Science.gov

Sample records for alkane conversion chemistry

  1. Light alkane conversion

    SciTech Connect

    Harandi, M.N.; Owen, H.

    1991-07-09

    This patent describes a process for the aromatization of an aliphatic feedstream. It comprises fluidizing finely divided solid particles in a combustion zone; charging oxygen-containing combustion gas and fuel to the combustion zone under combustion conditions; withdrawing a stream of finely divided particles from the combustion zone; flowing the withdrawn stream of finely divided particles above to a cracking/dehydrogenation zone; fluidizing the finely divided particles above in an aliphatic feedstream under conditions within the cracking/dehydrogenation zone controlled to at least partially crack and at least partially dehydrogenate the aliphatic feedstream to form an intermediate product stream containing a quantity of C{sub 4}-olefins such that the exothermic catalytic conversion of the C{sub 4}-olefins is sufficient to supply a portion of the endothermic heat of reaction for the endothermic catalytic conversion of paraffins contained in the intermediate feedstream to aromatics; contacting the intermediate product stream with an aromatization catalyst under aromatization conditions sufficient to evolve an aromatics-rich products stream.

  2. Catalytic conversion of light alkanes

    SciTech Connect

    Lyons, J.E.

    1992-06-30

    The second Quarterly Report of 1992 on the Catalytic Conversion of Light Alkanes reviews the work done between April 1, 1992 and June 31, 1992 on the Cooperative Agreement. The mission of this work is to devise a new catalyst which can be used in a simple economic process to convert the light alkanes in natural gas to oxygenate products that can either be used as clean-burning, high octane liquid fuels, as fuel components or as precursors to liquid hydrocarbon uwspomdon fuel. During the past quarter we have continued to design, prepare, characterize and test novel catalysts for the mild selective reaction of light hydrocarbons with air or oxygen to produce alcohols directly. These catalysts are designed to form active metal oxo (MO) species and to be uniquely active for the homolytic cleavage of the carbon-hydrogen bonds in light alkanes producing intermediates which can form alcohols. We continue to investigate three molecular environments for the active catalytic species that we are trying to generate: electron-deficient macrocycles (PHASE I), polyoxometallates (PHASE II), and regular oxidic lattices including zeolites and related structures as well as other molecular surface structures having metal oxo groups (PHASE I).

  3. Conversion of alkanes to organoseleniums and organotelluriums

    DOEpatents

    Periana, Roy A.; Konnick, Michael M.; Hashiguchi, Brian G.

    2016-11-29

    The invention provides processes and materials for the efficient and costeffective functionalization of alkanes and heteroalkanes, comprising contacting the alkane or heteroalkane and a soft oxidizing electrophile comprising Se(VI) or Te(VI), in an acidic medium, optionally further comprising an aprotic medium, which can be carried out at a temperature of less than 300 C. Isolation of the alkylselenium or alkyltellurium intermediate allows the subsequent conversion to products not necessarily compatible with the initial reaction conditions, such as amines, stannanes, organosulfur compounds, acyls, halocarbons, and olefins.

  4. Conversion of alkanes to linear alkylsilanes using an iridium-iron-catalysed tandem dehydrogenation-isomerization-hydrosilylation

    NASA Astrophysics Data System (ADS)

    Jia, Xiangqing; Huang, Zheng

    2016-02-01

    The conversion of inexpensive, saturated hydrocarbon feedstocks into value-added speciality chemicals using regiospecific, catalytic functionalization of alkanes is a major goal of organometallic chemistry. Linear alkylsilanes represent one such speciality chemical—they have a wide range of applications, including release coatings, silicone rubbers and moulding products. Direct, selective, functionalization of alkanes at primary C-H bonds is difficult and, to date, methods for catalytically converting alkanes into linear alkylsilanes are unknown. Here, we report a well-defined, dual-catalyst system for one-pot, two-step alkane silylations. The system comprises a pincer-ligated Ir catalyst for alkane dehydrogenation and an Fe catalyst that effects a subsequent tandem olefin isomerization-hydrosilylation. This method exhibits exclusive regioselectivity for the production of terminally functionalized alkylsilanes. This dual-catalyst strategy has also been applied to regioselective alkane borylations to form linear alkylboronate esters.

  5. OXIDATION OF ALKANES WITH AIR USING IRON AND MANGANESE CATALYSTS. AN OVERALL GREEN CHEMISTRY APPROACH INCLUDING THE USE OF ALTERNATIVE SOLVENT SYSTEMS GENERATED BY PARIS II

    EPA Science Inventory

    The selective oxidation of alkanes is an industrially important process that is often plagued by low conversions and the formation of unwanted by-products. Research being conducted at the USEPA, implements a Green chemistry approach which is utilized to improve these difficult o...

  6. Products of Chemistry: Alkanes: Abundant, Pervasive, Important, and Essential.

    ERIC Educational Resources Information Center

    Seymour, Raymond B.

    1989-01-01

    Discusses the history and commercialization of alkanes. Examines the nomenclature and uses of alkanes. Studies polymerization and several types of polyethylenes: low-density, high-density, low-molecular-weight, cross-linked, linear low-density, and ultrahigh-molecular-weight. Includes a glossary of hydrocarbon terms. (MVL)

  7. Co-metabolic conversion of toluene in anaerobic n-alkane-degrading bacteria.

    PubMed

    Rabus, Ralf; Jarling, René; Lahme, Sven; Kühner, Simon; Heider, Johann; Widdel, Friedrich; Wilkes, Heinz

    2011-09-01

    Diverse microorganisms have been described to degrade petroleum hydrocarbons anaerobically. Strains able to utilize n-alkanes do not grow with aromatic hydrocarbons, whereas strains able to utilize aromatic hydrocarbons do not grow with n-alkanes. To investigate this specificity in more detail, three anaerobic n-alkane degraders (two denitrifying, one sulfate-reducing) and eight anaerobic alkylbenzene degraders (five denitrifying, three sulfate-reducing) were incubated with mixtures of n-alkanes and toluene. Whereas the toluene degradationers formed only the characteristic toluene-derived benzylsuccinate and benzoate, but no n-alkane-derived metabolites, the n-alkane degraders formed toluene-derived benzylsuccinate, 4-phenylbutanoate, phenylacetate and benzoate besides the regular n-alkane-derived (1-methylalkyl)succinates and methyl-branched alkanoates. The co-metabolic conversion of toluene by anaerobic n-alkane degraders to the level of benzoate obviously follows the anaerobic n-alkane degradation pathway with C-skeleton rearrangement and decarboxylation rather than the β-oxidation pathway of anaerobic toluene metabolism. Hence, petroleum-derived aromatic metabolites detectable in anoxic environments may not be exclusively formed by genuine alkylbenzene degraders. In addition, the hitherto largely unexplored fate of fumarate hydrogen during the activation reactions was examined with (2,3-(2) H(2) )fumarate as co-substrate. Deuterium was completely exchanged with hydrogen at the substituted carbon atom (C-2) of the succinate adducts of n-alkanes, whereas it is retained in toluene-derived benzylsuccinate, regardless of the type of enzyme catalysing the fumarate addition reaction.

  8. The chemistry of energy conversion and storage.

    PubMed

    Su, Dang Sheng

    2014-05-01

    What's in store: The sustainable development of our society requires the conversion and storage of renewable energy, and these should be scaled up to serve the global primary energy consumption. This special issue on "The Chemistry of Energy Conversion and Storage", assembled by guest editor Dangsheng Su, contains papers dealing with these aspects, and highlights important developments in the chemistry of energy conversion and storage during the last two years.

  9. Organic Chemistry Self Instructional Package 5: Alkanes Preparations and Reactions.

    ERIC Educational Resources Information Center

    Zdravkovich, V.

    This booklet, one of a series of 17 developed at Prince George's Community College, Largo, Maryland, provides an individualized, self-paced undergraduate organic chemistry instruction module designed to augment any course in organic chemistry but particularly those taught using the text "Organic Chemistry" by Morrison and Boyd. The…

  10. Organic Chemistry Self Instructional Package 4: Alkanes-Nomenclature.

    ERIC Educational Resources Information Center

    Zdravkovich, V.

    This booklet, one of a series of 17 developed at Prince George's Community College, Largo, Maryland, provides an individualized, self-paced undergraduate organic chemistry instruction module designed to augment any course in organic chemistry but particularly those taught using the text "Organic Chemistry" by Morrison and Boyd. The…

  11. Catalytic conversion of light alkanes: Quarterly report, January 1-March 31, 1992

    SciTech Connect

    Biscardi, J.; Bowden, P.T.; Durante, V.A.; Ellis, P.E. Jr.; Gray, H.B.; Gorbey, R.G.; Hayes, R.C.; Hodge, J.; Hughes, M.; Langdale, W.A.; Lyons, J.E.; Marcus, B.; Messick, D.; Merrill, R.A.; Moore, F.A.; Myers, H.K. Jr.; Seitzer, W.H.; Shaikh, S.N.; Tsao, W.H.; Wagner, R.W.; Warren, R.W.; Wijesekera, T.P.

    1997-05-01

    The first Quarterly Report of 1992 on the Catalytic Conversion of Light Alkanes reviews the work done between January 1. 1992 and March 31, 1992 on the Cooperative Agreement. The mission of this work is to devise a new catalyst which can be used in a simple economic process to convert the light alkanes in natural gas to oxygenate products which can either be used as clean-burning, high octane liquid fuels, as fuel components or as precursors to liquid hydrocarbon transportation fuel. During the past quarter we have continued to design, prepare, characterize and test novel catalysts for the mild selective reaction of light hydrocarbons with air or oxygen to produce alcohols directly. These catalysts are designed to form active metal oxo (MO) species and to be uniquely active for the homolytic cleavage of the carbon-hydrogen bonds in light alkanes producing intermediates which can form alcohols. We continue to investigate three molecular environments for the active catalytic species that we are trying to generate: electron-deficient porphryinic macrocycles (PHASE I), polyoxometallates (PHASE II), and regular oxidic lattices including zeolites and related structures as well as other molecular surface structures having metal oxo groups (PHASE III).

  12. Catalytic conversion of light alkanes phase II. Topical report, January 1990--January 1993

    SciTech Connect

    1998-12-31

    The Topical Report on Phase II of the project entitled, Catalytic Conversion of Light Alkanes reviews work done between January 1, 1990 and September 30, 1992 on the Cooperative Agreement. The mission of this work is to devise a new catalyst which can be used in a simple economic process to convert the light alkanes in natural gas to oxygenate products which can either be used as clean-burning, high octane liquid fuels, as fuel components or as precursors to liquid hydrocarbon transportation fuel. This Topical Report documents our efforts to design, prepare, characterize and test novel catalysts for the mild selective reaction of light hydrocarbons with air or oxygen to produce alcohols directly. These catalysts are designed to form active metal oxo (MO) species and to be uniquely active for the homolytic cleavage of the carbon-hydrogen bonds in light alkanes producing intermediates which can form alcohols. Research on the Cooperative Agreement is divided into three Phases relating to three molecular environments for the active catalytic species that we are trying to generate. In this report we present our work on catalysts which have oxidation-active metals in polyoxoanions (PHASE II).

  13. Catalytic conversion of light alkanes. Quarterly progress report, April 1--June 30, 1992

    SciTech Connect

    Lyons, J.E.

    1992-06-30

    The second Quarterly Report of 1992 on the Catalytic Conversion of Light Alkanes reviews the work done between April 1, 1992 and June 31, 1992 on the Cooperative Agreement. The mission of this work is to devise a new catalyst which can be used in a simple economic process to convert the light alkanes in natural gas to oxygenate products that can either be used as clean-burning, high octane liquid fuels, as fuel components or as precursors to liquid hydrocarbon uwspomdon fuel. During the past quarter we have continued to design, prepare, characterize and test novel catalysts for the mild selective reaction of light hydrocarbons with air or oxygen to produce alcohols directly. These catalysts are designed to form active metal oxo (MO) species and to be uniquely active for the homolytic cleavage of the carbon-hydrogen bonds in light alkanes producing intermediates which can form alcohols. We continue to investigate three molecular environments for the active catalytic species that we are trying to generate: electron-deficient macrocycles (PHASE I), polyoxometallates (PHASE II), and regular oxidic lattices including zeolites and related structures as well as other molecular surface structures having metal oxo groups (PHASE I).

  14. Catalytic conversion of light alkanes, Phase 1. Topical report, January 1990--January 1993

    SciTech Connect

    1993-12-31

    The authors have found a family of new catalytic materials which, if successfully developed, will be effective in the conversion of light alkanes to alcohols or other oxygenates. Catalysts of this type have the potential to convert natural gas to clean-burning high octane liquid fuels directly without requiring the energy-intensive steam reforming step. In addition they also have the potential to upgrade light hydrocarbons found in natural gas to a variety of high value fuel and chemical products. In order for commercially useful processes to be developed, increases in catalytic life, reaction rate and selectivity are required. Recent progress in the experimental program geared to the further improvement of these catalysts is outlined.

  15. Light alkane conversion processes - Suprabiotic catalyst systems for selective oxidation of light alkane gases to fuel oxygenates

    SciTech Connect

    Lyons, J.E.

    1992-01-01

    The objective of the work presented in this paper is to develop new, efficient catalysts for the selective transformation of the light alkanes in natural gas to alcohols for use as liquid transportation fuels, fuel precursors and chemical products. There currently exists no DIRECT one-step catalytic air-oxidation process to convert these substrates to alcohols. Such a one-step route would represent superior useful technology for the utilization of natural gas and similar refinery-derived light hydrocarbon streams. Processes for converting natural gas or its components (methane, ethane, propane, and the butanes) to alcohols for use as motor fuels, fuel additives or fuel precursors will not only add a valuable alternative to crude oil but will produce a clean-burning, high octane alternative to conventional gasoline.

  16. Light alkane conversion processes - Suprabiotic catalyst systems for selective oxidation of light alkane gases to fuel oxygenates.

    SciTech Connect

    Lyons, J.E.

    1992-07-01

    The objective of the work presented in this paper is to develop new, efficient catalysts for the selective transformation of the light alkanes in natural gas to alcohols for use as liquid transportation fuels, fuel precursors and chemical products. There currently exists no DIRECT one-step catalytic air-oxidation process to convert these substrates to alcohols. Such a one-step route would represent superior useful technology for the utilization of natural gas and similar refinery-derived light hydrocarbon streams. Processes for converting natural gas or its components (methane, ethane, propane, and the butanes) to alcohols for use as motor fuels, fuel additives or fuel precursors will not only add a valuable alternative to crude oil but will produce a clean-burning, high octane alternative to conventional gasoline.

  17. Catalytic conversion of light alkanes, Phase 3. Topical report, January 1990--December 1992

    SciTech Connect

    1992-12-31

    The mission of this work is to devise a new catalyst which can be used in the first simple, economic process to convert the light alkanes in natural gas to an alcohol-rich oxygenated product which can either be used as an environmentally friendly, high-performance liquid fuel, or a precursor to a liquid hydrocarbon transportation fuel. The authors have entered the proof-of-concept stage for converting isobutane to tert butyl alcohol in a practical process and are preparing to enter proof-of-concept of a propane to isopropyl alcohol process in the near future. Methane and ethane are more refractory and thus more difficult to oxidize than the C{sub 3} and C{sub 4} hydrocarbons. Nonetheless, advances made in this area indicate that further research progress could achieve the goal of their direct conversion to alcohols. Progress in Phase 3 catalytic vapor phase methane and ethane oxidation over metals in regular oxidic lattices are the subject of this topical report.

  18. A process for microbial hydrocarbon synthesis: Overproduction of fatty acids in Escherichia coli and catalytic conversion to alkanes.

    PubMed

    Lennen, Rebecca M; Braden, Drew J; West, Ryan A; Dumesic, James A; Pfleger, Brian F

    2010-06-01

    The development of renewable alternatives to diesel and jet fuels is highly desirable for the heavy transportation sector, and would offer benefits over the production and use of short-chain alcohols for personal transportation. Here, we report the development of a metabolically engineered strain of Escherichia coli that overproduces medium-chain length fatty acids via three basic modifications: elimination of beta-oxidation, overexpression of the four subunits of acetyl-CoA carboxylase, and expression of a plant acyl-acyl carrier protein (ACP) thioesterase from Umbellularia californica (BTE). The expression level of BTE was optimized by comparing fatty acid production from strains harboring BTE on plasmids with four different copy numbers. Expression of BTE from low copy number plasmids resulted in the highest fatty acid production. Up to a seven-fold increase in total fatty acid production was observed in engineered strains over a negative control strain (lacking beta-oxidation), with a composition dominated by C(12) and C(14) saturated and unsaturated fatty acids. Next, a strategy for producing undecane via a combination of biotechnology and heterogeneous catalysis is demonstrated. Fatty acids were extracted from a culture of an overproducing strain into an alkane phase and fed to a Pd/C plug flow reactor, where the extracted fatty acids were decarboxylated into saturated alkanes. The result is an enriched alkane stream that can be recycled for continuous extractions. Complete conversion of C(12) fatty acids extracted from culture to alkanes has been demonstrated yielding a concentration of 0.44 g L(-1) (culture volume) undecane.

  19. A Process for Microbial Hydrocarbon Synthesis: Overproduction of Fatty Acids in Escherichia coli and Catalytic Conversion to Alkanes

    PubMed Central

    Lennen, Rebecca M.; Braden, Drew J.; West, Ryan M.; Dumesic, James A.; Pfleger, Brian F.

    2013-01-01

    The development of renewable alternatives to diesel and jet fuels is highly desirable for the heavy transportation sector, and would offer benefits over the production and use of short-chain alcohols for personal transportation. Here, we report the development of a metabolically engineered strain of Escherichia coli that overproduces medium-chain length fatty acids via three basic modifications: elimination of β-oxidation, overexpression of the four subunits of acetyl-CoA carboxylase, and expression of a plant acyl–acyl carrier protein (ACP) thioesterase from Umbellularia californica (BTE). The expression level of BTE was optimized by comparing fatty acid production from strains harboring BTE on plasmids with four different copy numbers. Expression of BTE from low copy number plasmids resulted in the highest fatty acid production. Up to a seven-fold increase in total fatty acid production was observed in engineered strains over a negative control strain (lacking β-oxidation), with a composition dominated by C12 and C14 saturated and unsaturated fatty acids. Next, a strategy for producing undecane via a combination of biotechnology and heterogeneous catalysis is demonstrated. Fatty acids were extracted from a culture of an overproducing strain into an alkane phase and fed to a Pd/C plug flow reactor, where the extracted fatty acids were decarboxylated into saturated alkanes. The result is an enriched alkane stream that can be recycled for continuous extractions. Complete conversion of C12 fatty acids extracted from culture to alkanes has been demonstrated yielding a concentration of 0.44 g L−1 (culture volume) undecane. PMID:20073090

  20. A new approach to the non-oxidative conversion of gaseous alkanes in a barrier discharge and features of the reaction mechanism

    NASA Astrophysics Data System (ADS)

    Kudryashov, S.; Ryabov, A.; Shchyogoleva, G.

    2016-01-01

    A new approach to the non-oxidative conversion of C1-C4 alkanes into gaseous and liquid products in a barrier discharge is proposed. It consists in inhibiting the formation of deposits on the reactor electrode surfaces due to the addition of distilled water into the flow of hydrocarbon gases. The energy consumption on hydrocarbon conversion decreases from methane to n-butane from ~46 to 35 eV molecule-1. The main gaseous products of the conversion of light alkanes are hydrogen and C2-C4 hydrocarbons. The liquid reaction products contain C5+ alkanes with a predominantly isomeric structure. The results of modeling the kinetics of chemical reactions show that an increase in the molecular weight of the reaction products is mainly due to processes involving CH2 radical and the recombination of alkyl radicals.

  1. Conversion of raw lignocellulosic biomass into branched long-chain alkanes through three tandem steps.

    PubMed

    Li, Chunrui; Ding, Daqian; Xia, Qineng; Liu, Xiaohui; Wang, Yanqin

    2016-07-07

    Synthesis of branched long-chain alkanes from renewable biomass has attracted intensive interest in recent years, but the feedstock for this synthesis is restricted to platform chemicals. Here, we develop an effective and energy-efficient process to convert raw lignocellulosic biomass (e.g., corncob) into branched diesel-range alkanes through three tandem steps for the first time. Furfural and isopropyl levulinate (LA ester) were prepared from hemicellulose and cellulose fractions of corncob in toluene/water biphasic system with added isopropanol, which was followed by double aldol condensation of furfural with LA ester into C15 oxygenates and the final hydrodeoxygenation of C15 oxygenates into branched long-chain alkanes. The core point of this tandem process is the addition of isopropanol in the first step, which enables the spontaneous transfer of levulinic acid (LA) into the toluene phase in the form of LA ester through esterification, resulting in LA ester co-existing with furfural in the same phase, which is the basis for double aldol condensation in the toluene phase. Moreover, the acidic aqueous phase and toluene can be reused and the residues, including lignin and humins in aqueous phase, can be separated and carbonized to porous carbon materials.

  2. An Acid-Base Chemistry Example: Conversion of Nicotine

    NASA Astrophysics Data System (ADS)

    Summerfield, John H.

    1999-10-01

    The current government interest in nicotine conversion by cigarette companies provides an example of acid-base chemistry that can be explained to students in the second semester of general chemistry. In particular, the conversion by ammonia of the +1 form of nicotine to the easier-to-assimilate free-base form illustrates the effect of pH on acid-base equilibrium. The part played by ammonia in tobacco smoke is analogous to what takes place when cocaine is "free-based".

  3. Tracing natural gas transport into shallow groundwater using dissolved nitrogen and alkane chemistry in Parker County, Texas

    NASA Astrophysics Data System (ADS)

    Larson, T.; Nicot, J. P.; Mickler, P. J.; Darvari, R.

    2015-12-01

    Dissolved methane in shallow groundwater drives public concern about the safety of hydraulic fracturing. We report dissolved alkane and nitrogen gas concentrations and their stable isotope values (δ13C and δ15N, respectively) from 208 water wells in Parker county, Texas. These data are used to differentiate 'stray' natural gas and low temperature microbial methane, and (2) estimate the ratio of stray gas to groundwater. The ratio of (gas-phase) stray natural gas to groundwater is estimated by correlating dissolved methane and nitrogen concentrations and dissolved nitrogen δ15N values. Our hypothesis is groundwater exposed to high volumes of stray natural gas have high dissolved methane concentrations and low dissolved nitrogen concentrations and δ15N values. Alternatively, groundwater exposed to low volumes of stray gas-phase natural gas have elevated dissolved methane, but the concentration of dissolved nitrogen and its d15N value is atmospheric. A cluster of samples in Parker county have high concentrations of dissolved methane (>10mg/L) with d13Cmethane and alkane ratios (C1/C2+C3) typical of natural gas from the Barnett Shale and the Strawn Formation. Coupling dissolved nitrogen concentrations and δ15N values with these results, we suggest that few of the wells in this cluster preserve large gas to water ratios. Many samples with high dissolved methane concentrations have atmospheric dissolved nitrogen concentrations and δ15N values, providing evidence against high flux natural gas transport into shallow groundwater. These results demonstrate that dissolved nitrogen chemistry, in addition to dissolved alkane and noble gas measurements, may be useful to discern sources of dissolved methane and estimate ratios of stray natural gas-water ratios.

  4. Organic Chemistry Self Instructional Package 3: Alkanes-Homologous Series and Isomerism.

    ERIC Educational Resources Information Center

    Zdravkovich, V.

    This booklet, one of a series of 17 developed at Prince George's Community College, Largo, Maryland, provides an individualized, self-paced undergraduate organic chemistry instruction module designed to augment any course in organic chemistry but particularly those taught using the text "Organic Chemistry" by Morrison and Boyd. The…

  5. Catalytic conversion of light alkanes. Final report, January 1, 1990--October 31, 1994

    SciTech Connect

    1998-12-31

    During the course of the first three years of the Cooperative Agreement (Phase I-III), we uncovered a family of metal perhaloporphyrin complexes which had unprecedented activity for the selective air-oxidation of fight alkanes to alcohols. The reactivity of fight hydrocarbon substrates with air or oxygen was in the order: isobutane>propane>ethane>methane, in accord with their homolytic bond dissociation energies. Isobutane was so reactive that the proof-of concept stage of a process for producing tert-butyl alcohol from isobutane was begun (Phase V). It was proposed that as more active catalytic systems were developed (Phases IV, VI), propane, then ethane and finally methane oxidations will move into this stage (Phases VII through IX). As of this writing, however, the program has been terminated during the later stages of Phases V and VI so that further work is not anticipated. We made excellent progress during 1994 in generating a class of less costly new materials which have the potential for high catalytic activity. New routes were developed for replacing costly perfluorophenyl groups in the meso-position of metalloporphyrin catalysts with far less expensive and lower molecular weight perfluoromethyl groups.

  6. Condensing complex atmospheric chemistry mechanisms. 1: The direct constrained approximate lumping (DCAL) method applied to alkane photochemistry

    SciTech Connect

    Wang, S.W.; Georgopoulos, P.G.; Li, G.; Rabitz, H.

    1998-07-01

    Atmospheric chemistry mechanisms are the most computationally intensive components of photochemical air quality simulation models (PAQSMs). The development of a photochemical mechanism, that accurately describes atmospheric chemistry while being computationally efficient for use in PAQSMs, is a difficult undertaking that has traditionally been pursued through semiempirical (diagnostic) lumping approaches. The limitations of these diagnostic approaches are often associated with inaccuracies due to the fact that the lumped mechanisms have typically been optimized to fit the concentration profile of a specific species. Formal mathematical methods for model reduction have the potential (demonstrated through past applications in other areas) to provide very effective solutions to the need for computational efficiency combined with accuracy. Such methods, that can be used to condense a chemical mechanism, include kinetic lumping and domain separation. An application of the kinetic lumping method, using the direct constrained approximately lumping (DCAL) approach, to the atmospheric photochemistry of alkanes is presented in this work. It is shown that the lumped mechanism generated through the application of the DCAL method has the potential to overcome the limitations of existing semiempirical approaches, especially in relation to the consistent and accurate calculation of the time-concentration profiles of multiple species.

  7. Reactivity of alkanes on zeolites: a computational study of propane conversion reactions.

    PubMed

    Zheng, Xiaobo; Blowers, Paul

    2005-12-01

    In this work, quantum chemical methods were used to study propane conversion reactions on zeolites; these reactions included protolytic cracking, primary hydrogen exchange, secondary hydrogen exchange, and dehydrogenation reactions. The reactants, products, and transition-state structures were optimized at the B3LYP/6-31G level and the energies were calculated with CBS-QB3, a complete basis set composite energy method. The computed activation barriers were 62.1 and 62.6 kcal/mol for protolytic cracking through two different transition states, 30.4 kcal/mol for primary hydrogen exchange, 29.8 kcal/mol for secondary hydrogen exchange, and 76.7 kcal/mol for dehydrogenation reactions. The effects of basis set for the geometry optimization and zeolite acidity on the reaction barriers were also investigated. Adding extra polarization and diffuse functions for the geometry optimization did not affect the activation barriers obtained with the composite energy method. The largest difference in calculated activation barriers is within 1 kcal/mol. Reaction activation barriers do change as zeolite acidity changes, however. Linear relationships were found between activation barriers and zeolite deprotonation energies. Analytical expressions for each reaction were proposed so that accurate activation barriers can be obtained when using different zeolites as catalysts, as long as the deprotonation energies are first acquired.

  8. Microbial biosynthesis of alkanes.

    PubMed

    Schirmer, Andreas; Rude, Mathew A; Li, Xuezhi; Popova, Emanuela; del Cardayre, Stephen B

    2010-07-30

    Alkanes, the major constituents of gasoline, diesel, and jet fuel, are naturally produced by diverse species; however, the genetics and biochemistry behind this biology have remained elusive. Here we describe the discovery of an alkane biosynthesis pathway from cyanobacteria. The pathway consists of an acyl-acyl carrier protein reductase and an aldehyde decarbonylase, which together convert intermediates of fatty acid metabolism to alkanes and alkenes. The aldehyde decarbonylase is related to the broadly functional nonheme diiron enzymes. Heterologous expression of the alkane operon in Escherichia coli leads to the production and secretion of C13 to C17 mixtures of alkanes and alkenes. These genes and enzymes can now be leveraged for the simple and direct conversion of renewable raw materials to fungible hydrocarbon fuels.

  9. Chemistry of Furan Conversion into Aromatics and Olefins over HZSM-5: A Model Biomass Conversion Reaction

    SciTech Connect

    Cheng, Yu-Ting; Huber, George W.

    2011-06-03

    The conversion of furan (a model of cellulosic biomass) over HZSM-5 was investigated in a thermogravimetric analysis–mass spectrometry system, in situ Fourier transform infrared analysis, and in a continuous-flow fixed-bed reactor. Furan adsorbed as oligomers at room temperature with a 1.73 of adsorbed furan/Al ratio. These oligomers were polycyclic aromatic compounds that were converted to CO, CO₂, aromatics, and olefins at temperatures from 400 to 600 °C. Aromatics (e.g., benzene, toluene, and naphthalene), oligomer isomers (e.g., benzofuran, 2,2-methylenebisfuran, and benzodioxane), and heavy oxygenates (C₁₂{sub +} oligomers) were identified as intermediates formed inside HZSM-5 at different reaction temperatures. During furan conversion, graphite-type coke formed on the catalyst surface, which caused the aromatics and olefins formation to deactivate within the first 30 min of time on-stream. We have measured the effects of space velocity and temperature for furan conversion to help us understand the chemistry of biomass conversion inside zeolite catalysts. The major products for furan conversion included CO, CO₂, allene, C₂–C₆ olefins, benzene, toluene, styrene, benzofuran, indene, and naphthalene. The aromatics (benzene and toluene) and olefins (ethylene and propylene) selectivity decreased with increasing space velocity. Unsaturated hydrocarbons such as allene, cyclopentadiene, and aromatics selectivity increased with increasing space velocity. The product distribution was selective to olefins and CO at high temperatures (650 °C) but was selective to aromatics (benzene and toluene) at intermediate temperatures (450–600 °C). At low temperatures (450 °C), benzofuran and coke contributed 60% of the carbon selectivity. Several different reactions were occurring for furan conversion over zeolites. Some important reactions that we have identified in this study include Diels–Alder condensation (e.g., two furans form benzofuran and water

  10. Catalytic conversion of light alkanes-proof-of-concept stage -- Phase 6. Final report, February 1--October 31, 1994

    SciTech Connect

    1994-12-31

    During the course of the first three years of the Cooperative Agreement, the authors uncovered a family of metal perhaloporphyrin complexes which had unprecedented activity for the selective air-oxidation of light alkanes to alcohols. The reactivity of light hydrocarbon substrates with air or oxygen was in the order: isobutane > propane > ethane > methane, in accord with their homolytic bond dissociation energies. Isobutane was so reactive that the proof-of-concept stage of a process for producing tert-butyl alcohol from isobutane was begun (Phase 5). It was proposed that as more active catalytic systems were developed (Phases 4, 6), propane, then ethane and finally methane oxidations will move into this stage (Phases 7 through 9). As of this writing, however, the program has been terminated during the later stages of Phase 5 and 6 so that further work is not anticipated. 72 refs.

  11. Oxygen-free conversion of methane to higher alkanes through an isothermal two-step reaction on ruthenium

    SciTech Connect

    Belgued, M.; Amariglio, A.; Lefort, L.; Amariglio, H.

    1996-06-01

    Ruthenium dispersed on silica is able to chemisorb CH{sub 4} at temperatures significantly lower than EUROPT-1. At the temperatures used ({ge}80{degrees}C), H{sub 2} desorption parallels CH{sub 4} chemisorption but no C{sub 2}H{sub 6} is observed. During the following temperature programmed desorption under flowing argon, CH{sub 4} is removed through a wide range of temperature (from room temperature to 300{degrees}C) with a first contribution peaking at less than 100{degrees}C. Very small amounts of CH{sub 4} are desorbed after an adsorption carried out at T{ge} 180{degrees}C, due to strong dehydrogenation of the adspecies. Subsequent temperature programmed surface reaction of the remaining adspecies with hydrogen displays upto four CH{sub 4} peaks at well defined temperatures (ranging from {approx} 60 to {approx} 340{degrees}C), accompanied by a negligible formation of ethane. No C{sub {gamma}} was formed. The total amount of adsorbed CH{sub 4} and the average H/C ratio of the corresponding adspecies can be derived from these experiments. In a separate set of experiments, CH{sub 4} is switched to H{sub 2} at the end of the exposure step, the temperature being fixed. An immediate formation of alkanes ranging from C{sub 1} to C{sub 6} is then evidenced. A sizeable fraction of the chemisorbed layer can so be homologated to higher alkanes. The influences of the various operating factors are reported. In particular a neat maximum of the C{sub 2+} production versus temperature (at 160{degrees}C) is evidenced and is clearly due to the adverse hydrogenolysis reactions, efficiently catalyzed by Ru. All the results can be interpreted in complete similarity with the Pt case. 5 refs., 16 figs., 3 tabs.

  12. Reducing the Degrees of Freedom in Chemistry Classroom Conversations

    ERIC Educational Resources Information Center

    Criswell, Brett A.

    2012-01-01

    Five high-school chemistry teachers were asked to enact a lesson in which they posed a problem for which students were likely to generate solutions based on reasoning that was not aligned with accepted principles of chemistry. Four teachers selected a problem related to the stoichiometry of a reaction; the fifth chose a problem associated with…

  13. Catalytic conversion of light alkanes-proof-of-concept stage - Phase IV. Topical report, February 1, 1994--January 31, 1995

    SciTech Connect

    1998-12-31

    This report details the research performed on Phase IV of the extended Cooperative Agreement. This Phase, entitled C{sub 1}-C{sub 4} Research, provides the research support which accompanies the C{sub 4} Proof-of-Concept Phase (Phase V) as the two major activities of the Cooperative Agreement during calendar 1993. It is the objective of this phase to understand the nature of the catalysts and catalytic activity of perhaloporphyrin complexes uncovered during Phases I-III in order that superior catalytic materials can be made and tested which meet commercial criteria for the oxidation of the C{sub 1}-C{sub 4} light alkane gases found in natural gas and other available hydrocarbon streams. During Phase IV, we have examined the physical and electronic structures of the very active perhaloporphyrin catalysts which we have developed, and have gained an understanding of the properties which make them active. This has led us to design and synthesize materials which are cheaper, more active, more robust and, in general superior for carrying out practical catalysis. Our early generation perhaloporphyrin catalysts, while exhibiting unprecedented catalytic activity, were far too expensive for use in converting natural gas or its C{sub 1}-C{sub 4} components.

  14. Symposium on the Physical Chemistry of Solar Energy Conversion, Indianapolis American Chemical Society Meetings, Fall 2013

    SciTech Connect

    Lian, Tianquan

    2013-09-20

    The Symposium on the Physical Chemistry of Solar Energy Conversion at the Fall ACS Meeting in Indianapolis, IN (Sept. 8-12) featured the following sessions (approx. 6 speakers per session): (1) Quantum Dots and Nanorods for Solar Energy Conversion (2 half-day sessions); (2) Artificial Photosynthesis: Water Oxidation; (3) Artificial Photosynthesis: Solar Fuels (2 half-day sessions); (4) Organic Solar Cells; (5) Novel Concepts for Solar Energy Conversion (2 half-day sessions); (6) Emerging Techniques for Solar Energy Conversion; (7) Interfacial Electron Transfer

  15. EDITORIAL: Non-thermal plasma-assisted fuel conversion for green chemistry Non-thermal plasma-assisted fuel conversion for green chemistry

    NASA Astrophysics Data System (ADS)

    Nozaki, Tomohiro; Gutsol, Alexander

    2011-07-01

    This special issue is based on the symposium on Non-thermal Plasma Assisted Fuel Conversion for Green Chemistry, a part of the 240th ACS National Meeting & Exposition held in Boston, MA, USA, 22-26 August 2010. Historically, the Division of Fuel Chemistry of the American Chemical Society (ACS) has featured three plasma-related symposia since 2000, and has launched special issues in Catalysis Today on three occasions: 'Catalyst Preparation using Plasma Technologies', Fall Meeting, Washington DC, USA, 2000. Special issue in Catalysis Today 72 (3-4) with 12 peer-reviewed articles. 'Plasma Technology and Catalysis', Spring Meeting, New Orleans, LA, USA, 2003. Special issue in Catalysis Today 89 (1-2) with more than 30 peer-reviewed articles. 'Utilization of Greenhouse Gases II' (partly focused on plasma-related technologies), Spring Meeting, Anaheim, CA, USA, 2004. Special issue in Catalysis Today 98 (4) with 25 peer-reviewed articles. This time, selected presentations are published in this Journal of Physics D: Applied Physics special issue. An industrial material and energy conversion technology platform is established on thermochemical processes including various catalytic reactions. Existing industry-scale technology is already well established; nevertheless, further improvement in energy efficiency and material saving has been continuously demanded. Drastic reduction of CO2 emission is also drawing keen attention with increasing recognition of energy and environmental issues. Green chemistry is a rapidly growing research field, and frequently highlights renewable bioenergy, bioprocesses, solar photocatalysis of water splitting, and regeneration of CO2 into useful chemicals. We would also like to emphasize 'plasma catalysis' of hydrocarbon resources as an important part of the innovative next-generation green technologies. The peculiarity of non-thermal plasma is that it can generate reactive species almost independently of reaction temperature. Plasma

  16. Superacid Catalyzed Coal Conversion Chemistry. Final Technical Report, September 1, 1983-September 1, 1986

    DOE R&D Accomplishments Database

    Olah, G. A.

    1986-01-01

    This research project involved the study of a raw comparatively mild coal conversion process. The goal of the project was to study model systems to understand the basic chemistry involved and to provide a possible effective pretreatment of coal which significantly improves liquefaction-depolymerization under mild conditions. The conversion process operates at relatively low temperatures (170 degrees C) and pressures and uses an easily recyclable, stable superacid catalysts (HF-BF{sub 3}). It consequently offers an attractive alternative to currently available processes. From the present studies it appears that the modification of coal structure by electrophilic alkylation and subsequent reaction of alkylated coal with HF-BF{sub 3}-H{sub 2} system under mild conditions considerably improves the extractability of coal in pyridine and cyclohexane. On the other hand, nitration of coal and its subsequent reaction with HF-BF{sub 3}H{sub 2} decreases the pyridine and cyclohexane extractability. Study of model compounds under conditions identical with the superacidic HF/BF{sub 3}/H{sub 2} system provided significant information about the basic chemistry of the involved cleavage-hydrogenation reactions.

  17. Gas-to-Particle Conversion in Surface Discharge Nonthermal Plasmas and Its Implications for Atmospheric Chemistry

    PubMed Central

    Kim, Hyun-Ha; Ogata, Atsushi

    2011-01-01

    This paper presents some experimental data on gas-to-particle conversion of benzene using nonthermal plasma (NTP) technology and discusses the possibility of its technical application in atmospheric chemistry. Aerosol measurement using a differential mobility analyzer (DMA) revealed that the parts of benzene molecules were converted into a nanometer-sized aerosol. Aerosol formation was found to be highly related with the missing part in carbon balance. Scanning electron microscopy analysis showed that the aerosols formed in synthetic humid air are the collection of nanoparticles. The carbonyl band (C=O) was found to be an important chemical constituent in the aerosol. The potential of the NTP as an accelerated test tool in studying secondary organic aerosol (SOA) formation from VOCs will be also addressed. PMID:22163781

  18. N-Alkane oxidation enzymes of a pseudomonad.

    PubMed Central

    Parekh, V R; Traxler, R W; Sobek, J M

    1977-01-01

    A nicotinamide adenine dinucleotide (NAD)-dependent n-alkane dehydrogenase and an NAD phosphate (reduced form)-dependent alkane hydroxylase have been purified from cell-free extracts of Pseudomonas sp. strain 196Aa grown anaerobically on n-alkane. The n-alkane dehydrogenase (fraction R-3), obtained as a single peak from Bio-Gel P-60, showed an overall 135-fold purification and was demonstrated by infrared spectroscopy and gas chromatography to convert n-decane to 1-decene. The alkene hydroxylase activity in the S-3 fraction, purified 167 times from diethylaminoethyl-cellulose, was shown by the same methodology to convert decene to decanol. Commercial ferredoxin has been shown to increase the alkane dehydrogenase activity. An NAD-, flavine adenine dinucleotide-, and iron-dependent alcohol dehydrogenase was demonstrated in the R-3 fraction. A mechanism for the anaerobic conversion of n-alkane to fatty acid has been proposed. PMID:869535

  19. Liquid phase thermochemical energy conversion systems - An application of Diels-Alder chemistry

    NASA Astrophysics Data System (ADS)

    Lenz, T. G.; Hegedus, L. S.; Vaughan, J. D.

    1982-12-01

    A method of thermochemical energy conversion, transport, and storage research involving moderate and low temperature liquid phase systems employing Diels-Alder cycloaddition chemistry is described. Proposed as a heat storage system for solar and industrial waste heat, the system involves the meeting, in a reactor, of energy-depleted and energy-rich fluids. The poor fluid gains energy and goes through a chemical, endothermic dissociative change. The use of Diels-Alder reactions provides completely reversible chemical reactions for this application. The heated fluid can be retransported for storage or implementation as a heat source. The return reaction, releasing the stored heat, can be done spontaneously or in the presence of a catalyst such as Lewis acids. Attention is recommended for the Wentworth-Chen temperature of 250-300 C to minimize the system thermal degradation. Research in the synthesis of diene and dienophile candidate chemicals, into sealed tube and reaction kinetic techniques, and into NMR techniques for identifying further reaction candidates are discussed.

  20. Drugs in the Chemistry Laboratory: The Conversion of Acetaminophen into Phenacetin.

    ERIC Educational Resources Information Center

    Volker, Eugene J.; And Others

    1979-01-01

    Describes an experiment in which acetaminophen is converted into phenacetin, that has been used at Shepherd College in an introductory chemistry course for nurses and in the organic chemistry laboratory. (BT)

  1. Nanocrystal conversion chemistry: A unified and materials-general strategy for the template-based synthesis of nanocrystalline solids

    SciTech Connect

    Vasquez, Yolanda; Henkes, Amanda E.; Chris Bauer, J.; Schaak, Raymond E.

    2008-07-15

    The concept of nanocrystal conversion chemistry, which involves the use of pre-formed nanoparticles as templates for chemical transformation into derivative solids, has emerged as a powerful approach for designing the synthesis of complex nanocrystalline solids. The general strategy exploits established synthetic capabilities in simple nanocrystal systems and uses these nanocrystals as templates that help to define the composition, crystal structure, and morphology of product nanocrystals. This article highlights key examples of 'conversion chemistry' approaches to the synthesis of nanocrystalline solids using a variety of techniques, including galvanic replacement, diffusion, oxidation, and ion exchange. The discussion is organized according to classes of solids, highlighting the diverse target systems that are accessible using similar chemical concepts: metals, oxides, chalcogenides, phosphides, alloys, intermetallic compounds, sulfides, and nitrides. - Graphical abstract: Nanocrystal conversion chemistry uses pre-formed nanoparticles as templates for chemical transformation into derivative solids, helping to define the composition, crystal structure, and morphology of product nanocrystals that have more complex features than their precursor templates. This article highlights the application of this concept to diverse classes of solids, including metals, oxides, chalcogenides, phosphides, alloys, intermetallics, sulfides, and nitrides.

  2. Organic Chemistry and the Native Plants of the Sonoran Desert: Conversion of Jojoba Oil to Biodiesel

    ERIC Educational Resources Information Center

    Daconta, Lisa V.; Minger, Timothy; Nedelkova, Valentina; Zikopoulos, John N.

    2015-01-01

    A new, general approach to the organic chemistry laboratory is introduced that is based on learning about organic chemistry techniques and research methods by exploring the natural products found in local native plants. As an example of this approach for the Sonoran desert region, the extraction of jojoba oil and its transesterification to…

  3. Revised charge equilibration potential for liquid alkanes.

    PubMed

    Davis, Joseph E; Warren, G Lee; Patel, Sandeep

    2008-07-17

    We present a revised liquid alkane force field based on the charge equilibration formalism for incorporating electrostatic nonadditive effects arising from local polarization. The model is a revision of earlier work by Patel and Brooks, specifically addressing deficiencies in the dihedral potential, electrostatic, and Lennard-Jones (van der Waals) parameters of the force field. We discuss refinement of the alkane backbone torsion potential to match high-level ab initio relative conformational energetics for pentane, hexane, and heptane. We further discuss refinement of the electrostatic and Lennard-Jones (van der Waals) parameters to reproduce the experimental polarizability, liquid density, and vaporization enthalpy of hexane. Finally, we calculate bulk liquid properties including densities, vaporization enthalpies, self-diffusion constants, isothermal compressibilities, constant pressure heat capacities, and NMR T 1 relaxation times for a series of linear alkanes ranging from hexane to pentadecane based on the current revised model. We also compute free energies of hydration for pentane, hexane, and heptane. The revised force field offers a significantly improved overall description of these properties relative to the original parametrization. The current alkane force field represents a platform for ongoing development of a CHARMM (Chemistry at Harvard Molecular Mechanics) polarizable force field for lipids and integral membrane proteins.

  4. Mesoscale effects in electrochemical conversion: coupling of chemistry to atomic- and nanoscale structure in iron-based electrodes.

    PubMed

    Wiaderek, Kamila M; Borkiewicz, Olaf J; Pereira, Nathalie; Ilavsky, Jan; Amatucci, Glenn G; Chupas, Peter J; Chapman, Karena W

    2014-04-30

    The complex coupling of atomic, chemical, and electronic transformations across multiple length scales underlies the performance of electrochemical energy storage devices. Here, the coupling of chemistry with atomic- and nanoscale structure in iron conversion electrodes is resolved by combining pair distribution function (PDF) and small-angle X-ray scattering (SAXS) analysis for a series of Fe fluorides, oxyfluorides, and oxides. The data show that the anion chemistry of the initial electrode influences the abundance of atomic defects in the Fe atomic lattice. This, in turn, is linked to different atom mobilities and propensity for particle growth. Competitive nanoparticle growth in mixed anion systems contributes to a distinct nanostructure, without the interconnected metallic nanoparticles formed for single anion systems.

  5. Potential and challenges of zeolite chemistry in the catalytic conversion of biomass.

    PubMed

    Ennaert, Thijs; Van Aelst, Joost; Dijkmans, Jan; De Clercq, Rik; Schutyser, Wouter; Dusselier, Michiel; Verboekend, Danny; Sels, Bert F

    2016-02-07

    Increasing demand for sustainable chemicals and fuels has pushed academia and industry to search for alternative feedstocks replacing crude oil in traditional refineries. As a result, an immense academic attention has focused on the valorisation of biomass (components) and derived intermediates to generate valuable platform chemicals and fuels. Zeolite catalysis plays a distinct role in many of these biomass conversion routes. This contribution emphasizes the progress and potential in zeolite catalysed biomass conversions and relates these to concepts established in existing petrochemical processes. The application of zeolites, equipped with a variety of active sites, in Brønsted acid, Lewis acid, or multifunctional catalysed reactions is discussed and generalised to provide a comprehensive overview. In addition, the feedstock shift from crude oil to biomass involves new challenges in developing fields, like mesoporosity and pore interconnectivity of zeolites and stability of zeolites in liquid phase. Finally, the future challenges and perspectives of zeolites in the processing of biomass conversion are discussed.

  6. Interfacial chemistry of organic conversion film on AZ61 magnesium alloy surface

    NASA Astrophysics Data System (ADS)

    Yang, Xu; Pan, Fusheng; Zhang, Dingfei

    2008-12-01

    The anodic electrochemical behavior of AZ61 magnesium alloy in sodium hydroxide medium in the absence and presence of p-nitro-benzene-azo-resorcinol (PNBAR) was studied using electrochemical techniques. In the presence of PNBAR, organic conversion film formed on the surface of magnesium alloy. The nature of chemical mechanisms, bonds, and structures at the interface of PNBAR/magnesium alloy was investigated by using energy dispersive spectrometer (EDS) analysis and Fourier transform infrared spectroscopy. An in situ electrochemical deposition was evidenced to produce a corrosion protective barrier by the formation of organic conversion film of magnesium-PNBAR complex and to enhance film adhesion by the covalent bonds of Mg sbnd O sbnd N linkage. The linear sweep voltammetry experiments and the score tests were used to investigate the adhesion and evaluate the potential of corrosion resistance of organic conversion film. The results indicated the corrosion resistance of magnesium alloy was improved, the organic conversion film showed excellent adhesion not only to the substrate but also to the outer paint coatings.

  7. Internal conversion and intersystem crossing pathways in UV excited, isolated uracils and their implications in prebiotic chemistry.

    PubMed

    Yu, Hui; Sanchez-Rodriguez, Jose A; Pollum, Marvin; Crespo-Hernández, Carlos E; Mai, Sebastian; Marquetand, Philipp; González, Leticia; Ullrich, Susanne

    2016-07-27

    The photodynamic properties of molecules determine their ability to survive in harsh radiation environments. As such, the photostability of heterocyclic aromatic compounds to electromagnetic radiation is expected to have been one of the selection pressures influencing the prebiotic chemistry on early Earth. In the present study, the gas-phase photodynamics of uracil, 5-methyluracil (thymine) and 2-thiouracil-three heterocyclic compounds thought to be present during this era-are assessed in the context of their recently proposed intersystem crossing pathways that compete with internal conversion to the ground state. Specifically, time-resolved photoelectron spectroscopy measurements evidence femtosecond to picosecond timescales for relaxation of the singlet (1)ππ* and (1)nπ* states as well as for intersystem crossing to the triplet manifold. Trapping in the excited triplet state and intersystem crossing back to the ground state are investigated as potential factors contributing to the susceptibility of these molecules to ultraviolet photodamage.

  8. Superacid catalysis of light hydrocarbon conversion. Final report, August 26, 1993--August 26, 1996

    SciTech Connect

    Gates, B.C.

    1996-12-31

    Motivated by the goal of finding improved catalysts for low- temperature conversion of light alkanes into fuel components or precursors of fuel components, the researchers have investigated sulfated zirconia and promoted sulfated zirconia for conversion of butane, propane, and ethane. Catalyst performance data for sulfated zirconia promoted with iron and manganese show that it is the most active noncorrosive, nonhalide catalyst known for n-butane isomerization, and it is an excellent candidate catalyst for new low- temperature n-butane isomerization processes to make isobutane, which can be converted by established technology into methyl t-butyl ether (MTBE). Various transition metals have been found to work as promoters of sulfated zirconia for n-butane isomerization. The combination of iron and manganese is the best known combination of promoters yet discovered. The iron- and manganese-promoted sulfated zirconia is also a catalyst for conversion of propane and of ethane. Ethane is converted into ethylene and butanes in the presence of the iron- and manganese-promoted sulfated zirconia; propane is also converted into butane, among other products. However, the activities of the catalyst for these reactions are orders of magnitude less than the activity for n-butane conversion, and there is no evidence that the catalyst would be of practical value for conversion of alkanes lighter than butane. The product distribution data for ethane and propane conversion provide new insights into the nature of the catalyst and its acidity. These data suggest the involvement of Olah superacid chemistry, whereby the catalyst protonates the alkane itself, giving carbonium ions (as transition states). The mechanism of protonation of the alkane may also pertain to the conversion of butane, but there is good evidence that the butane conversion also proceeds via alkene intermediates by conventional mechanisms of carbenium ion formation and rearrangement.

  9. Ceramic nanoparticle assemblies with tailored shapes and tailored chemistries via biosculpting and shape-preserving inorganic conversion.

    PubMed

    Dickerson, M B; Naik, R R; Sarosi, P M; Agarwal, G; Stone, M O; Sandhage, K H

    2005-01-01

    A novel biosynthetic paradigm is introduced for fabricating three-dimensional (3-D) ceramic nanoparticle assemblies with tailored shapes and tailored chemistries: biosculpting and shape-preserving inorganic conversion (BaSIC). Biosculpting refers to the use of biomolecules that direct the precipitation of ceramic nanoparticles to form a continuous 3-D structure with a tailored shape. We used a peptide derived from a diatom (a type of unicellular algae) to biosculpt silica nanoparticle based assemblies that, in turn, were converted into a new (nonsilica) composition via a shape-preserving gas/silica displacement reaction. Interwoven, microfilamentary silica structures were prepared by exposing a peptide, derived from the silaffin-1A protein of the diatom Cylindrotheca fusiformis, to a tetramethylorthosilicate solution under a linear shear flow condition. Subsequent exposure of the silica microfilaments to magnesium gas at 900 degrees C resulted in conversion into nanocrystalline magnesium oxide microfilaments with a retention of fine (submicrometer) features. Fluid(gas or liquid)/silica displacement reactions leading to a variety of other oxides have also been identified. This hybrid (biogenic/synthetic) approach opens the door to biosculpted ceramic microcomponents with multifarious tailored shapes and compositions for a wide range of environmental, aerospace, biomedical, chemical, telecommunications, automotive, manufacturing, and defense applications.

  10. Superacid Catalyzed Coal Conversion Chemistry. 1st and 2nd Quarterly Technical Progress Reports, September 1, 1983-March 30, 1984.

    DOE R&D Accomplishments Database

    Olah, G. A.

    1984-01-01

    In our laboratories we have previously developed a mild coal conversion process. This involves the use of a superacid system consisting of HF and BF{sub 3} in presence of hydrogen and/or a hydrogen donor solvent. In order to understand the chemistry involved in the process of depolymerization of coal by the HF:BF{sub 3}:H{sub 2} system we are carrying out a systematic study of a number of coal model compounds. The model compounds selected for present study have two benzene rings connected with various bridging units such as alkylidene, ether, sulfide etc. From studies so far carried out it appears that high pyridine extractibilities achieved by treating coal at temperature below 100 degrees C results from the cleavage of bridges such as present in bibenzyl, diphenyl methane, dibenzyl ether, dibenzyl sulfide etc. On the other hand the increased cyclohexane extractibility and distillability observed at relatively higher temperatures and hydrogen pressures reflects the hydrogenation and cleavage of the aromatic backbone in coal structure similar to what is seen in the conversion of model compounds such as biphenyl, diphenyl ether, diphenyl sulfide, anthracene, etc.

  11. Catalytic, mild, and selective oxyfunctionalization of linear alkanes: current challenges.

    PubMed

    Bordeaux, Mélanie; Galarneau, Anne; Drone, Jullien

    2012-10-22

    Selective catalysts for sustainable oxidation of alkanes are highly demanded because of the abundance of these molecules in the environment, the possibility to transform them into higher-value compounds, such as chemicals or synthetic fuels, and the fact that, kinetically speaking, this is a difficult reaction. Numerous chemical and biological catalysts have been developed in the lasts decades for this purpose, rendering the overview over this field of chemistry difficult. After giving a definition of the ideal catalyst for alkane oxyfunctionalization, this review aims to present the catalysts available today that are closest to ideal.

  12. Catalytic oxidation of light alkanes in presence of a base

    DOEpatents

    Bhinde, Manoj V.; Bierl, Thomas W.

    1998-01-01

    The presence of a base in the reaction mixture in a metal-ligand catalyzed partial oxidation of alkanes results in sustained catalyst activity, and in greater percent conversion as compared with oxidation in the absence of base, while maintaining satisfactory selectivity for the desired oxidation, for example the oxidation of isobutane to isobutanol.

  13. Catalytic oxidation of light alkanes in presence of a base

    DOEpatents

    Bhinde, M.V.; Bierl, T.W.

    1998-03-03

    The presence of a base in the reaction mixture in a metal-ligand catalyzed partial oxidation of alkanes results in sustained catalyst activity, and in greater percent conversion as compared with oxidation in the absence of base, while maintaining satisfactory selectivity for the desired oxidation, for example the oxidation of isobutane to isobutanol. 1 fig.

  14. High Temperature Chemical Kinetic Combustion Modeling of Lightly Methylated Alkanes

    SciTech Connect

    Sarathy, S M; Westbrook, C K; Pitz, W J; Mehl, M

    2011-03-01

    Conventional petroleum jet and diesel fuels, as well as alternative Fischer-Tropsch (FT) fuels and hydrotreated renewable jet (HRJ) fuels, contain high molecular weight lightly branched alkanes (i.e., methylalkanes) and straight chain alkanes (n-alkanes). Improving the combustion of these fuels in practical applications requires a fundamental understanding of large hydrocarbon combustion chemistry. This research project presents a detailed high temperature chemical kinetic mechanism for n-octane and three lightly branched isomers octane (i.e., 2-methylheptane, 3-methylheptane, and 2,5-dimethylhexane). The model is validated against experimental data from a variety of fundamental combustion devices. This new model is used to show how the location and number of methyl branches affects fuel reactivity including laminar flame speed and species formation.

  15. From Alkanes to Carboxylic Acids: Terminal Oxygenation by a Fungal Peroxygenase.

    PubMed

    Olmedo, Andrés; Aranda, Carmen; Del Río, José C; Kiebist, Jan; Scheibner, Katrin; Martínez, Angel T; Gutiérrez, Ana

    2016-09-26

    A new heme-thiolate peroxidase catalyzes the hydroxylation of n-alkanes at the terminal position-a challenging reaction in organic chemistry-with H2 O2 as the only cosubstrate. Besides the primary product, 1-dodecanol, the conversion of dodecane yielded dodecanoic, 12-hydroxydodecanoic, and 1,12-dodecanedioic acids, as identified by GC-MS. Dodecanal could be detected only in trace amounts, and 1,12-dodecanediol was not observed, thus suggesting that dodecanoic acid is the branch point between mono- and diterminal hydroxylation. Simultaneously, oxygenation was observed at other hydrocarbon chain positions (preferentially C2 and C11). Similar results were observed in reactions of tetradecane. The pattern of products formed, together with data on the incorporation of (18) O from the cosubstrate H2 (18) O2 , demonstrate that the enzyme acts as a peroxygenase that is able to catalyze a cascade of mono- and diterminal oxidation reactions of long-chain n-alkanes to give carboxylic acids.

  16. Surface chemistry and corrosion behavior of aluminum-copper systems: Air-formed films to complex conversion coatings

    NASA Astrophysics Data System (ADS)

    Chidambaram, Devicharan

    Understanding the mechanism of corrosion inhibition by carcinogenic chromates is critical to the development of environmentally safe coatings containing benign chromate substitutes. An integrated approach to correlate the surface chemistry and corrosion behavior of a wide range of systems has been undertaken. Electrochemical behavior was studied by open circuit potential (OCP) measurements, potentiodynamic polarization, and electrochemical impedance spectroscopy (EIS). Surface chemistry was studied using variable-angle X-ray photoelectron spectroscopy (VAXPS), X-ray absorption near edge spectroscopy (XANES), secondary ion mass spectroscopy (SIMS), infrared spectroscopy and synchrotron infrared micro spectroscopy (SIRMS) and Raman spectroscopy. Using SIRMS, the ASTM recommended acetone degreasing was shown to initiate pitting of AA2024-T3 via photochemical formation of acetic acid. Due to the known tendency for photoreduction of Cr6+(3d0) following soft X-ray dosage during XPS, a novel method has been developed to prevent this reduction. This method yields, for the first time, an accurate determination of the Cr6+ content of a CCC. The pretreatment of the alloy prior to conversion coating has been shown to have significant influence on the surface intermetallic distribution, composition and corrosion resistance of the initial oxide film and subsequent conversion coating. AlconoxRTM pretreatment was found to result in a highly protective surface film that inhibits the subsequent formation of CCC. The study also shows that coupling of the alloy to platinum during the bromate pretreatment increases the corrosion resistance of the subsequently formed CCC by over an order of magnitude due to reduction in surface copper content. Adsorption of chromate ion on the passive oxide film formed on the metal surface was observed to induce fixed negative charges that inhibit chloride ingress on planar surfaces. While deprotonation of the aluminum hydroxide film by chromate was

  17. Degradation of alkanes by bacteria.

    PubMed

    Rojo, Fernando

    2009-10-01

    Pollution of soil and water environments by crude oil has been, and is still today, an important problem. Crude oil is a complex mixture of thousands of compounds. Among them, alkanes constitute the major fraction. Alkanes are saturated hydrocarbons of different sizes and structures. Although they are chemically very inert, most of them can be efficiently degraded by several microorganisms. This review summarizes current knowledge on how microorganisms degrade alkanes, focusing on the biochemical pathways used and on how the expression of pathway genes is regulated and integrated within cell physiology.

  18. Alkane desaturation by concerted double hydrogen atom transfer to benzyne.

    PubMed

    Niu, Dawen; Willoughby, Patrick H; Woods, Brian P; Baire, Beeraiah; Hoye, Thomas R

    2013-09-26

    The removal of two vicinal hydrogen atoms from an alkane to produce an alkene is a challenge for synthetic chemists. In nature, desaturases and acetylenases are adept at achieving this essential oxidative functionalization reaction, for example during the biosynthesis of unsaturated fatty acids, eicosanoids, gibberellins and carotenoids. Alkane-to-alkene conversion almost always involves one or more chemical intermediates in a multistep reaction pathway; these may be either isolable species (such as alcohols or alkyl halides) or reactive intermediates (such as carbocations, alkyl radicals, or σ-alkyl-metal species). Here we report a desaturation reaction of simple, unactivated alkanes that is mechanistically unique. We show that benzynes are capable of the concerted removal of two vicinal hydrogen atoms from a hydrocarbon. The discovery of this exothermic, net redox process was enabled by the simple thermal generation of reactive benzyne intermediates through the hexadehydro-Diels-Alder cycloisomerization reaction of triyne substrates. We are not aware of any single-step, bimolecular reaction in which two hydrogen atoms are simultaneously transferred from a saturated alkane. Computational studies indicate a preferred geometry with eclipsed vicinal C-H bonds in the alkane donor.

  19. Liquid-liquid interfaces of semifluorinated alkane diblock copolymers with water, alkanes, and perfluorinated alkanes.

    SciTech Connect

    Perahia, Dvora, Dr.; Pierce, Flint; Tsige, Mesfin; Grest, Gary Stephen, Dr.

    2008-08-01

    The liquid-liquid interface between semifluorinated alkane diblock copolymers of the form F3C(CF2)n-1-(CH2)m-1CH3 and water, protonated alkanes, and perfluorinated alkanes are studied by fully atomistic molecular dynamics simulations. A modified version of the OPLS-AA (Optimized Parameter for Liquid Simulation All-Atom) force field of Jorgensen et al. has been used to study the interfacial behavior of semifluorinated diblocks. Aqueous interfaces are found to be sharp, with correspondingly large values of the interfacial tension. Due to the reduced hydrophobicity of the protonated block compared to the fluorinated block, hydrogen enhancement is observed at the interface. Water dipoles in the interfacial region are found to be oriented nearly parallel to the liquid-liquid interface. A number of protonated alkanes and perfluorinated alkanes are found to be mutually miscible with the semifluorinated diblocks. For these liquids, interdiffusion follows the expected Fickian behavior, and concentration-dependent diffusivities are determined.

  20. Liquid-liquid interfaces of semifluorinated alkane diblock copolymers with water, alkanes, and perfluorinated alkanes.

    PubMed

    Pierce, Flint; Tsige, Mesfin; Perahia, Dvora; Grest, Gary S

    2008-12-18

    The liquid-liquid interface between semifluorinated alkane diblock copolymers of the form F3C(CF2)n-1-(CH2)m-1CH3 and water, protonated alkanes, and perfluorinated alkanes are studied by fully atomistic molecular dynamics simulations. A modified version of the OPLS-AA (Optimized Parameter for Liquid Simulation All-Atom) force field of Jorgensen et al. has been used to study the interfacial behavior of semifluorinated diblocks. Aqueous interfaces are found to be sharp, with correspondingly large values of the interfacial tension. Due to the reduced hydrophobicity of the protonated block compared to the fluorinated block, hydrogen enhancement is observed at the interface. Water dipoles in the interfacial region are found to be oriented nearly parallel to the liquid-liquid interface. A number of protonated alkanes and perfluorinated alkanes are found to be mutually miscible with the semifluorinated diblocks. For these liquids, interdiffusion follows the expected Fickian behavior, and concentration-dependent diffusivities are determined.

  1. Integrated process for preparing a carboxylic acid from an alkane

    SciTech Connect

    Benderly, Abraham; Chadda, Nitin; Sevon, Douglass

    2011-12-20

    The present invention relates to an integrated process for producing unsaturated carboxylic acids from the corresponding C.sub.2-C.sub.4 alkane. The process begins with performance of thermally integrated dehydrogenation reactions which convert a C.sub.2-C.sub.4 alkane to its corresponding C.sub.2-C.sub.4 alkene, and which involve exothermically converting a portion of an alkane to its corresponding alkene by oxidative dehydrogenation in an exothermic reaction zone, in the presence of oxygen and a suitable catalyst, and then feeding the products of the exothermic reaction zone to an endothermic reaction zone wherein at least a portion of the remaining unconverted alkane is endothermically dehydrogenated to form an additional quantity of the same corresponding alkene, in the presence of carbon dioxide and an other suitable catalyst. The alkene products of the thermally integrated dehydrogenation reactions are then provided to a catalytic vapor phase partial oxidation process for conversion of the alkene to the corresponding unsaturated carboxylic acid or nitrile. Unreacted alkene and carbon dioxide are recovered from the oxidation product stream and recycled back to the thermally integrated dehydrogenation reactions.

  2. Modular and selective biosynthesis of gasoline-range alkanes.

    PubMed

    Sheppard, Micah J; Kunjapur, Aditya M; Prather, Kristala L J

    2016-01-01

    Typical renewable liquid fuel alternatives to gasoline are not entirely compatible with current infrastructure. We have engineered Escherichia coli to selectively produce alkanes found in gasoline (propane, butane, pentane, heptane, and nonane) from renewable substrates such as glucose or glycerol. Our modular pathway framework achieves carbon-chain extension by two different mechanisms. A fatty acid synthesis route is used to generate longer chains heptane and nonane, while a more energy efficient alternative, reverse-β-oxidation, is used for synthesis of propane, butane, and pentane. We demonstrate that both upstream (thiolase) and intermediate (thioesterase) reactions can act as control points for chain-length specificity. Specific free fatty acids are subsequently converted to alkanes using a broad-specificity carboxylic acid reductase and a cyanobacterial aldehyde decarbonylase (AD). The selectivity obtained by different module pairings provides a foundation for tuning alkane product distribution for desired fuel properties. Alternate ADs that have greater activity on shorter substrates improve observed alkane titer. However, even in an engineered host strain that significantly reduces endogenous conversion of aldehyde intermediates to alcohol byproducts, AD activity is observed to be limiting for all chain lengths. Given these insights, we discuss guiding principles for pathway selection and potential opportunities for pathway improvement.

  3. Whole-cell biocatalytic and de novo production of alkanes from free fatty acids in Saccharomyces cerevisiae.

    PubMed

    Foo, Jee Loon; Susanto, Adelia Vicanatalita; Keasling, Jay D; Leong, Susanna Su Jan; Chang, Matthew Wook

    2017-01-01

    Rapid global industrialization in the past decades has led to extensive utilization of fossil fuels, which resulted in pressing environmental problems due to excessive carbon emission. This prompted increasing interest in developing advanced biofuels with higher energy density to substitute fossil fuels and bio-alkane has gained attention as an ideal drop-in fuel candidate. Production of alkanes in bacteria has been widely studied but studies on the utilization of the robust yeast host, Saccharomyces cerevisiae, for alkane biosynthesis have been lacking. In this proof-of-principle study, we present the unprecedented engineering of S. cerevisiae for conversion of free fatty acids to alkanes. A fatty acid α-dioxygenase from Oryza sativa (rice) was expressed in S. cerevisiae to transform C12-18 free fatty acids to C11-17 aldehydes. Co-expression of a cyanobacterial aldehyde deformylating oxygenase converted the aldehydes to the desired alkanes. We demonstrated the versatility of the pathway by performing whole-cell biocatalytic conversion of exogenous free fatty acid feedstocks into alkanes as well as introducing the pathway into a free fatty acid overproducer for de novo production of alkanes from simple sugar. The results from this work are anticipated to advance the development of yeast hosts for alkane production. Biotechnol. Bioeng. 2017;114: 232-237. © 2016 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc.

  4. Whole‐cell biocatalytic and de novo production of alkanes from free fatty acids in Saccharomyces cerevisiae

    PubMed Central

    Foo, Jee Loon; Susanto, Adelia Vicanatalita; Keasling, Jay D.; Leong, Susanna Su Jan

    2016-01-01

    ABSTRACT Rapid global industrialization in the past decades has led to extensive utilization of fossil fuels, which resulted in pressing environmental problems due to excessive carbon emission. This prompted increasing interest in developing advanced biofuels with higher energy density to substitute fossil fuels and bio‐alkane has gained attention as an ideal drop‐in fuel candidate. Production of alkanes in bacteria has been widely studied but studies on the utilization of the robust yeast host, Saccharomyces cerevisiae, for alkane biosynthesis have been lacking. In this proof‐of‐principle study, we present the unprecedented engineering of S. cerevisiae for conversion of free fatty acids to alkanes. A fatty acid α‐dioxygenase from Oryza sativa (rice) was expressed in S. cerevisiae to transform C12–18 free fatty acids to C11–17 aldehydes. Co‐expression of a cyanobacterial aldehyde deformylating oxygenase converted the aldehydes to the desired alkanes. We demonstrated the versatility of the pathway by performing whole‐cell biocatalytic conversion of exogenous free fatty acid feedstocks into alkanes as well as introducing the pathway into a free fatty acid overproducer for de novo production of alkanes from simple sugar. The results from this work are anticipated to advance the development of yeast hosts for alkane production. Biotechnol. Bioeng. 2017;114: 232–237. © 2016 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc. PMID:26717118

  5. Theoretical study of the rhenium–alkane interaction in transition metal–alkane σ-complexes

    PubMed Central

    Cobar, Erika A.; Khaliullin, Rustam Z.; Bergman, Robert G.; Head-Gordon, Martin

    2007-01-01

    Metal–alkane binding energies have been calculated for [CpRe(CO)2](alkane) and [(CO)2M(C5H4)CC(C5H4)M(CO)2](alkane), where M = Re or Mn. Calculated binding energies were found to increase with the number of metal–alkane interaction sites. In all cases examined, the manganese–alkane binding energies were predicted to be significantly lower than those for the analogous rhenium–alkane complexes. The metal (Mn or Re)–alkane interaction was predicted to be primarily one of charge transfer, both from the alkane to the metal complex (70–80% of total charge transfer) and from the metal complex to the alkane (20–30% of the total charge transfer). PMID:17442751

  6. Theoretical study of the rhenium-alkane interaction in transition metal-alkane sigma-complexes.

    PubMed

    Cobar, Erika A; Khaliullin, Rustam Z; Bergman, Robert G; Head-Gordon, Martin

    2007-04-24

    Metal-alkane binding energies have been calculated for [CpRe(CO)2](alkane) and [(CO)2M(C5H4)C[triple bond]C(C5H4)M(CO)2](alkane), where M = Re or Mn. Calculated binding energies were found to increase with the number of metal-alkane interaction sites. In all cases examined, the manganese-alkane binding energies were predicted to be significantly lower than those for the analogous rhenium-alkane complexes. The metal (Mn or Re)-alkane interaction was predicted to be primarily one of charge transfer, both from the alkane to the metal complex (70-80% of total charge transfer) and from the metal complex to the alkane (20-30% of the total charge transfer).

  7. Photocatalytic acceptorless alkane dehydrogenation: scope, mechanism, and conquering deactivation with carbon dioxide.

    PubMed

    Chowdhury, Abhishek Dutta; Julis, Jennifer; Grabow, Kathleen; Hannebauer, Bernd; Bentrup, Ursula; Adam, Martin; Franke, Robert; Jackstell, Ralf; Beller, Matthias

    2015-01-01

    Alkane dehydrogenation is of special interest for basic science but also offers interesting opportunities for industry. The existing dehydrogenation methodologies make use of heterogeneous catalysts, which suffer from harsh reaction conditions and a lack of selectivity, whereas homogeneous methodologies rely mostly on unsolicited waste generation from hydrogen acceptors. Conversely, acceptorless photochemical alkane dehydrogenation in the presence of trans-Rh(PMe3 )2 (CO)Cl can be regarded as a more benign and atom efficient alternative. However, this methodology suffers from catalyst deactivation over time. Herein, we provide a detailed investigation of the trans-Rh(PMe3 )2 (CO)Cl-photocatalyzed alkane dehydrogenation using spectroscopic and theoretical investigations. These studies inspired us to utilize CO2 to prevent catalyst deactivation, which leads eventually to improved catalyst turnover numbers in the dehydrogenation of alkanes that include liquid organic hydrogen carriers.

  8. Millisecond Oxidation of Alkanes

    SciTech Connect

    Scott Han

    2011-09-30

    This project was undertaken in response to the Department of Energy's call to research and develop technologies 'that will reduce energy consumption, enhance economic competitiveness, and reduce environmental impacts of the domestic chemical industry.' The current technology at the time for producing 140 billion pounds per year of propylene from naphtha and Liquified Petroleum Gas (LPG) relied on energy- and capital-intensive steam crackers and Fluidized Catalytic Cracking (FCC) units. The propylene is isolated from the product stream in a costly separation step and subsequently converted to acrylic acid and other derivatives in separate production facilities. This project proposed a Short Contact Time Reactor (SCTR)-based catalytic oxydehydrogenation process that could convert propane to propylene and acrylic acid in a cost-effective and energy-efficient fashion. Full implementation of this technology could lead to sizeable energy, economic and environmental benefits for the U. S. chemical industry by providing up to 45 trillion BTUs/year, cost savings of $1.8 billion/year and a combined 35 million pounds/year reduction in environmental pollutants such as COx, NOx, and SOx. Midway through the project term, the program directive changed, which approval from the DOE and its review panel, from direct propane oxidation to acrylic acid at millisecond contact times to a two-step process for making acrylic acid from propane. The first step was the primary focus, namely the conversion of propane to propylene in high yields assisted by the presence of CO2. The product stream from step one was then to be fed directly into a commercially practiced propylene-to-acrylic acid tandem reactor system.

  9. A Conversion of Methyl Ketones into Acetylenes: A Project for a Problem-Oriented or Microscale Organic Chemistry Course.

    ERIC Educational Resources Information Center

    Silveira, Augustine, Jr.; Orlando, Steven C.

    1988-01-01

    Describes a process for producing terminal or internal alkynes from ketones. Recommends using the experiment to aid in understanding acid-base strength, enolate anion chemistry, reaction at carbon versus oxygen, use of polar aprotic solvents, and elimination and nucleophilic substitution reactions. (ML)

  10. The role of structure and surface chemistry of carbon nanomaterials in catalytic conversion of 1,2-dichloroethane

    NASA Astrophysics Data System (ADS)

    Tveritinova, Evgenya A.; Zhitnev, Yury N.; Kulakova, Inna I.; Cherkasov, Nikolay; Maslakov, Konstantin I.; Nesterova, Ekaterina A.; Ivanov, Anton S.; Savilov, Serguei V.; Lunin, Valery V.

    2015-11-01

    Catalytic activity of several graphene- and diamond-based carbon nanomaterials was compared in the reaction of the 1,2-dichloroethane (DCE) conversion using the impulse microcatalytic method. Only nanodiamonds and Ni-doped nanodiamonds were active in the reaction. A comparison of XRD, XPS, DRIFTS, and BET studies suggested that nitrogen or oxygen-containing groups could be responsible for the catalytic activity in the DCE reaction. However, nitrogen-doped carbon nanoflakes, which contain much more nitrogen-containing groups, showed no activity in the DCE conversion; hence, it is unlikely that nitrogen-containing groups of nanodiamond surface are active centers in DCE conversion. The role of oxygen-containing groups was studied in a test reaction of 2-propanol dehydrogenation/dehydration - both nanotubes and nanodiamonds were active in the reaction; however, no activity of carbon nanotubes in the DCE conversion suggests that oxygen-containing groups are not active in the DCE conversion. As a result, we suggest that the carbon surface of nanodiamonds might be catalytically active in the DCE reaction.

  11. Alkane biohydroxylation: Interests, constraints and future developments.

    PubMed

    Soussan, Laurence; Pen, Nakry; Belleville, Marie-Pierre; Marcano, José Sanchez; Paolucci-Jeanjean, Delphine

    2016-03-20

    Alkanes constitute one of the vastest reserves of raw materials for the production of fine chemicals. This paper focuses on recent advances in alkane biohydroxylation, i.e. the bioactivation of alkanes into their corresponding alcohols. Enzyme and whole-cell biocatalysts have been reviewed. Process considerations to implement such biocatalysts in bioreactors at large scale by coupling the bioconversion with cofactor regeneration and product removal are also discussed.

  12. Modeling SOA production from the oxidation of intermediate volatility alkanes

    NASA Astrophysics Data System (ADS)

    Aumont, B.; Mouchel-Vallon, C.; Camredon, M.; Lee-Taylor, J.; Madronich, S.

    2012-12-01

    Secondary Organic Aerosols (SOA) production and ageing is a multigenerational oxidation process involving the formation of successive organic compounds with higher oxidation degree and lower vapour pressure. This process was investigated using the explicit oxidation model GECKO-A (Generator for Explicit Chemistry and Kinetics of Organics in the Atmosphere). Results for the C8-C24 n-alkane series show the expected trends, i.e. (i) SOA yield grows with the carbon backbone of the parent hydrocarbon, (ii) SOA yields decreases with the decreasing pre-existing organic aerosol concentration, (iii) the number of generations required to describe SOA production increases when the pre-existing organic aerosol concentration decreases. Most SOA contributors were found to be not oxidized enough to be categorized as highly oxygenated organic aerosols (OOA) but reduced enough to be categorized as hydrocarbon like organic aerosols (HOA). Branched alkanes are more prone to fragment in the early stage of the oxidation than their corresponding linear analogues. Fragmentation is expected to alter both the yield and the mean oxidation state of the SOA. Here, GECKO-A is applied to generate highly detailed oxidation schemes for various series of branched and cyclised alkanes. Branching and cyclisation effects on SOA yields and oxidation states will be examined.

  13. Exploratory study of coal-conversion chemistry. Quarterly report No. 9, March 20, 1980-June 19, 1980. [Hydroxydiphenylmethane, diphenylether, diphenymethane

    SciTech Connect

    McMillen, Donald F.; Ogier, Walter C.

    1980-11-19

    This report describes work accomplished under two tasks: Task A, Mechanism of Cleavage of Key Bond Types Present in Coals, and Task B, Catalysis of Conversion in CO-H/sub 2/O Systems. Under Task A, the very effective catalysis of carbon-carbon bond cleavage by iron oxides in hydroxydiphenylmethane structures has been further characterized. An electron-transfer mechanism offers the most likely explanation of the observations that (1) alumina and silica-alumina surfaces are less active catalysts than Fe/sub 3/O/sub 4/, (2) meta-hydroxydiphenylmethane is almost as subject to catalysis as para-hydroxydiphenylmethane, (3) diphenyl ether is less subject to Fe/sub 3/O/sub 4/ catalysis than diphenylmethane, and (4) ortho-methoxydiphenylmethane exhibits the same susceptibility to Fe/sub 3/O/sub 4/ catalysis as ortho-hydroxydiphenylmethane. Under Task B, this quarter we have completed the survey of possible metal catalysts present in the Hastelloy C autoclave. We have found that coal conversion in CO-H/sub 2/O systems is effective when metal oxides such as MoO/sub 4//sup =/, Cr/sub 2/O/sub 7//sup =/, and MnO/sub 4//sup -/ are used as catalysts, but there is less or no coal conversion with FeCl/sub 3/ or Ni(CH/sub 3/COO)/sub 2/. While studying the fate of the catalyst after the reaction, we have isolated formate in the water-soluble fraction. This important information could help us in studying the role of formate in coal conversion. During this quarter, we have also studied the influence of reaction time and fresh CO on coal conversion in the presence of a catalyst. A striking result of 67% of benzene-soluble materials was obtained with an equivalent of 6000 ppM of Cr as sodium dichromate.

  14. Gas-phase reactions of the bare Th2+ and U2+ ions with small alkanes, CH4, C2H6, and C3H8: experimental and theoretical study of elementary organoactinide chemistry.

    PubMed

    Di Santo, Emanuela; Santos, Marta; Michelini, Maria C; Marçalo, Joaquim; Russo, Nino; Gibson, John K

    2011-02-16

    The gas-phase reactions of two dipositive actinide ions, Th(2+) and U(2+), with CH(4), C(2)H(6), and C(3)H(8) were studied by both experiment and theory. Fourier transform ion cyclotron resonance mass spectrometry was employed to study the bimolecular ion-molecule reactions; the potential energy profiles (PEPs) for the reactions, both observed and nonobserved, were computed by density functional theory (DFT). The experiments revealed that Th(2+) reacts with all three alkanes, including CH(4) to produce ThCH(2)(2+), whereas U(2+) reacts with C(2)H(6) and C(3)H(8), with different product distributions than for Th(2+). The comparative reactivities of Th(2+) and U(2+) toward CH(4) are well explained by the computed PEPs. The PEPs for the reactions with C(2)H(6) effectively rationalize the observed reaction products, ThC(2)H(2)(2+) and UC(2)H(4)(2+). For C(3)H(8) several reaction products were experimentally observed; these and additional potential reaction pathways were computed. The DFT results for the reactions with C(3)H(8) are consistent with the observed reactions and the different products observed for Th(2+) and U(2+); however, several exothermic products which emerge from energetically favorable PEPs were not experimentally observed. The comparison between experiment and theory reveals that DFT can effectively exclude unfavorable reaction pathways, due to energetic barriers and/or endothermic products, and can predict energetic differences in similar reaction pathways for different ions. However, and not surprisingly, a simple evaluation of the PEP features is insufficient to reliably exclude energetically favorable pathways. The computed PEPs, which all proceed by insertion, were used to evaluate the relationship between the energetics of the bare Th(2+) and U(2+) ions and the energies for C-H and C-C activation. It was found that the computed energetics for insertion are entirely consistent with the empirical model which relates insertion efficiency to the

  15. Laboratory evolution of a soluble, self-sufficient, highly active alkane hydroxylase.

    PubMed

    Glieder, Anton; Farinas, Edgardo T; Arnold, Frances H

    2002-11-01

    We have converted cytochrome P450 BM-3 from Bacillus megaterium (P450 BM-3), a medium-chain (C12-C18) fatty acid monooxygenase, into a highly efficient catalyst for the conversion of alkanes to alcohols. The evolved P450 BM-3 exhibits higher turnover rates than any reported biocatalyst for the selective oxidation of hydrocarbons of small to medium chain length (C3-C8). Unlike naturally occurring alkane hydroxylases, the best known of which are the large complexes of methane monooxygenase (MMO) and membrane-associated non-heme iron alkane monooxygenase (AlkB), the evolved enzyme is monomeric, soluble, and requires no additional proteins for catalysis. The evolved alkane hydroxylase was found to be even more active on fatty acids than wild-type BM-3, which was already one of the most efficient fatty acid monooxgenases known. A broad range of substrates including the gaseous alkane propane induces the low to high spin shift that activates the enzyme. This catalyst for alkane hydroxylation at room temperature opens new opportunities for clean, selective hydrocarbon activation for chemical synthesis and bioremediation.

  16. Predicting hydrophobic solvation by molecular simulation: 1. Testing united-atom alkane models.

    PubMed

    Jorge, Miguel; Garrido, Nuno M; Simões, Carlos J V; Silva, Cândida G; Brito, Rui M M

    2017-03-05

    We present a systematic test of the performance of three popular united-atom force fields-OPLS-UA, GROMOS and TraPPE-at predicting hydrophobic solvation, more precisely at describing the solvation of alkanes in alkanes. Gibbs free energies of solvation were calculated for 52 solute/solvent pairs from Molecular Dynamics simulations and thermodynamic integration making use of the IBERCIVIS volunteer computing platform. Our results show that all force fields yield good predictions when both solute and solvent are small linear or branched alkanes (up to pentane). However, as the size of the alkanes increases, all models tend to increasingly deviate from experimental data in a systematic fashion. Furthermore, our results confirm that specific interaction parameters for cyclic alkanes in the united-atom representation are required to account for the additional excluded volume within the ring. Overall, the TraPPE model performs best for all alkanes, but systematically underpredicts the magnitude of solvation free energies by about 6% (RMSD of 1.2 kJ/mol). Conversely, both GROMOS and OPLS-UA systematically overpredict solvation free energies (by ∼13% and 15%, respectively). The systematic trends suggest that all models can be improved by a slight adjustment of their Lennard-Jones parameters. © 2016 Wiley Periodicals, Inc.

  17. Reaction pathway for alkane dehydrocyclization

    SciTech Connect

    Shi, Buchang; Davis, B.H.

    1996-08-01

    Naphtha reforming to produce high octane gasoline is an important process. Many reaction mechanisms are involved in this process. For example, the study of the fundamentals of this process led to the concept of bi- or poly-functional catalysis. The results of this study provide additional mechanistic information about the dehydrocyclization of an n-alkane to produce aromatics. The reaction coordinate diagram advanced to account for the observation of irreversible adsorption should be modified to account for the present results. 32 refs., 1 fig.

  18. Alkane-Based Urethane Potting Compounds

    NASA Technical Reports Server (NTRS)

    Morris, D. E.

    1986-01-01

    New low viscosity urethanes easily mixed, molded, and outgassed. Alkane-based urethanes resist hydrolysis and oxidation and have excellent dielectric properties. Low-viscosity alkane-based urethane prepolymer prepared by one-step reaction of either isophorone diisocyanate or methyl-bis (4-cyclohexyl isocyanate) with hydrogenated, hydroxy-terminated polybutadiene (HTPBD).

  19. Exploratory study of coal-conversion chemistry. Quarterly report, June 20, 1980-September 19, 1980. [Diphenylmethane, diphenyl ether

    SciTech Connect

    Not Available

    1981-03-04

    This report describes work accomplished under two task: Task A, Mechanism of Cleavage of Key Bond types Present in Coals, and Task B, Catalysis of Conversion in CO-H/sub 2/O Systems. Under Task A, we have made additional measurements of catalytic carbon-carbon and carbon-oxygen bond cleavage in coal-related diphenylmethane and diphenyl ether structures. The results provide further support for, but do not definitely confirm, the tentative conclusion that the highly effective iron oxide catalysts involves oxidation to radical cation species. The homogeneous scission of carbon-oxygen bonds in diphenyl ether structure has also been studied. In the Task B studies of CO-H/sub 2/O systems, we typically obtain 50% benzene-soluble product material from 20 min. reaction of beneficiated Illinois No. 6 coal. This conversion level is obtained with aqueous solutions either at a starting pH above 12.6 or in neutral solutions with water-soluble catalysts present. We have studied a number of catalysts, including the potassium or sodium salts of molybdate, chromate, manganate, and tungstate; all are effective in the 3000 to 6000 ppM range. A striking result is that sodium nitrate at 6000 ppM is as effective as the metal salts. We found that the nitrate was converted to ammonium ion; also, formate was detected in the product aqueous phase. Finally, we find that catalytic quantities of sodium formate in CO/H/sub 2/O at pH 7 are effective in the conversion. However, in a control run in N/sub 2//H/sub 2/O, with a quantity of sodium formate equivalent to twice the molar quantity of hydrogen transferred to the coal in a successful run, the coal was converted to a product totally insoluble in benzene and with a lower hydrogen content than the starting coal.

  20. The anaerobic degradation of gaseous, nonmethane alkanes — From in situ processes to microorganisms

    PubMed Central

    Musat, Florin

    2015-01-01

    The short chain, gaseous alkanes ethane, propane, n- and iso-butane are released in significant amounts into the atmosphere, where they contribute to tropospheric chemistry and ozone formation. Biodegradation of gaseous alkanes by aerobic microorganisms, mostly bacteria and fungi isolated from terrestrial environments, has been known for several decades. The first indications for short chain alkane anaerobic degradation were provided by geochemical studies of deep-sea environments around hydrocarbon seeps, and included the uncoupling of the sulfate-reduction and anaerobic oxidation of methane rates, the consumption of gaseous alkanes in anoxic sediments, or the enrichment in 13C of gases in interstitial water vs. the source gas. Microorganisms able to degrade gaseous alkanes were recently obtained from deep-sea and terrestrial sediments around hydrocarbon seeps. Up to date, only sulfate-reducing pure or enriched cultures with ethane, propane and n-butane have been reported. The only pure culture presently available, strain BuS5, is affiliated to the Desulfosarcina–Desulfococcus cluster of the Deltaproteobacteria. Other phylotypes involved in gaseous alkane degradation have been identified based on stable-isotope labeling and whole-cell hybridization. Under anoxic conditions, propane and n-butane are activated similar to the higher alkanes, by homolytic cleavage of the C—H bond of a subterminal carbon atom, and addition of the ensuing radical to fumarate, yielding methylalkylsuccinates. An additional mechanism of activation at the terminal carbon atoms was demonstrated for propane, which could in principle be employed also for the activation of ethane. PMID:25904994

  1. Role of precursor chemistry in the direct fluorination to form titanium based conversion anodes for lithium ion batteries

    SciTech Connect

    Adcock, Jamie; Dai, Sheng; Veith, Gabriel M.; Bridges, Craig A.; Powell, Jonathan M.

    2015-10-13

    In this study, a new synthetic route for the formation of titanium oxydifluoride (TiOF2) through the process of direct fluorination via a fluidized bed reactor system and the associated electrochemical properties of the powders formed from this approach are reported. The flexibility of this synthetic route was demonstrated using precursor powders of titanium dioxide (TiO2) nanoparticles, as well as a reduced TiOxNy. An advantage of this synthetic method is the ability to directly control the extent of fluorination as a function of reaction temperature and time. The reversible capacity of TiOF2 anodes was found to depend greatly upon the precursor employed. The TiOF2 synthesized from TiO2 and TiOxNy showed reversible capacities of 300 mAh g-1 and 440 mAh g-1, respectively, over 100 cycles. The higher reversible capacity of the TiOF2 powders derived from TiOxNy likely relate to the partial reduction of the Ti in the fluorinated electrode material, highlighting a route to optimize the properties of conversion electrode materials.

  2. Role of precursor chemistry in the direct fluorination to form titanium based conversion anodes for lithium ion batteries

    DOE PAGES

    Adcock, Jamie; Dai, Sheng; Veith, Gabriel M.; ...

    2015-10-13

    In this study, a new synthetic route for the formation of titanium oxydifluoride (TiOF2) through the process of direct fluorination via a fluidized bed reactor system and the associated electrochemical properties of the powders formed from this approach are reported. The flexibility of this synthetic route was demonstrated using precursor powders of titanium dioxide (TiO2) nanoparticles, as well as a reduced TiOxNy. An advantage of this synthetic method is the ability to directly control the extent of fluorination as a function of reaction temperature and time. The reversible capacity of TiOF2 anodes was found to depend greatly upon the precursormore » employed. The TiOF2 synthesized from TiO2 and TiOxNy showed reversible capacities of 300 mAh g-1 and 440 mAh g-1, respectively, over 100 cycles. The higher reversible capacity of the TiOF2 powders derived from TiOxNy likely relate to the partial reduction of the Ti in the fluorinated electrode material, highlighting a route to optimize the properties of conversion electrode materials.« less

  3. Direct hydrodeoxygenation of raw woody biomass into liquid alkanes.

    PubMed

    Xia, Qineng; Chen, Zongjia; Shao, Yi; Gong, Xueqing; Wang, Haifeng; Liu, Xiaohui; Parker, Stewart F; Han, Xue; Yang, Sihai; Wang, Yanqin

    2016-03-30

    Being the only sustainable source of organic carbon, biomass is playing an ever-increasingly important role in our energy landscape. The conversion of renewable lignocellulosic biomass into liquid fuels is particularly attractive but extremely challenging due to the inertness and complexity of lignocellulose. Here we describe the direct hydrodeoxygenation of raw woods into liquid alkanes with mass yields up to 28.1 wt% over a multifunctional Pt/NbOPO4 catalyst in cyclohexane. The superior performance of this catalyst allows simultaneous conversion of cellulose, hemicellulose and, more significantly, lignin fractions in the wood sawdust into hexane, pentane and alkylcyclohexanes, respectively. Investigation on the molecular mechanism reveals that a synergistic effect between Pt, NbOx species and acidic sites promotes this highly efficient hydrodeoxygenation of bulk lignocellulose. No chemical pretreatment of the raw woody biomass or separation is required for this one-pot process, which opens a general and energy-efficient route for converting raw lignocellulose into valuable alkanes.

  4. Direct hydrodeoxygenation of raw woody biomass into liquid alkanes

    PubMed Central

    Xia, Qineng; Chen, Zongjia; Shao, Yi; Gong, Xueqing; Wang, Haifeng; Liu, Xiaohui; Parker, Stewart F.; Han, Xue; Yang, Sihai; Wang, Yanqin

    2016-01-01

    Being the only sustainable source of organic carbon, biomass is playing an ever-increasingly important role in our energy landscape. The conversion of renewable lignocellulosic biomass into liquid fuels is particularly attractive but extremely challenging due to the inertness and complexity of lignocellulose. Here we describe the direct hydrodeoxygenation of raw woods into liquid alkanes with mass yields up to 28.1 wt% over a multifunctional Pt/NbOPO4 catalyst in cyclohexane. The superior performance of this catalyst allows simultaneous conversion of cellulose, hemicellulose and, more significantly, lignin fractions in the wood sawdust into hexane, pentane and alkylcyclohexanes, respectively. Investigation on the molecular mechanism reveals that a synergistic effect between Pt, NbOx species and acidic sites promotes this highly efficient hydrodeoxygenation of bulk lignocellulose. No chemical pretreatment of the raw woody biomass or separation is required for this one-pot process, which opens a general and energy-efficient route for converting raw lignocellulose into valuable alkanes. PMID:27025898

  5. Presidential Green Chemistry Challenge: 2010 Small Business Award

    EPA Pesticide Factsheets

    Presidential Green Chemistry Challenge 2010 award winner, LS9, engineered microorganisms to convert fermentable sugars selectively to alkanes, olefins, fatty alcohols, or fatty esters, each in a single-unit biorefinery.

  6. Catalytic dehydroaromatization of n-alkanes by pincer-ligated iridium complexes

    NASA Astrophysics Data System (ADS)

    Ahuja, Ritu; Punji, Benudhar; Findlater, Michael; Supplee, Carolyn; Schinski, William; Brookhart, Maurice; Goldman, Alan S.

    2011-02-01

    Aromatic hydrocarbons are among the most important building blocks in the chemical industry. Benzene, toluene and xylenes are obtained from the high temperature thermolysis of alkanes. Higher alkylaromatics are generally derived from arene-olefin coupling, which gives branched products—that is, secondary alkyl arenes—with olefins higher than ethylene. The dehydrogenation of acyclic alkanes to give alkylaromatics can be achieved using heterogeneous catalysts at high temperatures, but with low yields and low selectivity. We present here the first catalytic conversion of n-alkanes to alkylaromatics using homogeneous or molecular catalysts—specifically ‘pincer’-ligated iridium complexes—and olefinic hydrogen acceptors. For example, the reaction of n-octane affords up to 86% yield of aromatic product, primarily o-xylene and secondarily ethylbenzene. In the case of n-decane and n-dodecane, the resulting alkylarenes are exclusively unbranched (that is, n-alkyl-substituted), with selectivity for the corresponding o-(n-alkyl)toluene.

  7. Observed and simulated global distribution and budget of atmospheric C2-C5 alkanes

    NASA Astrophysics Data System (ADS)

    Pozzer, A.; Pollmann, J.; Taraborrelli, D.; Jöckel, P.; Helmig, D.; Tans, P.; Hueber, J.; Lelieveld, J.

    2010-01-01

    The primary sources and atmospheric chemistry of C2-C5 alkanes have been incorporated into the atmospheric chemistry general circulation model EMAC. Model output is compared with new observations from the NOAA/ESRL GMD cooperative air sampling network. Based on the global coverage of the data, two different anthropogenic emission datasets for C4-C5 alkanes, widely used in the modelling community, are evaluated. We show that the model reproduces the main atmospheric features of the C2-C5 alkanes (e.g., seasonality). While the simulated values of ethane and propane are within a 20% range of the measurements, larger deviations are found for the other tracers. Finally the effect of C3-C5 alkanes on the concentration of acetone and acetaldehyde are assessed. Their chemical sources are largely controlled by the reaction with OH, while the reactions with NO3 and Cl contribute only to a little extent. The total amount of acetone produced by propane, i-butane and i-pentane oxidation is 11.2 Tg/yr, 4.2 Tg/yr and 5.8 Tg/yr, respectively. Moreover, 3.1, 3.3, 1.4 and 4.8 Tg/yr of acetaldehyde are formed by the oxidation of propane, n-butane, n-pentane and i-pentane, respectively.

  8. Multiple alkane hydroxylase systems in a marine alkane degrader, Alcanivorax dieselolei B-5.

    PubMed

    Liu, Chenli; Wang, Wanpeng; Wu, Yehui; Zhou, Zhongwen; Lai, Qiliang; Shao, Zongze

    2011-05-01

    Alcanivorax dieselolei strain B-5 is a marine bacterium that can utilize a broad range of n-alkanes (C(5) -C(36) ) as sole carbon source. However, the mechanisms responsible for this trait remain to be established. Here we report on the characterization of four alkane hydroxylases from A. dieselolei, including two homologues of AlkB (AlkB1 and AlkB2), a CYP153 homologue (P450), as well as an AlmA-like (AlmA) alkane hydroxylase. Heterologous expression of alkB1, alkB2, p450 and almA in Pseudomonas putida GPo12 (pGEc47ΔB) or P. fluorescens KOB2Δ1 verified their functions in alkane oxidation. Quantitative real-time RT-PCR analysis showed that these genes could be induced by alkanes ranging from C(8) to C(36) . Notably, the expression of the p450 and almA genes was only upregulated in the presence of medium-chain (C(8) -C(16) ) or long-chain (C(22) -C(36) ) n-alkanes, respectively; while alkB1 and alkB2 responded to both medium- and long-chain n-alkanes (C(12) -C(26) ). Moreover, branched alkanes (pristane and phytane) significantly elevated alkB1 and almA expression levels. Our findings demonstrate that the multiple alkane hydroxylase systems ensure the utilization of substrates of a broad chain length range.

  9. Supported organoiridium catalysts for alkane dehydrogenation

    DOEpatents

    Baker, R. Thomas; Sattelberger, Alfred P.; Li, Hongbo

    2013-09-03

    Solid supported organoiridium catalysts, a process for preparing such solid supported organoiridium catalysts, and the use of such solid supported organoiridium catalysts in dehydrogenation reactions of alkanes is provided. The catalysts can be easily recovered and recycled.

  10. Solar photothermochemical alkane reverse combustion.

    PubMed

    Chanmanee, Wilaiwan; Islam, Mohammad Fakrul; Dennis, Brian H; MacDonnell, Frederick M

    2016-03-08

    A one-step, gas-phase photothermocatalytic process for the synthesis of hydrocarbons, including liquid alkanes, aromatics, and oxygenates, with carbon numbers (Cn) up to C13, from CO2 and water is demonstrated in a flow photoreactor operating at elevated temperatures (180-200 °C) and pressures (1-6 bar) using a 5% cobalt on TiO2 catalyst and under UV irradiation. A parametric study of temperature, pressure, and partial pressure ratio revealed that temperatures in excess of 160 °C are needed to obtain the higher Cn products in quantity and that the product distribution shifts toward higher Cn products with increasing pressure. In the best run so far, over 13% by mass of the products were C5+ hydrocarbons and some of these, i.e., octane, are drop-in replacements for existing liquid hydrocarbons fuels. Dioxygen was detected in yields ranging between 64% and 150%. In principle, this tandem photochemical-thermochemical process, fitted with a photocatalyst better matched to the solar spectrum, could provide a cheap and direct method to produce liquid hydrocarbons from CO2 and water via a solar process which uses concentrated sunlight for both photochemical excitation to generate high-energy intermediates and heat to drive important thermochemical carbon-chain-forming reactions.

  11. Solar photothermochemical alkane reverse combustion

    PubMed Central

    Chanmanee, Wilaiwan; Islam, Mohammad Fakrul; Dennis, Brian H.; MacDonnell, Frederick M.

    2016-01-01

    A one-step, gas-phase photothermocatalytic process for the synthesis of hydrocarbons, including liquid alkanes, aromatics, and oxygenates, with carbon numbers (Cn) up to C13, from CO2 and water is demonstrated in a flow photoreactor operating at elevated temperatures (180–200 °C) and pressures (1–6 bar) using a 5% cobalt on TiO2 catalyst and under UV irradiation. A parametric study of temperature, pressure, and partial pressure ratio revealed that temperatures in excess of 160 °C are needed to obtain the higher Cn products in quantity and that the product distribution shifts toward higher Cn products with increasing pressure. In the best run so far, over 13% by mass of the products were C5+ hydrocarbons and some of these, i.e., octane, are drop-in replacements for existing liquid hydrocarbons fuels. Dioxygen was detected in yields ranging between 64% and 150%. In principle, this tandem photochemical–thermochemical process, fitted with a photocatalyst better matched to the solar spectrum, could provide a cheap and direct method to produce liquid hydrocarbons from CO2 and water via a solar process which uses concentrated sunlight for both photochemical excitation to generate high-energy intermediates and heat to drive important thermochemical carbon-chain-forming reactions. PMID:26903631

  12. Evolution of an alkane-inducible biosensor for increased responsiveness to short-chain alkanes.

    PubMed

    Reed, Ben; Blazeck, John; Alper, Hal

    2012-04-15

    Synthetic alkane-inducible biosensors have applications as detectors for environmental hydrocarbon contamination and as novel inducible expression systems with low-cost inducers. Here, we have assembled and evolved an alkane-responsive biosensor with a fluorescence output signal in Escherichia coli by utilizing regulatory machinery from Pseudomonas putida's alkane metabolism. Within our system, the transcriptional regulator, AlkSp, is activated by the presence of alkanes and binds to the P(alkB) promoter, stimulating transcription of a Green Fluorescent Protein reporter. Through two successive rounds of directed evolution via error prone PCR and fluorescence activated cell sorting, we isolated alkS mutants enabling up to a 5 fold increase in fluorescence output signal in response to short-chain alkanes such as hexane and pentane. Further characterization of selected mutants demonstrated altered responsiveness to a wide range of linear alkanes (pentane to dodecane). Sequence analysis highlighted the S470T mutation as a likely candidate responsible for increased effectiveness of the AlkS protein for short-chain alkanes. This work represents the first evolution of a synthetic biosensor system for alkanes.

  13. Structural insights into diversity and n-alkane biodegradation mechanisms of alkane hydroxylases

    PubMed Central

    Ji, Yurui; Mao, Guannan; Wang, Yingying; Bartlam, Mark

    2013-01-01

    Environmental microbes utilize four degradation pathways for the oxidation of n-alkanes. Although the enzymes degrading n-alkanes in different microbes may vary, enzymes functioning in the first step in the aerobic degradation of alkanes all belong to the alkane hydroxylases. Alkane hydroxylases are a class of enzymes that insert oxygen atoms derived from molecular oxygen into different sites of the alkane terminus (or termini) depending on the type of enzymes. In this review, we summarize the different types of alkane hydroxylases, their degrading steps, and compare typical enzymes from various classes with regard to their three-dimensional structures, in order to provide insights into how the enzymes mediate their different roles in the degradation of n-alkanes and what determines their different substrate ranges. Through the above analyzes, the degrading mechanisms of enzymes can be elucidated and molecular biological methods can be utilized to expand their catalytic roles in the petrochemical industry or in bioremediation of oil-contaminated environments. PMID:23519435

  14. The effect of environmental factors on stable isotopic composition of n-alkanes in Mediterranean olive oils

    NASA Astrophysics Data System (ADS)

    Pedentchouk, Nikolai; Mihailova, Alina; Abbado, Dimitri

    2014-05-01

    Traceability of the geographic origin of olive oils is an important issue from both commercial and health perspectives. This study evaluates the impact of environmental factors on stable C and H isotope compositions of n-alkanes in extra virgin olive oils from Croatia, France, Greece, Italy, Morocco, Portugal, Slovenia, and Spain. The data are used to investigate the applicability of stable isotope methodology for olive oil regional classification in the Mediterranean region. Analysis of stable C isotope composition of n-C29 alkane showed that extra virgin olive oils from Portugal and Spain have the most positive n-C29 alkane delta13C values. Conversely, olive oils from Slovenia, northern and central Italy are characterized by the most negative values. Overall, the n-C29 alkane delta13C values show a positive correlation with the mean air temperature during August-December and a negative correlation with the mean relative humidity during these months. Analysis of stable H isotope composition of n-C29 alkane revealed that the deltaD values are the most positive in olive oils from Greece and Morocco and the most negative in oils from northern Italy. The deltaD values of oils show significant correlation with all the analyses geographical parameters: the mean air temperature and relative humidity during August-December, the total amount of rainfall (the same months) and the annual deltaD values of precipitation. As predictor variables in the Categorical Data Analysis, the n-C29 alkane deltaD values show the most significant discriminative power, followed by the n-C29 alkane delta13C values. Overall, 93.4% of olive oil samples have been classified correctly into one of the production regions. Our findings suggest that an integrated analysis of C and H isotope compositions of n-alkanes extracted from extra virgin olive oil could become a useful tool for geographical provenancing of this highly popular food commodity.

  15. Modeling the influence of alkane molecular structure on secondary organic aerosol formation.

    PubMed

    Aumont, Bernard; Camredon, Marie; Mouchel-Vallon, Camille; La, Stéphanie; Ouzebidour, Farida; Valorso, Richard; Lee-Taylor, Julia; Madronich, Sasha

    2013-01-01

    Secondary Organic Aerosols (SOA) production and ageing is a multigenerational oxidation process involving the formation of successive organic compounds with higher oxidation degree and lower vapor pressure. Intermediate Volatility Organic Compounds (IVOC) emitted to the atmosphere are expected to be a substantial source of SOA. These emitted IVOC constitute a complex mixture including linear, branched and cyclic alkanes. The explicit gas-phase oxidation mechanisms are here generated for various linear and branched C10-C22 alkanes using the GECKO-A (Generator for Explicit Chemistry and Kinetics of Organics in the Atmosphere) and SOA formation is investigated for various homologous series. Simulation results show that both the size and the branching of the carbon skeleton are dominant factors driving the SOA yield. However, branching appears to be of secondary importance for the particle oxidation state and composition. The effect of alkane molecular structure on SOA yields appears to be consistent with recent laboratory observations. The simulated SOA composition shows, however, an unexpected major contribution from multifunctional organic nitrates. Most SOA contributors simulated for the oxidation of the various homologous series are far too reduced to be categorized as highly oxygenated organic aerosols (OOA). On a carbon basis, the OOA yields never exceeded 10% regardless of carbon chain length, molecular structure or ageing time. This version of the model appears clearly unable to explain a large production of OOA from alkane precursors.

  16. Cool-flame Extinction During N-Alkane Droplet Combustion in Microgravity

    NASA Technical Reports Server (NTRS)

    Nayagam, Vedha; Dietrich, Daniel L.; Hicks, Michael C.; Williams, Forman A.

    2014-01-01

    Recent droplet combustion experiments onboard the International Space Station (ISS) have revealed that large n-alkane droplets can continue to burn quasi-steadily following radiative extinction in a low-temperature regime, characterized by negative-temperaturecoefficient (NTC) chemistry. In this study we report experimental observations of n-heptane, n-octane, and n-decane droplets of varying initial sizes burning in oxygen/nitrogen/carbon dioxide and oxygen/helium/nitrogen environments at 1.0, 0.7, and 0.5 atmospheric pressures. The oxygen concentration in these tests varied in the range of 14% to 25% by volume. Large n-alkane droplets exhibited quasi-steady low-temperature burning and extinction following radiative extinction of the visible flame while smaller droplets burned to completion or disruptively extinguished. A vapor-cloud formed in most cases slightly prior to or following the "cool flame" extinction. Results for droplet burning rates in both the hot-flame and cool-flame regimes as well as droplet extinction diameters at the end of each stage are presented. Time histories of radiant emission from the droplet captured using broadband radiometers are also presented. Remarkably the "cool flame" extinction diameters for all the three n-alkanes follow a trend reminiscent of the ignition delay times observed in previous studies. The similarities and differences among the n-alkanes during "cool flame" combustion are discussed using simplified theoretical models of the phenomenon

  17. Selective conversion of {Mo132} Keplerate ion into 4-electron reduced crown-capped Keggin derivative [Te5Mo15O57](8-). A key intermediate to single-phase M1 multielement MoVTeO light-alkanes oxidation catalyst.

    PubMed

    Canioni, Romain; Marchal-Roch, Catherine; Leclerc-Laronze, Nathalie; Haouas, Mohamed; Taulèlle, Francis; Marrot, Jérôme; Paul, Sebastien; Lamonier, Carole; Paul, Jean-François; Loridant, Stéphane; Millet, Jean-Marc M; Cadot, Emmanuel

    2011-06-14

    {Mo(132)} Keplerate anion reacts with tellurites to give a soluble precursor to produce in hydrothermal conditions single-phase M1 MoVTeO light-alkanes oxidation catalyst. Characterization of this Te-containing intermediate by single-crystal X-ray diffraction, (125)Te NMR, UV-visible and redox titration reveals a molybdotellurite anion as a crown-capped Keggin derivative.

  18. Improved Alkane Production in Nitrogen-Fixing and Halotolerant Cyanobacteria via Abiotic Stresses and Genetic Manipulation of Alkane Synthetic Genes.

    PubMed

    Kageyama, Hakuto; Waditee-Sirisattha, Rungaroon; Sirisattha, Sophon; Tanaka, Yoshito; Mahakhant, Aparat; Takabe, Teruhiro

    2015-07-01

    Cyanobacteria possess the unique capacity to produce alkane. In this study, effects of nitrogen deficiency and salt stress on biosynthesis of alkanes were investigated in three kinds of cyanobacteria. Intracellular alkane accumulation was increased in nitrogen-fixing cyanobacterium Anabaena sp. PCC7120, but decreased in non-diazotrophic cyanobacterium Synechococcus elongatus PCC7942 and constant in a halotolerant cyanobacterium Aphanothece halophytica under nitrogen-deficient condition. We also found that salt stress increased alkane accumulation in Anabaena sp. PCC7120 and A. halophytica. The expression levels of two alkane synthetic genes were not upregulated significantly under nitrogen deficiency or salt stress in Anabaena sp. PCC7120. The transformant Anabaena sp. PCC7120 cells with additional alkane synthetic gene set from A. halophytica increased intracellular alkane accumulation level compared to control cells. These results provide a prospect to improve bioproduction of alkanes in nitrogen-fixing halotolerant cyanobacteria via abiotic stresses and genetic engineering.

  19. In situ detection of anaerobic alkane metabolites in subsurface environments.

    PubMed

    Agrawal, Akhil; Gieg, Lisa M

    2013-01-01

    Alkanes comprise a substantial fraction of crude oil and refined fuels. As such, they are prevalent within deep subsurface fossil fuel deposits and in shallow subsurface environments such as aquifers that are contaminated with hydrocarbons. These environments are typically anaerobic, and host diverse microbial communities that can potentially use alkanes as substrates. Anaerobic alkane biodegradation has been reported to occur under nitrate-reducing, sulfate-reducing, and methanogenic conditions. Elucidating the pathways of anaerobic alkane metabolism has been of interest in order to understand how microbes can be used to remediate contaminated sites. Alkane activation primarily occurs by addition to fumarate, yielding alkylsuccinates, unique anaerobic metabolites that can be used to indicate in situ anaerobic alkane metabolism. These metabolites have been detected in hydrocarbon-contaminated shallow aquifers, offering strong evidence for intrinsic anaerobic bioremediation. Recently, studies have also revealed that alkylsuccinates are present in oil and coal seam production waters, indicating that anaerobic microbial communities can utilize alkanes in these deeper subsurface environments. In many crude oil reservoirs, the in situ anaerobic metabolism of hydrocarbons such as alkanes may be contributing to modern-day detrimental effects such as oilfield souring, or may lead to more beneficial technologies such as enhanced energy recovery from mature oilfields. In this review, we briefly describe the key metabolic pathways for anaerobic alkane (including n-alkanes, isoalkanes, and cyclic alkanes) metabolism and highlight several field reports wherein alkylsuccinates have provided evidence for anaerobic in situ alkane metabolism in shallow and deep subsurface environments.

  20. 40 CFR 721.536 - Halogenated phenyl alkane.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Halogenated phenyl alkane. 721.536... Substances § 721.536 Halogenated phenyl alkane. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as halogenated phenyl alkane (PMN P-89-867)...

  1. 40 CFR 721.10163 - Chloro fluoro alkane (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Chloro fluoro alkane (generic). 721... Substances § 721.10163 Chloro fluoro alkane (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as chloro fluoro alkane (PMN...

  2. 40 CFR 721.535 - Halogenated alkane (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Halogenated alkane (generic). 721.535... Substances § 721.535 Halogenated alkane (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as halogenated alkane (PMN P-01-433) is...

  3. In situ detection of anaerobic alkane metabolites in subsurface environments

    PubMed Central

    Agrawal, Akhil; Gieg, Lisa M.

    2013-01-01

    Alkanes comprise a substantial fraction of crude oil and refined fuels. As such, they are prevalent within deep subsurface fossil fuel deposits and in shallow subsurface environments such as aquifers that are contaminated with hydrocarbons. These environments are typically anaerobic, and host diverse microbial communities that can potentially use alkanes as substrates. Anaerobic alkane biodegradation has been reported to occur under nitrate-reducing, sulfate-reducing, and methanogenic conditions. Elucidating the pathways of anaerobic alkane metabolism has been of interest in order to understand how microbes can be used to remediate contaminated sites. Alkane activation primarily occurs by addition to fumarate, yielding alkylsuccinates, unique anaerobic metabolites that can be used to indicate in situ anaerobic alkane metabolism. These metabolites have been detected in hydrocarbon-contaminated shallow aquifers, offering strong evidence for intrinsic anaerobic bioremediation. Recently, studies have also revealed that alkylsuccinates are present in oil and coal seam production waters, indicating that anaerobic microbial communities can utilize alkanes in these deeper subsurface environments. In many crude oil reservoirs, the in situ anaerobic metabolism of hydrocarbons such as alkanes may be contributing to modern-day detrimental effects such as oilfield souring, or may lead to more beneficial technologies such as enhanced energy recovery from mature oilfields. In this review, we briefly describe the key metabolic pathways for anaerobic alkane (including n-alkanes, isoalkanes, and cyclic alkanes) metabolism and highlight several field reports wherein alkylsuccinates have provided evidence for anaerobic in situ alkane metabolism in shallow and deep subsurface environments. PMID:23761789

  4. Interrogation of Chesapeake Bay sediment microbial communities for intrinsic alkane-utilizing potential under anaerobic conditions.

    PubMed

    Johnson, Jamie M; Wawrik, Boris; Isom, Catherine; Boling, Wilford B; Callaghan, Amy V

    2015-02-01

    Based on the transient exposure of Chesapeake Bay sediments to hydrocarbons and the metabolic versatility of known anaerobic alkane-degrading microorganisms, it was hypothesized that distinct Bay sediment communities, governed by geochemical gradients, would have intrinsic alkane-utilizing potential under sulfate-reducing and/or methanogenic conditions. Sediment cores were collected along a transect of the Bay. Community DNA was interrogated via pyrosequencing of 16S rRNA genes, PCR of anaerobic hydrocarbon activation genes, and qPCR of 16S rRNA genes and genes involved in sulfate reduction/methanogenesis. Site sediments were used to establish microcosms amended with n-hexadecane under sulfate-reducing and methanogenic conditions. Sequencing of 16S rRNA genes indicated that sediments associated with hypoxic water columns contained significantly greater proportions of Bacteria and Archaea consistent with syntrophic degradation of organic matter and methanogenesis compared to less reduced sediments. Microbial taxa frequently associated with hydrocarbon-degrading communities were found throughout the Bay, and the genetic potential for hydrocarbon metabolism was demonstrated via the detection of benzyl-(bssA) and alkylsuccinate synthase (assA) genes. Although microcosm studies did not indicate sulfidogenic alkane degradation, the data suggested that methanogenic conversion of alkanes was occurring. These findings highlight the potential role that anaerobic microorganisms could play in the bioremediation of hydrocarbons in the Bay.

  5. Regulation of alkane oxidation in Pseudomonas putida.

    PubMed Central

    Grund, A; Shapiro, J; Fennewald, M; Bacha, P; Leahy, J; Markbreiter, K; Nieder, M; Toepfer, M

    1975-01-01

    We have studied the appearance of whole-cell oxidizing activity for n-alkanes and their oxidation products in strains of Pseudomonas putida carrying the OCT plasmid. Our results indicate that the OCT plasmid codes for inducible alkane-hydroxylating and primary alcohol-dehydrogenating activities and that the chromosome codes for constitutive oxidizing activities for primary alcohols, aliphatic aldehydes, and fatty acids. Mutant isolation confirms the presence of an alcohol dehydrogenase locus on the OCT plasmid and indicated the presence of multiple alcohol and aldehyde dehydrogenase loci on the P. putida chromosome. Induction tests with various compounds indicate that inducer recognition has specificity for chain length and can be affected by the degree of oxidation of the carbon chain. Some inducers are neither growth nor respiration substrates. Growth tests with and without a gratuitous inducer indicate that undecane is not a growth substrate because it does not induce alkane hydroxylase activity. Using a growth test for determining induction of the plasmid alcohol dehydrogenase it is possible to show that heptane induces this activity in hydroxylase-negative mutants. This suggests that unoxidized alkane molecules are the physiological inducers of both plasmid activities. PMID:1150626

  6. Nitrated metalloporphyrins as catalysts for alkane oxidation

    DOEpatents

    Ellis, Jr., Paul E.; Lyons, James E.

    1994-01-01

    Compositions of matter comprising nitro-substituted metal complexes of porphyrins are catalysts for the oxidation of alkanes. The metal is iron, chromium, manganese, ruthenium, copper or cobalt. The porphyrin ring has nitro groups attached thereto in meso and/or .beta.-pyrrolic positions.

  7. Nitrated metalloporphyrins as catalysts for alkane oxidation

    DOEpatents

    Ellis, Jr., Paul E.; Lyons, James E.

    1992-01-01

    Alkanes are oxidized by contact with oxygen-containing gas in the presence as catalyst of a metalloporphyrin in which hydrogen atoms in the porphyrin ring have been replaced with one or more nitro groups. Hydrogen atoms in the porphyrin ring may also be substituted with halogen atoms.

  8. Reflectance spectroscopy of organic compounds: 1. Alkanes

    USGS Publications Warehouse

    Clark, R.N.; Curchin, J.M.; Hoefen, T.M.; Swayze, G.A.

    2009-01-01

    Reflectance spectra of the organic compounds comprising the alkane series are presented from the ultraviolet to midinfrared, 0.35 to 15.5 /??m. Alkanes are hydrocarbon molecules containing only single carbon-carbon bonds, and are found naturally on the Earth and in the atmospheres of the giant planets and Saturn's moon, Titan. This paper presents the spectral properties of the alkanes as the first in a series of papers to build a spectral database of organic compounds for use in remote sensing studies. Applications range from mapping the environment on the Earth, to the search for organic molecules and life in the solar system and throughout the. universe. We show that the spectral reflectance properties of organic compounds are rich, with major diagnostic spectral features throughout the spectral range studied. Little to no spectral change was observed as a function of temperature and only small shifts and changes in the width of absorption bands were observed between liquids and solids, making remote detection of spectral properties throughout the solar system simpler. Some high molecular weight organic compounds contain single-bonded carbon chains and have spectra similar to alkanes even ' when they fall into other families. Small spectral differences are often present allowing discrimination among some compounds, further illustrating the need to catalog spectral properties for accurate remote sensing identification with spectroscopy.

  9. Nitrated metalloporphyrins as catalysts for alkane oxidation

    DOEpatents

    Ellis, P.E. Jr.; Lyons, J.E.

    1994-01-18

    Compositions of matter comprising nitro-substituted metal complexes of porphyrins are catalysts for the oxidation of alkanes. The metal is iron, chromium, manganese, ruthenium, copper or cobalt. The porphyrin ring has nitro groups attached thereto in meso and/or [beta]-pyrrolic positions.

  10. Adsorption of alkyltrimethylammonium bromides at water/alkane interfaces: competitive adsorption of alkanes and surfactants.

    PubMed

    Fainerman, V B; Mucic, N; Pradines, V; Aksenenko, E V; Miller, R

    2013-11-12

    The adsorption of members of the homologous series of alkyl trimethylammonium bromides (C(n)TAB) is studied at water/alkane interfaces by drop profile analysis tensiometry. The results are discussed in terms of a competitive adsorption process of alkane and surfactant molecules. A thermodynamic model, derived originally for the adsorption of surfactant mixtures, is adapted such that it describes a competitive adsorption of the surfactant molecules from the aqueous phase and alkane molecules from the oil phase. This new model involves the interspecies attraction coefficient, which mutually increases the adsorption activities of the alkane and C(n)TAB. The effects of the alkyl chain length n of C(n)TABs and the influence of the number of C atoms in the alkane chain are discussed, and the physical quantities are compared to those determined at the aqueous solution/air interface. The new theoretical model for aqueous solution/oil interfaces is also compared to a theory that does not consider the adsorption of alkane. The proposed new model demonstrates good agreement with the experimental data.

  11. Modeling of Alkane Oxidation Using Constituents and Species

    NASA Technical Reports Server (NTRS)

    Bellan, Jasette; Harstad, Kenneth G.

    2010-01-01

    It is currently not possible to perform simulations of turbulent reactive flows due in particular to complex chemistry, which may contain thousands of reactions and hundreds of species. This complex chemistry results in additional differential equations, making the numerical solution of the equation set computationally prohibitive. Reducing the chemical kinetics mathematical description is one of several important goals in turbulent reactive flow modeling. A chemical kinetics reduction model is proposed for alkane oxidation in air that is based on a parallel methodology to that used in turbulence modeling in the context of the Large Eddy Simulation. The objective of kinetic modeling is to predict the heat release and temperature evolution. This kinetic mechanism is valid over a pressure range from atmospheric to 60 bar, temperatures from 600 K to 2,500 K, and equivalence ratios from 0.125 to 8. This range encompasses diesel, HCCI, and gas-turbine engines, including cold ignition. A computationally efficient kinetic reduction has been proposed for alkanes that has been illustrated for n-heptane using the LLNL heptane mechanism. This model is consistent with turbulence modeling in that scales were first categorized into either those modeled or those computed as progress variables. Species were identified as being either light or heavy. The heavy species were decomposed into defined 13 constituents, and their total molar density was shown to evolve in a quasi-steady manner. The light species behave either in a quasi-steady or unsteady manner. The modeled scales are the total constituent molar density, Nc, and the molar density of the quasi-steady light species. The progress variables are the total constituent molar density rate evolution and the molar densities of the unsteady light species. The unsteady equations for the light species contain contributions of the type gain/loss rates from the heavy species that are modeled consistent with the developed mathematical

  12. Comprehensive chemical kinetic modeling of the oxidation of C8 and larger n-alkanes and 2-methylalkanes

    SciTech Connect

    Sarathy, S M; Westbrook, C K; Pitz, W J; Mehl, M; Togbe, C; Dagaut, P; Wang, H; Oehlschlaeger, M; NIemann, U; Seshadri, K; Veloo, P S; Ji, C; Egolfopoulos, F; Lu, T

    2011-03-16

    Conventional petroleum jet and diesel fuels, as well as alternative Fischer-Tropsch (FT) fuels and hydrotreated renewable jet (HRJ) fuels, contain high molecular weight lightly branched alkanes (i.e., methylalkanes) and straight chain alkanes (n-alkanes). Improving the combustion of these fuels in practical applications requires a fundamental understanding of large hydrocarbon combustion chemistry. This research project presents a detailed and reduced chemical kinetic mechanism for singly methylated iso-alkanes (i.e., 2-methylalkanes) ranging from C{sub 8} to C{sub 20}. The mechanism also includes an updated version of our previously published C{sub 8} to C{sub 16} n-alkanes model. The complete detailed mechanism contains approximately 7,200 species 31,400 reactions. The proposed model is validated against new experimental data from a variety of fundamental combustion devices including premixed and nonpremixed flames, perfectly stirred reactors and shock tubes. This new model is used to show how the presence of a methyl branch affects important combustion properties such as laminar flame propagation, ignition, and species formation.

  13. The long-chain alkane metabolism network of Alcanivorax dieselolei.

    PubMed

    Wang, Wanpeng; Shao, Zongze

    2014-12-12

    Alkane-degrading bacteria are ubiquitous in marine environments, but little is known about how alkane degradation is regulated. Here we investigate alkane sensing, chemotaxis, signal transduction, uptake and pathway regulation in Alcanivorax dieselolei. The outer membrane protein OmpS detects the presence of alkanes and triggers the expression of an alkane chemotaxis complex. The coupling protein CheW2 of the chemotaxis complex, which is induced only by long-chain (LC) alkanes, sends signals to trigger the expression of Cyo, which participates in modulating the expression of the negative regulator protein AlmR. This change in turn leads to the expression of ompT1 and almA, which drive the selective uptake and hydroxylation of LC alkanes, respectively. AlmA is confirmed as a hydroxylase of LC alkanes. Additional factors responsible for the metabolism of medium-chain-length alkanes are also identified, including CheW1, OmpT1 and OmpT2. These results provide new insights into alkane metabolism pathways from alkane sensing to degradation.

  14. Application of the homogeneous oxidation of alkanes: Synthesis and characterization of metal complexes of a linked aryloxide

    NASA Astrophysics Data System (ADS)

    Gordon, Benjamin Willis Franklin

    Methane is the main component of natural gas, largely left behind due to cost of transportation. There are vast stores of natural gas outweighing the known reserves of liquid petroleum. A chemical process by which methane can be transformed into a usable transportable product is very important. The selective transformation of methane into a transportable product, such as methanol or formaldehyde, would be a large step forward in utilizing a vast resource. Research on transforming methane selectively has been met with several obstacles based on poor conversion and selectivity. Several methods exist for transforming methane to methanol or formaldehyde through heterogeneous metal catalyzed oxidation. Currently, these metal catalyzed processes are energy intensive and result in low conversion and selectivity. Methanol, the desired product, tends to react preferentially. In many cases, methanol is transformed to another product at a fast rate before recovery. This work describes new techniques for preventing the over oxidation using a homogeneous catalyst system under mild temperature conditions and employing solvents that react with methanol. The solvent effectively removes methanol in a reversible process protecting it from further oxidation. The selective oxidation of higher weight alkanes, such as propane and butane, is also discussed where unusual primary carbon selectivity is observed. The transition metal atoms, tantalum and niobium, have received attention for the interesting chemical reactions, such as metathesis and living polymerization, that they are known to mediate. Aryloxide complexes of these metals undergo unusual chemical transformations especially in the presence of bulky ligand substituents. This work describes the synthesis and characterization of tantalum and niobium complexes of a linked aryloxide ligand. The metal complexes of this ligand are unusual and this dissertation provides the foundation for important future studies of the complexes of

  15. Observed and simulated global distribution and budget of atmospheric C2-C5 alkanes

    NASA Astrophysics Data System (ADS)

    Pozzer, A.; Pollmann, J.; Taraborrelli, D.; Jöckel, P.; Helmig, D.; Tans, P.; Hueber, J.; Lelieveld, J.

    2010-05-01

    The primary sources and atmospheric chemistry of C2-C5 alkanes were incorporated into the atmospheric chemistry general circulation model EMAC. Model output is compared with new observations from the NOAA/ESRL GMD Cooperative Air Sampling Network. Based on the global coverage of the data, two different anthropogenic emission datasets for C4-C5 alkanes, widely used in the modelling community, are evaluated. We show that the model reproduces the main atmospheric features of the C2-C5 alkanes (e.g., seasonality). While the simulated values for ethane and propane are within a 20% range of the measurements, larger deviations are found for the other tracers. According to the analysis, an oceanic source of butanes and pentanes larger than the current estimates would be necessary to match the observations at some coastal stations. Finally the effect of C2-C5 alkanes on the concentration of acetone and acetaldehyde are assessed. Their chemical sources are largely controlled by the reaction with OH, while the reactions with NO3 and Cl contribute only to a little extent. The total amount of acetone produced by propane, i-butane and i-pentane oxidation is 11.2 Tg/yr, 4.3 Tg/yr, and 5.8 Tg/yr, respectively. Moreover, 18.1, 3.1, 3.4, 1.4 and 4.8 Tg/yr of acetaldehyde are formed by the oxidation of ethane, propane, n-butane, n-pentane and i-pentane, respectively.

  16. Enthalpy difference between conformations of normal alkanes: effects of basis set and chain length on intramolecular basis set superposition error

    NASA Astrophysics Data System (ADS)

    Balabin, Roman M.

    2011-03-01

    The quantum chemistry of conformation equilibrium is a field where great accuracy (better than 100 cal mol-1) is needed because the energy difference between molecular conformers rarely exceeds 1000-3000 cal mol-1. The conformation equilibrium of straight-chain (normal) alkanes is of particular interest and importance for modern chemistry. In this paper, an extra error source for high-quality ab initio (first principles) and DFT calculations of the conformation equilibrium of normal alkanes, namely the intramolecular basis set superposition error (BSSE), is discussed. In contrast to out-of-plane vibrations in benzene molecules, diffuse functions on carbon and hydrogen atoms were found to greatly reduce the relative BSSE of n-alkanes. The corrections due to the intramolecular BSSE were found to be almost identical for the MP2, MP4, and CCSD(T) levels of theory. Their cancelation is expected when CCSD(T)/CBS (CBS, complete basis set) energies are evaluated by addition schemes. For larger normal alkanes (N > 12), the magnitude of the BSSE correction was found to be up to three times larger than the relative stability of the conformer; in this case, the basis set superposition error led to a two orders of magnitude difference in conformer abundance. No error cancelation due to the basis set superposition was found. A comparison with amino acid, peptide, and protein data was provided.

  17. Density functional steric analysis of linear and branched alkanes.

    PubMed

    Ess, Daniel H; Liu, Shubin; De Proft, Frank

    2010-12-16

    Branched alkane hydrocarbons are thermodynamically more stable than straight-chain linear alkanes. This thermodynamic stability is also manifest in alkane bond separation energies. To understand the physical differences between branched and linear alkanes, we have utilized a novel density functional theory (DFT) definition of steric energy based on the Weizäcker kinetic energy. Using the M06-2X functional, the total DFT energy was partitioned into a steric energy term (E(s)[ρ]), an electrostatic energy term (E(e)[ρ]), and a fermionic quantum energy term (E(q)[ρ]). This analysis revealed that branched alkanes have less (destabilizing) DFT steric energy than linear alkanes. The lower steric energy of branched alkanes is mitigated by an equal and opposite quantum energy term that contains the Pauli component of the kinetic energy and exchange-correlation energy. Because the steric and quantum energy terms cancel, this leaves the electrostatic energy term that favors alkane branching. Electrostatic effects, combined with correlation energy, explains why branched alkanes are more stable than linear alkanes.

  18. Density Functional Steric Analysis of Linear and Branched Alkanes

    SciTech Connect

    Ess, Daniel H.; Liu, Shubin; De Proft, Frank

    2010-11-18

    Branched alkane hydrocarbons are thermodynamically more stable than straight-chain linear alkanes. This thermodynamic stability is also manifest in alkane bond separation energies. To understand the physical differences between branched and linear alkanes, we have utilized a novel density functional theory (DFT) definition of steric energy based on the Weizäcker kinetic energy. Using the M06-2X functional, the total DFT energy was partitioned into a steric energy term (Ee[[ρ]), an electrostatic energy term (Ee[ρ]), and a fermionic quantum energy term (Eq[[ρ]). This analysis revealed that branched alkanes have less (destabilizing) DFT steric energy than linear alkanes. The lower steric energy of branched alkanes is mitigated by an equal and opposite quantum energy term that contains the Pauli component of the kinetic energy and exchange-correlation energy. Because the steric and quantum energy terms cancel, this leaves the electrostatic energy term that favors alkane branching. Electrostatic effects, combined with correlation energy, explains why branched alkanes are more stable than linear alkanes.

  19. Interfacial properties of semifluorinated alkane diblock copolymers

    NASA Astrophysics Data System (ADS)

    Pierce, Flint; Tsige, Mesfin; Borodin, Oleg; Perahia, Dvora; Grest, Gary S.

    2008-06-01

    The liquid-vapor interfacial properties of semifluorinated linear alkane diblock copolymers of the form F3C(CF2)n-1(CH2)m-1CH3 are studied by fully atomistic molecular dynamics simulations. The chemical composition and the conformation of the molecules at the interface are identified and correlated with the interfacial energies. A modified form of the Optimized Parameter for Liquid Simulation All-Atom (OPLS-AA) force field of Jorgensen and co-workers [J. Am. Chem. Soc. 106, 6638 (1984); 118, 11225 (1996); J. Phys. Chem. A 105, 4118 (2001)], which includes specific dihedral terms for H-F blocks-and corrections to the H-F nonbonded interaction, is used together with a new version of the exp-6 force field developed in this work. Both force fields yield good agreement with the available experimental liquid density and surface tension data as well as each other over significant temperature ranges and for a variety of chain lengths and compositions. The interfacial regions of semifluorinated alkanes are found to be rich in fluorinated groups compared to hydrogenated groups, an effect that decreases with increasing temperature but is independent of the fractional length of the fluorinated segments. The proliferation of fluorine at the surface substantially lowers the surface tension of the diblock copolymers, yielding values near those of perfluorinated alkanes and distinct from those of protonated alkanes of the same chain length. With decreasing temperatures within the liquid state, chains are found to preferentially align perpendicular to the interface, as previously seen.

  20. Oxidative dehydrogenation of alkanes to unsaturated hydrocarbons

    DOEpatents

    Kung, Harold H.; Chaar, Mohamed A.

    1988-01-01

    Oxidative dehydrogenation of alkanes to unsaturated hydrocarbons is carried out over metal vanadate catalysts under oxidizing conditions. The vanadate catalysts are represented by the formulas M.sub.3 (VO.sub.4).sub.2 and MV.sub.2 O.sub.6, M representing Mg, Zn, Ca, Pb, or Cd. The reaction is carried out in the presence of oxygen, but the formation of oxygenate by-products is suppressed.

  1. Oxidative dehydrogenation of alkanes to unsaturated hydrocarbons

    DOEpatents

    Kung, H.H.; Chaar, M.A.

    1988-10-11

    Oxidative dehydrogenation of alkanes to unsaturated hydrocarbons is carried out over metal vanadate catalysts under oxidizing conditions. The vanadate catalysts are represented by the formulas M[sub 3](VO[sub 4])[sub 2] and MV[sub 2]O[sub 6], M representing Mg, Zn, Ca, Pb, or Cd. The reaction is carried out in the presence of oxygen, but the formation of oxygenate by-products is suppressed.

  2. Electrophilic nitration of alkanes with nitronium hexafluorophosphate

    PubMed Central

    Olah, George A.; Ramaiah, Pichika; Prakash, G. K. Surya

    1997-01-01

    Nitration of alkanes such as methane, ethane, propane, n-butane, isobutane, neopentane, and cyclohexane was carried out with nitronium hexafluorophosphate in methylene chloride or nitroethane solution. Nitration of methane, albeit in poor yield, required protolytic activation of the nitronium ion. The results indicate direct electrophilic insertion of NO2+ into C 000000000000 000000000000 000000000000 000000000000 111111111111 000000000000 000000000000 000000000000 000000000000 H and CC σ-bonds. PMID:11038587

  3. Regioselective functionalization of alkanes by sequential dehydrogenation-hydrozirconation.

    PubMed

    Kuninobu, Yoichiro; Ureshino, Tomonari; Yamamoto, Shun-ichi; Takai, Kazuhiko

    2010-08-07

    We have succeeded in formal regioselective functionalization of alkanes by iridium-catalyzed dehydrogenation, hydrozirconation of the resulting alkenes, and electrophilic reaction of the generated alkylzirconium intermediate.

  4. Expanding the alkane oxygenase toolbox: new enzymes and applications.

    PubMed

    van Beilen, Jan B; Funhoff, Enrico G

    2005-06-01

    As highly reduced hydrocarbons are abundant in the environment, enzymes that catalyze the terminal or subterminal oxygenation of alkanes are relatively easy to find. A number of these enzymes have been biochemically characterized in detail, because the potential of alkane hydroxylases to catalyze high added-value reactions is widely recognized. Nevertheless, the industrial application of these enzymes is restricted owing to the complex biochemistry, challenging process requirements, and the limited number of cloned and expressed enzymes. Rational and evolutionary engineering approaches have started to yield more robust and versatile enzyme systems, broadening the alkane oxygenase portfolio. In addition, metagenomic approaches provide access to many novel alkane oxygenase sequences.

  5. Structural and Kinetic Studies of Novel Cytochrome P450 Small-Alkane Hydroxylases

    SciTech Connect

    Arnold, Frances H.

    2012-02-27

    The goals of this project are to investigate (1) the kinetics and stabilities of engineered cytochrome P450 (P450) small alkane hydroxylases and their evolutionary intermediates, (2) the structural basis for catalytic proficiency on small alkanes of these engineered P450s, and (3) the changes in redox control resulting from protein engineering. To reach these goals, we have established new methods for determining the kinetics and stabilities of multicomponent P450s such as CYP153A6. Using these, we were able to determine that CYP153A6 is proficient for hydroxylation of alkanes as small as ethane, an activity that has never been observed previously in any natural P450. To elucidate the structures of the engineered P450s, we obtained x-ray diffraction data for two variants in the P450PMO (propane monooxygenase) lineage and a preliminary structure for the most evolved variant. This structure shows changes in the substrate binding regions of the enzyme and a reduction in active site volume that are consistent with the observed changes in substrate specificity from fatty acids in the native enzyme to small alkanes in P450PMO. We also constructed semi-rational designed libraries mutating only residues in the enzyme active site that in one round of mutagenesis and screening produced variants that achieved nearly half of the activity of the most evolved enzymes of the P450PMO lineage. Finally, we found that changes in redox properties of the laboratory-evolved P450 alkane hydroxylases did not reflect the improvement in their electron transfer efficiency. The heme redox potential remained constant throughout evolution, while activity increased and coupling efficiency improved from 10% to 90%. The lack of correlation between heme redox potential and enzyme activity and coupling efficiency led us to search for other enzyme properties that could be better predictors for activity towards small alkanes, specifically methane. We investigated the oxidation potential of the radical

  6. Kinetic features and industrial prospects of the selective oxidative cracking of light alkanes

    NASA Astrophysics Data System (ADS)

    Arutyunov, V. S.; Savchenko, V. I.; Sedov, I. V.; Nikitin, A. V.; Magomedov, R. N.; Proshina, A. Yu

    2017-01-01

    The results of kinetic investigations of selective oxidative cracking of light alkanes are analyzed and integrated. This process attracts researchers' attention owing to possible opportunities for designing new industrial processes based on light hydrocarbon feed. Particular attention is paid to ethane for which comprehensive and adequate models of oxidative conversion suitable for detailed analysis of the process kinetics have already been developed. The prospects for the practical application of methane homologues present in natural and associated gases in the selective oxidative cracking are discussed. The bibliography includes 85 references.

  7. Melting of linear alkanes between swollen elastomers and solid substrates.

    PubMed

    Nanjundiah, Kumar; Dhinojwala, Ali

    2013-10-01

    We have measured the melting and freezing behavior of linear alkanes confined between cross-linked poly(dimethylsiloxane) (PDMS) elastomers and solid sapphire substrates. Small molecules are often used as lubricants to reduce friction or as plasticizers, but very little is directly known about the migration or changes in physical properties of these small molecules at interfaces, particularly the changes in transition temperatures upon confinement. Our previous studies highlighted striking differences between the crystal structure of confined and unconfined pentadecane crystals in contact with sapphire substrates. Here, we have used surface-sensitive infrared-visible sum-frequency-generation spectroscopy (SFG) to study the melting temperatures (Tm) of alkanes in nanometer thick interfacial regions between swollen PDMS elastomers in contact with sapphire substrate. We find that confined alkanes show depression in Tm compared to the melting temperature of unconfined bulk alkanes. The depression in Tm is a function of chain length, and these differences were smallest for shorter alkanes and largest for 19 unit long alkanes. In comparison, the DSC results for swollen PDMS elastomer show a broad distribution of melting points corresponding to different sizes of crystals formed within the network. The Tm for confined alkanes has been modeled using the combination of Flory-Rehner and Gibbs-Thomson models, and the depression in Tm is related to the thickness of the confined alkanes. These findings have important implications in understanding friction and adhesion of soft elastomeric materials and also the effects of confinement between two solid materials.

  8. 40 CFR 721.3435 - Butoxy-substituted ether alkane.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Butoxy-substituted ether alkane. 721... Substances § 721.3435 Butoxy-substituted ether alkane. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as butoxy-substituted ether...

  9. Sophorolipids from Torulopsis bombicola: possible relation to alkane uptake.

    PubMed Central

    Ito, S; Inoue, S

    1982-01-01

    Torulopsis bombicola produces extracellular sophorolipids when it is grown on water-insoluble alkanes. Sophorolipids and related model compounds, which were not themselves used for growth, were found to stimulate markedly the growth of T. bombicola on alkanes. This stimulatory effect was restricted to growth on C10 to C20 alkanes, whereas no significantly influence was observed for growth on fatty alcohols, fatty acids, glucose, or glycerol. The nonionic methyl ester of the glycolipid supported the greatest cell yield. However, a number of synthetic nonionic surfactants were unable to replace the glycolipid. When organisms were grown on hexadecane, stimulation of growth by sophorolipids was observed almost exclusively with strains of Torulopsis yeasts. In contrast, the growth of other typical alkane-utilizing yeasts, such as candida and Pichia strains, was inhibited or not affected. It appears that sophorolipids are involved in alkane dissimilation by T. bombicola through an undetermined mechanism. PMID:7201782

  10. Alkanes in benthic organisms from the Buccaneer oil field

    SciTech Connect

    Middleditch, B.S.; Basile, B.

    1980-06-01

    About 200 g per day of alkanes are present in brine discharged from each of two production platforms in the Buccaneer oil field in the NW Gulf of Mexico. These alkanes disperse rapidly in the water column, so that seawater concentrations of petroleum alkanes in this region are generally very low. They can be taken up to some extent by plankton, fish, and barnacles, but the petroleum alkane concentrations in these organisms are also relatively low. The largest pool of petroleum alkanes is in the surficial sediments, where concentrations of up to 25 ppM are observed, with concentration gradients extending more than 20 m from the production platforms. Organisms are examined which are exposed to these sediments and, for comparison, other specimens from control sites around structures from which there are no discharges.

  11. Utilization of n-Alkanes by Cladosporium resinae

    PubMed Central

    Teh, J. S.; Lee, K. H.

    1973-01-01

    Four different isolates of Cladosporium resinae from Australian soils were tested for their ability to utilize liquid n-alkanes ranging from n-hexane to n-octadecane under standard conditions. The isolates were unable to make use of n-hexane, n-heptane, and n-octane for growth. In fact, these hydrocarbons, particularly n-hexane, exerted an inhibitory effect on spore germination and mycelial growth. All higher n-alkanes from n-nonane to n-octadecane were assimilated by the fungus, although only limited growth occurred on n-nonane and n-decane. The long chain n-alkanes (C14 to C18) supported good growth of all isolates, but there was no obvious correlation between cell yields and chain lengths of these n-alkanes. Variation in growth responses to individual n-alkane among the different isolates was also observed. The cause of this variation is unknown. PMID:4735447

  12. n-Alkane adsorption to polar silica surfaces.

    PubMed

    Brindza, Michael R; Ding, Feng; Fourkas, John T; Walker, Robert A

    2010-03-21

    The structures of medium-length n-alkane species (C(8)-C(11)) adsorbed to a hydrophilic silica/vapor interface were examined using vibrational sum frequency spectroscopy. Experiments sampling out-of-plane orientation show a clear pattern in vibrational band intensities that implies chains having primarily all-trans conformations lying flat along the interface. Further analysis shows that the methylene groups of the alkane chains have their local symmetry axes directed into and away from the surface. Spectra acquired under different polarization conditions interlock to reinforce this picture of interfacial structure and organization. Variation in signal intensities with chain length suggests that correlation between adsorbed monomers weakens with increasing chain length. This result stands in contrast with alkane behavior at neat liquid/vapor interfaces where longer length alkanes show considerably more surface induced ordering than short chain alkanes.

  13. Hydrocarbon Metabolism by Brevibacterium erythrogenes: Normal and Branched Alkanes1

    PubMed Central

    Pirnik, M. P.; Atlas, R. M.; Bartha, R.

    1974-01-01

    Branched- and straight-chain alkanes are metabolized by Brevibacterium erythrogenes by means of two distinct pathways. Normal alkanes (e.g., n-pentadecane) are degraded, after terminal oxidation, by the beta-oxidation system operational in fatty acid catabolism. Branched alkanes like pristane (2,6,10,14-tetramethylpentadecane) and 2-methylundecane are degraded as dicarboxylic acids, which also undergo beta-oxidation. Pristane-derived intermediates are observed to accumulate, with time, as a series of dicarboxylic acids. This dicarboxylic acid pathway is not observed in the presence of normal alkanes. Release of 14CO2 from [1-14C]pristane is delayed, or entirely inhibited, in the presence of n-hexadecane, whereas CO2 release from n-hexadecane remains unaffected. These results suggest an inducible dicarboxylic acid pathway for degradation of branched-chain alkanes. PMID:4852318

  14. Hydrogen isotopic composition of individual n-alkanes as an intrinsic tracer for bioremediation and source identification of petroleum contamination.

    PubMed

    Pond, Kristy L; Huang, Yongsong; Wang, Yi; Kulpa, Charles F

    2002-02-15

    The isotopic signatures of crude oil hydrocarbons are potentially powerful intrinsic tracers to their origins and the processes by which the oils are modified in the environment. Stable carbon isotopic data are of limited use for studying petroleum contaminants because of the relatively small amount of isotopic fractionation that occurs during natural processes. Hydrogen isotopes, in contrast, are commonly fractionated to a much greater extent and as a result display larger variations in delta values. We studied the effect of in vitro aerobic biodegradation on the hydrogen isotopic composition of individual n-alkanes from crude oil. The isotopic analysis was conducted using gas chromatography-thermal conversion-isotope ratio mass spectrometry. In general, biodegradation rates decreased with increasing hydrocarbon chain length, consistent with previous studies. More importantly the n-alkanes that were degraded at the fastest rates (n-C15 to n-C18) also showed the largest overall isotopic fractionation (approximately 12-25 per thousand deuterium enrichment), suggesting that the lower molecular weight n-alkanes can be used to monitor in-situ bioremediation of crude oil contamination. The hydrogen isotopic compositions of the longer chain alkanes (n-C19 to n-C27) were relatively stable during biodegradation (<5%o overall deuterium enrichment), indicating that these compounds are effective tracers for oil-source identification studies.

  15. A Toolkit to Enable Hydrocarbon Conversion in Aqueous Environments

    PubMed Central

    Brinkman, Eva K.; Schipper, Kira; Bongaerts, Nadine; Voges, Mathias J.; Abate, Alessandro; Wahl, S. Aljoscha

    2012-01-01

    This work puts forward a toolkit that enables the conversion of alkanes by Escherichia coli and presents a proof of principle of its applicability. The toolkit consists of multiple standard interchangeable parts (BioBricks)9 addressing the conversion of alkanes, regulation of gene expression and survival in toxic hydrocarbon-rich environments. A three-step pathway for alkane degradation was implemented in E. coli to enable the conversion of medium- and long-chain alkanes to their respective alkanols, alkanals and ultimately alkanoic-acids. The latter were metabolized via the native β-oxidation pathway. To facilitate the oxidation of medium-chain alkanes (C5-C13) and cycloalkanes (C5-C8), four genes (alkB2, rubA3, rubA4and rubB) of the alkane hydroxylase system from Gordonia sp. TF68,21 were transformed into E. coli. For the conversion of long-chain alkanes (C15-C36), theladA gene from Geobacillus thermodenitrificans was implemented. For the required further steps of the degradation process, ADH and ALDH (originating from G. thermodenitrificans) were introduced10,11. The activity was measured by resting cell assays. For each oxidative step, enzyme activity was observed. To optimize the process efficiency, the expression was only induced under low glucose conditions: a substrate-regulated promoter, pCaiF, was used. pCaiF is present in E. coli K12 and regulates the expression of the genes involved in the degradation of non-glucose carbon sources. The last part of the toolkit - targeting survival - was implemented using solvent tolerance genes, PhPFDα and β, both from Pyrococcus horikoshii OT3. Organic solvents can induce cell stress and decreased survivability by negatively affecting protein folding. As chaperones, PhPFDα and β improve the protein folding process e.g. under the presence of alkanes. The expression of these genes led to an improved hydrocarbon tolerance shown by an increased growth rate (up to 50%) in the presences of 10% n-hexane in the culture

  16. Kinetic study of asphaltene dissolution in amphiphile/alkane solutions

    SciTech Connect

    Permsukarome, P.; Chang, C.; Fogler, H.S.

    1997-09-01

    The kinetics of dissolution of pentane-insoluble solid asphaltene precipitates by amphiphile/alkane solutions were investigated using a differential reactor flow system. Two amphiphiles, dodecylbenzenesulfonic acid and nonylphenol, and five alkane solvents, ranging from hexane to hexadecane, were used. Results showed that the rate of asphaltene dissolution in amphiphile/alkane fluids could be approximated with a first-order kinetics with respect to the undissolved asphaltene mass in solution. The specific dissolution rate constant, k, varied with the concentration of amphiphiles, the type of alkane solvents, the temperature, and the fluid flow rate. The rate of asphaltene dissolution displayed a Langmuir-Hinshelwood kinetics with respect to the concentration of amphiphiles. Increasing the temperature of amphiphile/alkane fluids also enhanced the rate of asphaltene dissolution. The apparent activation energy for asphaltene dissolution was approximated to be 4--7 kcal/mol. The rate of asphaltene dissolution was also greater in amphiphile solutions containing lighter alkanes, such as hexane, with lower viscosities. These trends suggest that both surface reaction and mass transfer processes are important to the rate of asphaltene dissolution in amphiphile/alkane fluids.

  17. Expanding the product profile of a microbial alkane biosynthetic pathway.

    PubMed

    Harger, Matthew; Zheng, Lei; Moon, Austin; Ager, Casey; An, Ju Hye; Choe, Chris; Lai, Yi-Ling; Mo, Benjamin; Zong, David; Smith, Matthew D; Egbert, Robert G; Mills, Jeremy H; Baker, David; Pultz, Ingrid Swanson; Siegel, Justin B

    2013-01-18

    Microbially produced alkanes are a new class of biofuels that closely match the chemical composition of petroleum-based fuels. Alkanes can be generated from the fatty acid biosynthetic pathway by the reduction of acyl-ACPs followed by decarbonylation of the resulting aldehydes. A current limitation of this pathway is the restricted product profile, which consists of n-alkanes of 13, 15, and 17 carbons in length. To expand the product profile, we incorporated a new part, FabH2 from Bacillus subtilis , an enzyme known to have a broader specificity profile for fatty acid initiation than the native FabH of Escherichia coli . When provided with the appropriate substrate, the addition of FabH2 resulted in an altered alkane product profile in which significant levels of n-alkanes of 14 and 16 carbons in length are produced. The production of even chain length alkanes represents initial steps toward the expansion of this recently discovered microbial alkane production pathway to synthesize complex fuels. This work was conceived and performed as part of the 2011 University of Washington international Genetically Engineered Machines (iGEM) project.

  18. Heterologous biosynthesis and manipulation of alkanes in Escherichia coli.

    PubMed

    Cao, Ying-Xiu; Xiao, Wen-Hai; Zhang, Jin-Lai; Xie, Ze-Xiong; Ding, Ming-Zhu; Yuan, Ying-Jin

    2016-11-01

    Biosynthesis of alkanes in microbial foundries offers a sustainable and green supplement to traditional fossil fuels. The dynamic equilibrium of fatty aldehydes, key intermediates, played a critical role in microbial alkanes production, due to the poor catalytic capability of aldehyde deformylating oxygenase (ADO). In our study, exploration of competitive pathway together with multi-modular optimization was utilized to improve fatty aldehydes balance and consequently enhance alkanes formation in Escherichia coli. Endogenous fatty alcohol formation was supposed to be competitive with alkane production, since both of the two routes consumed the same intermediate-fatty aldehyde. Nevertheless, in our case, alkanes production in E. coli was enhanced from trace amount to 58.8mg/L by the facilitation of moderate fatty alcohol biosynthesis, which was validated by deletion of endogenous aldehyde reductase (AHR), overexpression of fatty alcohol oxidase (FAO) and consequent transcriptional assay of aar, ado and adhP genes. Moreover, alkanes production was further improved to 81.8mg/L, 86.6mg/L or 101.7mg/L by manipulation of fatty acid biosynthesis, lipids degradation or electron transfer system modules, which directly referenced to fatty aldehydes dynamic pools. A titer of 1.31g/L alkanes was achieved in 2.5L fed-batch fermentation, which was the highest reported titer in E. coli. Our research has offered a reference for chemical overproduction in microbial cell factories facilitated by exploring competitive pathway.

  19. Long-chain alkane production by the yeast Saccharomyces cerevisiae.

    PubMed

    Buijs, Nicolaas A; Zhou, Yongjin J; Siewers, Verena; Nielsen, Jens

    2015-06-01

    In the past decade industrial-scale production of renewable transportation biofuels has been developed as an alternative to fossil fuels, with ethanol as the most prominent biofuel and yeast as the production organism of choice. However, ethanol is a less efficient substitute fuel for heavy-duty and maritime transportation as well as aviation due to its low energy density. Therefore, new types of biofuels, such as alkanes, are being developed that can be used as drop-in fuels and can substitute gasoline, diesel, and kerosene. Here, we describe for the first time the heterologous biosynthesis of long-chain alkanes by the yeast Saccharomyces cerevisiae. We show that elimination of the hexadecenal dehydrogenase Hfd1 and expression of a redox system are essential for alkane biosynthesis in yeast. Deletion of HFD1 together with expression of an alkane biosynthesis pathway resulted in the production of the alkanes tridecane, pentadecane, and heptadecane. Our study provides a proof of principle for producing long-chain alkanes in the industrial workhorse S. cerevisiae, which was so far limited to bacteria. We anticipate that these findings will be a key factor for further yeast engineering to enable industrial production of alkane based drop-in biofuels, which can allow the biofuel industry to diversify beyond bioethanol.

  20. High-order harmonic generation in alkanes

    SciTech Connect

    Altucci, C.; Velotta, R.; Heesel, E.; Springate, E.; Marangos, J. P.; Vozzi, C.; Benedetti, E.; Calegari, F.; Sansone, G.; Stagira, S.; Nisoli, M.; Tosa, V.

    2006-04-15

    We have investigated the process of high-order harmonic generation in light alkanes by using femtosecond laser pulses. We show the experimental results cannot be matched by a model that assumes a single active electron only in a hydrogenic s orbital. Clear evidences are shown of the important role played by the p-like character originating from the covalent C-H bond. By constructing a suitable mixture of s-type and p-type atomic wave functions, an excellent agreement between measurements in methane and simulations is found, thus confirming the validity of the developed method as a general tool for the analysis of high-order harmonic generation in complex molecules.

  1. Heterogeneity of Alkane Chain Length in Freshwater and Marine Cyanobacteria

    PubMed Central

    Shakeel, Tabinda; Fatma, Zia; Fatma, Tasneem; Yazdani, Syed Shams

    2015-01-01

    The potential utilization of cyanobacteria for the biological production of alkanes represents an exceptional system for the next generation of biofuels. Here, we analyzed a diverse group of freshwater and marine cyanobacterial isolates from Indian culture collections for their ability to produce both alkanes and alkenes. Among the 50 cyanobacterial isolates screened, 32 isolates; 14 freshwater and 18 marine isolates; produced predominantly alkanes. The GC-MS/MS profiles revealed a higher percentage of pentadecane and heptadecane production for marine and freshwater strains, respectively. Oscillatoria species were found to be the highest producers of alkanes. Among the freshwater isolates, Oscillatoria CCC305 produced the maximum alkane level with 0.43 μg/mg dry cell weight, while Oscillatoria formosa BDU30603 was the highest producer among the marine isolates with 0.13 μg/mg dry cell weight. Culturing these strains under different media compositions showed that the alkane chain length was not influenced by the growth medium but was rather an inherent property of the strains. Analysis of the cellular fatty acid content indicated the presence of predominantly C16 chain length fatty acids in marine strains, while the proportion of C18 chain length fatty acids increased in the majority of freshwater strains. These results correlated with alkane chain length specificity of marine and freshwater isolates indicating that alkane chain lengths may be primarily determined by the fatty acid synthesis pathway. Moreover, the phylogenetic analysis showed clustering of pentadecane-producing marine strains that was distinct from heptadecane-producing freshwater strains strongly suggesting a close association between alkane chain length and the cyanobacteria habitat. PMID:25853127

  2. Gene Structures and Regulation of the Alkane Hydroxylase Complex in Acinetobacter sp. Strain M-1

    PubMed Central

    Tani, Akio; Ishige, Takeru; Sakai, Yasuyoshi; Kato, Nobuo

    2001-01-01

    In the long-chain n-alkane degrader Acinetobacter sp. strain M-1, two alkane hydroxylase complexes are switched by controlling the expression of two n-alkane hydroxylase-encoding genes in response to the chain length of n-alkanes, while rubredoxin and rubredoxin ruductase are encoded by a single gene and expressed constitutively. PMID:11160120

  3. Solid-State Conversion Chemistry of Multicomponent Nanocrystals Cast in a Hollow Silica Nanosphere: Morphology-Controlled Syntheses of Hybrid Nanocrystals.

    PubMed

    Kim, Yeon Jun; Choi, Jung Kyu; Lee, Dong-Gyu; Baek, Kyungjoon; Oh, Sang Ho; Lee, In Su

    2015-11-24

    During thermal transformation of multicomponent nanocrystals in a silica nanosphere, FeAuPd alloy nanocrystals migrate outward and thereby leave a cavity in the silica matrix. Oxidation then converts these nanocrystals back into phase-segregated hybrid nanocrystals, AuPd@Fe3O4, with various morphologies. The FeAuPd-to-AuPd@Fe3O4 transformation was cast by the in situ generated hollow silica mold. Therefore, the morphological parameters of the transformed AuPd@Fe3O4 are defined by the degree of migration of the FeAuPd in the hollow silica nanoshell. This hollow silica-cast nanocrystal conversion was studied to develop a solid state protocol that can be used to produce a range of hybrid nanocrystals and that allows for systematic and sophisticated control of the resulting morphologies.

  4. The effect of liquid phase chemistry on growth of lead magnesium niobate-lead titanate single crystals by seeded polycrystal conversion

    NASA Astrophysics Data System (ADS)

    Gorzkowski, Edward P., III

    The effect that liquid phase content and chemistry has on single crystal growth was investigated in this study. This was accomplished by determining the single crystal growth mechanism as well as studying the effect of hot pressing environment. Characterization techniques played a large role in deciphering the relevance of each effect. One such technique was used because x-ray absorption of oxygen is significant in thin specimens of Pb(Mg1/3Nb2/3 )O3-35 mol% PbTiO3 [PMN-35PT] due to the presence of Pb and Nb. Using only XEDS data, the zeta-factor method provides absorption corrected compositional information, which was helpful to fully characterize the liquid phase. It was shown that the compositional data were in very good agreement with the nominal values for PMN-35 PT, whereas the uncorrected data underestimated the oxygen content by 300%. This technique linked the swelling of samples to changes in the oxygen to lead ratio of the excess PbO due to hot-pressing in air. This observation corroborates the microstructural and x-ray diffraction data that was obtained. The influence of excess PbO on {001} single crystal growth was studied in the range of 0-10 vol% PbO. It was found that up to 1.5 vol% PbO, the amount of single crystal and grain growth increased with increasing PbO additions. At higher PbO contents, however, the growth becomes independent of liquid fraction for all annealing times. In addition since the matrix grains were faceted and the growth best fit parabolic kinetics, interface reaction control was deemed the most likely growth mechanism. It was also shown that the chemistry of the liquid phase was dynamic as characterized in an Analytical Electron Microscope. In fact, MgO was found to precipitate out of the system due the saturation of MgO in the liquid, which in turn altered the liquid/solid surface energy. By changing the energy of the system, the matrix grains become more faceted, i.e. the frequency of {100} surfaces increases. This reduces the

  5. Involvement of an alkane hydroxylase system of Gordonia sp. strain SoCg in degradation of solid n-alkanes.

    PubMed

    Lo Piccolo, Luca; De Pasquale, Claudio; Fodale, Roberta; Puglia, Anna Maria; Quatrini, Paola

    2011-02-01

    Enzymes involved in oxidation of long-chain n-alkanes are still not well known, especially those in gram-positive bacteria. This work describes the alkane degradation system of the n-alkane degrader actinobacterium Gordonia sp. strain SoCg, which is able to grow on n-alkanes from dodecane (C(12)) to hexatriacontane (C(36)) as the sole C source. SoCg harbors in its chromosome a single alk locus carrying six open reading frames (ORFs), which shows 78 to 79% identity with the alkane hydroxylase (AH)-encoding systems of other alkane-degrading actinobacteria. Quantitative reverse transcription-PCR showed that the genes encoding AlkB (alkane 1-monooxygenase), RubA3 (rubredoxin), RubA4 (rubredoxin), and RubB (rubredoxin reductase) were induced by both n-hexadecane and n-triacontane, which were chosen as representative long-chain liquid and solid n-alkane molecules, respectively. Biotransformation of n-hexadecane into the corresponding 1-hexadecanol was detected by solid-phase microextraction coupled with gas chromatography-mass spectrometry (SPME/GC-MS) analysis. The Gordonia SoCg alkB was heterologously expressed in Escherichia coli BL21 and in Streptomyces coelicolor M145, and both hosts acquired the ability to transform n-hexadecane into 1-hexadecanol, but the corresponding long-chain alcohol was never detected on n-triacontane. However, the recombinant S. coelicolor M145-AH, expressing the Gordonia alkB gene, was able to grow on n-triacontane as the sole C source. A SoCg alkB disruption mutant that is completely unable to grow on n-triacontane was obtained, demonstrating the role of an AlkB-type AH system in degradation of solid n-alkanes.

  6. One Instructor's Approach to Computer Assisted Instruction in General Chemistry.

    ERIC Educational Resources Information Center

    DeLorenzo, Ronald

    1982-01-01

    Discusses advantages of using computer-assisted instruction in a college general chemistry course. Advantages include using programs which generate random equations with double arrows (equilibrium systems) or generate alkane structural formula, asking for the correct IUPAC name of the structure. (Author/JN)

  7. DITERMINAL OXIDATION OF LONG-CHAIN ALKANES BY BACTERIA1

    PubMed Central

    Kester, A. S.; Foster, J. W.

    1963-01-01

    Kester, A. S. (The University of Texas, Austin) and J. W. Foster. Diterminal oxidation of long-chain alkanes by bacteria. J. Bacteriol. 85:859–869. 1963.—A corynebacterial organism capable of growing in mineral salts with individual pure alkanes as carbon sources produces a series of acids from the C10-C14 alkanes. They have been isolated in pure form and identified as monoic, ω-hydroxy monoic, and dioic acids containing the same number of carbon atoms as the substrate alkane. Oxidation took place at both terminal methyl groups—“diterminal oxidation.” Appropriate labeling experiments indicate that omega oxidation of fatty acids occurs in this organism and that an oxygenation with O2 occurs. Images PMID:14044955

  8. Process for converting light alkanes to higher hydrocarbons

    DOEpatents

    Noceti, Richard P.; Taylor, Charles E.

    1988-01-01

    A process is disclosed for the production of aromatic-rich, gasoline boiling range hydrocarbons from the lower alkanes, particularly from methane. The process is carried out in two stages. In the first, alkane is reacted with oxygen and hydrogen chloride over an oxyhydrochlorination catalyst such as copper chloride with minor proportions of potassium chloride and rare earth chloride. This produces an intermediate gaseous mixture containing water and chlorinated alkanes. The chlorinated alkanes are contacted with a crystalline aluminosilicate catalyst in the hydrogen or metal promoted form to produce gasoline range hydrocarbons with a high proportion of aromatics and a small percentage of light hydrocarbons (C.sub.2 -C.sub.4). The light hydrocarbons can be recycled for further processing over the oxyhydrochlorination catalyst.

  9. Reversible Interconversion between Alkanes, Alkenes, Alcohols and Ketones under Hydrothermal Conditions

    NASA Astrophysics Data System (ADS)

    Shipp, J.; Hartnett, H. E.; Gould, I. R.; Shock, E.; Williams, L. B.

    2011-12-01

    Many transformation reactions involving hydrocarbons that occur in deep sedimentary systems and determine petroleum compositions occur in the presence of H2O. Hydrothermal transformations of organic material are thought to provide carbon sources for microbes in deep ocean sediments. Hydrothermal conditions may also mimic the conditions where life developed on an early Earth. Nevertheless, much remains to be learned about the mechanisms of hydrothermal organic reactions, including ways in which various reactions are interrelated and how reactions compete with each other. It can be argued that metastable equilibrium states develop over geological timescales and at geochemically relevant temperatures, suggesting that reactions occur under thermodynamic rather than kinetic control. The extent to which reactions are reversible, and how product distributions are determined, are primary tests of the metastable equilibrium model. Seewald (2001, GCA 65, 1641-1664) showed that under hydrothermal conditions and in the presence of a redox buffer, simple alkanes and alkenes undergo oxidation, reduction, and hydration reactions. He proposed a reaction scheme where alkanes interconvert with alkenes, followed by stepwise hydration of alkenes to alcohols, oxidation to ketones, and finally conversion to carboxylic acids, which can undergo decarboxylation. Here we describe experiments that further develop the scope of these functional group interconversions, determine relative reaction kinetics, and provide insight into competing reactions. Hydrothermal experiments were performed at 300°C and 100 MPa in gold capsules for 12 to 144 hours. The reactant structures were based on cyclohexane with one and two methyl groups that served as regio- and stereochemical markers for the reactions. Starting with the alkanes, the observed products include the corresponding alkenes, alcohols, ketones and enones, in support of the Seewald reaction scheme. Our experiments add a branch to this scheme

  10. Site-selective Alkane Dehydrogenation of Fatty Acids

    DTIC Science & Technology

    2011-12-14

    dehydrogenation of fatty acids Contract/Grant#: FA9550-10-1-0532 Final Reporting Period: 15 September 2011 to 14 September 2011...directly incorporate fatty acids into the ligand. The preparation of the acyl phosphines (1-5) was easily accomplished starting from the corresponding...AFOSR Final Report Final Report 
 The proposed research examines the site-selective dehydrogenation of alkanes. The alkanes employed were fatty

  11. Contribution of cyanobacterial alkane production to the ocean hydrocarbon cycle.

    PubMed

    Lea-Smith, David J; Biller, Steven J; Davey, Matthew P; Cotton, Charles A R; Perez Sepulveda, Blanca M; Turchyn, Alexandra V; Scanlan, David J; Smith, Alison G; Chisholm, Sallie W; Howe, Christopher J

    2015-11-03

    Hydrocarbons are ubiquitous in the ocean, where alkanes such as pentadecane and heptadecane can be found even in waters minimally polluted with crude oil. Populations of hydrocarbon-degrading bacteria, which are responsible for the turnover of these compounds, are also found throughout marine systems, including in unpolluted waters. These observations suggest the existence of an unknown and widespread source of hydrocarbons in the oceans. Here, we report that strains of the two most abundant marine cyanobacteria, Prochlorococcus and Synechococcus, produce and accumulate hydrocarbons, predominantly C15 and C17 alkanes, between 0.022 and 0.368% of dry cell weight. Based on global population sizes and turnover rates, we estimate that these species have the capacity to produce 2-540 pg alkanes per mL per day, which translates into a global ocean yield of ∼ 308-771 million tons of hydrocarbons annually. We also demonstrate that both obligate and facultative marine hydrocarbon-degrading bacteria can consume cyanobacterial alkanes, which likely prevents these hydrocarbons from accumulating in the environment. Our findings implicate cyanobacteria and hydrocarbon degraders as key players in a notable internal hydrocarbon cycle within the upper ocean, where alkanes are continually produced and subsequently consumed within days. Furthermore we show that cyanobacterial alkane production is likely sufficient to sustain populations of hydrocarbon-degrading bacteria, whose abundances can rapidly expand upon localized release of crude oil from natural seepage and human activities.

  12. Contribution of cyanobacterial alkane production to the ocean hydrocarbon cycle

    PubMed Central

    Lea-Smith, David J.; Biller, Steven J.; Davey, Matthew P.; Cotton, Charles A. R.; Perez Sepulveda, Blanca M.; Turchyn, Alexandra V.; Scanlan, David J.; Smith, Alison G.; Chisholm, Sallie W.; Howe, Christopher J.

    2015-01-01

    Hydrocarbons are ubiquitous in the ocean, where alkanes such as pentadecane and heptadecane can be found even in waters minimally polluted with crude oil. Populations of hydrocarbon-degrading bacteria, which are responsible for the turnover of these compounds, are also found throughout marine systems, including in unpolluted waters. These observations suggest the existence of an unknown and widespread source of hydrocarbons in the oceans. Here, we report that strains of the two most abundant marine cyanobacteria, Prochlorococcus and Synechococcus, produce and accumulate hydrocarbons, predominantly C15 and C17 alkanes, between 0.022 and 0.368% of dry cell weight. Based on global population sizes and turnover rates, we estimate that these species have the capacity to produce 2–540 pg alkanes per mL per day, which translates into a global ocean yield of ∼308–771 million tons of hydrocarbons annually. We also demonstrate that both obligate and facultative marine hydrocarbon-degrading bacteria can consume cyanobacterial alkanes, which likely prevents these hydrocarbons from accumulating in the environment. Our findings implicate cyanobacteria and hydrocarbon degraders as key players in a notable internal hydrocarbon cycle within the upper ocean, where alkanes are continually produced and subsequently consumed within days. Furthermore we show that cyanobacterial alkane production is likely sufficient to sustain populations of hydrocarbon-degrading bacteria, whose abundances can rapidly expand upon localized release of crude oil from natural seepage and human activities. PMID:26438854

  13. Oxaloacetate-to-malate conversion by mineral photoelectrochemistry: implications for the viability of the reductive tricarboxylic acid cycle in prebiotic chemistry

    NASA Astrophysics Data System (ADS)

    Guzman, Marcelo I.; Martin, Scot T.

    2008-10-01

    The carboxylic acids produced by the reductive tricarboxylic acid (rTCA) cycle are possibly a biosynthetic core of initial life, although several steps such as the reductive kinetics of oxaloacetate (OAA) to malate (MA) are problematic by conventional chemical routes. In this context, we studied the kinetics of this reaction as promoted by ZnS mineral photoelectrochemistry. The quantum efficiency φMA of MA production from the photoelectrochemical reduction of OAA followed φMA=0.13 [OAA] (2.1×10-3+[OAA])-1 and was independent of temperature (5 to 50°C). To evaluate the importance of this forward rate under a prebiotic scenario, we also studied the temperature-dependent rate of the backward thermal decarboxylation of OAA to pyruvate (PA), which followed an Arrhenius behavior as log (k-2)=11.74 4956/T, where k-2 is in units of s-1. These measured rates were employed in conjunction with the indirectly estimated carboxylation rate of PA to OAA to assess the possible importance of mineral photoelectrochemistry in the conversion of OAA to MA under several scenarios of prebiotic conditions on early Earth. As an example, our analysis shows that there is 90% efficiency with a forward velocity of 3 yr/cycle for the OAA→MA step of the rTCA cycle at 280 K. Efficiency and velocity both decrease for increasing temperature. These results suggest high viability for mineral photoelectrochemistry as an enzyme-free engine to drive the rTCA cycle through the early aeons of early Earth, at least for the investigated OAA→MA step.

  14. Session: Energy Conversion

    SciTech Connect

    Robertson, David; LaSala, Raymond J.; Kukacka, Lawrence E.; Bliem, Carl J.; Premuzic, Eugene T.; Weare, John H.

    1992-01-01

    This session at the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market consisted of five presentations: ''Hydrothermal Energy Conversion Technology'' by David Robertson and Raymond J. LaSala; ''Materials for Geothermal Production'' by Lawrence E. Kukacka; ''Supersaturated Turbine Expansions for Binary Geothermal Power Plants'' by Carl J. Bliem; ''Geothermal Waster Treatment Biotechnology: Progress and Advantages to the Utilities'' by Eugen T. Premuzic; and ''Geothermal Brine Chemistry Modeling Program'' by John H. Weare.

  15. Hydrogen-hydrogen bonds in highly branched alkanes and in alkane complexes: A DFT, ab initio, QTAIM, and ELF study.

    PubMed

    Monteiro, Norberto K V; Firme, Caio L

    2014-03-06

    The hydrogen-hydrogen (H-H) bond or hydrogen-hydrogen bonding is formed by the interaction between a pair of identical or similar hydrogen atoms that are close to electrical neutrality and it yields a stabilizing contribution to the overall molecular energy. This work provides new, important information regarding hydrogen-hydrogen bonds. We report that stability of alkane complexes and boiling point of alkanes are directly related to H-H bond, which means that intermolecular interactions between alkane chains are directional H-H bond, not nondirectional induced dipole-induced dipole. Moreover, we show the existence of intramolecular H-H bonds in highly branched alkanes playing a secondary role in their increased stabilities in comparison with linear or less branched isomers. These results were accomplished by different approaches: density functional theory (DFT), ab initio, quantum theory of atoms in molecules (QTAIM), and electron localization function (ELF).

  16. Properties of Langmuir monolayers from semifluorinated alkanes

    NASA Astrophysics Data System (ADS)

    Broniatowski, M.; Macho, I. Sandez; Miñones, J.; Dynarowicz-Łątka, P.

    2005-06-01

    The aim of this study was to characterize several semifluorinated alkanes (SFA), of the general formula F(CF 2) m(CH 2) nH (in short F mH n), containing 25 carbon atoms in total (pentacosanes) differing in the m/ n ratio, as Langmuir monolayers at the free water surface. The following compounds have been studied: F6H19, F8H17, F10H15 and F12H13. Surface pressure ( π) and electric surface potential (Δ V) isotherms were recorded in addition to quantitative Brewster angle microscopy results. The negative sign of Δ V evidenced for the orientation of all the investigated semifluorinated pentacosanes, regardless the length of the hydrogenated segment, with their perfluorinated parts directed towards the air. As inferred from apparent dipole moment values and relative reflectivity results, the fluorinated pentacosanes with shorter perfluorinated fragment (F6H19 and F8H17) were found to be vertically oriented at the air/water interface, while those with longer perfluorinated moiety (F10H15 and F12H13) remain titled even in the vicinity of the film collapse.

  17. (19)F Oximetry with semifluorinated alkanes.

    PubMed

    Kegel, Stefan; Chacon-Caldera, Jorge; Tsagogiorgas, Charalambos; Theisinger, Bastian; Glatting, Gerhard; Schad, Lothar R

    2016-12-01

    This work examines the variation of longitudinal relaxation rate R1(= 1/T1) of the (19)F-CF3-resonance of semifluorinated alkanes (SFAs) with oxygen tension (pO2), temperature (T) and pH in vitro. Contrary to their related perfluorocarbons (PFCs), SFA are amphiphilic and facilitate stable emulsions, a prerequisite for clinical use. A linear relationship between R1 and pO2 was confirmed for the observed SFAs at different temperatures. Using a standard saturation recovery sequence, T1 has been successfully measured using fluorine (19)F-MRI with a self-constructed birdcage resonator at 9.4 T. A calibration curve to calculate pO2 depending on T and R1 was found for each SFA used. In contrast to the commonly used PFC, SFAs are less sensitive to changes in pO2, but more sensitive to changes in temperature. The influence of pH to R1 was found to be negligible.

  18. Nitrogen Oxide Atom-Transfer Redox Chemistry; Mechanism of NO(g) to Nitrite Conversion Utilizing µ-oxo Heme-FeIII−O−CuII(L) Constructs

    PubMed Central

    Hematian, Shabnam; Kenkel, Isabell; Shubina, Tatyana E.; Dürr, Maximilian; Liu, Jeffrey J.; Siegler, Maxime A.; Ivanovic-Burmazovic, Ivana; Karlin, Kenneth D.

    2015-01-01

    While nitric oxide (NO, nitrogen monoxide) is a critically important signaling agent, its cellular concentrations must be tightly controlled, generally through its oxidative conversion to nitrite (NO2−) where it is held in reserve to be reconverted as needed. In part, this reaction is mediated by the binuclear heme a3/CuB active site of cytochrome c oxidase. In this report, the oxidation of NO(g) to nitrite is shown to occur efficiently in new synthetic µ-oxo heme-FeIII−O−CuII(L) constructs (L being a tridentate or tetradentate pyridyl/alkylamino ligand), and spectroscopic and kinetic investigations provide detailed mechanistic insights. Two new X-ray structures of µ-oxo complexes have been determined and compared to literature analogs. All µ-oxo complexes react with 2 mol equiv NO(g) to give 1:1 mixtures of discrete [(L)CuII(NO2−)]+ plus ferrous heme-nitrosyl compounds; when the first NO(g) equiv reduces the heme center and itself is oxidized to nitrite, the second equiv of NO(g) traps the ferrous heme thus formed. For one µ-oxo heme-FeIII−O−CuII(L) compound, the reaction with NO(g) reveals an intermediate species (“intermediate”), formally a bis-NO adduct, [(NO)(porphyrinate)FeII-(NO2−)−CuII(L)]+ (λmax = 433 nm), confirmed by cryo-spray ionization mass spectrometry and EPR spectroscopy, along with the observation that cooling a 1:1 mixture of [(L)CuII(NO2−)]+ and heme-FeII(NO) to −125 °C leads to association and generation of the key 433 nm UV–vis feature. Kinetic-thermodynamic parameters obtained from low-temperature stopped-flow measurements are in excellent agreement with DFT calculations carried out which describe the sequential addition of NO(g) to the µ-oxo complex. PMID:25974136

  19. Using Amines and Alkanes as Thermal-Runaway Retardants for Lithium-Ion Battery

    NASA Astrophysics Data System (ADS)

    Shi, Yang

    Thermal runaway imposes major challenges to large-scale lithium-ion batteries (LIBs). The working temperature of a LIB is usually around room temperature. However, upon mechanical abuse such as an impact or nail penetration, LIB cell components may fail and internal short circuits could be formed. As a result, a series of exothermic electrochemical reactions and decompositions would take place and the local temperature can rapidly increase. In this thesis, a few novel techniques are investigated to mitigate thermal runaway of LIBs. Mechanically triggered approach has been employed. Thermal-runaway retardant (TRR) is encapsulated in mechanically responsive packages made of materials inert to the battery environment, and upon external mechanical loadings the packages can be broken apart and release the TRR. This mechanism allows for the use of aggressive chemicals to suppress the short circuit discharge and reduce the subsequent exothermic phenomena, immediately after the battery is damaged even before temperature increase begins. The best TRR candidates are identified to be amines and alkanes. Among amines, secondary amines and tertiary amines perform better than primary amines. The reduction in electrolyte ionic conductivity and the displacement of electrolyte are the thermal-runaway-mitigation mechanisms of the secondary and the tertiary amines, respectively. Pentadecane is the best candidate among the alkanes under investigation, with the major working mechanism being electrolyte displacement. Impact tests on large pouch cells and high-energy battery chemistry were also performed; the results were quite encouraging.

  20. Quantification of chemotaxis-related alkane accumulation in Acinetobacter baylyi using Raman microspectroscopy.

    PubMed

    Li, Hanbing; L Martin, Francis Luke; Zhang, Dayi

    2017-03-03

    Alkanes are one of the most widespread contaminants in the natural environment, primarily as a consequence of biological synthesis and oil spills. Many indigenous microbes metabolize alkanes, and the chemotaxis and accumulation in some strains has been identified. For the first time, we apply Raman microspectroscopy to identify such chemotaxis-related affinity, and quantify the alkane concentrations via spectral alterations. Raman spectral alterations were only found for the alkane chemo-attractant bacteria Acinetobacter baylyi ADP1, not for Pseudomonas fluorescence, which exhibits limited chemotaxis towards alkane. The significant alterations were attributed to the strong chemotactic ability of A. baylyi enhancing the affinity and accumulation of alkane molecules on cell membranes or cellular internalization. Spectral fingerprints of A. baylyi significantly altered after 1-h exposure to pure alkanes (dodecane or tetradecane) and alkane mixtures (mineral oil or crude oil), but not monocyclic aromatic hydrocarbons (MAHs) or polycyclic aromatic hydrocarbons (PAHs). A semi-log linear regression relationship between Raman spectral alterations and alkane concentrations showed its feasibility in quantifying alkane concentration in environmental samples. Pure alkanes or alkane mixtures exhibited different limits of detection and regression slopes, indicating that the chemotaxis-related alkane accumulation in A. baylyi is dependent on the carbon chain length. This work provides a novel biospectroscopy approach to characterize the chemotaxis-related alkane bioaccumulation, and has immense potential for fast and high-throughput screening bacterial chemotaxis.

  1. Radiation-initiated conversion of paraffins to engine fuel: Direct and indirect initiation

    NASA Astrophysics Data System (ADS)

    Metreveli, A. K.; Ponomarev, A. V.

    2016-07-01

    Formation of gasoline and diesel fuel has been investigated using three various radiation-induced ways: (1) cracking of wax, (2) synthesis from methane, (3) high-temperature conversion of wax dilute solution in methane. The wax, synthesized by Fischer-Tropsch method, initially contained a mixture of C17-C120 linear paraffins. The yield of wax conversion to liquid mixture (C4-C27 alkenes and 61.5% alkanes) via mode (1) was 0.83±0.09 μmole/J, whereas yield of gas conversion to liquid mixture (C5-C13 alkanes) via mode (2) was 0.95±0.02 μmole/J. In the dilute solution wax underwent indirect action of radiation. In comparison with (1) the mode (3) produces similar amount of lighter fuel containing 80% of alkanes (C5-C15). At the same time degree of methane fixation is almost three times higher.

  2. CHEMISTRY OF HALOPERFLUOROALKANES.

    DTIC Science & Technology

    HALOGENATED HYDROCARBONS, *FLUORINATION), (*SUBSTITUTION REACTIONS, FLUORINATION), (*SILVER COMPOUNDS, FLUORINATION), FLUORINE COMPOUNDS, CHLORINE COMPOUNDS, BROMINE COMPOUNDS, ETHERS, ACETIC ACID , KETONES, ALKANES

  3. Variation in n-Alkane Distributions of Modern Plants: Questioning Applications of n-Alkanes in Chemotaxonomy and Paleoecology

    NASA Astrophysics Data System (ADS)

    Bush, R. T.; McInerney, F. A.

    2010-12-01

    Long chain n-alkanes (n-C21 to n-C37) are synthesized as part of the epicuticular leaf wax of terrestrial plants and are among the most recognizable and widely used plant biomarkers. n-Alkane distributions have been utilized in previous studies on modern plant chemotaxonomy, testing whether taxa can be identified based on characteristic n-alkane profiles. Dominant n-alkanes (e.g. n-C27 or n-C31) have also been ascribed to major plant groups (e.g. trees or grasses respectively) and have been used in paleoecology studies to reconstruct fluctuations in plant functional types. However, many of these studies have been based on relatively few modern plant data; with the wealth of modern n-alkane studies, a more comprehensive analysis of n-alkanes in modern plants is now possible and can inform the usefulness of n-alkane distributions as paleoecological indicators. The work presented here is a combination of measurements made using plant leaves collected from the Chicago Botanic Garden and a compilation of published literature data from six continents. We categorized plants by type: angiosperms, gymnosperms, woody plants, forbs, grasses, ferns and pteridophytes, and mosses. We then quantified n-alkane distribution parameters such as carbon preference index (CPI), average chain length (ACL), and dispersion (a measure of the spread of the profile over multiple chain lengths) and used these to compare plant groups. Among all plants, one of the emergent correlations is a decrease in dispersion with increasing CPI. Within and among plant groups, n-alkane distributions show a very large range of variation, and the results show little or no correspondence between broad plant groups and a single dominant n-alkane or a ratio of n-alkanes. These findings are true both when data from six continents are combined and when plants from a given region are compared (North America). We also compared the n-alkane distributions of woody angiosperms, woody gymnosperms, and grasses with one

  4. One-step hydrotreatment of vegetable oil to produce high quality diesel-range alkanes.

    PubMed

    Wang, Congxin; Tian, Zhijian; Wang, Lei; Xu, Renshun; Liu, Qianhe; Qu, Wei; Ma, Huaijun; Wang, Bingchun

    2012-10-01

    A one-step hydrotreatment of vegetable oil combining deoxygenation and isomerization to directly produce low cloud point, high quality diesel is devised. The Pt/zeolite bifunctional catalysts prepared by using SAPO-11 and ZSM-22 zeolites as supports are used in this process. Catalytic reactions are conducted in a fixed-bed reactor under a hydrogen atmosphere. Over the bifunctional catalyst, 100 % conversion of soybean oil is obtained at 357 °C, 4 MPa, and 1 h(-1), and 80 % organic liquid yield is achieved, which is close to the maximum theoretical liquid yield. In the organic products, the alkanes selectivity is 100 % with an i-alkanes selectivity above 63 %. NH(3)-temperature programmed desorption (TPD), pyridine IR spectroscopy, and other characterization techniques are used to study the effect of the support acidity on the reaction pathway. Over the Pt/zeolite bifunctional catalyst with less strong Lewis acid sites, the reaction proceeds via the decarboxylation plus decarbonylation pathway. This one-step method provides a new strategy to produce low cloud point, high quality diesel from biomass feedstock in a more economic and attractive way.

  5. Detailed chemical kinetic models for large n-alkanes and iso-alkanes found in conventional and F-T diesel fuels

    SciTech Connect

    Westbrook, C K; Pitz, W J; Curran, H J; Mehl, M

    2008-12-15

    Detailed chemical kinetic models are needed to simulate the combustion of current and future transportation fuels. These models should represent the various chemical classes in these fuels. Conventional diesel fuels are composed of n-alkanes, iso-alkanes, cycloalkanes and aromatics (Farrell et al. 2007). For future fuels, there is a renewed interest in Fischer-Tropsch (F-T) processes which can be used to synthesize diesel and other transportation fuels from biomass, coal and natural gas. F-T diesel fuels are expected to be similar to F-T jet fuels which are commonly comprised of iso-alkanes with some n-alkanes (Smith and Bruno, 2008). Thus, n-alkanes and iso-alkanes are common chemical classes in these conventional and future fuels. This paper reports on the development of chemical kinetic models of large n-alkanes and iso-alkanes to represent these chemical classes in conventional and future fuels. Two large iso-alkanes are 2,2,4,4,6,8,8-heptamethylnonane, which is a primary reference fuel for diesel, and isooctane, a primary reference fuel for gasoline. Other iso-alkanes are branched alkanes with a single methyl side chain, typical of most F-T fuels. The chemical kinetic models are then used to predict the effect of these fuel components on ignition characteristics under conditions found in internal combustion engines.

  6. Metabolism of Hydrocarbons in n-Alkane-Utilizing Anaerobic Bacteria.

    PubMed

    Wilkes, Heinz; Buckel, Wolfgang; Golding, Bernard T; Rabus, Ralf

    2016-01-01

    The glycyl radical enzyme-catalyzed addition of n-alkanes to fumarate creates a C-C-bond between two concomitantly formed stereogenic carbon centers. The configurations of the two diastereoisomers of the product resulting from n-hexane activation by the n-alkane-utilizing denitrifying bacterium strain HxN1, i.e. (1-methylpentyl)succinate, were assigned as (2S,1'R) and (2R,1'R). Experiments with stereospecifically deuterated n-(2,5-2H2)hexanes revealed that exclusively the pro-S hydrogen atom is abstracted from C2 of the n-alkane by the enzyme and later transferred back to C3 of the alkylsuccinate formed. These results indicate that the alkylsuccinate-forming reaction proceeds with an inversion of configuration at the carbon atom (C2) of the n-alkane forming the new C-C-bond, and thus stereochemically resembles a SN2-type reaction. Therefore, the reaction may occur in a concerted manner, which may avoid the highly energetic hex-2-yl radical as an intermediate. The reaction is associated with a significant primary kinetic isotope effect (kH/kD ≥3) for hydrogen, indicating that the homolytic C-H-bond cleavage is involved in the first irreversible step of the reaction mechanism. The (1-methylalkyl)succinate synthases of n-alkane-utilizing anaerobic bacteria apparently have very broad substrate ranges enabling them to activate not only aliphatic but also alkyl-aromatic hydrocarbons. Thus, two denitrifiers and one sulfate reducer were shown to convert the nongrowth substrate toluene to benzylsuccinate and further to the dead-end product benzoyl-CoA. For this purpose, however, the modified β-oxidation pathway known from alkylbenzene-utilizing bacteria was not employed, but rather the pathway used for n-alkane degradation involving CoA ligation, carbon skeleton rearrangement and decarboxylation. Furthermore, various n-alkane- and alkylbenzene-utilizing denitrifiers and sulfate reducers were found to be capable of forming benzyl alcohols from diverse alkylbenzenes

  7. Determining and quantifying specific sources of light alkane

    NASA Astrophysics Data System (ADS)

    Bill, M.; Conrad, M. E.

    2015-12-01

    Determining and quantifying specific sources of emission of methane (an important greenhouse gas) and light alkanes from abandoned gas and oil wells, hydraulic fracturing or associated with CO2 sequestration are a challenge in determining their contribution to the atmospheric greenhouse gas budget or to identify source of groundwater contamination. Here, we review organic biogeochemistry proprieties and isotopic fingerprinting of C1-C5 alkanes to address this problem. For instance, the concentration ratios of CH4 to C2-C5 alkanes can be used to distinguish between thermogenic and microbial generated CH4. Together C and H isotopes of CH4 are used to differentiate bacterial generated sources and thermogenic CH4 and may also identify processes such as alteration and source mixing. Carbon isotope ratios pattern of C1-C5 alkanes highlight sources and oxidation processes in the gas reservoirs. Stable carbon isotope measurements are a viable tool for monitoring the degradation progress of methane and light hydrocarbons. The carbon isotope ratios of the reactants and products are independent of the concentration and only depend on the relative progress of the particular reaction. Oxidation/degradation of light alkanes are typically associated with increasing ð13C values. Isotopic mass balances offer the possibility to independently determine the fractions coming from microbial versus thermogenic and would also permit differentiation of the isotope fractionations associated with degradation. Unlike conventional concentration measurements, this approach is constrained by the different isotopic signatures of various sources and sinks.

  8. Infrared Spectroscopic Investigation on CH Bond Acidity in Cationic Alkanes

    NASA Astrophysics Data System (ADS)

    Matsuda, Yoshiyuki; Xie, Min; Fujii, Asuka

    2016-06-01

    We have demonstrated large enhancements of CH bond acidities in alcohol, ether, and amine cations through infrared predissociation spectroscopy based on the vacuum ultraviolet photoionization detection. In this study, we investigate for the cationic alkanes (pentane, hexane, and heptane) with different alkyl chain lengths. The σ electrons are ejected in the ionization of alkanes, while nonbonding electrons are ejected in ionization of alcohols, ethers, and amines. Nevertheless, the acidity enhancements of CH in these cationic alkanes have also been demonstrated by infrared spectroscopy. The correlations of their CH bond acidities with the alkyl chain lengths as well as the mechanisms of their acidity enhancements will be discussed by comparison of infrared spectra and theoretical calculations.

  9. Alkanes in shrimp from the Buccaneer Oil Field

    SciTech Connect

    Middleditch, B.S.; Basile, B.; Chang, E.S.

    1982-07-01

    A total of 36 samples of shrimp were examined from the region of the Buccaneer oil field, eighteen of which were representatives of the commercial species Penaeus aztecus and the rest were various other species: Penaeus duorarum (pink shrimp), Trachypenaeus duorarum (sugar shrimp), Squilla empusa (mantis shrimp), and Sicyonia dorsalis (chevron shrimp). The alkanes and deuteriated alkanes were completely separated by GC, so a mass spectrometer was not required for their detection and quantitation. To confirm the identities of individual compounds, however, some samples were examined by combined gas chromatography-mass spectrometry. Results show that only thirteen of the forty shrimp collected from the region of the Buccaneer oil field contained petroleum alkanes, and the majority of these were obtained from trawls immediately adjacent to the production platforms. It appears that shrimp caught in the region of the Buccaneer oil field are not appreciably tainted with hydrocarbons discharged from the production platforms. (JMT)

  10. Alkane Oxidation: Methane Monooxygenases, Related Enzymes, and Their Biomimetics.

    PubMed

    Wang, Vincent C-C; Maji, Suman; Chen, Peter P-Y; Lee, Hung Kay; Yu, Steve S-F; Chan, Sunney I

    2017-02-16

    Methane monooxygenases (MMOs) mediate the facile conversion of methane into methanol in methanotrophic bacteria with high efficiency under ambient conditions. Because the selective oxidation of methane is extremely challenging, there is considerable interest in understanding how these enzymes carry out this difficult chemistry. The impetus of these efforts is to learn from the microbes to develop a biomimetic catalyst to accomplish the same chemical transformation. Here, we review the progress made over the past two to three decades toward delineating the structures and functions of the catalytic sites in two MMOs: soluble methane monooxygenase (sMMO) and particulate methane monooxygenase (pMMO). sMMO is a water-soluble three-component protein complex consisting of a hydroxylase with a nonheme diiron catalytic site; pMMO is a membrane-bound metalloenzyme with a unique tricopper cluster as the site of hydroxylation. The metal cluster in each of these MMOs harnesses O2 to functionalize the C-H bond using different chemistry. We highlight some of the common basic principles that they share. Finally, the development of functional models of the catalytic sites of MMOs is described. These efforts have culminated in the first successful biomimetic catalyst capable of efficient methane oxidation without overoxidation at room temperature.

  11. A nonequilibrium molecular dynamics study of the rheology of alkanes

    SciTech Connect

    Gupta, S.A.; Cui, S.T.; Cummings, P.T.; Cochran, H.D. |

    1996-05-01

    We examine the rheological properties of four different alkanes: n-decane, n-hexadecane, n-tetracosane, and squalane. Simulations of Couette flow are performed for a range of shear rates with 100 molecules in each case using a replicated data version of our code. Number of interaction sites ranges from 1000 to 3000. We have performed extremely long simulations required to obtain acceptable statistics at low shear rates. The alkanes show a transition from non-Newtonian to Newtonian behavior as the shear rate decreases to low values. 1 tab, 1 fig, 17 refs.

  12. Modeling of alkane emissions from a wood stain

    SciTech Connect

    Chang, J.C.S.; Guo, Z.

    1993-01-01

    The article discusses full-scale residential house tests to evaluate the effects of organic emissions from a wood finishing product--wood stain--on indoor air quality (IAQ). The test house concentrations of three alkane species, nonane, decane, and undecane, were measured as a function of time after the application of the wood stain. It was found that the test house concentrations can be simulated by an integrated IAQ model which takes into consideration source, sink, and ventilation effects. The alkane emissions were controlled by an evaporation-like process.

  13. Assimilation of chlorinated alkanes by hydrocarbon-utilizing fungi

    SciTech Connect

    Murphy, G.L.; Perry, J.J.

    1984-12-01

    The fatty acid compositions of two filamentous fungi (Cunninghamella elegans and Penicillium zonatum) and a yeast (Candida lipolytica) were determined after the organisms were grown on 1-chlorohexadecane or 1-chlorooctadecane. These organisms utilized the chlorinated alkanes as sole sources of carbon and energy. Analyses of the fatty acids present after growth on the chlorinated alkanes indicated that 60 to 70% of the total fatty acids in C. elegans were chlorinated. Approximately 50% of the fatty acids in C. lipolytica were also chlorinated. P. zonatum contained 20% 1-chlorohexadecanoic acid after growth on either substrate but did not incorporate C/sub 18/ chlorinated fatty acids.

  14. Regioselective alkane hydroxylation with a mutant AlkB enzyme

    DOEpatents

    Koch, Daniel J.; Arnold, Frances H.

    2012-11-13

    AlkB from Pseudomonas putida was engineered using in-vivo directed evolution to hydroxylate small chain alkanes. Mutant AlkB-BMO1 hydroxylates propane and butane at the terminal carbon at a rate greater than the wild-type to form 1-propanol and 1-butanol, respectively. Mutant AlkB-BMO2 similarly hydroxylates propane and butane at the terminal carbon at a rate greater than the wild-type to form 1-propanol and 1-butanol, respectively. These biocatalysts are highly active for small chain alkane substrates and their regioselectivity is retained in whole-cell biotransformations.

  15. Recent Advances in Catalytic Conversion of Ethanol to Chemicals

    SciTech Connect

    Sun, Junming; Wang, Yong

    2014-04-30

    With increased availability and decreased cost, ethanol is potentially a promising platform molecule for the production of a variety of value-added chemicals. In this review, we provide a detailed summary of recent advances in catalytic conversion of ethanol to a wide range of chemicals and fuels. We particularly focus on catalyst advances and fundamental understanding of reaction mechanisms involved in ethanol steam reforming (ESR) to produce hydrogen, ethanol conversion to hydrocarbons ranging from light olefins to longer chain alkenes/alkanes and aromatics, and ethanol conversion to other oxygenates including 1-butanol, acetaldehyde, acetone, diethyl ether, and ethyl acetate.

  16. Energy conversion and storage program

    NASA Astrophysics Data System (ADS)

    1990-12-01

    The Energy Conversion and Storage Program applies chemical and chemical engineering principles to solve problems in (1) production of new synthetic fuels; (2) development of high-performance rechargeable batteries and fuel cells; (3) development of advanced thermochemical processes for energy storage; (4) characterization of complex chemical processes; and (5) the application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, and advanced methods of analysis. The following five areas are discussed: electrochemical energy storage and conversion; microstructured materials; biotechnology; fossil fuels; and high temperature superconducting processing. Papers have been processed separately for inclusion on the data base.

  17. Contentious Conversations

    ERIC Educational Resources Information Center

    Zuidema, Leah A.

    2011-01-01

    The idea of joining a conversation through reading and writing is not new; in his 1941 book "The Philosophy of Literary Form: Studies in Symbolic Action," Kenneth Burke suggests that the acts of reading and writing are like entering a parlor where others are already conversing. The author explores the place of professional debate within NCTE and…

  18. 40 CFR 721.10148 - Acryloxy alkanoic alkane derivative with mixed metal oxides (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Acryloxy alkanoic alkane derivative... Significant New Uses for Specific Chemical Substances § 721.10148 Acryloxy alkanoic alkane derivative with...) The chemical substance identified generically as acryloxy alkanoic alkane derivative with mixed...

  19. 40 CFR 721.4464 - Mixture of hydrofluoro alkanes and hydrofluoro alkene.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Mixture of hydrofluoro alkanes and... Specific Chemical Substances § 721.4464 Mixture of hydrofluoro alkanes and hydrofluoro alkene. (a) Chemical... as a mixture of hydrofluoro alkanes and hydrofluoro alkene (PMNs P-96-945/946/947/948) are subject...

  20. 40 CFR 721.4464 - Mixture of hydrofluoro alkanes and hydrofluoro alkene.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Mixture of hydrofluoro alkanes and... Specific Chemical Substances § 721.4464 Mixture of hydrofluoro alkanes and hydrofluoro alkene. (a) Chemical... as a mixture of hydrofluoro alkanes and hydrofluoro alkene (PMNs P-96-945/946/947/948) are subject...

  1. 40 CFR 721.4464 - Mixture of hydrofluoro alkanes and hydrofluoro alkene.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Mixture of hydrofluoro alkanes and... Specific Chemical Substances § 721.4464 Mixture of hydrofluoro alkanes and hydrofluoro alkene. (a) Chemical... as a mixture of hydrofluoro alkanes and hydrofluoro alkene (PMNs P-96-945/946/947/948) are subject...

  2. 40 CFR 721.4464 - Mixture of hydrofluoro alkanes and hydrofluoro alkene.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Mixture of hydrofluoro alkanes and... Specific Chemical Substances § 721.4464 Mixture of hydrofluoro alkanes and hydrofluoro alkene. (a) Chemical... as a mixture of hydrofluoro alkanes and hydrofluoro alkene (PMNs P-96-945/946/947/948) are subject...

  3. 40 CFR 721.4464 - Mixture of hydrofluoro alkanes and hydrofluoro alkene.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Mixture of hydrofluoro alkanes and... Specific Chemical Substances § 721.4464 Mixture of hydrofluoro alkanes and hydrofluoro alkene. (a) Chemical... as a mixture of hydrofluoro alkanes and hydrofluoro alkene (PMNs P-96-945/946/947/948) are subject...

  4. 40 CFR 721.10148 - Acryloxy alkanoic alkane derivative with mixed metal oxides (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Acryloxy alkanoic alkane derivative... Significant New Uses for Specific Chemical Substances § 721.10148 Acryloxy alkanoic alkane derivative with...) The chemical substance identified generically as acryloxy alkanoic alkane derivative with mixed...

  5. 40 CFR 721.785 - Halogenated alkane aromatic compound (generic name).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Halogenated alkane aromatic compound... Specific Chemical Substances § 721.785 Halogenated alkane aromatic compound (generic name). (a) Chemical... as a halogenated alkane aromatic compound (PMN P-94-1747) is subject to reporting under this...

  6. 40 CFR 721.785 - Halogenated alkane aromatic compound (generic name).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Halogenated alkane aromatic compound... Specific Chemical Substances § 721.785 Halogenated alkane aromatic compound (generic name). (a) Chemical... as a halogenated alkane aromatic compound (PMN P-94-1747) is subject to reporting under this...

  7. 40 CFR 721.785 - Halogenated alkane aromatic compound (generic name).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Halogenated alkane aromatic compound... Specific Chemical Substances § 721.785 Halogenated alkane aromatic compound (generic name). (a) Chemical... as a halogenated alkane aromatic compound (PMN P-94-1747) is subject to reporting under this...

  8. 40 CFR 721.785 - Halogenated alkane aromatic compound (generic name).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Halogenated alkane aromatic compound... Specific Chemical Substances § 721.785 Halogenated alkane aromatic compound (generic name). (a) Chemical... as a halogenated alkane aromatic compound (PMN P-94-1747) is subject to reporting under this...

  9. 40 CFR 721.785 - Halogenated alkane aromatic compound (generic name).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Halogenated alkane aromatic compound... Specific Chemical Substances § 721.785 Halogenated alkane aromatic compound (generic name). (a) Chemical... as a halogenated alkane aromatic compound (PMN P-94-1747) is subject to reporting under this...

  10. Integrated two-liquid phase bioconversion and product-recovery processes for the oxidation of alkanes: Process design and economic evaluation

    SciTech Connect

    Mathys, R.G.; Schmid, A.; Witholt, B.

    1999-08-20

    Pseudomonas oleovorans and recombinant strains containing the alkane oxidation genes can product alkane oxidation genes can produce alkane oxidation products in two-liquid phase bioreactor systems. In these bioprocesses the cells, which grow in the aqueous phase, oxidize apolar, non-water soluble substrates. The apolar products typically accumulate in the emulsified apolar phase. The authors have studied both the bioconversion systems and several downstream processing systems to separate and purify alkanols from these two-liquid phase media. Based on the information generated in these studies, the authors have now designed bioconversion and downstream processing systems for the production of 1-alkanols from n-alkanes on a 10 kiloton/yr scale, taking the conversion of n-octane to 1-octanol as a model system. Here, the authors describe overall designs of fed-batch and continuous-fermentation processes for the oxidation of octane to 1-octanol by Pseudomonas oleovoran, and the authors discuss the economics of these processes. The overall performance of each of these two systems has been modeled with Aspen software. Although the continuous process is about 10% more expensive than the fed-batch process, improvements to reduce overall cost can be achieved more easily for continuous than for fed-batch fermentation by decreasing the dilution rate while maintaining near constant productivity. Improvements relevant to both processes can be achieved by increasing the biocatalyst performance, which results in improved overall efficiency, decreased capital investment, and hence, decreased production cost.

  11. Numerical and experimental studies of ethanol flames and autoignition theory for higher alkanes

    NASA Astrophysics Data System (ADS)

    Saxena, Priyank

    In order to enhance the fuel efficiency of an engine and to control pollutant formation, an improved understanding of the combustion chemistry of the fuels at a fundamental level is paramount. This knowledge can be gained by developing detailed reaction mechanisms of the fuels for various combustion processes and by studying combustion analytically employing reduced-chemistry descriptions. There is a need for small detailed reaction mechanisms for alkane and alcohol fuels with reduced uncertainties in their combustion chemistry that are computationally cheaper in multidimensional CFD calculations. Detailed mechanisms are the starting points in identifying reduced-chemistry descriptions of combustion processes to study problems analytically. This research includes numerical, experimental and analytical studies. The first part of the dissertation consists of numerical and experimental studies of ethanol flames. Although ethanol has gained popularity as a possible low-pollution source of renewable energy, significant uncertainties remain in its combustion chemistry. To begin to address ethanol combustion, first a relatively small detailed reaction mechanism, commonly known as the San Diego Mech, is developed for the combustion of hydrogen, carbon monoxide, formaldehyde, methane, methanol, ethane, ethylene, and acetylene, in air or oxygen-inert mixtures. This mechanism is tested for autoignition, premixed-flame burning velocities, and structures and extinction of diffusion flames and of partially premixed flames of many of these fuels. The reduction in uncertainties in the combustion chemistry can best be achieved by consistently updating a reaction mechanism with reaction rate data for the elementary steps based on newer studies in literature and by testing it against as many experimental conditions as available. The results of such a testing for abovementioned fuels are reported here along with the modifications of reaction-rate parameters of the most important

  12. Improving alkane synthesis in Escherichia coli via metabolic engineering.

    PubMed

    Song, Xuejiao; Yu, Haiying; Zhu, Kun

    2016-01-01

    Concerns about energy security and global petroleum supply have made the production of renewable biofuels an industrial imperative. The ideal biofuels are n-alkanes in that they are chemically and structurally identical to the fossil fuels and can "drop in" to the transportation infrastructure. In this work, an Escherichia coli strain that produces n-alkanes was constructed by heterologous expression of acyl-acyl carrier protein (ACP) reductase (AAR) and aldehyde deformylating oxygenase (ADO) from Synechococcus elongatus PCC7942. The accumulation of alkanes ranged from 3.1 to 24.0 mg/L using different expressing strategies. Deletion of yqhD, an inherent aldehyde reductase in E. coli, or overexpression of fadR, an activator for fatty acid biosynthesis, exhibited a nearly twofold increase in alkane titers, respectively. Combining yqhD deletion and fadR overexpression resulted in a production titer of 255.6 mg/L in E. coli, and heptadecene was the most abundant product.

  13. MODELING OF ALKANE EMISSIONS FROM A WOOD STAIN

    EPA Science Inventory

    The article discusses full-scale residential house tests to evaluate the effects of organic emissions from a wood finishing product--wood stain--on indoor air quality (IAQ). The test house concentrations of three alkane species, nonane, decane, and undecane, were measured as a fu...

  14. Synthesis of a photo-caged aminooxy alkane thiol.

    PubMed

    Mancini, Rock J; Li, Ronald C; Tolstyka, Zachary P; Maynard, Heather D

    2009-12-07

    A photo-caged aminooxy alkane thiol synthesized in 7 steps and 15% overall yield was used to form a self-assembled monolayer (SAM). Photo-deprotection on the surface was confirmed by FT-IR spectroscopy and contact angle goniometry. Conjugation of a small molecule ketone, ethyl levulinate, further confirmed the presence of aminooxy groups on the surface.

  15. Cyano- and polycyanometalloporphyrins as catalysts for alkane oxidation

    DOEpatents

    Ellis, Jr., Paul E.; Lyons, James E.

    1992-01-01

    Alkanes are oxidized by contact with oxygen-containing gas in the presence as catalyst of a metalloporphyrin in which hydrogen atoms in the porphyrin ring have been substituted with one or more cyano groups. Hydrogen atoms in the porphyrin ring may also be substituted with halogen atoms.

  16. Cyano- and polycyanometallo-porphyrins as catalysts for alkane oxidation

    DOEpatents

    Ellis, Jr., Paul E.; Lyons, James E.

    1995-01-01

    New compositions of matter comprising cyano-substituted metal complexes of porphyrins are catalysts for the oxidation of alkanes. The metal is iron, chromium, manganese, ruthenium, copper or cobalt. The porphyrin ring has cyano groups attached thereto in meso and/or .beta.-pyrrolic positions.

  17. Cyano- and polycyanometallo-porphyrins as catalysts for alkane oxidation

    DOEpatents

    Ellis, Jr., Paul E.; Lyons, James E.

    1993-01-01

    New compositions of matter comprising cyano-substituted metal complexes of porphyrins are catalysts for the oxidation of alkanes. The metal is iron, chromium, manganese, ruthenium, copper or cobalt. The porphyrin ring has cyano groups attached thereto in meso and/or .beta.-pyrrolic positions.

  18. Diverse alkane hydroxylase genes in microorganisms and environments

    PubMed Central

    Nie, Yong; Chi, Chang-Qiao; Fang, Hui; Liang, Jie-Liang; Lu, She-Lian; Lai, Guo-Li; Tang, Yue-Qin; Wu, Xiao-Lei

    2014-01-01

    AlkB and CYP153 are important alkane hydroxylases responsible for aerobic alkane degradation in bioremediation of oil-polluted environments and microbial enhanced oil recovery. Since their distribution in nature is not clear, we made the investigation among thus-far sequenced 3,979 microbial genomes and 137 metagenomes from terrestrial, freshwater, and marine environments. Hundreds of diverse alkB and CYP153 genes including many novel ones were found in bacterial genomes, whereas none were found in archaeal genomes. Moreover, these genes were detected with different distributional patterns in the terrestrial, freshwater, and marine metagenomes. Hints for horizontal gene transfer, gene duplication, and gene fusion were found, which together are likely responsible for diversifying the alkB and CYP153 genes adapt to the ubiquitous distribution of different alkanes in nature. In addition, different distributions of these genes between bacterial genomes and metagenomes suggested the potentially important roles of unknown or less common alkane degraders in nature. PMID:24829093

  19. Crystallization and prevention of supercooling of microencapsulated n-alkanes.

    PubMed

    Zhang, Xing-xiang; Fan, Yao-feng; Tao, Xiao-ming; Yick, Kit-lun

    2005-01-15

    Microencapsulated n-alkanes (n-octadecane, n-nonadecane, and n-eicosane) were synthesized by in situ polymerization using urea-melamine-formaldehyde polymer as shells. Microcapsules 5.0 and 10.0 wt% of 1-tetradecanol, paraffin, and 1-octadecanol were used as nucleating agents. The fabrication was characterized using Fourier transform infrared, light microscopy, and scanning electron microscopy. The crystallization and prevention of supercooling of the microcapsules are studied using differential scanning calorimetry (DSC) and wide-angle X-ray diffraction. The crystal system of the microencapsulated n-alkane is the same as that of the bulk. The enthalpies of the microcapsules containing 70 wt% n-alkanes are approximately 160 J/g. The melting temperature of the n-alkanes in the microcapsule is the same as that in the bulk. There are multiple peaks on the DSC cooling curves that are attributed to liquid-rotator, rotator-crystal, and liquid-crystal transitions. The DSC cooling behavior of microencapsulated n-octadecane is affected by the average diameters. The measured maximum degree of supercooling of the microencapsulated n-octadecane is approximately 26.0 degrees C at a heating and cooling rate of 10.0 degrees C/min. The degree of supercooling of microencapsulated n-octadecane is decreased by adding 10.0 wt% of 1-octadecanol as a nucleating agent.

  20. Cyano- and polycyanometallo-porphyrins as catalysts for alkane oxidation

    DOEpatents

    Ellis, P.E. Jr.; Lyons, J.E.

    1995-01-17

    New compositions of matter comprising cyano-substituted metal complexes of porphyrins are catalysts for the oxidation of alkanes. The metal is iron, chromium, manganese, ruthenium, copper or cobalt. The porphyrin ring has cyano groups attached thereto in meso and/or [beta]-pyrrolic positions.

  1. Cyano- and polycyanometallo-porphyrins as catalysts for alkane oxidation

    DOEpatents

    Ellis, P.E. Jr.; Lyons, J.E.

    1993-05-18

    New compositions of matter comprising cyano-substituted metal complexes of porphyrins are catalysts for the oxidation of alkanes. The metal is iron, chromium, manganese, ruthenium, copper or cobalt. The porphyrin ring has cyano groups attached thereto in meso- and/or [beta]-pyrrolic positions.

  2. Isolating the non-polar contributions to the intermolecular potential for water-alkane interactions

    NASA Astrophysics Data System (ADS)

    Ballal, Deepti; Venkataraman, Pradeep; Fouad, Wael A.; Cox, Kenneth R.; Chapman, Walter G.

    2014-08-01

    Intermolecular potential models for water and alkanes describe pure component properties fairly well, but fail to reproduce properties of water-alkane mixtures. Understanding interactions between water and non-polar molecules like alkanes is important not only for the hydrocarbon industry but has implications to biological processes as well. Although non-polar solutes in water have been widely studied, much less work has focused on water in non-polar solvents. In this study we calculate the solubility of water in different alkanes (methane to dodecane) at ambient conditions where the water content in alkanes is very low so that the non-polar water-alkane interactions determine solubility. Only the alkane-rich phase is simulated since the fugacity of water in the water rich phase is calculated from an accurate equation of state. Using the SPC/E model for water and TraPPE model for alkanes along with Lorentz-Berthelot mixing rules for the cross parameters produces a water solubility that is an order of magnitude lower than the experimental value. It is found that an effective water Lennard-Jones energy ɛW/k = 220 K is required to match the experimental water solubility in TraPPE alkanes. This number is much higher than used in most simulation water models (SPC/E—ɛW/k = 78.2 K). It is surprising that the interaction energy obtained here is also higher than the water-alkane interaction energy predicted by studies on solubility of alkanes in water. The reason for this high water-alkane interaction energy is not completely understood. Some factors that might contribute to the large interaction energy, such as polarizability of alkanes, octupole moment of methane, and clustering of water at low concentrations in alkanes, are examined. It is found that, though important, these factors do not completely explain the anomalously strong attraction between alkanes and water observed experimentally.

  3. Isolating the non-polar contributions to the intermolecular potential for water-alkane interactions.

    PubMed

    Ballal, Deepti; Venkataraman, Pradeep; Fouad, Wael A; Cox, Kenneth R; Chapman, Walter G

    2014-08-14

    Intermolecular potential models for water and alkanes describe pure component properties fairly well, but fail to reproduce properties of water-alkane mixtures. Understanding interactions between water and non-polar molecules like alkanes is important not only for the hydrocarbon industry but has implications to biological processes as well. Although non-polar solutes in water have been widely studied, much less work has focused on water in non-polar solvents. In this study we calculate the solubility of water in different alkanes (methane to dodecane) at ambient conditions where the water content in alkanes is very low so that the non-polar water-alkane interactions determine solubility. Only the alkane-rich phase is simulated since the fugacity of water in the water rich phase is calculated from an accurate equation of state. Using the SPC/E model for water and TraPPE model for alkanes along with Lorentz-Berthelot mixing rules for the cross parameters produces a water solubility that is an order of magnitude lower than the experimental value. It is found that an effective water Lennard-Jones energy ε(W)/k = 220 K is required to match the experimental water solubility in TraPPE alkanes. This number is much higher than used in most simulation water models (SPC/E-ε(W)/k = 78.2 K). It is surprising that the interaction energy obtained here is also higher than the water-alkane interaction energy predicted by studies on solubility of alkanes in water. The reason for this high water-alkane interaction energy is not completely understood. Some factors that might contribute to the large interaction energy, such as polarizability of alkanes, octupole moment of methane, and clustering of water at low concentrations in alkanes, are examined. It is found that, though important, these factors do not completely explain the anomalously strong attraction between alkanes and water observed experimentally.

  4. Impacts of Conformational Geometries in Fluorinated Alkanes

    NASA Astrophysics Data System (ADS)

    Brandenburg, Tim; Golnak, Ronny; Nagasaka, Masanari; Atak, Kaan; Sreekantan Nair Lalithambika, Sreeju; Kosugi, Nobuhiro; Aziz, Emad F.

    2016-08-01

    Research of blood substitute formulations and their base materials is of high scientific interest. Especially fluorinated microemulsions based on perfluorocarbons, with their interesting chemical properties, offer opportunities for applications in biomedicine and physical chemistry. In this work, carbon K-edge absorption spectra of liquid perfluoroalkanes and their parent hydrocarbons are presented and compared. Based on soft X-ray absorption, a comprehensive picture of the electronic structure is provided with the aid of time dependent density functional theory. We have observed that conformational geometries mainly influence the chemical and electronic interactions in the presented liquid materials, leading to a direct association of conformational geometries to the dissolving capacity of the presented perfluorocarbons with other solvents like water and possibly gases like oxygen.

  5. Impacts of Conformational Geometries in Fluorinated Alkanes

    PubMed Central

    Brandenburg, Tim; Golnak, Ronny; Nagasaka, Masanari; Atak, Kaan; Sreekantan Nair Lalithambika, Sreeju; Kosugi, Nobuhiro; Aziz, Emad F.

    2016-01-01

    Research of blood substitute formulations and their base materials is of high scientific interest. Especially fluorinated microemulsions based on perfluorocarbons, with their interesting chemical properties, offer opportunities for applications in biomedicine and physical chemistry. In this work, carbon K-edge absorption spectra of liquid perfluoroalkanes and their parent hydrocarbons are presented and compared. Based on soft X-ray absorption, a comprehensive picture of the electronic structure is provided with the aid of time dependent density functional theory. We have observed that conformational geometries mainly influence the chemical and electronic interactions in the presented liquid materials, leading to a direct association of conformational geometries to the dissolving capacity of the presented perfluorocarbons with other solvents like water and possibly gases like oxygen. PMID:27527753

  6. Crystallization features of normal alkanes in confined geometry.

    PubMed

    Su, Yunlan; Liu, Guoming; Xie, Baoquan; Fu, Dongsheng; Wang, Dujin

    2014-01-21

    How polymers crystallize can greatly affect their thermal and mechanical properties, which influence the practical applications of these materials. Polymeric materials, such as block copolymers, graft polymers, and polymer blends, have complex molecular structures. Due to the multiple hierarchical structures and different size domains in polymer systems, confined hard environments for polymer crystallization exist widely in these materials. The confined geometry is closely related to both the phase metastability and lifetime of polymer. This affects the phase miscibility, microphase separation, and crystallization behaviors and determines both the performance of polymer materials and how easily these materials can be processed. Furthermore, the size effect of metastable states needs to be clarified in polymers. However, scientists find it difficult to propose a quantitative formula to describe the transition dynamics of metastable states in these complex systems. Normal alkanes [CnH2n+2, n-alkanes], especially linear saturated hydrocarbons, can provide a well-defined model system for studying the complex crystallization behaviors of polymer materials, surfactants, and lipids. Therefore, a deeper investigation of normal alkane phase behavior in confinement will help scientists to understand the crystalline phase transition and ultimate properties of many polymeric materials, especially polyolefins. In this Account, we provide an in-depth look at the research concerning the confined crystallization behavior of n-alkanes and binary mixtures in microcapsules by our laboratory and others. Since 2006, our group has developed a technique for synthesizing nearly monodispersed n-alkane containing microcapsules with controllable size and surface porous morphology. We applied an in situ polymerization method, using melamine-formaldehyde resin as shell material and nonionic surfactants as emulsifiers. The solid shell of microcapsules can provide a stable three-dimensional (3-D

  7. Surface vibrational structure at alkane liquid/vapor interfaces.

    PubMed

    Esenturk, Okan; Walker, Robert A

    2006-11-07

    Broadband vibrational sum frequency spectroscopy (VSFS) has been used to examine the surface structure of alkane liquid/vapor interfaces. The alkanes range in length from n-nonane (C(9)H(20)) to n-heptadecane (C(17)H(36)), and all liquids except heptadecane are studied at temperatures well above their bulk (and surface) freezing temperatures. Intensities of vibrational bands in the CH stretching region acquired under different polarization conditions show systematic, chain length dependent changes. Data provide clear evidence of methyl group segregation at the liquid/vapor interface, but two different models of alkane chain structure can predict chain length dependent changes in band intensities. Each model leads to a different interpretation of the extent to which different chain segments contribute to the anisotropic interfacial region. One model postulates that changes in vibrational band intensities arise solely from a reduced surface coverage of methyl groups as alkane chain length increases. The additional methylene groups at the surface must be randomly distributed and make no net contribution to the observed VSF spectra. The second model considers a simple statistical distribution of methyl and methylene groups populating a three dimensional, interfacial lattice. This statistical picture implies that the VSF signal arises from a region extending several functional groups into the bulk liquid, and that the growing fraction of methylene groups in longer chain alkanes bears responsibility for the observed spectral changes. The data and resulting interpretations provide clear benchmarks for emerging theories of molecular structure and organization at liquid surfaces, especially for liquids lacking strong polar ordering.

  8. Metric Conversion

    Atmospheric Science Data Center

    2013-03-12

    ... petabyte = one quadrillion bytes The Bureau International Poids et Measures (BIPM) brochure on the International System ... For accurate conversions, see the National Institute of Standards and Technology (NIST) Special Publications: NIST Guide to ...

  9. Conversion Disorder

    MedlinePlus

    ... Recent significant stress or emotional trauma Being female — women are much more likely to develop conversion disorder Having a mental health condition, such as mood or anxiety disorders, dissociative disorder or certain personality disorders Having ...

  10. Physiological function of the Pseudomonas putida PpG6 (Pseudomonas oleovorans) alkane hydroxylase: monoterminal oxidation of alkanes and fatty acids.

    PubMed Central

    Nieder, M; Shapiro, J

    1975-01-01

    Pseudomonas putida PpG6 is able to utilize purified n-alkanes of six to ten carbon atoms for growth. It can also grow on the primary terminal oxidation products of these alkanes and on 1-dodecanol but not on the corresponding 2-ketones or 1,6-hexanediol, adipic acid, or pimelic acid. Revertible point mutants can be isolated which have simultaneously lost the ability to grow on all five n-alkane growth substrates but which can still grow on octanol or nonanol. An acetate-negative mutant defective in isocitrate lysase activity is unable to grow on even-numbered alkanes and fatty acids. Analysis of double mutants defective in acetate and propionate or in acetate and glutarate metabolism shows that alkane carbon is assimilated only via acetyl-coenzyme A and propionyl-coenzyme A. These results support the following conclusions: (i) The n-alkane growth specificity of P. putida PpG6 is due to the substrate specificity of whole-cell alkane hydroxylation; (ii) there is a single alkane hydroxylase enzyme complex; (iii) the physiological role of this complex is to initiate the monoterminal oxidation of alkane chains; and (iv) straight-chain fatty acids from butyric through nonanoic are degraded exclusively by beta-oxidation from the carboxyl end of the molecule. PMID:804473

  11. Reconstitution of plant alkane biosynthesis in yeast demonstrates that Arabidopsis ECERIFERUM1 and ECERIFERUM3 are core components of a very-long-chain alkane synthesis complex.

    PubMed

    Bernard, Amélie; Domergue, Frédéric; Pascal, Stéphanie; Jetter, Reinhard; Renne, Charlotte; Faure, Jean-Denis; Haslam, Richard P; Napier, Johnathan A; Lessire, René; Joubès, Jérôme

    2012-07-01

    In land plants, very-long-chain (VLC) alkanes are major components of cuticular waxes that cover aerial organs, mainly acting as a waterproof barrier to prevent nonstomatal water loss. Although thoroughly investigated, plant alkane synthesis remains largely undiscovered. The Arabidopsis thaliana ECERIFERUM1 (CER1) protein has been recognized as an essential element of wax alkane synthesis; nevertheless, its function remains elusive. In this study, a screen for CER1 physical interaction partners was performed. The screen revealed that CER1 interacts with the wax-associated protein ECERIFERUM3 (CER3) and endoplasmic reticulum-localized cytochrome b5 isoforms (CYTB5s). The functional relevance of these interactions was assayed through an iterative approach using yeast as a heterologous expression system. In a yeast strain manipulated to produce VLC acyl-CoAs, a strict CER1 and CER3 coexpression resulted in VLC alkane synthesis. The additional presence of CYTB5s was found to enhance CER1/CER3 alkane production. Site-directed mutagenesis showed that CER1 His clusters are essential for alkane synthesis, whereas those of CER3 are not, suggesting that CYTB5s are specific CER1 cofactors. Collectively, our study reports the identification of plant alkane synthesis enzymatic components and supports a new model for alkane production in which CER1 interacts with both CER3 and CYTB5 to catalyze the redox-dependent synthesis of VLC alkanes from VLC acyl-CoAs.

  12. Genetically assembled fluorescent biosensor for in situ detection of bio-synthesized alkanes.

    PubMed

    Wu, Wei; Zhang, Lei; Yao, Lun; Tan, Xiaoming; Liu, Xufeng; Lu, Xuefeng

    2015-06-03

    Construction of highly efficient microbial cell factories producing drop-in biofuel alkanes is severely limited due to the lack of a fast detection method against alkanes. Here we first developed a sensitive fluorescent biosensor for rapid and in situ monitoring of intracellular alkane synthesis. Using GFP as reporter, the biosensor could actively respond to the intracellular alkane products, especially for the mid- and long-chain alkanes synthesized in the recombinant Escherichia coli and give a concentration-dependent fluorescence response. Our results also suggested the feasibility of developing high-throughput strategies basing on the alkane biosensor device in E. coli, and thus will greatly facilitate the application of directed evolution strategies to further improve the alkane-producing microbial cell factories.

  13. Energy conversion & storage program. 1994 annual report

    SciTech Connect

    Cairns, E.J.

    1995-04-01

    The Energy Conversion and Storage Program investigates state-of-the-art electrochemistry, chemistry, and materials science technologies for: (1) development of high-performance rechargeable batteries and fuel cells; (2) development of high-efficiency thermochemical processes for energy conversion; (3) characterization of complex chemical processes and chemical species; (4) study and application of novel materials for energy conversion and transmission. Research projects focus on transport process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis.

  14. Energy Conversion & Storage Program, 1993 annual report

    SciTech Connect

    Cairns, E.J.

    1994-06-01

    The Energy Conversion and Storage Program applies chemistry and materials science principles to solve problems in: production of new synthetic fuels; development of high-performance rechargeable batteries and fuel cells; development of high-efficiency thermochemical processes for energy conversion; characterization of complex chemical processes and chemical species; and the study and application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis.

  15. Biophysical chemistry.

    PubMed

    Häussinger, Daniel; Pfohl, Thomas

    2010-01-01

    Biophysical chemistry at the Department of Chemistry, University of Basel, covers the NMR analysis of protein-protein interaction using paramagnetic tags and sophisticated microscopy techniques investigating the dynamics of biological matter.

  16. Chemistry Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1983

    1983-01-01

    Presents background information, laboratory procedures, classroom materials/activities, and chemistry experiments. Topics include sublimation, electronegativity, electrolysis, experimental aspects of strontianite, halide test, evaluation of present and future computer programs in chemistry, formula building, care of glass/saturated calomel…

  17. Chemistry Notes

    ERIC Educational Resources Information Center

    School Science Review, 1976

    1976-01-01

    Described are eight chemistry experiments and demonstrations applicable to introductory chemistry courses. Activities include: measure of lattice enthalpy, Le Chatelier's principle, decarboxylation of soap, use of pocket calculators in pH measurement, and making nylon. (SL)

  18. Chemistry Dashboard

    EPA Pesticide Factsheets

    The Chemistry Dashboard is part of a suite of dashboards developed by EPA to help evaluate the safety of chemicals. The Chemistry Dashboard provides access to a variety of information on over 700,000 chemicals currently in use.

  19. Chemistry Notes

    ERIC Educational Resources Information Center

    School Science Review, 1972

    1972-01-01

    Thirteen ideas are presented that may be of use to chemistry teachers. Topics covered include vitamin C, industrial chemistry, electrical conductivity, electrolysis, alkali metals, vibration modes infra-red, dynamic equilibrium, and some new demonstrations in gaseous combinations. (PS)

  20. Hydrogen isotope composition of leaf wax n-alkanes in glaucous and non-glaucous varieties of wheat (Triticum spp.)

    NASA Astrophysics Data System (ADS)

    Pedentchouk, Nikolai; Eley, Yvette; Frizell-Armitage, Amelia; Uauy, Cristobal

    2015-04-01

    The use of the 2H/1H composition of terrestrial plants in climate and ecology studies depends on fundamental understanding of the processes within the plant that control fractionation of these two isotopes. Little is currently known about the extent of 2H/1H fractionation at different steps of biosynthesis, after the initial H uptake following leaf water photolysis. Knowing this effect is particularly important when seeking to interpret the 2H/1H composition of leaf wax biomarkers from plants that differ in the amount and type of individual compound classes in their leaf waxes. The purpose of this study was to investigate the link between the quantity and distribution of n-alkyl lipids in leaf waxes and their isotopic composition. We used a genetic approach to suppress glaucousness in 2 varieties of wheat (Alchemy and Malacca), which resulted in glaucous and non-glaucous phenotypes of both varieties. Both phenotypes were then grown outdoors under identical environmental conditions in central Norfolk, UK. At the end of the growing season, the plants were sampled for soil water, leaf water, and leaf wax isotopic measurements. Comparison of the leaf wax composition of the non-glaucous and glaucous phenotypes revealed that the non-glaucous varieties were characterised by the absence of diketones and a greater concentration of n-alkanes and primary alcohols.. Our results showed very small differences between glaucous and non-glaucous varieties with regard to soil (mean values, <2 per mil) and leaf (<1 per mil) water 2H/1H. Conversely, there was 15-20 and 10-15 per mil 2H-depletion in the C29 and C31 n-alkanes, respectively, from the non-glaucous phenotype. This 2H-depletion in the non-glaucous phenotype demonstrated that the suppression of diketone production and the increase in n-alkane and primary alcohol concentrations are linked with a shift in the 2H/1H composition of n-alkanes. The initial results of this work suggest that plants using the same environmental water

  1. Reaction chemistry of cerium

    SciTech Connect

    1997-01-01

    It is truly ironic that a synthetic organic chemist likely has far greater knowledge of the reaction chemistry of cerium(IV) than an inorganic colleague. Cerium(IV) reagents have long since been employed as oxidants in effecting a wide variety of organic transformations. Conversely, prior to the late 1980s, the number of well characterized cerium(IV) complexes did not extend past a handful of known species. Though in many other areas, interest in the molecular chemistry of the 4f-elements has undergone an explosive growth over the last twenty years, the chemistry of cerium(IV) has for the most part been overlooked. This report describes reactions of cerium complexes and structure.

  2. Chemistry Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1982

    1982-01-01

    Presents background information, laboratory procedures, classroom materials/activities, and experiments for chemistry. Topics include superheavy elements, polarizing power and chemistry of alkali metals, particulate carbon from combustion, tips for the chemistry laboratory, interesting/colorful experiments, behavior of bismuth (III) iodine, and…

  3. CLUSTER CHEMISTRY

    SciTech Connect

    Muetterties, Earl L.

    1980-05-01

    Metal cluster chemistry is one of the most rapidly developing areas of inorganic and organometallic chemistry. Prior to 1960 only a few metal clusters were well characterized. However, shortly after the early development of boron cluster chemistry, the field of metal cluster chemistry began to grow at a very rapid rate and a structural and a qualitative theoretical understanding of clusters came quickly. Analyzed here is the chemistry and the general significance of clusters with particular emphasis on the cluster research within my group. The importance of coordinately unsaturated, very reactive metal clusters is the major subject of discussion.

  4. Forensic chemistry.

    PubMed

    Bell, Suzanne

    2009-01-01

    Forensic chemistry is unique among chemical sciences in that its research, practice, and presentation must meet the needs of both the scientific and the legal communities. As such, forensic chemistry research is applied and derivative by nature and design, and it emphasizes metrology (the science of measurement) and validation. Forensic chemistry has moved away from its analytical roots and is incorporating a broader spectrum of chemical sciences. Existing forensic practices are being revisited as the purview of forensic chemistry extends outward from drug analysis and toxicology into such diverse areas as combustion chemistry, materials science, and pattern evidence.

  5. Acetonitrile cluster solvation in a cryogenic ethane-methane-propane liquid: Implications for Titan lake chemistry.

    PubMed

    Corrales, L René; Yi, Thomas D; Trumbo, Samantha K; Shalloway, David; Lunine, Jonathan I; Usher, David A

    2017-03-14

    The atmosphere of Titan, Saturn's largest moon, exhibits interesting UV- and radiation-driven chemistry between nitrogen and methane, resulting in dipolar, nitrile-containing molecules. The assembly and subsequent solvation of such molecules in the alkane lakes and seas found on the moon's surface are of particular interest for investigating the possibility of prebiotic chemistry in Titan's hydrophobic seas. Here we characterize the solvation of acetonitrile, a product of Titan's atmospheric radiation chemistry tentatively detected on Titan's surface [H. B. Niemann et al., Nature 438, 779-784 (2005)], in an alkane mixture estimated to match a postulated composition of the smaller lakes during cycles of active drying and rewetting. Molecular dynamics simulations are employed to determine the potential of mean force of acetonitrile (CH3CN) clusters moving from the alkane vapor into the bulk liquid. We find that the clusters prefer the alkane liquid to the vapor and do not dissociate in the bulk liquid. This opens up the possibility that acetonitrile-based microscopic polar chemistry may be possible in the otherwise nonpolar Titan lakes.

  6. Hydrocarbons. Independent Learning Project for Advanced Chemistry (ILPAC). Unit O1.

    ERIC Educational Resources Information Center

    Inner London Education Authority (England).

    This unit on hydrocarbons is one of 10 first year units produced by the Independent Learning Project for Advanced Chemistry (ILPAC). The unit is divided into sections dealing with alkanes, alkenes, alkynes, arenes, and several aspects of the petroleum industry. Two experiments, exercises (with answers), and pre- and post-tests are included.…

  7. Acetonitrile cluster solvation in a cryogenic ethane-methane-propane liquid: Implications for Titan lake chemistry

    NASA Astrophysics Data System (ADS)

    Corrales, L. René; Yi, Thomas D.; Trumbo, Samantha K.; Shalloway, David; Lunine, Jonathan I.; Usher, David A.

    2017-03-01

    The atmosphere of Titan, Saturn's largest moon, exhibits interesting UV- and radiation-driven chemistry between nitrogen and methane, resulting in dipolar, nitrile-containing molecules. The assembly and subsequent solvation of such molecules in the alkane lakes and seas found on the moon's surface are of particular interest for investigating the possibility of prebiotic chemistry in Titan's hydrophobic seas. Here we characterize the solvation of acetonitrile, a product of Titan's atmospheric radiation chemistry tentatively detected on Titan's surface [H. B. Niemann et al., Nature 438, 779-784 (2005)], in an alkane mixture estimated to match a postulated composition of the smaller lakes during cycles of active drying and rewetting. Molecular dynamics simulations are employed to determine the potential of mean force of acetonitrile (CH3CN) clusters moving from the alkane vapor into the bulk liquid. We find that the clusters prefer the alkane liquid to the vapor and do not dissociate in the bulk liquid. This opens up the possibility that acetonitrile-based microscopic polar chemistry may be possible in the otherwise nonpolar Titan lakes.

  8. Additional chain-branching pathways in the low-temperature oxidation of branched alkanes

    DOE PAGES

    Wang, Zhandong; Zhang, Lidong; Moshammer, Kai; ...

    2015-12-31

    Chain-branching reactions represent a general motif in chemistry, encountered in atmospheric chemistry, combustion, polymerization, and photochemistry; the nature and amount of radicals generated by chain-branching are decisive for the reaction progress, its energy signature, and the time towards its completion. In this study, experimental evidence for two new types of chain-branching reactions is presented, based upon detection of highly oxidized multifunctional molecules (HOM) formed during the gas-phase low-temperature oxidation of a branched alkane under conditions relevant to combustion. The oxidation of 2,5-dimethylhexane (DMH) in a jet-stirred reactor (JSR) was studied using synchrotron vacuum ultra-violet photoionization molecular beam mass spectrometry (SVUV-PI-MBMS).more » Specifically, species with four and five oxygen atoms were probed, having molecular formulas of C8H14O4 (e.g., diketo-hydroperoxide/keto-hydroperoxy cyclic ether) and C8H16O5 (e.g., keto-dihydroperoxide/dihydroperoxy cyclic ether), respectively. The formation of C8H16O5 species involves alternative isomerization of OOQOOH radicals via intramolecular H-atom migration, followed by third O2 addition, intramolecular isomerization, and OH release; C8H14O4 species are proposed to result from subsequent reactions of C8H16O5 species. The mechanistic pathways involving these species are related to those proposed as a source of low-volatility highly oxygenated species in Earth's troposphere. At the higher temperatures relevant to auto-ignition, they can result in a net increase of hydroxyl radical production, so these are additional radical chain-branching pathways for ignition. Furthermore, the results presented herein extend the conceptual basis of reaction mechanisms used to predict the reaction behavior of ignition, and have implications on atmospheric gas-phase chemistry and the oxidative stability of organic substances.« less

  9. The role of transition metal ions chemistry on multiphase chemistry

    NASA Astrophysics Data System (ADS)

    Deguillaume, L.; Leriche, M.; Monod, A.; Chaumerliac, N.

    2003-04-01

    A modelling study of the role of transition metal ions chemistry on cloud chemistry is presented. First, new developments of the Model of Multiphase Cloud Chemistry (M2C2) are described: the transition metal ions reactivity and variable photolysis in the aqueous phase. Secondly, three summertime scenarios describing urban, remote and marine conditions are simulated. First, comparisons between results from M2C2 and from CAPRAM2.3 models for the same scenarios (Herrmann et al., 2000) show a good agreement between the two models with respect to their different chemical mechanisms. Secondly, chemical regimes in cloud are analysed to understand the role of transition metal ions chemistry on cloud chemistry. This study focuses on HOx chemistry, which afterwards influences the sulphur and the VOCs chemistry in droplets. The ratio of Fe(II)/Fe(III) exhibits a diurnal variation with values in agreement with the few measurements of Fe speciation available. In the polluted case, sensitivity tests with and without TMI chemistry, show an enhancement of OH concentration in the aqueous phase when TMI chemistry is considered. This implies a more important oxidation of VOCs in droplets, which produces the HO2 radical, the hydrogen peroxide precursor. In fact, the HO2 radical is mainly converted into hydrogen peroxide by reactions between HO2/O2- radicals with Fe(II). This production of hydrogen peroxide leads to a rapid conversion of S(IV) into S(VI) at the beginning of the simulation.

  10. Adsorption of n-alkane vapours at the water surface.

    PubMed

    Biscay, Frédéric; Ghoufi, Aziz; Malfreyt, Patrice

    2011-06-21

    Monte Carlo simulations are reported here to predict the surface tension of the liquid-vapour interface of water upon adsorption of alkane vapours (methane to hexane). A decrease of the surface tension has been established from n-pentane. A correlation has been evidenced between the decrease of the surface tension and the absence of specific arrangement at the water surface for n-pentane and n-hexane. The thermodynamic stability of the adsorption layer and the absence of film for longer alkanes have been checked through the calculation of a potential of mean force. This complements the work recently published [Ghoufi et al., Phys. Chem. Chem. Phys., 2010, 12, 5203] concerning the adsorption of methane at the water surface. The decrease of the surface tension has been interpreted in terms of the degree of hydrogen bonding of water molecules at the liquid-vapour interface upon adsorption.

  11. Melting of thin films of alkanes on magnesium oxide

    NASA Astrophysics Data System (ADS)

    Arnold, T.; Barbour, A.; Chanaa, S.; Cook, R. E.; Fernandez-Canato, D.; Landry, P.; Seydel, T.; Yaron, P.; Larese, J. Z.

    2009-02-01

    Recent incoherent neutron scattering investigations of the dynamics of thin alkane films adsorbed on the Magnesium Oxide (100) surface are reported. There are marked differences in the behaviour of these films, as a function of temperature and coverage, compared to similar measurements on graphite. In particular, it has previously been shown that adsorbed multilayer films on graphite exhibit an interfacial solid monolayer that coexists with bulk-like liquid, well above the bulk melting point. In contrast, these studies show that the alkane films on MgO exhibit no such stabilization of the solid layer closest to the substrate as a function of the film thickness, even though the monolayer crystal structures are remarkably similar. These studies are supported by extensive thermodynamic data, a growing body of structural data from neutron diffraction and state of the art computer modelling

  12. The vibrational spectrum of water in liquid alkanes.

    PubMed Central

    Conrad, M P; Strauss, H L

    1985-01-01

    The water wire hypothesis of hydrogen-ion transport in lipid bilayers has prompted a search for water aggregates in bulk hydrocarbons. The asymmetric stretching vibration of the water dissolved in n-decane and in a number of other alkanes and alkenes has been observed. The water band in the alkanes is very wide and fits to the results of a J-diffusion calculation for the water rotation. This implies that the water is freely rotating between collisions with the solvent and certainly not hydrogen bonded to anything. The existence of water aggregates is thus most unlikely. In contrast, water in an alkene is hydrogen bonded to the solvent molecules (although not to other water molecules) and shows an entirely different spectrum. PMID:4016205

  13. Structure and dynamics of fluorinated alkanes on silicon dioxide surfaces

    NASA Astrophysics Data System (ADS)

    Tsige, Mesfin

    2007-03-01

    Despite their great promise in various applications, the structure and dynamics of fluorinated alkanes at interfaces is still an open question. In particular, the knowledge from both theoretical and experimental perspectives is very limited when it comes to understanding the interface between these systems and a solid substrate. Molecular dynamics simulations based on the All Atom OPLS model are used to predict the equilibrium structure and dynamics of short fluorinated alkanes on both amorphous and crystalline silicon dioxide surfaces. In order to understand the effect of layer-layer interaction on the ordering of chains in a given layer, the thickness of the liquid film is increased layer-by-layer from monolayer to multilayers. Results for structural and dynamics of the liquid films near the silicon dioxide surfaces will be presented.

  14. Site isolation in vanadium phosphorus oxide alkane oxidation

    SciTech Connect

    Thompson, M R; Ebner, J R

    1991-06-01

    Single crystal X-ray diffraction studies of vanadyl pyrophosphate indicate that at least two polytypical structures exists for this active and selective alkane oxidation catalyst. The crystal structures of these materials differ with respect to the symmetry and direction of columns of vanadyl groups within the unit cell. Single crystals of vanadyl pyrophosphate have been generated at extreme temperatures not often experienced by microcrystalline catalysts. The crystallography of the system suggests that other crystalline modifications or disordered phases might also exist. Zeroth-order models of crystal surface termination of vanadyl pyrophosphate have been constructed which conceptually illustrate the ability of vanadyl pyrophosphate to accommodate varying amounts of surface phosphorus parallel to (1,0,0), (0,1,0) and (0,2,4). Pyrophosphate termination of surfaces parallel to (1,0,0) likely results in the isolation of clusters of reactive centers and limits overoxidation of the alkane substrate. 23 refs., 6 figs.

  15. Metal-organic framework for the separation of alkane isomers

    DOEpatents

    Long, Jeffrey R.; Herm, Zoey R.; Wiers, Brian M.; Krishna, Rajamani

    2017-01-10

    A metal organic framework Fe.sub.2(bdp).sub.3 (BDP.sup.2-=1,4-benzenedipyrazolate) with triangular channels is particularly suited for C5-C7 separations of alkanes according to the number of branches in the molecule rather than by carbon number. The metal-organic framework can offer pore geometries that is unavailable in zeolites or other porous media, facilitating distinct types of shape-based molecular separations.

  16. Alkane Biosynthesis Genes in Cyanobacteria and Their Transcriptional Organization

    PubMed Central

    Klähn, Stephan; Baumgartner, Desirée; Pfreundt, Ulrike; Voigt, Karsten; Schön, Verena; Steglich, Claudia; Hess, Wolfgang R.

    2014-01-01

    In cyanobacteria, alkanes are synthesized from a fatty acyl-ACP by two enzymes, acyl–acyl carrier protein reductase and aldehyde deformylating oxygenase. Despite the great interest in the exploitation for biofuel production, nothing is known about the transcriptional organization of their genes or the physiological function of alkane synthesis. The comparison of 115 microarray datasets indicates the relatively constitutive expression of aar and ado genes. The analysis of 181 available genomes showed that in 90% of the genomes both genes are present, likely indicating their physiological relevance. In 61% of them they cluster together with genes encoding acetyl-CoA carboxyl transferase and a short-chain dehydrogenase, strengthening the link to fatty acid metabolism and in 76% of the genomes they are located in tandem, suggesting constraints on the gene arrangement. However, contrary to the expectations for an operon, we found in Synechocystis sp. PCC 6803 specific promoters for the two genes, sll0208 (ado) and sll0209 (aar), which give rise to monocistronic transcripts. Moreover, the upstream located ado gene is driven by a proximal as well as a second, distal, promoter, from which a third transcript, the ~160 nt sRNA SyR9 is transcribed. Thus, the transcriptional organization of the alkane biosynthesis genes in Synechocystis sp. PCC 6803 is of substantial complexity. We verified all three promoters to function independently from each other and show a similar promoter arrangement also in the more distant Nodularia spumigena, Trichodesmium erythraeum, Anabaena sp. PCC 7120, Prochlorococcus MIT9313, and MED4. The presence of separate regulatory elements and the dominance of monocistronic mRNAs suggest the possible autonomous regulation of ado and aar. The complex transcriptional organization of the alkane synthesis gene cluster has possible metabolic implications and should be considered when manipulating the expression of these genes in cyanobacteria. PMID

  17. Monolayer solids of short (perfluoro)alkanes on graphite

    NASA Astrophysics Data System (ADS)

    Bruch, L. W.

    2009-03-01

    Calculations are reported for the relative stability of monolayer solid latices on graphite for C2H6, C3H8, C2F6, and C3F8. Triangular, centered rectangular and two-sublattice herringbone lattices are treated. The calculations use all-atom (AA) models and are based on non-bonding interactions formulated for three dimensional dense phases of alkanes and perfluoroalkanes.

  18. Removal of alkanes from drinking water using membrane technologies

    SciTech Connect

    Fronk, C.A.

    1995-10-01

    Increasingly, the public is concerned about the quality of its drinking water. The chlorinated alkanes are saturated, aliphatic, synthetic organic compounds (SOC`s). When hydrocarbon feedstocks are chlorinated, a wide variety of chlorocarbons and chlorohydrocarbons are produced that are used as industrial solvents, degreasers and intermediaries. Because compounds such as Carbon Tetrachloride and 1,2-Dichloroethane are widely used, they often find their way into drinking water, particularly groundwaters. Surface waters are somewhat less affected bemuse of the high volatility of many chlorinated alkanes. The Drinking Water Research Division is responsible for evaluating various membrane technologies that may be feasible for meeting Maximum Contaminant Levels. Several membrane processes are under investigation to determine their effectiveness in removing SOC`s from drinking water. One study addressed the removal of a variety of alkanes from spiked groundwater by six reverse osmosis membranes: a cellulose acetate, a polyamide (hollow fiber), and four different types of thin-film composite membranes. Progressive chlorination of methanes, ethanes and propanes produces compounds that exhibit differing physicochemical properties. The differences in compound properties have an effect on the removal of these compounds by reverse osmosis membranes. For example only 25% of the methylene chloride (Dichloromethane) was removed by one thin-film composite versus 90% removal of the carbon tetrachloride. In addition, the various membranes are made of different polymeric materials and showed a wide range of removals. Generally, the thin-film composite membranes out performed the other membranes and the more highly chlorinated the compound the better the removal. Pervaporation is yet another membrane process that may prove effective in removal of alkanes and future studies will address its usefulness as a drinking water.

  19. Conversational Telugu.

    ERIC Educational Resources Information Center

    Beinstein, Judith; And Others

    The purpose of this text is to develop elementary conversational skills in Telugu. The language materials consist of four types of language learning activities. The first, and most predominant, is the unit microwave cycle. These cycles divide the learning process into two basic phases, the first of which involves mimicry, memorization, and…

  20. Conversational Tamil.

    ERIC Educational Resources Information Center

    Beinstein, Judith; And Others

    The purpose of this text is to develop conversational skills in Tamil. It is to be used as a review of what has been learned in class and not as a teaching device. The language materials consist of four types of language learning activities. The unit microwave cycle divides the learning process into two basic phases. The first phase involves…

  1. Cold-tolerant alkane-degrading Rhodococcus species from Antarctica

    SciTech Connect

    Bej, A.K.; Saul, D.; Aislabie, J.

    2000-07-01

    Bioremediation is a possible mechanism for clean-up of hydrocarbon-contaminated soils in the Antarctic. Microbes indigenous to the Antarctic are required that degrade the hydrocarbon contaminants found in the soil, and that are able to survive and maintain activity under in situ conditions. Alkane-degrading bacteria previously isolated from oil-contaminated soil from around Scott Base, Antarctica, grew on a number of n-alkanes from hexane (C6) through to eicosane (C20) and the branched alkane pristane. Mineralization of {sup 14}C-dodecane was demonstrated with four strains. Representative isolates were identified as Rhodococcus species using 16S rDNA sequence analysis. Rhodococcus spp. strains 5/14 and 7/1 grew at -2 C but numbers of viable cells declined when incubated t 37 C. Both strains appear to have the major cold-shock gene cspA. Partial nucleotide sequence analyses of the PCR-amplified cspA open reading frame from Rhodococcus spp. strains 5/14 and 7/1 were approximately 60% identical to cspA from Escherichia coli.

  2. Alkane production from biomass: chemo-, bio- and integrated catalytic approaches.

    PubMed

    Deneyer, Aron; Renders, Tom; Van Aelst, Joost; Van den Bosch, Sander; Gabriëls, Dries; Sels, Bert F

    2015-12-01

    Linear, branched and cyclic alkanes are important intermediates and end products of the chemical industry and are nowadays mainly obtained from fossil resources. In search for alternatives, biomass feedstocks are often presented as a renewable carbon source for the production of fuels, chemicals and materials. However, providing a complete market for all these applications seems unrealistic due to both financial and logistic issues. Despite the very large scale of current alkane-based fuel applications, biomass definitely has the potential to offer a partial solution to the fuel business. For the smaller market of chemicals and materials, a transition to biomass as main carbon source is more realistic and even probably unavoidable in the long term. The appropriate use and further development of integrated chemo- and biotechnological (catalytic) process strategies will be crucial to successfully accomplish this petro-to-bio feedstock transition. Furthermore, a selection of the most promising technologies from the available chemo- and biocatalytic tool box is presented. New opportunities will certainly arise when multidisciplinary approaches are further explored in the future. In an attempt to select the most appropriate biomass sources for each specific alkane-based application, a diagram inspired by van Krevelen is applied, taking into account both the C-number and the relative functionality of the product molecules.

  3. Dielectric constant of liquid alkanes and hydrocarbon mixtures

    NASA Technical Reports Server (NTRS)

    Sen, A. D.; Anicich, V. G.; Arakelian, T.

    1992-01-01

    The complex dielectric constants of n-alkanes with two to seven carbon atoms have been measured. The measurements were conducted using a slotted-line technique at 1.2 GHz and at atmospheric pressure. The temperature was varied from the melting point to the boiling point of the respective alkanes. The real part of the dielectric constant was found to decrease with increasing temperature and correlate with the change in the molar volume. An upper limit to all the loss tangents was established at 0.001. The complex dielectric constants of a few mixtures of liquid alkanes were also measured at room temperature. For a pentane-octane mixture the real part of the dielectric constant could be explained by the Clausius-Mosotti theory. For the mixtures of n-hexane-ethylacetate and n-hexane-acetone the real part of the dielectric constants could be explained by the Onsager theory extended to mixtures. The dielectric constant of the n-hexane-acetone mixture displayed deviations from the Onsager theory at the highest fractions of acetone. The dipole moments of ethylacetate and acetone were determined for dilute mixtures using the Onsager theory and were found to be in agreement with their accepted gas-phase values. The loss tangents of the mixtures exhibited a linear relationship with the volume fraction for low concentrations of the polar liquids.

  4. Biochemical studies on the metabolic activation of halogenated alkanes.

    PubMed Central

    Cheeseman, K H; Albano, E F; Tomasi, A; Slater, T F

    1985-01-01

    This paper reviews recent investigations by Slater and colleagues into the metabolic activation of halogenated alkanes in general and carbon tetrachloride in particular. It is becoming increasingly accepted that free radical intermediates are involved in the toxicity of many such compounds through mechanisms including lipid peroxidation, covalent binding, and cofactor depletion. Here we describe the experimental approaches that are used to establish that halogenated alkanes are metabolized in animal tissues to reactive free radicals. Electron spin resonance spectroscopy is used to identify free-radical products, often using spin-trapping compounds. The generation of specific free radicals by radiolytic methods is useful in the determination of the precise reactivity of radical intermediates postulated to be injurious to the cell. The enzymic mechanism of the production of such free radicals and their subsequent reactions with biological molecules is studied with specific metabolic inhibitors and free-radical scavengers. These combined techniques provide considerable insight into the process of metabolic activation of halogenated compounds. It is readily apparent, for instance, that the local oxygen concentration at the site of activation is of crucial importance to the subsequent reactions; the formation of peroxy radical derivatives from the primary free-radical product is shown to be of great significance in relation to carbon tetrachloride and may be of general importance. However, while these studies have provided much information on the biochemical mechanisms of halogenated alkane toxicity, it is clear that many problems remain to be solved. PMID:3007102

  5. Dielectric constant of liquid alkanes and hydrocarbon mixtures.

    PubMed

    Sen, A D; Anicich, V G; Arakelian, T

    1992-01-01

    The complex dielectric constants of n-alkanes with two to seven carbon atoms have been measured. The measurements were conducted using a slotted-line technique at 1.2 GHz and at atmospheric pressure. The temperature was varied from the melting point to the boiling point of the respective alkanes. The real part of the dielectric constant was found to decrease with increasing temperature and correlate with the change in the molar volume. An upper limit to all the loss tangents was established at 0.001. The complex dielectric constants of a few mixtures of liquid alkanes were also measured at room temperature. For a pentane-octane mixture the real part of the dielectric constant could be explained by the Clausius-Mosotti theory. For the mixtures of n-hexane-ethylacetate and n-hexane-acetone the real part of the dielectric constants could be explained by the Onsager theory extended to mixtures. The dielectric constant of the n-hexane-acetone mixture displayed deviations from the Onsager theory at the highest fractions of acetone. The dipole moments of ethylacetate and acetone were determined for dilute mixtures using the Onsager theory and were found to be in agreement with their accepted gas-phase values. The loss tangents of the mixtures exhibited a linear relationship with the volume fraction for low concentrations of the polar liquids.

  6. Energy Conversion and Storage Program

    NASA Astrophysics Data System (ADS)

    Cairns, E. J.

    1993-06-01

    This report is the 1992 annual progress report for the Energy Conversion and Storage Program, a part of the Energy and Environment Division of the Lawrence Berkeley Laboratory. Work described falls into three broad areas: electrochemistry; chemical applications; and materials applications. The Energy Conversion and Storage Program applies principles of chemistry and materials science to solve problems in several areas: (1) production of new synthetic fuels, (2) development of high-performance rechargeable batteries and fuel cells, (3) development of advanced thermochemical processes for energy conversion, (4) characterization of complex chemical processes and chemical species, and (5) study and application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis. Electrochemistry research aims to develop advanced power systems for electric vehicle and stationary energy storage applications. Chemical applications research includes topics such as separations, catalysis, fuels, and chemical analyses. Included in this program area are projects to develop improved, energy-efficient methods for processing product and waste streams from synfuel plants, coal gasifiers, and biomass conversion processes. Materials applications research includes evaluation of the properties of advanced materials, as well as development of novel preparation techniques. For example, techniques such as sputtering, laser ablation, and poised laser deposition are being used to produce high-temperature superconducting films.

  7. On the inclusion of alkanes into the monolayer of aliphatic alcohols at the water/alkane vapor interface: a quantum chemical approach.

    PubMed

    Vysotsky, Yuri B; Fomina, Elena S; Belyaeva, Elena A; Fainerman, Valentin B; Vollhardt, Dieter

    2013-02-14

    In the framework of the quantum chemical semiempirical PM3 method thermodynamic and structural parameters of the formation and clusterization of aliphatic alcohols C(n)H(2n+1)OH (n(OH) = 8-16) at 298 K at the water/alkane vapor C(n)H(2n+2), (n(CH(3)) = 6-16) interface were calculated. The dependencies of enthalpy, entropy and Gibbs' energy of clusterization per one monomer molecule of 2D films on the alkyl chain length of corresponding alcohols and alkanes, the molar fraction of alkanes in the monolayers and the immersion degree of alcohol molecules into the water phase were shown to be linear or stepwise. The threshold of spontaneous clusterization of aliphatic alcohols at the water/alkane vapor interface was 10-11 carbon atoms at 298 K which is in line with experimental data at the air/water interface. It is shown that the presence of alkane vapor does not influence the process of alcohol monolayer formation. The structure of these monolayers is analogous to those obtained at the air/water interface in agreement with experimental data. The inclusion of alkane molecules into the amphiphilic monolayer at the water/alkane vapor interface is possible for amphiphiles with the spontaneous clusterization threshold at the air/water interface (n(s)(0)) of at least 16 methylene units in the alkyl chain, and it does not depend on the molar fraction of alkanes in the corresponding monolayer. The inclusion of alkanes from the vapor phase into the amphiphilic monolayer also requires that the difference between the alkyl chain lengths of alcohols and alkanes is not larger than n(s)(0) - 15 and n(s)(0) - 14 for the 2D film 1 and 2D film 2, respectively.

  8. Evidence for alkane coordination to an electron-rich uranium center.

    PubMed

    Castro-Rodriguez, Ingrid; Nakai, Hidetaka; Gantzel, Peter; Zakharov, Lev N; Rheingold, Arnold L; Meyer, Karsten

    2003-12-24

    A series of five uranium-alkane complexes of the general formula [(ArO)3tacn)U(alkane)].(cy-alkane) has been synthesized and crystallographically characterized. In all cases, X-ray diffraction studies revealed a pseudo-six-coordinate trivalent uranium core structure, [(ArO)3tacn)U], with a coordinated alkane ligand at the axial position. The average U-C bond distance to the bound alkane was determined to be 3.798 A, which is considerably shorter than the sum of the van der Waals radii of the U atom and a CH2 or CH3 unit (3.9 A). In all complexes, the alkane is coordinated in an eta2-H,C fashion.

  9. To Form a Favorable Idea of Chemistry

    ERIC Educational Resources Information Center

    Heikkinen, Henry W.

    2010-01-01

    "To confess the truth, Mrs. B., I am not disposed to form a very favorable idea of chemistry, nor do I expect to derive much entertainment from it." That 200-year-old statement by Caroline to Mrs. Bryan, her teacher, appeared on the first page of Jane Marcet's pioneering secondary school textbook, "Conversations on Chemistry". It was published 17…

  10. Synthesis of chiral 2-alkanols from n-alkanes by a P. putida whole-cell biocatalyst.

    PubMed

    Tieves, Florian; Erenburg, Isabelle N; Mahmoud, Osama; Urlacher, Vlada B

    2016-09-01

    The cytochrome P450 monooxygenase CYP154A8 from Nocardia farcinica was previously found to catalyze hydroxylation of linear alkanes (C7 -C9 ) with a high regio- and stereoselectivity. The objective of this study was to integrate CYP154A8 along with suitable redox partners into a whole-cell system for the production of chiral 2-alkanols starting from alkanes. Both recombinant Escherichia coli and Pseudomonas putida whole-cell biocatalysts tested for this purpose showed the ability to produce chiral alkanols, but a solvent tolerant P. putida strain demonstrated several advantages in the applied biphasic reaction system. The optimized P. putida whole-cell system produced ∼16 mM (S)-2-octanol with 87% ee from octane, which is more than sevenfold higher than the previously described system with isolated enzymes. The achieved enantiopurity of the product could further be increased up to 99% ee by adding an alcohol dehydrogenase (ADH) to the alkane-oxidizing P. putida whole-cell systems. By using this setup for the individual conversions of heptane, octane or nonane, 2.6 mM (S)-2-heptanol with 91% ee, 5.4 mM (S)-2-octanol with 97% ee, or 5.5 mM (S)-2-nonanol with 97% ee were produced, respectively. The achieved concentrations of chiral 2-alkanols are the highest reported for a P450-based whole-cell system so far. Biotechnol. Bioeng. 2016;113: 1845-1852. © 2016 Wiley Periodicals, Inc.

  11. Technetium chemistry

    SciTech Connect

    Burns, C.; Bryan, J.; Cotton, F.; Ott, K.; Kubas, G.; Haefner, S.; Barrera, J.; Hall, K.; Burrell, A.

    1996-04-01

    Technetium chemistry is a young and developing field. Despite the limited knowledge of its chemistry, technetium is the workhorse for nuclear medicine. Technetium is also a significant environmental concern because it is formed as a byproduct of nuclear weapons production and fission-power generators. Development of new technetium radio-pharmaceuticals and effective environmental control depends strongly upon knowledge of basic technetium chemistry. The authors performed research into the basic coordination and organometallic chemistry of technetium and used this knowledge to address nuclear medicine and environmental applications. This is the final report of a three-year Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL).

  12. Chemistry Notes

    ERIC Educational Resources Information Center

    School Science Review, 1972

    1972-01-01

    Twelve new chemistry expermiments are described. Broad areas covered include atomic structure, solubility, gaseous diffusion, endothermic reactions, alcohols, equilibrium, atomic volumes, and some improvised apparatus. (PS)

  13. Fundamental Flame Velocities of Pure Hydrocarbons I : Alkanes, Alkenes, Alkynes Benzene, and Cyclohexane

    NASA Technical Reports Server (NTRS)

    Gerstein, Melvin; Levine, Oscar; Wong, Edgar L

    1950-01-01

    The flame velocities of 37 pure hydrocarbons including normal and branched alkanes, alkenes, and alkynes; as well as benzene and cyclohexane, together with the experimental technique employed are presented. The normal alkanes have about the same flame velocity from ethane through heptane with methane being about 16 percent lower. Unsaturation increases the flame velocity in the order of alkanes, alkenes, and alkynes. Branching reduces the flame velocity.

  14. Photochemical dimerization and functionalization of alkanes, ethers, primary alcohols and silanes

    DOEpatents

    Crabtree, R.H.; Brown, S.H.

    1988-02-16

    The space-time yield and/or the selectivity of the photochemical dimerization of alkanes, ethers, primary alcohols and tertiary silanes with Hg and U.V. light is enhanced by refluxing the substrate in the irradiated reaction zone at a temperature at which the dimer product condenses and remains condensed promptly upon its formation. Cross-dimerization of the alkanes, ethers and silanes with primary alcohols is disclosed, as is the functionalization to aldehydes of the alkanes with carbon monoxide.

  15. Draft Genome Sequence of Gordonia sihwensis Strain 9, a Branched Alkane-Degrading Bacterium

    PubMed Central

    Brown, Lisa M.; Gunasekera, Thusitha S.; Striebich, Richard C.

    2016-01-01

    Gordonia sihwensis strain 9 is a Gram-positive bacterium capable of efficient aerobic degradation of branched and normal alkanes. The draft genome of G. sihwensis S9 is 4.16 Mb in size, with 3,686 coding sequences and 68.1% G+C content. Alkane monooxygenase and P-450 cytochrome genes required for alkane degradation are predicted in G. sihwensis S9. PMID:27340079

  16. Photochemical dimerization and functionalization of alkanes, ethers, primary alcohols and silanes

    DOEpatents

    Crabtree, Robert H.; Brown, Stephen H.

    1988-01-01

    The space-time yield and/or the selectivity of the photochemical dimerization of alkanes, ethers, primary alcohols and tertiary silanes with Hg and U.V. light is enhanced by refluxing the substrate in the irradiated reaction zone at a temperature at which the dimer product condenses and remains condensed promptly upon its formation. Cross-dimerization of the alkanes, ethers and silanes with primary alcohols is disclosed, as is the functionalization to aldehydes of the alkanes with carbon monoxide.

  17. Alkanes in Natural and Synthetic Petroleums: Comparison of Calculated and Actual Compositions.

    PubMed

    Friedel, R A; Sharkey, A G

    1963-03-22

    A similarity exists between the low molecular weight alkane isomers in crude oil and Fischer-Tropsch catalytic synthesis products. The composition of the C(4) through C(7) alkane isomers in a crude oil was calculated quantitatively with the equations previously used to calculate the alkane isomers in Fischer-Tropsch products. These results may have significance in ascertaining the origin of the volatile hydrocarbons in crude oils.

  18. Conversational sensing

    NASA Astrophysics Data System (ADS)

    Preece, Alun; Gwilliams, Chris; Parizas, Christos; Pizzocaro, Diego; Bakdash, Jonathan Z.; Braines, Dave

    2014-05-01

    Recent developments in sensing technologies, mobile devices and context-aware user interfaces have made it pos- sible to represent information fusion and situational awareness for Intelligence, Surveillance and Reconnaissance (ISR) activities as a conversational process among actors at or near the tactical edges of a network. Motivated by use cases in the domain of Company Intelligence Support Team (CoIST) tasks, this paper presents an approach to information collection, fusion and sense-making based on the use of natural language (NL) and controlled nat- ural language (CNL) to support richer forms of human-machine interaction. The approach uses a conversational protocol to facilitate a ow of collaborative messages from NL to CNL and back again in support of interactions such as: turning eyewitness reports from human observers into actionable information (from both soldier and civilian sources); fusing information from humans and physical sensors (with associated quality metadata); and assisting human analysts to make the best use of available sensing assets in an area of interest (governed by man- agement and security policies). CNL is used as a common formal knowledge representation for both machine and human agents to support reasoning, semantic information fusion and generation of rationale for inferences, in ways that remain transparent to human users. Examples are provided of various alternative styles for user feedback, including NL, CNL and graphical feedback. A pilot experiment with human subjects shows that a prototype conversational agent is able to gather usable CNL information from untrained human subjects.

  19. Conversational sensemaking

    NASA Astrophysics Data System (ADS)

    Preece, Alun; Webberley, Will; Braines, Dave

    2015-05-01

    Recent advances in natural language question-answering systems and context-aware mobile apps create opportunities for improved sensemaking in a tactical setting. Users equipped with mobile devices act as both sensors (able to acquire information) and effectors (able to act in situ), operating alone or in collectives. The currently- dominant technical approaches follow either a pull model (e.g. Apple's Siri or IBM's Watson which respond to users' natural language queries) or a push model (e.g. Google's Now which sends notifications to a user based on their context). There is growing recognition that users need more flexible styles of conversational interaction, where they are able to freely ask or tell, be asked or told, seek explanations and clarifications. Ideally such conversations should involve a mix of human and machine agents, able to collaborate in collective sensemaking activities with as few barriers as possible. Desirable capabilities include adding new knowledge, collaboratively building models, invoking specific services, and drawing inferences. As a step towards this goal, we collect evidence from a number of recent pilot studies including natural experiments (e.g. situation awareness in the context of organised protests) and synthetic experiments (e.g. human and machine agents collaborating in information seeking and spot reporting). We identify some principles and areas of future research for "conversational sensemaking".

  20. Regioselective ω-hydroxylation of medium-chain n-alkanes and primary alcohols by CYP153 enzymes from Mycobacterium marinum and Polaromonas sp. strain JS666.

    PubMed

    Scheps, Daniel; Malca, Sumire Honda; Hoffmann, Helen; Nestl, Bettina M; Hauer, Bernhard

    2011-10-07

    The oxofunctionalization of saturated hydrocarbons is an important goal in basic and applied chemistry. Biocatalysts like cytochrome P450 enzymes can introduce oxygen into a wide variety of molecules in a very selective manner, which can be used for the synthesis of fine and bulk chemicals. Cytochrome P450 enzymes from the CYP153A subfamily have been described as alkane hydroxylases with high terminal regioselectivity. Here we report the product yields resulting from C(5)-C(12) alkane and alcohol oxidation catalyzed by CYP153A enzymes from Mycobacterium marinum (CYP153A16) and Polaromonas sp. (CYP153A P. sp.). For all reactions, byproduct formation is described in detail. Following cloning and expression in Escherichia coli, the activity of the purified monooxygenases was reconstituted with putidaredoxin (CamA) and putidaredoxin reductase (CamB). Although both enzyme systems yielded primary alcohols and α,ω-alkanediols, each one displayed a different oxidation pattern towards alkanes. For CYP153A P. sp. a predominant ω-hydroxylation activity was observed, while CYP153A16 possessed the ability to catalyze both ω-hydroxylation and α,ω-dihydroxylation reactions.

  1. Revised Charge Equilibration Parameters for More Accurate Hydration Free Energies of Alkanes.

    PubMed

    Davis, Joseph E; Patel, Sandeep

    2010-01-01

    We present a refined alkane charge equilibration (CHEQ) force field, improving our previously reported CHEQ alkane force field[1] to better reproduce experimental hydration free energies. Experimental hydration free energies of ethane, propane, butane, pentane, hexane, and heptane are reproduced to within 3.6% on average. We demonstrate that explicit polarization results in a shift in molecular dipole moment for water molecules associated with the alkane molecule. We also show that our new parameters do not have a significant effect on the alkane-water interactions as measured by the radial distribution function (RDF).

  2. Optimization of H3O+/O2+ Dual-mode Ionization in PTR-MS for Simultaneous Detection of Alkanes, Olefins and Aromatic Compounds

    NASA Astrophysics Data System (ADS)

    Amador-Muñoz, O.; Misztal, P. K.; Weber, R.; Drozd, G.; Worton, D. R.; Goldstein, A. H.

    2014-12-01

    Measurements of VOC composition from fossil fuels are analytically challenging because of the complex mixture of hydrocarbons (saturated, unsaturated, aromatics, etc). Speciated chemical measurements typically rely on relatively slow GC separation. Proton transfer reaction mass spectrometry (PTR-MS) is advantageous due to its fast response and high sensitivity. The most common ionization mechanism applied to VOC detection by PTR-MS is proton transfer from hydronium ion (H3O+). However, alkanes cannot be detected using H3O+ ionization chemistry because their proton affinities are too low. Ionization of alkanes is possible via electron transfer and/or hydride abstraction using O2+ or NO+. We used PTR-MS to analyze aromatic, alkene and alkane (linear, branched and cyclic) compounds simultaneously not by switching the ionization agents, but by adjusting the drift tube voltage and optimizing the ratio of H3O+/O2+ produced in the instrument's ion source. The highest detection sensitivity for aromatic and alkene compounds was produced by proton transfer from H3O+, while hydride abstraction by O2+ allowed detection of alkanes. For alkanes, sensitivities ranged from 1.1±0.01 cps/ppbv for n-decane to 74.7±0.25 cps/ppbv for decalin. Sensitivities in O2+ mode were from 6 (Adamantane) to 146 (4-Methyl nonane) times higher than those obtained in H3O+ mode under the same ion source and drift tube voltage conditions. Sensitivities for butyl benzene and 1-decene were 157±0.57 and 66.8±0.21 cps/ppbv, respectively. Sensitivity differences among C10 hydrocarbons are related to their structure, which affects their ionization energies (IE) and hence ease of hydride abstraction. Sensitivities at the parent ion mass were inversely correlated with IE (142 cps/ppbv/eV). This suggests higher electronic stability for cyclic non substituted compounds, followed by cyclic substituted, branch linear and linear C10 hydrocarbons. Although selectivity is a known shortcoming of quadrupole

  3. Cloning and expression of three ladA-type alkane monooxygenase genes from an extremely thermophilic alkane-degrading bacterium Geobacillus thermoleovorans B23.

    PubMed

    Boonmak, Chanita; Takahashi, Yasunori; Morikawa, Masaaki

    2014-05-01

    An extremely thermophilic bacterium, Geobacillus thermoleovorans B23, is capable of degrading a broad range of alkanes (with carbon chain lengths ranging between C11 and C32) at 70 °C. Whole-genome sequence analysis revealed that unlike most alkane-degrading bacteria, strain B23 does not possess an alkB-type alkane monooxygenase gene. Instead, it possesses a cluster of three ladA-type genes, ladAαB23, ladAβB23, and ladB B23, on its chromosome, whose protein products share significant amino acid sequence identities, 49.8, 34.4, and 22.7 %, respectively, with that of ladA alkane monooxygenase gene found on a plasmid of Geobacillus thermodetrificans NG 80-2. Each of the three genes, ladAαB23, ladAβB23, and ladB B23, was heterologously expressed individually in an alkB1 deletion mutant strain, Pseudomonas fluorescens KOB2Δ1. It was found that all three genes were functional in P. fluorescens KOB2Δ1, and partially restored alkane degradation activity. In this study, we suggest that G. thermoleovorans B23 utilizes multiple LadA-type alkane monooxygenases for the degradation of a broad range of alkanes.

  4. Identification and use of an alkane transporter plug-in for applications in biocatalysis and whole-cell biosensing of alkanes

    NASA Astrophysics Data System (ADS)

    Grant, Chris; Deszcz, Dawid; Wei, Yu-Chia; Martínez-Torres, Rubéns Julio; Morris, Phattaraporn; Folliard, Thomas; Sreenivasan, Rakesh; Ward, John; Dalby, Paul; Woodley, John M.; Baganz, Frank

    2014-07-01

    Effective application of whole-cell devices in synthetic biology and biocatalysis will always require consideration of the uptake of molecules of interest into the cell. Here we demonstrate that the AlkL protein from Pseudomonas putida GPo1 is an alkane import protein capable of industrially relevant rates of uptake of C7-C16 n-alkanes. Without alkL expression, native E.coli n-alkane uptake was the rate-limiting step in both the whole-cell bioconversion of C7-C16 n-alkanes and in the activation of a whole-cell alkane biosensor by C10 and C11 alkanes. By coexpression of alkL as a transporter plug-in, specific yields improved by up to 100-fold for bioxidation of >C12 alkanes to fatty alcohols and acids. The alkL protein was shown to be toxic to the host when overexpressed but when expressed from a vector capable of controlled induction, yields of alkane oxidation were improved a further 10-fold (8 g/L and 1.7 g/g of total oxidized products). Further testing of activity on n-octane with the controlled expression vector revealed the highest reported rates of 120 μmol/min/g and 1 g/L/h total oxidized products. This is the first time AlkL has been shown to directly facilitate enhanced uptake of C10-C16 alkanes and represents the highest reported gain in product yields resulting from its use.

  5. Identification and use of an alkane transporter plug-in for applications in biocatalysis and whole-cell biosensing of alkanes.

    PubMed

    Grant, Chris; Deszcz, Dawid; Wei, Yu-Chia; Martínez-Torres, Rubéns Julio; Morris, Phattaraporn; Folliard, Thomas; Sreenivasan, Rakesh; Ward, John; Dalby, Paul; Woodley, John M; Baganz, Frank

    2014-07-28

    Effective application of whole-cell devices in synthetic biology and biocatalysis will always require consideration of the uptake of molecules of interest into the cell. Here we demonstrate that the AlkL protein from Pseudomonas putida GPo1 is an alkane import protein capable of industrially relevant rates of uptake of C7-C16 n-alkanes. Without alkL expression, native E.coli n-alkane uptake was the rate-limiting step in both the whole-cell bioconversion of C7-C16 n-alkanes and in the activation of a whole-cell alkane biosensor by C10 and C11 alkanes. By coexpression of alkL as a transporter plug-in, specific yields improved by up to 100-fold for bioxidation of >C12 alkanes to fatty alcohols and acids. The alkL protein was shown to be toxic to the host when overexpressed but when expressed from a vector capable of controlled induction, yields of alkane oxidation were improved a further 10-fold (8 g/L and 1.7 g/g of total oxidized products). Further testing of activity on n-octane with the controlled expression vector revealed the highest reported rates of 120 μmol/min/g and 1 g/L/h total oxidized products. This is the first time AlkL has been shown to directly facilitate enhanced uptake of C10-C16 alkanes and represents the highest reported gain in product yields resulting from its use.

  6. Utilization of n-alkanes by a newly isolated strain of Acinetobacter venetianus: the role of two AlkB-type alkane hydroxylases.

    PubMed

    Throne-Holst, Mimmi; Markussen, Sidsel; Winnberg, Asgeir; Ellingsen, Trond E; Kotlar, Hans-Kristian; Zotchev, Sergey B

    2006-09-01

    A bacterial strain capable of utilizing n-alkanes with chain lengths ranging from decane (C10H22) to tetracontane (C40H82) as a sole carbon source was isolated using a system for screening microorganisms able to grow on paraffin (mixed long-chain n-alkanes). The isolate, identified according to its 16S rRNA sequence as Acinetobacter venetianus, was designated A. venetianus 6A2. Two DNA fragments encoding parts of AlkB-type alkane hydroxylase homologues, designated alkMa and alkMb, were polymerase chain reaction-amplified from the genome of A. venetianus 6A2. To study the roles of these two alkM paralogues in n-alkane utilization in A. venetianus 6A2, we constructed alkMa, alkMb, and alkMa/alkMb disruption mutants. Studies on the growth patterns of the disruption mutants using n-alkanes with different chain lengths as sole carbon source demonstrated central roles for the alkMa and alkMb genes in utilization of C10 to C18 n-alkanes. Comparative analysis of these patterns also suggested different substrate preferences for AlkMa and AlkMb in n-alkane utilization. Because both single and double mutants were able to grow on n-alkanes with chain lengths of C20 and longer, we concluded that yet another enzyme(s) for the utilization of these n-alkanes must exist in A. venetianus 6A2.

  7. Identification and use of an alkane transporter plug-in for applications in biocatalysis and whole-cell biosensing of alkanes

    PubMed Central

    Grant, Chris; Deszcz, Dawid; Wei, Yu-Chia; Martínez-Torres, Rubéns Julio; Morris, Phattaraporn; Folliard, Thomas; Sreenivasan, Rakesh; Ward, John; Dalby, Paul; Woodley, John M.; Baganz, Frank

    2014-01-01

    Effective application of whole-cell devices in synthetic biology and biocatalysis will always require consideration of the uptake of molecules of interest into the cell. Here we demonstrate that the AlkL protein from Pseudomonas putida GPo1 is an alkane import protein capable of industrially relevant rates of uptake of C7-C16 n-alkanes. Without alkL expression, native E.coli n-alkane uptake was the rate-limiting step in both the whole-cell bioconversion of C7-C16 n-alkanes and in the activation of a whole-cell alkane biosensor by C10 and C11 alkanes. By coexpression of alkL as a transporter plug-in, specific yields improved by up to 100-fold for bioxidation of >C12 alkanes to fatty alcohols and acids. The alkL protein was shown to be toxic to the host when overexpressed but when expressed from a vector capable of controlled induction, yields of alkane oxidation were improved a further 10-fold (8 g/L and 1.7 g/g of total oxidized products). Further testing of activity on n-octane with the controlled expression vector revealed the highest reported rates of 120 μmol/min/g and 1 g/L/h total oxidized products. This is the first time AlkL has been shown to directly facilitate enhanced uptake of C10-C16 alkanes and represents the highest reported gain in product yields resulting from its use. PMID:25068650

  8. Chemistry Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1981

    1981-01-01

    Outlines laboratory procedures, demonstrations, teaching suggestions, and content information related to chemistry. Topics include polarizing power; calorimetry and momentum; microcomputers in school chemistry; a constant-volume dispenser for liquids, floating magnets, and crystal lattices; preparation of chromium; and solvent polarity and…

  9. High temperature cracking and deposition behavior of an n-alkane mixture

    SciTech Connect

    Atria, J.V.; Edwards, T.

    1996-10-01

    Advanced jet engine designs and the need for jet fuel in aircraft to handle increasing heat loads has generated much interest in investigating the thermal stability of jet fuels at temperatures greater than 500{degrees}C. A mixture of C12 to C15 normal paraffins, was used to model the high temperature deposition and cracking behavior of jet fuels. The model hydrocarbon mixture was pumped through a single tube heat exchanger under supercritical conditions and heated to a final temperature of 550{degrees}C. Gas and liquid products were analyzed by gas chromatography/mass spectrometry, GC/MS, and gas chromatography with a flame ionization detector, GC FID. Amounts of carbon deposit through the tube were also determined by carbon burnoff analysis. Results showed the long chain normal paraffins to be stable in the oxidative deposition region, 150 to 300{degrees}C, while creating large amounts of pyrolytic deposits at temperatures greater than 500{degrees}C. The normal paraffins were found to crack to form smaller chain alkanes and alkenes with highly stressed samples then forming higher numbered olefins and cyclohexanes. This model mixture was also highly useful in observing the effects of fuel additives and tube surfaces on chemistry and deposit formation. Both high temperature hydrogen donors and an inert surface were found to increase the thermal stability of the paraffin mixture.

  10. Assessment of the GECKO-A modeling tool using chamber observations for C12 alkanes

    NASA Astrophysics Data System (ADS)

    Aumont, B.; La, S.; Ouzebidour, F.; Valorso, R.; Mouchel-Vallon, C.; Camredon, M.; Lee-Taylor, J. M.; Hodzic, A.; Madronich, S.; Yee, L. D.; Loza, C. L.; Craven, J. S.; Zhang, X.; Seinfeld, J.

    2013-12-01

    Secondary Organic Aerosol (SOA) production and ageing is the result of atmospheric oxidation processes leading to the progressive formation of organic species with higher oxidation state and lower volatility. Explicit chemical mechanisms reflect our understanding of these multigenerational oxidation steps. Major uncertainties remain concerning the processes leading to SOA formation and the development, assessment and improvement of such explicit schemes is therefore a key issue. The development of explicit mechanism to describe the oxidation of long chain hydrocarbons is however a challenge. Indeed, explicit oxidation schemes involve a large number of reactions and secondary organic species, far exceeding the size of chemical schemes that can be written manually. The chemical mechanism generator GECKO-A (Generator for Explicit Chemistry and Kinetics of Organics in the Atmosphere) is a computer program designed to overcome this difficulty. GECKO-A generates gas phase oxidation schemes according to a prescribed protocol assigning reaction pathways and kinetics data on the basis of experimental data and structure-activity relationships. In this study, we examine the ability of the generated schemes to explain SOA formation observed in the Caltech Environmental Chambers from various C12 alkane isomers and under high NOx and low NOx conditions. First results show that the model overestimates both the SOA yields and the O/C ratios. Various sensitivity tests are performed to explore processes that might be responsible for these disagreements.

  11. Modeling SOA formation from the oxidation of intermediate volatility n-alkanes

    NASA Astrophysics Data System (ADS)

    Aumont, B.; Valorso, R.; Mouchel-Vallon, C.; Camredon, M.; Lee-Taylor, J.; Madronich, S.

    2012-08-01

    The chemical mechanism leading to SOA formation and ageing is expected to be a multigenerational process, i.e. a successive formation of organic compounds with higher oxidation degree and lower vapor pressure. This process is here investigated with the explicit oxidation model GECKO-A (Generator of Explicit Chemistry and Kinetics of Organics in the Atmosphere). Gas phase oxidation schemes are generated for the C8-C24 series of n-alkanes. Simulations are conducted to explore the time evolution of organic compounds and the behavior of secondary organic aerosol (SOA) formation for various preexisting organic aerosol concentration (COA). As expected, simulation results show that (i) SOA yield increases with the carbon chain length of the parent hydrocarbon, (ii) SOA yield decreases with decreasing COA, (iii) SOA production rates increase with increasing COA and (iv) the number of oxidation steps (i.e. generations) needed to describe SOA formation and evolution grows when COA decreases. The simulated oxidative trajectories are examined in a two dimensional space defined by the mean carbon oxidation state and the volatility. Most SOA contributors are not oxidized enough to be categorized as highly oxygenated organic aerosols (OOA) but reduced enough to be categorized as hydrocarbon like organic aerosols (HOA), suggesting that OOA may underestimate SOA. Results show that the model is unable to produce highly oxygenated aerosols (OOA) with large yields. The limitations of the model are discussed.

  12. Modeling SOA formation from the oxidation of intermediate volatility n-alkanes

    NASA Astrophysics Data System (ADS)

    Aumont, B.; Valorso, R.; Mouchel-Vallon, C.; Camredon, M.; Lee-Taylor, J.; Madronich, S.

    2012-06-01

    The chemical mechanism leading to SOA formation and ageing is expected to be a multigenerational process, i.e. a successive formation of organic compounds with higher oxidation degree and lower vapor pressure. This process is here investigated with the explicit oxidation model GECKO-A (Generator of Explicit Chemistry and Kinetics of Organics in the Atmosphere). Gas phase oxidation schemes are generated for the C8-C24 series of n-alkanes. Simulations are conducted to explore the time evolution of organic compounds and the behavior of secondary organic aerosol (SOA) formation for various preexisting organic aerosol concentration (COA). As expected, simulation results show that (i) SOA yield increases with the carbon chain length of the parent hydrocarbon, (ii) SOA yield decreases with decreasing COA, (iii) SOA production rates increase with increasing COA and (iv) the number of oxidation steps (i.e. generations) needed to describe SOA formation and evolution grows when COA decreases. The simulated oxidative trajectories are examined in a two dimensional space defined by the mean carbon oxidation state and the volatility. Most SOA contributors are not oxidized enough to be categorized as highly oxygenated organic aerosols (OOA) but reduced enough to be categorized as hydrocarbon like organic aerosols (HOA), suggesting that OOA may underestimate SOA. Results show that the model is unable to produce highly oxygenated aerosols (OOA) with large yields. The limitations of the model are discussed.

  13. Two novel alkane hydroxylase-rubredoxin fusion genes isolated from a Dietzia bacterium and the functions of fused rubredoxin domains in long-chain n-alkane degradation.

    PubMed

    Nie, Yong; Liang, Jieliang; Fang, Hui; Tang, Yue-Qin; Wu, Xiao-Lei

    2011-10-01

    Two alkane hydroxylase-rubredoxin fusion gene homologs (alkW1 and alkW2) were cloned from a Dietzia strain, designated DQ12-45-1b, which can grow on crude oil and n-alkanes ranging in length from 6 to 40 carbon atoms as sole carbon sources. Both AlkW1 and AlkW2 have an integral-membrane alkane monooxygenase (AlkB) conserved domain and a rubredoxin (Rd) conserved domain which are fused together. Phylogenetic analysis showed that these two AlkB-fused Rd domains formed a novel third cluster with all the Rds from the alkane hydroxylase-rubredoxin fusion gene clusters in Gram-positive bacteria and that this third cluster was distant from the known AlkG1- and AlkG2-type Rds. Expression of the alkW1 gene in DQ12-45-1b was induced when cells were grown on C(8) to C(32) n-alkanes as sole carbon sources, but expression of the alkW2 gene was not detected. Functional heterologous expression in an alkB deletion mutant of Pseudomonas fluorescens KOB2Δ1 suggested the alkW1 could restore the growth of KOB2Δ1 on C(14) and C(16) n-alkanes and induce faster growth on C(18) to C(32) n-alkanes than alkW1ΔRd, the Rd domain deletion mutant gene of alkW1, which also caused faster growth than KOB2Δ1 itself. In addition, the artificial fusion of AlkB from the Gram-negative P. fluorescens CHA0 and the Rds from both Gram-negative P. fluorescens CHA0 and Gram-positive Dietzia sp. DQ12-45-1b significantly increased the degradation of C(32) alkane compared to that seen with AlkB itself. In conclusion, the alkW1 gene cloned from Dietzia species encoded an alkane hydroxylase which increased growth on and degradation of n-alkanes up to C(32) in length, with its fused rubredoxin domain being necessary to maintain the functions. In addition, the fusion of alkane hydroxylase and rubredoxin genes from both Gram-positive and -negative bacteria can increase the degradation of long-chain n-alkanes (such as C(32)) in the Gram-negative bacterium.

  14. Energy Conversion and Storage Program

    SciTech Connect

    Cairns, E.J.

    1992-03-01

    The Energy Conversion and Storage Program applies chemistry and materials science principles to solve problems in (1) production of new synthetic fuels, (2) development of high-performance rechargeable batteries and fuel cells, (3) development of advanced thermochemical processes for energy conversion, (4) characterization of complex chemical processes, and (5) application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis. Electrochemistry research aims to develop advanced power systems for electric vehicle and stationary energy storage applications. Topics include identification of new electrochemical couples for advanced rechargeable batteries, improvements in battery and fuel-cell materials, and the establishment of engineering principles applicable to electrochemical energy storage and conversion. Chemical Applications research includes topics such as separations, catalysis, fuels, and chemical analyses. Included in this program area are projects to develop improved, energy-efficient methods for processing waste streams from synfuel plants and coal gasifiers. Other research projects seek to identify and characterize the constituents of liquid fuel-system streams and to devise energy-efficient means for their separation. Materials Applications research includes the evaluation of the properties of advanced materials, as well as the development of novel preparation techniques. For example, the use of advanced techniques, such as sputtering and laser ablation, are being used to produce high-temperature superconducting films.

  15. Shape selective properties of the Al-fumarate metal-organic framework in the adsorption and separation of n-alkanes, iso-alkanes, cyclo-alkanes and aromatic hydrocarbons.

    PubMed

    Bozbiyik, Belgin; Lannoeye, Jeroen; De Vos, Dirk E; Baron, Gino V; Denayer, Joeri F M

    2016-01-28

    The primary goal of this work is to study the adsorption of a wide range of hydrocarbon adsorbates in the Al-fumarate metal-organic framework in order to identify and explore trends in adsorption behaviour that can be related to the sorbate's molecular properties and as well as the properties of this MOF. The pulse chromatographic technique was used to study the adsorption properties of C5-C8 linear, branched, cyclic and aromatic hydrocarbons in vapour phase at low coverage and at high temperatures (150-250 °C). Chromatograms of alkanes having the same number of carbon atoms (C5-C8) clearly show that the linear alkane is retained the longest over its branched and cyclic isomers. Moreover, xylene isomers are also clearly separated by Al-fumarate, with retention times increasing in the order: ortho-xylene < meta-xylene < para-xylene. Differences in adsorption enthalpy of more than 10 kJ mol(-1) between linear alkanes and their di/tri-branched or cyclo-alkane isomers were observed, clearly showing that steric effects imposed by the pore structure of the adsorbent cause the difference in adsorption between linear alkanes and their isomers. In conclusion, Al-fumarate behaves as a shape selective material with respect to structural isomers of linear alkanes, with properties resembling those of medium pore size zeolites.

  16. Second NASA Conference on Laser Energy Conversion

    NASA Technical Reports Server (NTRS)

    Billman, K. W. (Editor)

    1976-01-01

    The possible transmission of high power laser beams over long distances and their conversion to thrust, electricity, or other useful forms of energy is considered. Specific topics discussed include: laser induced chemistry; developments in photovoltaics, including modification of the Schottky barrier devices and generation of high voltage emf'sby laser radiation of piezoelectric ceramics; the thermo electronic laser energy converter and the laser plasmadynamics converters; harmonic conversion of infrared laser radiation in molecular gases; and photon engines.

  17. Circumstellar chemistry

    NASA Technical Reports Server (NTRS)

    Glassgold, Alfred E.; Huggins, Patrick J.

    1987-01-01

    The study of the outer envelopes of cool evolved stars has become an active area of research. The physical properties of CS envelopes are presented. Observations of many wavelengths bands are relevant. A summary of observations and a discussion of theoretical considerations concerning the chemistry are summarized. Recent theoretical considerations show that the thermal equilibrium model is of limited use for understanding the chemistry of the outer CS envelopes. The theoretical modeling of the chemistry of CS envelopes provides a quantitive test of chemical concepts which have a broader interest than the envelopes themselves.

  18. USSR Report, Chemistry

    DTIC Science & Technology

    2007-11-02

    showing predominance of the P phase. Figures 1 ; references 4 (Western). [345-12172] UDC 541.71.28 CATALYTIC CONVERSION OF 1,1- DIMETHYLHYDRAZINE ON... dimethylhydrazine (I) on applied iridium catalyst Ir/Al20., (30% by wt.) was reported recently by the authors in reference 1 . Though the catalyst was...365006 JPRS-UCH-85-0 1 3 2 2 October 1985 USSR Report CHEMISTRY MBTmiraoirimSSff-jf DäfflMböäaa OBJira«««ä A9980729 070 FBIS JW1C

  19. Enhanced production of n-alkanes in Escherichia coli by spatial organization of biosynthetic pathway enzymes.

    PubMed

    Rahmana, Ziaur; Sung, Bong Hyun; Yi, Ji-Yeun; Bui, Le Minh; Lee, Jun Hyoung; Kim, Sun Chang

    2014-12-20

    Alkanes chemically mimic hydrocarbons found in petroleum, and their demand as biofuels is steadily increasing. Biologically, n-alkanes are produced from fatty acyl-ACPs by acyl-ACP reductases (AARs) and aldehyde deformylating oxygenases (ADOs). One of the major impediments in n-alkane biosynthesis is the low catalytic turnover rates of ADOs. Here, we studied n-alkane biosynthesis in Escherichia coli using a chimeric ADO-AAR fusion protein or zinc finger protein-guided ADO/AAR assembly on DNA scaffolds to control their stoichiometric ratios and spatial arrangements. Bacterial production of n-alkanes with the ADO-AAR fusion protein was increased 4.8-fold (24 mg/L) over a control strain expressing ADO and AAR separately. Optimal n-alkane biosynthesis was achieved when the ADO:AAR binding site ratio on a DNA scaffold was 3:1, yielding an 8.8-fold increase (44 mg/L) over the control strain. Our findings indicate that the spatial organization of alkane-producing enzymes is critical for efficient n-alkane biosynthesis in E. coli.

  20. Identity and mechanisms of alkane-oxidizing metalloenzymes from deep-sea hydrothermal vents.

    PubMed

    Bertrand, Erin M; Keddis, Ramaydalis; Groves, John T; Vetriani, Costantino; Austin, Rachel Narehood

    2013-01-01

    Six aerobic alkanotrophs (organism that can metabolize alkanes as their sole carbon source) isolated from deep-sea hydrothermal vents were characterized using the radical clock substrate norcarane to determine the metalloenzyme and reaction mechanism used to oxidize alkanes. The organisms studied were Alcanivorax sp. strains EPR7 and MAR14, Marinobacter sp. strain EPR21, Nocardioides sp. strains EPR26w, EPR28w, and Parvibaculum hydrocarbonoclasticum strain EPR92. Each organism was able to grow on n-alkanes as the sole carbon source and therefore must express genes encoding an alkane-oxidizing enzyme. Results from the oxidation of the radical-clock diagnostic substrate norcarane demonstrated that five of the six organisms (EPR7, MAR14, EPR21, EPR26w, and EPR28w) used an alkane hydroxylase functionally similar to AlkB to catalyze the oxidation of medium-chain alkanes, while the sixth organism (EPR92) used an alkane-oxidizing cytochrome P450 (CYP)-like protein to catalyze the oxidation. DNA sequencing indicated that EPR7 and EPR21 possess genes encoding AlkB proteins, while sequencing results from EPR92 confirmed the presence of a gene encoding CYP-like alkane hydroxylase, consistent with the results from the norcarane experiments.

  1. Identity and mechanisms of alkane-oxidizing metalloenzymes from deep-sea hydrothermal vents

    PubMed Central

    Bertrand, Erin M.; Keddis, Ramaydalis; Groves, John T.; Vetriani, Costantino; Austin, Rachel Narehood

    2013-01-01

    Six aerobic alkanotrophs (organism that can metabolize alkanes as their sole carbon source) isolated from deep-sea hydrothermal vents were characterized using the radical clock substrate norcarane to determine the metalloenzyme and reaction mechanism used to oxidize alkanes. The organisms studied were Alcanivorax sp. strains EPR7 and MAR14, Marinobacter sp. strain EPR21, Nocardioides sp. strains EPR26w, EPR28w, and Parvibaculum hydrocarbonoclasticum strain EPR92. Each organism was able to grow on n-alkanes as the sole carbon source and therefore must express genes encoding an alkane-oxidizing enzyme. Results from the oxidation of the radical-clock diagnostic substrate norcarane demonstrated that five of the six organisms (EPR7, MAR14, EPR21, EPR26w, and EPR28w) used an alkane hydroxylase functionally similar to AlkB to catalyze the oxidation of medium-chain alkanes, while the sixth organism (EPR92) used an alkane-oxidizing cytochrome P450 (CYP)-like protein to catalyze the oxidation. DNA sequencing indicated that EPR7 and EPR21 possess genes encoding AlkB proteins, while sequencing results from EPR92 confirmed the presence of a gene encoding CYP-like alkane hydroxylase, consistent with the results from the norcarane experiments. PMID:23825470

  2. 40 CFR 721.2625 - Reaction product of alkane-diol and epichlorohydrin.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Reaction product of alkane-diol and... Specific Chemical Substances § 721.2625 Reaction product of alkane-diol and epichlorohydrin. (a) Chemical... as reaction product of alkanediol and epichlorohydrin (PMN P-89-760) is subject to reporting...

  3. 40 CFR 721.2625 - Reaction product of alkane-diol and epichlorohydrin.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Reaction product of alkane-diol and... Specific Chemical Substances § 721.2625 Reaction product of alkane-diol and epichlorohydrin. (a) Chemical... as reaction product of alkanediol and epichlorohydrin (PMN P-89-760) is subject to reporting...

  4. 40 CFR 721.2625 - Reaction product of alkane-diol and epichlorohydrin.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Reaction product of alkane-diol and... Specific Chemical Substances § 721.2625 Reaction product of alkane-diol and epichlorohydrin. (a) Chemical... as reaction product of alkanediol and epichlorohydrin (PMN P-89-760) is subject to reporting...

  5. 40 CFR 721.2625 - Reaction product of alkane-diol and epichlorohydrin.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Reaction product of alkane-diol and... Specific Chemical Substances § 721.2625 Reaction product of alkane-diol and epichlorohydrin. (a) Chemical... as reaction product of alkanediol and epichlorohydrin (PMN P-89-760) is subject to reporting...

  6. 40 CFR 721.2625 - Reaction product of alkane-diol and epichlorohydrin.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Reaction product of alkane-diol and... Specific Chemical Substances § 721.2625 Reaction product of alkane-diol and epichlorohydrin. (a) Chemical... as reaction product of alkanediol and epichlorohydrin (PMN P-89-760) is subject to reporting...

  7. Molecular sieve catalysts for the regioselective and shape- selective oxyfunctionalization of alkanes in air.

    PubMed

    Thomas, J M; Raja, R; Sankar, G; Bell, R G

    2001-03-01

    Framework-substituted, molecular-sieve, aluminophosphate, microporous solids are the centerpieces of a new approach to the aerobic oxyfunctionalization of saturated hydrocarbons. The sieves, and the few percent of the Al(III) sites within them that are replaced by catalytically active, transition-metal ions in high oxidation states (Co(III), Mn(III), Fe(III)), are designed so as to allow free access of oxygen in to and out of the interior of these high-area solids. Certain metal-substituted, molecular sieves permit only end-on approach of linear alkanes to the active centers, thereby favoring enhanced reactivity of the terminal methyl groups. By optimizing cage dimension, with respect to that of the hydrocarbon reactant, as well as adjusting the average separation of active centers within a cage, and by choosing the sieve with the appropriate pore aperture, highly selective conversions such as n-hexane to hexanoic acid or adipic acid, and cyclohexane to cyclohexanol, cyclohexanone, or adipic acid, may be effected at low temperature, heterogeneously in air.

  8. Multiple sources of alkanes in Quaternary oceanic sediment of Antarctica

    USGS Publications Warehouse

    Kvenvolden, K.A.; Rapp, J.B.; Golan-Bac, M.; Hostettler, F.D.

    1987-01-01

    Normal alkanes (n-C13n-C36), isoprenoid hydrocarbons (i-C15, i-C16, i-C18, i-C19, and i-C20) triterpanes (C27C32), and (C27C29) are present in low concentrations offshore Antarctica in near-surface, Quaternary sediment of the Wilkes Land continental margin and of the western Ross Sea. The distributions of these hydrocarbons are interpreted relative to possible sources and processes. The hydrocarbons appear to be mixtures of primary and recycled material from marine and terrigenous sources. The n-alkanes are most abundant and are characterized by two distinct populations, one of probable marine origin and the other likely from terrigenous, vascular plant sources. Because the continent of Antarctica today is devoid of higher plants, the plant-derived hydrocarbons in these offshore sediments probably came from wind-blown material and recycled Antarctic sediment that contains land-plant remains from an earlier period of time. Isoprenoid hydrocarbons are partially recycled and mainly of marine origin; the dominance of pristane over phytane suggests oxic paleoenvironmental conditions. Both modern and ancient triterpanes and steranes are present, and the distribution of these indicates a mixture of primary and recycled bacterial, algal, and possible higher-plant materials. Although the sampled sediments were deposited during the Quaternary, they apparently contain a significant component of hydrocarbons of pre-Quaternary age. ?? 1987.

  9. Geologic seepage of methane and light alkanes in Los Angeles

    NASA Astrophysics Data System (ADS)

    Doezema, L. A.; Chang, K.; Baril, R.; Nwachuku, I.; Contreras, P.; Marquez, A.; Howard, D.

    2013-12-01

    Natural geologic seepage of methane from underground oil and natural gas reservoirs has been suggested to be an underreported part of the global methane budget. Other light alkanes are also given off in combination with the methane seepage, making it possible that geologic seepage is also a potentially significant global source of these light alkanes. This study reports C1-C5 findings from geologic seepage made in the Los Angeles region. Microseepage, invisible escape of gases, was measured primarily at Kenneth Hahn Regional Park, while macroseepage, the visible release of gases, was measured at the La Brea Tar Pits. Samples were collected using stainless steel canisters and flux chambers and were analyzed using gas chromatography with flame ionization detectors (GC-FID). Average microseepage flux rates of 0.95 μg m-2 h-1 for ethane and 0.51 μg m-2 h-1 were found for propane, while average macroseepage rates for methane, ethane, and propane were 664, 19.8, and 18.1 mg m-2 h-1 respectively. Relationships between microseepage flux rate and location of underground oil and natural deposit and earthquake fault lines are presented. Additionally, the relative importance of findings in context with global budgets and local air quality is discussed.

  10. Geomicrobiological linkages between short-chain alkane consumption and sulfate reduction rates in seep sediments

    PubMed Central

    Bose, Arpita; Rogers, Daniel R.; Adams, Melissa M.; Joye, Samantha B.; Girguis, Peter R.

    2013-01-01

    Marine hydrocarbon seeps are ecosystems that are rich in methane, and, in some cases, short-chain (C2–C5) and longer alkanes. C2–C4 alkanes such as ethane, propane, and butane can be significant components of seeping fluids. Some sulfate-reducing microbes oxidize short-chain alkanes anaerobically, and may play an important role in both the competition for sulfate and the local carbon budget. To better understand the anaerobic oxidation of short-chain n-alkanes coupled with sulfate-reduction, hydrocarbon-rich sediments from the Gulf of Mexico (GoM) were amended with artificial, sulfate-replete seawater and one of four n-alkanes (C1–C4) then incubated under strict anaerobic conditions. Measured rates of alkane oxidation and sulfate reduction closely follow stoichiometric predictions that assume the complete oxidation of alkanes to CO2 (though other sinks for alkane carbon likely exist). Changes in the δ13C of all the alkanes in the reactors show enrichment over the course of the incubation, with the C3 and C4 incubations showing the greatest enrichment (4.4 and 4.5‰, respectively). The concurrent depletion in the δ13C of dissolved inorganic carbon (DIC) implies a transfer of carbon from the alkane to the DIC pool (−3.5 and −6.7‰ for C3 and C4 incubations, respectively). Microbial community analyses reveal that certain members of the class Deltaproteobacteria are selectively enriched as the incubations degrade C1–C4 alkanes. Phylogenetic analyses indicate that distinct phylotypes are enriched in the ethane reactors, while phylotypes in the propane and butane reactors align with previously identified C3–C4 alkane-oxidizing sulfate-reducers. These data further constrain the potential influence of alkane oxidation on sulfate reduction rates (SRRs) in cold hydrocarbon-rich sediments, provide insight into their contribution to local carbon cycling, and illustrate the extent to which short-chain alkanes can serve as electron donors and govern microbial

  11. Geomicrobiological linkages between short-chain alkane consumption and sulfate reduction rates in seep sediments.

    PubMed

    Bose, Arpita; Rogers, Daniel R; Adams, Melissa M; Joye, Samantha B; Girguis, Peter R

    2013-01-01

    Marine hydrocarbon seeps are ecosystems that are rich in methane, and, in some cases, short-chain (C2-C5) and longer alkanes. C2-C4 alkanes such as ethane, propane, and butane can be significant components of seeping fluids. Some sulfate-reducing microbes oxidize short-chain alkanes anaerobically, and may play an important role in both the competition for sulfate and the local carbon budget. To better understand the anaerobic oxidation of short-chain n-alkanes coupled with sulfate-reduction, hydrocarbon-rich sediments from the Gulf of Mexico (GoM) were amended with artificial, sulfate-replete seawater and one of four n-alkanes (C1-C4) then incubated under strict anaerobic conditions. Measured rates of alkane oxidation and sulfate reduction closely follow stoichiometric predictions that assume the complete oxidation of alkanes to CO2 (though other sinks for alkane carbon likely exist). Changes in the δ(13)C of all the alkanes in the reactors show enrichment over the course of the incubation, with the C3 and C4 incubations showing the greatest enrichment (4.4 and 4.5‰, respectively). The concurrent depletion in the δ(13)C of dissolved inorganic carbon (DIC) implies a transfer of carbon from the alkane to the DIC pool (-3.5 and -6.7‰ for C3 and C4 incubations, respectively). Microbial community analyses reveal that certain members of the class Deltaproteobacteria are selectively enriched as the incubations degrade C1-C4 alkanes. Phylogenetic analyses indicate that distinct phylotypes are enriched in the ethane reactors, while phylotypes in the propane and butane reactors align with previously identified C3-C4 alkane-oxidizing sulfate-reducers. These data further constrain the potential influence of alkane oxidation on sulfate reduction rates (SRRs) in cold hydrocarbon-rich sediments, provide insight into their contribution to local carbon cycling, and illustrate the extent to which short-chain alkanes can serve as electron donors and govern microbial community

  12. Catalytic Chemistry.

    ERIC Educational Resources Information Center

    Borer, Londa; And Others

    1996-01-01

    Describes an approach for making chemistry relevant to everyday life. Involves the study of kinetics using the decomposition of hydrogen peroxide by vegetable juices. Allows students to design and carry out experiments and then draw conclusions from their results. (JRH)

  13. Chemistry Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1980

    1980-01-01

    Describes equipment, activities, and experiments useful in chemistry instruction, including among others, a rapid method to determine available chlorine in bleach, simple flame testing apparatus, and a simple apparatus demonstrating the technique of flash photolysis. (SK)

  14. Chemistry Notes

    ERIC Educational Resources Information Center

    School Science Review, 1973

    1973-01-01

    Several ideas are proposed for chemistry teachers to try in their classrooms. Subjects included are polymerization of acrylate, polymerization of styrene, conductivity, pollution, preparation of chlorine, redox equations, chemiluminescence, and molecular sieves. (PS)

  15. Nuclear Chemistry.

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1979

    1979-01-01

    Provides a brief review of the latest developments in nuclear chemistry. Nuclear research today is directed toward increased activity in radiopharmaceuticals and formation of new isotopes by high-energy, heavy-ion collisions. (Author/BB)

  16. Chemistry Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1981

    1981-01-01

    Describes 13 activities, experiments and demonstrations, including the preparation of iron (III) chloride, simple alpha-helix model, investigating camping gas, redox reactions of some organic compounds, a liquid crystal thermometer, and the oxidation number concept in organic chemistry. (JN)

  17. Precolumbian Chemistry.

    ERIC Educational Resources Information Center

    Robinson, Janet Bond

    1995-01-01

    Describes the content and development of a curriculum that provides an approach to descriptive chemistry and the history of technology through consideration of the pottery, metallurgy, pigments, dyes, agriculture, and medicine of pre-Columbian people. (DDR)

  18. The genome sequence of Desulfatibacillum alkenivorans AK-01: a blueprint for anaerobic alkane oxidation.

    PubMed

    Callaghan, A V; Morris, B E L; Pereira, I A C; McInerney, M J; Austin, R N; Groves, J T; Kukor, J J; Suflita, J M; Young, L Y; Zylstra, G J; Wawrik, B

    2012-01-01

    Desulfatibacillum alkenivorans AK-01 serves as a model organism for anaerobic alkane biodegradation because of its distinctive biochemistry and metabolic versatility. The D. alkenivorans genome provides a blueprint for understanding the genetic systems involved in alkane metabolism including substrate activation, CoA ligation, carbon-skeleton rearrangement and decarboxylation. Genomic analysis suggested a route to regenerate the fumarate needed for alkane activation via methylmalonyl-CoA and predicted the capability for syntrophic alkane metabolism, which was experimentally verified. Pathways involved in the oxidation of alkanes, alcohols, organic acids and n-saturated fatty acids coupled to sulfate reduction and the ability to grow chemolithoautotrophically were predicted. A complement of genes for motility and oxygen detoxification suggests that D. alkenivorans may be physiologically adapted to a wide range of environmental conditions. The D. alkenivorans genome serves as a platform for further study of anaerobic, hydrocarbon-oxidizing microorganisms and their roles in bioremediation, energy recovery and global carbon cycling.

  19. A Discovery-Based Experiment Involving Rearrangement in the Conversion of Alcohols to Alkyl Halides: Permanent Magnet [to the thirteenth power]C NMR in the First-Semester Organic Chemistry Lab

    ERIC Educational Resources Information Center

    Kjonaas, Richard A.; Tucker, Ryand J. F.

    2008-01-01

    The use of permanent magnet [to the thirteenth power]C NMR in large-section first-semester organic chemistry lab courses is limited by the availability of experiments that not only hinge on first-semester lecture topics, but which also produce at least 0.5 mL of neat liquid sample. This article reports a discovery-based experiment that meets both…

  20. Stratospheric chemistry

    SciTech Connect

    Brune, W.H. )

    1991-01-01

    Advances in stratospheric chemistry made by investigators in the United States from 1987 to 1990 are reviewed. Subject areas under consideration include photochemistry of the polar stratosphere, photochemistry of the global stratosphere, and assessments of inadvertent modification of the stratosphere by anthropogenic activity. Particular attention is given to early observations and theories, gas phase chemistry, Antarctic observations, Arctic observations, odd-oxygen, odd-hydrogen, odd-nitrogen, halogens, aerosols, modeling of stratospheric ozone, and reactive nitrogen effects.

  1. Analyses of n-alkanes degrading community dynamics of a high-temperature methanogenic consortium enriched from production water of a petroleum reservoir by a combination of molecular techniques.

    PubMed

    Zhou, Lei; Li, Kai-Ping; Mbadinga, Serge Maurice; Yang, Shi-Zhong; Gu, Ji-Dong; Mu, Bo-Zhong

    2012-08-01

    Despite the knowledge on anaerobic degradation of hydrocarbons and signature metabolites in the oil reservoirs, little is known about the functioning microbes and the related biochemical pathways involved, especially about the methanogenic communities. In the present study, a methanogenic consortium enriched from high-temperature oil reservoir production water and incubated at 55 °C with a mixture of long chain n-alkanes (C(15)-C(20)) as the sole carbon and energy sources was characterized. Biodegradation of n-alkanes was observed as methane production in the alkanes-amended methanogenic enrichment reached 141.47 μmol above the controls after 749 days of incubation, corresponding to 17 % of the theoretical total. GC-MS analysis confirmed the presence of putative downstream metabolites probably from the anaerobic biodegradation of n-alkanes and indicating an incomplete conversion of the n-alkanes to methane. Enrichment cultures taken at different incubation times were subjected to microbial community analysis. Both 16S rRNA gene clone libraries and DGGE profiles showed that alkanes-degrading community was dynamic during incubation. The dominant bacterial species in the enrichment cultures were affiliated with Firmicutes members clustering with thermophilic syntrophic bacteria of the genera Moorella sp. and Gelria sp. Other represented within the bacterial community were members of the Leptospiraceae, Thermodesulfobiaceae, Thermotogaceae, Chloroflexi, Bacteroidetes and Candidate Division OP1. The archaeal community was predominantly represented by members of the phyla Crenarchaeota and Euryarchaeota. Corresponding sequences within the Euryarchaeota were associated with methanogens clustering with orders Methanomicrobiales, Methanosarcinales and Methanobacteriales. On the other hand, PCR amplification for detection of functional genes encoding the alkylsuccinate synthase α-subunit (assA) was positive in the enrichment cultures. Moreover, the appearance of a new ass

  2. Genes involved in alkane degradation in the Alcanivorax hongdengensis strain A-11-3.

    PubMed

    Wang, Wanpeng; Shao, Zongze

    2012-04-01

    Alcanivorax hongdengensis A-11-3 is a newly identified type strain isolated from the surface water of the Malacca and Singapore Straits that can degrade a wide range of alkanes. To understand the degradation mechanism of this strain, the genes encoding alkane hydroxylases were obtained by PCR screening and shotgun sequencing of a genomic fosmid library. Six genes involved in alkane degradation were found, including alkB1, alkB2, p450-1, p450-2, p450-3 and almA. Heterogeneous expression analysis confirmed their functions as alkane oxidases in Pseudomonas putida GPo12 (pGEc47ΔB) or Pseudomonas fluorescens KOB2Δ1. Q-PCR revealed that the transcription of alkB1 and alkB2 was enhanced in the presence of n-alkanes C(12) to C(24); three p450 genes were up-regulated by C(8)-C(16) n-alkanes at different levels, whereas enhanced expression of almA was observed when strain A-11-3 grew with long-chain alkanes (C(24) to C(36)). In the case of branched alkanes, pristane significantly enhanced the expression of alkB1, p450-3 and almA. The six genes enable strain A-11-3 to degrade short (C(8)) to long (C(36)) alkanes that are straight or branched. The ability of A. hongdengensis A-11-3 to thrive in oil-polluted marine environments may be due to this strain's multiple systems for alkane degradation and its range of substrates.

  3. 40 CFR 721.10625 - Distillation bottoms, alkylated benzene by-product, brominated and bromo diphenyl alkane (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... benzene by-product, brominated and bromo diphenyl alkane (generic). 721.10625 Section 721.10625 Protection... Distillation bottoms, alkylated benzene by-product, brominated and bromo diphenyl alkane (generic). (a... generically as distillation bottoms, alkylated benzene by-product, brominated and bromo diphenyl alkane...

  4. 40 CFR 721.10625 - Distillation bottoms, alkylated benzene by-product, brominated and bromo diphenyl alkane (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... benzene by-product, brominated and bromo diphenyl alkane (generic). 721.10625 Section 721.10625 Protection... Distillation bottoms, alkylated benzene by-product, brominated and bromo diphenyl alkane (generic). (a... generically as distillation bottoms, alkylated benzene by-product, brominated and bromo diphenyl alkane...

  5. 40 CFR 721.10178 - Distillates (Fischer-Tropsch), hydroisomerized middle, C10-13-branched alkane fraction.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...), hydroisomerized middle, C10-13-branched alkane fraction. 721.10178 Section 721.10178 Protection of Environment...), hydroisomerized middle, C10-13-branched alkane fraction. (a) Chemical substance and significant new uses subject... middle, C10-13-branched alkane fraction (PMN P-04-319; CAS No. 642928-30-1) is subject to reporting...

  6. Selective catalytic process for conversion of light naphtha to aromatics

    SciTech Connect

    Law, D.V.; Tamm, P.W.; Detz, C.M.

    1987-01-01

    AROMAX catalyst represents a unique advance in the development of modern reforming catalysts. The catalyst employs a zeolite to take advantage of a conversion chemistry that is entirely different from that of conventional reforming catalysts. This process chemistry, however, can still be carried out under process conditions which are essentially identical to those of conventional reforming. The result is the use of conventional designs and hardware to achieve highly efficient conversion of previously undesirable light feedstocks to high value aromatics.

  7. Additional chain-branching pathways in the low-temperature oxidation of branched alkanes

    SciTech Connect

    Wang, Zhandong; Zhang, Lidong; Moshammer, Kai; Popolan-Vaida, Denisia M.; Shankar, Vijai Shankar Bhavani; Lucassen, Arnas; Hemken, Christian; Taatjes, Craig A.; Leone, Stephen R.; Kohse-Hoinghaus, Katharina; Hansen, Nils; Dagaut, Philippe; Sarathy, S. Mani

    2015-12-31

    Chain-branching reactions represent a general motif in chemistry, encountered in atmospheric chemistry, combustion, polymerization, and photochemistry; the nature and amount of radicals generated by chain-branching are decisive for the reaction progress, its energy signature, and the time towards its completion. In this study, experimental evidence for two new types of chain-branching reactions is presented, based upon detection of highly oxidized multifunctional molecules (HOM) formed during the gas-phase low-temperature oxidation of a branched alkane under conditions relevant to combustion. The oxidation of 2,5-dimethylhexane (DMH) in a jet-stirred reactor (JSR) was studied using synchrotron vacuum ultra-violet photoionization molecular beam mass spectrometry (SVUV-PI-MBMS). Specifically, species with four and five oxygen atoms were probed, having molecular formulas of C8H14O4 (e.g., diketo-hydroperoxide/keto-hydroperoxy cyclic ether) and C8H16O5 (e.g., keto-dihydroperoxide/dihydroperoxy cyclic ether), respectively. The formation of C8H16O5 species involves alternative isomerization of OOQOOH radicals via intramolecular H-atom migration, followed by third O2 addition, intramolecular isomerization, and OH release; C8H14O4 species are proposed to result from subsequent reactions of C8H16O5 species. The mechanistic pathways involving these species are related to those proposed as a source of low-volatility highly oxygenated species in Earth's troposphere. At the higher temperatures relevant to auto-ignition, they can result in a net increase of hydroxyl radical production, so these are additional radical chain-branching pathways for ignition. Furthermore, the results presented herein extend the conceptual basis of reaction mechanisms used to predict the reaction behavior of ignition, and have

  8. Copper-Catalyzed Intermolecular Amidation and Imidation of Unactivated Alkanes

    PubMed Central

    2015-01-01

    We report a set of rare copper-catalyzed reactions of alkanes with simple amides, sulfonamides, and imides (i.e., benzamides, tosylamides, carbamates, and phthalimide) to form the corresponding N-alkyl products. The reactions lead to functionalization at secondary C–H bonds over tertiary C–H bonds and even occur at primary C–H bonds. [(phen)Cu(phth)] (1-phth) and [(phen)Cu(phth)2] (1-phth2), which are potential intermediates in the reaction, have been isolated and fully characterized. The stoichiometric reactions of 1-phth and 1-phth2 with alkanes, alkyl radicals, and radical probes were investigated to elucidate the mechanism of the amidation. The catalytic and stoichiometric reactions require both copper and tBuOOtBu for the generation of N-alkyl product. Neither 1-phth nor 1-phth2 reacted with excess cyclohexane at 100 °C without tBuOOtBu. However, the reactions of 1-phth and 1-phth2 with tBuOOtBu afforded N-cyclohexylphthalimide (Cy-phth), N-methylphthalimide, and tert-butoxycyclohexane (Cy-OtBu) in approximate ratios of 70:20:30, respectively. Reactions with radical traps support the intermediacy of a tert-butoxy radical, which forms an alkyl radical intermediate. The intermediacy of an alkyl radical was evidenced by the catalytic reaction of cyclohexane with benzamide in the presence of CBr4, which formed exclusively bromocyclohexane. Furthermore, stoichiometric reactions of [(phen)Cu(phth)2] with tBuOOtBu and (Ph(Me)2CO)2 at 100 °C without cyclohexane afforded N-methylphthalimide (Me-phth) from β-Me scission of the alkoxy radicals to form a methyl radical. Separate reactions of cyclohexane and d12-cyclohexane with benzamide showed that the turnover-limiting step in the catalytic reaction is the C–H cleavage of cyclohexane by a tert-butoxy radical. These mechanistic data imply that the tert-butoxy radical reacts with the C–H bonds of alkanes, and the subsequent alkyl radical combines with 1-phth2 to form the corresponding N-alkyl imide product

  9. Characterization of a CYP153 alkane hydroxylase gene in a Gram-positive Dietzia sp. DQ12-45-1b and its "team role" with alkW1 in alkane degradation.

    PubMed

    Nie, Yong; Liang, Jie-Liang; Fang, Hui; Tang, Yue-Qin; Wu, Xiao-Lei

    2014-01-01

    CYP153 and AlkB-like hydroxylases were recently discovered in Gram-positive alkane-degrading bacteria. However, it is unclear whether they cooperate with each other in alkane degradation as they do in Gram-negative bacteria. In this paper, we cloned the CYP153 gene from a representative Gram-positive alkane-degrading bacterium, Dietzia sp. DQ12-45-1b. The CYP153 gene transcription in Dietzia sp. DQ12-45-1b and heterologous expression in alkB gene knockout mutant strain Pseudomonas fluorescens KOB2∆1 both confirmed the functions of CYP153 on C6-C10 n-alkanes degradation, but not on longer chain-length n-alkanes. In addition, substrate-binding analysis of the purified CYP153 protein revealed different substrate affinities to C6-C16 n-alkanes, confirming n-alkanes binding to CYP153 protein. Along with AlkW1, an AlkB-like alkane hydroxylase in Dietzia sp. DQ12-45-1b, a teamwork pattern was found in n-alkane degradation, i.e. CYP153 was responsible for hydroxylating n-alkanes shorter than C10 while AlkW1 was responsible for those longer than C14. Further sequence analysis suggested that the high horizontal gene transfer (HGT) potential of CYP153 genes may be universal in Gram-positive alkane-degrading actinomycetes that contain both alkB and CYP153 genes.

  10. Cometabolism of Methyl tertiary Butyl Ether and Gaseous n-Alkanes by Pseudomonas mendocina KR-1 Grown on C5 to C8 n-Alkanes

    PubMed Central

    Smith, Christy A.; O'Reilly, Kirk T.; Hyman, Michael R.

    2003-01-01

    Pseudomonas mendocina KR-1 grew well on toluene, n-alkanes (C5 to C8), and 1° alcohols (C2 to C8) but not on other aromatics, gaseous n-alkanes (C1 to C4), isoalkanes (C4 to C6), 2° alcohols (C3 to C8), methyl tertiary butyl ether (MTBE), or tertiary butyl alcohol (TBA). Cells grown under carbon-limited conditions on n-alkanes in the presence of MTBE (42 μmol) oxidized up to 94% of the added MTBE to TBA. Less than 3% of the added MTBE was oxidized to TBA when cells were grown on either 1° alcohols, toluene, or dextrose in the presence of MTBE. Concentrated n-pentane-grown cells oxidized MTBE to TBA without a lag phase and without generating tertiary butyl formate (TBF) as an intermediate. Neither TBF nor TBA was consumed by n-pentane-grown cells, while formaldehyde, the expected C1 product of MTBE dealkylation, was rapidly consumed. Similar Ks values for MTBE were observed for cells grown on C5 to C8 n-alkanes (12.95 ± 2.04 mM), suggesting that the same enzyme oxidizes MTBE in cells grown on each n-alkane. All growth-supporting n-alkanes (C5 to C8) inhibited MTBE oxidation by resting n-pentane-grown cells. Propane (Ki = 53 μM) and n-butane (Ki = 16 μM) also inhibited MTBE oxidation, and both gases were also consumed by cells during growth on n-pentane. Cultures grown on C5 to C8 n-alkanes also exhibited up to twofold-higher levels of growth in the presence of propane or n-butane, whereas no growth stimulation was observed with methane, ethane, MTBE, TBA, or formaldehyde. The results are discussed in terms of their impacts on our understanding of MTBE biodegradation and cometabolism. PMID:14660389

  11. Chain length dependence of the thermodynamic properties of linear and cyclic alkanes and polymers.

    PubMed

    Huang, Dinghai; Simon, Sindee L; McKenna, Gregory B

    2005-02-22

    The specific heat capacity was measured with step-scan differential scanning calorimetry for linear alkanes from pentane (C(5)H(12)) to nonadecane (C(19)H(40)), for several cyclic alkanes, for linear and cyclic polyethylenes, and for a linear and a cyclic polystyrene. For the linear alkanes, the specific heat capacity in the equilibrium liquid state decreases as chain length increases; above a carbon number N of 10 (decane) the specific heat asymptotes to a constant value. For the cyclic alkanes, the heat capacity in the equilibrium liquid state is lower than that of the corresponding linear chains and increases with increasing chain length. At high enough molecular weights, the heat capacities of cyclic and linear molecules are expected to be equal, and this is found to be the case for the polyethylenes and polystyrenes studied. In addition, the thermal properties of the solid-liquid and the solid-solid transitions are examined for the linear and cyclic alkanes; solid-solid transitions are observed only in the odd-numbered alkanes. The thermal expansion coefficients and the specific volumes of the linear and cyclic alkanes are also calculated from literature data and compared with the trends in the specific heats.

  12. MIR and NIR group spectra of n-alkanes and 1-chloroalkanes

    NASA Astrophysics Data System (ADS)

    Kwaśniewicz, Michał; Czarnecki, Mirosław A.

    2015-05-01

    Numerous attempts were undertaken to resolve the absorption originating from different parts of alkanes. The separation of the contributions from the terminal and midchain methylene units was observed only in the spectra of solid alkanes at low temperatures. On the other hand, for liquid alkanes this effect was not reported as yet. In this study, ATR-IR, Raman and NIR spectra of eight n-alkanes and seven 1-chloroalkanes in the liquid phase were measured from 1000 to 12,000 cm-1. The spectra were analyzed by using two-dimensional (2D) correlation approach and chemometrics methods. It was shown that in 2D asynchronous contour plots, constructed from the spectra of n-alkanes and 1-chloroalkanes, the methylene band was resolved into two components. These two components were assigned to the terminal and midchain methylene groups. For the first time, the contributions from these two molecular fragments were resolved in the spectra of liquid n-alkanes and 1-chloroalkanes. MCR-ALS resolved these spectra into two components that were assigned to the ethyl and midchain methylene groups. These components represent the group spectra that can be used for assignment, spectral analysis and prediction of unknown spectra. The spectral prediction based on the group spectra provides very good results for n-alkanes, especially in the first and second overtone regions.

  13. Oxidation of Alkanes to Internal Monoalkenes by a Nocardia1

    PubMed Central

    Abbott, Bernard J.; Casida, L. E.

    1968-01-01

    A suspension of glucose-grown resting cells of Nocardia salmonicolor PSU-N-18 oxidized hexadecane to a mixture of internal monohexadecenes. The latter exhibited a cis configuration, and the mixture consisted of the following: 7-hexadecene, 80%; 8-hexadecene, 18%; and 6-hexadecene, 2%. Alkanes other than hexadecane also were unsaturated by the resting cells, and the composition of the monoalkenes resulting from octadecane dehydrogenation was 9-octadecene, 91%; 8-octadecene, 2 to 3%; 7-octadecene, 1 to 2%; and 6- and 5-octadecenes, trace amounts. Only minute quantities of unsaturated hydrocarbons accumulated during growth on hexadecane and during resting-cell incubation of hexadecane-grown cells with hexadecane. The dehydrogenation of hydrocarbons did not appear to be related to the formation of unsaturated fatty acids. It is postulated that double bond insertion may represent an early step in a new pathway of aliphatic hydrocarbon degradation. PMID:5686017

  14. Communication: Stiffening of dilute alcohol and alkane mixtures with water

    NASA Astrophysics Data System (ADS)

    Ashbaugh, Henry S.; Wesley Barnett, J.; Saltzman, Alexander; Langrehr, Mae E.; Houser, Hayden

    2016-11-01

    We probe the anomalous compressibilities of dilute mixtures of alcohols and alkane gases in water using molecular simulations. The response to increasing solute concentration depends sensitively on temperature, with the compressibility decreasing upon solute addition at low temperatures and increasing at elevated temperatures. The thermodynamic origin of stiffening is directly tied to the solute's partial compressibility, which is negative at low temperatures and rises above water's compressibility with increasing temperature. Hydration shell waters concurrently tilt towards clathrate-like structures at low temperatures that fade with heating. Kirkwood-Buff theory traces the solute's partial compressibility to changes in the solute-water association volume upon heating and incongruous packing of waters at the boundary between the more structured hydration shell and bulk water.

  15. Thermal analysis of n-alkane phase change material mixtures

    SciTech Connect

    Chio, Y.I.; Choi, E.; Lorsch, H.G.

    1991-03-31

    Tests were performed to characterize the thermal behavior of it number of n-alkanes to be used as phase change materials (PCMs) in district cooling applications. Hexadecane and tetradecane were mixed in different fractions, and their thermal behavior was experimentally evaluated. Test results for melting temperature and fusion energy for laboratory grade hexadecane and tetradecane showed good agreement with datain the literature. However, values for commercial grade hexadecane were found to be considerably lower. In the range of temperatures of interest for district cooling, mixtures of tetradecane and hexadecane can be treated as homogeneous substances. However, their heats of fusion are slightly lower than those of the pure substances. Their melting temperatures are also lower by an amount that can be predicted.

  16. Hydrogen isotope exchange between n-alkanes and water under hydrothermal conditions

    NASA Astrophysics Data System (ADS)

    Reeves, Eoghan P.; Seewald, Jeffrey S.; Sylva, Sean P.

    2012-01-01

    To investigate the extent of hydrogen isotope (2H and 1H) exchange between hydrocarbons and water under hydrothermal conditions, we performed experiments heating C1-C5n-alkanes in aqueous solutions of varying initial 2H/1H ratios in the presence of a pyrite-pyrrhotite-magnetite redox buffer at 323 °C and 35-36 MPa. Extensive and reversible incorporation of water-derived hydrogen into C2-C5n-alkanes was observed on timescales of months. In contrast, comparatively minor exchange was observed for CH4. Isotopic exchange is facilitated by reversible equilibration of n-alkanes and their corresponding n-alkenes with H2 derived from the disproportionation of water. Rates of δ2H variation in C3+n-alkanes decreased with time, a trend that is consistent with an asymptotic approach to steady state isotopic compositions regulated by alkane-water isotopic equilibrium. Substantially slower δ2H variation was observed for ethane relative to C3-C5n-alkanes, suggesting that the greater stability of C3+ alkenes and isomerization reactions may dramatically enhance rates of 2H/1H exchange in C3+n-alkanes. Thus, in reducing aqueous environments, reversible reaction of alkanes and their corresponding alkenes facilitates rapid 2H/1H exchange between water and alkyl-bound hydrogen on relatively short geological timescales at elevated temperatures and pressures. The proximity of some thermogenic and purported abiogenic alkane δ2H values to those predicted for equilibrium 2H/1H fractionation with ambient water suggests that this process may regulate the δ2H signatures of some naturally occurring hydrocarbons.

  17. CYP153A6, a Soluble P450 Oxygenase Catalyzing Terminal-Alkane Hydroxylation

    PubMed Central

    Funhoff, Enrico G.; Bauer, Ulrich; García-Rubio, Inés; Witholt, Bernard; van Beilen, Jan B.

    2006-01-01

    The first and key step in alkane metabolism is the terminal hydroxylation of alkanes to 1-alkanols, a reaction catalyzed by a family of integral-membrane diiron enzymes related to Pseudomonas putida GPo1 AlkB, by a diverse group of methane, propane, and butane monooxygenases and by some membrane-bound cytochrome P450s. Recently, a family of cytoplasmic P450 enzymes was identified in prokaryotes that allow their host to grow on aliphatic alkanes. One member of this family, CYP153A6 from Mycobacterium sp. HXN-1500, hydroxylates medium-chain-length alkanes (C6 to C11) to 1-alkanols with a maximal turnover number of 70 min−1 and has a regiospecificity of ≥95% for the terminal carbon atom position. Spectroscopic binding studies showed that C6-to-C11 aliphatic alkanes bind in the active site with Kd values varying from ∼20 nM to 3.7 μM. Longer alkanes bind more strongly than shorter alkanes, while the introduction of sterically hindering groups reduces the affinity. This suggests that the substrate-binding pocket is shaped such that linear alkanes are preferred. Electron paramagnetic resonance spectroscopy in the presence of the substrate showed the formation of an enzyme-substrate complex, which confirmed the binding of substrates observed in optical titrations. To rationalize the experimental observations on a molecular scale, homology modeling of CYP153A6 and docking of substrates were used to provide the first insight into structural features required for terminal alkane hydroxylation. PMID:16816194

  18. Biodegradation of variable-chain-length alkanes at low temperatures by a psychrotrophic Rhodococcus sp.

    SciTech Connect

    Whyte, L.G.; Hawari, J.; Zhou, E.; Bourbonniere, L.; Greer, C.W.; Inniss, W.E.

    1998-07-01

    The psychrotroph Rhodococcus sp. strain Q15 was examined for its ability to degrade individual n-alkanes and diesel fuel at low temperatures, and its alkane catabolic pathway was investigated by biochemical and genetic techniques. At 0 and 5 C, Q15 mineralized the short-chain alkanes dodecane and hexadecane to a greater extent than that observed for the long-chain alkanes octacosane and dotriacontane. Q15 utilized a broad range of aliphatics (C{sub 10} to C{sub 21} alkanes, branched alkanes, and a substituted cyclohexane) present in diesel fuel at 5 C. Mineralization of hexadecane at 5 C was significantly greater in both hydrocarbon-contaminated and pristine soil microcosms seeded with Q15 cells than in uninoculated control soil microcosms. The detection of hexadecane and dodecane metabolic intermediates (1-hexadecanol and 2-hexadecanol and 1-do-decanol and 2-dodecanone, respectively) by solid-phase microextraction-gas chromatography-mass spectrometry and the utilization of potential metabolic intermediates indicated that Q15 oxidizes alkanes by both the terminal oxidation pathway and the subterminal oxidation pathway. Genetic characterization by PCR and nucleotide sequence analysis indicated that Q15 possesses an aliphatic aldehyde dehydrogenase gene highly homologous to the Rhodococcus erythropolis thcA gene. Rhodococcus sp. strain Q15 possessed two large plasmids of approximately 90 and 115 kb (shown to mediate Cd resistance) which were not required for alkane mineralization, although the 90-kb plasmid enhanced mineralization of some alkanes and growth on diesel oil at both 5 and 25 C.

  19. Biodegradation of Variable-Chain-Length Alkanes at Low Temperatures by a Psychrotrophic Rhodococcus sp.

    PubMed Central

    Whyte, Lyle G.; Hawari, Jalal; Zhou, Edward; Bourbonnière, Luc; Inniss, William E.; Greer, Charles W.

    1998-01-01

    The psychrotroph Rhodococcus sp. strain Q15 was examined for its ability to degrade individual n-alkanes and diesel fuel at low temperatures, and its alkane catabolic pathway was investigated by biochemical and genetic techniques. At 0 and 5°C, Q15 mineralized the short-chain alkanes dodecane and hexadecane to a greater extent than that observed for the long-chain alkanes octacosane and dotriacontane. Q15 utilized a broad range of aliphatics (C10 to C21 alkanes, branched alkanes, and a substituted cyclohexane) present in diesel fuel at 5°C. Mineralization of hexadecane at 5°C was significantly greater in both hydrocarbon-contaminated and pristine soil microcosms seeded with Q15 cells than in uninoculated control soil microcosms. The detection of hexadecane and dodecane metabolic intermediates (1-hexadecanol and 2-hexadecanol and 1-dodecanol and 2-dodecanone, respectively) by solid-phase microextraction–gas chromatography-mass spectrometry and the utilization of potential metabolic intermediates indicated that Q15 oxidizes alkanes by both the terminal oxidation pathway and the subterminal oxidation pathway. Genetic characterization by PCR and nucleotide sequence analysis indicated that Q15 possesses an aliphatic aldehyde dehydrogenase gene highly homologous to the Rhodococcus erythropolis thcA gene. Rhodococcus sp. strain Q15 possessed two large plasmids of approximately 90 and 115 kb (shown to mediate Cd resistance) which were not required for alkane mineralization, although the 90-kb plasmid enhanced mineralization of some alkanes and growth on diesel oil at both 5 and 25°C. PMID:9647833

  20. n-alkane profiles of engine lubricating oil and particulate matter by molecular sieve extraction.

    PubMed

    Caravaggio, Gianni A; Charland, Jean-Pierre; Macdonald, Penny; Graham, Lisa

    2007-05-15

    As part of the Canadian Atmospheric Fine Particle Research Program to obtain reliable primary source emission profiles, a molecular sieve method was developed to reliably determine n-alkanes in lubricating oils, vehicle emissions, and mobile source dominated ambient particulate matter (PM). This work was also initiated to better calculate carbon preference index values (CPI: the ratio of the sums of odd over even n-alkanes), a parameter for estimating anthropogenic versus biogenic contributions in PM. n-Alkanes in lubricating oil and mobile source dominated PM are difficult to identify and quantify by gas chromatography due to the presence of similar components that cannot be fully resolved. This results in a hump, the unresolved complex mixture (UCM) that leads to incorrect n-alkane concentrations and CPI values. The sieve method yielded better chromatography, unambiguous identification of n-alkanes and allowed examination of differences between n-alkane profiles in light (LDV) and heavy duty vehicle (HDV) lubricating oils that would have been otherwise difficult. These profile differences made it possible to relate the LDV profile to that of the PM samples collected during a tunnel study in August 2001 near Vancouver (British Columbia, Canada). The n-alkane PM data revealed that longer sampling times result in a negative artifact, i.e., the desorption of the more volatile n-alkanes from the filters. Furthermore, the sieve procedure yielded n-alkane data that allowed calculation of accurate CPI values for lubricating oils and PM samples. Finally, this method may prove helpful in estimating the respective diesel and gasoline contributions to ambient PM.

  1. CYP153A6, a soluble P450 oxygenase catalyzing terminal-alkane hydroxylation.

    PubMed

    Funhoff, Enrico G; Bauer, Ulrich; García-Rubio, Inés; Witholt, Bernard; van Beilen, Jan B

    2006-07-01

    The first and key step in alkane metabolism is the terminal hydroxylation of alkanes to 1-alkanols, a reaction catalyzed by a family of integral-membrane diiron enzymes related to Pseudomonas putida GPo1 AlkB, by a diverse group of methane, propane, and butane monooxygenases and by some membrane-bound cytochrome P450s. Recently, a family of cytoplasmic P450 enzymes was identified in prokaryotes that allow their host to grow on aliphatic alkanes. One member of this family, CYP153A6 from Mycobacterium sp. HXN-1500, hydroxylates medium-chain-length alkanes (C6 to C11) to 1-alkanols with a maximal turnover number of 70 min(-1) and has a regiospecificity of > or =95% for the terminal carbon atom position. Spectroscopic binding studies showed that C6-to-C11 aliphatic alkanes bind in the active site with Kd values varying from approximately 20 nM to 3.7 microM. Longer alkanes bind more strongly than shorter alkanes, while the introduction of sterically hindering groups reduces the affinity. This suggests that the substrate-binding pocket is shaped such that linear alkanes are preferred. Electron paramagnetic resonance spectroscopy in the presence of the substrate showed the formation of an enzyme-substrate complex, which confirmed the binding of substrates observed in optical titrations. To rationalize the experimental observations on a molecular scale, homology modeling of CYP153A6 and docking of substrates were used to provide the first insight into structural features required for terminal alkane hydroxylation.

  2. Activated aluminum oxide selectively retaining long chain n-alkanes. Part I, description of the retention properties.

    PubMed

    Fiselier, Katell; Fiorini, Dennis; Grob, Koni

    2009-02-16

    Aluminum oxide activated by heating to 350-400 degrees C retains n-alkanes with more than about 20 carbon atoms, whereas iso-alkanes largely pass the column non-retained. Retention of n-alkanes is strong with n-pentane or n-hexane as mobile phase, but weak or negligible with cyclohexane or iso-octane. It is strongly reduced with increasing column temperature. Even small amounts of polar components, such as modifiers or impurities in the mobile phase, cause the retention of n-alkanes to irreversibly collapse. Since n-alkanes are not more polar than iso-alkanes and long chain n-alkanes not more polar than those of shorter chains, retention by a mechanism based on steric properties is assumed. The sensitivity to deactivation by polar components indicates that polar components and n-alkanes are retained by the same sites. The capacity for retaining n-alkanes is low, with the effect that the retention of n-alkanes depends on the load with retained paraffins. These retention properties are useful for the pre-separation of hydrocarbons in the context of the analysis of mineral oil paraffins in foodstuffs and tissue, where plant n-alkanes, typically ranging from C(23) to C(33), may severely disturb the analysis (subject of Part II).

  3. Polymer Chemistry

    NASA Technical Reports Server (NTRS)

    Williams, Martha; Roberson, Luke; Caraccio, Anne

    2010-01-01

    This viewgraph presentation describes new technologies in polymer and material chemistry that benefits NASA programs and missions. The topics include: 1) What are Polymers?; 2) History of Polymer Chemistry; 3) Composites/Materials Development at KSC; 4) Why Wiring; 5) Next Generation Wiring Materials; 6) Wire System Materials and Integration; 7) Self-Healing Wire Repair; 8) Smart Wiring Summary; 9) Fire and Polymers; 10) Aerogel Technology; 11) Aerogel Composites; 12) Aerogels for Oil Remediation; 13) KSC's Solution; 14) Chemochromic Hydrogen Sensors; 15) STS-130 and 131 Operations; 16) HyperPigment; 17) Antimicrobial Materials; 18) Conductive Inks Formulations for Multiple Applications; and 19) Testing and Processing Equipment.

  4. Chemistry Experiments

    NASA Technical Reports Server (NTRS)

    Brasseur, Guy; Remsberg, Ellis; Purcell, Patrick; Bhatt, Praful; Sage, Karen H.; Brown, Donald E.; Scott, Courtney J.; Ko, Malcolm K. W.; Tie, Xue-Xi; Huang, Theresa

    1999-01-01

    The purpose of the chemistry component of the model comparison is to assess to what extent differences in the formulation of chemical processes explain the variance between model results. Observed concentrations of chemical compounds are used to estimate to what degree the various models represent realistic situations. For readability, the materials for the chemistry experiment are reported in three separate sections. This section discussed the data used to evaluate the models in their simulation of the source gases and the Nitrogen compounds (NO(y)) and Chlorine compounds (Cl(y)) species.

  5. Carboxylic acid reductase is a versatile enzyme for the conversion of fatty acids into fuels and chemical commodities.

    PubMed

    Akhtar, M Kalim; Turner, Nicholas J; Jones, Patrik R

    2013-01-02

    Aliphatic hydrocarbons such as fatty alcohols and petroleum-derived alkanes have numerous applications in the chemical industry. In recent years, the renewable synthesis of aliphatic hydrocarbons has been made possible by engineering microbes to overaccumulate fatty acids. However, to generate end products with the desired physicochemical properties (e.g., fatty aldehydes, alkanes, and alcohols), further conversion of the fatty acid is necessary. A carboxylic acid reductase (CAR) from Mycobacterium marinum was found to convert a wide range of aliphatic fatty acids (C(6)-C(18)) into corresponding aldehydes. Together with the broad-substrate specificity of an aldehyde reductase or an aldehyde decarbonylase, the catalytic conversion of fatty acids to fatty alcohols (C(8)-C(16)) or fatty alkanes (C(7)-C(15)) was reconstituted in vitro. This concept was applied in vivo, in combination with a chain-length-specific thioesterase, to engineer Escherichia coli BL21(DE3) strains that were capable of synthesizing fatty alcohols and alkanes. A fatty alcohol titer exceeding 350 mg·L(-1) was obtained in minimal media supplemented with glucose. Moreover, by combining the CAR-dependent pathway with an exogenous fatty acid-generating lipase, natural oils (coconut oil, palm oil, and algal oil bodies) were enzymatically converted into fatty alcohols across a broad chain-length range (C(8)-C(18)). Together with complementing enzymes, the broad substrate specificity and kinetic characteristics of CAR opens the road for direct and tailored enzyme-catalyzed conversion of lipids into user-ready chemical commodities.

  6. 1-Octanol/Water Partition Coefficients of n-Alkanes from Molecular Simulations of Absolute Solvation Free Energies.

    PubMed

    Garrido, Nuno M; Queimada, António J; Jorge, Miguel; Macedo, Eugénia A; Economou, Ioannis G

    2009-09-08

    The 1-octanol/water partition coefficient is an important thermodynamic variable usually employed to understand and quantify the partitioning of solutes between aqueous and organic phases. It finds widespread use in many empirical correlations to evaluate the environmental fate of pollutants as well as in the design of pharmaceuticals. The experimental evaluation of 1-octanol/water partition coefficients is an expensive and time-consuming procedure, and thus, theoretical estimation methods are needed, particularly when a physical sample of the solute may not yet be available, such as in pharmaceutical screening. 1-Octanol/water partition coefficients can be obtained from Gibbs free energies of solvation of the solute in both the aqueous and the octanol phases. The accurate evaluation of free energy differences remains today a challenging problem in computational chemistry. In order to study the absolute solvation Gibbs free energies in 1-octanol, a solvent that can mimic many properties of important biological systems, free energy calculations for n-alkanes in the range C1-C8 were performed using molecular simulation techniques, following the thermodynamic integration approach. In the first part of this paper, we test different force fields by evaluating their performance in reproducing pure 1-octanol properties. It is concluded that all-atom force fields can provide good accuracy but at the cost of a higher computational time compared to that of the united-atom force fields. Recent versions of united-atom force fields, such as Gromos and TraPPE, provide satisfactory results and are, thus, useful alternatives to the more expensive all-atom models. In the second part of the paper, the Gibbs free energy of solvation in 1-octanol is calculated for several n-alkanes using three force fields to describe the solutes, namely Gromos, TraPPE, and OPLS-AA. Generally, the results obtained are in excellent agreement with the available experimental data and are of similar

  7. Surveys of research in the Chemistry Division, Argonne National Laboratory

    SciTech Connect

    Grazis, B.M.

    1992-11-01

    Research reports are presented on reactive intermediates in condensed phase (radiation chemistry, photochemistry), electron transfer and energy conversion, photosynthesis and solar energy conversion, metal cluster chemistry, chemical dynamics in gas phase, photoionization-photoelectrons, characterization and reactivity of coal and coal macerals, premium coal sample program, chemical separations, heavy elements coordination chemistry, heavy elements photophysics/photochemistry, f-electron interactions, radiation chemistry of high-level wastes (gas generation in waste tanks), ultrafast molecular electronic devices, and nuclear medicine. Separate abstracts have been prepared. Accelerator activites and computer system/network services are also reported.

  8. Surveys of research in the Chemistry Division, Argonne National Laboratory

    SciTech Connect

    Grazis, B.M.

    1992-01-01

    Research reports are presented on reactive intermediates in condensed phase (radiation chemistry, photochemistry), electron transfer and energy conversion, photosynthesis and solar energy conversion, metal cluster chemistry, chemical dynamics in gas phase, photoionization-photoelectrons, characterization and reactivity of coal and coal macerals, premium coal sample program, chemical separations, heavy elements coordination chemistry, heavy elements photophysics/photochemistry, f-electron interactions, radiation chemistry of high-level wastes (gas generation in waste tanks), ultrafast molecular electronic devices, and nuclear medicine. Separate abstracts have been prepared. Accelerator activites and computer system/network services are also reported.

  9. Effect of n-alkanes on asphaltene structuring in petroleum oils.

    PubMed

    Stachowiak, Christian; Viguié, Jean-Romain; Grolier, Jean-Pierre E; Rogalski, Marek

    2005-05-24

    The interactions between asphaltenes and short- to medium-chain n-alkanes were studied using titration microcalorimetry and inverse chromatography. The exothermic heat effects observed upon mixing of asphaltenes and n-alkanes were interpreted in terms of assembling of the two types of compounds into mixed structures. We show that the energy of the interactions between n-alkanes and the asphaltene hydrocarbon chains is close to the energy of the interactions between the asphaltene chains. We propose that the latter interactions are responsible for the formation of the asphaltene aggregates and are the driving force of the aggregate assembly into higher structures.

  10. [Respiratory activity of bacteria Acinetobacter calcoaceticus TM-31 during assimilation of alkane hydrocarbons].

    PubMed

    Ignatov, O V; Grechkina, E V; Muratova, A Iu; Turkovskaia, O V; Ignatov, V V

    2000-01-01

    The respiratory activity of Acinetobacter calcoaceticus TM-31 with resect to alkane hydrocarbons was studied. The dynamics of oxygen consumption by the cells while assimilating n-hexadecane was assayed by a modified technique using an oxygen electrode. The dependence of cell respiratory activity on the amount of n-hexadecane within the concentration range of 0.03-0.66% was determined. It was demonstrated that the cells also displayed respiratory activity towards other medium-chain n-alkanes: hexane, octane, decane, tridecane, and heptadecane. Thus, we demonstrated the possibility of determining alkanes by measuring the respiratory activities of microorganisms.

  11. Photochemical dimerization and functionalization of alkanes, ethers, primary and secondary alcohols, phosphine oxides and silanes

    DOEpatents

    Crabtree, R.H.; Brown, S.H.

    1989-10-17

    The space-time yield and/or the selectivity of the photochemical dimerization of alkanes, ethers, primary and secondary alcohols, phosphine oxides and primary, secondary and tertiary silanes with Hg and U.V. light is enhanced by refluxing the substrate in the irradiated reaction zone at a temperature at which the dimer product condenses and remains condensed promptly upon its formation. Cross-dimerization of the alkanes, ethers and silanes with primary alcohols is disclosed, as is the functionalization to aldehydes of the alkanes with carbon monoxide.

  12. Photochemical dimerization and functionalization of alkanes, ethers, primary and secondary alcohols, phosphine oxides and silanes

    DOEpatents

    Crabtree, Robert H.; Brown, Stephen H.

    1989-01-01

    The space-time yield and/or the selectivity of the photochemical dimerization of alkanes, ethers, primary and secondary alcohols, phosphine oxides and primary, secondary and tertiary silanes with Hg and U.V. light is enhanced by refluxing the substrate in the irradiated reaction zone at a temperature at which the dimer product condenses and remains condensed promptly upon its formation. Cross-dimerization of the alkanes, ethers and silanes with primary alcohols is disclosed, as is the functionalization to aldehydes of the alkanes with carbon monoxide.

  13. Characterization of the medium- and long-chain n-alkanes degrading Pseudomonas aeruginosa strain SJTD-1 and its alkane hydroxylase genes.

    PubMed

    Liu, Huan; Xu, Jing; Liang, Rubing; Liu, Jianhua

    2014-01-01

    A gram-negative aliphatic hydrocarbon-degrading bacterium SJTD-1 isolated from oil-contaminated soil was identified as Pseudomonas aeruginosa by comparative analyses of the 16S rRNA sequence, phenotype, and physiological features. SJTD-1 could efficiently mineralize medium- and long-chain n-alkanes (C12-C30) as its sole carbon source within seven days, showing the most optimal growth on n-hexadecane, followed by n-octadecane, and n-eicosane. In 36 h, 500 mg/L of tetradecane, hexadecane, and octadecane were transformed completely; and 2 g/L n-hexadecane was degraded to undetectable levels within 72 h. Two putative alkane-degrading genes (gene 3623 and gene 4712) were characterized and our results indicated that their gene products were rate-limiting enzymes involved in the synergetic catabolism of C12-C16 alkanes. On the basis of bioinformatics and transcriptional analysis, two P450 monooxygenases, along with a putative AlmA-like oxygenase, were examined. Genetically defective mutants lacking the characteristic alkane hydroxylase failed to degrade n-octadecane, thereby suggesting a different catalytic mechanism for the microbial transformation of alkanes with chain lengths over C18.

  14. Flow reactor studies of non-equilibrium plasma-assisted oxidation of n-alkanes.

    PubMed

    Tsolas, Nicholas; Lee, Jong Guen; Yetter, Richard A

    2015-08-13

    The oxidation of n-alkanes (C1-C7) has been studied with and without the effects of a nanosecond, non-equilibrium plasma discharge at 1 atm pressure from 420 to 1250 K. Experiments have been performed under nearly isothermal conditions in a flow reactor, where reactive mixtures are diluted in Ar to minimize temperature changes from chemical reactions. Sample extraction performed at the exit of the reactor captures product and intermediate species and stores them in a multi-position valve for subsequent identification and quantification using gas chromatography. By fixing the flow rate in the reactor and varying the temperature, reactivity maps for the oxidation of fuels are achieved. Considering all the fuels studied, fuel consumption under the effects of the plasma is shown to have been enhanced significantly, particularly for the low-temperature regime (T<800 K). In fact, multiple transitions in the rates of fuel consumption are observed depending on fuel with the emergence of a negative-temperature-coefficient regime. For all fuels, the temperature for the transition into the high-temperature chemistry is lowered as a consequence of the plasma being able to increase the rate of fuel consumption. Using a phenomenological interpretation of the intermediate species formed, it can be shown that the active particles produced from the plasma enhance alkyl radical formation at all temperatures and enable low-temperature chain branching for fuels C3 and greater. The significance of this result demonstrates that the plasma provides an opportunity for low-temperature chain branching to occur at reduced pressures, which is typically observed at elevated pressures in thermal induced systems.

  15. Chemistry Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1980

    1980-01-01

    Presents 12 chemistry notes for British secondary school teachers. Some of these notes are: (1) a simple device for testing pH-meters; (2) portable fume cupboard safety screen; and (3) Mass spectroscopy-analysis of a mass peak. (HM)

  16. Chemistry Notes

    ERIC Educational Resources Information Center

    School Science Review, 1976

    1976-01-01

    Describes several chemistry projects, including solubility, formula for magnesium oxide, dissociation of dinitrogen tetroxide, use of 1-chloro-2, 4-dinitrobenzene, migration of ions, heats of neutralizations, use of pocket calculators, sonic cleaning, oxidation states of manganese, and cell potentials. Includes an extract from Chemical Age on…

  17. Chemistry Notes

    ERIC Educational Resources Information Center

    School Science Review, 1972

    1972-01-01

    Short articles on the alkylation of aniline, the preparation and properties of perbromate, using scrap copper in chemistry instruction, a safe method of burning hydrogen, and the use of an ion-charge model as an alternative to the mole concept in secondary school instruction. (AL)

  18. Confectionary Chemistry.

    ERIC Educational Resources Information Center

    Levine, Elise Hilf

    1996-01-01

    Presents activities and demonstrations that enable teachers to use various types of confections as tactile experiences to spark chemistry students' interest and generate enthusiasm for learning. Presents uses of candy in teaching about atomic structure, spontaneous nuclear decay, chemical formulas, fractoluminescence, the effect of a molecular…

  19. Chemistry Notes

    ERIC Educational Resources Information Center

    School Science Review, 1972

    1972-01-01

    Short articles on the kinetics of the hydrogen peroxide-iodide ion reaction, simulation of fluidization catalysis, the use of Newman projection diagrams to represent steric relationships in organic chemistry, the use of synthetic substrates for proteolytic enzyme reactions, and two simple clock reactions"--hydrolysis of halogenoalkanes and…

  20. Chemistry Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1983

    1983-01-01

    Presents chemistry experiments, laboratory procedures, demonstrations, teaching suggestions, and classroom materials/activities. These include: game for teaching ionic formulas; method for balancing equations; description of useful redox series; computer programs (with listings) for water electrolysis simulation and for determining chemical…

  1. Chemistry Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1983

    1983-01-01

    Presents chemistry experiments, laboratory procedures, demonstrations, and classroom materials/activities. These include: experiments on colloids, processing of uranium ore, action of heat on carbonates; color test for phenols and aromatic amines; solvent properties of non-electrolytes; stereoscopic applications/methods; a valency balance;…

  2. Chemistry Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1982

    1982-01-01

    Presents procedures, experiments, demonstrations, teaching suggestions, and information on a variety of chemistry topics including, for example, inert gases, light-induced reactions, calculators, identification of substituted acetophenones, the elements, analysis of copper minerals, extraction of metallic strontium, equilibrium, halogens, and…

  3. Chemistry Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1978

    1978-01-01

    Describes some laboratory apparatus, chemistry experiments and demonstrations, such as a Kofler block melting point apparatus, chromatographic investigation of the phosphoric acid, x-ray diffraction, the fountain experiment, endothermic sherbet, the measurement of viscosity, ionization energies and electronic configurations. (GA)

  4. Microscale Chemistry and Green Chemistry: Complementary Pedagogies

    NASA Astrophysics Data System (ADS)

    Singh, Mono M.; Szafran, Zvi; Pike, R. M.

    1999-12-01

    This paper describes the complementary nature of microscale chemistry and green chemistry. Green chemistry emphasizes the concepts of atom economy, source reduction, pathway modification, solvent substitution, and pollution prevention as means of improving the environmental impact of industrial chemistry. Microscale chemistry serves as a tool for incorporating green chemistry ideas across the curriculum in educational institutions. Examples are drawn from microscale laboratory experiments to illustrate the pedagogic connection between the two areas.

  5. Energy Conversion and Combustion Sciences

    DTIC Science & Technology

    2013-03-08

    al) 2-methyl alkanes (LLNL) Biodiesel (LLNL) before 2000 2000-2004 2005-2009 since 2010 iso-octane (LLNL) iso-octane (ENSIC-CNRS) n-butane (LLNL...methyl alkanes (LLNL) Biodiesel (LLNL) before 2000 2000-2004 2005-2009 since 2010 iso-octane (LLNL) iso-octane (ENSIC-CNRS) n-butane (LLNL) CH4...alkanes (LLNL) Biodiesel (LLNL) before 2000 2000-2004 2005-2009 since 2010 iso-octane (LLNL) iso-octane (ENSIC-CNRS) n-butane (LLNL) CH4 (Konnov

  6. Effect of n-alkanes on lipid bilayers depending on headgroups.

    PubMed

    Hishida, Mafumi; Endo, Asami; Nakazawa, Koyomi; Yamamura, Yasuhisa; Saito, Kazuya

    2015-05-01

    Phase behavior and structural properties were examined for phospholipid bilayers having different headgroups (DMPC, DMPS and DMPE) with added n-alkanes to study effect of flexible additives. Change in the temperatures of main transition of the lipid/alkane mixtures against the length of added alkanes depends largely on the headgroup. Theoretical analysis of the change of the temperature of transition indicates that the headgroup dependence is dominantly originated in the strong dependence of total enthalpy on the headgroups. The results of X-ray diffraction show that the enthalpic stabilization due to enhanced packing of acyl chains of the lipid by alkanes in the gel phase causes the headgroup-dependent change in the phase transition behavior. The enhanced packing in the gel phase also leads to easy emergence of the subgel phase with very short relaxation time at room temperature in the DMPE-based bilayers.

  7. Draft Genome Sequence of the Versatile Alkane-Degrading Bacterium Aquabacterium sp. Strain NJ1.

    PubMed

    Masuda, Hisako; Shiwa, Yuh; Yoshikawa, Hirofumi; Zylstra, Gerben J

    2014-12-04

    The draft genome sequence of a soil bacterium, Aquabacterium sp. strain NJ1, capable of utilizing both liquid and solid alkanes, was deciphered. This is the first report of an Aquabacterium genome sequence.

  8. Alkane oxidation with porphyrins and metal complexes thereof having haloalkyl side chains

    DOEpatents

    Wijesekera, T.; Lyons, J.E.; Ellis, P.E. Jr.; Bhinde, M.V.

    1998-06-23

    Transition metal complexes of meso-haloalkylporphyrins are disclosed, wherein the haloalkyl groups contain 2 to 8 carbon atoms have been found to be highly effective catalysts for oxidation of alkanes and for the decomposition of hydroperoxides. 7 figs.

  9. Alkane oxidation with porphyrins and metal complexes thereof having haloalkyl side chains

    DOEpatents

    Wijesekera, Tilak; Lyons, James E.; Ellis, Jr., Paul E.; Bhinde, Manoj V.

    1998-01-01

    Transition metal complexes of meso-haloalkylporphyrins, wherein the haloalkyl groups contain 2 to 8 carbon atoms have been found to be highly effective catalysts for oxidation of alkanes and for the decomposition of hydroperoxides.

  10. Biobased production of alkanes and alkenes through metabolic engineering of microorganisms.

    PubMed

    Kang, Min-Kyoung; Nielsen, Jens

    2016-08-26

    Advancement in metabolic engineering of microorganisms has enabled bio-based production of a range of chemicals, and such engineered microorganism can be used for sustainable production leading to reduced carbon dioxide emission there. One area that has attained much interest is microbial hydrocarbon biosynthesis, and in particular, alkanes and alkenes are important high-value chemicals as they can be utilized for a broad range of industrial purposes as well as 'drop-in' biofuels. Some microorganisms have the ability to biosynthesize alkanes and alkenes naturally, but their production level is extremely low. Therefore, there have been various attempts to recruit other microbial cell factories for production of alkanes and alkenes by applying metabolic engineering strategies. Here we review different pathways and involved enzymes for alkane and alkene production and discuss bottlenecks and possible solutions to accomplish industrial level production of these chemicals by microbial fermentation.

  11. Modeling the Role of Alkanes, Polycyclic Aromatic Hydrocarbons, and Their Oligomers in Secondary Organic Aerosol Formation

    EPA Science Inventory

    A computationally efficient method to treat secondary organic aerosol (SOA) from various length and structure alkanes as well as SOA from polycyclic aromatic hydrocarbons (PAHs) is implemented in the Community Multiscale Air Quality (CMAQ) model to predict aerosol concentrations ...

  12. Liquid alkanes with targeted molecular weights from biomass-derived carbohydrates.

    PubMed

    West, Ryan M; Liu, Zhen Y; Peter, Maximilian; Dumesic, James A

    2008-01-01

    Liquid transportation fuels must burn cleanly and have high energy densities, criteria that are currently fulfilled by petroleum, a non-renewable resource, the combustion of which leads to increasing levels of atmospheric CO(2). An attractive approach for the production of transportation fuels from renewable biomass resources is to convert carbohydrates into alkanes with targeted molecular weights, such as C(8)-C(15) for jet-fuel applications. Targeted n-alkanes can be produced directly from fructose by an integrated process involving first the dehydration of this C(6) sugar to form 5-hydroxymethylfurfural, followed by controlled formation of C-C bonds with acetone to form C(9) and C(15) compounds, and completed by hydrogenation and hydrodeoxygenation reactions to form the corresponding n-alkanes. Analogous reactions are demonstrated starting with 5-methylfurfural or 2-furaldehyde, with the latter leading to C(8) and C(13) n-alkanes.

  13. Biodegradation of variable-chain-length n-alkanes in Rhodococcus opacus R7 and the involvement of an alkane hydroxylase system in the metabolism

    PubMed Central

    2014-01-01

    Rhodococcus opacus R7 is a Gram-positive bacterium isolated from a polycyclic aromatic hydrocarbon contaminated soil for its versatile metabolism; indeed the strain is able to grow on naphthalene, o-xylene, and several long- and medium-chain n-alkanes. In this work we determined the degradation of n-alkanes in Rhodococcus opacus R7 in presence of n-dodecane (C12), n-hexadecane (C16), n-eicosane (C20), n-tetracosane (C24) and the metabolic pathway in presence of C12. The consumption rate of C12 was 88%, of C16 was 69%, of C20 was 51% and of C24 it was 78%. The decrement of the degradation rate seems to be correlated to the length of the aliphatic chain of these hydrocarbons. On the basis of the metabolic intermediates determined by the R7 growth on C12, our data indicated that R. opacus R7 metabolizes medium-chain n-alkanes by the primary alcohol formation. This represents a difference in comparison with other Rhodococcus strains, in which a mixture of the two alcohols was observed. By GC-MSD analysis we also identified the monocarboxylic acid, confirming the terminal oxidation. Moreover, the alkB gene cluster from R. opacus R7 was isolated and its involvement in the n-alkane degradation system was investigated by the cloning of this genomic region into a shuttle-vector E. coli-Rhodococcus to evaluate the alkane hydroxylase activity. Our results showed an increased biodegradation of C12 in the recombinant strain R. erythropolis AP (pTipQT1-alkR7) in comparison with the wild type strain R. erythropolis AP. These data supported the involvement of the alkB gene cluster in the n-alkane degradation in the R7 strain. PMID:25401074

  14. Regulation of the Alkane Hydroxylase CYP153 Gene in a Gram-Positive Alkane-Degrading Bacterium, Dietzia sp. Strain DQ12-45-1b

    PubMed Central

    Liang, Jie-Liang; JiangYang, Jing-Hong

    2015-01-01

    CYP153, one of the most common medium-chain n-alkane hydroxylases belonging to the cytochrome P450 superfamily, is widely expressed in n-alkane-degrading bacteria. CYP153 is also thought to cooperate with AlkB in degrading various n-alkanes. However, the mechanisms regulating the expression of the protein remain largely unknown. In this paper, we studied CYP153 gene transcription regulation by the potential AraC family regulator (CypR) located upstream of the CYP153 gene cluster in a broad-spectrum n-alkane-degrading Gram-positive bacterium, Dietzia sp. strain DQ12-45-1b. We first identified the transcriptional start site and the promoter of the CYP153 gene cluster. Sequence alignment of upstream regions of CYP153 gene clusters revealed high conservation in the −10 and −35 regions in Actinobacteria. Further analysis of the β-galactosidase activity in the CYP153 gene promoter-lacZ fusion cell indicated that the CYP153 gene promoter was induced by n-alkanes comprised of 8 to 14 carbon atoms, but not by derived decanol and decanic acid. Moreover, we constructed a cypR mutant strain and found that the CYP153 gene promoter activities and CYP153 gene transcriptional levels in the mutant strain were depressed compared with those in the wild-type strain in the presence of n-alkanes, suggesting that CypR served as an activator for the CYP153 gene promoter. By comparing CYP153 gene arrangements in Actinobacteria and Proteobacteria, we found that the AraC family regulator is ubiquitously located upstream of the CYP153 gene, suggesting its universal regulatory role in CYP153 gene transcription. We further hypothesize that the observed mode of CYP153 gene regulation is shared by many Actinobacteria. PMID:26567302

  15. Biodegradation of variable-chain-length n-alkanes in Rhodococcus opacus R7 and the involvement of an alkane hydroxylase system in the metabolism.

    PubMed

    Zampolli, Jessica; Collina, Elena; Lasagni, Marina; Di Gennaro, Patrizia

    2014-01-01

    Rhodococcus opacus R7 is a Gram-positive bacterium isolated from a polycyclic aromatic hydrocarbon contaminated soil for its versatile metabolism; indeed the strain is able to grow on naphthalene, o-xylene, and several long- and medium-chain n-alkanes. In this work we determined the degradation of n-alkanes in Rhodococcus opacus R7 in presence of n-dodecane (C12), n-hexadecane (C16), n-eicosane (C20), n-tetracosane (C24) and the metabolic pathway in presence of C12. The consumption rate of C12 was 88%, of C16 was 69%, of C20 was 51% and of C24 it was 78%. The decrement of the degradation rate seems to be correlated to the length of the aliphatic chain of these hydrocarbons. On the basis of the metabolic intermediates determined by the R7 growth on C12, our data indicated that R. opacus R7 metabolizes medium-chain n-alkanes by the primary alcohol formation. This represents a difference in comparison with other Rhodococcus strains, in which a mixture of the two alcohols was observed. By GC-MSD analysis we also identified the monocarboxylic acid, confirming the terminal oxidation. Moreover, the alkB gene cluster from R. opacus R7 was isolated and its involvement in the n-alkane degradation system was investigated by the cloning of this genomic region into a shuttle-vector E. coli-Rhodococcus to evaluate the alkane hydroxylase activity. Our results showed an increased biodegradation of C12 in the recombinant strain R. erythropolis AP (pTipQT1-alkR7) in comparison with the wild type strain R. erythropolis AP. These data supported the involvement of the alkB gene cluster in the n-alkane degradation in the R7 strain.

  16. Regulation of the Alkane Hydroxylase CYP153 Gene in a Gram-Positive Alkane-Degrading Bacterium, Dietzia sp. Strain DQ12-45-1b.

    PubMed

    Liang, Jie-Liang; JiangYang, Jing-Hong; Nie, Yong; Wu, Xiao-Lei

    2015-11-13

    CYP153, one of the most common medium-chain n-alkane hydroxylases belonging to the cytochrome P450 superfamily, is widely expressed in n-alkane-degrading bacteria. CYP153 is also thought to cooperate with AlkB in degrading various n-alkanes. However, the mechanisms regulating the expression of the protein remain largely unknown. In this paper, we studied CYP153 gene transcription regulation by the potential AraC family regulator (CypR) located upstream of the CYP153 gene cluster in a broad-spectrum n-alkane-degrading Gram-positive bacterium, Dietzia sp. strain DQ12-45-1b. We first identified the transcriptional start site and the promoter of the CYP153 gene cluster. Sequence alignment of upstream regions of CYP153 gene clusters revealed high conservation in the -10 and -35 regions in Actinobacteria. Further analysis of the β-galactosidase activity in the CYP153 gene promoter-lacZ fusion cell indicated that the CYP153 gene promoter was induced by n-alkanes comprised of 8 to 14 carbon atoms, but not by derived decanol and decanic acid. Moreover, we constructed a cypR mutant strain and found that the CYP153 gene promoter activities and CYP153 gene transcriptional levels in the mutant strain were depressed compared with those in the wild-type strain in the presence of n-alkanes, suggesting that CypR served as an activator for the CYP153 gene promoter. By comparing CYP153 gene arrangements in Actinobacteria and Proteobacteria, we found that the AraC family regulator is ubiquitously located upstream of the CYP153 gene, suggesting its universal regulatory role in CYP153 gene transcription. We further hypothesize that the observed mode of CYP153 gene regulation is shared by many Actinobacteria.

  17. The quantitative significance of Syntrophaceae and syntrophic partnerships in methanogenic degradation of crude oil alkanes.

    PubMed

    Gray, N D; Sherry, A; Grant, R J; Rowan, A K; Hubert, C R J; Callbeck, C M; Aitken, C M; Jones, D M; Adams, J J; Larter, S R; Head, I M

    2011-11-01

    Libraries of 16S rRNA genes cloned from methanogenic oil degrading microcosms amended with North Sea crude oil and inoculated with estuarine sediment indicated that bacteria from the genera Smithella (Deltaproteobacteria, Syntrophaceace) and Marinobacter sp. (Gammaproteobacteria) were enriched during degradation. Growth yields and doubling times (36 days for both Smithella and Marinobacter) were determined using qPCR and quantitative data on alkanes, which were the predominant hydrocarbons degraded. The growth yield of the Smithella sp. [0.020 g(cell-C)/g(alkane-C)], assuming it utilized all alkanes removed was consistent with yields of bacteria that degrade hydrocarbons and other organic compounds in methanogenic consortia. Over 450 days of incubation predominance and exponential growth of Smithella was coincident with alkane removal and exponential accumulation of methane. This growth is consistent with Smithella's occurrence in near surface anoxic hydrocarbon degrading systems and their complete oxidation of crude oil alkanes to acetate and/or hydrogen in syntrophic partnership with methanogens in such systems. The calculated growth yield of the Marinobacter sp., assuming it grew on alkanes, was [0.0005 g(cell-C)/g(alkane-C)] suggesting that it played a minor role in alkane degradation. The dominant methanogens were hydrogenotrophs (Methanocalculus spp. from the Methanomicrobiales). Enrichment of hydrogen-oxidizing methanogens relative to acetoclastic methanogens was consistent with syntrophic acetate oxidation measured in methanogenic crude oil degrading enrichment cultures. qPCR of the Methanomicrobiales indicated growth characteristics consistent with measured rates of methane production and growth in partnership with Smithella.

  18. The Number of High-Energy Bands in the Photoelectron Spectrum of Alkanes

    NASA Astrophysics Data System (ADS)

    Merris, Russell; Gutman, Ivan

    2000-12-01

    It was observed that within the Bieri-Dill-Heilbronner-Schmelzer model for the calculation of the ion-ization energies of alkanes CnH2n+2, there are exactly n C2s -electron energy levels lying below the degenerate α-ß manifold. We now show that, indeed, this regularity is obeyed by practically all alkane species. Exceptions do exist, but they must possess a (chemically infeasible) group of more than six mutually connected quaternary carbon atoms.

  19. The quantitative significance of Syntrophaceae and syntrophic partnerships in methanogenic degradation of crude oil alkanes

    PubMed Central

    Gray, N D; Sherry, A; Grant, R J; Rowan, A K; Hubert, C R J; Callbeck, C M; Aitken, C M; Jones, D M; Adams, J J; Larter, S R; Head, I M

    2011-01-01

    Libraries of 16S rRNA genes cloned from methanogenic oil degrading microcosms amended with North Sea crude oil and inoculated with estuarine sediment indicated that bacteria from the genera Smithella (Deltaproteobacteria, Syntrophaceace) and Marinobacter sp. (Gammaproteobacteria) were enriched during degradation. Growth yields and doubling times (36 days for both Smithella and Marinobacter) were determined using qPCR and quantitative data on alkanes, which were the predominant hydrocarbons degraded. The growth yield of the Smithella sp. [0.020 g(cell-C)/g(alkane-C)], assuming it utilized all alkanes removed was consistent with yields of bacteria that degrade hydrocarbons and other organic compounds in methanogenic consortia. Over 450 days of incubation predominance and exponential growth of Smithella was coincident with alkane removal and exponential accumulation of methane. This growth is consistent with Smithella's occurrence in near surface anoxic hydrocarbon degrading systems and their complete oxidation of crude oil alkanes to acetate and/or hydrogen in syntrophic partnership with methanogens in such systems. The calculated growth yield of the Marinobacter sp., assuming it grew on alkanes, was [0.0005 g(cell-C)/g(alkane-C)] suggesting that it played a minor role in alkane degradation. The dominant methanogens were hydrogenotrophs (Methanocalculus spp. from the Methanomicrobiales). Enrichment of hydrogen-oxidizing methanogens relative to acetoclastic methanogens was consistent with syntrophic acetate oxidation measured in methanogenic crude oil degrading enrichment cultures. qPCR of the Methanomicrobiales indicated growth characteristics consistent with measured rates of methane production and growth in partnership with Smithella. PMID:21914097

  20. Biochemistry of Short-Chain Alkanes (Tissue-Specific Biosynthesis of n-Heptane in Pinus jeffreyi).

    PubMed Central

    Savage, T. J.; Hamilton, B. S.; Croteau, R.

    1996-01-01

    Short-chain (C7-C11) alkanes accumulate as the volatile component of oleoresin (pitch) in several pine species native to western North America. To establish the tissue most amenable for use in detailed studies of short-chain alkane biosynthesis, we examined the tissue specificity of alkane accumulation and biosynthesis in Pinus jeffreyi Grev. & Balf. Short-chain alkane accumulation was highly tissue specific in both 2-year-old saplings and mature trees; heart-wood xylem accumulated alkanes up to 7.1 mg g-1 dry weight, whereas needles and other young green tissue contained oleoresin with monoterpenoid, rather than paraffinic, volatiles. These tissue-specific differences in oleoresin composition appear to be a result of tissue-specific rates of alkane and monoterpene biosynthesis; incubation of xylem tissue with [14C]sucrose resulted in accumulation of radiolabel in alkanes but not monoterpenes, whereas incubation of foliar tissue with 14CO2 resulted in the accumulation of radiolabel in monoterpenes but not alkanes. Furthermore, incubation of xylem sections with [14C]acetate resulted in incorporation of radiolabel into alkanes at rates up to 1.7 nmol h-1 g-1 fresh weight, a rate that exceeds most biosynthetic rates reported with other plant systems for the incorporation of this basic precursor into natural products. This suggests that P. jeffreyi may provide a suitable model for elucidating the enzymology and molecular biology of short-chain alkane biosynthesis. PMID:12226177

  1. Biochemistry of Short-Chain Alkanes (Tissue-Specific Biosynthesis of n-Heptane in Pinus jeffreyi).

    PubMed

    Savage, T. J.; Hamilton, B. S.; Croteau, R.

    1996-01-01

    Short-chain (C7-C11) alkanes accumulate as the volatile component of oleoresin (pitch) in several pine species native to western North America. To establish the tissue most amenable for use in detailed studies of short-chain alkane biosynthesis, we examined the tissue specificity of alkane accumulation and biosynthesis in Pinus jeffreyi Grev. & Balf. Short-chain alkane accumulation was highly tissue specific in both 2-year-old saplings and mature trees; heart-wood xylem accumulated alkanes up to 7.1 mg g-1 dry weight, whereas needles and other young green tissue contained oleoresin with monoterpenoid, rather than paraffinic, volatiles. These tissue-specific differences in oleoresin composition appear to be a result of tissue-specific rates of alkane and monoterpene biosynthesis; incubation of xylem tissue with [14C]sucrose resulted in accumulation of radiolabel in alkanes but not monoterpenes, whereas incubation of foliar tissue with 14CO2 resulted in the accumulation of radiolabel in monoterpenes but not alkanes. Furthermore, incubation of xylem sections with [14C]acetate resulted in incorporation of radiolabel into alkanes at rates up to 1.7 nmol h-1 g-1 fresh weight, a rate that exceeds most biosynthetic rates reported with other plant systems for the incorporation of this basic precursor into natural products. This suggests that P. jeffreyi may provide a suitable model for elucidating the enzymology and molecular biology of short-chain alkane biosynthesis.

  2. Marine hydrocarbonoclastic bacteria as whole-cell biosensors for n-alkanes

    PubMed Central

    Sevilla, Emma; Yuste, Luis; Rojo, Fernando

    2015-01-01

    Whole-cell biosensors offer potentially useful, cost-effective systems for the in-situ monitoring of seawater for hydrocarbons derived from accidental spills. The present work compares the performance of a biosensor system for the detection of alkanes in seawater, hosted in either Escherichia coli (commonly employed in whole-cell biosensors but not optimized for alkane assimilation) or different marine bacteria specialized in assimilating alkanes. The sensor system was based on the Pseudomonas putida AlkS regulatory protein and the PalkB promoter fused to a gene encoding the green fluorescent protein. While the E. coli sensor provided the fastest response to pure alkanes (25-fold induction after 2 h under the conditions used), a sensor based on Alcanivorax borkumensis was slower, requiring 3–4 h to reach similar induction values. However, the A. borkumensis sensor showed a fourfold lower detection threshold for octane (0.5 μM), and was also better at sensing the alkanes present in petrol. At petrol concentrations of 0.0125%, the A. borkumensis sensor rendered a sevenfold induction, while E. coli sensor showed no response. We discuss possible explanations to this behaviour in terms of the cellular adaptations to alkane uptake and the basal fluorescence produced by each bacterial strain, which was lowest for A. borkumensis. PMID:25874658

  3. Combustion Characteristics of Liquid Normal Alkane Fuels in a Model Combustor of Supersonic Combustion Ramjet Engine

    NASA Astrophysics Data System (ADS)

    今村, 宰; 石川, 雄太; 鈴木, 俊介; 福本, 皓士郎; 西田, 俊介; 氏家, 康成; 津江, 光洋

    Effect of kinds of one-component n-alkane liquid fuels on combustion characteristics was investigated experimentally using a model combustor of scramjet engine. The inlet condition of a model combustor is 2.0 of Mach number, up to 2400K of total temperature, and 0.38MPa of total pressure. Five kinds of n-alkane are tested, of which carbon numbers are 7, 8, 10, 13, and 16. They are more chemically active and less volatile with an increase of alkane carbon number. Fuels are injected to the combustor in the upstream of cavity with barbotage nitrogen gas and self-ignition performance was investigated. The result shows that self-ignition occurs with less equivalence ratio when alkane carbon number is smaller. This indicates that physical characteristic of fuel, namely volatile of fuel, is dominant for self-ignition behavior. Effect on flame-holding performance is also examined with adding pilot hydrogen and combustion is kept after cutting off pilot hydrogen with the least equivalence ratio where alkane carbon number is from 8 to 10. These points are discussed qualitatively from the conflict effect of chemical and physical properties on alkane carbon number.

  4. Marine hydrocarbonoclastic bacteria as whole-cell biosensors for n-alkanes.

    PubMed

    Sevilla, Emma; Yuste, Luis; Rojo, Fernando

    2015-07-01

    Whole-cell biosensors offer potentially useful, cost-effective systems for the in-situ monitoring of seawater for hydrocarbons derived from accidental spills. The present work compares the performance of a biosensor system for the detection of alkanes in seawater, hosted in either Escherichia coli (commonly employed in whole-cell biosensors but not optimized for alkane assimilation) or different marine bacteria specialized in assimilating alkanes. The sensor system was based on the Pseudomonas putida AlkS regulatory protein and the PalkB promoter fused to a gene encoding the green fluorescent protein. While the E. coli sensor provided the fastest response to pure alkanes (25-fold induction after 2 h under the conditions used), a sensor based on Alcanivorax borkumensis was slower, requiring 3-4 h to reach similar induction values. However, the A. borkumensis sensor showed a fourfold lower detection threshold for octane (0.5 μM), and was also better at sensing the alkanes present in petrol. At petrol concentrations of 0.0125%, the A. borkumensis sensor rendered a sevenfold induction, while E. coli sensor showed no response. We discuss possible explanations to this behaviour in terms of the cellular adaptations to alkane uptake and the basal fluorescence produced by each bacterial strain, which was lowest for A. borkumensis.

  5. Hyperbaric reservoir fluids: High-pressure phase behavior of asymmetric methane + n-alkane systems

    NASA Astrophysics Data System (ADS)

    Flöten, E.; de Loos, Th. W.; de Swaan Arons, J.

    1995-01-01

    In this paper, experimental three-phase equilibrium (solid n-alkane + liquid + vapor) data for binary methane + n-alkane systems are presented. For the binary system methane + tetracosane, the three-phase curve was determined based on two phase equilibrium measurements in a composition range from x c24 = 0.0027 to x c24 = 1.0. The second critical endpoint of this system was found at p = (1114.7 ± 0.5) M Pa. T = (322.6 ± 0.25) K, and a mole fraction of tetracosane in the critical fluidphase of x c24 = 0.0415 ± 0.0015. The second critical endpoint occurs where solid tetracosane is in equilibrium with a critical fluid phase ( S c24 + L = V). For the binary systems of methane with the n-alkanes tetradecane, triacontane, tetracontane, and pentacontane, only the coordinates of the second critical endpoints were measured. The second critical endpoint temperature is found close to the atmospheric melting point temperature of the n-alkane. The pressures at the second critical endpoints do not exceed 200 MPa. Based on these experimental data and data from the literature, correlations for the pressure. temperature, and fluid phase composition at the second critical endpoint of binary methane + n-alkane systems with n-alkanes between octane and pentacontane were developed.

  6. Polynitrogen Chemistry

    DTIC Science & Technology

    2013-09-24

    4N3, while As(C6H5)4N3 presents a borderline case.23 Theoretical Calculations High-level theoretical studies of nitrogen, oxygen, selenium and...Dixon, D. A.; Christe, K. O., "Thermochemical Properties of Selenium Fluorides, Oxides, and Oxofluorides," Inorganic Chemistry, p. 2472, vol. 51, (2012...34Thermochemical Properties of Selenium Fluorides, Oxides, and Oxofluorides," Inorg. Chem., p. 2472, vol. 51, (2012). 26. K. S. Thanthiriwatte, M. Vasiliu

  7. Computational chemistry

    NASA Technical Reports Server (NTRS)

    Arnold, J. O.

    1987-01-01

    With the advent of supercomputers, modern computational chemistry algorithms and codes, a powerful tool was created to help fill NASA's continuing need for information on the properties of matter in hostile or unusual environments. Computational resources provided under the National Aerodynamics Simulator (NAS) program were a cornerstone for recent advancements in this field. Properties of gases, materials, and their interactions can be determined from solutions of the governing equations. In the case of gases, for example, radiative transition probabilites per particle, bond-dissociation energies, and rates of simple chemical reactions can be determined computationally as reliably as from experiment. The data are proving to be quite valuable in providing inputs to real-gas flow simulation codes used to compute aerothermodynamic loads on NASA's aeroassist orbital transfer vehicles and a host of problems related to the National Aerospace Plane Program. Although more approximate, similar solutions can be obtained for ensembles of atoms simulating small particles of materials with and without the presence of gases. Computational chemistry has application in studying catalysis, properties of polymers, all of interest to various NASA missions, including those previously mentioned. In addition to discussing these applications of computational chemistry within NASA, the governing equations and the need for supercomputers for their solution is outlined.

  8. Photochemical Conversion of H2Os3(CO)10(P-Donor) to H2Os3(CO)9(P-Donor) in Solution and on High Surface Area Silica.

    DTIC Science & Technology

    1983-12-28

    near- UV irradiation of an alkane suspension of IS102]-L𔃺S3-CCO11QHI2 yields ISiO02] L0s3 CO) H2 weet1 2 -’s(O 2 0 2 is the solid prepared byreactfon of...alkane solution at 298 K. Lk~wise, near- UV irradiation of an alkane suspension of -iESiO2j-L’Osj3( )j6Hj yields (Sf0 J-L’Os3(CO) ij where (SiOj3-La’stj...rigid alkane glasses, but einitial (51 conversion) product is not derived fromt loss of CO. Continue I rradiation at 77 K yields H2Os3’(CO)’gL and CO

  9. Abiotic Organic Chemistry in Hydrothermal Systems.

    NASA Astrophysics Data System (ADS)

    Simoneit, B. R.; Rushdi, A. I.

    2004-12-01

    Abiotic organic chemistry in hydrothermal systems is of interest to biologists, geochemists and oceanographers. This chemistry consists of thermal alteration of organic matter and minor prebiotic synthesis of organic compounds. Thermal alteration has been extensively documented to yield petroleum and heavy bitumen products from contemporary organic detritus. Carbon dioxide, carbon monoxide, ammonia and sulfur species have been used as precursors in prebiotic synthesis experiments to organic compounds. These inorganic species are common components of hot spring gases and marine hydrothermal systems. It is of interest to further test their reactivities in reductive aqueous thermolysis. We have synthesized organic compounds (lipids) in aqueous solutions of oxalic acid, and with carbon disulfide or ammonium bicarbonate at temperatures from 175-400° C. The synthetic lipids from oxalic acid solutions consisted of n-alkanols, n-alkanoic acids, n-alkyl formates, n-alkanones, n-alkenes and n-alkanes, typically to C30 with no carbon number preferences. The products from CS2 in acidic aqueous solutions yielded cyclic thioalkanes, alkyl polysulfides, and thioesters with other numerous minor compounds. The synthesis products from oxalic acid and ammonium bicarbonate solutions were homologous series of n-alkyl amides, n-alkyl amines, n-alkanes and n-alkanoic acids, also to C30 with no carbon number predominance. Condensation (dehydration) reactions also occur under elevated temperatures in aqueous medium as tested by model reactions to form amide, ester and nitrile bonds. It is concluded that the abiotic formation of aliphatic lipids, condensation products (amides, esters, nitriles, and CS2 derivatives (alkyl polysulfides, cyclic polysulfides) is possible under hydrothermal conditions and warrants further studies.

  10. Impact of chamber wall loss of gaseous organic compounds on secondary organic aerosol formation: explicit modeling of SOA formation from alkane and alkene oxidation

    NASA Astrophysics Data System (ADS)

    La, Y. S.; Camredon, M.; Ziemann, P. J.; Valorso, R.; Matsunaga, A.; Lannuque, V.; Lee-Taylor, J.; Hodzic, A.; Madronich, S.; Aumont, B.

    2015-09-01

    Recent studies have shown that low volatility gas-phase species can be lost onto the smog chamber wall surfaces. Although this loss of organic vapors to walls could be substantial during experiments, its effect on secondary organic aerosol (SOA) formation has not been well characterized and quantified yet. Here the potential impact of chamber walls on the loss of gaseous organic species and SOA formation has been explored using the Generator for Explicit Chemistry and Kinetics of the Organics in the Atmosphere (GECKO-A) modeling tool which explicitly represents SOA formation and gas/wall partitioning. The model was compared with 41 smog chamber experiments of SOA formation under OH oxidation of alkane and alkene series (linear, cyclic and C12-branched alkanes and terminal, internal and 2-methyl alkenes with 7 to 17 carbon atoms) under high NOx conditions. Simulated trends match observed trends within and between homologous series. The loss of organic vapors to the chamber walls is found to affect SOA yields as well as the composition of the gas and the particle phases. Simulated distributions of the species in various phases suggest that nitrates, hydroxynitrates and carbonylesters could substantially be lost onto walls. The extent of this process depends on the rate of gas/wall mass transfer, the vapor pressure of the species and the duration of the experiments. This work suggests that SOA yields inferred from chamber experiments could be underestimated up to 0.35 yield unit due to the loss of organic vapors to chamber walls.

  11. Impact of chamber wall loss of gaseous organic compounds on secondary organic aerosol formation: explicit modeling of SOA formation from alkane and alkene oxidation

    NASA Astrophysics Data System (ADS)

    La, Y. S.; Camredon, M.; Ziemann, P. J.; Valorso, R.; Matsunaga, A.; Lannuque, V.; Lee-Taylor, J.; Hodzic, A.; Madronich, S.; Aumont, B.

    2016-02-01

    Recent studies have shown that low volatility gas-phase species can be lost onto the smog chamber wall surfaces. Although this loss of organic vapors to walls could be substantial during experiments, its effect on secondary organic aerosol (SOA) formation has not been well characterized and quantified yet. Here the potential impact of chamber walls on the loss of gaseous organic species and SOA formation has been explored using the Generator for Explicit Chemistry and Kinetics of the Organics in the Atmosphere (GECKO-A) modeling tool, which explicitly represents SOA formation and gas-wall partitioning. The model was compared with 41 smog chamber experiments of SOA formation under OH oxidation of alkane and alkene series (linear, cyclic and C12-branched alkanes and terminal, internal and 2-methyl alkenes with 7 to 17 carbon atoms) under high NOx conditions. Simulated trends match observed trends within and between homologous series. The loss of organic vapors to the chamber walls is found to affect SOA yields as well as the composition of the gas and the particle phases. Simulated distributions of the species in various phases suggest that nitrates, hydroxynitrates and carbonylesters could substantially be lost onto walls. The extent of this process depends on the rate of gas-wall mass transfer, the vapor pressure of the species and the duration of the experiments. This work suggests that SOA yields inferred from chamber experiments could be underestimated up a factor of 2 due to the loss of organic vapors to chamber walls.

  12. Iron chemistry at the service of life.

    PubMed

    Sánchez, Manu; Sabio, Laura; Gálvez, Natividad; Capdevila, Mercè; Dominguez-Vera, Jose M

    2017-02-02

    Iron is an essential element for almost all organisms on Earth. It is necessary for a number of crucial processes such as hemoglobin and myoglobin transport and storage of oxygen in mammals; electron transfer support in a variety of iron-sulfur protein or cytochrome reactions; and activation and catalysis of reactions of a wide range of substrate like alkanes, olefins, and alcohols. Living organisms adopted iron as the main metal to carry out all of these functions due to the rich coordination chemistry of its two main redox states, Fe(2+) and Fe(3+) , and because of its abundance in the Earth's crust and oceans. This paper presents an overview of the coordination chemistry of iron that makes it suitable for a large variety of functions within biological systems. Despite iron's chemical advantages, organisms were forced to manage with some drawbacks: Fe(3+) insolubility and the formation of toxic radicals, especially the hydroxyl radical. Iron chemistry within biology is an example of how organisms evolved by creating molecular machinery to overcome these difficulties and perform crucial processes with extraordinary elegance and efficiency. © 2017 IUBMB Life, 2017.

  13. Understanding the factors affecting the activation of alkane by Cp'Rh(CO)2 (Cp' = Cp or Cp*).

    PubMed

    George, Michael W; Hall, Michael B; Jina, Omar S; Portius, Peter; Sun, Xue-Zhong; Towrie, Michael; Wu, Hong; Yang, Xinzheng; Zaric, Snezana D

    2010-11-23

    Fast time-resolved infrared spectroscopic measurements have allowed precise determination of the rates of activation of alkanes by Cp'Rh(CO) (Cp(') = η(5)-C(5)H(5) or η(5)-C(5)Me(5)). We have monitored the kinetics of C─H activation in solution at room temperature and determined how the change in rate of oxidative cleavage varies from methane to decane. The lifetime of CpRh(CO)(alkane) shows a nearly linear behavior with respect to the length of the alkane chain, whereas the related Cp*Rh(CO)(alkane) has clear oscillatory behavior upon changing the alkane. Coupled cluster and density functional theory calculations on these complexes, transition states, and intermediates provide the insight into the mechanism and barriers in order to develop a kinetic simulation of the experimental results. The observed behavior is a subtle interplay between the rates of activation and migration. Unexpectedly, the calculations predict that the most rapid process in these Cp'Rh(CO)(alkane) systems is the 1,3-migration along the alkane chain. The linear behavior in the observed lifetime of CpRh(CO)(alkane) results from a mechanism in which the next most rapid process is the activation of primary C─H bonds (─CH(3) groups), while the third key step in this system is 1,2-migration with a slightly slower rate. The oscillatory behavior in the lifetime of Cp*Rh(CO)(alkane) with respect to the alkane's chain length follows from subtle interplay between more rapid migrations and less rapid primary C─H activation, with respect to CpRh(CO)(alkane), especially when the CH(3) group is near a gauche turn. This interplay results in the activation being controlled by the percentage of alkane conformers.

  14. Berberine cation: A fluorescent chemosensor for alkanes and other low-polarity compounds. An explanation of this phenomenon

    PubMed

    Cossio; Arrieta; Cebolla; Membrado; Vela; Garriga; Domingo

    2000-07-27

    Alkanes in the presence of berberine sulfate provide an enhancement of fluorescent signal, which depends on alkane concentration and structure, when the system is irradiated with monochromatic UV light. Computational analysis suggests that an ion-induced dipole between alkanes and berberine sulfate is responsible for this phenomenon. This interaction can properly model the experimentally obtained fluorescent response. The proposed explanation allows other interacting systems to be designed, which have been experimentally confirmed.

  15. (Pesticide chemistry)

    SciTech Connect

    Barnthouse, L.W.

    1990-09-04

    This report summarizes a trip by L. W. Barnthouse of the Environmental Sciences Division (ESD), Oak Ridge National Laboratory (ORNL), to Hamburg, Federal Republic of Germany (FRG), where he participated in the 7th International Congress of Pesticide Chemistry. He chaired a workshop on experimental systems for determining effects of pesticides on nontarget organisms and gave an oral presentation at a symposium on pesticide risk assessment. Before returning to the United States, Dr. Barnthouse visited the Netherlands Institute for Sea Research in Texel, the Netherlands.

  16. Fullerene assemblies toward photo-energy conversions.

    PubMed

    Shen, Yanfei; Nakanishi, Takashi

    2014-04-28

    Manipulating molecular interaction and assembly for developing various functional nanostructures with controlled dimensionality, morphology and tailored properties is currently a research focus in molecular science and materials chemistry. Particularly, the self-organization of fullerenes (i.e. C60) to form various functional assemblies has received intense interest since it can provide excellent optoelectronic properties for photo-energy conversion-induced applications such as solar cells and field effect transistors (FET). In this perspective, we describe our recent efforts toward the development in the area of fullerene molecular design and assemblies aimed at improving the photoconductivity and photo-energy (electric and thermal) conversion systems.

  17. Stereospecific alkane hydroxylation by non-heme iron catalysts: mechanistic evidence for an Fe(V)=O active species.

    PubMed

    Chen, K; Que, L

    2001-07-04

    High-valent iron-oxo species have frequently been invoked in the oxidation of hydrocarbons by both heme and non-heme enzymes. Although a formally Fe(V)=O species, that is, [(Por(*))Fe(IV)=O](+), has been widely accepted as the key oxidant in stereospecific alkane hydroxylation by heme systems, it is not established that such a high-valent state can be accessed by a non-heme ligand environment. Herein we report a systematic study on alkane oxidations with H(2)O(2) catalyzed by a group of non-heme iron complexes, that is, [Fe(II)(TPA)(CH(3)CN)(2)](2+) (1, TPA = tris(2-pyridylmethyl)amine) and its alpha- and beta-substituted analogues. The reactivity patterns of this family of Fe(II)(TPA) catalysts can be modulated by the electronic and steric properties of the ligand environment, which affects the spin states of a common Fe(III)-OOH intermediate. Such an Fe(III)-peroxo species is high-spin when the TPA ligand has two or three alpha-substituents and is proposed to be directly responsible for the selective C-H bond cleavage of the alkane substrate. The thus-generated alkyl radicals, however, have relatively long lifetimes and are susceptible to radical epimerization and trapping by O(2). On the other hand, 1 and the beta-substituted Fe(II)(TPA) complexes catalyze stereospecific alkane hydroxylation by a mechanism involving both a low-spin Fe(III)-OOH intermediate and an Fe(V)=O species derived from O-O bond heterolysis. We propose that the heterolysis pathway is promoted by two factors: (a) the low-spin iron(III) center which weakens the O-O bond and (b) the binding of an adjacent water ligand that can hydrogen bond to the terminal oxygen of the hydroperoxo group and facilitate the departure of the hydroxide. Evidence for the Fe(V)=O species comes from isotope-labeling studies showing incorporation of (18)O from H(2)(18)O into the alcohol products. (18)O-incorporation occurs by H(2)(18)O binding to the low-spin Fe(III)-OOH intermediate, its conversion to a cis-H(18)O

  18. Methanol conversion to higher hydrocarbons

    SciTech Connect

    Tabak, S.A.

    1994-12-31

    Several indirect options exist for producing chemicals and transportation fuels from coal, natural gas, or biomass. All involve an initial conversion step to synthesis gas (CO and H{sub 2}). Presently, there are two commercial technologies for converting syngas to liquids: Fischer-Tropsch, which yields a range of aliphatic hydrocarbons with molecular weights determined by Schulz-Flory kinetics, and methanol synthesis. Mobil`s diversity of technology for methanol conversion gives the methanol synthesis route flexibility for production of either gasoline, distillate or chemicals. Mobil`s ZSM-5 catalyst is the key in several processes for producing chemicals and transportation fuels from methanol: MTO for light olefins, MTG for gasoline, MOGD for distillates. The MTG process has been commercialized in New Zealand since 1985, producing one-third of the country`s gasoline supply, while MTO and MOGD have been developed and demonstrated at greater than 100 BPD scale. This paper will discuss recent work in understanding methanol conversion chemistry and the various options for its use.

  19. Fatty aldehyde dehydrogenase multigene family involved in the assimilation of n-alkanes in Yarrowia lipolytica.

    PubMed

    Iwama, Ryo; Kobayashi, Satoshi; Ohta, Akinori; Horiuchi, Hiroyuki; Fukuda, Ryouichi

    2014-11-28

    In the n-alkane assimilating yeast Yarrowia lipolytica, n-alkanes are oxidized to fatty acids via fatty alcohols and fatty aldehydes, after which they are utilized as carbon sources. Here, we show that four genes (HFD1-HFD4) encoding fatty aldehyde dehydrogenases (FALDHs) are involved in the metabolism of n-alkanes in Y. lipolytica. A mutant, in which all of four HFD genes are deleted (Δhfd1-4 strain), could not grow on n-alkanes of 12-18 carbons; however, the expression of one of those HFD genes restored its growth on n-alkanes. Production of Hfd2Ap or Hfd2Bp, translation products of transcript variants generated from HFD2 by the absence or presence of splicing, also supported the growth of the Δhfd1-4 strain on n-alkanes. The FALDH activity in the extract of the wild-type strain was increased when cells were incubated in the presence of n-decane, whereas this elevation in FALDH activity by n-decane was not observed in Δhfd1-4 strain extract. Substantial FALDH activities were detected in the extracts of Escherichia coli cells expressing the HFD genes. Fluorescent microscopic observation suggests that Hfd3p and Hfd2Bp are localized predominantly in the peroxisome, whereas Hfd1p and Hfd2Ap are localized in both the endoplasmic reticulum and the peroxisome. These results suggest that the HFD multigene family is responsible for the oxidation of fatty aldehydes to fatty acids in the metabolism of n-alkanes, and raise the possibility that Hfd proteins have diversified by gene multiplication and RNA splicing to efficiently assimilate or detoxify fatty aldehydes in Y. lipolytica.

  20. Alkane hydroxylase gene (alkB) phylotype composition and diversity in northern Gulf of Mexico bacterioplankton

    PubMed Central

    Smith, Conor B.; Tolar, Bradley B.; Hollibaugh, James T.; King, Gary M.

    2013-01-01

    Natural and anthropogenic activities introduce alkanes into marine systems where they are degraded by alkane hydroxylases expressed by phylogenetically diverse bacteria. Partial sequences for alkB, one of the structural genes of alkane hydroxylase, have been used to assess the composition of alkane-degrading communities, and to determine their responses to hydrocarbon inputs. We present here the first spatially extensive analysis of alkB in bacterioplankton of the northern Gulf of Mexico (nGoM), a region that experiences numerous hydrocarbon inputs. We have analyzed 401 partial alkB gene sequences amplified from genomic extracts collected during March 2010 from 17 water column samples that included surface waters and bathypelagic depths. Previous analyses of 16S rRNA gene sequences for these and related samples have shown that nGoM bacterial community composition and structure stratify strongly with depth, with distinctly different communities above and below 100 m. Although we hypothesized that alkB gene sequences would exhibit a similar pattern, PCA analyses of operational protein units (OPU) indicated that community composition did not vary consistently with depth or other major physical-chemical variables. We observed 22 distinct OPUs, one of which was ubiquitous and accounted for 57% of all sequences. This OPU clustered with AlkB sequences from known hydrocarbon oxidizers (e.g., Alcanivorax and Marinobacter). Some OPUs could not be associated with known alkane degraders, however, and perhaps represent novel hydrocarbon-oxidizing populations or genes. These results indicate that the capacity for alkane hydrolysis occurs widely in the nGoM, but that alkane degrader diversity varies substantially among sites and responds differently than bulk communities to physical-chemical variables. PMID:24376439

  1. Anaerobic alkane biodegradation by cultures enriched from oil sands tailings ponds involves multiple species capable of fumarate addition.

    PubMed

    Tan, BoonFei; Semple, Kathleen; Foght, Julia

    2015-05-01

    A methanogenic short-chain alkane-degrading culture (SCADC) was enriched from oil sands tailings and transferred several times with a mixture of C6, C7, C8 and C10 n-alkanes as the predominant organic carbon source, plus 2-methylpentane, 3-methylpentane and methylcyclopentane as minor components. Cultures produced ∼40% of the maximum theoretical methane during 18 months incubation while depleting the n-alkanes, 2-methylpentane and methylcyclopentane. Substrate depletion correlated with detection of metabolites characteristic of fumarate activation of 2-methylpentane and methylcyclopentane, but not n-alkane metabolites. During active methanogenesis with the mixed alkanes, reverse-transcription PCR confirmed the expression of functional genes (assA and bssA) associated with hydrocarbon addition to fumarate. Pyrosequencing of 16S rRNA genes amplified during active alkane degradation revealed enrichment of Clostridia (particularly Peptococcaceae) and methanogenic Archaea (Methanosaetaceae and Methanomicrobiaceae). Methanogenic cultures transferred into medium containing sulphate produced sulphide, depleted n-alkanes and produced the corresponding succinylated alkane metabolites, but were slow to degrade 2-methylpentane and methylcyclopentane; these cultures were enriched in Deltaproteobacteria rather than Clostridia. 3-Methylpentane was not degraded by any cultures. Thus, nominally methanogenic oil sands tailings harbour dynamic and versatile hydrocarbon-degrading fermentative syntrophs and sulphate reducers capable of degrading n-, iso- and cyclo-alkanes by addition to fumarate.

  2. Pashto Conversation Manual and Pashto Conversation Tapescript.

    ERIC Educational Resources Information Center

    Tegey, Habibullah; Robson, Barbara

    This conversation manual and tapescript are part of a set of materials that have been developed to teach oral and written Afghan Pashto to English speakers. In addition to the conversation manual and tapescript, the set consists of a beginning textbook, an intermediate textbook, a reader, and a set of taped lessons that correlate with the…

  3. Flash kinetics in liquefied noble gases: Studies of alkane activation and ligand dynamics at rhodium carbonyl centers, and a search for xenon-carbene adducts

    SciTech Connect

    Yeston, Jake Simon

    2001-01-01

    A general introduction is given to place the subsequent chapters in context for the nonspecialist. Results are presented from a low temperature infrared (IR) flash kinetic study of C-H bond activation via photoinduced reaction of Cp*Rh(CO)2 (1) with linear and cyclic alkanes in liquid krypton and liquid xenon solution. No reaction was observed with methane; for all other hydrocarbons studied, the rate law supports fragmentation of the overall reaction into an alkane binding step followed by an oxidative addition step. For the binding step, larger alkanes within each series (linear and cyclic) interact more strongly than smaller alkanes with the Rh center. The second step, oxidative addition of the C-H bond across Rh, exhibits very little variance in the series of linear alkanes, while in the cyclic series the rate decreases with increasing alkane size. Results are presented from an IR flash kinetic study of the photoinduced chemistry of Tp*Rh(CO)2 (5; Tp* = hydridotris(3,5-dimethylpyrazolyl)borato) in liquid xenon solution at –50 °C. IR spectra of the solution taken 2 μs after 308 nm photolysis exhibit two transient bands at 1972-1980 cm-1 and 1992-2000 cm-1, respectively. These bands were assigned to (η3-Tp*)Rh(CO)•Xe and (η2-Tp*)Rh(CO)•Xe solvates on the basis of companion studies using Bp*Rh(CO)2 (9; Bp* = dihydridobis(3,5-dimethyl pyrazolyl)borato). Preliminary kinetic data for reaction of 5 with cyclohexane in xenon solution indicate that both transient bands still appear and that their rates of decay correlate with formation of the product Tp*Rh(CO)(C6H11)(H). The preparation and reactivity of the new complex Bp*Rh(CO)(pyridine) (11) are described. The complex reacts with CH3I to yield the novel Rh carbene hydride complex HB(Me2pz)2Rh(H)(I)(C5H5N)(C(O)Me) (12), resulting from formal addition of CH

  4. Ubiquitous Presence and Novel Diversity of Anaerobic Alkane Degraders in Cold Marine Sediments.

    PubMed

    Gittel, Antje; Donhauser, Johanna; Røy, Hans; Girguis, Peter R; Jørgensen, Bo B; Kjeldsen, Kasper U

    2015-01-01

    Alkanes are major constituents of crude oil and are released to the marine environment by natural seepage and from anthropogenic sources. Due to their chemical inertness, their removal from anoxic marine sediments is primarily controlled by the activity of anaerobic alkane-degrading microorganisms. To facilitate comprehensive cultivation-independent surveys of the diversity and distribution of anaerobic alkane degraders, we designed novel PCR primers that cover all known diversity of the 1-methylalkyl succinate synthase gene (masD/assA), which catalyzes the initial activation of alkanes. We studied masD/assA gene diversity in pristine and seepage-impacted Danish coastal sediments, as well as in sediments and alkane-degrading enrichment cultures from the Middle Valley (MV) hydrothermal vent system in the Pacific Northwest. MasD/assA genes were ubiquitously present, and the primers captured the diversity of both known and previously undiscovered masD/assA gene diversity. Seepage sediments were dominated by a single masD/assA gene cluster, which is presumably indicative of a substrate-adapted community, while pristine sediments harbored a diverse range of masD/assA phylotypes including those present in seepage sediments. This rare biosphere of anaerobic alkane degraders will likely increase in abundance in the event of seepage or accidental oil spillage. Nanomolar concentrations of short-chain alkanes (SCA) were detected in pristine and seepage sediments. Interestingly, anaerobic alkane degraders closely related to strain BuS5, the only SCA degrader in pure culture, were found in mesophilic MV enrichments, but not in cold sediments from Danish waters. We propose that the new masD/assA gene lineages in these sediments represent novel phylotypes that are either fueled by naturally occurring low levels of SCA or that metabolize medium- to long-chain alkanes. Our study highlights that masD/assA genes are a relevant diagnostic marker to identify seepage and microseepage, e

  5. Ubiquitous Presence and Novel Diversity of Anaerobic Alkane Degraders in Cold Marine Sediments

    PubMed Central

    Gittel, Antje; Donhauser, Johanna; Røy, Hans; Girguis, Peter R.; Jørgensen, Bo B.; Kjeldsen, Kasper U.

    2015-01-01

    Alkanes are major constituents of crude oil and are released to the marine environment by natural seepage and from anthropogenic sources. Due to their chemical inertness, their removal from anoxic marine sediments is primarily controlled by the activity of anaerobic alkane-degrading microorganisms. To facilitate comprehensive cultivation-independent surveys of the diversity and distribution of anaerobic alkane degraders, we designed novel PCR primers that cover all known diversity of the 1-methylalkyl succinate synthase gene (masD/assA), which catalyzes the initial activation of alkanes. We studied masD/assA gene diversity in pristine and seepage-impacted Danish coastal sediments, as well as in sediments and alkane-degrading enrichment cultures from the Middle Valley (MV) hydrothermal vent system in the Pacific Northwest. MasD/assA genes were ubiquitously present, and the primers captured the diversity of both known and previously undiscovered masD/assA gene diversity. Seepage sediments were dominated by a single masD/assA gene cluster, which is presumably indicative of a substrate-adapted community, while pristine sediments harbored a diverse range of masD/assA phylotypes including those present in seepage sediments. This rare biosphere of anaerobic alkane degraders will likely increase in abundance in the event of seepage or accidental oil spillage. Nanomolar concentrations of short-chain alkanes (SCA) were detected in pristine and seepage sediments. Interestingly, anaerobic alkane degraders closely related to strain BuS5, the only SCA degrader in pure culture, were found in mesophilic MV enrichments, but not in cold sediments from Danish waters. We propose that the new masD/assA gene lineages in these sediments represent novel phylotypes that are either fueled by naturally occurring low levels of SCA or that metabolize medium- to long-chain alkanes. Our study highlights that masD/assA genes are a relevant diagnostic marker to identify seepage and microseepage, e

  6. Evaluation of NO+ reagent ion chemistry for online measurements of atmospheric volatile organic compounds

    NASA Astrophysics Data System (ADS)

    Koss, Abigail R.; Warneke, Carsten; Yuan, Bin; Coggon, Matthew M.; Veres, Patrick R.; de Gouw, Joost A.

    2016-07-01

    NO+ chemical ionization mass spectrometry (NO+ CIMS) can achieve fast (1 Hz and faster) online measurement of trace atmospheric volatile organic compounds (VOCs) that cannot be ionized with H3O+ ions (e.g., in a PTR-MS or H3O+ CIMS instrument). Here we describe the adaptation of a high-resolution time-of-flight H3O+ CIMS instrument to use NO+ primary ion chemistry. We evaluate the NO+ technique with respect to compound specificity, sensitivity, and VOC species measured compared to H3O+. The evaluation is established by a series of experiments including laboratory investigation using a gas-chromatography (GC) interface, in situ measurement of urban air using a GC interface, and direct in situ measurement of urban air. The main findings are that (1) NO+ is useful for isomerically resolved measurements of carbonyl species; (2) NO+ can achieve sensitive detection of small (C4-C8) branched alkanes but is not unambiguous for most; and (3) compound-specific measurement of some alkanes, especially isopentane, methylpentane, and high-mass (C12-C15) n-alkanes, is possible with NO+. We also demonstrate fast in situ chemically specific measurements of C12 to C15 alkanes in ambient air.

  7. Whole-cell bacterial bioreporter for actively searching and sensing of alkanes and oil spills.

    PubMed

    Zhang, Dayi; He, Yi; Wang, Yun; Wang, Hui; Wu, Lin; Aries, Eric; Huang, Wei E

    2012-01-01

    Acinetobacter baylyi ADP1 was found to tolerate seawater and have a special ability of adhering to an oil-water interface of 10-80 µm emulsified mineral and crude oil droplets. These properties make ADP1 an ideal bacterial chassis for constructing bioreporters that are able to actively search and sense oil spill in water and soils. Acinetobacter baylyi bioreporter ADPWH_alk was developed and applied to the detection of alkanes and alkenes in water, seawater and soils. Bioreporter ADPWH_alk was able to detect a broad range of alkanes and alkenes with carbon chain length from C7 to C36. So far, ADPWH_alk is the only bioreporter that is able to detect alkane with carbon chain length greater than C18. This bioreporter responded to the alkanes in about 30 min and it was independent to the cell growth phase because of two point mutations in alkM promoter recognized by alkane regulatory protein ALKR. ADPWH_alk was applied to detect mineral oil, Brent, Chestnut and Sirri crude oils in water and seawater in the range 0.1-100 mg l(-1), showing that the bioreporter oil detection was semi-quantitative. This study demonstrates that ADPWH_alk is a rapid, sensitive and semi-quantitative bioreporter that can be useful for environmental monitoring and assessment of oil spills in seawater and soils.

  8. ClogP(alk): a method for predicting alkane/water partition coefficient.

    PubMed

    Kenny, Peter W; Montanari, Carlos A; Prokopczyk, Igor M

    2013-05-01

    Alkane/water partition coefficients (P(alk)) are less familiar to the molecular design community than their 1-octanol/water equivalents and access to both data and prediction tools is much more limited. A method for predicting alkane/water partition coefficient from molecular structure is introduced. The basis for the ClogP(alk) model is the strong (R² = 0.987) relationship between alkane/water partition coefficient and molecular surface area (MSA) that was observed for saturated hydrocarbons. The model treats a molecule as a perturbation of a saturated hydrocarbon molecule with the same MSA and uses increments defined for functional groups to quantify the extent to which logP(alk) is perturbed by the introduction each functional group. Interactions between functional groups, such as intramolecular hydrogen bonds are also parameterized within a perturbation framework. The functional groups and interactions between them are specified substructurally in a transparent and reproducible manner using SMARTS notation. The ClogP(alk) model was parameterized using data measured for structurally prototypical compounds that dominate the literature on alkane/water partition coefficients and then validated using an external test set of 100 alkane/water logP measurements, the majority of which were for drugs.

  9. Effects of fuel properties on the burning characteristics of collision-merged alkane/water droplets

    SciTech Connect

    Wang, C.H.; Pan, K.L.; Huang, W.C.; Wen, H.C.; Yang, J.Y.; Law, C.K.

    2008-04-15

    The combustion characteristics of freely falling droplets, individually generated by the merging of colliding alkane and water droplets, were experimentally investigated. The outcome of the collision droplets was first studied and then the subsequent burning processes such as the flame appearance, ignition and burning behaviors were recorded, through either visual observation or microphotography with the aid of stroboscopic lighting. If the merged droplets were exhibited in an insertive manner, while the water droplet inserted into the alkane droplet, these yield the burning behaviors prior to the end of flame were very much similar to that of pure alkane. The burning was ended with droplet extinction for lower-C alkane, and with either droplet ''flash vaporization'' or extinction for hexadecane. And if the merged droplets were in adhesive manner, for hexadecane with large water content, they either could not be ignited for the large merged droplets, or be ignited with a much prolonged ignition delay, followed by a soot-reducing flame and an ending of droplet extinction for the small merged droplets. ''Homogeneous'' explosion was not observed in any of the tests, and ''heterogeneous'' explosion, induced by trapped air bubbles, occasionally occurred for merged droplets with C-atom in alkane is higher than dodecane. And the sudden disappearance of droplet definitely decreased the burning time and thus enhanced the burning intensity. Besides, the fuel mass consumption rates were increased, even in the cases that having droplet extinction, because of the enlargement of the surface area due to the stuffing of water droplet. (author)

  10. Biogeographic variation of foliar n-alkanes of Juniperus communis var. saxatilis Pallas from the Balkans.

    PubMed

    Rajčević, Nemanja; Janaćković, Pedja; Dodoš, Tanja; Tešević, Vele; Marin, Petar D

    2014-12-01

    The composition of the epicuticular n-alkanes isolated from the leaves of ten populations of Juniperus communis L. var. saxatilis Pallas from central (continental) and western (coastal) areas of the Balkan Peninsula was characterized by GC-FID and GC/MS analyses. In the leaf waxes, 14 n-alkane homologues with chain-lengths ranging from C22 to C35 were identified. All samples were dominated by n-tritriacontane (C33 ), but differences in two other dominant n-alkanes allowed separating the coastal from the continental populations. Several statistical methods (ANOVA, principal component, discriminant, and cluster analyses as well as the Mantel test) were deployed to analyze the diversity and variability of the epicuticular-leaf-n-alkane patterns of the ten natural populations of J. communis var. saxatilis and their relation to different geographic and bioclimatic parameters. Cluster analysis showed a high correlation of the leaf-n-alkane patterns with the geographical distribution of the investigated samples, differentiating the coastal from the continental populations of this taxon. Several bioclimatic parameters related to aridity were highly correlated with this differentiation.

  11. Elucidating alkane adsorption in sodium-exchanged zeolites from molecular simulations to empirical equations

    NASA Astrophysics Data System (ADS)

    García-Pérez, E.; Torréns, I. M.; Lago, S.; Dubbeldam, D.; Vlugt, T. J. H.; Maesen, T. L. M.; Smit, B.; Krishna, R.; Calero, S.

    2005-10-01

    Configurational-bias Monte Carlo (CBMC) simulations provide adsorption isotherms, Henry coefficients and heats of adsorption of linear alkanes in sodium-exchanged MFI- and FAU-type zeolites. These simulations were carried out using our newly developed force field that reproduces experimental sodium positions in the dehydrated zeolites, and successfully predicts alkane adsorption properties over a wide range of sodium cation densities, temperatures, and pressures. We derived empirical expressions from the simulation data to describe the adsorption of linear alkanes in MFI- and FAU-type zeolites. These expressions afford a suitable substitute for complex CBMC simulations. In the low coverage regime we provide simple expressions that adequately describe the Henry coefficient and adsorption enthalpy of n-alkanes as a function of sodium density and temperature. The predicted Henry coefficients and heats of adsorption compare extremely well to available experimental data. In the high coverage regime we provide an expression for saturation capacities of linear alkanes in the zeolite. This expression, combined with the expression for the Henry coefficients, provides of the complete adsorption isotherms of pure adsorbents and mixtures, in good agreement with the adsorption isotherms obtained from CBMC.

  12. Toward aldehyde and alkane production by removing aldehyde reductase activity in Escherichia coli.

    PubMed

    Rodriguez, Gabriel M; Atsumi, Shota

    2014-09-01

    Advances in synthetic biology and metabolic engineering have enabled the construction of novel biological routes to valuable chemicals using suitable microbial hosts. Aldehydes serve as chemical feedstocks in the synthesis of rubbers, plastics, and other larger molecules. Microbial production of alkanes is dependent on the formation of a fatty aldehyde intermediate which is converted to an alkane by an aldehyde deformylating oxygenase (ADO). However, microbial hosts such as Escherichia coli are plagued by many highly active endogenous aldehyde reductases (ALRs) that convert aldehydes to alcohols, which greatly complicates strain engineering for aldehyde and alkane production. It has been shown that the endogenous ALR activity outcompetes the ADO enzyme for fatty aldehyde substrate. The large degree of ALR redundancy coupled with an incomplete database of ALRs represents a significant obstacle in engineering E. coli for either aldehyde or alkane production. In this study, we identified 44 ALR candidates encoded in the E. coli genome using bioinformatics tools, and undertook a comprehensive screening by measuring the ability of these enzymes to produce isobutanol. From the pool of 44 candidates, we found five new ALRs using this screening method (YahK, DkgA, GldA, YbbO, and YghA). Combined deletions of all 13 known ALRs resulted in a 90-99% reduction in endogenous ALR activity for a wide range of aldehyde substrates (C2-C12). Elucidation of the ALRs found in E. coli could guide one in reducing competing alcohol formation during alkane or aldehyde production.

  13. Biodegradation of C7 and C8 iso-alkanes under methanogenic conditions.

    PubMed

    Abu Laban, Nidal; Dao, Anh; Semple, Kathleen; Foght, Julia

    2015-12-01

    Iso-alkanes comprise a substantial proportion of petroleum and refined products that impact the environment, but their fate is cryptic under methanogenic conditions. We investigated methanogenic biodegradation of C7 and C8 iso-alkanes found in naphtha, specifically 2-methylhexane, 3-methylhexane, 2-methylheptane, 4-methylheptane and 3-ethylhexane. These were incubated as a mixture or individually with enrichment cultures derived from oil sands tailings ponds that generate methane from naphtha components; substrate depletion and methane production were monitored for up to 663 days. 3-Methylhexane and 4-methylheptane were degraded both singly and in the mixture, whereas 2-methylhexane and 2-methylheptane resisted degradation as single substrates but were depleted in the iso-alkane mixture, suggesting co-metabolism. 3-Ethylhexane was degraded neither singly nor with co-substrates. Putative metabolites consistent with succinylated C7 and C8 were detected, suggesting activation by addition of iso-alkanes to fumarate and corresponding to detection of alkylsuccinate synthase-like genes. 454 pyrotag sequencing, cloning and terminal restriction fragment length polymorphism of 16S rRNA genes revealed predominance of a novel member of the family Peptococcaceae (order Clostridiales) and Archaea affiliated with Methanoregula and Methanosaeta. We report here isomer-specific metabolism of C7 -C8 iso-alkanes under methanogenic conditions and propose their activation by a novel Peptococcaceae via addition to fumarate.

  14. Distribution of alkB genes within n-alkane-degrading bacteria.

    PubMed

    Vomberg, A; Klinner, U

    2000-08-01

    Fifty-four bacterial strains belonging to 37 species were tested for their ability to assimilate short chain and/or medium chain liquid n-alkanes. A gene probe derived from the alkB gene of Pseudomonas oleovorans ATCC 29347 was utilized in hybridization experiments. Results of Southern hybridization of PCR-amplificates were compared with those of colony hybridization and dot blot hybridization. Strongest signals were received only from Gram-negative bacteria growing solely with short n-alkanes (C10). Hybridization results with soil isolates growing with n-alkanes of different chain lengths suggested as well that alkB genes seem to be widespread only in solely short-chain n-alkane-degrading pseudomonads. PCR products of Rhodococcus sp., Nocardioides sp., Gordona sp. and Sphingomonas sp. growing additionally or solely with medium-chain n-alkane as hexadecane had only few sequence identity with alkB though hybridizing with the gene probe. The derived amino acid sequence of the alkB-amplificate of Pseudomonas aureofaciens showed high homology (95%) with AlkB from Ps. oleovorans. alkB gene disruptants were not able to grow with decane.

  15. ClogPalk: a method for predicting alkane/water partition coefficient

    NASA Astrophysics Data System (ADS)

    Kenny, Peter W.; Montanari, Carlos A.; Prokopczyk, Igor M.

    2013-05-01

    Alkane/water partition coefficients (Palk) are less familiar to the molecular design community than their 1-octanol/water equivalents and access to both data and prediction tools is much more limited. A method for predicting alkane/water partition coefficient from molecular structure is introduced. The basis for the ClogPalk model is the strong (R2 = 0.987) relationship between alkane/water partition coefficient and molecular surface area (MSA) that was observed for saturated hydrocarbons. The model treats a molecule as a perturbation of a saturated hydrocarbon molecule with the same MSA and uses increments defined for functional groups to quantify the extent to which logPalk is perturbed by the introduction each functional group. Interactions between functional groups, such as intramolecular hydrogen bonds are also parameterized within a perturbation framework. The functional groups and interactions between them are specified substructurally in a transparent and reproducible manner using SMARTS notation. The ClogPalk model was parameterized using data measured for structurally prototypical compounds that dominate the literature on alkane/water partition coefficients and then validated using an external test set of 100 alkane/water logP measurements, the majority of which were for drugs.

  16. Growth of Pseudomonas chloritidismutans AW-1(T) on n-alkanes with chlorate as electron acceptor.

    PubMed

    Mehboob, Farrakh; Junca, Howard; Schraa, Gosse; Stams, Alfons J M

    2009-06-01

    Microbial (per)chlorate reduction is a unique process in which molecular oxygen is formed during the dismutation of chlorite. The oxygen thus formed may be used to degrade hydrocarbons by means of oxygenases under seemingly anoxic conditions. Up to now, no bacterium has been described that grows on aliphatic hydrocarbons with chlorate. Here, we report that Pseudomonas chloritidismutans AW-1(T) grows on n-alkanes (ranging from C7 until C12) with chlorate as electron acceptor. Strain AW-1(T) also grows on the intermediates of the presumed n-alkane degradation pathway. The specific growth rates on n-decane and chlorate and n-decane and oxygen were 0.5 +/- 0.1 and 0.4 +/- 0.02 day(-1), respectively. The key enzymes chlorate reductase and chlorite dismutase were assayed and found to be present. The oxygen-dependent alkane oxidation was demonstrated in whole-cell suspensions. The strain degrades n-alkanes with oxygen and chlorate but not with nitrate, thus suggesting that the strain employs oxygenase-dependent pathways for the breakdown of n-alkanes.

  17. Why Teach Environmental Chemistry?

    ERIC Educational Resources Information Center

    Gardner, Marjorie H.

    1974-01-01

    Discusses the importance of teaching environmental chemistry in secondary school science classes, and outlines five examples of environmental chemistry problems that focus on major concepts of chemistry and have critical implications for human survival and well-being. (JR)

  18. Science Update: Inorganic Chemistry

    ERIC Educational Resources Information Center

    Rawls, Rebecca

    1978-01-01

    This first in a series of articles describing the state of the art of various branches of chemistry reviews inorganic chemistry, including bioinorganic, photochemistry, organometallic, and solid state chemistries. (SL)

  19. Modeling SOA formation from alkanes and alkenes in chamber experiments: effect of gas/wall partitioning of organic vapors.

    NASA Astrophysics Data System (ADS)

    Stéphanie La, Yuyi; Camredon, Marie; Ziemann, Paul; Ouzebidour, Farida; Valorso, Richard; Madronich, Sasha; Lee-Taylor, Julia; Hodzic, Alma; Aumont, Bernard

    2014-05-01

    Oxidation products of Intermediate Volatility Organic Compounds (IVOC) are expected to be the major precursors of secondary organic aerosols (SOA). Laboratory experiments were conducted this last decade in the Riverside APRC chamber to study IVOC oxidative mechanisms and SOA formation processes for a large set of linear, branched and cyclic aliphatic hydrocarbons (Ziemann, 2011). This dataset are used here to assess the explicit oxidation model GECKO-A (Generator for Explicit Chemistry and Kinetics of Organics in the Atmosphere) (Aumont et al., 2005). The simulated SOA yields agree with the general trends observed in the chamber experiments. They are (i) increasing with the increasing carbon number; (ii) decreasing with increasing methyl branch number; and (iii) increasing for cyclic compounds compared to their corresponding linear analogues. However, simulated SOA yields are systematically overestimated regardless of the precursors, suggesting missing processes in the model. In this study, we assess whether gas-to-wall partitioning of organic vapors can explain these model/observation mismatches (Matsunaga and Ziemann, 2010). First results show that GECKO-A outputs better match the observations when wall uptake of organic vapors is taken into account. Effects of gas/wall partitioning on SOA yields and composition will be presented. Preliminary results suggest that wall uptake is a major process influencing SOA production in the Teflon chambers. References Aumont, B., Szopa, S., Madronich, S.: Modelling the evolution of organic carbon during its gas-phase tropospheric oxidation: development of an explicit model based on a self generating approach. Atmos.Chem.Phys., 5, 2497-2517 (2005). P. J. Ziemann: Effects of molecular structure on the chemistry of aerosol formation from the OH-radical-initiated oxidation of alkanes and alkenes, Int. Rev.Phys.Chem., 30:2, 161-195 (2011). Matsunaga, A., Ziemann, P. J.: Gas-wall partitioning of organic compounds in a Teflon film

  20. Combustion chemistry

    SciTech Connect

    Brown, N.J.

    1993-12-01

    This research is concerned with the development and use of sensitivity analysis tools to probe the response of dependent variables to model input variables. Sensitivity analysis is important at all levels of combustion modeling. This group`s research continues to be focused on elucidating the interrelationship between features in the underlying potential energy surface (obtained from ab initio quantum chemistry calculations) and their responses in the quantum dynamics, e.g., reactive transition probabilities, cross sections, and thermal rate coefficients. The goals of this research are: (i) to provide feedback information to quantum chemists in their potential surface refinement efforts, and (ii) to gain a better understanding of how various regions in the potential influence the dynamics. These investigations are carried out with the methodology of quantum functional sensitivity analysis (QFSA).

  1. Science Update: Inorganic Chemistry.

    ERIC Educational Resources Information Center

    Rawls, Rebecca

    1981-01-01

    Describes areas of inorganic chemistry which have changed dramatically in the past year or two, including photochemistry, electrochemistry, organometallic complexes, inorganic reaction theory, and solid state chemistry. (DS)

  2. Direct Conversion of Energy.

    ERIC Educational Resources Information Center

    Corliss, William R.

    This publication is one of a series of information booklets for the general public published by the United States Atomic Energy Commission. Direct energy conversion involves energy transformation without moving parts. The concepts of direct and dynamic energy conversion plus the laws governing energy conversion are investigated. Among the topics…

  3. Learning through Conversation.

    ERIC Educational Resources Information Center

    Kelly, Patricia R.; Klein, Adria F.; Pinnell, Gay Su

    1996-01-01

    Through teacher-child conversation, experts use oral language to help novices take on more complex tasks; and Reading Recovery children, who are obviously having difficulty with school-based learning, are especially in need of significant conversations with adults. Reading and writing processes are supported through conversation with Reading…

  4. Distribution, activity and function of short-chain alkane degrading phylotypes in hydrothermal vent sediments

    NASA Astrophysics Data System (ADS)

    Adams, M. M.; Joye, S. B.; Hoarfrost, A.; Girguis, P. R.

    2012-12-01

    Global geochemical analyses suggest that C2-C4 short chain alkanes are a common component of the utilizable carbon pool in deep-sea sediments worldwide and have been found in diverse ecosystems. From a thermodynamic standpoint, the anaerobic microbial oxidation of these aliphatic hydrocarbons is more energetically yielding than the anaerobic oxidation of methane (AOM). Therefore, the preferential degradation of these hydrocarbons may compete with AOM for the use of oxidants such as sulfate, or other potential oxidants. Such processes could influence the fate of methane in the deep-sea. Sulfate-reducing bacteria (SRB) from hydrocarbon seep sediments of the Gulf of Mexico and Guaymas Basin have previously been enriched that anaerobically oxidize short chain alkanes to generate CO2 with the preferential utilization of 12C-enriched alkanes (Kniemeyer et al. 2007). Different temperature regimens along with multiple substrates were tested and a pure culture (deemed BuS5) was isolated from mesophilic enrichments with propane or n-butane as the sole carbon source. Through comparative sequence analysis, strain BuS5 was determined to cluster with the metabolically diverse Desulfosarcina / Desulfococcus cluster, which also contains the SRB found in consortia with anaerobic, methane-oxidizing archaea in seep sediments. Enrichments from a terrestrial, low temperature sulfidic hydrocarbon seep also corroborated that propane degradation occurred with most bacterial phylotypes surveyed belonging to the Deltaproteobacteria, particularly Desulfobacteraceae (Savage et al. 2011). To date, no microbes capable of ethane oxidation or anaerobic C2-C4 alkane oxidation at thermophilic temperature have been isolated. The sediment-covered, hydrothermal vent systems found at Middle Valley (Juan de Fuca Ridge, eastern Pacific Ocean) are a prime environment for investigating mesophilic to thermophilic anaerobic oxidation of short-chain alkanes, given the elevated temperatures and dissolved

  5. Mechanism of a C-H bond activation reaction in room-temperature alkane solution

    SciTech Connect

    Bromberg, S.E.; Yang, H.; Asplund, M.C.

    1997-10-10

    Chemical reactions that break alkane carbon-hydrogen (C-H) bonds are normally carried out under conditions of high temperature and pressure because these bonds are extremely strong ({approx} 100 kilocalories per mole), but certain metal complexes can activate C-H bonds in alkane solution under the mild conditions of room temperature and pressure. Time-resolved infrared experiments probing the initial femtosecond dynamics through the nano- and microsecond kinetics to the final stable products have been used to generate a detailed picture of the C-H activation reaction. Structures of all of the intermediates involved in the reaction of Tp*Rh(CO){sub 2} (Tp* = HB-Pz{sub 3}*, Pz* = 3,5-di-methylpyrazolyl) in alkane solution have been identified and assigned, and energy barriers for each reaction step from solvation to formation of the final alkyl hydride product have been estimated from transient lifetimes. 27 refs., 6 figs.

  6. The mechanism of a C-H Bond Activation reaction in roomtemperature alkane solution

    SciTech Connect

    Bromberg, Steven E.; Yang, Haw; Asplund, Matthew C.; Lian, T.; McNamara, B.K.; Kotz, K.T.; Yeston, J.S.; Wilkens, M.; Frei, H.; Bergman,Robert G.; Harris, C.B.

    1997-07-31

    Chemical reactions that break alkane carbon-hydrogen (C-H) bonds are normally carried out under conditions of high temperature and pressure because these bonds are extremely strong ({approx}100 kilocalories per mole), but certain metal complexes can activate C-H bonds in alkane solution under the mild conditions of room temperature and pressure. Time-resolved infrared experiments probing the initial femtosecond dynamics through the nano- and microsecond kinetics to the final stable products have been used to generate a detailed picture of the C-H activation reaction. Structures of all of the intermediates involved in the reaction of Tp*Rh(CO)2 (Tp* = HB-Pz3*, Pz* = 3,5-dimethylpyrazolyl) in alkane solution have been identified and assigned, and energy barriers for each reaction step from solvation to formation of the final alkylhydride product have been estimated from transient lifetimes.

  7. On the partitioning of benzene between water and n-alkanes

    NASA Astrophysics Data System (ADS)

    Graziano, Giuseppe

    2010-02-01

    The magnitude of the work of cavity creation increases with the n-alkane chain-length due to the volume packing density increase, in line with expectations based on correlations with surface tension, cohesive energy density, and the inverse of isothermal compressibility. Also the magnitude of the Gibbs energy gain to turn on benzene-alkane attractive interactions increases with the n-alkane chain-length, but to a lesser extent than the work of cavity creation, thus benzene solubility, under Ben-Naim standard conditions, slightly decreases on lengthening the alkyl chain, in line with experimental data. It is unjustified to apply a Flory-Huggins correction to the Ben-Naim standard Gibbs energy of transfer.

  8. Mie potentials for phase equilibria calculations: application to alkanes and perfluoroalkanes.

    PubMed

    Potoff, Jeffrey J; Bernard-Brunel, Damien A

    2009-11-05

    Transferable united-atom force fields, based on n - 6 Lennard-Jones potentials, are presented for normal alkanes and perfluorocarbons. It is shown that by varying the repulsive exponent the range of the potential can be altered, leading to improved predictions of vapor pressures while also reproducing saturated liquid densities to high accuracy. Histogram-reweighting Monte Carlo simulations in the grand canonical ensemble are used to determine the vapor liquid coexistence curves, vapor pressures, heats of vaporization, and critical points for normal alkanes methane through tetradecane, and perfluorocarbons perfluoromethane through perfluorooctane. For all molecules studied, saturated liquid densities are reproduced to within 1% of experiment. Vapor pressures for normal alkanes and perfluorocarbons were predicted to within 3% and 6% of experiment, respectively. Calculations performed for binary mixture vapor-liquid equilibria for propane + pentane show excellent agreement with experiment, while slight deviations are observed for the ethane + perfluoroethane mixture.

  9. n-Alkanes in surficial sediments of Visakhapatnam harbour, east coast of India

    NASA Astrophysics Data System (ADS)

    Punyu, V. R.; Harji, R. R.; Bhosle, N. B.; Sawant, S. S.; Venkat, K.

    2013-04-01

    Surface sediments collected from 19 stations along Visakhapatnam harbour were analysed for organic carbon (OC), δ 13Coc, total lipids (TL), total hydrocarbon (THC), n-alkane concentration and composition. OC, δ 13Coc, TL and THC ranged from 0.6% to 7.6%, -29.3 to -23.8‰, 300 to 14,948 \\upmu g g - 1 dw, and 0.2 to 2,277 \\upmu g g - 1 dw, respectively. Predominance of even carbon numbers n-alkanes C12-C21 with carbon preference index (CPI) of <1 suggests major microbial influence. Fair abundance of odd carbon number n-alkanes in the range of C15-C22 and C23-C33 indicates some input from phytoplankton and terrestrial sources, respectively. Petrogenic input was evident from the presence of hopanes and steranes. The data suggest that organic matter (OM) sources varied spatially and were mostly derived from mixed source.

  10. Leaf-wax n-alkanes record the plant–water environment at leaf flush

    PubMed Central

    Tipple, Brett J.; Berke, Melissa A.; Doman, Christine E.; Khachaturyan, Susanna; Ehleringer, James R.

    2013-01-01

    Leaf-wax n-alkanes 2H/1H ratios are widely used as a proxy in climate reconstruction. Although the broad nature of the relationship between n-alkanes δ2H values and climate is appreciated, the quantitative details of the proxy remain elusive. To examine these details under natural environmental conditions, we studied a riparian broadleaf angiosperm species, Populus angustifolia, growing on water with a constant δ2H value and monitored the δ2H values of leaf-wax n-alkanes and of stem, leaf, stream, and atmospheric waters throughout the entire growing season. Here we found the δ2H values of leaf-wax n-alkanes recorded only a 2-wk period during leaf flush and did not vary for the 19 weeks thereafter when leaves remained active. We found δ2H values of leaf-wax n-alkanes of P. angustifolia record conditions earlier in the season rather than fully integrating the entire growing season. Using these data, we modeled precipitation δ2H values during the time of wax synthesis. We observed that the isotope ratios of this precipitation generally were 2H-enriched compared with mean annual precipitation. This model provides a mechanistic basis of the often-observed 2H-enrichment from the expected fractionation values in studies of broadleaf angiosperm leaf-wax δ2H. In addition, these findings may have implications for the spatial and temporal uses of n-alkane δ2H values in paleoapplications; when both plant community and growth form are known, this study allows the isolation of the precipitation dynamics of individual periods of the growing season. PMID:23359675

  11. Homology modeling and protein engineering of alkane monooxygenase in Burkholderia thailandensis MSMB121: in silico insights.

    PubMed

    Jain, Chakresh Kumar; Gupta, Money; Prasad, Yamuna; Wadhwa, Gulshan; Sharma, Sanjeev Kumar

    2014-07-01

    The degradation of hydrocarbons plays an important role in the eco-balancing of petroleum products, pesticides and other toxic products in the environment. The degradation of hydrocarbons by microbes such as Geobacillus thermodenitrificans, Burkhulderia, Gordonia sp. and Acinetobacter sp. has been studied intensively in the literature. The present study focused on the in silico protein engineering of alkane monooxygenase (ladA)-a protein involved in the alkane degradation pathway. We demonstrated the improvement in substrate binding energy with engineered ladA in Burkholderia thailandensis MSMB121. We identified an ortholog of ladA monooxygenase found in B. thailandensis MSMB121, and showed it to be an enzyme involved in an alkane degradation pathway studied extensively in Geobacillus thermodenitrificans. Homology modeling of the three-dimensional structure of ladA was performed with a crystal structure (protein databank ID: 3B9N) as a template in MODELLER 9v11, and further validated using PROCHECK, VERIFY-3D and WHATIF tools. Specific amino acids were substituted in the region corresponding to amino acids 305-370 of ladA protein, resulting in an enhancement of binding energy in different alkane chain molecules as compared to wild protein structures in the docking experiments. The substrate binding energy with the protein was calculated using Vina (Implemented in VEGAZZ). Molecular dynamics simulations were performed to study the dynamics of different alkane chain molecules inside the binding pockets of wild and mutated ladA. Here, we hypothesize an improvement in binding energies and accessibility of substrates towards engineered ladA enzyme, which could be further facilitated for wet laboratory-based experiments for validation of the alkane degradation pathway in this organism.

  12. Leaf-wax n-alkanes record the plant-water environment at leaf flush

    NASA Astrophysics Data System (ADS)

    Tipple, Brett J.; Berke, Melissa A.; Doman, Christine E.; Khachaturyan, Susanna; Ehleringer, James R.

    2013-02-01

    Leaf-wax n-alkanes 2H/1H ratios are widely used as a proxy in climate reconstruction. Although the broad nature of the relationship between n-alkanes δ2H values and climate is appreciated, the quantitative details of the proxy remain elusive. To examine these details under natural environmental conditions, we studied a riparian broadleaf angiosperm species, Populus angustifolia, growing on water with a constant δ2H value and monitored the δ2H values of leaf-wax n-alkanes and of stem, leaf, stream, and atmospheric waters throughout the entire growing season. Here we found the δ2H values of leaf-wax n-alkanes recorded only a 2-wk period during leaf flush and did not vary for the 19 weeks thereafter when leaves remained active. We found δ2H values of leaf-wax n-alkanes of P. angustifolia record conditions earlier in the season rather than fully integrating the entire growing season. Using these data, we modeled precipitation δ2H values during the time of wax synthesis. We observed that the isotope ratios of this precipitation generally were 2H-enriched compared with mean annual precipitation. This model provides a mechanistic basis of the often-observed 2H-enrichment from the expected fractionation values in studies of broadleaf angiosperm leaf-wax δ2H. In addition, these findings may have implications for the spatial and temporal uses of n-alkane δ2H values in paleoapplications; when both plant community and growth form are known, this study allows the isolation of the precipitation dynamics of individual periods of the growing season.

  13. Molecular simulation of diffusion of hydrogen, carbon monoxide, and water in heavy n-alkanes.

    PubMed

    Makrodimitri, Zoi A; Unruh, Dominik J M; Economou, Ioannis G

    2011-02-17

    The self-diffusion and mutual diffusion coefficients of hydrogen (H(2)), carbon monoxide (CO), and water (H(2)O) in n-alkanes were studied by molecular dynamics simulation. n-Alkane molecules were modeled based on the TraPPE united atom force field. NPT molecular dynamics (MD) simulations were performed for n-C(12) to n-C(96) at different temperature and pressure values to validate the accuracy of the force field. In all cases, good agreement was obtained between literature experimental data and model predictions for the density and structure properties of the n-alkanes. Subsequently, the self-diffusion coefficient of the three light components in the various n-alkanes was calculated at different temperatures. Model predictions were in very good agreement with limited experimental data. Furthermore, the Maxwell-Stefan diffusion coefficients of H(2) and CO in two n-alkanes, namely n-C(12) and n-C(28), were calculated based on long MD NVT simulations for different solute concentrations in the n-alkanes. Finally, the Fick diffusion coefficient of the components was calculated as a product of the Maxwell-Stefan diffusion coefficient and a thermodynamic factor. The latter was estimated from the statistical associating fluid theory (SAFT). The Fick diffusion coefficient was found to be higher than the Maxwell-Stefan diffusion coefficient for H(2) and CO in n-C(28). The empirical Darken equation was used to estimate the Maxwell-Stefan diffusion coefficient, and calculations were found to be in good agreement with simulation results.

  14. Phase Equilibria of Water/CO2 and Water/n-Alkane Mixtures from Polarizable Models.

    PubMed

    Jiang, Hao; Economou, Ioannis G; Panagiotopoulos, Athanassios Z

    2017-02-16

    Phase equilibria of water/CO2 and water/n-alkane mixtures over a range of temperatures and pressures were obtained from Monte Carlo simulations in the Gibbs ensemble. Three sets of Drude-type polarizable models for water, namely the BK3, GCP, and HBP models, were combined with a polarizable Gaussian charge CO2 (PGC) model to represent the water/CO2 mixture. The HBP water model describes hydrogen bonds between water and CO2 explicitly. All models underestimate CO2 solubility in water if standard combining rules are used for the dispersion interactions between water and CO2. With the dispersion parameters optimized to phase compositions, the BK3 and GCP models were able to represent the CO2 solubility in water, however, the water composition in CO2-rich phase is systematically underestimated. Accurate representation of compositions for both water- and CO2-rich phases cannot be achieved even after optimizing the cross interaction parameters. By contrast, accurate compositions for both water- and CO2-rich phases were obtained with hydrogen bonding parameters determined from the second virial coefficient for water/CO2. Phase equilibria of water/n-alkane mixtures were also studied using the HBP water and an exponenial-6 united-atom n-alkanes model. The dispersion interactions between water and n-alkanes were optimized to Henry's constants of methane and ethane in water. The HBP water and united-atom n-alkane models underestimate water content in the n-alkane-rich phase; this underestimation is likely due to the neglect of electrostatic and induction energies in the united-atom model.

  15. Pulse radiolysis of alkanes: A time-resolved electron paramagnetic resonance study

    SciTech Connect

    Shkrob, I.A.; Trifunac, A.D.

    1994-02-14

    Time-resolved spin-echo-detected electron paramagnetic resonance (EPR) was applied to examine short-lived alkyl radicals formed in pulse radiolysis of liquid alkanes. It was found that the ratio of yields of penultimate and interior radicals in n-alkanes at the instant of their generation is temperature-independent and is ca. 1.25 times greater than the statistical quantity. This higher-than-statistical production of penultimate radicals indicates that the fast ion molecule reactions involving radical cations are a significant route of radical generation. The analysis of spin-echo kinetics in n-alkanes suggests that the alkyl radicals are emissively polarized in spur reactions. this initial polarization rapidly increases with shortening of the aliphatic chain. Another finding is that a long-chain structure of these radicals results in much higher rate of Heisenberg spin exchange relative to the recombination rate. The relative yields of hydrogen abstraction and fragmentation for various branched alkanes are estimated. It is concluded that the fragmentation occurs prior to the formation of radicals in an excited precursor species. Effects of phenolic and alkene additives in radiolysis of n-alkanes are examined. It is demonstrated that phenoxy radicals are produced in dissociative capture of electrons and alkane holes. Another route is a reaction of phenols with free hydrogen atoms. A rapid transfer of singlet correlation from the geminate radical ion pairs is responsible for unusual polarization patterns in the phenoxy and cyclohexadienyl radicals. The significance of these results in the context of cross-linking in polyethylene and higher paraffins is discussed. 56 refs.

  16. Chemistry of the outer planets

    NASA Technical Reports Server (NTRS)

    Scattergood, Thomas W.

    1992-01-01

    Various aspects were studied of past or present chemistry in the atmospheres of the outer planets and their satellites using lab simulations. Three areas were studied: (1) organic chemistry induced by kinetically hot hydrogen atoms in the region of Jupiter's atmosphere containing the ammonia cirrus clouds; (2) the conversion of NH3 into N2 by plasmas associated with entry of meteors and other objects into the atmosphere of early Titan; and (3) the synthesis of simple hydrocarbons and HCN by lightning in mixtures containing N2, CH4, and NH3 representing the atmospheres of Titan and the outer planets. The results showed that: (1) hot H2 atoms formed from the photodissociation of NH3 in Jupiter's atmosphere could account for some of the atmospheric chemistry in the ammonia cirrus cloud region; (2) the thermalization of hot H2 atoms in atmospheres predominated by molecular H is not as rapid as predicted by elastic collision theory; (3) the net quantum loss of NH3 in the presence of a 200 fold excess of H2 is 0.02, much higher than was expected from the amount of H2 present; (4) the conversion of NH3 into N2 in plasmas associated with infalling meteors is very efficient and rapid, and could account for most of the N2 present on Titan; (5) the yields of C2H2 and HCN from lightning induced chemistry in mixtures of CH4 and N2 is consistent with quenched thermodynamic models of the discharge core; and (6) photolysis induced by the UV light emitted by the gases in the hot plasmas may account for some, if not most, of the excess production of C2H6 and the more complex hydrocarbons.

  17. Separating and characterizing functional alkane degraders from crude-oil-contaminated sites via magnetic nanoparticle-mediated isolation.

    PubMed

    Wang, Xinzi; Zhao, Xiaohui; Li, Hanbing; Jia, Jianli; Liu, Yueqiao; Ejenavi, Odafe; Ding, Aizhong; Sun, Yujiao; Zhang, Dayi

    Uncultivable microorganisms account for over 99% of all species on the planet, but their functions are yet not well characterized. Though many cultivable degraders for n-alkanes have been intensively investigated, the roles of functional n-alkane degraders remain hidden in the natural environment. This study introduces the novel magnetic nanoparticle-mediated isolation (MMI) technology in Nigerian soils and successfully separates functional microbes belonging to the families Oxalobacteraceae and Moraxellaceae, which are dominant and responsible for alkane metabolism in situ. The alkR-type n-alkane monooxygenase genes, instead of alkA- or alkP-type, were the key functional genes involved in the n-alkane degradation process. Further physiological investigation via a BIOLOG PM plate revealed some carbon (Tween 20, Tween 40 and Tween 80) and nitrogen (tyramine, l-glutamine and d-aspartic acid) sources promoting microbial respiration and n-alkane degradation. With further addition of promoter carbon or nitrogen sources, the separated functional alkane degraders significantly improved n-alkane biodegradation rates. This suggests that MMI is a promising technology for separating functional microbes from complex microbiota, with deeper insight into their ecological functions and influencing factors. The technique also broadens the application of the BIOLOG PM plate for physiological research on functional yet uncultivable microorganisms.

  18. Alkane-degrading bacteria at the soil-litter interface: comparing isolates with T-RFLP-based community profiles.

    PubMed

    Giebler, Julia; Wick, Lukas Y; Chatzinotas, Antonis; Harms, Hauke

    2013-10-01

    Alkane-degrading bacteria were isolated from uncontaminated soil microcosms, which had been incubated with maize litter as natural alkane source. The isolates served to understand spatio-temporal community changes at the soil-litter interface, which had been detected using alkB as a functional marker gene for bacterial alkane degraders. To obtain a large spectrum of isolates, liquid subcultivation was combined with a matrix-assisted enrichment (Teflon membranes, litter). Elevated cell numbers of alkane degraders were detected by most probable number counting indicating enhanced alkane degradation potential in soil in response to litter treatment. Partial 16S rRNA gene sequencing of 395 isolates revealed forty different phylogenetic groups [operational taxonomic units (OTUs)] and spatio-temporal shifts in community composition. Ten OTUs comprised so far unknown alkane degraders, and five OTUs represented putative new bacterial genera. The combination of enrichment methods yielded a higher diversity of isolates than liquid subcultivation alone. Comparison of 16S rRNA gene T-RFLP profiles indicated that many alkane degraders present in the enrichments were not detectable in the DNA extracts from soil microcosms. These possibly rare specialists might represent a seed bank for the alkane degradation capacity in uncontaminated soil. This relevant ecosystem function can be fostered by the formation of the soil-litter interface.

  19. 40 CFR 721.10103 - Naphtha (Fischer-Tropsch), C4-11-alkane, branched and linear.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-alkane, branched and linear. 721.10103 Section 721.10103 Protection of Environment ENVIRONMENTAL..., branched and linear. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as naphtha (fischer-tropsch), C4-11-alkane, branched and linear (PMN P-04-235; CAS...

  20. 40 CFR 721.10103 - Naphtha (Fischer-Tropsch), C4-11-alkane, branched and linear.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-alkane, branched and linear. 721.10103 Section 721.10103 Protection of Environment ENVIRONMENTAL..., branched and linear. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as naphtha (fischer-tropsch), C4-11-alkane, branched and linear (PMN P-04-235; CAS...

  1. 40 CFR 721.10103 - Naphtha (Fischer-Tropsch), C4-11-alkane, branched and linear.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-alkane, branched and linear. 721.10103 Section 721.10103 Protection of Environment ENVIRONMENTAL..., branched and linear. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as naphtha (fischer-tropsch), C4-11-alkane, branched and linear (PMN P-04-235; CAS...

  2. 40 CFR 721.10103 - Naphtha (Fischer-Tropsch), C4-11-alkane, branched and linear.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Naphtha (Fischer-Tropsch), C4-11... Significant New Uses for Specific Chemical Substances § 721.10103 Naphtha (Fischer-Tropsch), C4-11-alkane... substance identified as naphtha (fischer-tropsch), C4-11-alkane, branched and linear (PMN P-04-235; CAS...

  3. 40 CFR 721.10103 - Naphtha (Fischer-Tropsch), C4-11-alkane, branched and linear.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Naphtha (Fischer-Tropsch), C4-11... Significant New Uses for Specific Chemical Substances § 721.10103 Naphtha (Fischer-Tropsch), C4-11-alkane... substance identified as naphtha (fischer-tropsch), C4-11-alkane, branched and linear (PMN P-04-235; CAS...

  4. 40 CFR 721.10145 - Modified reaction products of alkyl alcohol, halogenated alkane, substituted epoxide, and amino...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Modified reaction products of alkyl... Modified reaction products of alkyl alcohol, halogenated alkane, substituted epoxide, and amino compound... identified generically as modified reaction products of alkyl alcohol, halogenated alkane,...

  5. 40 CFR 721.10145 - Modified reaction products of alkyl alcohol, halogenated alkane, substituted epoxide, and amino...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Modified reaction products of alkyl... Modified reaction products of alkyl alcohol, halogenated alkane, substituted epoxide, and amino compound... identified generically as modified reaction products of alkyl alcohol, halogenated alkane,...

  6. 40 CFR 721.10145 - Modified reaction products of alkyl alcohol, halogenated alkane, substituted epoxide, and amino...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Modified reaction products of alkyl... Modified reaction products of alkyl alcohol, halogenated alkane, substituted epoxide, and amino compound... identified generically as modified reaction products of alkyl alcohol, halogenated alkane,...

  7. 40 CFR 721.10145 - Modified reaction products of alkyl alcohol, halogenated alkane, substituted epoxide, and amino...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Modified reaction products of alkyl... Modified reaction products of alkyl alcohol, halogenated alkane, substituted epoxide, and amino compound... identified generically as modified reaction products of alkyl alcohol, halogenated alkane,...

  8. 40 CFR 721.10145 - Modified reaction products of alkyl alcohol, halogenated alkane, substituted epoxide, and amino...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Modified reaction products of alkyl... Modified reaction products of alkyl alcohol, halogenated alkane, substituted epoxide, and amino compound... identified generically as modified reaction products of alkyl alcohol, halogenated alkane,...

  9. A unified single-event microkinetic model for alkane hydroconversion in different aggregation states on Pt/H-USY-zeolites.

    PubMed

    Laxmi Narasimhan, C S; Thybaut, Joris W; Martens, Johan A; Jacobs, Pierre A; Denayer, Joeri F; Marin, Guy B

    2006-04-06

    A single-event microkinetic model for the catalytic hydroconversion of hydrocarbons on Pt/H-US-Y bifunctional zeolite catalysts developed for low-pressure vapor phase conditions was extended to cover high-pressure vapor phase and liquid phase conditions. The effect of the density of the bulk hydrocarbon phase on the physisorption as well as on the protonation steps of the reaction network was accounted for explicitly and can be interpreted in terms of "compression" of the hydrocarbon sorbate inside the zeolite pores and "solvation" of the catalyst framework by the dense bulk hydrocarbon phase. The bulk phase density effect on the physisorbed state is described via a single excess free enthalpy of physisorption. A dense bulk hydrocarbon phase destabilizes the sorbate molecules inside the catalyst pores. An expression of the excess free enthalpy of physisorption involving the fugacity coefficient and a zeolite dependent factor allows description of physisorption data. Typical excess free enthalpy values are in the range 1.5-5.1 kJ mol(-1) increasing with carbon number in the series of C5-C16 alkanes. At high-pressure vapor phase and liquid phase conditions, the excess standard protonation enthalpy is estimated at -7.8 kJ mol(-1) leading to relatively more stable carbenium ions at dense bulk phase conditions. As a result of the excess physisorption and protonation properties, the lightest hydrocarbons in mixtures are more competitive at dense phase conditions and their conversion is enhanced compared to low-density conditions.

  10. Energy conversion & storage program. 1995 annual report

    SciTech Connect

    Cairns, E.J.

    1996-06-01

    The 1995 annual report discusses laboratory activities in the Energy Conversion and Storage (EC&S) Program. The report is divided into three categories: electrochemistry, chemical applications, and material applications. Research performed in each category during 1995 is described. Specific research topics relate to the development of high-performance rechargeable batteries and fuel cells, the development of high-efficiency thermochemical processes for energy conversion, the characterization of new chemical processes and complex chemical species, and the study and application of novel materials related to energy conversion and transmission. Research projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials and deposition technologies, and advanced methods of analysis.

  11. Monocarboxylic acids from oxidation of acyclic isoprenoid alkanes by Mycobacterium fortuitum

    NASA Technical Reports Server (NTRS)

    Cox, R. E.; Maxwell, J. R.; Myers, R. N.

    1976-01-01

    Mycobacterium fortuitum utilizes certain stereoisomeric mixtures of individual multimethyl branched alkanes as sole carbon source, including 2,6(R), 10(S), 14(RS)-tetramethylhexadecane; 2,6(R), 10(S), 14(RS)-tetramethylheptadecane; 2,6(RS), 10(RS)-trimethyltetradecane, and 2,6(R), 10(S)-trimethylpentadecane. Products of oxidation isolated from the bacterial lipids were acids derived predominantly from oxidation of the isopropyl terminus of each alkane, except in the case of 2,6(RS), 10(RS)-trimethyltetradecane. With the latter, acids from oxidation at either terminus were detected in comparable proportions.

  12. Mass effect on the Soret coefficient in n-alkane mixtures

    SciTech Connect

    Alonso de Mezquia, David; Mounir Bou-Ali, M.; Madariaga, J. Antonio; Santamaría, Carlos

    2014-02-28

    We have determined the Soret coefficient of different equimolar and non equimolar n-alkane mixtures from measurements of the molecular diffusion and thermal diffusion coefficients. It is shown that equimolar mixtures behave as isotopic-like mixtures in which only the mass effect contributes to the Soret effect. In non equimolar mixtures, a small linear dependence with the molar fraction is observed. Finally, we have obtained a new correlation, which allows the determination of the Soret coefficient of n-alkane mixtures using the data of viscosity, the thermal expansion coefficient of the pure components, and the density of the equimolar mixture.

  13. Benzylic Phosphates in Friedel-Crafts Reactions with Activated and Unactivated Arenes: Access to Polyarylated Alkanes.

    PubMed

    Pallikonda, Gangaram; Chakravartya, Manab

    2016-03-04

    Easily reachable electron-poor/rich primary and secondary benzylic phosphates are suitably used as substrates for Friedel-Crafts benzylation reactions with only 1.2 equiv activated/deactivated arenes (no additional solvent) to access structurally and electronically diverse polyarylated alkanes with excellent yields and selectivities at room temperature. Specifically, diversely substituted di/triarylmethanes are generated within 2-30 min using this approach. A wide number of electron-poor polyarylated alkanes are easily accomplished through this route by just tuning the phosphates.

  14. Regioselective alkane hydroxylation with a mutant CYP153A6 enzyme

    SciTech Connect

    Koch, Daniel J.; Arnold, Frances H.

    2013-01-29

    Cytochrome P450 CYP153A6 from Myobacterium sp. strain HXN1500 was engineered using in-vivo directed evolution to hydroxylate small-chain alkanes regioselectively. Mutant CYP153A6-BMO1 selectively hydroxylates butane and pentane at the terminal carbon to form 1-butanol and 1-pentanol, respectively, at rates greater than wild-type CYP153A6 enzymes. This biocatalyst is highly active for small-chain alkane substrates and the regioselectivity is retained in whole-cell biotransformations.

  15. Thermal non-oxidative aromatization of light alkanes catalyzed by gallium nitride.

    PubMed

    Li, Lu; Mu, Xiaoyue; Liu, Wenbo; Kong, Xianghua; Fan, Shizhao; Mi, Zetian; Li, Chao-Jun

    2014-12-15

    The thermal catalytic activity of GaN in non-oxidative alkane dehydroaromatization has been discovered for the first time. The origin of the catalytic activity was studied experimentally and theoretically. Commercially available GaN powders with a wurtzite crystal structure showed superior stability and reactivity for converting light alkanes, including methane, propane, n-butane, n-hexane and cyclohexane into benzene at an elevated temperature with high selectivity. The catalyst is highly robust and can be used repeatedly without noticeable deactivation.

  16. Length-dependent nucleation mechanisms rule the vaporization of n-alkanes

    NASA Astrophysics Data System (ADS)

    Zahn, Dirk

    2008-12-01

    The liquid → vapor transition of a series of n-alkanes is explored by means of molecular dynamics simulations. From the comparison of the vaporization of methane, pentane and decane we elaborate the dependence of the nucleation mechanisms on the chain length. While the boiling of methane may be characterized as 'ideal' vapor bubble nucleation and growth, our studies related to pentane and decane reveal an increasing importance of liquid droplets acting as intermediates of the vaporization process. With increasing chain length the investigated n-alkanes were found to avoid the formation of large liquid-vapor interfaces by following a different nucleation mechanism.

  17. NGL data conversion system

    NASA Astrophysics Data System (ADS)

    Shoji, Masahiro; Horiuchi, Nobuyasu

    2005-06-01

    We are developing a NGL data conversion system for EPL, for LEEPL, and for EBDW, which is based on our established photomask data conversion system, PATACON PC-cluster. For EPL data conversion, it has SF division, Complementary division, Stitching, Proximity effect correction, Alignment mark insertion, EB stepper control data creation, and Mask inspection data creation. For LEEPL data conversion, it has Pattern checking, Complementary division, Stitching, Stress distortion correction, Alignment mark insertion, and Mask inspection data creation. For EB direct-writing data conversion, it has Proximity effect correction and Extraction of aperture pattern for cell projection exposure.

  18. Iterated multidimensional wave conversion

    SciTech Connect

    Brizard, A. J.; Tracy, E. R.; Johnston, D.; Kaufman, A. N.; Richardson, A. S.; Zobin, N.

    2011-12-23

    Mode conversion can occur repeatedly in a two-dimensional cavity (e.g., the poloidal cross section of an axisymmetric tokamak). We report on two novel concepts that allow for a complete and global visualization of the ray evolution under iterated conversions. First, iterated conversion is discussed in terms of ray-induced maps from the two-dimensional conversion surface to itself (which can be visualized in terms of three-dimensional rooms). Second, the two-dimensional conversion surface is shown to possess a symplectic structure derived from Dirac constraints associated with the two dispersion surfaces of the interacting waves.

  19. Detailed chemical kinetic models for large n-alkanes and iso-alkanes found in conventional and F-T diesel fuels

    SciTech Connect

    Westbrook, C K; Pitz, W J; Mehl, M; Curran, H J

    2009-03-09

    n-Hexadecane and 2,2,4,4,6,8,8-heptamethylnonane represent the primary reference fuels for diesel that are used to determine cetane number, a measure of the ignition property of diesel fuel. With the development of chemical kinetics models for both primary reference fuels, a new capability is now available to model diesel fuel ignition. Additionally, we have developed chemical kinetic models for a whole series of large n-alkanes and a large iso-alkane to represent these chemical classes in fuel surrogates for conventional and future fuels. These chemical kinetic models are used to predict the effect of the aforementioned fuel components on ignition characteristics under conditions found in internal combustion engines.

  20. Adiabatic Coupling Constant of Nitrobenzene- n-Alkane Critical Mixtures. Evidence from Ultrasonic Spectra and Thermodynamic Data

    NASA Astrophysics Data System (ADS)

    Mirzaev, Sirojiddin Z.; Kaatze, Udo

    2016-09-01

    Ultrasonic spectra of mixtures of nitrobenzene with n-alkanes, from n-hexane to n-nonane, are analyzed. They feature up to two Debye-type relaxation terms with discrete relaxation times and, near the critical point, an additional relaxation term due to the fluctuations in the local concentration. The latter can be well represented by the dynamic scaling theory. Its amplitude parameter reveals the adiabatic coupling constant of the mixtures of critical composition. The dependence of this thermodynamic parameter upon the length of the n-alkanes corresponds to that of the slope in the pressure dependence of the critical temperature and is thus taken another confirmation of the dynamic scaling model. The change in the variation of the coupling constant and of several other mixture parameters with alkane length probably reflects a structural change in the nitrobenzene- n-alkane mixtures when the number of carbon atoms per alkane exceeds eight.

  1. Classification of vegetable oils according to their botanical origin using n-alkane profiles established by GC-MS.

    PubMed

    Troya, F; Lerma-García, M J; Herrero-Martínez, J M; Simó-Alfonso, E F

    2015-01-15

    n-Alkane profiles established by gas chromatography-mass spectrometry (GC-MS) were used to classify vegetable oils according to their botanical origin. The n-alkanes present in corn, grapeseed, hazelnut, olive, peanut and sunflower oils were isolated by means of alkaline hydrolysis followed by silica gel column chromatography of the unsaponifiable fractions. The n-alkane fraction was constituted mainly of n-alkanes in the range C8-C35, although only those most abundant (15 n-alkanes, from 21 to 35 carbon No.) were used as original variables to construct linear discriminant analysis (LDA) models. Ratios of the peak areas selected by pairs were used as predictors. All the oils were correctly classified according to their botanical origin, with assignment probabilities higher than 95%, using an LDA model.

  2. Distribution and variability of n-alkanes in epicuticular waxes of sedum species from the central Balkan Peninsula: chemotaxonomic importance.

    PubMed

    Jovanović, Snežana Č; Zlatković, Bojan K; Stojanović, Gordana S

    2015-05-01

    For the first time, the n-alkane distribution and variability of the epicuticular waxes within 22 Sedum taxa was reported with focus on the chemotaxonomy of native Sedum representatives from the central Balkan Peninsula, compared to their relations with four other species of the Crassulaceae family. By GC/MS and GC-FID identification and quantification, it was established that n-alkanes C27 , C29 , C31 , C33 , and C35 were the dominant constituents of the examined epicuticular wax samples. Applying multivariate statistical analyses including agglomerative hierarchical clustering (AHC) and principal component analysis (PCA), the relation according to the n-alkane composition between the examined samples was established. It was shown that the n-alkane variability of the central Balkan Sedum species was considerable and that n-alkanes might not be very reliable taxonomic markers for these species.

  3. Trace Chemistry

    NASA Technical Reports Server (NTRS)

    Radhakrishnan, Krishnan; Whitefield, Philip

    1999-01-01

    The goals of the trace chemistry group were to identify the processes relevant to aerosol and aerosol precursor formation occurring within aircraft gas turbine engines; that is, within the combustor, turbine, and nozzle. The topics of discussion focused on whether the chemistry of aerosol formation is homogeneous or heterogeneous; what species are important for aerosol and aerosol precursor formation; what modeling/theoretical activities to pursue; what experiments to carry out that both support modeling activities and elucidate fundamental processes; and the role of particulates in aerosol and aerosol precursor formation. The consensus of the group was that attention should be focused on SO2, SO3, and aerosols. Of immediate concern is the measurement of the concentration of the species SO3, SO2, H2SO4 OH, HO2, H2O2, O, NO, NO2, HONO, HNO3, CO, and CO2 and particulates in various engines, both those currently in use and those in development. The recommendation was that concentration measurements should be made at both the combustor exit and the engine exit. At each location the above species were classified into one of four categories of decreasing importance, Priority I through IV, as follows: Combustor exit: Priority I species - SO3:SO2 ratio, SO3, SO2, and particulates; Priority II species: OH and O; Priority III species - NO and NO2; and Priority IV species - CO and CO2. For the Engine exit: Priority I species - SO3:SO2 ratio, SO3, SO2,H2SO4, and particulates; Priority II species: OH,HO2, H2O2, and O; Priority III species - NO, NO2, HONO, and HNO3; and Priority IV species - CO and CO2. Table I summarizes the anticipated concentration range of each of these species. For particulate matter, the quantities of interest are the number density, size distribution, and composition. In order to provide data for validating multidimensional reacting flow models, it would be desirable to make 2-D, time-resolved measurements of the concentrations of the above species and

  4. Enhanced Translocation and Growth of Rhodococcus erythropolis PR4 in the Alkane Phase of Aqueous-Alkane Two Phase Cultures Were Mediated by GroEL2 Overexpression

    PubMed Central

    Takihara, Hayato; Ogihara, Jun; Yoshida, Takao; Okuda, Shujiro; Nakajima, Mutsuyasu; Iwabuchi, Noriyuki; Sunairi, Michio

    2014-01-01

    We previously reported that R. erythropolis PR4 translocated from the aqueous to the alkane phase, and then grew in two phase cultures to which long-chain alkanes had been added. This was considered to be beneficial for bioremediation. In the present study, we investigated the proteins involved in the translocation of R. erythropolis PR4. The results of our proteogenomic analysis suggested that GroEL2 was upregulated more in cells that translocated inside of the pristane (C19) phase than in those located at the aqueous-alkane interface attached to the n-dodecane (C12) surface. PR4 (pK4-EL2-1) and PR4 (pK4-ΔEL2-1) strains were constructed to confirm the effects of the upregulation of GroEL2 in translocated cells. The expression of GroEL2 in PR4 (pK4-EL2-1) was 15.5-fold higher than that in PR4 (pK4-ΔEL2-1) in two phase cultures containing C12. The growth and cell surface lipophilicity of PR4 were enhanced by the introduction of pK4-EL2-1. These results suggested that the plasmid overexpression of groEL2 in PR4 (pK4-EL2-1) led to changes in cell localization, enhanced growth, and increased cell surface lipophilicity. Thus, we concluded that the overexpression of GroEL2 may play an important role in increasing the organic solvent tolerance of R. erythropolis PR4 in aqueous-alkane two phase cultures. PMID:25311591

  5. Enhanced translocation and growth of Rhodococcus erythropolis PR4 in the alkane phase of aqueous-alkane two phase cultures were mediated by GroEL2 overexpression.

    PubMed

    Takihara, Hayato; Ogihara, Jun; Yoshida, Takao; Okuda, Shujiro; Nakajima, Mutsuyasu; Iwabuchi, Noriyuki; Sunairi, Michio

    2014-01-01

    We previously reported that R. erythropolis PR4 translocated from the aqueous to the alkane phase, and then grew in two phase cultures to which long-chain alkanes had been added. This was considered to be beneficial for bioremediation. In the present study, we investigated the proteins involved in the translocation of R. erythropolis PR4. The results of our proteogenomic analysis suggested that GroEL2 was upregulated more in cells that translocated inside of the pristane (C19) phase than in those located at the aqueous-alkane interface attached to the n-dodecane (C12) surface. PR4 (pK4-EL2-1) and PR4 (pK4-ΔEL2-1) strains were constructed to confirm the effects of the upregulation of GroEL2 in translocated cells. The expression of GroEL2 in PR4 (pK4-EL2-1) was 15.5-fold higher than that in PR4 (pK4-ΔEL2-1) in two phase cultures containing C12. The growth and cell surface lipophilicity of PR4 were enhanced by the introduction of pK4-EL2-1. These results suggested that the plasmid overexpression of groEL2 in PR4 (pK4-EL2-1) led to changes in cell localization, enhanced growth, and increased cell surface lipophilicity. Thus, we concluded that the overexpression of GroEL2 may play an important role in increasing the organic solvent tolerance of R. erythropolis PR4 in aqueous-alkane two phase cultures.

  6. Ab initio simulations reveal that reaction dynamics strongly affect product selectivity for the cracking of alkanes over H-MFI.

    PubMed

    Zimmerman, Paul M; Tranca, Diana C; Gomes, Joseph; Lambrecht, Daniel S; Head-Gordon, Martin; Bell, Alexis T

    2012-11-28

    Product selectivity of alkane cracking catalysis in the H-MFI zeolite is investigated using both static and dynamic first-principles quantum mechanics/molecular mechanics simulations. These simulations account for the electrostatic- and shape-selective interactions in the zeolite and provide enthalpic barriers that are closely comparable to experiment. Cracking transition states for n-pentane lead to a metastable intermediate (a local minimum with relatively small barriers to escape to deeper minima) where the proton is shared between two hydrocarbon fragments. The zeolite strongly stabilizes these carbocations compared to the gas phase, and the conversion of this intermediate to more stable species determines the product selectivity. Static reaction pathways on the potential energy surface starting from the metastable intermediate include a variety of possible conversions into more stable products. One-picosecond quasiclassical trajectory simulations performed at 773 K indicate that dynamic paths are substantially more diverse than the potential energy paths. Vibrational motion that is dynamically sampled after the cracking transition state causes spilling of the metastable intermediate into a variety of different products. A nearly 10-fold change in the branching ratio between C2/C3 cracking channels is found upon inclusion of post-transition-state dynamics, relative to static electronic structure calculations. Agreement with experiment is improved by the same factor. Because dynamical effects occur soon after passing through the rate-limiting transition state, it is the dynamics, and not only the potential energy barriers, that determine the catalytic selectivity. This study suggests that selectivity in zeolite catalysis is determined by high temperature pathways that differ significantly from 0 K potential surfaces.

  7. Diversity of alkane degrading bacteria associated with plants in a petroleum oil-contaminated environment and expression of alkane monooxygenase (alkB) genes

    NASA Astrophysics Data System (ADS)

    Andria, V.; Yousaf, S.; Reichenauer, T. G.; Smalla, K.; Sessitsch, A.

    2009-04-01

    Among twenty-six different plant species, Italian ryegrass (Lolium multiflorum var. Taurus), Birdsfoot trefoil (Lotus corniculatus var. Leo), and the combination of both plants performed well in a petroleum oil contaminated soil. Hydrocarbon degrading bacteria were isolated from the rhizosphere, root interior and shoot interior and subjected to the analysis of 16S rRNA, the 16S and 23S rRNA intergenic spacer region and alkane hydroxylase genes. Higher numbers of culturable, degrading bacteria were associated with Italian ryegrass, which were also characterized by a higher diversity, particularly in the plant interior. Only half of the isolated bacteria hosted known alkane hydroxylase genes (alkB and cytochrome P153-like). Our results indicated that alkB genes have spread through horizontal gene transfer, particularly in the Italian ryegrass rhizosphere, and suggested mobility of catabolic genes between Gram-negative and Gram-positive bacteria. We furthermore studied the colonization behaviour of selected hydrocarbon-degrading strains (comprising an endopyhte and a rhizosphere strain) as well as the expression of their alkane monooxygenase genes in association with Italian ryegrass. Results showed that the endophyte strain better colonized the plant, particularly the plant interior, and also showed higher expression of alkB genes suggesting a more efficient degradation of the pollutant. Furthermore, plants inoculated with the endophyte were better able to grow in the presence of diesel. The rhizosphere strain colonized primarily the rhizosphere and showed low alkB gene expression in the plant interior.

  8. Changes in iso- and n-alkane distribution during biodegradation of crude oil under nitrate and sulphate reducing conditions.

    PubMed

    Hasinger, Marion; Scherr, Kerstin E; Lundaa, Tserennyam; Bräuer, Leopold; Zach, Clemens; Loibner, Andreas Paul

    2012-02-20

    Crude oil consists of a large number of hydrocarbons with different susceptibility to microbial degradation. The influence of hydrocarbon structure and molecular weight on hydrocarbon biodegradation under anaerobic conditions is not fully explored. In this study oxygen, nitrate and sulphate served as terminal electron acceptors (TEAs) for the microbial degradation of a paraffin-rich crude oil in a freshly contaminated soil. During 185 days of incubation, alkanes from n-C11 to n-C39, three n- to iso-alkane ratios commonly used as weathering indicators and the unresolved complex mixture (UCM) were quantified and statistically analyzed. The use of different TEAs for hydrocarbon degradation resulted in dissimilar degradative patterns for n- and iso-alkanes. While n-alkane biodegradation followed well-established patterns under aerobic conditions, lower molecular weight alkanes were found to be more recalcitrant than mid- to high-molecular weight alkanes under nitrate-reducing conditions. Biodegradation with sulphate as the TEA was most pronounced for long-chain (n-C32 to n-C39) alkanes. The observation of increasing ratios of n-C17 to pristane and of n-C18 to phytane provides first evidence of the preferential degradation of branched over normal alkanes under sulphate reducing conditions. The formation of distinctly different n- and iso-alkane biodegradation fingerprints under different electron accepting conditions may be used to assess the occurrence of specific degradation processes at a contaminated site. The use of n- to iso-alkane ratios for this purpose may require adjustment if applied for anaerobic sites.

  9. Molecular simulation and macroscopic modeling of the diffusion of hydrogen, carbon monoxide and water in heavy n-alkane mixtures.

    PubMed

    Makrodimitri, Zoi A; Unruh, Dominik J M; Economou, Ioannis G

    2012-03-28

    The self-diffusion coefficient of hydrogen (H(2)), carbon monoxide (CO) and water (H(2)O) in n-alkanes was studied by molecular dynamics simulation. Diffusion in a few pure n-alkanes (namely n-C(8), n-C(20), n-C(64) and n-C(96)) was examined. In addition, binary n-C(12)-n-C(96) mixtures with various compositions as well as more realistic five- and six-n-alkane component mixtures were simulated. In all cases, the TraPPE united atom force field was used for the n-alkane molecules. The force field for the mixture of n-alkanes was initially validated against experimental density values and was shown to be accurate. Moreover, macroscopic correlations for predicting diffusion coefficient of H(2), CO and H(2)O in n-alkanes and mixtures of n-alkanes were developed. The functional form of the correlation was based on the rough hard sphere theory (RHS). The correlation was applied to simulation data and an absolute average deviation (AAD) of 5.8% for pure n-alkanes and 3.4% for n-alkane mixtures was obtained. Correlation parameters vary in a systematic way with carbon number and so they can be used to provide predictions in the absence of any experimental or molecular simulation data. Finally, in order to reduce the number of adjustable parameters, for the n-alkane mixtures the "pseudo-carbon number" approach was used. This approach resulted in relatively higher deviation from MD simulation data (AAD of 18.2%); however, it provides a convenient and fast method to predict diffusion coefficients. The correlations developed here are expected to be useful for engineering calculations related to the design of the Gas-to-Liquid process.

  10. Using the alkanes and long-chain alcohols of plant cuticular wax to estimate diet composition and the intakes of mixed forages in sheep consuming a known amount of alkane-labelled supplement.

    PubMed

    Dove, H; Charmley, E

    2008-10-01

    In a feeding trial with 24 sheep, we used the alkanes, long-chain alcohols (LCOH) or both of these plant wax markers, to estimate the diet composition of animals offered diets comprising alkane-labelled cottonseed meal (CSM) together with up to four forages. The diets used were: Diet 1 subterranean clover (Trifolium subterraneum); Diet 2 subterranean clover + phalaris (Phalaris aquatica); Diet 3 subterranean clover, phalaris + annual ryegrass (Lolium rigidum); and Diet 4 subterranean clover, phalaris, annual ryegrass + wheat straw (Triticum aestivum). Estimates of diet composition were made following correction of faecal alkane or LCOH concentrations for incomplete faecal recovery, using recovery estimates derived from individual animals, mean recoveries for a given dietary treatment or grand mean recoveries. Estimated dietary proportions of CSM and known intakes of CSM were used to estimate forage intake. The LCOH concentrations of the diet components were much higher than their alkane concentrations, especially for phalaris. Multivariate analyses showed that the discriminatory information provided by the LCOH was additional to that provided by the alkanes, and that a combination of (LCOH + alkanes) discriminated better between diet components than either class of marker alone. Faecal recoveries of LCOH increased with increasing carbon-chain length; there were no differences in recovery attributable to diet. The most accurate estimates of diet composition were obtained with the combination of (LCOH + alkanes). Estimates of diet composition based on LCOH alone were not as good as alkanes alone, due to the high correlation between the LCOH profiles of phalaris and ryegrass. Total grass content of the diet was very accurately estimated using LCOH. Diet composition estimates provided estimates of whole-diet digestibility, which did not differ from the measured values. Trends in the accuracy of forage intake estimates reflected those found with diet composition and

  11. Alkane bromination revisited: "reproportionation" in gas-phase methane bromination leads to higher selectivity for CH3Br at moderate temperatures.

    PubMed

    Lorkovic, Ivan M; Sun, Shouli; Gadewar, Sagar; Breed, Ashley; Macala, Gerald S; Sardar, Amin; Cross, Sarah E; Sherman, Jeffrey H; Stucky, Galen D; Ford, Peter C

    2006-07-20

    The reaction of methane and bromine is a mildly exothermic and exergonic example of free radical alkane activation. We show here that the reaction of methane and bromine (CH4:Br2 > or = 1) may yield either a kinetically or a thermodynamically determined bromomethane product distribution and proceeds in two main phases between 450 and 550 degrees C under ambient pressure on the laboratory time scale. This is in contrast to the highly exothermic methane fluorination or chlorination reactions, which give kinetic product distributions, and to the endergonic iodination of methane, which yields an equilibrium distribution of iodomethanes. The first phase of reaction between methane and bromine is a relatively rapid consumption of bromine to yield a kinetic methane bromination product distribution characterized by low methane conversion, low methyl bromide selectivity, and higher polybromomethane selectivity. In the second slower phase CHxBr(4-x) reproportionation leads to significantly higher methane conversion and higher methyl bromide selectivity. For methane bromination at 525 degrees C, CH4 conversion and CH3Br selectivity reach 73.5% and 69.5%, respectively, after ample (60 s) time for reproportionation. The high selectivity and simple configuration make this pathway an attractive candidate for scale-up in halogen-mediated methane partial oxidation processes.

  12. Synthetic studies in nitrogen chemistry

    SciTech Connect

    Wu, J.

    1992-01-01

    N,N-Bis(benzotriazolylmethyl)arylamines were obtained quantitatively from mixtures of benzotriazole, formaldehyde and the corresponding arylamine in refluxing toluene with azeotropic removal of water. Treatment of these adducts with Grignard reagents or sodium borohydride afforded symmetrically substituted N,N-dialkylarylamines in high yields. Unsymmetrically substituted N,N-dialkylarylamines could also be obtained by similar stepwise procedures. Sterically hindered N,N-bis(sec-butyl)arylamines were prepared by alkylations of the anions of the corresponding arylamines with 2-iodobutane. Chlorosulfonation of 2-nitroanisole gave 4-methoxy-3-nitrobenzene-sulfon-yl chloride, which was converted with N-butyl-(3-phenylpropyl)-amine into the corresponding benzenesulfonamide. Hydrolysis of the methoxy group and reduction of the nitro substituent of this benzene-sulfonamide, followed by diazotization and coupling with 2-naphthol, afforded N-butyl-N-(3-phenylpropyl)-4-hydroxy-3-(2-hydroxy-1-naphthyl)azobenzenesulfonamide. Medium-sized (7 and 8) benzosultams were synthesized by Friedel-Crafts cyclizations of w-phenylaklanesulfamoyl chlorides. New (benzotriazol-1-y)methyl derivatives of type Bt(1)CH[sub 2] X [Bt(1) = benzotriazol-1-yl] were prepared. [alpha]-(Benzotriazol-1-yl)acetophenone was converted to a number of interesting derivatives. Lithiation of 1-methylbenzotriazole followed by treatments with electrophiles gave various [alpha]-substituted 1-methylbenzotriazoles. Simple treatments of 2-alkylbenzotriazoles by LDA gave symmetrical [alpha],[beta]-bis-(benzotriazol-2-yl)alkanes sterospecifically as the [alpha],[alpha]-coupled products in high yields. A molecule [Bt(2)CH(CH[sub 3])CH(CH[sub 3])CH(CH[sub 3])CH(CH[sub 3])Bt(2)] [Bt(2) = benzotriazole-2-yl] with four asymmetric centers derived from four molecules of 2-ethylbenzotriazole was obtained as a single isomer. A new radical mechanism was first proposed to account for the chemistry of 2-alkylbenzotriazoles.

  13. PEROXYNITRITE CHEMISTRY

    SciTech Connect

    Lymar, S.V.

    2000-11-29

    This century old area of research has been experiencing a renaissance during the last decade, with the annual number of publications on the subject increasing from only one in 1990 to nearly 200 in the late-1990s. This renewed interest is stimulated by the discovery of biological roles of nitric oxide, distinguished by the 1998 Nobel prize, and the recognition that the conversion of nitric oxide into peroxynitrite may play major roles in human diseases associated with oxidative stress and in cellular defense against invading pathogens. Peroxynitrite (ONOO{sup {minus}})is a structural isomer of nitrate (NO{sub 3}{sup {minus}}) that contains a peroxo bond. The physiological route to ONOO{sup {minus}} is provided by the combination of nitric oxide ({center_dot}NO) with superoxide ({center_dot}O{sub 2}{sup {minus}}), an extremely rapid reaction occurring upon every encounter of these radicals (the upper dot denotes radical species). Both {center_dot}NO and {center_dot}O{sub 2}{sup {minus}} are the oxygen metabolic products simultaneously generated in a number of cell types within a human body. Compared to its precursors, peroxynitrite is a much stronger oxidant capable of oxidizing proteins, nucleic acids, and lipids.

  14. Improved GC/MS method for quantitation of n-Alkanes in plant and fecal material

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A gas chromatography-mass spectrometry (GC/MS) method for the quantitation of n-alkanes (carbon backbones ranging from 21 to 36 carbon atoms) in forage and fecal samples has been developed. Automated solid-liquid extraction using elevated temperature and pressure minimized extraction time to 30 min...

  15. The role of alkane coordination in CH bond cleavage at a Pt(II) center

    PubMed Central

    Chen, George S.; Labinger, Jay A.; Bercaw, John E.

    2007-01-01

    The rates of CH bond activation for various alkanes by [(N–N)Pt(Me)(TFEd3)]+ (N N = ArNC(Me)C(Me)NAr; Ar = 3,5-di-tert-butylphenyl; TFE-d3 = CF3CD2OD) were studied. Both linear and cyclic alkanes give the corresponding alkene-hydride cation [(N–N)Pt(H)(alkene)]+ via (i) rate determining alkane coordination to form a CH σ complex, (ii) oxidative cleavage of the coordinated CH bond to give a platinum(IV) alkyl-methyl-hydride intermediate, (iii) reductive coupling to generate a methane σ complex, (iv) dissociation of methane, and (v) β-H elimination to form the observed product. Second-order rate constants for cycloalkane activation (CnH2n), are proportional to the size of the ring (k ∼ n). For cyclohexane, the deuterium kinetic isotope effect (kH/kD) of 1.28 (5) is consistent with the proposed rate determining alkane coordination to form a CH σ complex. Statistical scrambling of the five hydrogens of the Pt-methyl and the coordinated methylene unit, via rapid, reversible steps ii and iii, and interchange of geminal CH bonds of the methane and cyclohexane CH σ adducts, is observed before loss of methane. PMID:17416678

  16. Fe-Catalyzed Oxidation Reactions of Olefins, Alkanes, and Alcohols: Involvement of Oxo- and Peroxo Complexes

    NASA Astrophysics Data System (ADS)

    Schröder, Kristin; Junge, Kathrin; Bitterlich, Bianca; Beller, Matthias

    In this review, recent developments of iron-catalyzed oxidations of olefins (epoxidation), alkanes, arenes, and alcohols are summarized. Special focus is given on the ligand systems and the catalytic performance of the iron complexes. In addition, the mechanistic involvement of high-valent iron-oxo species is discussed.

  17. Macroseepage of Methane and Light Alkanes at the La Brea Tar Pits in Los Angeles

    NASA Astrophysics Data System (ADS)

    Doezema, L. A.; Weber, D.; Schuffels, S.; Marquez, A.; Taylor, C.; Raya, P.; Howard, D.; Contreras, P.; Fusco, K.; Morales, F.; Nwachuku, I.

    2015-12-01

    Natural seepage of methane has been theorized to be an underreported source of global methane. Recent studies have also suggested that light alkane flux that is given off in combination with the methane also is underreported in local and global budgets. This study investigated macroseepage, visible seepage, at the La Brea Tar Pits in Los Angeles, CA. More than 100 samples were collected from individual seeps using stainless steel flux chambers and canisters and were analyzed for methane and C2-C5 alkanes using gas chromatography equipped with flame ionization detectors (GC-FID). Maximum hourly fluxes from individual seeps were over 70 g of methane and over 720 mg, 670 mg, 200 mg, 20 mg, 14 mg, and 0.2 mg for ethane, propane, i-butane, n-butane, i-pentane, and n-pentane respectively. In addition to the active seepage sites, a significant amount of methane and light alkanes was also found to come from outgassing from standing tar deposits. Using gas ratios found in this study along with overall methane emission estimates from another recent study, the La Brea Tar Pits were found to be a significant source of light alkanes in the South Coast Air Basin, contributing approximately 2% towards the overall budget.

  18. Solvent isotope effects on alkane formation by cyanobacterial aldehyde deformylating oxygenase and their mechanistic implications.

    PubMed

    Waugh, Matthew W; Marsh, E Neil G

    2014-09-02

    The reaction catalyzed by cyanobacterial aldehyde deformylating oxygenase is of interest both because of its potential application to the production of biofuels and because of the highly unusual nature of the deformylation reaction it catalyzes. Whereas the proton in the product alkane derives ultimately from the solvent, the identity of the proton donor in the active site remains unclear. To investigate the proton transfer step, solvent isotope effect (SIE) studies were undertaken. The rate of alkane formation was found to be maximal at pH 6.8 and to be the same in D2O or H2O within experimental error, implying that proton transfer is not a kinetically significant step. However, when the ratio of protium to deuterium in the product alkane was measured as a function of the mole fraction of D2O, a (D2O)SIEobs of 2.19 ± 0.02 was observed. The SIE was invariant with the mole fraction of D2O, indicating the involvement of a single protic site in the reaction. We interpret this SIE as most likely arising from a reactant state equilibrium isotope effect on a proton donor with an inverse fractionation factor, for which Φ = 0.45. These observations are consistent with an iron-bound water molecule being the proton donor to the alkane in the reaction.

  19. Homogeneous catalytic transfer dehydrogenation of alkanes with a group 10 metal center.

    PubMed

    Khaskin, Eugene; Lew, Daniel L; Pal, Shrinwantu; Vedernikov, Andrei N

    2009-11-07

    Unambiguous catalytic homogeneous alkane transfer dehydrogenation was observed with a group 10 metal complex catalyst, LPt(II)(cyclo-C6H10)H, supported by a lipophilic dimethyl-di(4-tert-butyl-2-pyridyl)borate anionic ligand and tert-butylethene as the sacrificial hydrogen acceptor.

  20. An alternative interpretation of the C-H bond strengths of alkanes.

    PubMed

    Gronert, Scott

    2006-02-03

    A new model based on 1,3 repulsive steric interactions (geminal repulsion) is proposed for explaining the variation in the C-H bond strengths of the alkanes. The model builds from the assumption that 1,3 repulsive interactions are the major factor in determining the stability of a C-C or C-H bond in an alkane. From this simple premise, the model successfully reproduces the effect of branching on the stability of alkanes, alkyl radicals, and alkenes. The results suggest that geminal repulsion can provide a simple, unified explanation for these fundamental stability trends. Although previous explanations have been widely accepted, it is shown that the theoretical support for them is relatively shallow and that the current hyperconjugative stabilization model is inconsistent with several experimental and computational results concerning alkyl radicals. In contrast, an explanation based on geminal repulsion provides a general conceptual framework for rationalizing each of these stability trends and is based on a physical effect that is known to play a role in the stability of alkanes and related species.

  1. Universal behavior of linear alkanes in a confined medium: toward a calibrationless use of thermoporometry.

    PubMed

    Bahloul, Naïma; Baba, Mohamed; Nedelec, Jean-Marie

    2005-09-01

    A general law has been derived for predicting the transition temperature of linear alkanes confined in nanoporous materials from the simple knowledge of the free solvent transition temperature. This law is in very good agreement with the one previously determined for substituted benzenes, attesting a possible universal behavior of confined solvents.

  2. Progressive compression of 1,ω-diammonium-alkanes inside a rigid crystalline molecular cage.

    PubMed

    Dumitrescu, Dan; Legrand, Yves-Marie; Petit, Eddy; van der Lee, Arie; Barboiu, Mihail

    2014-11-25

    We present herein the compression mechanisms of linear 1,ω-diammonium-alkanes, confined within a molecular cage self-assembled in water. The exact coiling behaviour is determined from atomic resolution X-ray diffraction and shows crenel-like conformations in the compressed states.

  3. 40 CFR 721.10148 - Acryloxy alkanoic alkane derivative with mixed metal oxides (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... with mixed metal oxides (generic). 721.10148 Section 721.10148 Protection of Environment ENVIRONMENTAL... mixed metal oxides (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as acryloxy alkanoic alkane derivative with mixed...

  4. 40 CFR 721.10148 - Acryloxy alkanoic alkane derivative with mixed metal oxides (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... with mixed metal oxides (generic). 721.10148 Section 721.10148 Protection of Environment ENVIRONMENTAL... mixed metal oxides (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as acryloxy alkanoic alkane derivative with mixed...

  5. Conversing with Computers

    NASA Technical Reports Server (NTRS)

    2004-01-01

    I/NET, Inc., is making the dream of natural human-computer conversation a practical reality. Through a combination of advanced artificial intelligence research and practical software design, I/NET has taken the complexity out of developing advanced, natural language interfaces. Conversational capabilities like pronoun resolution, anaphora and ellipsis processing, and dialog management that were once available only in the laboratory can now be brought to any application with any speech recognition system using I/NET s conversational engine middleware.

  6. Investigating C4 Grass Contributions to N-alkane Based Paleoclimate Reconstructions

    NASA Astrophysics Data System (ADS)

    Doman, C. E.; Enders, S. K.; Chadwick, O.; Freeman, K. H.

    2014-12-01

    Plant wax n-alkanes are long-chain, saturated hydrocarbons contained within the protective waxy cuticle on leaves. These lipids are pervasive and persistent in soils and sediments and thus are ideal biomarkers of ancient terrestrial organic matter. In ecosystems dominated by C3 plants, the relationship between the carbon isotopic value of whole leaves and lipids is fairly well documented, but this relationship has not been fully investigated for plants that use C4 photosynthesis. In both cases, it is unclear if the isotopic relationships are sensitive to environmental conditions, or reflect inherited characteristics. This study used a natural climate gradient on the Kohala peninsula of Hawaii to investigate relationships between climate and the δ13C and δ2H values of n-alkanes in C3 and C4 plants. δ13C of C3 leaves and lipids decreased 5 ‰ from the driest to the wettest sites, consistent with published data. Carbon isotope values of C4 plants showed no relationship to moisture up to 1000 mm mean annual precipitation (MAP). Above this threshold, δ 13C values were around 10‰ more depleted, likely due to a combination of canopy effects and C4 grasses growing in an uncharacteristically wet and cold environment. In C3 plants, the fractionation between leaf and lipid carbon isotopes did not vary with MAP, which allows estimations of δ13C leaf to be made from alkanes preserved in ancient sediments. Along this transect, C3 plants produce around twice the quantity of n-alkanes as C4 grasses. C4 grasses produce longer carbon chains. As a result, n-alkanes in the geologic record will be biased towards C3 plants, but the presence of alkanes C33 and C35 indicate the contributions of C4 grasses. In both C3 and C4 plants, average chain length increased with mean annual precipitation, but the taxonomic differences in chain length were greater than environmental differences. Hydrogen isotopes of n-alkanes show no trends with MAP, but do show clear differences between plant

  7. n-Alkane lipid biomarkers in loess: post-sedimentary or syn-sedimentary?

    NASA Astrophysics Data System (ADS)

    Zech, Michael; Kreutzer, Sebastian; Goslar, Tomasz; Meszner, Sascha; Krause, Tobias; Faust, Dominik; Fuchs, Markus

    2013-04-01

    There is an ongoing discussion whether n-alkane biomarkers - and organic matter (OM) from loess in general - reflect a syn-sedimentary paleoenvironmental and paleoclimate signal or whether they are significantly a post-sedimentary feature contaminated by root-derived OM (Zech et al., 2012, 2013; Wiesenberg and Gocke, 2013). We present first radiocarbon data for the n-alkane fraction of lipid extracts and for the first time luminescence ages for the Middle to Late Weichselian loess-paleosol sequence of Gleina in Saxony, Germany. Comparison of these biomarker ages with sedimentation ages as assessed by optically stimulated luminescence (OSL) dating shows that one n-alkane sample features a syn-sedimentary age (14C: 29.2 ± 1.4 kyr calBP versus OSL: 27.3 ± 3.0 kyr). By contrast, the 14C ages derived from the other n-alkane samples are clearly younger (20.3 ± 0.7 kyr calBP, 22.1 ± 0.7 kyr calBP and 29.8 ± 1.4 kyr calBP) than the corresponding OSL ages (26.6 ± 3.1 kyr, 32.0 ± 3.5 kyr and 45.6 ± 5.3 kyr). This finding suggests that a post-sedimentary n-alkane contamination presumably by roots has occurred. In order to estimate the post-sedimentary n-alkane contamination more quantitatively, we applied a 14C mass balance calculation based on the measured pMC (percent modern carbon) values, the calculated syn-sedimentary pMC values and pMC values suspected to reflect likely time points of post-sedimentary contamination (modern, last decades, 3 kyr, 6 kyr and 9 kyr). Accordingly, modern and last decadal root-contamination would account for up to 7%, a 3 kyr old root-contamination for up to 10%, and an Early and Middle Holocene root-contamination for up to 20% of the total sedimentary n-alkane pool. We acknowledge and encourage that these first radiocarbon results need further confirmation both from other loess-paleosol sequences and for different biomarkers, e.g. carboxylic acids or alcohols as further lipid biomarkers. Zech, M., Kreutzer, S., Goslar, T., Meszner, S

  8. Chemistry Rocks: Redox Chemistry as a Geologic Tool.

    ERIC Educational Resources Information Center

    Burns, Mary Sue

    2001-01-01

    Applies chemistry to earth science, uses rocks in chemistry laboratories, and teaches about transition metal chemistry, oxidation states, and oxidation-reduction reactions from firsthand experiences. (YDS)

  9. QSAR models for predicting in vivo aquatic toxicity of chlorinated alkanes to fish.

    PubMed

    Zvinavashe, Elton; van den Berg, Hans; Soffers, Ans E M F; Vervoort, Jacques; Freidig, Andreas; Murk, Albertinka J; Rietjens, Ivonne M C M

    2008-03-01

    Quantitative structure-activity relationship (QSAR) models are expected to play a crucial role in reducing the number of animals to be used for toxicity testing resulting from the adoption of the new European Union chemical control system called Registration, Evaluation, and Authorization of Chemicals (REACH). The objective of the present study was to generate in vitro acute toxicity data that could be used to develop a QSAR model to describe acute in vivo toxicity of chlorinated alkanes. Cytotoxicity of a series of chlorinated alkanes to Chinese hamster ovary (CHO) cells was observed at concentrations similar to those that have been shown previously to be toxic to fish. Strong correlations exist between the acute in vitro toxicity of the chlorinated alkanes and (i) hydrophobicity [modeled by the calculated log K ow (octanol-water partition coefficient); r (2) = 0.883 and r int (2) = 0.854] and (ii) in vivo acute toxicity to fish ( r (2) = 0.758). A QSAR model has been developed to predict in vivo acute toxicity to fish, based on the in vitro data and even on in silico log K ow data only. The developed QSAR model is applicable to chlorinated alkanes with up to 10 carbon atoms, up to eight chlorine atoms, and log K ow values lying within the range from 1.71 to 5.70. Out of the 100204 compounds on the European Inventory of Existing Chemicals (EINECS), our QSAR model covers 77 (0.1%) of them. Our findings demonstrate that in vitro experiments and even in silico calculations can replace animal experiments in the prediction of the acute toxicity of chlorinated alkanes.

  10. Diverse Bacterial Groups Contribute to the Alkane Degradation Potential of Chronically Polluted Subantarctic Coastal Sediments

    SciTech Connect

    Guibert, Lilian M.; Loviso, Claudia L.; Borglin, Sharon; Jansson, Janet K.; Dionisi, Hebe M.; Lozada, Mariana

    2015-11-07

    We aimed to gain insight into the alkane degradation potential of microbial communities from chronically polluted sediments of a subantarctic coastal environment using a combination of metagenomic approaches. A total of 6178 sequences annotated as alkane-1-monooxygenases (EC 1.14.15.3) were retrieved from a shotgun metagenomic dataset that included two sites analyzed in triplicate. The majority of the sequences binned with AlkB described in Bacteroidetes (32 ± 13 %) or Proteobacteria (29 ± 7 %), although a large proportion remained unclassified at the phylum level. Operational taxonomic unit (OTU)-based analyses showed small differences in AlkB distribution among samples that could be correlated with alkane concentrations, as well as with site-specific variations in pH and salinity. A number of low-abundance OTUs, mostly affiliated with Actinobacterial sequences, were found to be only present in the most contaminated samples. On the other hand, the molecular screening of a large-insert metagenomic library of intertidal sediments from one of the sampling sites identified two genomic fragments containing novel alkB gene sequences, as well as various contiguous genes related to lipid metabolism. Both genomic fragments were affiliated with the phylum Planctomycetes, and one could be further assigned to the genus Rhodopirellula due to the presence of a partial sequence of the 23S ribosomal RNA (rRNA) gene. This work highlights the diversity of bacterial groups contributing to the alkane degradation potential and reveals patterns of functional diversity in relation with environmental stressors in a chronically polluted, high-latitude coastal environment. In addition, alkane biodegradation genes are described for the first time in members of Planctomycetes.

  11. Microbial Communities in Methane- and Short Chain Alkane-Rich Hydrothermal Sediments of Guaymas Basin.

    PubMed

    Dowell, Frederick; Cardman, Zena; Dasarathy, Srishti; Kellermann, Matthias Y; Lipp, Julius S; Ruff, S Emil; Biddle, Jennifer F; McKay, Luke J; MacGregor, Barbara J; Lloyd, Karen G; Albert, Daniel B; Mendlovitz, Howard; Hinrichs, Kai-Uwe; Teske, Andreas

    2016-01-01

    The hydrothermal sediments of Guaymas Basin, an active spreading center in the Gulf of California (Mexico), are rich in porewater methane, short-chain alkanes, sulfate and sulfide, and provide a model system to explore habitat preferences of microorganisms, including sulfate-dependent, methane- and short chain alkane-oxidizing microbial communities. In this study, hot sediments (above 60°C) covered with sulfur-oxidizing microbial mats surrounding a hydrothermal mound (termed "Mat Mound") were characterized by porewater geochemistry of methane, C2-C6 short-chain alkanes, sulfate, sulfide, sulfate reduction rate measurements, in situ temperature gradients, bacterial and archaeal 16S rRNA gene clone libraries and V6 tag pyrosequencing. The most abundantly detected groups in the Mat mound sediments include anaerobic methane-oxidizing archaea of the ANME-1 lineage and its sister clade ANME-1Guaymas, the uncultured bacterial groups SEEP-SRB2 within the Deltaproteobacteria and the separately branching HotSeep-1 Group; these uncultured bacteria are candidates for sulfate-reducing alkane oxidation and for sulfate-reducing syntrophy with ANME archaea. The archaeal dataset indicates distinct habitat preferences for ANME-1, ANME-1-Guaymas, and ANME-2 archaea in Guaymas Basin hydrothermal sediments. The bacterial groups SEEP-SRB2 and HotSeep-1 co-occur with ANME-1 and ANME-1Guaymas in hydrothermally active sediments underneath microbial mats in Guaymas Basin. We propose the working hypothesis that this mixed bacterial and archaeal community catalyzes the oxidation of both methane and short-chain alkanes, and constitutes a microbial community signature that is characteristic for hydrothermal and/or cold seep sediments containing both substrates.

  12. Microbial Communities in Methane- and Short Chain Alkane-Rich Hydrothermal Sediments of Guaymas Basin

    PubMed Central

    Dowell, Frederick; Cardman, Zena; Dasarathy, Srishti; Kellermann, Matthias Y.; Lipp, Julius S.; Ruff, S. Emil; Biddle, Jennifer F.; McKay, Luke J.; MacGregor, Barbara J.; Lloyd, Karen G.; Albert, Daniel B.; Mendlovitz, Howard; Hinrichs, Kai-Uwe; Teske, Andreas

    2016-01-01

    The hydrothermal sediments of Guaymas Basin, an active spreading center in the Gulf of California (Mexico), are rich in porewater methane, short-chain alkanes, sulfate and sulfide, and provide a model system to explore habitat preferences of microorganisms, including sulfate-dependent, methane- and short chain alkane-oxidizing microbial communities. In this study, hot sediments (above 60°C) covered with sulfur-oxidizing microbial mats surrounding a hydrothermal mound (termed “Mat Mound”) were characterized by porewater geochemistry of methane, C2–C6 short-chain alkanes, sulfate, sulfide, sulfate reduction rate measurements, in situ temperature gradients, bacterial and archaeal 16S rRNA gene clone libraries and V6 tag pyrosequencing. The most abundantly detected groups in the Mat mound sediments include anaerobic methane-oxidizing archaea of the ANME-1 lineage and its sister clade ANME-1Guaymas, the uncultured bacterial groups SEEP-SRB2 within the Deltaproteobacteria and the separately branching HotSeep-1 Group; these uncultured bacteria are candidates for sulfate-reducing alkane oxidation and for sulfate-reducing syntrophy with ANME archaea. The archaeal dataset indicates distinct habitat preferences for ANME-1, ANME-1-Guaymas, and ANME-2 archaea in Guaymas Basin hydrothermal sediments. The bacterial groups SEEP-SRB2 and HotSeep-1 co-occur with ANME-1 and ANME-1Guaymas in hydrothermally active sediments underneath microbial mats in Guaymas Basin. We propose the working hypothesis that this mixed bacterial and archaeal community catalyzes the oxidation of both methane and short-chain alkanes, and constitutes a microbial community signature that is characteristic for hydrothermal and/or cold seep sediments containing both substrates. PMID:26858698

  13. Diverse Bacterial Groups Contribute to the Alkane Degradation Potential of Chronically Polluted Subantarctic Coastal Sediments.

    PubMed

    Guibert, Lilian M; Loviso, Claudia L; Borglin, Sharon; Jansson, Janet K; Dionisi, Hebe M; Lozada, Mariana

    2016-01-01

    We aimed to gain insight into the alkane degradation potential of microbial communities from chronically polluted sediments of a subantarctic coastal environment using a combination of metagenomic approaches. A total of 6178 sequences annotated as alkane-1-monooxygenases (EC 1.14.15.3) were retrieved from a shotgun metagenomic dataset that included two sites analyzed in triplicate. The majority of the sequences binned with AlkB described in Bacteroidetes (32 ± 13 %) or Proteobacteria (29 ± 7 %), although a large proportion remained unclassified at the phylum level. Operational taxonomic unit (OTU)-based analyses showed small differences in AlkB distribution among samples that could be correlated with alkane concentrations, as well as with site-specific variations in pH and salinity. A number of low-abundance OTUs, mostly affiliated with Actinobacterial sequences, were found to be only present in the most contaminated samples. On the other hand, the molecular screening of a large-insert metagenomic library of intertidal sediments from one of the sampling sites identified two genomic fragments containing novel alkB gene sequences, as well as various contiguous genes related to lipid metabolism. Both genomic fragments were affiliated with the phylum Planctomycetes, and one could be further assigned to the genus Rhodopirellula due to the presence of a partial sequence of the 23S ribosomal RNA (rRNA) gene. This work highlights the diversity of bacterial groups contributing to the alkane degradation potential and reveals patterns of functional diversity in relation with environmental stressors in a chronically polluted, high-latitude coastal environment. In addition, alkane biodegradation genes are described for the first time in members of Planctomycetes.

  14. Enhanced biodegradation of alkane hydrocarbons and crude oil by mixed strains and bacterial community analysis.

    PubMed

    Chen, Yu; Li, Chen; Zhou, Zhengxi; Wen, Jianping; You, Xueyi; Mao, Youzhi; Lu, Chunzhe; Huo, Guangxin; Jia, Xiaoqiang

    2014-04-01

    In this study, two strains, Acinetobacter sp. XM-02 and Pseudomonas sp. XM-01, were isolated from soil samples polluted by crude oil at Bohai offshore. The former one could degrade alkane hydrocarbons (crude oil and diesel, 1:4 (v/v)) and crude oil efficiently; the latter one failed to grow on alkane hydrocarbons but could produce rhamnolipid (a biosurfactant) with glycerol as sole carbon source. Compared with pure culture, mixed culture of the two strains showed higher capability in degrading alkane hydrocarbons and crude oil of which degradation rate were increased from 89.35 and 74.32 ± 4.09 to 97.41 and 87.29 ± 2.41 %, respectively. In the mixed culture, Acinetobacter sp. XM-02 grew fast with sufficient carbon source and produced intermediates which were subsequently utilized for the growth of Pseudomonas sp. XM-01 and then, rhamnolipid was produced by Pseudomonas sp. XM-01. Till the end of the process, Acinetobacter sp. XM-02 was inhibited by the rapid growth of Pseudomonas sp. XM-01. In addition, alkane hydrocarbon degradation rate of the mixed culture increased by 8.06 to 97.41 % compared with 87.29 % of the pure culture. The surface tension of medium dropping from 73.2 × 10(-3) to 28.6 × 10(-3) N/m. Based on newly found cooperation between the degrader and the coworking strain, rational investigations and optimal strategies to alkane hydrocarbons biodegradation were utilized for enhancing crude oil biodegradation.

  15. Seasonal variations and source profile of n-alkanes in particulate matter (PM10) at a heavy traffic site, Delhi.

    PubMed

    Gupta, Sarika; Gadi, Ranu; Mandal, T K; Sharma, S K

    2017-01-01

    Delhi is one of the most polluted cities in the world. The generation of aerosols in the lower atmosphere of the city is mainly due to a large amount of natural dust advection and sizable anthropogenic activities. The compositions of organic compounds in aerosols are highly variable in this region and need to be investigated thoroughly. Twenty-four-hour sampling to assess concentrations of n-alkanes (ng/m(3)) in PM10 was carried out during January 2015 to June 2015 at Indira Gandhi Delhi Technical University for Women (IGDTUW) Campus, Delhi, India. The total average concentration of n-alkanes, 243.7 ± 5.5 ng/m(3), along with the diagnostic tools has been calculated. The values of CPI1, CPI2, and CPI3 for the whole range of n-alkanes series, petrogenic n-alkanes, and biogenic n-alkanes were 1.00, 1.02, and 1.04, respectively, and C max were at C25 and C27. Diagnostic indices and curves indicated that the dominant inputs of n-alkanes are from petrogenic emissions, with lower contribution from biogenic emissions. Significant seasonal variations were observed in average concentrations of n-alkanes, which is comparatively higher in winter (187.4 ± 4.3 ng/m(3)) than during the summer season (56.3 ± 1.1 ng/m(3)).

  16. Composition of leaf n-alkanes in three Satureja montana L. subspecies from the Balkan peninsula: ecological and taxonomic aspects.

    PubMed

    Dodoš, Tanja; Rajčević, Nemanja; Tešević, Vele; Matevski, Vlado; Janaćković, Pedja; Marin, Petar D

    2015-01-01

    The composition of the epicuticular leaf n-alkanes of eight populations of three Satureja montana subspecies (S. montana L. subsp. pisidica (Wettst.) Šilić, S. montana L. subsp. montana, and S. montana L. subsp. variegata (Host) P. W. Ball), from central and western areas of the Balkan Peninsula was characterized by GC-FID and GC/MS analyses. In the leaf waxes, 15 n-alkane homologs with chain-lengths ranging from C21 to C35 were identified. The main n-alkane in almost all samples was n-nonacosane (C29 ), but differences in the contents of three other dominant n-alkanes allowed separating the coastal from the continental populations. The diversity and variability of the epicuticular-leaf-n-alkane patterns and their relation to different geographic and bioclimatic parameters were analyzed by several statistical methods (principal component, discriminant, and cluster analyses as well as the Mantel test). All tests showed a high correlation between the leaf n-alkane pattern and the geographical distribution of the investigated populations, confirming the differentiation between S. montana subsp. pisidica and the other two subspecies. The S. montana subsp. variegata and S. montana subsp. montana populations are geographically closer and their differentiation according to the leaf-n-alkane patterns was not clear, even though there was some indication of discrimination between them. Moreover, most of the bioclimatic parameters related to temperature were highly correlated with the differentiation of the coastal and the continental populations.

  17. Conversion of biomass to selected chemical products.

    PubMed

    Gallezot, Pierre

    2012-02-21

    This critical review provides a survey illustrated by recent references of different strategies to achieve a sustainable conversion of biomass to bioproducts. Because of the huge number of chemical products that can be potentially manufactured, a selection of starting materials and targeted chemicals has been done. Also, thermochemical conversion processes such as biomass pyrolysis or gasification as well as the synthesis of biofuels were not considered. The synthesis of chemicals by conversion of platform molecules obtained by depolymerisation and fermentation of biopolymers is presently the most widely envisioned approach. Successful catalytic conversion of these building blocks into intermediates, specialties and fine chemicals will be examined. However, the platform molecule value chain is in competition with well-optimised, cost-effective synthesis routes from fossil resources to produce chemicals that have already a market. The literature covering alternative value chains whereby biopolymers are converted in one or few steps to functional materials will be analysed. This approach which does not require the use of isolated, pure chemicals is well adapted to produce high tonnage products, such as paper additives, paints, resins, foams, surfactants, lubricants, and plasticisers. Another objective of the review was to examine critically the green character of conversion processes because using renewables as raw materials does not exempt from abiding by green chemistry principles (368 references).

  18. Adaptation of the hydrocarbonoclastic bacterium Alcanivorax borkumensis SK2 to alkanes and toxic organic compounds: a physiological and transcriptomic approach.

    PubMed

    Naether, Daniela J; Slawtschew, Slavtscho; Stasik, Sebastian; Engel, Maria; Olzog, Martin; Wick, Lukas Y; Timmis, Kenneth N; Heipieper, Hermann J

    2013-07-01

    The marine hydrocarbonoclastic bacterium Alcanivorax borkumensis is able to degrade mixtures of n-alkanes as they occur in marine oil spills. However, investigations of growth behavior and physiology of these bacteria when cultivated with n-alkanes of different chain lengths (C6 to C30) as the substrates are still lacking. Growth rates increased with increasing alkane chain length up to a maximum between C12 and C19, with no evident difference between even- and odd-numbered chain lengths, before decreasing with chain lengths greater than C19. Surface hydrophobicity of alkane-grown cells, assessed by determination of the water contact angles, showed a similar pattern, with maximum values associated with growth rates on alkanes with chain lengths between C11 and C19 and significantly lower values for cells grown on pyruvate. A. borkumensis was found to incorporate and modify the fatty acid intermediates generated by the corresponding n-alkane degradation pathway. Cells grown on distinct n-alkanes proved that A. borkumensis is able to not only incorporate but also modify fatty acid intermediates derived from the alkane degradation pathway. Comparing cells grown on pyruvate with those cultivated on hexadecane in terms of their tolerance toward two groups of toxic organic compounds, chlorophenols and alkanols, representing intensely studied organic compounds, revealed similar tolerances toward chlorophenols, whereas the toxicities of different n-alkanols were significantly reduced when hexadecane was used as a carbon source. As one adaptive mechanism of A. borkumensis to these toxic organic solvents, the activity of cis-trans isomerization of unsaturated fatty acids was proven. These findings could be verified by a detailed transcriptomic comparison between cultures grown on hexadecane and pyruvate and including solvent stress caused by the addition of 1-octanol as the most toxic intermediate of n-alkane degradation.

  19. Preferential methanogenic biodegradation of short-chain n-alkanes by microbial communities from two different oil sands tailings ponds.

    PubMed

    Shahimin, Mohd Faidz Mohamad; Foght, Julia M; Siddique, Tariq

    2016-05-15

    Oil sands tailings ponds harbor diverse anaerobic microbial communities capable of methanogenic biodegradation of solvent hydrocarbons entrained in the tailings. Mature fine tailings (MFT) from two operators (Albian and CNRL) that use different extraction solvents were incubated with mixtures of either two (n-pentane and n-hexane) or four (n-pentane, n-hexane, n-octane and n-decane) n-alkanes under methanogenic conditions for ~600 d. Microbes in Albian MFT began methane production by ~80 d, achieving complete depletion of n-pentane and n-hexane in the two-alkane mixture and their preferential biodegradation in the four-alkane mixture. Microbes in CNRL MFT preferentially metabolized n-octane and n-decane in the four-alkane mixture after a ~80 d lag but exhibited a lag of ~360 d before commencing biodegradation of n-pentane and n-hexane in the two-alkane mixture. 16S rRNA gene pyrosequencing revealed Peptococcaceae members as key bacterial n-alkane degraders in all treatments except CNRL MFT amended with the four-alkane mixture, in which Anaerolineaceae, Desulfobacteraceae (Desulfobacterium) and Syntrophaceae (Smithella) dominated during n-octane and n-decane biodegradation. Anaerolineaceae sequences increased only in cultures amended with the four-alkane mixture and only during n-octane and n-decane biodegradation. The dominant methanogens were acetoclastic Methanosaetaceae. These results highlight preferential n-alkane biodegradation by microbes in oil sands tailings from different producers, with implications for tailings management and reclamation.

  20. CHEMISTRY IN EVAPORATING ICES-UNEXPLORED TERRITORY

    SciTech Connect

    Cecchi-Pestellini, Cesare; Rawlings, Jonathan M. C.; Viti, Serena; Williams, David A. E-mail: jcr@star.ucl.ac.u E-mail: daw@star.ucl.ac.u

    2010-12-20

    We suggest that three-body chemistry may occur in warm high-density gas evaporating in transient co-desorption events on interstellar ices. Using a highly idealized computational model we explore the chemical conversion from simple species of the ice to more complex species containing several heavy atoms, as a function of density and of adopted three-body rate coefficients. We predict that there is a wide range of densities and rate coefficients in which a significant chemical conversion may occur. We discuss the implications of this idea for the astrochemistry of hot cores.

  1. Impact of chamber wall loss of gaseous organic compounds on secondary organic aerosol formation: Explicit modeling of SOA formation from alkane and alkene oxidation

    SciTech Connect

    La, Y. S.; Camredon, M.; Ziemann, P. J.; Valorso, R.; Matsunaga, A.; Lannuque, V.; Lee-Taylor, J.; Hodzic, A.; Madronich, S.; Aumont, B.

    2016-02-08

    Recent studies have shown that low volatility gas-phase species can be lost onto the smog chamber wall surfaces. Although this loss of organic vapors to walls could be substantial during experiments, its effect on secondary organic aerosol (SOA) formation has not been well characterized and quantified yet. Here the potential impact of chamber walls on the loss of gaseous organic species and SOA formation has been explored using the Generator for Explicit Chemistry and Kinetics of the Organics in the Atmosphere (GECKO-A) modeling tool, which explicitly represents SOA formation and gas–wall partitioning. The model was compared with 41 smog chamber experiments of SOA formation under OH oxidation of alkane and alkene series (linear, cyclic and C12-branched alkanes and terminal, internal and 2-methyl alkenes with 7 to 17 carbon atoms) under high NOx conditions. Simulated trends match observed trends within and between homologous series. The loss of organic vapors to the chamber walls is found to affect SOA yields as well as the composition of the gas and the particle phases. Simulated distributions of the species in various phases suggest that nitrates, hydroxynitrates and carbonylesters could substantially be lost onto walls. The extent of this process depends on the rate of gas–wall mass transfer, the vapor pressure of the species and the duration of the experiments. Furthermore, this work suggests that SOA yields inferred from chamber experiments could be underestimated up a factor of 2 due to the loss of organic vapors to chamber walls.

  2. Evaluated Kinetics of the Reactions of H and CH3 with n-Alkanes: Experiments with n-Butane and a Combustion Model Reaction Network Analysis.

    PubMed

    Manion, Jeffrey A; Sheen, David A; Awan, Iftikhar A

    2015-07-16

    Presented is a combined experimental and modeling study of the kinetics of the reactions of H and CH3 with n-butane, a representative aliphatic fuel. Abstraction of H from n-alkane fuels creates alkyl radicals that rapidly decompose at high temperatures to alkenes and daughter radicals. In combustion and pyrolysis, the branching ratio for attack on primary and secondary hydrogens is a key determinant of the initial olefin and radical pool, and results propagate through the chemistry of ignition, combustion, and byproduct formation. Experiments to determine relative and absolute rate constants for attack of H and CH3 have been carried out in a shock tube between 859 and 1136 K for methyl radicals and 890 to 1146 K for H atoms. Pressures ranged from 140 to 410 kPa. Appropriate precursors are used to thermally generate H and CH3 in separate experiments under dilute and well-defined conditions. A mathematical design algorithm has been applied to select the optimum experimental conditions. In conjunction with postshock product analyses, a network analysis based on the detailed chemical kinetic combustion model JetSurf 2 has been applied. Polynomial chaos expansion techniques and Monte Carlo methods are used to analyze the data and assess uncertainties. The present results provide the first experimental measurements of the branching ratios for attack of H and CH3 on primary and secondary hydrogens at temperatures near 1000 K. Results from the literature are reviewed and combined with the present data to generate evaluated rate expressions for attack on n-butane covering 300 to 2000 K for H atoms and 400 to 2000 K for methyl radicals. Values for generic n-alkanes and related hydrocarbons are also recommended. The present experiments and network analysis further demonstrate that the C-H bond scission channels in butyl radicals are an order of magnitude less important than currently indicated by JetSurf 2. Updated rate expressions for butyl radical fragmentation reactions

  3. Impact of chamber wall loss of gaseous organic compounds on secondary organic aerosol formation: Explicit modeling of SOA formation from alkane and alkene oxidation

    DOE PAGES

    La, Y. S.; Camredon, M.; Ziemann, P. J.; ...

    2016-02-08

    Recent studies have shown that low volatility gas-phase species can be lost onto the smog chamber wall surfaces. Although this loss of organic vapors to walls could be substantial during experiments, its effect on secondary organic aerosol (SOA) formation has not been well characterized and quantified yet. Here the potential impact of chamber walls on the loss of gaseous organic species and SOA formation has been explored using the Generator for Explicit Chemistry and Kinetics of the Organics in the Atmosphere (GECKO-A) modeling tool, which explicitly represents SOA formation and gas–wall partitioning. The model was compared with 41 smog chambermore » experiments of SOA formation under OH oxidation of alkane and alkene series (linear, cyclic and C12-branched alkanes and terminal, internal and 2-methyl alkenes with 7 to 17 carbon atoms) under high NOx conditions. Simulated trends match observed trends within and between homologous series. The loss of organic vapors to the chamber walls is found to affect SOA yields as well as the composition of the gas and the particle phases. Simulated distributions of the species in various phases suggest that nitrates, hydroxynitrates and carbonylesters could substantially be lost onto walls. The extent of this process depends on the rate of gas–wall mass transfer, the vapor pressure of the species and the duration of the experiments. Furthermore, this work suggests that SOA yields inferred from chamber experiments could be underestimated up a factor of 2 due to the loss of organic vapors to chamber walls.« less

  4. Conversations in Child Care

    ERIC Educational Resources Information Center

    Bardige, Betty; Segal, Marilyn

    2004-01-01

    In this article, Bardige and Segal discuss how teachers can help a toddler's language and literacy development through conversation. They suggest an array of tactics, from asking young children open-ended, intellectually challenging questions to going beyond the here and now when carrying on a conversation. Research has shown that the practice of…

  5. Recording Conversations in Schools.

    ERIC Educational Resources Information Center

    Gluckman, Ivan B.; Koerner, Thomas J., Jr.

    1988-01-01

    In general, because of varying federal and state legislation and a paucity of court decisions, the law governing the recording of conversations is in considerable flux. School personnel desiring to record conversations in school without the consent or knowledge of all parties involved must proceed with considerable caution. (Author)

  6. Energy conversion alternatives study

    NASA Technical Reports Server (NTRS)

    Shure, L. T.

    1979-01-01

    Comparison of coal based energy systems is given. Study identifies and compares various advanced energy conversion systems using coal or coal derived fuels for baselaoad electric power generation. Energy Conversion Alternatives Study (ECAS) reports provede government, industry, and general public with technically consistent basis for comparison of system's options of interest for fossilfired electric-utility application.

  7. Assessment through Conversation.

    ERIC Educational Resources Information Center

    Fu, Danling; Lamme, Linda L.

    2002-01-01

    Presents conversations with parents, teachers, and children around portfolios that provide a better picture of a child's growth and understanding than standardized test scores ever can. Concludes that the involvement of students, teachers, and parents in conversation about children's literacy development brings the potential of a common vision and…

  8. NUCLEAR CONVERSION APPARATUS

    DOEpatents

    Seaborg, G.T.

    1960-09-13

    A nuclear conversion apparatus is described which comprises a body of neutron moderator, tubes extending therethrough, uranium in the tubes, a fluid- circulating system associated with the tubes, a thorium-containing fluid coolant in the system and tubes, and means for withdrawing the fluid from the system and replacing it in the system whereby thorium conversion products may be recovered.

  9. Content for Conversation Partners.

    ERIC Educational Resources Information Center

    Olson, Kathleen

    2002-01-01

    Suggests that a good strategy for helping English language learners to develop communicative competence in English is by pairing them with native English speakers. In such conversation programs, conversation partners should be provided with topics and activities that incorporate the goals, interests, and experiences of the learners. Recommends…

  10. Constitutional dynamic chemistry: bridge from supramolecular chemistry to adaptive chemistry.

    PubMed

    Lehn, Jean-Marie

    2012-01-01

    Supramolecular chemistry aims at implementing highly complex chemical systems from molecular components held together by non-covalent intermolecular forces and effecting molecular recognition, catalysis and transport processes. A further step consists in the investigation of chemical systems undergoing self-organization, i.e. systems capable of spontaneously generating well-defined functional supramolecular architectures by self-assembly from their components, thus behaving as programmed chemical systems. Supramolecular chemistry is intrinsically a dynamic chemistry in view of the lability of the interactions connecting the molecular components of a supramolecular entity and the resulting ability of supramolecular species to exchange their constituents. The same holds for molecular chemistry when the molecular entity contains covalent bonds that may form and break reversibility, so as to allow a continuous change in constitution by reorganization and exchange of building blocks. These features define a Constitutional Dynamic Chemistry (CDC) on both the molecular and supramolecular levels.CDC introduces a paradigm shift with respect to constitutionally static chemistry. The latter relies on design for the generation of a target entity, whereas CDC takes advantage of dynamic diversity to allow variation and selection. The implementation of selection in chemistry introduces a fundamental change in outlook. Whereas self-organization by design strives to achieve full control over the output molecular or supramolecular entity by explicit programming, self-organization with selection operates on dynamic constitutional diversity in response to either internal or external factors to achieve adaptation.The merging of the features: -information and programmability, -dynamics and reversibility, -constitution and structural diversity, points to the emergence of adaptive and evolutive chemistry, towards a chemistry of complex matter.

  11. Hydrogen isotope ratios of recent lacustrine sedimentary n-alkanes record modern climate variability

    NASA Astrophysics Data System (ADS)

    Sachse, D.; Radke, J.; Gleixner, G.

    2004-12-01

    Hydrogen isotope ratios were measured on n-alkanes (n-C 12 to n-C 31) extracted from recent lake surface sediments along a N-S European transect to test if modern climate variability is recorded in these biomarkers. δD values of the n-alkanes are compared to δD values of meteoric water from the IAEA-GNIP database spanning a range from -119‰ in northern Sweden to -41‰ in southern Italy, to lake water δD values, and to mean annual temperatures, varying between -2.0°C in the north and 13.7°C in the south. δD values of the short-chained n-alkanes n-C 12 to n-C 20, excluding algal derived n-C 17 and n-C 19, are higher in the north and lower in the south. The isotopic fractionation ɛ for hydrogen between meteoric water and the short-chained n-alkanes is increasing from N to S by more than 100‰ and is significantly correlated to mean annual temperature for n-C 16 and n-C 18. This suggests that these n-alkanes may originate from a different source in the northern lakes, possibly due to petroleum contamination, or are synthesized using a different biochemical pathway. The n-C 17 and n-C 19 alkanes of algal origin, the n-C 21 and n-C 23 alkanes originating from water plants, and the long-chain n-alkanes n-C 25, n-C 27, n-C 29, and n-C 31 of terrestrial origin, clearly correlate with δD values of meteoric water, lake water, and mean annual temperature, indicating that they excellently record the δD value of meteoric water. The mean hydrogen isotope fractionation ɛ C17/w of -157‰ (SD = 13) between n-C 17 and meteoric water is fairly constant over the wide range of different climates and lake environments, suggesting only minor influence of environmental factors on this biochemical fractionation. This suggests that δD values of n-C 17 are suitable to reconstruct the isotopic composition of source water. The mean fractionation between the long-chain n-alkanes and water is -128‰ (SD = 12). The mean difference of 31‰ between both ɛ values is likely due to

  12. Biosynthetic and environmental effects on the stable carbon isotopic compositions of anteiso- (3-methyl) and iso- (2-methyl) alkanes in tobacco leaves.

    PubMed

    Grice, Kliti; Lu, Hong; Zhou, Youping; Stuart-Williams, Hilary; Farquhar, Graham D

    2008-11-01

    Nicotiana tabacum is the only plant known to synthesise large quantities of anteiso- (3-methyl) alkanes and iso- (2-methyl) alkanes. We investigated the carbon isotope ratios of individual long-chain n-alkanes, anteiso- and iso-alkanes (in the C(29)-C(33) carbon number range) extracted from tobacco grown in chambers under controlled conditions to confirm the pathway used by the tobacco plant to synthesise these particular lipids and to examine whether environmental data are recorded in these compounds. Tobacco was grown under differing temperatures, water availabilities and light intensities in order to control its stable carbon isotope ratios and evaluate isotopic fractionations associated with the synthesis of these particular lipids. The anteiso-alkanes were found to have a predominant even-carbon number distribution (maximising at C(32)), whereas the iso-alkanes exhibit an odd-carbon number distribution (maximising at C(31)). Iso-alkanes were relatively more abundant than the anteiso-alkanes and only two anteiso-alkanes (C(30) and C(32)) were observed. The anteiso-alkanes and iso-alkanes were found to be enriched in (13)C by 2.8-4.3 per thousand and 0-1.8 per thousand compared to the n-alkanes, respectively, consistent with different biosynthetic precursors. The assumed precursor for the odd-carbon-numbered iso-alkanes is iso-butyryl-CoA (a C(4) unit derived from valine) followed by subsequent elongation of C(2) units and then decarboxylation. The assumed precursor for even-carbon-numbered anteiso-alkanes is alpha-methylbutyryl-CoA (a C(5) unit derived from isoleucine) and subsequent elongation by C(2) units followed by decarboxylation. The ratio of carbon atoms derived from alpha-methylbutyryl-CoA and subsequent C(2) units (from malonyl-CoA) is 1:5 for the biosynthesis of a C(30)anteiso-alkane. The ratio of carbon atoms derived from iso-butyryl-CoA and subsequent C(2) units (from malonyl-CoA) is 4:25 for the synthesis of a C(29)iso-alkane. An order of (13)C

  13. USSR Report, Chemistry.

    DTIC Science & Technology

    2007-11-02

    This chemistry Report from the USSR contains articles mainly on Adsorption, Analytical Chemistry, Biochemistry, Catalysis, Chemical Industry, Coal ... Gasification , Electrochemistry, Fertilizers, Food Technology, Inorganic Compounds, Nitrogen Compounds and Organometallic Compounds.

  14. Chemistry for Potters.

    ERIC Educational Resources Information Center

    Denio, Allen A.

    1980-01-01

    Relates pottery making to chemistry by providing chemical information about clay, its origin, composition, properties, and changes that occur during firing; also describes glaze compositions, examples of redox chemistry, salt glazing, crystalline glazes, and problems in toxicity. (CS)

  15. Organometallic Chemistry of Molybdenum.

    ERIC Educational Resources Information Center

    Lucas, C. Robert; Walsh, Kelly A.

    1987-01-01

    Suggests ways to avoid some of the problems students have learning the principles of organometallic chemistry. Provides a description of an experiment used in a third-year college chemistry laboratory on molybdenum. (TW)

  16. Special Report: Brain Chemistry.

    ERIC Educational Resources Information Center

    Krassner, Michael B.

    1983-01-01

    Chemical actions in the brain result in cognitive, emotional, neuroendocrine, neuromuscular, and/or neurocirculatory effects. Developments in understanding brain chemistry are discussed, considering among others, neurotransmitter chemistry, neuropeptides, drugs and the brain, antidepressants, and actions of minor tranquilizers. (JN)

  17. Environmental chemistry: Volume A

    SciTech Connect

    Yen, T.F.

    1999-08-01

    This is an extensive introduction to environmental chemistry for engineering and chemical professionals. The contents of Volume A include a brief review of basic chemistry prior to coverage of litho, atmo, hydro, pedo, and biospheres.

  18. Evidence for strong, widespread chlorine radical chemistry associated with pollution outflow from continental Asia

    NASA Astrophysics Data System (ADS)

    Baker, Angela K.; Sauvage, Carina; Thorenz, Ute R.; van Velthoven, Peter; Oram, David E.; Zahn, Andreas; Brenninkmeijer, Carl A. M.; Williams, Jonathan

    2016-11-01

    The chlorine radical is a potent atmospheric oxidant, capable of perturbing tropospheric oxidative cycles normally controlled by the hydroxyl radical. Significantly faster reaction rates allow chlorine radicals to expedite oxidation of hydrocarbons, including methane, and in polluted environments, to enhance ozone production. Here we present evidence, from the CARIBIC airborne dataset, for extensive chlorine radical chemistry associated with Asian pollution outflow, from airborne observations made over the Malaysian Peninsula in winter. This region is known for persistent convection that regularly delivers surface air to higher altitudes and serves as a major transport pathway into the stratosphere. Oxidant ratios inferred from hydrocarbon relationships show that chlorine radicals were regionally more important than hydroxyl radicals for alkane oxidation and were also important for methane and alkene oxidation (>10%). Our observations reveal pollution-related chlorine chemistry that is both widespread and recurrent, and has implications for tropospheric oxidizing capacity, stratospheric composition and ozone chemistry.

  19. Evidence for strong, widespread chlorine radical chemistry associated with pollution outflow from continental Asia

    PubMed Central

    Baker, Angela K.; Sauvage, Carina; Thorenz, Ute R.; van Velthoven, Peter; Oram, David E.; Zahn, Andreas; Brenninkmeijer, Carl A. M.; Williams, Jonathan

    2016-01-01

    The chlorine radical is a potent atmospheric oxidant, capable of perturbing tropospheric oxidative cycles normally controlled by the hydroxyl radical. Significantly faster reaction rates allow chlorine radicals to expedite oxidation of hydrocarbons, including methane, and in polluted environments, to enhance ozone production. Here we present evidence, from the CARIBIC airborne dataset, for extensive chlorine radical chemistry associated with Asian pollution outflow, from airborne observations made over the Malaysian Peninsula in winter. This region is known for persistent convection that regularly delivers surface air to higher altitudes and serves as a major transport pathway into the stratosphere. Oxidant ratios inferred from hydrocarbon relationships show that chlorine radicals were regionally more important than hydroxyl radicals for alkane oxidation and were also important for methane and alkene oxidation (>10%). Our observations reveal pollution-related chlorine chemistry that is both widespread and recurrent, and has implications for tropospheric oxidizing capacity, stratospheric composition and ozone chemistry. PMID:27845366

  20. School Chemistry vs. Chemistry in Research: An Exploratory Experiment.

    ERIC Educational Resources Information Center

    Habraken, Clarisse L.; Buijs, Wim; Borkent, Hens; Ligeon, Willy; Wender, Harry; Meijer, Marijn

    2001-01-01

    Reports on a study exploring why students are not studying chemistry. Three groups of graduating high school students and their chemistry teachers stayed at a research institute working on molecular modeling and wrote essays on school chemistry versus chemistry in research. Concludes that school chemistry does not convey today's chemistry in…