotypes are enriched in the ethane reactors, while phylotypes in the propane and butane reactors align with previously identified C3-C4 alkane-oxidizing sulfate-reducers. These data further constrain the potential influence of alkane oxidation on sulfate reduction rates (SRRs) in cold hydrocarbon-rich sediments, provide insight into their contribution to local carbon cycling, and illustrate the extent to which short-chain alkanes can serve as electron donors and govern microbial community

  19. Assimilation of chlorinated alkanes by hydrocarbon-utilizing fungi

    SciTech Connect

    Murphy, G.L.; Perry, J.J.

    1984-12-01

    The fatty acid compositions of two filamentous fungi (Cunninghamella elegans and Penicillium zonatum) and a yeast (Candida lipolytica) were determined after the organisms were grown on 1-chlorohexadecane or 1-chlorooctadecane. These organisms utilized the chlorinated alkanes as sole sources of carbon and energy. Analyses of the fatty acids present after growth on the chlorinated alkanes indicated that 60 to 70% of the total fatty acids in C. elegans were chlorinated. Approximately 50% of the fatty acids in C. lipolytica were also chlorinated. P. zonatum contained 20% 1-chlorohexadecanoic acid after growth on either substrate but did not incorporate C/sub 18/ chlorinated fatty acids.

  20. Activated aluminum oxide selectively retaining long chain n-alkanes. Part I, description of the retention properties.

    PubMed

    Fiselier, Katell; Fiorini, Dennis; Grob, Koni

    2009-02-16

    Aluminum oxide activated by heating to 350-400 degrees C retains n-alkanes with more than about 20 carbon atoms, whereas iso-alkanes largely pass the column non-retained. Retention of n-alkanes is strong with n-pentane or n-hexane as mobile phase, but weak or negligible with cyclohexane or iso-octane. It is strongly reduced with increasing column temperature. Even small amounts of polar components, such as modifiers or impurities in the mobile phase, cause the retention of n-alkanes to irreversibly collapse. Since n-alkanes are not more polar than iso-alkanes and long chain n-alkanes not more polar than those of shorter chains, retention by a mechanism based on steric properties is assumed. The sensitivity to deactivation by polar components indicates that polar components and n-alkanes are retained by the same sites. The capacity for retaining n-alkanes is low, with the effect that the retention of n-alkanes depends on the load with retained paraffins. These retention properties are useful for the pre-separation of hydrocarbons in the context of the analysis of mineral oil paraffins in foodstuffs and tissue, where plant n-alkanes, typically ranging from C(23) to C(33), may severely disturb the analysis (subject of Part II).

  1. Alkane oxidation with porphyrins and metal complexes thereof having haloalkyl side chains

    DOEpatents

    Wijesekera, T.; Lyons, J.E.; Ellis, P.E. Jr.; Bhinde, M.V.

    1998-06-23

    Transition metal complexes of meso-haloalkylporphyrins are disclosed, wherein the haloalkyl groups contain 2 to 8 carbon atoms have been found to be highly effective catalysts for oxidation of alkanes and for the decomposition of hydroperoxides. 7 figs.

  2. Alkane oxidation with porphyrins and metal complexes thereof having haloalkyl side chains

    DOEpatents

    Wijesekera, Tilak; Lyons, James E.; Ellis, Jr., Paul E.; Bhinde, Manoj V.

    1998-01-01

    Transition metal complexes of meso-haloalkylporphyrins, wherein the haloalkyl groups contain 2 to 8 carbon atoms have been found to be highly effective catalysts for oxidation of alkanes and for the decomposition of hydroperoxides.

  3. Identity and mechanisms of alkane-oxidizing metalloenzymes from deep-sea hydrothermal vents.

    PubMed

    Bertrand, Erin M; Keddis, Ramaydalis; Groves, John T; Vetriani, Costantino; Austin, Rachel Narehood

    2013-01-01

    Six aerobic alkanotrophs (organism that can metabolize alkanes as their sole carbon source) isolated from deep-sea hydrothermal vents were characterized using the radical clock substrate norcarane to determine the metalloenzyme and reaction mechanism used to oxidize alkanes. The organisms studied were Alcanivorax sp. strains EPR7 and MAR14, Marinobacter sp. strain EPR21, Nocardioides sp. strains EPR26w, EPR28w, and Parvibaculum hydrocarbonoclasticum strain EPR92. Each organism was able to grow on n-alkanes as the sole carbon source and therefore must express genes encoding an alkane-oxidizing enzyme. Results from the oxidation of the radical-clock diagnostic substrate norcarane demonstrated that five of the six organisms (EPR7, MAR14, EPR21, EPR26w, and EPR28w) used an alkane hydroxylase functionally similar to AlkB to catalyze the oxidation of medium-chain alkanes, while the sixth organism (EPR92) used an alkane-oxidizing cytochrome P450 (CYP)-like protein to catalyze the oxidation. DNA sequencing indicated that EPR7 and EPR21 possess genes encoding AlkB proteins, while sequencing results from EPR92 confirmed the presence of a gene encoding CYP-like alkane hydroxylase, consistent with the results from the norcarane experiments.

  4. Identity and mechanisms of alkane-oxidizing metalloenzymes from deep-sea hydrothermal vents

    PubMed Central

    Bertrand, Erin M.; Keddis, Ramaydalis; Groves, John T.; Vetriani, Costantino; Austin, Rachel Narehood

    2013-01-01

    Six aerobic alkanotrophs (organism that can metabolize alkanes as their sole carbon source) isolated from deep-sea hydrothermal vents were characterized using the radical clock substrate norcarane to determine the metalloenzyme and reaction mechanism used to oxidize alkanes. The organisms studied were Alcanivorax sp. strains EPR7 and MAR14, Marinobacter sp. strain EPR21, Nocardioides sp. strains EPR26w, EPR28w, and Parvibaculum hydrocarbonoclasticum strain EPR92. Each organism was able to grow on n-alkanes as the sole carbon source and therefore must express genes encoding an alkane-oxidizing enzyme. Results from the oxidation of the radical-clock diagnostic substrate norcarane demonstrated that five of the six organisms (EPR7, MAR14, EPR21, EPR26w, and EPR28w) used an alkane hydroxylase functionally similar to AlkB to catalyze the oxidation of medium-chain alkanes, while the sixth organism (EPR92) used an alkane-oxidizing cytochrome P450 (CYP)-like protein to catalyze the oxidation. DNA sequencing indicated that EPR7 and EPR21 possess genes encoding AlkB proteins, while sequencing results from EPR92 confirmed the presence of a gene encoding CYP-like alkane hydroxylase, consistent with the results from the norcarane experiments. PMID:23825470

  5. Diamond like carbon coatings: Categorization by atomic number density

    NASA Technical Reports Server (NTRS)

    Angus, John C.

    1986-01-01

    Dense diamond-like hydrocarbon films grown at the NASA Lewis Research Center by radio frequency self bias discharge and by direct ion beam deposition were studied. A new method for categorizing hydrocarbons based on their atomic number density and elemental composition was developed and applied to the diamond-like hydrocarbon films. It was shown that the diamond-like hydrocarbon films are an entirely new class of hydrocarbons with atomic number densities lying between those of single crystal diamond and adamantanes. In addition, a major review article on these new materials was completed in cooperation with NASA Lewis Research Center personnel.

  6. On the inclusion of alkanes into the monolayer of aliphatic alcohols at the water/alkane vapor interface: a quantum chemical approach.

    PubMed

    Vysotsky, Yuri B; Fomina, Elena S; Belyaeva, Elena A; Fainerman, Valentin B; Vollhardt, Dieter

    2013-02-14

    In the framework of the quantum chemical semiempirical PM3 method thermodynamic and structural parameters of the formation and clusterization of aliphatic alcohols C(n)H(2n+1)OH (n(OH) = 8-16) at 298 K at the water/alkane vapor C(n)H(2n+2), (n(CH(3)) = 6-16) interface were calculated. The dependencies of enthalpy, entropy and Gibbs' energy of clusterization per one monomer molecule of 2D films on the alkyl chain length of corresponding alcohols and alkanes, the molar fraction of alkanes in the monolayers and the immersion degree of alcohol molecules into the water phase were shown to be linear or stepwise. The threshold of spontaneous clusterization of aliphatic alcohols at the water/alkane vapor interface was 10-11 carbon atoms at 298 K which is in line with experimental data at the air/water interface. It is shown that the presence of alkane vapor does not influence the process of alcohol monolayer formation. The structure of these monolayers is analogous to those obtained at the air/water interface in agreement with experimental data. The inclusion of alkane molecules into the amphiphilic monolayer at the water/alkane vapor interface is possible for amphiphiles with the spontaneous clusterization threshold at the air/water interface (n(s)(0)) of at least 16 methylene units in the alkyl chain, and it does not depend on the molar fraction of alkanes in the corresponding monolayer. The inclusion of alkanes from the vapor phase into the amphiphilic monolayer also requires that the difference between the alkyl chain lengths of alcohols and alkanes is not larger than n(s)(0) - 15 and n(s)(0) - 14 for the 2D film 1 and 2D film 2, respectively.

  7. Variation in n-Alkane Distributions of Modern Plants: Questioning Applications of n-Alkanes in Chemotaxonomy and Paleoecology

    NASA Astrophysics Data System (ADS)

    Bush, R. T.; McInerney, F. A.

    2010-12-01

    Long chain n-alkanes (n-C21 to n-C37) are synthesized as part of the epicuticular leaf wax of terrestrial plants and are among the most recognizable and widely used plant biomarkers. n-Alkane distributions have been utilized in previous studies on modern plant chemotaxonomy, testing whether taxa can be identified based on characteristic n-alkane profiles. Dominant n-alkanes (e.g. n-C27 or n-C31) have also been ascribed to major plant groups (e.g. trees or grasses respectively) and have been used in paleoecology studies to reconstruct fluctuations in plant functional types. However, many of these studies have been based on relatively few modern plant data; with the wealth of modern n-alkane studies, a more comprehensive analysis of n-alkanes in modern plants is now possible and can inform the usefulness of n-alkane distributions as paleoecological indicators. The work presented here is a combination of measurements made using plant leaves collected from the Chicago Botanic Garden and a compilation of published literature data from six continents. We categorized plants by type: angiosperms, gymnosperms, woody plants, forbs, grasses, ferns and pteridophytes, and mosses. We then quantified n-alkane distribution parameters such as carbon preference index (CPI), average chain length (ACL), and dispersion (a measure of the spread of the profile over multiple chain lengths) and used these to compare plant groups. Among all plants, one of the emergent correlations is a decrease in dispersion with increasing CPI. Within and among plant groups, n-alkane distributions show a very large range of variation, and the results show little or no correspondence between broad plant groups and a single dominant n-alkane or a ratio of n-alkanes. These findings are true both when data from six continents are combined and when plants from a given region are compared (North America). We also compared the n-alkane distributions of woody angiosperms, woody gymnosperms, and grasses with one

  8. Utilization of n-alkanes by a newly isolated strain of Acinetobacter venetianus: the role of two AlkB-type alkane hydroxylases.

    PubMed

    Throne-Holst, Mimmi; Markussen, Sidsel; Winnberg, Asgeir; Ellingsen, Trond E; Kotlar, Hans-Kristian; Zotchev, Sergey B

    2006-09-01

    A bacterial strain capable of utilizing n-alkanes with chain lengths ranging from decane (C10H22) to tetracontane (C40H82) as a sole carbon source was isolated using a system for screening microorganisms able to grow on paraffin (mixed long-chain n-alkanes). The isolate, identified according to its 16S rRNA sequence as Acinetobacter venetianus, was designated A. venetianus 6A2. Two DNA fragments encoding parts of AlkB-type alkane hydroxylase homologues, designated alkMa and alkMb, were polymerase chain reaction-amplified from the genome of A. venetianus 6A2. To study the roles of these two alkM paralogues in n-alkane utilization in A. venetianus 6A2, we constructed alkMa, alkMb, and alkMa/alkMb disruption mutants. Studies on the growth patterns of the disruption mutants using n-alkanes with different chain lengths as sole carbon source demonstrated central roles for the alkMa and alkMb genes in utilization of C10 to C18 n-alkanes. Comparative analysis of these patterns also suggested different substrate preferences for AlkMa and AlkMb in n-alkane utilization. Because both single and double mutants were able to grow on n-alkanes with chain lengths of C20 and longer, we concluded that yet another enzyme(s) for the utilization of these n-alkanes must exist in A. venetianus 6A2.

  9. Two novel alkane hydroxylase-rubredoxin fusion genes isolated from a Dietzia bacterium and the functions of fused rubredoxin domains in long-chain n-alkane degradation.

    PubMed

    Nie, Yong; Liang, Jieliang; Fang, Hui; Tang, Yue-Qin; Wu, Xiao-Lei

    2011-10-01

    Two alkane hydroxylase-rubredoxin fusion gene homologs (alkW1 and alkW2) were cloned from a Dietzia strain, designated DQ12-45-1b, which can grow on crude oil and n-alkanes ranging in length from 6 to 40 carbon atoms as sole carbon sources. Both AlkW1 and AlkW2 have an integral-membrane alkane monooxygenase (AlkB) conserved domain and a rubredoxin (Rd) conserved domain which are fused together. Phylogenetic analysis showed that these two AlkB-fused Rd domains formed a novel third cluster with all the Rds from the alkane hydroxylase-rubredoxin fusion gene clusters in Gram-positive bacteria and that this third cluster was distant from the known AlkG1- and AlkG2-type Rds. Expression of the alkW1 gene in DQ12-45-1b was induced when cells were grown on C(8) to C(32) n-alkanes as sole carbon sources, but expression of the alkW2 gene was not detected. Functional heterologous expression in an alkB deletion mutant of Pseudomonas fluorescens KOB2Δ1 suggested the alkW1 could restore the growth of KOB2Δ1 on C(14) and C(16) n-alkanes and induce faster growth on C(18) to C(32) n-alkanes than alkW1ΔRd, the Rd domain deletion mutant gene of alkW1, which also caused faster growth than KOB2Δ1 itself. In addition, the artificial fusion of AlkB from the Gram-negative P. fluorescens CHA0 and the Rds from both Gram-negative P. fluorescens CHA0 and Gram-positive Dietzia sp. DQ12-45-1b significantly increased the degradation of C(32) alkane compared to that seen with AlkB itself. In conclusion, the alkW1 gene cloned from Dietzia species encoded an alkane hydroxylase which increased growth on and degradation of n-alkanes up to C(32) in length, with its fused rubredoxin domain being necessary to maintain the functions. In addition, the fusion of alkane hydroxylase and rubredoxin genes from both Gram-positive and -negative bacteria can increase the degradation of long-chain n-alkanes (such as C(32)) in the Gram-negative bacterium.

  10. Integrated process for preparing a carboxylic acid from an alkane

    SciTech Connect

    Benderly, Abraham; Chadda, Nitin; Sevon, Douglass

    2011-12-20

    The present invention relates to an integrated process for producing unsaturated carboxylic acids from the corresponding C.sub.2-C.sub.4 alkane. The process begins with performance of thermally integrated dehydrogenation reactions which convert a C.sub.2-C.sub.4 alkane to its corresponding C.sub.2-C.sub.4 alkene, and which involve exothermically converting a portion of an alkane to its corresponding alkene by oxidative dehydrogenation in an exothermic reaction zone, in the presence of oxygen and a suitable catalyst, and then feeding the products of the exothermic reaction zone to an endothermic reaction zone wherein at least a portion of the remaining unconverted alkane is endothermically dehydrogenated to form an additional quantity of the same corresponding alkene, in the presence of carbon dioxide and an other suitable catalyst. The alkene products of the thermally integrated dehydrogenation reactions are then provided to a catalytic vapor phase partial oxidation process for conversion of the alkene to the corresponding unsaturated carboxylic acid or nitrile. Unreacted alkene and carbon dioxide are recovered from the oxidation product stream and recycled back to the thermally integrated dehydrogenation reactions.

  11. Cloning and expression of three ladA-type alkane monooxygenase genes from an extremely thermophilic alkane-degrading bacterium Geobacillus thermoleovorans B23.

    PubMed

    Boonmak, Chanita; Takahashi, Yasunori; Morikawa, Masaaki

    2014-05-01

    An extremely thermophilic bacterium, Geobacillus thermoleovorans B23, is capable of degrading a broad range of alkanes (with carbon chain lengths ranging between C11 and C32) at 70 °C. Whole-genome sequence analysis revealed that unlike most alkane-degrading bacteria, strain B23 does not possess an alkB-type alkane monooxygenase gene. Instead, it possesses a cluster of three ladA-type genes, ladAαB23, ladAβB23, and ladB B23, on its chromosome, whose protein products share significant amino acid sequence identities, 49.8, 34.4, and 22.7 %, respectively, with that of ladA alkane monooxygenase gene found on a plasmid of Geobacillus thermodetrificans NG 80-2. Each of the three genes, ladAαB23, ladAβB23, and ladB B23, was heterologously expressed individually in an alkB1 deletion mutant strain, Pseudomonas fluorescens KOB2Δ1. It was found that all three genes were functional in P. fluorescens KOB2Δ1, and partially restored alkane degradation activity. In this study, we suggest that G. thermoleovorans B23 utilizes multiple LadA-type alkane monooxygenases for the degradation of a broad range of alkanes.

  12. Modeling of Alkane Oxidation Using Constituents and Species

    NASA Technical Reports Server (NTRS)

    Bellan, Jasette; Harstad, Kenneth G.

    2010-01-01

    forms for the total constituent molar density rate evolution; indeed, examination of these gain/loss rates shows that they also have a good quasi-steady behavior with a functional form resembling that of the constituent rate. This finding highlights the fact that the fitting technique provides a methodology that can be repeatedly used to obtain an accurate representation of full or skeletal kinetic models. Assuming success with the modified reduced model, the advantage of the modeling approach is clear. Because this model is based on the Nc rate rather than on that of individual heavy species, even if the number of species increases with increased carbon number in the alkane group, providing that the quasi-steady rate aspect persists, then extension of this model to higher alkanes should be conceptually straightforward, although it remains to be seen if the functional fits would remain valid or would require reconstruction.

  13. A nonequilibrium molecular dynamics study of the rheology of alkanes

    SciTech Connect

    Gupta, S.A.; Cui, S.T.; Cummings, P.T.; Cochran, H.D. |

    1996-05-01

    We examine the rheological properties of four different alkanes: n-decane, n-hexadecane, n-tetracosane, and squalane. Simulations of Couette flow are performed for a range of shear rates with 100 molecules in each case using a replicated data version of our code. Number of interaction sites ranges from 1000 to 3000. We have performed extremely long simulations required to obtain acceptable statistics at low shear rates. The alkanes show a transition from non-Newtonian to Newtonian behavior as the shear rate decreases to low values. 1 tab, 1 fig, 17 refs.

  14. High Temperature Chemical Kinetic Combustion Modeling of Lightly Methylated Alkanes

    SciTech Connect

    Sarathy, S M; Westbrook, C K; Pitz, W J; Mehl, M

    2011-03-01

    Conventional petroleum jet and diesel fuels, as well as alternative Fischer-Tropsch (FT) fuels and hydrotreated renewable jet (HRJ) fuels, contain high molecular weight lightly branched alkanes (i.e., methylalkanes) and straight chain alkanes (n-alkanes). Improving the combustion of these fuels in practical applications requires a fundamental understanding of large hydrocarbon combustion chemistry. This research project presents a detailed high temperature chemical kinetic mechanism for n-octane and three lightly branched isomers octane (i.e., 2-methylheptane, 3-methylheptane, and 2,5-dimethylhexane). The model is validated against experimental data from a variety of fundamental combustion devices. This new model is used to show how the location and number of methyl branches affects fuel reactivity including laminar flame speed and species formation.

  15. Stable hydrogen isotope composition of n-alkanes in urban atmospheric aerosols in Taiyuan, China

    NASA Astrophysics Data System (ADS)

    Bai, Huiling; Li, Yinghui; Peng, Lin; Liu, Xiangkai; Liu, Xiaofeng; Song, Chongfang; Mu, Ling

    2017-03-01

    The hydrogen isotope compositions (δD) of n-alkanes associated with particulate matter with a diameter of ≤10 μm from Taiyuan, China, during heating and non-heating periods were measured via gas chromatography-isotope ratio mass spectrometry to reveal the spatial and temporal characteristics of five functional zones and to provide another constraint on atmospheric pollutants. The δD values of n-C16 to n-C31 during the heating and non-heating periods ranged from -235.9‰ to -119.8‰ and from -231.3‰ to -129.2‰, respectively, but these similar spans had different distribution features. During the heating period, the δD distributions between non-central heating and commercial districts were consistent, as were those between residential and industrial districts; the n-alkanes came from two or more types of emission sources. Coal soot might be the primary local emission source, but not the only source. During the non-heating period, the n-alkanes of n-C16 to n-C20 were more depleted in D with the increasing carbon number in all functional zones, but there was no rule for n-C21 to n-C31. Specifically, coal soot and vehicle exhaust might be the primary sources of n-alkanes for non-central heating districts in the heating and non-heating periods, respectively, according to the δD distribution of n-C18 to n-C22; gasoline vehicle exhaust might be an n-alkane source, and the hydrogen isotope fractionation effect during the condensation process should be a pollution mechanism for the commercial district during the heating period; the δD distribution difference of n-C16 to n-C18 between the two periods in the residential and industrial districts was consistent, which indicates a similar source of fossil fuel combustion and a similar isotope fractionation effect during the non-heating period.

  16. Solubility of gold nanoparticles as a function of ligand shell and alkane solvent.

    PubMed

    Lohman, Brandon C; Powell, Jeffrey A; Cingarapu, Sreeram; Aakeroy, Christer B; Chakrabarti, Amit; Klabunde, Kenneth J; Law, Bruce M; Sorensen, Christopher M

    2012-05-14

    The solubility of ca. 5.0 nm gold nanoparticles was studied systematically as a function of ligand shell and solvent. The ligands were octane-, decane-, dodecane- and hexadecanethiols; the solvents were the n-alkanes from hexane to hexadecane and toluene. Supernatant concentrations in equilibrium with precipitated superclusters of nanoparticles were measured at room temperature (23 °C) with UV-Vis spectrophotometry. The solubility of nanoparticles ligated with decane- and dodecanethiol was greatest in n-decane and n-dodecane, respectively. In contrast, the solubility of nanoparticles ligated with octane- and hexadecanethiol showed decreasing solubility with increasing solvent chain length. In addition the solubility of the octanethiol ligated system showed a nonmonotonic solvent carbon number functionality with even numbered solvents being better solvents than neighboring odd numbered solvents.

  17. Photochemical dimerization and functionalization of alkanes, ethers, primary and secondary alcohols, phosphine oxides and silanes

    DOEpatents

    Crabtree, R.H.; Brown, S.H.

    1989-10-17

    The space-time yield and/or the selectivity of the photochemical dimerization of alkanes, ethers, primary and secondary alcohols, phosphine oxides and primary, secondary and tertiary silanes with Hg and U.V. light is enhanced by refluxing the substrate in the irradiated reaction zone at a temperature at which the dimer product condenses and remains condensed promptly upon its formation. Cross-dimerization of the alkanes, ethers and silanes with primary alcohols is disclosed, as is the functionalization to aldehydes of the alkanes with carbon monoxide.

  18. Photochemical dimerization and functionalization of alkanes, ethers, primary and secondary alcohols, phosphine oxides and silanes

    DOEpatents

    Crabtree, Robert H.; Brown, Stephen H.

    1989-01-01

    The space-time yield and/or the selectivity of the photochemical dimerization of alkanes, ethers, primary and secondary alcohols, phosphine oxides and primary, secondary and tertiary silanes with Hg and U.V. light is enhanced by refluxing the substrate in the irradiated reaction zone at a temperature at which the dimer product condenses and remains condensed promptly upon its formation. Cross-dimerization of the alkanes, ethers and silanes with primary alcohols is disclosed, as is the functionalization to aldehydes of the alkanes with carbon monoxide.

  19. Difference equation model for isothermal gas chromatography expresses retention behavior of homologues of n-alkanes excluding the influence of holdup time.

    PubMed

    Wu, Liejun; Chen, Yongli; Caccamise, Sarah A L; Li, Qing X

    2012-10-19

    A difference equation (DE) model is developed using the methylene retention increment (Δtz) of n-alkanes to avoid the influence of gas holdup time (tM). The effects of the equation orders (1st-5th) on the accuracy of a curve fitting show that a linear equation (LE) is less satisfactory and it is not necessary to use a complicated cubic or higher order equation. The relationship between the logarithm of Δtz and the carbon number (z) of the n-alkanes under isothermal conditions closely follows the quadratic equation for C3-C30n-alkanes at column temperatures of 24-260 °C. The first and second order forward differences of the expression (Δlog Δtz and Δ2log Δtz, respectively) are linear and constant, respectively, which validates the DE model. This DE model lays a necessary foundation for further developing a retention model to accurately describe the relationship between the adjusted retention time and z of n-alkanes.

  20. Asynchronous evolution of the isotopic composition and amount of precipitation in north China during the Holocene revealed by a record of compound-specific carbon and hydrogen isotopes of long-chain n-alkanes from an alpine lake

    NASA Astrophysics Data System (ADS)

    Rao, Zhiguo; Jia, Guodong; Li, Yunxia; Chen, Jianhui; Xu, Qinghai; Chen, Fahu

    2016-07-01

    Both the timing of the maximum East Asian summer monsoon (EASM) intensity in monsoonal China and the environmental significance of the Chinese stalagmite oxygen isotopic record (δ18O) have been debated. Here, we present a ca. 120-year-resolution compound-specific carbon (δ13C) and hydrogen (δD) isotopes of terrestrial long-chain n-alkanes extracted from a well-dated sediment core from an alpine lake in north China. Our δ13C data, together with previously reported pollen data from a parallel core, demonstrate a humid mid-Holocene from ca. 8-5 ka BP. Assuming that the climatic humidity of north China is an indicator of the EASM intensity, then the maximum EASM intensity occurred in the mid-Holocene. Our δD data reveal a similar long-term trend to the δ18O record from nearby Lianhua Cave, indicating that the synchronous δD and δ18O records faithfully record the δD and δ18O of precipitation, respectively. The most negative δD and δ18O values occur in the early-mid Holocene, from ca. 11-5 ka BP. This contrast in the timing of isotopic variations demonstrates a complex relationship between the isotopic composition of precipitation and precipitation amount, or EASM intensity. Further comparisons indicate a possible linkage between the precipitation amount in north China and the west-east thermal gradient in the equatorial Pacific. In addition, the temperature of the moisture source area may play an important role in determining the isotopic composition of precipitation in monsoonal China.

  1. Co-metabolic conversion of toluene in anaerobic n-alkane-degrading bacteria.

    PubMed

    Rabus, Ralf; Jarling, René; Lahme, Sven; Kühner, Simon; Heider, Johann; Widdel, Friedrich; Wilkes, Heinz

    2011-09-01

    Diverse microorganisms have been described to degrade petroleum hydrocarbons anaerobically. Strains able to utilize n-alkanes do not grow with aromatic hydrocarbons, whereas strains able to utilize aromatic hydrocarbons do not grow with n-alkanes. To investigate this specificity in more detail, three anaerobic n-alkane degraders (two denitrifying, one sulfate-reducing) and eight anaerobic alkylbenzene degraders (five denitrifying, three sulfate-reducing) were incubated with mixtures of n-alkanes and toluene. Whereas the toluene degradationers formed only the characteristic toluene-derived benzylsuccinate and benzoate, but no n-alkane-derived metabolites, the n-alkane degraders formed toluene-derived benzylsuccinate, 4-phenylbutanoate, phenylacetate and benzoate besides the regular n-alkane-derived (1-methylalkyl)succinates and methyl-branched alkanoates. The co-metabolic conversion of toluene by anaerobic n-alkane degraders to the level of benzoate obviously follows the anaerobic n-alkane degradation pathway with C-skeleton rearrangement and decarboxylation rather than the β-oxidation pathway of anaerobic toluene metabolism. Hence, petroleum-derived aromatic metabolites detectable in anoxic environments may not be exclusively formed by genuine alkylbenzene degraders. In addition, the hitherto largely unexplored fate of fumarate hydrogen during the activation reactions was examined with (2,3-(2) H(2) )fumarate as co-substrate. Deuterium was completely exchanged with hydrogen at the substituted carbon atom (C-2) of the succinate adducts of n-alkanes, whereas it is retained in toluene-derived benzylsuccinate, regardless of the type of enzyme catalysing the fumarate addition reaction.

  2. Modular and selective biosynthesis of gasoline-range alkanes.

    PubMed

    Sheppard, Micah J; Kunjapur, Aditya M; Prather, Kristala L J

    2016-01-01

    Typical renewable liquid fuel alternatives to gasoline are not entirely compatible with current infrastructure. We have engineered Escherichia coli to selectively produce alkanes found in gasoline (propane, butane, pentane, heptane, and nonane) from renewable substrates such as glucose or glycerol. Our modular pathway framework achieves carbon-chain extension by two different mechanisms. A fatty acid synthesis route is used to generate longer chains heptane and nonane, while a more energy efficient alternative, reverse-β-oxidation, is used for synthesis of propane, butane, and pentane. We demonstrate that both upstream (thiolase) and intermediate (thioesterase) reactions can act as control points for chain-length specificity. Specific free fatty acids are subsequently converted to alkanes using a broad-specificity carboxylic acid reductase and a cyanobacterial aldehyde decarbonylase (AD). The selectivity obtained by different module pairings provides a foundation for tuning alkane product distribution for desired fuel properties. Alternate ADs that have greater activity on shorter substrates improve observed alkane titer. However, even in an engineered host strain that significantly reduces endogenous conversion of aldehyde intermediates to alcohol byproducts, AD activity is observed to be limiting for all chain lengths. Given these insights, we discuss guiding principles for pathway selection and potential opportunities for pathway improvement.

  3. Estimation of minimum miscibility pressure (MMP) of CO2 and liquid n-alkane systems using an improved MRI technique.

    PubMed

    Liu, Yu; Jiang, Lanlan; Song, Yongchen; Zhao, Yuechao; Zhang, Yi; Wang, Dayong

    2016-02-01

    Minimum miscible pressure (MMP) of gas and oil system is a key parameter for the injection system design of CO2 miscible flooding. Some industrial standard approaches such as the experiment using a rising bubble apparatus (RBA), the slim tube tests (STT), the pressure-density diagram (PDD), etc. have been applied for decades to determine the MMP of gas and oil. Some theoretical or experiential calculations of the MMP were also applied to the gas-oil miscible system. In the present work, an improved technique based on our previous research for the estimation of the MMP by using magnetic resonance imaging (MRI) was proposed. This technique was then applied to the CO2 and n-alkane binary and ternary systems to observe the mixing procedure and to study the miscibility. MRI signal intensities, which represent the proton concentration of n-alkane in both the hydrocarbon rich phase and the CO2 rich phase, were plotted as a reference for determining the MMP. The accuracy of the MMP obtained by using this improved technique was enhanced comparing with the data obtained from our previous works. The results also show good agreement with other established techniques (such as the STT) in previous published works. It demonstrates increases of MMPs as the temperature rise from 20 °C to 37.8 °C. The MMPs of CO2 and n-alkane systems are also found to be proportional to the carbon number in the range of C10 to C14.

  4. Anaerobic alkane biodegradation by cultures enriched from oil sands tailings ponds involves multiple species capable of fumarate addition.

    PubMed

    Tan, BoonFei; Semple, Kathleen; Foght, Julia

    2015-05-01

    A methanogenic short-chain alkane-degrading culture (SCADC) was enriched from oil sands tailings and transferred several times with a mixture of C6, C7, C8 and C10 n-alkanes as the predominant organic carbon source, plus 2-methylpentane, 3-methylpentane and methylcyclopentane as minor components. Cultures produced ∼40% of the maximum theoretical methane during 18 months incubation while depleting the n-alkanes, 2-methylpentane and methylcyclopentane. Substrate depletion correlated with detection of metabolites characteristic of fumarate activation of 2-methylpentane and methylcyclopentane, but not n-alkane metabolites. During active methanogenesis with the mixed alkanes, reverse-transcription PCR confirmed the expression of functional genes (assA and bssA) associated with hydrocarbon addition to fumarate. Pyrosequencing of 16S rRNA genes amplified during active alkane degradation revealed enrichment of Clostridia (particularly Peptococcaceae) and methanogenic Archaea (Methanosaetaceae and Methanomicrobiaceae). Methanogenic cultures transferred into medium containing sulphate produced sulphide, depleted n-alkanes and produced the corresponding succinylated alkane metabolites, but were slow to degrade 2-methylpentane and methylcyclopentane; these cultures were enriched in Deltaproteobacteria rather than Clostridia. 3-Methylpentane was not degraded by any cultures. Thus, nominally methanogenic oil sands tailings harbour dynamic and versatile hydrocarbon-degrading fermentative syntrophs and sulphate reducers capable of degrading n-, iso- and cyclo-alkanes by addition to fumarate.

  5. Mass dependence of the activation enthalpy and entropy of unentangled linear alkane chains.

    PubMed

    Jeong, Cheol; Douglas, Jack F

    2015-10-14

    The mass scaling of the self-diffusion coefficient D of polymers in the liquid state, D ∼ M(β), is one of the most basic characteristics of these complex fluids. Although traditional theories such as the Rouse and reptation models of unentangled and entangled polymer melts, respectively, predict that β is constant, this exponent for alkanes has been estimated experimentally to vary from -1.8 to -2.7 upon cooling. Significantly, β changes with temperature T under conditions where the chains are not entangled and at temperatures far above the glass transition temperature Tg where dynamic heterogeneity does not complicate the description of the liquid dynamics. Based on atomistic molecular dynamics simulations on unentangled linear alkanes in the melt, we find that the variation of β with T can be directly attributed to the dependence of the enthalpy ΔHa and entropy ΔSa of activation on the number of alkane backbone carbon atoms, n. In addition, we find a sharp change in the melt dynamics near a "critical" chain length, n ≈ 17. A close examination of this phenomenon indicates that a "buckling transition" from rod-like to coiled chain configurations occurs at this characteristic chain length and distinct entropy-enthalpy compensation relations, ΔSa ∝ ΔHa, hold on either side of this polymer conformational transition. We conclude that the activation free energy parameters exert a significant influence on the dynamics of polymer melts that is not anticipated by either the Rouse and reptation models. In addition to changes of ΔHa and ΔSa with M, we expect changes in these free energy parameters to be crucial for understanding the dynamics of polymer blends, nanocomposites, and confined polymers because of changes of the fluid free energy by interfacial interactions and geometrical confinement.

  6. Mass dependence of the activation enthalpy and entropy of unentangled linear alkane chains

    SciTech Connect

    Jeong, Cheol; Douglas, Jack F.

    2015-10-14

    The mass scaling of the self-diffusion coefficient D of polymers in the liquid state, D ∼ M{sup β}, is one of the most basic characteristics of these complex fluids. Although traditional theories such as the Rouse and reptation models of unentangled and entangled polymer melts, respectively, predict that β is constant, this exponent for alkanes has been estimated experimentally to vary from −1.8 to −2.7 upon cooling. Significantly, β changes with temperature T under conditions where the chains are not entangled and at temperatures far above the glass transition temperature T{sub g} where dynamic heterogeneity does not complicate the description of the liquid dynamics. Based on atomistic molecular dynamics simulations on unentangled linear alkanes in the melt, we find that the variation of β with T can be directly attributed to the dependence of the enthalpy ΔH{sub a} and entropy ΔS{sub a} of activation on the number of alkane backbone carbon atoms, n. In addition, we find a sharp change in the melt dynamics near a “critical” chain length, n ≈ 17. A close examination of this phenomenon indicates that a “buckling transition” from rod-like to coiled chain configurations occurs at this characteristic chain length and distinct entropy-enthalpy compensation relations, ΔS{sub a} ∝ ΔH{sub a}, hold on either side of this polymer conformational transition. We conclude that the activation free energy parameters exert a significant influence on the dynamics of polymer melts that is not anticipated by either the Rouse and reptation models. In addition to changes of ΔH{sub a} and ΔS{sub a} with M, we expect changes in these free energy parameters to be crucial for understanding the dynamics of polymer blends, nanocomposites, and confined polymers because of changes of the fluid free energy by interfacial interactions and geometrical confinement.

  7. Separating and characterizing functional alkane degraders from crude-oil-contaminated sites via magnetic nanoparticle-mediated isolation.

    PubMed

    Wang, Xinzi; Zhao, Xiaohui; Li, Hanbing; Jia, Jianli; Liu, Yueqiao; Ejenavi, Odafe; Ding, Aizhong; Sun, Yujiao; Zhang, Dayi

    Uncultivable microorganisms account for over 99% of all species on the planet, but their functions are yet not well characterized. Though many cultivable degraders for n-alkanes have been intensively investigated, the roles of functional n-alkane degraders remain hidden in the natural environment. This study introduces the novel magnetic nanoparticle-mediated isolation (MMI) technology in Nigerian soils and successfully separates functional microbes belonging to the families Oxalobacteraceae and Moraxellaceae, which are dominant and responsible for alkane metabolism in situ. The alkR-type n-alkane monooxygenase genes, instead of alkA- or alkP-type, were the key functional genes involved in the n-alkane degradation process. Further physiological investigation via a BIOLOG PM plate revealed some carbon (Tween 20, Tween 40 and Tween 80) and nitrogen (tyramine, l-glutamine and d-aspartic acid) sources promoting microbial respiration and n-alkane degradation. With further addition of promoter carbon or nitrogen sources, the separated functional alkane degraders significantly improved n-alkane biodegradation rates. This suggests that MMI is a promising technology for separating functional microbes from complex microbiota, with deeper insight into their ecological functions and influencing factors. The technique also broadens the application of the BIOLOG PM plate for physiological research on functional yet uncultivable microorganisms.

  8. Alkane biohydroxylation: Interests, constraints and future developments.

    PubMed

    Soussan, Laurence; Pen, Nakry; Belleville, Marie-Pierre; Marcano, José Sanchez; Paolucci-Jeanjean, Delphine

    2016-03-20

    Alkanes constitute one of the vastest reserves of raw materials for the production of fine chemicals. This paper focuses on recent advances in alkane biohydroxylation, i.e. the bioactivation of alkanes into their corresponding alcohols. Enzyme and whole-cell biocatalysts have been reviewed. Process considerations to implement such biocatalysts in bioreactors at large scale by coupling the bioconversion with cofactor regeneration and product removal are also discussed.

  9. n-alkane profiles of engine lubricating oil and particulate matter by molecular sieve extraction.

    PubMed

    Caravaggio, Gianni A; Charland, Jean-Pierre; Macdonald, Penny; Graham, Lisa

    2007-05-15

    As part of the Canadian Atmospheric Fine Particle Research Program to obtain reliable primary source emission profiles, a molecular sieve method was developed to reliably determine n-alkanes in lubricating oils, vehicle emissions, and mobile source dominated ambient particulate matter (PM). This work was also initiated to better calculate carbon preference index values (CPI: the ratio of the sums of odd over even n-alkanes), a parameter for estimating anthropogenic versus biogenic contributions in PM. n-Alkanes in lubricating oil and mobile source dominated PM are difficult to identify and quantify by gas chromatography due to the presence of similar components that cannot be fully resolved. This results in a hump, the unresolved complex mixture (UCM) that leads to incorrect n-alkane concentrations and CPI values. The sieve method yielded better chromatography, unambiguous identification of n-alkanes and allowed examination of differences between n-alkane profiles in light (LDV) and heavy duty vehicle (HDV) lubricating oils that would have been otherwise difficult. These profile differences made it possible to relate the LDV profile to that of the PM samples collected during a tunnel study in August 2001 near Vancouver (British Columbia, Canada). The n-alkane PM data revealed that longer sampling times result in a negative artifact, i.e., the desorption of the more volatile n-alkanes from the filters. Furthermore, the sieve procedure yielded n-alkane data that allowed calculation of accurate CPI values for lubricating oils and PM samples. Finally, this method may prove helpful in estimating the respective diesel and gasoline contributions to ambient PM.

  10. Biobased production of alkanes and alkenes through metabolic engineering of microorganisms.

    PubMed

    Kang, Min-Kyoung; Nielsen, Jens

    2016-08-26

    Advancement in metabolic engineering of microorganisms has enabled bio-based production of a range of chemicals, and such engineered microorganism can be used for sustainable production leading to reduced carbon dioxide emission there. One area that has attained much interest is microbial hydrocarbon biosynthesis, and in particular, alkanes and alkenes are important high-value chemicals as they can be utilized for a broad range of industrial purposes as well as 'drop-in' biofuels. Some microorganisms have the ability to biosynthesize alkanes and alkenes naturally, but their production level is extremely low. Therefore, there have been various attempts to recruit other microbial cell factories for production of alkanes and alkenes by applying metabolic engineering strategies. Here we review different pathways and involved enzymes for alkane and alkene production and discuss bottlenecks and possible solutions to accomplish industrial level production of these chemicals by microbial fermentation.

  11. Improved GC/MS method for quantitation of n-Alkanes in plant and fecal material

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A gas chromatography-mass spectrometry (GC/MS) method for the quantitation of n-alkanes (carbon backbones ranging from 21 to 36 carbon atoms) in forage and fecal samples has been developed. Automated solid-liquid extraction using elevated temperature and pressure minimized extraction time to 30 min...

  12. How to reduce resistance to movement of alkane liquid drops across tilted surfaces without relying on surface roughening and perfluorination.

    PubMed

    Urata, Chihiro; Masheder, Benjamin; Cheng, Dalton F; Hozumi, Atsushi

    2012-12-21

    Alkylsilane-derived monolayer-covered surfaces generally display a reasonably good level of hydrophobicity but poor oleophobicity. Here, we demonstrate that the physical attributes of alkylsilane-derived surfaces (liquid-like or solid-like) are dependent on the alkyl chain length and density, and these factors subsequently have significant influence upon the dynamic dewetting behavior toward alkanes (C(n)H(2n+2), where n = 7-16). In this study, we prepared and characterized hybrid films through a simple sol-gel process based on the cohydrolysis and co-condensation of a mixture of a range of alkyltriethoxysilanes (C(n)H(2n+1)Si(OEt)(3), where n = 3, 6, 8, 10, 12, 14, 16, and 18) and tetramethoxysilane (TMOS). Surprisingly, when the carbon number (C(n)) of alkyl chain was 10 and below, the produced hybrid films were all smooth, highly transparent, and showed negligible contact angle (CA) hysteresis. On these hybrid surfaces, 5 μL drops of alkanes (n-hexadecane, n-dodecane, and n-decane) could move easily at low tilt angles (<5°) without pinning. On the other hand, when the C(n) exceeded 12, both transparency and mobility of probe liquids significantly worsened. In the former case, TMOS molecules played key roles in both forming continuous films (as a binder) and improving flexibility of alkyl chains (as a molecular spacer), resulting in the smooth liquid-like surfaces. Silylation of the hybrid film and subsequent dynamic CA measurements proved the presence of silanol groups on the outermost surfaces and demonstrated that the dynamic dewettability of hybrid films worsened as packing densities increased. Additionally, solvent effects (high affinity) between the alkyl chains and alkane liquids imparted a more liquid-like character to the surface. Thanks to these simple physical effects, the resistance to the alkane droplet motion across tilted surfaces was markedly reduced. With the longer carbon chains, the chain mobility was strictly inhibited by mutual interactions

  13. The upper explosion limit of lower alkanes and alkenes in air at elevated pressures and temperatures.

    PubMed

    Van den Schoor, F; Verplaetsen, F

    2006-01-16

    The upper explosion limit (UEL) of ethane-air, propane-air, n-butane-air, ethylene-air and propylene-air mixtures is determined experimentally at initial pressures up to 30 bar and temperatures up to 250 degrees C. The experiments are performed in a closed spherical vessel with an internal diameter of 200 mm. The mixtures are ignited by fusing a coiled tungsten wire, placed at the centre of the vessel, by electric current. Flame propagation is said to have taken place if there is a pressure rise of at least 1% of the initial pressure after ignition of the mixture. In the pressure-temperature range investigated, a linear dependence of UEL on temperature and a bilinear dependence on pressure are found except in the vicinity of the auto-ignition range. A comparison of the UEL data of the lower alkanes shows that the UEL expressed as equivalence ratio (the actual fuel/air ratio divided by the stoichiometric fuel/air ratio) increases with increasing carbon number in the homologous series of alkanes.

  14. Biochemical studies on the metabolic activation of halogenated alkanes.

    PubMed Central

    Cheeseman, K H; Albano, E F; Tomasi, A; Slater, T F

    1985-01-01

    This paper reviews recent investigations by Slater and colleagues into the metabolic activation of halogenated alkanes in general and carbon tetrachloride in particular. It is becoming increasingly accepted that free radical intermediates are involved in the toxicity of many such compounds through mechanisms including lipid peroxidation, covalent binding, and cofactor depletion. Here we describe the experimental approaches that are used to establish that halogenated alkanes are metabolized in animal tissues to reactive free radicals. Electron spin resonance spectroscopy is used to identify free-radical products, often using spin-trapping compounds. The generation of specific free radicals by radiolytic methods is useful in the determination of the precise reactivity of radical intermediates postulated to be injurious to the cell. The enzymic mechanism of the production of such free radicals and their subsequent reactions with biological molecules is studied with specific metabolic inhibitors and free-radical scavengers. These combined techniques provide considerable insight into the process of metabolic activation of halogenated compounds. It is readily apparent, for instance, that the local oxygen concentration at the site of activation is of crucial importance to the subsequent reactions; the formation of peroxy radical derivatives from the primary free-radical product is shown to be of great significance in relation to carbon tetrachloride and may be of general importance. However, while these studies have provided much information on the biochemical mechanisms of halogenated alkane toxicity, it is clear that many problems remain to be solved. PMID:3007102

  15. Reaction pathway for alkane dehydrocyclization

    SciTech Connect

    Shi, Buchang; Davis, B.H.

    1996-08-01

    Naphtha reforming to produce high octane gasoline is an important process. Many reaction mechanisms are involved in this process. For example, the study of the fundamentals of this process led to the concept of bi- or poly-functional catalysis. The results of this study provide additional mechanistic information about the dehydrocyclization of an n-alkane to produce aromatics. The reaction coordinate diagram advanced to account for the observation of irreversible adsorption should be modified to account for the present results. 32 refs., 1 fig.

  16. [Effects of topographical condition and sampling number on the interpolation precision of forest litter carbon density].

    PubMed

    Zhang, Jia-jia; Fu, Wei-jun; Du, Qun; Zhang, Guo-jiang; Jiang, Pei-kun

    2013-08-01

    The territory of Zhejiang Province, East China was grouped into 3 topographical units (plain-coastal area, hill-basin area, and mountain area) to investigate the effects of topographical condition and sampling number on the Kriging interpolation precision of forest litter carbon density in the Province. The forest litter carbon density in the 3 topographical units showed a medium spatial correlation pattern, with the semi-variance nugget/sill ratio value ranged from 28.3% to 72.4%. The Kriging interpolation precision was in the order of plain-coastal area > hill-basin area > mountain area, indicating that the Kriging interpolation precision decreased with the increase of terrain complexity degree. Within the same topographical units, the Kriging interpolation precision improved with increasing sampling number, being most obvious in the mountain area. Therefore, under complicated topographical conditions, greater sampling number was required to achieve a high precision of Kriging interpolation.

  17. Classification of vegetable oils according to their botanical origin using n-alkane profiles established by GC-MS.

    PubMed

    Troya, F; Lerma-García, M J; Herrero-Martínez, J M; Simó-Alfonso, E F

    2015-01-15

    n-Alkane profiles established by gas chromatography-mass spectrometry (GC-MS) were used to classify vegetable oils according to their botanical origin. The n-alkanes present in corn, grapeseed, hazelnut, olive, peanut and sunflower oils were isolated by means of alkaline hydrolysis followed by silica gel column chromatography of the unsaponifiable fractions. The n-alkane fraction was constituted mainly of n-alkanes in the range C8-C35, although only those most abundant (15 n-alkanes, from 21 to 35 carbon No.) were used as original variables to construct linear discriminant analysis (LDA) models. Ratios of the peak areas selected by pairs were used as predictors. All the oils were correctly classified according to their botanical origin, with assignment probabilities higher than 95%, using an LDA model.

  18. Removal of alkanes from drinking water using membrane technologies

    SciTech Connect

    Fronk, C.A.

    1995-10-01

    Increasingly, the public is concerned about the quality of its drinking water. The chlorinated alkanes are saturated, aliphatic, synthetic organic compounds (SOC`s). When hydrocarbon feedstocks are chlorinated, a wide variety of chlorocarbons and chlorohydrocarbons are produced that are used as industrial solvents, degreasers and intermediaries. Because compounds such as Carbon Tetrachloride and 1,2-Dichloroethane are widely used, they often find their way into drinking water, particularly groundwaters. Surface waters are somewhat less affected bemuse of the high volatility of many chlorinated alkanes. The Drinking Water Research Division is responsible for evaluating various membrane technologies that may be feasible for meeting Maximum Contaminant Levels. Several membrane processes are under investigation to determine their effectiveness in removing SOC`s from drinking water. One study addressed the removal of a variety of alkanes from spiked groundwater by six reverse osmosis membranes: a cellulose acetate, a polyamide (hollow fiber), and four different types of thin-film composite membranes. Progressive chlorination of methanes, ethanes and propanes produces compounds that exhibit differing physicochemical properties. The differences in compound properties have an effect on the removal of these compounds by reverse osmosis membranes. For example only 25% of the methylene chloride (Dichloromethane) was removed by one thin-film composite versus 90% removal of the carbon tetrachloride. In addition, the various membranes are made of different polymeric materials and showed a wide range of removals. Generally, the thin-film composite membranes out performed the other membranes and the more highly chlorinated the compound the better the removal. Pervaporation is yet another membrane process that may prove effective in removal of alkanes and future studies will address its usefulness as a drinking water.

  19. Model predictions of higher-order normal alkane ignition from dilute shock-tube experiments

    NASA Astrophysics Data System (ADS)

    Rotavera, B.; Petersen, E. L.

    2013-07-01

    Shock-induced oxidation of two higher-order linear alkanes was measured using a heated shock tube facility. Experimental overlap in stoichiometric ignition delay times obtained under dilute (99 % Ar) conditions near atmospheric pressure was observed in the temperature-dependent ignition trends of n-nonane ( n-C9H20) and n-undecane ( n-C11H24). Despite the overlap, model predictions of ignition using two different detailed chemical kinetics mechanisms show discrepancies relative to both the measured data as well as to one another. The present study therefore focuses on the differences observed in the modeled, high-temperature ignition delay times of higher-order n-alkanes, which are generally regarded to have identical ignition behavior for carbon numbers above C7. Comparisons are drawn using experimental data from the present study and from recent work by the authors relative to two existing chemical kinetics mechanisms. Time histories from the shock-tube OH* measurements are also compared to the model predictions; a double-peaked structure observed in the data shows that the time response of the detector electronics is crucial for properly capturing the first, incipient peak near time zero. Calculations using the two mechanisms were carried out at the dilution level employed in the shock-tube experiments for lean {({φ} = 0.5)}, stoichiometric, and rich {({φ} = 2.0)} equivalence ratios, 1230-1620 K, and for both 1.5 and 10 atm. In general, the models show differing trends relative to both measured data and to one another, indicating that agreement among chemical kinetics models for higher-order n-alkanes is not consistent. For example, under certain conditions, one mechanism predicts the ignition delay times to be virtually identical between the n-nonane and n-undecane fuels (in fact, also for all alkanes between at least C8 and C12), which is in agreement with the experiment, while the other mechanism predicts the larger fuels to ignite progressively more slowly.

  20. Alkane-Based Urethane Potting Compounds

    NASA Technical Reports Server (NTRS)

    Morris, D. E.

    1986-01-01

    New low viscosity urethanes easily mixed, molded, and outgassed. Alkane-based urethanes resist hydrolysis and oxidation and have excellent dielectric properties. Low-viscosity alkane-based urethane prepolymer prepared by one-step reaction of either isophorone diisocyanate or methyl-bis (4-cyclohexyl isocyanate) with hydrogenated, hydroxy-terminated polybutadiene (HTPBD).

  1. Whole-cell biocatalytic and de novo production of alkanes from free fatty acids in Saccharomyces cerevisiae.

    PubMed

    Foo, Jee Loon; Susanto, Adelia Vicanatalita; Keasling, Jay D; Leong, Susanna Su Jan; Chang, Matthew Wook

    2017-01-01

    Rapid global industrialization in the past decades has led to extensive utilization of fossil fuels, which resulted in pressing environmental problems due to excessive carbon emission. This prompted increasing interest in developing advanced biofuels with higher energy density to substitute fossil fuels and bio-alkane has gained attention as an ideal drop-in fuel candidate. Production of alkanes in bacteria has been widely studied but studies on the utilization of the robust yeast host, Saccharomyces cerevisiae, for alkane biosynthesis have been lacking. In this proof-of-principle study, we present the unprecedented engineering of S. cerevisiae for conversion of free fatty acids to alkanes. A fatty acid α-dioxygenase from Oryza sativa (rice) was expressed in S. cerevisiae to transform C12-18 free fatty acids to C11-17 aldehydes. Co-expression of a cyanobacterial aldehyde deformylating oxygenase converted the aldehydes to the desired alkanes. We demonstrated the versatility of the pathway by performing whole-cell biocatalytic conversion of exogenous free fatty acid feedstocks into alkanes as well as introducing the pathway into a free fatty acid overproducer for de novo production of alkanes from simple sugar. The results from this work are anticipated to advance the development of yeast hosts for alkane production. Biotechnol. Bioeng. 2017;114: 232-237. © 2016 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc.

  2. Whole‐cell biocatalytic and de novo production of alkanes from free fatty acids in Saccharomyces cerevisiae

    PubMed Central

    Foo, Jee Loon; Susanto, Adelia Vicanatalita; Keasling, Jay D.; Leong, Susanna Su Jan

    2016-01-01

    ABSTRACT Rapid global industrialization in the past decades has led to extensive utilization of fossil fuels, which resulted in pressing environmental problems due to excessive carbon emission. This prompted increasing interest in developing advanced biofuels with higher energy density to substitute fossil fuels and bio‐alkane has gained attention as an ideal drop‐in fuel candidate. Production of alkanes in bacteria has been widely studied but studies on the utilization of the robust yeast host, Saccharomyces cerevisiae, for alkane biosynthesis have been lacking. In this proof‐of‐principle study, we present the unprecedented engineering of S. cerevisiae for conversion of free fatty acids to alkanes. A fatty acid α‐dioxygenase from Oryza sativa (rice) was expressed in S. cerevisiae to transform C12–18 free fatty acids to C11–17 aldehydes. Co‐expression of a cyanobacterial aldehyde deformylating oxygenase converted the aldehydes to the desired alkanes. We demonstrated the versatility of the pathway by performing whole‐cell biocatalytic conversion of exogenous free fatty acid feedstocks into alkanes as well as introducing the pathway into a free fatty acid overproducer for de novo production of alkanes from simple sugar. The results from this work are anticipated to advance the development of yeast hosts for alkane production. Biotechnol. Bioeng. 2017;114: 232–237. © 2016 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc. PMID:26717118

  3. Molecular distributions and compound-specific stable carbon isotopic compositions of lipids in wintertime aerosols from Beijing.

    PubMed

    Ren, Lujie; Fu, Pingqing; He, Yue; Hou, Juzhi; Chen, Jing; Pavuluri, Chandra Mouli; Sun, Yele; Wang, Zifa

    2016-06-08

    Molecular distributions and stable carbon isotopic compositions (δ(13)C) of n-alkanes, fatty acids and n-alcohols were investigated in urban aerosols from Beijing, northern China to better understand the sources and long-range atmospheric transport of terrestrial organic matter during polluted and clear days in winter. n-Alkanes (C19-C36), fatty acids (C8-C32) and n-alcohols (C16-C32) detected in Beijing aerosols are characterized by the predominance of C23, C16 and C28, respectively. Carbon preference index (CPI) values of n-alkanes, the ratios of the sum of odd-numbered n-alkanes to the sum of even-numbered n-alkanes, are close to 1, indicating a heavy influence of fossil fuel combustion. Relatively higher ratios of C(18:0+16:0)/C(18:n+16:1) (fatty acids) on clear days than polluted days indicate that long-distance transport and/or photochemical aging are more significant during clear days. δ(13)C values of n-alkanes and low molecular weight fatty acids (C16:0, C18:0) ranged from -34.1 to -24.7% and -26.9 to -24.6%, respectively, which are generally heavier on polluted days than those on clear days. Such a wide range suggests that atmospheric lipids in Beijing aerosols originate from multiple sources and encounter complicated atmospheric processes during long-range transport in North China.

  4. Investigating the Effect of Carbon Nanotube Diameter and Wall Number in Carbon Nanotube/Silicon Heterojunction Solar Cells

    PubMed Central

    Grace, Tom; Yu, LePing; Gibson, Christopher; Tune, Daniel; Alturaif, Huda; Al Othman, Zeid; Shapter, Joseph

    2016-01-01

    Suspensions of single-walled, double-walled and multi-walled carbon nanotubes (CNTs) were generated in the same solvent at similar concentrations. Films were fabricated from these suspensions and used in carbon nanotube/silicon heterojunction solar cells and their properties were compared with reference to the number of walls in the nanotube samples. It was found that single-walled nanotubes generally produced more favorable results; however, the double and multi-walled nanotube films used in this study yielded cells with higher open circuit voltages. It was also determined that post fabrication treatments applied to the nanotube films have a lesser effect on multi-walled nanotubes than on the other two types. PMID:28344309

  5. Field emission characteristics of a small number of carbon fiber emitters

    NASA Astrophysics Data System (ADS)

    Tang, Wilkin W.; Shiffler, Donald A.; Harris, John R.; Jensen, Kevin L.; Golby, Ken; LaCour, Matthew; Knowles, Tim

    2016-09-01

    This paper reports an experiment that studies the emission characteristics of small number of field emitters. The experiment consists of nine carbon fibers in a square configuration. Experimental results show that the emission characteristics depend strongly on the separation between each emitter, providing evidence of the electric field screening effects. Our results indicate that as the separation between the emitters decreases, the emission current for a given voltage also decreases. The authors compare the experimental results to four carbon fiber emitters in a linear and square configurations as well as to two carbon fiber emitters in a paired array. Voltage-current traces show that the turn-on voltage is always larger for the nine carbon fiber emitters as compared to the two and four emitters in linear configurations, and approximately identical to the four emitters in a square configuration. The observations and analysis reported here, based on Fowler-Nordheim field emission theory, suggest the electric field screening effect depends critically on the number of emitters, the separation between them, and their overall geometric configuration.

  6. Scalable and number-controlled synthesis of carbon nanotubes by nanostencil lithography.

    PubMed

    Choi, Jungwook; Koh, Kisik; Kim, Jongbaeg

    2013-06-11

    Controlled synthesis and integration of carbon nanotubes (CNTs) remain important areas of study to develop practical carbon-based nanodevices. A method of controlling the number of CNTs synthesized depending on the size of the catalyst was characterized using nanostencil lithography, and the critical dimension for the nanoaperture produced on a stencil mask used for growing individual CNTs was studied. The stencil mask was fabricated as a nanoaperture array down to 40 nm in diameter on a low-stress silicon nitride membrane. An iron catalyst used to synthesize CNTs was deposited through submicron patterns in the stencil mask onto a silicon substrate, and the profile of the patterned iron catalyst was analyzed using atomic force microscopy. The feasibility toward a scalable, number-, and location-controlled synthesis of CNTs was experimentally demonstrated based on the diameter and geometry of the apertures in the stencil mask.

  7. Cometabolism of Methyl tertiary Butyl Ether and Gaseous n-Alkanes by Pseudomonas mendocina KR-1 Grown on C5 to C8 n-Alkanes

    PubMed Central

    Smith, Christy A.; O'Reilly, Kirk T.; Hyman, Michael R.

    2003-01-01

    Pseudomonas mendocina KR-1 grew well on toluene, n-alkanes (C5 to C8), and 1° alcohols (C2 to C8) but not on other aromatics, gaseous n-alkanes (C1 to C4), isoalkanes (C4 to C6), 2° alcohols (C3 to C8), methyl tertiary butyl ether (MTBE), or tertiary butyl alcohol (TBA). Cells grown under carbon-limited conditions on n-alkanes in the presence of MTBE (42 μmol) oxidized up to 94% of the added MTBE to TBA. Less than 3% of the added MTBE was oxidized to TBA when cells were grown on either 1° alcohols, toluene, or dextrose in the presence of MTBE. Concentrated n-pentane-grown cells oxidized MTBE to TBA without a lag phase and without generating tertiary butyl formate (TBF) as an intermediate. Neither TBF nor TBA was consumed by n-pentane-grown cells, while formaldehyde, the expected C1 product of MTBE dealkylation, was rapidly consumed. Similar Ks values for MTBE were observed for cells grown on C5 to C8 n-alkanes (12.95 ± 2.04 mM), suggesting that the same enzyme oxidizes MTBE in cells grown on each n-alkane. All growth-supporting n-alkanes (C5 to C8) inhibited MTBE oxidation by resting n-pentane-grown cells. Propane (Ki = 53 μM) and n-butane (Ki = 16 μM) also inhibited MTBE oxidation, and both gases were also consumed by cells during growth on n-pentane. Cultures grown on C5 to C8 n-alkanes also exhibited up to twofold-higher levels of growth in the presence of propane or n-butane, whereas no growth stimulation was observed with methane, ethane, MTBE, TBA, or formaldehyde. The results are discussed in terms of their impacts on our understanding of MTBE biodegradation and cometabolism. PMID:14660389

  8. Alkane-degrading bacteria at the soil-litter interface: comparing isolates with T-RFLP-based community profiles.

    PubMed

    Giebler, Julia; Wick, Lukas Y; Chatzinotas, Antonis; Harms, Hauke

    2013-10-01

    Alkane-degrading bacteria were isolated from uncontaminated soil microcosms, which had been incubated with maize litter as natural alkane source. The isolates served to understand spatio-temporal community changes at the soil-litter interface, which had been detected using alkB as a functional marker gene for bacterial alkane degraders. To obtain a large spectrum of isolates, liquid subcultivation was combined with a matrix-assisted enrichment (Teflon membranes, litter). Elevated cell numbers of alkane degraders were detected by most probable number counting indicating enhanced alkane degradation potential in soil in response to litter treatment. Partial 16S rRNA gene sequencing of 395 isolates revealed forty different phylogenetic groups [operational taxonomic units (OTUs)] and spatio-temporal shifts in community composition. Ten OTUs comprised so far unknown alkane degraders, and five OTUs represented putative new bacterial genera. The combination of enrichment methods yielded a higher diversity of isolates than liquid subcultivation alone. Comparison of 16S rRNA gene T-RFLP profiles indicated that many alkane degraders present in the enrichments were not detectable in the DNA extracts from soil microcosms. These possibly rare specialists might represent a seed bank for the alkane degradation capacity in uncontaminated soil. This relevant ecosystem function can be fostered by the formation of the soil-litter interface.

  9. Dielectric constant of liquid alkanes and hydrocarbon mixtures

    NASA Technical Reports Server (NTRS)

    Sen, A. D.; Anicich, V. G.; Arakelian, T.

    1992-01-01

    The complex dielectric constants of n-alkanes with two to seven carbon atoms have been measured. The measurements were conducted using a slotted-line technique at 1.2 GHz and at atmospheric pressure. The temperature was varied from the melting point to the boiling point of the respective alkanes. The real part of the dielectric constant was found to decrease with increasing temperature and correlate with the change in the molar volume. An upper limit to all the loss tangents was established at 0.001. The complex dielectric constants of a few mixtures of liquid alkanes were also measured at room temperature. For a pentane-octane mixture the real part of the dielectric constant could be explained by the Clausius-Mosotti theory. For the mixtures of n-hexane-ethylacetate and n-hexane-acetone the real part of the dielectric constants could be explained by the Onsager theory extended to mixtures. The dielectric constant of the n-hexane-acetone mixture displayed deviations from the Onsager theory at the highest fractions of acetone. The dipole moments of ethylacetate and acetone were determined for dilute mixtures using the Onsager theory and were found to be in agreement with their accepted gas-phase values. The loss tangents of the mixtures exhibited a linear relationship with the volume fraction for low concentrations of the polar liquids.

  10. Dielectric constant of liquid alkanes and hydrocarbon mixtures.

    PubMed

    Sen, A D; Anicich, V G; Arakelian, T

    1992-01-01

    The complex dielectric constants of n-alkanes with two to seven carbon atoms have been measured. The measurements were conducted using a slotted-line technique at 1.2 GHz and at atmospheric pressure. The temperature was varied from the melting point to the boiling point of the respective alkanes. The real part of the dielectric constant was found to decrease with increasing temperature and correlate with the change in the molar volume. An upper limit to all the loss tangents was established at 0.001. The complex dielectric constants of a few mixtures of liquid alkanes were also measured at room temperature. For a pentane-octane mixture the real part of the dielectric constant could be explained by the Clausius-Mosotti theory. For the mixtures of n-hexane-ethylacetate and n-hexane-acetone the real part of the dielectric constants could be explained by the Onsager theory extended to mixtures. The dielectric constant of the n-hexane-acetone mixture displayed deviations from the Onsager theory at the highest fractions of acetone. The dipole moments of ethylacetate and acetone were determined for dilute mixtures using the Onsager theory and were found to be in agreement with their accepted gas-phase values. The loss tangents of the mixtures exhibited a linear relationship with the volume fraction for low concentrations of the polar liquids.

  11. Oxygen-promoted catalyst sintering influences number density, alignment, and wall number of vertically aligned carbon nanotubes.

    PubMed

    Shi, Wenbo; Li, Jinjing; Polsen, Erik S; Oliver, C Ryan; Zhao, Yikun; Meshot, Eric R; Barclay, Michael; Fairbrother, D Howard; Hart, A John; Plata, Desiree L

    2017-04-11

    A lack of synthetic control and reproducibility during vertically aligned carbon nanotube (CNT) synthesis has stifled many promising applications of organic nanomaterials. Oxygen-containing species are particularly precarious in that they have both beneficial and deleterious effects and are notoriously difficult to control. Here, we demonstrated diatomic oxygen's ability, independent of water, to tune oxide-supported catalyst thin film dewetting and influence nanoscale (diameter and wall number) and macro-scale (alignment and density) properties for as-grown vertically aligned CNTs. In particular, single- or few-walled CNT forests were achieved at very low oxygen loading, with single-to-multi-walled CNT diameters ranging from 4.8 ± 1.3 nm to 6.4 ± 1.1 nm over 0-800 ppm O2, and an expected variation in alignment, where both were related to the annealed catalyst morphology. Morphological differences were not the result of subsurface diffusion, but instead occurred via Ostwald ripening under several hundred ppm O2, and this effect was mitigated by high H2 concentrations and not due to water vapor (as confirmed in O2-free water addition experiments), supporting the importance of O2 specifically. Further characterization of the interface between the Fe catalyst and Al2O3 support revealed that either oxygen-deficit metal oxide or oxygen-adsorption on metals could be functional mechanisms for the observed catalyst nanoparticle evolution. Taken as a whole, our results suggest that the impacts of O2 and H2 on the catalyst evolution have been underappreciated and underleveraged in CNT synthesis, and these could present a route toward facile manipulation of CNT forest morphology through control of the reactive gaseous atmosphere alone.

  12. Characterization of the medium- and long-chain n-alkanes degrading Pseudomonas aeruginosa strain SJTD-1 and its alkane hydroxylase genes.

    PubMed

    Liu, Huan; Xu, Jing; Liang, Rubing; Liu, Jianhua

    2014-01-01

    A gram-negative aliphatic hydrocarbon-degrading bacterium SJTD-1 isolated from oil-contaminated soil was identified as Pseudomonas aeruginosa by comparative analyses of the 16S rRNA sequence, phenotype, and physiological features. SJTD-1 could efficiently mineralize medium- and long-chain n-alkanes (C12-C30) as its sole carbon source within seven days, showing the most optimal growth on n-hexadecane, followed by n-octadecane, and n-eicosane. In 36 h, 500 mg/L of tetradecane, hexadecane, and octadecane were transformed completely; and 2 g/L n-hexadecane was degraded to undetectable levels within 72 h. Two putative alkane-degrading genes (gene 3623 and gene 4712) were characterized and our results indicated that their gene products were rate-limiting enzymes involved in the synergetic catabolism of C12-C16 alkanes. On the basis of bioinformatics and transcriptional analysis, two P450 monooxygenases, along with a putative AlmA-like oxygenase, were examined. Genetically defective mutants lacking the characteristic alkane hydroxylase failed to degrade n-octadecane, thereby suggesting a different catalytic mechanism for the microbial transformation of alkanes with chain lengths over C18.

  13. Properties of Langmuir monolayers from semifluorinated alkanes

    NASA Astrophysics Data System (ADS)

    Broniatowski, M.; Macho, I. Sandez; Miñones, J.; Dynarowicz-Łątka, P.

    2005-06-01

    The aim of this study was to characterize several semifluorinated alkanes (SFA), of the general formula F(CF 2) m(CH 2) nH (in short F mH n), containing 25 carbon atoms in total (pentacosanes) differing in the m/ n ratio, as Langmuir monolayers at the free water surface. The following compounds have been studied: F6H19, F8H17, F10H15 and F12H13. Surface pressure ( π) and electric surface potential (Δ V) isotherms were recorded in addition to quantitative Brewster angle microscopy results. The negative sign of Δ V evidenced for the orientation of all the investigated semifluorinated pentacosanes, regardless the length of the hydrogenated segment, with their perfluorinated parts directed towards the air. As inferred from apparent dipole moment values and relative reflectivity results, the fluorinated pentacosanes with shorter perfluorinated fragment (F6H19 and F8H17) were found to be vertically oriented at the air/water interface, while those with longer perfluorinated moiety (F10H15 and F12H13) remain titled even in the vicinity of the film collapse.

  14. The vibrational spectrum of water in liquid alkanes.

    PubMed Central

    Conrad, M P; Strauss, H L

    1985-01-01

    The water wire hypothesis of hydrogen-ion transport in lipid bilayers has prompted a search for water aggregates in bulk hydrocarbons. The asymmetric stretching vibration of the water dissolved in n-decane and in a number of other alkanes and alkenes has been observed. The water band in the alkanes is very wide and fits to the results of a J-diffusion calculation for the water rotation. This implies that the water is freely rotating between collisions with the solvent and certainly not hydrogen bonded to anything. The existence of water aggregates is thus most unlikely. In contrast, water in an alkene is hydrogen bonded to the solvent molecules (although not to other water molecules) and shows an entirely different spectrum. PMID:4016205

  15. Fatty aldehyde dehydrogenase multigene family involved in the assimilation of n-alkanes in Yarrowia lipolytica.

    PubMed

    Iwama, Ryo; Kobayashi, Satoshi; Ohta, Akinori; Horiuchi, Hiroyuki; Fukuda, Ryouichi

    2014-11-28

    In the n-alkane assimilating yeast Yarrowia lipolytica, n-alkanes are oxidized to fatty acids via fatty alcohols and fatty aldehydes, after which they are utilized as carbon sources. Here, we show that four genes (HFD1-HFD4) encoding fatty aldehyde dehydrogenases (FALDHs) are involved in the metabolism of n-alkanes in Y. lipolytica. A mutant, in which all of four HFD genes are deleted (Δhfd1-4 strain), could not grow on n-alkanes of 12-18 carbons; however, the expression of one of those HFD genes restored its growth on n-alkanes. Production of Hfd2Ap or Hfd2Bp, translation products of transcript variants generated from HFD2 by the absence or presence of splicing, also supported the growth of the Δhfd1-4 strain on n-alkanes. The FALDH activity in the extract of the wild-type strain was increased when cells were incubated in the presence of n-decane, whereas this elevation in FALDH activity by n-decane was not observed in Δhfd1-4 strain extract. Substantial FALDH activities were detected in the extracts of Escherichia coli cells expressing the HFD genes. Fluorescent microscopic observation suggests that Hfd3p and Hfd2Bp are localized predominantly in the peroxisome, whereas Hfd1p and Hfd2Ap are localized in both the endoplasmic reticulum and the peroxisome. These results suggest that the HFD multigene family is responsible for the oxidation of fatty aldehydes to fatty acids in the metabolism of n-alkanes, and raise the possibility that Hfd proteins have diversified by gene multiplication and RNA splicing to efficiently assimilate or detoxify fatty aldehydes in Y. lipolytica.

  16. The anaerobic degradation of gaseous, nonmethane alkanes — From in situ processes to microorganisms

    PubMed Central

    Musat, Florin

    2015-01-01

    The short chain, gaseous alkanes ethane, propane, n- and iso-butane are released in significant amounts into the atmosphere, where they contribute to tropospheric chemistry and ozone formation. Biodegradation of gaseous alkanes by aerobic microorganisms, mostly bacteria and fungi isolated from terrestrial environments, has been known for several decades. The first indications for short chain alkane anaerobic degradation were provided by geochemical studies of deep-sea environments around hydrocarbon seeps, and included the uncoupling of the sulfate-reduction and anaerobic oxidation of methane rates, the consumption of gaseous alkanes in anoxic sediments, or the enrichment in 13C of gases in interstitial water vs. the source gas. Microorganisms able to degrade gaseous alkanes were recently obtained from deep-sea and terrestrial sediments around hydrocarbon seeps. Up to date, only sulfate-reducing pure or enriched cultures with ethane, propane and n-butane have been reported. The only pure culture presently available, strain BuS5, is affiliated to the Desulfosarcina–Desulfococcus cluster of the Deltaproteobacteria. Other phylotypes involved in gaseous alkane degradation have been identified based on stable-isotope labeling and whole-cell hybridization. Under anoxic conditions, propane and n-butane are activated similar to the higher alkanes, by homolytic cleavage of the C—H bond of a subterminal carbon atom, and addition of the ensuing radical to fumarate, yielding methylalkylsuccinates. An additional mechanism of activation at the terminal carbon atoms was demonstrated for propane, which could in principle be employed also for the activation of ethane. PMID:25904994

  17. Cold-tolerant alkane-degrading Rhodococcus species from Antarctica

    SciTech Connect

    Bej, A.K.; Saul, D.; Aislabie, J.

    2000-07-01

    Bioremediation is a possible mechanism for clean-up of hydrocarbon-contaminated soils in the Antarctic. Microbes indigenous to the Antarctic are required that degrade the hydrocarbon contaminants found in the soil, and that are able to survive and maintain activity under in situ conditions. Alkane-degrading bacteria previously isolated from oil-contaminated soil from around Scott Base, Antarctica, grew on a number of n-alkanes from hexane (C6) through to eicosane (C20) and the branched alkane pristane. Mineralization of {sup 14}C-dodecane was demonstrated with four strains. Representative isolates were identified as Rhodococcus species using 16S rDNA sequence analysis. Rhodococcus spp. strains 5/14 and 7/1 grew at -2 C but numbers of viable cells declined when incubated t 37 C. Both strains appear to have the major cold-shock gene cspA. Partial nucleotide sequence analyses of the PCR-amplified cspA open reading frame from Rhodococcus spp. strains 5/14 and 7/1 were approximately 60% identical to cspA from Escherichia coli.

  18. Whole-cell bacterial bioreporter for actively searching and sensing of alkanes and oil spills.

    PubMed

    Zhang, Dayi; He, Yi; Wang, Yun; Wang, Hui; Wu, Lin; Aries, Eric; Huang, Wei E

    2012-01-01

    Acinetobacter baylyi ADP1 was found to tolerate seawater and have a special ability of adhering to an oil-water interface of 10-80 µm emulsified mineral and crude oil droplets. These properties make ADP1 an ideal bacterial chassis for constructing bioreporters that are able to actively search and sense oil spill in water and soils. Acinetobacter baylyi bioreporter ADPWH_alk was developed and applied to the detection of alkanes and alkenes in water, seawater and soils. Bioreporter ADPWH_alk was able to detect a broad range of alkanes and alkenes with carbon chain length from C7 to C36. So far, ADPWH_alk is the only bioreporter that is able to detect alkane with carbon chain length greater than C18. This bioreporter responded to the alkanes in about 30 min and it was independent to the cell growth phase because of two point mutations in alkM promoter recognized by alkane regulatory protein ALKR. ADPWH_alk was applied to detect mineral oil, Brent, Chestnut and Sirri crude oils in water and seawater in the range 0.1-100 mg l(-1), showing that the bioreporter oil detection was semi-quantitative. This study demonstrates that ADPWH_alk is a rapid, sensitive and semi-quantitative bioreporter that can be useful for environmental monitoring and assessment of oil spills in seawater and soils.

  19. Solid-fluid and solid-solid equilibrium in hard sphere united atom models of n-alkanes: rotator phase stability.

    PubMed

    Cao, M; Monson, P A

    2009-10-22

    We present a study of the phase behavior for models of n-alkanes with chain lengths up to C(21) based on hard sphere united atom models of methyl and methylene groups, with fixed bond lengths and C-C-C bond angles. We extend earlier work on such models of shorter alkanes by allowing for gauche conformations in the chains. We focus particularly on the orientational order about the chain axes in the solid phase near the melting point, and our model shows how the loss of this orientational order leads to the formation of rotator phases. We have made extensive calculations of the thermodynamic properties of the models as well as order parameters for tracking the degree of orientational order around the chain axis. Depending on the chain length and whether the carbon number is even or odd, the model exhibits both a rotator phase and a more orientationally ordered solid phase in addition to the fluid phase. Our results indicate that the transition between the two solid phases is first-order with a small density change. The results are qualitatively similar to those seen experimentally and show that rotator phases can appear in models of alkanes without explicit treatment of attractive forces or explicit treatment of the hydrogen atoms in the chains.

  20. Supported organoiridium catalysts for alkane dehydrogenation

    DOEpatents

    Baker, R. Thomas; Sattelberger, Alfred P.; Li, Hongbo

    2013-09-03

    Solid supported organoiridium catalysts, a process for preparing such solid supported organoiridium catalysts, and the use of such solid supported organoiridium catalysts in dehydrogenation reactions of alkanes is provided. The catalysts can be easily recovered and recycled.

  1. Using the alkanes and long-chain alcohols of plant cuticular wax to estimate diet composition and the intakes of mixed forages in sheep consuming a known amount of alkane-labelled supplement.

    PubMed

    Dove, H; Charmley, E

    2008-10-01

    In a feeding trial with 24 sheep, we used the alkanes, long-chain alcohols (LCOH) or both of these plant wax markers, to estimate the diet composition of animals offered diets comprising alkane-labelled cottonseed meal (CSM) together with up to four forages. The diets used were: Diet 1 subterranean clover (Trifolium subterraneum); Diet 2 subterranean clover + phalaris (Phalaris aquatica); Diet 3 subterranean clover, phalaris + annual ryegrass (Lolium rigidum); and Diet 4 subterranean clover, phalaris, annual ryegrass + wheat straw (Triticum aestivum). Estimates of diet composition were made following correction of faecal alkane or LCOH concentrations for incomplete faecal recovery, using recovery estimates derived from individual animals, mean recoveries for a given dietary treatment or grand mean recoveries. Estimated dietary proportions of CSM and known intakes of CSM were used to estimate forage intake. The LCOH concentrations of the diet components were much higher than their alkane concentrations, especially for phalaris. Multivariate analyses showed that the discriminatory information provided by the LCOH was additional to that provided by the alkanes, and that a combination of (LCOH + alkanes) discriminated better between diet components than either class of marker alone. Faecal recoveries of LCOH increased with increasing carbon-chain length; there were no differences in recovery attributable to diet. The most accurate estimates of diet composition were obtained with the combination of (LCOH + alkanes). Estimates of diet composition based on LCOH alone were not as good as alkanes alone, due to the high correlation between the LCOH profiles of phalaris and ryegrass. Total grass content of the diet was very accurately estimated using LCOH. Diet composition estimates provided estimates of whole-diet digestibility, which did not differ from the measured values. Trends in the accuracy of forage intake estimates reflected those found with diet composition and

  2. Stable Isotope Labeled n-Alkanes to Assess Digesta Passage Kinetics through the Digestive Tract of Ruminants

    PubMed Central

    Warner, Daniel; Ferreira, Luis M. M.; Breuer, Michel J. H.; Dijkstra, Jan; Pellikaan, Wilbert F.

    2013-01-01

    We describe the use of carbon stable isotope (13C) labeled n-alkanes as a potential internal tracer to assess passage kinetics of ingested nutrients in ruminants. Plant cuticular n-alkanes originating from intrinsically 13C labeled ryegrass plants were pulse dosed intraruminally in four rumen-cannulated lactating dairy cows receiving four contrasting ryegrass silage treatments that differed in nitrogen fertilization level (45 or 90 kg nitrogen ha−1) and maturity (early or late). Passage kinetics through the gastrointestinal tract were derived from the δ13C (i.e. the ratio 13C:12C) in apparently undigested fecal material. Isotopic enrichment was observed in a wide range of long-chain n-alkanes (C27–C36) and passage kinetics were determined for the most abundant C29, C31 and C33 n-alkanes, for which a sufficiently high response signal was detected by combustion isotope ratio mass spectrometry. Basal diet treatment and carbon chain length of n-alkanes did not affect fractional passage rates from the rumen (K1) among individual n-alkanes (3.71–3.95%/h). Peak concentration time and transit time showed a quantitatively small, significant (p≤0.002) increase with carbon chain length. K1 estimates were comparable to those of the 13C labeled digestible dry matter fraction (3.38%/h; r = 0.61 to 0.71; p≤0.012). A literature review has shown that n-alkanes are not fermented by microorganisms in the rumen and affirms no preferential depletion of 13C versus 12C. Our results suggest that 13C labeled n-alkanes can be used as nutrient passage tracers and support the reliability of the δ13C signature of digestible feed nutrients as a tool to measure nutrient-specific passage kinetics. PMID:24124493

  3. Monocarboxylic acids from oxidation of acyclic isoprenoid alkanes by Mycobacterium fortuitum

    NASA Technical Reports Server (NTRS)

    Cox, R. E.; Maxwell, J. R.; Myers, R. N.

    1976-01-01

    Mycobacterium fortuitum utilizes certain stereoisomeric mixtures of individual multimethyl branched alkanes as sole carbon source, including 2,6(R), 10(S), 14(RS)-tetramethylhexadecane; 2,6(R), 10(S), 14(RS)-tetramethylheptadecane; 2,6(RS), 10(RS)-trimethyltetradecane, and 2,6(R), 10(S)-trimethylpentadecane. Products of oxidation isolated from the bacterial lipids were acids derived predominantly from oxidation of the isopropyl terminus of each alkane, except in the case of 2,6(RS), 10(RS)-trimethyltetradecane. With the latter, acids from oxidation at either terminus were detected in comparable proportions.

  4. Regioselective alkane hydroxylation with a mutant CYP153A6 enzyme

    SciTech Connect

    Koch, Daniel J.; Arnold, Frances H.

    2013-01-29

    Cytochrome P450 CYP153A6 from Myobacterium sp. strain HXN1500 was engineered using in-vivo directed evolution to hydroxylate small-chain alkanes regioselectively. Mutant CYP153A6-BMO1 selectively hydroxylates butane and pentane at the terminal carbon to form 1-butanol and 1-pentanol, respectively, at rates greater than wild-type CYP153A6 enzymes. This biocatalyst is highly active for small-chain alkane substrates and the regioselectivity is retained in whole-cell biotransformations.

  5. Regulation of the Alkane Hydroxylase CYP153 Gene in a Gram-Positive Alkane-Degrading Bacterium, Dietzia sp. Strain DQ12-45-1b

    PubMed Central

    Liang, Jie-Liang; JiangYang, Jing-Hong

    2015-01-01

    CYP153, one of the most common medium-chain n-alkane hydroxylases belonging to the cytochrome P450 superfamily, is widely expressed in n-alkane-degrading bacteria. CYP153 is also thought to cooperate with AlkB in degrading various n-alkanes. However, the mechanisms regulating the expression of the protein remain largely unknown. In this paper, we studied CYP153 gene transcription regulation by the potential AraC family regulator (CypR) located upstream of the CYP153 gene cluster in a broad-spectrum n-alkane-degrading Gram-positive bacterium, Dietzia sp. strain DQ12-45-1b. We first identified the transcriptional start site and the promoter of the CYP153 gene cluster. Sequence alignment of upstream regions of CYP153 gene clusters revealed high conservation in the −10 and −35 regions in Actinobacteria. Further analysis of the β-galactosidase activity in the CYP153 gene promoter-lacZ fusion cell indicated that the CYP153 gene promoter was induced by n-alkanes comprised of 8 to 14 carbon atoms, but not by derived decanol and decanic acid. Moreover, we constructed a cypR mutant strain and found that the CYP153 gene promoter activities and CYP153 gene transcriptional levels in the mutant strain were depressed compared with those in the wild-type strain in the presence of n-alkanes, suggesting that CypR served as an activator for the CYP153 gene promoter. By comparing CYP153 gene arrangements in Actinobacteria and Proteobacteria, we found that the AraC family regulator is ubiquitously located upstream of the CYP153 gene, suggesting its universal regulatory role in CYP153 gene transcription. We further hypothesize that the observed mode of CYP153 gene regulation is shared by many Actinobacteria. PMID:26567302

  6. Regulation of the Alkane Hydroxylase CYP153 Gene in a Gram-Positive Alkane-Degrading Bacterium, Dietzia sp. Strain DQ12-45-1b.

    PubMed

    Liang, Jie-Liang; JiangYang, Jing-Hong; Nie, Yong; Wu, Xiao-Lei

    2015-11-13

    CYP153, one of the most common medium-chain n-alkane hydroxylases belonging to the cytochrome P450 superfamily, is widely expressed in n-alkane-degrading bacteria. CYP153 is also thought to cooperate with AlkB in degrading various n-alkanes. However, the mechanisms regulating the expression of the protein remain largely unknown. In this paper, we studied CYP153 gene transcription regulation by the potential AraC family regulator (CypR) located upstream of the CYP153 gene cluster in a broad-spectrum n-alkane-degrading Gram-positive bacterium, Dietzia sp. strain DQ12-45-1b. We first identified the transcriptional start site and the promoter of the CYP153 gene cluster. Sequence alignment of upstream regions of CYP153 gene clusters revealed high conservation in the -10 and -35 regions in Actinobacteria. Further analysis of the β-galactosidase activity in the CYP153 gene promoter-lacZ fusion cell indicated that the CYP153 gene promoter was induced by n-alkanes comprised of 8 to 14 carbon atoms, but not by derived decanol and decanic acid. Moreover, we constructed a cypR mutant strain and found that the CYP153 gene promoter activities and CYP153 gene transcriptional levels in the mutant strain were depressed compared with those in the wild-type strain in the presence of n-alkanes, suggesting that CypR served as an activator for the CYP153 gene promoter. By comparing CYP153 gene arrangements in Actinobacteria and Proteobacteria, we found that the AraC family regulator is ubiquitously located upstream of the CYP153 gene, suggesting its universal regulatory role in CYP153 gene transcription. We further hypothesize that the observed mode of CYP153 gene regulation is shared by many Actinobacteria.

  7. Changes in iso- and n-alkane distribution during biodegradation of crude oil under nitrate and sulphate reducing conditions.

    PubMed

    Hasinger, Marion; Scherr, Kerstin E; Lundaa, Tserennyam; Bräuer, Leopold; Zach, Clemens; Loibner, Andreas Paul

    2012-02-20

    Crude oil consists of a large number of hydrocarbons with different susceptibility to microbial degradation. The influence of hydrocarbon structure and molecular weight on hydrocarbon biodegradation under anaerobic conditions is not fully explored. In this study oxygen, nitrate and sulphate served as terminal electron acceptors (TEAs) for the microbial degradation of a paraffin-rich crude oil in a freshly contaminated soil. During 185 days of incubation, alkanes from n-C11 to n-C39, three n- to iso-alkane ratios commonly used as weathering indicators and the unresolved complex mixture (UCM) were quantified and statistically analyzed. The use of different TEAs for hydrocarbon degradation resulted in dissimilar degradative patterns for n- and iso-alkanes. While n-alkane biodegradation followed well-established patterns under aerobic conditions, lower molecular weight alkanes were found to be more recalcitrant than mid- to high-molecular weight alkanes under nitrate-reducing conditions. Biodegradation with sulphate as the TEA was most pronounced for long-chain (n-C32 to n-C39) alkanes. The observation of increasing ratios of n-C17 to pristane and of n-C18 to phytane provides first evidence of the preferential degradation of branched over normal alkanes under sulphate reducing conditions. The formation of distinctly different n- and iso-alkane biodegradation fingerprints under different electron accepting conditions may be used to assess the occurrence of specific degradation processes at a contaminated site. The use of n- to iso-alkane ratios for this purpose may require adjustment if applied for anaerobic sites.

  8. Novel transparent zirconium-based hybrid material with multilayered nanostructures: studies of surface dewettability toward alkane liquids.

    PubMed

    Masheder, Benjamin; Urata, Chihiro; Cheng, Dalton F; Hozumi, Atsushi

    2013-01-01

    We have successfully prepared unique inorganic-organic hybrid materials that demonstrate excellent transparency and dewettability toward various alkane liquids (n-hexadecane, n-dodecane and n-decane) without relying on conventional surface roughening and perfluorination. Such coatings were made using a novel family of hybrid materials generated by substituting carboxylic acids, with a range of alkyl chain lengths (CH(3)(CH(2))(x-2)COOH where x = total carbon number, i.e., 10, 12, 14, 16, 18, 22, or 24, into zirconium (Zr) tetra-propoxide complexes. This precursor was then mixed with acetic acid and spincast to produce transparent thin Zr-carboxylic acid (ZrCA(x)) hybrid films using a nonhydrolytic sol-gel process. Fourier transform infrared spectroscopy provided proof of Zr-O-Zr network formation in the films upon casting and also followed changes to the physical nature (liquid-like or solid-like) of the alkyl chain assemblies depending upon alkyl chain length. X-ray diffractometry revealed that the hybrid films prepared using the longer chain carboxylic acids (ZrCA(x≥18)) spontaneously self-assembled into lamella structures with d-spacings ranging from 29.5 to 32.7 Angstroms, depending on the length of the alkyl chain. On the other hand the remaining films (ZrCA(x<18)) showed no such ordering. Moreover, the dynamic dewetting behavior of our hybrid films with alkane liquids was also strongly affected by alkyl chain length. ZrCA(x) films with x = 12, 14, and 16 showed the best dynamic oleophobicity among the seven hybrid films. In particular, small volume alkane droplets (5 μL) could be easily set in motion to move across and off ZrCA(14) film surfaces without pinning at low tilt angles (~6°).

  9. Evolution of an alkane-inducible biosensor for increased responsiveness to short-chain alkanes.

    PubMed

    Reed, Ben; Blazeck, John; Alper, Hal

    2012-04-15

    Synthetic alkane-inducible biosensors have applications as detectors for environmental hydrocarbon contamination and as novel inducible expression systems with low-cost inducers. Here, we have assembled and evolved an alkane-responsive biosensor with a fluorescence output signal in Escherichia coli by utilizing regulatory machinery from Pseudomonas putida's alkane metabolism. Within our system, the transcriptional regulator, AlkSp, is activated by the presence of alkanes and binds to the P(alkB) promoter, stimulating transcription of a Green Fluorescent Protein reporter. Through two successive rounds of directed evolution via error prone PCR and fluorescence activated cell sorting, we isolated alkS mutants enabling up to a 5 fold increase in fluorescence output signal in response to short-chain alkanes such as hexane and pentane. Further characterization of selected mutants demonstrated altered responsiveness to a wide range of linear alkanes (pentane to dodecane). Sequence analysis highlighted the S470T mutation as a likely candidate responsible for increased effectiveness of the AlkS protein for short-chain alkanes. This work represents the first evolution of a synthetic biosensor system for alkanes.

  10. Structural insights into diversity and n-alkane biodegradation mechanisms of alkane hydroxylases

    PubMed Central

    Ji, Yurui; Mao, Guannan; Wang, Yingying; Bartlam, Mark

    2013-01-01

    Environmental microbes utilize four degradation pathways for the oxidation of n-alkanes. Although the enzymes degrading n-alkanes in different microbes may vary, enzymes functioning in the first step in the aerobic degradation of alkanes all belong to the alkane hydroxylases. Alkane hydroxylases are a class of enzymes that insert oxygen atoms derived from molecular oxygen into different sites of the alkane terminus (or termini) depending on the type of enzymes. In this review, we summarize the different types of alkane hydroxylases, their degrading steps, and compare typical enzymes from various classes with regard to their three-dimensional structures, in order to provide insights into how the enzymes mediate their different roles in the degradation of n-alkanes and what determines their different substrate ranges. Through the above analyzes, the degrading mechanisms of enzymes can be elucidated and molecular biological methods can be utilized to expand their catalytic roles in the petrochemical industry or in bioremediation of oil-contaminated environments. PMID:23519435

  11. Mechanism of a C-H bond activation reaction in room-temperature alkane solution

    SciTech Connect

    Bromberg, S.E.; Yang, H.; Asplund, M.C.

    1997-10-10

    Chemical reactions that break alkane carbon-hydrogen (C-H) bonds are normally carried out under conditions of high temperature and pressure because these bonds are extremely strong ({approx} 100 kilocalories per mole), but certain metal complexes can activate C-H bonds in alkane solution under the mild conditions of room temperature and pressure. Time-resolved infrared experiments probing the initial femtosecond dynamics through the nano- and microsecond kinetics to the final stable products have been used to generate a detailed picture of the C-H activation reaction. Structures of all of the intermediates involved in the reaction of Tp*Rh(CO){sub 2} (Tp* = HB-Pz{sub 3}*, Pz* = 3,5-di-methylpyrazolyl) in alkane solution have been identified and assigned, and energy barriers for each reaction step from solvation to formation of the final alkyl hydride product have been estimated from transient lifetimes. 27 refs., 6 figs.

  12. The mechanism of a C-H Bond Activation reaction in roomtemperature alkane solution

    SciTech Connect

    Bromberg, Steven E.; Yang, Haw; Asplund, Matthew C.; Lian, T.; McNamara, B.K.; Kotz, K.T.; Yeston, J.S.; Wilkens, M.; Frei, H.; Bergman,Robert G.; Harris, C.B.

    1997-07-31

    Chemical reactions that break alkane carbon-hydrogen (C-H) bonds are normally carried out under conditions of high temperature and pressure because these bonds are extremely strong ({approx}100 kilocalories per mole), but certain metal complexes can activate C-H bonds in alkane solution under the mild conditions of room temperature and pressure. Time-resolved infrared experiments probing the initial femtosecond dynamics through the nano- and microsecond kinetics to the final stable products have been used to generate a detailed picture of the C-H activation reaction. Structures of all of the intermediates involved in the reaction of Tp*Rh(CO)2 (Tp* = HB-Pz3*, Pz* = 3,5-dimethylpyrazolyl) in alkane solution have been identified and assigned, and energy barriers for each reaction step from solvation to formation of the final alkylhydride product have been estimated from transient lifetimes.

  13. Modeling the influence of alkane molecular structure on secondary organic aerosol formation.

    PubMed

    Aumont, Bernard; Camredon, Marie; Mouchel-Vallon, Camille; La, Stéphanie; Ouzebidour, Farida; Valorso, Richard; Lee-Taylor, Julia; Madronich, Sasha

    2013-01-01

    Secondary Organic Aerosols (SOA) production and ageing is a multigenerational oxidation process involving the formation of successive organic compounds with higher oxidation degree and lower vapor pressure. Intermediate Volatility Organic Compounds (IVOC) emitted to the atmosphere are expected to be a substantial source of SOA. These emitted IVOC constitute a complex mixture including linear, branched and cyclic alkanes. The explicit gas-phase oxidation mechanisms are here generated for various linear and branched C10-C22 alkanes using the GECKO-A (Generator for Explicit Chemistry and Kinetics of Organics in the Atmosphere) and SOA formation is investigated for various homologous series. Simulation results show that both the size and the branching of the carbon skeleton are dominant factors driving the SOA yield. However, branching appears to be of secondary importance for the particle oxidation state and composition. The effect of alkane molecular structure on SOA yields appears to be consistent with recent laboratory observations. The simulated SOA composition shows, however, an unexpected major contribution from multifunctional organic nitrates. Most SOA contributors simulated for the oxidation of the various homologous series are far too reduced to be categorized as highly oxygenated organic aerosols (OOA). On a carbon basis, the OOA yields never exceeded 10% regardless of carbon chain length, molecular structure or ageing time. This version of the model appears clearly unable to explain a large production of OOA from alkane precursors.

  14. Late Quaternary environmental changes inferred from n-alkane evidence in coastal area of southern Hainan Island, China

    NASA Astrophysics Data System (ADS)

    Wang, Mengyuan; Zheng, Zhuo

    2016-04-01

    The studied core was a coastal core in Hainan Island, China. It is in length of 49.01m and divided into four Units (MIS 1~MIS 6) according to lithology description. The Optically Stimulated Luminescence (OSL) attributes the sediments from Unit 3 to the Oxygen Isotope Stage of MIS 5e (Unit 3b and 3c) and 5d (Unit 3a). To interpret the origination of organic carbons and to reconstruct paleovegetation changes, n-alkane, δ13C and TOC have been used in the present research. The result of n-alkanes distribution indicates a series of changes of sedimentary environment and terrestrial input. The shallow water facies at Unit 2, 3a and 4 is mainly characterized by short carbon chain n-alkanes and relatively low concentration. Contrasting with that of deep-water marine facies of MIS 5e (Unit 3b), the n-alkane pattern is typical bimodal and the main peaks are both in short and long carbon chains. During Unit 3b-1 (MIS 5e), more terrestrial original n-alkanes contribute to the concentration of TOC than oceanic. Organic matter source is mainly terrestrial origination. Total organic matter input mechanism of TLG-01 correlates with sediment grain size (average grain size). Total organic carbon input is enhanced with the increasing of fine grain size component. The variation of CPI (25-33) value in this study correlates with hydrological energy. The highest CPI (25-33) value is shown in the high sea level period of MIS 5e, comparing with that in MIS 5d and MIS 1. High CPI value corresponds to high TOC and average grain size (Φ) value. In the weak hydrological energy sedimentary environment, more terrestrial organic matter, together with TOC, deposit in the study area. ACL (25-33) index display higher values in the interglacial period (MIS 5 and MIS 1) than MIS 3 (sediments weathered during MIS 2) and MIS 6. Paq proxy, together with δ13C, estimates the mangrove growing depth in MIS 5e. The correlation between δ13C and each carbon chain alkane state stabilize and turbulence of

  15. Distribution, activity and function of short-chain alkane degrading phylotypes in hydrothermal vent sediments

    NASA Astrophysics Data System (ADS)

    Adams, M. M.; Joye, S. B.; Hoarfrost, A.; Girguis, P. R.

    2012-12-01

    Global geochemical analyses suggest that C2-C4 short chain alkanes are a common component of the utilizable carbon pool in deep-sea sediments worldwide and have been found in diverse ecosystems. From a thermodynamic standpoint, the anaerobic microbial oxidation of these aliphatic hydrocarbons is more energetically yielding than the anaerobic oxidation of methane (AOM). Therefore, the preferential degradation of these hydrocarbons may compete with AOM for the use of oxidants such as sulfate, or other potential oxidants. Such processes could influence the fate of methane in the deep-sea. Sulfate-reducing bacteria (SRB) from hydrocarbon seep sediments of the Gulf of Mexico and Guaymas Basin have previously been enriched that anaerobically oxidize short chain alkanes to generate CO2 with the preferential utilization of 12C-enriched alkanes (Kniemeyer et al. 2007). Different temperature regimens along with multiple substrates were tested and a pure culture (deemed BuS5) was isolated from mesophilic enrichments with propane or n-butane as the sole carbon source. Through comparative sequence analysis, strain BuS5 was determined to cluster with the metabolically diverse Desulfosarcina / Desulfococcus cluster, which also contains the SRB found in consortia with anaerobic, methane-oxidizing archaea in seep sediments. Enrichments from a terrestrial, low temperature sulfidic hydrocarbon seep also corroborated that propane degradation occurred with most bacterial phylotypes surveyed belonging to the Deltaproteobacteria, particularly Desulfobacteraceae (Savage et al. 2011). To date, no microbes capable of ethane oxidation or anaerobic C2-C4 alkane oxidation at thermophilic temperature have been isolated. The sediment-covered, hydrothermal vent systems found at Middle Valley (Juan de Fuca Ridge, eastern Pacific Ocean) are a prime environment for investigating mesophilic to thermophilic anaerobic oxidation of short-chain alkanes, given the elevated temperatures and dissolved

  16. Fidelity of fossil n-alkanes from leaf to paleosol and applications to the Paleocene-Eocene Thermal Maximum

    NASA Astrophysics Data System (ADS)

    Bush, R. T.; McInerney, F. A.; Baczynski, A. A.; Wing, S. L.

    2011-12-01

    Long chain n-alkanes (C21-C35) are well-known as biomarkers of terrestrial plants. They can be preserved across a wide range of terrestrial and marine environments, survive in the sedimentary record for millions of years, and can serve as proxies for ancient environments. Most n-alkane records are derived from sediments rather than directly from fossil leaves. However, little is known about the fidelity of the n-alkane record: how and where leaf preservation relates to n-alkane preservation and how patterns of n-alkane carbon isotope ratios (δ13C) compare to living relatives. To examine these questions, we analyzed n-alkanes from fluvial sediments and individual leaf fossils collected in the Bighorn Basin, Wyoming, across the Paleocene-Eocene Thermal Maximum (PETM) carbon isotope excursion. We assessed the fidelity of the n-alkane signature from individual fossil leaves via three separate means. 1) Spatial variations were assessed by comparing n-alkane concentrations on a fossil leaf and in sediments both directly adjacent to the leaf and farther away. Absolute concentrations were greater within the compression fossil than in the directly adjacent sediment, which were in turn greater than in more distant sediment. 2) n-Alkane abundances and distributions were examined in fossil leaves having a range of preservational quality, from fossils with intact cuticle to carbonized fossils lacking cuticle and higher-order venation. The best preserved fossils preserved a higher concentration of n-alkanes and showed the most similar n-alkane distribution to living relatives. However, a strong odd over even predominance suggests a relatively unmodified plant source occurred in all samples regardless of preservation state. 3) n-Alkane δ13C values were measured for both fossil leaves and their living relatives. Both the saw-tooth pattern of δ13C values between odd and even chain lengths and the general decrease in δ13C values with increasing chain length are consistent with

  17. Vertical profiles of black carbon concentration and particle number size distribution in the North China Plain

    NASA Astrophysics Data System (ADS)

    Ran, L.; Deng, Z.

    2013-12-01

    The vertical distribution of aerosols is of great importance to our understanding in the impacts of aerosols on radiation balance and climate, as well as air quality and public health. To better understand and estimate the effects of atmospheric components including trace gases and aerosols on atmospheric environment and climate, an intensive field campaign, Vertical Observations of trace Gases and Aerosols in the North China Plain (VOGA-NCP), was carried out from late July to early August 2013 over a rural site in the polluted NCP. During the campaign, vertical profiles of black carbon (BC) concentration and particle number size distribution were measured respectively by a micro-Aethalometer and an optical particle counter attached to a tethered balloon within 1000 m height. Meteorological parameters, including temperature, relative humidity, wind speed and wind direction, were measured simultaneously by a radiosonde also attached to the tethered balloon. Preliminary results showed distinct diurnal variations of the vertical distribution of aerosol total number concentration and BC concentration, following the development of the mixing layer. Generally, there was a well mixing of aerosols within the mixing layer and a sharp decrease above the mixing layer. Particularly, a small peak of BC concentrations was observed around 400-500 m height for several profiles. Further analysis would be needed to explain such phenomenon. It was also found that measured vertical profiles of BC using the filter-based method might be affected by the vertical distribution of relative humidity.

  18. Conversion of alkanes to organoseleniums and organotelluriums

    DOEpatents

    Periana, Roy A.; Konnick, Michael M.; Hashiguchi, Brian G.

    2016-11-29

    The invention provides processes and materials for the efficient and costeffective functionalization of alkanes and heteroalkanes, comprising contacting the alkane or heteroalkane and a soft oxidizing electrophile comprising Se(VI) or Te(VI), in an acidic medium, optionally further comprising an aprotic medium, which can be carried out at a temperature of less than 300 C. Isolation of the alkylselenium or alkyltellurium intermediate allows the subsequent conversion to products not necessarily compatible with the initial reaction conditions, such as amines, stannanes, organosulfur compounds, acyls, halocarbons, and olefins.

  19. Investigating C4 Grass Contributions to N-alkane Based Paleoclimate Reconstructions

    NASA Astrophysics Data System (ADS)

    Doman, C. E.; Enders, S. K.; Chadwick, O.; Freeman, K. H.

    2014-12-01

    Plant wax n-alkanes are long-chain, saturated hydrocarbons contained within the protective waxy cuticle on leaves. These lipids are pervasive and persistent in soils and sediments and thus are ideal biomarkers of ancient terrestrial organic matter. In ecosystems dominated by C3 plants, the relationship between the carbon isotopic value of whole leaves and lipids is fairly well documented, but this relationship has not been fully investigated for plants that use C4 photosynthesis. In both cases, it is unclear if the isotopic relationships are sensitive to environmental conditions, or reflect inherited characteristics. This study used a natural climate gradient on the Kohala peninsula of Hawaii to investigate relationships between climate and the δ13C and δ2H values of n-alkanes in C3 and C4 plants. δ13C of C3 leaves and lipids decreased 5 ‰ from the driest to the wettest sites, consistent with published data. Carbon isotope values of C4 plants showed no relationship to moisture up to 1000 mm mean annual precipitation (MAP). Above this threshold, δ 13C values were around 10‰ more depleted, likely due to a combination of canopy effects and C4 grasses growing in an uncharacteristically wet and cold environment. In C3 plants, the fractionation between leaf and lipid carbon isotopes did not vary with MAP, which allows estimations of δ13C leaf to be made from alkanes preserved in ancient sediments. Along this transect, C3 plants produce around twice the quantity of n-alkanes as C4 grasses. C4 grasses produce longer carbon chains. As a result, n-alkanes in the geologic record will be biased towards C3 plants, but the presence of alkanes C33 and C35 indicate the contributions of C4 grasses. In both C3 and C4 plants, average chain length increased with mean annual precipitation, but the taxonomic differences in chain length were greater than environmental differences. Hydrogen isotopes of n-alkanes show no trends with MAP, but do show clear differences between plant

  20. High temperature cracking and deposition behavior of an n-alkane mixture

    SciTech Connect

    Atria, J.V.; Edwards, T.

    1996-10-01

    Advanced jet engine designs and the need for jet fuel in aircraft to handle increasing heat loads has generated much interest in investigating the thermal stability of jet fuels at temperatures greater than 500{degrees}C. A mixture of C12 to C15 normal paraffins, was used to model the high temperature deposition and cracking behavior of jet fuels. The model hydrocarbon mixture was pumped through a single tube heat exchanger under supercritical conditions and heated to a final temperature of 550{degrees}C. Gas and liquid products were analyzed by gas chromatography/mass spectrometry, GC/MS, and gas chromatography with a flame ionization detector, GC FID. Amounts of carbon deposit through the tube were also determined by carbon burnoff analysis. Results showed the long chain normal paraffins to be stable in the oxidative deposition region, 150 to 300{degrees}C, while creating large amounts of pyrolytic deposits at temperatures greater than 500{degrees}C. The normal paraffins were found to crack to form smaller chain alkanes and alkenes with highly stressed samples then forming higher numbered olefins and cyclohexanes. This model mixture was also highly useful in observing the effects of fuel additives and tube surfaces on chemistry and deposit formation. Both high temperature hydrogen donors and an inert surface were found to increase the thermal stability of the paraffin mixture.

  1. Modeling SOA formation from the oxidation of intermediate volatility n-alkanes

    NASA Astrophysics Data System (ADS)

    Aumont, B.; Valorso, R.; Mouchel-Vallon, C.; Camredon, M.; Lee-Taylor, J.; Madronich, S.

    2012-08-01

    The chemical mechanism leading to SOA formation and ageing is expected to be a multigenerational process, i.e. a successive formation of organic compounds with higher oxidation degree and lower vapor pressure. This process is here investigated with the explicit oxidation model GECKO-A (Generator of Explicit Chemistry and Kinetics of Organics in the Atmosphere). Gas phase oxidation schemes are generated for the C8-C24 series of n-alkanes. Simulations are conducted to explore the time evolution of organic compounds and the behavior of secondary organic aerosol (SOA) formation for various preexisting organic aerosol concentration (COA). As expected, simulation results show that (i) SOA yield increases with the carbon chain length of the parent hydrocarbon, (ii) SOA yield decreases with decreasing COA, (iii) SOA production rates increase with increasing COA and (iv) the number of oxidation steps (i.e. generations) needed to describe SOA formation and evolution grows when COA decreases. The simulated oxidative trajectories are examined in a two dimensional space defined by the mean carbon oxidation state and the volatility. Most SOA contributors are not oxidized enough to be categorized as highly oxygenated organic aerosols (OOA) but reduced enough to be categorized as hydrocarbon like organic aerosols (HOA), suggesting that OOA may underestimate SOA. Results show that the model is unable to produce highly oxygenated aerosols (OOA) with large yields. The limitations of the model are discussed.

  2. Modeling SOA formation from the oxidation of intermediate volatility n-alkanes

    NASA Astrophysics Data System (ADS)

    Aumont, B.; Valorso, R.; Mouchel-Vallon, C.; Camredon, M.; Lee-Taylor, J.; Madronich, S.

    2012-06-01

    The chemical mechanism leading to SOA formation and ageing is expected to be a multigenerational process, i.e. a successive formation of organic compounds with higher oxidation degree and lower vapor pressure. This process is here investigated with the explicit oxidation model GECKO-A (Generator of Explicit Chemistry and Kinetics of Organics in the Atmosphere). Gas phase oxidation schemes are generated for the C8-C24 series of n-alkanes. Simulations are conducted to explore the time evolution of organic compounds and the behavior of secondary organic aerosol (SOA) formation for various preexisting organic aerosol concentration (COA). As expected, simulation results show that (i) SOA yield increases with the carbon chain length of the parent hydrocarbon, (ii) SOA yield decreases with decreasing COA, (iii) SOA production rates increase with increasing COA and (iv) the number of oxidation steps (i.e. generations) needed to describe SOA formation and evolution grows when COA decreases. The simulated oxidative trajectories are examined in a two dimensional space defined by the mean carbon oxidation state and the volatility. Most SOA contributors are not oxidized enough to be categorized as highly oxygenated organic aerosols (OOA) but reduced enough to be categorized as hydrocarbon like organic aerosols (HOA), suggesting that OOA may underestimate SOA. Results show that the model is unable to produce highly oxygenated aerosols (OOA) with large yields. The limitations of the model are discussed.

  3. Improved Alkane Production in Nitrogen-Fixing and Halotolerant Cyanobacteria via Abiotic Stresses and Genetic Manipulation of Alkane Synthetic Genes.

    PubMed

    Kageyama, Hakuto; Waditee-Sirisattha, Rungaroon; Sirisattha, Sophon; Tanaka, Yoshito; Mahakhant, Aparat; Takabe, Teruhiro

    2015-07-01

    Cyanobacteria possess the unique capacity to produce alkane. In this study, effects of nitrogen deficiency and salt stress on biosynthesis of alkanes were investigated in three kinds of cyanobacteria. Intracellular alkane accumulation was increased in nitrogen-fixing cyanobacterium Anabaena sp. PCC7120, but decreased in non-diazotrophic cyanobacterium Synechococcus elongatus PCC7942 and constant in a halotolerant cyanobacterium Aphanothece halophytica under nitrogen-deficient condition. We also found that salt stress increased alkane accumulation in Anabaena sp. PCC7120 and A. halophytica. The expression levels of two alkane synthetic genes were not upregulated significantly under nitrogen deficiency or salt stress in Anabaena sp. PCC7120. The transformant Anabaena sp. PCC7120 cells with additional alkane synthetic gene set from A. halophytica increased intracellular alkane accumulation level compared to control cells. These results provide a prospect to improve bioproduction of alkanes in nitrogen-fixing halotolerant cyanobacteria via abiotic stresses and genetic engineering.

  4. In situ detection of anaerobic alkane metabolites in subsurface environments.

    PubMed

    Agrawal, Akhil; Gieg, Lisa M

    2013-01-01

    Alkanes comprise a substantial fraction of crude oil and refined fuels. As such, they are prevalent within deep subsurface fossil fuel deposits and in shallow subsurface environments such as aquifers that are contaminated with hydrocarbons. These environments are typically anaerobic, and host diverse microbial communities that can potentially use alkanes as substrates. Anaerobic alkane biodegradation has been reported to occur under nitrate-reducing, sulfate-reducing, and methanogenic conditions. Elucidating the pathways of anaerobic alkane metabolism has been of interest in order to understand how microbes can be used to remediate contaminated sites. Alkane activation primarily occurs by addition to fumarate, yielding alkylsuccinates, unique anaerobic metabolites that can be used to indicate in situ anaerobic alkane metabolism. These metabolites have been detected in hydrocarbon-contaminated shallow aquifers, offering strong evidence for intrinsic anaerobic bioremediation. Recently, studies have also revealed that alkylsuccinates are present in oil and coal seam production waters, indicating that anaerobic microbial communities can utilize alkanes in these deeper subsurface environments. In many crude oil reservoirs, the in situ anaerobic metabolism of hydrocarbons such as alkanes may be contributing to modern-day detrimental effects such as oilfield souring, or may lead to more beneficial technologies such as enhanced energy recovery from mature oilfields. In this review, we briefly describe the key metabolic pathways for anaerobic alkane (including n-alkanes, isoalkanes, and cyclic alkanes) metabolism and highlight several field reports wherein alkylsuccinates have provided evidence for anaerobic in situ alkane metabolism in shallow and deep subsurface environments.

  5. 40 CFR 721.536 - Halogenated phenyl alkane.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Halogenated phenyl alkane. 721.536... Substances § 721.536 Halogenated phenyl alkane. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as halogenated phenyl alkane (PMN P-89-867)...

  6. 40 CFR 721.10163 - Chloro fluoro alkane (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Chloro fluoro alkane (generic). 721... Substances § 721.10163 Chloro fluoro alkane (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as chloro fluoro alkane (PMN...

  7. 40 CFR 721.535 - Halogenated alkane (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Halogenated alkane (generic). 721.535... Substances § 721.535 Halogenated alkane (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as halogenated alkane (PMN P-01-433) is...

  8. In situ detection of anaerobic alkane metabolites in subsurface environments

    PubMed Central

    Agrawal, Akhil; Gieg, Lisa M.

    2013-01-01

    Alkanes comprise a substantial fraction of crude oil and refined fuels. As such, they are prevalent within deep subsurface fossil fuel deposits and in shallow subsurface environments such as aquifers that are contaminated with hydrocarbons. These environments are typically anaerobic, and host diverse microbial communities that can potentially use alkanes as substrates. Anaerobic alkane biodegradation has been reported to occur under nitrate-reducing, sulfate-reducing, and methanogenic conditions. Elucidating the pathways of anaerobic alkane metabolism has been of interest in order to understand how microbes can be used to remediate contaminated sites. Alkane activation primarily occurs by addition to fumarate, yielding alkylsuccinates, unique anaerobic metabolites that can be used to indicate in situ anaerobic alkane metabolism. These metabolites have been detected in hydrocarbon-contaminated shallow aquifers, offering strong evidence for intrinsic anaerobic bioremediation. Recently, studies have also revealed that alkylsuccinates are present in oil and coal seam production waters, indicating that anaerobic microbial communities can utilize alkanes in these deeper subsurface environments. In many crude oil reservoirs, the in situ anaerobic metabolism of hydrocarbons such as alkanes may be contributing to modern-day detrimental effects such as oilfield souring, or may lead to more beneficial technologies such as enhanced energy recovery from mature oilfields. In this review, we briefly describe the key metabolic pathways for anaerobic alkane (including n-alkanes, isoalkanes, and cyclic alkanes) metabolism and highlight several field reports wherein alkylsuccinates have provided evidence for anaerobic in situ alkane metabolism in shallow and deep subsurface environments. PMID:23761789

  9. Direct hydrodeoxygenation of raw woody biomass into liquid alkanes.

    PubMed

    Xia, Qineng; Chen, Zongjia; Shao, Yi; Gong, Xueqing; Wang, Haifeng; Liu, Xiaohui; Parker, Stewart F; Han, Xue; Yang, Sihai; Wang, Yanqin

    2016-03-30

    Being the only sustainable source of organic carbon, biomass is playing an ever-increasingly important role in our energy landscape. The conversion of renewable lignocellulosic biomass into liquid fuels is particularly attractive but extremely challenging due to the inertness and complexity of lignocellulose. Here we describe the direct hydrodeoxygenation of raw woods into liquid alkanes with mass yields up to 28.1 wt% over a multifunctional Pt/NbOPO4 catalyst in cyclohexane. The superior performance of this catalyst allows simultaneous conversion of cellulose, hemicellulose and, more significantly, lignin fractions in the wood sawdust into hexane, pentane and alkylcyclohexanes, respectively. Investigation on the molecular mechanism reveals that a synergistic effect between Pt, NbOx species and acidic sites promotes this highly efficient hydrodeoxygenation of bulk lignocellulose. No chemical pretreatment of the raw woody biomass or separation is required for this one-pot process, which opens a general and energy-efficient route for converting raw lignocellulose into valuable alkanes.

  10. Direct hydrodeoxygenation of raw woody biomass into liquid alkanes

    PubMed Central

    Xia, Qineng; Chen, Zongjia; Shao, Yi; Gong, Xueqing; Wang, Haifeng; Liu, Xiaohui; Parker, Stewart F.; Han, Xue; Yang, Sihai; Wang, Yanqin

    2016-01-01

    Being the only sustainable source of organic carbon, biomass is playing an ever-increasingly important role in our energy landscape. The conversion of renewable lignocellulosic biomass into liquid fuels is particularly attractive but extremely challenging due to the inertness and complexity of lignocellulose. Here we describe the direct hydrodeoxygenation of raw woods into liquid alkanes with mass yields up to 28.1 wt% over a multifunctional Pt/NbOPO4 catalyst in cyclohexane. The superior performance of this catalyst allows simultaneous conversion of cellulose, hemicellulose and, more significantly, lignin fractions in the wood sawdust into hexane, pentane and alkylcyclohexanes, respectively. Investigation on the molecular mechanism reveals that a synergistic effect between Pt, NbOx species and acidic sites promotes this highly efficient hydrodeoxygenation of bulk lignocellulose. No chemical pretreatment of the raw woody biomass or separation is required for this one-pot process, which opens a general and energy-efficient route for converting raw lignocellulose into valuable alkanes. PMID:27025898

  11. Transcriptional response of Desulfatibacillum alkenivorans AK-01 to growth on alkanes: insights from RT-qPCR and microarray analyses.

    PubMed

    Herath, Anjumala; Wawrik, Boris; Qin, Yujia; Zhou, Jizhong; Callaghan, Amy V

    2016-05-01

    Microbial transformation of n-alkanes in anaerobic ecosystems plays a pivotal role in biogeochemical carbon cycling and bioremediation, but the requisite genetic machinery is not well elucidated.Desulfatibacillum alkenivorans AK-01 utilizes n-alkanes (C13 to C18) and contains two genomic loci encoding alkylsuccinate synthase (ASS) gene clusters. ASS catalyzes alkane addition to fumarate to form methylalkylsuccinic acids. We hypothesized that the genes in the two clusters would be differentially expressed depending on the alkane substrate utilized for growth. RT-qPCR was used to investigate ass-gene expression across AK-01's known substrate range, and microarray-based transcriptomic analysis served to investigate whole-cell responses to growth on n-hexadecane versus hexadecanoate. RT-qPCR revealed induction of ass gene cluster 1 during growth on all tested alkane substrates, and the transcriptional start sites in cluster 1 were determined via 5'RACE. Induction of ass gene cluster 2 was not observed under the tested conditions. Transcriptomic analysis indicated that the upregulation of genes potentially involved in methylalkylsuccinate metabolism, including methylmalonyl-CoA mutase and a putative carboxyl transferase. These findings provide new directions for studying the transcriptional regulation of genes involved in alkane addition to fumarate, fumarate recycling and the processing of methylalkylsuccinates with regard to isolates, enrichment cultures and ecological datasets.

  12. Benzylic Phosphates in Friedel-Crafts Reactions with Activated and Unactivated Arenes: Access to Polyarylated Alkanes.

    PubMed

    Pallikonda, Gangaram; Chakravartya, Manab

    2016-03-04

    Easily reachable electron-poor/rich primary and secondary benzylic phosphates are suitably used as substrates for Friedel-Crafts benzylation reactions with only 1.2 equiv activated/deactivated arenes (no additional solvent) to access structurally and electronically diverse polyarylated alkanes with excellent yields and selectivities at room temperature. Specifically, diversely substituted di/triarylmethanes are generated within 2-30 min using this approach. A wide number of electron-poor polyarylated alkanes are easily accomplished through this route by just tuning the phosphates.

  13. Revised charge equilibration potential for liquid alkanes.

    PubMed

    Davis, Joseph E; Warren, G Lee; Patel, Sandeep

    2008-07-17

    We present a revised liquid alkane force field based on the charge equilibration formalism for incorporating electrostatic nonadditive effects arising from local polarization. The model is a revision of earlier work by Patel and Brooks, specifically addressing deficiencies in the dihedral potential, electrostatic, and Lennard-Jones (van der Waals) parameters of the force field. We discuss refinement of the alkane backbone torsion potential to match high-level ab initio relative conformational energetics for pentane, hexane, and heptane. We further discuss refinement of the electrostatic and Lennard-Jones (van der Waals) parameters to reproduce the experimental polarizability, liquid density, and vaporization enthalpy of hexane. Finally, we calculate bulk liquid properties including densities, vaporization enthalpies, self-diffusion constants, isothermal compressibilities, constant pressure heat capacities, and NMR T 1 relaxation times for a series of linear alkanes ranging from hexane to pentadecane based on the current revised model. We also compute free energies of hydration for pentane, hexane, and heptane. The revised force field offers a significantly improved overall description of these properties relative to the original parametrization. The current alkane force field represents a platform for ongoing development of a CHARMM (Chemistry at Harvard Molecular Mechanics) polarizable force field for lipids and integral membrane proteins.

  14. Nitrated metalloporphyrins as catalysts for alkane oxidation

    DOEpatents

    Ellis, Jr., Paul E.; Lyons, James E.

    1994-01-01

    Compositions of matter comprising nitro-substituted metal complexes of porphyrins are catalysts for the oxidation of alkanes. The metal is iron, chromium, manganese, ruthenium, copper or cobalt. The porphyrin ring has nitro groups attached thereto in meso and/or .beta.-pyrrolic positions.

  15. Nitrated metalloporphyrins as catalysts for alkane oxidation

    DOEpatents

    Ellis, Jr., Paul E.; Lyons, James E.

    1992-01-01

    Alkanes are oxidized by contact with oxygen-containing gas in the presence as catalyst of a metalloporphyrin in which hydrogen atoms in the porphyrin ring have been replaced with one or more nitro groups. Hydrogen atoms in the porphyrin ring may also be substituted with halogen atoms.

  16. Nitrated metalloporphyrins as catalysts for alkane oxidation

    DOEpatents

    Ellis, P.E. Jr.; Lyons, J.E.

    1994-01-18

    Compositions of matter comprising nitro-substituted metal complexes of porphyrins are catalysts for the oxidation of alkanes. The metal is iron, chromium, manganese, ruthenium, copper or cobalt. The porphyrin ring has nitro groups attached thereto in meso and/or [beta]-pyrrolic positions.

  17. Anaerobic oxidation of short-chain alkanes in hydrothermal sediments: potential influences on sulfur cycling and microbial diversity

    PubMed Central

    Adams, Melissa M.; Hoarfrost, Adrienne L.; Bose, Arpita; Joye, Samantha B.; Girguis, Peter R.

    2013-01-01

    Short-chain alkanes play a substantial role in carbon and sulfur cycling at hydrocarbon-rich environments globally, yet few studies have examined the metabolism of ethane (C2), propane (C3), and butane (C4) in anoxic sediments in contrast to methane (C1). In hydrothermal vent systems, short-chain alkanes are formed over relatively short geological time scales via thermogenic processes and often exist at high concentrations. The sediment-covered hydrothermal vent systems at Middle Valley (MV, Juan de Fuca Ridge) are an ideal site for investigating the anaerobic oxidation of C1–C4 alkanes, given the elevated temperatures and dissolved hydrocarbon species characteristic of these metalliferous sediments. We examined whether MV microbial communities oxidized C1–C4 alkanes under mesophilic to thermophilic sulfate-reducing conditions. Here we present data from discrete temperature (25, 55, and 75°C) anaerobic batch reactor incubations of MV sediments supplemented with individual alkanes. Co-registered alkane consumption and sulfate reduction (SR) measurements provide clear evidence for C1–C4 alkane oxidation linked to SR over time and across temperatures. In these anaerobic batch reactor sediments, 16S ribosomal RNA pyrosequencing revealed that Deltaproteobacteria, particularly a novel sulfate-reducing lineage, were the likely phylotypes mediating the oxidation of C2–C4 alkanes. Maximum C1–C4 alkane oxidation rates occurred at 55°C, which reflects the mid-core sediment temperature profile and corroborates previous studies of rate maxima for the anaerobic oxidation of methane (AOM). Of the alkanes investigated, C3 was oxidized at the highest rate over time, then C4, C2, and C1, respectively. The implications of these results are discussed with respect to the potential competition between the anaerobic oxidation of C2–C4alkanes with AOM for available oxidants and the influence on the fate of C1 derived from these hydrothermal systems. PMID:23717305

  18. Alkyl nitrate formation from the reactions of C8-C14 n-alkanes with OH radicals in the presence of NO(x): measured yields with essential corrections for gas-wall partitioning.

    PubMed

    Yeh, Geoffrey K; Ziemann, Paul J

    2014-09-18

    In this study, C8-C14 n-alkanes were reacted with OH radicals in the presence of NO(x) in a Teflon film environmental chamber and isomer-specific yields of alkyl nitrates were determined using gas chromatography. Because results indicated significant losses of alkyl nitrates to chamber walls, gas-wall partitioning was investigated by monitoring the concentrations of a suite of synthesized alkyl nitrates added to the chamber. Gas-to-wall partitioning increased with increasing carbon number and with proximity of the nitrooxy group to the terminal carbon, with losses as high as 86%. The results were used to develop a structure-activity model to predict the effects of carbon number and isomer structure on gas-wall partitioning, which was used to correct the measured yields of alkyl nitrate isomers formed in chamber reactions. The resulting branching ratios for formation of secondary alkyl nitrates were similar for all isomers of a particular carbon number, and average values, which were almost identical to alkyl nitrate yields, were 0.219, 0.206, 0.254, 0.291, and 0.315 for reactions of n-octane, n-decane, n-dodecane, n-tridecane, and n-tetradecane, respectively. The increase in average branching ratios and alkyl nitrate yields with increasing carbon number to a plateau value of ∼0.30 at about C13-C14 is consistent with predictions of a previously developed model, indicating that the model is valid for alkane carbon numbers ≥C3.

  19. The long-chain alkane metabolism network of Alcanivorax dieselolei.

    PubMed

    Wang, Wanpeng; Shao, Zongze

    2014-12-12

    Alkane-degrading bacteria are ubiquitous in marine environments, but little is known about how alkane degradation is regulated. Here we investigate alkane sensing, chemotaxis, signal transduction, uptake and pathway regulation in Alcanivorax dieselolei. The outer membrane protein OmpS detects the presence of alkanes and triggers the expression of an alkane chemotaxis complex. The coupling protein CheW2 of the chemotaxis complex, which is induced only by long-chain (LC) alkanes, sends signals to trigger the expression of Cyo, which participates in modulating the expression of the negative regulator protein AlmR. This change in turn leads to the expression of ompT1 and almA, which drive the selective uptake and hydroxylation of LC alkanes, respectively. AlmA is confirmed as a hydroxylase of LC alkanes. Additional factors responsible for the metabolism of medium-chain-length alkanes are also identified, including CheW1, OmpT1 and OmpT2. These results provide new insights into alkane metabolism pathways from alkane sensing to degradation.

  20. Enhanced biodegradation of alkane hydrocarbons and crude oil by mixed strains and bacterial community analysis.

    PubMed

    Chen, Yu; Li, Chen; Zhou, Zhengxi; Wen, Jianping; You, Xueyi; Mao, Youzhi; Lu, Chunzhe; Huo, Guangxin; Jia, Xiaoqiang

    2014-04-01

    In this study, two strains, Acinetobacter sp. XM-02 and Pseudomonas sp. XM-01, were isolated from soil samples polluted by crude oil at Bohai offshore. The former one could degrade alkane hydrocarbons (crude oil and diesel, 1:4 (v/v)) and crude oil efficiently; the latter one failed to grow on alkane hydrocarbons but could produce rhamnolipid (a biosurfactant) with glycerol as sole carbon source. Compared with pure culture, mixed culture of the two strains showed higher capability in degrading alkane hydrocarbons and crude oil of which degradation rate were increased from 89.35 and 74.32 ± 4.09 to 97.41 and 87.29 ± 2.41 %, respectively. In the mixed culture, Acinetobacter sp. XM-02 grew fast with sufficient carbon source and produced intermediates which were subsequently utilized for the growth of Pseudomonas sp. XM-01 and then, rhamnolipid was produced by Pseudomonas sp. XM-01. Till the end of the process, Acinetobacter sp. XM-02 was inhibited by the rapid growth of Pseudomonas sp. XM-01. In addition, alkane hydrocarbon degradation rate of the mixed culture increased by 8.06 to 97.41 % compared with 87.29 % of the pure culture. The surface tension of medium dropping from 73.2 × 10(-3) to 28.6 × 10(-3) N/m. Based on newly found cooperation between the degrader and the coworking strain, rational investigations and optimal strategies to alkane hydrocarbons biodegradation were utilized for enhancing crude oil biodegradation.

  1. The lycopane/C31 n-alkane ratio as a proxy to assess palaeoxicity during sediment deposition

    NASA Astrophysics Data System (ADS)

    Sinninghe Damsté, Jaap S.; Kuypers, Marcel M. M.; Schouten, Stefan; Schulte, Sonja; Rullkötter, Jürgen

    2003-04-01

    Recently, two of us [Schulte et al., Earth Planet. Sci. Lett. 173 (1999) 205-221] advocated the use of the C 35/C 31n-alkane ratio to reconstruct past variations in the intensity of the oxygen minimum zone (OMZ) in the northeastern Arabian Sea. New analyses of Arabian Sea surface sediments and re-analysis of previously investigated sediments indicate, however, that the marked increase of the C 35/C 31n-alkane ratio in surface sediments from within the OMZ is due to enhanced preservation of lycopane (which on some stationary phases in gas chromatography co-elutes with the n-C 35 alkane) under anoxic conditions. Re-examination of published data [Farrington et al., Org. Geochem. 13 (1988) 607-617] on surface sediments from the Peru Upwelling region also revealed a marked preservation of lycopane and thus a higher abundance relative to terrestrial n-alkanes under anoxic conditions within the OMZ. Thus, the lycopane/C 31n-alkane ratio can be interpreted as an oxicity proxy. An overview of literature data indicates that lycopane is indeed often abundant in sediments which were deposited under anoxic conditions. The carbon isotopic composition of lycopane and its response to the perturbation of the global carbon cycle during the Cenomanian/Turonian oceanic anoxic event suggests that lycopane is derived from a marine photoautotroph although its biological source has yet to be identified.

  2. Measurement of Black Carbon and Particle Number Emission Factors from Individual Heavy-Duty Trucks

    SciTech Connect

    Ban-Weiss, George A.; Lunden, Melissa M.; Kirchstetter, Thomas W.; Harley, Robert A.

    2009-02-02

    Emission factors for black carbon (BC) and particle number (PN) were measured from 226 individual heavy-duty (HD) diesel-fueled trucks driving through a 1 km-long California highway tunnel in August 2006. Emission factors were based on concurrent increases in BC, PN, and CO{sub 2}B concentrations (measured at 1 Hz) that corresponded to the passage of individual HD trucks. The distributions of BC and PN emission factors from individual HD trucks are skewed, meaning that a large fraction of pollution comes from a small fraction of the in-use vehicle fleet. The highest-emitting 10% of trucks were responsible for {approx} 40% of total BC and PN emissions from all HD trucks. BC emissions were log-normally distributed with a mean emission factor of 1.7 g kg {sup -1} and maximum values of {approx} 10 g kg{sup -1}. Corresponding values for PN emission factors were 4.7 x 10{sup 15} and 4 x 10{sup 16} kg{sup -1}. There was minimal overlap among high-emitters of these two pollutants: only 1 of the 226 HD trucks measured was found to be among the highest 10% for both BC and PN. Monte Carlo resampling of the distribution of BC emission factors observed in this study revealed that uncertainties (1{sigma}) in extrapolating from a random sample of n HD trucks to a population mean emission factor ranged from {+-} 43% for n = 10 to {+-} 8% for n = 300, illustrating the importance of sufficiently large vehicle sample sizes in emissions studies. Studies with low sample sizes are also more easily biased due to misrepresentation of high-emitters. As vehicles become cleaner on average in future years, skewness of the emissions distributions will increase, and thus sample sizes needed to extrapolate reliably from a subset of vehicles to the entire in-use vehicle fleet are expected to become more of a challenge.

  3. [Composition of n-alkanes in soils of the Yellow River Estuary Wetlands and their potential as organic matter source indicators].

    PubMed

    Yao, Peng; Yin, Hong-Zhen; Yao, Qing-Zhen; Chen, Hong-Tao; Liu, Yue-Liang

    2012-10-01

    Abstract: Surface soil samples from the Yellow River Estuary Wetlands were analyzed for total organic carbon (TOC) and n-alkanes. Molecular indicators of n-alkanes were calculated and their potential as organic matter source indicators was discussed and compared among different sampling areas and times. C25-C33 n-alkanes with odd-to-even predominance were observed in most surface soils of the wetlands, suggesting the dominant contribution of terrestrial higher plants for the soil organic matter (SOM), and the ubiquitous presence of unresolved complex mixture indicated the presence of petroleum contamination. Total n-alkane concentrations in soils varied from 0.57 microg x g(-1) to 3.90 microg x g(-1), and distinct spatial and temporal differences were observed. In April 2009 (dry season), total n-alkane concentration was higher than that in June 2009 (during water-sediment regulation) with the maximum concentration observed at the core area of the wetlands, followed by the north side of the Yellow River after the last pontoon bridge, and the abandoned channel area of the Yellow River. The opposite trend of total n-alkane concentration was observed in June. The variation of total n-alkane concentration at two sampling time points were positively correlated with TOC and negatively correlated with sediment grain size, suggesting the influence of hydro-environment on the accumulation of soil organic matter. Molecular indicators of n-alkanes, such as average chain length (ACL), odd-even predominance (OEP), alkane index (AI), carbon preference index (CPI) and Terrigenous/ Aquatic Ratio (TAR) indicated that the maturity of organic matter in soils of the wetlands was low, and the dominant source of the SOM was terrestrial higher plants and mainly herbaceous plants. Compared with other indicators, TAR is better in reflecting the variation of hydro-environment.

  4. Cool-flame Extinction During N-Alkane Droplet Combustion in Microgravity

    NASA Technical Reports Server (NTRS)

    Nayagam, Vedha; Dietrich, Daniel L.; Hicks, Michael C.; Williams, Forman A.

    2014-01-01

    Recent droplet combustion experiments onboard the International Space Station (ISS) have revealed that large n-alkane droplets can continue to burn quasi-steadily following radiative extinction in a low-temperature regime, characterized by negative-temperaturecoefficient (NTC) chemistry. In this study we report experimental observations of n-heptane, n-octane, and n-decane droplets of varying initial sizes burning in oxygen/nitrogen/carbon dioxide and oxygen/helium/nitrogen environments at 1.0, 0.7, and 0.5 atmospheric pressures. The oxygen concentration in these tests varied in the range of 14% to 25% by volume. Large n-alkane droplets exhibited quasi-steady low-temperature burning and extinction following radiative extinction of the visible flame while smaller droplets burned to completion or disruptively extinguished. A vapor-cloud formed in most cases slightly prior to or following the "cool flame" extinction. Results for droplet burning rates in both the hot-flame and cool-flame regimes as well as droplet extinction diameters at the end of each stage are presented. Time histories of radiant emission from the droplet captured using broadband radiometers are also presented. Remarkably the "cool flame" extinction diameters for all the three n-alkanes follow a trend reminiscent of the ignition delay times observed in previous studies. The similarities and differences among the n-alkanes during "cool flame" combustion are discussed using simplified theoretical models of the phenomenon

  5. Involvement of acyl-CoA synthetase genes in n-alkane assimilation and fatty acid utilization in yeast Yarrowia lipolytica.

    PubMed

    Tenagy; Park, Jun Seok; Iwama, Ryo; Kobayashi, Satoshi; Ohta, Akinori; Horiuchi, Hiroyuki; Fukuda, Ryouichi

    2015-06-01

    Here, we investigated the roles of YAL1 (FAA1) and FAT1 encoding acyl-CoA synthetases (ACSs) and three additional orthologs of ACS genes FAT2-FAT4 of the yeast Yarrowia lipolytica in the assimilation or utilization of n-alkanes and fatty acids. ACS deletion mutants were generated to characterize their function. The FAT1 deletion mutant exhibited decreased growth on n-alkanes of 10-18 carbons, whereas the FAA1 mutant showed growth reduction on n-alkane of 16 carbons. However, FAT2-FAT4 deletion mutants did not show any growth defects, suggesting that FAT1 and FAA1 are involved in the activation of fatty acids produced during the metabolism of n-alkanes. In contrast, deletions of FAA1 and FAT1-FAT4 conferred no defect in growth on fatty acids. The wild-type strain grew in the presence of cerulenin, an inhibitor of fatty acid synthesis, by utilizing exogenously added fatty acid or fatty acid derived from n-alkane when oleic acid or n-alkane of 18 carbons was supplemented. However, the FAA1 deletion mutant did not grow, indicating a critical role for FAA1 in the utilization of fatty acids. Fluorescent microscopic observation and biochemical analyses suggested that Fat1p is present in the peroxisome and Faa1p is localized in the cytosol and to membranes.

  6. Density functional steric analysis of linear and branched alkanes.

    PubMed

    Ess, Daniel H; Liu, Shubin; De Proft, Frank

    2010-12-16

    Branched alkane hydrocarbons are thermodynamically more stable than straight-chain linear alkanes. This thermodynamic stability is also manifest in alkane bond separation energies. To understand the physical differences between branched and linear alkanes, we have utilized a novel density functional theory (DFT) definition of steric energy based on the Weizäcker kinetic energy. Using the M06-2X functional, the total DFT energy was partitioned into a steric energy term (E(s)[ρ]), an electrostatic energy term (E(e)[ρ]), and a fermionic quantum energy term (E(q)[ρ]). This analysis revealed that branched alkanes have less (destabilizing) DFT steric energy than linear alkanes. The lower steric energy of branched alkanes is mitigated by an equal and opposite quantum energy term that contains the Pauli component of the kinetic energy and exchange-correlation energy. Because the steric and quantum energy terms cancel, this leaves the electrostatic energy term that favors alkane branching. Electrostatic effects, combined with correlation energy, explains why branched alkanes are more stable than linear alkanes.

  7. Density Functional Steric Analysis of Linear and Branched Alkanes

    SciTech Connect

    Ess, Daniel H.; Liu, Shubin; De Proft, Frank

    2010-11-18

    Branched alkane hydrocarbons are thermodynamically more stable than straight-chain linear alkanes. This thermodynamic stability is also manifest in alkane bond separation energies. To understand the physical differences between branched and linear alkanes, we have utilized a novel density functional theory (DFT) definition of steric energy based on the Weizäcker kinetic energy. Using the M06-2X functional, the total DFT energy was partitioned into a steric energy term (Ee[[ρ]), an electrostatic energy term (Ee[ρ]), and a fermionic quantum energy term (Eq[[ρ]). This analysis revealed that branched alkanes have less (destabilizing) DFT steric energy than linear alkanes. The lower steric energy of branched alkanes is mitigated by an equal and opposite quantum energy term that contains the Pauli component of the kinetic energy and exchange-correlation energy. Because the steric and quantum energy terms cancel, this leaves the electrostatic energy term that favors alkane branching. Electrostatic effects, combined with correlation energy, explains why branched alkanes are more stable than linear alkanes.

  8. Genome sequence of n-alkane-degrading Hydrocarboniphaga effusa strain AP103T (ATCC BAA-332T).

    PubMed

    Chang, Hung-Kuang; Zylstra, Gerben J; Chae, Jong-Chan

    2012-09-01

    Hydrocarboniphaga effusa strain AP103(T) (ATCC BAA-332(T)) is a member of the Gammaproteobacteria utilizing n-alkanes as the sole source of carbon and energy. Here we report the draft genome sequence of AP103(T), which consists of 5,193,926 bp with a G + C content of 65.18%.

  9. Interfacial properties of semifluorinated alkane diblock copolymers

    NASA Astrophysics Data System (ADS)

    Pierce, Flint; Tsige, Mesfin; Borodin, Oleg; Perahia, Dvora; Grest, Gary S.

    2008-06-01

    The liquid-vapor interfacial properties of semifluorinated linear alkane diblock copolymers of the form F3C(CF2)n-1(CH2)m-1CH3 are studied by fully atomistic molecular dynamics simulations. The chemical composition and the conformation of the molecules at the interface are identified and correlated with the interfacial energies. A modified form of the Optimized Parameter for Liquid Simulation All-Atom (OPLS-AA) force field of Jorgensen and co-workers [J. Am. Chem. Soc. 106, 6638 (1984); 118, 11225 (1996); J. Phys. Chem. A 105, 4118 (2001)], which includes specific dihedral terms for H-F blocks-and corrections to the H-F nonbonded interaction, is used together with a new version of the exp-6 force field developed in this work. Both force fields yield good agreement with the available experimental liquid density and surface tension data as well as each other over significant temperature ranges and for a variety of chain lengths and compositions. The interfacial regions of semifluorinated alkanes are found to be rich in fluorinated groups compared to hydrogenated groups, an effect that decreases with increasing temperature but is independent of the fractional length of the fluorinated segments. The proliferation of fluorine at the surface substantially lowers the surface tension of the diblock copolymers, yielding values near those of perfluorinated alkanes and distinct from those of protonated alkanes of the same chain length. With decreasing temperatures within the liquid state, chains are found to preferentially align perpendicular to the interface, as previously seen.

  10. Oxidative dehydrogenation of alkanes to unsaturated hydrocarbons

    DOEpatents

    Kung, Harold H.; Chaar, Mohamed A.

    1988-01-01

    Oxidative dehydrogenation of alkanes to unsaturated hydrocarbons is carried out over metal vanadate catalysts under oxidizing conditions. The vanadate catalysts are represented by the formulas M.sub.3 (VO.sub.4).sub.2 and MV.sub.2 O.sub.6, M representing Mg, Zn, Ca, Pb, or Cd. The reaction is carried out in the presence of oxygen, but the formation of oxygenate by-products is suppressed.

  11. Oxidative dehydrogenation of alkanes to unsaturated hydrocarbons

    DOEpatents

    Kung, H.H.; Chaar, M.A.

    1988-10-11

    Oxidative dehydrogenation of alkanes to unsaturated hydrocarbons is carried out over metal vanadate catalysts under oxidizing conditions. The vanadate catalysts are represented by the formulas M[sub 3](VO[sub 4])[sub 2] and MV[sub 2]O[sub 6], M representing Mg, Zn, Ca, Pb, or Cd. The reaction is carried out in the presence of oxygen, but the formation of oxygenate by-products is suppressed.

  12. Electrophilic nitration of alkanes with nitronium hexafluorophosphate

    PubMed Central

    Olah, George A.; Ramaiah, Pichika; Prakash, G. K. Surya

    1997-01-01

    Nitration of alkanes such as methane, ethane, propane, n-butane, isobutane, neopentane, and cyclohexane was carried out with nitronium hexafluorophosphate in methylene chloride or nitroethane solution. Nitration of methane, albeit in poor yield, required protolytic activation of the nitronium ion. The results indicate direct electrophilic insertion of NO2+ into C 000000000000 000000000000 000000000000 000000000000 111111111111 000000000000 000000000000 000000000000 000000000000 H and CC σ-bonds. PMID:11038587

  13. Femtosecond Dynamics Of Fluoro-Aluminum Phthalocyanine And Linear Alkane Molecules

    NASA Astrophysics Data System (ADS)

    Ho, Z. Z.; Williams, V.; Peyghambarian, N.; Hetherington, W. M.

    1988-12-01

    The dynamics of fluoro-aluminum phthalocyanine polycrystalline thin films is studied using differential transmission spectroscopy with femtosecond laser pulses. Following excitation by 620 nm pulses into the first electronic transition a very rapid energy redistribution of the excitons is directly observed within the 55 fs duration of the pump pulse. Following this process two extremely fast decay routes lead to the recovery of the ground state : exciton-exciton annihilation with an intensity dependent decay of 550 fs at power density of 1.2 GW/cm2 and exciton-phonon coupling with a 4 ps decay time. A complete interpretation of the decay mechanisms based on the Frenkel exciton terminology successfully accounts for the observed results. We have analyzed the nonlinear dynamics of a series of linear alkane molecules in pure liquid state using the time-resolved optical Kerr effect. The results show that the Kerr nonlinearity increases linearly with the number of atoms. However, for those molecules with more than eight carbons, a surprisingly large deviation from the bond additivity approximation was observed. The molecular orientational contribution to the nonlinear response is negligible for these types of molecules. A small component, with less than 8% of the total nonlinear Kerr response, is attributed to translational anisotropy and has a 450 fs lifetime. The nonlinear dynamics and the length dependence of optical Kerr nonlinearities will be discussed.

  14. Thermodynamics of the hydrophobic effect. III. Condensation and aggregation of alkanes, alcohols, and alkylamines.

    PubMed

    Matulis, D

    2001-10-18

    Knowledge of the energetics of the low solubility of non-polar compounds in water is critical for the understanding of such phenomena as protein folding and biomembrane formation. Solubility in water can be considered as one leg of the three-part thermodynamic cycle - vaporization from the pure liquid, hydration of the vapor in aqueous solution, and aggregation of the substance back into initial pure form as an immiscible phase. Previous studies on the model compounds n-alkanes, 1-alcohols, and 1-aminoalkanes have noted that the thermodynamic parameters (Gibbs free energy, DeltaG; enthalpy, DeltaH; entropy, DeltaS; and heat capacity, DeltaC(p)) associated with these three processes are generally linear functions of the number of carbons in the alkyl chains. Here we assess the accuracy and limitations of the assumption of additivity of CH(2) group contributions to the thermodynamic parameters for vaporization, hydration, and aggregation. Processes of condensation from pure gas to liquid and aqueous solution to aggregate are compared. Hydroxy, amino, and methyl headgroup contributions are estimated, liquid and solid aggregates are distinguished. Most data in the literature were obtained for compounds with short aliphatic hydrocarbon tails. Here we emphasize long aliphatic chain behavior and include our recent experimental data on long chain alkylamine aggregation in aqueous solution obtained by titration calorimetry and van't Hoff analysis. Contrary to what is observed for short compounds, long aliphatic compound aggregation has a large exothermic enthalpy and negative entropy.

  15. Positron and electron scattering from alkane molecules. Normal- and cyclo-octane

    NASA Astrophysics Data System (ADS)

    Sueoka, O.; Makochekanwa, C.; Kimura, M.

    2006-03-01

    Total cross-sections (TCSs) for 0.2 1000 eV positrons and 0.4 1000 eV electrons colliding with normal-octane and cyclo-octane molecules have been studied using a relative measurement method. The TCS curves for positron and electron vary smoothly and compare well with other alkane molecules, in order of increasing carbon number. For positron scattering, weak humps at 1.5 2.5 eV for both normal- and cyclo-octane were observed. In the energy range lower than 2.2 eV, positron TCSs are roughly equal to or larger than electron TCSs. For electron scattering, a resonance peak at 8 eV and a shoulder at 25.0 eV were observed for both molecules. Over all the energy range, the TCS values for normal-octane are larger than those of cyclo-octane. The positron and electron TCS data for normal- and cyclo-octane molecules are briefly compared with those for normal- and cyclo-hexane.

  16. Methyl ketones in high altitude Ecuadorian Andosols confirm excellent conservation of plant-specific n-alkane patterns

    NASA Astrophysics Data System (ADS)

    Jansen, B.; Nierop, K. G. J.

    2009-04-01

    Montane forest composition and specifically the position of the upper forest line (UFL) is very sensitive to climate change and human interference. As a consequence, reconstructions of past altitudinal UFL dynamics and forest species composition are crucial instruments to infer relationships between climate change and vegetation dynamics, and assess the impact of (pre)historic human settlement. One of the most detailed methods available to date to reconstruct past vegetation dynamics is the analysis of fossil pollen. Unfortunately, fossil pollen analysis does not distinguish beyond family or generic level in most cases, while its spatial resolution is limited amongst others by windblown dispersal of pollen, affecting the accuracy of pollen based reconstructions of UFL positions. To overcome these limitations, we developed a new method based on the analysis of plant-specific groups of biomarkers preserved in suitable archives, such as peat deposits, that are unravelled into the plant species of origin by the newly developed VERHIB model. In a study of UFL positions in the Northern Ecuadorian Andes we found longer chain-length n-alkanes, (C19-C35) to occur in plant-specific patterns in the dominant vegetation in the area as well as preliminary soil and peat samples. A crucial factor in determining the applicability of these n-alkanes as biomarkers for past vegetation is their preservation in soils and peat deposits. Therefore, we investigated the preservation of C19-C35 n-alkanes in a peat core and in five excavations along an altitudinal transect (3500-3860 m.a.s.l) in the study area. We were able to establish that n-methyl ketones are the main degradation product of the n-alkanes in question, while the degradation of the n-alkanes was the main source of the n-methyl ketones. This allowed us to use the relationship between the concentrations and carbon chain length patterns of n-alkanes and n-methyl ketones to assess possible (selective) degradation of the n-alkanes

  17. N-Alkane oxidation enzymes of a pseudomonad.

    PubMed Central

    Parekh, V R; Traxler, R W; Sobek, J M

    1977-01-01

    A nicotinamide adenine dinucleotide (NAD)-dependent n-alkane dehydrogenase and an NAD phosphate (reduced form)-dependent alkane hydroxylase have been purified from cell-free extracts of Pseudomonas sp. strain 196Aa grown anaerobically on n-alkane. The n-alkane dehydrogenase (fraction R-3), obtained as a single peak from Bio-Gel P-60, showed an overall 135-fold purification and was demonstrated by infrared spectroscopy and gas chromatography to convert n-decane to 1-decene. The alkene hydroxylase activity in the S-3 fraction, purified 167 times from diethylaminoethyl-cellulose, was shown by the same methodology to convert decene to decanol. Commercial ferredoxin has been shown to increase the alkane dehydrogenase activity. An NAD-, flavine adenine dinucleotide-, and iron-dependent alcohol dehydrogenase was demonstrated in the R-3 fraction. A mechanism for the anaerobic conversion of n-alkane to fatty acid has been proposed. PMID:869535

  18. Structures with high number density of carbon nanotubes and 3-dimensional distribution

    NASA Technical Reports Server (NTRS)

    Chen, Zheng (Inventor); Tzeng, Yonhua (Inventor)

    2002-01-01

    A composite is described having a three dimensional distribution of carbon nanotubes. The critical aspect of such composites is a nonwoven network of randomly oriented fibers connected at their junctions to afford macropores in the spaces between the fibers. A variety of fibers may be employed, including metallic fibers, and especially nickel fibers. The composite has quite desirable properties for cold field electron emission applications, such as a relatively low turn-on electric field, high electric field enhancement factors, and high current densities. The composites of this invention also show favorable properties for other an electrode applications. Several methods, which also have general application in carbon nanotube production, of preparing these composites are described and employ a liquid feedstock of oxyhydrocarbons as carbon nanotube precursors.

  19. Characterization of a Novel Rieske-Type Alkane Monooxygenase System in Pusillimonas sp. Strain T7-7

    PubMed Central

    Li, Ping; Wang, Lei

    2013-01-01

    The cold-tolerant bacterium Pusillimonas sp. strain T7-7 is able to utilize diesel oils (C5 to C30 alkanes) as a sole carbon and energy source. In the present study, bioinformatics, proteomics, and real-time reverse transcriptase PCR approaches were used to identify the alkane hydroxylation system present in this bacterium. This system is composed of a Rieske-type monooxygenase, a ferredoxin, and an NADH-dependent reductase. The function of the monooxygenase, which consists of one large (46.711 kDa) and one small (15.355 kDa) subunit, was further studied using in vitro biochemical analysis and in vivo heterologous functional complementation tests. The purified large subunit of the monooxygenase was able to oxidize alkanes ranging from pentane (C5) to tetracosane (C24) using NADH as a cofactor, with greatest activity on the C15 substrate. The large subunit also showed activity on several alkane derivatives, including nitromethane and methane sulfonic acid, but it did not act on any aromatic hydrocarbons. The optimal reaction condition of the large subunit is pH 7.5 at 30°C. Fe2+ can enhance the activity of the enzyme evidently. This is the first time that an alkane monooxygenase system belonging to the Rieske non-heme iron oxygenase family has been identified in a bacterium. PMID:23417490

  20. Regioselective functionalization of alkanes by sequential dehydrogenation-hydrozirconation.

    PubMed

    Kuninobu, Yoichiro; Ureshino, Tomonari; Yamamoto, Shun-ichi; Takai, Kazuhiko

    2010-08-07

    We have succeeded in formal regioselective functionalization of alkanes by iridium-catalyzed dehydrogenation, hydrozirconation of the resulting alkenes, and electrophilic reaction of the generated alkylzirconium intermediate.

  1. Molecular distributions and compound-specific stable carbon isotopic compositions of lipids in wintertime aerosols from Beijing

    PubMed Central

    Ren, Lujie; Fu, Pingqing; He, Yue; Hou, Juzhi; Chen, Jing; Pavuluri, Chandra Mouli; Sun, Yele; Wang, Zifa

    2016-01-01

    Molecular distributions and stable carbon isotopic compositions (δ13C) of n-alkanes, fatty acids and n-alcohols were investigated in urban aerosols from Beijing, northern China to better understand the sources and long-range atmospheric transport of terrestrial organic matter during polluted and clear days in winter. n-Alkanes (C19–C36), fatty acids (C8–C32) and n-alcohols (C16–C32) detected in Beijing aerosols are characterized by the predominance of C23, C16 and C28, respectively. Carbon preference index (CPI) values of n-alkanes, the ratios of the sum of odd-numbered n-alkanes to the sum of even-numbered n-alkanes, are close to 1, indicating a heavy influence of fossil fuel combustion. Relatively higher ratios of C(18:0+16:0)/C(18:n+16:1) (fatty acids) on clear days than polluted days indicate that long-distance transport and/or photochemical aging are more significant during clear days. δ13C values of n-alkanes and low molecular weight fatty acids (C16:0, C18:0) ranged from –34.1 to −24.7% and −26.9 to −24.6%, respectively, which are generally heavier on polluted days than those on clear days. Such a wide range suggests that atmospheric lipids in Beijing aerosols originate from multiple sources and encounter complicated atmospheric processes during long-range transport in North China. PMID:27270951

  2. An analysis of organic matter sources for surface sediments in the central South Yellow Sea, China: evidence based on macroelements and n-alkanes.

    PubMed

    Zhang, Shengyin; Li, Shuanglin; Dong, Heping; Zhao, Qingfang; Lu, Xinchuan; Shi, Ji'an

    2014-11-15

    By analyzing the composition of n-alkane and macroelements in the surface sediments of the central South Yellow Sea of China, we evaluated the influencing factors on the distribution of organic matter. The analysis indicates that the distribution of total organic carbon (TOC) was low in the west and high in the east, and TOC was more related to Al2O3 content than medium diameter (MD). The composition of n-alkanes indicated the organic matter was mainly derived from terrestrial higher plants. Contributions from herbaceous plants and woody plants were comparable. The comprehensive analysis of the parameters of macroelements and n-alkanes showed the terrestrial organic matter in the central South Yellow Sea was mainly from the input of the modern Yellow River and old Yellow River. However, some samples exhibited evident input characteristics from petroleum sources, which changed the original n-alkanes of organic matter in sediments.

  3. Thermal analysis of n-alkane phase change material mixtures

    SciTech Connect

    Chio, Y.I.; Choi, E.; Lorsch, H.G.

    1991-03-31

    Tests were performed to characterize the thermal behavior of it number of n-alkanes to be used as phase change materials (PCMs) in district cooling applications. Hexadecane and tetradecane were mixed in different fractions, and their thermal behavior was experimentally evaluated. Test results for melting temperature and fusion energy for laboratory grade hexadecane and tetradecane showed good agreement with datain the literature. However, values for commercial grade hexadecane were found to be considerably lower. In the range of temperatures of interest for district cooling, mixtures of tetradecane and hexadecane can be treated as homogeneous substances. However, their heats of fusion are slightly lower than those of the pure substances. Their melting temperatures are also lower by an amount that can be predicted.

  4. Molecular dynamics study of solubilization of immiscible solutes by a micelle: Free energy of transfer of alkanes from water to the micelle core by thermodynamic integration method

    NASA Astrophysics Data System (ADS)

    Fujimoto, K.; Yoshii, N.; Okazaki, S.

    2010-08-01

    Free energy of transfer, ΔGw→m, from water phase to a sodium dodecyl sulfate (SDS) micelle core has been calculated for a series of hydrophobic solutes originally immiscible with water by thermodynamic integration method combined with molecular dynamics calculations. The calculated free energy of transfer is in good correspondence to the experiment as well as the theoretical free energy of transfer. The calculated ΔGw→m's are all negative, implying that the alkane molecules are more stable in the micelle than in the water phase. It decreases almost linearly as a function of the number of carbon atoms of the alkanes longer than methane with a decrement of 3.3 kJ mol-1 per one methylene group. The calculated free energy of transfer indicates that, for example, at the micelle concentration of 50 CMC (critical micelle concentration), about only 1 of 6 micelles or 1 of 32 000 micelles does not contain a solute methane or n-octane molecule, respectively.

  5. Detailed chemical kinetic models for large n-alkanes and iso-alkanes found in conventional and F-T diesel fuels

    SciTech Connect

    Westbrook, C K; Pitz, W J; Mehl, M; Curran, H J

    2009-03-09

    n-Hexadecane and 2,2,4,4,6,8,8-heptamethylnonane represent the primary reference fuels for diesel that are used to determine cetane number, a measure of the ignition property of diesel fuel. With the development of chemical kinetics models for both primary reference fuels, a new capability is now available to model diesel fuel ignition. Additionally, we have developed chemical kinetic models for a whole series of large n-alkanes and a large iso-alkane to represent these chemical classes in fuel surrogates for conventional and future fuels. These chemical kinetic models are used to predict the effect of the aforementioned fuel components on ignition characteristics under conditions found in internal combustion engines.

  6. Conversion of raw lignocellulosic biomass into branched long-chain alkanes through three tandem steps.

    PubMed

    Li, Chunrui; Ding, Daqian; Xia, Qineng; Liu, Xiaohui; Wang, Yanqin

    2016-07-07

    Synthesis of branched long-chain alkanes from renewable biomass has attracted intensive interest in recent years, but the feedstock for this synthesis is restricted to platform chemicals. Here, we develop an effective and energy-efficient process to convert raw lignocellulosic biomass (e.g., corncob) into branched diesel-range alkanes through three tandem steps for the first time. Furfural and isopropyl levulinate (LA ester) were prepared from hemicellulose and cellulose fractions of corncob in toluene/water biphasic system with added isopropanol, which was followed by double aldol condensation of furfural with LA ester into C15 oxygenates and the final hydrodeoxygenation of C15 oxygenates into branched long-chain alkanes. The core point of this tandem process is the addition of isopropanol in the first step, which enables the spontaneous transfer of levulinic acid (LA) into the toluene phase in the form of LA ester through esterification, resulting in LA ester co-existing with furfural in the same phase, which is the basis for double aldol condensation in the toluene phase. Moreover, the acidic aqueous phase and toluene can be reused and the residues, including lignin and humins in aqueous phase, can be separated and carbonized to porous carbon materials.

  7. Diffusion of Trace Alkanes in Polyethylene: Spin-Echo Measurements and Monte-Carlo Simulations

    NASA Astrophysics Data System (ADS)

    von Meerwall, E.; Lin, H.; Mattice, W. L.

    2006-03-01

    We have performed pulsed-gradient NMR diffusion (D) measurements on five n-alkanes (24, 28, 36, 44, and 60 carbons) in a polyethylene (PE) host (M = 33 kDa) as function of concentration c (2-10 wt.%) at 180 deg. C. Monte-Carlo simulations on the second-nearest-neighbor diamond lattice (38, 46, 62, and 78 carbons) at c between 2 and 15 wt.% in a host of PE (M = 4.5 kDa) explored static and dynamic properties. The bridging method uses beads combining adjacent moieties and incorporates two-bead moves; it permits detailed reconstruction of the chain molecules at any stage. It uses discretized short-range rotational isomeric state and long-range intra- and interchain Lennard-Jones potentials. For both experiment and simulation, trace D was obtained by extrapolating D(c) to c = 0 using the Fujita-Doolittle equation with known chain-end free-volume parameters. A ratio of 330 Monte-Carlo steps per picosecond brings simulation into congruence with experiment; this factor is identical to that required for PE melts. The applicability of the Rouse model is approached only for the largest alkanes, but the M(alkane)-dependence of trace D is seen to be in transition from the Rouse-like 1/M-scaling to a steeper value characteristic of reptation with constraint release.

  8. n-Alkane lipid biomarkers in loess: post-sedimentary or syn-sedimentary?

    NASA Astrophysics Data System (ADS)

    Zech, Michael; Kreutzer, Sebastian; Goslar, Tomasz; Meszner, Sascha; Krause, Tobias; Faust, Dominik; Fuchs, Markus

    2013-04-01

    There is an ongoing discussion whether n-alkane biomarkers - and organic matter (OM) from loess in general - reflect a syn-sedimentary paleoenvironmental and paleoclimate signal or whether they are significantly a post-sedimentary feature contaminated by root-derived OM (Zech et al., 2012, 2013; Wiesenberg and Gocke, 2013). We present first radiocarbon data for the n-alkane fraction of lipid extracts and for the first time luminescence ages for the Middle to Late Weichselian loess-paleosol sequence of Gleina in Saxony, Germany. Comparison of these biomarker ages with sedimentation ages as assessed by optically stimulated luminescence (OSL) dating shows that one n-alkane sample features a syn-sedimentary age (14C: 29.2 ± 1.4 kyr calBP versus OSL: 27.3 ± 3.0 kyr). By contrast, the 14C ages derived from the other n-alkane samples are clearly younger (20.3 ± 0.7 kyr calBP, 22.1 ± 0.7 kyr calBP and 29.8 ± 1.4 kyr calBP) than the corresponding OSL ages (26.6 ± 3.1 kyr, 32.0 ± 3.5 kyr and 45.6 ± 5.3 kyr). This finding suggests that a post-sedimentary n-alkane contamination presumably by roots has occurred. In order to estimate the post-sedimentary n-alkane contamination more quantitatively, we applied a 14C mass balance calculation based on the measured pMC (percent modern carbon) values, the calculated syn-sedimentary pMC values and pMC values suspected to reflect likely time points of post-sedimentary contamination (modern, last decades, 3 kyr, 6 kyr and 9 kyr). Accordingly, modern and last decadal root-contamination would account for up to 7%, a 3 kyr old root-contamination for up to 10%, and an Early and Middle Holocene root-contamination for up to 20% of the total sedimentary n-alkane pool. We acknowledge and encourage that these first radiocarbon results need further confirmation both from other loess-paleosol sequences and for different biomarkers, e.g. carboxylic acids or alcohols as further lipid biomarkers. Zech, M., Kreutzer, S., Goslar, T., Meszner, S

  9. Numerical and experimental studies of ethanol flames and autoignition theory for higher alkanes

    NASA Astrophysics Data System (ADS)

    Saxena, Priyank

    In order to enhance the fuel efficiency of an engine and to control pollutant formation, an improved understanding of the combustion chemistry of the fuels at a fundamental level is paramount. This knowledge can be gained by developing detailed reaction mechanisms of the fuels for various combustion processes and by studying combustion analytically employing reduced-chemistry descriptions. There is a need for small detailed reaction mechanisms for alkane and alcohol fuels with reduced uncertainties in their combustion chemistry that are computationally cheaper in multidimensional CFD calculations. Detailed mechanisms are the starting points in identifying reduced-chemistry descriptions of combustion processes to study problems analytically. This research includes numerical, experimental and analytical studies. The first part of the dissertation consists of numerical and experimental studies of ethanol flames. Although ethanol has gained popularity as a possible low-pollution source of renewable energy, significant uncertainties remain in its combustion chemistry. To begin to address ethanol combustion, first a relatively small detailed reaction mechanism, commonly known as the San Diego Mech, is developed for the combustion of hydrogen, carbon monoxide, formaldehyde, methane, methanol, ethane, ethylene, and acetylene, in air or oxygen-inert mixtures. This mechanism is tested for autoignition, premixed-flame burning velocities, and structures and extinction of diffusion flames and of partially premixed flames of many of these fuels. The reduction in uncertainties in the combustion chemistry can best be achieved by consistently updating a reaction mechanism with reaction rate data for the elementary steps based on newer studies in literature and by testing it against as many experimental conditions as available. The results of such a testing for abovementioned fuels are reported here along with the modifications of reaction-rate parameters of the most important

  10. Concentrations and δ²H values of cuticular n-alkanes vary significantly among plant organs, species and habitats in grasses from an alpine and a temperate European grassland.

    PubMed

    Gamarra, Bruno; Kahmen, Ansgar

    2015-08-01

    n-Alkanes are long-chained hydrocarbons contained in the cuticle of terrestrial plants. Their hydrogen isotope ratios (δ(2)H) have been used as a proxy for environmental and plant ecophysiological processes. Calibration studies designed to resolve the mechanisms that determine the δ(2)H values of n-alkanes have exclusively focused on n-alkanes derived from leaves. It is, however, unclear in which quantities n-alkanes are also produced by other plant organs such as roots or inflorescences, or whether different plant organs produce distinct n-alkane δ(2)H values. To resolve these open questions, we sampled leaves, sheaths, stems, inflorescences and roots from a total of 15 species of European C3 grasses in an alpine and a temperate grassland in Switzerland. Our data show slightly increased n-alkane concentrations and n-alkane δ(2)H values in the alpine compared to the temperate grassland. More importantly, inflorescences had typically much higher n-alkane concentrations than other organs while roots had very low n-alkane concentrations. Most interestingly, the δ(2)H values of the carbon autonomous plant organs leaves, sheaths and stems were in general depleted compared to the overall mean δ(2)H value of a species, while non-carbon autonomous organs such as roots and inflorescences show δ(2)H values that are higher compared to the overall mean δ(2)H value of a species. We attribute organ-specific δ(2)H values to differences in the H-NADPH biosynthetic origin in different plant organs as a function of their carbon relationships. Finally, we employed simple mass balance calculations to show that leaves are in fact the main source of n-alkanes in the sediment. As such, studies assessing the environmental and physiological drivers of n-alkanes that focus on leaves produce relationships that can be employed to interpret the δ(2)H values of n-alkanes derived from sediments. This is despite the significant differences that we found among the δ(2)H values in the

  11. Determination of carbon number distributions of complex phthalates by gas chromatography-mass spectrometry with ammonia chemical ionization.

    PubMed

    Di Sanzo, Frank P; Lim, Peniel J; Han, Wenning W

    2015-01-01

    An assay method for phthalate esters with a complex mixture of isomer of varying carbon numbers, such as di-isononyl phthalate (DINP) and di-isodecyl phthalate (DIDP), using gas chromatography-mass spectrometry (GC-MS) positive chemical ionization (PCI) with 5% ammonia in methane is described. GC-MS-PCI-NH3, unlike GC-MS electron ionization (EI) (GC-MS-EI) that produces generally m/z 149 ion as the main base peak and low intensity M(+) peaks, produces higher intensity (M + 1) ions that allow the determination of total (R + R') carbon number distributions based on the various R and R' alkyl groups of the di-esters moiety. The technique allows distinguishing among the various commercial DINP and DIDP plasticizers. The carbon number distributions are determined in the acceptable range of <0.1 mole percent to >85 mole percent (m/m). Several examples of analysis made on commercial DINP and DIDP are presented. The use of only 5% instead of 100% ammonia simplifies use of GC-MS-PCI-NH3 but still produces sufficient M + 1 ion intensities that are appropriate for the assay. In addition, use of low concentrations of ammonia mitigates potential safety aspects related to use of ammonia and provides less corrosion for the instrument hardware.

  12. Contribution of petroleum-derived organic carbon to sedimentary organic carbon pool in the eastern Yellow Sea (the northwestern Pacific).

    PubMed

    Kim, Jung-Hyun; Lee, Dong-Hun; Yoon, Suk-Hee; Jeong, Kap-Sik; Choi, Bohyung; Shin, Kyung-Hoon

    2017-02-01

    We investigated molecular distributions and stable carbon isotopic compositions (δ(13)C) of sedimentary n-alkanes (C15C35) in the riverbank and marine surface sediments to trace natural and anthropogenic organic carbon (OC) sources in the eastern Yellow Sea which is a river dominated marginal sea. Molecular distributions of n-alkanes are overall dominated by odd-carbon-numbered high molecular weight n-C27, n-C29, and n-C31. The δ(13)C signatures of n-C27, n-C29, and n-C31 indicate a large contribution of C3 gymnosperms as the main source of n-alkanes, with the values of -29.5 ± 1.3‰, -30.3 ± 2.0‰, and -30.0 ± 1.7‰, respectively. However, the contribution of thermally matured petroleum-derived OC to the sedimentary OC pool is also evident, especially in the southern part of the study area as shown by the low carbon preference index (CPI25-33, <1) and natural n-alkanes ratio (NAR, <-0.6) values. Notably, the even-carbon-numbered long-chain n-C28 and n-C30 in this area have higher δ(13)C values (-26.2 ± 1.5‰ and -26.5 ± 1.9‰, respectively) than the odd-carbon-numbered long-chain n-C29 and n-C31 (-28.4 ± 2.7‰ and -28.4 ± 2.4‰, respectively), confirming two different sources of long-chain n-alkanes. Hence, our results highlight a possible influence of petroleum-induced OC on benthic food webs in this ecosystem. However, the relative proportions of the natural and petroleum-derived OC sources are not calculated due to the lack of biogeochemical end-member data in the study area. Hence, more works are needed to constrain the end-member values of the organic material supplied from the rivers to the eastern Yellow Sea and thus to better understand the source and depositional process of sedimentary OC in the eastern Yellow Sea.

  13. Diverse Bacterial Groups Contribute to the Alkane Degradation Potential of Chronically Polluted Subantarctic Coastal Sediments

    SciTech Connect

    Guibert, Lilian M.; Loviso, Claudia L.; Borglin, Sharon; Jansson, Janet K.; Dionisi, Hebe M.; Lozada, Mariana

    2015-11-07

    We aimed to gain insight into the alkane degradation potential of microbial communities from chronically polluted sediments of a subantarctic coastal environment using a combination of metagenomic approaches. A total of 6178 sequences annotated as alkane-1-monooxygenases (EC 1.14.15.3) were retrieved from a shotgun metagenomic dataset that included two sites analyzed in triplicate. The majority of the sequences binned with AlkB described in Bacteroidetes (32 ± 13 %) or Proteobacteria (29 ± 7 %), although a large proportion remained unclassified at the phylum level. Operational taxonomic unit (OTU)-based analyses showed small differences in AlkB distribution among samples that could be correlated with alkane concentrations, as well as with site-specific variations in pH and salinity. A number of low-abundance OTUs, mostly affiliated with Actinobacterial sequences, were found to be only present in the most contaminated samples. On the other hand, the molecular screening of a large-insert metagenomic library of intertidal sediments from one of the sampling sites identified two genomic fragments containing novel alkB gene sequences, as well as various contiguous genes related to lipid metabolism. Both genomic fragments were affiliated with the phylum Planctomycetes, and one could be further assigned to the genus Rhodopirellula due to the presence of a partial sequence of the 23S ribosomal RNA (rRNA) gene. This work highlights the diversity of bacterial groups contributing to the alkane degradation potential and reveals patterns of functional diversity in relation with environmental stressors in a chronically polluted, high-latitude coastal environment. In addition, alkane biodegradation genes are described for the first time in members of Planctomycetes.

  14. Diverse Bacterial Groups Contribute to the Alkane Degradation Potential of Chronically Polluted Subantarctic Coastal Sediments.

    PubMed

    Guibert, Lilian M; Loviso, Claudia L; Borglin, Sharon; Jansson, Janet K; Dionisi, Hebe M; Lozada, Mariana

    2016-01-01

    We aimed to gain insight into the alkane degradation potential of microbial communities from chronically polluted sediments of a subantarctic coastal environment using a combination of metagenomic approaches. A total of 6178 sequences annotated as alkane-1-monooxygenases (EC 1.14.15.3) were retrieved from a shotgun metagenomic dataset that included two sites analyzed in triplicate. The majority of the sequences binned with AlkB described in Bacteroidetes (32 ± 13 %) or Proteobacteria (29 ± 7 %), although a large proportion remained unclassified at the phylum level. Operational taxonomic unit (OTU)-based analyses showed small differences in AlkB distribution among samples that could be correlated with alkane concentrations, as well as with site-specific variations in pH and salinity. A number of low-abundance OTUs, mostly affiliated with Actinobacterial sequences, were found to be only present in the most contaminated samples. On the other hand, the molecular screening of a large-insert metagenomic library of intertidal sediments from one of the sampling sites identified two genomic fragments containing novel alkB gene sequences, as well as various contiguous genes related to lipid metabolism. Both genomic fragments were affiliated with the phylum Planctomycetes, and one could be further assigned to the genus Rhodopirellula due to the presence of a partial sequence of the 23S ribosomal RNA (rRNA) gene. This work highlights the diversity of bacterial groups contributing to the alkane degradation potential and reveals patterns of functional diversity in relation with environmental stressors in a chronically polluted, high-latitude coastal environment. In addition, alkane biodegradation genes are described for the first time in members of Planctomycetes.

  15. Using n-alkanes to estimate diet composition of herbivores: a novel mathematical approach.

    PubMed

    Barcia, P; Bugalho, M N; Campagnolo, M L; Cerdeira, J O

    2007-02-01

    N-alkanes are long-chain saturated hydrocarbons occurring in plant cuticles that can be used as chemical markers for estimating the diet composition of herbivores. An important constraint of using n-alkanes to estimate diet composition with currently employed mathematical procedures is that the number of markers must be equal or larger than the number of diet components. This is a considerable limitation when dealing with free-ranging herbivores feeding on complex plant communities. We present a novel approach for the estimation of diet composition using n-alkanes which applies equally to cases where the number of markers is lower, equal or greater than the number of plant species in the diet. The model uses linear programming to estimate the minimum and maximum proportions of each plant in the diet, and avoids the need for grouping species in order to reduce the number of estimated dietary components. We illustrate the model with two data sets of n-alkane content of plants and faeces obtained from a sheep grazing experiment conducted in Australia and a red deer study in Portugal. Our results are consistent with previous studies on those data sets and provide additional information on the proportions of individual species in the diet. Results show that sheep included in the diet high proportions of white clover (from 0.25 to 0.37), and relatively high proportions of grasses (e.g. brome from 0.14 to 0.26) but tended to avoid Lotus spp. (always less than 0.04 of the diet). For red deer we found high proportions of legumes (e.g. Trifolium angustifolium and Vicia sativa reaching maximum proportions of 0.42 and 0.30 of the diet, respectively) with grasses being less important and Cistus ladanifer, a browse, also having relevance (from 0.21 to 0.42 of the diet).

  16. Melting of linear alkanes between swollen elastomers and solid substrates.

    PubMed

    Nanjundiah, Kumar; Dhinojwala, Ali

    2013-10-01

    We have measured the melting and freezing behavior of linear alkanes confined between cross-linked poly(dimethylsiloxane) (PDMS) elastomers and solid sapphire substrates. Small molecules are often used as lubricants to reduce friction or as plasticizers, but very little is directly known about the migration or changes in physical properties of these small molecules at interfaces, particularly the changes in transition temperatures upon confinement. Our previous studies highlighted striking differences between the crystal structure of confined and unconfined pentadecane crystals in contact with sapphire substrates. Here, we have used surface-sensitive infrared-visible sum-frequency-generation spectroscopy (SFG) to study the melting temperatures (Tm) of alkanes in nanometer thick interfacial regions between swollen PDMS elastomers in contact with sapphire substrate. We find that confined alkanes show depression in Tm compared to the melting temperature of unconfined bulk alkanes. The depression in Tm is a function of chain length, and these differences were smallest for shorter alkanes and largest for 19 unit long alkanes. In comparison, the DSC results for swollen PDMS elastomer show a broad distribution of melting points corresponding to different sizes of crystals formed within the network. The Tm for confined alkanes has been modeled using the combination of Flory-Rehner and Gibbs-Thomson models, and the depression in Tm is related to the thickness of the confined alkanes. These findings have important implications in understanding friction and adhesion of soft elastomeric materials and also the effects of confinement between two solid materials.

  17. 40 CFR 721.3435 - Butoxy-substituted ether alkane.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Butoxy-substituted ether alkane. 721... Substances § 721.3435 Butoxy-substituted ether alkane. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as butoxy-substituted ether...

  18. Products of Chemistry: Alkanes: Abundant, Pervasive, Important, and Essential.

    ERIC Educational Resources Information Center

    Seymour, Raymond B.

    1989-01-01

    Discusses the history and commercialization of alkanes. Examines the nomenclature and uses of alkanes. Studies polymerization and several types of polyethylenes: low-density, high-density, low-molecular-weight, cross-linked, linear low-density, and ultrahigh-molecular-weight. Includes a glossary of hydrocarbon terms. (MVL)

  19. Identification of In-Chain-Functionalized Compounds and Methyl-Branched Alkanes in Cuticular Waxes of Triticum aestivum cv. Bethlehem

    PubMed Central

    Racovita, Radu C.; Jetter, Reinhard

    2016-01-01

    In this work, cuticular waxes from flag leaf blades and peduncles of Triticum aestivum cv. Bethlehem were investigated in search for novel wax compounds. Seven wax compound classes were detected that had previously not been reported, and their structures were elucidated using gas chromatography-mass spectrometry of various derivatives. Six of the classes were identified as series of homologs differing by two methylene units, while the seventh was a homologous series with homologs with single methylene unit differences. In the waxes of flag leaf blades, secondary alcohols (predominantly C27 and C33), primary/secondary diols (predominantly C28) and esters of primary/secondary diols (predominantly C50, combining C28 diol with C22 acid) were found, all sharing similar secondary hydroxyl group positions at and around C-12 or ω-12. 7- and 8-hydroxy-2-alkanol esters (predominantly C35), 7- and 8-oxo-2-alkanol esters (predominantly C35), and 4-alkylbutan-4-olides (predominantly C28) were found both in flag leaf and peduncle wax mixtures. Finally, a series of even- and odd-numbered alkane homologs was identified in both leaf and peduncle waxes, with an internal methyl branch preferentially on C-11 and C-13 of homologs with even total carbon number and on C-12 of odd-numbered homologs. Biosynthetic pathways are suggested for all compounds, based on common structural features and matching chain length profiles with other wheat wax compound classes. PMID:27820857

  20. Alkanes in benthic organisms from the Buccaneer oil field

    SciTech Connect

    Middleditch, B.S.; Basile, B.

    1980-06-01

    About 200 g per day of alkanes are present in brine discharged from each of two production platforms in the Buccaneer oil field in the NW Gulf of Mexico. These alkanes disperse rapidly in the water column, so that seawater concentrations of petroleum alkanes in this region are generally very low. They can be taken up to some extent by plankton, fish, and barnacles, but the petroleum alkane concentrations in these organisms are also relatively low. The largest pool of petroleum alkanes is in the surficial sediments, where concentrations of up to 25 ppM are observed, with concentration gradients extending more than 20 m from the production platforms. Organisms are examined which are exposed to these sediments and, for comparison, other specimens from control sites around structures from which there are no discharges.

  1. Utilization of n-Alkanes by Cladosporium resinae

    PubMed Central

    Teh, J. S.; Lee, K. H.

    1973-01-01

    Four different isolates of Cladosporium resinae from Australian soils were tested for their ability to utilize liquid n-alkanes ranging from n-hexane to n-octadecane under standard conditions. The isolates were unable to make use of n-hexane, n-heptane, and n-octane for growth. In fact, these hydrocarbons, particularly n-hexane, exerted an inhibitory effect on spore germination and mycelial growth. All higher n-alkanes from n-nonane to n-octadecane were assimilated by the fungus, although only limited growth occurred on n-nonane and n-decane. The long chain n-alkanes (C14 to C18) supported good growth of all isolates, but there was no obvious correlation between cell yields and chain lengths of these n-alkanes. Variation in growth responses to individual n-alkane among the different isolates was also observed. The cause of this variation is unknown. PMID:4735447

  2. n-Alkane adsorption to polar silica surfaces.

    PubMed

    Brindza, Michael R; Ding, Feng; Fourkas, John T; Walker, Robert A

    2010-03-21

    The structures of medium-length n-alkane species (C(8)-C(11)) adsorbed to a hydrophilic silica/vapor interface were examined using vibrational sum frequency spectroscopy. Experiments sampling out-of-plane orientation show a clear pattern in vibrational band intensities that implies chains having primarily all-trans conformations lying flat along the interface. Further analysis shows that the methylene groups of the alkane chains have their local symmetry axes directed into and away from the surface. Spectra acquired under different polarization conditions interlock to reinforce this picture of interfacial structure and organization. Variation in signal intensities with chain length suggests that correlation between adsorbed monomers weakens with increasing chain length. This result stands in contrast with alkane behavior at neat liquid/vapor interfaces where longer length alkanes show considerably more surface induced ordering than short chain alkanes.

  3. Hydrocarbon Metabolism by Brevibacterium erythrogenes: Normal and Branched Alkanes1

    PubMed Central

    Pirnik, M. P.; Atlas, R. M.; Bartha, R.

    1974-01-01

    Branched- and straight-chain alkanes are metabolized by Brevibacterium erythrogenes by means of two distinct pathways. Normal alkanes (e.g., n-pentadecane) are degraded, after terminal oxidation, by the beta-oxidation system operational in fatty acid catabolism. Branched alkanes like pristane (2,6,10,14-tetramethylpentadecane) and 2-methylundecane are degraded as dicarboxylic acids, which also undergo beta-oxidation. Pristane-derived intermediates are observed to accumulate, with time, as a series of dicarboxylic acids. This dicarboxylic acid pathway is not observed in the presence of normal alkanes. Release of 14CO2 from [1-14C]pristane is delayed, or entirely inhibited, in the presence of n-hexadecane, whereas CO2 release from n-hexadecane remains unaffected. These results suggest an inducible dicarboxylic acid pathway for degradation of branched-chain alkanes. PMID:4852318

  4. The Effect of Terminal Substitution on the Helical Carbon Structure of Fluoro-Alkane Chains: a Pure Rotational Study of CH2OH-Cn-1F2n-1 (n = 4, 5,& 6)

    NASA Astrophysics Data System (ADS)

    Schwartz, Aaron Z. A.; Maturo, Mark P.; Obenchain, Daniel A.; Cooke, S. A.

    2016-06-01

    Continuing a series of studies to investigate the change in structure of hydrocarbons as the amount of fluorination is increased to varying degrees of substitution, we present a survey on the change in the helical nature of the fluorinated carbon backbone when a -CH2OH group is substituted for a terminal - CF3 group. Spectra for 1H,1H-heptafluorobutan-1-ol, 1H,1H-nonafluoropentan-1-ol, and 1H,1H-undecafluorohexan-1-ol were collected separately using a chirped-pulse FTMW spectrometer in the range of 7-13 GHz. Only one conformation was observed for each molecule. Additional measurements of the 1H,1H-heptafluorobutan-1-ol were completed using a Balle-Flygare cavity instrument. Assignments of the singly-substituted 13C isotopologues of the 1H,1H-heptafluorobutan-1-ol were also measured. A comparison of both ab initio and experimental structures will be presented.

  5. Diversity of alkane degrading bacteria associated with plants in a petroleum oil-contaminated environment and expression of alkane monooxygenase (alkB) genes

    NASA Astrophysics Data System (ADS)

    Andria, V.; Yousaf, S.; Reichenauer, T. G.; Smalla, K.; Sessitsch, A.

    2009-04-01

    Among twenty-six different plant species, Italian ryegrass (Lolium multiflorum var. Taurus), Birdsfoot trefoil (Lotus corniculatus var. Leo), and the combination of both plants performed well in a petroleum oil contaminated soil. Hydrocarbon degrading bacteria were isolated from the rhizosphere, root interior and shoot interior and subjected to the analysis of 16S rRNA, the 16S and 23S rRNA intergenic spacer region and alkane hydroxylase genes. Higher numbers of culturable, degrading bacteria were associated with Italian ryegrass, which were also characterized by a higher diversity, particularly in the plant interior. Only half of the isolated bacteria hosted known alkane hydroxylase genes (alkB and cytochrome P153-like). Our results indicated that alkB genes have spread through horizontal gene transfer, particularly in the Italian ryegrass rhizosphere, and suggested mobility of catabolic genes between Gram-negative and Gram-positive bacteria. We furthermore studied the colonization behaviour of selected hydrocarbon-degrading strains (comprising an endopyhte and a rhizosphere strain) as well as the expression of their alkane monooxygenase genes in association with Italian ryegrass. Results showed that the endophyte strain better colonized the plant, particularly the plant interior, and also showed higher expression of alkB genes suggesting a more efficient degradation of the pollutant. Furthermore, plants inoculated with the endophyte were better able to grow in the presence of diesel. The rhizosphere strain colonized primarily the rhizosphere and showed low alkB gene expression in the plant interior.

  6. The Effects of Vegetation Barriers on Near-road Ultrafine Particle Number and Carbon Monoxide Concentrations

    EPA Science Inventory

    Numerous studies have shown that people living in near-roadway communities (within 100 m of the road) are exposed to high ultrafine particle (UFP) number concentrations, which may be associated with adverse health effects. Vegetation barriers have been shown to affect pollutant t...

  7. Regulation of alkane degradation pathway by a TetR family repressor via an autoregulation positive feedback mechanism in a Gram-positive Dietzia bacterium.

    PubMed

    Liang, Jie-Liang; Nie, Yong; Wang, Miaoxiao; Xiong, Guangming; Wang, Yi-Ping; Maser, Edmund; Wu, Xiao-Lei

    2016-01-01

    n-Alkanes are ubiquitous in nature and serve as important carbon sources for both Gram-positive and Gram-negative bacteria. Hydroxylation of n-alkanes by alkane monooxygenases is the first and most critical step in n-alkane metabolism. However, regulation of alkane degradation genes in Gram-positive bacteria remains poorly characterized. We therefore explored the transcriptional regulation of an alkB-type alkane hydroxylase-rubredoxin fusion gene, alkW1, from Dietzia sp. DQ12-45-1b. The alkW1 promoter was characterized and so was the putative TetR family regulator, AlkX, located downstream of alkW1 gene. We further identified an unusually long 48 bp inverted repeat upstream of alkW1 and demonstrated the binding of AlkX to this operator. Analytical ultracentrifugation and microcalorimetric results indicated that AlkX formed stable dimers in solution and two dimers bound to one operator in a positive cooperative fashion characterized by a Hill coefficient of 1.64 (± 0.03) [k(D)  = 1.06 (± 0.16) μM, k(D) ' = 0.05 (± 0.01) μM]. However, the DNA-binding affinity was disrupted in the presence of long-chain fatty acids (C10-C24), suggesting that AlkX can sense the concentrations of n-alkane degradation metabolites. A model was therefore proposed where AlkX controls alkW1 expression in a metabolite-dependent manner. Bioinformatic analysis revealed that the alkane hydroxylase gene regulation mechanism may be common among Actinobacteria.

  8. Quantification of Biogenic Volatile Organic Compounds with a Flame Ionization Detector Using the Effective Carbon Number Concept

    NASA Astrophysics Data System (ADS)

    Faiola, C. L.; Erickson, M. H.; Fricaud, V. L.; Wallace, H. W.; Jobson, B. T.; VanReken, T. M.

    2011-12-01

    Biogenic volatile organic compounds (BVOCs) are emitted into the atmosphere by plants and include structurally complex organic molecules such as monoterpenes, sesquiterpenes, and their oxygenated derivatives. These BVOCs are among the principle factors influencing the oxidative capacity of the atmosphere in forested regions. BVOC emission rates are often measured by collecting samples onto adsorptive cartridges in the field and then transporting these samples to the laboratory for chromatographic analysis. One of the most commonly used detectors in gas chromatography is the flame ionization detector (FID) due to its broad linear range, high sensitivity, and predictable response to many compounds. The FID response to saturated aliphatic molecules is proportional to carbon number. However, deviations occur as the complexity of the molecular structure increases. To account for these deviations, Sternberg et al. (1962) developed the effective carbon number (ECN) concept, which describes the number of carbons the FID "effectively" responds to. The ECN of a complex molecule can be estimated from the number and type of functional groups present, allowing an estimate of relative response factors for quantification. This approach is particularly useful for applications where samples contain a mixture of organic compounds and standards are not realistically accessible- a common predicament for environmental measurements. ECNs for a limited number of compounds with varying functional groups have been quantified in previous studies. However, there remain large gaps in the variety of compounds for which published data are available. This results in higher than necessary uncertainties when quantifying compounds that are structurally dissimilar to those that have been reported in the literature. The purpose of this study was to determine the ECN for a variety of terpenoid compounds to enable improved quantification of BVOC measurements. A dynamic dilution system was developed to

  9. High Diversity of Anaerobic Alkane-Degrading Microbial Communities in Marine Seep Sediments Based on (1-methylalkyl)succinate Synthase Genes

    PubMed Central

    Stagars, Marion H.; Ruff, S. Emil; Amann, Rudolf; Knittel, Katrin

    2016-01-01

    Alkanes comprise a substantial fraction of crude oil and are prevalent at marine seeps. These environments are typically anoxic and host diverse microbial communities that grow on alkanes. The most widely distributed mechanism of anaerobic alkane activation is the addition of alkanes to fumarate by (1-methylalkyl)succinate synthase (Mas). Here we studied the diversity of MasD, the catalytic subunit of the enzyme, in 12 marine sediments sampled at seven seeps. We aimed to identify cosmopolitan species as well as to identify factors structuring the alkane-degrading community. Using next generation sequencing we obtained a total of 420 MasD species-level operational taxonomic units (OTU0.96) at 96% amino acid identity. Diversity analysis shows a high richness and evenness of alkane-degrading bacteria. Sites with similar hydrocarbon composition harbored similar alkane-degrading communities based on MasD genes; the MasD community structure is clearly driven by the hydrocarbon source available at the various seeps. Two of the detected OTU0.96 were cosmopolitan and abundant while 75% were locally restricted, suggesting the presence of few abundant and globally distributed alkane degraders as well as specialized variants that have developed under specific conditions at the diverse seep environments. Of the three MasD clades identified, the most diverse was affiliated with Deltaproteobacteria. A second clade was affiliated with both Deltaproteobacteria and Firmicutes likely indicating lateral gene transfer events. The third clade was only distantly related to known alkane-degrading organisms and comprises new divergent lineages of MasD homologs, which might belong to an overlooked phylum of alkane-degrading bacteria. In addition, masD geneFISH allowed for the in situ identification and quantification of the target guild in alkane-degrading enrichment cultures. Altogether, these findings suggest an unexpectedly high number of yet unknown groups of anaerobic alkane degraders

  10. Catalytic conversion of light alkanes: Quarterly report, January 1-March 31, 1992

    SciTech Connect

    Biscardi, J.; Bowden, P.T.; Durante, V.A.; Ellis, P.E. Jr.; Gray, H.B.; Gorbey, R.G.; Hayes, R.C.; Hodge, J.; Hughes, M.; Langdale, W.A.; Lyons, J.E.; Marcus, B.; Messick, D.; Merrill, R.A.; Moore, F.A.; Myers, H.K. Jr.; Seitzer, W.H.; Shaikh, S.N.; Tsao, W.H.; Wagner, R.W.; Warren, R.W.; Wijesekera, T.P.

    1997-05-01

    The first Quarterly Report of 1992 on the Catalytic Conversion of Light Alkanes reviews the work done between January 1. 1992 and March 31, 1992 on the Cooperative Agreement. The mission of this work is to devise a new catalyst which can be used in a simple economic process to convert the light alkanes in natural gas to oxygenate products which can either be used as clean-burning, high octane liquid fuels, as fuel components or as precursors to liquid hydrocarbon transportation fuel. During the past quarter we have continued to design, prepare, characterize and test novel catalysts for the mild selective reaction of light hydrocarbons with air or oxygen to produce alcohols directly. These catalysts are designed to form active metal oxo (MO) species and to be uniquely active for the homolytic cleavage of the carbon-hydrogen bonds in light alkanes producing intermediates which can form alcohols. We continue to investigate three molecular environments for the active catalytic species that we are trying to generate: electron-deficient porphryinic macrocycles (PHASE I), polyoxometallates (PHASE II), and regular oxidic lattices including zeolites and related structures as well as other molecular surface structures having metal oxo groups (PHASE III).

  11. Catalytic conversion of light alkanes phase II. Topical report, January 1990--January 1993

    SciTech Connect

    1998-12-31

    The Topical Report on Phase II of the project entitled, Catalytic Conversion of Light Alkanes reviews work done between January 1, 1990 and September 30, 1992 on the Cooperative Agreement. The mission of this work is to devise a new catalyst which can be used in a simple economic process to convert the light alkanes in natural gas to oxygenate products which can either be used as clean-burning, high octane liquid fuels, as fuel components or as precursors to liquid hydrocarbon transportation fuel. This Topical Report documents our efforts to design, prepare, characterize and test novel catalysts for the mild selective reaction of light hydrocarbons with air or oxygen to produce alcohols directly. These catalysts are designed to form active metal oxo (MO) species and to be uniquely active for the homolytic cleavage of the carbon-hydrogen bonds in light alkanes producing intermediates which can form alcohols. Research on the Cooperative Agreement is divided into three Phases relating to three molecular environments for the active catalytic species that we are trying to generate. In this report we present our work on catalysts which have oxidation-active metals in polyoxoanions (PHASE II).

  12. Catalytic conversion of light alkanes. Quarterly progress report, April 1--June 30, 1992

    SciTech Connect

    Lyons, J.E.

    1992-06-30

    The second Quarterly Report of 1992 on the Catalytic Conversion of Light Alkanes reviews the work done between April 1, 1992 and June 31, 1992 on the Cooperative Agreement. The mission of this work is to devise a new catalyst which can be used in a simple economic process to convert the light alkanes in natural gas to oxygenate products that can either be used as clean-burning, high octane liquid fuels, as fuel components or as precursors to liquid hydrocarbon uwspomdon fuel. During the past quarter we have continued to design, prepare, characterize and test novel catalysts for the mild selective reaction of light hydrocarbons with air or oxygen to produce alcohols directly. These catalysts are designed to form active metal oxo (MO) species and to be uniquely active for the homolytic cleavage of the carbon-hydrogen bonds in light alkanes producing intermediates which can form alcohols. We continue to investigate three molecular environments for the active catalytic species that we are trying to generate: electron-deficient macrocycles (PHASE I), polyoxometallates (PHASE II), and regular oxidic lattices including zeolites and related structures as well as other molecular surface structures having metal oxo groups (PHASE I).

  13. Fossil Leaves and Fossil Leaf n-Alkanes: Reconstructing the First Closed Canopied Rainforests

    NASA Astrophysics Data System (ADS)

    Graham, H. V.; Freeman, K. H.

    2013-12-01

    Although the age and location is disputed, the rise of the first closed-canopy forest is likely linked with the expansion of angiosperms in the late Cretacous or early Cenozoic. The carbon isotope 'canopy effect' reflects the extent of canopy closure, and is well documented in δ13C values of the leaves and leaf lipids in modern forests. To test the extent of canopy closure among the oldest documented angiosperm tropical forests, we analyzed isotopic characteristics of leaf fossils and leaf waxes from the Guaduas and Cerrejón Formations. The Guaduas Fm. (Maastrichtian) contains some of the earliest angiosperm fossils in the Neotropics, and both leaf morphology and pollen records at this site suggest an open-canopy structure. The Cerrejón Fm. (Paleocene) contains what are believed to be the first recorded fossil leaves from a closed-canopy forest. We analyzed the bulk carbon isotope content (δ13Cleaf) of 199 fossil leaves, as well as the n-alkane concentration and chain-length distribution, and δ13C of alkanes (δ13Clipid) of 73 fossil leaves and adjacent sediment samples. Fossil leaves are dominated by eudicots and include ten modern plant families (Apocynaceae, Bombaceae, Euphorbaceae, Fabaceae, Lauraceae, Malvaceae, Meliaceae, Menispermaceae, Moraceae, Sapotaceae). We interpreted extent of canopy coverage based on the range of δ13Cleaf values. The narrow range of δ13C values in leaves from the Guaduas Fm (2.7‰) is consistent with an open canopy. A significantly wider range in values (6.3‰) suggests a closed-canopy signature for site 0315 of the Cerrejón Fm,. In contrast, at Site 0318, a lacustrine deposit, leaves had a narrow range (3.3‰) in δ13C values, and this is not consistent with a closed-canopy, but is consistent with leaf assemblages from a forest edge. Leaves that accumulate in lake sediments tend to be biased toward plants living at the lake edge, which do not experience closed-canopy conditions, and do not express the isotopic

  14. From carbon numbers to ecosystem services: usable results comparing natural versus managed lands

    NASA Astrophysics Data System (ADS)

    Bachelet, D. M.; Ferschweiler, K.; Sheehan, T.; Sleeter, B. M.; Zhu, Z.

    2015-12-01

    We ran the MC2 dynamic vegetation model for the conterminous US at 30 arc sec with and without land use and fire suppression for several climate change scenarios. We translated model results into key ecosystem services (ES) such as climate regulation through carbon uptake and sequestration (global climate) or through transpiration (regional climate) as well as water provision through runoff and throughflow. We also projected timber production and gauged the risk of production lost to fire and/or drought by simulating fuel loads and forest vigor annually through the 21st century. We calculated the rising irrigation demand for agricultural land which, coupled with available information on groundwater resources, could help plan for future cropping systems. By combining these results we can evaluate land cover value across the country in terms of quantity and quality of services rendered. By comparing projections with and without landuse and fire suppression we can illustrate differences in regulating and provisioning services between managed and natural lands.

  15. Angiosperm n-alkane distribution patterns and the geologic record of C4 grassland evolution

    NASA Astrophysics Data System (ADS)

    Henderson, A.; Graham, H. V.; Patzkowsky, M.; Fox, D. L.; Freeman, K. H.

    2012-12-01

    n-Alkane average chain-length (ACL) patterns vary regionally with community composition and climate. To clarify the influence of phylogenetic and community patterns, we compiled and analyzed a global database of published n-alkane abundance for n-C27 to C35 homologs in modern plant specimens (n=205). ACL for waxes in C4 non-woody plants are longer than for woody plants, suggesting ACL can serve as an indicator of the three-dimensional structure of local vegetation. Further, these findings suggest compound-specific isotopic data for longer alkane homologs (C31, C33, C35) will proportionately represent non-woody vegetation and isotope measurements of C29 are more representative of woody vegetation. Thus, the combination of ACL and carbon isotope compositions should allow us to disentangle C3 woody, C3 non-woody, and C4 non-woody signals in terrestrial paleorecords. Application of this approach to the geologic record of Miocene C4 grassland expansion in the US Great Plains and the Siwaliks in Pakistan illustrate two very different transition scenarios. Alkane-specific isotopic data indicate C4 grasslands appeared 2.5 Ma in the Great Plains and 6.5 Ma in the Siwaliks, and ACL analysis indicates that this transition involved the replacement of woody vegetation in the US and the replacement of C3 grasses in Pakistan. Our analysis illustrates that, consistent with differences in the timing of C4 grassland, the drivers of change were likely not the same in these regions. Oxygen isotope records suggest that the more recent transition in the Great Plains was associated with climate cooling and possibly changes in disturbance regimes and that the transition in the Siwaliks was likely associated with warming and drying.

  16. Kinetic study of asphaltene dissolution in amphiphile/alkane solutions

    SciTech Connect

    Permsukarome, P.; Chang, C.; Fogler, H.S.

    1997-09-01

    The kinetics of dissolution of pentane-insoluble solid asphaltene precipitates by amphiphile/alkane solutions were investigated using a differential reactor flow system. Two amphiphiles, dodecylbenzenesulfonic acid and nonylphenol, and five alkane solvents, ranging from hexane to hexadecane, were used. Results showed that the rate of asphaltene dissolution in amphiphile/alkane fluids could be approximated with a first-order kinetics with respect to the undissolved asphaltene mass in solution. The specific dissolution rate constant, k, varied with the concentration of amphiphiles, the type of alkane solvents, the temperature, and the fluid flow rate. The rate of asphaltene dissolution displayed a Langmuir-Hinshelwood kinetics with respect to the concentration of amphiphiles. Increasing the temperature of amphiphile/alkane fluids also enhanced the rate of asphaltene dissolution. The apparent activation energy for asphaltene dissolution was approximated to be 4--7 kcal/mol. The rate of asphaltene dissolution was also greater in amphiphile solutions containing lighter alkanes, such as hexane, with lower viscosities. These trends suggest that both surface reaction and mass transfer processes are important to the rate of asphaltene dissolution in amphiphile/alkane fluids.

  17. Heterologous biosynthesis and manipulation of alkanes in Escherichia coli.

    PubMed

    Cao, Ying-Xiu; Xiao, Wen-Hai; Zhang, Jin-Lai; Xie, Ze-Xiong; Ding, Ming-Zhu; Yuan, Ying-Jin

    2016-11-01

    Biosynthesis of alkanes in microbial foundries offers a sustainable and green supplement to traditional fossil fuels. The dynamic equilibrium of fatty aldehydes, key intermediates, played a critical role in microbial alkanes production, due to the poor catalytic capability of aldehyde deformylating oxygenase (ADO). In our study, exploration of competitive pathway together with multi-modular optimization was utilized to improve fatty aldehydes balance and consequently enhance alkanes formation in Escherichia coli. Endogenous fatty alcohol formation was supposed to be competitive with alkane production, since both of the two routes consumed the same intermediate-fatty aldehyde. Nevertheless, in our case, alkanes production in E. coli was enhanced from trace amount to 58.8mg/L by the facilitation of moderate fatty alcohol biosynthesis, which was validated by deletion of endogenous aldehyde reductase (AHR), overexpression of fatty alcohol oxidase (FAO) and consequent transcriptional assay of aar, ado and adhP genes. Moreover, alkanes production was further improved to 81.8mg/L, 86.6mg/L or 101.7mg/L by manipulation of fatty acid biosynthesis, lipids degradation or electron transfer system modules, which directly referenced to fatty aldehydes dynamic pools. A titer of 1.31g/L alkanes was achieved in 2.5L fed-batch fermentation, which was the highest reported titer in E. coli. Our research has offered a reference for chemical overproduction in microbial cell factories facilitated by exploring competitive pathway.

  18. Long-chain alkane production by the yeast Saccharomyces cerevisiae.

    PubMed

    Buijs, Nicolaas A; Zhou, Yongjin J; Siewers, Verena; Nielsen, Jens

    2015-06-01

    In the past decade industrial-scale production of renewable transportation biofuels has been developed as an alternative to fossil fuels, with ethanol as the most prominent biofuel and yeast as the production organism of choice. However, ethanol is a less efficient substitute fuel for heavy-duty and maritime transportation as well as aviation due to its low energy density. Therefore, new types of biofuels, such as alkanes, are being developed that can be used as drop-in fuels and can substitute gasoline, diesel, and kerosene. Here, we describe for the first time the heterologous biosynthesis of long-chain alkanes by the yeast Saccharomyces cerevisiae. We show that elimination of the hexadecenal dehydrogenase Hfd1 and expression of a redox system are essential for alkane biosynthesis in yeast. Deletion of HFD1 together with expression of an alkane biosynthesis pathway resulted in the production of the alkanes tridecane, pentadecane, and heptadecane. Our study provides a proof of principle for producing long-chain alkanes in the industrial workhorse S. cerevisiae, which was so far limited to bacteria. We anticipate that these findings will be a key factor for further yeast engineering to enable industrial production of alkane based drop-in biofuels, which can allow the biofuel industry to diversify beyond bioethanol.

  19. High-order harmonic generation in alkanes

    SciTech Connect

    Altucci, C.; Velotta, R.; Heesel, E.; Springate, E.; Marangos, J. P.; Vozzi, C.; Benedetti, E.; Calegari, F.; Sansone, G.; Stagira, S.; Nisoli, M.; Tosa, V.

    2006-04-15

    We have investigated the process of high-order harmonic generation in light alkanes by using femtosecond laser pulses. We show the experimental results cannot be matched by a model that assumes a single active electron only in a hydrogenic s orbital. Clear evidences are shown of the important role played by the p-like character originating from the covalent C-H bond. By constructing a suitable mixture of s-type and p-type atomic wave functions, an excellent agreement between measurements in methane and simulations is found, thus confirming the validity of the developed method as a general tool for the analysis of high-order harmonic generation in complex molecules.

  20. Heterogeneity of Alkane Chain Length in Freshwater and Marine Cyanobacteria

    PubMed Central

    Shakeel, Tabinda; Fatma, Zia; Fatma, Tasneem; Yazdani, Syed Shams

    2015-01-01

    The potential utilization of cyanobacteria for the biological production of alkanes represents an exceptional system for the next generation of biofuels. Here, we analyzed a diverse group of freshwater and marine cyanobacterial isolates from Indian culture collections for their ability to produce both alkanes and alkenes. Among the 50 cyanobacterial isolates screened, 32 isolates; 14 freshwater and 18 marine isolates; produced predominantly alkanes. The GC-MS/MS profiles revealed a higher percentage of pentadecane and heptadecane production for marine and freshwater strains, respectively. Oscillatoria species were found to be the highest producers of alkanes. Among the freshwater isolates, Oscillatoria CCC305 produced the maximum alkane level with 0.43 μg/mg dry cell weight, while Oscillatoria formosa BDU30603 was the highest producer among the marine isolates with 0.13 μg/mg dry cell weight. Culturing these strains under different media compositions showed that the alkane chain length was not influenced by the growth medium but was rather an inherent property of the strains. Analysis of the cellular fatty acid content indicated the presence of predominantly C16 chain length fatty acids in marine strains, while the proportion of C18 chain length fatty acids increased in the majority of freshwater strains. These results correlated with alkane chain length specificity of marine and freshwater isolates indicating that alkane chain lengths may be primarily determined by the fatty acid synthesis pathway. Moreover, the phylogenetic analysis showed clustering of pentadecane-producing marine strains that was distinct from heptadecane-producing freshwater strains strongly suggesting a close association between alkane chain length and the cyanobacteria habitat. PMID:25853127

  1. Quantification of biogenic volatile organic compounds with a flame ionization detector using the effective carbon number concept

    NASA Astrophysics Data System (ADS)

    Faiola, C. L.; Erickson, M. H.; Fricaud, V. L.; Jobson, B. T.; VanReken, T. M.

    2012-08-01

    Biogenic volatile organic compounds (BVOCs) are emitted into the atmosphere by plants and include isoprene, monoterpenes, sesquiterpenes, and their oxygenated derivatives. These BVOCs are among the principal factors influencing the oxidative capacity of the atmosphere in forested regions. BVOC emission rates are often measured by collecting samples onto adsorptive cartridges in the field and then transporting these samples to the laboratory for chromatographic analysis. One of the most commonly used detectors in chromatographic analysis is the flame ionization detector (FID). For quantitative analysis with an FID, relative response factors may be estimated using the effective carbon number (ECN) concept. The purpose of this study was to determine the ECN for a variety of terpenoid compounds to enable improved quantification of BVOC measurements. A dynamic dilution system was developed to make quantitative gas standards of VOCs with mixing ratios from 20-55 ppb. For each experiment using this system, one terpene standard was co-injected with an internal reference, n-octane, and analyzed via an automated cryofocusing system interfaced to a gas chromatograph flame ionization detector and mass spectrometer (GC/MS/FID). The ECNs of 16 compounds (14 BVOCs) were evaluated with this approach, with each test compound analyzed at least three times. The difference between the actual carbon number and measured ECN ranged from -24% to -2%. The difference between theoretical ECN and measured ECN ranged from -22% to 9%. Measured ECN values were within 10% of theoretical ECN values for most terpenoid compounds.

  2. Quantification of biogenic volatile organic compounds with a flame ionization detector using the effective carbon number concept

    NASA Astrophysics Data System (ADS)

    Faiola, C. L.; Erickson, M. H.; Fricaud, V. L.; Jobson, B. T.; VanReken, T. M.

    2012-03-01

    Biogenic volatile organic compounds (BVOCs) are emitted into the atmosphere by plants and include isoprene, monoterpenes, sesquiterpenes, and their oxygenated derivatives. These BVOCs are among the principal factors influencing the oxidative capacity of the atmosphere in forested regions. BVOC emission rates are often measured by collecting samples onto adsorptive cartridges in the field and then transporting these samples to the laboratory for chromatographic analysis. One of the most commonly used detectors in chromatographic analysis is the flame ionization detector (FID). For quantitative analysis with an FID, relative response factors may be estimated using the effective carbon number (ECN) concept. The purpose of this study was to determine the ECN for a variety of terpenoid compounds to enable improved quantification of BVOC measurements. A dynamic dilution system was developed to make quantitative gas standards of VOCs with mixing ratios from 20-55 ppb. For each experiment using this system, one terpene standard was co-injected with an internal reference, n-octane, and analyzed via an automated cryofocusing system interfaced to a gas chromatograph flame ionization detector and mass spectrometer (GC/MS/FID). The ECNs of 16 compounds (14 BVOCs) were evaluated with this approach, with each test compound analyzed at least three times. The difference between the actual carbon number and measured ECN ranged from -24% to -2%. The difference between theoretical ECN and measured ECN ranged from -22% to 9%. Measured ECN values were within 10% of theoretical ECN values for most terpenoid compounds.

  3. Stable hydrogen isotopic composition of n-alkanes in atmospheric aerosols as a tracer for the source region of terrestrial plant waxes

    NASA Astrophysics Data System (ADS)

    Yamamoto, S.; Kawamura, K.

    2009-12-01

    Studies on molecular composition and compound-specific carbon isotopic ratio (δ13C) of leaf wax n-alkanes in atmospheric aerosols have revealed a long-range atmospheric transport of terrestrial higher plant materials over the south Atlantic and western Pacific oceans. However, molecular and δ13C compositions of terrestrial plant waxes in the eastern part of the Asian continent are relatively constant reflecting C3-dominated vegetation, which makes it difficult to specify the source regions of plant materials in the atmospheric aerosols over the East Asia and northwest Pacific regions. Recent observation displays a large (>100‰) spatial variation in hydrogen isotopic composition (δD) of rainwater in East Asia. Because δD values of terrestrial higher plants sensitively reflect those of precipitation waters, δD of leaf waxes are expected to provide information on their source region. In this study, we measured the δD of n-alkanes in atmospheric aerosols from Tokyo to better understand the origin of leaf wax n-alkanes in atmospheric aerosols. The δD values of fossil fuel n-alkanes (C21 to C24) in Tokyo aerosols range from -65 to -94‰, which are in a range of those reported in marine crude oils. In contrast, the δD of higher molecular weight (C29 and C31) n-alkanes (δDHMW) show much larger values by ~70‰ than those of fossil fuel n-alkanes. Their values were found to exhibit concomitant variations with carbon preference index (CPI), suggesting that the δDHMW reflect the δD of leaf wax n-alkanes with a variable contribution from fossil fuel n-alkanes. Nevertheless, good positive correlation (r = 0.89, p < 0.01) between the δDHMW and CPI values enable us to remove the contribution of fossil fuels using a mass balance approach by assuming that CPI of fossil fuel is 1 and CPI of plant waxes is 5-15. Calculated n-alkane δD values averaged from -170 to -185‰ for C29 and from -155 to -168‰ for C31. These values are consistent with those reported from

  4. Gene Structures and Regulation of the Alkane Hydroxylase Complex in Acinetobacter sp. Strain M-1

    PubMed Central

    Tani, Akio; Ishige, Takeru; Sakai, Yasuyoshi; Kato, Nobuo

    2001-01-01

    In the long-chain n-alkane degrader Acinetobacter sp. strain M-1, two alkane hydroxylase complexes are switched by controlling the expression of two n-alkane hydroxylase-encoding genes in response to the chain length of n-alkanes, while rubredoxin and rubredoxin ruductase are encoded by a single gene and expressed constitutively. PMID:11160120

  5. The effects of vegetation barriers on near-road ultrafine particle number and carbon monoxide concentrations.

    PubMed

    Lin, Ming-Yeng; Hagler, Gayle; Baldauf, Richard; Isakov, Vlad; Lin, Hong-Yiou; Khlystov, Andrey

    2016-05-15

    Numerous studies have shown that people living in near-roadway communities (within 100 m of the road) are exposed to high ultrafine particle (UFP) number concentrations, which may be associated with adverse health effects. Vegetation barriers have been shown to affect pollutant transport via particle deposition to leaves and altering the dispersion of emission plumes, which in turn would modify the exposure of near-roadway communities to traffic-related UFPs. In this study, both stationary (equipped with a Scanning Mobility Particle Sizer, SMPS) and mobile (equipped with Fast Mobility Particle Sizer, FMPS) measurements were conducted to investigate the effects of vegetation barriers on downwind UFP (particle diameters ranging from 14 to 102 nm) concentrations at two sites in North Carolina, USA. One site had mainly deciduous vegetation while the other was primarily coniferous; both sites have a nearby open field without the vegetation barriers along the same stretch of limited access road, which served as a reference. During downwind conditions (traffic emissions transported towards the vegetation barrier) and when the wind speed was above or equal to 0.5m/s, field measurements indicated that vegetation barriers with full foliage reduced UFP and CO concentrations by 37.7-63.6% and 23.6-56.1%, respectively. When the test was repeated at the same sites during winter periods when deciduous foliage was reduced, the deciduous barrier during winter showed no significant change in UFP concentration before and after the barrier. Results from the stationary (using SMPS) and mobile (using FMPS) measurements for UFP total number concentrations generally agreed to within 20%.

  6. Quantitative vapor-phase IR intensities and DFT computations to predict absolute IR spectra based on molecular structure: I. Alkanes

    NASA Astrophysics Data System (ADS)

    Williams, Stephen D.; Johnson, Timothy J.; Sharpe, Steven W.; Yavelak, Veronica; Oates, R. P.; Brauer, Carolyn S.

    2013-11-01

    Recently recorded quantitative IR spectra of a variety of gas-phase alkanes are shown to have integrated intensities in both the C3H stretching and C3H bending regions that depend linearly on the molecular size, i.e. the number of C3H bonds. This result is well predicted from CH4 to C15H32 by density functional theory (DFT) computations of IR spectra using Becke's three parameter functional (B3LYP/6-31+G(d,p)). Using the experimental data, a simple model predicting the absolute IR band intensities of alkanes based only on structural formula is proposed: For the C3H stretching band envelope centered near 2930 cm-1 this is given by (km/mol) CH_str=(34±1)×CH-(41±23) where CH is number of C3H bonds in the alkane. The linearity is explained in terms of coordinated motion of methylene groups rather than the summed intensities of autonomous -CH2-units. The effect of alkyl chain length on the intensity of a C3H bending mode is explored and interpreted in terms of conformer distribution. The relative intensity contribution of a methyl mode compared to the total C3H stretch intensity is shown to be linear in the number of methyl groups in the alkane, and can be used to predict quantitative spectra a priori based on structure alone.

  7. Quantitative Vapor-phase IR Intensities and DFT Computations to Predict Absolute IR Spectra based on Molecular Structure: I. Alkanes

    SciTech Connect

    Williams, Stephen D.; Johnson, Timothy J.; Sharpe, Steven W.; Yavelak, Veronica; Oats, R. P.; Brauer, Carolyn S.

    2013-11-13

    Recently recorded quantitative IR spectra of a variety of gas-phase alkanes are shown to have integrated intensities in both the C-H stretching and C-H bending regions that depend linearly on the molecular size, i.e. the number of C-H bonds. This result is well predicted from CH4 to C15H32 by DFT computations of IR spectra at the B3LYP/6-31+G(d,p) level of DFT theory. A simple model predicting the absolute IR band intensities of alkanes based only on structural formula is proposed: For the C-H stretching band near 2930 cm-1 this is given by (in km/mol): CH¬_str = (34±3)*CH – (41±60) where CH is number of C-H bonds in the alkane. The linearity is explained in terms of coordinated motion of methylene groups rather than the summed intensities of autonomous -CH2- units. The effect of alkyl chain length on the intensity of a C-H bending mode is explored and interpreted in terms of conformer distribution. The relative intensity contribution of a methyl mode compared to the total C-H stretch intensity is shown to be linear in the number of terminal methyl groups in the alkane, and can be used to predict quantitative spectra a priori based on structure alone.

  8. Different response of bulk and n-alkane δ13C signatures to seasonal shifts in environmental conditions in a temperate coastal ecosystem

    NASA Astrophysics Data System (ADS)

    Eley, Yvette; Pedentchouk, Nikolai; Dawson, Lorna

    2014-05-01

    The carbon isotope signal recorded in land plants represents an important reservoir of information for reconstructing climatically driven shifts in plant ecophysiology and biochemistry. Analytical advances have led to widespread usage of compound-specific (CS) carbon isotope analysis of leaf wax biomarkers, such as n-alkanes, in addition to traditional bulk isotope methods, to identify shifts in the relative percentage of C3 and C4 vegetation contributing to the sedimentary record. Recent studies, however, have extended the application of leaf wax biomarkers, using bulk and n-alkane δ13C values interchangeably to derive information about plant-environment relations, both in modern ecosystems and throughout the geological past. Even though previous work on C3 plants has shown a clear link between climatically influenced plant physiology and bulk δ13C values, further research is needed to establish whether the same link can be seen in leaf wax biomarkers. To address this question, we collected bulk and n-alkane δ13C data from plants growing at Stiffkey marsh on the north Norfolk coast, UK over a period of 15 months. Maximum interspecies variation in weighted average (WA) n-alkane δ13C among C3 species was typically 2-3o greater than in bulk. We observed a close correlation in the bulk and WA n-alkane δ13C seasonal trends from C3 grasses and reeds (R2=0.9, P

  9. Involvement of an alkane hydroxylase system of Gordonia sp. strain SoCg in degradation of solid n-alkanes.

    PubMed

    Lo Piccolo, Luca; De Pasquale, Claudio; Fodale, Roberta; Puglia, Anna Maria; Quatrini, Paola

    2011-02-01

    Enzymes involved in oxidation of long-chain n-alkanes are still not well known, especially those in gram-positive bacteria. This work describes the alkane degradation system of the n-alkane degrader actinobacterium Gordonia sp. strain SoCg, which is able to grow on n-alkanes from dodecane (C(12)) to hexatriacontane (C(36)) as the sole C source. SoCg harbors in its chromosome a single alk locus carrying six open reading frames (ORFs), which shows 78 to 79% identity with the alkane hydroxylase (AH)-encoding systems of other alkane-degrading actinobacteria. Quantitative reverse transcription-PCR showed that the genes encoding AlkB (alkane 1-monooxygenase), RubA3 (rubredoxin), RubA4 (rubredoxin), and RubB (rubredoxin reductase) were induced by both n-hexadecane and n-triacontane, which were chosen as representative long-chain liquid and solid n-alkane molecules, respectively. Biotransformation of n-hexadecane into the corresponding 1-hexadecanol was detected by solid-phase microextraction coupled with gas chromatography-mass spectrometry (SPME/GC-MS) analysis. The Gordonia SoCg alkB was heterologously expressed in Escherichia coli BL21 and in Streptomyces coelicolor M145, and both hosts acquired the ability to transform n-hexadecane into 1-hexadecanol, but the corresponding long-chain alcohol was never detected on n-triacontane. However, the recombinant S. coelicolor M145-AH, expressing the Gordonia alkB gene, was able to grow on n-triacontane as the sole C source. A SoCg alkB disruption mutant that is completely unable to grow on n-triacontane was obtained, demonstrating the role of an AlkB-type AH system in degradation of solid n-alkanes.

  10. QuickStats: Number of Deaths Resulting from Unintentional Carbon Monoxide Poisoning,* by Month and Year - National Vital Statistics System, United States, 2010-2015.

    PubMed

    2017-03-03

    During 2010-2015, a total of 2,244 deaths resulted from unintentional carbon monoxide poisoning, with the highest numbers of deaths each year occurring in winter months. In 2015, a total of 393 deaths resulting from unintentional carbon monoxide poisoning occurred, with 36% of the deaths occurring in December, January, or February.

  11. Total and size-resolved particle number and black carbon concentrations in urban areas near Schiphol airport (the Netherlands)

    NASA Astrophysics Data System (ADS)

    Keuken, M. P.; Moerman, M.; Zandveld, P.; Henzing, J. S.; Hoek, G.

    2015-03-01

    The presence of black carbon, and size-resolved and total particle number concentrations (PNC) were investigated in the vicinity of Schiphol airport in the Netherlands, the fourth busiest airport in Europe. Continuous measurements were conducted between March and May 2014 at Adamse Bos, located 7 km from Schiphol, and in 2012 at Cabauw, a regional background site 40 km south of Schiphol. No significantly elevated black carbon levels were found near Schiphol. However, PNC increased during periods in which the wind direction was from Schiphol: at Cabauw by 20% and at Adamse Bos by a factor of three, from 14,100 (other wind directions) to 42,000 # cm-3 between 06.00 and 23.00. The size distribution of Schiphol-related PNC was dominated by ultrafine particles, ranging from 10 to 20 nm. Four relevant particle number (PN) emission sources at Schiphol were identified as being responsible for the elevated PNC levels at Adamse Bos: take-off and climb-out on the Kaagbaan and Aalsmeerbaan runways, planes waiting at the gates, and landing on the Buitenveldertbaan runway. PN emissions from road traffic at and near the airport were less important than air traffic. The exposure to Schiphol-related PNC in urban areas northeast of Schiphol in Amsterdam and Amstelveen was estimated for 2012 using a Gaussian Plume model. The results showed that a considerable number of the 555,000 addresses in the modelling domain were exposed to elevated PNC. For example: 45,000 addresses suffered long-term exposure to an additional annual background PNC of 5-10,000 # cm-3 originating from Schiphol and 60,000 addresses suffered short-term exposure (14% of the time) of additional 10-15,000 # cm-3 originating from Schiphol. Further research on emission sources and the dispersion of PN is recommended and may support future studies on eventual health effects.

  12. Isolation and characterization of alkane degrading bacteria from petroleum reservoir waste water in Iran (Kerman and Tehran provenances).

    PubMed

    Hassanshahian, Mehdi; Ahmadinejad, Mohammad; Tebyanian, Hamid; Kariminik, Ashraf

    2013-08-15

    Petroleum products spill and leakage have become two major environmental challenges in Iran. Sampling was performed in the petroleum reservoir waste water of Tehran and Kerman Provinces of Iran. Alkane degrading bacteria were isolated by enrichment in a Bushnel-Hass medium, with hexadecane as sole source of carbon and energy. The isolated strains were identified by amplification of 16S rDNA gene and sequencing. Specific primers were used for identification of alkane hydroxylase gene. Fifteen alkane degrading bacteria were isolated and 8 strains were selected as powerful degradative bacteria. These 8 strains relate to Rhodococcus jostii, Stenotrophomonas maltophilia, Achromobacter piechaudii, Tsukamurella tyrosinosolvens, Pseudomonas fluorescens, Rhodococcus erythropolis, Stenotrophomonas maltophilia, Pseudomonas aeruginosa genera. The optimum concentration of hexadecane that allowed high growth was 2.5%. Gas chromatography results show that all strains can degrade approximately half of hexadecane in one week of incubation. All of the strains have alkane hydroxylase gene which are important for biodegradation. As a result, this study indicates that there is a high diversity of degradative bacteria in petroleum reservoir waste water in Iran.

  13. Enthalpy difference between conformations of normal alkanes: effects of basis set and chain length on intramolecular basis set superposition error

    NASA Astrophysics Data System (ADS)

    Balabin, Roman M.

    2011-03-01

    The quantum chemistry of conformation equilibrium is a field where great accuracy (better than 100 cal mol-1) is needed because the energy difference between molecular conformers rarely exceeds 1000-3000 cal mol-1. The conformation equilibrium of straight-chain (normal) alkanes is of particular interest and importance for modern chemistry. In this paper, an extra error source for high-quality ab initio (first principles) and DFT calculations of the conformation equilibrium of normal alkanes, namely the intramolecular basis set superposition error (BSSE), is discussed. In contrast to out-of-plane vibrations in benzene molecules, diffuse functions on carbon and hydrogen atoms were found to greatly reduce the relative BSSE of n-alkanes. The corrections due to the intramolecular BSSE were found to be almost identical for the MP2, MP4, and CCSD(T) levels of theory. Their cancelation is expected when CCSD(T)/CBS (CBS, complete basis set) energies are evaluated by addition schemes. For larger normal alkanes (N > 12), the magnitude of the BSSE correction was found to be up to three times larger than the relative stability of the conformer; in this case, the basis set superposition error led to a two orders of magnitude difference in conformer abundance. No error cancelation due to the basis set superposition was found. A comparison with amino acid, peptide, and protein data was provided.

  14. Hydrogen isotopic composition of individual n-alkanes as an intrinsic tracer for bioremediation and source identification of petroleum contamination.

    PubMed

    Pond, Kristy L; Huang, Yongsong; Wang, Yi; Kulpa, Charles F

    2002-02-15

    The isotopic signatures of crude oil hydrocarbons are potentially powerful intrinsic tracers to their origins and the processes by which the oils are modified in the environment. Stable carbon isotopic data are of limited use for studying petroleum contaminants because of the relatively small amount of isotopic fractionation that occurs during natural processes. Hydrogen isotopes, in contrast, are commonly fractionated to a much greater extent and as a result display larger variations in delta values. We studied the effect of in vitro aerobic biodegradation on the hydrogen isotopic composition of individual n-alkanes from crude oil. The isotopic analysis was conducted using gas chromatography-thermal conversion-isotope ratio mass spectrometry. In general, biodegradation rates decreased with increasing hydrocarbon chain length, consistent with previous studies. More importantly the n-alkanes that were degraded at the fastest rates (n-C15 to n-C18) also showed the largest overall isotopic fractionation (approximately 12-25 per thousand deuterium enrichment), suggesting that the lower molecular weight n-alkanes can be used to monitor in-situ bioremediation of crude oil contamination. The hydrogen isotopic compositions of the longer chain alkanes (n-C19 to n-C27) were relatively stable during biodegradation (<5%o overall deuterium enrichment), indicating that these compounds are effective tracers for oil-source identification studies.

  15. Low-temperature functionalisation of alkanes and cycloalkanes by 'classical' and 'non-classical' (superacidic) Friedel-Crafts complexes

    NASA Astrophysics Data System (ADS)

    Akhrem, Irena S.; Orlinkov, Alexander V.; Vol'pin, Mark E.

    1996-10-01

    The results of studies on direct functionalisation of activated alkanes and cycloalkanes under the action of 'classical' Friedel-Crafts complexes (viz. equimolar complexes of acyl halides with aluminium halides) and related systems containing smaller or somewhat larger amounts of aluminium halide are surveyed. The studies carried out during the last decade on functionalisation of saturated hydrocarbons devoid of tertiary carbon atoms, by aprotic organic superacids RCOX . 2AlCl3 are summarised. Reactions of alkanes with acylium cations in superacidic media are considered. The published data on the structure of complexes RCOX . AlCl3 and RCOX . 2AlCl3 and on the nature of the active complexes in the reactions of arenes with acylium cations and with complexes RCOX . AlCl3 in both acidic and organic media as well as in the reactions of alkanes with acylium salts in protic superacids and with superacidic complexes RCOX . 2AlCl3 in aprotic solvents are analysed. The prospects for the synthesis of organic compounds from alkanes and cycloalkanes under the action of complexes of acyl halides with aluminium halides are outlined. The bibliography includes 128 references.

  16. The Use of a Combination of alkB Primers to Better Characterize the Distribution of Alkane-Degrading Bacteria.

    PubMed

    Jurelevicius, Diogo; Alvarez, Vanessa Marques; Peixoto, Raquel; Rosado, Alexandre S; Seldin, Lucy

    2013-01-01

    The alkane monooxygenase AlkB, which is encoded by the alkB gene, is a key enzyme involved in bacterial alkane degradation. To study the alkB gene within bacterial communities, researchers need to be aware of the variations in alkB nucleotide sequences; a failure to consider the sequence variations results in the low representation of the diversity and richness of alkane-degrading bacteria. To minimize this shortcoming, the use of a combination of three alkB-targeting primers to enhance the detection of the alkB gene in previously isolated alkane-degrading bacteria was proposed. Using this approach, alkB-related PCR products were detected in 79% of the strains tested. Furthermore, the chosen set of primers was used to study alkB richness and diversity in different soils sampled in Carmópolis, Brazil and King George Island, Antarctica. The DNA extracted from the different soils was PCR amplified with each set of alkB-targeting primers, and clone libraries were constructed, sequenced and analyzed. A total of 255 alkB phylotypes were detected. Venn diagram analyses revealed that only low numbers of alkB phylotypes were shared among the different libraries derived from each primer pair. Therefore, the combination of three alkB-targeting primers enhanced the richness of alkB phylotypes detected in the different soils by 45% to 139%, when compared to the use of a single alkB-targeting primer. In addition, a dendrogram analysis and beta diversity comparison of the alkB composition showed that each of the sampling sites studied had a particular set of alkane-degrading bacteria. The use of a combination of alkB primers was an efficient strategy for enhancing the detection of the alkB gene in cultivable bacteria and for better characterizing the distribution of alkane-degrading bacteria in different soil environments.

  17. The Use of a Combination of alkB Primers to Better Characterize the Distribution of Alkane-Degrading Bacteria

    PubMed Central

    Jurelevicius, Diogo; Alvarez, Vanessa Marques; Peixoto, Raquel; Rosado, Alexandre S.; Seldin, Lucy

    2013-01-01

    The alkane monooxygenase AlkB, which is encoded by the alkB gene, is a key enzyme involved in bacterial alkane degradation. To study the alkB gene within bacterial communities, researchers need to be aware of the variations in alkB nucleotide sequences; a failure to consider the sequence variations results in the low representation of the diversity and richness of alkane-degrading bacteria. To minimize this shortcoming, the use of a combination of three alkB-targeting primers to enhance the detection of the alkB gene in previously isolated alkane-degrading bacteria was proposed. Using this approach, alkB-related PCR products were detected in 79% of the strains tested. Furthermore, the chosen set of primers was used to study alkB richness and diversity in different soils sampled in Carmópolis, Brazil and King George Island, Antarctica. The DNA extracted from the different soils was PCR amplified with each set of alkB-targeting primers, and clone libraries were constructed, sequenced and analyzed. A total of 255 alkB phylotypes were detected. Venn diagram analyses revealed that only low numbers of alkB phylotypes were shared among the different libraries derived from each primer pair. Therefore, the combination of three alkB-targeting primers enhanced the richness of alkB phylotypes detected in the different soils by 45% to 139%, when compared to the use of a single alkB-targeting primer. In addition, a dendrogram analysis and beta diversity comparison of the alkB composition showed that each of the sampling sites studied had a particular set of alkane-degrading bacteria. The use of a combination of alkB primers was an efficient strategy for enhancing the detection of the alkB gene in cultivable bacteria and for better characterizing the distribution of alkane-degrading bacteria in different soil environments. PMID:23825163

  18. Effect of gas phase composition cycling on/off modulation numbers of C2H2/SF6 flows on the formation of geometrically controlled carbon coils.

    PubMed

    Eum, Jun-Ho; Jeon, Young-Chul; Kim, Sung-Hoon

    2012-07-01

    Carbon coils can be synthesized using C2H2/H2 as source gases and SF6 as an incorporated additive gas under a thermal chemical vapor deposition system. In this study, nickel catalyst layer deposition and then hydrogen plasma pretreatment were performed prior to the carbon coils deposition reaction. To obtain geometrically controlled carbon coils, source gases and SF6 were manipulated as the cycling on/off modulation numbers of C2H2/SF6 flows. The cycling numbers were varied according to the different reaction processes. The increased cycling numbers could develop the wave-like nano-sized carbon coils. By further increasing the cycling numbers, however, the nanostructured carbon coils seemed to deteriorate. As a result, the maximum formation of geometrically controlled carbon coils was achieved by adjusting the cycling numbers. The enhanced etching capability of the fluorine-related species in SF6 additive gas was considered for the main objective of controlling the geometry of carbon coils.

  19. Process for converting light alkanes to higher hydrocarbons

    DOEpatents

    Noceti, Richard P.; Taylor, Charles E.

    1988-01-01

    A process is disclosed for the production of aromatic-rich, gasoline boiling range hydrocarbons from the lower alkanes, particularly from methane. The process is carried out in two stages. In the first, alkane is reacted with oxygen and hydrogen chloride over an oxyhydrochlorination catalyst such as copper chloride with minor proportions of potassium chloride and rare earth chloride. This produces an intermediate gaseous mixture containing water and chlorinated alkanes. The chlorinated alkanes are contacted with a crystalline aluminosilicate catalyst in the hydrogen or metal promoted form to produce gasoline range hydrocarbons with a high proportion of aromatics and a small percentage of light hydrocarbons (C.sub.2 -C.sub.4). The light hydrocarbons can be recycled for further processing over the oxyhydrochlorination catalyst.

  20. Site-selective Alkane Dehydrogenation of Fatty Acids

    DTIC Science & Technology

    2011-12-14

    dehydrogenation of fatty acids Contract/Grant#: FA9550-10-1-0532 Final Reporting Period: 15 September 2011 to 14 September 2011...directly incorporate fatty acids into the ligand. The preparation of the acyl phosphines (1-5) was easily accomplished starting from the corresponding...AFOSR Final Report Final Report 
 The proposed research examines the site-selective dehydrogenation of alkanes. The alkanes employed were fatty

  1. Controlling the number of walls in multi walled carbon nanotubes/alumina hybrid compound via ball milling of precipitate catalyst

    NASA Astrophysics Data System (ADS)

    Nosbi, Norlin; Akil, Hazizan Md

    2015-06-01

    This paper reports the influence of milling time on the structure and properties of the precipitate catalyst of multi walled carbon nanotubes (MWCNT)/alumina hybrid compound, produced through the chemical vapour deposition (CVD) process. For this purpose, light green precipitate consisted of aluminium, nickel(II) nitrate hexahydrate and sodium hydroxide mixture was placed in a planetary mill equipped with alumina vials using alumina balls at 300 rpm rotation speed for various milling time (5-15 h) prior to calcinations and CVD process. The compound was characterized using various techniques. Based on high-resolution transmission electron microscopy analysis, increasing the milling time up to 15 h decreased the diameter of MWCNT from 32.3 to 13.1 nm. It was noticed that the milling time had a significant effect on MWCNT wall thickness, whereby increasing the milling time from 0 to 15 h reduced the number of walls from 29 to 12. It was also interesting to note that the carbon content increased from 23.29 wt.% to 36.37 wt.% with increasing milling time.

  2. Contribution of cyanobacterial alkane production to the ocean hydrocarbon cycle.

    PubMed

    Lea-Smith, David J; Biller, Steven J; Davey, Matthew P; Cotton, Charles A R; Perez Sepulveda, Blanca M; Turchyn, Alexandra V; Scanlan, David J; Smith, Alison G; Chisholm, Sallie W; Howe, Christopher J

    2015-11-03

    Hydrocarbons are ubiquitous in the ocean, where alkanes such as pentadecane and heptadecane can be found even in waters minimally polluted with crude oil. Populations of hydrocarbon-degrading bacteria, which are responsible for the turnover of these compounds, are also found throughout marine systems, including in unpolluted waters. These observations suggest the existence of an unknown and widespread source of hydrocarbons in the oceans. Here, we report that strains of the two most abundant marine cyanobacteria, Prochlorococcus and Synechococcus, produce and accumulate hydrocarbons, predominantly C15 and C17 alkanes, between 0.022 and 0.368% of dry cell weight. Based on global population sizes and turnover rates, we estimate that these species have the capacity to produce 2-540 pg alkanes per mL per day, which translates into a global ocean yield of ∼ 308-771 million tons of hydrocarbons annually. We also demonstrate that both obligate and facultative marine hydrocarbon-degrading bacteria can consume cyanobacterial alkanes, which likely prevents these hydrocarbons from accumulating in the environment. Our findings implicate cyanobacteria and hydrocarbon degraders as key players in a notable internal hydrocarbon cycle within the upper ocean, where alkanes are continually produced and subsequently consumed within days. Furthermore we show that cyanobacterial alkane production is likely sufficient to sustain populations of hydrocarbon-degrading bacteria, whose abundances can rapidly expand upon localized release of crude oil from natural seepage and human activities.

  3. Contribution of cyanobacterial alkane production to the ocean hydrocarbon cycle

    PubMed Central

    Lea-Smith, David J.; Biller, Steven J.; Davey, Matthew P.; Cotton, Charles A. R.; Perez Sepulveda, Blanca M.; Turchyn, Alexandra V.; Scanlan, David J.; Smith, Alison G.; Chisholm, Sallie W.; Howe, Christopher J.

    2015-01-01

    Hydrocarbons are ubiquitous in the ocean, where alkanes such as pentadecane and heptadecane can be found even in waters minimally polluted with crude oil. Populations of hydrocarbon-degrading bacteria, which are responsible for the turnover of these compounds, are also found throughout marine systems, including in unpolluted waters. These observations suggest the existence of an unknown and widespread source of hydrocarbons in the oceans. Here, we report that strains of the two most abundant marine cyanobacteria, Prochlorococcus and Synechococcus, produce and accumulate hydrocarbons, predominantly C15 and C17 alkanes, between 0.022 and 0.368% of dry cell weight. Based on global population sizes and turnover rates, we estimate that these species have the capacity to produce 2–540 pg alkanes per mL per day, which translates into a global ocean yield of ∼308–771 million tons of hydrocarbons annually. We also demonstrate that both obligate and facultative marine hydrocarbon-degrading bacteria can consume cyanobacterial alkanes, which likely prevents these hydrocarbons from accumulating in the environment. Our findings implicate cyanobacteria and hydrocarbon degraders as key players in a notable internal hydrocarbon cycle within the upper ocean, where alkanes are continually produced and subsequently consumed within days. Furthermore we show that cyanobacterial alkane production is likely sufficient to sustain populations of hydrocarbon-degrading bacteria, whose abundances can rapidly expand upon localized release of crude oil from natural seepage and human activities. PMID:26438854

  4. Anaerobic Coculture of Microalgae with Thermosipho globiformans and Methanocaldococcus jannaschii at 68°C Enhances Generation of n-Alkane-Rich Biofuels after Pyrolysis

    PubMed Central

    Matsuyama, Shigeru; Igarashi, Kensuke; Utsumi, Motoo; Shiraiwa, Yoshihiro; Kuwabara, Tomohiko

    2013-01-01

    We tested different alga-bacterium-archaeon consortia to investigate the production of oil-like mixtures, expecting that n-alkane-rich biofuels might be synthesized after pyrolysis. Thermosipho globiformans and Methanocaldococcus jannaschii were cocultured at 68°C with microalgae for 9 days under two anaerobic conditions, followed by pyrolysis at 300°C for 4 days. Arthrospira platensis (Cyanobacteria), Dunaliella tertiolecta (Chlorophyta), Emiliania huxleyi (Haptophyta), and Euglena gracilis (Euglenophyta) served as microalgal raw materials. D. tertiolecta, E. huxleyi, and E. gracilis cocultured with the bacterium and archaeon inhibited their growth and CH4 production. E. huxleyi had the strongest inhibitory effect. Biofuel generation was enhanced by reducing impurities containing alkanenitriles during pyrolysis. The composition and amounts of n-alkanes produced by pyrolysis were closely related to the lipid contents and composition of the microalgae. Pyrolysis of A. platensis and D. tertiolecta containing mainly phospholipids and glycolipids generated short-carbon-chain n-alkanes (n-tridecane to n-nonadecane) and considerable amounts of isoprenoids. E. gracilis also produced mainly short n-alkanes. In contrast, E. huxleyi containing long-chain (31 and 33 carbon atoms) alkenes and very long-chain (37 to 39 carbon atoms) alkenones, in addition to phospholipids and glycolipids, generated a high yield of n-alkanes of various lengths (n-tridecane to n-pentatriacontane). The gas chromatography-mass spectrometry (GC-MS) profiles of these n-alkanes were similar to those of native petroleum crude oils despite containing a considerable amount of n-hentriacontane. The ratio of phytane to n-octadecane was also similar to that of native crude oils. PMID:23183975

  5. Anaerobic coculture of microalgae with Thermosipho globiformans and Methanocaldococcus jannaschii at 68°C enhances generation of n-alkane-rich biofuels after pyrolysis.

    PubMed

    Yamane, Kunio; Matsuyama, Shigeru; Igarashi, Kensuke; Utsumi, Motoo; Shiraiwa, Yoshihiro; Kuwabara, Tomohiko

    2013-02-01

    We tested different alga-bacterium-archaeon consortia to investigate the production of oil-like mixtures, expecting that n-alkane-rich biofuels might be synthesized after pyrolysis. Thermosipho globiformans and Methanocaldococcus jannaschii were cocultured at 68°C with microalgae for 9 days under two anaerobic conditions, followed by pyrolysis at 300°C for 4 days. Arthrospira platensis (Cyanobacteria), Dunaliella tertiolecta (Chlorophyta), Emiliania huxleyi (Haptophyta), and Euglena gracilis (Euglenophyta) served as microalgal raw materials. D. tertiolecta, E. huxleyi, and E. gracilis cocultured with the bacterium and archaeon inhibited their growth and CH(4) production. E. huxleyi had the strongest inhibitory effect. Biofuel generation was enhanced by reducing impurities containing alkanenitriles during pyrolysis. The composition and amounts of n-alkanes produced by pyrolysis were closely related to the lipid contents and composition of the microalgae. Pyrolysis of A. platensis and D. tertiolecta containing mainly phospholipids and glycolipids generated short-carbon-chain n-alkanes (n-tridecane to n-nonadecane) and considerable amounts of isoprenoids. E. gracilis also produced mainly short n-alkanes. In contrast, E. huxleyi containing long-chain (31 and 33 carbon atoms) alkenes and very long-chain (37 to 39 carbon atoms) alkenones, in addition to phospholipids and glycolipids, generated a high yield of n-alkanes of various lengths (n-tridecane to n-pentatriacontane). The gas chromatography-mass spectrometry (GC-MS) profiles of these n-alkanes were similar to those of native petroleum crude oils despite containing a considerable amount of n-hentriacontane. The ratio of phytane to n-octadecane was also similar to that of native crude oils.

  6. Hydrogen-hydrogen bonds in highly branched alkanes and in alkane complexes: A DFT, ab initio, QTAIM, and ELF study.

    PubMed

    Monteiro, Norberto K V; Firme, Caio L

    2014-03-06

    The hydrogen-hydrogen (H-H) bond or hydrogen-hydrogen bonding is formed by the interaction between a pair of identical or similar hydrogen atoms that are close to electrical neutrality and it yields a stabilizing contribution to the overall molecular energy. This work provides new, important information regarding hydrogen-hydrogen bonds. We report that stability of alkane complexes and boiling point of alkanes are directly related to H-H bond, which means that intermolecular interactions between alkane chains are directional H-H bond, not nondirectional induced dipole-induced dipole. Moreover, we show the existence of intramolecular H-H bonds in highly branched alkanes playing a secondary role in their increased stabilities in comparison with linear or less branched isomers. These results were accomplished by different approaches: density functional theory (DFT), ab initio, quantum theory of atoms in molecules (QTAIM), and electron localization function (ELF).

  7. Reversible Interconversion between Alkanes, Alkenes, Alcohols and Ketones under Hydrothermal Conditions

    NASA Astrophysics Data System (ADS)

    Shipp, J.; Hartnett, H. E.; Gould, I. R.; Shock, E.; Williams, L. B.

    2011-12-01

    Many transformation reactions involving hydrocarbons that occur in deep sedimentary systems and determine petroleum compositions occur in the presence of H2O. Hydrothermal transformations of organic material are thought to provide carbon sources for microbes in deep ocean sediments. Hydrothermal conditions may also mimic the conditions where life developed on an early Earth. Nevertheless, much remains to be learned about the mechanisms of hydrothermal organic reactions, including ways in which various reactions are interrelated and how reactions compete with each other. It can be argued that metastable equilibrium states develop over geological timescales and at geochemically relevant temperatures, suggesting that reactions occur under thermodynamic rather than kinetic control. The extent to which reactions are reversible, and how product distributions are determined, are primary tests of the metastable equilibrium model. Seewald (2001, GCA 65, 1641-1664) showed that under hydrothermal conditions and in the presence of a redox buffer, simple alkanes and alkenes undergo oxidation, reduction, and hydration reactions. He proposed a reaction scheme where alkanes interconvert with alkenes, followed by stepwise hydration of alkenes to alcohols, oxidation to ketones, and finally conversion to carboxylic acids, which can undergo decarboxylation. Here we describe experiments that further develop the scope of these functional group interconversions, determine relative reaction kinetics, and provide insight into competing reactions. Hydrothermal experiments were performed at 300°C and 100 MPa in gold capsules for 12 to 144 hours. The reactant structures were based on cyclohexane with one and two methyl groups that served as regio- and stereochemical markers for the reactions. Starting with the alkanes, the observed products include the corresponding alkenes, alcohols, ketones and enones, in support of the Seewald reaction scheme. Our experiments add a branch to this scheme

  8. A unified single-event microkinetic model for alkane hydroconversion in different aggregation states on Pt/H-USY-zeolites.

    PubMed

    Laxmi Narasimhan, C S; Thybaut, Joris W; Martens, Johan A; Jacobs, Pierre A; Denayer, Joeri F; Marin, Guy B

    2006-04-06

    A single-event microkinetic model for the catalytic hydroconversion of hydrocarbons on Pt/H-US-Y bifunctional zeolite catalysts developed for low-pressure vapor phase conditions was extended to cover high-pressure vapor phase and liquid phase conditions. The effect of the density of the bulk hydrocarbon phase on the physisorption as well as on the protonation steps of the reaction network was accounted for explicitly and can be interpreted in terms of "compression" of the hydrocarbon sorbate inside the zeolite pores and "solvation" of the catalyst framework by the dense bulk hydrocarbon phase. The bulk phase density effect on the physisorbed state is described via a single excess free enthalpy of physisorption. A dense bulk hydrocarbon phase destabilizes the sorbate molecules inside the catalyst pores. An expression of the excess free enthalpy of physisorption involving the fugacity coefficient and a zeolite dependent factor allows description of physisorption data. Typical excess free enthalpy values are in the range 1.5-5.1 kJ mol(-1) increasing with carbon number in the series of C5-C16 alkanes. At high-pressure vapor phase and liquid phase conditions, the excess standard protonation enthalpy is estimated at -7.8 kJ mol(-1) leading to relatively more stable carbenium ions at dense bulk phase conditions. As a result of the excess physisorption and protonation properties, the lightest hydrocarbons in mixtures are more competitive at dense phase conditions and their conversion is enhanced compared to low-density conditions.

  9. (19)F Oximetry with semifluorinated alkanes.

    PubMed

    Kegel, Stefan; Chacon-Caldera, Jorge; Tsagogiorgas, Charalambos; Theisinger, Bastian; Glatting, Gerhard; Schad, Lothar R

    2016-12-01

    This work examines the variation of longitudinal relaxation rate R1(= 1/T1) of the (19)F-CF3-resonance of semifluorinated alkanes (SFAs) with oxygen tension (pO2), temperature (T) and pH in vitro. Contrary to their related perfluorocarbons (PFCs), SFA are amphiphilic and facilitate stable emulsions, a prerequisite for clinical use. A linear relationship between R1 and pO2 was confirmed for the observed SFAs at different temperatures. Using a standard saturation recovery sequence, T1 has been successfully measured using fluorine (19)F-MRI with a self-constructed birdcage resonator at 9.4 T. A calibration curve to calculate pO2 depending on T and R1 was found for each SFA used. In contrast to the commonly used PFC, SFAs are less sensitive to changes in pO2, but more sensitive to changes in temperature. The influence of pH to R1 was found to be negligible.

  10. Modeling SOA formation from alkanes and alkenes in chamber experiments: effect of gas/wall partitioning of organic vapors.

    NASA Astrophysics Data System (ADS)

    Stéphanie La, Yuyi; Camredon, Marie; Ziemann, Paul; Ouzebidour, Farida; Valorso, Richard; Madronich, Sasha; Lee-Taylor, Julia; Hodzic, Alma; Aumont, Bernard

    2014-05-01

    Oxidation products of Intermediate Volatility Organic Compounds (IVOC) are expected to be the major precursors of secondary organic aerosols (SOA). Laboratory experiments were conducted this last decade in the Riverside APRC chamber to study IVOC oxidative mechanisms and SOA formation processes for a large set of linear, branched and cyclic aliphatic hydrocarbons (Ziemann, 2011). This dataset are used here to assess the explicit oxidation model GECKO-A (Generator for Explicit Chemistry and Kinetics of Organics in the Atmosphere) (Aumont et al., 2005). The simulated SOA yields agree with the general trends observed in the chamber experiments. They are (i) increasing with the increasing carbon number; (ii) decreasing with increasing methyl branch number; and (iii) increasing for cyclic compounds compared to their corresponding linear analogues. However, simulated SOA yields are systematically overestimated regardless of the precursors, suggesting missing processes in the model. In this study, we assess whether gas-to-wall partitioning of organic vapors can explain these model/observation mismatches (Matsunaga and Ziemann, 2010). First results show that GECKO-A outputs better match the observations when wall uptake of organic vapors is taken into account. Effects of gas/wall partitioning on SOA yields and composition will be presented. Preliminary results suggest that wall uptake is a major process influencing SOA production in the Teflon chambers. References Aumont, B., Szopa, S., Madronich, S.: Modelling the evolution of organic carbon during its gas-phase tropospheric oxidation: development of an explicit model based on a self generating approach. Atmos.Chem.Phys., 5, 2497-2517 (2005). P. J. Ziemann: Effects of molecular structure on the chemistry of aerosol formation from the OH-radical-initiated oxidation of alkanes and alkenes, Int. Rev.Phys.Chem., 30:2, 161-195 (2011). Matsunaga, A., Ziemann, P. J.: Gas-wall partitioning of organic compounds in a Teflon film

  11. Mg2+-Dependent Control of the Spatial Arrangement of Rhodococcus erythropolis PR4 Cells in Aqueous-Alkane Two Phase Culture Containing n-Dodecane

    PubMed Central

    Takihara, Hayato; Akase, Yumiko; Sunairi, Michio; Iwabuchi, Noriyuki

    2016-01-01

    We recently reported that a close relationship exists between alkane carbon-chain length, cell growth, and translocation frequency in Rhodococcus. In the present study, we examined the regulation of the spatial arrangement of cells in aqueous-alkane two phase cultures. An analysis of the effects of minerals on cell localization revealed that changes in the concentration of MgSO4 in two phase cultures containing n-dodecane (C12) altered cell localization from translocation to adhesion and vice versa. Our results indicate that the spatial arrangement of cells in two phase culture systems is controlled through the regulation of MgSO4 concentrations. PMID:27180641

  12. Temperature-Dependent Oxygen Effect on NMR D-[Formula: see text] Relaxation-Diffusion Correlation of n-Alkanes.

    PubMed

    Shikhov, Igor; Arns, Christoph H

    2016-01-01

    Nuclear magnetic resonance (NMR) diffusion-relaxation correlation experiments (D-[Formula: see text]) are widely used for the petrophysical characterisation of rocks saturated with petroleum fluids both in situ and for laboratory analyses. The encoding for both diffusion and relaxation offers increased fluid typing contrast by discriminating fluids based on their self-diffusion coefficients, while relaxation times provide information about the interaction of solid and fluid phases and associated confinement geometry (if NMR responses of pure fluids at particular temperature and pressure are known). Petrophysical interpretation of D-[Formula: see text] correlation maps is typically assisted by the "standard alkane line"-a relaxation-diffusion correlation valid for pure normal alkanes and their mixtures in the absence of restrictions to diffusing molecules and effects of internal gradients. This correlation assumes fluids are free from paramagnetic impurities. In situations where fluid samples cannot be maintained at air-free state the diffusion-relaxation response of fluids shift towards shorter relaxation times due to oxygen paramagnetic relaxation enhancement. Interpretation of such a response using the "standard alkane line" would be erroneous and is further complicated by the temperature-dependence of oxygen solubility for each component of the alkane mixture. We propose a diffusion-relaxation correlation suitable for interpretation of low-field NMR D-[Formula: see text] responses of normal alkanes and their mixtures saturating rocks over a broad temperature range, in equilibrium with atmospheric air. We review and where necessary revise existing viscosity-relaxation correlations. Findings are applied to diffusion-relaxation dependencies taking into account the temperature dependence of oxygen solubility and solvent vapour pressure. The effect is demonstrated on a partially saturated carbonate rock.

  13. Carbon-Nanotubes-Supported Pd Nanoparticles for Alcohol Oxidations in Fuel Cells: Effect of Number of Nanotube Walls on Activity.

    PubMed

    Zhang, Jin; Lu, Shanfu; Xiang, Yan; Shen, Pei Kang; Liu, Jian; Jiang, San Ping

    2015-09-07

    Carbon nanotubes (CNTs) are well known electrocatalyst supports due to their high electrical conductivity, structural stability, and high surface area. Here, we demonstrate that the number of inner tubes or walls of CNTs also have a significant promotion effect on the activity of supported Pd nanoparticles (NPs) for alcohol oxidation reactions of direct alcohol fuel cells (DAFCs). Pd NPs with similar particle size (2.1-2.8 nm) were uniformly assembled on CNTs with different number of walls. The results indicate that Pd NPs supported on triple-walled CNTs (TWNTs) have the highest mass activity and stability for methanol, ethanol, and ethylene glycol oxidation reactions, as compared to Pd NPs supported on single-walled and multi-walled CNTs. Such a specific promotion effect of TWNTs on the electrocatalytic activity of Pd NPs is not related to the contribution of metal impurities in CNTs, oxygen-functional groups of CNTs or surface area of CNTs and Pd NPs. A facile charge transfer mechanism via electron tunneling between the outer wall and inner tubes of CNTs under electrochemical driving force is proposed for the significant promotion effect of TWNTs for the alcohol oxidation reactions in alkaline solutions.

  14. Final Technical Report "Catalytic Hydrogenation of Carbon Monoxide and Olefin Oxidation" Grant number : DE-FG02-86ER13615

    SciTech Connect

    Wayland, B.B.

    2009-08-31

    Title: Catalytic Hydrogenation of Carbon Monoxide and Olefin Oxidation Grant No. DE-FG02-86ER13615 PI: Wayland, B. B. (wayland@sas.upenn.edu) Abstract Development of new mechanistic strategies and catalyst materials for activation of CO, H2, CH4, C2H4, O2, and related substrates relevant to the conversion of carbon monoxide, alkanes, and alkenes to organic oxygenates are central objectives encompassed by this program. Design and synthesis of metal complexes that manifest reactivity patterns associated with potential pathways for the hydrogenation of carbon monoxide through metallo-formyl (M-CHO), dimetal ketone (M-C(O)-M), and dimetal dionyl (M-C(O)-C(O)-M) species is one major focus. Hydrocarbon oxidation using molecular oxygen is a central goal for methane activation and functionalization as well as regioselective oxidation of olefins. Discovery of new reactivity patterns and control of selectivity are pursued through designing new metal complexes and adjusting reaction conditions. Variation of reaction media promotes distinct reaction pathways that control both reaction rates and selectivities. Dimetalloradical diporphyrin complexes preorganize transition states for substrate reactions that involve two metal centers and manifest large rate increases over mono-metalloradical reactions of hydrogen, methane, and other small molecule substrates. Another broad goal and recurring theme of this program is to contribute to the thermodynamic database for a wide scope of organo-metal transformations in a range of reaction media. One of the most complete descriptions of equilibrium thermodynamics for organometallic reactions in water and methanol is emerging from the study of rhodium porphyrin substrate reactions in aqueous and alcoholic media. Water soluble group nine metalloporphyrins manifest remarkably versatile substrate reactivity in aqueous and alcoholic media which includes producing rhodium formyl (Rh-CHO) and hydroxy methyl (Rh-CH2OH) species. Exploratory

  15. Discrimination of the prochiral hydrogens at the C-2 position of n-alkanes by the methane/ammonia monooxygenase family proteins.

    PubMed

    Miyaji, Akimitsu; Miyoshi, Teppei; Motokura, Ken; Baba, Toshihide

    2015-08-14

    The selectivity of ammonia monooxygenase from Nitrosomonas europaea (AMO-Ne) for the oxidation of C4-C8n-alkanes to the corresponding alcohol isomers was examined to show the ability of AMO-Ne to recognize the n-alkane orientation within the catalytic site. AMO-Ne in whole cells produces 1- and 2-alcohols from C4-C8n-alkanes, and the regioselectivity is dependent on the length of the carbon chain. 2-Alcohols produced from C4-C7n-alkanes were predominantly either the R- or S-enantiomers, while 2-octanol produced from n-octane was racemic. These results indicate that AMO-Ne can discriminate between the prochiral hydrogens at the C-2 position, with the degree of discrimination varying according to the n-alkane. Compared to the particulate methane monooxygenase (pMMO) of Methylococcus capsulatus (Bath) and that of Methylosinus trichosporium OB3b, AMO-Ne showed a distinct ability to discriminate between the orientation of n-butane and n-pentane in the catalytic site.

  16. Natural gas constituent and carbon isotopic composition in petroliferous basins, China

    NASA Astrophysics Data System (ADS)

    Zhu, Guangyou; Wang, Zhengjun; Dai, Jinxing; Su, Jing

    2014-02-01

    There are abundant gas resources in petroliferous basins of China. Large to midsize gas fields are found in Eastern, central and Western of China. However, origin, constituents and isotopic composition of natural gas in different gas fields are varied distinctly, and some present strong chemical secondary alteration and show variation both in age and space. Based on the systematic analysis of constituents and carbon isotope of a large number of gas samples, combined with the geological characteristics, this paper classifies the origins of the gases, explores the gas isotope characteristics and evolutionary regulation with the variation time and space, and further discusses the distinctive geochemistry of the gases in China. These gases are dominated by dry gas, its methane carbon isotope values range from -10‰ to -70‰, ethane from -16‰ to -52‰, propane from -13‰ to -43‰, and butane from -18‰ to -34‰. The carbon isotopes of most gases show the characteristics of humic-derived gas and crude oil cracked gas. In addition, large primary biogenic gas fields have been discovered in the Qaidam basin; inorganic-derived alkane gases have been discovered in deep of the Songliao Basin. Half of these gas fields are characterized by the alkane carbon isotope reversal in different degrees. Research indicates there are several reasons can result in carbon isotope reversal. Firstly, gas charge of different genetic types or different source in one gas reservoir may cause carbon isotope reversal. Besides, high-over mature evolution of gas can also lead to the carbon isotopic reversal of alkanes. Thirdly, secondary alteration of hydrocarbons may also result in abnormal distribution of carbon isotope, isotope transforms to unusual light and heavy.

  17. Novel alkane hydroxylase gene (alkB) diversity in sediments associated with hydrocarbon seeps in the Timor Sea, Australia.

    PubMed

    Wasmund, Kenneth; Burns, Kathryn A; Kurtböke, D Ipek; Bourne, David G

    2009-12-01

    Hydrocarbon seeps provide inputs of petroleum hydrocarbons to widespread areas of the Timor Sea. Alkanes constitute the largest proportion of chemical components found in crude oils, and therefore genes involved in the biodegradation of these compounds may act as bioindicators for this ecosystem's response to seepage. To assess alkane biodegradation potential, the diversity and distribution of alkane hydroxylase (alkB) genes in sediments of the Timor Sea were studied. Deduced AlkB protein sequences derived from clone libraries identified sequences only distantly related to previously identified AlkB sequences, suggesting that the Timor Sea maybe a rich reservoir for novel alkane hydroxylase enzymes. Most sequences clustered with AlkB sequences previously identified from marine Gammaproteobacteria though protein sequence identities averaged only 73% (with a range of 60% to 94% sequence identities). AlkB sequence diversity was lower in deep water (>400 m) samples off the continental slope than in shallow water (<100 m) samples on the continental shelf but not significantly different in response to levels of alkanes. Real-time PCR assays targeting Timor Sea alkB genes were designed and used to quantify alkB gene targets. No correlation was found between gene copy numbers and levels of hydrocarbons measured in sediments using sensitive gas chromatography-mass spectrometry techniques, probably due to the very low levels of hydrocarbons found in most sediment samples. Interestingly, however, copy numbers of alkB genes increased substantially in sediments exposed directly to active seepage even though only low or undetectable concentrations of hydrocarbons were measured in these sediments in complementary geochemical analyses due to efficient biodegradation.

  18. Detailed chemical kinetic models for large n-alkanes and iso-alkanes found in conventional and F-T diesel fuels

    SciTech Connect

    Westbrook, C K; Pitz, W J; Curran, H J; Mehl, M

    2008-12-15

    Detailed chemical kinetic models are needed to simulate the combustion of current and future transportation fuels. These models should represent the various chemical classes in these fuels. Conventional diesel fuels are composed of n-alkanes, iso-alkanes, cycloalkanes and aromatics (Farrell et al. 2007). For future fuels, there is a renewed interest in Fischer-Tropsch (F-T) processes which can be used to synthesize diesel and other transportation fuels from biomass, coal and natural gas. F-T diesel fuels are expected to be similar to F-T jet fuels which are commonly comprised of iso-alkanes with some n-alkanes (Smith and Bruno, 2008). Thus, n-alkanes and iso-alkanes are common chemical classes in these conventional and future fuels. This paper reports on the development of chemical kinetic models of large n-alkanes and iso-alkanes to represent these chemical classes in conventional and future fuels. Two large iso-alkanes are 2,2,4,4,6,8,8-heptamethylnonane, which is a primary reference fuel for diesel, and isooctane, a primary reference fuel for gasoline. Other iso-alkanes are branched alkanes with a single methyl side chain, typical of most F-T fuels. The chemical kinetic models are then used to predict the effect of these fuel components on ignition characteristics under conditions found in internal combustion engines.

  19. Alkane desaturation by concerted double hydrogen atom transfer to benzyne.

    PubMed

    Niu, Dawen; Willoughby, Patrick H; Woods, Brian P; Baire, Beeraiah; Hoye, Thomas R

    2013-09-26

    The removal of two vicinal hydrogen atoms from an alkane to produce an alkene is a challenge for synthetic chemists. In nature, desaturases and acetylenases are adept at achieving this essential oxidative functionalization reaction, for example during the biosynthesis of unsaturated fatty acids, eicosanoids, gibberellins and carotenoids. Alkane-to-alkene conversion almost always involves one or more chemical intermediates in a multistep reaction pathway; these may be either isolable species (such as alcohols or alkyl halides) or reactive intermediates (such as carbocations, alkyl radicals, or σ-alkyl-metal species). Here we report a desaturation reaction of simple, unactivated alkanes that is mechanistically unique. We show that benzynes are capable of the concerted removal of two vicinal hydrogen atoms from a hydrocarbon. The discovery of this exothermic, net redox process was enabled by the simple thermal generation of reactive benzyne intermediates through the hexadehydro-Diels-Alder cycloisomerization reaction of triyne substrates. We are not aware of any single-step, bimolecular reaction in which two hydrogen atoms are simultaneously transferred from a saturated alkane. Computational studies indicate a preferred geometry with eclipsed vicinal C-H bonds in the alkane donor.

  20. Changes in atmospheric CO2 levels recorded by the isotopic signature of n-alkanes from plants

    NASA Astrophysics Data System (ADS)

    Machado, Karina Scurupa; Froehner, Sandro

    2017-01-01

    The isotopic signature of sedimentary organic matter acts as a tracer for past changes in the terrestrial and aquatic carbon cycles. The temporal variation in δ13C values of n-alkanes from plants was assigned as resulting from changes in atmospheric composition in the study area, due to both global and local influences. Two rises in atmospheric CO2 concentration were assigned from the variation in n-alkane δ13C values for the periods between 1600 and 1880 and from 1930 to the present. In the first period, the sources of excess CO2 were predominantly natural, mainly volcanism, while in the second period local anthropogenic emissions were the major reason.

  1. Steric modifications tune the regioselectivity of the alkane oxidation catalyzed by non-heme iron complexes.

    PubMed

    He, Yu; Gorden, John D; Goldsmith, Christian R

    2011-12-19

    Iron complexes with the tetradentate N-donor ligand N,N'-di(phenylmethyl)-N,N'-bis(2-pyridinylmethyl)-1,2-cyclohexanediamine (bbpc) are reported. Despite the benzyl groups present on the amines, the iron compounds catalyze the oxygenation of cyclohexane to an extent similar to those employing less sterically encumbered ligands. The catalytic activity is strongly dependent on the counterion, with the highest activity and the strongest preference for alkane hydroxylation correlating to the most weakly coordinating anion, SbF(6)(-). The selectivity for the alcohol product over the ketone is amplified when acetic acid is present as an additive. When hydrocarbon substrates with both secondary and tertiary carbons are oxidized by H(2)O(2), the catalyst directs oxidation toward the secondary carbons to a greater degree than other previously reported iron-containing homogeneous catalysts.

  2. Determination of car on-road black carbon and particle number emission factors and comparison between mobile and stationary measurements

    NASA Astrophysics Data System (ADS)

    Ježek, I.; Drinovec, L.; Ferrero, L.; Carriero, M.; Močnik, G.

    2015-01-01

    We have used two methods for measuring emission factors (EFs) in real driving conditions on five cars in a controlled environment: the stationary method, where the investigated vehicle drives by the stationary measurement platform and the composition of the plume is measured, and the chasing method, where a mobile measurement platform drives behind the investigated vehicle. We measured EFs of black carbon and particle number concentration. The stationary method was tested for repeatability at different speeds and on a slope. The chasing method was tested on a test track and compared to the portable emission measurement system. We further developed the data processing algorithm for both methods, trying to improve consistency, determine the plume duration, limit the background influence and facilitate automatic processing of measurements. The comparison of emission factors determined by the two methods showed good agreement. EFs of a single car measured with either method have a specific distribution with a characteristic value and a long tail of super emissions. Measuring EFs at different speeds or slopes did not significantly influence the EFs of different cars; hence, we propose a new description of vehicle emissions that is not related to kinematic or engine parameters, and we rather describe the vehicle EF with a characteristic value and a super emission tail.

  3. Determination of car on-road black carbon and particle number emission factors and comparison between mobile and stationary measurements

    NASA Astrophysics Data System (ADS)

    Ježek, I.; Drinovec, L.; Ferrero, L.; Carriero, M.; Močnik, G.

    2014-06-01

    We have used two methods for measuring emission factors (EF) in real driving conditions on five cars in a controlled environment: the stationary method, where the investigated vehicle drives by the stationary measurement platform and the composition of the plume is measured; and the chasing method, where a mobile measurement platform drives behind the investigated vehicle. We measured EF of black carbon and particle number concentration. The stationary method was tested for repeatability at different speeds and on a slope. The chasing method was tested on a test track and compared to the portable emission measurement system. We further developed the data processing algorithm for both methods, trying to improve consistency, determine the plume duration, limit the background influence and facilitate automatic processing of measurements. The comparison of emission factors determined by the two methods showed good agreement. EFs of a single car measured with either method have a specific distribution with a characteristic value and a long tail of super emissions. Measuring EFs at different speeds or slopes did not significantly influence the EFs of different cars, hence we propose a new description of vehicle emissions that is not related to kinematic or engine parameters, rather we describe the vehicle EF with a characteristic value and a "super emission" tail.

  4. Infrared Spectroscopic Investigation on CH Bond Acidity in Cationic Alkanes

    NASA Astrophysics Data System (ADS)

    Matsuda, Yoshiyuki; Xie, Min; Fujii, Asuka

    2016-06-01

    We have demonstrated large enhancements of CH bond acidities in alcohol, ether, and amine cations through infrared predissociation spectroscopy based on the vacuum ultraviolet photoionization detection. In this study, we investigate for the cationic alkanes (pentane, hexane, and heptane) with different alkyl chain lengths. The σ electrons are ejected in the ionization of alkanes, while nonbonding electrons are ejected in ionization of alcohols, ethers, and amines. Nevertheless, the acidity enhancements of CH in these cationic alkanes have also been demonstrated by infrared spectroscopy. The correlations of their CH bond acidities with the alkyl chain lengths as well as the mechanisms of their acidity enhancements will be discussed by comparison of infrared spectra and theoretical calculations.

  5. Alkanes in shrimp from the Buccaneer Oil Field

    SciTech Connect

    Middleditch, B.S.; Basile, B.; Chang, E.S.

    1982-07-01

    A total of 36 samples of shrimp were examined from the region of the Buccaneer oil field, eighteen of which were representatives of the commercial species Penaeus aztecus and the rest were various other species: Penaeus duorarum (pink shrimp), Trachypenaeus duorarum (sugar shrimp), Squilla empusa (mantis shrimp), and Sicyonia dorsalis (chevron shrimp). The alkanes and deuteriated alkanes were completely separated by GC, so a mass spectrometer was not required for their detection and quantitation. To confirm the identities of individual compounds, however, some samples were examined by combined gas chromatography-mass spectrometry. Results show that only thirteen of the forty shrimp collected from the region of the Buccaneer oil field contained petroleum alkanes, and the majority of these were obtained from trawls immediately adjacent to the production platforms. It appears that shrimp caught in the region of the Buccaneer oil field are not appreciably tainted with hydrocarbons discharged from the production platforms. (JMT)

  6. Modeling of alkane emissions from a wood stain

    SciTech Connect

    Chang, J.C.S.; Guo, Z.

    1993-01-01

    The article discusses full-scale residential house tests to evaluate the effects of organic emissions from a wood finishing product--wood stain--on indoor air quality (IAQ). The test house concentrations of three alkane species, nonane, decane, and undecane, were measured as a function of time after the application of the wood stain. It was found that the test house concentrations can be simulated by an integrated IAQ model which takes into consideration source, sink, and ventilation effects. The alkane emissions were controlled by an evaporation-like process.

  7. Catalytic, mild, and selective oxyfunctionalization of linear alkanes: current challenges.

    PubMed

    Bordeaux, Mélanie; Galarneau, Anne; Drone, Jullien

    2012-10-22

    Selective catalysts for sustainable oxidation of alkanes are highly demanded because of the abundance of these molecules in the environment, the possibility to transform them into higher-value compounds, such as chemicals or synthetic fuels, and the fact that, kinetically speaking, this is a difficult reaction. Numerous chemical and biological catalysts have been developed in the lasts decades for this purpose, rendering the overview over this field of chemistry difficult. After giving a definition of the ideal catalyst for alkane oxyfunctionalization, this review aims to present the catalysts available today that are closest to ideal.

  8. Kinetics of the hydrogen abstraction OH + alkane --> H2O + alkyl reaction class: an application of the reaction class transition state theory.

    PubMed

    Huynh, Lam K; Ratkiewicz, Artur; Truong, Thanh N

    2006-01-19

    This paper presents an application of the reaction class transition state theory (RC-TST) to predict thermal rate constants for hydrogen abstraction reactions of the type OH + alkane --> HOH + alkyl. We have derived all parameters for the RC-TST method for this reaction class from rate constants of 19 representative reactions, coupling with linear energy relationships (LERs), so that rate constants for any reaction in this class can be predicted from its reaction energy calculated at either the AM1 semiempirical or BH&HLYP/cc-pVDZ level of theory. The RC-TST/LER thermal rate constants for selected reactions are in good agreement with those available in the literature. Detailed analyses of the results show that the RC-TST/LER method is an efficient method for accurately estimating rate constants for a large number of reactions in this class. Analysis of the LERs leads to the discovery of the beta-carbon radical stabilization effect that stabilizes the transition state of any reaction in this class that yields products having one or more beta-carbons, and thus leads to the lower barrier for such a reaction.

  9. POSSIBLE LATE MIDDLE ORDOVICIAN ORGANIC CARBON ISOTOPE EXCURSION: EVIDENCE FROM ORDOVICIAN OILS AND HYDROCARBON SOURCE ROCKS, MID-CONTINENT AND EAST-CENTRAL UNITED STATES.

    USGS Publications Warehouse

    Hatch, Joseph R.; Jacobson, Stephen R.; Witzke, Brian J.; Risatti, J. Bruno; Anders, Donald E.; Watney, W. Lynn; Newell, K. David; Vuletich, April K.

    1987-01-01

    Oils generated by Middle Ordovician rocks are found throughout the Mid-Continent and east-central regions of the United States. Gas chromatographic characteristics of these oils include a relatively high abundance of n-alkanes with carbon numbers less than 20, a strong predominance of odd-numbered n-alkanes between C//1//0 and C//2//0, and relatively small amounts of branched and cyclic alkanes. The wide ranges in delta **1**3C for oils and rock extracts reflect a major, positive excursion(s) in organic matter delta **1**3C in late Middle Ordovician rocks. This excursion has at least regional significance in that it can be documented in sections 480 mi apart in south-central Kansas and eastern Iowa. The distance may be as much as 930 mi. The parallel shifts in organic and carbonate delta **1**3C in core samples from 1 E. M. Greene well, Washington County, Iowa, imply changes in the isotope composition of the ocean-atmosphere carbon reservoir. These and other aspects of the subject are discussed.

  10. On-bicycle exposure to particulate air pollution: Particle number, black carbon, PM2.5, and particle size

    NASA Astrophysics Data System (ADS)

    Hankey, Steve; Marshall, Julian D.

    2015-12-01

    Inhalation of air pollution during transport is an important exposure pathway, especially for certain modes of travel and types of particles. We measured concentrations of particulate air pollution (particle number [PN], black carbon [BC], fine particles [PM2.5], particle size) using a mobile, bicycle-based monitoring platform during morning and afternoon rush-hour to explore patterns of exposure while cycling (34 days between August 14 and October 16, 2012 in Minneapolis, MN). Measurements were geo-located at 1 ​s intervals along 3 prescribed monitoring routes totaling 85 h (1426 km) of monitoring. Mean morning [afternoon] on-road concentrations were 32,500 [16,600] pt cm-3, 2.5 [0.7] μg m-3 BC, 8.7 [8.3] μg m-3 PM2.5, and 42 [39] nm particle diameter. Concentrations were correlated with street functional class and declined within small distances from a major road (e.g., for PN and BC, mean concentration decreased ∼20% by moving 1 block away from major roads to adjacent local roads). We estimate the share of on-bicycle exposure attributable to near-traffic emissions (vs. regional pollution) is ∼50% for PN and BC; ∼25% for PM2.5. Regression models of instantaneous traffic volumes, derived from on-bicycle video recordings of nearby traffic, quantify the increase in particle-concentrations associated with each passing vehicle; for example, trucks were associated with acute, high concentration exposure events (average concentration-increase per truck: 31,000 pt cm-3, 1.0 μg m-3 PM2.5, 1.6 μg m-3 BC). Our findings could be used to inform design of low-exposure bicycle networks in urban areas.

  11. Evaluation of solid particle number and black carbon for very low particulate matter emissions standards in light-duty vehicles.

    PubMed

    Chang, M-C Oliver; Shields, J Erin

    2017-01-03

    To reliably measure at the low particulate matter (PM) levels needed to meet California's Low Emission Vehicle (LEV III) 3- and 1-mg/mile particulate matter (PM) standards, various approaches other than gravimetric measurement have been suggested for testing purposes. In this work, a feasibility study of solid particle number (SPN, d50 = 23 nm) and black carbon (BC) as alternatives to gravimetric PM mass was conducted, based on the relationship of these two metrics to gravimetric PM mass, as well as the variability of each of these metrics. More than 150 Federal Test Procedure (FTP-75) or Supplemental Federal Test Procedure (US06) tests were conducted on 46 light-duty vehicles, including port-fuel-injected and direct-injected gasoline vehicles, as well as several light-duty diesel vehicles equipped with diesel particle filters (LDD/DPF). For FTP tests, emission variability of gravimetric PM mass was found to be slightly less than that of either SPN or BC, whereas the opposite was observed for US06 tests. Emission variability of PM mass for LDD/DPF was higher than that of both SPN and BC, primarily because of higher PM mass measurement uncertainties (background and precision) near or below 0.1 mg/mile. While strong correlations were observed from both SPN and BC to PM mass, the slopes are dependent on engine technologies and driving cycles, and the proportionality between the metrics can vary over the course of the test. Replacement of the LEV III PM mass emission standard with one other measurement metric may imperil the effectiveness of emission reduction, as a correlation-based relationship may evolve over future technologies for meeting stringent greenhouse standards.

  12. Hydrogen isotope composition of leaf wax n-alkanes in Arabidopsis lines with different transpiration rates

    NASA Astrophysics Data System (ADS)

    Pedentchouk, N.; Lawson, T.; Eley, Y.; McAusland, L.

    2012-04-01

    Stable isotopic compositions of oxygen and hydrogen are used widely to investigate modern and ancient water cycles. The D/H composition of organic compounds derived from terrestrial plants has recently attracted significant attention as a proxy for palaeohydrology. However, the role of various plant physiological and biochemical factors in controlling the D/H signature of leaf wax lipids in extant plants remains unclear. The focus of this study is to investigate the effect of plant transpiration on the D/H composition of n-alkanes in terrestrial plants. This experiment includes 4 varieties of Arabidopsis thaliana that differ with respect to stomatal density and stomatal geometry. All 4 varieties were grown indoors under identical temperature, relative humidity, light and watering regimes and then sampled for leaf wax and leaf water stable isotopic measurements. During growth, stomatal conductance to carbon dioxide and water vapour were also determined. We found that the plants varied significantly in terms of their transpiration rates. Transpiration rates were significantly higher in Arabidopsis ost1 and ost1-1 varieties (2.4 and 3.2 mmol m-2 s-1, respectively) than in Arabidopsis RbohD and Col-0 (1.5 and 1.4). However, hydrogen isotope measurements of n-alkanes extracted from leaf waxes revealed a very different pattern. Varieties ost1, ost1-1, and RbohD have very similar deltaD values of n-C29 alkane (-125, -128, and -127 per mil), whereas the deltaD value of Col-0 is more negative (-137 per mil). The initial results of this work suggest that plant transpiration is decoupled from the D/H composition of n-alkanes. In other words, physical processes that affect water vapour movement between the plant and its environment apparently cannot account for the stable hydrogen isotope composition of organic compounds that comprise leaf waxes. Additional, perhaps biochemical, processes that affect hydrogen isotope fractionation during photosynthesis might need to be invoked

  13. 40 CFR 721.10148 - Acryloxy alkanoic alkane derivative with mixed metal oxides (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Acryloxy alkanoic alkane derivative... Significant New Uses for Specific Chemical Substances § 721.10148 Acryloxy alkanoic alkane derivative with...) The chemical substance identified generically as acryloxy alkanoic alkane derivative with mixed...

  14. 40 CFR 721.4464 - Mixture of hydrofluoro alkanes and hydrofluoro alkene.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Mixture of hydrofluoro alkanes and... Specific Chemical Substances § 721.4464 Mixture of hydrofluoro alkanes and hydrofluoro alkene. (a) Chemical... as a mixture of hydrofluoro alkanes and hydrofluoro alkene (PMNs P-96-945/946/947/948) are subject...

  15. 40 CFR 721.4464 - Mixture of hydrofluoro alkanes and hydrofluoro alkene.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Mixture of hydrofluoro alkanes and... Specific Chemical Substances § 721.4464 Mixture of hydrofluoro alkanes and hydrofluoro alkene. (a) Chemical... as a mixture of hydrofluoro alkanes and hydrofluoro alkene (PMNs P-96-945/946/947/948) are subject...

  16. 40 CFR 721.4464 - Mixture of hydrofluoro alkanes and hydrofluoro alkene.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Mixture of hydrofluoro alkanes and... Specific Chemical Substances § 721.4464 Mixture of hydrofluoro alkanes and hydrofluoro alkene. (a) Chemical... as a mixture of hydrofluoro alkanes and hydrofluoro alkene (PMNs P-96-945/946/947/948) are subject...

  17. 40 CFR 721.4464 - Mixture of hydrofluoro alkanes and hydrofluoro alkene.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Mixture of hydrofluoro alkanes and... Specific Chemical Substances § 721.4464 Mixture of hydrofluoro alkanes and hydrofluoro alkene. (a) Chemical... as a mixture of hydrofluoro alkanes and hydrofluoro alkene (PMNs P-96-945/946/947/948) are subject...

  18. 40 CFR 721.4464 - Mixture of hydrofluoro alkanes and hydrofluoro alkene.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Mixture of hydrofluoro alkanes and... Specific Chemical Substances § 721.4464 Mixture of hydrofluoro alkanes and hydrofluoro alkene. (a) Chemical... as a mixture of hydrofluoro alkanes and hydrofluoro alkene (PMNs P-96-945/946/947/948) are subject...

  19. 40 CFR 721.10148 - Acryloxy alkanoic alkane derivative with mixed metal oxides (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Acryloxy alkanoic alkane derivative... Significant New Uses for Specific Chemical Substances § 721.10148 Acryloxy alkanoic alkane derivative with...) The chemical substance identified generically as acryloxy alkanoic alkane derivative with mixed...

  20. 40 CFR 721.785 - Halogenated alkane aromatic compound (generic name).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Halogenated alkane aromatic compound... Specific Chemical Substances § 721.785 Halogenated alkane aromatic compound (generic name). (a) Chemical... as a halogenated alkane aromatic compound (PMN P-94-1747) is subject to reporting under this...

  1. 40 CFR 721.785 - Halogenated alkane aromatic compound (generic name).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Halogenated alkane aromatic compound... Specific Chemical Substances § 721.785 Halogenated alkane aromatic compound (generic name). (a) Chemical... as a halogenated alkane aromatic compound (PMN P-94-1747) is subject to reporting under this...

  2. 40 CFR 721.785 - Halogenated alkane aromatic compound (generic name).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Halogenated alkane aromatic compound... Specific Chemical Substances § 721.785 Halogenated alkane aromatic compound (generic name). (a) Chemical... as a halogenated alkane aromatic compound (PMN P-94-1747) is subject to reporting under this...

  3. 40 CFR 721.785 - Halogenated alkane aromatic compound (generic name).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Halogenated alkane aromatic compound... Specific Chemical Substances § 721.785 Halogenated alkane aromatic compound (generic name). (a) Chemical... as a halogenated alkane aromatic compound (PMN P-94-1747) is subject to reporting under this...

  4. 40 CFR 721.785 - Halogenated alkane aromatic compound (generic name).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Halogenated alkane aromatic compound... Specific Chemical Substances § 721.785 Halogenated alkane aromatic compound (generic name). (a) Chemical... as a halogenated alkane aromatic compound (PMN P-94-1747) is subject to reporting under this...

  5. Phylogenetic and functional diversity of alkane degrading bacteria associated with Italian ryegrass (Lolium multiflorum) and Birdsfoot trefoil (Lotus corniculatus) in a petroleum oil-contaminated environment.

    PubMed

    Yousaf, Sohail; Andria, Verania; Reichenauer, Thomas G; Smalla, Kornelia; Sessitsch, Angela

    2010-12-15

    Twenty-six different plant species were analyzed regarding their performance in soil contaminated with petroleum oil. Two well-performing species, Italian ryegrass (Lolium multiflorum var. Taurus), Birdsfoot trefoil (Lotus corniculatus var. Leo) and the combination of these two plants were selected to study the ecology of plant-associated, culturable alkane-degrading bacteria. Hydrocarbon degrading bacteria were isolated from the rhizosphere, root interior and shoot interior and subjected to the analysis of 16S rRNA gene, the 16S and 23S rRNA intergenic spacer region and alkane hydroxylase genes. Furthermore, we investigated whether alkane hydroxylase genes are plasmid located. Higher numbers of culturable, alkane-degrading bacteria were associated with Italian ryegrass, which were also characterized by a higher diversity, particularly in the plant interior. Only half of the isolated bacteria hosted known alkane hydroxylase genes (alkB and cytochrome P153-like). Degradation genes were found both on plasmids as well as in the chromosome. In regard to application of plants for rhizodegradation, where support of numerous degrading bacteria is essential for efficient break-down of pollutants, Italian ryegrass seems to be more appropriate than Birdsfoot trefoil.

  6. Removal of chlorinated and non-chlorinated alkanes in a trickle-bed biofilter

    SciTech Connect

    Klasson, K.T.; Davison, B.H.; Barton, J.W.; Jacobs, J.E.

    1998-01-01

    Increasing restrictions in emissions from a variety of industrial settings demand low cost removal of dilute contaminants in air. Many of these contaminants such as volatile organic components (VOCs) and sulfur compounds are biodegradable and can be removed from air streams via biofiltration. The simplest form of biofiltration consists of compost-based systems. More advanced systems designed for unique contaminants are biofilters with bioactive structured packing operating in trickle-bed mode. These advanced systems rely on a microbial consortium capable of degrading the contaminants of concern and the consortium usually is isolated or enriched from a more complex microbial mixture. This paper describes the use of a trickle-bed reactor seeded with a microbial consortium enriched from a methanotrophic culture. The microbial consortium has been found to degrade chlorinated alkanes as the sole carbon source. Degradation rates of alkane mixtures are presented for the trickle-bed as well as results from batch cultures experiments designed to study degradation of various chlorinated and non-chlorinated VOCs.

  7. On droplet combustion of biodiesel fuel mixed with diesel/alkanes in microgravity condition

    SciTech Connect

    Pan, Kuo-Long; Li, Je-Wei; Chen, Chien-Pei; Wang, Ching-Hua

    2009-10-15

    The burning characteristics of a biodiesel droplet mixed with diesel or alkanes such as dodecane and hexadecane were experimentally studied in a reduced-gravity environment so as to create a spherically symmetrical flame without the influence of natural convection due to buoyancy. Small droplets on the order of 500 {mu}m in diameter were initially injected via a piezoelectric technique onto the cross point intersected by two thin carbon fibers; these were prepared inside a combustion chamber that was housed in a drag shield, which was freely dropped onto a foam cushion. It was found that, for single component droplets, the tendency to form a rigid soot shell was relatively small for biodiesel fuel as compared to that exhibited by the other tested fuels. The soot created drifted away readily, showing a puffing phenomenon; this could be related to the distinct molecular structure of biodiesel leading to unique soot layers that were more vulnerable to oxidative reactivity as compared to the soot generated by diesel or alkanes. The addition of biodiesel to these more traditional fuels also presented better performance with respect to annihilating the soot shell, particularly for diesel. The burning rate generally follows that of multi-component fuels, by some means in terms of a lever rule, whereas the mixture of biodiesel and dodecane exhibits a somewhat nonlinear relation with the added fraction of dodecane. This might be related to the formation of a soot shell. (author)

  8. Origins of n-alkanes, carbonyl compounds and molecular biomarkers in atmospheric fine and coarse particles of Athens, Greece.

    PubMed

    Andreou, G; Rapsomanikis, S

    2009-10-15

    The abundance and origin of aliphatic hydrocarbons, carbonyl compounds and molecular biomarkers found in the aliphatic fraction of PM(10-2.5) and PM(2.5) in the centre of Athens Greece are discussed in an attempt to reveal seasonal air pollution characteristics of the conurbation. Each extract was fractionated into individual compound classes and was analyzed using gas chromatography coupled to mass spectrometry. Normal alkanes, ranging from C(14) to C(35), were abundant in PM(10-2.5) and PM(2.5) samples during both sampling campaigns. The daily concentration of total n-alkanes was up to 438 ng m(-3) for PM(10-2.5) and up to 511 ng m(-3) for PM(2.5). Additionally, gaseous concentrations of n-alkanes were calculated, revealing that the relative proportions between gaseous and particle phases of individual compounds may differ significantly between summer and late winter. Normal alkanals and alkan-2-ones were only detected in the fine fraction of particulate matter and their concentrations were much lower than the n-alkane concentrations. Several geochemical parameters were used to qualitatively reconcile the sources of organic aerosol. The carbon preference index (CPI) of the coarse particles in August had the highest value, while in March the leaf wax contribution decreased significantly and the CPI value was very close to unity for both sites. Maximum concentrations of carbonyl compounds were reported in the range of C(15)-C(20), demonstrating that they were formed from anthropogenic activity or from atmospheric oxidative processes. 6, 10, 14-trimethylpentadecan-2-one, a marker of biogenic input, was also detected in our samples. Molecular biomarker compounds confirmed that ca. 60% of the aliphatic fraction on the sampled atmospheric particles originated from petroleum and not from any contemporary biogenic sources. Pristane and phytane were detected in the fine fraction with their presence indicating sources of fossil fuel in the range of C(16)-C(20). At all

  9. The effects of oxygen on controlling the number of carbon layers in the chemical vapor deposition of graphene on a nickel substrate.

    PubMed

    Dou, Wei-Dong; Yang, Qingdan; Lee, Chun-Sing

    2013-05-10

    While oxygen is typically considered undesirable during the chemical vapor deposition (CVD) of graphene on metal substrates, we demonstrate that suitable amounts of oxygen in the CVD system can in fact improve the uniformity and thickness control of the graphene film. The role of oxygen on the CVD of graphene on a nickel substrate using a propylene precursor was investigated with various surface analytical techniques. It was found that the number of carbon layers in the deposited graphene sample decreases as the concentration of oxygen increases. In particular, single-layer graphene can be easily obtained with an oxygen/propylene ratio of 1/9. In the presence of oxygen, a thin layer of nickel oxide will form on the substrate. The oxide layer decreases the concentration of carbon atoms dissolved in the nickel substrate and results in graphene samples with a decreasing number of carbon layers.

  10. Two-Dimensional Stable Isotope Fractionation During Aerobic and Anaerobic Alkane Biodegradation and Implications for the Field

    NASA Astrophysics Data System (ADS)

    El Morris, Brandon; Suflita, Joseph M.; Richnow, Hans-Hermann

    2010-05-01

    Quantitatively, n-alkanes comprise a major portion of most crude oils. In petroliferous formations, it may be possible to relate the loss of these compounds to the levels of biodegradation occurring in situ [1]. Moreover, it is important to develop indicators of alkane degradation that may be used to monitor bioremediation of hydrocarbon-impacted environments. Desulfoglaeba alkanexedens and Pseudomonas putida GPo1 were used to determine if carbon and hydrogen stable isotope fractionation could differentiate between n-alkane degradation under anaerobic and aerobic conditions, respectively in the context of the Rayleigh equation model [2]. Bacterial cultures were sacrificed by acidification and headspace samples were analyzed for stable isotope composition using gas chromatography-isotope ratio mass spectrometry. Carbon enrichment factors (bulk) for anaerobic and aerobic biodegradation of hexane were -5.52 ± 0.2‰ and -4.34 ± 0.3‰, respectively. Hydrogen enrichment during hexane degradation was -43.14 ± 6.32‰ under sulfate-reducing conditions, and was too low for quantification during aerobiosis. Collectively, this indicates that the correlation between carbon and hydrogen stable isotope fractionation (may be used to help elucidate in situ microbial processes in oil reservoirs, and during intrinsic as well as engineered remediation efforts. References 1. Asif, M.; Grice, K.; Fazeelat, T., Assessment of petroleum biodegradation using stable hydrogen isotopes of individual saturated hydrocarbon and polycyclic aromatic hydrocarbon distributions in oils from the Upper Indus Basin, Pakistan. Organic Geochemistry 2009, 40, (3), 301-311. 2. Fischer, A.; Herklotz, I.; Herrmann, S.; Thullner, M.; Weelink, S. A. B.; Stams, A., J. M.; Schloemann, M.; Richnow, H.-H.; Vogt, C., Combined carbon and hydrogen isotope fractionation investigations for elucidating benzene biodegradation pathways. Environ. Sci. Technol. 2008, 42, 4356-4363.

  11. Transitions from functionalization to fragmentation reactions of laboratory secondary organic aerosol (SOA) generated from the OH oxidation of alkane precursors.

    PubMed

    Lambe, Andrew T; Onasch, Timothy B; Croasdale, David R; Wright, Justin P; Martin, Alexander T; Franklin, Jonathan P; Massoli, Paola; Kroll, Jesse H; Canagaratna, Manjula R; Brune, William H; Worsnop, Douglas R; Davidovits, Paul

    2012-05-15

    Functionalization (oxygen addition) and fragmentation (carbon loss) reactions governing secondary organic aerosol (SOA) formation from the OH oxidation of alkane precursors were studied in a flow reactor in the absence of NO(x). SOA precursors were n-decane (n-C10), n-pentadecane (n-C15), n-heptadecane (n-C17), tricyclo[5.2.1.0(2,6)]decane (JP-10), and vapors of diesel fuel and Southern Louisiana crude oil. Aerosol mass spectra were measured with a high-resolution time-of-flight aerosol mass spectrometer, from which normalized SOA yields, hydrogen-to-carbon (H/C) and oxygen-to-carbon (O/C) ratios, and C(x)H(y)+, C(x)H(y)O+, and C(x)H(y)O(2)+ ion abundances were extracted as a function of OH exposure. Normalized SOA yield curves exhibited an increase followed by a decrease as a function of OH exposure, with maximum yields at O/C ratios ranging from 0.29 to 0.74. The decrease in SOA yield correlates with an increase in oxygen content and decrease in carbon content, consistent with transitions from functionalization to fragmentation. For a subset of alkane precursors (n-C10, n-C15, and JP-10), maximum SOA yields were estimated to be 0.39, 0.69, and 1.1. In addition, maximum SOA yields correspond with a maximum in the C(x)H(y)O+ relative abundance. Measured correlations between OH exposure, O/C ratio, and H/C ratio may enable identification of alkane precursor contributions to ambient SOA.

  12. Cyanobacterial aldehyde deformylase oxygenation of aldehydes yields n-1 aldehydes and alcohols in addition to alkanes.

    PubMed

    Aukema, Kelly G; Makris, Thomas M; Stoian, Sebastian A; Richman, Jack E; Münck, Eckard; Lipscomb, John D; Wackett, Lawrence P

    2013-10-04

    Aldehyde-deformylating oxygenase (ADO) catalyzes O2-dependent release of the terminal carbon of a biological substrate, octadecanal, to yield formate and heptadecane in a reaction that requires external reducing equivalents. We show here that ADO also catalyzes incorporation of an oxygen atom from O2 into the alkane product to yield alcohol and aldehyde products. Oxygenation of the alkane product is much more pronounced with C9-10 aldehyde substrates, so that use of nonanal as the substrate yields similar amounts of octane, octanal, and octanol products. When using doubly-labeled [1,2-(13)C]-octanal as the substrate, the heptane, heptanal and heptanol products each contained a single (13)C-label in the C-1 carbons atoms. The only one-carbon product identified was formate. [(18)O]-O2 incorporation studies demonstrated formation of [(18)O]-alcohol product, but rapid solvent exchange prevented similar determination for the aldehyde product. Addition of [1-(13)C]-nonanol with decanal as the substrate at the outset of the reaction resulted in formation of [1-(13)C]-nonanal. No (13)C-product was formed in the absence of decanal. ADO contains an oxygen-bridged dinuclear iron cluster. The observation of alcohol and aldehyde products derived from the initially formed alkane product suggests a reactive species similar to that formed by methane monooxygenase (MMO) and other members of the bacterial multicomponent monooxygenase family. Accordingly, characterization by EPR and Mössbauer spectroscopies shows that the electronic structure of the ADO cluster is similar, but not identical, to that of MMO hydroxylase component. In particular, the two irons of ADO reside in nearly identical environments in both the oxidized and fully reduced states, whereas those of MMOH show distinct differences. These favorable characteristics of the iron sites allow a comprehensive determination of the spin Hamiltonian parameters describing the electronic state of the diferrous cluster for the

  13. Improving alkane synthesis in Escherichia coli via metabolic engineering.

    PubMed

    Song, Xuejiao; Yu, Haiying; Zhu, Kun

    2016-01-01

    Concerns about energy security and global petroleum supply have made the production of renewable biofuels an industrial imperative. The ideal biofuels are n-alkanes in that they are chemically and structurally identical to the fossil fuels and can "drop in" to the transportation infrastructure. In this work, an Escherichia coli strain that produces n-alkanes was constructed by heterologous expression of acyl-acyl carrier protein (ACP) reductase (AAR) and aldehyde deformylating oxygenase (ADO) from Synechococcus elongatus PCC7942. The accumulation of alkanes ranged from 3.1 to 24.0 mg/L using different expressing strategies. Deletion of yqhD, an inherent aldehyde reductase in E. coli, or overexpression of fadR, an activator for fatty acid biosynthesis, exhibited a nearly twofold increase in alkane titers, respectively. Combining yqhD deletion and fadR overexpression resulted in a production titer of 255.6 mg/L in E. coli, and heptadecene was the most abundant product.

  14. MODELING OF ALKANE EMISSIONS FROM A WOOD STAIN

    EPA Science Inventory

    The article discusses full-scale residential house tests to evaluate the effects of organic emissions from a wood finishing product--wood stain--on indoor air quality (IAQ). The test house concentrations of three alkane species, nonane, decane, and undecane, were measured as a fu...

  15. Synthesis of a photo-caged aminooxy alkane thiol.

    PubMed

    Mancini, Rock J; Li, Ronald C; Tolstyka, Zachary P; Maynard, Heather D

    2009-12-07

    A photo-caged aminooxy alkane thiol synthesized in 7 steps and 15% overall yield was used to form a self-assembled monolayer (SAM). Photo-deprotection on the surface was confirmed by FT-IR spectroscopy and contact angle goniometry. Conjugation of a small molecule ketone, ethyl levulinate, further confirmed the presence of aminooxy groups on the surface.

  16. Cyano- and polycyanometalloporphyrins as catalysts for alkane oxidation

    DOEpatents

    Ellis, Jr., Paul E.; Lyons, James E.

    1992-01-01

    Alkanes are oxidized by contact with oxygen-containing gas in the presence as catalyst of a metalloporphyrin in which hydrogen atoms in the porphyrin ring have been substituted with one or more cyano groups. Hydrogen atoms in the porphyrin ring may also be substituted with halogen atoms.

  17. Cyano- and polycyanometallo-porphyrins as catalysts for alkane oxidation

    DOEpatents

    Ellis, Jr., Paul E.; Lyons, James E.

    1995-01-01

    New compositions of matter comprising cyano-substituted metal complexes of porphyrins are catalysts for the oxidation of alkanes. The metal is iron, chromium, manganese, ruthenium, copper or cobalt. The porphyrin ring has cyano groups attached thereto in meso and/or .beta.-pyrrolic positions.

  18. Cyano- and polycyanometallo-porphyrins as catalysts for alkane oxidation

    DOEpatents

    Ellis, Jr., Paul E.; Lyons, James E.

    1993-01-01

    New compositions of matter comprising cyano-substituted metal complexes of porphyrins are catalysts for the oxidation of alkanes. The metal is iron, chromium, manganese, ruthenium, copper or cobalt. The porphyrin ring has cyano groups attached thereto in meso and/or .beta.-pyrrolic positions.

  19. Catalytic oxidation of light alkanes in presence of a base

    DOEpatents

    Bhinde, Manoj V.; Bierl, Thomas W.

    1998-01-01

    The presence of a base in the reaction mixture in a metal-ligand catalyzed partial oxidation of alkanes results in sustained catalyst activity, and in greater percent conversion as compared with oxidation in the absence of base, while maintaining satisfactory selectivity for the desired oxidation, for example the oxidation of isobutane to isobutanol.

  20. Catalytic oxidation of light alkanes in presence of a base

    DOEpatents

    Bhinde, M.V.; Bierl, T.W.

    1998-03-03

    The presence of a base in the reaction mixture in a metal-ligand catalyzed partial oxidation of alkanes results in sustained catalyst activity, and in greater percent conversion as compared with oxidation in the absence of base, while maintaining satisfactory selectivity for the desired oxidation, for example the oxidation of isobutane to isobutanol. 1 fig.

  1. Diverse alkane hydroxylase genes in microorganisms and environments

    PubMed Central

    Nie, Yong; Chi, Chang-Qiao; Fang, Hui; Liang, Jie-Liang; Lu, She-Lian; Lai, Guo-Li; Tang, Yue-Qin; Wu, Xiao-Lei

    2014-01-01

    AlkB and CYP153 are important alkane hydroxylases responsible for aerobic alkane degradation in bioremediation of oil-polluted environments and microbial enhanced oil recovery. Since their distribution in nature is not clear, we made the investigation among thus-far sequenced 3,979 microbial genomes and 137 metagenomes from terrestrial, freshwater, and marine environments. Hundreds of diverse alkB and CYP153 genes including many novel ones were found in bacterial genomes, whereas none were found in archaeal genomes. Moreover, these genes were detected with different distributional patterns in the terrestrial, freshwater, and marine metagenomes. Hints for horizontal gene transfer, gene duplication, and gene fusion were found, which together are likely responsible for diversifying the alkB and CYP153 genes adapt to the ubiquitous distribution of different alkanes in nature. In addition, different distributions of these genes between bacterial genomes and metagenomes suggested the potentially important roles of unknown or less common alkane degraders in nature. PMID:24829093

  2. Crystallization and prevention of supercooling of microencapsulated n-alkanes.

    PubMed

    Zhang, Xing-xiang; Fan, Yao-feng; Tao, Xiao-ming; Yick, Kit-lun

    2005-01-15

    Microencapsulated n-alkanes (n-octadecane, n-nonadecane, and n-eicosane) were synthesized by in situ polymerization using urea-melamine-formaldehyde polymer as shells. Microcapsules 5.0 and 10.0 wt% of 1-tetradecanol, paraffin, and 1-octadecanol were used as nucleating agents. The fabrication was characterized using Fourier transform infrared, light microscopy, and scanning electron microscopy. The crystallization and prevention of supercooling of the microcapsules are studied using differential scanning calorimetry (DSC) and wide-angle X-ray diffraction. The crystal system of the microencapsulated n-alkane is the same as that of the bulk. The enthalpies of the microcapsules containing 70 wt% n-alkanes are approximately 160 J/g. The melting temperature of the n-alkanes in the microcapsule is the same as that in the bulk. There are multiple peaks on the DSC cooling curves that are attributed to liquid-rotator, rotator-crystal, and liquid-crystal transitions. The DSC cooling behavior of microencapsulated n-octadecane is affected by the average diameters. The measured maximum degree of supercooling of the microencapsulated n-octadecane is approximately 26.0 degrees C at a heating and cooling rate of 10.0 degrees C/min. The degree of supercooling of microencapsulated n-octadecane is decreased by adding 10.0 wt% of 1-octadecanol as a nucleating agent.

  3. Cyano- and polycyanometallo-porphyrins as catalysts for alkane oxidation

    DOEpatents

    Ellis, P.E. Jr.; Lyons, J.E.

    1995-01-17

    New compositions of matter comprising cyano-substituted metal complexes of porphyrins are catalysts for the oxidation of alkanes. The metal is iron, chromium, manganese, ruthenium, copper or cobalt. The porphyrin ring has cyano groups attached thereto in meso and/or [beta]-pyrrolic positions.

  4. Cyano- and polycyanometallo-porphyrins as catalysts for alkane oxidation

    DOEpatents

    Ellis, P.E. Jr.; Lyons, J.E.

    1993-05-18

    New compositions of matter comprising cyano-substituted metal complexes of porphyrins are catalysts for the oxidation of alkanes. The metal is iron, chromium, manganese, ruthenium, copper or cobalt. The porphyrin ring has cyano groups attached thereto in meso- and/or [beta]-pyrrolic positions.

  5. Effects on the self-assembly of n-alkane/gold nanoparticle mixtures spread at the air-water interface.

    PubMed

    Gagnon, Brandon P; Meli, M-Vicki

    2014-01-14

    Nanoparticle films formed at the air-water interface readily form rigid films, where the nanoparticles irreversibly associate into floating "islands", often riddled with voids and defects, upon solvent evaporation. Improving the nanoparticle mobility in these films is key to achieving control over the nanoparticle packing parameters, which is attractive for a variety of applications. In this study, a variety of n-alkanes were mixed with tetradecanethiol-capped 2 nm gold nanoparticles and studied as Langmuir films at 18 and 32 °C. Pressure-area isotherms at 18 °C reveal a mixed liquid-expanded phase of nanoparticles and alkane at the air-water interface, but only for n-alkanes that are equal to or exceed the nanoparticle capping ligand in carbon chain length. Transmission electron microscopy images of the corresponding films suggest that the nanoparticles are mixed with a continuous hydrocarbon phase at 0 mN/m and that the hydrocarbon is squeezed out of the nanoparticle film during compression.

  6. Quantifying Dimer and Trimer Formation of Tri-n-butyl Phosphates in Different Alkane Diluents: FTIR Study.

    PubMed

    Vo, Quynh N; Unangst, Jaclynn L; Nguyen, Hung D; Nilsson, Mikael

    2016-07-21

    Tri-n-butyl phosphate (TBP), a representative of neutral organophosphorous metal-ion-extracting reagents, is an important ligand used in solvent extraction processes for the recovery of uranium and plutonium from spent nuclear fuel, as well as other non-nuclear applications. Ligand-ligand and organic solvent-ligand interactions play an important role in these processes. The self-association behavior of TBP in various alkane diluents of different chain lengths (8, 12, and 16 carbons) and a branched alkane (iso-octane) was investigated by Fourier transform infrared spectroscopic measurements. By careful deconvolution of the spectra into multiple peaks, our results indicate that TBP self-associates to form not only dimers, as previous studies showed, but also trimers in the practical concentration range. Using a mathematical fitting procedure, the dimerization and trimerization constants were determined. As expected, these equilibrium constants are dependent on the solvent used. As the alkane chain for linear hydrocarbon solvents becomes longer, dimerization decreases whereas trimerization increases. For the more branched hydrocarbon, we observe a significantly higher dimerization constant. These effects are most likely due to the intermolecular van der Waals interactions between the butyl tails of each TBP molecule and the diluent hydrocarbon chain as all solvents in this study are relatively nonpolar.

  7. Re-assessing the role of plant community change and climate in the PETM n-alkane record

    NASA Astrophysics Data System (ADS)

    Bush, R. T.; Baczynski, A. A.; McInerney, F. A.; Chen, D.

    2012-12-01

    The terrestrial leaf wax n-alkane record of the Paleocene-Eocene Thermal Maximum (PETM) in the Bighorn Basin, Wyoming, shows large excursions in both carbon isotope (δ13C) values and n-alkane average chain length (ACL). At the onset of the PETM, ACL values increase from ~28.5 to ~30.1 while the negative carbon isotope excursion (CIE) is 4-6‰ in magnitude and larger than δ13C records from other materials. It has been hypothesized previously that both the ACL excursion and the large magnitude of the CIE were caused by a concurrent turnover in the local flora from a mixed conifer/angiosperm community before the PETM to a different suite of angiosperm species during the PETM. Here, we present the results of a meta-analysis of data (>2000 data from 89 sources, both published and unpublished) on n-alkane amounts and chain length distributions in modern plants from around the world. We applied the data in two sets of comparisons: 1) within and among plant groups such as herbs and graminoids, and 2) between plants and climate, using reported collection locations for outdoor plants and climate values generated via GIS extraction of WorldClim modeled data. We show that angiosperms, as group, produce more n-alkanes than do gymnosperms by 1-2 orders of magnitude, and this means that the gymnosperm contribution to a mixed soil n-alkane pool would be negligible, even in an ecosystem where gymnosperms dominated (i.e. the pre/post-PETM ecosystems). The modern plant data also demonstrate that turnover of the plant community during the PETM, even among only the angiosperm species, is likely not the source of the observed ACL excursion. First, we constructed "representative" groups of PETM and pre/post-PETM communities using living relative species at the Chicago Botanic Garden and find no significant difference in chain length distributions between the two groups. Second and moreover, the modern plant data reveal that n-alkane chain length distributions are tremendously variable

  8. Distribution and stable isotope composition of leaf wax n-alkanes as tracers for organic matter transport along hydrological transects in the NW Argentine Andes

    NASA Astrophysics Data System (ADS)

    Tofelde, Stefanie; Sachse, Dirk; Schildgen, Taylor; Strecker, Manfred R.

    2015-04-01

    The burial of organic matter in marine sediments represents the main long-term sink for reduced carbon in the global carbon cycle, with the fluvial system being the predominant transport mechanism. Organic matter deposited in marine and continental sediments contains valuable information on ecological and climatic conditions, and organic proxy data is thus often used in paleoclimate research. To use sedimentary records to investigate past environmental conditions in the terrestrial realm, processes dictating the transport of organic matter, including spatial and temporal resolution as well as the influence of climatic and tectonic processes, have to be understood. In this study, we test if a lipid biomarker based approach can be used to trace present-day organic matter sources in a fluvial watershed draining two intermontane basins in the southern-central Andes of NW Argentina, a tectonically active region with pronounced topographic, rainfall, and vegetation gradients. We investigated the distribution of long-chain leaf-wax n-alkanes, a terrestrial plant biomarker (and as such representative of terrestrially sourced carbon), in river sediments and coarse particulate organic matter (CPOM) along two altitudinal and hydrological gradients. We used n-alkane abundances and their stable carbon and hydrogen isotopic values as three independent parameters for source discrimination. Additionally, we analyzed the control of environmental parameters on the isotopic signatures in leaf-wax n-alkanes. The general pattern of n-alkane distribution in river sediments and CPOM samples in our study area suggest that vascular plants are the major source of riverine organic matter. The stable carbon isotopic composition of nC29 alkanes suggests a nearly exclusive input of C3 vegetation. Although C4 plants are present in the lower catchment areas, the total percentage is too low to have a detectable influence on the carbon isotopic composition in river sediment and CPOM samples

  9. Crystallization features of normal alkanes in confined geometry.

    PubMed

    Su, Yunlan; Liu, Guoming; Xie, Baoquan; Fu, Dongsheng; Wang, Dujin

    2014-01-21

    How polymers crystallize can greatly affect their thermal and mechanical properties, which influence the practical applications of these materials. Polymeric materials, such as block copolymers, graft polymers, and polymer blends, have complex molecular structures. Due to the multiple hierarchical structures and different size domains in polymer systems, confined hard environments for polymer crystallization exist widely in these materials. The confined geometry is closely related to both the phase metastability and lifetime of polymer. This affects the phase miscibility, microphase separation, and crystallization behaviors and determines both the performance of polymer materials and how easily these materials can be processed. Furthermore, the size effect of metastable states needs to be clarified in polymers. However, scientists find it difficult to propose a quantitative formula to describe the transition dynamics of metastable states in these complex systems. Normal alkanes [CnH2n+2, n-alkanes], especially linear saturated hydrocarbons, can provide a well-defined model system for studying the complex crystallization behaviors of polymer materials, surfactants, and lipids. Therefore, a deeper investigation of normal alkane phase behavior in confinement will help scientists to understand the crystalline phase transition and ultimate properties of many polymeric materials, especially polyolefins. In this Account, we provide an in-depth look at the research concerning the confined crystallization behavior of n-alkanes and binary mixtures in microcapsules by our laboratory and others. Since 2006, our group has developed a technique for synthesizing nearly monodispersed n-alkane containing microcapsules with controllable size and surface porous morphology. We applied an in situ polymerization method, using melamine-formaldehyde resin as shell material and nonionic surfactants as emulsifiers. The solid shell of microcapsules can provide a stable three-dimensional (3-D

  10. Soot platelets and PAHs with an odd number of unsaturated carbon atoms and pi electrons: theoretical study of their spin properties and interaction with ozone.

    PubMed

    Giordana, Anna; Maranzana, Andrea; Ghigo, Giovanni; Causà, Mauro; Tonachini, Glauco

    2008-02-07

    PAHs made from an odd number of unsaturated carbon atoms and pi electrons (odd PAHs) have been detected in flames and flank the more familiar even PAHs, having approximately the same quantitative importance, particularly for PAHs containing more than 25 carbon atoms. Similarly, soot platelets containing an odd number of carbon atoms can be reasonably assumed to form during combustion. PAHs are intended here as small models for the investigation of some of their local features. To this end, quantum mechanical calculations were also carried out on periodic models. The spin density patterns were found to be highly dependent on the PAH size and shape. PAHs and soot, once released in the environment, can undergo several oxidation processes. Ozone is then taken as a probe of the reactivity properties of some internal exposed portions of a platelet. A primary ozonide (PO) corresponds to an energy minimum, but the relevant concerted addition pathway does not exist, because a PO-like saddle point is second-order. The reaction begins with a nonconcerted attack that produces a trioxyl radical (TR). Subsequent O2 loss from the TR leaves either an epoxide with a pi-delocalized electron or a pi-delocalized oxepine, by cleavage of the ring carbon-carbon bond. The initial doublet spin multiplicity thus provides a description of the reaction surface unlike that for the internal reactivity of the closed-shell even systems investigated in a previous work, even though the final functionalization is the same.

  11. Surface vibrational structure at alkane liquid/vapor interfaces.

    PubMed

    Esenturk, Okan; Walker, Robert A

    2006-11-07

    Broadband vibrational sum frequency spectroscopy (VSFS) has been used to examine the surface structure of alkane liquid/vapor interfaces. The alkanes range in length from n-nonane (C(9)H(20)) to n-heptadecane (C(17)H(36)), and all liquids except heptadecane are studied at temperatures well above their bulk (and surface) freezing temperatures. Intensities of vibrational bands in the CH stretching region acquired under different polarization conditions show systematic, chain length dependent changes. Data provide clear evidence of methyl group segregation at the liquid/vapor interface, but two different models of alkane chain structure can predict chain length dependent changes in band intensities. Each model leads to a different interpretation of the extent to which different chain segments contribute to the anisotropic interfacial region. One model postulates that changes in vibrational band intensities arise solely from a reduced surface coverage of methyl groups as alkane chain length increases. The additional methylene groups at the surface must be randomly distributed and make no net contribution to the observed VSF spectra. The second model considers a simple statistical distribution of methyl and methylene groups populating a three dimensional, interfacial lattice. This statistical picture implies that the VSF signal arises from a region extending several functional groups into the bulk liquid, and that the growing fraction of methylene groups in longer chain alkanes bears responsibility for the observed spectral changes. The data and resulting interpretations provide clear benchmarks for emerging theories of molecular structure and organization at liquid surfaces, especially for liquids lacking strong polar ordering.

  12. Diverse sulfate-reducing bacteria of the Desulfosarcina/Desulfococcus clade are the key alkane degraders at marine seeps.

    PubMed

    Kleindienst, Sara; Herbst, Florian-Alexander; Stagars, Marion; von Netzer, Frederick; von Bergen, Martin; Seifert, Jana; Peplies, Jörg; Amann, Rudolf; Musat, Florin; Lueders, Tillmann; Knittel, Katrin

    2014-10-01

    Biogeochemical and microbiological data indicate that the anaerobic oxidation of non-methane hydrocarbons by sulfate-reducing bacteria (SRB) has an important role in carbon and sulfur cycling at marine seeps. Yet, little is known about the bacterial hydrocarbon degraders active in situ. Here, we provide the link between previous biogeochemical measurements and the cultivation of degraders by direct identification of SRB responsible for butane and dodecane degradation in complex on-site microbiota. Two contrasting seep sediments from Mediterranean Amon mud volcano and Guaymas Basin (Gulf of California) were incubated with (13)C-labeled butane or dodecane under sulfate-reducing conditions and analyzed via complementary stable isotope probing (SIP) techniques. Using DNA- and rRNA-SIP, we identified four specialized clades of alkane oxidizers within Desulfobacteraceae to be distinctively active in oxidation of short- and long-chain alkanes. All clades belong to the Desulfosarcina/Desulfococcus (DSS) clade, substantiating the crucial role of these bacteria in anaerobic hydrocarbon degradation at marine seeps. The identification of key enzymes of anaerobic alkane degradation, subsequent β-oxidation and the reverse Wood-Ljungdahl pathway for complete substrate oxidation by protein-SIP further corroborated the importance of the DSS clade and indicated that biochemical pathways, analog to those discovered in the laboratory, are of great relevance for natural settings. The high diversity within identified subclades together with their capability to initiate alkane degradation and growth within days to weeks after substrate amendment suggest an overlooked potential of marine benthic microbiota to react to natural changes in seepage, as well as to massive hydrocarbon input, for example, as encountered during anthropogenic oil spills.

  13. Reconstitution of plant alkane biosynthesis in yeast demonstrates that Arabidopsis ECERIFERUM1 and ECERIFERUM3 are core components of a very-long-chain alkane synthesis complex.

    PubMed

    Bernard, Amélie; Domergue, Frédéric; Pascal, Stéphanie; Jetter, Reinhard; Renne, Charlotte; Faure, Jean-Denis; Haslam, Richard P; Napier, Johnathan A; Lessire, René; Joubès, Jérôme

    2012-07-01

    In land plants, very-long-chain (VLC) alkanes are major components of cuticular waxes that cover aerial organs, mainly acting as a waterproof barrier to prevent nonstomatal water loss. Although thoroughly investigated, plant alkane synthesis remains largely undiscovered. The Arabidopsis thaliana ECERIFERUM1 (CER1) protein has been recognized as an essential element of wax alkane synthesis; nevertheless, its function remains elusive. In this study, a screen for CER1 physical interaction partners was performed. The screen revealed that CER1 interacts with the wax-associated protein ECERIFERUM3 (CER3) and endoplasmic reticulum-localized cytochrome b5 isoforms (CYTB5s). The functional relevance of these interactions was assayed through an iterative approach using yeast as a heterologous expression system. In a yeast strain manipulated to produce VLC acyl-CoAs, a strict CER1 and CER3 coexpression resulted in VLC alkane synthesis. The additional presence of CYTB5s was found to enhance CER1/CER3 alkane production. Site-directed mutagenesis showed that CER1 His clusters are essential for alkane synthesis, whereas those of CER3 are not, suggesting that CYTB5s are specific CER1 cofactors. Collectively, our study reports the identification of plant alkane synthesis enzymatic components and supports a new model for alkane production in which CER1 interacts with both CER3 and CYTB5 to catalyze the redox-dependent synthesis of VLC alkanes from VLC acyl-CoAs.

  14. Genetically assembled fluorescent biosensor for in situ detection of bio-synthesized alkanes.

    PubMed

    Wu, Wei; Zhang, Lei; Yao, Lun; Tan, Xiaoming; Liu, Xufeng; Lu, Xuefeng

    2015-06-03

    Construction of highly efficient microbial cell factories producing drop-in biofuel alkanes is severely limited due to the lack of a fast detection method against alkanes. Here we first developed a sensitive fluorescent biosensor for rapid and in situ monitoring of intracellular alkane synthesis. Using GFP as reporter, the biosensor could actively respond to the intracellular alkane products, especially for the mid- and long-chain alkanes synthesized in the recombinant Escherichia coli and give a concentration-dependent fluorescence response. Our results also suggested the feasibility of developing high-throughput strategies basing on the alkane biosensor device in E. coli, and thus will greatly facilitate the application of directed evolution strategies to further improve the alkane-producing microbial cell factories.

  15. Superposition-additive approach in the description of thermodynamic parameters of formation and clusterization of substituted alkanes at the air/water interface.

    PubMed

    Vysotsky, Yu B; Belyaeva, E A; Fomina, E S; Vasylyev, A O; Vollhardt, D; Fainerman, V B; Aksenenko, E V; Miller, R

    2012-12-01

    The superposition-additive approach developed previously was shown to be applicable for the calculations of the thermodynamic parameters of formation and atomization of conjugate systems, their dipole polarizability, molecular diamagnetic susceptibility, π-electronic ring currents, etc. In the present work, the applicability of this approach for the calculation of the thermodynamic parameters of formation and clusterization at the water/air interface of alkanes, fatty alcohols, thioalcohols, amines, nitriles, fatty acids (C(n)H(2n+1)X, X is the functional group) and cis-unsaturated carboxylic acids (C(n)H(2n-1)COOH) is studied. Using the proposed approach the thermodynamic quantities determined agree well with the available data, either calculated using the semiempirical (PM3) quantum chemical method, or obtained in experiments. In particular, for enthalpy and Gibbs' energy of the formation of substituted alkane monomers from the elementary substances, and their absolute entropy, the standard deviations of the values calculated according to the superposition-additive scheme with the mutual superimposition domain C(n-2)H(2n-4) (n is the number of carbon atoms in the alkyl chain) from the results of PM3 calculations for alkanes, alcohols, thioalcohols, amines, fatty acids, nitriles and cis-unsaturated carboxylic acids are respectively: 0.05, 0.004, 2.87, 0.02, 0.01, 0.77, and 0.01 kJ/mol for enthalpy; 2.32, 5.26, 4.49, 0.53, 1.22, 1.02, 5.30 J/(molK) for absolute entropy; 0.69, 1.56, 3.82, 0.15, 0.37, 0.69, 1.58 kJ/mol for Gibbs' energy, whereas the deviations from the experimental data are: 0.52, 5.75, 1.40, 1.00, 4.86 kJ/mol; 0.52, 0.63, 1.40, 6.11, 2.21 J/(molK); 2.52, 5.76, 1.58, 1.78, 4.86 kJ/mol, respectively (for nitriles and cis-unsaturated carboxylic acids experimental data are not available). The proposed approach provides also quite accurate estimates of enthalpy, entropy and Gibbs' energy of boiling and melting, critical temperatures and standard heat

  16. A process for microbial hydrocarbon synthesis: Overproduction of fatty acids in Escherichia coli and catalytic conversion to alkanes.

    PubMed

    Lennen, Rebecca M; Braden, Drew J; West, Ryan A; Dumesic, James A; Pfleger, Brian F

    2010-06-01

    The development of renewable alternatives to diesel and jet fuels is highly desirable for the heavy transportation sector, and would offer benefits over the production and use of short-chain alcohols for personal transportation. Here, we report the development of a metabolically engineered strain of Escherichia coli that overproduces medium-chain length fatty acids via three basic modifications: elimination of beta-oxidation, overexpression of the four subunits of acetyl-CoA carboxylase, and expression of a plant acyl-acyl carrier protein (ACP) thioesterase from Umbellularia californica (BTE). The expression level of BTE was optimized by comparing fatty acid production from strains harboring BTE on plasmids with four different copy numbers. Expression of BTE from low copy number plasmids resulted in the highest fatty acid production. Up to a seven-fold increase in total fatty acid production was observed in engineered strains over a negative control strain (lacking beta-oxidation), with a composition dominated by C(12) and C(14) saturated and unsaturated fatty acids. Next, a strategy for producing undecane via a combination of biotechnology and heterogeneous catalysis is demonstrated. Fatty acids were extracted from a culture of an overproducing strain into an alkane phase and fed to a Pd/C plug flow reactor, where the extracted fatty acids were decarboxylated into saturated alkanes. The result is an enriched alkane stream that can be recycled for continuous extractions. Complete conversion of C(12) fatty acids extracted from culture to alkanes has been demonstrated yielding a concentration of 0.44 g L(-1) (culture volume) undecane.

  17. A Process for Microbial Hydrocarbon Synthesis: Overproduction of Fatty Acids in Escherichia coli and Catalytic Conversion to Alkanes

    PubMed Central

    Lennen, Rebecca M.; Braden, Drew J.; West, Ryan M.; Dumesic, James A.; Pfleger, Brian F.

    2013-01-01

    The development of renewable alternatives to diesel and jet fuels is highly desirable for the heavy transportation sector, and would offer benefits over the production and use of short-chain alcohols for personal transportation. Here, we report the development of a metabolically engineered strain of Escherichia coli that overproduces medium-chain length fatty acids via three basic modifications: elimination of β-oxidation, overexpression of the four subunits of acetyl-CoA carboxylase, and expression of a plant acyl–acyl carrier protein (ACP) thioesterase from Umbellularia californica (BTE). The expression level of BTE was optimized by comparing fatty acid production from strains harboring BTE on plasmids with four different copy numbers. Expression of BTE from low copy number plasmids resulted in the highest fatty acid production. Up to a seven-fold increase in total fatty acid production was observed in engineered strains over a negative control strain (lacking β-oxidation), with a composition dominated by C12 and C14 saturated and unsaturated fatty acids. Next, a strategy for producing undecane via a combination of biotechnology and heterogeneous catalysis is demonstrated. Fatty acids were extracted from a culture of an overproducing strain into an alkane phase and fed to a Pd/C plug flow reactor, where the extracted fatty acids were decarboxylated into saturated alkanes. The result is an enriched alkane stream that can be recycled for continuous extractions. Complete conversion of C12 fatty acids extracted from culture to alkanes has been demonstrated yielding a concentration of 0.44 g L−1 (culture volume) undecane. PMID:20073090

  18. CRADA Final Report for CRADA Number NFE-10-02991 "Development and Commercialization of Alternative Carbon Precursors and Conversion Technologies"

    SciTech Connect

    Norris, Rober; Paulauskas, Felix; Naskar, Amit; Kaufman, Michael; Yarborough, Ken; Derstine, Chris

    2013-10-01

    The overall objective of the collaborative research performed by the Oak Ridge National Laboratory (ORNL) and the Dow Chemical Company under this Cooperative Research And Development Agreement (CRADA NFE-10-02991) was to develop and establish pathways to commercialize new carbon fiber precursor and conversion technology. This technology is to produce alternative polymer fiber precursor formulations as well as scaled energy-efficient advanced conversion technology to enable continuous mode conversion to obtain carbonized fibers that are technically and economically viable in industrial markets such as transportation, wind energy, infrastructure and oil drilling applications. There have been efforts in the past to produce a low cost carbon fiber. These attempts have to be interpreted against the backdrop of the market needs at the time, which were strictly military aircraft and high-end aerospace components. In fact, manufacturing costs have been reduced from those days to current practice, where both process optimization and volume production have enabled carbon fiber to become available at prices below $20/lb. However, the requirements of the lucrative aerospace market limits further price reductions from current practice. This approach is different because specific industrial applications are targeted, most specifically wind turbine blade and light vehicle transportation, where aircraft grade carbon fiber is not required. As a result, researchers are free to adjust both manufacturing process and precursor chemistry to meet the relaxed physical specifications at a lower cost. This report documents the approach and findings of this cooperative research in alternative precursors and advanced conversion for production of cost-effective carbon fiber for energy missions. Due to export control, proprietary restrictions, and CRADA protected data considerations, specific design details and processing parameters are not included in this report.

  19. Microbial Metabolism of the Isoprenoid Alkane Pristane

    PubMed Central

    McKenna, E. J.; Kallio, R. E.

    1971-01-01

    The “inert” hydrocarbon pristane (2,6,10,14-tetramethylpentadecane) can be utilized as the sole source of carbon and energy for growth of a coryneform soil isolate. Identification of the metabolites 4,8,12-trimethyltridecanoic acid and α-methylglutaric acid indicates that two pathways of fatty acid metabolism operate in this bacterial strain. The widespread use of pristane as a biological marker appears to be predicated on its structural similarity to phytol and its apparent stability, which may be only a reflection of the inability of microorganisms to carry out its anaerobic destruction. PMID:4327007

  20. Capped Fluorescent Carbon Dots for Detection of Hemin: Role of Number of –OH Groups of Capping Agent in Fluorescence Quenching

    PubMed Central

    Baruah, Upama; Gogoi, Neelam; Chowdhury, Devasish

    2013-01-01

    We have successfully demonstrated the use of capped carbon dot systems, namely, CDs/β-cd, CDs/LMH, and CDs/Suc, as fluorescent sensors for the detection of hemin. The capped carbon dot systems showed quenching of PL intensity in the presence of hemin. The minimum detection limit was determined to be ~1 μM. The PL response with free Fe(II) and Fe(III) was also studied. It was observed that PL quenching of capped carbon dot systems in the presence of hemin is dependent on the number of –OH groups in the capping agent. The order of quenching towards hemin was determined to be CDs/β-cd > CDs/LMH = CDs/Suc > CDs. A possible mechanism to account for the observation is also discussed in the paper. PMID:24453870

  1. Controlling Morphology and Molecular Packing of Alkane Substituted Phthalocyanine Blend Bulk Heterojunction Solar Cells.

    PubMed

    Jurow, Matthew J; Hageman, Brian A; Dimasi, Elaine; Nam, Chang-Yong; Pabon, Cesar; Black, Charles T; Drain, Charles Michael

    2013-02-07

    Systematic changes in the exocyclic substiution of core phthalocyanine platform tune the absorption properties to yield commercially viable dyes that function as the primary light absorbers in organic bulk heterojunction solar cells. Blends of these complementary phthalocyanines absorb a broader portion of the solar spectrum compared to a single dye, thereby increasing solar cell performance. We correlate grazing incidence small angle x-ray scattering structural data with solar cell performance to elucidate the role of nanomorphology of active layers composed of blends of phthalocyanines and a fullerene derivative. A highly reproducible device architecture is used to assure accuracy and is relevant to films for solar windows in urban settings. We demonstrate that the number and structure of the exocyclic motifs dictate phase formation, hierarchical organization, and nanostructure, thus can be employed to tailor active layer morphology to enhance exciton dissociation and charge collection efficiencies in the photovoltaic devices. These studies reveal that disordered films make better solar cells, short alkanes increase the optical density of the active layer, and branched alkanes inhibit unproductive homogeneous molecular alignment.

  2. Hydrogenotrophic denitrification process efficiency and the number of denitrifying bacteria (MPN) in the sequencing batch biofilm reactor (SBBR) with platinum and carbon anodes.

    PubMed

    Kłodowska, Izabella; Rodziewicz, Joanna; Janczukowicz, Wojciech; Gotkowska-Płachta, Anna; Cydzik-Kwiatkowska, Agnieszka

    2016-01-01

    This work reports on the effect of electric current density and anode material (platinum, carbon) on the concentration of oxidized and mineral forms of nitrogen, on physical parameters (pH, redox potential, electrical conductivity) and the number of denitrifying bacteria in the biofilm (MPN). Experiments were conducted under anaerobic conditions without and with the flow of electric current (with density of 79 mA · m(-2) and 132 mA · m(-2)). Results obtained in the study enabled concluding that increasing density of electric current caused a decreasing concentration of nitrate in the reactor with platinum anode (R1) and carbon anode (R2). Its concentration depended on anode material. The highest hydrogenotrophic denitrification efficiency was achieved in R2 in which the process was aided by inorganic carbon (CO2) that originated from carbon anode oxidation and the electrical conductivity of wastewater increased as a result of the presence of HCO3(-) and CO3(2-) ions. Strong oxidizing properties of the platinum anode (R1) prevented the accumulation of adverse forms of nitrogen, including nitrite and ammonia. The increase in electric current density affected also a lower number of denitrifying bacteria (MPN) in the biofilm in both reactors (R1 and R2). Metal oxides accumulated on the surface of the cathode had a toxic effect upon microorganisms and impaired the production of a hydrogen donor.

  3. Number size distribution, mass concentration, and particle composition of PM1, PM2.5, and PM10 in bag filling areas of carbon black production.

    PubMed

    Kuhlbusch, T A J; Neumann, S; Fissan, H

    2004-10-01

    Number size characteristics and PM10 mass concentrations of particles emitted during the packaging of various kinds of carbon blacks were measured continuously in the bag filling areas of three carbon black plants and concurrently at ambient comparison sites. PM10, PM2.5, and PM1 dust fractions were also determined in the bag filling areas. The filter samples were then analyzed for elemental and organic carbon. Comparisons of the measured number size distributions and mass concentrations during bag filling activities with those measured parallel at the ambient site and with those determined during nonworking periods in the work area enabled the characterization of emitted particles. PM10 mass concentrations were consistently elevated (up to a factor of 20 compared to ambient concentrations) during working periods in the bag filling area. Detailed analysis revealed that the carbon black particles released by bag filling activities had a size distribution starting at approximately 400 nm aerodynamic diameter (dae) with modes around 1 microm dae and > 8 microm dae. Ultrafine particles (< 100 nm dae), detected in the bag filling areas, were most likely attributed to noncarbon black sources such as forklift and gas heater emissions.

  4. Thermochemistry of C7H16 to C10H22 alkane isomers: primary, secondary, and tertiary C-H bond dissociation energies and effects of branching.

    PubMed

    Hudzik, Jason M; Bozzelli, Joseph W; Simmie, John M

    2014-10-09

    Standard enthalpies of formation (ΔH°f 298) of methyl, ethyl, primary and secondary propyl, and n-butyl radicals are evaluated and used in work reactions to determine internal consistency. They are then used to calculate the enthalpy of formation for the tert-butyl radical. Other thermochemical properties including standard entropies (S°(T)), heat capacities (Cp(T)), and carbon-hydrogen bond dissociation energies (C-H BDEs) are reported for n-pentane, n-heptane, 2-methylhexane, 2,3-dimethylpentane, and several branched higher carbon number alkanes and their radicals. ΔH°f 298 and C-H BDEs are calculated using isodesmic work reactions at the B3LYP (6-31G(d,p) and 6-311G(2d,2p) basis sets), CBS-QB3, CBS-APNO, and G3MP2B3 levels of theory. Structures, moments of inertia, vibrational frequencies, and internal rotor potentials are calculated at the B3LYP/6-31G(d,p) level for contributions to entropy and heat capacities. Enthalpy calculations for these hydrocarbon radical species are shown to have consistency with the CBS-QB3 and CBS-APNO methods using all work reactions. Our recommended ideal gas phase ΔH°f 298 values are from the average of all CBS-QB3, CBS-APNO, and for G3MP2B3, only where the reference and target radical are identical types, and are compared with literature values. Calculated values show agreement between the composite calculation methods and the different work reactions. Secondary and tertiary C-H bonds in the more highly branched alkanes are shown to have bond energies that are several kcal mol(-1) lower than the BDEs in corresponding smaller molecules often used as reference species. Entropies and heat capacities are calculated and compared to literature values (when available) when all internal rotors are considered.

  5. Separation of very hydrophobic analytes by micellar electrokinetic chromatography IV. Modeling of the effective electrophoretic mobility from carbon number equivalents and octanol-water partition coefficients.

    PubMed

    Huhn, Carolin; Pyell, Ute

    2008-07-11

    It is investigated whether those relationships derived within an optimization scheme developed previously to optimize separations in micellar electrokinetic chromatography can be used to model effective electrophoretic mobilities of analytes strongly differing in their properties (polarity and type of interaction with the pseudostationary phase). The modeling is based on two parameter sets: (i) carbon number equivalents or octanol-water partition coefficients as analyte descriptors and (ii) four coefficients describing properties of the separation electrolyte (based on retention data for a homologous series of alkyl phenyl ketones used as reference analytes). The applicability of the proposed model is validated comparing experimental and calculated effective electrophoretic mobilities. The results demonstrate that the model can effectively be used to predict effective electrophoretic mobilities of neutral analytes from the determined carbon number equivalents or from octanol-water partition coefficients provided that the solvation parameters of the analytes of interest are similar to those of the reference analytes.

  6. Impacts of Conformational Geometries in Fluorinated Alkanes

    NASA Astrophysics Data System (ADS)

    Brandenburg, Tim; Golnak, Ronny; Nagasaka, Masanari; Atak, Kaan; Sreekantan Nair Lalithambika, Sreeju; Kosugi, Nobuhiro; Aziz, Emad F.

    2016-08-01

    Research of blood substitute formulations and their base materials is of high scientific interest. Especially fluorinated microemulsions based on perfluorocarbons, with their interesting chemical properties, offer opportunities for applications in biomedicine and physical chemistry. In this work, carbon K-edge absorption spectra of liquid perfluoroalkanes and their parent hydrocarbons are presented and compared. Based on soft X-ray absorption, a comprehensive picture of the electronic structure is provided with the aid of time dependent density functional theory. We have observed that conformational geometries mainly influence the chemical and electronic interactions in the presented liquid materials, leading to a direct association of conformational geometries to the dissolving capacity of the presented perfluorocarbons with other solvents like water and possibly gases like oxygen.

  7. Impacts of Conformational Geometries in Fluorinated Alkanes

    PubMed Central

    Brandenburg, Tim; Golnak, Ronny; Nagasaka, Masanari; Atak, Kaan; Sreekantan Nair Lalithambika, Sreeju; Kosugi, Nobuhiro; Aziz, Emad F.

    2016-01-01

    Research of blood substitute formulations and their base materials is of high scientific interest. Especially fluorinated microemulsions based on perfluorocarbons, with their interesting chemical properties, offer opportunities for applications in biomedicine and physical chemistry. In this work, carbon K-edge absorption spectra of liquid perfluoroalkanes and their parent hydrocarbons are presented and compared. Based on soft X-ray absorption, a comprehensive picture of the electronic structure is provided with the aid of time dependent density functional theory. We have observed that conformational geometries mainly influence the chemical and electronic interactions in the presented liquid materials, leading to a direct association of conformational geometries to the dissolving capacity of the presented perfluorocarbons with other solvents like water and possibly gases like oxygen. PMID:27527753

  8. Adsorption of n-alkane vapours at the water surface.

    PubMed

    Biscay, Frédéric; Ghoufi, Aziz; Malfreyt, Patrice

    2011-06-21

    Monte Carlo simulations are reported here to predict the surface tension of the liquid-vapour interface of water upon adsorption of alkane vapours (methane to hexane). A decrease of the surface tension has been established from n-pentane. A correlation has been evidenced between the decrease of the surface tension and the absence of specific arrangement at the water surface for n-pentane and n-hexane. The thermodynamic stability of the adsorption layer and the absence of film for longer alkanes have been checked through the calculation of a potential of mean force. This complements the work recently published [Ghoufi et al., Phys. Chem. Chem. Phys., 2010, 12, 5203] concerning the adsorption of methane at the water surface. The decrease of the surface tension has been interpreted in terms of the degree of hydrogen bonding of water molecules at the liquid-vapour interface upon adsorption.

  9. Melting of thin films of alkanes on magnesium oxide

    NASA Astrophysics Data System (ADS)

    Arnold, T.; Barbour, A.; Chanaa, S.; Cook, R. E.; Fernandez-Canato, D.; Landry, P.; Seydel, T.; Yaron, P.; Larese, J. Z.

    2009-02-01

    Recent incoherent neutron scattering investigations of the dynamics of thin alkane films adsorbed on the Magnesium Oxide (100) surface are reported. There are marked differences in the behaviour of these films, as a function of temperature and coverage, compared to similar measurements on graphite. In particular, it has previously been shown that adsorbed multilayer films on graphite exhibit an interfacial solid monolayer that coexists with bulk-like liquid, well above the bulk melting point. In contrast, these studies show that the alkane films on MgO exhibit no such stabilization of the solid layer closest to the substrate as a function of the film thickness, even though the monolayer crystal structures are remarkably similar. These studies are supported by extensive thermodynamic data, a growing body of structural data from neutron diffraction and state of the art computer modelling

  10. Structure and dynamics of fluorinated alkanes on silicon dioxide surfaces

    NASA Astrophysics Data System (ADS)

    Tsige, Mesfin

    2007-03-01

    Despite their great promise in various applications, the structure and dynamics of fluorinated alkanes at interfaces is still an open question. In particular, the knowledge from both theoretical and experimental perspectives is very limited when it comes to understanding the interface between these systems and a solid substrate. Molecular dynamics simulations based on the All Atom OPLS model are used to predict the equilibrium structure and dynamics of short fluorinated alkanes on both amorphous and crystalline silicon dioxide surfaces. In order to understand the effect of layer-layer interaction on the ordering of chains in a given layer, the thickness of the liquid film is increased layer-by-layer from monolayer to multilayers. Results for structural and dynamics of the liquid films near the silicon dioxide surfaces will be presented.

  11. Site isolation in vanadium phosphorus oxide alkane oxidation

    SciTech Connect

    Thompson, M R; Ebner, J R

    1991-06-01

    Single crystal X-ray diffraction studies of vanadyl pyrophosphate indicate that at least two polytypical structures exists for this active and selective alkane oxidation catalyst. The crystal structures of these materials differ with respect to the symmetry and direction of columns of vanadyl groups within the unit cell. Single crystals of vanadyl pyrophosphate have been generated at extreme temperatures not often experienced by microcrystalline catalysts. The crystallography of the system suggests that other crystalline modifications or disordered phases might also exist. Zeroth-order models of crystal surface termination of vanadyl pyrophosphate have been constructed which conceptually illustrate the ability of vanadyl pyrophosphate to accommodate varying amounts of surface phosphorus parallel to (1,0,0), (0,1,0) and (0,2,4). Pyrophosphate termination of surfaces parallel to (1,0,0) likely results in the isolation of clusters of reactive centers and limits overoxidation of the alkane substrate. 23 refs., 6 figs.

  12. Alkane Biosynthesis Genes in Cyanobacteria and Their Transcriptional Organization

    PubMed Central

    Klähn, Stephan; Baumgartner, Desirée; Pfreundt, Ulrike; Voigt, Karsten; Schön, Verena; Steglich, Claudia; Hess, Wolfgang R.

    2014-01-01

    In cyanobacteria, alkanes are synthesized from a fatty acyl-ACP by two enzymes, acyl–acyl carrier protein reductase and aldehyde deformylating oxygenase. Despite the great interest in the exploitation for biofuel production, nothing is known about the transcriptional organization of their genes or the physiological function of alkane synthesis. The comparison of 115 microarray datasets indicates the relatively constitutive expression of aar and ado genes. The analysis of 181 available genomes showed that in 90% of the genomes both genes are present, likely indicating their physiological relevance. In 61% of them they cluster together with genes encoding acetyl-CoA carboxyl transferase and a short-chain dehydrogenase, strengthening the link to fatty acid metabolism and in 76% of the genomes they are located in tandem, suggesting constraints on the gene arrangement. However, contrary to the expectations for an operon, we found in Synechocystis sp. PCC 6803 specific promoters for the two genes, sll0208 (ado) and sll0209 (aar), which give rise to monocistronic transcripts. Moreover, the upstream located ado gene is driven by a proximal as well as a second, distal, promoter, from which a third transcript, the ~160 nt sRNA SyR9 is transcribed. Thus, the transcriptional organization of the alkane biosynthesis genes in Synechocystis sp. PCC 6803 is of substantial complexity. We verified all three promoters to function independently from each other and show a similar promoter arrangement also in the more distant Nodularia spumigena, Trichodesmium erythraeum, Anabaena sp. PCC 7120, Prochlorococcus MIT9313, and MED4. The presence of separate regulatory elements and the dominance of monocistronic mRNAs suggest the possible autonomous regulation of ado and aar. The complex transcriptional organization of the alkane synthesis gene cluster has possible metabolic implications and should be considered when manipulating the expression of these genes in cyanobacteria. PMID

  13. Monolayer solids of short (perfluoro)alkanes on graphite

    NASA Astrophysics Data System (ADS)

    Bruch, L. W.

    2009-03-01

    Calculations are reported for the relative stability of monolayer solid latices on graphite for C2H6, C3H8, C2F6, and C3F8. Triangular, centered rectangular and two-sublattice herringbone lattices are treated. The calculations use all-atom (AA) models and are based on non-bonding interactions formulated for three dimensional dense phases of alkanes and perfluoroalkanes.

  14. Laboratory spectroscopic analyses of electron irradiated alkanes and alkenes in solar system ices

    NASA Astrophysics Data System (ADS)

    Hand, K. P.; Carlson, R. W.

    2012-03-01

    We report results from laboratory experiments of 10 keV electron irradiation of thin ice films of water and short-chain hydrocarbons at ˜10-8 Torr and temperatures ranging from 70-100 K. Hydrocarbon mixtures include water with C3H8, C3H6, C4H10 (butane and isobutane), and C4H8, (1-butene and cis/trans-2-butene). The double bonds of the alkenes in our initial mixtures were rapidly destroyed or converted to single carbon bonds, covalent bonds with hydrogen, bonds with -OH (hydroxyl), bonds with oxygen (C-O), or double bonds with oxygen (carbonyl). Spectra resulting from irradiation of alkane and alkene ices are largely indistinguishable; the initial differences in film composition are destroyed and the resulting mixture includes long-chain, branched aliphatics, aldehydes, ketones, esters, and alcohols. Methane was observed as a product during radiolysis but CO was largely absent. We find that while some of the carbon is oxidized and lost to CO2 formation, some carbon is sequestered into highly refractory, long-chain aliphatic compounds that remain as a thin residue even after the ice film has been raised to standard temperature and pressure. We conclude that the high availability of hydrogen in our experiments leads to the formation of the formyl radical which then serves as the precursor for formaldehyde and polymerization of longer hydrocarbon chains.

  15. Abiogenic formation of alkanes in the Earth's crust as a minor source for global hydrocarbon reservoirs.

    PubMed

    Sherwood Lollar, B; Westgate, T D; Ward, J A; Slater, G F; Lacrampe-Couloume, G

    2002-04-04

    Natural hydrocarbons are largely formed by the thermal decomposition of organic matter (thermogenesis) or by microbial processes (bacteriogenesis). But the discovery of methane at an East Pacific Rise hydrothermal vent and in other crustal fluids supports the occurrence of an abiogenic source of hydrocarbons. These abiogenic hydrocarbons are generally formed by the reduction of carbon dioxide, a process which is thought to occur during magma cooling and-more commonly-in hydrothermal systems during water-rock interactions, for example involving Fischer-Tropsch reactions and the serpentinization of ultramafic rocks. Suggestions that abiogenic hydrocarbons make a significant contribution to economic hydrocarbon reservoirs have been difficult to resolve, in part owing to uncertainty in the carbon isotopic signatures for abiogenic versus thermogenic hydrocarbons. Here, using carbon and hydrogen isotope analyses of abiogenic methane and higher hydrocarbons in crystalline rocks of the Canadian shield, we show a clear distinction between abiogenic and thermogenic hydrocarbons. The progressive isotopic trends for the series of C1-C4 alkanes indicate that hydrocarbon formation occurs by way of polymerization of methane precursors. Given that these trends are not observed in the isotopic signatures of economic gas reservoirs, we can now rule out the presence of a globally significant abiogenic source of hydrocarbons.

  16. Abiogenic formation of alkanes in the Earth's crust as a minor source for global hydrocarbon reservoirs

    NASA Astrophysics Data System (ADS)

    Sherwood Lollar, B.; Westgate, T. D.; Ward, J. A.; Slater, G. F.; Lacrampe-Couloume, G.

    2002-04-01

    Natural hydrocarbons are largely formed by the thermal decomposition of organic matter (thermogenesis) or by microbial processes (bacteriogenesis). But the discovery of methane at an East Pacific Rise hydrothermal vent and in other crustal fluids supports the occurrence of an abiogenic source of hydrocarbons. These abiogenic hydrocarbons are generally formed by the reduction of carbon dioxide, a process which is thought to occur during magma cooling and-more commonly-in hydrothermal systems during water-rock interactions, for example involving Fischer-Tropsch reactions and the serpentinization of ultramafic rocks. Suggestions that abiogenic hydrocarbons make a significant contribution to economic hydrocarbon reservoirs have been difficult to resolve, in part owing to uncertainty in the carbon isotopic signatures for abiogenic versus thermogenic hydrocarbons. Here, using carbon and hydrogen isotope analyses of abiogenic methane and higher hydrocarbons in crystalline rocks of the Canadian shield, we show a clear distinction between abiogenic and thermogenic hydrocarbons. The progressive isotopic trends for the series of C1-C4 alkanes indicate that hydrocarbon formation occurs by way of polymerization of methane precursors. Given that these trends are not observed in the isotopic signatures of economic gas reservoirs, we can now rule out the presence of a globally significant abiogenic source of hydrocarbons.

  17. Short-chain alkane cycling in deep Gulf of Mexico cold-seep sediments

    NASA Astrophysics Data System (ADS)

    Sibert, R.; Joye, S. B.; Hunter, K.

    2015-12-01

    Mixtures of light hydrocarbon gases are common in deep Gulf of Mexico cold-seep sediments, and are typically dissolved in pore fluids, adsorbed to sediment particles, trapped in methane ice, or as free gas. The dominant component in these natural gas mixtures is usually methane (>80% C1), but ethane (C2) and propane (C3) are nearly always present in trace amounts (<1% total). The processes that control the concentration and isotopic signature of these gases in sediments are well explained for methane, but the controls for C2/C3 cycling are still a relative mystery. Methane production proceeds in deep anoxic sediments by either 1) thermocatalytic cracking of fossil organic matter, or 2) as a direct product of microbial metabolism, i.e. methanogenesis. In surface sediments, it appears that both microbial consumption and chemical deposition of methane (i.e. as methane clathrate) ensures that >95% of the methane produced at depth never reaches the water column. Production of C1 and C2 in deep-sea sediments has been historically attributed only to thermocatalytic processes, though limited data suggests production of C2/C3 compounds through the activity of archaea at depth. Furthermore, carbon isotopic data on ethane and propane from deep cores of Gulf of Mexico sediments suggest alkanogenesis at >3 m depth in the sediment column and alkane oxidation in uppermost oxidant-rich sediments. Additional studies have also isolated microorganisms capable of oxidizing ethane and propane in the laboratory, but field studies of microbial-driven dynamics of C2/C3 gases in cold-seep sediments are rare. Here, we present the results of a series of incubation experiments using sediment slurries culled from surface sediments from one of the most prolific natural oil and gas seeps in the Gulf of Mexico. Rates of alkane oxidation were measured under a variety of conditions to assess the surface-driven microbial controls on C2/C3 cycling in cold-seep environments. Such microbial processes

  18. Cloning and characterization of an n-alkane-inducible cytochrome P450 gene essential for n-decane assimilation by Yarrowia lipolytica.

    PubMed

    Iida, T; Ohta, A; Takagi, M

    1998-11-01

    A gene encoding cytochrome P450 involved in n-alkane utilization was cloned from an n-alkane assimilating yeast, Yarrowia lipolytica CX161-1B. The RT-PCR was performed on the mRNA prepared from the cells grown on n-alkane as a template using degenerated PCR primers designed for the conserved amino acid sequences of the CYP52 family. The RT-PCR amplified fragment was then used as a probe to isolate genes coding for P450 of the CYP52 family from the genomic DNA library of the strain CX161-1B. The nucleotide sequence of one of the positive clones was determined. An open reading frame which had the same nucleotide sequence as the RT-PCR-amplified fragment was identified. It was of 523 amino acid residues, 60.2 kDa in molecular mass, and had 30-45% sequence identity with the other members of the CYP52 family of Candida species so far analysed. The expression of the P450 gene that was named as YlALK1 was induced by n-tetradecane and repressed by glycerol. A YlALK1 gene disruptant did not grow well on n-decane, but grew on longer-chain n-alkanes such as hexadecane as a sole carbon source. Introduction of YlALK1 on a plasmid to the disruptant restored the decane assimilation. These results suggest that the YlALK1 gene product is the major P450A1k to metabolize short-chain n-alkanes such as decane and dodecane in Y. lipolytica.

  19. Evidence for alkane coordination to an electron-rich uranium center.

    PubMed

    Castro-Rodriguez, Ingrid; Nakai, Hidetaka; Gantzel, Peter; Zakharov, Lev N; Rheingold, Arnold L; Meyer, Karsten

    2003-12-24

    A series of five uranium-alkane complexes of the general formula [(ArO)3tacn)U(alkane)].(cy-alkane) has been synthesized and crystallographically characterized. In all cases, X-ray diffraction studies revealed a pseudo-six-coordinate trivalent uranium core structure, [(ArO)3tacn)U], with a coordinated alkane ligand at the axial position. The average U-C bond distance to the bound alkane was determined to be 3.798 A, which is considerably shorter than the sum of the van der Waals radii of the U atom and a CH2 or CH3 unit (3.9 A). In all complexes, the alkane is coordinated in an eta2-H,C fashion.

  20. Polarizabilities and van der Waals C6 coefficients of fullerenes from an atomistic electrodynamics model: Anomalous scaling with number of carbon atoms.

    PubMed

    Saidi, Wissam A; Norman, Patrick

    2016-07-14

    The van der Waals C6 coefficients of fullerenes are shown to exhibit an anomalous dependence on the number of carbon atoms N such that C6 ∝ N(2.2) as predicted using state-of-the-art quantum mechanical calculations based on fullerenes with small sizes, and N(2.75) as predicted using a classical-metallic spherical-shell approximation of the fullerenes. We use an atomistic electrodynamics model where each carbon atom is described by a polarizable object to extend the quantum mechanical calculations to larger fullerenes. The parameters of this model are optimized to describe accurately the static and complex polarizabilities of the fullerenes by fitting against accurate ab initio calculations. This model shows that C6 ∝ N(2.8), which is supportive of the classical-metallic spherical-shell approximation. Additionally, we show that the anomalous dependence of the polarizability on N is attributed to the electric charge term, while the dipole-dipole term scales almost linearly with the number of carbon atoms.

  1. Fundamental Flame Velocities of Pure Hydrocarbons I : Alkanes, Alkenes, Alkynes Benzene, and Cyclohexane

    NASA Technical Reports Server (NTRS)

    Gerstein, Melvin; Levine, Oscar; Wong, Edgar L

    1950-01-01

    The flame velocities of 37 pure hydrocarbons including normal and branched alkanes, alkenes, and alkynes; as well as benzene and cyclohexane, together with the experimental technique employed are presented. The normal alkanes have about the same flame velocity from ethane through heptane with methane being about 16 percent lower. Unsaturation increases the flame velocity in the order of alkanes, alkenes, and alkynes. Branching reduces the flame velocity.

  2. Draft Genome Sequence of Gordonia sihwensis Strain 9, a Branched Alkane-Degrading Bacterium

    PubMed Central

    Brown, Lisa M.; Gunasekera, Thusitha S.; Striebich, Richard C.

    2016-01-01

    Gordonia sihwensis strain 9 is a Gram-positive bacterium capable of efficient aerobic degradation of branched and normal alkanes. The draft genome of G. sihwensis S9 is 4.16 Mb in size, with 3,686 coding sequences and 68.1% G+C content. Alkane monooxygenase and P-450 cytochrome genes required for alkane degradation are predicted in G. sihwensis S9. PMID:27340079

  3. Alkanes in Natural and Synthetic Petroleums: Comparison of Calculated and Actual Compositions.

    PubMed

    Friedel, R A; Sharkey, A G

    1963-03-22

    A similarity exists between the low molecular weight alkane isomers in crude oil and Fischer-Tropsch catalytic synthesis products. The composition of the C(4) through C(7) alkane isomers in a crude oil was calculated quantitatively with the equations previously used to calculate the alkane isomers in Fischer-Tropsch products. These results may have significance in ascertaining the origin of the volatile hydrocarbons in crude oils.

  4. Revised Charge Equilibration Parameters for More Accurate Hydration Free Energies of Alkanes.

    PubMed

    Davis, Joseph E; Patel, Sandeep

    2010-01-01

    We present a refined alkane charge equilibration (CHEQ) force field, improving our previously reported CHEQ alkane force field[1] to better reproduce experimental hydration free energies. Experimental hydration free energies of ethane, propane, butane, pentane, hexane, and heptane are reproduced to within 3.6% on average. We demonstrate that explicit polarization results in a shift in molecular dipole moment for water molecules associated with the alkane molecule. We also show that our new parameters do not have a significant effect on the alkane-water interactions as measured by the radial distribution function (RDF).

  5. Identification and use of an alkane transporter plug-in for applications in biocatalysis and whole-cell biosensing of alkanes

    NASA Astrophysics Data System (ADS)

    Grant, Chris; Deszcz, Dawid; Wei, Yu-Chia; Martínez-Torres, Rubéns Julio; Morris, Phattaraporn; Folliard, Thomas; Sreenivasan, Rakesh; Ward, John; Dalby, Paul; Woodley, John M.; Baganz, Frank

    2014-07-01

    Effective application of whole-cell devices in synthetic biology and biocatalysis will always require consideration of the uptake of molecules of interest into the cell. Here we demonstrate that the AlkL protein from Pseudomonas putida GPo1 is an alkane import protein capable of industrially relevant rates of uptake of C7-C16 n-alkanes. Without alkL expression, native E.coli n-alkane uptake was the rate-limiting step in both the whole-cell bioconversion of C7-C16 n-alkanes and in the activation of a whole-cell alkane biosensor by C10 and C11 alkanes. By coexpression of alkL as a transporter plug-in, specific yields improved by up to 100-fold for bioxidation of >C12 alkanes to fatty alcohols and acids. The alkL protein was shown to be toxic to the host when overexpressed but when expressed from a vector capable of controlled induction, yields of alkane oxidation were improved a further 10-fold (8 g/L and 1.7 g/g of total oxidized products). Further testing of activity on n-octane with the controlled expression vector revealed the highest reported rates of 120 μmol/min/g and 1 g/L/h total oxidized products. This is the first time AlkL has been shown to directly facilitate enhanced uptake of C10-C16 alkanes and represents the highest reported gain in product yields resulting from its use.

  6. Identification and use of an alkane transporter plug-in for applications in biocatalysis and whole-cell biosensing of alkanes.

    PubMed

    Grant, Chris; Deszcz, Dawid; Wei, Yu-Chia; Martínez-Torres, Rubéns Julio; Morris, Phattaraporn; Folliard, Thomas; Sreenivasan, Rakesh; Ward, John; Dalby, Paul; Woodley, John M; Baganz, Frank

    2014-07-28

    Effective application of whole-cell devices in synthetic biology and biocatalysis will always require consideration of the uptake of molecules of interest into the cell. Here we demonstrate that the AlkL protein from Pseudomonas putida GPo1 is an alkane import protein capable of industrially relevant rates of uptake of C7-C16 n-alkanes. Without alkL expression, native E.coli n-alkane uptake was the rate-limiting step in both the whole-cell bioconversion of C7-C16 n-alkanes and in the activation of a whole-cell alkane biosensor by C10 and C11 alkanes. By coexpression of alkL as a transporter plug-in, specific yields improved by up to 100-fold for bioxidation of >C12 alkanes to fatty alcohols and acids. The alkL protein was shown to be toxic to the host when overexpressed but when expressed from a vector capable of controlled induction, yields of alkane oxidation were improved a further 10-fold (8 g/L and 1.7 g/g of total oxidized products). Further testing of activity on n-octane with the controlled expression vector revealed the highest reported rates of 120 μmol/min/g and 1 g/L/h total oxidized products. This is the first time AlkL has been shown to directly facilitate enhanced uptake of C10-C16 alkanes and represents the highest reported gain in product yields resulting from its use.

  7. Identification and use of an alkane transporter plug-in for applications in biocatalysis and whole-cell biosensing of alkanes

    PubMed Central

    Grant, Chris; Deszcz, Dawid; Wei, Yu-Chia; Martínez-Torres, Rubéns Julio; Morris, Phattaraporn; Folliard, Thomas; Sreenivasan, Rakesh; Ward, John; Dalby, Paul; Woodley, John M.; Baganz, Frank

    2014-01-01

    Effective application of whole-cell devices in synthetic biology and biocatalysis will always require consideration of the uptake of molecules of interest into the cell. Here we demonstrate that the AlkL protein from Pseudomonas putida GPo1 is an alkane import protein capable of industrially relevant rates of uptake of C7-C16 n-alkanes. Without alkL expression, native E.coli n-alkane uptake was the rate-limiting step in both the whole-cell bioconversion of C7-C16 n-alkanes and in the activation of a whole-cell alkane biosensor by C10 and C11 alkanes. By coexpression of alkL as a transporter plug-in, specific yields improved by up to 100-fold for bioxidation of >C12 alkanes to fatty alcohols and acids. The alkL protein was shown to be toxic to the host when overexpressed but when expressed from a vector capable of controlled induction, yields of alkane oxidation were improved a further 10-fold (8 g/L and 1.7 g/g of total oxidized products). Further testing of activity on n-octane with the controlled expression vector revealed the highest reported rates of 120 μmol/min/g and 1 g/L/h total oxidized products. This is the first time AlkL has been shown to directly facilitate enhanced uptake of C10-C16 alkanes and represents the highest reported gain in product yields resulting from its use. PMID:25068650

  8. Pre-Existing Carbon Structure and Its Effect on Site-Specific Carbon Isotopes in Small Organic Molecules

    NASA Astrophysics Data System (ADS)

    Piasecki, A.; Eiler, J. M.

    2014-12-01

    The ability to measure site-specific isotopes in organic molecules allows for better understanding of the mechanisms of their biosynthetic and/or catagenic formation and destruction. Here we examine for site-specific isotopic composition of propane from natural and synthetic sources using novel instruments and techniques gas source mass spectrometry 1, and discuss the possible relationship of our findings to recent independent evidence from NMR measurements for the isotopic structures of long-chain alkanes2. A recent NMR study2 demonstrates that n-alkanes can be divided into three groups according to their site-specific carbon isotope structure: long (C16+) even carbon number, long (C17+) odd carbon number , and short (C11-C15). We modeled the isotopic site-specific composition of propane derived from these three distinct groups. If propane is cleaved from such long-chain hydrocarbons without fractionation, the long odd-numbered and the shorter alkanes would produce propane with an average terminal position 6-7‰ lighter than the center position, while the long even-numbered chain compounds would produce propane with a terminal position averaging around 7‰ heavier than the center. If, instead the fractionation associated with cleaving propane from such parent molecules is ~10‰ (as seems likely), then these average terminal — center differences should be decreased by ~5 ‰ (i.e., to -11-12 and +1-2 ‰, respectively). We will compare these predictions with our previous demonstrations of the changes in bulk and site specific compositions in propane due to isotope exchange equilibria, diffusion and conventional models of kerogen 'cracking', and will use these models as a framework for interpreting the observed site-specific isotopic compositions of propane from diverse natural gas deposits. 1. Piasecki, A. et al. Site-Specific Carbon Isotope Measurement of Organics by Gas Source Mass Spectrometry. Mineralogical Magazine 77, (2013). 2. Gilbert, A., Yamada, K

  9. Reductive dechlorination of chlorinated alkanes and alkenes by iron metal and metal mixtures

    SciTech Connect

    Orth, R.G.; McKenzie, D.E.

    1995-12-31

    Reductive dechlorination using zero valent metals such as iron has seen an increase in interest over the past few years with the extension of iron dechlorination to in-situ treatment of ground water using a process developed by Gillham and O`Hannes in 1994. Earlier applications included the use of metals for water treatment for the degradation of halogenated pesticides. This increased interest is demonstrated by the recent ACS symposium on zero valent metal dechlorination. The work that will be presented involves the reduction of selected chlorinated alkanes and alkenes beginning with chlorobutanes. The position of the chlorines on the carbon chain relative to each other was studied by determining the rates of the dechlorination processes. These studies were carried out in seated batch reactors so that loss of the chlorinated hydrocarbons was minimized and total carbon and chloride mass balances could be obtained. The goal of the studies was to understand the mechanism of the reaction that is believed to follow metal corrosion processes involving two electron transfer reactions.

  10. Thermochemical sulphate reduction (TSR) versus maturation and their effects on hydrogen stable isotopes of very dry alkane gases

    NASA Astrophysics Data System (ADS)

    Liu, Q. Y.; Worden, R. H.; Jin, Z. J.; Liu, W. H.; Li, J.; Gao, B.; Zhang, D. W.; Hu, A. P.; Yang, C.

    2014-07-01

    Here we report the first study of the effect of thermochemical sulphate reduction (TSR) on the hydrogen isotopes of natural gas. Variably sour (H2S-bearing) and very dry (>97% methane) gas samples from Lower Triassic, Permian and Carboniferous marine carbonate reservoirs in the Sichuan Basin, China, have been analysed. All gases seem to have been sourced from mature marine kerogen and contain H2S that resulted from TSR. The Carboniferous samples are largely unaffected by TSR and were used to assess the effects of normal thermal maturation processes on the carbon and hydrogen isotopes of methane and ethane as a function of gas dryness (a proxy for thermal maturity). Maturation led to heavier carbon isotopes of methane and ethane and hydrogen isotopes of ethane; in contrast methane hydrogen isotopes seem to have little systematic variation with increasing maturity. TSR did not have a systematic effect on the hydrogen isotopes of methane, although the spread of values diminished (ending up at a constant -120‰) as TSR proceeded. This was possibly due to the partial thermochemical sulphate reduction of ethane adding isotopically light methane and thus offsetting the Rayleigh fractionation effects of TSR of methane. In contrast, hydrogen isotopes of ethane became much heavier as TSR proceeded, to values greater than those for samples only influenced by maturation. Under some circumstances, the effects of TSR can be identified and discerned from the effects of normal thermal maturation by plotting the difference between the carbon isotope compositions of methane and ethane and the difference between the hydrogen isotope compositions of methane and ethane. Do the hydrogen isotope ratios of alkane gases systematically vary as a function of dryness or sourness? Do the hydrogen isotope ratios of alkane gases from the Carboniferous, Permian and Lower Triassic dry gas reservoirs help reveal the maturity and/or extent of TSR in the Sichuan Basin? Is it possible to separate and

  11. Enhanced production of n-alkanes in Escherichia coli by spatial organization of biosynthetic pathway enzymes.

    PubMed

    Rahmana, Ziaur; Sung, Bong Hyun; Yi, Ji-Yeun; Bui, Le Minh; Lee, Jun Hyoung; Kim, Sun Chang

    2014-12-20

    Alkanes chemically mimic hydrocarbons found in petroleum, and their demand as biofuels is steadily increasing. Biologically, n-alkanes are produced from fatty acyl-ACPs by acyl-ACP reductases (AARs) and aldehyde deformylating oxygenases (ADOs). One of the major impediments in n-alkane biosynthesis is the low catalytic turnover rates of ADOs. Here, we studied n-alkane biosynthesis in Escherichia coli using a chimeric ADO-AAR fusion protein or zinc finger protein-guided ADO/AAR assembly on DNA scaffolds to control their stoichiometric ratios and spatial arrangements. Bacterial production of n-alkanes with the ADO-AAR fusion protein was increased 4.8-fold (24 mg/L) over a control strain expressing ADO and AAR separately. Optimal n-alkane biosynthesis was achieved when the ADO:AAR binding site ratio on a DNA scaffold was 3:1, yielding an 8.8-fold increase (44 mg/L) over the control strain. Our findings indicate that the spatial organization of alkane-producing enzymes is critical for efficient n-alkane biosynthesis in E. coli.

  12. 40 CFR 721.2625 - Reaction product of alkane-diol and epichlorohydrin.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Reaction product of alkane-diol and... Specific Chemical Substances § 721.2625 Reaction product of alkane-diol and epichlorohydrin. (a) Chemical... as reaction product of alkanediol and epichlorohydrin (PMN P-89-760) is subject to reporting...

  13. 40 CFR 721.2625 - Reaction product of alkane-diol and epichlorohydrin.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Reaction product of alkane-diol and... Specific Chemical Substances § 721.2625 Reaction product of alkane-diol and epichlorohydrin. (a) Chemical... as reaction product of alkanediol and epichlorohydrin (PMN P-89-760) is subject to reporting...

  14. 40 CFR 721.2625 - Reaction product of alkane-diol and epichlorohydrin.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Reaction product of alkane-diol and... Specific Chemical Substances § 721.2625 Reaction product of alkane-diol and epichlorohydrin. (a) Chemical... as reaction product of alkanediol and epichlorohydrin (PMN P-89-760) is subject to reporting...

  15. 40 CFR 721.2625 - Reaction product of alkane-diol and epichlorohydrin.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Reaction product of alkane-diol and... Specific Chemical Substances § 721.2625 Reaction product of alkane-diol and epichlorohydrin. (a) Chemical... as reaction product of alkanediol and epichlorohydrin (PMN P-89-760) is subject to reporting...

  16. 40 CFR 721.2625 - Reaction product of alkane-diol and epichlorohydrin.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Reaction product of alkane-diol and... Specific Chemical Substances § 721.2625 Reaction product of alkane-diol and epichlorohydrin. (a) Chemical... as reaction product of alkanediol and epichlorohydrin (PMN P-89-760) is subject to reporting...

  17. A Model of Reduced Kinetics for Alkane Oxidation Using Constituents and Species for N-Heptane

    NASA Technical Reports Server (NTRS)

    Harstad, Kenneth G.; Bellan, Josette

    2011-01-01

    The reduction of elementary or skeletal oxidation kinetics to a subgroup of tractable reactions for inclusion in turbulent combustion codes has been the subject of numerous studies. The skeletal mechanism is obtained from the elementary mechanism by removing from it reactions that are considered negligible for the intent of the specific study considered. As of now, there are many chemical reduction methodologies. A methodology for deriving a reduced kinetic mechanism for alkane oxidation is described and applied to n-heptane. The model is based on partitioning the species of the skeletal kinetic mechanism into lights, defined as those having a carbon number smaller than 3, and heavies, which are the complement of the species ensemble. For modeling purposes, the heavy species are mathematically decomposed into constituents, which are similar but not identical to groups in the group additivity theory. From analysis of the LLNL (Lawrence Livermore National Laboratory) skeletal mechanism in conjunction with CHEMKIN II, it is shown that a similarity variable can be formed such that the appropriately non-dimensionalized global constituent molar density exhibits a self-similar behavior over a very wide range of equivalence ratios, initial pressures and initial temperatures that is of interest for predicting n-heptane oxidation. Furthermore, the oxygen and water molar densities are shown to display a quasi-linear behavior with respect to the similarity variable. The light species ensemble is partitioned into quasi-steady and unsteady species. The reduced model is based on concepts consistent with those of Large Eddy Simulation (LES) in which functional forms are used to replace the small scales eliminated through filtering of the governing equations; in LES, these small scales are unimportant as far as the overwhelming part of dynamic energy is concerned. Here, the scales thought unimportant for recovering the thermodynamic energy are removed. The concept is tested by

  18. Multiple sources of alkanes in Quaternary oceanic sediment of Antarctica

    USGS Publications Warehouse

    Kvenvolden, K.A.; Rapp, J.B.; Golan-Bac, M.; Hostettler, F.D.

    1987-01-01

    Normal alkanes (n-C13n-C36), isoprenoid hydrocarbons (i-C15, i-C16, i-C18, i-C19, and i-C20) triterpanes (C27C32), and (C27C29) are present in low concentrations offshore Antarctica in near-surface, Quaternary sediment of the Wilkes Land continental margin and of the western Ross Sea. The distributions of these hydrocarbons are interpreted relative to possible sources and processes. The hydrocarbons appear to be mixtures of primary and recycled material from marine and terrigenous sources. The n-alkanes are most abundant and are characterized by two distinct populations, one of probable marine origin and the other likely from terrigenous, vascular plant sources. Because the continent of Antarctica today is devoid of higher plants, the plant-derived hydrocarbons in these offshore sediments probably came from wind-blown material and recycled Antarctic sediment that contains land-plant remains from an earlier period of time. Isoprenoid hydrocarbons are partially recycled and mainly of marine origin; the dominance of pristane over phytane suggests oxic paleoenvironmental conditions. Both modern and ancient triterpanes and steranes are present, and the distribution of these indicates a mixture of primary and recycled bacterial, algal, and possible higher-plant materials. Although the sampled sediments were deposited during the Quaternary, they apparently contain a significant component of hydrocarbons of pre-Quaternary age. ?? 1987.

  19. Geologic seepage of methane and light alkanes in Los Angeles

    NASA Astrophysics Data System (ADS)

    Doezema, L. A.; Chang, K.; Baril, R.; Nwachuku, I.; Contreras, P.; Marquez, A.; Howard, D.

    2013-12-01

    Natural geologic seepage of methane from underground oil and natural gas reservoirs has been suggested to be an underreported part of the global methane budget. Other light alkanes are also given off in combination with the methane seepage, making it possible that geologic seepage is also a potentially significant global source of these light alkanes. This study reports C1-C5 findings from geologic seepage made in the Los Angeles region. Microseepage, invisible escape of gases, was measured primarily at Kenneth Hahn Regional Park, while macroseepage, the visible release of gases, was measured at the La Brea Tar Pits. Samples were collected using stainless steel canisters and flux chambers and were analyzed using gas chromatography with flame ionization detectors (GC-FID). Average microseepage flux rates of 0.95 μg m-2 h-1 for ethane and 0.51 μg m-2 h-1 were found for propane, while average macroseepage rates for methane, ethane, and propane were 664, 19.8, and 18.1 mg m-2 h-1 respectively. Relationships between microseepage flux rate and location of underground oil and natural deposit and earthquake fault lines are presented. Additionally, the relative importance of findings in context with global budgets and local air quality is discussed.

  20. Particle size distribution of n-alkanes and polycyclic aromatic hydrocarbons (PAHS) in urban and industrial aerosol of Algiers, Algeria.

    PubMed

    Ladji, R; Yassaa, N; Balducci, C; Cecinato, A

    2014-02-01

    The distribution of ambient air n-alkanes and polycyclic aromatic hydrocarbons (PAHs) associated to particles with aerodynamic diameters lesser than 10 μm (PM(10)) into six fractions (five stages and a backup filter) was studied for the first time in Algeria. Investigation took place during September of 2007 at an urban and industrial site of Algiers. Size-resolved samples (<0.49, 0.49-0.95, 0.95-1.5, 1.5-3.0, 3.0-7.2, and 7.2-10 μm) were concurrently collected at the two sampling sites using five-stage high-volume cascade impactors. Most of n-alkanes (~72 %) and PAHs (~90 %) were associated with fine particles ≤ 1.5 μm in both urban and industrial atmosphere. In both cases, the n-alkane contents exhibited bimodal or weakly bimodal distribution peaking at the 0.95-1.5-μm size range within the fine mode and at 7.3-10 μm in the coarse mode. Low molecular weight PAHs displayed bimodal patterns peaking at 0.49-0.95 and 7.3-10 μm, while high molecular weight PAHs exhibited mono-modal distribution with maximum in the <0.49-μm fraction. While the mass mean diameter of total n-alkanes in the urban and industrial sites was 0.70 and 0.84 μm, respectively, it did not exceed 0.49 μm for PAHs. Carbon preference index (~1.1), wax% (10.1-12.8), and the diagnostic ratios for PAHs all revealed that vehicular emission was the major source of these organic compounds in PM(10) during the study periods and that the contribution of epicuticular waxes emitted by terrestrial plants was minor. According to benzo[a]pyrene-equivalent carcinogenic power rates, ca. 90 % of overall PAH toxicity across PM(10) was found in particles ≤ 0.95 μm in diameter which could induce adverse health effects to the population living in these areas.

  1. Genes involved in alkane degradation in the Alcanivorax hongdengensis strain A-11-3.

    PubMed

    Wang, Wanpeng; Shao, Zongze

    2012-04-01

    Alcanivorax hongdengensis A-11-3 is a newly identified type strain isolated from the surface water of the Malacca and Singapore Straits that can degrade a wide range of alkanes. To understand the degradation mechanism of this strain, the genes encoding alkane hydroxylases were obtained by PCR screening and shotgun sequencing of a genomic fosmid library. Six genes involved in alkane degradation were found, including alkB1, alkB2, p450-1, p450-2, p450-3 and almA. Heterogeneous expression analysis confirmed their functions as alkane oxidases in Pseudomonas putida GPo12 (pGEc47ΔB) or Pseudomonas fluorescens KOB2Δ1. Q-PCR revealed that the transcription of alkB1 and alkB2 was enhanced in the presence of n-alkanes C(12) to C(24); three p450 genes were up-regulated by C(8)-C(16) n-alkanes at different levels, whereas enhanced expression of almA was observed when strain A-11-3 grew with long-chain alkanes (C(24) to C(36)). In the case of branched alkanes, pristane significantly enhanced the expression of alkB1, p450-3 and almA. The six genes enable strain A-11-3 to degrade short (C(8)) to long (C(36)) alkanes that are straight or branched. The ability of A. hongdengensis A-11-3 to thrive in oil-polluted marine environments may be due to this strain's multiple systems for alkane degradation and its range of substrates.

  2. 40 CFR 721.10625 - Distillation bottoms, alkylated benzene by-product, brominated and bromo diphenyl alkane (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... benzene by-product, brominated and bromo diphenyl alkane (generic). 721.10625 Section 721.10625 Protection... Distillation bottoms, alkylated benzene by-product, brominated and bromo diphenyl alkane (generic). (a... generically as distillation bottoms, alkylated benzene by-product, brominated and bromo diphenyl alkane...

  3. 40 CFR 721.10625 - Distillation bottoms, alkylated benzene by-product, brominated and bromo diphenyl alkane (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... benzene by-product, brominated and bromo diphenyl alkane (generic). 721.10625 Section 721.10625 Protection... Distillation bottoms, alkylated benzene by-product, brominated and bromo diphenyl alkane (generic). (a... generically as distillation bottoms, alkylated benzene by-product, brominated and bromo diphenyl alkane...

  4. 40 CFR 721.10178 - Distillates (Fischer-Tropsch), hydroisomerized middle, C10-13-branched alkane fraction.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...), hydroisomerized middle, C10-13-branched alkane fraction. 721.10178 Section 721.10178 Protection of Environment...), hydroisomerized middle, C10-13-branched alkane fraction. (a) Chemical substance and significant new uses subject... middle, C10-13-branched alkane fraction (PMN P-04-319; CAS No. 642928-30-1) is subject to reporting...

  5. The Genome of the Moderate Halophile Amycolicicoccus subflavus DQS3-9A1T Reveals Four Alkane Hydroxylation Systems and Provides Some Clues on the Genetic Basis for Its Adaptation to a Petroleum Environment

    PubMed Central

    Nie, Yong; Fang, Hui; Li, Yan; Chi, Chang-Qiao; Tang, Yue-Qin; Wu, Xiao-Lei

    2013-01-01

    The moderate halophile Amycolicicoccus subflavus DQS3-9A1T is the type strain of a novel species in the recently described novel genus Amycolicicoccus, which was isolated from oil mud precipitated from oil produced water. The complete genome of A. subflavus DQS3-9A1T has been sequenced and is characteristic of harboring the genes for adaption to the harsh petroleum environment with salinity, high osmotic pressure, and poor nutrient levels. Firstly, it characteristically contains four types of alkane hydroxylases, including the integral-membrane non-heme iron monooxygenase (AlkB) and cytochrome P450 CYP153, a long-chain alkane monooxygenase (LadA) and propane monooxygenase. It also accommodates complete pathways for the response to osmotic pressure. Physiological tests proved that the strain could grow on n-alkanes ranging from C10 to C36 and propane as the sole carbon sources, with the differential induction of four kinds of alkane hydroxylase coding genes. In addition, the strain could grow in 1–12% NaCl with the putative genes responsible for osmotic stresses induced as expected. These results reveal the effective adaptation of the strain DQS3-9A1T to harsh oil environment and provide a genome platform to investigate the global regulation of different alkane metabolisms in bacteria that are crucially important for petroleum degradation. To our knowledge, this is the first report to describe the co-existence of such four types of alkane hydroxylases in a bacterial strain. PMID:23967144

  6. The genome of the moderate halophile Amycolicicoccus subflavus DQS3-9A1(T) reveals four alkane hydroxylation systems and provides some clues on the genetic basis for its adaptation to a petroleum environment.

    PubMed

    Nie, Yong; Fang, Hui; Li, Yan; Chi, Chang-Qiao; Tang, Yue-Qin; Wu, Xiao-Lei

    2013-01-01

    The moderate halophile Amycolicicoccus subflavus DQS3-9A1(T) is the type strain of a novel species in the recently described novel genus Amycolicicoccus, which was isolated from oil mud precipitated from oil produced water. The complete genome of A. subflavus DQS3-9A1(T) has been sequenced and is characteristic of harboring the genes for adaption to the harsh petroleum environment with salinity, high osmotic pressure, and poor nutrient levels. Firstly, it characteristically contains four types of alkane hydroxylases, including the integral-membrane non-heme iron monooxygenase (AlkB) and cytochrome P450 CYP153, a long-chain alkane monooxygenase (LadA) and propane monooxygenase. It also accommodates complete pathways for the response to osmotic pressure. Physiological tests proved that the strain could grow on n-alkanes ranging from C10 to C36 and propane as the sole carbon sources, with the differential induction of four kinds of alkane hydroxylase coding genes. In addition, the strain could grow in 1-12% NaCl with the putative genes responsible for osmotic stresses induced as expected. These results reveal the effective adaptation of the strain DQS3-9A1(T) to harsh oil environment and provide a genome platform to investigate the global regulation of different alkane metabolisms in bacteria that are crucially important for petroleum degradation. To our knowledge, this is the first report to describe the co-existence of such four types of alkane hydroxylases in a bacterial strain.

  7. Copper-Catalyzed Intermolecular Amidation and Imidation of Unactivated Alkanes

    PubMed Central

    2015-01-01

    We report a set of rare copper-catalyzed reactions of alkanes with simple amides, sulfonamides, and imides (i.e., benzamides, tosylamides, carbamates, and phthalimide) to form the corresponding N-alkyl products. The reactions lead to functionalization at secondary C–H bonds over tertiary C–H bonds and even occur at primary C–H bonds. [(phen)Cu(phth)] (1-phth) and [(phen)Cu(phth)2] (1-phth2), which are potential intermediates in the reaction, have been isolated and fully characterized. The stoichiometric reactions of 1-phth and 1-phth2 with alkanes, alkyl radicals, and radical probes were investigated to elucidate the mechanism of the amidation. The catalytic and stoichiometric reactions require both copper and tBuOOtBu for the generation of N-alkyl product. Neither 1-phth nor 1-phth2 reacted with excess cyclohexane at 100 °C without tBuOOtBu. However, the reactions of 1-phth and 1-phth2 with tBuOOtBu afforded N-cyclohexylphthalimide (Cy-phth), N-methylphthalimide, and tert-butoxycyclohexane (Cy-OtBu) in approximate ratios of 70:20:30, respectively. Reactions with radical traps support the intermediacy of a tert-butoxy radical, which forms an alkyl radical intermediate. The intermediacy of an alkyl radical was evidenced by the catalytic reaction of cyclohexane with benzamide in the presence of CBr4, which formed exclusively bromocyclohexane. Furthermore, stoichiometric reactions of [(phen)Cu(phth)2] with tBuOOtBu and (Ph(Me)2CO)2 at 100 °C without cyclohexane afforded N-methylphthalimide (Me-phth) from β-Me scission of the alkoxy radicals to form a methyl radical. Separate reactions of cyclohexane and d12-cyclohexane with benzamide showed that the turnover-limiting step in the catalytic reaction is the C–H cleavage of cyclohexane by a tert-butoxy radical. These mechanistic data imply that the tert-butoxy radical reacts with the C–H bonds of alkanes, and the subsequent alkyl radical combines with 1-phth2 to form the corresponding N-alkyl imide product

  8. Relation of the number of cross-links and mechanical properties of multi-walled carbon nanotube films formed by a dehydration condensation reaction.

    PubMed

    Ogino, Shin-Ichi; Sato, Yoshinori; Yamamoto, Go; Sasamori, Kenichiro; Kimura, Hisamichi; Hashida, Toshiyuki; Motomiya, Kenichi; Jeyadevan, Balachandran; Tohji, Kazuyuki

    2006-11-23

    Multi-walled carbon nanotube (MWCNT) films were prepared by employing a condensation reaction utilizing 1,3-dicyclohexylcarbodiimide (DCC) to cross-link each MWCNT with carboxylic acid and hydroxyl groups. Morphological changes in the resultant MWCNT films were monitored using scanning electron microscopy and showed that the MWCNTs were randomly intertwined in the films. The prepared MWCNT films were 17 mm in diameter and 20 microm in thickness, and the apparent density was 0.59 g/cm(3). Fourier transform-infrared spectroscopy confirmed that each MWCNT modified with carboxylic acid and hydroxyl groups was cross-linked through the ester bond. It was found that the ratio of the number of ester cross-links and carbon atoms of the nanotubes per unit apparent volume (cm(3)) of condensed-MWCNT films was 5.27 x 10(-3) using thermogravimetric analysis (TGA). The tensile strength and Vickers hardness of condensed-MWCNT films achieved an average of 15 and 9.2 MPa, respectively, and were greater than those of free-standing MWCNT films without ester bond.

  9. Study of double bond equivalents and the numbers of carbon and oxygen atom distribution of dissolved organic matter with negative-mode FT-ICR MS.

    PubMed

    Bae, EunJung; Yeo, In Joon; Jeong, Byungkwan; Shin, Yongsik; Shin, Kyung-Hoon; Kim, Sunghwan

    2011-06-01

    A strong linear relationship was observed between the average double bond equivalence (DBE) and the ratio of carbon to oxygen atoms in oxygenated compounds of dissolved organic matter (DOM). Data were acquired by a Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS), equipped with a negative-mode electrospray ionization source. The slope and y-intercepts extracted from the linear relationship can be used to compare DOM samples originating from different locations. Significant differences in these parameters were observed between inland riverine and offshore coastal DOM samples. Offshore coastal DOM molecules underwent a change of one DBE for each removal or addition of two oxygen atoms. This suggested the existence of multiple carboxyl groups, each of which contains a double bond and two oxygen atoms. Inland riverine samples exhibited a change of ~1.5 DBE following the addition or removal of two oxygen atoms. This extra change in DBE was attributed to cyclic structures or unsaturated chemical bonds. The DBE value with maximum relative abundance and the minimum DBE value for each class of oxygenated compounds showed that approximately two oxygen atoms contributed to a unity change in DBE. The qualitative analyses given here are in a good agreement with results obtained from analyses using orthogonal analytical techniques. This study demonstrates that DBE and the carbon number distribution, observed by high resolution mass spectrometry, can be valuable in elucidating and comparing structural features of oxygenated molecules of DOM.

  10. Transcriptional repression by glycerol of genes involved in the assimilation of n-alkanes and fatty acids in yeast Yarrowia lipolytica.

    PubMed

    Mori, Katsuki; Iwama, Ryo; Kobayashi, Satoshi; Horiuchi, Hiroyuki; Fukuda, Ryouichi; Ohta, Akinori

    2013-03-01

    The yeast Yarrowia lipolytica assimilates n-alkanes or fatty acids as carbon sources. Transcriptional activation by n-alkanes of ALK1 encoding a cytochrome P450 responsible for the terminal hydroxylation has been well studied so far, but its regulation by other carbon sources is poorly understood. Here, we analyzed the transcriptional regulation of ALK1 by glycerol. Glycerol is a preferable carbon source compared to glucose for Y. lipolytica. The n-decane-induced transcript levels of ALK1 as well as the reporter gene under the control of ALK1 promoter were significantly decreased in the simultaneous presence of glycerol, but not of glucose. Similarly, the expression of PAT1 encoding acetoacetyl-CoA thiolase involved in β-oxidation was induced by n-decane or oleic acid, but its transcript level was decreased when glycerol was supplemented. These results indicate that glycerol represses the transcription of the genes involved in the metabolism of hydrophobic carbon sources in Y. lipolytica. Repression of ALK1 transcription by glycerol was not observed in the deletion mutant of GUT1 encoding glycerol kinase, implying that the phosphorylation of glycerol is required for the glycerol repression.

  11. Characterization of a CYP153 alkane hydroxylase gene in a Gram-positive Dietzia sp. DQ12-45-1b and its "team role" with alkW1 in alkane degradation.

    PubMed

    Nie, Yong; Liang, Jie-Liang; Fang, Hui; Tang, Yue-Qin; Wu, Xiao-Lei

    2014-01-01

    CYP153 and AlkB-like hydroxylases were recently discovered in Gram-positive alkane-degrading bacteria. However, it is unclear whether they cooperate with each other in alkane degradation as they do in Gram-negative bacteria. In this paper, we cloned the CYP153 gene from a representative Gram-positive alkane-degrading bacterium, Dietzia sp. DQ12-45-1b. The CYP153 gene transcription in Dietzia sp. DQ12-45-1b and heterologous expression in alkB gene knockout mutant strain Pseudomonas fluorescens KOB2∆1 both confirmed the functions of CYP153 on C6-C10 n-alkanes degradation, but not on longer chain-length n-alkanes. In addition, substrate-binding analysis of the purified CYP153 protein revealed different substrate affinities to C6-C16 n-alkanes, confirming n-alkanes binding to CYP153 protein. Along with AlkW1, an AlkB-like alkane hydroxylase in Dietzia sp. DQ12-45-1b, a teamwork pattern was found in n-alkane degradation, i.e. CYP153 was responsible for hydroxylating n-alkanes shorter than C10 while AlkW1 was responsible for those longer than C14. Further sequence analysis suggested that the high horizontal gene transfer (HGT) potential of CYP153 genes may be universal in Gram-positive alkane-degrading actinomycetes that contain both alkB and CYP153 genes.

  12. Enhancing Alkane Production in Cyanobacterial Lipid Droplets: A ModeFl Platform for Industrially Relevant Compound Production

    PubMed Central

    Peramuna, Anantha; Morton, Ray; Summers, Michael L.

    2015-01-01

    Cyanobacterial lipid droplets (LDs) are packed with hydrophobic energy-dense compounds and have great potential for biotechnological expression and the compartmentalization of high value compounds. Nostoc punctiforme normally accumulates LDs containing neutral lipids, and small amounts of heptadecane, during the stationary phase of growth. In this study, we further enhanced heptadecane production in N. punctiforme by introducing extrachromosomal copies of aar/adc genes, and report the discovery of a putative novel lipase encoded by Npun_F5141, which further enhanced alkane production. Extra copies of all three genes in high light conditions resulted in a 16-fold higher accumulation of heptadecane compared to the wild type strain in the exponential phase. LD accumulation during exponential phase also increased massively to accommodate the heptadecane production. A large number of small, less fluorescent LDs were observed at the cell periphery in exponential growth phase, whereas fewer number of highly fluorescent, much larger LDs were localized towards the center of the cell in the stationary phase. These advances demonstrate that cyanobacterial LDs are an ideal model platform to make industrially relevant compounds, such as alkanes, during exponential growth, and provide insight into LD formation in cyanobacteria. PMID:25821934

  13. Isolation and characterization of different bacterial strains for bioremediation of n-alkanes and polycyclic aromatic hydrocarbons.

    PubMed

    Guermouche M'rassi, A; Bensalah, F; Gury, J; Duran, R

    2015-10-01

    Crude oil is a common environmental pollutant composed of a large number of both aromatic and aliphatic hydrocarbons. Biodegradation is carried out by microbial communities that are important in determining the fate of pollutants in the environment. The intrinsic biodegradability of the hydrocarbons and the distribution in the environment of competent degrading microorganisms are crucial information for the implementation of bioremediation processes. In the present study, the biodegradation capacities of various bacteria toward aliphatic and aromatic hydrocarbons were determined. The purpose of the study was to isolate and characterize hydrocarbon-degrading bacteria from contaminated soil of a refinery in Arzew, Algeria. A collection of 150 bacterial strains was obtained; the bacterial isolates were identified by 16S rRNA gene sequencing and their ability to degrade hydrocarbon compounds characterized. The isolated strains were mainly affiliated to the Gamma-Proteobacteria class. Among them, Pseudomonas spp. had the ability to metabolize high molecular weight hydrocarbon compounds such as pristane (C19) at 35.11 % by strain LGM22 and benzo[a] pyrene (C20) at 33.93 % by strain LGM11. Some strains were able to grow on all the hydrocarbons tested including octadecane, squalene, phenanthrene, and pyrene. Some strains were specialized degrading only few substrates. In contrast, the strain LGM2 designated as Pseudomonas sp. was found able to degrade both linear and branched alkanes as well as low and high poly-aromatic hydrocarbons (PAHs). The alkB gene involved in alkane degradation was detected in LGM2 and other Pseudomonas-related isolates. The capabilities of the isolated bacterial strains to degrade alkanes and PAHs should be of great practical significance in bioremediation of oil-contaminated environments.

  14. Are δ13C values of n-alkanes affected by atmospheric CO2 concentrations? Results from a free-air CO2 enrichment (FACE) experiment.

    NASA Astrophysics Data System (ADS)

    Sandquist, D. R.; Williams, D. G.; Shuman, B. N.; Kim, S.; Chen, J.; Macdonald, C.

    2015-12-01

    Compound-specific carbon isotope (δ13C) analyses of leaf waxes (i.e., n-alkanes) can be linked to large-scale shifts in vegetation, such as dominant taxa, functional types, life-forms and photosynthetic pathways that are usually coupled with environmental changes in climate. However using these δ13C values to interpret finer-scale ecosystem properties, including climate attributes such as CO2 concentrations, is difficult owing to uncertainty in the magnitude of internal biosynthetic fractionations that determine the δ13C of waxes relative to that of bulk leaf material. We investigated the composition, abundance and δ13C of n-alkanes in the aboveground biomass of a C4 grass and a C3 grass exposed to experimentally controlled CO2 at ambient [490ppm] and elevated [630ppm] levels within natural grassland in Wyoming. The δ13C values of bulk tissues were predictably different based on the C3 and C4 photosynthetic pathways, but the difference between bulk tissue and n-alkanes (ɛlipid), for both C29 and C31, was consistently greater in the C4 grass. The magnitudes of these ɛlipid values were large (- 7‰ to -15‰) relative to those found in most other studies. CO2 concentration of the growing environment also had a significant effect on n-alkane δ13C values, with consistently higher values of ~ 2‰ under elevated CO2 found in both species and in both a wet and a dry year. These results underscore the importance of recognizing potential abiotic effects on leaf wax δ13C values, in addition to the biotic drivers their variation, when interpreting climate from leaf-wax biomarkers of terrestrial ecosystems.

  15. MIR and NIR group spectra of n-alkanes and 1-chloroalkanes

    NASA Astrophysics Data System (ADS)

    Kwaśniewicz, Michał; Czarnecki, Mirosław A.

    2015-05-01

    Numerous attempts were undertaken to resolve the absorption originating from different parts of alkanes. The separation of the contributions from the terminal and midchain methylene units was observed only in the spectra of solid alkanes at low temperatures. On the other hand, for liquid alkanes this effect was not reported as yet. In this study, ATR-IR, Raman and NIR spectra of eight n-alkanes and seven 1-chloroalkanes in the liquid phase were measured from 1000 to 12,000 cm-1. The spectra were analyzed by using two-dimensional (2D) correlation approach and chemometrics methods. It was shown that in 2D asynchronous contour plots, constructed from the spectra of n-alkanes and 1-chloroalkanes, the methylene band was resolved into two components. These two components were assigned to the terminal and midchain methylene groups. For the first time, the contributions from these two molecular fragments were resolved in the spectra of liquid n-alkanes and 1-chloroalkanes. MCR-ALS resolved these spectra into two components that were assigned to the ethyl and midchain methylene groups. These components represent the group spectra that can be used for assignment, spectral analysis and prediction of unknown spectra. The spectral prediction based on the group spectra provides very good results for n-alkanes, especially in the first and second overtone regions.

  16. Oxidation of Alkanes to Internal Monoalkenes by a Nocardia1

    PubMed Central

    Abbott, Bernard J.; Casida, L. E.

    1968-01-01

    A suspension of glucose-grown resting cells of Nocardia salmonicolor PSU-N-18 oxidized hexadecane to a mixture of internal monohexadecenes. The latter exhibited a cis configuration, and the mixture consisted of the following: 7-hexadecene, 80%; 8-hexadecene, 18%; and 6-hexadecene, 2%. Alkanes other than hexadecane also were unsaturated by the resting cells, and the composition of the monoalkenes resulting from octadecane dehydrogenation was 9-octadecene, 91%; 8-octadecene, 2 to 3%; 7-octadecene, 1 to 2%; and 6- and 5-octadecenes, trace amounts. Only minute quantities of unsaturated hydrocarbons accumulated during growth on hexadecane and during resting-cell incubation of hexadecane-grown cells with hexadecane. The dehydrogenation of hydrocarbons did not appear to be related to the formation of unsaturated fatty acids. It is postulated that double bond insertion may represent an early step in a new pathway of aliphatic hydrocarbon degradation. PMID:5686017

  17. Communication: Stiffening of dilute alcohol and alkane mixtures with water

    NASA Astrophysics Data System (ADS)

    Ashbaugh, Henry S.; Wesley Barnett, J.; Saltzman, Alexander; Langrehr, Mae E.; Houser, Hayden

    2016-11-01

    We probe the anomalous compressibilities of dilute mixtures of alcohols and alkane gases in water using molecular simulations. The response to increasing solute concentration depends sensitively on temperature, with the compressibility decreasing upon solute addition at low temperatures and increasing at elevated temperatures. The thermodynamic origin of stiffening is directly tied to the solute's partial compressibility, which is negative at low temperatures and rises above water's compressibility with increasing temperature. Hydration shell waters concurrently tilt towards clathrate-like structures at low temperatures that fade with heating. Kirkwood-Buff theory traces the solute's partial compressibility to changes in the solute-water association volume upon heating and incongruous packing of waters at the boundary between the more structured hydration shell and bulk water.

  18. Development of a Carbon Number Polarity Grid SOA Model with the use of Generator of Explicit Chemistry and Kinetics of Organics in the Atmosphere

    NASA Astrophysics Data System (ADS)

    Chung, S. H.; Lee-Taylor, J.; Asher, W.; Hodzic, A.; Madronich, S.; Aumont, B.; Pankow, J. F.; Barsanti, K. C.

    2012-12-01

    A major weakness in current air quality and climate models is the ability to simulate secondary organic aerosol (SOA) levels and physiochemical properties accurately. A new approach to model SOA formation is the carbon number (nc) polarity grid (CNPG) framework. The CNPG framework makes use of a nc vs. polarity grid for representing relevant organic compounds and their time-dependent concentrations. The nc vs polarity grid is well suited for modeling SOA because nc together with some suitable measure of total molecular polarity provides the minimum yet sufficient formation for estimating the parameters required to calculate partitioning coefficients. Furthermore, CNPG allows consideration of the effects of variation in the activity coefficients of the partitioning compounds, variation in the mean molecular weight of the absorbing organic phase, water uptake, and the possibility of phase separation in the organic aerosol phase. In this work, we use the GECKO-A (Generator of Explicit Chemistry and Kinetics of Organics in the Atmosphere) chemistry mechanism to produce the chemical structures of SOA precursor oxidization products and their time-dependent concentrations. The SIMPOL group contribution method is used to calculate the enthalpy of vaporization ΔHvap for each product. The total molecular polarity is then calculated as ΔHvap,diff, the difference between each compound's ΔHvap and that of its carbon-number equivalent straight-chain hydrocarbon. The gas- and particle-phase concentrations of each compound are mapped onto the nc vs polarity grid as a function of time to evaluate the time evolution of SOA-relevant oxidation products and to help guide lumping strategies for reducing complexity. In addition to using ΔHvap,diff, use of other measures of polarity will also be explored. Initial SOA precursor studies include toluene (C7) + n-heptadecane (C17) and α-pinene, under atmospherically relevant conditions. Results will be discussed in the context of the

  19. Hydrogen isotope exchange between n-alkanes and water under hydrothermal conditions

    NASA Astrophysics Data System (ADS)

    Reeves, Eoghan P.; Seewald, Jeffrey S.; Sylva, Sean P.

    2012-01-01

    To investigate the extent of hydrogen isotope (2H and 1H) exchange between hydrocarbons and water under hydrothermal conditions, we performed experiments heating C1-C5n-alkanes in aqueous solutions of varying initial 2H/1H ratios in the presence of a pyrite-pyrrhotite-magnetite redox buffer at 323 °C and 35-36 MPa. Extensive and reversible incorporation of water-derived hydrogen into C2-C5n-alkanes was observed on timescales of months. In contrast, comparatively minor exchange was observed for CH4. Isotopic exchange is facilitated by reversible equilibration of n-alkanes and their corresponding n-alkenes with H2 derived from the disproportionation of water. Rates of δ2H variation in C3+n-alkanes decreased with time, a trend that is consistent with an asymptotic approach to steady state isotopic compositions regulated by alkane-water isotopic equilibrium. Substantially slower δ2H variation was observed for ethane relative to C3-C5n-alkanes, suggesting that the greater stability of C3+ alkenes and isomerization reactions may dramatically enhance rates of 2H/1H exchange in C3+n-alkanes. Thus, in reducing aqueous environments, reversible reaction of alkanes and their corresponding alkenes facilitates rapid 2H/1H exchange between water and alkyl-bound hydrogen on relatively short geological timescales at elevated temperatures and pressures. The proximity of some thermogenic and purported abiogenic alkane δ2H values to those predicted for equilibrium 2H/1H fractionation with ambient water suggests that this process may regulate the δ2H signatures of some naturally occurring hydrocarbons.

  20. Biodegradation of variable-chain-length alkanes at low temperatures by a psychrotrophic Rhodococcus sp.

    SciTech Connect

    Whyte, L.G.; Hawari, J.; Zhou, E.; Bourbonniere, L.; Greer, C.W.; Inniss, W.E.

    1998-07-01

    The psychrotroph Rhodococcus sp. strain Q15 was examined for its ability to degrade individual n-alkanes and diesel fuel at low temperatures, and its alkane catabolic pathway was investigated by biochemical and genetic techniques. At 0 and 5 C, Q15 mineralized the short-chain alkanes dodecane and hexadecane to a greater extent than that observed for the long-chain alkanes octacosane and dotriacontane. Q15 utilized a broad range of aliphatics (C{sub 10} to C{sub 21} alkanes, branched alkanes, and a substituted cyclohexane) present in diesel fuel at 5 C. Mineralization of hexadecane at 5 C was significantly greater in both hydrocarbon-contaminated and pristine soil microcosms seeded with Q15 cells than in uninoculated control soil microcosms. The detection of hexadecane and dodecane metabolic intermediates (1-hexadecanol and 2-hexadecanol and 1-do-decanol and 2-dodecanone, respectively) by solid-phase microextraction-gas chromatography-mass spectrometry and the utilization of potential metabolic intermediates indicated that Q15 oxidizes alkanes by both the terminal oxidation pathway and the subterminal oxidation pathway. Genetic characterization by PCR and nucleotide sequence analysis indicated that Q15 possesses an aliphatic aldehyde dehydrogenase gene highly homologous to the Rhodococcus erythropolis thcA gene. Rhodococcus sp. strain Q15 possessed two large plasmids of approximately 90 and 115 kb (shown to mediate Cd resistance) which were not required for alkane mineralization, although the 90-kb plasmid enhanced mineralization of some alkanes and growth on diesel oil at both 5 and 25 C.

  1. Biodegradation of Variable-Chain-Length Alkanes at Low Temperatures by a Psychrotrophic Rhodococcus sp.

    PubMed Central

    Whyte, Lyle G.; Hawari, Jalal; Zhou, Edward; Bourbonnière, Luc; Inniss, William E.; Greer, Charles W.

    1998-01-01

    The psychrotroph Rhodococcus sp. strain Q15 was examined for its ability to degrade individual n-alkanes and diesel fuel at low temperatures, and its alkane catabolic pathway was investigated by biochemical and genetic techniques. At 0 and 5°C, Q15 mineralized the short-chain alkanes dodecane and hexadecane to a greater extent than that observed for the long-chain alkanes octacosane and dotriacontane. Q15 utilized a broad range of aliphatics (C10 to C21 alkanes, branched alkanes, and a substituted cyclohexane) present in diesel fuel at 5°C. Mineralization of hexadecane at 5°C was significantly greater in both hydrocarbon-contaminated and pristine soil microcosms seeded with Q15 cells than in uninoculated control soil microcosms. The detection of hexadecane and dodecane metabolic intermediates (1-hexadecanol and 2-hexadecanol and 1-dodecanol and 2-dodecanone, respectively) by solid-phase microextraction–gas chromatography-mass spectrometry and the utilization of potential metabolic intermediates indicated that Q15 oxidizes alkanes by both the terminal oxidation pathway and the subterminal oxidation pathway. Genetic characterization by PCR and nucleotide sequence analysis indicated that Q15 possesses an aliphatic aldehyde dehydrogenase gene highly homologous to the Rhodococcus erythropolis thcA gene. Rhodococcus sp. strain Q15 possessed two large plasmids of approximately 90 and 115 kb (shown to mediate Cd resistance) which were not required for alkane mineralization, although the 90-kb plasmid enhanced mineralization of some alkanes and growth on diesel oil at both 5 and 25°C. PMID:9647833

  2. Hydrogen isotope ratios of lacustrine sedimentary n-alkanes as proxies of tropical African hydrology: Insights from a calibration transect across Cameroon

    NASA Astrophysics Data System (ADS)

    Garcin, Yannick; Schwab, Valérie F.; Gleixner, Gerd; Kahmen, Ansgar; Todou, Gilbert; Séné, Olivier; Onana, Jean-Michel; Achoundong, Gaston; Sachse, Dirk

    2012-02-01

    Hydrogen isotope values (δD) of sedimentary aquatic and terrestrial lipid biomarkers, originating from algae, bacteria, and leaf wax, have been used to record isotopic properties of ancient source water (i.e., precipitation and/or lake water) in several mid- and high-latitude lacustrine environments. In the tropics, however, where both processes associated with isotope fractionation in the hydrologic system and vegetation strongly differ from those at higher latitudes, calibration studies for this proxy are not yet available. To close this gap of knowledge, we sampled surface sediments from 11 lakes in Cameroon to identify those hydro-climatological processes and physiological factors that determine the hydrogen isotopic composition of aquatic and terrestrial lipid biomarkers. Here we present a robust framework for the application of compound-specific hydrogen isotopes in tropical Africa. Our results show that the δD values of the aquatic lipid biomarker n-C17 alkane were not correlated with the δD values of lake water. Carbon isotope measurements indicate that the n-C17 alkane was derived from multiple source organisms that used different hydrogen pools for biosynthesis. We demonstrate that the δD values of the n-C29 alkane were correlated with the δD values of surface water (i.e., river water and groundwater), which, on large spatial scales, reflect the isotopic composition of mean annual precipitation. Such a relationship has been observed at higher latitudes, supporting the robustness of the leaf-wax lipid δD proxy on a hemispheric spatial scale. In contrast, the δD values of the n-C31 alkane did not show such a relationship but instead were correlated with the evaporative lake water δD values. This result suggests distinct water sources for both leaf-wax lipids, most likely originating from two different groups of plants. These new findings have important implications for the interpretation of long-chain n-alkane δD records from ancient lake sediments

  3. Analyses of n-alkanes degrading community dynamics of a high-temperature methanogenic consortium enriched from production water of a petroleum reservoir by a combination of molecular techniques.

    PubMed

    Zhou, Lei; Li, Kai-Ping; Mbadinga, Serge Maurice; Yang, Shi-Zhong; Gu, Ji-Dong; Mu, Bo-Zhong

    2012-08-01

    Despite the knowledge on anaerobic degradation of hydrocarbons and signature metabolites in the oil reservoirs, little is known about the functioning microbes and the related biochemical pathways involved, especially about the methanogenic communities. In the present study, a methanogenic consortium enriched from high-temperature oil reservoir production water and incubated at 55 °C with a mixture of long chain n-alkanes (C(15)-C(20)) as the sole carbon and energy sources was characterized. Biodegradation of n-alkanes was observed as methane production in the alkanes-amended methanogenic enrichment reached 141.47 μmol above the controls after 749 days of incubation, corresponding to 17 % of the theoretical total. GC-MS analysis confirmed the presence of putative downstream metabolites probably from the anaerobic biodegradation of n-alkanes and indicating an incomplete conversion of the n-alkanes to methane. Enrichment cultures taken at different incubation times were subjected to microbial community analysis. Both 16S rRNA gene clone libraries and DGGE profiles showed that alkanes-degrading community was dynamic during incubation. The dominant bacterial species in the enrichment cultures were affiliated with Firmicutes members clustering with thermophilic syntrophic bacteria of the genera Moorella sp. and Gelria sp. Other represented within the bacterial community were members of the Leptospiraceae, Thermodesulfobiaceae, Thermotogaceae, Chloroflexi, Bacteroidetes and Candidate Division OP1. The archaeal community was predominantly represented by members of the phyla Crenarchaeota and Euryarchaeota. Corresponding sequences within the Euryarchaeota were associated with methanogens clustering with orders Methanomicrobiales, Methanosarcinales and Methanobacteriales. On the other hand, PCR amplification for detection of functional genes encoding the alkylsuccinate synthase α-subunit (assA) was positive in the enrichment cultures. Moreover, the appearance of a new ass

  4. Effect of n-alkanes on asphaltene structuring in petroleum oils.

    PubMed

    Stachowiak, Christian; Viguié, Jean-Romain; Grolier, Jean-Pierre E; Rogalski, Marek

    2005-05-24

    The interactions between asphaltenes and short- to medium-chain n-alkanes were studied using titration microcalorimetry and inverse chromatography. The exothermic heat effects observed upon mixing of asphaltenes and n-alkanes were interpreted in terms of assembling of the two types of compounds into mixed structures. We show that the energy of the interactions between n-alkanes and the asphaltene hydrocarbon chains is close to the energy of the interactions between the asphaltene chains. We propose that the latter interactions are responsible for the formation of the asphaltene aggregates and are the driving force of the aggregate assembly into higher structures.

  5. [Respiratory activity of bacteria Acinetobacter calcoaceticus TM-31 during assimilation of alkane hydrocarbons].

    PubMed

    Ignatov, O V; Grechkina, E V; Muratova, A Iu; Turkovskaia, O V; Ignatov, V V

    2000-01-01

    The respiratory activity of Acinetobacter calcoaceticus TM-31 with resect to alkane hydrocarbons was studied. The dynamics of oxygen consumption by the cells while assimilating n-hexadecane was assayed by a modified technique using an oxygen electrode. The dependence of cell respiratory activity on the amount of n-hexadecane within the concentration range of 0.03-0.66% was determined. It was demonstrated that the cells also displayed respiratory activity towards other medium-chain n-alkanes: hexane, octane, decane, tridecane, and heptadecane. Thus, we demonstrated the possibility of determining alkanes by measuring the respiratory activities of microorganisms.

  6. Light alkane conversion processes - Suprabiotic catalyst systems for selective oxidation of light alkane gases to fuel oxygenates

    SciTech Connect

    Lyons, J.E.

    1992-01-01

    The objective of the work presented in this paper is to develop new, efficient catalysts for the selective transformation of the light alkanes in natural gas to alcohols for use as liquid transportation fuels, fuel precursors and chemical products. There currently exists no DIRECT one-step catalytic air-oxidation process to convert these substrates to alcohols. Such a one-step route would represent superior useful technology for the utilization of natural gas and similar refinery-derived light hydrocarbon streams. Processes for converting natural gas or its components (methane, ethane, propane, and the butanes) to alcohols for use as motor fuels, fuel additives or fuel precursors will not only add a valuable alternative to crude oil but will produce a clean-burning, high octane alternative to conventional gasoline.

  7. Light alkane conversion processes - Suprabiotic catalyst systems for selective oxidation of light alkane gases to fuel oxygenates.

    SciTech Connect

    Lyons, J.E.

    1992-07-01

    The objective of the work presented in this paper is to develop new, efficient catalysts for the selective transformation of the light alkanes in natural gas to alcohols for use as liquid transportation fuels, fuel precursors and chemical products. There currently exists no DIRECT one-step catalytic air-oxidation process to convert these substrates to alcohols. Such a one-step route would represent superior useful technology for the utilization of natural gas and similar refinery-derived light hydrocarbon streams. Processes for converting natural gas or its components (methane, ethane, propane, and the butanes) to alcohols for use as motor fuels, fuel additives or fuel precursors will not only add a valuable alternative to crude oil but will produce a clean-burning, high octane alternative to conventional gasoline.

  8. Oxidative degradation of trichloroethylene adsorbed on active carbons: Use of microwave energy

    SciTech Connect

    Varma, R.; Nandi, S.P.

    1991-01-01

    Chlorinated hydrocarbon compounds (CHCl), such as chlorinated alkanes/alkenes, benzene and biphenyl etc, represent an important fraction of the industrial hazardous wastes produced. Trichloroethylene (TCE) can be removed from waste streams by adsorption on active carbons. The primary objective of the present work was to study the detoxification in air-stream of TCE adsorbed on different types of active carbons using in situ microwave heating. A secondary objective was to examine the regeneration of used carbons from the effects of repeated cyclic operations (adsorption- detoxification). The experimental study has shown that trichloroethylene adsorbed on active carbon can be oxidatively degradated in presence of microwave radiation. Energy can be transferred efficiently to the reaction sites without losing heat to the surrounding vessel. One of the decomposition product of trichloroethylene is free chlorine which is held very strongly on active carbon. Hydrochloric acid on the other hand seems to be less strongly held and appears in large concentration in the exit gas. Production of free chlorine can be avoided by using chlorohydrocarbon mixed with sufficient internal hydrogen. This is also expected to minimize the problem of carbon regeneration encountered in this study. The results obtained from studies on the oxidative degradation of TCE under microwave radiation are promising in a number of respects: (1) the detoxification of TCE adsorbed on active carbon can be conducted at moderate (<400{degree}C) temperatures, and (2) the used carbon bed can be regenerated. A patent on the process has been issued. 9 refs., 2 figs., 2 tabs.

  9. Synthesis of azabicyclo[2.2.n]alkane systems as analogues of 3-[1-methyl-2-(S)-pyrrolidinyl- methoxy]pyridine (A-84543).

    PubMed

    Carreras, J; Avenoza, A; Busto, J H; Peregrina, J M

    2007-04-13

    This work is connected with the epibatidine field and describes the synthesis of several analogues of compounds that present affinity for nicotinic acetylcholine receptors, such as 3-[1-methyl-2-(S)-pyrrolidinylmethoxy]pyridine (A-84543). These analogues bear a 3-pyridyl ether substituent at the bridgehead carbon of the azabicyclo[2.2.n]alkane system. Particularly, in the case of the 1-substituted 2-azabicyclo[2.2.2]octane system, a new synthetic route has been developed, which involves the synthesis of a novel rigid sulfamidate that allows the straightforward introduction of nucleophiles.

  10. Bulk and Compound-Specific Isotope Analysis of Long-Chain, n-alkanes From a 85-kyr Core From Lake Peten Itza, Guatemala

    NASA Astrophysics Data System (ADS)

    Mays, J. L.; Brenner, M.; Bush, M. B.; Correa, A.; Curtis, J. H.; Hodell, D. A.

    2007-12-01

    Drill cores obtained from Lake Petén Itzá, Guatemala, contain a ~85-kyr record of terrestrial climate from lowland Central America. Variations in sediment lithology suggest rapid changes in precipitation during the last glacial and deglacial periods. Previous work in nearby Lake Quexil demonstrated the utility of using the carbon isotopic compositions of leaf wax n-alkanes to infer changes in terrestrial vegetation (Huang et al., 2001). Here we report carbon isotopes of bulk organic and long-chain n-alkanes in 60 samples to reconstruct changes in the relative proportion of C3 and C4 biomass in the watershed under changing climate and atmospheric CO2 conditions during the past 85 kyrs. Compound-specific carbon isotope results are compared directly with pollen analysis from the same samples. Huang, Y., F.A. Street-Perrott, S.E. Metcalfe, M. Brenner, M. Moreland, and K.H. Freeman. 2001. Climate change as the dominant control on glacial-interglacial variations in C3 and C4 plant abundance. Science 293:1647-1651.

  11. Liquid-Phase Exfoliation of Graphite into Single- and Few-Layer Graphene with α-Functionalized Alkanes.

    PubMed

    Haar, Sébastien; Bruna, Matteo; Lian, Jian Xiang; Tomarchio, Flavia; Olivier, Yoann; Mazzaro, Raffaello; Morandi, Vittorio; Moran, Joseph; Ferrari, Andrea C; Beljonne, David; Ciesielski, Artur; Samorì, Paolo

    2016-07-21

    Graphene has unique physical and chemical properties, making it appealing for a number of applications in optoelectronics, sensing, photonics, composites, and smart coatings, just to cite a few. These require the development of production processes that are inexpensive and up-scalable. These criteria are met in liquid-phase exfoliation (LPE), a technique that can be enhanced when specific organic molecules are used. Here we report the exfoliation of graphite in N-methyl-2-pyrrolidinone, in the presence of heneicosane linear alkanes terminated with different head groups. These molecules act as stabilizing agents during exfoliation. The efficiency of the exfoliation in terms of the concentration of exfoliated single- and few-layer graphene flakes depends on the functional head group determining the strength of the molecular dimerization through dipole-dipole interactions. A thermodynamic analysis is carried out to interpret the impact of the termination group of the alkyl chain on the exfoliation yield. This combines molecular dynamics and molecular mechanics to rationalize the role of functionalized alkanes in the dispersion and stabilization process, which is ultimately attributed to a synergistic effect of the interactions between the molecules, graphene, and the solvent.

  12. Adsorption of linear alkanes on Cu(111): Temperature and chain-length dependence of the softened vibrational mode

    NASA Astrophysics Data System (ADS)

    Fosser, Kari A.; Kang, Joo H.; Nuzzo, Ralph G.; Wöll, Christof

    2007-05-01

    The vibrational spectra of linear alkanes, with lengths ranging from n-propane to n-octane, were examined on a copper surface by reflection-absorption infrared spectroscopy. The appearance and frequency of the "soft mode," a feature routinely seen in studies of saturated hydrocarbons adsorbed on metals, were examined and compared between the different adsorbates. The frequency of the mode was found to be dependent on both the number of methylene units of each alkane as well as specific aspects of the order of the monolayer phase. Studies of monolayer coverages at different temperatures provide insights into the nature of the two-dimensional (2D) melting transitions of these adlayer structures, ones that can be inferred from observed shifts in the soft vibrational modes appearing in the C-H stretching region of the infrared spectrum. These studies support recently reported hypotheses as to the origins of such soft modes: the metal-hydrogen interactions that mediate them and the dynamics that underlay their pronounced temperature dependencies. The present data strongly support a model for the 2D to one-dimensional order-order phase transition arising via a continuous rather than discrete first-order process.

  13. Carbon Nanosheets and Nanostructured Electrodes in Organic Photovoltaic Devices: Cooperative Research and Development Final Report, CRADA Number CRD-08-321

    SciTech Connect

    Olson, D.

    2012-04-01

    Carbon nanosheet thin films were employed as nanostructured electrodes in organic solar cells. Due to the nanostructured texture of the carbon nanosheet electrodes, there was an increase in performance over standard ITO electrodes with very thick active layers. ZnO deposited via atomic layer deposition (ALD) was used as a hole blocking layer to provide for carrier selectivity of the carbon nanosheets.

  14. Effect of n-alkanes on lipid bilayers depending on headgroups.

    PubMed

    Hishida, Mafumi; Endo, Asami; Nakazawa, Koyomi; Yamamura, Yasuhisa; Saito, Kazuya

    2015-05-01

    Phase behavior and structural properties were examined for phospholipid bilayers having different headgroups (DMPC, DMPS and DMPE) with added n-alkanes to study effect of flexible additives. Change in the temperatures of main transition of the lipid/alkane mixtures against the length of added alkanes depends largely on the headgroup. Theoretical analysis of the change of the temperature of transition indicates that the headgroup dependence is dominantly originated in the strong dependence of total enthalpy on the headgroups. The results of X-ray diffraction show that the enthalpic stabilization due to enhanced packing of acyl chains of the lipid by alkanes in the gel phase causes the headgroup-dependent change in the phase transition behavior. The enhanced packing in the gel phase also leads to easy emergence of the subgel phase with very short relaxation time at room temperature in the DMPE-based bilayers.

  15. Draft Genome Sequence of the Versatile Alkane-Degrading Bacterium Aquabacterium sp. Strain NJ1.

    PubMed

    Masuda, Hisako; Shiwa, Yuh; Yoshikawa, Hirofumi; Zylstra, Gerben J

    2014-12-04

    The draft genome sequence of a soil bacterium, Aquabacterium sp. strain NJ1, capable of utilizing both liquid and solid alkanes, was deciphered. This is the first report of an Aquabacterium genome sequence.

  16. Modeling the Role of Alkanes, Polycyclic Aromatic Hydrocarbons, and Their Oligomers in Secondary Organic Aerosol Formation

    EPA Science Inventory

    A computationally efficient method to treat secondary organic aerosol (SOA) from various length and structure alkanes as well as SOA from polycyclic aromatic hydrocarbons (PAHs) is implemented in the Community Multiscale Air Quality (CMAQ) model to predict aerosol concentrations ...

  17. Liquid alkanes with targeted molecular weights from biomass-derived carbohydrates.

    PubMed

    West, Ryan M; Liu, Zhen Y; Peter, Maximilian; Dumesic, James A

    2008-01-01

    Liquid transportation fuels must burn cleanly and have high energy densities, criteria that are currently fulfilled by petroleum, a non-renewable resource, the combustion of which leads to increasing levels of atmospheric CO(2). An attractive approach for the production of transportation fuels from renewable biomass resources is to convert carbohydrates into alkanes with targeted molecular weights, such as C(8)-C(15) for jet-fuel applications. Targeted n-alkanes can be produced directly from fructose by an integrated process involving first the dehydration of this C(6) sugar to form 5-hydroxymethylfurfural, followed by controlled formation of C-C bonds with acetone to form C(9) and C(15) compounds, and completed by hydrogenation and hydrodeoxygenation reactions to form the corresponding n-alkanes. Analogous reactions are demonstrated starting with 5-methylfurfural or 2-furaldehyde, with the latter leading to C(8) and C(13) n-alkanes.

  18. Biodegradation of variable-chain-length n-alkanes in Rhodococcus opacus R7 and the involvement of an alkane hydroxylase system in the metabolism

    PubMed Central

    2014-01-01

    Rhodococcus opacus R7 is a Gram-positive bacterium isolated from a polycyclic aromatic hydrocarbon contaminated soil for its versatile metabolism; indeed the strain is able to grow on naphthalene, o-xylene, and several long- and medium-chain n-alkanes. In this work we determined the degradation of n-alkanes in Rhodococcus opacus R7 in presence of n-dodecane (C12), n-hexadecane (C16), n-eicosane (C20), n-tetracosane (C24) and the metabolic pathway in presence of C12. The consumption rate of C12 was 88%, of C16 was 69%, of C20 was 51% and of C24 it was 78%. The decrement of the degradation rate seems to be correlated to the length of the aliphatic chain of these hydrocarbons. On the basis of the metabolic intermediates determined by the R7 growth on C12, our data indicated that R. opacus R7 metabolizes medium-chain n-alkanes by the primary alcohol formation. This represents a difference in comparison with other Rhodococcus strains, in which a mixture of the two alcohols was observed. By GC-MSD analysis we also identified the monocarboxylic acid, confirming the terminal oxidation. Moreover, the alkB gene cluster from R. opacus R7 was isolated and its involvement in the n-alkane degradation system was investigated by the cloning of this genomic region into a shuttle-vector E. coli-Rhodococcus to evaluate the alkane hydroxylase activity. Our results showed an increased biodegradation of C12 in the recombinant strain R. erythropolis AP (pTipQT1-alkR7) in comparison with the wild type strain R. erythropolis AP. These data supported the involvement of the alkB gene cluster in the n-alkane degradation in the R7 strain. PMID:25401074

  19. Biodegradation of variable-chain-length n-alkanes in Rhodococcus opacus R7 and the involvement of an alkane hydroxylase system in the metabolism.

    PubMed

    Zampolli, Jessica; Collina, Elena; Lasagni, Marina; Di Gennaro, Patrizia

    2014-01-01

    Rhodococcus opacus R7 is a Gram-positive bacterium isolated from a polycyclic aromatic hydrocarbon contaminated soil for its versatile metabolism; indeed the strain is able to grow on naphthalene, o-xylene, and several long- and medium-chain n-alkanes. In this work we determined the degradation of n-alkanes in Rhodococcus opacus R7 in presence of n-dodecane (C12), n-hexadecane (C16), n-eicosane (C20), n-tetracosane (C24) and the metabolic pathway in presence of C12. The consumption rate of C12 was 88%, of C16 was 69%, of C20 was 51% and of C24 it was 78%. The decrement of the degradation rate seems to be correlated to the length of the aliphatic chain of these hydrocarbons. On the basis of the metabolic intermediates determined by the R7 growth on C12, our data indicated that R. opacus R7 metabolizes medium-chain n-alkanes by the primary alcohol formation. This represents a difference in comparison with other Rhodococcus strains, in which a mixture of the two alcohols was observed. By GC-MSD analysis we also identified the monocarboxylic acid, confirming the terminal oxidation. Moreover, the alkB gene cluster from R. opacus R7 was isolated and its involvement in the n-alkane degradation system was investigated by the cloning of this genomic region into a shuttle-vector E. coli-Rhodococcus to evaluate the alkane hydroxylase activity. Our results showed an increased biodegradation of C12 in the recombinant strain R. erythropolis AP (pTipQT1-alkR7) in comparison with the wild type strain R. erythropolis AP. These data supported the involvement of the alkB gene cluster in the n-alkane degradation in the R7 strain.

  20. The quantitative significance of Syntrophaceae and syntrophic partnerships in methanogenic degradation of crude oil alkanes.

    PubMed

    Gray, N D; Sherry, A; Grant, R J; Rowan, A K; Hubert, C R J; Callbeck, C M; Aitken, C M; Jones, D M; Adams, J J; Larter, S R; Head, I M

    2011-11-01

    Libraries of 16S rRNA genes cloned from methanogenic oil degrading microcosms amended with North Sea crude oil and inoculated with estuarine sediment indicated that bacteria from the genera Smithella (Deltaproteobacteria, Syntrophaceace) and Marinobacter sp. (Gammaproteobacteria) were enriched during degradation. Growth yields and doubling times (36 days for both Smithella and Marinobacter) were determined using qPCR and quantitative data on alkanes, which were the predominant hydrocarbons degraded. The growth yield of the Smithella sp. [0.020 g(cell-C)/g(alkane-C)], assuming it utilized all alkanes removed was consistent with yields of bacteria that degrade hydrocarbons and other organic compounds in methanogenic consortia. Over 450 days of incubation predominance and exponential growth of Smithella was coincident with alkane removal and exponential accumulation of methane. This growth is consistent with Smithella's occurrence in near surface anoxic hydrocarbon degrading systems and their complete oxidation of crude oil alkanes to acetate and/or hydrogen in syntrophic partnership with methanogens in such systems. The calculated growth yield of the Marinobacter sp., assuming it grew on alkanes, was [0.0005 g(cell-C)/g(alkane-C)] suggesting that it played a minor role in alkane degradation. The dominant methanogens were hydrogenotrophs (Methanocalculus spp. from the Methanomicrobiales). Enrichment of hydrogen-oxidizing methanogens relative to acetoclastic methanogens was consistent with syntrophic acetate oxidation measured in methanogenic crude oil degrading enrichment cultures. qPCR of the Methanomicrobiales indicated growth characteristics consistent with measured rates of methane production and growth in partnership with Smithella.

  1. The quantitative significance of Syntrophaceae and syntrophic partnerships in methanogenic degradation of crude oil alkanes

    PubMed Central

    Gray, N D; Sherry, A; Grant, R J; Rowan, A K; Hubert, C R J; Callbeck, C M; Aitken, C M; Jones, D M; Adams, J J; Larter, S R; Head, I M

    2011-01-01

    Libraries of 16S rRNA genes cloned from methanogenic oil degrading microcosms amended with North Sea crude oil and inoculated with estuarine sediment indicated that bacteria from the genera Smithella (Deltaproteobacteria, Syntrophaceace) and Marinobacter sp. (Gammaproteobacteria) were enriched during degradation. Growth yields and doubling times (36 days for both Smithella and Marinobacter) were determined using qPCR and quantitative data on alkanes, which were the predominant hydrocarbons degraded. The growth yield of the Smithella sp. [0.020 g(cell-C)/g(alkane-C)], assuming it utilized all alkanes removed was consistent with yields of bacteria that degrade hydrocarbons and other organic compounds in methanogenic consortia. Over 450 days of incubation predominance and exponential growth of Smithella was coincident with alkane removal and exponential accumulation of methane. This growth is consistent with Smithella's occurrence in near surface anoxic hydrocarbon degrading systems and their complete oxidation of crude oil alkanes to acetate and/or hydrogen in syntrophic partnership with methanogens in such systems. The calculated growth yield of the Marinobacter sp., assuming it grew on alkanes, was [0.0005 g(cell-C)/g(alkane-C)] suggesting that it played a minor role in alkane degradation. The dominant methanogens were hydrogenotrophs (Methanocalculus spp. from the Methanomicrobiales). Enrichment of hydrogen-oxidizing methanogens relative to acetoclastic methanogens was consistent with syntrophic acetate oxidation measured in methanogenic crude oil degrading enrichment cultures. qPCR of the Methanomicrobiales indicated growth characteristics consistent with measured rates of methane production and growth in partnership with Smithella. PMID:21914097

  2. Biochemistry of Short-Chain Alkanes (Tissue-Specific Biosynthesis of n-Heptane in Pinus jeffreyi).

    PubMed Central

    Savage, T. J.; Hamilton, B. S.; Croteau, R.

    1996-01-01

    Short-chain (C7-C11) alkanes accumulate as the volatile component of oleoresin (pitch) in several pine species native to western North America. To establish the tissue most amenable for use in detailed studies of short-chain alkane biosynthesis, we examined the tissue specificity of alkane accumulation and biosynthesis in Pinus jeffreyi Grev. & Balf. Short-chain alkane accumulation was highly tissue specific in both 2-year-old saplings and mature trees; heart-wood xylem accumulated alkanes up to 7.1 mg g-1 dry weight, whereas needles and other young green tissue contained oleoresin with monoterpenoid, rather than paraffinic, volatiles. These tissue-specific differences in oleoresin composition appear to be a result of tissue-specific rates of alkane and monoterpene biosynthesis; incubation of xylem tissue with [14C]sucrose resulted in accumulation of radiolabel in alkanes but not monoterpenes, whereas incubation of foliar tissue with 14CO2 resulted in the accumulation of radiolabel in monoterpenes but not alkanes. Furthermore, incubation of xylem sections with [14C]acetate resulted in incorporation of radiolabel into alkanes at rates up to 1.7 nmol h-1 g-1 fresh weight, a rate that exceeds most biosynthetic rates reported with other plant systems for the incorporation of this basic precursor into natural products. This suggests that P. jeffreyi may provide a suitable model for elucidating the enzymology and molecular biology of short-chain alkane biosynthesis. PMID:12226177

  3. Biochemistry of Short-Chain Alkanes (Tissue-Specific Biosynthesis of n-Heptane in Pinus jeffreyi).

    PubMed

    Savage, T. J.; Hamilton, B. S.; Croteau, R.

    1996-01-01

    Short-chain (C7-C11) alkanes accumulate as the volatile component of oleoresin (pitch) in several pine species native to western North America. To establish the tissue most amenable for use in detailed studies of short-chain alkane biosynthesis, we examined the tissue specificity of alkane accumulation and biosynthesis in Pinus jeffreyi Grev. & Balf. Short-chain alkane accumulation was highly tissue specific in both 2-year-old saplings and mature trees; heart-wood xylem accumulated alkanes up to 7.1 mg g-1 dry weight, whereas needles and other young green tissue contained oleoresin with monoterpenoid, rather than paraffinic, volatiles. These tissue-specific differences in oleoresin composition appear to be a result of tissue-specific rates of alkane and monoterpene biosynthesis; incubation of xylem tissue with [14C]sucrose resulted in accumulation of radiolabel in alkanes but not monoterpenes, whereas incubation of foliar tissue with 14CO2 resulted in the accumulation of radiolabel in monoterpenes but not alkanes. Furthermore, incubation of xylem sections with [14C]acetate resulted in incorporation of radiolabel into alkanes at rates up to 1.7 nmol h-1 g-1 fresh weight, a rate that exceeds most biosynthetic rates reported with other plant systems for the incorporation of this basic precursor into natural products. This suggests that P. jeffreyi may provide a suitable model for elucidating the enzymology and molecular biology of short-chain alkane biosynthesis.

  4. Laboratory evolution of a soluble, self-sufficient, highly active alkane hydroxylase.

    PubMed

    Glieder, Anton; Farinas, Edgardo T; Arnold, Frances H

    2002-11-01

    We have converted cytochrome P450 BM-3 from Bacillus megaterium (P450 BM-3), a medium-chain (C12-C18) fatty acid monooxygenase, into a highly efficient catalyst for the conversion of alkanes to alcohols. The evolved P450 BM-3 exhibits higher turnover rates than any reported biocatalyst for the selective oxidation of hydrocarbons of small to medium chain length (C3-C8). Unlike naturally occurring alkane hydroxylases, the best known of which are the large complexes of methane monooxygenase (MMO) and membrane-associated non-heme iron alkane monooxygenase (AlkB), the evolved enzyme is monomeric, soluble, and requires no additional proteins for catalysis. The evolved alkane hydroxylase was found to be even more active on fatty acids than wild-type BM-3, which was already one of the most efficient fatty acid monooxgenases known. A broad range of substrates including the gaseous alkane propane induces the low to high spin shift that activates the enzyme. This catalyst for alkane hydroxylation at room temperature opens new opportunities for clean, selective hydrocarbon activation for chemical synthesis and bioremediation.

  5. Predicting hydrophobic solvation by molecular simulation: 1. Testing united-atom alkane models.

    PubMed

    Jorge, Miguel; Garrido, Nuno M; Simões, Carlos J V; Silva, Cândida G; Brito, Rui M M

    2017-03-05

    We present a systematic test of the performance of three popular united-atom force fields-OPLS-UA, GROMOS and TraPPE-at predicting hydrophobic solvation, more precisely at describing the solvation of alkanes in alkanes. Gibbs free energies of solvation were calculated for 52 solute/solvent pairs from Molecular Dynamics simulations and thermodynamic integration making use of the IBERCIVIS volunteer computing platform. Our results show that all force fields yield good predictions when both solute and solvent are small linear or branched alkanes (up to pentane). However, as the size of the alkanes increases, all models tend to increasingly deviate from experimental data in a systematic fashion. Furthermore, our results confirm that specific interaction parameters for cyclic alkanes in the united-atom representation are required to account for the additional excluded volume within the ring. Overall, the TraPPE model performs best for all alkanes, but systematically underpredicts the magnitude of solvation free energies by about 6% (RMSD of 1.2 kJ/mol). Conversely, both GROMOS and OPLS-UA systematically overpredict solvation free energies (by ∼13% and 15%, respectively). The systematic trends suggest that all models can be improved by a slight adjustment of their Lennard-Jones parameters. © 2016 Wiley Periodicals, Inc.

  6. Marine hydrocarbonoclastic bacteria as whole-cell biosensors for n-alkanes

    PubMed Central

    Sevilla, Emma; Yuste, Luis; Rojo, Fernando

    2015-01-01

    Whole-cell biosensors offer potentially useful, cost-effective systems for the in-situ monitoring of seawater for hydrocarbons derived from accidental spills. The present work compares the performance of a biosensor system for the detection of alkanes in seawater, hosted in either Escherichia coli (commonly employed in whole-cell biosensors but not optimized for alkane assimilation) or different marine bacteria specialized in assimilating alkanes. The sensor system was based on the Pseudomonas putida AlkS regulatory protein and the PalkB promoter fused to a gene encoding the green fluorescent protein. While the E. coli sensor provided the fastest response to pure alkanes (25-fold induction after 2 h under the conditions used), a sensor based on Alcanivorax borkumensis was slower, requiring 3–4 h to reach similar induction values. However, the A. borkumensis sensor showed a fourfold lower detection threshold for octane (0.5 μM), and was also better at sensing the alkanes present in petrol. At petrol concentrations of 0.0125%, the A. borkumensis sensor rendered a sevenfold induction, while E. coli sensor showed no response. We discuss possible explanations to this behaviour in terms of the cellular adaptations to alkane uptake and the basal fluorescence produced by each bacterial strain, which was lowest for A. borkumensis. PMID:25874658

  7. Marine hydrocarbonoclastic bacteria as whole-cell biosensors for n-alkanes.

    PubMed

    Sevilla, Emma; Yuste, Luis; Rojo, Fernando

    2015-07-01

    Whole-cell biosensors offer potentially useful, cost-effective systems for the in-situ monitoring of seawater for hydrocarbons derived from accidental spills. The present work compares the performance of a biosensor system for the detection of alkanes in seawater, hosted in either Escherichia coli (commonly employed in whole-cell biosensors but not optimized for alkane assimilation) or different marine bacteria specialized in assimilating alkanes. The sensor system was based on the Pseudomonas putida AlkS regulatory protein and the PalkB promoter fused to a gene encoding the green fluorescent protein. While the E. coli sensor provided the fastest response to pure alkanes (25-fold induction after 2 h under the conditions used), a sensor based on Alcanivorax borkumensis was slower, requiring 3-4 h to reach similar induction values. However, the A. borkumensis sensor showed a fourfold lower detection threshold for octane (0.5 μM), and was also better at sensing the alkanes present in petrol. At petrol concentrations of 0.0125%, the A. borkumensis sensor rendered a sevenfold induction, while E. coli sensor showed no response. We discuss possible explanations to this behaviour in terms of the cellular adaptations to alkane uptake and the basal fluorescence produced by each bacterial strain, which was lowest for A. borkumensis.

  8. Hyperbaric reservoir fluids: High-pressure phase behavior of asymmetric methane + n-alkane systems

    NASA Astrophysics Data System (ADS)

    Flöten, E.; de Loos, Th. W.; de Swaan Arons, J.

    1995-01-01

    In this paper, experimental three-phase equilibrium (solid n-alkane + liquid + vapor) data for binary methane + n-alkane systems are presented. For the binary system methane + tetracosane, the three-phase curve was determined based on two phase equilibrium measurements in a composition range from x c24 = 0.0027 to x c24 = 1.0. The second critical endpoint of this system was found at p = (1114.7 ± 0.5) M Pa. T = (322.6 ± 0.25) K, and a mole fraction of tetracosane in the critical fluidphase of x c24 = 0.0415 ± 0.0015. The second critical endpoint occurs where solid tetracosane is in equilibrium with a critical fluid phase ( S c24 + L = V). For the binary systems of methane with the n-alkanes tetradecane, triacontane, tetracontane, and pentacontane, only the coordinates of the second critical endpoints were measured. The second critical endpoint temperature is found close to the atmospheric melting point temperature of the n-alkane. The pressures at the second critical endpoints do not exceed 200 MPa. Based on these experimental data and data from the literature, correlations for the pressure. temperature, and fluid phase composition at the second critical endpoint of binary methane + n-alkane systems with n-alkanes between octane and pentacontane were developed.

  9. Expression of an alkane monooxygenase (alkB) gene and methyl tert-butyl ether co-metabolic oxidation in Pseudomonas citronellolis.

    PubMed

    Bravo, Ana Luisa; Sigala, Juan Carlos; Le Borgne, Sylvie; Morales, Marcia

    2015-04-01

    Pseudomonas citronellolis UAM-Ps1 co-metabolically transforms methyl tert-butyl ether (MTBE) to tert-butyl alcohol with n-pentane (2.6 mM), n-octane (1.5 mM) or dicyclopropylketone (DCPK) (4.4 mM), a gratuitous inducer of alkane hydroxylase (AlkB) activity. The reverse transcription quantitative real-time PCR was used to quantify the alkane monooxygenase (alkB) gene expression. The alkB gene was expressed in the presence of n-alkanes and DCPK and MTBE oxidation occurred only in cultures when alkB was transcribed. A correlation between the number of alkB transcripts and MTBE consumption was found (ΜΤΒΕ consumption in μmol = 1.44e(-13) x DNA copies, R(2) = 0.99) when MTBE (0.84 mM) was added. Furthermore, alkB was cloned and expressed into Escherichia coli and the recombinant AlkB had a molecular weight of 42 kDa. This is the first report where the expression of alkB is related to the co-metabolic oxidation of MTBE.

  10. Organometallic model complexes elucidate the active gallium species in alkane dehydrogenation catalysts based on ligand effects in Ga K-edge XANES

    SciTech Connect

    Getsoian, Andrew “Bean”; Das, Ujjal; Camacho-Bunquin, Jeffrey; Zhang, Guanghui; Gallagher, James R.; Hu, Bo; Cheah, Singfoong; Schaidle, Joshua A.; Ruddy, Daniel A.; Hensley, Jesse E.; Krause, Theodore R.; Curtiss, Larry A.; Miller, Jeffrey T.; Hock, Adam S.

    2016-01-01

    Gallium-modified zeolites are known catalysts for the dehydrogenation of alkanes, reactivity that finds industrial application in the aromatization of light alkanes by Ga-ZSM5. While the role of gallium cations in alkane activation is well known, the oxidation state and coordination environment of gallium under reaction conditions has been the subject of debate. Edge shifts in Ga K-edge XANES spectra acquired under reaction conditions have long been interpreted as evidence for reduction of Ga(III) to Ga(I). However, a change in oxidation state is not the only factor that can give rise to a change in the XANES spectrum. In order to better understand the XANES spectra of working catalysts, we have synthesized a series of molecular model compounds and grafted surface organometallic Ga species and compared their XANES spectra to those of gallium-based catalysts acquired under reducing conditions. We demonstrate that changes in the identity and number of gallium nearest neighbors can give rise to changes in XANES spectra similar to those attributed in literature to changes in oxidation state. Specifically, spectral features previously attributed to Ga(I) may be equally well interpreted as evidence for low-coordinate Ga(III) alkyl or hydride species. These findings apply both to gallium-impregnated zeolite catalysts and to silica-supported single site gallium catalysts, the latter of which is found to be active and selective for dehydrogenation of propane and hydrogenation of propylene.

  11. Emissions of organic aerosol mass, black carbon, particle number, and regulated and unregulated gases from scooters and light and heavy duty vehicles with different fuels

    NASA Astrophysics Data System (ADS)

    Chirico, R.; Clairotte, M.; Adam, T. W.; Giechaskiel, B.; Heringa, M. F.; Elsasser, M.; Martini, G.; Manfredi, U.; Streibel, T.; Sklorz, M.; Zimmermann, R.; DeCarlo, P. F.; Astorga, C.; Baltensperger, U.; Prevot, A. S. H.

    2014-06-01

    A sampling campaign with seven different types of vehicles was conducted in 2009 at the vehicle test facilities of the Joint Research Centre (JRC) in Ispra (Italy). The vehicles chosen were representative of some categories circulating in Europe and were fueled either with standard gasoline or diesel and some with blends of rapeseed methyl ester biodiesel. The aim of this work was to improve the knowledge about the emission factors of gas phase and particle-associated regulated and unregulated species from vehicle exhaust. Unregulated species such as black carbon (BC), primary organic aerosol (OA) content, particle number (PN), monocyclic and polycyclic aromatic hydrocarbons (PAHs) and a~selection of unregulated gaseous compounds, including nitrous acid (N2O), ammonia (NH3), hydrogen cyanide (HCN), formaldehyde (HCHO), acetaldehyde (CH3CHO), sulfur dioxide (SO2), and methane (CH4), were measured in real time with a suite of instruments including a high-resolution aerosol time-of-flight mass spectrometer, a resonance enhanced multi-photon ionization time-of-flight mass spectrometer, and a high resolution Fourier transform infrared spectrometer. Diesel vehicles, without particle filters, featured the highest values for particle number, followed by gasoline vehicles and scooters. The particles from diesel and gasoline vehicles were mostly made of BC with a low fraction of OA, while the particles from the scooters were mainly composed of OA. Scooters were characterized by super high emissions factors for OA, which were orders of magnitude higher than for the other vehicles. The heavy duty diesel vehicle (HDDV) featured the highest nitrogen oxides (NOx) emissions, while the scooters had the highest emissions for total hydrocarbons and aromatic compounds due to the unburned and partially burned gasoline and lubricant oil mixture. Generally, vehicles fuelled with biodiesel blends showed lower emission factors of OA and total aromatics than those from the standard fuels

  12. Phenology of a Vegetation Barrier and Resulting Impacts on Near-Highway Particle Number and Black Carbon Concentrations on a School Campus.

    PubMed

    Fuller, Christina H; Carter, David R; Hayat, Matthew J; Baldauf, Richard; Watts Hull, Rebecca

    2017-02-08

    Traffic-related air pollution is a persistent concern especially in urban areas where populations live in close proximity to roadways. Innovative solutions are needed to minimize human exposure and the installation of vegetative barriers shows potential as a method to reduce near-road concentrations. This study investigates the impact of an existing stand of deciduous and evergreen trees on near-road total particle number (PNC) and black carbon (BC) concentrations across three seasons. Measurements were taken during spring, fall and winter on the campus of a middle school in the Atlanta (GA, USA) area at distances of 10 m and 50 m from a major interstate highway. We identified consistent decreases in BC concentrations, but not for PNC, with increased distance from the highway. In multivariable models, hour of day, downwind conditions, distance to highway, temperature and relative humidity significantly predicted pollutant concentrations. The magnitude of effect of these variables differed by season, however, we were not able to show a definitive impact of the vegetative barrier on near-road concentrations. More detailed studies are necessary to further examine the specific configurations and scenarios that may produce pollutant and exposure reductions.

  13. Phenology of a Vegetation Barrier and Resulting Impacts on Near-Highway Particle Number and Black Carbon Concentrations on a School Campus

    PubMed Central

    Fuller, Christina H.; Carter, David R.; Hayat, Matthew J.; Baldauf, Richard; Watts Hull, Rebecca

    2017-01-01

    Traffic-related air pollution is a persistent concern especially in urban areas where populations live in close proximity to roadways. Innovative solutions are needed to minimize human exposure and the installation of vegetative barriers shows potential as a method to reduce near-road concentrations. This study investigates the impact of an existing stand of deciduous and evergreen trees on near-road total particle number (PNC) and black carbon (BC) concentrations across three seasons. Measurements were taken during spring, fall and winter on the campus of a middle school in the Atlanta (GA, USA) area at distances of 10 m and 50 m from a major interstate highway. We identified consistent decreases in BC concentrations, but not for PNC, with increased distance from the highway. In multivariable models, hour of day, downwind conditions, distance to highway, temperature and relative humidity significantly predicted pollutant concentrations. The magnitude of effect of these variables differed by season, however, we were not able to show a definitive impact of the vegetative barrier on near-road concentrations. More detailed studies are necessary to further examine the specific configurations and scenarios that may produce pollutant and exposure reductions. PMID:28208726

  14. Long-term observations of tropospheric particle number size distributions and equivalent black carbon mass concentrations in the German Ultrafine Aerosol Network (GUAN)

    NASA Astrophysics Data System (ADS)

    Birmili, Wolfram; Weinhold, Kay; Rasch, Fabian; Sonntag, André; Sun, Jia; Merkel, Maik; Wiedensohler, Alfred; Bastian, Susanne; Schladitz, Alexander; Löschau, Gunter; Cyrys, Josef; Pitz, Mike; Gu, Jianwei; Kusch, Thomas; Flentje, Harald; Quass, Ulrich; Kaminski, Heinz; Kuhlbusch, Thomas A. J.; Meinhardt, Frank; Schwerin, Andreas; Bath, Olaf; Ries, Ludwig; Gerwig, Holger; Wirtz, Klaus; Fiebig, Markus

    2016-08-01

    The German Ultrafine Aerosol Network (GUAN) is a cooperative atmospheric observation network, which aims at improving the scientific understanding of aerosol-related effects in the troposphere. The network addresses research questions dedicated to both climate- and health-related effects. GUAN's core activity has been the continuous collection of tropospheric particle number size distributions and black carbon mass concentrations at 17 observation sites in Germany. These sites cover various environmental settings including urban traffic, urban background, rural background, and Alpine mountains. In association with partner projects, GUAN has implemented a high degree of harmonisation of instrumentation, operating procedures, and data evaluation procedures. The quality of the measurement data is assured by laboratory intercomparisons as well as on-site comparisons with reference instruments. This paper describes the measurement sites, instrumentation, quality assurance, and data evaluation procedures in the network as well as the EBAS repository, where the data sets can be obtained (doi:10.5072/guan).

  15. Microbial alkane production for jet fuel industry: motivation, state of the art and perspectives.

    PubMed

    Jiménez-Díaz, Lorena; Caballero, Antonio; Pérez-Hernández, Natalia; Segura, Ana

    2017-01-01

    Bio-jet fuel has attracted a lot of interest in recent years and has become a focus for aircraft and engine manufacturers, oil companies, governments and researchers. Given the global concern about environmental issues and the instability of oil market, bio-jet fuel has been identified as a promising way to reduce the greenhouse gas emissions from the aviation industry, while also promoting energy security. Although a number of bio-jet fuel sources have been approved for manufacture, their commercialization and entry into the market is still a far way away. In this review, we provide an overview of the drivers for intensified research into bio-jet fuel technologies, the type of chemical compounds found in bio-jet fuel preparations and the current state of related pre-commercial technologies. The biosynthesis of hydrocarbons is one of the most promising approaches for bio-jet fuel production, and thus we provide a detailed analysis of recent advances in the microbial biosynthesis of hydrocarbons (with a focus on alkanes). Finally, we explore the latest developments and their implications for the future of research into bio-jet fuel technologies.

  16. Assessment of the GECKO-A modeling tool using chamber observations for C12 alkanes

    NASA Astrophysics Data System (ADS)

    Aumont, B.; La, S.; Ouzebidour, F.; Valorso, R.; Mouchel-Vallon, C.; Camredon, M.; Lee-Taylor, J. M.; Hodzic, A.; Madronich, S.; Yee, L. D.; Loza, C. L.; Craven, J. S.; Zhang, X.; Seinfeld, J.

    2013-12-01

    Secondary Organic Aerosol (SOA) production and ageing is the result of atmospheric oxidation processes leading to the progressive formation of organic species with higher oxidation state and lower volatility. Explicit chemical mechanisms reflect our understanding of these multigenerational oxidation steps. Major uncertainties remain concerning the processes leading to SOA formation and the development, assessment and improvement of such explicit schemes is therefore a key issue. The development of explicit mechanism to describe the oxidation of long chain hydrocarbons is however a challenge. Indeed, explicit oxidation schemes involve a large number of reactions and secondary organic species, far exceeding the size of chemical schemes that can be written manually. The chemical mechanism generator GECKO-A (Generator for Explicit Chemistry and Kinetics of Organics in the Atmosphere) is a computer program designed to overcome this difficulty. GECKO-A generates gas phase oxidation schemes according to a prescribed protocol assigning reaction pathways and kinetics data on the basis of experimental data and structure-activity relationships. In this study, we examine the ability of the generated schemes to explain SOA formation observed in the Caltech Environmental Chambers from various C12 alkane isomers and under high NOx and low NOx conditions. First results show that the model overestimates both the SOA yields and the O/C ratios. Various sensitivity tests are performed to explore processes that might be responsible for these disagreements.

  17. Measurement of Black Carbon, Particle Number and Mass, and Lung-Deposited Surface Area Emission Factors from in-Use Locomotive

    NASA Astrophysics Data System (ADS)

    Ban-Weiss, G. A.; Krasowsky, T.; Sioutas, C.; Daher, N.

    2014-12-01

    As pollutant emissions from motor vehicles have vastly decreased over the last decades, the relative contribution from non-road sources has increased. There is a serious lack of real-world emissions measurements for many non-road sources including locomotives. As such, uncertainties in emissions from these sources is high. Locomotives contribute to human exposure of diesel pollutants near ports, railyards, and rail lines. Reducing uncertainty in current estimates of locomotive emissions is needed for enhancing the accuracy of emission inventories with corresponding improvements in health risk, air pollution, and climate assessments. Particulate matter emissions from a large sample (N=88) of in-use freight locomotives were measured in the Alameda Corridor, located near the port of Los Angeles. Emission factors for black carbon (BC), particle number (PN), fine particulate mass (PM2.5), and lung-deposited surface area (LDSA) were computed based on 1 Hz measurements of the rise and fall of particulate emissions and CO2 concentrations as the locomotives passed the sampling location. Mean emission factors ± standard deviations were 0.9 ± 0.5 g kg-1 of fuel consumed for BC, (2.1 ± 1.5)x1016 # kg-1 for PN, 1.6 ± 1.3 g kg-1 for PM2.5, and (2.2 ± 1.7)x1013 μm2 kg-1 for LDSA. Emission factors for individual trains were slightly skewed, with the dirtiest 10% of locomotives responsible for 20%, 24%, 28%, and 27% of total BC, PN, PM2.5, and LDSA emissions, respectively. BC versus LDSA emissions from individual locomotives were found to be anti-correlated, suggesting that the highest emitters of black carbon may in fact result in less particle lung-deposited surface area than lower BC emitters. Using results presented here along with previous measurements, we compare for freight trains versus diesel trucks the amount of BC emissions associated with pulling an intermodal freight container over a given distance. Emission factors for locomotives presented here establish a

  18. Conversion of alkanes to linear alkylsilanes using an iridium-iron-catalysed tandem dehydrogenation-isomerization-hydrosilylation

    NASA Astrophysics Data System (ADS)

    Jia, Xiangqing; Huang, Zheng

    2016-02-01

    The conversion of inexpensive, saturated hydrocarbon feedstocks into value-added speciality chemicals using regiospecific, catalytic functionalization of alkanes is a major goal of organometallic chemistry. Linear alkylsilanes represent one such speciality chemical—they have a wide range of applications, including release coatings, silicone rubbers and moulding products. Direct, selective, functionalization of alkanes at primary C-H bonds is difficult and, to date, methods for catalytically converting alkanes into linear alkylsilanes are unknown. Here, we report a well-defined, dual-catalyst system for one-pot, two-step alkane silylations. The system comprises a pincer-ligated Ir catalyst for alkane dehydrogenation and an Fe catalyst that effects a subsequent tandem olefin isomerization-hydrosilylation. This method exhibits exclusive regioselectivity for the production of terminally functionalized alkylsilanes. This dual-catalyst strategy has also been applied to regioselective alkane borylations to form linear alkylboronate esters.

  19. Leaf wax composition and carbon isotopes vary among major conifer groups

    NASA Astrophysics Data System (ADS)

    Diefendorf, Aaron F.; Leslie, Andrew B.; Wing, Scott L.

    2015-12-01

    Leaf waxes (e.g. n-alkanes, n-alkanoic acids) and their carbon isotopes (δ13C) are commonly used to track past changes in the carbon cycle, water availability, and plant ecophysiology. Previous studies indicated that conifers have lower n-alkane concentrations than angiosperms and that 13C fractionation during n-alkane synthesis (εn-alkane) is smaller than in angiosperms. These prior studies, however, sampled a limited phylogenetic and geographic subset of conifers, leaving out many important subtropical and Southern Hemisphere groups that were once widespread and common components of fossil assemblages. To expand on previous work, we collected 43 conifer species (and Ginkgo biloba) from the University of California Botanical Garden at Berkeley, sampling all extant conifer families and almost two-thirds of extant genera. We find that Pinaceae, including many North American species used in previous studies, have very low or no n-alkanes. However, other conifer groups have significant concentrations of n-alkanes, especially Southern Hemisphere Araucariaceae and Podocarpaceae (monkey puzzles, Norfolk Island pines, and yellowwoods), and many species of Cupressaceae (junipers and relatives). Within the Cupressaceae, we find total n-alkane concentrations are high in subfamilies Cupressoideae and Callitroideae, but significantly lower in the early diverging taxodioid lineages (including bald cypress and redwood). Individual n-alkane chain lengths have a weak phylogenetic signal, except for n-C29 alkane, but when combined using average chain length (ACL), a strong phylogenetic signal emerges. The strong phylogenetic signal in ACL, observed in the context of a common growth environment for all plants we sampled, suggests that ACL is strongly influenced by factors other than climate. An analysis of εn-alkane indicates a strong phylogenetic signal in which the smallest biosynthetic fractionation occurs in Pinaceae and the largest in Taxaceae (yews and relatives). The

  20. Understanding the factors affecting the activation of alkane by Cp'Rh(CO)2 (Cp' = Cp or Cp*).

    PubMed

    George, Michael W; Hall, Michael B; Jina, Omar S; Portius, Peter; Sun, Xue-Zhong; Towrie, Michael; Wu, Hong; Yang, Xinzheng; Zaric, Snezana D

    2010-11-23

    Fast time-resolved infrared spectroscopic measurements have allowed precise determination of the rates of activation of alkanes by Cp'Rh(CO) (Cp(') = η(5)-C(5)H(5) or η(5)-C(5)Me(5)). We have monitored the kinetics of C─H activation in solution at room temperature and determined how the change in rate of oxidative cleavage varies from methane to decane. The lifetime of CpRh(CO)(alkane) shows a nearly linear behavior with respect to the length of the alkane chain, whereas the related Cp*Rh(CO)(alkane) has clear oscillatory behavior upon changing the alkane. Coupled cluster and density functional theory calculations on these complexes, transition states, and intermediates provide the insight into the mechanism and barriers in order to develop a kinetic simulation of the experimental results. The observed behavior is a subtle interplay between the rates of activation and migration. Unexpectedly, the calculations predict that the most rapid process in these Cp'Rh(CO)(alkane) systems is the 1,3-migration along the alkane chain. The linear behavior in the observed lifetime of CpRh(CO)(alkane) results from a mechanism in which the next most rapid process is the activation of primary C─H bonds (─CH(3) groups), while the third key step in this system is 1,2-migration with a slightly slower rate. The oscillatory behavior in the lifetime of Cp*Rh(CO)(alkane) with respect to the alkane's chain length follows from subtle interplay between more rapid migrations and less rapid primary C─H activation, with respect to CpRh(CO)(alkane), especially when the CH(3) group is near a gauche turn. This interplay results in the activation being controlled by the percentage of alkane conformers.

  1. Berberine cation: A fluorescent chemosensor for alkanes and other low-polarity compounds. An explanation of this phenomenon

    PubMed

    Cossio; Arrieta; Cebolla; Membrado; Vela; Garriga; Domingo

    2000-07-27

    Alkanes in the presence of berberine sulfate provide an enhancement of fluorescent signal, which depends on alkane concentration and structure, when the system is irradiated with monochromatic UV light. Computational analysis suggests that an ion-induced dipole between alkanes and berberine sulfate is responsible for this phenomenon. This interaction can properly model the experimentally obtained fluorescent response. The proposed explanation allows other interacting systems to be designed, which have been experimentally confirmed.

  2. Transferable potentials for phase equilibria-coarse-grain description for linear alkanes.

    PubMed

    Maerzke, Katie A; Siepmann, J Ilja

    2011-04-07

    Coarse-grain potentials allow one to extend molecular simulations to length and time scales beyond those accesssible to atomistic representations of the interacting system. Since the coarse-grain potentials remove a large number of interaction sites and, hence, a large number of degrees of freedom, it is generally assumed that coarse-grain potentials are not transferable to different systems or state points (temperature and pressure). Here we apply lessons learned from the parametrization of transferable atomistic potentials to develop a systematic procedure for the parametrization of transferable coarse-grain potentials. In particular, we apply an iterative Boltzmann optimization for the determination of the bonded interactions for coarse-grain beads belonging to the same molecule and separated by one or two coarse-grain bonds and parametrize the nonbonded interactions by fitting to the vapor-liquid coexistence curves computed for selected molecules represented by the TraPPE-UA (transferable potentials for phase equilibria-united atom) force field. This approach is tested here for linear alkanes where parameters for C(3)H(7) end segments and for C(3)H(6) middle segments of the TraPPE-CG (transferable potentials for phase equilibria-coarse grain) force field are determined and it is shown that these parameters yield quite accurate vapor-liquid equilibria for neat n-hexane to n-triacontane and for the binary mixture of n-hexane and n-hexatriacontane. In addition, the position of the first peak in various radial distribution functions and the coordination number for the first solvation shell are well reproduced by the TraPPE-CG force field, but the first peaks are too high and narrow.

  3. Characterization of sorbent properties of soil organic matter and carbonaceous geosorbents using n-alkanes and cycloalkanes as molecular probes

    SciTech Connect

    Satoshi Endo; Peter Grathwohl; Stefan B. Haderlein; Torsten C. Schmidt

    2009-01-15

    Nonspecific interactions and modes (i.e., adsorption vs absorption) of sorption by noncondensed, amorphous organic phases (here termed organic matter; OM) in soils and by rigid, aromatic, and condensed phases (termed carbonaceous geosorbents; CGs) were investigated using n-alkanes and cycloalkanes as molecular probes. Sorption isotherms of and cyclooctane from water for seven CGs (charcoal, lignite coke, activated carbon, graphite, partially oxidized graphite, diesel soot, bituminous coal), four sorbents with a predominance of OM (lignite, peat, two sapric soils), and two soils containing OM and high amounts of CGs were measured in batch systems. The peat and the sapric soils showed extensively linear sorption, while the CGs exhibited highly nonlinear and strong (K{sub oc} values being up to 105 times those for the OM-rich materials at low concentrations) sorption for the alkanes studied, showing that enhanced sorption by CGs can occur to completely apolar sorbates that do not undergo any specific interaction. The n-octane-to-cyclooctane sorption coefficient ratios for adsorption to CGs were {ge}1, being distinctly different from those for absorption to the OM-rich materials. The measured sorption isotherms and the CG compositions in the soils determined by quantitative petrography analysis suggest, however, that CGs occurring in soils may be far less effective sorbents than the reference CGs used in the sorption experiments at least for nonspecifically interacting sorbates, probably because of competitive sorption and/or pore blocking by natural OM. The presented approaches and results offer a basis for interpreting sorption data for other organic compounds, as nonspecific interactions and sorption modes are relevant for any compound. 47 refs., 4 figs., 2 tabs.

  4. Diversity of crude oil-degrading bacteria and alkane hydroxylase (alkB) genes from the Qinghai-Tibet Plateau.

    PubMed

    Long, Haozhi; Wang, Yilin; Chang, Sijing; Liu, Guangxiu; Chen, Tuo; Huo, Guanghua; Zhang, Wei; Wu, Xiukun; Tai, Xisheng; Sun, Likun; Zhang, Baogui

    2017-03-01

    The aim of this study was to survey the response of the microbial community to crude oil and the diversity of alkane hydroxylase (alkB) genes in soil samples from the Qinghai-Tibet Plateau (QTP). The enrichment cultures and clone libraries were used. Finally, 53 isolates and 94 alkB sequences were obtained from 10 pristine soil samples after enrichment at 10 °C with crude oil as sole carbon source. The isolates fell into the phyla Proteobacteria, Actinobacteria, and Bacteroidetes, with the dominance of Pseudomonas and Acinetobacter. The composition of degraders was different from polar habitats where Acinetobacter sp. is not a predominant responder of alkane degradative microbial communities. Phylogenetic analysis showed that the alkB genes from isolates and enrichment communities formed eight clusters and mainly related with alkB genes of Pseudomonas, Rhodococcus, and Acinetobacter. The alkB gene diversity in the QTP was lower than marine environments and polar soil samples. In particular, a total of 10 isolates exhibiting vigorous growth with crude oil could detect no crude oil degradation-related gene sequences, such as alkB, P450, almA, ndoB, and xylE genes. The Shannon-Wiener index of the alkB clone libraries from the QTP ranged from 1.00 to 2.24 which is similar with polar pristine soil samples but lower than that of contaminated soils. These results indicated that the Pseudomonas, Acinetobacter, and Rhodococcus genera are the candidate for in situ bioremediation, and the environment of QTP may be still relatively uncontaminated by crude oil.

  5. Alkane hydroxylase gene (alkB) phylotype composition and diversity in northern Gulf of Mexico bacterioplankton

    PubMed Central

    Smith, Conor B.; Tolar, Bradley B.; Hollibaugh, James T.; King, Gary M.

    2013-01-01

    Natural and anthropogenic activities introduce alkanes into marine systems where they are degraded by alkane hydroxylases expressed by phylogenetically diverse bacteria. Partial sequences for alkB, one of the structural genes of alkane hydroxylase, have been used to assess the composition of alkane-degrading communities, and to determine their responses to hydrocarbon inputs. We present here the first spatially extensive analysis of alkB in bacterioplankton of the northern Gulf of Mexico (nGoM), a region that experiences numerous hydrocarbon inputs. We have analyzed 401 partial alkB gene sequences amplified from genomic extracts collected during March 2010 from 17 water column samples that included surface waters and bathypelagic depths. Previous analyses of 16S rRNA gene sequences for these and related samples have shown that nGoM bacterial community composition and structure stratify strongly with depth, with distinctly different communities above and below 100 m. Although we hypothesized that alkB gene sequences would exhibit a similar pattern, PCA analyses of operational protein units (OPU) indicated that community composition did not vary consistently with depth or other major physical-chemical variables. We observed 22 distinct OPUs, one of which was ubiquitous and accounted for 57% of all sequences. This OPU clustered with AlkB sequences from known hydrocarbon oxidizers (e.g., Alcanivorax and Marinobacter). Some OPUs could not be associated with known alkane degraders, however, and perhaps represent novel hydrocarbon-oxidizing populations or genes. These results indicate that the capacity for alkane hydrolysis occurs widely in the nGoM, but that alkane degrader diversity varies substantially among sites and responds differently than bulk communities to physical-chemical variables. PMID:24376439

  6. Crystal structures of eight mono-methyl alkanes (C26–C32) via single-crystal and powder diffraction and DFT-D optimization

    PubMed Central

    Brooks, Lee; Brunelli, Michela; Pattison, Philip; Jones, Graeme R.; Fitch, Andrew

    2015-01-01

    The crystal structures of eight mono-methyl alkanes have been determined from single-crystal or high-resolution powder X-ray diffraction using synchrotron radiation. Mono-methyl alkanes can be found on the cuticles of insects and are believed to act as recognition pheromones in some social species, e.g. ants, wasps etc. The molecules were synthesized as pure S enantiomers and are (S)-9-methylpentacosane, C26H54; (S)-9-methylheptacosane and (S)-11-methylheptacosane, C28H58; (S)-7-methylnonacosane, (S)-9-methylnonacosane, (S)-11-methylnonacosane and (S)-13-methylnonacosane, C30H62; and (S)-9-methylhentriacontane, C32H66. All crystallize in space group P21. Depending on the position of the methyl group on the carbon chain, two packing schemes are observed, in which the molecules pack together hexagonally as linear rods with terminal and side methyl groups clustering to form distinct motifs. Carbon-chain torsion angles deviate by less than 10° from the fully extended conformation, but with one packing form showing greater curvature than the other near the position of the methyl side group. The crystal structures are optimized by dispersion-corrected DFT calculations, because of the difficulties in refining accurate structural parameters from powder diffraction data from relatively poorly crystalline materials. PMID:26306191

  7. Crystal structures of eight mono-methyl alkanes (C26-C32) via single-crystal and powder diffraction and DFT-D optimization.

    PubMed

    Brooks, Lee; Brunelli, Michela; Pattison, Philip; Jones, Graeme R; Fitch, Andrew

    2015-09-01

    The crystal structures of eight mono-methyl alkanes have been determined from single-crystal or high-resolution powder X-ray diffraction using synchrotron radiation. Mono-methyl alkanes can be found on the cuticles of insects and are believed to act as recognition pheromones in some social species, e.g. ants, wasps etc. The molecules were synthesized as pure S enantiomers and are (S)-9-methylpentacosane, C26H54; (S)-9-methylheptacosane and (S)-11-methylheptacosane, C28H58; (S)-7-methylnonacosane, (S)-9-methylnonacosane, (S)-11-methylnonacosane and (S)-13-methylnonacosane, C30H62; and (S)-9-methylhentriacontane, C32H66. All crystallize in space group P21. Depending on the position of the methyl group on the carbon chain, two packing schemes are observed, in which the molecules pack together hexagonally as linear rods with terminal and side methyl groups clustering to form distinct motifs. Carbon-chain torsion angles deviate by less than 10° from the fully extended conformation, but with one packing form showing greater curvature than the other near the position of the methyl side group. The crystal structures are optimized by dispersion-corrected DFT calculations, because of the difficulties in refining accurate structural parameters from powder diffraction data from relatively poorly crystalline materials.

  8. Land Use Regression Models of On-Road Particulate Air Pollution (Particle Number, Black Carbon, PM2.5, Particle Size) Using Mobile Monitoring.

    PubMed

    Hankey, Steve; Marshall, Julian D

    2015-08-04

    Land Use Regression (LUR) models typically use fixed-site monitoring; here, we employ mobile monitoring as a cost-effective alternative for LUR development. We use bicycle-based, mobile measurements (∼85 h) during rush-hour in Minneapolis, MN to build LUR models for particulate concentrations (particle number [PN], black carbon [BC], fine particulate matter [PM2.5], particle size). We developed and examined 1224 separate LUR models by varying pollutant, time-of-day, and method of spatial and temporal smoothing of the time-series data. Our base-case LUR models had modest goodness-of-fit (adjusted R(2): ∼0.5 [PN], ∼0.4 [PM2.5], 0.35 [BC], ∼0.25 [particle size]), low bias (<4%) and absolute bias (2-18%), and included predictor variables that captured proximity to and density of emission sources. The spatial density of our measurements resulted in a large model-building data set (n = 1101 concentration estimates); ∼25% of buffer variables were selected at spatial scales of <100m, suggesting that on-road particle concentrations change on small spatial scales. LUR model-R(2) improved as sampling runs were completed, with diminishing benefits after ∼40 h of data collection. Spatial autocorrelation of model residuals indicated that models performed poorly where spatiotemporal resolution of emission sources (i.e., traffic congestion) was poor. Our findings suggest that LUR modeling from mobile measurements is possible, but that more work could usefully inform best practices.

  9. Black carbon, particle number concentration and nitrogen oxide emission factors of random in-use vehicles measured with the on-road chasing method

    NASA Astrophysics Data System (ADS)

    Ježek, I.; Katrašnik, T.; Westerdahl, D.; Močnik, G.

    2015-06-01

    The chasing method was used in an on-road measurement campaign, and emission factors (EF) of black carbon (BC), particle number (PN) and nitrogen oxides (NOx) were determined for 139 individual vehicles of different types encountered on the roads. The aggregated results provide EFs for BC, NOx and PN for three vehicle categories: goods vehicles, gasoline and diesel passenger cars. This is the first on-road measurement study where BC EFs of numerous individual diesel cars were determined in real-world driving conditions. We found good agreement between EFs of goods vehicles determined in this campaign and the results of previous studies that used either chasing or remote sensing measurement techniques. The composition of the sampled car fleet determined from the national vehicle registry information is reflective of Eurostat statistical data on the Slovenian and European vehicle fleet. The median BC EF of diesel and gasoline cars that were in use for less than 5 years, decreased by 60 and 47% from those in use for 5-10 years, respectively, the median NOx and PN EFs, of goods vehicles that were in use for less than five years, decreased from those in use for 5-10 years by 52 and 67%, respectively. The influence of engine maximum power of the measured EFs showed an increase in NOx EF from least to more powerful vehicles with diesel engines. Finally a disproportionate contribution of high emitters to the total emissions of the measured fleet was found; the top 25% of emitting diesel cars contributed 63, 47 and 61% of BC, NOx and PN emissions respectively. With the combination of relatively simple on-road measurements with sophisticated post processing individual vehicles EF can be determined and useful information about the fleet emissions can be obtained by exactly representing vehicles which contribute disproportionally to vehicle fleet emissions; and monitor how the numerous emission reduction approaches are reflected in on-road driving conditions.

  10. Emission rates of particle number, mass and black carbon by the Los Angeles International Airport (LAX) and its impact on air quality in Los Angeles

    NASA Astrophysics Data System (ADS)

    Shirmohammadi, Farimah; Sowlat, Mohammad H.; Hasheminassab, Sina; Saffari, Arian; Ban-Weiss, George; Sioutas, Constantinos

    2017-02-01

    This study describes a series of air monitoring measurements of particle number (PN), black carbon (BC) and PM2.5 mass concentrations in the vicinity of the Los Angeles International Airport (LAX) (roughly 150 m downwind of the LAX's south runways) as well as on-road measurements of the aforementioned pollutants using a mobile platform on three major freeways (i.e., I-110, I-105, and I-405) during May-July 2016. All measurements were performed in the "impact zone" of LAX with the predominant westerly winds from coast to inland. The overall impact of aircraft emissions from the LAX airport and its facilities in comparison to vehicular emissions from freeways on air quality was evaluated on a local scale (i.e. areas in the vicinity of the airport). PN concentration was, on average, 4.1 ± 1.2 times greater at the LAX site than on the studied freeways. Particle number emission factors for takeoffs and landings were comparable, with average values of 8.69 ×1015 particles/kg fuel and 8.16 ×1015 particles/kg fuel, respectively, and indicated a nearly 4-fold statistically significant reduction in PN emission factors for takeoffs during the past decade. BC emission factors were 0.12 ± 0.02 and 0.11 ± 0.01 g/kg fuel during takeoffs and landings, respectively. Additionally, the mean PM2.5 emission factor values for takeoffs and landings were also comparable, with values of 0.38 ± 0.04 and 0.40 ± 0.05 g/kg fuel, respectively. Within the impact zone of the airport, an area of roughly 100 km2 downwind of the LAX, measurements indicated that the LAX daily contributions to PN, BC, and PM2.5 were approximately 11, 2.5, and 1.4 times greater than those from the three surrounding freeways. These results underscore the significance of the LAX airport as a major source of pollution within its zone of impact comparing to freeway emissions.

  11. Influence of organic ligands on the reduction of polyhalogenated alkanes by iron(II).

    PubMed

    Bussan, Adam L; Strathmann, Timothy J

    2007-10-01

    Experimental work demonstrates that polyhalogenated alkanes (PHAs) are rapidly reduced in aqueous solutions containing Fe(II) complexes with organic ligands that possess either catechol or organothiol Lewis base groups in their structure and are representative of extracellular ligands and metal-complexing moieties within humic substances (tiron, 2,3-dihydroxybenzoic acid, 3,4-dihydroxybenzoic acid, 2,3,4-trihydroxybenzoic acid, 3,4,5-trihydroxybenzoic acid, thioglycolic acid, and 2,3-dimercaptosuccinic acid). In solutions containing Fe(II)-tiron complexes, 1,1,1-trichloroethane (1,1,1-TCA) is reduced quantitativelyto acetaldehyde, a product previously reported for reactions with Cr(II), but not with Fe-based reductants. Observed pseudo-first-order rate constants for 1,1,1-TCA reduction by Fe(II)-organic complexes (k'(obs)) generally increase with increasing pH and ligand concentration when Fe(II) concentration is fixed. For the Fe(II)-tiron system, k'(obs) is linearly correlated with the concentration of the 1:2 Fe(II)-tiron complex (FeL2(6-)), and kinetic trends can be described by k'(obs) = k(FeL2)6- [FeL2(6-)], where k(FeL2)6- is the bimolecular rate constant for PHA reaction with the 1:2 Fe(II)-tiron complex. Comparing reaction rates for 14 polyhalogenated ethanes and methanes reveals linear free energy relationships (LFERs) with molecular descriptors for PHA reduction (D(R-X'), deltaG(0'), and E(LUMO)), with the strongest correlation being obtained using carbon-halogen bond dissociation energies, D(R-X'). The collective experimental results are consistent with a dissociative one-electron transfer process occurring during the rate-limiting step.

  12. Thermal analysis of n-alkane phase change material mixtures. Progress report, January 1, 1991--March 31, 1991

    SciTech Connect

    Chio, Y.I.; Choi, E.; Lorsch, H.G.

    1991-03-31

    Tests were performed to characterize the thermal behavior of it number of n-alkanes to be used as phase change materials (PCMs) in district cooling applications. Hexadecane and tetradecane were mixed in different fractions, and their thermal behavior was experimentally evaluated. Test results for melting temperature and fusion energy for laboratory grade hexadecane and tetradecane showed good agreement with datain the literature. However, values for commercial grade hexadecane were found to be considerably lower. In the range of temperatures of interest for district cooling, mixtures of tetradecane and hexadecane can be treated as homogeneous substances. However, their heats of fusion are slightly lower than those of the pure substances. Their melting temperatures are also lower by an amount that can be predicted.

  13. Transferable Anisotropic United-Atom Force Field Based on the Mie Potential for Phase Equilibrium Calculations: n-Alkanes and n-Olefins.

    PubMed

    Hemmen, Andrea; Gross, Joachim

    2015-09-03

    A new transferable force field parametrization for n-alkanes and n-olefins is proposed in this work. A united-atom approach is taken, where hydrogen atoms are lumped with neighboring atoms to single interaction sites. A comprehensive study is conducted for alkanes, optimizing van der Waals force field parameters in 6 dimensions. A Mie n-6 potential is considered for the van der Waals interaction, where for n-alkanes we simultaneously optimize the energy parameters ϵCH3 and ϵCH2 as well as the size parameters σCH3 and σCH2 of the CH3(sp(3)) and CH2(sp(3)) groups. Further, the repulsive exponent n of the Mie n-6 potential is varied. Moreover, we investigate the bond length toward the terminal CH3 group as a degree of freedom. According to the AUA (anisotropic united-atom) force field, the bond length between the terminal CH3 group and the neighboring interaction site should be increased by Δl compared with the carbon-carbon distance in order to better account for the hydrogen atoms. The parameter Δl is considered as a degree of freedom. The intramolecular force field parametrization is taken from existing force fields. A single objective function for the optimization is defined as squared relative deviations in vapor pressure and in liquid density of propane, n-butane, n-hexane, and n-octane. A similar study is also done for olefins, where the objective function includes 1-butene, 1-hexene, 1-octene, cis-2-pentene, and trans-2-pentene. Molecular simulations are performed in the grand canonical ensemble with transition-matrix sampling where the phase equilibrium properties are obtained with the histogram reweighting technique. The 6-dimensional optimization of strongly correlated parameters is possible, because the analytic PC-SAFT equation of state is used to locally correlate simulation results. The procedure is iterative but leads to very efficient convergence. An implementation is proposed, where the converged result is not affected (disturbed) by the

  14. Ubiquitous Presence and Novel Diversity of Anaerobic Alkane Degraders in Cold Marine Sediments.

    PubMed

    Gittel, Antje; Donhauser, Johanna; Røy, Hans; Girguis, Peter R; Jørgensen, Bo B; Kjeldsen, Kasper U

    2015-01-01

    Alkanes are major constituents of crude oil and are released to the marine environment by natural seepage and from anthropogenic sources. Due to their chemical inertness, their removal from anoxic marine sediments is primarily controlled by the activity of anaerobic alkane-degrading microorganisms. To facilitate comprehensive cultivation-independent surveys of the diversity and distribution of anaerobic alkane degraders, we designed novel PCR primers that cover all known diversity of the 1-methylalkyl succinate synthase gene (masD/assA), which catalyzes the initial activation of alkanes. We studied masD/assA gene diversity in pristine and seepage-impacted Danish coastal sediments, as well as in sediments and alkane-degrading enrichment cultures from the Middle Valley (MV) hydrothermal vent system in the Pacific Northwest. MasD/assA genes were ubiquitously present, and the primers captured the diversity of both known and previously undiscovered masD/assA gene diversity. Seepage sediments were dominated by a single masD/assA gene cluster, which is presumably indicative of a substrate-adapted community, while pristine sediments harbored a diverse range of masD/assA phylotypes including those present in seepage sediments. This rare biosphere of anaerobic alkane degraders will likely increase in abundance in the event of seepage or accidental oil spillage. Nanomolar concentrations of short-chain alkanes (SCA) were detected in pristine and seepage sediments. Interestingly, anaerobic alkane degraders closely related to strain BuS5, the only SCA degrader in pure culture, were found in mesophilic MV enrichments, but not in cold sediments from Danish waters. We propose that the new masD/assA gene lineages in these sediments represent novel phylotypes that are either fueled by naturally occurring low levels of SCA or that metabolize medium- to long-chain alkanes. Our study highlights that masD/assA genes are a relevant diagnostic marker to identify seepage and microseepage, e