Chowdhury, Abhishek Dutta; Julis, Jennifer; Grabow, Kathleen; Hannebauer, Bernd; Bentrup, Ursula; Adam, Martin; Franke, Robert; Jackstell, Ralf; Beller, Matthias
2015-01-01
Alkane dehydrogenation is of special interest for basic science but also offers interesting opportunities for industry. The existing dehydrogenation methodologies make use of heterogeneous catalysts, which suffer from harsh reaction conditions and a lack of selectivity, whereas homogeneous methodologies rely mostly on unsolicited waste generation from hydrogen acceptors. Conversely, acceptorless photochemical alkane dehydrogenation in the presence of trans-Rh(PMe3 )2 (CO)Cl can be regarded as a more benign and atom efficient alternative. However, this methodology suffers from catalyst deactivation over time. Herein, we provide a detailed investigation of the trans-Rh(PMe3 )2 (CO)Cl-photocatalyzed alkane dehydrogenation using spectroscopic and theoretical investigations. These studies inspired us to utilize CO2 to prevent catalyst deactivation, which leads eventually to improved catalyst turnover numbers in the dehydrogenation of alkanes that include liquid organic hydrogen carriers. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Supported organoiridium catalysts for alkane dehydrogenation
Baker, R. Thomas; Sattelberger, Alfred P.; Li, Hongbo
2013-09-03
Solid supported organoiridium catalysts, a process for preparing such solid supported organoiridium catalysts, and the use of such solid supported organoiridium catalysts in dehydrogenation reactions of alkanes is provided. The catalysts can be easily recovered and recycled.
NASA Astrophysics Data System (ADS)
Jia, Xiangqing; Huang, Zheng
2016-02-01
The conversion of inexpensive, saturated hydrocarbon feedstocks into value-added speciality chemicals using regiospecific, catalytic functionalization of alkanes is a major goal of organometallic chemistry. Linear alkylsilanes represent one such speciality chemical—they have a wide range of applications, including release coatings, silicone rubbers and moulding products. Direct, selective, functionalization of alkanes at primary C-H bonds is difficult and, to date, methods for catalytically converting alkanes into linear alkylsilanes are unknown. Here, we report a well-defined, dual-catalyst system for one-pot, two-step alkane silylations. The system comprises a pincer-ligated Ir catalyst for alkane dehydrogenation and an Fe catalyst that effects a subsequent tandem olefin isomerization-hydrosilylation. This method exhibits exclusive regioselectivity for the production of terminally functionalized alkylsilanes. This dual-catalyst strategy has also been applied to regioselective alkane borylations to form linear alkylboronate esters.
Oxidative dehydrogenation of alkanes to unsaturated hydrocarbons
Kung, H.H.; Chaar, M.A.
1988-10-11
Oxidative dehydrogenation of alkanes to unsaturated hydrocarbons is carried out over metal vanadate catalysts under oxidizing conditions. The vanadate catalysts are represented by the formulas M[sub 3](VO[sub 4])[sub 2] and MV[sub 2]O[sub 6], M representing Mg, Zn, Ca, Pb, or Cd. The reaction is carried out in the presence of oxygen, but the formation of oxygenate by-products is suppressed.
Oxidative dehydrogenation of alkanes to unsaturated hydrocarbons
Kung, Harold H.; Chaar, Mohamed A.
1988-01-01
Oxidative dehydrogenation of alkanes to unsaturated hydrocarbons is carried out over metal vanadate catalysts under oxidizing conditions. The vanadate catalysts are represented by the formulas M.sub.3 (VO.sub.4).sub.2 and MV.sub.2 O.sub.6, M representing Mg, Zn, Ca, Pb, or Cd. The reaction is carried out in the presence of oxygen, but the formation of oxygenate by-products is suppressed.
Solowey, Douglas P; Mane, Manoj V; Kurogi, Takashi; Carroll, Patrick J; Manor, Brian C; Baik, Mu-Hyun; Mindiola, Daniel J
2017-11-01
Selectively converting linear alkanes to α-olefins under mild conditions is a highly desirable transformation given the abundance of alkanes as well as the use of olefins as building blocks in the chemical community. Until now, this reaction has been primarily the remit of noble-metal catalysts, despite extensive work showing that base-metal alkylidenes can mediate the reaction in a stoichiometric fashion. Here, we show how the presence of a hydrogen acceptor, such as the phosphorus ylide, when combined with the alkylidene complex (PNP)Ti=CH t Bu(CH 3 ) (PNP=N[2-P(CHMe 2 ) 2 -4-methylphenyl] 2 - ), catalyses the dehydrogenation of cycloalkanes to cyclic alkenes, and linear alkanes with chain lengths of C 4 to C 8 to terminal olefins under mild conditions. This Article represents the first example of a homogeneous and selective alkane dehydrogenation reaction using a base-metal titanium catalyst. We also propose a unique mechanism for the transfer dehydrogenation of hydrocarbons to olefins and discuss a complete cycle based on a combined experimental and computational study.
NASA Astrophysics Data System (ADS)
Solowey, Douglas P.; Mane, Manoj V.; Kurogi, Takashi; Carroll, Patrick J.; Manor, Brian C.; Baik, Mu-Hyun; Mindiola, Daniel J.
2017-11-01
Selectively converting linear alkanes to α-olefins under mild conditions is a highly desirable transformation given the abundance of alkanes as well as the use of olefins as building blocks in the chemical community. Until now, this reaction has been primarily the remit of noble-metal catalysts, despite extensive work showing that base-metal alkylidenes can mediate the reaction in a stoichiometric fashion. Here, we show how the presence of a hydrogen acceptor, such as the phosphorus ylide, when combined with the alkylidene complex (PNP)Ti=CHtBu(CH3) (PNP=N[2-P(CHMe2)2-4-methylphenyl]2-), catalyses the dehydrogenation of cycloalkanes to cyclic alkenes, and linear alkanes with chain lengths of C4 to C8 to terminal olefins under mild conditions. This Article represents the first example of a homogeneous and selective alkane dehydrogenation reaction using a base-metal titanium catalyst. We also propose a unique mechanism for the transfer dehydrogenation of hydrocarbons to olefins and discuss a complete cycle based on a combined experimental and computational study.
Getsoian, Andrew "Bean"; Das, Ujjal; Camacho-Bunquin, Jeffrey; ...
2016-06-13
Gallium-modified zeolites are known catalysts for the dehydrogenation of alkanes, reactivity that finds industrial application in the aromatization of light alkanes by Ga-ZSM5. While the role of gallium cations in alkane activation is well known, the oxidation state and coordination environment of gallium under reaction conditions has been the subject of debate. Edge shifts in Ga K-edge XANES spectra acquired under reaction conditions have long been interpreted as evidence for reduction of Ga(III) to Ga(I). However, a change in oxidation state is not the only factor that can give rise to a change in the XANES spectrum. In order tomore » better understand the XANES spectra of working catalysts, we have synthesized a series of molecular model compounds and grafted surface organometallic Ga species and compared their XANES spectra to those of gallium-based catalysts acquired under reducing conditions. We demonstrate that changes in the identity and number of gallium nearest neighbors can give rise to changes in XANES spectra similar to those attributed in literature to changes in oxidation state. Specifically, spectral features previously attributed to Ga(I) may be equally well interpreted as evidence for low-coordinate Ga(III) alkyl or hydride species. Furthermore, these findings apply both to gallium-impregnated zeolite catalysts and to silica-supported single site gallium catalysts, the latter of which is found to be active and selective for dehydrogenation of propane and hydrogenation of propylene.« less
Farberow, Carrie A.; Cheah, Singfoong; Kim, Seonah; ...
2017-04-24
Cu-based catalysts containing targeted functionalities including metallic Cu, oxidized Cu, ionic Cu, and Bronsted acid sites were synthesized and evaluated for isobutane dehydrogenation. Hydrogen productivities, combined with operando X-ray absorption spectroscopy, indicated that Cu(I) sites in Cu/BEA catalysts activate C-H bonds in isobutane. Computational analysis revealed that isobutane dehydrogenation at a Cu(I) site proceeds through a two-step mechanism with a maximum energy barrier of 159 kJ/mol. Furthermore, these results demonstrate that light alkanes can be reactivated on Cu/BEA, which may enable re-entry of these species into the chain-growth cycle of dimethyl ether homologation, thereby increasing gasoline-range (C 5+) hydrocarbon yield.
Kumar, Akshai; Zhou, Tian; Emge, Thomas J; Mironov, Oleg; Saxton, Robert J; Krogh-Jespersen, Karsten; Goldman, Alan S
2015-08-12
We report the transfer-dehydrogenation of gas-phase alkanes catalyzed by solid-phase, molecular, pincer-ligated iridium catalysts, using ethylene or propene as hydrogen acceptor. Iridium complexes of sterically unhindered pincer ligands such as (iPr4)PCP, in the solid phase, are found to give extremely high rates and turnover numbers for n-alkane dehydrogenation, and yields of terminal dehydrogenation product (α-olefin) that are much higher than those previously reported for solution-phase experiments. These results are explained by mechanistic studies and DFT calculations which jointly lead to the conclusion that olefin isomerization, which limits yields of α-olefin from pincer-Ir catalyzed alkane dehydrogenation, proceeds via two mechanistically distinct pathways in the case of ((iPr4)PCP)Ir. The more conventional pathway involves 2,1-insertion of the α-olefin into an Ir-H bond of ((iPr4)PCP)IrH2, followed by 3,2-β-H elimination. The use of ethylene as hydrogen acceptor, or high pressures of propene, precludes this pathway by rapid hydrogenation of these small olefins by the dihydride. The second isomerization pathway proceeds via α-olefin C-H addition to (pincer)Ir to give an allyl intermediate as was previously reported for ((tBu4)PCP)Ir. The improved understanding of the factors controlling rates and selectivity has led to solution-phase systems that afford improved yields of α-olefin, and provides a framework required for the future development of more active and selective catalytic systems.
Silica-Supported, Single-Site Sc and Y Alkyls for Catalytic Hydrogenation of Propylene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Getsoian, Andrew G. Bean; Hu, Bo; Miller, Jeffrey T.
Single site Sc and Y on silica catalysts have been prepared by aqueous and organometallic grafting methods. The former yields Y(III) ions with 5 bonds at an average bond distance of 2.31 Å by X-ray absorption spectroscopy. Although the aqueous synthesis gave single site Y with low coordination number, these were not catalytic for alkane dehydrogenation or olefin hydrogenation. Single site Sc(III) and Y(III) species were also prepared by grafting Sc(CH 2Si(CH 3) 3) 3(THF) 2 and Y(CH 2Si(CH 3) 3) 3(THF) 2, respectively and these are catalysts for olefin hydrogenation at temperatures from about 60 to 100°C; however, theymore » were thermally unstable at higher temperatures necessary for alkane dehydrogenation. The structure of the grafted Y complex was determined by X-ray absorption spectroscopy, IR, and NMR. Grafting lead to protonolysis of 2 of the 3 CH 2Si(CH 3) 3 ligands. Additionally, there was loss of one THF ligand. The EXAFS indicated that there were 4 Y-ligand bonds in the surface species, 2 at 2.16 Å and 2 at 2.39 Å. The metal-alkyl ligand was thought to be necessary for catalytic activity and likely proceeds through a sigma bond metathesis mechanism. In the single site centers without alkyl bonds, Sc and Y ions cannot generate metal-alkyl, or metal-hydride, moieties in situ. We conclude that this is likely due to the very high M-O-Si bond strengths, which must be broken through heterolytic dissociation of C-H bonds during alkane activation for either alkane dehydrogenation or olefin hydrogenation reactions. Lastly, this study demonstrates the importance of pre-catalyst choice versus in situ formation of reactive intermediates to produce active catalysts for alkane bond activation.« less
Silica-Supported, Single-Site Sc and Y Alkyls for Catalytic Hydrogenation of Propylene
Getsoian, Andrew G. Bean; Hu, Bo; Miller, Jeffrey T.; ...
2017-09-27
Single site Sc and Y on silica catalysts have been prepared by aqueous and organometallic grafting methods. The former yields Y(III) ions with 5 bonds at an average bond distance of 2.31 Å by X-ray absorption spectroscopy. Although the aqueous synthesis gave single site Y with low coordination number, these were not catalytic for alkane dehydrogenation or olefin hydrogenation. Single site Sc(III) and Y(III) species were also prepared by grafting Sc(CH 2Si(CH 3) 3) 3(THF) 2 and Y(CH 2Si(CH 3) 3) 3(THF) 2, respectively and these are catalysts for olefin hydrogenation at temperatures from about 60 to 100°C; however, theymore » were thermally unstable at higher temperatures necessary for alkane dehydrogenation. The structure of the grafted Y complex was determined by X-ray absorption spectroscopy, IR, and NMR. Grafting lead to protonolysis of 2 of the 3 CH 2Si(CH 3) 3 ligands. Additionally, there was loss of one THF ligand. The EXAFS indicated that there were 4 Y-ligand bonds in the surface species, 2 at 2.16 Å and 2 at 2.39 Å. The metal-alkyl ligand was thought to be necessary for catalytic activity and likely proceeds through a sigma bond metathesis mechanism. In the single site centers without alkyl bonds, Sc and Y ions cannot generate metal-alkyl, or metal-hydride, moieties in situ. We conclude that this is likely due to the very high M-O-Si bond strengths, which must be broken through heterolytic dissociation of C-H bonds during alkane activation for either alkane dehydrogenation or olefin hydrogenation reactions. Lastly, this study demonstrates the importance of pre-catalyst choice versus in situ formation of reactive intermediates to produce active catalysts for alkane bond activation.« less
Acceptorless dehydrogenation of small molecules through cooperative base metal catalysis
West, Julian G.; Huang, David; Sorensen, Erik J.
2015-01-01
The dehydrogenation of unactivated alkanes is an important transformation both in industrial and biological systems. Recent efforts towards this reaction have revolved around high temperature, organometallic C–H activation by noble metal catalysts that produce alkenes and hydrogen gas as the sole products. Conversely, natural desaturase systems proceed through stepwise hydrogen atom transfer at physiological temperature; however, these transformations require a terminal oxidant. Here we show combining tetra-n-butylammonium decatungstate (TBADT) and cobaloxime pyridine chloride (COPC) can catalytically dehydrogenate unactivated alkanes and alcohols under near-UV irradiation at room temperature with hydrogen as the sole by-product. This noble metal-free process follows a nature-inspired pathway of high- and low-energy hydrogen atom abstractions. The hydrogen evolution ability of cobaloximes is leveraged to render the system catalytic, with cooperative turnover numbers up to 48 and yields up to 83%. Our results demonstrate how cooperative base metal catalysis can achieve transformations previously restricted to precious metal catalysts. PMID:26656087
DOE Office of Scientific and Technical Information (OSTI.GOV)
Getsoian, Andrew "Bean"; Das, Ujjal; Camacho-Bunquin, Jeffrey
Gallium-modified zeolites are known catalysts for the dehydrogenation of alkanes, reactivity that finds industrial application in the aromatization of light alkanes by Ga-ZSM5. While the role of gallium cations in alkane activation is well known, the oxidation state and coordination environment of gallium under reaction conditions has been the subject of debate. Edge shifts in Ga K-edge XANES spectra acquired under reaction conditions have long been interpreted as evidence for reduction of Ga(III) to Ga(I). However, a change in oxidation state is not the only factor that can give rise to a change in the XANES spectrum. In order tomore » better understand the XANES spectra of working catalysts, we have synthesized a series of molecular model compounds and grafted surface organometallic Ga species and compared their XANES spectra to those of gallium-based catalysts acquired under reducing conditions. We demonstrate that changes in the identity and number of gallium nearest neighbors can give rise to changes in XANES spectra similar to those attributed in literature to changes in oxidation state. Specifically, spectral features previously attributed to Ga(I) may be equally well interpreted as evidence for low-coordinate Ga(III) alkyl or hydride species. Furthermore, these findings apply both to gallium-impregnated zeolite catalysts and to silica-supported single site gallium catalysts, the latter of which is found to be active and selective for dehydrogenation of propane and hydrogenation of propylene.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Getsoian, Andrew “Bean”; Das, Ujjal; Camacho-Bunquin, Jeffrey
Gallium-modified zeolites are known catalysts for the dehydrogenation of alkanes, reactivity that finds industrial application in the aromatization of light alkanes by Ga-ZSM5. While the role of gallium cations in alkane activation is well known, the oxidation state and coordination environment of gallium under reaction conditions has been the subject of debate. Edge shifts in Ga K-edge XANES spectra acquired under reaction conditions have long been interpreted as evidence for reduction of Ga(III) to Ga(I). However, a change in oxidation state is not the only factor that can give rise to a change in the XANES spectrum. In order tomore » better understand the XANES spectra of working catalysts, we have synthesized a series of molecular model compounds and grafted surface organometallic Ga species and compared their XANES spectra to those of gallium-based catalysts acquired under reducing conditions. We demonstrate that changes in the identity and number of gallium nearest neighbors can give rise to changes in XANES spectra similar to those attributed in literature to changes in oxidation state. Specifically, spectral features previously attributed to Ga(I) may be equally well interpreted as evidence for low-coordinate Ga(III) alkyl or hydride species. These findings apply both to gallium-impregnated zeolite catalysts and to silica-supported single site gallium catalysts, the latter of which is found to be active and selective for dehydrogenation of propane and hydrogenation of propylene.« less
Role of Sn in the regeneration of Pt/γ-Al 2O 3 light alkane dehydrogenation catalysts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pham, Hien N.; Sattler, Jesper J. H. B.; Weckhuysen, Bert M.
Alumina-supported Pt is one of the major industrial catalysts for light alkane dehydrogenation. This catalyst loses activity during reaction, with coke formation often considered as the reason for deactivation. As we show in this study, the amount and nature of carbon deposits do not directly correlate with the loss of activity. Rather, it is the transformation of subnanometer Pt species into larger Pt nanoparticles that appears to be responsible for the loss of catalytic activity. Surprisingly, a portion of the Sn remains atomically dispersed on the alumina surface in the spent catalyst and helps in the redispersion of the Pt.more » In the absence of Sn on the alumina support, the larger Pt nanoparticles formed during reaction are not redispersed during oxidative regeneration. It is known that Sn is added as a promoter in the industrial catalyst to help in achieving high propene selectivity and to minimize coke formation. This work shows that an important role of Sn is to help in the regeneration of Pt, by providing nucleation sites on the alumina surface. Finally aberration-corrected scanning transmission electron microscopy helps to provide unique insights into the operating characteristics of an industrially important catalyst by demonstrating the role of promoter elements, such as Sn, in the oxidative regeneration of Pt on γ-Al 2O 3.« less
Role of Sn in the regeneration of Pt/γ-Al 2O 3 light alkane dehydrogenation catalysts
Pham, Hien N.; Sattler, Jesper J. H. B.; Weckhuysen, Bert M.; ...
2016-02-23
Alumina-supported Pt is one of the major industrial catalysts for light alkane dehydrogenation. This catalyst loses activity during reaction, with coke formation often considered as the reason for deactivation. As we show in this study, the amount and nature of carbon deposits do not directly correlate with the loss of activity. Rather, it is the transformation of subnanometer Pt species into larger Pt nanoparticles that appears to be responsible for the loss of catalytic activity. Surprisingly, a portion of the Sn remains atomically dispersed on the alumina surface in the spent catalyst and helps in the redispersion of the Pt.more » In the absence of Sn on the alumina support, the larger Pt nanoparticles formed during reaction are not redispersed during oxidative regeneration. It is known that Sn is added as a promoter in the industrial catalyst to help in achieving high propene selectivity and to minimize coke formation. This work shows that an important role of Sn is to help in the regeneration of Pt, by providing nucleation sites on the alumina surface. Finally aberration-corrected scanning transmission electron microscopy helps to provide unique insights into the operating characteristics of an industrially important catalyst by demonstrating the role of promoter elements, such as Sn, in the oxidative regeneration of Pt on γ-Al 2O 3.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Pingping; Siddiqi, Georges; Vining, William C.
Catalysts for the dehydrogenation of light alkanes were prepared by dispersing Pt on the surface of a calcined hydrotalcite-like support containing indium, Mg(In)(Al)O. Upon reduction in H{sub 2} at temperatures above 673 K, bimetallic particles of PtIn are observed by TEM, which have an average diameter of 1 nm. Analysis of Pt LIII-edge extended X-ray absorption fine structure (EXAFS) data shows that the In content of the bimetallic particles increases with increasing bulk In/Pt ratio and reduction temperature. Pt LIII-edge X-ray absorption near edge structure (XANES) indicates that an increasing donation of electronic charge from In to Pt occurs withmore » increasing In content in the PtIn particles. The activity and selectivity of the Pt/Mg(In)(Al)O catalysts for ethane and propane dehydrogenation reactions are strongly dependent on the bulk In/Pt ratio. For both reactants, maximum activity was achieved for a bulk In/Pt ratio of 0.48, and at this In/Pt ratio, the selectivity to alkene was nearly 100%. Coke deposition was observed after catalyst use for either ethane or propane dehydrogenation, and it was observed that the alloying of Pt with In greatly reduced the amount of coke deposited. Characterization of the deposit by Raman spectroscopy indicates that the coke is present as highly disordered graphite particles <30 nm in diameter. While the amount of coke deposited during ethane and propane dehydrogenation are comparable, the effects on activity are dependent on reactant composition. Coke deposition had no effect on ethane dehydrogenation activity, but caused a loss in propane dehydrogenation activity. This difference is attributed to the greater ease with which coke produced on the surface of PtIn nanoparticles migrates to the support during ethane dehydrogenation versus propane dehydrogenation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Yuanyuan; Sushko, Peter V.; Melzer, Daniel
A novel pathway of increasing the surface density of catalytically active oxygen radical sites on a MoVTeNb oxide (M1 phase) catalyst during alkane oxidative dehydrogenation is reported. The novel sites form when a fraction of Te4+ is reduced and emitted from the M1 crystals under catalytic operating conditions, without compromising structural integrity of the catalyst framework. Density functional theory calculations show this Te reduction induces multiple inter-related electron transfers, and the associated cooperative effects lead to the formation of O- radicals. The in situ observations identify complex dynamic changes in the catalyst on an atomistic level, highlighting a new waymore » to tailor structure and dynamics for highly active catalysts.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiong, Haifeng; Lin, Sen; Goetze, Joris
CeO2 supports are unique in their ability to trap ionic Pt, providing exceptional stability for isolated single atoms of Pt. Here, we explore the reactivity and stability of single atom Pt species for the industrially important reaction of light alkane dehydrogenation. The single atom Pt/CeO2 catalysts are stable during propane dehydrogenation, but we observe no selectivity towards propene. DFT calculations show strong adsorption of the olefin produced, leading to further unwanted reactions. In contrast, when Sn is added to ceria, the single atom Pt catalyst undergoes an activation phase where it transforms into Pt-Sn clusters under reaction conditions. Formation ofmore » small Pt-Sn clusters allows the catalyst to achieve high selectivity towards propene, due to facile desorption of the product. The CeO2-supported Pt-Sn clusters are very stable, even during extended reaction at 680 °C. By adding water vapor to the feed, coke formation can almost completely be suppressed. Furthermore, the Pt-Sn clusters can be readily transformed back to the atomically dispersed species on ceria via oxidation, making Pt-Sn/CeO2 a fully regenerable catalyst.« less
Catalytic dehydroaromatization of n-alkanes by pincer-ligated iridium complexes
NASA Astrophysics Data System (ADS)
Ahuja, Ritu; Punji, Benudhar; Findlater, Michael; Supplee, Carolyn; Schinski, William; Brookhart, Maurice; Goldman, Alan S.
2011-02-01
Aromatic hydrocarbons are among the most important building blocks in the chemical industry. Benzene, toluene and xylenes are obtained from the high temperature thermolysis of alkanes. Higher alkylaromatics are generally derived from arene-olefin coupling, which gives branched products—that is, secondary alkyl arenes—with olefins higher than ethylene. The dehydrogenation of acyclic alkanes to give alkylaromatics can be achieved using heterogeneous catalysts at high temperatures, but with low yields and low selectivity. We present here the first catalytic conversion of n-alkanes to alkylaromatics using homogeneous or molecular catalysts—specifically ‘pincer’-ligated iridium complexes—and olefinic hydrogen acceptors. For example, the reaction of n-octane affords up to 86% yield of aromatic product, primarily o-xylene and secondarily ethylbenzene. In the case of n-decane and n-dodecane, the resulting alkylarenes are exclusively unbranched (that is, n-alkyl-substituted), with selectivity for the corresponding o-(n-alkyl)toluene.
Hydrogen transport membranes for dehydrogenation reactions
Balachandran,; Uthamalingam, [Hinsdale, IL
2008-02-12
A method of converting C.sub.2 and/or higher alkanes to olefins by contacting a feedstock containing C.sub.2 and/or higher alkanes with a first surface of a metal composite membrane of a sintered homogenous mixture of an Al oxide or stabilized or partially stabilized Zr oxide ceramic powder and a metal powder of one or more of Pd, Nb, V, Zr, Ta and/or alloys or mixtures thereof. The alkanes dehydrogenate to olefins by contact with the first surface with substantially only atomic hydrogen from the dehydrogenation of the alkanes passing through the metal composite membrane. Apparatus for effecting the conversion and separation is also disclosed.
Halogen-Mediated Conversion of Hydrocarbons to Commodities.
Lin, Ronghe; Amrute, Amol P; Pérez-Ramírez, Javier
2017-03-08
Halogen chemistry plays a central role in the industrial manufacture of various important chemicals, pharmaceuticals, and polymers. It involves the reaction of halogens or halides with hydrocarbons, leading to intermediate compounds which are readily converted to valuable commodities. These transformations, predominantly mediated by heterogeneous catalysts, have long been successfully applied in the production of polymers. Recent discoveries of abundant conventional and unconventional natural gas reserves have revitalized strong interest in these processes as the most cost-effective gas-to-liquid technologies. This review provides an in-depth analysis of the fundamental understanding and applied relevance of halogen chemistry in polymer industries (polyvinyl chloride, polyurethanes, and polycarbonates) and in the activation of light hydrocarbons. The reactions of particular interest include halogenation and oxyhalogenation of alkanes and alkenes, dehydrogenation of alkanes, conversion of alkyl halides, and oxidation of hydrogen halides, with emphasis on the catalyst, reactor, and process design. Perspectives on the challenges and directions for future development in this exciting field are provided.
Gallium-rich Pd-Ga phases as supported liquid metal catalysts
NASA Astrophysics Data System (ADS)
Taccardi, N.; Grabau, M.; Debuschewitz, J.; Distaso, M.; Brandl, M.; Hock, R.; Maier, F.; Papp, C.; Erhard, J.; Neiss, C.; Peukert, W.; Görling, A.; Steinrück, H.-P.; Wasserscheid, P.
2017-09-01
A strategy to develop improved catalysts is to create systems that merge the advantages of heterogeneous and molecular catalysis. One such system involves supported liquid-phase catalysts, which feature a molecularly defined, catalytically active liquid film/droplet layer adsorbed on a porous solid support. In the past decade, this concept has also been extended to supported ionic liquid-phase catalysts. Here we develop this idea further and describe supported catalytically active liquid metal solutions (SCALMS). We report a liquid mixture of gallium and palladium deposited on porous glass that forms an active catalyst for alkane dehydrogenation that is resistant to coke formation and is thus highly stable. X-ray diffraction and X-ray photoelectron spectroscopy, supported by theoretical calculations, confirm the liquid state of the catalytic phase under the reaction conditions. Unlike traditional heterogeneous catalysts, the supported liquid metal reported here is highly dynamic and catalysis does not proceed at the surface of the metal nanoparticles, but presumably at homogeneously distributed metal atoms at the surface of a liquid metallic phase.
Understanding oxidative dehydrogenation of ethane on Co 3O 4 nanorods from density functional theory
Fung, Victor; Tao, Franklin; Jiang, De-en
2016-05-20
Co 3O 4 is a metal oxide catalyst with weak, tunable M–O bonds promising for catalysis. Here, density functional theory (DFT) is used to study the oxidative dehydrogenation (ODH) of ethane on Co 3O 4 nanorods based on the preferred surface orientation (111) from the experimental electron-microscopy image. The pathway and energetics of the full catalytic cycle including the first and second C–H bond cleavages, hydroxyl clustering, water formation, and oxygen-site regeneration are determined. We find that both lattice O and Co may participate as active sites in the dehydrogenation, with the lattice-O pathway being favored. Here, we identify themore » best ethane ODH pathway based on the overall energy profiles of several routes. We identify that water formation from the lattice oxygen has the highest energy barrier and is likely a rate-determining step. This work of the complete catalytic cycle of ethane ODH will allow further study into tuning the surface chemistry of Co 3O 4 nanorods for high selectivity of alkane ODH reactions.« less
Jie, Xiangyu; Gonzalez-Cortes, Sergio; Xiao, Tiancun; Wang, Jiale; Yao, Benzhen; Slocombe, Daniel R; Al-Megren, Hamid A; Dilworth, Jonathan R; Thomas, John M; Edwards, Peter P
2017-08-14
Hydrogen as an energy carrier promises a sustainable energy revolution. However, one of the greatest challenges for any future hydrogen economy is the necessity for large scale hydrogen production not involving concurrent CO 2 production. The high intrinsic hydrogen content of liquid-range alkane hydrocarbons (including diesel) offers a potential route to CO 2 -free hydrogen production through their catalytic deep dehydrogenation. We report here a means of rapidly liberating high-purity hydrogen by microwave-promoted catalytic dehydrogenation of liquid alkanes using Fe and Ni particles supported on silicon carbide. A H 2 production selectivity from all evolved gases of some 98 %, is achieved with less than a fraction of a percent of adventitious CO and CO 2 . The major co-product is solid, elemental carbon. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abu-Omar, Mahdi
2017-01-06
An estimated 490 million metric tons of lignocellulosic biomass is available annually from U.S. agriculture and forestry. With continuing concerns over greenhouse gas emission, the development of efficient catalytic processes for conversion of biomass derived compounds is an important area of research. Since carbohydrates and polyols are rich in oxygen, approximately one oxygen atom per carbon, removal of hydroxyl groups via deoxygenation is needed. The necessary hydrogen required for hydrodeoxygenation (HDO) would either come from reforming biomass itself or from steam reforming of natural gas. Both processes contribute to global CO2 emission. The hope is that eventually renewable sources suchmore » as wind and solar for hydrogen production will become more viable and economic in the future. In the meantime, unconventional natural gas production in North America has boomed. As a result, light hydrocarbons present an opportunity when coupled with biomass derived oxygenates to generate valuable products from both streams without co-production of carbon dioxide. This concept is the focus of our current funding period. The objective of the project requires coupling two different types of catalysis, HDO and dehydrogenation. Our hypothesis was formulated around our success in establishing oxorhenium catalysts for polyol HDO reactions and known literature precedence for the use of iridium hydrides in alkane dehydrogenation. To examine our hypothesis we set out to investigate the reaction chemistry of binuclear complexes of oxorhenium and iridium hydride.« less
2015-01-01
We report copper-catalyzed oxidative dehydrogenative carboxylation (ODC) of unactivated alkanes with various substituted benzoic acids to produce the corresponding allylic esters. Spectroscopic studies (EPR, UV–vis) revealed that the resting state of the catalyst is [(BPI)Cu(O2CPh)] (1-O2CPh), formed from [(BPI)Cu(PPh3)2], oxidant, and benzoic acid. Catalytic and stoichiometric reactions of 1-O2CPh with alkyl radicals and radical probes imply that C–H bond cleavage occurs by a tert-butoxy radical. In addition, the deuterium kinetic isotope effect from reactions of cyclohexane and d12-cyclohexane in separate vessels showed that the turnover-limiting step for the ODC of cyclohexane is C–H bond cleavage. To understand the origin of the difference in products formed from copper-catalyzed amidation and copper-catalyzed ODC, reactions of an alkyl radical with a series of copper–carboxylate, copper–amidate, and copper–imidate complexes were performed. The results of competition experiments revealed that the relative rate of reaction of alkyl radicals with the copper complexes follows the trend Cu(II)–amidate > Cu(II)–imidate > Cu(II)–benzoate. Consistent with this trend, Cu(II)–amidates and Cu(II)–benzoates containing more electron-rich aryl groups on the benzamidate and benzoate react faster with the alkyl radical than do those with more electron-poor aryl groups on these ligands to produce the corresponding products. These data on the ODC of cyclohexane led to preliminary investigation of copper-catalyzed oxidative dehydrogenative amination of cyclohexane to generate a mixture of N-alkyl and N-allylic products. PMID:25389772
Highly dispersed buckybowls as model carbocatalysts for C–H bond activation
Soykal, I. Ilgaz; Wang, Hui; Park, Jewook; ...
2015-03-19
Buckybowl fractions dispersed on mesoporous silica constitute an ideal model for studying the catalysis of graphitic forms of carbon since the dispersed carbon nanostructures contain a high ratio of edge defects and curvature induced by non-six-membered rings. Dispersion of the active centers on an easily accessible high surface area material allowed for high density of surface active sites associated with oxygenated structures. This report illustrates a facile method of creating model polycyclic aromatic nano-structures that are not only active for alkane C-H bond activation and oxidative dehydrogenation but also can be practical catalysts to be eventually used in industry.
NASA Astrophysics Data System (ADS)
Jiang, K. Y.; Fan, Q.; Zhao, Z. J.; Mao, L. S.; Yang, X. L.
2006-01-01
Iron oxide catalyst with spinel structure used for dehydrogenation of ethylbenzene is one kind of important catalyst in petrochemical industry. In this work several series of industrial catalyst were prepared with different components and different manufacturing processes. Mössbauer Spectroscopy has been used to determine the optimal components and the better manufacturing process for spinel structure formation. The results may prove useful for producing the industrial dehydrogenation catalyst with better catalytic property.
Wang, Yanqun; Tang, Yizhen; Shao, Youxiang
2017-09-01
Catalytic dehydration and dehydrogenation reactions of ethanol have been investigated systematically using the ab initio quantum chemistry methods The catalysts include water, hydrogen peroxide, formic acid, phosphoric acid, hydrogen fluoride, ammonia, and ethanol itself. Moreover, a few clusters of water and ethanol were considered to simulate the catalytic mechanisms in supercritical water and supercritical ethanol. The barriers for both dehydration and dehydrogenation can be reduced significantly in the presence of the catalysts. It is revealed that the selectivity of the catalytic dehydration and dehydrogenation depends on the acidity and basicity of the catalysts and the sizes of the clusters. The acidic catalyst prefers dehydration while the basic catalysts tend to promote dehydrogenation more effectively. The calculated water-dimer catalysis mechanism supports the experimental results of the selective oxidation of ethanol in the supercritical water. It is suggested that the solvent- and catalyst-free self-oxidation of the supercritical ethanol could be an important mechanism for the selective dehydrogenation of ethanol on the theoretical point of view. Copyright © 2017 Elsevier Inc. All rights reserved.
Sreekumar, Sanil; Balakrishnan, Madhesan; Goulas, Konstantinos; Gunbas, Gorkem; Gokhale, Amit A; Louie, Lin; Grippo, Adam; Scown, Corinne D; Bell, Alexis T; Toste, F Dean
2015-08-24
Life-cycle analysis (LCA) allows the scientific community to identify the sources of greenhouse gas (GHG) emissions of novel routes to produce renewable fuels. Herein, we integrate LCA into our investigations of a new route to produce drop-in diesel/jet fuel by combining furfural, obtained from the catalytic dehydration of lignocellulosic pentose sugars, with alcohols that can be derived from a variety of bio- or petroleum-based feedstocks. As a key innovation, we developed recyclable transition-metal-free hydrotalcite catalysts to promote the dehydrogenative cross-coupling reaction of furfural and alcohols to give high molecular weight adducts via a transfer hydrogenation-aldol condensation pathway. Subsequent hydrodeoxygenation of adducts over Pt/NbOPO4 yields alkanes. Implemented in a Brazilian sugarcane biorefinery such a process could result in a 53-79% reduction in life-cycle GHG emissions relative to conventional petroleum fuels and provide a sustainable source of low carbon diesel/jet fuel. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Zhou, Tian
Computational chemistry has achieved vast progress in the last decades in the field, which was considered to be only experimental before. DFT (density functional theory) calculations have been proven to be able to be applied to large systems, while maintaining high accuracy. One of the most important achievements of DFT calculations is in exploring the mechanism of bond activation reactions catalyzed by organometallic complexes. In this dissertation, we discuss DFT studies of several catalytic systems explored in the lab of Professor Alan S. Goldman. Headlines in the work are: (1) (R4PCP)Ir alkane dehydrogenation catalysts are highly selective and different from ( R4POCOP)Ir catalysts, predicting different rate-/selectivity-determining steps; (2) The study of the mechanism for double C-H addition/cyclometalation of phenanthrene or biphenyl by (tBu4PCP)Ir(I) and ( iPr4PCP)Ir illustrates that neutral Ir(III) C-H addition products can undergo a very facile second C-H addition, particularly in the case of sterically less-crowded Ir(I) complexes; (3) (iPr4PCP)Ir pure solid phase catalyst is highly effective in producing high yields of alpha-olefin products, since the activation enthalpy for dehydrogenation is higher than that for isomerization via an allyl pathway; higher temperatures favor the dehydrogenation/isomerization ratio; (4) (PCP)Ir(H)2(N2H4) complex follows a hydrogen transfer mechanism to undergo both dehydrogenation to form N 2 and H2, as well as hydrogen transfer followed by N-N bond cleavage to form NH3, N2, and H2; (5) The key for the catalytic effect of solvent molecule in CO insertion reaction for RMn(CO)5 is hydrogen bond assisted interaction. The basicity of the solvent determines the strength of the hydrogen bond interaction during the catalytic path and determines the catalytic power of the solvent; and (6) Dehydrogenative coupling of unactivated C-H bonds (intermolecular vinyl-vinyl, intramolecular vinyl-benzyl) is catalyzed by precursors of the (iPr4 PCP)Ir fragment. The key step for this mechanism is a Ir(III) vinyl hydride complex undergoing addition of a styrenyl ortho C-H bond to give an Ir(III) metalloindene plus H2.
NASA Astrophysics Data System (ADS)
Ulfa, S. M.; Mahfud, A.; Nabilah, S.; Rahman, M. F.
2017-02-01
Influence of water and acidic protic solvent on hydrodeoxygenation (HDO) of the furfural-acetone adduct (FAA) over Ni/Al2O3-ZrO2 (NiAZ) catalysts were investigated. The HDO of FAA was carried out in a batch reactor at 150°C for 8 hours. The NiAZ catalysts were home-made catalysts which were prepared by wet impregnation method with 10 and 20% nickel loading. The HDO reaction of FAA using 10NiAZ in water at 150°C gave alkane and oxygenated hydrocarbons at 31.41% with selectivity over tridecane (C13) in 6.67%. On the other hand, a reaction using acetic acid:water (1:19 v/v) in similar reaction condition gave only oxygenated compounds and hydrocracking product (C8-C10). The formation of tridecane (C13) was proposed by hydrogenation of C=O and C=C followed by decarboxylation without hydrocracking process. The presence of water facilitated decarboxylation mechanism by stabilized dehydrogenated derivatives of FAA.
NASA Astrophysics Data System (ADS)
Jiang, K. Y.; Fan, Q.; Zhao, Z. J.; Mao, L. S.; Yang, X. L.
Iron oxide catalyst with spinel structure used for dehydrogenation of ethylbenzene is one kind of importantcatalyst in petrochemical industry. In this work several series of industrial catalyst were prepared with differentcomponents and differentmanufacturing processes. Mössbauer Spectroscopy has been used to determine the optimal components and the better manufacturing process for spinel structure formation. The results may prove useful for producing the industrial dehydrogenation catalyst with better catalytic property.
Hydrogen production by aqueous phase reforming of light oxygenated hydrocarbons
NASA Astrophysics Data System (ADS)
Shabaker, John William
Aqueous phase reforming (APR) of renewable oxygenated hydrocarbons (e.g., methanol, ethylene glycol, glycerol, sorbitol, glucose) is a promising new technology for the catalytic production of high-purity hydrogen for fuel cells and chemical processing. Supported Pt catalysts are effective catalysts for stable and rapid H2 production at temperatures near 500 K (H 2 turnover frequencies near 10 min-1). Inexpensive Raney Ni-based catalysts have been developed using a combination of fundamental and high-throughput studies that have similar catalytic properties as Pt-based materials. Promotion of Raney Ni with Sn by controlled surface reaction of organometallic tin compounds is necessary to control formation of thermodynamically-favorable alkane byproducts. Detailed characterization by Mossbauer spectroscopy, electron microscopy, adsorption studies, and x-ray photoelectron spectroscopy (XPS/ESCA) has shown that NiSn alloys are formed during heat treatment, and may be responsible for enhanced stability and selectivity for hydrogen production. Detailed kinetic studies led to the development of a kinetic mechanism for the APR reaction on Pt and NiSn catalysts, in which the oxygenate decomposes through C--H and O--H cleavage, followed by C--C cleavage and water gas shift of the CO intermediate. The rate limiting step on Pt surfaces is the initial dehydrogenation, while C--C cleavage appears rate limiting over NiSn catalysts. Tin promotion of Raney Ni catalysts suppresses C--O bond scission reactions that lead to alkane formation without inhibiting fast C--C and C--H cleavage steps that are necessary for high rates of reforming. A window of operating temperature, pressure, and reactor residence time has been identified for use of the inexpensive NiSn catalysts as a Pt substitute. Concentrated feed stocks and aggressive pretreatments have been found to counteract catalyst deactivation by sintering in the hydrothermal APR environment and allow stable, long-term production of H2 over Raney-NiSn materials.
Water co-catalyzed selective dehydrogenation of methanol to formaldehyde and hydrogen
NASA Astrophysics Data System (ADS)
Shan, Junjun; Lucci, Felicia R.; Liu, Jilei; El-Soda, Mostafa; Marcinkowski, Matthew D.; Allard, Lawrence F.; Sykes, E. Charles H.; Flytzani-Stephanopoulos, Maria
2016-08-01
The non-oxidative dehydrogenation of methanol to formaldehyde is considered a promising method to produce formaldehyde and clean hydrogen gas. Although Cu-based catalysts have an excellent catalytic activity in the oxidative dehydrogenation of methanol, metallic Cu is commonly believed to be unreactive for the dehydrogenation of methanol in the absence of oxygen adatoms or oxidized copper. Herein we show that metallic Cu can catalyze the dehydrogenation of methanol in the absence of oxygen adatoms by using water as a co-catalyst both under realistic reaction conditions using silica-supported PtCu nanoparticles in a flow reactor system at temperatures below 250 °C, and in ultra-high vacuum using model PtCu(111) catalysts. Adding small amounts of isolated Pt atoms into the Cu surface to form PtCu single atom alloys (SAAs) greatly enhances the dehydrogenation activity of Cu. Under the same reaction conditions, the yields of formaldehyde from PtCu SAA nanoparticles are more than one order of magnitude higher than on the Cu nanoparticles, indicating a significant promotional effect of individual, isolated Pt atoms. Moreover, this study also shows the unexpected role of water in the activation of methanol. Water, a catalyst for methanol dehydrogenation at low temperatures, becomes a reactant in the methanol steam reforming reactions only at higher temperatures over the same metal catalyst.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chu, C.C.
A process is described of dehydrogenating para-ethyltoluene to selectively form para-methylstyrene comprising contacting to para-ethyltoluene under dehydrogenation reaction conditions with a catalyst composition comprising: (a) from about 30% to 60% by weight of iron oxide, calculated as ferric oxide; (b) from about 13% to 48% by weight of a potassium compound, calculated as potassium oxide; and (c) from about 0% to 5% by weight of a chromium compound, calculated as chromic oxide. The improvement is described comprising dehydrogenating the para-ethyltoluene with a catalyst composition comprising, in addition to the components (a), (b) and (c), a modifying component (d) capable ofmore » rendering the para-methylstyrene-containing dehydrogenation reaction effluent especially resistant to the subsequent formation of popcorn polymers when the dehydrogenation of para-ethyltoluene is conducted over the modified catalyst, the modifying component (d) being a bismuth compound present to the extent of from about 1% to 20% by weight of the catalyst composition, calculated as bismuth trioxide.« less
Kazansky, V B; Subbotina, I R; Rane, N; van Santen, R A; Hensen, E J M
2005-08-21
The activation of ethane over zinc- and gallium-modified HZSM-5 dehydrogenation catalysts was studied by diffuse reflectance infrared spectroscopy. Hydrocarbon activation on HZSM-5 modified by bivalent Zn and univalent Ga cations proceeds via two distinctly different mechanisms. The stronger molecular adsorption of ethane by the acid-base pairs formed by distantly separated cationic Zn2+ and basic oxygen sites results already at room temperature in strong polarizability of adsorbed ethane and subsequent heterolytic dissociative adsorption at moderate temperatures. In contrast, molecular adsorption of ethane on Ga+ cations is weak. At high temperatures dissociative hydrocarbon adsorption takes place, resulting in the formation of ethyl and hydride fragments coordinating to the cationic gallium species. Whereas in the zinc case a Brønsted acid proton is formed upon ethane dissociation, decomposition of the ethyl fragment on gallium results in gallium dihydride species and does not lead to Brønsted acid protons. This difference in alkane activation has direct consequences for hydrocarbon conversions involving dehydrogenation.
Witzke, M E; Dietrich, P J; Ibrahim, M Y S; Al-Bardan, K; Triezenberg, M D; Flaherty, D W
2017-01-03
Selective dehydrogenation catalysts that produce acetaldehyde from bio-derived ethanol can increase the efficiency of subsequent processes such as C-C coupling over metal oxides to produce 1-butanol or 1,3-butadiene or oxidation to acetic acid. Here, we use in situ X-ray absorption spectroscopy and steady state kinetics experiments to identify Cu δ+ at the perimeter of supported Cu clusters as the active site for esterification and Cu 0 surface sites as sites for dehydrogenation. Correlation of dehydrogenation and esterification selectivities to in situ measures of Cu oxidation states show that this relationship holds for Cu clusters over a wide-range of diameters (2-35 nm) and catalyst supports and reveals that dehydrogenation selectivities may be controlled by manipulating either.
Uncatalyzed, Regioselective Oxidation of Saturated Hydrocarbons in an Ambient Corona Discharge.
Ayrton, Stephen T; Jones, Rhys; Douce, David S; Morris, Mike R; Cooks, R Graham
2018-01-15
Atmospheric pressure chemical ionization (APCI) in air or in nitrogen with just traces of oxygen is shown to yield regioselective oxidation, dehydrogenation, and fragmentation of alkanes. Ozone is produced from ambient oxygen in situ and is responsible for the observed ion chemistry, which includes partial oxidation to ketones and C-C cleavage to give aldehydes. The mechanism of oxidation is explored and relationships between ionic species produced from individual alkanes are established. Unusually, dehydrogenation occurs by water loss. Competitive incorporation into the hydrocarbon chain of nitrogen versus oxygen as a mode of ionization is also demonstrated. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Witzke, M. E.; Dietrich, P. J.; Ibrahim, M. Y. S.
2016-12-12
Selective dehydrogenation catalysts that produce acetaldehyde from bio-derived ethanol can increase the efficiency of subsequent processes such as C–C coupling over metal oxides to produce 1-butanol or 1,3-butadiene or oxidation to acetic acid. Here, we use in situ X-ray absorption spectroscopy and steady state kinetics experiments to identify Cuδ+ at the perimeter of supported Cu clusters as the active site for esterification and Cu0 surface sites as sites for dehydrogenation. Correlation of dehydrogenation and esterification selectivities to in situ measures of Cu oxidation states show that this relationship holds for Cu clusters over a wide-range of diameters (2–35 nm) andmore » catalyst supports and reveals that dehydrogenation selectivities may be controlled by manipulating either.« less
Krumpelt, Michael; Ahmed, Shabbir; Kumar, Romesh; Doshi, Rajiv
2000-01-01
A two-part catalyst comprising a dehydrogenation portion and an oxide-ion conducting portion. The dehydrogenation portion is a group VIII metal and the oxide-ion conducting portion is selected from a ceramic oxide crystallizing in the fluorite or perovskite structure. There is also disclosed a method of forming a hydrogen rich gas from a source of hydrocarbon fuel in which the hydrocarbon fuel contacts a two-part catalyst comprising a dehydrogenation portion and an oxide-ion conducting portion at a temperature not less than about 400.degree. C. for a time sufficient to generate the hydrogen rich gas while maintaining CO content less than about 5 volume percent. There is also disclosed a method of forming partially oxidized hydrocarbons from ethanes in which ethane gas contacts a two-part catalyst comprising a dehydrogenation portion and an oxide-ion conducting portion for a time and at a temperature sufficient to form an oxide.
Experimental study of isopropanol dehydrogenation over amorphous alloy raney nickel catalysts
NASA Astrophysics Data System (ADS)
Xin, Fang; Xu, Min; Li, Xun-Feng; Huai, Xiu-Lan
2013-12-01
The dehydrogenation reaction of isopropanol occurring at low temperature is of great industrial importance. It is a key procedure in isopropanol/acetone/hydrogen chemical heat pump system. An experimental investigation was performed to study the behavior of the liquid phase dehydrogenation of isopropanol over amorphous alloy Raney nickel catalysts. Un-promoted and promoted catalysts were used and their performances were compared under various catalyst amounts, acetone content in the reactant and reaction temperature ranging from 348 K to 355 K. It is found that there exists an optimum catalyst concentration which is about 0.34 g in 300 ml isopropanol. The temperature has evident effect on the reaction. The presence of activities of Fe-promoted catalyst decrease slightly compared to the un-promoted catalyst when the temperature are 348 K and 351 K. Besides, the reaction rate decreases almost linearly with the increase of acetone volume fraction in the reactant.
NASA Astrophysics Data System (ADS)
Williams, Christopher Glen
Surface self-assembly is a promising way to introduce functionality to a surface through design at the molecular level. These self-assembled species allow for new on-surface type reactions to be observed and studied. The experiments described in this thesis demonstrate that the molecules used in self-assembly can potentially lead to interesting synthesis pathways and can be used to explore previously under-researched reaction pathways and surface molecular architecture activity or stability. Alkanes are an unreactive species typically used for driving molecular assembly in surface structures. However, with molecular design, alkanes are capable of reacting on surfaces not typically associated with alkane reactivity. Utilizing high-resolution electron energy loss spectroscopy (HREELS) and octaethylporphyrin, we could observe that dehydrogenation is possible on Cu(100) and Ag(111) surfaces at 500 and 610 K respectively. HREELS revealed that after the dehydrogenation, the molecule undergoes an intramolecular C-C bond formation leading to a tetrabenzo-porphyrin structure. Controls with deposited tetrabenzo-porphyrin were performed to verify the structure. This work provides the first example of dehydrocyclization on Cu(100) and Ag(111) to be analyzed by vibrational spectroscopy. Alkyl species in the 1,3,5-tris-(3,5-diethylphenyl)benzene molecule also undergo a dehydrogenation on Cu(100) and Au(111) at 450 and 500 K. The design of this molecule does not let the intramolecular dehydrocyclization reaction take place, but instead the dehydrogenation leads to intermolecular C-C bond formation between molecular species as noted by the formation of extended structure across the surface. Controls with triphenyl-benzene were done to help characterize the peaks in the spectra and observe varying reactivity when the ethyl groups are absent. The fabrication of uniform single-site metal centers at surfaces is important for higher selectivity in next-generation heterogeneous catalysts. We accomplished this by metal coordination to redox non-innocent dipyridyl-tetrazine ligands. We utilize HREELS to observe a surface confined redox process of dipyridyl-tetrazine with V, Fe, Ag, and Pt. With the formation of the V-dipyridyl-tetrazine species, we are able to see that oxygen exposures to the surface results in a more selective vanadyl species formation as opposed to the multiple binding conformations observed with metallic vanadium nanoparticles. This thesis also reveals that the metal substrate used does not play a passive role with the metal-organic complex. Instead, we are the first to characterize a replacement of the coordinating metal species with atoms from the Ag(111) substrate. This replacement results in the redox reaction between the coordinating metal species and the substrate metal.
Hybrid Mo-CT nanowires as highly efficient catalysts for direct dehydrogenation of isobutane.
Mu, Jiali; Shi, Junjun; France, Liam John; Wu, Yongshan; Zeng, Qiang; Liu, Baoan; Jiang, Lilong; Long, Jinxing; Li, Xuehui
2018-06-20
Direct dehydrogenation of isobutane to isobutene has drawn extensive attention for synthesizing various chemicals. The Mo-based catalysts hold promise as an alternative to the toxic CrOx- and scarce Pt-based catalysts. However, the low activity and rapid deactivation of the Mo-based catalysts greatly hinder their practical applications. Herein, we demonstrate a feasible approach towards the development of efficient and non-noble metal dehydrogenation catalysts basing on Mo-CT hybrid nanowires calcined at different temperatures. In particular, the optimal Mo-C700 catalyst exhibits isobutane consumption rate of 3.9 mmol g-1 h-1, and isobutene selectivity of 73% with production rate of 2.8 mmol g-1 h-1. The catalyst maintained 90% of its initial activity after 50 h of reaction. Extensive characterizations reveal that such prominent performance is well-correlated with the adsorption abilities of isobutane and isobutene, and the formation of η-MoC species. By contrast, the generation of β-Mo2C crystalline phase during long-term reaction causes minor decline in activity. Compared to MoO2 and β-Mo2C, η-MoC plays a role more likely in suppressing the cracking reaction. This work demonstrates a feasible approach towards the development of efficient and non-noble metal dehydrogenation catalysts.
ERIC Educational Resources Information Center
Glin´ski, Marek; Ulkowska, Urszula; Iwanek, Ewa
2016-01-01
In this laboratory experiment, the synthesis of a supported solid catalyst (Cu/SiO2) and its application in the dehydrogenation of cyclohexanol performed under flow conditions was studied. The experiment was planned for a group of two or three students for two 6 h long sessions. The copper catalyst was synthesized using incipient wetness…
Process for alkane group dehydrogenation with organometallic catalyst
Kaska, W.C.; Jensen, C.M.
1998-07-14
An improved process is described for the catalytic dehydrogenation of organic molecules having a ##STR1## group to produce a ##STR2## group. The organic molecules are: ##STR3## wherein: A.sup.1, A.sup.2, A.sup.3, and A.sup.4 are each independently P, As or N: E.sup.2 is independently C or N; E.sup.3 is independently C, Si or Ge; E.sup.4 is independently C, Si, or Ge; and E.sup.5 is independently C, Si or Ge; M.sup.1, M.sup.2, M.sup.3, and M.sup.4 each is a metal atom independently selected from the group consisting of ruthenium, rhodium, palladium, osmium, iridium and platinum; Q.sup.1, Q.sup.2, Q.sup.3, and Q.sup.4 are each independently a direct bond, --CH.sub.2 --, --CH.sub.2 CH.sub.2 --, or CH.dbd.CH--; in structure I, structure II or structure IV, R.sup.1, R.sup.2, R.sup.3, and R.sup.4 are each independently selected from alkyl, alkenyl, cycloalkyl, and aryl, or R.sup.1 and R.sup.2 together and R.sup.3 and R.sup.4 together form a ring structure having from 4 to 10 carbon atoms, or in structure III, R.sup.5, R.sup.6, R.sup.7, and R.sup.8 are each independently selected from alkyl, alkenyl, cycloalkyl, and aryl, or R.sup.5 and R.sup.6 together and R.sup.7 and R.sup.8 together form a ring structure having from 4 to 10 carbon atoms, at a temperature of between about 100.degree. and 250.degree. C. for between about 1 hr and 300 days in the absence of N.sub.2. The surprisingly stable catalyst is a complex of an organic ligand comprising H, C, Si, N, P atoms, and a platinum group metal. The dehydrogenation is performed between about 100 to 200.degree. C., and has increased turnover.
Process for alkane group dehydrogenation with organometallic catalyst
Kaska, William C.; Jensen, Craig M.
1998-01-01
An improved process is described for the catalytic dehydrogenation of organic molecules having a ##STR1## group to produce a ##STR2## group. The organic molecules are: ##STR3## wherein: A.sup.1, A.sup.2, A.sup.3, and A.sup.4 are each independently P, As or N: E.sup.2 is independently C or N; E.sup.3 is independently C, Si or Ge; E.sup.4 is independently C, Si, or Ge; and E.sup.5 is independently C, Si or Ge; M.sup.1, M.sup.2, M.sup.3, and M.sup.4 each is a metal atom independently selected from the group consisting of ruthenium, rhodium, palladium, osmium, iridium and platinum; Q.sup.1, Q.sup.2, Q.sup.3, and Q.sup.4 are each independently a direct bond, --CH.sub.2 --, --CH.sub.2 CH.sub.2 --, or CH.dbd.CH--; in structure I, structure II or structure IV, R.sup.1, R.sup.2, R.sup.3, and R.sup.4 are each independently selected from alkyl, alkenyl, cycloalkyl, and aryl, or R.sup.1 and R.sup.2 together and R.sup.3 and R.sup.4 together form a ring structure having from 4 to 10 carbon atoms, or in structure III, R.sup.5, R.sup.6, R.sup.7, and R.sup.8 are each independently selected from alkyl, alkenyl, cycloalkyl, and aryl, or R.sup.5 and R.sup.6 together and R.sup.7 and R.sup.8 together form a ring structure having from 4 to 10 carbon atoms, at a temperature of between about 100.degree. and 250.degree. C. for between about 1 hr and 300 days in the absence of N.sub.2. The surprisingly stable catalyst is a complex of an organic ligand comprising H, C, Si, N, P atoms, and a platinum group metal. The dehydrogenation is performed between about 100 to 200.degree. C., and has increased turnover.
NASA Astrophysics Data System (ADS)
Amende, Max; Kaftan, Andre; Bachmann, Philipp; Brehmer, Richard; Preuster, Patrick; Koch, Marcus; Wasserscheid, Peter; Libuda, Jörg
2016-01-01
The Liquid Organic Hydrogen Carrier (LOHC) concept offers an efficient route to store hydrogen using organic compounds that are reversibly hydrogenated and dehydrogenated. One important challenge towards application of the LOHC technology at a larger scale is to minimize degradation of Pt-based dehydrogenation catalysts during long-term operation. Herein, we investigate the regeneration of Pt/alumina catalysts poisoned by LOHC degradation. We combine ultrahigh vacuum (UHV) studies on Pt(111), investigations on well-defined Pt/Al2O3 model catalysts, and near-ambient pressure (NAP) measurements on real coreshell Pt/Al2O3 catalyst pellets. The catalysts were purposely poisoned by reaction with the LOHC perhydro-dibenzyltoluene (H18-MSH) and with dicyclohexylmethane (DCHM) as a simpler model compound. We focus on oxidative regeneration under conditions that may be applied in real dehydrogenation reactors. The degree of poisoning and regeneration under oxidative reaction conditions was quantified using CO as a probe molecule and measured by infrared reflection-absorption spectroscopy (IRAS) and diffuse reflectance Fourier transform IR spectroscopy (DRIFTS) for planar model systems and real catalysts, respectively. We find that regeneration strongly depends on the composition of the catalyst surface. While the clean surface of a poisoned Pt(111) single crystal is fully restored upon thermal treatment in oxygen up to 700 K, contaminated Pt/Al2O3 model catalyst and coreshell pellet were only partially restored under the applied reaction conditions. Whereas partial regeneration on facet-like sites on supported catalysts is more facile than on Pt(111), carbonaceous deposits adsorbed at low-coordinated defect sites impede full regeneration of the Pt/Al2O3 catalysts.
Sattler, Jesper J H B; Gonzalez-Jimenez, Ines D; Luo, Lin; Stears, Brien A; Malek, Andrzej; Barton, David G; Kilos, Beata A; Kaminsky, Mark P; Verhoeven, Tiny W G M; Koers, Eline J; Baldus, Marc; Weckhuysen, Bert M
2014-01-01
A novel catalyst material for the selective dehydrogenation of propane is presented. The catalyst consists of 1000 ppm Pt, 3 wt % Ga, and 0.25 wt % K supported on alumina. We observed a synergy between Ga and Pt, resulting in a highly active and stable catalyst. Additionally, we propose a bifunctional active phase, in which coordinately unsaturated Ga3+ species are the active species and where Pt functions as a promoter. PMID:24989975
Kanega, Ryoichi; Onishi, Naoya; Wang, Lin; ...
2018-03-01
To develop highly efficient catalysts for dehydrogenation of formic acid in water, we investigated in this paper several Cp*Ir catalysts with various amide ligands. The catalyst with an N-phenylpicolinamide ligand exhibited a TOF of 118 000 h -1 at 60 °C. A constant rate (TOF>35 000 h -1) was maintained for six hours, and a TON of 1 000 000 was achieved at 50 °C.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kanega, Ryoichi; Onishi, Naoya; Wang, Lin
To develop highly efficient catalysts for dehydrogenation of formic acid in water, we investigated in this paper several Cp*Ir catalysts with various amide ligands. The catalyst with an N-phenylpicolinamide ligand exhibited a TOF of 118 000 h -1 at 60 °C. A constant rate (TOF>35 000 h -1) was maintained for six hours, and a TON of 1 000 000 was achieved at 50 °C.
NASA Astrophysics Data System (ADS)
Xu, Yanli; Sang, Huanxin; Wang, Kang; Wang, Xitao
2014-10-01
In this article, an environmentally friendly non-noble-metal class of Cs-Ni2P/active carbon (AC) catalyst was prepared and demonstrated to exhibit enhanced catalytic performance in isobutane dehydrogenation. The results of activity tests reveal that Ni/AC catalyst was highly active for isobutane cracking, which led to the formation of abundant methane and coke. After the introduction of phosphorus through impregnation with ammonium di-hydrogen phosphate and H2-temperature programmed reduction, undesired cracking reactions were effectively inhibited, and the selectivity to isobutene and stability of catalyst increased remarkably. The characterization results indicate that, after the addition of phosphorous, the improvement of dehydrogenation selectivity is ascribed to the partial positive charges carried on Ni surface in Ni2P particles, which decreases the strength of Nisbnd C bond between Ni and carbonium-ion intermediates and the possibility of excessive dehydrogenation. In addition, Cs-modified Ni2P/AC catalysts display much higher catalytic performance as compared to Ni2P/AC catalyst. Cs-Ni2P-6.5 catalyst has the highest catalytic performance, and the selectivity to isobutene higher than 93% can be obtained even after 4 h reaction. The enhancement in catalytic performance of the Cs-modified catalysts is mainly attributed to the function of Cs to improve the dispersion of Ni2P particles, transfer electron from Cs to Ni, and decrease acid site number and strength.
Lwin, Soe; Diao, Weijian; Baroi, Chinmoy; ...
2017-04-08
The domestic fossil feedstock in recent years is shifting towards light hydrocarbons due to abundance of shale gas from hydraulic fracturing. This shift induces a need for greater flexibility in both new and existing processing plants to produce consumer products (polymers, paints, lubricants, etc.) from new feedstocks. The oxidative catalytic reactions operate at milder conditions than the processing of feedstocks through steam cracking. The conversion of light feedstocks (C3 and shorter hydrocarbons) to high value chemicals through highly selective catalysts in the presence of oxygen plays a crucial role in eliminating wastes, reducing greenhouse gas emissions and lowering market prices.more » Among all catalysts for light hydrocarbon processing through oxidation reactions, bulk mixed metal oxides such as MoVTe(Sb)NbO x catalysts are the most promising due to their performance under favorable reaction conditions (temperature, pressure, etc). Here, state-of-the-art in situ/operando techniques along with transient kinetics can revolutionize the development of catalysts by providing information about the nature of active sites, intermediates and kinetics under realistic industrial conditions. Only through detailed understanding of these catalyst behaviors can new synthesis methods be developed that will improve reactivity, selectivity and lifetimes of these catalysts. In this review, dynamic changes of this mixed oxide catalyst during the reaction (such as changes in surface composition, oxidation states, acidity, etc) are discussed mainly from knowledge and insights obtained from these in situ/operando approaches. The most common oxidation reactions driven by the MoVTeNbO x catalysts and studied under operando/in situ conditions to be discussed here are: (1) oxidative dehydrogenation of light alkanes (ethane and propane), (2) propane ammoxidation to acrylonitrile and (3) selective oxidation of propane to acrylic acid.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lwin, Soe; Diao, Weijian; Baroi, Chinmoy
The domestic fossil feedstock in recent years is shifting towards light hydrocarbons due to abundance of shale gas from hydraulic fracturing. This shift induces a need for greater flexibility in both new and existing processing plants to produce consumer products (polymers, paints, lubricants, etc.) from new feedstocks. The oxidative catalytic reactions operate at milder conditions than the processing of feedstocks through steam cracking. The conversion of light feedstocks (C3 and shorter hydrocarbons) to high value chemicals through highly selective catalysts in the presence of oxygen plays a crucial role in eliminating wastes, reducing greenhouse gas emissions and lowering market prices.more » Among all catalysts for light hydrocarbon processing through oxidation reactions, bulk mixed metal oxides such as MoVTe(Sb)NbO x catalysts are the most promising due to their performance under favorable reaction conditions (temperature, pressure, etc). Here, state-of-the-art in situ/operando techniques along with transient kinetics can revolutionize the development of catalysts by providing information about the nature of active sites, intermediates and kinetics under realistic industrial conditions. Only through detailed understanding of these catalyst behaviors can new synthesis methods be developed that will improve reactivity, selectivity and lifetimes of these catalysts. In this review, dynamic changes of this mixed oxide catalyst during the reaction (such as changes in surface composition, oxidation states, acidity, etc) are discussed mainly from knowledge and insights obtained from these in situ/operando approaches. The most common oxidation reactions driven by the MoVTeNbO x catalysts and studied under operando/in situ conditions to be discussed here are: (1) oxidative dehydrogenation of light alkanes (ethane and propane), (2) propane ammoxidation to acrylonitrile and (3) selective oxidation of propane to acrylic acid.« less
Active sites and states in the heterogeneous catalysis of carbon-hydrogen bonds.
Somorjai, Gabor A; Marsh, Anderson L
2005-04-15
C-H bond activation for several alkenes (ethylene, propylene, isobutene, cyclohexene and 1-hexene) and alkanes (methane, ethane, n-hexane, 2-methylpentane and 3-methylpentane) has been studied on the (111) crystal face of platinum as a function of temperature at low (10(-6) Torr) and high (>/=1 Torr) pressures in the absence and presence of hydrogen pressures (>/=10 Torr). Sum frequency generation (SFG) vibrational spectroscopy has been used to characterize the adsorbate structures and high pressure scanning tunnelling microscopy (HP-STM) has been used to monitor their surface mobility under reaction conditions during hydrogenation, dehydrogenation and CO poisoning. C-H bond dissociation occurs at low temperatures, approximately 250 K, for all of these molecules, although only at high pressures for the weakly bound alkanes because of their low desorption temperatures. Bond dissociation is known to be surface structure sensitive and we find that it is also accompanied by the restructuring of the metal surface. The presence of hydrogen slows down dehydrogenation and for some of the molecules it influences the molecular rearrangement, thus altering reaction selectivity. Surface mobility of adsorbates is essential to produce catalytic activity. When surface diffusion is inhibited by CO adsorption, ordered surface structures form and the reaction is poisoned. Ethylene hydrogenation is surface structure insensitive, while cyclohexene hydrogenation and dehydrogenation are structure sensitive. n-Hexane and other C6 alkanes form either upright or flat-lying molecules on the platinum surface which react to produce branched isomers or benzene, respectively.
Zahmakıran, Mehmet; Philippot, Karine; Özkar, Saim; Chaudret, Bruno
2012-01-14
Dimethylamine-borane, (CH(3))(2)NHBH(3), has been considered as one of the attractive materials for the efficient storage of hydrogen, which is still one of the key issues in the "Hydrogen Economy". In a recent communication we have reported the synthesis and characterization of 3-aminopropyltriethoxysilane stabilized ruthenium(0) nanoparticles with the preliminary results for their catalytic performance in the dehydrogenation of dimethylamine-borane at room temperature. Herein, we report a complete work including (i) effect of initial [APTS]/[Ru] molar ratio on both the size and the catalytic activity of ruthenium(0) nanoparticles, (ii) collection of extensive kinetic data under non-MTL conditions depending on the substrate and catalyst concentrations to define the rate law of Ru(0)/APTS-catalyzed dehydrogenation of dimethylamine-borane at room temperature, (iii) determination of activation parameters (E(a), ΔH(#) and ΔS(#)) for Ru(0)/APTS-catalyzed dehydrogenation of dimethylamine-borane; (iv) demonstration of the catalytic lifetime of Ru(0)/APTS nanoparticles in the dehydrogenation of dimethylamine-borane at room temperature, (v) testing the bottlability and reusability of Ru(0)/APTS nanocatalyst in the room-temperature dehydrogenation of dimethylamine-borane, (vi) quantitative carbon disulfide (CS(2)) poisoning experiments to find a corrected TTO and TOF values on a per-active-ruthenium-atom basis, (vii) a summary of extensive literature review for the catalysts tested in the catalytic dehydrogenation of dimethylamine-borane as part of the results and discussions.
NASA Astrophysics Data System (ADS)
Li, Xiuyi; Wang, Pengzhao; Wang, Haoren; Li, Chunyi
2018-05-01
In this paper, the Co/Al2O3 catalyst was prepared by incipient wetness impregnation method, and different post treatment methods were used to promote its dehydrogenation properties. Interestingly, we found that Co/Al2O3 catalysts with different post treatment protocols exhibited totally different catalytic behaviors in propane dehydrogenation. Fresh catalyst showed an induction period and was highly active for pyrolysis and coking at 10-30 min of reaction. The pre-reduction led to complete pyrolysis and coking at the beginning of reaction. However, the re-oxidation treatment gave a high selectivity (∼93.0%) to propylene at the whole process. XRD, H2-TPR, XPS, TEM and hydrogen chemisorption investigations showed that the post treatment has a great impact on the state of cobalt species and the performance of propane dehydrogenation over Co/Al2O3 catalysts. Specifically, the poorly dispersed metal Co led to pyrolysis and coking, while highly dispersed metal Co were responsible for the dehydrogenation of propane. The large Co3O4 particles (DFresh = 33.68 nm) result in the large metal Co grains (DPre-reduced = 24.90 nm) after the reduction or reaction process. While during the re-oxidization process, the surface metal Co was re-oxidized in a mild environment and got re-dispersion (DRe-oxidized = 6.07 nm). And the surface cobalt oxides layer is more readily to be reduced to metal Co during the reaction thus leading to the shortened induction period.
Kanega, Ryoichi; Onishi, Naoya; Wang, Lin; Murata, Kazuhisa; Muckerman, James T; Fujita, Etsuko; Himeda, Yuichiro
2018-03-01
To develop highly efficient catalysts for dehydrogenation of formic acid in water, we investigated several Cp*Ir catalysts with various amide ligands. The catalyst with an N-phenylpicolinamide ligand exhibited a TOF of 118 000 h -1 at 60 °C. A constant rate (TOF>35 000 h -1 ) was maintained for six hours, and a TON of 1 000 000 was achieved at 50 °C. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Qi, Wei; Yan, Pengqiang; Su, Dang Sheng
2018-03-20
Sustainable and environmentally benign catalytic processes are vital for the future to supply the world population with clean energy and industrial products. The replacement of conventional metal or metal oxide catalysts with earth abundant and renewable nonmetallic materials has attracted considerable research interests in the field of catalysis and material science. The stable and efficient catalytic performance of nanocarbon materials was discovered at the end of last century, and these materials are considered as potential alternatives for conventional metal-based catalysts. With its rapid development in the past 20 years, the research field of carbon catalysis has been experiencing a smooth transition from the discovery of novel nanocarbon materials or related new reaction systems to the atomistic-level mechanistic understanding on the catalytic process and the subsequent rational design of the practical catalytic reaction systems. In this Account, we summarize the recent progress in the kinetic and mechanistic studies on nanocarbon catalyzed alkane oxidative dehydrogenation (ODH) reactions. The paper attempts to extract general concepts and basic regularities for carbon catalytic process directing us on the way for rational design of novel efficient metal-free catalysts. The nature of the active sites for ODH reactions has been revealed through microcalorimetric analysis, ambient pressure X-ray photoelectron spectroscopy (XPS) measurement, and in situ chemical titration strategies. The detailed kinetic analysis and in situ catalyst structure characterization suggests that carbon catalyzed ODH reactions involve the redox cycles of the ketonic carbonyl-hydroxyl pairs, and the key physicochemical parameters (activation energy, reaction order, and rate/equilibrium constants, etc.) of the carbon catalytic systems are proposed and compared with conventional transition metal oxide catalysts. The proposal of the intrinsic catalytic activity (TOF) provides the possibility for the fair comparisons of different nanocarbon catalysts and the consequent structure-function relation regularity. Surface modification and heteroatom doping are proved as the most effective strategies to adjust the catalytic property (activity and product selectivity etc.) of the nanocarbon catalysts. Nanocarbon is actually a proper candidate platform helping us to understand the classical catalytic reaction mechanism better, since there is no lattice oxygen and all the catalytic process happens on nanocarbon surface. This Account also exhibits the importance of the in situ structural characterizations for heterogeneous nanocarbon catalysis. The research strategy and methods proposed for carbon catalysts may also shed light on other complicated catalytic systems or fields concerning the applications of nonmetallic materials, such as energy storage and environment protection etc.
Simple and Efficient System for Combined Solar Energy Harvesting and Reversible Hydrogen Storage.
Li, Lu; Mu, Xiaoyue; Liu, Wenbo; Mi, Zetian; Li, Chao-Jun
2015-06-24
Solar energy harvesting and hydrogen economy are the two most important green energy endeavors for the future. However, a critical hurdle to the latter is how to safely and densely store and transfer hydrogen. Herein, we developed a reversible hydrogen storage system based on low-cost liquid organic cyclic hydrocarbons at room temperature and atmospheric pressure. A facile switch of hydrogen addition (>97% conversion) and release (>99% conversion) with superior capacity of 7.1 H2 wt % can be quickly achieved over a rationally optimized platinum catalyst with high electron density, simply regulated by dark/light conditions. Furthermore, the photodriven dehydrogenation of cyclic alkanes gave an excellent apparent quantum efficiency of 6.0% under visible light illumination (420-600 nm) without any other energy input, which provides an alternative route to artificial photosynthesis for directly harvesting and storing solar energy in the form of chemical fuel.
Zahmakiran, Mehmet; Ozkar, Saim
2009-09-21
Herein we report the discovery of a superior dimethylamine-borane dehydrogenation catalyst, more active than the prior best heterogeneous catalyst (Jaska, C. A.; Manners, I. J. Am. Chem. Soc. 2004, 126, 9776) reported to date for the dehydrogenation of dimethylamine-borane. The new catalyst system consists of rhodium(0) nanoclusters stabilized by C(5)H(11)COO(-) anions and Me(2)H(2)N(+) cations and can reproducibly be formed from the reduction of rhodium(II) hexanoate during dehydrogenation of dimethylamine-borane at room temperature. Rhodium(0) nanoclusters in an average particle size of 1.9 +/- 0.6 nm Rh(0)(approximately 190) nanoclusters) provide 1040 turnovers over 26 h with a record initial turnover frequency (TOF) of 60 h(-1) (the average TOF value is 40 h(-1)) in the dehydrogenation of dimethylamine-borane, yielding 100% of the cyclic product (Me(2)NBH(2))(2) at room temperature. The work reported here also includes the full experimental details of the following major components: (i) Characterization of dimethylammonium hexanoate stabilized rhodium(0) nanoclusters by using TEM, STEM, EDX, XRD, UV-vis, XPS, FTIR, (1)H, (13)C, and (11)B NMR spectroscopy, and elemental analysis. (ii) Collection of a wealth of previously unavailable kinetic data to determine the rate law and activation parameters for catalytic dehydrogenation of dimethylamine-borane. (iii) Monitoring of the formation kinetics of the rhodium(0) nanoclusters by a fast dimethylamine-borane dehydrogenation catalytic reporter reaction (Watzky, M. A.; Finke, R. G. J. Am. Chem. Soc. 1997, 119, 10382) at various [Me(2)NH.BH(3)]/[Rh] ratios and temperatures. Significantly, sigmoidal kinetics of catalyst formation was found to be well fit to the two-step, slow nucleation and then autocatalytic surface growth mechanism, A --> B (rate constant k(1)) and A + B --> 2B (rate constant k(2)), in which A is [Rh(C(5)H(11)CO(2))(2)](2) and B is the growing, catalytically active rhodium(0) nanoclusters. (iv) Mercury(0) and CS(2) poisoning and nanofiltration experiments to determine whether the dehydrogenation of dimethylamine-borane catalyzed by the dimethylammonium hexanoate stabilized rhodium(0) nanoclusters is homogeneous or heterogeneous catalysis.
Dehydrogenation of liquid fuel in microchannel catalytic reactor
Toseland, Bernard Allen; Pez, Guido Peter; Puri, Pushpinder Singh
2010-08-03
The present invention is an improved process for the storage and delivery of hydrogen by the reversible hydrogenation/dehydrogenation of an organic compound wherein the organic compound is initially in its hydrogenated state. The improvement in the route to generating hydrogen is in the dehydrogenation step and recovery of the dehydrogenated organic compound resides in the following steps: introducing a hydrogenated organic compound to a microchannel reactor incorporating a dehydrogenation catalyst; effecting dehydrogenation of said hydrogenated organic compound under conditions whereby said hydrogenated organic compound is present as a liquid phase; generating a reaction product comprised of a liquid phase dehydrogenated organic compound and gaseous hydrogen; separating the liquid phase dehydrogenated organic compound from gaseous hydrogen; and, recovering the hydrogen and liquid phase dehydrogenated organic compound.
Dehydrogenation of liquid fuel in microchannel catalytic reactor
Toseland, Bernard Allen [Allentown, PA; Pez, Guido Peter [Allentown, PA; Puri, Pushpinder Singh [Emmaus, PA
2009-02-03
The present invention is an improved process for the storage and delivery of hydrogen by the reversible hydrogenation/dehydrogenation of an organic compound wherein the organic compound is initially in its hydrogenated state. The improvement in the route to generating hydrogen is in the dehydrogenation step and recovery of the dehydrogenated organic compound resides in the following steps: introducing a hydrogenated organic compound to a microchannel reactor incorporating a dehydrogenation catalyst; effecting dehydrogenation of said hydrogenated organic compound under conditions whereby said hydrogenated organic compound is present as a liquid phase; generating a reaction product comprised of a liquid phase dehydrogenated organic compound and gaseous hydrogen; separating the liquid phase dehydrogenated organic compound from gaseous hydrogen; and, recovering the hydrogen and liquid phase dehydrogenated organic compound.
Microchannel apparatus and methods of conducting catalyzed oxidative dehydrogenation
Tonkovich, Anna Lee [Dublin, OH; Yang, Bin [Columbus, OH; Perry, Steven T [Galloway, OH; Mazanec, Terry [Solon, OH; Arora, Ravi [New Albany, OH; Daly, Francis P [Delaware, OH; Long, Richard [New Albany, OH; Yuschak, Thomas D [Lewis Center, OH; Neagle, Paul W [Westerville, OH; Glass, Amanda [Galloway, OH
2011-08-16
Methods of oxidative dehydrogenation are described. Surprisingly, Pd and Au alloys of Pt have been discovered to be superior for oxidative dehydrogenation in microchannels. Methods of forming these catalysts via an electroless plating methodology are also described. An apparatus design that minimizes heat transfer to the apparatus' exterior is also described.
Role of catalysts in dehydrogenation of MgH2 nanoclusters
Larsson, Peter; Araújo, C. Moysés; Larsson, J. Andreas; Jena, Puru; Ahuja, Rajeev
2008-01-01
A fundamental understanding of the role of catalysts in dehydrogenation of MgH2 nanoclusters is provided by carrying out first-principles calculations based on density functional theory. It is shown that the transition metal atoms Ti, V, Fe, and Ni not only lower desorption energies significantly but also continue to attract at least four hydrogen atoms even when the total hydrogen content of the cluster decreases. In particular, Fe is found to migrate from the surface sites to the interior sites during the dehydrogenation process, releasing more hydrogen as it diffuses. This diffusion mechanism may account for the fact that a small amount of catalysts is sufficient to improve the kinetics of MgH2, which is essential for the use of this material for hydrogen storage in fuel-cell applications. PMID:18550815
Process for converting light alkanes to higher hydrocarbons
Noceti, Richard P.; Taylor, Charles E.
1988-01-01
A process is disclosed for the production of aromatic-rich, gasoline boiling range hydrocarbons from the lower alkanes, particularly from methane. The process is carried out in two stages. In the first, alkane is reacted with oxygen and hydrogen chloride over an oxyhydrochlorination catalyst such as copper chloride with minor proportions of potassium chloride and rare earth chloride. This produces an intermediate gaseous mixture containing water and chlorinated alkanes. The chlorinated alkanes are contacted with a crystalline aluminosilicate catalyst in the hydrogen or metal promoted form to produce gasoline range hydrocarbons with a high proportion of aromatics and a small percentage of light hydrocarbons (C.sub.2 -C.sub.4). The light hydrocarbons can be recycled for further processing over the oxyhydrochlorination catalyst.
DEHYDROGENATION CATALYST FOR PRODUCTION OF MTBE
The objectives of this project were to better understand the effect of different catalyst preparation parameters, the effect of different catalyst treatment parameters, and the mechanism of deactivation. Accordingly, catalysts were made using various preparation methods and with...
Computational Study of Formic Acid Dehydrogenation Catalyzed by Al(III)-Bis(imino)pyridine.
Lu, Qian-Qian; Yu, Hai-Zhu; Fu, Yao
2016-03-18
The mechanism of formic acid dehydrogenation catalyzed by the bis(imino)pyridine-ligated aluminum hydride complex (PDI(2-))Al(THF)H (PDI=bis(imino)pyridine) was studied by density functional theory calculations. The overall transformation is composed of two stages: catalyst activation and the catalytic cycle. The catalyst activation begins with O-H bond cleavage of HCOOH promoted by aluminum-ligand cooperation, followed by HCOOH-assisted Al-H bond cleavage, and protonation of the imine carbon atom of the bis(imino)pyridine ligand. The resultant doubly protonated complex ((H,H) PDI)Al(OOCH)3 is the active catalyst for formic acid dehydrogenation. Given this, the catalytic cycle includes β-hydride elimination of ((H,H) PDI)Al(OOCH)3 to produce CO2, and the formed ((H,H) PDI)Al(OOCH)2 H mediates HCOOH to release H2. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Yue, Yanfeng; Zhang, Li; Chen, Jihua; ...
2016-01-01
A series of mesoporous xEr 2O 3·CoTiO 3 composite oxide catalysts have been prepared using template method and tested as a new type of catalyst for the oxidative dehydrogenation of ethylbenzene to styrene by using CO 2 as a soft oxidant. Among the catalysts tested, the 0.25Er 2O 3 CoTiO 3 sample with a ratio of 1:4:4 content and calcined at 600 oC exhibited the highest ethylbenzene conversion (58%) and remarkable styrene selectivity (95%) at low temperature (450 °C).
Catalyst- and Reagent-free Electrochemical Azole C-H Amination.
Qiu, Youai; Struwe, Julia; Meyer, Tjark H; Oliveira, Joao Carlos Agostinho Carlos Agostinho; Ackermann, Lutz
2018-06-14
Catalyst-, and chemical oxidant-free electrochemical azole C-H aminations were accomplished via cross-dehydrogenative C-H/N-H functionalization. The catalyst-free electrochemical C-H amination proved feasible on azoles with high levels of efficacy and selectivity, avoiding the use of stoichiometric oxidants under ambient conditions. Likewise, the C(sp3)-H nitrogenation proved viable under otherwise identical conditions. The dehydrogenative C-H amination featured ample scope, including cyclic and acyclic aliphatic amines as well as anilines, and employed sustainable electricity as the sole oxidant. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Environmental green chemistry as defined by photocatalysis.
Herrmann, J-M; Duchamp, C; Karkmaz, M; Hoai, Bui Thu; Lachheb, H; Puzenat, E; Guillard, C
2007-07-31
Photocatalysis is efficient in several fields. Firstly, in selective mild oxidation: oxidation of gas and liquid hydrocarbons (alkanes, alkenes, cyclo-alkanes, aromatics) into aldehydes and ketons. Primary and secondary alcohols are also oxidized into their corresponding aldehydes or ketones. The high selectivity was ascribed to a photoactive neutral, atomic oxygen species. Once platinized (only 0.5wt.% Pt) titania may catalyze reactions involving hydrogen (deuterium-alkane isotopic exchange and alcohol dehydrogenation). For fine chemicals, high initial selectivities enable titania to address most of the twelve principles of "green chemistry", such as the synthesis of 4-tert-butyl-benzaldehyde, an important intermediate in perfume industry by direct selective oxidation of 4-tert-butyl-toluene with air. A new field recently appeared: thio-photocatalysis. Oxygen was replaced by sulfur, using H(2)S as a convenient and reactive source. For instance, the conversion of propene in 1-propanthiol was successfully obtained. The reaction was performed using either CdS or TiO(2). The latter was much more active than CdS. In environmental photocatalysis, titania becomes a total oxidation catalyst once in presence of water because of the photogeneration of OH radicals by neutralization of OH(-) surface groups by positive holes. Many toxic inorganic ions are oxidized in their harmless upper oxidized state. The total degradation of organic pollutants (pesticides, herbicides, insecticides, fungicides, dyes, etc. ...) is the main field of water photocatalytic decontamination. The UVA solar spectrum can de advantageously used as demonstrated by many campaigns performed in the solar pilot plant at the "Plataforma Solar de Almeria" (Spain).
Study on catalytic properties and carbon deposition of Ni-Cu/SBA-15 for cyclohexane dehydrogenation
NASA Astrophysics Data System (ADS)
Xia, Zhijun; Liu, Huayan; Lu, Hanfeng; Zhang, Zekai; Chen, Yinfei
2017-11-01
A series of Ni-Cu supported on SBA-15 were prepared by impregnation, and used as catalysts in cyclohexane dehydrogenation for hydrogen production. The results indicated that the addition of Cu into Ni changes the crystal structure of metal Ni, and forms Ni-Cu alloy. Thus, Cu improves the reduction properties of Ni. Conversely, Ni stables and disperses metal Cu. With the space limitation of the ordered channels and high surface area of SBA-15, the bimetallic Ni-Cu/SBA-15 catalysts expose large amounts of selective active sites composed uniformly with Ni and Cu. Therefore, they present not only excellent catalytic performance for cyclohexane dehydrogenation, but also low coke formation. The in-situ DRIFT studies have shown the vinyl species, indicating the existence of alkenes in the reactive intermediates. Additionally, the strong absorption of benzene on the metal could induce benzene was dehydrogenated further to carbon.
Chen, Xiangyang; Yang, Xinzheng
2016-10-01
Catalytic hydrogenation and dehydrogenation reactions are fundamentally important in chemical synthesis and industrial processes, as well as potential applications in the storage and conversion of renewable energy. Modern computational quantum chemistry has already become a powerful tool in understanding the structures and properties of compounds and elucidating mechanistic insights of chemical reactions, and therefore, holds great promise in the design of new catalysts. Herein, we review our computational studies on the catalytic hydrogenation of carbon dioxide and small organic carbonyl compounds, and on the dehydrogenation of amine-borane and alcohols with an emphasis on elucidating reaction mechanisms and predicting new catalytic reactions, and in return provide some general ideas for the design of high-efficiency, low-cost transition-metal complexes for hydrogenation and dehydrogenation reactions. © 2016 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
CO2 as a hydrogen vector - transition metal diamine catalysts for selective HCOOH dehydrogenation.
Fink, Cornel; Laurenczy, Gábor
2017-01-31
The homogeneous catalytic dehydrogenation of formic acid in aqueous solution provides an efficient in situ method for hydrogen production, under mild conditions, and at an adjustable rate. We synthesized a series of catalysts with the chemical formula [(Cp*)M(N-N')Cl] (M = Ir, Rh; Cp* = pentamethylcyclopentadienyl; N-N = bidentate chelating nitrogen donor ligands), which have been proven to be active in selective formic acid decomposition in aqueous media. The scope of the study was to examine the relationship between stability and activity of catalysts for formic acid dehydrogenation versus electronic and steric properties of selected ligands, following a bottom-up approach by increasing the complexity of the N,N'-ligands progressively. The highest turnover frequency, TOF = 3300 h -1 was observed with a Cp*Ir(iii) complex bearing 1,2-diaminocyclohexane as the N,N'-donor ligand. From the variable temperature studies, the activation energy of formic acid dehydrogenation has been determined, E a = 77.94 ± 3.2 kJ mol -1 . It was observed that the different steric and electronic properties of the bidentate nitrogen donor ligands alter the catalytic activity and stability of the Ir and Rh compounds profoundly.
A prolific catalyst for dehydrogenation of neat formic acid
Celaje, Jeff Joseph A.; Lu, Zhiyao; Kedzie, Elyse A.; Terrile, Nicholas J.; Lo, Jonathan N.; Williams, Travis J.
2016-01-01
Formic acid is a promising energy carrier for on-demand hydrogen generation. Because the reverse reaction is also feasible, formic acid is a form of stored hydrogen. Here we present a robust, reusable iridium catalyst that enables hydrogen gas release from neat formic acid. This catalysis works under mild conditions in the presence of air, is highly selective and affords millions of turnovers. While many catalysts exist for both formic acid dehydrogenation and carbon dioxide reduction, solutions to date on hydrogen gas release rely on volatile components that reduce the weight content of stored hydrogen and/or introduce fuel cell poisons. These are avoided here. The catalyst utilizes an interesting chemical mechanism, which is described on the basis of kinetic and synthetic experiments. PMID:27076111
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perry, Albert; Kabir, Sadia; Matanovic, Ivana
This paper reports the fabrication and electrochemical performance of a hybrid catalyst composed of Pd nanoparticles and atomically dispersed Mn active centers integrated into the nitrogen-doped three-dimensional graphene nanosheets (Pd/Mn-N-3D-GNS). Our results show that the synergistic integration of both Pd nanoparticles and atomically dispersed Mn can be used to enhance the activity toward the electrochemical oxidation of organic acids at biologically relevant pH values. The hybrid catalyst (Pd/Mn-N-3D-GNS) showed increased maximum currents toward the oxidation of oxalic acid when compared to its individual catalysts, namely, Pd/3D-GNS and Mn N-3D-GNS catalysts. The hybrid also showed a decreased onset potential for oxidationmore » of mesoxalic acid as compared to Mn-N-3D-GNS and decreased onset potentials for the oxidation of glyoxalic acid when compared to both of its constituent catalysts. Oxidation of formic acid was also tested and the hybrid was shown to catalyze both dehydration and dehydrogenation mechanisms of formic acid electro-oxidation. Using density functional theory calculations, it was elucidated that a two-site catalysis most likely promotes dehydrogenation reaction for formic acid oxidation, which can explain the selectivity of Pd nanoparticles and atomically dispersed Mn towards the dehydrogenation/ dehydration pathway.« less
Perry, Albert; Kabir, Sadia; Matanovic, Ivana; ...
2017-06-16
This paper reports the fabrication and electrochemical performance of a hybrid catalyst composed of Pd nanoparticles and atomically dispersed Mn active centers integrated into the nitrogen-doped three-dimensional graphene nanosheets (Pd/Mn-N-3D-GNS). Our results show that the synergistic integration of both Pd nanoparticles and atomically dispersed Mn can be used to enhance the activity toward the electrochemical oxidation of organic acids at biologically relevant pH values. The hybrid catalyst (Pd/Mn-N-3D-GNS) showed increased maximum currents toward the oxidation of oxalic acid when compared to its individual catalysts, namely, Pd/3D-GNS and Mn N-3D-GNS catalysts. The hybrid also showed a decreased onset potential for oxidationmore » of mesoxalic acid as compared to Mn-N-3D-GNS and decreased onset potentials for the oxidation of glyoxalic acid when compared to both of its constituent catalysts. Oxidation of formic acid was also tested and the hybrid was shown to catalyze both dehydration and dehydrogenation mechanisms of formic acid electro-oxidation. Using density functional theory calculations, it was elucidated that a two-site catalysis most likely promotes dehydrogenation reaction for formic acid oxidation, which can explain the selectivity of Pd nanoparticles and atomically dispersed Mn towards the dehydrogenation/ dehydration pathway.« less
Ru-N-C Hybrid Nanocomposite for Ammonia Dehydrogenation: Influence of N-doping on Catalytic Activity
Hien, Nguyen Thi Bich; Kim, Hyo Young; Jeon, Mina; Lee, Jin Hee; Ridwan, Muhammad; Tamarany, Rizcky; Yoon, Chang Won
2015-01-01
For application to ammonia dehydrogenation, novel Ru-based heterogeneous catalysts, Ru-N-C and Ru-C, were synthesized via simple pyrolysis of a mixture of RuCl3·6H2O and carbon black with or without dicyandiamide as a nitrogen-containing precursor at 550 °C. Characterization of the prepared Ru-N-C and Ru-C catalysts via scanning transmission electron microscopy, in conjunction with energy dispersive X-ray spectroscopy, indicated the formation of hollow nanocomposites in which the average sizes of the Ru nanoparticles were 1.3 nm and 5.1 nm, respectively. Compared to Ru-C, the Ru-N-C nanocomposites not only proved to be highly active for ammonia dehydrogenation, giving rise to a NH3 conversion of >99% at 550 °C, but also exhibited high durability. X-ray photoelectron spectroscopy revealed that the Ru active sites in Ru-N-C were electronically perturbed by the incorporated nitrogen atoms, which increased the Ru electron density and ultimately enhanced the catalyst activity.
Myint, MyatNoeZin; Yan, Binhang; Wan, Jie; ...
2016-02-26
An efficient mitigation of abundantly available CO 2 is critical for sustainable environmental impact as well as for novel industrial applications. Using ethane, CO 2 can be catalytically converted into a useful feedstock (synthesis gas) and a value-added monomer (ethylene) via the dry reforming pathway through the C–C bond scission and the oxidative dehydrogenation pathway through the C–H bond scission, respectively. Results from the current flow-reactor study show that the precious metal bimetallic CoPt/CeO 2 catalyst undergoes the reforming reaction to produce syngas with enhanced activity and stability compared to the parent monometallic catalysts. In this paper, in order tomore » replace Pt, the activities of non-precious CoMo/CeO 2 and NiMo/CeO 2 are investigated and the results indicate that NiMo/CeO 2 is nearly as active as CoPt/CeO 2 for the reforming pathway. Furthermore, FeNi/CeO 2 is identified as a promising catalyst for the oxidative dehydrogenation to produce ethylene. Finally, density functional theory (DFT) calculations are performed to further understand the different pathways of the CoPt/CeO 2 and FeNi/CeO 2 catalysts.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Myint, MyatNoeZin; Yan, Binhang; Wan, Jie
An efficient mitigation of abundantly available CO 2 is critical for sustainable environmental impact as well as for novel industrial applications. Using ethane, CO 2 can be catalytically converted into a useful feedstock (synthesis gas) and a value-added monomer (ethylene) via the dry reforming pathway through the C–C bond scission and the oxidative dehydrogenation pathway through the C–H bond scission, respectively. Results from the current flow-reactor study show that the precious metal bimetallic CoPt/CeO 2 catalyst undergoes the reforming reaction to produce syngas with enhanced activity and stability compared to the parent monometallic catalysts. In this paper, in order tomore » replace Pt, the activities of non-precious CoMo/CeO 2 and NiMo/CeO 2 are investigated and the results indicate that NiMo/CeO 2 is nearly as active as CoPt/CeO 2 for the reforming pathway. Furthermore, FeNi/CeO 2 is identified as a promising catalyst for the oxidative dehydrogenation to produce ethylene. Finally, density functional theory (DFT) calculations are performed to further understand the different pathways of the CoPt/CeO 2 and FeNi/CeO 2 catalysts.« less
Nitrated metalloporphyrins as catalysts for alkane oxidation
Ellis, P.E. Jr.; Lyons, J.E.
1994-01-18
Compositions of matter comprising nitro-substituted metal complexes of porphyrins are catalysts for the oxidation of alkanes. The metal is iron, chromium, manganese, ruthenium, copper or cobalt. The porphyrin ring has nitro groups attached thereto in meso and/or [beta]-pyrrolic positions.
Nitrated metalloporphyrins as catalysts for alkane oxidation
Ellis, Jr., Paul E.; Lyons, James E.
1994-01-01
Compositions of matter comprising nitro-substituted metal complexes of porphyrins are catalysts for the oxidation of alkanes. The metal is iron, chromium, manganese, ruthenium, copper or cobalt. The porphyrin ring has nitro groups attached thereto in meso and/or .beta.-pyrrolic positions.
He, Nan; Li, Zhen Hua
2016-04-21
Formic acid decomposition (FAD) reaction has been an innovative way for hydrogen energy. Noble metal catalysts, especially palladium-containing nanoparticles, supported or unsupported, perform well in this reaction. Herein, we considered the simplest model, wherein one Pd atom is used as the FAD catalyst. With high-level theoretical calculations of CCSD(T)/CBS quality, we investigated all possible FAD pathways. The results show that FAD catalyzed by one Pd atom follows a different mechanism compared with that catalyzed by surfaces or larger clusters. At the initial stage of the reaction, FAD follows a dehydration route and is quickly poisoned by CO due to the formation of very stable PdCO. PdCO then becomes the actual catalyst for FAD at temperatures approximately below 1050 K. Beyond 1050 K, there is a switch of catalyst from PdCO to Pd atom. The results also show that dehydration is always favoured over dehydrogenation on either the Pd-atom or PdCO catalyst. On the Pd-atom catalyst, neither dehydrogenation nor dehydration follows the formate mechanism. In contrast, on the PdCO catalyst, dehydrogenation follows the formate mechanism, whereas dehydration does not. We also systematically investigated the performance of 24 density functional theory methods. We found that the performance of the double hybrid mPW2PLYP functional is the best, followed by the B3LYP, B3PW91, N12SX, M11, and B2PLYP functionals.
Lane, Elizabeth M.; Hazari, Nilay
2018-01-01
Substituted ureas have numerous applications but their synthesis typically requires the use of highly toxic starting materials. Herein we describe the first base-metal catalyst for the selective synthesis of symmetric ureas via the dehydrogenative coupling of methanol with primary amines. Using a pincer supported iron catalyst, a range of ureas was generated with isolated yields of up to 80% (corresponding to a catalytic turnover of up to 160) and with H2 as the sole byproduct. Mechanistic studies indicate a stepwise pathway beginning with methanol dehydrogenation to give formaldehyde, which is trapped by amine to afford a formamide. The formamide is then dehydrogenated to produce a transient isocyanate, which reacts with another equivalent of amine to form a urea. These mechanistic insights enabled the development of an iron-catalyzed method for the synthesis of unsymmetric ureas from amides and amines. PMID:29780531
Erickson, Karla A.; Kiplinger, Jaqueline L.
2017-05-19
In the thorium and uranium complexes (C 5Me 5) 2AnMe 2, [(C 5Me 5) 2An(H)(μ-H)] 2 (An = Th, U) and [(C 5Me 5) 2U(H)] 2 dehydrogenate dimethylamine borane (Me2NH·BH3) at room temperature. Upon mild heating at 45 °C, turnover frequencies (TOFs) of 400 h –1 are obtained, which is comparable to some of the fastest Me 2NH·BH 3 dehydrogenation catalysts known in the literature. We propose a β-hydride elimination mechanism for dehydrogenation because of the observation of Me 2N=BH 2, Me 2N=BMe 2, and Me 2N=BHMe in the 11B NMR spectra of catalytic and stoichiometric reactions. The similar catalyticmore » metrics between the actinide dimethyl and hydride complexes with Me 2NH·BH 3 indicate that the actinide hydride complexes are the active catalysts in this chemistry.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erickson, Karla A.; Kiplinger, Jaqueline L.
In the thorium and uranium complexes (C 5Me 5) 2AnMe 2, [(C 5Me 5) 2An(H)(μ-H)] 2 (An = Th, U) and [(C 5Me 5) 2U(H)] 2 dehydrogenate dimethylamine borane (Me2NH·BH3) at room temperature. Upon mild heating at 45 °C, turnover frequencies (TOFs) of 400 h –1 are obtained, which is comparable to some of the fastest Me 2NH·BH 3 dehydrogenation catalysts known in the literature. We propose a β-hydride elimination mechanism for dehydrogenation because of the observation of Me 2N=BH 2, Me 2N=BMe 2, and Me 2N=BHMe in the 11B NMR spectra of catalytic and stoichiometric reactions. The similar catalyticmore » metrics between the actinide dimethyl and hydride complexes with Me 2NH·BH 3 indicate that the actinide hydride complexes are the active catalysts in this chemistry.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tian, Jinshu; Lin, Jinhan; Xu, Mingliang
Hexagonal boron nitride (h-BN) with high thermal conductivity is potentially an effective catalyst for highly exothermic propane oxidative dehydrogenation (ODH) reaction. Here, we report our experimental and theoretic studies of such a catalyst for propane ODH in a fixed-bed reactor. Based on the computational fluid dynamics calculation (CFD) results, the catalyst bed temperature increases by less than 1°C in the h-BN catalyst bed which is much smaller than that (8°C) in the VO x/γ-Al 2O 3 catalyst bed at a similar propane conversion (25%) using a micro-tubular reactor with a diameter of 6 mm. Even in an industrially relevant reactormore » with an inner diameter of 60 mm, a uniform temperature profile can still be maintained using the h-BN catalyst bed due to its excellent thermal conductivity as opposed to a temperature gradient of 47°C in the VO x/γ-Al 2O 3 catalyst bed. The results reported here provide useful information for potential application of h-BN catalyst in propane ODH.« less
Tian, Jinshu; Lin, Jinhan; Xu, Mingliang; ...
2018-04-17
Hexagonal boron nitride (h-BN) with high thermal conductivity is potentially an effective catalyst for highly exothermic propane oxidative dehydrogenation (ODH) reaction. Here, we report our experimental and theoretic studies of such a catalyst for propane ODH in a fixed-bed reactor. Based on the computational fluid dynamics calculation (CFD) results, the catalyst bed temperature increases by less than 1°C in the h-BN catalyst bed which is much smaller than that (8°C) in the VO x/γ-Al 2O 3 catalyst bed at a similar propane conversion (25%) using a micro-tubular reactor with a diameter of 6 mm. Even in an industrially relevant reactormore » with an inner diameter of 60 mm, a uniform temperature profile can still be maintained using the h-BN catalyst bed due to its excellent thermal conductivity as opposed to a temperature gradient of 47°C in the VO x/γ-Al 2O 3 catalyst bed. The results reported here provide useful information for potential application of h-BN catalyst in propane ODH.« less
Fe(II)/Fe(III)-Catalyzed Intramolecular Didehydro-Diels-Alder Reaction of Styrene-ynes.
Mun, Hyeon Jin; Seong, Eun Young; Ahn, Kwang-Hyun; Kang, Eun Joo
2018-02-02
The intramolecular didehydro-Diels-Alder reaction of styrene-ynes was catalyzed by Fe(II) and Fe(III) to produce various naphthalene derivatives under microwave heating conditions. Mechanistic calculations found that the Fe(II) catalyst activates the styrenyl diene in an inverse-electron-demand Diels-Alder reaction, and the consecutive dehydrogenation reaction can be promoted by either Fe(II)-catalyzed direct dehydrogenation or an Fe(III)-catalyzed rearomatization/dehydrogenation pathway.
Liu, Hu; Yu, Yongsheng; Yang, Weiwei; Lei, Wenjuan; Gao, Manyi; Guo, Shaojun
2017-07-13
Controlling the surface defects of nanocrystals is a new way of tuning/boosting their catalytic properties. Herein, we report networked PdAg nanowires (NWs) with high-density defects as catalytic hot spots for efficient catalytic dehydrogenation of formic acid (FA) and catalytic reduction of nitrates. The networked PdAg NWs exhibit composition-dependent catalytic activity for the dehydrogenation reaction of FA without any additive, with Pd 5 Ag 5 NWs exhibiting the highest activity. They also show good durability, reflected by the retention of their initial activity during the dehydrogenation reaction of FA even after five cycles. Their initial TOF is 419 h -1 at 60 °C in water solution, much higher than those of the most Pd-based catalysts with a support. Moreover, they can efficiently reduce nitrates to alleviate nitrate pollution in water (conversion yield >99%). This strategy opens up a new green synthetic technique to design support-free heterogeneous catalysts with high-density defects as catalytic hot spots for efficient dehydrogenation catalysis of FA to meet the requirement of fuel cell applications and catalytic reduction of nitrates in water polluted with nitrates.
NASA Astrophysics Data System (ADS)
Zhang, Riguang; Duan, Tian; Ling, Lixia; Wang, Baojun
2015-06-01
In the CVD growth of graphene, the reaction barriers of the dehydrogenation for hydrocarbon molecules directly decide the graphene CVD growth temperature. In this study, density functional theory method has been employed to comparatively probe into CH4 dehydrogenation on four types of Cu(1 1 1) surface, including the flat Cu(1 1 1) surface (labeled as Cu(1 1 1)) and the Cu(1 1 1) surface with one surface Cu atom substituted by one Rh atom (labeled as RhCu(1 1 1)), as well as the Cu(1 1 1) surface with one Cu or Rh adatom (labeled as Cu@Cu(1 1 1) and Rh@Cu(1 1 1), respectively). Our results show that the highest barrier of the whole CH4 dehydrogenation process is remarkably reduced from 448.7 and 418.4 kJ mol-1 on the flat Cu(1 1 1) and Cu@Cu(1 1 1) surfaces to 258.9 kJ mol-1 on RhCu(1 1 1) surface, and to 180.0 kJ mol-1 on Rh@Cu(1 1 1) surface, indicating that the adsorbed or substituted Rh atom on Cu catalyst can exhibit better catalytic activity for CH4 complete dehydrogenation; meanwhile, since the differences for the highest barrier between Cu@Cu(1 1 1) and Cu(1 1 1) surfaces are smaller, the catalytic behaviors of Cu@Cu(1 1 1) surface are very close to the flat Cu(1 1 1) surface, suggesting that the morphology of Cu substrate does not obviously affect the dehydrogenation of CH4, which accords with the reported experimental observations. As a result, the adsorbed or substituted Rh atom on Cu catalyst exhibit a better catalytic activity for CH4 dehydrogenation compared to the pure Cu catalyst, especially on Rh-adsorbed Cu catalyst, we can conclude that the potential of synthesizing high-quality graphene with the help of Rh on Cu foils may be carried out at relatively low temperatures. Meanwhile, the adsorbed Rh atom is the reaction active center, namely, the CVD growth can be controlled by manipulating the graphene nucleation position.
Cyano- and polycyanometallo-porphyrins as catalysts for alkane oxidation
Ellis, P.E. Jr.; Lyons, J.E.
1995-01-17
New compositions of matter comprising cyano-substituted metal complexes of porphyrins are catalysts for the oxidation of alkanes. The metal is iron, chromium, manganese, ruthenium, copper or cobalt. The porphyrin ring has cyano groups attached thereto in meso and/or [beta]-pyrrolic positions.
Cyano- and polycyanometallo-porphyrins as catalysts for alkane oxidation
Ellis, P.E. Jr.; Lyons, J.E.
1993-05-18
New compositions of matter comprising cyano-substituted metal complexes of porphyrins are catalysts for the oxidation of alkanes. The metal is iron, chromium, manganese, ruthenium, copper or cobalt. The porphyrin ring has cyano groups attached thereto in meso- and/or [beta]-pyrrolic positions.
Cyano- and polycyanometallo-porphyrins as catalysts for alkane oxidation
Ellis, Jr., Paul E.; Lyons, James E.
1993-01-01
New compositions of matter comprising cyano-substituted metal complexes of porphyrins are catalysts for the oxidation of alkanes. The metal is iron, chromium, manganese, ruthenium, copper or cobalt. The porphyrin ring has cyano groups attached thereto in meso and/or .beta.-pyrrolic positions.
Cyano- and polycyanometallo-porphyrins as catalysts for alkane oxidation
Ellis, Jr., Paul E.; Lyons, James E.
1995-01-01
New compositions of matter comprising cyano-substituted metal complexes of porphyrins are catalysts for the oxidation of alkanes. The metal is iron, chromium, manganese, ruthenium, copper or cobalt. The porphyrin ring has cyano groups attached thereto in meso and/or .beta.-pyrrolic positions.
Nitrated metalloporphyrins as catalysts for alkane oxidation
Ellis, Jr., Paul E.; Lyons, James E.
1992-01-01
Alkanes are oxidized by contact with oxygen-containing gas in the presence as catalyst of a metalloporphyrin in which hydrogen atoms in the porphyrin ring have been replaced with one or more nitro groups. Hydrogen atoms in the porphyrin ring may also be substituted with halogen atoms.
Cyano- and polycyanometalloporphyrins as catalysts for alkane oxidation
Ellis, Jr., Paul E.; Lyons, James E.
1992-01-01
Alkanes are oxidized by contact with oxygen-containing gas in the presence as catalyst of a metalloporphyrin in which hydrogen atoms in the porphyrin ring have been substituted with one or more cyano groups. Hydrogen atoms in the porphyrin ring may also be substituted with halogen atoms.
Combining CO 2 reduction with propane oxidative dehydrogenation over bimetallic catalysts
Gomez, Elaine; Kattel, Shyam; Yan, Binhang; ...
2018-04-11
In this paper, the inherent variability and insufficiencies in the co-production of propylene from steam crackers has raised concerns regarding the global propylene production gap and has directed industry to develop more on-purpose propylene technologies. The oxidative dehydrogenation of propane by CO 2 (CO 2-ODHP) can potentially fill this gap while consuming a greenhouse gas. Non-precious FeNi and precious NiPt catalysts supported on CeO 2 have been identified as promising catalysts for CO 2-ODHP and dry reforming, respectively, in flow reactor studies conducted at 823 K. In-situ X-ray absorption spectroscopy measurements revealed the oxidation states of metals under reaction conditionsmore » and density functional theory calculations were utilized to identify the most favorable reaction pathways over the two types of catalysts.« less
NASA Astrophysics Data System (ADS)
Liu, Quanbing; Zhang, Shengjie; Liao, Jinyun; Feng, Kejun; Zheng, Yuying; Pollet, Bruno G.; Li, Hao
2017-07-01
Catalytic dehydrogenation of ammonia borane is one of the most promising routes for the production of clean hydrogen as it is seen as a highly efficient and safe method. However, its large-scale industrial application is either limited by the high cost of the catalyst (usually a noble metal based catalyst) or by the low activity and poor reusability (usually a non-noble metal catalyst). In this study, we have successfully prepared three low-cost CuCo2O4 nanocatalysts, namely: (i) Ti supported CuCo2O4 film made of CuCo2O4 nanoplates, (ii) Ti supported CuCo2O4 film made of CuCo2O4 nanosheets, and (iii) unsupported CuCo2O4 nanoparticles. Among the three catalysts used for the hydrolytic dehydrogeneration of ammonia borane, the CuCo2O4 nanoplate film exhibits the highest catalytic activity with a turnover frequency (TOF) of ∼44.0 molhydrogen min-1 molcat-1. This is one of the largest TOF value for noble-metal-free catalysts ever reported in the literature. Moreover, the CuCo2O4 nanoplate film almost keeps its original catalytic activity after eight cycles, indicative of its high stability and good reusability. Owing to its advantages, the CuCo2O4 nanoplate film can be a promising catalyst for the hydrolytic dehydrogenation of ammonia borane, which may find important applications in the field of hydrogen energy.
NASA Astrophysics Data System (ADS)
Wang, Liancheng; Wang, Conghui; Zhang, Zhenwei; Wu, Jianghong; Ding, Ruimin; Lv, Baoliang
2017-11-01
Compared with mushroomed progress in metal-free C-rich BCN catalysts, little is known about the BN-rich BCN or even BN ones. Its related study has drawn great interest recently but still in its infancy stage. In this study, three kinds of BCN nanosheets (NSs) with tuned surface carbon contents (5.5-14.3%), specific surface area (SSA, 82-290 m2/g) and morphologies (ultrathin nanosheets, triangular plates) were fabricated through a solid state reaction by simply adjusting the reaction temperature, and those effects on the ethylbenzene dehydrogenation performances were studied in CO2 atmosphere. The morphology evolution of BCN NSs from ultrathin nanosheets to the triangular plates was observed and control experiments were carried out. The BCN nanosheets show relatively strong interaction with CO2 and distinct CO2 absorption properties. The CO2 temperature programmed desorption also indicates that the desorption peaks of CO2 are above 400 °C, enabling them potential CO2 utilization catalysts. A weak association was found between the surface C contents and the catalytic performance as it normalized with SSA, and the B-O species could be taken as an active site in CO2 atmosphere. Though much progress still needed, it is convincing that the BCN catalyst could be a promising metal-free catalyst in dehydrogenation beyond carbocatalyst.
Medrano, José-Antonio; Julián, Ignacio; Herguido, Javier; Menéndez, Miguel
2013-01-01
Several reactor configurations have been tested for catalytic propane dehydrogenation employing Pt-Sn/MgAl2O4 as a catalyst. Pd-Ag alloy membranes coupled to the multifunctional Two-Zone Fluidized Bed Reactor (TZFBR) provide an improvement in propane conversion by hydrogen removal from the reaction bed through the inorganic membrane in addition to in situ catalyst regeneration. Twofold process intensification is thereby achieved when compared to the use of traditional fluidized bed reactors (FBR), where coke formation and thermodynamic equilibrium represent important process limitations. Experiments were carried out at 500–575 °C and with catalyst mass to molar flow of fed propane ratios between 15.1 and 35.2 g min mmol−1, employing three different reactor configurations: FBR, TZFBR and TZFBR + Membrane (TZFBR + MB). The results in the FBR showed catalyst deactivation, which was faster at high temperatures. In contrast, by employing the TZFBR with the optimum regenerative agent flow (diluted oxygen), the process activity was sustained throughout the time on stream. The TZFBR + MB showed promising results in catalytic propane dehydrogenation, displacing the reaction towards higher propylene production and giving the best results among the different reactor configurations studied. Furthermore, the results obtained in this study were better than those reported on conventional reactors. PMID:24958620
Understanding complete oxidation of methane on spinel oxides at a molecular level
Tao, Franklin Feng; Shan, Jun-jun; Nguyen, Luan; ...
2015-08-04
It is crucial to develop a catalyst made of earth-abundant elements highly active for a complete oxidation of methane at a relatively low temperature. NiCo 2O 4 consisting of earth-abundant elements which can completely oxidize methane in the temperature range of 350-550 °C. Being a cost-effective catalyst, NiCo 2O 4 exhibits activity higher than precious-metal-based catalysts. Here we report that the higher catalytic activity at the relatively low temperature results from the integration of nickel cations, cobalt cations and surface lattice oxygen atoms/oxygen vacancies at the atomic scale. Finally, in situ studies of complete oxidation of methane on NiCo 2Omore » 4 and theoretical simulations show that methane dissociates to methyl on nickel cations and then couple with surface lattice oxygen atoms to form -CH 3O with a following dehydrogenation to -CH 2O; a following oxidative dehydrogenation forms CHO; CHO is transformed to product molecules through two different sub-pathways including dehydrogenation of OCHO and CO oxidation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baroi, Chinmoy; Gaffney, Anne M.; Fushimi, Rebecca
Olefins or unsaturated hydrocarbons play a vital role as feedstock for many industrially significant processes. Ethylene is the simplest olefin and a key raw material for consumer products. Oxidative Dehydrogenation (ODH) is one of the most promising new routes for ethylene production that can offer a significant advantage in energy efficiency over the conventional steam pyrolysis process. This study is focused on the ODH chemistry using the mixed metal oxide MoVTeNbOx catalysts, generally referred to as M1 for the key phase known to be active for dehydrogenation. Using performance results from the patent literature a series of process simulations weremore » conducted to evaluate the effect of feed composition on operating costs, profitability and process safety. The key results of this study indicate that the ODH reaction can be made safer and more profitable without use of an inert diluent and furthermore by replacing O2 with CO2 as an oxidant. Modifications of the M1 catalyst composition in order to adopt these changes are discussed.« less
Base metal dehydrogenation of amine-boranes
Blacquiere, Johanna Marie [Ottawa, CA; Keaton, Richard Jeffrey [Pearland, TX; Baker, Ralph Thomas [Los Alamos, NM
2009-06-09
A method of dehydrogenating an amine-borane having the formula R.sup.1H.sub.2N--BH.sub.2R.sup.2 using base metal catalyst. The method generates hydrogen and produces at least one of a [R.sup.1HN--BHR.sup.2].sub.m oligomer and a [R.sup.1N--BR.sup.2].sub.n oligomer. The method of dehydrogenating amine-boranes may be used to generate H.sub.2 for portable power sources, such as, but not limited to, fuel cells.
Shan, Junjun; Liu, Jilei; Li, Mengwei; ...
2017-12-29
Here, NiCu single atom alloy (SAA) nanoparticles supported on silica are reported to catalyze the non-oxidative dehydrogenation of ethanol, selectively to acetaldehyde and hydrogen products by facilitating the C—H bond cleavage. The activity and selectivity of the NiCu SAA catalysts were compared to monometallic copper and to PtCu and PdCu single atom alloys, in a flow reactor at moderate temperatures. In-situ DRIFTS showed that the silica support facilitates the O—H bond cleavage of ethanol to form ethoxy intermediates over all the supported alloy catalysts. However, these remain unreactive up to 250°C for the Cu/SiO 2 monometallic nanoparticles, while in themore » NiCu SAA, acetaldehyde is formed at much lower temperatures, below 150°C. In situ DRIFTS was also used to identify the C—H activation step as the rate determining step of this reaction on all the copper catalysts we examined. The presence of atomically dispersed Ni in Cu significantly lowers the C—H bond activation barrier, whereas Pt and Pd atoms were found less effective. This work provides direct evidence that the C—H bond cleavage is the rate determining step in ethanol dehydrogenation over this type catalyst.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shan, Junjun; Liu, Jilei; Li, Mengwei
Here, NiCu single atom alloy (SAA) nanoparticles supported on silica are reported to catalyze the non-oxidative dehydrogenation of ethanol, selectively to acetaldehyde and hydrogen products by facilitating the C—H bond cleavage. The activity and selectivity of the NiCu SAA catalysts were compared to monometallic copper and to PtCu and PdCu single atom alloys, in a flow reactor at moderate temperatures. In-situ DRIFTS showed that the silica support facilitates the O—H bond cleavage of ethanol to form ethoxy intermediates over all the supported alloy catalysts. However, these remain unreactive up to 250°C for the Cu/SiO 2 monometallic nanoparticles, while in themore » NiCu SAA, acetaldehyde is formed at much lower temperatures, below 150°C. In situ DRIFTS was also used to identify the C—H activation step as the rate determining step of this reaction on all the copper catalysts we examined. The presence of atomically dispersed Ni in Cu significantly lowers the C—H bond activation barrier, whereas Pt and Pd atoms were found less effective. This work provides direct evidence that the C—H bond cleavage is the rate determining step in ethanol dehydrogenation over this type catalyst.« less
Kramarz, Kurt W.; Bloom, Ira D.; Kumar, Romesh; Ahmed, Shabbir; Wilkenhoener, Rolf; Krumpelt, Michael
2001-01-01
A method of forming a hydrogen rich gas from a source of hydrocarbon fuel. A vapor of the hydrocarbon fuel and steam is brought in contact with a two-part catalyst having a dehydrogenation powder portion and an oxide-ion conducting powder portion at a temperature not less than about 770.degree.C. for a time sufficient to generate the hydrogen rich. The H.sub.2 content of the hydrogen gas is greater than about 70 percent by volume. The dehydrogenation portion of the catalyst includes a group VIII metal, and the oxide-ion conducting portion is selected from a ceramic oxide from the group crystallizing in the fluorite or perovskite structure and mixtures thereof. The oxide-ion conducting portion of the catalyst is a ceramic powder of one or more of ZrO.sub.2, CeO.sub.2, Bi.sub.2 O.sub.3, (BiVO).sub.4, and LaGaO.sub.3.
Souto, Juan Carlos; Yustos, Pedro; Ladero, Miguel; Garcia-Ochoa, Felix
2011-02-01
In this work, a phenomenological study of the isomerisation and disproportionation of rosin acids using an industrial 5% Pd on charcoal catalyst from 200 to 240°C is carried out. Medium composition is determined by elemental microanalysis, GC-MS and GC-FID. Dehydrogenated and hydrogenated acid species molar amounts in the final product show that dehydrogenation is the main reaction. Moreover, both hydrogen and non-hydrogen concentration considering kinetic models are fitted to experimental data using a multivariable non-linear technique. Statistical discrimination among the proposed kinetic models lead to the conclusion hydrogen considering models fit much better to experimental results. The final kinetic model involves first-order isomerisation reactions of neoabietic and palustric acids to abietic acid, first-order dehydrogenation and hydrogenation of this latter acid, and hydrogenation of pimaric acids. Hydrogenation reactions are partial first-order regarding the acid and hydrogen. Copyright © 2010 Elsevier Ltd. All rights reserved.
Hydrodeoxygenation of water-insoluble bio-oil to alkanes using a highly dispersed Pd-Mo catalyst.
Duan, Haohong; Dong, Juncai; Gu, Xianrui; Peng, Yung-Kang; Chen, Wenxing; Issariyakul, Titipong; Myers, William K; Li, Meng-Jung; Yi, Ni; Kilpatrick, Alexander F R; Wang, Yu; Zheng, Xusheng; Ji, Shufang; Wang, Qian; Feng, Junting; Chen, Dongliang; Li, Yadong; Buffet, Jean-Charles; Liu, Haichao; Tsang, Shik Chi Edman; O'Hare, Dermot
2017-09-19
Bio-oil, produced by the destructive distillation of cheap and renewable lignocellulosic biomass, contains high energy density oligomers in the water-insoluble fraction that can be utilized for diesel and valuable fine chemicals productions. Here, we show an efficient hydrodeoxygenation catalyst that combines highly dispersed palladium and ultrafine molybdenum phosphate nanoparticles on silica. Using phenol as a model substrate this catalyst is 100% effective and 97.5% selective for hydrodeoxygenation to cyclohexane under mild conditions in a batch reaction; this catalyst also demonstrates regeneration ability in long-term continuous flow tests. Detailed investigations into the nature of the catalyst show that it combines hydrogenation activity of Pd and high density of both Brønsted and Lewis acid sites; we believe these are key features for efficient catalytic hydrodeoxygenation behavior. Using a wood and bark-derived feedstock, this catalyst performs hydrodeoxygenation of lignin, cellulose, and hemicellulose-derived oligomers into liquid alkanes with high efficiency and yield.Bio-oil is a potential major source of renewable fuels and chemicals. Here, the authors report a palladium-molybdenum mixed catalyst for the selective hydrodeoxygenation of water-insoluble bio-oil to mixtures of alkanes with high carbon yield.
Liu, Sibao; Simonetti, Trent; Zheng, Weiqing; Saha, Basudeb
2018-05-09
High yields of diesel-range alkanes are prepared by hydrodeoxygenation of vegetable oils and waste cooking oils over ReO x -modified Ir/SiO 2 catalysts under mild reaction conditions. The catalyst containing a Re/Ir molar ratio of 3 exhibits the best performance, achieving 79-85 wt % yield of diesel-range alkanes at 453 K and 2 MPa H 2 . The yield is nearly quantitative for the theoretical possible long-chain alkanes on the basis of weight of the converted oils. The catalyst retains comparable activity upon regeneration through calcination. Control experiments using probe molecules as model substrates suggest that C=C bonds of unsaturated triglycerides and free fatty acids are first hydrogenated to their corresponding saturated intermediates, which are then converted to aldehyde intermediates through hydrogenolysis of acyl C-O bonds and subsequently hydrogenated to fatty alcohols. Finally, long-chain alkanes without any carbon loss are formed by direct hydrogenolysis of the fatty alcohols. Small amounts of alkanes with one carbon fewer are also formed by decarbonylation of the aldehyde intermediates. A synergy between Ir and partially reduced ReO x sites is discussed to elucidate the high activity of Ir-ReO x /SiO 2. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Cobo, Martha; Becerra, Jorge; Castelblanco, Miguel; Cifuentes, Bernay; Conesa, Juan A
2015-08-01
The catalytic hydrodechlorination (HDC) of high concentrations of trichloroethylene (TCE) (4.9 mol%, 11.6 vol%) was studied over 1%Pd, 1%Rh and 0.5%Pd-0.5%Rh catalysts supported on CeO2 under conditions of room temperature and pressure. For this, a one-phase system of NaOH/2-propanol/methanol/water was designed with molar percentages of 13.2/17.5/36.9/27.6, respectively. In this system, the alcohols delivered the hydrogen required for the reaction through in-situ dehydrogenation reactions. PdRh/CeO2 was the most active catalyst for the degradation of TCE among the evaluated materials, degrading 85% of the trichloroethylene, with alcohol dehydrogenation rates of 89% for 2-propanol and 83% for methanol after 1 h of reaction. Fresh and used catalysts were characterized by Transmission Electron Microscopy (TEM), X-ray Photoelectron Spectroscopy (XPS), and Thermogravimetric analysis (TGA). These results showed important differences of the active phase in each catalyst sample. Rh/CeO2 had particle sizes smaller than 1 nm and the active metal was partially oxidized (Rh(0)/Rh(+δ) ratio of 0.43). This configuration showed to be suitable for alcohols dehydrogenation. On the contrary, Pd/CeO2 showed a Pd completed oxidized and with a mean particle size of 1.7 nm, which seemed to be unfavorable for both, alcohols dehydrogenation and TCE HDC. On PdRh/CeO2, active metals presented a mean particle size of 2.7 nm and more reduced metallic species, with ratios of Rh(0)/Rh(+δ) = 0.67 and Pd(0)/Pd(+δ) = 0.28, which showed to be suitable features for the TCE HDC. On the other hand, TGA results suggested some deposition of NaCl residues over the catalyst surfaces. Thus, the new reaction system using PdRh/CeO2 allowed for the degradation of high concentrations of the chlorinated compound by using in situ hydrogen liquid donors in a reaction at room temperature and pressure. Copyright © 2015 Elsevier Ltd. All rights reserved.
Method for making hydrogen rich gas from hydrocarbon fuel
Krumpelt, M.; Ahmed, S.; Kumar, R.; Doshi, R.
1999-07-27
A method of forming a hydrogen rich gas from a source of hydrocarbon fuel in which the hydrocarbon fuel contacts a two-part catalyst comprising a dehydrogenation portion and an oxide-ion conducting portion at a temperature not less than about 400 C for a time sufficient to generate the hydrogen rich gas while maintaining CO content less than about 5 volume percent. There is also disclosed a method of forming partially oxidized hydrocarbons from ethanes in which ethane gas contacts a two-part catalyst comprising a dehydrogenation portion and an oxide-ion conducting portion for a time and at a temperature sufficient to form an oxide. 4 figs.
Method for making hydrogen rich gas from hydrocarbon fuel
Krumpelt, Michael; Ahmed, Shabbir; Kumar, Romesh; Doshi, Rajiv
1999-01-01
A method of forming a hydrogen rich gas from a source of hydrocarbon fuel in which the hydrocarbon fuel contacts a two-part catalyst comprising a dehydrogenation portion and an oxide-ion conducting portion at a temperature not less than about 400.degree. C. for a time sufficient to generate the hydrogen rich gas while maintaining CO content less than about 5 volume percent. There is also disclosed a method of forming partially oxidized hydrocarbons from ethanes in which ethane gas contacts a two-part catalyst comprising a dehydrogenation portion and an oxide-ion conducting portion for a time and at a temperature sufficient to form an oxide.
Xia, Qi-Neng; Cuan, Qian; Liu, Xiao-Hui; Gong, Xue-Qing; Lu, Guan-Zhong; Wang, Yan-Qin
2014-09-08
Great efforts have been made to convert renewable biomass into transportation fuels. Herein, we report the novel properties of NbO(x)-based catalysts in the hydrodeoxygenation of furan-derived adducts to liquid alkanes. Excellent activity and stability were observed with almost no decrease in octane yield (>90% throughout) in a 256 h time-on-stream test. Experimental and theoretical studies showed that NbO(x) species play the key role in C-O bond cleavage. As a multifunctional catalyst, Pd/NbOPO4 plays three roles in the conversion of aldol adducts into alkanes: 1) The noble metal (in this case Pd) is the active center for hydrogenation; 2) NbO(x) species help to cleave the C-O bond, especially of the tetrahydrofuran ring; and 3) a niobium-based solid acid catalyzes the dehydration, thus enabling the quantitative conversion of furan-derived adducts into alkanes under mild conditions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Dehydrogenative coupling of silanes with alcohols catalyzed by Cu3(BTC)2.
Dhakshinamoorthy, Amarajothi; Concepcion, Patricia; Garcia, Hermenegildo
2016-02-14
Cu3(BTC)2 is an efficient and reusable heterogeneous catalyst for the dehydrogenative coupling of silanes with alcohols. Activity data and CO adsorption suggest that Cu(II) and in situ generated Cu(I) are the active species. Other MOFs such as Fe(BTC), MIL-101(Cr) and UiO-66(Zr) are unable to promote this cross-coupling.
Xia, Qineng; Xia, Yinjiang; Xi, Jinxu; Liu, Xiaohui; Zhang, Yongguang; Guo, Yong; Wang, Yanqin
2017-02-22
A one-pot method for the selective production of high-grade diesel-range alkanes from biomass-derived furfural and 2-methylfuran (2-MF) was developed by combining the hydroxyalkylation/alkylation (HAA) condensation of furfural with 2-MF and the subsequent hydrodeoxygenation (HDO) over a multifunctional Pd/NbOPO 4 catalyst. The effects of various reaction conditions as well as a variety of solid-acid catalysts and metal-loaded NbOPO 4 catalysts were systematically investigated to optimize the reaction conditions for both reactions. Under the optimal reaction conditions up to 89.1 % total yield of diesel-range alkanes was obtained from furfural and 2-MF by this one-pot method. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Liu, Sibao; Dutta, Saikat; Zheng, Weiqing; Gould, Nicholas S; Cheng, Ziwei; Xu, Bingjun; Saha, Basudeb; Vlachos, Dionisios G
2017-08-24
Renewable jet-fuel-range alkanes are synthesized by hydrodeoxygenation of lignocellulose-derived high-carbon furylmethanes over ReO x -modified Ir/SiO 2 catalysts under mild reaction conditions. Ir-ReO x /SiO 2 with a Re/Ir molar ratio of 2:1 exhibits the best performance, achieving a combined alkanes yield of 82-99 % from C 12 -C 15 furylmethanes. The catalyst can be regenerated in three consecutive cycles with only about 12 % loss in the combined alkanes yield. Mechanistically, the furan moieties of furylmethanes undergo simultaneous ring saturation and ring opening to form a mixture of complex oxygenates consisting of saturated furan rings, mono-keto groups, and mono-hydroxy groups. Then, these oxygenates undergo a cascade of hydrogenolysis reactions to alkanes. The high activity of Ir-ReO x /SiO 2 arises from a synergy between Ir and ReO x , whereby the acidic sites of partially reduced ReO x activate the C-O bonds of the saturated furans and alcoholic groups while the Ir sites are responsible for hydrogenation with H 2 . © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Watanabe, Ryo; Ikushima, Maiko; Mukawa, Kei; Sumomozawa, Fumitaka; Ogo, Shuhei; Sekine, Yasushi
2013-01-01
For the development of highly active and robust catalysts for dehydrogenation of ethylbenzene (EBDH) to produce styrene; an important monomer for polystyrene production, perovskite-type oxides were applied to the reaction. Controlling the mobility of lattice oxygen by changing the structure of Ba1 - x SrxFe y Mn1 - y O3 - δ (0 ≤ x ≤ 1, 0.2 ≤ y ≤ 0.8), perovskite catalyst showed higher activity and stability on EBDH. The optimized Ba/Sr and Fe/Mn molar ratios were 0.4/0.6 and 0.6/0.4, respectively. Comparison of the dehydrogenation activity of Ba0.4Sr0.6Fe0.6Mn0.4O3 - δ catalyst with that of an industrial potassium promoted iron (Fe-K) catalyst revealed that the Ba0.4Sr0.6Fe0.6Mn0.4O3 - δ catalyst showed higher initial activity than the industrial Fe-K oxide catalyst. Additionally, the Ba0.4Sr0.6Fe0.6Mn0.4O3 - δ catalyst showed high activity and stability under severe conditions, even at temperatures as low as 783 K, or at the low steam/EB ratio of 2, while, the Fe-K catalyst showed low activity in such conditions. Comparing reduction profiles of the Ba0.4Sr0.6Fe0.6Mn0.4O3 - δ and the Fe-K catalysts in a H2O/H2 atmosphere, reduction was suppressed by the presence of H2O over the Ba0.4Sr0.6Fe0.6Mn0.4O3 - δ catalyst while the Fe-K catalyst was reduced. In other words, Ba0.4Sr0.6Fe0.6Mn0.4O3 - δ catalyst had higher potential for activating the steam than the Fe-K catalyst. The lattice oxygen in perovskite-structure was consumed by H2, subsequently the consumed lattice oxygen was regenerated by H2O. So the catalytic performance of Ba0.4Sr0.6Fe0.6Mn0.4O3 - δ was superior to that of Fe-K catalyst thanks to the high redox property of the Ba0.4Sr0.6Fe0.6Mn0.4O3 - δ perovskite oxide.
NASA Astrophysics Data System (ADS)
Watanabe, Ryo; Ikushima, Maiko; Mukawa, Kei; Sumomozawa, Fumitaka; Ogo, Shuhei; Sekine, Yasushi
2013-10-01
For the development of highly active and robust catalysts for dehydrogenation of ethylbenzene (EBDH) to produce styrene; an important monomer for polystyrene production, perovskite-type oxides were applied to the reaction. Controlling the mobility of lattice oxygen by changing the structure of Ba1-xSrxFeyMn1-yO3-d(0 ≤ x≤ 1, 0.2 ≤ y≤ 0.8), perovskite catalyst showed higher activity and stability on EBDH. The optimized Ba/Sr and Fe/Mn molar ratios were 0.4/0.6 and 0.6/0.4, respectively. Comparison of the dehydrogenation activity of Ba0.4Sr0.6Fe0.6Mn0.4O3-d catalyst with that of an industrial potassium promoted iron (Fe-K) catalyst revealed that the Ba0.4Sr0.6Fe0.6Mn0.4O3-d catalyst showed higher initial activity than the industrial Fe-K oxide catalyst. Additionally, the Ba0.4Sr0.6Fe0.6Mn0.4O3-d catalyst showed high activity and stability under severe conditions, even at temperatures as low as 783 K, or at the low steam/EB ratio of 2, while, the Fe-K catalyst showed low activity in such conditions. Comparing reduction profiles of the Ba0.4Sr0.6Fe0.6Mn0.4O3-d and the Fe-K catalysts in aH2O/H2 atmosphere, reduction was suppressed by the presence of H2O over the Ba0.4Sr0.6Fe0.6Mn0.4O3-d catalyst while the Fe-K catalyst was reduced. In other words, Ba0.4Sr0.6Fe0.6Mn0.4O3-d catalyst had higher potential for activating the steam than the Fe-K catalyst. The lattice oxygen in perovskite-structure was consumed by H2, subsequently the consumed lattice oxygen was regenerated by H2O. So the catalytic performance of Ba0.4Sr0.6Fe0.6Mn0.4O3-d was superior to that of Fe-K catalyst thanks to the high redox property of the Ba0.4Sr0.6Fe0.6Mn0.4O3-d perovskite oxide.
Modifying ceria (111) with a TiO2 nanocluster for enhanced reactivity.
Nolan, Michael
2013-11-14
Modification of ceria catalysts is of great interest for oxidation reactions such as oxidative dehydrogenation of alcohols. Improving the reactivity of ceria based catalysts for these reactions means that they can be run at lower temperatures and density functional theory (DFT) simulations of new structures and compositions are proving valuable in the development of these catalysts. In this paper, we have used DFT+U (DFT corrected for on-site Coulomb interactions) to examine the reactivity of a novel modification of ceria, namely, modifying with TiO2, using the example of a Ti2O4 species adsorbed on the ceria (111) surface. The oxygen vacancy formation energy in the Ti2O4-CeO2 system is significantly reduced over the bare ceria surfaces, which together with previous work on ceria-titania indicates that the presence of the interface favours oxygen vacancy formation. The energy gain upon hydrogenation of the catalyst, which is the rate determining step in oxidative dehydrogenation, further points to the improved oxidation power of this catalyst structure.
Investigations into Chemical Hydrogen Storage and the anti-Markovnikov Hydroamination of Alkenes
NASA Astrophysics Data System (ADS)
St. John, Anthony J.
The known carbon-boron-nitrogen (CBN) material ethylenediamine bisborane (EDBB) has been prepared and tested as a potential hydrogen storage material. Dehydrogenation of EDBB was achieved using the (t BuPOCOP)Ir(H)2 (t BuPOCOP = 2,6-bis(OPtBu2)C 6H3) catalyst. This reaction results in the release of two equivalents of hydrogen per molecule of EDBB. The product of this reaction is an insoluble, likely oligomeric, species. Heating the reaction mixture does not result in the release of additional equivalents of hydrogen. A new CBN material, 1,2-B,N-cyclohexane, was targeted as a potential hydrogen storage material. The enthalpy of dehydrogenation of 1,2-B,N-cyclohexane to 1,2-dihydro-1,2-azaborine was calculated to be 23.5 kcal/mol at 298 K using the B3LYP basis set. Ultimately, our collaborators at the University of Oregon prepared 1,2-B,N-cyclohexane. This molecule is a stable solid and undergoes thermal dehydrogenation of the B-N bond at 150 °C. The dehydrogenation of a variety of cyclic CBN materials was studied with the ( tBuPOCOP)Ir(H)2 catalyst. A number of cobalt-pincer complexes were tested as ammonia borane (AB) dehydrogenation catalysts. (PhPSiNSiP)CoCl (PhPSiNSiP = (N(SiMe2CH2PPh 2)2) was found to be a very active precatalyst for AB dehydrogenation, releasing 1 equivalent of hydrogen at 2.0 mol % catalyst loading within 5 minutes. The product of this reaction was characterized as cyclopentaborazane. The catalyst lifetime is limited and the identity of the active species remains unknown. A novel [(tBuPOCOP)Co] 2Hg complex was synthesized by reaction of (t BuPOCOP)CoI with Na/Hg. This complex was fully characterized by 1H NMR spectroscopy, elemental analysis, and X-ray crystallography. A new catalytic pathway for the anti-Markovnikov hydroamination of alkenes is proposed. The individual steps of this pathway were studied with the [(MTPA)Rh(propene)][BPh 4] (MTPA = tris((6-methyl-2-pyridyl)methyl)amine) complex. Protonation of this complex with anilinium triflate results in the formation of the [(MTPA)Rh( n-propyl)(OTf)][BPh4] complex. This was confirmed by 1H NMR spectroscopy and X-ray crystallography. The [(MTPA)Rh( n-propyl)(OTf)][BPh4] complex undergoes decomposition likely via a beta-hydride elimination pathway to give free propene and a [(MTPA)Rh(H)] complex. [(MTPA)Rh(Me)(I)][BPh4] was prepared and reacted with a variety of nucleophiles such as diethylamine and sodium anilide. When [(MTPA)Rh(Me)(I)][BPh4] was heated at 100 °C in the presence of I2, free MeI was observed.
Xia, Qineng; Zhuang, Xiaojing; Li, Molly Meng-Jung; Peng, Yung-Kang; Liu, Guoliang; Wu, Tai-Sing; Soo, Yun-Liang; Gong, Xue-Qing; Wang, Yanqin; Tsang, Shik Chi Edman
2016-04-14
Near quantitative carbon yields of diesel-range alkanes were achieved from the hydrodeoxygenation of triglycerides over Pd/NbOPO4 under mild conditions with no catalyst deactivation: catalyst characterization and theoretical calculations suggest that the high hydrodeoxygenation activity originated from the synergistic effect of Pd and strong Lewis acidity on the unique structure of NbOPO4.
NASA Astrophysics Data System (ADS)
Wang, Ying-Fan; Li, Kun; Wang, Gui-Chang
2018-04-01
Inspired by the recent surface experimental results that the monatomic Pt catalysts has more excellent hydrogen production that Cu(111) surface, the mechanism of decomposition of formic acid on Cu(111) and single atom Pt1/Cu(111) surface was studied by periodic density functional theory calculations in the present work. The results show that the formic acid tends to undergo dehydrogenation on both surfaces to obtain the hydrogen product of the target product, and the selectivity and catalytic activity of Pt1/Cu (111) surface for formic acid dehydrogenation are better. The reason is that the single atom Pt1/Cu(111) catalyst reduces the reaction energy barrier (i.e., HCOO → CO2 + H) of the critical step of the dehydrogenation reaction due to the fact that the single atom Pt1/Cu(111) catalyst binds formate weakly compared to that of Cu (111) one. Moreover, it was found that the Pt1/Cu (111) binds CO more strongly than that of Cu (111) one and thus leading to the difficult for the formation of CO. These two factors would make the single Pt atom catalyst had the high selectivity for the H2 production. It is hoped that the present work may help people to design the efficient H2 production from HCOOH decomposition by reduce the surface binding strength of HCOO species, for example, using the low coordination number active site like single atom or other related catalytic system.
Bioinspired organocatalytic aerobic C-H oxidation of amines with an ortho-quinone catalyst.
Qin, Yan; Zhang, Long; Lv, Jian; Luo, Sanzhong; Cheng, Jin-Pei
2015-03-20
A simple bioinspired ortho-quinone catalyst for the aerobic oxidative dehydrogenation of amines to imines is reported. Without any metal cocatalysts, the identified optimal ortho-quinone catalyst enables the oxidations of α-branched primary amines and cyclic secondary amines. Mechanistic studies have disclosed the origins of different performances of ortho-quinone vs para-quinone in biomimetic amine oxidations.
Sun, Shaohui; Yang, Ruishu; Wang, Xin; Yan, Shaokang
2018-04-01
An attractive approach for the production of transportation fuels from renewable biomass resources is to convert oxygenates into alkanes. In this paper, C 5 -C 20 alkanes formed via the hydrogenation and hydrodeoxygenation of the oligomers of furfuryl alcohol(FA) can be used as gasoline, diesel and jet fuel fraction. The first step of the process is the oligomers of FA convert into hydrogenated products over Raney Ni catalyst in a batch reactor. The second step of the process converts hydrogenated products to alkanes via hydrodeoxygenation over different bi-functional catalysts include hydrogenation and acidic deoxidization active sites. After this process, the oxygen content decreased from 22.1 wt% in the oligomers of FA to 0.58 wt% in the hydrodeoxygenation products.
Continuous Flow Aerobic Alcohol Oxidation Reactions Using a Heterogeneous Ru(OH)x/Al2O3 Catalyst
2015-01-01
Ru(OH)x/Al2O3 is among the more versatile catalysts for aerobic alcohol oxidation and dehydrogenation of nitrogen heterocycles. Here, we describe the translation of batch reactions to a continuous-flow method that enables high steady-state conversion and single-pass yields in the oxidation of benzylic alcohols and dehydrogenation of indoline. A dilute source of O2 (8% in N2) was used to ensure that the reaction mixture, which employs toluene as the solvent, is nonflammable throughout the process. A packed bed reactor was operated isothermally in an up-flow orientation, allowing good liquid–solid contact. Deactivation of the catalyst during the reaction was modeled empirically, and this model was used to achieve high conversion and yield during extended operation in the aerobic oxidation of 2-thiophene methanol (99+% continuous yield over 72 h). PMID:25620869
Watanabe, Ryo; Ikushima, Maiko; Mukawa, Kei; Sumomozawa, Fumitaka; Ogo, Shuhei; Sekine, Yasushi
2013-01-01
For the development of highly active and robust catalysts for dehydrogenation of ethylbenzene (EBDH) to produce styrene; an important monomer for polystyrene production, perovskite-type oxides were applied to the reaction. Controlling the mobility of lattice oxygen by changing the structure of Ba1 − xSrxFeyMn1 − yO3 − δ (0 ≤ x ≤ 1, 0.2 ≤ y ≤ 0.8), perovskite catalyst showed higher activity and stability on EBDH. The optimized Ba/Sr and Fe/Mn molar ratios were 0.4/0.6 and 0.6/0.4, respectively. Comparison of the dehydrogenation activity of Ba0.4Sr0.6Fe0.6Mn0.4O3 − δ catalyst with that of an industrial potassium promoted iron (Fe–K) catalyst revealed that the Ba0.4Sr0.6Fe0.6Mn0.4O3 − δ catalyst showed higher initial activity than the industrial Fe–K oxide catalyst. Additionally, the Ba0.4Sr0.6Fe0.6Mn0.4O3 − δ catalyst showed high activity and stability under severe conditions, even at temperatures as low as 783 K, or at the low steam/EB ratio of 2, while, the Fe–K catalyst showed low activity in such conditions. Comparing reduction profiles of the Ba0.4Sr0.6Fe0.6Mn0.4O3 − δ and the Fe–K catalysts in a H2O/H2 atmosphere, reduction was suppressed by the presence of H2O over the Ba0.4Sr0.6Fe0.6Mn0.4O3 − δ catalyst while the Fe–K catalyst was reduced. In other words, Ba0.4Sr0.6Fe0.6Mn0.4O3 − δ catalyst had higher potential for activating the steam than the Fe–K catalyst. The lattice oxygen in perovskite-structure was consumed by H2, subsequently the consumed lattice oxygen was regenerated by H2O. So the catalytic performance of Ba0.4Sr0.6Fe0.6Mn0.4O3 − δ was superior to that of Fe–K catalyst thanks to the high redox property of the Ba0.4Sr0.6Fe0.6Mn0.4O3 − δ perovskite oxide. PMID:24790949
Ethanol dehydrogenation on copper catalysts with ytterbium stabilized tetragonal ZrO2 support
NASA Astrophysics Data System (ADS)
Chuklina, S. G.; Pylinina, A. I.; Podzorova, L. I.; Mikhailina, N. A.; Mikhalenko, I. I.
2016-12-01
The physicochemical and catalytic properties of Cu-containing crystalline zirconia, obtained via sol-gel synthesis in the presence of Yb3+ ions and polyvinylpyrrolidone, are studied. DTG/DSC, TEM, XRD and BET methods are used to analyze the crystallization, texture, phase uniformity, surface and porosity of ZrO2 nanopowders. It is shown that increasing the copper content (1, 3, and 5 wt % from ZrO2) raises the dehydrogenation activity in the temperature range of 100-400°C and lowers the activation energy of acetaldehyde formation. It is found that the activity of all Cu/ t-ZrO2 catalysts grows under the effects of the reaction medium, due to the migration and redispersion of copper.
Catalytic propane dehydrogenation over In₂O₃–Ga₂O₃ mixed oxides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Shuai; Gil, Laura Briones; Subramanian, Nachal
2015-08-26
We have investigated the catalytic performance of novel In₂O₃–Ga₂O₃ mixed oxides synthesized by the alcoholic-coprecipitation method for propane dehydrogenation (PDH). Reactivity measurements reveal that the activities of In₂O₃–Ga₂O₃ catalysts are 1–3-fold (on an active metal basis) and 12–28-fold (on a surface area basis) higher than an In₂O₃–Al₂O₃ catalyst in terms of C₃H₈ conversion. The structure, composition, and surface properties of the In₂O₃–Ga₂O₃ catalysts are thoroughly characterized. NH₃-TPD shows that the binary oxide system generates more acid sites than the corresponding single-component catalysts. Raman spectroscopy suggests that catalysts that produce coke of a more graphitic nature suppress cracking reactions, leading tomore » higher C₃H₆ selectivity. Lower reaction temperature also leads to higher C₃H₆ selectivity by slowing down the rate of side reactions. XRD, XPS, and XANES measurements, strongly suggest that metallic indium and In₂O₃ clusters are formed on the catalyst surface during the reaction. The agglomeration of In₂O₃ domains and formation of a metallic indium phase are found to be irreversible under O₂ or H₂ treatment conditions used here, and may be responsible for loss of activity with increasing time on stream.« less
Reactions catalyzed by haloporphyrins
Ellis, P.E. Jr.; Lyons, J.E.
1996-02-06
The invention provides novel methods for the oxidation of hydrocarbons with oxygen-containing gas to form hydroxy-group containing compounds and for the decomposition of hydroperoxides to form hydroxy-group containing compounds. The catalysts used in the methods of the invention comprise transition metal complexes of a porphyrin ring having 1 to 12 halogen substituents on the porphyrin ring, at least one of said halogens being in a meso position and/or the catalyst containing no aryl group in a meso position. The catalyst compositions are prepared by halogenating a transition metal complex of a porphyrin. In one embodiment, a complex of a porphyrin with a metal whose porphyrin complexes are not active for oxidation of alkanes is halogenated, thereby to obtain a haloporphyrin complex of that metal, the metal is removed from the haloporphyrin complex to obtain the free base form of the haloporphyrin, and a metal such as iron whose porphyrin complexes are active for oxidation of alkanes and for the decomposition of alkyl hydroperoxides is complexed with the free base to obtain an active catalyst for oxidation of alkanes and decomposition of alkyl hydroperoxides.
Reactions catalyzed by haloporphyrins
Ellis, Jr., Paul E.; Lyons, James E.
1996-01-01
The invention provides novel methods for the oxidation of hydrocarbons with oxygen-containing gas to form hydroxy-group containing compounds and for the decomposition of hydroperoxides to form hydroxygroup containing compounds. The catalysts used in the methods of the invention comprise transition metal complexes of a porphyrin ring having 1 to 12 halogen substituents on the porphyrin ring, at least one of said halogens being in a meso position and/or the catalyst containing no aryl group in a meso position. The catalyst compositions are prepared by halogenating a transition metal complex of a porphyrin. In one embodiment, a complex of a porphyrin with a metal whose porphyrin complexes are not active for oxidation of alkanes is halogenated, thereby to obtain a haloporphyrin complex of that metal, the metal is removed from the haloporphyrin complex to obtain the free base form of the haloporphyrin, and a metal such as iron whose porphyrin complexes are active for oxidation of alkanes and for the decomposition of alkyl hydroperoxides is complexed with the free base to obtain an active catalyst for oxidation of alkanes and decomposition of alkyl hydroperoxides.
Linear alkane polymerization on a gold surface.
Zhong, Dingyong; Franke, Jörn-Holger; Podiyanachari, Santhosh Kumar; Blömker, Tobias; Zhang, Haiming; Kehr, Gerald; Erker, Gerhard; Fuchs, Harald; Chi, Lifeng
2011-10-14
In contrast to the many methods of selectively coupling olefins, few protocols catenate saturated hydrocarbons in a predictable manner. We report here the highly selective carbon-hydrogen (C-H) activation and subsequent dehydrogenative C-C coupling reaction of long-chain (>C(20)) linear alkanes on an anisotropic gold(110) surface, which undergoes an appropriate reconstruction by adsorption of the molecules and subsequent mild annealing, resulting in nanometer-sized channels (1.22 nanometers in width). Owing to the orientational constraint of the reactant molecules in these one-dimensional channels, the reaction takes place exclusively at specific sites (terminal CH(3) or penultimate CH(2) groups) in the chains at intermediate temperatures (420 to 470 kelvin) and selects for aliphatic over aromatic C-H activation.
Gas phase heterogeneous catalytic oxidation of alkanes to aliphatic ketones and/or other oxygenates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Manhua; Wang, Xiang; Yeom, Younghoon
A catalyst, its method of preparation and its use for producing aliphatic ketones by subjecting alkanes C.sub.3 to C.sub.9 to a gas phase catalytic oxidation in the presence of air or oxygen, and, optionally, steam and/or one or more diluting gases. The catalyst comprises a catalytically active mixed metal oxide phase and a suitable support material onto and/or into which the active catalytic phase id dispersed.
Gas phase heterogeneous catalytic oxidation of alkanes to aliphatic ketones and/or other oxygenates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Manhua; Wang, Xiang; Yeom, Younghoon
A catalyst, its method of preparation and its use for producing aliphatic ketones by subjecting alkanes C.sub.3 to C.sub.9 to a gas phase catalytic oxidation in the presence of air or oxygen, and, optionally, steam and/or one or more diluting gases. The catalyst comprises a catalytically active mixed metal oxide phase and a suitable support material onto and/or into which the active catalytic phase is dispersed.
Nelson, Nicholas C.; Boote, Brett W.; Naik, Pranjali; ...
2017-01-17
Ceria (CeO 2) and sodium-modified ceria (Ce-Na) were prepared through combustion synthesis. Palladium was deposited onto the supports (Pd/CeO 2 and Pd/Ce-Na) and their activity for the aqueous-phase transfer hydrogenation of phenol using 2-propanol under liquid flow conditions was studied. Pd/Ce-Na showed a marked increase (6×) in transfer hydrogenation activity over Pd/CeO 2. Material characterization indicated that water-stable sodium species were not doped into the ceria lattice, but rather existed as subsurface carbonates. Modification of ceria by sodium provided more adsorption and redox active sites (i.e. defects) for 2-propanol dehydrogenation. This effect was an intrinsic property of the Ce-Na supportmore » and independent of Pd. The redox sites active for 2-propanol dehydrogenation were thermodynamically equivalent on both supports/catalysts. At high phenol concentrations, the reaction was limited by 2-propanol adsorption. Furthermore, the difference in catalytic activity was attributed to the different numbers of 2-propanol adsorption and redox active sites on each catalyst.« less
Catalytic conversion of light alkanes: Quarterly report, January 1-March 31, 1992
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biscardi, J.; Bowden, P.T.; Durante, V.A.
The first Quarterly Report of 1992 on the Catalytic Conversion of Light Alkanes reviews the work done between January 1. 1992 and March 31, 1992 on the Cooperative Agreement. The mission of this work is to devise a new catalyst which can be used in a simple economic process to convert the light alkanes in natural gas to oxygenate products which can either be used as clean-burning, high octane liquid fuels, as fuel components or as precursors to liquid hydrocarbon transportation fuel. During the past quarter we have continued to design, prepare, characterize and test novel catalysts for the mildmore » selective reaction of light hydrocarbons with air or oxygen to produce alcohols directly. These catalysts are designed to form active metal oxo (MO) species and to be uniquely active for the homolytic cleavage of the carbon-hydrogen bonds in light alkanes producing intermediates which can form alcohols. We continue to investigate three molecular environments for the active catalytic species that we are trying to generate: electron-deficient porphryinic macrocycles (PHASE I), polyoxometallates (PHASE II), and regular oxidic lattices including zeolites and related structures as well as other molecular surface structures having metal oxo groups (PHASE III).« less
Alkane oxidation with porphyrins and metal complexes thereof having haloalkyl side chains
Wijesekera, Tilak; Lyons, James E.; Ellis, Jr., Paul E.; Bhinde, Manoj V.
1998-01-01
Transition metal complexes of meso-haloalkylporphyrins, wherein the haloalkyl groups contain 2 to 8 carbon atoms have been found to be highly effective catalysts for oxidation of alkanes and for the decomposition of hydroperoxides.
Suarnaba, Emee Grace Tabares; Lee, Yi Fuan; Yamada, Hiroshi; Tagawa, Tomohiko
2016-11-01
An ultraviolet visible (UV-Vis) microspectroscopic system was designed for the in situ characterization of the activity of the silica supported platinum (Pt) catalyst toward the dehydrogenation of 1-methyl-1,4-cyclohexadiene carried out in a custom-designed catalytic microreactor cell. The in situ catalytic microreactor cell (ICMC) with inlet/outlet ports was prepared using quartz cover as the optical window to facilitate UV-Vis observation. A fabricated thermometric stage was adapted to the UV-Vis microspectrophotometer to control the reaction temperature inside the ICMC. The spectra were collected by focusing the UV-Vis beam on a 30 × 30 µm area at the center of ICMC. At 393 K, the sequential measurement of the spectra recorded during the reaction exhibited a broad absorption peak with maximum absorbance at 260 nm that is characteristic for gaseous toluene. This result indicates that the silica supported Pt catalyst is active towards the dehydrogenation of 1-methyl-1,4-cyclohexadiene at the given experimental conditions. The onset of coke formation was also detected based on the appearance of absorption bands at 300 nm. The UV-Vis microspectroscopic system developed can be used further in studying the mechanism of the dehydrogenation reaction. © The Author(s) 2016.
Platinum-tin catalysts supported on silica highly selective for n-hexane dehydrogenation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Llorca, J.; Homs, N.; Sales, J.
Silica-supported Pt-Sn catalysts were prepared by two-step impregnation from [PtCl{sub 2}(PPh{sub 3}){sub 2}] and SnCl{sub 2} solutions of appropriate concentrations to yield Pt/Sn atomic ratios ranging from 0.2 to 5.0. In these systems, the presence of true Pt-Sn alloys was confirmed by X-ray diffraction, transmission electron microscopy, energy dispersive X-ray analysis and electron nanodiffraction. Pt and PtSn alloy phases were found on catalysts with Pt/Sn > 1, PtSn alloy alone on the catalyst with Pt/Sn = 1 and PtSn and PtSn{sub 2} alloys, together with Sn in the catalysts with Pt/Sn < 1. All these catalysts were tested in themore » skeletal reactions of n-hexane at 753 K and atmospheric pressure. The selectivity of Pt changed significantly when alloyed with tin. For Sn-rich compositions a segregation of tin toward the catalyst surface was shown by photoelectron spectroscopy, and high hydrogenolysis selectivity and fast deactivation were observed. In contrast, Pt-rich catalysts, in which a well defined PtSn alloy was observed, were much more stable and exhibited high selectivity to dehydrogenation reaction while maintaining low conversions to benzene and hydrogenolysis products. This selectivity pattern can be interpreted in terms of a change in adsorption properties due to differences in the number of adjacent Pt atoms required for the various reaction pathways. 24 refs., 11 figs., 3 tabs.« less
NASA Astrophysics Data System (ADS)
Zhang, Huaiwei; Fu, Li; Xuan, Weidong; Qin, Haiying; Ji, Zhenguo
2018-05-01
The effects of surface coating with Ni-Al nano-films to the hydrogenation properties of the La2Mg17 alloy are studied in the paper. The reversible hydrogen storage capacities, thermodynamics and kinetics process are all improved for the coating samples, and the comprehensive performances reach the best when the sputtering time is 5min with the film thickness 71.7 nm. The dehydrogenation temperature of the coating sample can be reduced to about 560K from above 720K comparing to the body alloy. The XPS analysis shows that the Ni-Al film coating layer can act as the catalyst in the dehydrogenation process.
Catalytic oxidative dehydrogenation process
Schmidt, Lanny D.; Huff, Marylin
2002-01-01
A process for the production of a mono-olefin from a gaseous paraffinic hydrocarbon having at least two carbon atoms or mixtures thereof comprising reacting said hydrocarbons and molecular oxygen in the presence of a platinum catalyst. The catalyst consist essentially of platinum supported on alumina or zirconia monolith, preferably zirconia and more preferably in the absence of palladium, rhodium and gold.
Role of chemical interaction between MgH2 and TiO2 additive on the hydrogen storage behavior of MgH2
NASA Astrophysics Data System (ADS)
Pukazhselvan, D.; Nasani, Narendar; Sandhya, K. S.; Singh, Budhendra; Bdikin, Igor; Koga, Nobuaki; Fagg, Duncan Paul
2017-10-01
The present study explores how the additive titania chemically reacts with magnesium hydride and influences the dehydrogenation of MgH2. Quantitative X - ray diffraction study of ball milled MgH2 + xTiO2 (x = 0.25, 0.33, 0.5 and 1) suggests that Ti substituted MgO is the main reaction product in all the product powders. Convincing evidence is obtained to conclude that Ti dissolution in MgO makes a dramatic behavioral change to MgO; passive MgO turns as an active in-built catalyst. The analysis correlating the dehydrogenation kinetics, composition of in-situ catalyst and sample durability suggests that effectiveness of Ti substituted MgO (MgxTiyOx+y) as a catalyst for MgH2 depends on the concentration of Ti in MgxTiyOx+y rock salt. These observations are immensely helpful for understanding the hydrogen desorption mechanism of metal oxide additives loaded MgH2 system.
Moessbauer spectra of ferrite catalysts used in oxidative dehydrogenation
NASA Technical Reports Server (NTRS)
Cares, W. R.; Hightower, J. W.
1971-01-01
Room temperature Mossbauer spectroscopy was used to examine bulk changes which occur in low surface area CoFe2O4 and CuFe2O4 catalysts as a result of contact with various mixtures of trans-2-butene and O2 during oxidative dehydrogenation reactions at about 420 C. So long as there was at least some O2 in the gas phase, the CoFe2O4 spectrum was essentially unchanged. However, the spectrum changed from a random spinel in the oxidized state to an inverse spinel as it was reduced by oxide ion removal. The steady state catalyst lies very near the fully oxidized state. More dramatic solid state changes occurred as the CuFe2O4 underwent reduction. Under severe reduction, the ferrite was transformed into Cu and Fe3O4, but it could be reversibly recovered by oxidation. An intense doublet located near zero velocity persisted in all spectra of CuFe2O4 regardless of the state of reduction.
Metathesis of alkanes and related reactions.
Basset, Jean-Marie; Copéret, Christophe; Soulivong, Daravong; Taoufik, Mostafa; Cazat, Jean Thivolle
2010-02-16
The transformation of alkanes remains a difficult challenge because of the relative inertness of the C-H and C-C bonds. The rewards for asserting synthetic control over unfunctionalized, saturated hydrocarbons are considerable, however, because converting short alkanes into longer chain analogues is usually a value-adding process. Alkane metathesis is a novel catalytic and direct transformation of two molecules of a given alkane into its lower and higher homologues; moreover, the process proceeds at relatively low temperature (ambient conditions or higher). It was discovered through the use of a silica-supported tantalum hydride, ([triple bond]SiO)(2)TaH, a multifunctional catalyst with a single site of action. This reaction completes the story of the metathesis reactions discovered over the past 40 years: olefin metathesis, alkyne metathesis, and ene-yne cyclizations. In this Account, we examine the fundamental mechanistic aspects of alkane metathesis as well as the novel reactions that have been derived from its study. The silica-supported tantalum hydride catalyst was developed as the result of systematic and meticulous studies of the interaction between oxide supports and organometallic complexes, a field of study denoted surface organometallic chemistry (SOMC). A careful examination of this surface-supported tantalum hydride led to the later discovery of alumina-supported tungsten hydride, W(H)(3)/Al(2)O(3), which proved to be an even better catalyst for alkane metathesis. Supported tantalum and tungsten hydrides are highly unsaturated, electron-deficient species that are very reactive toward the C-H and C-C bonds of alkanes. They show a great versatility in various other reactions, such as cross-metathesis between methane and alkanes, cross-metathesis between toluene and ethane, or even methane nonoxidative coupling. Moreover, tungsten hydride exhibits a specific ability in the transformation of isobutane into 2,3-dimethylbutane as well as in the metathesis of olefins or the selective transformation of ethylene into propylene. Alkane metathesis represents a powerful tool for making progress in a variety of areas, perhaps most notably in the petroleum and petrochemical fields. Modern civilization is currently confronting a host of problems that relate to energy production and its effects on the environment, and judicious application of alkane metathesis to the processing of fuels such as crude oil and natural gas may well afford solutions to these difficulties.
NASA Astrophysics Data System (ADS)
Ustynyuk, L. Yu.; Fast, A. S.; Ustynyuk, Yu. A.; Lunin, V. V.
2012-06-01
Binuclear hydride centers containing two Zr(IV) atoms are suggested as promising catalysts for the hydrogenolysis of alkanes under mild conditions ( T < 450 K, p ˜ 1 atm). Reactions of model compounds L2(H)Zr(X)2Zr(H)L2 (X = H, L = OSi≡ ( 4a), X = L = OMe ( 4d)), L(H)Zr(O)2Zr(H)L (L = OSi≡ ( 4b), Cp( 4c)) and (≡SiO)2(H)Zr-O-Zr(H)(OSi≡)2 ( 4e and 4f) with the propane molecule were studied using the density functional theory method. The results show that centers of the 4a, 4e, and 4f types and especially 4b are promising catalysts of the hydrogenolysis of alkanes due to a high degree of unsaturation of two Zr atoms and their sequential participation in the splitting of the C-C bond and hydrogenation of ethylene formed as a result of splitting.
NASA Astrophysics Data System (ADS)
Turakulova, A. O.; Kharlanov, A. N.; Levanov, A. V.; Isaikina, O. Ya.; Lunin, V. V.
2017-01-01
Ce0.46Zr0.54O2 solid solution prepared using a cellulose template was employed as a carrier for vanadium catalysts of the oxidative dehydrogenation of propane. The properties of VO x /Ce0.46Zr0.54O2 catalyst (5 wt % vanadium) are compared with the properties of the neat support. The carrier and catalyst are studied by means of BET, SEM, DTA, XRD, and Raman spectroscopy. It is shown that the CeVO4 phase responsible for the ODH process is formed upon interaction between vanadate ions and cerium ions on the surface of the solid solution. The catalytic properties of the catalyst and the support are studied in the propane oxidation reaction at temperatures of 450 and 500°C with pulse feeding of the reagent. It is found that the complete oxidation of propane occurs on the support with formation of CO2 and H2O. Three products (propene, CO2, and H2O) form in the presence of the vanadium catalyst. It is suggested that there are two types of catalytic centers on the catalyst's surface. It is concluded that the centers responsible for the complete oxidation of propane are concentrated mainly on the carrier, while the centers responsible for propane ODH are on the CeVO4.
In Pursuit of Sustainable Hydrogen Storage with Boron-Nitride Fullerene as the Storage Medium.
Ganguly, Gaurab; Malakar, Tanmay; Paul, Ankan
2016-06-22
Using well calibrated DFT studies we predict that experimentally synthesized B24 N24 fullerene can serve as a potential reversible chemical hydrogen storage material with hydrogen-gas storage capacity up to 5.13 wt %. Our theoretical studies show that hydrogenation and dehydrogenation of the fullerene framework can be achieved at reasonable rates using existing metal-free hydrogenating agents and base metal-containing dehydrogenation catalysts. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Su, Weike; Yu, Jingbo; Li, Zhenhua; Jiang, Zhijiang
2011-11-04
Solvent-free reaction using a high-speed ball milling technique has been first applied to cross-dehydrogenative coupling (CDC) reactions between tetrahydroisoquinolines and three types of pronucleophiles such as nitroalkanes, alkynes, and indoles. All coupling products were obtained in good yields at short reaction times (no more than 40 min). When alkynes and indoles were used as pronucleophile, the reactions can be catalyzed efficiently by recoverable copper balls without any additional metal catalyst.
Alkane oxidation with porphyrins and metal complexes thereof having haloalkyl side chains
Wijesekera, T.; Lyons, J.E.; Ellis, P.E. Jr.; Bhinde, M.V.
1998-06-23
Transition metal complexes of meso-haloalkylporphyrins are disclosed, wherein the haloalkyl groups contain 2 to 8 carbon atoms have been found to be highly effective catalysts for oxidation of alkanes and for the decomposition of hydroperoxides. 7 figs.
Visible Light Driven Benzyl Alcohol Dehydrogenation in a Dye-Sensitized Photoelectrosynthesis Cell
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Wenjing; Vannucci, Aaron K.; Farnum, Byron H.
2014-06-27
Light-driven dehydrogenation of benzyl alcohol (BnOH) to benzaldehyde and hydrogen has been shown to occur in a dye-sensitized photoelectrosynthesis cell (DSPEC). In the DSPEC, the photoanode consists of mesoporous films of TiO2 nanoparticles or of core/shell nanoparticles with tin-doped In2O3 nanoparticle (nanoITO) cores and thin layers of TiO2 deposited by atomic layer deposition (nanoITO/TiO2). Metal oxide surfaces were coderivatized with both a ruthenium polypyridyl chromophore in excess and an oxidation catalyst. Chromophore excitation and electron injection were followed by cross-surface electron-transfer activation of the catalyst to RuIV=O2+, which then oxidizes benzyl alcohol to benzaldehyde. The injected electrons are transferred tomore » a Pt electrode for H2 production. The nanoITO/TiO2 core/shell structure causes a decrease of up to 2 orders of magnitude in back electron-transfer rate compared to TiO2. At the optimized shell thickness, sustained absorbed photon to current efficiency of 3.7% was achieved for BnOH dehydrogenation, an enhancement of ~10 compared to TiO2.« less
In situ {sup 13}C MAS NMR study of n-hexane conversion on Pt and Pd supported on basic materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ivanova, I.I.; Pasau-Claerbout, A.; Seivert, M.
n-Hexane conversion was studied in situ on Pt and Pd supported on aluminum-stabilized magnesium oxide and Pt on Zeolite KL catalysts (Pt/Mg(Al)O, Pd/Mg(Al)O and Pt/KL) by means of {sup 13}C MAS NMR spectroscopy. n-Hexane 1-{sup 13}C was used as a labelled reactant. Forty NMR lines corresponding to 14 different products were resolved and identified. The NMR line assignments were confirmed by adsorption of model compounds. The NMR results were further quantified and compared with continuous flow microreactor tests. Four parallel reaction pathways were identified under flow conditions: isomerization, cracking, dehydrocyclization, and dehydrogenation. Aromatization occurs via two reaction routes: (1) n-hexanemore » dehydrogenation towards hexadienes and hexatrienes, followed by dehydrogenation of a cyclic intermediate. The former reaction pathway is prevented under NMR batch conditions. High pressures induced in the NMR cells at high reaction temperatures (573, 653 K) shift the reaction equilibrium towards hydrogenation. NMR experiments showed that on Pt catalysts aromatization occurs via a cyclohexane intermediate, whereas on Pd it takes place via methylcyclopentane ring enlargement. 54 refs., 15 figs., 3 tabs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Qingyin; Zhang, Fengqi; Jarvis, Jack
The catalytic co-aromatization of methane and paraffin-rich raffinate oil was investigated along with hexane, heptane and octane as its model compounds over zinc and gallium modified ZSM-5 zeolite catalysts. The benzene, toluene and xylene (BTX) components derived from light alkane aromatization were highly promoted with the assistance of methane. The co-existence of Zn and Ga metal species has a positive effect on the formation of BTX components, whereas the individual metal loaded catalyst resulted in the production of heavy aromatics, suggesting that zinc and gallium have a synergistic effect on the formation of BTX under the methane environment. When concernedmore » with gaseous analysis, the introduced methane might interact with smaller intermediates and then transform into larger hydrocarbons. From the DRIFT observation, it was witnessed that the interaction between light alkane and methane occurred on the surface of the charged Zn-Ga/ZSM-5 catalyst. According to the comprehensive catalyst characterizations, the excellent catalytic performance may be closely associated with greatly dispersed metal species on the zeolite support, improved microporous characteristic, moderate Bronsted and increased Lewis acidic sites during the paraffin-rich liquid feedstock aromatization under methane environment. This research provides a promising pathway for the highly effective and profitable utilization of petrochemical resources and natural gas.« less
Li, Qingyin; Zhang, Fengqi; Jarvis, Jack; ...
2018-03-16
The catalytic co-aromatization of methane and paraffin-rich raffinate oil was investigated along with hexane, heptane and octane as its model compounds over zinc and gallium modified ZSM-5 zeolite catalysts. The benzene, toluene and xylene (BTX) components derived from light alkane aromatization were highly promoted with the assistance of methane. The co-existence of Zn and Ga metal species has a positive effect on the formation of BTX components, whereas the individual metal loaded catalyst resulted in the production of heavy aromatics, suggesting that zinc and gallium have a synergistic effect on the formation of BTX under the methane environment. When concernedmore » with gaseous analysis, the introduced methane might interact with smaller intermediates and then transform into larger hydrocarbons. From the DRIFT observation, it was witnessed that the interaction between light alkane and methane occurred on the surface of the charged Zn-Ga/ZSM-5 catalyst. According to the comprehensive catalyst characterizations, the excellent catalytic performance may be closely associated with greatly dispersed metal species on the zeolite support, improved microporous characteristic, moderate Bronsted and increased Lewis acidic sites during the paraffin-rich liquid feedstock aromatization under methane environment. This research provides a promising pathway for the highly effective and profitable utilization of petrochemical resources and natural gas.« less
Facile Synthesis and Superior Catalytic Activity of Nano-TiN@N-C for Hydrogen Storage in NaAlH4.
Zhang, Xin; Ren, Zhuanghe; Lu, Yunhao; Yao, Jianhua; Gao, Mingxia; Liu, Yongfeng; Pan, Hongge
2018-05-09
Herein, we synthesize successfully ultrafine TiN nanoparticles (<3 nm in size) embedded in N-doped carbon nanorods (nano-TiN@N-C) by a facile one-step calcination process. The prepared nano-TiN@N-C exhibits superior catalytic activity for hydrogen storage in NaAlH 4 . Adding 7 wt % nano-TiN@N-C induces more than 100 °C reduction in the onset dehydrogenation temperature of NaAlH 4 . Approximately 4.9 wt % H 2 is rapidly released from the 7 wt % nano-TiN@N-C-containing NaAlH 4 at 140 °C within 60 min, and the dehydrogenation product is completely hydrogenated at 100 °C within 15 min under 100 bar of hydrogen, exhibiting significantly improved desorption/absorption kinetics. No capacity loss is observed for the nano-TiN@N-C-containing sample within 25 de-/hydrogenation cycles because nano-TiN functions as an active catalyst instead of a precursor. A severe structural distortion with extended bond lengths and reduced bond strengths for Al-H bonding when the [AlH 4 ] - group adsorbs on the TiN cluster is demonstrated for the first time by density functional theory calculations, which well-explains the reduced de-/hydrogenation temperatures of the nano-TiN@N-C-containing NaAlH 4 . These findings provide new insights into designing and synthesizing high-performance catalysts for hydrogen storage in complex hydrides.
Faba, Laura; Díaz, Eva; Ordóñez, Salvador
2014-10-01
Integrating reaction steps is of key interest in the development of processes for transforming lignocellulosic materials into drop-in fuels. We propose a procedure for performing the aldol condensation (reaction between furfural and acetone is taken as model reaction) and the total hydrodeoxygenation of the resulting condensation adducts in one step, yielding n-alkanes. Different combinations of catalysts (bifunctional catalysts or mechanical mixtures), reaction conditions, and solvents (aqueous and organic) have been tested for performing these reactions in an isothermal batch reactor. The results suggest that the use of bifunctional catalysts and aqueous phase lead to an effective integration of both reactions. Therefore, selectivities to n-alkanes higher than 50% were obtained using this catalyst at typical hydrogenation conditions (T=493 K, P=4.5 MPa, 24 h reaction time). The use of organic solvent, carbonaceous supports, or mechanical mixtures of monofunctional catalysts leads to poorer results owing to side effects; mainly, hydrogenation of reactants and adsorption processes. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Production of Low-Freezing-Point Highly Branched Alkanes through Michael Addition.
Jing, Yaxuan; Xia, Qineng; Liu, Xiaohui; Wang, Yanqin
2017-12-22
A new approach for the production of low-freezing-point, high-quality fuels from lignocellulose-derived molecules was developed with Michael addition as the key step. Among the investigated catalysts, CoCl 2 ⋅6 H 2 O was found most active for the Michael addition of 2,4-pentanedione with FA (single aldol adduct of furfural and acetone, 4-(2-furanyl)-3-butene-2-one). Over CoCl 2 ⋅6 H 2 O, a high carbon yield of C 13 oxygenates (about 75 %) can be achieved under mild conditions (353 K, 20 h). After hydrodeoxygenation, low-freezing-point (<223 K) branched alkanes with 13 carbons within jet fuel ranges were obtained over a Pd/NbOPO 4 catalyst. Furthermore, C 18,23 fuel precursors could be easily synthesized through Michael addition of 2,4-pentanedione with DFA (double-condensation product of furfural and acetone) under mild conditions and the molar ratio of C 18 /C 23 is dependent on the reaction conditions of Michael addition. After hydrodeoxygenation, high density (0.8415 g mL -1 ) and low-freezing-point (<223 K) branched alkanes with 18, 23 carbons within lubricant range were also obtained over a Pd/NbOPO 4 catalyst. These highly branched alkanes can be directly used as transportation fuels or additives. This work opens a new strategy for the synthesis of highly branched alkanes with low freezing point from renewable biomass. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Porosoff, Marc D; Myint, Myat Noe Zin; Kattel, Shyam; Xie, Zhenhua; Gomez, Elaine; Liu, Ping; Chen, Jingguang G
2015-12-14
The recent shale gas boom combined with the requirement to reduce atmospheric CO2 have created an opportunity for using both raw materials (shale gas and CO2 ) in a single process. Shale gas is primarily made up of methane, but ethane comprises about 10 % and reserves are underutilized. Two routes have been investigated by combining ethane decomposition with CO2 reduction to produce products of higher value. The first reaction is ethane dry reforming which produces synthesis gas (CO+H2 ). The second route is oxidative dehydrogenation which produces ethylene using CO2 as a soft oxidant. The results of this study indicate that the Pt/CeO2 catalyst shows promise for the production of synthesis gas, while Mo2 C-based materials preserve the CC bond of ethane to produce ethylene. These findings are supported by density functional theory (DFT) calculations and X-ray absorption near-edge spectroscopy (XANES) characterization of the catalysts under in situ reaction conditions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Marc D. Porosoff; Chen, Jingguang G.; Myint, Myat Noe Zin; ...
2015-11-10
In this study, the recent shale gas boom combined with the requirement to reduce atmospheric CO 2 have created an opportunity for using both raw materials (shale gas and CO 2) in a single process. Shale gas is primarily made up of methane, but ethane comprises about 10 % and reserves are underutilized. Two routes have been investigated by combining ethane decomposition with CO 2 reduction to produce products of higher value. The first reaction is ethane dry reforming which produces synthesis gas (CO+H 2). The second route is oxidative dehydrogenation which produces ethylene using CO 2 as a softmore » oxidant. The results of this study indicate that the Pt/CeO 2 catalyst shows promise for the production of synthesis gas, while Mo 2C-based materials preserve the C—C bond of ethane to produce ethylene. These findings are supported by density functional theory (DFT) calculations and X-ray absorption near-edge spectroscopy (XANES) characterization of the catalysts under in situ reaction conditions.« less
Cheng, Jun; Li, Tao; Huang, Rui; Zhou, Junhu; Cen, Kefa
2014-04-01
To produce quality jet biofuel with high amount of alkanes and low amount of aromatic hydrocarbons, two zeolites of HY and HZSM-5 supporting Ni and Mo were used as catalysts to convert soybean oil into jet fuel. Zeolite HY exhibited higher jet range alkane selectivity (40.3%) and lower jet range aromatic hydrocarbon selectivity (23.8%) than zeolite HZSM-5 (13.8% and 58.9%). When reaction temperature increased from 330 to 390°C, yield of jet fuel over Ni-Mo/HY catalyst at 4 MPa hydrogen pressure increased from 0% to 49.1% due to the shift of reaction pathway from oligomerization to cracking reaction. Further increase of reaction temperature from 390 to 410°C resulted in increased yield of jet range aromatic hydrocarbons from 18.7% to 30%, which decreased jet fuel quality. A high yield of jet fuel (48.2%) was obtained at 1 MPa low hydrogen pressure over Ni (8 wt.%)-Mo (12 wt.%)/HY catalyst. Copyright © 2014 Elsevier Ltd. All rights reserved.
Jia, Xiangqing; Qin, Chuan; Friedberger, Tobias; Guan, Zhibin; Huang, Zheng
2016-06-01
Polyethylene (PE) is the largest-volume synthetic polymer, and its chemical inertness makes its degradation by low-energy processes a challenging problem. We report a tandem catalytic cross alkane metathesis method for highly efficient degradation of polyethylenes under mild conditions. With the use of widely available, low-value, short alkanes (for example, petroleum ethers) as cross metathesis partners, different types of polyethylenes with various molecular weights undergo complete conversion into useful liquid fuels and waxes. This method shows excellent selectivity for linear alkane formation, and the degradation product distribution (liquid fuels versus waxes) can be controlled by the catalyst structure and reaction time. In addition, the catalysts are compatible with various polyolefin additives; therefore, common plastic wastes, such as postconsumer polyethylene bottles, bags, and films could be converted into valuable chemical feedstocks without any pretreatment.
Jia, Xiangqing; Qin, Chuan; Friedberger, Tobias; Guan, Zhibin; Huang, Zheng
2016-01-01
Polyethylene (PE) is the largest-volume synthetic polymer, and its chemical inertness makes its degradation by low-energy processes a challenging problem. We report a tandem catalytic cross alkane metathesis method for highly efficient degradation of polyethylenes under mild conditions. With the use of widely available, low-value, short alkanes (for example, petroleum ethers) as cross metathesis partners, different types of polyethylenes with various molecular weights undergo complete conversion into useful liquid fuels and waxes. This method shows excellent selectivity for linear alkane formation, and the degradation product distribution (liquid fuels versus waxes) can be controlled by the catalyst structure and reaction time. In addition, the catalysts are compatible with various polyolefin additives; therefore, common plastic wastes, such as postconsumer polyethylene bottles, bags, and films could be converted into valuable chemical feedstocks without any pretreatment. PMID:27386559
Xu, Min; Xin, Fang; Li, Xunfeng; Huai, Xiulan; Liu, Hui
2015-03-01
The apparent kinetic of the ultrasound assisted liquid-phase dehydrogenation of isopropanol over Raney nickel catalyst was determined in the temperature range of 346-353 K. Comparison of the effects of ultrasound and mechanical agitation on the isopropanol dehydrogenation was investigated. The ultrasound assisted dehydrogenation rate was significantly improved when relatively high power density was used. Moreover, the Isopropanol-Acetone-Hydrogen chemical heat pump (IAH-CHP) with ultrasound irradiation, in which the endothermic reaction is exposure to ultrasound, was proposed. A mathematical model was established to evaluate its energy performance in term of the coefficient of performance (COP) and the exergy efficiency, into which the apparent kinetic obtained in this work was incorporated. The operating performances between IAH-CHP with ultrasound and mechanical agitation were compared. The results indicated that the superiority of the IAH-CHP system with ultrasound was present even if more than 50% of the power of the ultrasound equipment was lost. Copyright © 2014 Elsevier B.V. All rights reserved.
Canioni, Romain; Marchal-Roch, Catherine; Leclerc-Laronze, Nathalie; Haouas, Mohamed; Taulèlle, Francis; Marrot, Jérôme; Paul, Sebastien; Lamonier, Carole; Paul, Jean-François; Loridant, Stéphane; Millet, Jean-Marc M; Cadot, Emmanuel
2011-06-14
{Mo(132)} Keplerate anion reacts with tellurites to give a soluble precursor to produce in hydrothermal conditions single-phase M1 MoVTeO light-alkanes oxidation catalyst. Characterization of this Te-containing intermediate by single-crystal X-ray diffraction, (125)Te NMR, UV-visible and redox titration reveals a molybdotellurite anion as a crown-capped Keggin derivative. This journal is © The Royal Society of Chemistry 2011
Green synthesis of Ni-Nb oxide catalysts for low-temperature oxidative dehydrogenation of ethane.
Zhu, Haibo; Rosenfeld, Devon C; Anjum, Dalaver H; Caps, Valérie; Basset, Jean-Marie
2015-04-13
The straightforward solid-state grinding of a mixture of Ni nitrate and Nb oxalate crystals led to, after mild calcination (T<400 °C), nanostructured Ni-Nb oxide composites. These new materials efficiently catalyzed the oxidative dehydrogenation (ODH) of ethane to ethylene at a relatively low temperature (T<300 °C). These catalysts appear to be much more stable than the corresponding composites prepared by other chemical methods; more than 90 % of their original intrinsic activity was retained after 50 h with time on-stream. Furthermore, the stability was much less affected by the Nb content than in composites prepared by classical "wet" syntheses. These materials, obtained in a solvent-free way, are thus promising green and sustainable alternatives to the current Ni-Nb candidates for the low-temperature ODH of ethane. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Selective alkane activation with single-site atoms on amorphous support
Hock, Adam S.; Schweitzer, Neil M.; Miller, Jeffrey T.; Hu, Bo
2015-11-24
The present invention relates generally to catalysts and methods for use in olefin production. More particularly, the present invention relates to novel amorphously supported single-center, Lewis acid metal ions and use of the same as catalysts.
Gorgas, Nikolaus; Kirchner, Karl
2018-06-19
Sustainable processes that utilize nontoxic, readily available, and inexpensive starting materials for organic synthesis constitute a major objective in modern chemical research. In this context, it is highly important to perform reactions under catalytic conditions and to replace precious metal catalysts by earth-abundant nonprecious metal catalysts. In particular, iron and manganese are promising candidates, as these are among the most abundant metals in the earth's crust, are inexpensive, and exhibit a low environmental impact. As far as chemical processes are concerned, hydrogenations and acceptorless alcohol dehydrogenation (AAD), sometimes in conjunction with hydrogen autotransfer reactions, are becoming important areas of research. While the first is a very important synthetic process representing a highly atom-efficient and clean methodology, AAD is an oxidant-free, environmentally benign reaction where carbonyl compounds together with dihydrogen as a valuable product and/or reactant (autotransfer) and water are formed. Carbonyl compounds, typically generated in situ, can be converted into other useful organic materials such as amines, imines, or heterocycles. In 2016 several groups, including ours, discovered for the first time the potential of hydride biscarbonyl Mn(I) complexes bearing strongly bound PNP pincer ligands or related tridentate ligands as highly effective and versatile catalysts for hydrogenation, transfer hydrogenation, and dehydrogenation reactions. These complexes are isoelectronic analogues of the respective hydride monocarbonyl Fe(II) PNP compounds and display similar reactivities but also quite divergent behavior depending on the coligands. Moreover, manganese compounds show improved long-term stability and high robustness toward harsh reaction conditions. In light of these recent achievements, this Account contrasts Mn(I) and Fe(II) PNP pincer catalysts, highlighting specific features that are connected to particular structural and electronic properties. It also addresses opportunities and restrictions in their catalytic applications. Apart from classical hydrogenations, it also covers the most recent developments of these catalysts for AAD resulting in the synthesis of complex organic molecules such as heterocycles via multicomponent reactions. The ambivalent hydrogen-based redox chemistry provides access to a variety of synthetically valuable reductive and oxidative coupling reactions. Hence, these catalysts cover a broad scope of catalytic applications and exhibit activities and productivities that are becoming competitive with those of well-established precious metal catalysts. The knowledge about the nature and characteristics of active Mn(I)- and Fe(II)-based systems paves the way for conceptually and mechanistically well-founded research, which might lead to further developments and the discovery of novel catalysts extending the current scope and limitations of reactivity. It underlines that base metal catalysts are beginning to challenge precious metal catalysts and contributes to the further advancement of waste-free sustainable base metal catalysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamiguchi, Satoshi, E-mail: kamigu@riken.jp; Organometallic Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako City, Saitama 351-0198; Okumura, Kazu
Graphical abstract: - Highlights: • Solid-state molybdenum sulfide clusters catalyzed the dehydrogenation of alcohol. • The dehydrogenation proceeded without the addition of any oxidants. • The catalytic activity developed when the cluster was activated at 300–500 °C in H{sub 2}. • The Lewis-acidic molybdenum atom and basic sulfur ligand were catalytically active. • The clusters function as bifunctional acid–base catalysts. - Abstract: Solid-state molybdenum sulfide clusters with an octahedral metal framework, the superconducting Chevrel phases, are applied to catalysis. A copper salt of a nonstoichiometric sulfur-deficient cluster, Cu{sub x}Mo{sub 6}S{sub 8–δ} (x = 2.94 and δ ≈ 0.3), is storedmore » in air for more than 90 days. When the oxygenated cluster is thermally activated in a hydrogen stream above 300 °C, catalytic activity for the dehydrogenation of primary alcohols to aldehydes and secondary alcohols to ketones develops. The addition of pyridine or benzoic acid decreases the dehydrogenation activity, indicating that both a Lewis-acidic coordinatively unsaturated molybdenum atom and a basic sulfur ligand synergistically act as the catalytic active sites.« less
Dutta, B.; Sharma, Vinit K.; Sassu, N.; ...
2017-09-01
We disclose a novel, heterogeneous catalytic approach for selective coupling of C1 of N-aryltetrahydroisoquinolines with C3 of indoles in the presence of mesoporous manganese oxides. Our work involves a detailed mechanistic investigation of the reaction on the catalyst surface, backed by DFT computational studies, to understand the superior catalytic activity of manganese oxides.
Catalytic oxidation of light alkanes in presence of a base
Bhinde, Manoj V.; Bierl, Thomas W.
1998-01-01
The presence of a base in the reaction mixture in a metal-ligand catalyzed partial oxidation of alkanes results in sustained catalyst activity, and in greater percent conversion as compared with oxidation in the absence of base, while maintaining satisfactory selectivity for the desired oxidation, for example the oxidation of isobutane to isobutanol.
Hull, Jonathan F.; Himeda, Yuichiro; Fujita, Etsuko; Muckeman, James T.
2015-08-04
The invention relates to a ligand that may be used to create a catalyst including a coordination complex is formed by the addition of two metals; Cp, Cp* or an unsubstituted or substituted .pi.-arene; and two coordinating solvent species or solvent molecules. The bimetallic catalyst may be used in the hydrogenation of CO.sub.2 to form formic acid and/or salts thereof, and in the dehydrogenation of formic acid and/or salts thereof to form H.sub.2 and CO.sub.2.
Catalytic amino acid production from biomass-derived intermediates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng, Weiping; Wang, Yunzhu; Zhang, Sui
Amino acids are the building blocks for protein biosynthesis and find use in myriad industrial applications including in food for humans, in animal feed, and as precursors for bio-based plastics, among others. However, the development of efficient chemical methods to convert abundant and renewable feedstocks into amino acids has been largely unsuccessful to date. To that end, here we report a heterogeneous catalyst that directly transforms lignocellulosic biomass-derived a-hydroxyl acids into a-amino acids, including alanine, leucine, valine, aspartic acid, and phenylalanine in high yields. The reaction follows a dehydrogenation-reductive amination pathway, with dehydrogenation as the rate-determining step. Ruthenium nanoparticles supportedmore » on carbon nanotubes (Ru/CNT) exhibit exceptional efficiency compared with catalysts based on other metals, due to the unique, reversible enhancement effect of NH 3 on Ru in dehydrogenation. Based on the catalytic system, a two-step chemical process was designed to convert glucose into alanine in 43% yield, comparable with the well-established microbial cultivation process, and therefore, the present strategy enables a route for the production of amino acids from renewable feedstocks. Moreover, a conceptual process design employing membrane distillation to facilitate product purification is proposed and validated. Overall, this study offers a rapid and potentially more efficient chemical method to produce amino acids from woody biomass components.« less
Wang, Wan -Hui; Fujita, Etsuko; Ertem, Mehmed Z.; ...
2015-07-30
Hydrogen generation from formic acid (FA), one of the most promising hydrogen storage materials, has attracted much attention due to the demand for the development of renewable energy carriers. Catalytic dehydrogenation of FA in an efficient and green manner remains challenging. Here, we report a series of bio-inspired Ir complexes for highly robust and selective hydrogen production from FA in aqueous solutions without organic solvents or additives. One of these complexes bearing an imidazoline moiety (complex 6) achieved a turnover frequency (TOF) of 322,000 h⁻¹ at 100 °C, which is higher than ever reported. The novel catalysts are very stablemore » and applicable in highly concentrated FA. For instance, complex 3 (1 μmol) affords an unprecedented turnover number (TON) of 2,050,000 at 60 °C. Deuterium kinetic isotope effect experiments and density functional theory (DFT) calculations employing a “speciation” approach demonstrated a change in the rate-determining step with increasing solution pH. This study provides not only more insight into the mechanism of dehydrogenation of FA but also offers a new principle for the design of effective homogeneous organometallic catalysts for H₂ generation from FA.« less
Catalytic amino acid production from biomass-derived intermediates
Deng, Weiping; Zhang, Sui; Gupta, Krishna M.; Hülsey, Max J.; Asakura, Hiroyuki; Liu, Lingmei; Han, Yu; Karp, Eric M.; Jiang, Jianwen; Tanaka, Tsunehiro; Wang, Ye
2018-01-01
Amino acids are the building blocks for protein biosynthesis and find use in myriad industrial applications including in food for humans, in animal feed, and as precursors for bio-based plastics, among others. However, the development of efficient chemical methods to convert abundant and renewable feedstocks into amino acids has been largely unsuccessful to date. To that end, here we report a heterogeneous catalyst that directly transforms lignocellulosic biomass-derived α-hydroxyl acids into α-amino acids, including alanine, leucine, valine, aspartic acid, and phenylalanine in high yields. The reaction follows a dehydrogenation-reductive amination pathway, with dehydrogenation as the rate-determining step. Ruthenium nanoparticles supported on carbon nanotubes (Ru/CNT) exhibit exceptional efficiency compared with catalysts based on other metals, due to the unique, reversible enhancement effect of NH3 on Ru in dehydrogenation. Based on the catalytic system, a two-step chemical process was designed to convert glucose into alanine in 43% yield, comparable with the well-established microbial cultivation process, and therefore, the present strategy enables a route for the production of amino acids from renewable feedstocks. Moreover, a conceptual process design employing membrane distillation to facilitate product purification is proposed and validated. Overall, this study offers a rapid and potentially more efficient chemical method to produce amino acids from woody biomass components. PMID:29712826
Zhang, Li; Wu, Zili; Nelson, Nicholas; ...
2015-09-22
Catalytic performance and the nature of surface adsorbates were investigated for high-surface-area ceria during ethylbenzene oxidative dehydrogenation (ODH) reaction using CO2 as a soft oxidant. A template assisted method was used to synthesize the high-surface-area ceria. The interactions between ethylbenzene, styrene and CO2 on the surface of ceria and the role of CO2 for the ethylbenzene ODH reaction have been investigated in detail by using activity test, in situ Diffuse Reflectance Infrared and Raman spectroscopy. Not only did CO2 as an oxidant favor the higher yield of styrene, but it also inhibited the deposition of coke during the ethylbenzene ODHmore » reaction. Ethylbenzene ODH reaction over ceria followed a two-step pathway: Ethylbenzene is first dehydrogenated to styrene with H2 formed simultaneously, and then CO2 reacts with H2 via the reverse water gas shift. The styrene produced can easily polymerize to form polystyrene, a key intermediate for coke formation. In the absence of CO2, the polystyrene transforms into graphite-like coke at temperatures above 500 °C, which leads to catalyst deactivation. While in the presence of CO2, the coke deposition can be effectively removed via oxidation with CO2.« less
Catalytic amino acid production from biomass-derived intermediates
Deng, Weiping; Wang, Yunzhu; Zhang, Sui; ...
2018-04-30
Amino acids are the building blocks for protein biosynthesis and find use in myriad industrial applications including in food for humans, in animal feed, and as precursors for bio-based plastics, among others. However, the development of efficient chemical methods to convert abundant and renewable feedstocks into amino acids has been largely unsuccessful to date. To that end, here we report a heterogeneous catalyst that directly transforms lignocellulosic biomass-derived a-hydroxyl acids into a-amino acids, including alanine, leucine, valine, aspartic acid, and phenylalanine in high yields. The reaction follows a dehydrogenation-reductive amination pathway, with dehydrogenation as the rate-determining step. Ruthenium nanoparticles supportedmore » on carbon nanotubes (Ru/CNT) exhibit exceptional efficiency compared with catalysts based on other metals, due to the unique, reversible enhancement effect of NH 3 on Ru in dehydrogenation. Based on the catalytic system, a two-step chemical process was designed to convert glucose into alanine in 43% yield, comparable with the well-established microbial cultivation process, and therefore, the present strategy enables a route for the production of amino acids from renewable feedstocks. Moreover, a conceptual process design employing membrane distillation to facilitate product purification is proposed and validated. Overall, this study offers a rapid and potentially more efficient chemical method to produce amino acids from woody biomass components.« less
NASA Astrophysics Data System (ADS)
Wang, Chongyang
With the development of technologies for cellulosic biomass conversion to fuels and chemicals, bio-alcohols are among the main alternative feedstocks to fossil fuels. The research pursued in my thesis was the investigation of gold and palladium as catalysts for the application of short aliphatic alcohols to hydrogen generation and value-added chemicals production. Specifically, selective methanol steam reforming and non-oxidative ethanol dehydrogenation to hydrogen and acetaldehyde were investigated in this thesis work. A major aim of the thesis was to develop atomically efficient catalysts with tuned surface chemistry for the desired reactions, using suitable synthesis methods. Methanol steam reforming (SRM) for hydrogen production has recently been investigated on gold catalysts to overcome the drawbacks of copper catalysts (deactivation, pyrophoricity). Previous work at Tufts University has shown that both CeO2 and ZnO are suitable supports for gold. In this thesis, nanoscale composite oxides ZnZrOx were prepared by a carbon hard-template method, which resulted in homogeneous distribution of Zn species in the matrix of ZrO2. Tunable surface chemistry of ZnZrO x was demonstrated by varying the Zn/Zr ratio to suppress the strong Lewis acidity of ZrO2, which leads to undesired production of CO through methanol decomposition. With atomic dispersion of gold, Au/ZnZrO x catalyzes the SRM reaction exclusively via the methanol self-coupling pathway up to 375°C. The activity of Au/ZnZrOx catalysts was compared to Au/TiO2, which is another catalyst system demonstrating atomic dispersion of gold. Similarity in the apparent activation energy of SRM on all the supported gold catalysts studied in this thesis and in the literature further confirms the same single-site Au-Ox-MO centers as active sites for SRM with indirect effects of the supports exploited. With this fundamental understanding of gold-catalyzed C1 alcohol reforming, the Au/ZnZrOx catalyst was evaluated for the dehydrogenation of ethanol. Bare ZnZrOx activate ethanol conversion in the range of 280-300°C and produce undesired ethylene as product of ethanol dehydration, whereas, addition of small amount of gold (<1wt.%) was found to significantly change the product distribution in the low-temperature range (200°C-350°C). As gold passivates the strong Bronsted acid sites of ZrO2 and selectively facilitates the dehydrogenation of ethanol at low-temperature, a wide temperature range was found between the production of acetaldehyde (dehydrogenation products) and ethylene (dehydration product), which can be harnessed for the industrial application. Interestingly, the steam reforming of ethanol did not take place in the low-temperature region, thus the selectivity to acetaldehyde and hydrogen was 100% even in the presence of water. In addition to gold, palladium was also studied in this thesis work on the ZnZrOx composite oxides, and its activity and selectivity were compared to Au/ZnZrOx. Monometallic Pd catalyzes the decomposition of methanol and ethanol, resulting in different product distribution for C 1-C2 alcohol reactions. With ZnZrOx employed as the catalyst support in this thesis work, the finely dispersed ZnO species in ZrO2 were found to alloy with the supported palladium under reduction treatment. Alloying with Zn tunes the chemistry of Pd to catalyze the SRM reaction through the methanol coupling mechanism, shutting off the undesired methanol decomposition pathway. A preliminary study of the Pd/ZnZrO x system for ethanol dehydrogenation also demonstrated the modification of Pd when in the PdZn alloy form. Different from the monometallic Pd catalyst, which primarily catalyzes the C-C bond scission of ethanol, high selectivity to ethanol dehydrogenation products was found on PdZn, over the temperature range of 200-400°C. Formation of the PdZn alloy broadens the application of Pd and potentially other Group VIII metals for selective alcohol conversion reactions. In summary, this thesis work has investigated two noble metals Au and Pd from Group IB and Group VIII, respectively, for methanol and ethanol alcohol reforming reactions employing a novel ZnZrOx composite oxide as a platform catalyst support. Comprehensive study of Au catalyst has deepened our understanding of atomically dispersed Au anchored on various supports through oxygen bonds as the active sites for alcohol reforming reactions, and showed the support effect to be indirect, serving as the carrier and stabilizer of the gold species. For Pd, the Zn species of the composite oxide is necessary to modify the Pd catalyst and the PdZn alloy gives it the desired Au-like properties. Full characterization of the catalysts used here by ICP, XPS, XRD, FTIR and STEM imaging was conducted throughout the thesis to identify the stable species and correlate the catalyst performance with its composition and morphology. Surface acidity titration by isopropanol temperature-programmed desorption/mass spectrometry (IPA-TPD/MS) and pyridine-IR adsorption/desorption was conducted in parallel to temperature-programmed surface reaction (TPSR) studies and products from isothermal steady-state reactions were monitored online by mass spectrometry.
Jiang, Xian; Yan, Xiaoxiao; Ren, Wangyu; Jia, Yufeng; Chen, Jianian; Sun, Dongmei; Xu, Lin; Tang, Yawen
2016-11-16
For direct formic acid fuel cells (DFAFCs), the dehydrogenation pathway is a desired reaction pathway, to boost the overall cell efficiency. Elaborate composition tuning and nanostructure engineering provide two promising strategies to design efficient electrocatalysts for DFAFCs. Herein, we present a facile synthesis of porous AgPt bimetallic nanooctahedra with enriched Pt surface (denoted as AgPt@Pt nanooctahedra) by a selective etching strategy. The smart integration of geometric and electronic effect confers a substantial enhancement of desired dehydrogenation pathway as well as electro-oxidation activity for the formic acid oxidation reaction (FAOR). We anticipate that the obtained nanocatalyst may hold great promises in fuel cell devices, and furthermore, the facile synthetic strategy demonstrated here can be extendable for the fabrication of other multicomponent nanoalloys with desirable morphologies and enhanced electrocatalytic performances.
Deng, Weiping; Chen, Jiashu; Kang, Jincan; Zhang, Qinghong; Wang, Ye
2016-05-21
Functionalised carbon nanotube (CNT)-supported Au-Pd alloy nanoparticles were highly efficient catalysts for the aerobic oxidation of amines. We achieved the highest turnover frequencies (>1000 h(-1)) for the oxidative homocoupling of benzylamine and the oxidative dehydrogenation of dibenzylamine. We discovered a cooperative effect between Au-Pd nanoparticles and ketone/quinone groups on CNTs.
Ge, Hongyu; Jing, Yuanyuan; Yang, Xinzheng
2016-12-05
A series of cobalt complexes with acylmethylpyridinol and aliphatic PNP pincer ligands are proposed based on the active site structure of [Fe]-hydrogenase. Density functional theory calculations indicate that the total free energy barriers of the hydrogenation of CO 2 and dehydrogenation of formic acid catalyzed by these Co complexes are as low as 23.1 kcal/mol in water. The acylmethylpyridinol ligand plays a significant role in the cleavage of H 2 by forming a strong Co-H δ- ···H δ+ -O dihydrogen bond in a fashion of frustrated Lewis pairs.
Catalytic oxidation of light alkanes in presence of a base
Bhinde, M.V.; Bierl, T.W.
1998-03-03
The presence of a base in the reaction mixture in a metal-ligand catalyzed partial oxidation of alkanes results in sustained catalyst activity, and in greater percent conversion as compared with oxidation in the absence of base, while maintaining satisfactory selectivity for the desired oxidation, for example the oxidation of isobutane to isobutanol. 1 fig.
Manna, Joydev; Akbayrak, Serdar; Özkar, Saim
2017-12-15
Nickel(0) nanoparticles supported on cobalt ferrite (Ni 0 /CoFe 2 O 4 ), polydopamine coated cobalt ferrite (Ni 0 /PDA-CoFe 2 O 4 ) or silica coated cobalt ferrite (Ni 0 /SiO 2 -CoFe 2 O 4 ) are prepared and used as catalysts in hydrogen generation from the hydrolysis of ammonia borane at room temperature. Ni 0 /CoFe 2 O 4 (4.0% wt. Ni) shows the highest catalytic activity with a TOF value of 38.3min -1 in hydrogen generation from the hydrolysis of ammonia borane at 25.0±0.1°C. However, the initial catalytic activity of Ni 0 /CoFe 2 O 4 catalyst is not preserved in subsequent runs of hydrolysis. Coating the surface of cobalt ferrite support with polydopamine or silica leads to a significant improvement in the stability of catalysts. The TOF values of Ni 0 /PDA-CoFe 2 O 4 and Ni 0 /SiO 2 -CoFe 2 O 4 are found to be 7.6 and 5.3min -1 , respectively, at 25.0±0.1°C. Ni 0 /PDA-CoFe 2 O 4 catalyst shows high reusability as compared to the Ni 0 /CoFe 2 O 4 and Ni 0 /SiO 2 -CoFe 2 O 4 catalysts in hydrolytic dehydrogenation of ammonia borane at room temperature. All the catalysts are characterized by using a combination of various advanced analytical techniques. The results reveal that nickel nanoparticles with an average size of 12.3±0.7nm are well dispersed on the surface of PDA-CoFe 2 O 4 . . Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Studer, Armido; Curran, Dennis P.
2014-09-01
The electron is an efficient catalyst for conducting various types of radical cascade reaction that proceed by way of radical and radical ion intermediates. But because electrons are omnipresent, catalysis by electrons often passes unnoticed. In this Review, a simple analogy between acid/base catalysis and redox catalysis is presented. Conceptually, the electron is a catalyst in much the same way that a proton is a catalyst. The 'electron is a catalyst' paradigm unifies mechanistically an assortment of synthetic transformations that otherwise have little or no apparent relationship. Diverse radical cascades, including unimolecular radical substitution reactions (SRN1-type chemistry), base-promoted homolytic aromatic substitutions (BHAS), radical Heck-type reactions, radical cross-dehydrogenative couplings (CDC), direct arene trifluoromethylations and radical alkoxycarbonylations, can all be viewed as electron-catalysed reactions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McEntee, Monica; Tang, Wenjie; Neurock, Matthew
Here, the partial oxidation of model C 2–C 4 (acetic, propionic, and butyric) carboxylic acids on Au/TiO 2 catalysts consisting of Au particles ~3 nm in size was investigated using transmission infrared spectroscopy and density functional theory. All three acids readily undergo oxidative dehydrogenation on Au/TiO 2. Propionic and butyric acid dehydrogenate at the C2–C3 positions, whereas acetic acid dehydrogenates at the C1–C2 position. The resulting acrylate and crotonate intermediates are subsequently oxidized to form β-keto acids that decarboxylate. All three acids form a gold ketenylidene intermediate, Au 2C=C=O, along the way to their full oxidation to form CO 2.more » Infrared measurements of Au 2C=C=O formation as a function of time provides a surface spectroscopic probe of the kinetics for the activation and oxidative dehydrogenation of the alkyl groups in the carboxylate intermediates that form.« less
McEntee, Monica; Tang, Wenjie; Neurock, Matthew; ...
2014-12-12
Here, the partial oxidation of model C 2–C 4 (acetic, propionic, and butyric) carboxylic acids on Au/TiO 2 catalysts consisting of Au particles ~3 nm in size was investigated using transmission infrared spectroscopy and density functional theory. All three acids readily undergo oxidative dehydrogenation on Au/TiO 2. Propionic and butyric acid dehydrogenate at the C2–C3 positions, whereas acetic acid dehydrogenates at the C1–C2 position. The resulting acrylate and crotonate intermediates are subsequently oxidized to form β-keto acids that decarboxylate. All three acids form a gold ketenylidene intermediate, Au 2C=C=O, along the way to their full oxidation to form CO 2.more » Infrared measurements of Au 2C=C=O formation as a function of time provides a surface spectroscopic probe of the kinetics for the activation and oxidative dehydrogenation of the alkyl groups in the carboxylate intermediates that form.« less
Metal complexes of substituted Gable porphyrins as oxidation catalysts
Lyons, James E.; Ellis, Jr., Paul E.; Wagner, Richard W.
1996-01-01
Transition metal complexes of Gable porphyrins having two porphyrin rings connected through a linking group, and having on the porphyrin rings electron-withdrawing groups, such as halogen, nitro or cyano. These complexes are useful as catalysts for the oxidation of organic compounds, e.g. alkanes.
Perovskite catalysts for oxidative coupling
Campbell, K.D.
1991-06-25
Perovskites of the structure A[sub 2]B[sub 2]C[sub 3]O[sub 10] are useful as catalysts for the oxidative coupling of lower alkane to heavier hydrocarbons. A is alkali metal; B is lanthanide or lanthanum, cerium, neodymium, samarium, praseodymium, gadolinium or dysprosium; and C is titanium.
Perovskite catalysts for oxidative coupling
Campbell, Kenneth D.
1991-01-01
Perovskites of the structure A.sub.2 B.sub.2 C.sub.3 O.sub.10 are useful as catalysts for the oxidative coupling of lower alkane to heavier hydrocarbons. A is alkali metal; B is lanthanide or lanthanum, cerium, neodymium, samarium, praseodymium, gadolinium or dysprosium; and C is titanium.
NASA Astrophysics Data System (ADS)
Khatamian, M.; Khandar, A. A.; Haghighi, M.; Ghadiri, M.
2011-11-01
Nanosized ZSM-5 type ferrisilicates were successfully prepared using hydrothermal process. Several parameters including gel initiative compositions (Na+ or K+ alkali system), SiO2/Fe2O3 molar ratios and hydrothermal temperature were systematically investigated. The samples were characterized by XRD, TEM, SEM-EDS, BET surface area and ICP techniques. It was found that surface areas and the total pore volume increase with increasing in the SiO2/Fe2O3 molar ratio at Na-FZ ferrisilicates. The catalytic performance of the synthesized catalysts was evaluated in ethylbenzene dehydrogenation to styrene in the presence of N2O or steam at temperatures ranging from 400 °C to 660 °C under atmospheric pressure. The effects of gel initiative compositions, SiO2/Fe2O3 molar ratio as well as the hydrothermal synthesis temperature on the catalytic performance of these catalysts have been addressed. It was shown that styrene yield significantly influenced by altering in the SiO2/Fe2O3 ratio but was not greatly influenced by changes in hydrothermal synthesis temperatures. The comparison between performance of potassium and sodium containing catalysts was shown that the one with potassium has higher yield and selectivity toward styrene production at an optimum temperature of 610 °C.
The selective oxidation of alkanes is an industrially important process that is often plagued by low conversions and the formation of unwanted by-products. Research being conducted at the USEPA, implements a Green chemistry approach which is utilized to improve these difficult o...
2017-01-01
Hydrogenation reactions can be used to store energy in chemical bonds, and if these reactions are reversible, that energy can be released on demand. Some of the most effective transition metal catalysts for CO2 hydrogenation have featured pyridin-2-ol-based ligands (e.g., 6,6′-dihydroxybipyridine (6,6′-dhbp)) for both their proton-responsive features and for metal–ligand bifunctional catalysis. We aimed to compare bidentate pyridin-2-ol based ligands with a new scaffold featuring an N-heterocyclic carbene (NHC) bound to pyridin-2-ol. Toward this aim, we have synthesized a series of [Cp*Ir(NHC-pyOR)Cl]OTf complexes where R = tBu (1), H (2), or Me (3). For comparison, we tested analogous bipy-derived iridium complexes as catalysts, specifically [Cp*Ir(6,6′-dxbp)Cl]OTf, where x = hydroxy (4Ir) or methoxy (5Ir); 4Ir was reported previously, but 5Ir is new. The analogous ruthenium complexes were also tested using [(η6-cymene)Ru(6,6′-dxbp)Cl]OTf, where x = hydroxy (4Ru) or methoxy (5Ru); 4Ru and 5Ru were both reported previously. All new complexes were fully characterized by spectroscopic and analytical methods and by single-crystal X-ray diffraction for 1, 2, 3, 5Ir, and for two [Ag(NHC-pyOR)2]OTf complexes 6 (R = tBu) and 7 (R = Me). The aqueous catalytic studies of both CO2 hydrogenation and formic acid dehydrogenation were performed with catalysts 1–5. In general, NHC-pyOR complexes 1–3 were modest precatalysts for both reactions. NHC complexes 1–3 all underwent transformations under basic CO2 hydrogenation conditions, and for 3, we trapped a product of its transformation, 3SP, which we characterized crystallographically. For CO2 hydrogenation with base and dxbp-based catalysts, we observed that x = hydroxy (4Ir) is 5–8 times more active than x = methoxy (5Ir). Notably, ruthenium complex 4Ru showed 95% of the activity of 4Ir. For formic acid dehydrogenation, the trends were quite different with catalytic activity showing 4Ir ≫ 4Ru and 4Ir ≈ 5Ir. Secondary coordination sphere effects are important under basic hydrogenation conditions where the OH groups of 6,6′-dhbp are deprotonated and alkali metals can bind and help to activate CO2. Computational DFT studies have confirmed these trends and have been used to study the mechanisms of both CO2 hydrogenation and formic acid dehydrogenation. PMID:29540958
Siek, Sopheavy; Burks, Dalton B; Gerlach, Deidra L; Liang, Guangchao; Tesh, Jamie M; Thompson, Courtney R; Qu, Fengrui; Shankwitz, Jennifer E; Vasquez, Robert M; Chambers, Nicole; Szulczewski, Gregory J; Grotjahn, Douglas B; Webster, Charles Edwin; Papish, Elizabeth T
2017-03-27
Hydrogenation reactions can be used to store energy in chemical bonds, and if these reactions are reversible, that energy can be released on demand. Some of the most effective transition metal catalysts for CO 2 hydrogenation have featured pyridin-2-ol-based ligands (e.g., 6,6'-dihydroxybipyridine (6,6'-dhbp)) for both their proton-responsive features and for metal-ligand bifunctional catalysis. We aimed to compare bidentate pyridin-2-ol based ligands with a new scaffold featuring an N -heterocyclic carbene (NHC) bound to pyridin-2-ol. Toward this aim, we have synthesized a series of [Cp*Ir(NHC-py OR )Cl]OTf complexes where R = t Bu ( 1 ), H ( 2 ), or Me ( 3 ). For comparison, we tested analogous bipy-derived iridium complexes as catalysts, specifically [Cp*Ir(6,6'-dxbp)Cl]OTf, where x = hydroxy ( 4 Ir ) or methoxy ( 5 Ir ); 4 Ir was reported previously, but 5 Ir is new. The analogous ruthenium complexes were also tested using [(η 6 -cymene)Ru(6,6'-dxbp)Cl]OTf, where x = hydroxy ( 4 Ru ) or methoxy ( 5 Ru ); 4 Ru and 5 Ru were both reported previously. All new complexes were fully characterized by spectroscopic and analytical methods and by single-crystal X-ray diffraction for 1 , 2 , 3 , 5 Ir , and for two [Ag(NHC-py OR ) 2 ]OTf complexes 6 (R = t Bu) and 7 (R = Me). The aqueous catalytic studies of both CO 2 hydrogenation and formic acid dehydrogenation were performed with catalysts 1 - 5 . In general, NHC-py OR complexes 1 - 3 were modest precatalysts for both reactions. NHC complexes 1 - 3 all underwent transformations under basic CO 2 hydrogenation conditions, and for 3 , we trapped a product of its transformation, 3 SP , which we characterized crystallographically. For CO 2 hydrogenation with base and dxbp-based catalysts, we observed that x = hydroxy ( 4 Ir ) is 5-8 times more active than x = methoxy ( 5 Ir ). Notably, ruthenium complex 4 Ru showed 95% of the activity of 4 Ir . For formic acid dehydrogenation, the trends were quite different with catalytic activity showing 4 Ir ≫ 4 Ru and 4 Ir ≈ 5 Ir . Secondary coordination sphere effects are important under basic hydrogenation conditions where the OH groups of 6,6'-dhbp are deprotonated and alkali metals can bind and help to activate CO 2 . Computational DFT studies have confirmed these trends and have been used to study the mechanisms of both CO 2 hydrogenation and formic acid dehydrogenation.
Kothandaraman, Jotheeswari; Czaun, Miklos; Goeppert, Alain; Haiges, Ralf; Jones, John-Paul; May, Robert B; Prakash, G K Surya; Olah, George A
2015-04-24
Due to the intermittent nature of most renewable energy sources, such as solar and wind, energy storage is increasingly required. Since electricity is difficult to store, hydrogen obtained by electrochemical water splitting has been proposed as an energy carrier. However, the handling and transportation of hydrogen in large quantities is in itself a challenge. We therefore present here a method for hydrogen storage based on a CO2 (HCO3 (-) )/H2 and formate equilibrium. This amine-free and efficient reversible system (>90 % yield in both directions) is catalyzed by well-defined and commercially available Ru pincer complexes. The formate dehydrogenation was triggered by simple pressure swing without requiring external pH control or the change of either the solvent or the catalyst. Up to six hydrogenation-dehydrogenation cycles were performed and the catalyst performance remained steady with high selectivity (CO free H2 /CO2 mixture was produced). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Wang, Haoren; Wang, Hui; Li, Xiuyi; Li, Chunyi
2017-06-01
Different with Wang et. al.'s study, we found that polymeric Si-O-Sn2+ rather than Ni-Sn alloy and metallic Sn are active species in silica-supported tin oxide catalysts for dehydrogenation of propane. The results showed that high surface area of mesoporous silica brought about high dispersion of tin oxide species, as a result, catalytic activity and stability were both improved. DRUV-vis, XPS, TPR and XRD studies of fresh and reduced catalysts indicated that the deactivation was related to the reduction of active species rather than the coke formation since active tin species cannot maintain its oxidation state at reaction conditions (high temperature and reducing atmosphere). The formed Ni3Sn2 alloy after reduction just functioned as promoter which accelerated the desorption of H2 and regeneration of active site. A synergy effect between active tin species and Ni3Sn2 alloy were observed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, Nicholas C.; Boote, Brett W.; Naik, Pranjali
Ceria (CeO 2) and sodium-modified ceria (Ce-Na) were prepared through combustion synthesis. Palladium was deposited onto the supports (Pd/CeO 2 and Pd/Ce-Na) and their activity for the aqueous-phase transfer hydrogenation of phenol using 2-propanol under liquid flow conditions was studied. Pd/Ce-Na showed a marked increase (6×) in transfer hydrogenation activity over Pd/CeO 2. Material characterization indicated that water-stable sodium species were not doped into the ceria lattice, but rather existed as subsurface carbonates. Modification of ceria by sodium provided more adsorption and redox active sites (i.e. defects) for 2-propanol dehydrogenation. This effect was an intrinsic property of the Ce-Na supportmore » and independent of Pd. The redox sites active for 2-propanol dehydrogenation were thermodynamically equivalent on both supports/catalysts. At high phenol concentrations, the reaction was limited by 2-propanol adsorption. Furthermore, the difference in catalytic activity was attributed to the different numbers of 2-propanol adsorption and redox active sites on each catalyst.« less
Aromatization of n-hexane over ZnO/H-ZSM-5 catalysts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kanai, J.; Kawata, N.
The mechanism of transformation of n-hexane into aromatics over ZnO/H-ZSM-5 catalyst has been investigated. The yields of aromatics in the transformation of n-hexane over H-ZSM-5 are enhanced by mechanical mixing of ZnO as well as by ion exchange or impregnation of zinc cation. It is concluded that aromatization of n-hexane over ZnO/H-ZSM-5 is a bifunctional reaction, and that ZnO as well as H-ZSM-5 takes part both in the activation of n-hexane and in the aromatization of lower olefins. By contrasting the conversion of n-hexane with that of 1-hexane, it is found that aromatization of n-hexane over ZnO/H-ZSM-5 involves both themore » dehydrogenation of n-hexane into hexene and that of the oligomerized products into aromatics. It is proposed that ZnO catalyzes the dehydrogenation of n-hexane into hexene and of the oligomerized products into aromatics.« less
Metal complexes of substituted Gable porphyrins as oxidation catalysts
Lyons, J.E.; Ellis, P.E. Jr.; Wagner, R.W.
1996-01-02
Transition metal complexes of Gable porphyrins are disclosed having two porphyrin rings connected through a linking group, and having on the porphyrin rings electron-withdrawing groups, such as halogen, nitro or cyano. These complexes are useful as catalysts for the oxidation of organic compounds, e.g. alkanes.
Catalytic amino acid production from biomass-derived intermediates.
Deng, Weiping; Wang, Yunzhu; Zhang, Sui; Gupta, Krishna M; Hülsey, Max J; Asakura, Hiroyuki; Liu, Lingmei; Han, Yu; Karp, Eric M; Beckham, Gregg T; Dyson, Paul J; Jiang, Jianwen; Tanaka, Tsunehiro; Wang, Ye; Yan, Ning
2018-05-15
Amino acids are the building blocks for protein biosynthesis and find use in myriad industrial applications including in food for humans, in animal feed, and as precursors for bio-based plastics, among others. However, the development of efficient chemical methods to convert abundant and renewable feedstocks into amino acids has been largely unsuccessful to date. To that end, here we report a heterogeneous catalyst that directly transforms lignocellulosic biomass-derived α-hydroxyl acids into α-amino acids, including alanine, leucine, valine, aspartic acid, and phenylalanine in high yields. The reaction follows a dehydrogenation-reductive amination pathway, with dehydrogenation as the rate-determining step. Ruthenium nanoparticles supported on carbon nanotubes (Ru/CNT) exhibit exceptional efficiency compared with catalysts based on other metals, due to the unique, reversible enhancement effect of NH 3 on Ru in dehydrogenation. Based on the catalytic system, a two-step chemical process was designed to convert glucose into alanine in 43% yield, comparable with the well-established microbial cultivation process, and therefore, the present strategy enables a route for the production of amino acids from renewable feedstocks. Moreover, a conceptual process design employing membrane distillation to facilitate product purification is proposed and validated. Overall, this study offers a rapid and potentially more efficient chemical method to produce amino acids from woody biomass components. Copyright © 2018 the Author(s). Published by PNAS.
Using microkinetic analysis to search for novel anhydrous formaldehyde production catalysts
NASA Astrophysics Data System (ADS)
Li, Han-Jung; Lausche, Adam C.; Peterson, Andrew A.; Hansen, Heine A.; Studt, Felix; Bligaard, Thomas
2015-11-01
Direct dehydrogenation of methanol to produce anhydrous formaldehyde is investigated using periodic density functional theory (DFT) and combining the microkinetic model to estimate rates and selectivities on stepped (211) surfaces under a desired reaction condition. Binding energies of reaction intermediates and transition state energies for each elementary reaction can be accurately scaled with CHO and OH binding energies as the only descriptors. Based on these two descriptors, a steady-state microkinetic model is constructed with a piecewise adsorbate-adsorbate interaction model that explicitly includes the effects of adsorbate coverage on the rates and selectivities as well as the volcano plots are obtained. Our results show that most of the stepped (211) pure-metallic surfaces such as Au, Pt, Pd, Rh, Ru, Ni, Fe, and Co are located in a region of low activity and selectivity toward CH2O production due to higher rate for CH2O dehydrogenation than CH2O desorption. The selectivities toward CH2O production on Zn, Cu, and Ag surfaces are located on the boundary between the high and low selectivity regions. To find suitable catalysts for anhydrous CH2O production, a large number of A3B-type transition metal alloys are screened based on their predicted rates and selectivities, as well as their estimated stabilities and prices. We finally propose several promising candidates for the dehydrogenation of CH3OH.
NASA Astrophysics Data System (ADS)
El-Eskandarany, M. Sherif; Shaban, Ehab; Ali, Naser; Aldakheel, Fahad; Alkandary, Abdullah
2016-11-01
One practical solution for utilizing hydrogen in vehicles with proton-exchange fuel cells membranes is storing hydrogen in metal hydrides nanocrystalline powders. According to its high hydrogen capacity and low cost of production, magnesium hydride (MgH2) is a desired hydrogen storage system. Its slow hydrogenation/dehydrogenation kinetics and high thermal stability are the major barriers restricting its usage in real applications. Amongst the several methods used for enhancing the kinetics behaviors of MgH2 powders, mechanically milling the powders with one or more catalyst species has shown obvious advantages. Here we are proposing a new approach for gradual doping MgH2 powders with Ni particles upon ball milling the powders with Ni-balls milling media. This proposed is-situ method showed mutually beneficial for overcoming the agglomeration of catalysts and the formation of undesired Mg2NiH4 phase. Moreover, the decomposition temperature and the corresponding activation energy showed low values of 218 °C and 75 kJ/mol, respectively. The hydrogenation/dehydrogenation kinetics examined at 275 °C of the powders milled for 25 h took place within 2.5 min and 8 min, respectively. These powders containing 5.5 wt.% Ni performed 100-continuous cycle-life time of hydrogen charging/discharging at 275 °C within 56 h without failure or degradation.
Cui, Li-Qian; Liu, Kai; Zhang, Chi
2011-04-07
Catalytic oxidation of benzylic C-H bonds could be efficiently realized using IBS as a catalyst which was generated in situ from the oxidation of sodium 2-iodobenzenesulfonate (1b) by Oxone in the presence of a phase-transfer catalyst, tetra-n-butylammonium hydrogen sulfate, in anhydrous acetonitrile at 60 °C. Various alkylbenzenes, including toluenes and ethylbenzenes, several oxygen-containing functionalities substituted alkylbenzenes, and a cyclic benzyl ether could be efficiently oxidized. And, the same reagent system of cat. 1b/Oxone/cat. n-Bu(4)NHSO(4) could be applied to the effective oxidation of alkanes as well.
Sources of deactivation during glycerol conversion on Ni/γ-Al 2 O 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chimentão, R. J.; Miranda, B. C.; Szanyi, J.
Hydrogenolysis of glycerol was studied using a diluted aqueous solution of glycerol in gas phase and atmospheric pressure on Ni/γ-Al2O3 catalyst. The catalytic transformation of glycerol generates products derived from dehydration, dehydrogenation, hydrogenolysis and condensation reactions. Deep hydrogenolysis route to produce CH4 prevails in the first few hours of reaction. As the reaction time progress, dehydration-dehydrogenation products start to appear. Here, a description of the deactivation sources and its effects on the catalytic performance of Ni catalyst was proposed. The catalyst was characterized before and after the catalytic reaction by high-resolution transmission electron microscopy (HRTEM) and by employing Fourier transformedmore » infrared spectroscopy (FTIR) of adsorbed CO. A source of deactivation was due to carbonaceous deposition. FTIR at low CO dosing pressure reveal bands assignments species essentially due to linear and bridge carbonyls, whereas high pressure CO dosing produces a complex spectra due to polycarbonyls. X-ray absorption near edge structure (XANES) analysis was employed to reveal the initial degree of reduction of the fresh catalyst. The oxidation of metallic Ni in the course of reaction may also be considered as a source of deactivation. Ni oxide species promote dehydration routes. Alumina support facilitates nickel species to be more active toward interacting with glycerol. Dehydration, which takes place on the acid sites, is the mainly route related to the generation of carbon deposition and to the observed catalyst deactivation. Another source of deactivation was due to carbiding of Ni to form Ni3C. The regeneration of used Ni catalyst was achieved by oxidation-reduction steps at 723 K.« less
Catalytic total hydrodeoxygenation of biomass-derived polyfunctionalized substrates to alkanes.
Nakagawa, Yoshinao; Liu, Sibao; Tamura, Masazumi; Tomishige, Keiichi
2015-04-13
The total hydrodeoxygenation of carbohydrate-derived molecules to alkanes, a key reaction in the production of biofuel, was reviewed from the aspect of catalysis. Noble metals (or Ni) and acid are the main components of the catalysts, and group 6 or 7 metals such as Re are sometimes added as modifiers of the noble metal. The main reaction route is acid-catalyzed dehydration plus metal-catalyzed hydrogenation, and in some systems metal-catalyzed direct CO dissociation is involved. The appropriate active metal, acid strength, and reaction conditions depend strongly on the reactivity of the substrate. Reactions that use Pt or Pd catalysts supported on Nb-based acids or relatively weak acids are suitable for furanic substrates. Carbohydrates themselves and sugar alcohols undergo CC dissociation easily. The systems that use metal-catalyzed direct CO dissociations can give a higher yield of the corresponding alkane from carbohydrates and sugar alcohols. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Direct hydrodeoxygenation of raw woody biomass into liquid alkanes.
Xia, Qineng; Chen, Zongjia; Shao, Yi; Gong, Xueqing; Wang, Haifeng; Liu, Xiaohui; Parker, Stewart F; Han, Xue; Yang, Sihai; Wang, Yanqin
2016-03-30
Being the only sustainable source of organic carbon, biomass is playing an ever-increasingly important role in our energy landscape. The conversion of renewable lignocellulosic biomass into liquid fuels is particularly attractive but extremely challenging due to the inertness and complexity of lignocellulose. Here we describe the direct hydrodeoxygenation of raw woods into liquid alkanes with mass yields up to 28.1 wt% over a multifunctional Pt/NbOPO4 catalyst in cyclohexane. The superior performance of this catalyst allows simultaneous conversion of cellulose, hemicellulose and, more significantly, lignin fractions in the wood sawdust into hexane, pentane and alkylcyclohexanes, respectively. Investigation on the molecular mechanism reveals that a synergistic effect between Pt, NbOx species and acidic sites promotes this highly efficient hydrodeoxygenation of bulk lignocellulose. No chemical pretreatment of the raw woody biomass or separation is required for this one-pot process, which opens a general and energy-efficient route for converting raw lignocellulose into valuable alkanes.
Direct hydrodeoxygenation of raw woody biomass into liquid alkanes
Xia, Qineng; Chen, Zongjia; Shao, Yi; Gong, Xueqing; Wang, Haifeng; Liu, Xiaohui; Parker, Stewart F.; Han, Xue; Yang, Sihai; Wang, Yanqin
2016-01-01
Being the only sustainable source of organic carbon, biomass is playing an ever-increasingly important role in our energy landscape. The conversion of renewable lignocellulosic biomass into liquid fuels is particularly attractive but extremely challenging due to the inertness and complexity of lignocellulose. Here we describe the direct hydrodeoxygenation of raw woods into liquid alkanes with mass yields up to 28.1 wt% over a multifunctional Pt/NbOPO4 catalyst in cyclohexane. The superior performance of this catalyst allows simultaneous conversion of cellulose, hemicellulose and, more significantly, lignin fractions in the wood sawdust into hexane, pentane and alkylcyclohexanes, respectively. Investigation on the molecular mechanism reveals that a synergistic effect between Pt, NbOx species and acidic sites promotes this highly efficient hydrodeoxygenation of bulk lignocellulose. No chemical pretreatment of the raw woody biomass or separation is required for this one-pot process, which opens a general and energy-efficient route for converting raw lignocellulose into valuable alkanes. PMID:27025898
Fujita, Ken-Ichi; Wada, Tomokatsu; Shiraishi, Takumi
2017-08-28
A new hydrogen storage system based on the hydrogenation and dehydrogenation of nitrogen heterocyclic compounds, employing a single iridium catalyst, has been developed. Efficient hydrogen storage using relatively small amounts of solvent compared with previous systems was achieved by this new system. Reversible transformations between 2,5-dimethylpyrazine and 2,5-dimethylpiperazine, accompanied by the uptake and release of three equivalents of hydrogen, could be repeated almost quantitatively at least four times without any loss of efficiency. Furthermore, hydrogen storage under solvent-free conditions was also accomplished. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Renewable liquid fuels from catalytic reforming of biomass-derived oxygenated hydrocarbons
NASA Astrophysics Data System (ADS)
Barrett, Christopher J.
Diminishing fossil fuel reserves and growing concerns about global warming require the development of sustainable sources of energy. Fuels for use in the transportation sector must have specific physical properties that allow for efficient distribution, storage, and combustion; these requirements are currently fulfilled by petroleum-derived liquid fuels. The focus of this work has been the development of two new biofuels that have the potential to become widely used transportation fuels from carbohydrate intermediates. Our first biofuel has cetane numbers ranging from 63 to 97 and is comprised of C7 to C15 straight chain alkanes. These alkanes can be blended with diesel like fuels or with P-series biofuel. Production involves a solid base catalyzed aldol condensation with mixed Mg-Al-oxide between furfural or 5-hydroxymethylfurfural (HMF) and acetone, followed by hydrogenation over Pd/Al2O3, and finally hydrogenation/dehydration over Pt/SiO2-Al2O3. Water was the solvent for all process steps, except for the hydrogenation/dehydration stage where hexadecane was co-fed to spontaneously separate out all alkane products and eliminate the need for energy intensive distillation. A later optimization identified Pd/MgO-ZrO2 as a hydrothermally stable bifunctional catalyst to replace Pd/Al2O3 and the hydrothermally unstable Mg-Al-oxide catalysts along with optimizing process parameters, such as temperature and molar ratios of reactants to maximize yields to heavier alkanes. Our second biofuel involved creating an improved process to produce HMF through the acid-catalyzed dehydration of fructose in a biphasic reactor. Additionally, we developed a technique to further convert HMF into 2,5-dimethylfuran (DMF) by hydrogenolysis of C-O bonds over a copper-ruthenium catalyst. DMF has many properties that make it a superior blending agent to ethanol: it has a high research octane number at 119, a 40% higher energy density than ethanol, 20 K higher boiling point, and is insoluble in water unlike ethanol. Continued work identified the cause of copper catalyst deactivation in HMF hydrogenolysis to be coking, minimized coking through varying temperature, pressure, solvent, and catalyst process variables, and identified a suitable regeneration technique through reduction.
NASA Astrophysics Data System (ADS)
Glebov, L. S.; Kliger, G. A.
1989-10-01
New synthetic possibilities of the reduced promoted fused iron catalyst in intermolecular and intramolecular amination, cyanation, hydrogenation-dehydrogenation, and hydrodeoxygenation reactions and intermolecular and intramolecular dehydration, polymerisation, and isotope exchange are examined. The mechanisms and kinetics of the reactions leading to the synthesis of amines, alcohols, hydrocarbons, and other organic compunds are discussed. A laser Raman spectroscopic method is described for the investigation of heterogeneous organic catalysis in situ. The bibliography includes 148 references.
Chow, Chun P; Shea, Kenneth J
2005-03-23
The chiral ruthenium salen complex, 13b, functions as an efficient catalyst for the sequential oxidation and asymmetric Diels-Alder cycloaddition of hydroxamic acids and N-hydroxy formate esters. This result provides evidence for the formation of a ruthenium-nitroso formate (acyl nitroso) intermediate. The Diels-Alder precursors are prepared from simple building blocks, and the cycloadducts, bridged oxazinolactams, can serve as useful intermediates in organic synthesis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zadehahmadi, Farnaz; Tangestaninejad, Shahram, E-mail: stanges@sci.ui.ac.ir; Moghadam, Majid, E-mail: moghadamm@sci.ui.ac.ir
2014-10-15
In the present work, chloromethylated MIL-101(Cr) modified with imidazole, Im-MIL-101, was applied as a support for immobilizing of tetraphenylporphyrinatomangenese(III) chloride. The imidazole-bound MIL-101, Im-MIL-101, not only used as support for immobilization of manganese porphyrin but also applied as a heterogeneous axial base. The Mn(TPP)Cl@Im-MIL-101 catalyst was characterized by UV–vis, FT-IR, X-ray diffraction (XRD), N{sub 2} adsorption, field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray (EDX), elemental analysis and inductively coupled plasma (ICP) methods. The catalytic activity of this new catalytic system was investigated in the alkene epoxidation and alkane hydroxylation using NaIO{sub 4} as an oxidant in CH{sub 3}CN/H{submore » 2}O at room temperature. This heterogeneous catalyst is highly efficient, stable and reusable in the oxidation of hydrocarbons. - Highlights: • MIL-101 was modified by covalent post synthetic modification. • Mn(TPP)Cl was anchored to imidazole modified MIL-101 by covalent attachment. • A heterogeneous catalyst was prepared. • The catalyst was used for epoxidation of alkenes and hydroxylation of alkanes. • The catalyst was reusable.« less
Effect of operating conditions on hydrothermal liquefaction of Spirulina over Ni/TiO2 catalyst.
Tian, Wenying; Liu, Renlong; Wang, Wenjia; Yin, Zhaosen; Yi, Xuewen
2018-05-04
In this study, the effects of reaction temperature, holding time, algae/water ratio and catalyst dosage on the yield and quality of bio-oil produced via the HTL of Spirulina were investigated. The maximum bio-oil yield (43.05 wt%) and energy recovery (ER) value (64.62%) were obtained at 260 °C for 30 min, with an algae/water ratio of 1/4 and a catalyst dosage of 5 wt%. The bio-oil samples were characterized by elemental analysis, Gas Chromatography-Mass Spectrometry (GC-MS), Fourier Transform Infrared (FI-IR), and Thermo-gravimetric analysis (TGA). Results indicated that higher heating values (HHVs) of bio-oils were in the range of 27.28-36.01 MJ/kg, and main compounds of bio-oil were amides, esters, nitriles, hydroperoxide and alkanes. Adding of the Ni/TiO 2 catalyst can decrease the contents of oxygenated and nitrogenous compounds and promote the formation of desirable components such as esters and alkanes. Copyright © 2018 Elsevier Ltd. All rights reserved.
Method and System for Hydrogen Evolution and Storage
Thorn, David L.; Tumas, William; Hay, P. Jeffrey; Schwarz, Daniel E.; Cameron, Thomas M.
2008-10-21
A method and system for storing and evolving hydrogen employ chemical compounds that can be hydrogenated to store hydrogen and dehydrogenated to evolve hydrogen. A catalyst lowers the energy required for storing and evolving hydrogen. The method and system can provide hydrogen for devices that consume hydrogen as fuel.
Dehydriding properties of Ti or/and Zr-doped sodium aluminum hydride prepared by ball-milling
NASA Astrophysics Data System (ADS)
Xiao, Xue-Zhang; Chen, Li-Xin; Wang, Xin-Hua; Li, Shou-Quan; Hang, Zhou-Ming; Chen, Chang-Pin; Wang, Qi-Dong
2007-12-01
The NaAlH4 complex is attracting great attention for its potential applications in hydrogen-powered fuel-cell vehicles due to its high hydrogen storage capacity and suitable thermodynamic properties. However, its practicable hydrogen storage capacity presently obtained is less than the theoretical capacity (5.6 wt.%). To improve the hydrogen capacity, we chose metallic Ti or/and Zr powder as catalyst dopants, and prepared the sodium aluminum hydride by hydrogenation of ball-milled NaH/Al mixture containing 10 mol% dopants with different proportions of Ti and Zr, and then investigated the effects on their hydrogen storage (dehydriding) properties. The results showed that different catalyst dopants affected the dehydriding properties greatly. The catalysis of metal Ti as a catalyst dopant alone on dehydriding kinetics for the entire dehydrogenation process of ball-milled (NaH/Al) composite was higher than that of adopting Zr alone. The synergistic catalytic effect of Ti and Zr together as co-dopants on the dehydrogenation process of (NaH/Al) composite was higher than that using only Ti or Zr as dopant individually. The composite doped with proper proportion of Ti and Zr together (8 mol% Ti+ 2 mol% Zr) as co-dopants exhibited the highest dehydriding kinetic property and desorption capacity.
NASA Astrophysics Data System (ADS)
Wang, Tehua; Chong, Siying; Wang, Tongtong; Lu, Huiyi; Ji, Min
2018-01-01
In order to correlate the physicochemical properties of carbon-covered alumina (CCA) materials with their catalytic performance for oxidative dehydrogenation of ethylbenzene with CO2 (CO2-ODEB), a series of CCA materials with diverse carbon contents (8.7-31.3 wt%) and pyrolysis temperatures (600-800 °C), which were synthesized via an impregnation method followed by pyrolysis, were applied. These catalytic materials were characterized by TGA, N2 physisorption, XRD, Raman spectroscopy and XPS techniques. It was found that the catalytic performance of these CCA materials highly depended on their physicochemical properties, and the optimum CCA catalyst exhibited much better catalytic stability than conventional hydroxyl carbon nanotubes. Below an optimum value of carbon content, the CCA catalyst preserved the main pore characteristics of the Al2O3 support and its catalytic activity increased with the carbon content. Excessive carbon loading resulted in significant textural alterations and thereby decreased both the ethylbenzene conversion and styrene selectivity. On the other hand, high pyrolysis temperature was detrimental to the ordered graphitic structure of the carbon species within the Al2O3 pore. The decreased ordered graphitic degree was found to be associated with the loss of the surface active carbonyl groups, consequently hampering the catalytic efficiency of the CCA catalyst.
Pylypko, Sergii; Petit, Eddy; Yot, Pascal G; Salles, Fabrice; Cretin, Marc; Miele, Philippe; Demirci, Umit B
2015-05-04
Hydrazine bisborane N2H4(BH3)2 (HBB; 16.8 wt %) recently re-emerged as a potential hydrogen storage material. However, such potential is controversial: HBB was seen as a hazardous compound up to 2010, but now it would be suitable for hydrogen storage. In this context, we focused on fundamentals of HBB because they are missing in the literature and should help to shed light on its effective potential while taking into consideration any risk. Experimental/computational methods were used to get a complete characterization data sheet, including, e.g., XRD, NMR, FTIR, Raman, TGA, and DSC. From the reported results and discussion, it is concluded that HBB has potential in the field of chemical hydrogen storage given that both thermolytic and hydrolytic dehydrogenations were analyzed. In solid-state chemical hydrogen storage, it cannot be used in the pristine state (risk of explosion during dehydrogenation) but can be used for the synthesis of derivatives with improved dehydrogenation properties. In liquid-state chemical hydrogen storage, it can be studied for room-temperature dehydrogenation, but this requires the development of an active and selective metal-based catalyst. HBB is a thus a candidate for chemical hydrogen storage.
Tsai, Yi-Fang; Luo, Wen-I; Chang, Jen-Lin; Chang, Chun-Wei; Chuang, Huai-Chun; Ramu, Ravirala; Wei, Guor-Tzo; Zen, Jyh-Myng; Yu, Steve S-F
2017-08-21
An unprecedented method for the efficient conversion of C 3 -C 12 linear alkanes to their corresponding primary alcohols mediated by the membrane-bound alkane hydroxylase (AlkB) from Pseudomonas putida GPo1 is demonstrated. The X-ray absorption spectroscopy (XAS) studies support that electrons can be transferred from the reduced AlkG (rubredoxin-2, the redox partner of AlkB) to AlkB in a two-phase manner. Based on this observation, an approach for the electrocatalytic conversion from alkanes to alcohols mediated by AlkB using an AlkG immobilized screen-printed carbon electrode (SPCE) is developed. The framework distortion of AlkB-AlkG adduct on SPCE surface might create promiscuity toward gaseous substrates. Hence, small alkanes including propane and n-butane can be accommodated in the hydrophobic pocket of AlkB for C-H bond activation. The proof of concept herein advances the development of artificial C-H bond activation catalysts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gairbekov, T.M.; Takaeva, M.I.; Khadzhiev, S.N.
1992-05-10
Despite the extensive studies on catalysis on zeolites, the question of the mechanism of the reactions of cracking and aromatization of hydrocarbons is still debated. The classic Whitmore theory hypothesizes that cracking of alkanes and alkenes takes place through the formation of the same intermediate trivalent carbenium ions of the (C{sub n}H{sub 2n+1}){sup +} type. Ola`s protolytic mechanism hypothesizes nonclassic five- (four-)coordinated ions of the (C{sub n}H{sub 2n+3}){sup +} type for cracking of alkanes and classic carbenium ions for alkenes. When the classic mechanism occurs on zeolites, an analogous effect on the rate of the reactions of alkanes and alkenesmore » with the molecular weight of the starting hydrocarbons and similar compositions of the products obtained should be predicted. The authors investigated the transformation of individual n-alkanes and n-1-alkenes of C{sub 6}-C{sub 10} composition in the presence of a catalyst synthesized by addition of 30 wt.% decationized ultrahigh-silicon zeolite of the ZSM type (Si/Al - 16) modified with 1 wt.% zinc on {gamma}-Al{sub 2}O{sub 3}. The experiment was conducted on a flow-type laboratory setup at 425{degrees}C in conditions of the minimum effect of diffusion factors with the method described in detail previously. 13 refs., 4 figs., 1 tab.« less
Song, Hai-Jie; Deng, Jin; Cui, Min-Shu; Li, Xing-Long; Liu, Xin-Xin; Zhu, Rui; Wu, Wei-Peng; Fu, Yao
2015-12-21
Using a metal triflate and Pd/C as catalysts, alkanes were prepared from bioderived furans in a one-pot hydrodeoxygenation (HDO) process. During the reaction, the metal triflate plays a crucial role in the ring-opening HDO of furan compounds. The entire reaction process has goes through two major phases: at low temperatures, saturation of the exocyclic double bond and furan ring are catalyzed by Pd/C; at high temperatures, the HDO of saturated furan compounds is catalyzed by the metal triflate. The reaction mechanism was verified by analyzing the changes of the intermediates during the reaction. In addition, different metal triflates, solvents, and catalyst recycling were also investigated. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Alotaibi, Mshari A; Kozhevnikova, Elena F; Kozhevnikov, Ivan V
2012-07-21
Acidic heteropoly salt Cs(2.5)H(0.5)PW(12)O(40) doped with Pt nanoparticles is a highly active and selective catalyst for one-step hydrogenation of methyl isobutyl and diisobutyl ketones to the corresponding alkanes in the gas phase at 100 °C with 97-99% yield via metal-acid bifunctional catalysis.
Computational Study of Low-Temperature Catalytic C-C Bond Activation of Alkanes for Portable Power
2013-06-05
inhibiting the reaction. We found that Fluorinated phosphines are sufficiently π-accepting to satisfy this role. In our next step, we wanted to determine...of butane by Sen’s catalyst, Chepaikin et al. [5] proposed that CH cleavage occurs first. But the resulting catalyst fragment “X” is so electrophilic
El-Eskandarany, M. Sherif; Shaban, Ehab; Ali, Naser; Aldakheel, Fahad; Alkandary, Abdullah
2016-01-01
One practical solution for utilizing hydrogen in vehicles with proton-exchange fuel cells membranes is storing hydrogen in metal hydrides nanocrystalline powders. According to its high hydrogen capacity and low cost of production, magnesium hydride (MgH2) is a desired hydrogen storage system. Its slow hydrogenation/dehydrogenation kinetics and high thermal stability are the major barriers restricting its usage in real applications. Amongst the several methods used for enhancing the kinetics behaviors of MgH2 powders, mechanically milling the powders with one or more catalyst species has shown obvious advantages. Here we are proposing a new approach for gradual doping MgH2 powders with Ni particles upon ball milling the powders with Ni-balls milling media. This proposed is-situ method showed mutually beneficial for overcoming the agglomeration of catalysts and the formation of undesired Mg2NiH4 phase. Moreover, the decomposition temperature and the corresponding activation energy showed low values of 218 °C and 75 kJ/mol, respectively. The hydrogenation/dehydrogenation kinetics examined at 275 °C of the powders milled for 25 h took place within 2.5 min and 8 min, respectively. These powders containing 5.5 wt.% Ni performed 100-continuous cycle-life time of hydrogen charging/discharging at 275 °C within 56 h without failure or degradation. PMID:27849033
Bernskoetter, Wesley H; Hazari, Nilay
2017-04-18
New and sustainable energy vectors are required as a consequence of the environmental issues associated with the continued use of fossil fuels. H 2 is a potential clean energy source, but as a result of problems associated with its storage and transport as a gas, chemical H 2 storage (CHS), which involves the dehydrogenation of small molecules, is an attractive alternative. In principle, formic acid (FA, 4.4 wt % H 2 ) and methanol (MeOH, 12.6 wt % H 2 ) can be obtained renewably and are excellent prospective liquid CHS materials. In addition, MeOH has considerable potential both as a direct replacement for gasoline and as a fuel cell input. The current commercial syntheses of FA and MeOH, however, use nonrenewable feedstocks and will not facilitate the use of these molecules for CHS. An appealing option for the sustainable synthesis of both FA and MeOH, which could be implemented on a large scale, is the direct metal catalyzed hydrogenation of CO 2 . Furthermore, given that CO 2 is a readily available, nontoxic and inexpensive source of carbon, it is expected that there will be economic and environmental benefits from using CO 2 as a feedstock. One strategy to facilitate both the dehydrogenation of FA and MeOH and the hydrogenation of CO 2 and H 2 to FA and MeOH is to utilize a homogeneous transition metal catalyst. In particular, the development of catalysts based on first row transition metals, which are cheaper, and more abundant than their precious metal counterparts, is desirable. In this Account, we describe recent advances in the development of iron and cobalt systems for the hydrogenation of CO 2 to FA and MeOH and the dehydrogenation of FA and MeOH and provide a brief comparison between precious metal and base metal systems. We highlight the different ligands that have been used to stabilize first row transition metal catalysts and discuss the use of additives to promote catalytic activity. In particular, the Account focuses on the crucial role that alkali metal Lewis acid cocatalysts can play in promoting increased activity and catalyst stability for first row transition metal systems. We relate these effects to the nature of the elementary steps in the catalytic cycle and describe how the Lewis acids stabilize the crucial transition states. For all four transformations, we discuss in detail the currently proposed catalytic pathways, and throughout the Account we identify mechanistic similarities among catalysts for the four processes. The limitations of current catalytic systems are detailed, and suggestions are provided on the improvements that are likely required to develop catalysts that are more stable, active, and practical.
Zell, Thomas; Milstein, David
2015-07-21
The substitution of expensive and potentially toxic noble-metal catalysts by cheap, abundant, environmentally benign, and less toxic metals is highly desirable and in line with green chemistry guidelines. We have recently discovered a new type of metal-ligand cooperation, which is based on the reversible dearomatization/aromatization of different heteroaromatic ligand cores caused by deprotonation/protonation of the ligand. More specifically, we have studied complexes of various transition metals (Ru, Fe, Co, Rh, Ir, Ni, Pd, Pt, and Re) bearing pyridine- and bipyridine-based PNP and PNN pincer ligands, which have slightly acidic methylene protons. In addition, we have discovered long-range metal-ligand cooperation in acridine-based pincer ligands, where the cooperation takes place at the electrophilic C-9 position of the acridine moiety leading to dearomatization of its middle ring. This type of metal-ligand cooperation was used for the activation of chemical bonds, including H-H, C-H (sp(2) and sp(3)), O-H, N-H, and B-H bonds. This unusual reactivity likely takes place in various catalytic hydrogenation, dehydrogenation, and related reactions. In this Account, we summarize our studies on novel bifunctional iron PNP and PNN pincer complexes, which were designed on the basis of their ruthenium congeners. Iron PNP pincer complexes serve as efficient (pre)catalysts for hydrogenation and dehydrogenation reactions under remarkably mild conditions. Their catalytic applications include atom-efficient and industrially important hydrogenation reactions of ketones, aldehydes, and esters to the corresponding alcohols. Moreover, they catalyze the hydrogenation of carbon dioxide to sodium formate in the presence of sodium hydroxide, the selective decomposition of formic acid to carbon dioxide and hydrogen, and the E-selective semihydrogenation of alkynes to give E-alkenes. These catalysts feature, compared to other iron-based catalysts, very high catalytic activities which in some cases can even exceed those of state-of-the-art noble-metal catalysts. For the iron PNP systems, we describe the synthesis of the pyridine- and acridine-based PNP iron complexes and their performances and limitations in catalytic reactions, and we present studies on their reactivity with relevance to their catalytic mechanisms. In the case of the bipyridine-based PNN system, we summarize the synthesis of new complexes and describe studies on the noninnocence of the methylene position, which can be reversibly deprotonated, as well as on the noninnocence of the bipyridine unit. Overall, this Account underlines that the combination of cheap and abundant iron with ligands that are capable of metal-ligand cooperation can result in the development of novel, versatile, and efficient catalysts for atom-efficient catalytic reactions.
Method and system for hydrogen evolution and storage
Thorn, David L.; Tumas, William; Hay, P. Jeffrey; Schwarz, Daniel E.; Cameron, Thomas M.
2012-12-11
A method and system for storing and evolving hydrogen (H.sub.2) employ chemical compounds that can be hydrogenated to store hydrogen and dehydrogenated to evolve hydrogen. A catalyst lowers the energy required for storing and evolving hydrogen. The method and system can provide hydrogen for devices that consume hydrogen as fuel.
Origin of the selectivity in the gold-mediated oxidation of benzyl alcohol
NASA Astrophysics Data System (ADS)
Rodríguez-Reyes, Juan Carlos F.; Friend, Cynthia M.; Madix, Robert J.
2012-08-01
Benzyl alcohol has received substantial attention as a probe molecule to test the selectivity and efficiency of novel metallic gold catalysts. Herein, the mechanisms of benzyl alcohol oxidation on a gold surface covered with atomic oxygen are elucidated; the results show direct correspondence to the reaction on gold-based catalysts. The selective, partial oxidation of benzyl alcohol to benzaldehyde is achieved with low oxygen surface concentrations and takes place through dehydrogenation of the alcohol to form benzaldehyde via a benzyloxy (C6H5-CH2O) intermediate. While in this case atomic oxygen plays solely a dehydrogenating role, at higher concentrations it leads to the formation of intermediates from benzaldehyde, producing benzoic acid and CO2. Facile ester (benzyl benzoate) formation also occurs at low oxygen concentrations, which indicates that benzoic acid is not a precursor of further oxidation of the ester; instead, the ester is produced by the coupling of adsorbed benzyloxy and benzaldehyde. Key to the high selectivity seen at low oxygen concentrations is the fact that the production of the aldehyde (and esters) is kinetically favored over the production of benzoic acid.
Zhang, Xuesong; Lei, Hanwu; Zhu, Lei; Zhu, Xiaolu; Qian, Moriko; Yadavalli, Gayatri; Yan, Di; Wu, Joan; Chen, Shulin
2016-08-01
Enhanced carbon yields of renewable alkanes for jet fuels were obtained through the catalytic microwave-induced co-pyrolysis and hydrogenation process. The well-promoted ZSM-5 catalyst had high selectivity toward C8-C16 aromatic hydrocarbons. The raw organics with improved carbon yield (∼44%) were more principally lumped in the jet fuel range at the catalytic temperature of 375°C with the LDPE to cellulose (representing waste plastics to lignocellulose) mass ratio of 0.75. It was also observed that the four species of raw organics from the catalytic microwave co-pyrolysis were almost completely converted into saturated hydrocarbons; the hydrogenation process was conducted in the n-heptane medium by using home-made Raney Ni catalyst under a low-severity condition. The overall carbon yield (with regards to co-reactants of cellulose and LDPE) of hydrogenated organics that mostly match jet fuels was sustainably enhanced to above 39%. Meanwhile, ∼90% selectivity toward jet fuel range alkanes was attained. Copyright © 2016 Elsevier Ltd. All rights reserved.
Catalytic activity of carbon nanotubes in the conversion of aliphatic alcohols
NASA Astrophysics Data System (ADS)
Zhitnev, Yu. N.; Tveritinova, E. A.; Chernyak, S. A.; Savilov, S. V.; Lunin, V. V.
2016-06-01
Carbon nanotubes (CNTs) obtained via the catalytic pyrolysis of hexane at 750°C were studied as the catalysts in conversion of C2-C4 alcohols. The efficiency of CNTs as catalysts in dehydration and dehydrogenation of ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, and tert-butanol was studied by means of pulse microcatalysis. The surface and structural characteristics of CNTs are investigated via SEM, TEM, DTA, BET, and XPS. CNTs are shown to be effective catalysts in the conversion of alcohols and do not require additional oxidative treatment. The regularities of the conversion of aliphatic alcohols, related to the properties of the CNTs surface and the structure of the alcohols are identified.
Tan, Yuqi; Yuan, Wei; Gong, Lei; Meggers, Eric
2015-10-26
A sustainable C-C bond formation is merged with the catalytic asymmetric generation of one or two stereocenters. The introduced catalytic asymmetric cross-coupling of two C(sp3)-H groups with molecular oxygen as the oxidant profits from the oxidative robustness of a chiral-at-metal rhodium(III) catalyst and exploits an autoxidation mechanism or visible-light photosensitized oxidation. In the latter case, the catalyst serves a dual function, namely as a chiral Lewis acid for catalyzing enantioselective enolate chemistry and at the same time as a visible-light-driven photoredox catalyst. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Two stages catalytic pyrolysis of refuse derived fuel: production of biofuel via syncrude.
Miskolczi, N; Buyong, F; Angyal, A; Williams, P T; Bartha, L
2010-11-01
Thermo-catalytic pyrolysis of refuse derived fuels with different catalysts had been conducted in a two stages process due to its important potential value as fuel. The first stage was a pure thermal pyrolysis in a horizontal tubular reactor with feed rate of 0.5kg hourly. The second stage was a semi-batch process in the presence of catalysts. Results showed that the tested catalysts significantly have affected the quantity of products. E.g. gas yield could be increased with 350% related to the catalyst free case using ZSM-5, while that of pyrolytic oil was 115% over Y-zeolite. Gases consisted of mainly CO and CO(2) obtained from the tubular reactor, while dominantly hydrocarbons from the second stage. Ni-Mo-catalyst and Co-Mo-catalyst had shown activity in pyrolytic oil upgrading via in-situ hydrogenation-dehydrogenation reactions. Sulphur, nitrogen and chlorine level in pyrolytic oils could be significantly declined by using of catalysts.
Wang, Liang; Zhang, Bingsen; Meng, Xiangju; Su, Dang Sheng; Xiao, Feng-Shou
2014-06-01
A composite catalyst including palladium nanoparticles on titania (TiO2) and on nitrogen-modified porous carbon (Pd/TiO2@N-C) is synthesized from palladium salts, tetrabutyl titanate, and chitosan. N2 sorption isotherms show that the catalyst has a high BET surface area (229 m(2) g(-1)) and large porosity. XPS and TEM characterization of the catalyst shows that palladium species with different chemical states are well dispersed across the TiO2 and nitrogen-modified porous carbon, respectively. The Pd/TiO2@N-C catalyst is very active and shows excellent stability towards hydrogenation of vanillin to 2-methoxy-4-methylphenol using formic acid as hydrogen source. This activity can be attributed to a synergistic effect between the Pd/TiO2 (a catalyst for dehydrogenation of formic acid) and Pd/N-C (a catalyst for hydrogenation of vanillin) sites. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zahmakiran, Mehmet; Ayvalı, Tuğçe; Philippot, Karine
2012-03-20
The development of simply prepared and effective catalytic materials for dehydrocoupling/dehydrogenation of ammonia-borane (AB; NH(3)BH(3)) under mild conditions remains a challenge in the field of hydrogen economy and material science. Reported herein is the discovery of in situ generated ruthenium nanocatalyst as a new catalytic system for this important reaction. They are formed in situ during the dehydrogenation of AB in THF at 25 °C in the absence of any stabilizing agent starting with homogeneous Ru(cod)(cot) precatalyst (cod = 1,5-η(2)-cyclooctadiene; cot = 1,3,5-η(3)-cyclooctatriene). The preliminary characterization of the reaction solutions and the products was done by using ICP-OES, ATR-IR, TEM, XPS, ZC-TEM, GC, EA, and (11)B, (15)N, and (1)H NMR, which reveal that ruthenium nanocatalyst is generated in situ during the dehydrogenation of AB from homogeneous Ru(cod)(cot) precatalyst and B-N polymers formed at the initial stage of the catalytic reaction take part in the stabilization of this ruthenium nanocatalyst. Moreover, following the recently updated approach (Bayram, E.; et al. J. Am. Chem. Soc.2011, 133, 18889) by performing Hg(0), CS(2) poisoning experiments, nanofiltration, time-dependent TEM analyses, and kinetic investigation of active catalyst formation to distinguish single metal or in the present case subnanometer Ru(n) cluster-based catalysis from polymetallic Ru(0)(n) nanoparticle catalysis reveals that in situ formed Ru(n) clusters (not Ru(0)(n) nanoparticles) are kinetically dominant catalytically active species in our catalytic system. The resulting ruthenium catalyst provides 120 total turnovers over 5 h with an initial turnover frequency (TOF) value of 35 h(-1) at room temperature with the generation of more than 1.0 equiv H(2) at the complete conversion of AB to polyaminoborane (PAB; [NH(2)BH(2)](n)) and polyborazylene (PB; [NHBH](n)) units.
Kim, Sung-Kwan; Hong, Sung-Ahn; Son, Ho-Jin; Han, Won-Sik; Michalak, Artur; Hwang, Son-Jong; Kang, Sang Ook
2015-04-28
A highly electrophilic cationic Pd(II) complex, [Pd(MeCN)4][BF4]2 (1), brings about the preferential activation of the B-H bond in ammonia-borane (NH3·BH3, AB). At room temperature, the reaction between 1 in CH3NO2 and AB in tetraglyme leads to Pd nanoparticles and formation of spent fuels of the general formula MeNHxBOy as reaction byproducts, while 2 equiv. of H2 is efficiently released per AB equiv. at room temperature within 60 seconds. For a mechanistic understanding of dehydrogenation by 1, the chemical structures of spent fuels were intensely characterized by a series of analyses such as elemental analysis (EA), X-ray photoelectron spectroscopy (XPS), solid state magic-angle-spinning (MAS) NMR spectra ((2)H, (13)C, (15)N, and (11)B), and cross polarization (CP) MAS methods. During AB dehydrogenation, the involvement of MeNO2 in the spent fuels showed that the mechanism of dehydrogenation catalyzed by 1 is different from that found in the previously reported results. This AB dehydrogenation derived from MeNO2 is supported by a subsequent digestion experiment of the AB spent fuel: B(OMe)3 and N-methylhydroxylamine ([Me(OH)N]2CH2), which are formed by the methanolysis of the AB spent fuel (MeNHxBOy), were identified by means of (11)B NMR and single crystal structural analysis, respectively. A similar catalytic behavior was also observed in the AB dehydrogenation catalyzed by a nickel catalyst, [Ni(MeCN)6][BF4]2 (2).
Wang, Yunpu; Dai, Leilei; Fan, Liangliang; Cao, Leipeng; Zhou, Yue; Zhao, Yunfeng; Liu, Yuhuan; Ruan, Roger
2017-03-01
In this study, a ZrO 2 -based polycrystalline ceramic foam catalyst was prepared and used in catalytic co-pyrolysis of waste vegetable oil and high density polyethylene (HDPE) for hydrocarbon fuel production. The effects of pyrolysis temperature, catalyst dosage, and HDPE to waste vegetable oil ratio on the product distribution and hydrocarbon fuel composition were examined. Experimental results indicate that the maximum hydrocarbon fuel yield of 63.1wt. % was obtained at 430°C, and the oxygenates were rarely detected in the hydrocarbon fuel. The hydrocarbon fuel yield increased when the catalyst was used. At the catalyst dosage of 15wt.%, the proportion of alkanes in the hydrocarbon fuel reached 97.85wt.%, which greatly simplified the fuel composition and improved the fuel quality. With the augment of HDPE to waste vegetable oil ratio, the hydrocarbon fuel yield monotonously increased. At the HDPE to waste vegetable oil ratio of 1:1, the maximum proportion (97.85wt.%) of alkanes was obtained. Moreover, the properties of hydrocarbon fuel were superior to biodiesel and 0 # diesel due to higher calorific value, better low-temperature low fluidity, and lower density and viscosity. Copyright © 2017 Elsevier Ltd. All rights reserved.
Anbu, Nagaraj; Dhakshinamoorthy, Amarajothi
2017-03-15
Cu 3 (BTC) 2 (BTC: 1,3,5-benzenetricarboxylic acid) showed to be an efficient and reusable heterogeneous solid catalyst for the formation of SiO bond through dehydrogenative coupling of dimethylphenylsilane (1) with phenol under mild reaction conditions. It is observed that Fe(BTC), MIL-101(Cr) and UiO-66(Zr) are not able to promote this cross coupling between 1 and phenol. Cu 3 (BTC) 2 exhibits higher stability and activity compared to other MOFs studied here. Furthermore, Cu 3 (BTC) 2 is reused for three consecutive cycles with a slight decay in its activity. Comparison of the powder XRD patterns of the fresh with three times used Cu 3 (BTC) 2 showed no significant difference in the crystalline structure, thus, indicating the catalyst stability under the optimized reaction conditions. Furthermore, EPR, FT-IR and SEM images of the fresh and reused Cu 3 (BTC) 2 did not show any change in the oxidation state of copper or structural morphology. Also, no leaching of copper is detected under optimized reaction conditions. In addition, Cu 3 (BTC) 2 showed higher activity compared to Pt, Pd, Au and Cu supported on active carbon as heterogeneous catalysts in the synthesis of disiloxane from 1 through SiH activation. Copyright © 2016 Elsevier Inc. All rights reserved.
Li, Zhanyong; Peters, Aaron W.; Bernales, Varinia; ...
2016-11-30
Here, Zr-based metal–organic frameworks (MOFs) have been shown to be excellent catalyst supports in heterogeneous catalysis due to their exceptional stability. Additionally, their crystalline nature affords the opportunity for molecular level characterization of both the support and the catalytically active site, facilitating mechanistic investigations of the catalytic process. We describe herein the installation of Co(II) ions to the Zr 6 nodes of the mesoporous MOF, NU-1000, via two distinct routes, namely, solvothermal deposition in a MOF (SIM) and atomic layer deposition in a MOF (AIM), denoted as Co-SIM+NU-1000 and Co-AIM+NU-1000, respectively. The location of the deposited Co species in themore » two materials is determined via difference envelope density (DED) analysis. Upon activation in a flow of O 2 at 230 °C, both materials catalyze the oxidative dehydrogenation (ODH) of propane to propene under mild conditions. Catalytic activity as well as propene selectivity of these two catalysts, however, is different under the same experimental conditions due to differences in the Co species generated in these two materials upon activation as observed by in situ X-ray absorption spectroscopy. A potential reaction mechanism for the propane ODH process catalyzed by Co-SIM+NU-1000 is proposed, yielding a low activation energy barrier which is in accord with the observed catalytic activity at low temperature.« less
Open-cage fullerene-like graphitic carbons as catalysts for oxidative dehydrogenation of isobutane.
Liang, Chengdu; Xie, Hong; Schwartz, Viviane; Howe, Jane; Dai, Sheng; Overbury, Steven H
2009-06-10
We report herein a facile synthesis of fullerene-like cages, which can be opened and closed through simple thermal treatments. A glassy carbon with enclosed fullerene-like cages of 2-3 nm was synthesized through a soft-template approach that created open mesopores of 7 nm. The open mesopores provided access to the fullerene-like cages, which were opened and closed through heat treatments in air and inert gas at various temperatures. Catalytic measurements showed that the open cages displayed strikingly higher activity for the oxidative dehydrogenation of isobutane in comparison to the closed ones. We anticipate that this synthesis approach could unravel an avenue for pursuing fundamental understanding of the unique catalytic properties of graphitic carbon nanostructures.
Heterogeneously Catalyzed Endothermic Fuel Cracking
2016-08-28
Much of this literature is in the context of gas -to- liquids technology and industrial dehydrogenation processes. Based on the published measurements...certain zeolites. Comparisons of conversion, major product distributions and molecular weight growth processes in the gas -phase pyrolysis of model...thereby maximizing the extent of cooling, (b) increase catalyst activity for fuel decomposition, but inhibit gas -phase molecular weight growth
An Exploration of Geometric and Electronic Effects in Metal Nanoparticle Catalysts
NASA Astrophysics Data System (ADS)
Childers, David
The goal of this thesis is to investigate the influence geometric and electronic effects on metal nanoparticle catalysis. There are three main methods which alter a catalyst's properties: changing support material, changing nanoparticle size and alloying a second metal. This work will focus on the latter two methods using Pt-group metals and alloys. Platinum and palladium were chosen as the active metals due to a large amount of industry significance and prior literature to draw upon. Neopentane conversion and propane dehydrogenation were the two probe reactions used to evaluate these catalysts mainly due to their relative simplicity and ease of operation on a laboratory scale. The effect of particle size was studied with Pt and Pd monometallic catalysts using neopentane hydrogenolysis/isomerization as the probe reaction. Particle size studies have been done previously using this reaction so there is literature data to compare this study's results. This data will also be used as comparison for the bimetallic studies conducted later so that particle size effects can be accounted for when attempting to determine the effect of alloying a second metal. Bimetallic catalysts have several different possible structures depending on a number of factors from the identity of the two metals to the synthesis procedure. Homogeneous, core-shell and intermetallic alloys are the three structures evaluated in this work. Determining the surface composition of a homogeneous alloy can be difficult especially if both metals adsorb CO. PtPd homogeneous alloys were used to evaluate the ability of EXAFS to give information about surface composition using CO adsorption. These catalysts were also tested using neopentane conversion to evaluate changes in catalytic performance. Core-shell catalysts can also exhibit unique properties although it is not clear whether the identity of the core metal is relevant or if surface changes are most important to changing catalytic behavior. PdAu catalysts were synthesized with varying Pd loadings to determine if the Au-rich core would continue to influence neopentane conversion performance with increasing Pd layers on the surface of the nanoparticle. Finally, intermetallic alloys have produced some very interesting literature results and can drastically alter catalyst surface structure. PdZn showed the potential to improve neopentane isomerization selectivity past that of Pt based on calculated electronic properties. Two PdZn catalysts with different loadings were synthesized to evaluate the electronic and geometric effects using both neopentane conversion and propane dehydrogenation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Sungwon; Lee, Sungsik; Kumbhalkar, Mrunmayi
The endothermic cracking and dehydrogenation of n-dodecane is investigated over well-defined nanometer size platinum catalysts supported on SiO 2 to study the particle size effects in the catalytic cracking reaction, with simultaneous in situ monitoring of the particle size and oxidation state of the working catalysts by in situ SAXS (small angle X-ray scattering) and XAS (X-ray absorption spectroscopy). The selectivity toward olefins products was found dominant in the 1 nm size platinum catalysts, whereas paraffins are dominant in the 2 nm catalysts. This reveals a strong correlation between catalytic performance and catalyst size as well as the stability ofmore » the nanoparticles in supercritical condition of n-dodecane. The presented results suggest that controlling the size and geometric structure of platinum nanocatalysts could lead to a fundamentally new level of understanding of nanoscale materials by monitoring the catalysts in realistic reaction conditions.« less
Catalytic dehydrogenation of amine borane complexes
NASA Technical Reports Server (NTRS)
Mohajeri, Nahid (Inventor); Tabatabaie-Raissi, Ali (Inventor)
2007-01-01
A method of generating hydrogen includes the steps of providing an amine borane (AB) complex, at least one hydrogen generation catalyst, and a solvent, and mixing these components. Hydrogen is generated. The hydrogen produced is high purity hydrogen suitable for PEM fuel cells. A hydrolytic in-situ hydrogen generator includes a first compartment that contains an amine borane (AB) complex, a second container including at least one hydrogen generation catalyst, wherein the first or second compartment includes water or other hydroxyl group containing solvent. A connecting network permits mixing contents in the first compartment with contents in the second compartment, wherein high purity hydrogen is generated upon mixing. At least one flow controller is provided for controlling a flow rate of the catalyst or AB complex.
Catalytic dehydrogenation of amine borane complexes
NASA Technical Reports Server (NTRS)
Tabatabaie-Raissi, Ali (Inventor); Mohajeri, Nahid (Inventor); Bokerman, Gary (Inventor)
2009-01-01
A method of generating hydrogen includes the steps of providing an amine borane (AB) complex, at least one hydrogen generation catalyst, and a solvent, and mixing these components Hydrogen is generated. The hydrogen produced is high purity hydrogen suitable for PEM fuel cells. A hydrolytic in-situ hydrogen generator includes a first compartment that contains an amine borane (AB) complex, a second container including at least one hydrogen generation catalyst, wherein the first or second compartment includes water or other hydroxyl group containing solvent. A connecting network permits mixing contents in the first compartment with contents in the second compartment, wherein high purity hydrogen is generated upon mixing. At least one flow controller is provided for controlling a flow rate of the catalyst or AB complex.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gomez, Elaine; Kattel, Shyam; Yan, Binhang
In this paper, the inherent variability and insufficiencies in the co-production of propylene from steam crackers has raised concerns regarding the global propylene production gap and has directed industry to develop more on-purpose propylene technologies. The oxidative dehydrogenation of propane by CO 2 (CO 2-ODHP) can potentially fill this gap while consuming a greenhouse gas. Non-precious FeNi and precious NiPt catalysts supported on CeO 2 have been identified as promising catalysts for CO 2-ODHP and dry reforming, respectively, in flow reactor studies conducted at 823 K. In-situ X-ray absorption spectroscopy measurements revealed the oxidation states of metals under reaction conditionsmore » and density functional theory calculations were utilized to identify the most favorable reaction pathways over the two types of catalysts.« less
Optimization of pyrochlore catalysts for the dry reforming of methane
NASA Astrophysics Data System (ADS)
Polo Garzon, Felipe
The conversion of methane into syngas (a mixture of CO and H2), which can be further converted into a variety of chemicals and particularly liquid fuels, is of growing importance given recent increases in methane production world-wide. Furthermore, since using CO2 as the co-feed offers many environmental advantages, dry reforming of methane (DRM, CH4 + CO2 [special character omitted] 2CO + 2H 2) has received renewed attention. In recent years, experimentalists have shown that the Rh-substituted lanthanum zirconate pyrochlore (LRhZ) material is catalytically active for DRM, exhibits long-term thermal stability and resists deactivation; however, previous to this doctoral work, a detailed understanding of the reaction mechanism on pyrochlore catalyst surfaces was still scarce, making it difficult to optimize this material. In this work, initial computational efforts employing density functional theory (DFT) showed the plane (111) of the LRhZ crystal structure as the one catalytically active for DRM. In addition, the primary reaction pathway was identified, along with two rate determining steps (RDSs), the CH2 oxygenation step and the CHO dehydrogenation step, which lie on the CH 4 dehydrogenation/oxygenation path. The mechanistic understanding of DRM over LRhZ was further developed using steady-state isotopic transient kinetic analysis (SSITKA). Reversible adsorption of CO2 on the surface was observed, along with short surface residence times (< 0.6 s) at 650 and 800 °C, and increasing turnover frequencies with temperature. Comparisons between isotopic responses supported the DFT-derived reaction mechanism. Furthermore, isotopic transient kinetics confirmed that all metal atoms (Rh, Zr and La) on the surface are involved in the reaction mechanism, as previously pointed by DFT calculations. A DFT-based microkinetic model that predicts the reaction performance at different conditions was built. The model was validated against experimental data, showing remarkable agreement, which further confirmed the reliability of the DFT data. Computational analysis of one of the RDSs (the CHO dehydrogenation step) suggested Pd as an effective co-dopant to reduce the activation barrier of this step. This bimetallic Rh-Pd-substituted lanthanum zirconate pyrochlore (Rh-Pd-LZ) was synthesized, characterized and tested. The Rh-Pd-LZ catalyst successfully increased conversions at high temperatures while providing H 2 to CO ratios close to unity; thus fostering DRM and inhibiting the competing reaction, the reverse water gas shift reaction (RWGS, CO2 + H2 [special character omitted] CO + H2O). The Rh-Pd-LZ catalyst outperformed the initial catalyst, the LRhZ, at high temperatures.
Wickham, David [Boulder, CO; Cook, Ronald [Lakewood, CO
2008-10-28
The present invention provides metal-exchanged hexaaluminate catalysts that exhibit good catalytic activity and/or stability at high temperatures for extended periods with retention of activity as combustion catalysts, and more generally as oxidation catalysts, that make them eminently suitable for use in methane combustion, particularly for use in natural gas fired gas turbines. The hexaaluminate catalysts of this invention are of particular interest for methane combustion processes for minimization of the generation of undesired levels (less than about 10 ppm) of NOx species. Metal exchanged hexaaluminate oxidation catalysts are also useful for oxidation of volatile organic compounds (VOC), particularly hydrocarbons. Metal exchanged hexaaluminate oxidation catalysts are further useful for partial oxidation, particularly at high temperatures, of reduced species, particularly hydrocarbons (alkanes and alkenes).
The hydrodeoxygenation of bioderived furans into alkanes.
Sutton, Andrew D; Waldie, Fraser D; Wu, Ruilian; Schlaf, Marcel; Silks, Louis A Pete; Gordon, John C
2013-05-01
The conversion of biomass into fuels and chemical feedstocks is one part of a drive to reduce the world's dependence on crude oil. For transportation fuels in particular, wholesale replacement of a fuel is logistically problematic, not least because of the infrastructure that is already in place. Here, we describe the catalytic defunctionalization of a series of biomass-derived molecules to provide linear alkanes suitable for use as transportation fuels. These biomass-derived molecules contain a variety of functional groups, including olefins, furan rings and carbonyl groups. We describe the removal of these in either a stepwise process or a one-pot process using common reagents and catalysts under mild reaction conditions to provide n-alkanes in good yields and with high selectivities. Our general synthetic approach is applicable to a range of precursors with different carbon content (chain length). This allows the selective generation of linear alkanes with carbon chain lengths between eight and sixteen carbons.
The hydrodeoxygenation of bioderived furans into alkanes
NASA Astrophysics Data System (ADS)
Sutton, Andrew D.; Waldie, Fraser D.; Wu, Ruilian; Schlaf, Marcel; ‘Pete' Silks, Louis A.; Gordon, John C.
2013-05-01
The conversion of biomass into fuels and chemical feedstocks is one part of a drive to reduce the world's dependence on crude oil. For transportation fuels in particular, wholesale replacement of a fuel is logistically problematic, not least because of the infrastructure that is already in place. Here, we describe the catalytic defunctionalization of a series of biomass-derived molecules to provide linear alkanes suitable for use as transportation fuels. These biomass-derived molecules contain a variety of functional groups, including olefins, furan rings and carbonyl groups. We describe the removal of these in either a stepwise process or a one-pot process using common reagents and catalysts under mild reaction conditions to provide n-alkanes in good yields and with high selectivities. Our general synthetic approach is applicable to a range of precursors with different carbon content (chain length). This allows the selective generation of linear alkanes with carbon chain lengths between eight and sixteen carbons.
Partial oxidation of alkanes by dioxiranes formed in situ at low temperature.
Yacob, Sara; Caulfield, Michael J; Barckholtz, Timothy A
2018-01-13
Partial oxidation catalysts capable of efficiently operating at low temperatures may limit the over-oxidation of alkane substrates and thereby improve selectivity. This work focuses on examining alkane oxidation using completely metal-free organocatalysts, dioxiranes. The dioxiranes employed here are synthesized by oxidation of a ketone using a terminal oxidant, such as hydrogen peroxide. Our work generates the dioxirane in situ , so that the process can be catalytic with respect to the ketone. To date, we have demonstrated selective partial oxidation of adamantane using ketone catalysts resulting in yields upwards of 60% towards 1-adamantanol with greater than 99% selectivity. Furthermore, we have demonstrated that changing the electrophilic character of the ketone R groups to contain more electron-donating ligands facilitates the dioxirane ring formation and improves overall oxidation yields. Isotopic labelling studies using H 2 18 O 2 show the preferential incorporation of an 18 O label into the parent ketone, providing evidence for a dioxirane intermediate formed in situ The isotopic labelling studies, along with solvent effect studies, suggest the formation of peracetic acid as a reactive intermediate.This article is part of a discussion meeting issue 'Providing sustainable catalytic solutions for a rapidly changing world'. © 2017 The Author(s).
Carbon Nanotubes as Support in the Platinum-Catalyzed Hydrolytic Dehydrogenation of Ammonia Borane.
Chen, Wenyao; Duan, Xuezhi; Qian, Gang; Chen, De; Zhou, Xinggui
2015-09-07
We report remarkable support effects for carbon nanotubes (CNTs) in the Pt/CNT-catalyzed hydrolytic dehydrogenation of ammonia borane. The origin of the support-dependent activity and durability is elucidated by combining the catalytic and durability testing with characterization by a range of spectroscopy and high-angle annular dark-field scanning transmission electron microscopy techniques and ICP analysis. The effects mainly arise from different electronic properties and different abilities for the adsorption of boron-containing species on platinum surfaces and changes in size and shape of the platinum particles during the reaction. Defect-rich CNTs in particular are a promising support material, as it not only enhances the platinum binding energy, leading to the highest hydrogen generation rate, but also inhibits the adsorption of boron-containing species and stabilizes the platinum nanoparticles to resist the agglomeration during the reaction, leading to the highest durability. The insights revealed herein may pave the way for the rational design of highly active and durable metal/carbon catalysts for the hydrolytic dehydrogenation of ammonia borane. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
McCarthy, James A.
The field of heterogeneous catalysis has advanced largely through the understanding of structure-function relationships, and novel support materials constitute one possible strategy to further this knowledge through the determination of support effects. To this end, the synthesis, characterization, and reactivity of a new catalytic system are reported herein. Vanadium oxide supported on SrTiO3 (VOx/STO) was prepared by atomic layer deposition, and its activity was investigated in various oxidative dehydrogenation (ODH) reactions. In cyclohexane and propane ODH experiments at 500 °C, selectivity toward COx was found to decrease with greater VOx density and minimal STO surface exposure. This indicates that the support itself is an effective total oxidation catalyst, which complicates VOx performance measurements. In the propane studies, VOx/STO achieved lower turnover frequency (TOF) and propylene yield compared to conventional supported VO x materials. The lower activity of VOx/STO catalysts was correlated with their VOx species being less easily reducible, as determined by temperature-programmed reduction (TPR). The suppressed reducibility is attributed to the stronger surface basicity of STO, which is induced by the presence of relatively electropositive Sr2+ within the perovskite lattice. Studies of cyclohexene ODH at 300 °C were conducted to minimize intrinsic conversion from the supports. The VOx/STO catalysts were mostly found to be less active than VOx/TiO2 and VOx/Al 2O3, in accordance with reducibility measurements. However, one sample containing 0.75% vanadium on STO was particularly active, achieving a TOF greater than 0.01 s-1, while maintaining almost 90% dehydrogenation selectivity. In general, VOx/STO materials were found to be more selective for 1,3-cyclohexadiene compared to traditional catalysts. Other titanates of the form A2+TiO3 were also investigated as supports, and the reducibility of VOx was found to trend with the electronegativity of the A-site cation and the basicity of the titanate. When applied to cyclohexene ODH however, no discernable relationship between reducibility and TOF could be observed, implying that other factors play a major role in this reaction. Through this work, a deeper understanding has been developed concerning the impact of titanate supports on VOx redox and catalytic properties. These findings demonstrate the ability of novel support materials to reveal new insights into structure-function relationships.
Method of preparing meso-haloalkylporphyrins
Wijesekera, Tilak; Lyons, James E.; Ellis, Jr., Paul E.; Bhinde, Manoj V.
1998-01-01
Transition metal complexes of meso-haloalkylporphyrins, wherein the haloalkyl groups contain 2 to 8 carbon atoms have been found to be highly effective catalysts for oxidation of alkanes and for the decomposition of hydroperoxides. Also disclosed is a process for the preparation of meso-halocarbyl-porphyrins which comprises contacting a halocarbyl dipyrromethane with a halocarbyl-substituted aldehyde in the presence of an acid granular solid catalyst. Also disclosed is a process for the preparation of meso-halocarbyl-porphyrins which comprises contacting a halocarbyl dipyrromethane with a halocarbyl-substituted aldehyde in the presence of an acid granular solic catalyst.
Porphyrins and metal complexes thereof having haloalkyl side chains
Wijesekera, Tilak; Lyons, James E.; Ellis, Jr., Paul E.; Bhinde, Manoj V.
1997-01-01
Transition metal complexes of meso-haloalkylporphyrins, wherein the haloalkyl groups contain 2 to 8 carbon atoms have been found to be highly effective catalysts for oxidation of alkanes and for the decomposition of hydroperoxides.
1987-02-10
4, Jul-Aug 86) CATALYSIS Reaction of Active Component of Vanadium-Sulfur Catalysts With Water Vapor (V. N. Krasilnikov, A. A. Ivakin, et al...Vyunov, et al.; ZHURNAL PRIKLADNOY KHIMII, No 7, Jul 86) 7 Preparation and Catalytic Activity of Metal Molybdates in Oxidative Dehydrogenation of...Exhaust Gases From Plants (Yu. Sh. Matros, V. A. Chumachenko; KHIMICHESKAYA TECHNOLOGIYA, No 4, Jul-Aug 86). 23 COMBUSTION Metallurgy and Optics
NASA Astrophysics Data System (ADS)
Yao, Fang; Li, Xiao; Wan, Chao; Xu, Lixin; An, Yue; Ye, Mingfu; Lei, Zhao
2017-12-01
Bimetallic AgPd nanoparticles with various molar ratios immobilized on graphitic carbon nitride (g-C3N4) were successfully synthesized via a facile co-reduction approach. The powder XRD, XPS, TEM, EDX, ICP-AES and BET were employed to characterize the structure, size, composition and loading metal electronic states of the AgPd/g-C3N4 catalysts. The catalytic property of as-prepared catalysts for the dehydrogenation of formic acid (FA) with sodium formate (SF) as the additive was investigated. The performance of these catalysts, as indicated by the turnover frequency (TOF), depended on the composition of the prepared catalysts. Among all the AgPd/g-C3N4 catalysts tested, Ag9Pd91/g-C3N4 was found to be an exceedingly high activity for decomposing FA into H2 with TOF up to 480 h-1 at 323 K. The prepared catalyst is thus a potential candidate for triggering the widespread use of FA for H2 storage.
Liu, Siyang; Zhu, Qingqing; Guan, Qingxin; He, Liangnian; Li, Wei
2015-05-01
Bio-aviation fuel was firstly synthesized by hydroprocessing castor oil in a continuous-flow fixed-bed microreactor with the main objective to obtain the high yield of aviation fuel and determine the elemental compositions of the product phases as well as the reaction mechanism. Highest aviation range alkane yields (91.6 wt%) were achieved with high isomer/n-alkane ratio (i/n) 4.4-7.2 over Ni supported on acidic zeolites. In addition, different fuel range alkanes can be obtained by adjusting the degree of hydrodeoxygenation (HDO) and hydrocracking. And the observations are rationalized by a set of reaction pathways for the various product phases. Copyright © 2015 Elsevier Ltd. All rights reserved.
Open-cage Fullerene-like Graphitic Carbons as Catalysts for Oxidative Dehydrogenation of Isobutane
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liang, Chengdu; Xie, Hong; Schwartz, Viviane
We report herein a facile synthesis of fullerene-like cages, which can be opened and closed through simple thermal treatments. A glassy carbon with enclosed fullerene-like cages of 2-3 nm was synthesized through a soft-template approach that created open mesopores of 7 nm. The open mesopores provided access to the fullerene-like cages, which were opened and closed through heat treatments in air and inert gas at various temperatures. Catalytic measurements showed that the open cages displayed strikingly higher activity for the oxidative dehydrogenation of isobutane in comparison to the close ones. We anticipate that this synthesis approach could unravel an avenuemore » for pursuing fundamental understanding of the unique catalytic properties of graphitic carbon nanostructures.« less
Jin, Xiongjie; Yamaguchi, Kazuya; Mizuno, Noritaka
2014-01-07
Although enaminals (β-enaminals) are very important compounds and have been utilized as useful synthons for various important compounds, they have been synthesized through non-green and/or limited procedures until now. Herein, we have successfully developed a green synthetic procedure using a heterogeneous catalyst. In the presence of gold nanoparticles supported on manganese-oxide-based octahedral molecular sieves OMS-2 (Au/OMS-2), dehydrogenative amination of α,β-unsaturated aldehydes with amines proceeded efficiently, with the corresponding enaminals isolated in moderate to high yields (50-97 %). The catalysis was truly heterogeneous, and Au/OMS-2 could be reused. Furthermore, the formal Wacker-type oxidation of α,β-unsaturated aldehydes to enaminones has been realized. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Yang, Sungeun; Kim, Jiwhan; Tak, Young Joo; Soon, Aloysius; Lee, Hyunjoo
2016-02-05
As a catalyst, single-atom platinum may provide an ideal structure for platinum minimization. Herein, a single-atom catalyst of platinum supported on titanium nitride nanoparticles were successfully prepared with the aid of chlorine ligands. Unlike platinum nanoparticles, the single-atom active sites predominantly produced hydrogen peroxide in the electrochemical oxygen reduction with the highest mass activity reported so far. The electrocatalytic oxidation of small organic molecules, such as formic acid and methanol, also exhibited unique selectivity on the single-atom platinum catalyst. A lack of platinum ensemble sites changed the reaction pathway for the oxygen-reduction reaction toward a two-electron pathway and formic acid oxidation toward direct dehydrogenation, and also induced no activity for the methanol oxidation. This work demonstrates that single-atom platinum can be an efficient electrocatalyst with high mass activity and unique selectivity. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Xie, Xiubo; Ma, Xiujuan; Liu, Peng; Shang, Jiaxiang; Li, Xingguo; Liu, Tong
2017-02-22
In order to enhance the hydrogen storage properties of Mg, flowerlike NiS particles have been successfully prepared by solvothermal reaction method, and are subsequently ball milled with Mg nanoparticles (NPs) to fabricate Mg-5 wt % NiS nanocomposite. The nanocomposite displays Mg/NiS core/shell structure. The NiS shell decomposes into Ni, MgS and Mg 2 Ni multiple-phases, decorating on the surface of the Mg NPs after the first hydrogen absorption and desorption cycle at 673 K. The Mg-MgS-Mg 2 Ni-Ni nanocomposite shows enhanced hydrogenation and dehydrogenation rates: it can quickly uptake 3.5 wt % H 2 within 10 min at 423 K and release 3.1 wt % H 2 within 10 min at 573 K. The apparent hydrogen absorption and desorption activation energies are decreased to 45.45 and 64.71 kJ mol -1 . The enhanced sorption kinetics of the nanocomposite is attributed to the synergistic catalytic effects of the in situ formed MgS, Ni and Mg 2 Ni multiple-phase catalysts during the hydrogenation/dehydrogenation process, the porthole effects for the volume expansion and microstrain of the phase transformation of Mg 2 Ni and Mg 2 NiH 4 and the reduced hydrogen diffusion distance caused by nanosized Mg. This novel method of in situ producing multiple-phase catalysts gives a new horizon for designing high performance hydrogen storage material.
Porphyrins and metal complexes thereof having haloalkyl side chains
Wijesekera, T.; Lyons, J.E.; Ellis, P.E. Jr.; Bhinde, M.V.
1997-03-04
Transition metal complexes of meso-haloalkylporphyrins, wherein the haloalkyl groups contain 2 to 8 carbon atoms have been found to be highly effective catalysts for oxidation of alkanes and for the decomposition of hydroperoxides. 7 figs.
He, Yu; Gorden, John D; Goldsmith, Christian R
2011-12-19
Iron complexes with the tetradentate N-donor ligand N,N'-di(phenylmethyl)-N,N'-bis(2-pyridinylmethyl)-1,2-cyclohexanediamine (bbpc) are reported. Despite the benzyl groups present on the amines, the iron compounds catalyze the oxygenation of cyclohexane to an extent similar to those employing less sterically encumbered ligands. The catalytic activity is strongly dependent on the counterion, with the highest activity and the strongest preference for alkane hydroxylation correlating to the most weakly coordinating anion, SbF(6)(-). The selectivity for the alcohol product over the ketone is amplified when acetic acid is present as an additive. When hydrocarbon substrates with both secondary and tertiary carbons are oxidized by H(2)O(2), the catalyst directs oxidation toward the secondary carbons to a greater degree than other previously reported iron-containing homogeneous catalysts. © 2011 American Chemical Society
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manna, Kuntal; Zhang, Teng; Greene, Francis X.
2015-02-16
We report here the synthesis of a series of robust and porous bipyridyl- and phenanthryl-based metal–organic frameworks (MOFs) of UiO topology (BPV-MOF, mBPV-MOF, and mPT-MOF) and their postsynthetic metalation to afford highly active single-site solid catalysts. While BPV-MOF was constructed from only bipyridyl-functionalized dicarboxylate linker, both mBPV- and mPT-MOF were built with a mixture of bipyridyl- or phenanthryl-functionalized and unfunctionalized dicarboxylate linkers. The postsynthetic metalation of these MOFs with [Ir(COD)(OMe)] 2 provided Ir-functionalized MOFs (BPV-MOF-Ir, mBPV-MOF-Ir, and mPT-MOF-Ir), which are highly active catalysts for tandem hydrosilylation of aryl ketones and aldehydes followed by dehydrogenative ortho-silylation of benzylicsilyl ethers as wellmore » as C–H borylation of arenes using B₂pin₂. Both mBPV-MOF-Ir and mPT-MOF-Ir catalysts displayed superior activities compared to BPV-MOF-Ir due to the presence of larger open channels in the mixed-linker MOFs. Impressively, mBPV-MOF-Ir exhibited high TONs of up to 17000 for C–H borylation reactions and was recycled more than 15 times. The mPT-MOF-Ir system is also active in catalyzing tandem dehydrosilylation/dehydrogenative cyclization of N-methylbenzyl amines to azasilolanes in the absence of a hydrogen acceptor. Importantly, MOF-Ir catalysts are significantly more active (up to 95 times) and stable than their homogeneous counterparts for all three reactions, strongly supporting the beneficial effects of active site isolation within MOFs. This work illustrates the ability to increase MOF open channel sizes by using the mixed linker approach and shows the enormous potential of developing highly active and robust single-site solid catalysts based on MOFs containing nitrogen-donor ligands for important organic transformations.« less
Deoxygenation of methyl laurate over Ni based catalysts: Influence of supports
NASA Astrophysics Data System (ADS)
Xia, Xiaoqiang; Chen, Hui; Bi, Yadong; Hu, Jianli
2017-10-01
The use of a series of nickel based catalysts supported over HZSM-5, Al2O3, C and ZrO2 in the deoxygenation of methyl laurate shows that the deoxygenation activity and deoxygenation pathway of nickel based catalysts can be affected by properties of catalysts. In the absence of H2, β-elimination of methyl laurate is the dominant reaction and a small amount of laurate acid is converted into undecane by direct decarboxylation. At the same time, the highly acidic support HZSM-5 gave higher conversion and C11 alkane selectivity. In the presence of H2, Ni/HZSM-5 catalyst showed a significantly high deoxygenation activity, producing 71% alkanes by methyl laurate conversion at 280 °C and 4MPa H2. While as on mildly acidic (Al2O3) and neutral (C) supports, a restricted hydrodeoxygenation activity was achieved but more oxygenate products were yielded. According to the analysis of intermediate product, the deoxygenation reaction of methyl laurate follows three distinct pathways: in the absence of H2, decarboxylation: C11H23COOCH3→C11H23COOH→C11H24; in the presence of H2, decarbonylation: C11H23COOCH3→C11H23COOH→C11H23CHO→C11H24; and hydrodeoxygenation: C11H23COOCH3 →C11H23COOH→C11H23CHO→C12H25OH→C12H26
DOE Office of Scientific and Technical Information (OSTI.GOV)
Intrator, Miranda Huang
Many industrial catalysts used for homogeneous hydrogenation and dehydrogenation of unsaturated substrates are derived from metal complexes that include (air-sensitive) ligands that are often expensive and difficult to synthesize. In particular, catalysts used for many hydrogenations are based on phosphorus containing ligands (in particular PNP pincer systems). These ligands are often difficult to make, are costly, are constrained to having two carbon atoms in the ligand backbone and are susceptible to oxidation at phosphorus, making their use somewhat complicated. Los Alamos researchers have recently developed a new and novel set of ligands that are based on a NNS (ENENES) skeletonmore » (i.e. no phosphorus donors, just nitrogen and sulfur).« less
On the Structure Sensitivity of Formic Acid Decomposition on Cu Catalysts
Li, Sha; Scaranto, Jessica; Mavrikakis, Manos
2016-08-03
Catalytic decomposition of formic acid (HCOOH) has attracted substantial attention since HCOOH is a major by-product in biomass reforming, a promising hydrogen carrier, and also a potential low temperature fuel cell feed. Despite the abundance of experimental studies for vapor-phase HCOOH decomposition on Cu catalysts, the reaction mechanism and its structure sensitivity is still under debate. In this work, self-consistent, periodic density functional theory calculations were performed on three model surfaces of copper—Cu(111), Cu(100) and Cu(211), and both the HCOO (formate)-mediated and COOH (carboxyl)-mediated pathways were investigated for HCOOH decomposition. The energetics of both pathways suggest that the HCOO-mediated routemore » is more favorable than the COOH-mediated route on all three surfaces, and that HCOOH decomposition proceeds through two consecutive dehydrogenation steps via the HCOO intermediate followed by the recombinative desorption of H 2. On all three surfaces, HCOO dehydrogenation is the likely rate determining step since it has the highest transition state energy and also the highest activation energy among the three catalytic steps in the HCOO pathway. The reaction is structure sensitive on Cu catalysts since the examined three Cu facets have dramatically different binding strengths for the key intermediate HCOO and varied barriers for the likely rate determining step—HCOO dehydrogenation. Cu(100) and Cu(211) bind HCOO much more strongly than Cu(111), and they are also characterized by potential energy surfaces that are lower in energy than that for the Cu(111) facet. Coadsorbed HCOO and H represents the most stable state along the reaction coordinate, indicating that, under reaction conditions, there might be a substantial surface coverage of the HCOO intermediate, especially at under-coordinated step, corner or defect sites. Therefore, under reaction conditions, HCOOH decomposition is predicted to occur most readily on the terrace sites of Cu nanoparticles. Finally, as a result, we hereby present an example of a fundamentally structure-sensitive reaction, which may present itself as structure-insensitive in typical varied particle-size experiments.« less
Study on the pyrolysis of cellulose for bio-oil with mesoporous molecular sieve catalysts.
Yu, Feng-wen; Ji, Deng-xiang; Nie, Yong; Luo, Yao; Huang, Cheng-jie; Ji, Jian-bing
2012-09-01
Mesoporous materials possess a hexagonal array of uniform mesopores, high surface areas, and moderate acidity. They are one of the important catalysts in the field of catalytic pyrolysis. In this paper, mesoporous materials of Al-MCM-41, La-Al-MCM-41, and Ce-Al-MCM-41 were synthesized, characterized, and tested as catalysts in the cellulose catalytic pyrolysis process using a fixed bed pyrolysis reactor. The results showed that mesoporous materials exhibited a strong influence on the pyrolytic behavior of cellulose. The presence of these mesoporous molecular sieve catalysts could vary the yield of products, which was that they could decrease the yield of liquid and char and increase the yield of gas product, and could promote high-carbon chain compounds to break into low-carbon chain compounds. Mesoporous molecular sieve catalysts were benefit to the reaction of dehydrogenation and deoxidation and the breakdown of carbon chain. Further, La-Al-MCM-41 and Ce-Al-MCM-41 catalysts can produce more toluene and 2-methoxy-phenol, as compared to the non-catalytic runs.
Microwave-assisted direct synthesis of butene from high-selectivity methane
NASA Astrophysics Data System (ADS)
Lu, Yi-heng; Li, Kang; Lu, Yu-wei
2017-12-01
Methane was directly converted to butene liquid fuel by microwave-induced non-oxidative catalytic dehydrogenation under 0.1-0.2 MPa. The results show that, under microwave heating in a two-stage fixed-bed reactor, in which nickel powder and NiOx-MoOy/SiO2 are used as the catalyst, the methane-hydrogen mixture is used as the raw material, with no acetylene detected. The methane conversion is more than 73.2%, and the selectivity of methane to butene is 99.0%. Increasing the hydrogen/methane feed volume ratio increases methane conversion and selectivity. Gas chromatography/electron impact ionization/mass spectrometry chromatographic analysis showed that the liquid fuel produced by methane dehydrogenation oligomerization contained 89.44% of butene, and the rest was acetic acid, ethanol, butenol and butyric acid, and the content was 1.0-3.0 wt%.
Liu, Wanting; Su, Qing; Ju, Pengyao; Guo, Bixuan; Zhou, Hui; Li, Guanghua; Wu, Qiaolin
2017-02-22
A hydrazone-based covalent organic framework (COF) was synthesized by condensation of 2,5-dimethoxyterephthalohydrazide with 1,3,5-triformylbenzene under solvothermal conditions. The COF material exhibits excellent porosity with a BET surface area of up to 1501 m 2 g -1 , high crystallinity, and good thermal and chemical stability. Moreover, it showed efficient photocatalytic activity towards cross-dehydrogenative coupling (CDC) reactions between tetrahydroisoquinolines and nucleophiles such as nitromethane, acetone, and phenylethyl ketone. The metal-free catalytic system also offers attractive advantages including simplicity of operation, wide substrate adaptability, ambient reaction conditions, and robust recycling capability of the catalyst, thus providing a promising platform for highly efficient and reusable photocatalysts. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xue, Teng; Lin, Zhaoyang; Chiu, Chin-Yi
Metallic nanoparticles are emerging as an exciting class of heterogeneous catalysts with the potential advantages of exceptional activity, stability, recyclability, and easier separation than homogeneous catalysts. The traditional colloid nanoparticle syntheses usually involve strong surface binding ligands that could passivate the surface active sites and result in poor catalytic activity. The subsequent removal of surface ligands could reactivate the surface but often leads to metal ion leaching and/or severe Ostwald ripening with diminished catalytic activity or poor stability. Molecular ligand engineering represents a powerful strategy for the design of homogeneous molecular catalysts but is insufficiently explored for nanoparticle catalysts tomore » date. We report a systematic investigation on molecular ligand modulation of palladium (Pd) nanoparticle catalysts. Our studies show that β-functional groups of butyric acid ligand on Pd nanoparticles can significantly modulate the catalytic reaction process to modify the catalytic activity and stability for important aerobic reactions. With a β-hydroxybutyric acid ligand, the Pd nanoparticle catalysts exhibit exceptional catalytic activity and stability with an unsaturated turnover number (TON) >3000 for dehydrogenative oxidation of cyclohexenone to phenol, greatly exceeding that of homogeneous Pd(II) catalysts (TON, ~30). This study presents a systematic investigation of molecular ligand modulation of nanoparticle catalysts and could open up a new pathway toward the design and construction of highly efficient and robust heterogeneous catalysts through molecular ligand engineering.« less
Sekimoto, Kanako; Sakakura, Motoshi; Kawamukai, Takatomo; Hike, Hiroshi; Shiota, Teruhisa; Usui, Fumihiko; Bando, Yasuhiko; Takayama, Mitsuo
2016-08-02
Herein it is shown that a combination of direct analysis in real time (DART) with a corona discharge system consisting of only a needle electrode easily improves DART ionization efficiency. Positive and negative DC corona discharges led to a formation of abundant excited helium atoms as well as the reactant ions H3O(+)(H2O)n and O2˙(-) in the DART analyte ionization area. These phenomena resulted in an increase in the absolute intensities of (de)protonated analytes by a factor of 2-20 over conventional DART. The other analyte ions detected in this corona-DART system (i.e., molecular ions, fragment ions, oxygenated (de)protonated analytes, dehydrogenated deprotonated analytes, and negative ion adducts) were quite similar to those obtained from DART alone. This indicates a lack of side reactions due to the corona discharge. The change in the relative intensities of individual analyte-related ions due to the combination of a corona discharge system with DART suggests that there is no effect of the abundant excited helium in the analyte ionization area on the fragmentation processes or enhancement of oxidation due to hydroxyl radicals HO˙. Furthermore, it was found that the corona-DART combination can be applied to the highly sensitive analysis of n-alkanes, in which the alkanes are ionized as positive ions via hydride abstraction and oxidation, independent of the type of alkane or the mass spectrometer used.
Wendlandt, Alison E; Stahl, Shannon S
2014-01-08
Copper amine oxidases are a family of enzymes with quinone cofactors that oxidize primary amines to aldehydes. The native mechanism proceeds via an iminoquinone intermediate that promotes high selectivity for reactions with primary amines, thereby constraining the scope of potential biomimetic synthetic applications. Here we report a novel bioinspired quinone catalyst system consisting of 1,10-phenanthroline-5,6-dione/ZnI2 that bypasses these constraints via an abiological pathway involving a hemiaminal intermediate. Efficient aerobic dehydrogenation of non-native secondary amine substrates, including pharmaceutically relevant nitrogen heterocycles, is demonstrated. The ZnI2 cocatalyst activates the quinone toward amine oxidation and provides a source of iodide, which plays an important redox-mediator role to promote aerobic catalytic turnover. These findings provide a valuable foundation for broader development of aerobic oxidation reactions employing quinone-based catalysts.
Homogeneous Catalysis for Sustainable Hydrogen Storage in Formic Acid and Alcohols.
Sordakis, Katerina; Tang, Conghui; Vogt, Lydia K; Junge, Henrik; Dyson, Paul J; Beller, Matthias; Laurenczy, Gábor
2018-01-24
Hydrogen gas is a storable form of chemical energy that could complement intermittent renewable energy conversion. One of the main disadvantages of hydrogen gas arises from its low density, and therefore, efficient handling and storage methods are key factors that need to be addressed to realize a hydrogen-based economy. Storage systems based on liquids, in particular, formic acid and alcohols, are highly attractive hydrogen carriers as they can be made from CO 2 or other renewable materials, they can be used in stationary power storage units such as hydrogen filling stations, and they can be used directly as transportation fuels. However, to bring about a paradigm change in our energy infrastructure, efficient catalytic processes that release the hydrogen from these molecules, as well as catalysts that regenerate these molecules from CO 2 and hydrogen, are required. In this review, we describe the considerable progress that has been made in homogeneous catalysis for these critical reactions, namely, the hydrogenation of CO 2 to formic acid and methanol and the reverse dehydrogenation reactions. The dehydrogenation of higher alcohols available from renewable feedstocks is also described. Key structural features of the catalysts are analyzed, as is the role of additives, which are required in many systems. Particular attention is paid to advances in sustainable catalytic processes, especially to additive-free processes and catalysts based on Earth-abundant metal ions. Mechanistic information is also presented, and it is hoped that this review not only provides an account of the state of the art in the field but also offers insights into how superior catalytic systems can be obtained in the future.
Shao, Yi; Xia, Qineng; Liu, Xiaohui; Lu, Guanzhong; Wang, Yanqin
2015-05-22
A simple Pd-loaded Nb2 O5 /SiO2 catalyst was prepared for the hydrodeoxygenation of biomass-related compounds to alkanes under mild conditions. Niobium oxide dispersed in silica (Nb2 O5 /SiO2 ) as the support was prepared by the sol-gel method and characterized by various techniques, including N2 adsorption, XRD, NH3 temperature-programmed desorption (TPD), TEM, and energy-dispersive X-ray spectroscopy (EDAX) atomic mapping. The characterization results showed that the niobium oxide species were amorphous and well dispersed in silica. Compared to commercial Nb2 O5 , Nb2 O5 /SiO2 has significantly more active niobium oxide species exposed on the surface. Under mild conditions (170 °C, 2.5 MPa), Pd/10 %Nb2 O5 /SiO2 was effective for the hydrodeoxygenation reactions of 4-(2-furyl)-3-buten-2-one (aldol adduct of furfural with acetone), palmitic acid, tristearin, and diphenyl ether (model compounds of microalgae oils, vegetable oils, and lignin), which gave high yields (>94 %) of alkanes with little CC bond cleavage. More importantly, owing to the significant promotion effect of NbOx species on CO bond cleavage and the mild reaction conditions, the CC cleavage was considerably restrained, and the catalyst showed an excellent activity and stability for the hydrodeoxygenation of palmitic acid with almost no decrease in hexadecane yield (94-95 %) in a 150 h time-on-stream test. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Preparation and characterization of NiW-nHA composite catalyst for hydrocracking
NASA Astrophysics Data System (ADS)
Zhou, Gang; Hou, Yongzhao; Liu, Lei; Liu, Hongru; Liu, Can; Liu, Jing; Qiao, Huiting; Liu, Wenyong; Fan, Yubo; Shen, Shituan; Rong, Long
2012-11-01
The synthesis, characterization and catalytic capability of the NiW-nano-hydroxyapatite (NiW-nHA) composite were investigated in this paper. The NiW-nHA catalyst was prepared by a co-precipitation method. Then Fourier transform infrared (FT-IR) spectroscopy, transmission electron microscopy (TEM), X-ray diffraction (XRD) and energy dispersive spectroscopy (EDX) were used to analyze this material. In addition, the catalytic capacity of the NiW-nHA composite was also examined by FT-IR and gas chromatography (GC). The results of FT-IR analysis indicated that Ni, W and nHA combined closely. TEM observation revealed that this catalyst was needle shaped and the crystal retained a nanometer size. XRD data also suggested that a new phase of CaWO4 appeared and the lattice parameters of nHA changed in this system. nHA was the carrier of metals. The rates of Ni/W-loading were 73.24% and 65.99% according to the EDX data, respectively. Furthermore, the conversion of 91.88% Jatropha oil was achieved at 360 °C and 3 MPa h-1 over NiW-nHA catalyst. The straight chain alkanes ranging from C15 to C18 were the main components in the production. The yield of C15-C18 alkanes was up to 83.56 wt%. The reaction pathway involved hydrocracking of the C&z.dbd;C bonds of these triglycerides from Jatropha oil. This paper developed a novel non-sulfided catalyst to obtain a ``green biofuel'' from vegetable oil.
n-hydrocarbons conversions over metal-modified solid acid catalysts
NASA Astrophysics Data System (ADS)
Zarubica, A.; Ranđelović, M.; Momčilović, M.; Radulović, N.; Putanov, P.
2013-12-01
The quality of a straight-run fuel oil can be improved if saturated n-hydrocarbons of low octane number are converted to their branched counterparts. Poor reactivity of traditional catalysts in isomerization reactions imposed the need for the development of new catalysts among which noble metal promoted acid catalysts, liquid and/or solid acid catalysts take a prominent place. Sulfated zirconia and metal promoted sulfated zirconia exhibit high activity for the isomerization of light alkanes at low temperatures. The present paper highlights the original results which indicate that the modification of sulfated zirconia by incorporation of metals (platinum and rhenium) significantly affects catalytic performances in n-hydrocarbon conversion reactions. Favourable activity/selectivity of the promoted sulfated zirconia depends on the crystal phase composition, critical crystallites sizes, platinum dispersion, total acidity and type of acidity. Attention is also paid to the recently developed solid acid catalysts used in other conversion reactions of hydrocarbons.
Gupta, Sonu; Chandna, Nisha; Dubey, Pooja; Singh, Ajai K; Jain, Nidhi
2018-06-21
Copper chalcogenide nanoparticles (Cu7S4) supported on graphene oxide (GO) have been synthesized for the first time from Cu2S, and used as highly efficient heterogeneous catalysts for oxidative ortho-selective C-H aminomethylation of phenols with N,N-dimethylbenzylamines. The NPs (30-80 nm) have been characterized by HRTEM, SEM-EDX, PXRD, FTIR, Raman, ICP-AES and XPS analyses. The NP catalyzed sp2-sp3 cross dehydrogenative coupling (CDC) features a broad substrate scope, excellent functional group tolerance, high yields, use of an inexpensive and reusable copper catalyst, mild conditions, and no need for pre-functionalization of substrates.
Organic chemistry. A rhodium catalyst for single-step styrene production from benzene and ethylene.
Vaughan, Benjamin A; Webster-Gardiner, Michael S; Cundari, Thomas R; Gunnoe, T Brent
2015-04-24
Rising global demand for fossil resources has prompted a renewed interest in catalyst technologies that increase the efficiency of conversion of hydrocarbons from petroleum and natural gas to higher-value materials. Styrene is currently produced from benzene and ethylene through the intermediacy of ethylbenzene, which must be dehydrogenated in a separate step. The direct oxidative conversion of benzene and ethylene to styrene could provide a more efficient route, but achieving high selectivity and yield for this reaction has been challenging. Here, we report that the Rh catalyst ((Fl)DAB)Rh(TFA)(η(2)-C2H4) [(Fl)DAB is N,N'-bis(pentafluorophenyl)-2,3-dimethyl-1,4-diaza-1,3-butadiene; TFA is trifluoroacetate] converts benzene, ethylene, and Cu(II) acetate to styrene, Cu(I) acetate, and acetic acid with 100% selectivity and yields ≥95%. Turnover numbers >800 have been demonstrated, with catalyst stability up to 96 hours. Copyright © 2015, American Association for the Advancement of Science.
NASA Astrophysics Data System (ADS)
Huang, Xu; Xiao, Xuezhang; Shao, Jie; Zhai, Bing; Fan, Xiulin; Cheng, Changjun; Li, Shouquan; Ge, Hongwei; Wang, Qidong; Chen, Lixin
2016-08-01
Nanoscale catalyst doping is regarded as one of the most effective strategies to improve the kinetics performance of hydrogen storage materials, but the agglomeration of nanoparticles is usually unavoidable during the repeated de/rehydrogenation processes. Herein, hierarchically structured catalysts (Fe/C, Co/C and Ni/C) were designed and fabricated to overcome the agglomeration issue of nanocatalysts applied to the 2LiBH4-MgH2 system for the first time. Uniform transition metal (TM) nanoparticles (~10 nm) wrapped by few layers of carbon are synthesized by pyrolysis of the corresponding metal-organic frameworks (MOFs), and introduced into the 2LiBH4-MgH2 reactive hydride composites (RHCs) by ball milling. The particular features of the carbon-wrapped architecture effectively avoid the agglomeration of the TM nanoparticles during hydrogen storage cycling, and high catalysis is maintained during the subsequent de/rehydrogenation processes. After de/rehydrogenation cycling, FeB, CoB and MgNi3B2 can be formed as the catalytically active components with a particle size of 5-15 nm, which show a homogeneous distribution in the hydride matrix. Among the three catalysts, in situ-formed MgNi3B2 shows the best catalytic efficiency. The incubation period of the Fe/C, Co/C and Ni/C-doped 2LiBH4-MgH2 system between the two dehydrogenation steps was reduced to about 8 h, 4 h and 2 h, respectively, which is about 8 h, 12 h and 14 h shorter than that of the undoped 2LiBH4-MgH2 sample. In addition, the two-step dehydrogenation peak temperatures of the Ni/C-doped 2LiBH4-MgH2 system drop to 323.4 °C and 410.6 °C, meanwhile, the apparent activation energies of dehydrogenated MgH2 and LiBH4 decrease by 58 kJ mol-1 and 71 kJ mol-1, respectively. In particular, the cycling hydrogen desorption of the Ni/C-doped 2LiBH4-MgH2 sample exhibits very good stability compared with the undoped sample. The present approach, which ideally addresses the agglomeration of nanoparticles with efficient catalysis on the RHCs, provides a new inspiration to practical hydrogen storage application for high performance complex hydrides.Nanoscale catalyst doping is regarded as one of the most effective strategies to improve the kinetics performance of hydrogen storage materials, but the agglomeration of nanoparticles is usually unavoidable during the repeated de/rehydrogenation processes. Herein, hierarchically structured catalysts (Fe/C, Co/C and Ni/C) were designed and fabricated to overcome the agglomeration issue of nanocatalysts applied to the 2LiBH4-MgH2 system for the first time. Uniform transition metal (TM) nanoparticles (~10 nm) wrapped by few layers of carbon are synthesized by pyrolysis of the corresponding metal-organic frameworks (MOFs), and introduced into the 2LiBH4-MgH2 reactive hydride composites (RHCs) by ball milling. The particular features of the carbon-wrapped architecture effectively avoid the agglomeration of the TM nanoparticles during hydrogen storage cycling, and high catalysis is maintained during the subsequent de/rehydrogenation processes. After de/rehydrogenation cycling, FeB, CoB and MgNi3B2 can be formed as the catalytically active components with a particle size of 5-15 nm, which show a homogeneous distribution in the hydride matrix. Among the three catalysts, in situ-formed MgNi3B2 shows the best catalytic efficiency. The incubation period of the Fe/C, Co/C and Ni/C-doped 2LiBH4-MgH2 system between the two dehydrogenation steps was reduced to about 8 h, 4 h and 2 h, respectively, which is about 8 h, 12 h and 14 h shorter than that of the undoped 2LiBH4-MgH2 sample. In addition, the two-step dehydrogenation peak temperatures of the Ni/C-doped 2LiBH4-MgH2 system drop to 323.4 °C and 410.6 °C, meanwhile, the apparent activation energies of dehydrogenated MgH2 and LiBH4 decrease by 58 kJ mol-1 and 71 kJ mol-1, respectively. In particular, the cycling hydrogen desorption of the Ni/C-doped 2LiBH4-MgH2 sample exhibits very good stability compared with the undoped sample. The present approach, which ideally addresses the agglomeration of nanoparticles with efficient catalysis on the RHCs, provides a new inspiration to practical hydrogen storage application for high performance complex hydrides. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr04100k
Microwave-assisted direct synthesis of butene from high-selectivity methane
Li, Kang; Lu, Yu-wei
2017-01-01
Methane was directly converted to butene liquid fuel by microwave-induced non-oxidative catalytic dehydrogenation under 0.1–0.2 MPa. The results show that, under microwave heating in a two-stage fixed-bed reactor, in which nickel powder and NiOx–MoOy/SiO2 are used as the catalyst, the methane–hydrogen mixture is used as the raw material, with no acetylene detected. The methane conversion is more than 73.2%, and the selectivity of methane to butene is 99.0%. Increasing the hydrogen/methane feed volume ratio increases methane conversion and selectivity. Gas chromatography/electron impact ionization/mass spectrometry chromatographic analysis showed that the liquid fuel produced by methane dehydrogenation oligomerization contained 89.44% of butene, and the rest was acetic acid, ethanol, butenol and butyric acid, and the content was 1.0–3.0 wt%. PMID:29308261
Sun, Junming; Zhu, Kake; Gao, Feng; Wang, Chongmin; Liu, Jun; Peden, Charles H F; Wang, Yong
2011-07-27
We report the design and synthesis of nanosized Zn(x)Zr(y)O(z) mixed oxides for direct and high-yield conversion of bio-ethanol to isobutene (~83%). ZnO is addded to ZrO(2) to selectively passivate zirconia's strong Lewis acidic sites and weaken Brönsted acidic sites, while simultaneously introducing basicity. As a result, the undesired reactions of bio-ethanol dehydration and acetone polymerization/coking are suppressed. Instead, a surface basic site-catalyzed ethanol dehydrogenation to acetaldehyde, acetaldehyde to acetone conversion via a complex pathway including aldol-condensation/dehydrogenation, and a Brönsted acidic site-catalyzed acetone-to-isobutene reaction pathway dominates on the nanosized Zn(x)Zr(y)O(z) mixed oxide catalyst, leading to a highly selective process for direct conversion of bio-ethanol to isobutene.
NASA Astrophysics Data System (ADS)
Huang, Yanping; Dong, Xiuqin; Yu, Yingzhe; Zhang, Minhua
2017-11-01
On the basis of the activation barriers and reaction energies from DFT calculations, kinetic Monte Carlo (kMC) simulations of vinyl acetate (VA) synthesis from ethylene acetoxylation on Pd(100) and Pd/Au(100) were carried out. Through kMC simulation, it was found that VA synthesis from ethylene acetoxylation proceeds via Moiseev mechanism on both Pd(100) and Pd/Au(100). The addition of Au into Pd can suppress ethylene dehydrogenation while it can promote acetic acid dehydrogenation, which can eventually facilitate VA synthesis as a whole. The addition of Au into Pd can further improve the conversion and selectivity of VA synthesis from ethylene acetoxylation. When the reaction network is analyzed, besides the energetics of each elementary reaction, the surface coverage of each species and the occupancy of the surface sites on the catalyst should also be taken into consideration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Zhangpeng; Yang, Xinchun; Tsumori, Nobuko
2017-03-10
Highly dispersed palladium nanoclusters (Pd NCs) immobilized by a nitrogen (N)-functionalized porous carbon support (N-MSC-30) are synthesized by a wet chemical reduction method, wherein the N-MSC-30 prepared by a tandem low temperature heat-treatment approach proved to be a distinct support for stabilizing the Pd NCs. The prepared Pd/N-MSC-30 shows extremely high catalytic activity and recyclability for the dehydrogenation of formic acid (FA), affording the highest turnover frequency (TOF = 8414 h -1) at 333 K, which is much higher than that of the Pd catalyst supported on the N-MSC-30 prepared via a one-step process. This tandem heat treatment strategy providesmore » a facile and effective synthetic methodology to immobilize ultrafine metal NPs on N-functionalized carbon materials, which have tremendous application prospects in various catalytic fields.« less
Zhang, Qiaofei; Zhao, Guofeng; Zhang, Zhiqiang; Han, Lupeng; Fan, Songyu; Chai, Ruijuan; Li, Yakun; Liu, Ye; Huang, Jun; Lu, Yong
2016-09-29
A strategy of "macro-micro-nano" organization is reported for embedding oxide-encapsulated-nanoparticles onto monolithic substrates in one-step with the aid of molecularly defined cross-linking agents. Such catalysts, with enhanced heat/mass transfer and high permeability, are qualified for several harsh reaction processes such as CH 4 /VOC abatement, gas-phase hydrogenation of dimethyl oxalate and oxidative dehydrogenation of ethane.
Forberg, Daniel; Schwob, Tobias; Zaheer, Muhammad; Friedrich, Martin; Miyajima, Nobuyoshi; Kempe, Rhett
2016-01-01
Large-scale energy storage and the utilization of biomass as a sustainable carbon source are global challenges of this century. The reversible storage of hydrogen covalently bound in chemical compounds is a particularly promising energy storage technology. For this, compounds that can be sustainably synthesized and that permit high-weight% hydrogen storage would be highly desirable. Herein, we report that catalytically modified lignin, an indigestible, abundantly available and hitherto barely used biomass, can be harnessed to reversibly store hydrogen. A novel reusable bimetallic catalyst has been developed, which is able to hydrogenate and dehydrogenate N-heterocycles most efficiently. Furthermore, a particular N-heterocycle has been identified that can be synthesized catalytically in one step from the main lignin hydrogenolysis product and ammonia, and in which the new bimetallic catalyst allows multiple cycles of high-weight% hydrogen storage. PMID:27762267
Forberg, Daniel; Schwob, Tobias; Zaheer, Muhammad; Friedrich, Martin; Miyajima, Nobuyoshi; Kempe, Rhett
2016-10-20
Large-scale energy storage and the utilization of biomass as a sustainable carbon source are global challenges of this century. The reversible storage of hydrogen covalently bound in chemical compounds is a particularly promising energy storage technology. For this, compounds that can be sustainably synthesized and that permit high-weight% hydrogen storage would be highly desirable. Herein, we report that catalytically modified lignin, an indigestible, abundantly available and hitherto barely used biomass, can be harnessed to reversibly store hydrogen. A novel reusable bimetallic catalyst has been developed, which is able to hydrogenate and dehydrogenate N-heterocycles most efficiently. Furthermore, a particular N-heterocycle has been identified that can be synthesized catalytically in one step from the main lignin hydrogenolysis product and ammonia, and in which the new bimetallic catalyst allows multiple cycles of high-weight% hydrogen storage.
Site-Directed Synthesis of Cobalt Oxide Clusters in a Metal–Organic Framework
Peters, Aaron W.; Otake, Kenichi; Platero-Prats, Ana E.; ...
2018-04-19
Here, direct control over structure and location of catalytic species deposited on amorphous supports represents a formidable challenge in heterogeneous catalysis. In contrast, a structurally well-defined, crystalline metal–organic framework (MOF) can be rationally designed using post-synthetic techniques to allow for desired structural or locational changes of deposited metal ions. Herein, naphthalene dicarboxylate linkers are incorporated in the MOF, NU-1000, to block the small cavities where few-atom clusters of cobalt oxide preferentially grow, inducing catalyst deposition towards hither-to ill-favored grafting sites orientated toward NU-1000’s mesoporous channels. Despite the different cobalt oxide location, the resulting material is still an active propane oxidativemore » dehydrogenation catalyst at low temperature, reaching a turnover frequency of 0.68 ± 0.05 h –1 at 230 °C and confirming the utility of MOFs as crystalline supports to guide rational design of catalysts.« less
Wendlandt, Alison E.; Stahl, Shannon S.
2014-01-01
Copper amine oxidases are a family of enzymes with quinone cofactors that oxidize primary amines to aldehydes. The native mechanism proceeds via an iminoquinone intermediate that promotes high selectivity for reactions with primary amines, thereby constraining the scope of potential biomimetic synthetic applications. Here, we report a novel bioinspired quinone catalyst system, consisting of 1,10-phenanthroline-5,6-dione/ZnI2, that bypasses these constraints via an abiological pathway involving a hemiaminal intermediate. Efficient aerobic dehydrogenation of non-native secondary amine substrates, including pharmaceutically relevant nitrogen heterocycles, is demonstrated. The ZnI2 cocatalyst activates the quinone toward amine oxidation and provides a source of iodide, which plays an important redox-mediator role to promote aerobic catalytic turnover. These findings provide a valuable foundation for broader development of aerobic oxidation reactions employing quinone-based catalysts. PMID:24328193
Site-Directed Synthesis of Cobalt Oxide Clusters in a Metal–Organic Framework
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peters, Aaron W.; Otake, Kenichi; Platero-Prats, Ana E.
Here, direct control over structure and location of catalytic species deposited on amorphous supports represents a formidable challenge in heterogeneous catalysis. In contrast, a structurally well-defined, crystalline metal–organic framework (MOF) can be rationally designed using post-synthetic techniques to allow for desired structural or locational changes of deposited metal ions. Herein, naphthalene dicarboxylate linkers are incorporated in the MOF, NU-1000, to block the small cavities where few-atom clusters of cobalt oxide preferentially grow, inducing catalyst deposition towards hither-to ill-favored grafting sites orientated toward NU-1000’s mesoporous channels. Despite the different cobalt oxide location, the resulting material is still an active propane oxidativemore » dehydrogenation catalyst at low temperature, reaching a turnover frequency of 0.68 ± 0.05 h –1 at 230 °C and confirming the utility of MOFs as crystalline supports to guide rational design of catalysts.« less
Schutyser, Wouter; Van den Bosch, Sander; Dijkmans, Jan; Turner, Stuart; Meledina, Maria; Van Tendeloo, Gustaaf; Debecker, Damien P; Sels, Bert F
2015-05-22
Valorization of lignin is essential for the economics of future lignocellulosic biorefineries. Lignin is converted into novel polymer building blocks through four steps: catalytic hydroprocessing of softwood to form 4-alkylguaiacols, their conversion into 4-alkylcyclohexanols, followed by dehydrogenation to form cyclohexanones, and Baeyer-Villiger oxidation to give caprolactones. The formation of alkylated cyclohexanols is one of the most difficult steps in the series. A liquid-phase process in the presence of nickel on CeO2 or ZrO2 catalysts is demonstrated herein to give the highest cyclohexanol yields. The catalytic reaction with 4-alkylguaiacols follows two parallel pathways with comparable rates: 1) ring hydrogenation with the formation of the corresponding alkylated 2-methoxycyclohexanol, and 2) demethoxylation to form 4-alkylphenol. Although subsequent phenol to cyclohexanol conversion is fast, the rate is limited for the removal of the methoxy group from 2-methoxycyclohexanol. Overall, this last reaction is the rate-limiting step and requires a sufficient temperature (>250 °C) to overcome the energy barrier. Substrate reactivity (with respect to the type of alkyl chain) and details of the catalyst properties (nickel loading and nickel particle size) on the reaction rates are reported in detail for the Ni/CeO2 catalyst. The best Ni/CeO2 catalyst reaches 4-alkylcyclohexanol yields over 80 %, is even able to convert real softwood-derived guaiacol mixtures and can be reused in subsequent experiments. A proof of principle of the projected cascade conversion of lignocellulose feedstock entirely into caprolactone is demonstrated by using Cu/ZrO2 for the dehydrogenation step to produce the resultant cyclohexanones (≈80 %) and tin-containing beta zeolite to form 4-alkyl-ε-caprolactones in high yields, according to a Baeyer-Villiger-type oxidation with H2 O2 . © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deshlahra, Prashant; Iglesia, Enrique
The oxidative dehydrogenation (ODH) of alkanols on oxide catalysts is generally described as involving H-abstraction from alkoxy species formed via O–H dissociation. Kinetic and isotopic data cannot discern between such routes and those involving kinetically-relevant H-abstraction from undissociated alkanols. Here, we combine such experiments with theoretical estimates of activation energies and entropies to show that the latter molecular routes prevail over dissociative routes for methanol reactions on polyoxometalate (POM) clusters at all practical reaction temperatures. The stability of the late transition states that mediate H-abstraction depend predominantly on the stability of the O–H bond formed, making H-addition energies (HAE) accuratemore » and single-valued descriptors of reactivity. Density functional theory-derived activation energies depend linearly on HAE values at each O-atom location on clusters with a range of composition (H3PMo12, H4SiMo12, H3PW12, H4PV1Mo11, and H4PV1W11); both barriers and HAE values reflect the lowest unoccupied molecular orbital energy of metal centers that accept the electron and the protonation energy of O-atoms that accept the proton involved in the H-atom transfer. Bridging O-atoms form O–H bonds that are stronger than those of terminal atoms and therefore exhibit more negative HAE values and higher ODH reactivity on all POM clusters. For each cluster composition, ODH turnover rates reflect the reactivity-averaged HAE of all accessible O-atoms, which can be evaluated for each cluster composition to provide a rigorous and accurate predictor of ODH reactivity for catalysts with known structure. These relations together with oxidation reactivity measurements can then be used to estimate HAE values and to infer plausible structures for catalysts with uncertain active site structures.« less
Xue, Teng; Lin, Zhaoyang; Chiu, Chin-Yi; ...
2017-01-06
Metallic nanoparticles are emerging as an exciting class of heterogeneous catalysts with the potential advantages of exceptional activity, stability, recyclability, and easier separation than homogeneous catalysts. The traditional colloid nanoparticle syntheses usually involve strong surface binding ligands that could passivate the surface active sites and result in poor catalytic activity. The subsequent removal of surface ligands could reactivate the surface but often leads to metal ion leaching and/or severe Ostwald ripening with diminished catalytic activity or poor stability. Molecular ligand engineering represents a powerful strategy for the design of homogeneous molecular catalysts but is insufficiently explored for nanoparticle catalysts tomore » date. We report a systematic investigation on molecular ligand modulation of palladium (Pd) nanoparticle catalysts. Our studies show that β-functional groups of butyric acid ligand on Pd nanoparticles can significantly modulate the catalytic reaction process to modify the catalytic activity and stability for important aerobic reactions. With a β-hydroxybutyric acid ligand, the Pd nanoparticle catalysts exhibit exceptional catalytic activity and stability with an unsaturated turnover number (TON) >3000 for dehydrogenative oxidation of cyclohexenone to phenol, greatly exceeding that of homogeneous Pd(II) catalysts (TON, ~30). This study presents a systematic investigation of molecular ligand modulation of nanoparticle catalysts and could open up a new pathway toward the design and construction of highly efficient and robust heterogeneous catalysts through molecular ligand engineering.« less
High ethylene to ethane processes for oxidative coupling
Chafin, R.B.; Warren, B.K.
1991-12-17
Oxidative coupling of lower alkane to higher hydrocarbon is conducted using a catalyst comprising barium and/or strontium component and a metal oxide combustion promoter in the presence of vapor phase halogen component. High ethylene to ethane mole ratios in the product can be obtained over extended operating periods.
High ethylene to ethane processes for oxidative coupling
Chafin, Richard B.; Warren, Barbara K.
1991-01-01
Oxidative coupling of lower alkane to higher hydrocarbon is conducted using catalyst comprising barium and/or strontium component and a metal oxide combustion promoter in the presence of vapor phase halogen component. High ethylene to ethane mole ratios in the product can be obtained over extended operating periods.
Chapman, Andy M; Haddow, Mairi F; Wass, Duncan F
2011-06-15
The cationic zirconocene-phosphinoaryloxide complexes [Cp(2)ZrOC(6)H(4)P(t-Bu)(2)][B(C(6)F(5))(4)] (3) and [Cp*(2)ZrOC(6)H(4)P(t-Bu)(2)][B(C(6)F(5))(4)] (4) were synthesized by the reaction of Cp(2)ZrMe(2) or Cp*(2)ZrMe(2) with 2-(diphenylphosphino)phenol followed by protonation with [2,6-di-tert-butylpyridinium][B(C(6)F(5))(4)]. Compound 3 exhibits a Zr-P bond, whereas the bulkier Cp* derivative 4 was isolated as a chlorobenzene adduct without this Zr-P interaction. These compounds can be described as transition-metal-containing versions of linked frustrated Lewis pairs (FLPs), and treatment of 4 with H(2) under mild conditions cleaved H(2) in a fashion analogous to that for main-group FLPs. Their reactivity in amine borane dehydrogenation also mimics that of main-group FLPs, and they dehydrogenate a range of amine borane adducts. However, in contrast to main-group FLPs, 3 and 4 achieve this transformation in a catalytic rather than stoichiometric sense, with rates superior to those for previous high-valent catalysts. © 2011 American Chemical Society
Assessing the concept of structure sensitivity or insensitivity for sub-nanometer catalyst materials
NASA Astrophysics Data System (ADS)
Crampton, Andrew S.; Rötzer, Marian D.; Ridge, Claron J.; Yoon, Bokwon; Schweinberger, Florian F.; Landman, Uzi; Heiz, Ueli
2016-10-01
The nature of the nano-catalyzed hydrogenation of ethylene, yielding benchmark information pertaining to the concept of structure sensitivity/insensitivity and its applicability at the bottom of the catalyst particle size-range, is explored with experiments on size-selected Ptn (n = 7-40) clusters soft-landed on MgO, in conjunction with first-principles simulations. As in the case of larger particles both the direct ethylene hydrogenation channel and the parallel hydrogenation-dehydrogenation ethylidyne-producing route must be considered, with the fundamental uncovering that at the < 1 nm size-scale the reaction exhibits characteristics consistent with structure sensitivity, in contrast to the structure insensitivity found for larger particles. In this size-regime, the chemical properties can be modulated and tuned by a single atom, reflected by the onset of low temperature hydrogenation at T > 150 K catalyzed by Ptn (n ≥ 10) clusters, with maximum room temperature reactivity observed for Pt13 using a pulsed molecular beam technique. Structure insensitive behavior, inherent for specific cluster sizes at ambient temperatures, can be induced in the more active sizes, e.g. Pt13, by a temperature increase, up to 400 K, which opens dehydrogenation channels leading to ethylidyne formation. This reaction channel was, however found to be attenuated on Pt20, as catalyst activity remained elevated after the 400 K step. Pt30 displayed behavior which can be understood from extrapolating bulk properties to this size range; in particular the calculated d-band center. In the non-scalable sub-nanometer size regime, however, precise control of particle size may be used for atom-by-atom tuning and manipulation of catalyzed hydrogenation activity and selectivity.
Verma, Anand Mohan; Kishore, Nanda
2017-09-27
The catalytic conversion of 2-hydroxybenzaldehyde (2-HB) is carried out numerically over a Pd(111) surface using density functional theory. The palladium catalyst surface is designed using a 12 atom monolayer and verified with the adsorption of phenol, benzene, anisole, guaiacol, and vanillin; it is found that the adsorption energies along with the adsorption configurations of phenol and benzene are in excellent agreement with the literature. The conversion of 2-HB over the Pd(111) catalyst surface is performed using four reaction schemes: (i) dehydrogenation of the formyl group followed by elimination of CO and association of hydrogen with 2-hydroxyphenyl to produce phenol, (ii) direct elimination of CHO from 2-HB followed by elimination of hydrogen from adsorbed CHO and association of hydrogen with 2-hydroxyphenyl to produce phenol, (iii) direct dehydroxylation of 2-HB followed by association of a hydrogen atom with 2-formylphenyl to produce benzaldehyde, and (iv) dehydrogenation of the hydroxyl group of 2-HB followed by elimination of an oxygen atom and association of a hydrogen atom with 2-formylphenyl to produce benzaldehyde. Along with the reaction mechanisms and their barrier heights, all reaction steps are considered for kinetic modelling in the temperature range 498-698 K with 50 K intervals. The rate constants, pre-exponential factors, and equilibrium constants of all elementary reaction steps are evaluated for each temperature. Kinetic analyses of the catalytic conversion of 2-HB over the Pd(111) surface suggests the production of phenol as an intermediate, instead of benzaldehyde, via dehydrogenation of the formyl group of 2-HB as a first elementary reaction step because of its low activation barrier and the high rate constant of the rate controlling step. Furthermore, the equilibrium constants of the rate controlling step in the production of phenol from 2-HB over the Pd(111) surface report a major fraction of the product in the product mixture even at a low temperature of 498 K.
You, Qing; Wang, Fei; Wu, Chaoting; Shi, Tianchao; Min, Dewen; Chen, Huajun; Zhang, Wu
2015-06-28
Cu(OAc)2 was found to be an efficient catalyst for dehydrogenative synthesis of 1,3,5-triazine derivatives via oxidative coupling reaction of amidine hydrochlorides and alcohols in air. Both aromatic and aliphatic alcohols can be involved in the reaction and thirty-three products were obtained with good to excellent yields. Moreover, the use of a ligand, strong base and organic oxidant is unnecessary.
Transformations of C2-C4 alcohols on the surface of a copper catalyst
NASA Astrophysics Data System (ADS)
Magaeva, A. A.; Lyamina, G. V.; Sudakova, N. N.; Shilyaeva, L. P.; Vodyankina, O. V.
2007-10-01
The interaction of monoatomic alcohols C2-C4 with the surface of a copper catalyst preliminarily oxidized under various conditions was studied by the temperature-programmed reaction method to determine the detailed mechanism of partial oxidation. The conditions of oxygen preadsorption on the surface of copper for the preparation of the desired products were determined. The selective formation of carbonyl compounds was shown to occur at the boundary between reduced and oxidized copper surface regions. The role played by Cu2O was the deep oxidation of alcohols to CO2. Alcohols with branched hydrocarbon structures experienced parallel partial oxidation and dehydrogenation, which was related to the high stability of intermediate keto-type compounds.
Unravelling Site-Specific Photo-Reactions of Ethanol on Rutile TiO2(110)
Hansen, Jonas Ø.; Bebensee, Regine; Martinez, Umberto; Porsgaard, Soeren; Lira, Estephania; Wei, Yinying; Lammich, Lutz; Li, Zheshen; Idriss, Hicham; Besenbacher, Flemming; Hammer, Bjørk; Wendt, Stefan
2016-01-01
Finding the active sites of catalysts and photo-catalysts is crucial for an improved fundamental understanding and the development of efficient catalytic systems. Here we have studied the photo-activated dehydrogenation of ethanol on reduced and oxidized rutile TiO2(110) in ultrahigh vacuum conditions. Utilizing scanning tunnelling microscopy, various spectroscopic techniques and theoretical calculations we found that the photo-reaction proceeds most efficiently when the reactants are adsorbed on regular Ti surface sites, whereas species that are strongly adsorbed at surface defects such as O vacancies and step edges show little reaction under reducing conditions. We propose that regular Ti surface sites are the most active sites in photo-reactions on TiO2. PMID:26915303
Searles, Keith; Siddiqi, Georges; Safonova, Olga V.
2017-01-01
Single-site gallium centers on the surface of silica are prepared via grafting of [Ga(OSi(OtBu)3)3(THF)] on SiO2–700 followed by a thermolysis step. The resulting surface species corresponds to well-defined tetra-coordinate gallium single-sites, [( 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 SiO)3Ga(XOSi)] (X = –H or Si) according to IR, X-ray absorption near-edge structure and extended X-ray absorption fine structure analysis. These gallium sites show high activity, selectivity and stability for propane dehydrogenation with an initial turnover frequency of 20 per h per gallium center, propylene selectivity of ≥93% and remarkable stability over 20 h. The stability of the catalyst probably results from site-isolation of the active site on a non-reducible support such as silica, diminishing facile reduction typical of Ga2O3-based catalysts. PMID:28553501
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gardner, Todd H.
Partial oxidation studies were conducted over a series of Ni-substituted lanthanum hexaaluminate catalysts, La 0.9Ni yAl 11.95-yO 19-δ (y = 1.0, 0.8, 0.4 and 0.2) to evaluate the effect of higher alkane, sulfur and polycyclic aromatic hydrocarbons using tetradecane (n-C 14), dibenzothiophene (DBT) and 1-methylnapthalene (1-MN) as model reaction compounds. XRD showed the Ni-substituted lanthanum hexaaluminate catalysts to have magnetoplumbite structure. Lattice parameters along the a,b-axis are shown to increase systematically with increasing Ni substitution. The unit cell is also shown to increase systematically with Ni substitution providing clear evidence of Ni 2+ substitution for Al 3+ in the lanthanummore » hexaaluminate lattice. Catalytic activity and product yields were evaluated by temperature programmed surface reaction (TPSR) using n-C 14 partial oxidation as a probe reaction. Between 750 and 900°C, H 2 and CO yields are shown to increase with increasing Ni surface sites while aromatic and olefin yields are shown to decrease. Step response experiments were performed to show the effect of 0.1 wt% 1-MN addition on catalytic activity and performance. As expected, at lower Ni substitution, thermal chemistry predominates suggesting fewer available active Ni sites. At the conditions tested, the site blocking effect is shown to be reversible at all levels of Ni substitution. Similar catalytic behaviors are observed with step response experiments to 50 ppm w/w dibenzothiophene (DBT) where site blocking is shown to produce a concomitantly greater effect on catalytic performance and active site occlusion with catalysts that have less active sites. The step response to DBT is also observed to be reversible. Post analysis of the used catalysts shows that coke deposition is greater on the catalysts with lower Ni substitution.« less
Gardner, Todd H.
2018-02-07
Partial oxidation studies were conducted over a series of Ni-substituted lanthanum hexaaluminate catalysts, La 0.9Ni yAl 11.95-yO 19-δ (y = 1.0, 0.8, 0.4 and 0.2) to evaluate the effect of higher alkane, sulfur and polycyclic aromatic hydrocarbons using tetradecane (n-C 14), dibenzothiophene (DBT) and 1-methylnapthalene (1-MN) as model reaction compounds. XRD showed the Ni-substituted lanthanum hexaaluminate catalysts to have magnetoplumbite structure. Lattice parameters along the a,b-axis are shown to increase systematically with increasing Ni substitution. The unit cell is also shown to increase systematically with Ni substitution providing clear evidence of Ni 2+ substitution for Al 3+ in the lanthanummore » hexaaluminate lattice. Catalytic activity and product yields were evaluated by temperature programmed surface reaction (TPSR) using n-C 14 partial oxidation as a probe reaction. Between 750 and 900°C, H 2 and CO yields are shown to increase with increasing Ni surface sites while aromatic and olefin yields are shown to decrease. Step response experiments were performed to show the effect of 0.1 wt% 1-MN addition on catalytic activity and performance. As expected, at lower Ni substitution, thermal chemistry predominates suggesting fewer available active Ni sites. At the conditions tested, the site blocking effect is shown to be reversible at all levels of Ni substitution. Similar catalytic behaviors are observed with step response experiments to 50 ppm w/w dibenzothiophene (DBT) where site blocking is shown to produce a concomitantly greater effect on catalytic performance and active site occlusion with catalysts that have less active sites. The step response to DBT is also observed to be reversible. Post analysis of the used catalysts shows that coke deposition is greater on the catalysts with lower Ni substitution.« less
Wu, Yajun; Zhang, Shuangquan; Yang, Xiaoqin; Wei, Xianyong
2017-01-01
Liquefaction residue of Heishan bituminous coal (HLR) was subject to two hydroconversion reactions under 5 MPa initial pressure of hydrogen at 300°C for 3 h, without catalyst and with acid supported catalyst (ASC), respectively. The reaction products were analyzed with gas chromatography/mass spectrometer (GC/MS). The results show that 222 organic compounds were detected totally in the products and they can be divided into alkanes, aromatic hydrocarbons (AHCs), phenols, ketones, ethers, and other species (OSs). The yield of hydroconversion over the ASC is much higher than that without catalyst. The most abundant products are aromatic hydrocarbons in the reaction products from both catalytic and noncatalytic reactions of HLR. The yield of aromatic hydrocarbons in the reaction product from hydroconversion with the ACS is considerably higher than that from hydroconversion without a catalyst. PMID:28250770
Phenolate constrained geometry polymerization catalyst and method for preparing
Marks, Tobin J.; Chen, You-Xian
1999-01-01
The subject invention involves a method of preparing and the constrained geometry catalyst thereby prepared of the general formula Ar'R4(O)Ar"R'.sub.4 M(CH.sub.2 Ph).sub.2 where Ar' is a phenyl or naphthyl group; Ar" is a cyclopentadienyl or indenyl group, R and R' are H or alkyl substituents (C.ltoreq.10) and M is Ti, Zr or Hf. The synthetic method involves a simple alkane elimination approach which permits a "one-pot" procedure. The catalyst, when combined with a cocatalyst such as Pb.sub.3 C.sup.+ B(Ar.sub.3.sup.F).sub.4 BAr.sub.3.sup.F or methyl alumoxane where Ar.sup.F is a fluoroaryl group, is an effective catalyst for the polymerization of .alpha.-olefins such as ethylene, propylene and styrene.
Catalyst design with atomic layer deposition
O'Neill, Brandon J.; Jackson, David H. K.; Lee, Jechan; ...
2015-02-06
Atomic layer deposition (ALD) has emerged as an interesting tool for the atomically precise design and synthesis of catalytic materials. Herein, we discuss examples in which the atomic precision has been used to elucidate reaction mechanisms and catalyst structure-property relationships by creating materials with a controlled distribution of size, composition, and active site. We highlight ways ALD has been utilized to design catalysts with improved activity, selectivity, and stability under a variety of conditions (e.g., high temperature, gas and liquid phase, and corrosive environments). In addition, due to the flexibility and control of structure and composition, ALD can create myriadmore » catalytic structures (e.g., high surface area oxides, metal nanoparticles, bimetallic nanoparticles, bifunctional catalysts, controlled microenvironments, etc.) that consequently possess applicability for a wide range of chemical reactions (e.g., CO 2 conversion, electrocatalysis, photocatalytic and thermal water splitting, methane conversion, ethane and propane dehydrogenation, and biomass conversion). Lastly, the outlook for ALD-derived catalytic materials is discussed, with emphasis on the pending challenges as well as areas of significant potential for building scientific insight and achieving practical impacts.« less
Catalyst design with atomic layer deposition
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Neill, Brandon J.; Jackson, David H. K.; Lee, Jechan
Atomic layer deposition (ALD) has emerged as an interesting tool for the atomically precise design and synthesis of catalytic materials. Herein, we discuss examples in which the atomic precision has been used to elucidate reaction mechanisms and catalyst structure-property relationships by creating materials with a controlled distribution of size, composition, and active site. We highlight ways ALD has been utilized to design catalysts with improved activity, selectivity, and stability under a variety of conditions (e.g., high temperature, gas and liquid phase, and corrosive environments). In addition, due to the flexibility and control of structure and composition, ALD can create myriadmore » catalytic structures (e.g., high surface area oxides, metal nanoparticles, bimetallic nanoparticles, bifunctional catalysts, controlled microenvironments, etc.) that consequently possess applicability for a wide range of chemical reactions (e.g., CO 2 conversion, electrocatalysis, photocatalytic and thermal water splitting, methane conversion, ethane and propane dehydrogenation, and biomass conversion). Lastly, the outlook for ALD-derived catalytic materials is discussed, with emphasis on the pending challenges as well as areas of significant potential for building scientific insight and achieving practical impacts.« less
Li, Chao; Wang, Dan; Wang, Yan; Li, Guode; Hu, Guijuan; Wu, Shiwei; Cao, Zhongqiu; Zhang, Ke
2018-08-15
In this work, nanostructured Co-W-B films are successfully synthesized on the foam sponge by electroless plating method and employed as the catalysts with enhanced catalytic activity towards hydrogen evolution from the hydrolysis of ammonia borane (NH 3 BH 3 , AB) at room temperature. The particle size of the as-prepared Co-W-B film catalysts is varied by adjusting the depositional pH value to identify the most suitable particle size for hydrogen evolution of AB hydrolysis. The Co-W-B film catalyst with the particle size of about 67.3 nm shows the highest catalytic activity and can reach a hydrogen generation rate of 3327.7 mL min -1 g cat -1 at 298 K. The activation energy of the hydrolysis reaction of AB is determined to be 32.2 kJ mol -1 . Remarkably, the as-obtained Co-W-B film is also a reusable catalyst preserving 78.4% of their initial catalytic activity even after 5 cycles in hydrolysis of AB at room temperature. Thus, the enhanced catalytic activity illustrates that the Co-W-B film is a promising catalyst for AB hydrolytic dehydrogenation in fuel cells and the related fields. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Shipp, Jessie; Gould, Ian R.; Herckes, Pierre; Shock, Everett L.; Williams, Lynda B.; Hartnett, Hilairy E.
2013-03-01
Many transformation reactions involving hydrocarbons occur in the presence of H2O in hydrothermal systems and deep sedimentary systems. We investigate these reactions using laboratory-based organic chemistry experiments at high temperature and pressure (300 °C and 100 MPa). Organic functional group transformation reactions using model organic compounds based on cyclohexane with one or two methyl groups provided regio- and stereochemical markers that yield information about reversibility and reaction mechanisms. We found rapidly reversible interconversion between alkanes, alkenes, dienes, alcohols, ketones, and enones. The alkane-to-ketone reactions were not only completely reversible, but also exhibited such extensive reversibility that any of the functional groups along the reaction path (alcohol, ketone, and even the diene) could be used as the reactant and form all the other groups as products. There was also a propensity for these ring-based structures to dehydrogenate; presumably from the alkene, through a diene, to an aromatic ring. The product suites provide strong evidence that water behaved as a reactant and the various functional groups showed differing degrees of reactivity. Mechanistically-revealing products indicated reaction mechanisms that involve carbon-centered cation intermediates. This work therefore demonstrates that a wide range of organic compound types can be generated by abiotic reactions at hydrothermal conditions.
Dong, Xichang; Kita, Yuji; Oestreich, Martin
2018-04-12
A catalyst-controlled enantioselective alcohol silylation by Cu-H-catalyzed dehydrogenative Si-O coupling of hydroxy groups α to an oxime ether and simple hydrosilanes is reported. The selectivity factors reached in this kinetic resolution are generally high (s≈50), and these reactions thereby provide reliable access to highly enantioenriched α-hydroxy-substituted oxime ethers. The synthetic usefulness of these compounds is also demonstrated. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zheng, Jun; You, Shu-Li
2014-11-24
Enantioselective construction of axially chiral biaryls by direct C-H bond functionalization reactions has been realized. Novel axially chiral biaryls were synthesized by the direct C-H bond olefination of biaryl compounds, using a chiral [Cp*Rh(III)] catalyst, in good to excellent yields and enantioselectivities. The obtained axially chiral biaryls were found as suitable ligands for rhodium-catalyzed asymmetric conjugate additions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Shin, Inji; Krische, Michael J.
2015-01-01
Cyclometalated π-allyliridium C,O-benzoate complexes modified by axially chiral chelating phosphine ligands display a pronounced kinetic preference for primary alcohol dehydrogenation, enabling highly site-selective redox-triggered carbonyl additions of chiral primary-secondary 1,3-diols with exceptional levels of catalyst-directed diastereoselectivity. Unlike conventional methods for carbonyl allylation, the present redox-triggered alcohol C-H functionalizations bypass the use of protecting groups, premetalated reagents, and discrete alcohol-to-aldehyde redox reactions. PMID:26187028
Ni-Catalyzed Dehydrogenative Cross-Coupling: Direct Transformation of Aldehydes to Esters and Amides
Whittaker, Aaron M.; Dong, Vy M.
2015-01-01
By exploring a new mode of Ni-catalyzed cross-coupling, we have developed a protocol to transform both aromatic and aliphatic aldehydes into either esters or amides directly. The success of this oxidative coupling depends on the appropriate choice of catalyst and organic oxidant, including the use of either α,α,α-trifluoroacetophenone or excess aldehyde. We present mechanistic data that supports a catalytic cycle involving oxidative addition into the aldehyde C–H bond. PMID:25424967
Intermetallic nickel silicide nanocatalyst—A non-noble metal–based general hydrogenation catalyst
Pohl, Marga-Martina; Agapova, Anastasiya
2018-01-01
Hydrogenation reactions are essential processes in the chemical industry, giving access to a variety of valuable compounds including fine chemicals, agrochemicals, and pharmachemicals. On an industrial scale, hydrogenations are typically performed with precious metal catalysts or with base metal catalysts, such as Raney nickel, which requires special handling due to its pyrophoric nature. We report a stable and highly active intermetallic nickel silicide catalyst that can be used for hydrogenations of a wide range of unsaturated compounds. The catalyst is prepared via a straightforward procedure using SiO2 as the silicon atom source. The process involves thermal reduction of Si–O bonds in the presence of Ni nanoparticles at temperatures below 1000°C. The presence of silicon as a secondary component in the nickel metal lattice plays the key role in its properties and is of crucial importance for improved catalytic activity. This novel catalyst allows for efficient reduction of nitroarenes, carbonyls, nitriles, N-containing heterocycles, and unsaturated carbon–carbon bonds. Moreover, the reported catalyst can be used for oxidation reactions in the presence of molecular oxygen and is capable of promoting acceptorless dehydrogenation of unsaturated N-containing heterocycles, opening avenues for H2 storage in organic compounds. The generality of the nickel silicide catalyst is demonstrated in the hydrogenation of over a hundred of structurally diverse unsaturated compounds. The wide application scope and high catalytic activity of this novel catalyst make it a nice alternative to known general hydrogenation catalysts, such as Raney nickel and noble metal–based catalysts. PMID:29888329
Intermetallic nickel silicide nanocatalyst-A non-noble metal-based general hydrogenation catalyst.
Ryabchuk, Pavel; Agostini, Giovanni; Pohl, Marga-Martina; Lund, Henrik; Agapova, Anastasiya; Junge, Henrik; Junge, Kathrin; Beller, Matthias
2018-06-01
Hydrogenation reactions are essential processes in the chemical industry, giving access to a variety of valuable compounds including fine chemicals, agrochemicals, and pharmachemicals. On an industrial scale, hydrogenations are typically performed with precious metal catalysts or with base metal catalysts, such as Raney nickel, which requires special handling due to its pyrophoric nature. We report a stable and highly active intermetallic nickel silicide catalyst that can be used for hydrogenations of a wide range of unsaturated compounds. The catalyst is prepared via a straightforward procedure using SiO 2 as the silicon atom source. The process involves thermal reduction of Si-O bonds in the presence of Ni nanoparticles at temperatures below 1000°C. The presence of silicon as a secondary component in the nickel metal lattice plays the key role in its properties and is of crucial importance for improved catalytic activity. This novel catalyst allows for efficient reduction of nitroarenes, carbonyls, nitriles, N-containing heterocycles, and unsaturated carbon-carbon bonds. Moreover, the reported catalyst can be used for oxidation reactions in the presence of molecular oxygen and is capable of promoting acceptorless dehydrogenation of unsaturated N-containing heterocycles, opening avenues for H 2 storage in organic compounds. The generality of the nickel silicide catalyst is demonstrated in the hydrogenation of over a hundred of structurally diverse unsaturated compounds. The wide application scope and high catalytic activity of this novel catalyst make it a nice alternative to known general hydrogenation catalysts, such as Raney nickel and noble metal-based catalysts.
Catalytic cracking of model compounds of bio-oil over HZSM-5 and the catalyst deactivation.
Chen, Guanyi; Zhang, Ruixue; Ma, Wenchao; Liu, Bin; Li, Xiangping; Yan, Beibei; Cheng, Zhanjun; Wang, Tiejun
2018-08-01
The catalytic cracking upgrading reactions over HZSM-5 of different model compounds of bio-oil have been studied with a self-designed fluid catalytic cracking (FCC) equipment. Typical bio-oil model compounds, such as acetic acid, guaiacol, n-heptane, acetol and ethyl acetate, were chosen to study the products distribution, reaction pathway and deactivation of catalysts. The results showed: C 6 -C 8 aromatic hydrocarbons, C 2 -C 4 olefins, C 1 -C 5 alkanes, CO and CO 2 were the main products, and the selectivity of olefins was: ethylene>propylene>butylene. Catalyst characterization methods, such as FI-IR, TG-TPO and Raman, were used to study the deactivation mechanism of catalysts. According to the catalyst characterization results, a catalyst deactivation mechanism was proposed as follows: Firstly, the precursor which consisted of a large number of long chain saturated aliphatic hydrocarbons and a small amount CC of aromatics formed on the catalyst surface. Then the active sites of catalysts had been covered, the coke type changed from thermal coke to catalytic coke and gradually blocked the channels of the molecular sieve, which accelerated the deactivation of catalyst. Copyright © 2018 Elsevier B.V. All rights reserved.
Confined NaAlH4 nanoparticles inside CeO2 hollow nanotubes towards enhanced hydrogen storage.
Gao, Qili; Xia, Guanglin; Yu, Xuebin
2017-10-05
NaAlH 4 has been widely regarded as a potential hydrogen storage material due to its favorable thermodynamics and high energy density. The high activation energy barrier and high dehydrogenation temperature, however, significantly hinder its practical application. In this paper, CeO 2 hollow nanotubes (HNTs) prepared by a simple electrospinning technique are adopted as functional scaffolds to support NaAlH 4 nanoparticles (NPs) towards advanced hydrogen storage performance. The nanoconfined NaAlH 4 inside CeO 2 HNTs, synthesized via the infiltration of molten NaAlH 4 into the CeO 2 HNTs under high hydrogen pressure, exhibited significantly improved dehydrogenation properties compared with both bulk and ball-milled CeO 2 HNTs-catalyzed NaAlH 4 . The onset dehydrogenation temperature of the NaAlH 4 @CeO 2 composite was reduced to below 100 °C, with only one main dehydrogenation peak appearing at 130 °C, which is 120 °C and 50 °C lower than for its bulk counterpart and for the ball-milled CeO 2 HNTs-catalyzed NaAlH 4 , respectively. Moreover, ∼5.09 wt% hydrogen could be released within 30 min at 180 °C, while only 1.6 wt% hydrogen was desorbed from the ball-milled NaAlH 4 under the same conditions. This significant improvement is mainly attributed to the synergistic effects contributed by the CeO 2 HNTs, which could act as not only a structural scaffold to fabricate and confine the NaAlH 4 NPs, but also as an effective catalyst to enhance the hydrogen storage performance of NaAlH 4 .
NASA Astrophysics Data System (ADS)
Nie, Ziyang; Zhang, Zhena; Chen, Jixiang
2017-10-01
SiO2 supported bifunctional MoP catalysts modified with different metal promoters (Ni, Ru, Pd, Pt), where Mo/Ni and Mo/M(M = Ru, Pd and Pt) atomic ratios was respectively 10 and 40, were prepared by TPR method from the phosphate precursors. It was found that the introduction of metal promoters facilitated the reduction of phosphate precursor and enhanced the dispersion of MoP. However, the MoP catalyst acidity was scarcely influenced by the small amount of metal promoters. In the hydroconversion of methyl laurate, the promoters enhanced the MoP catalyst activity for conversion of methyl laurate and hydrogenation of alkenes (intermediate), but reduced isomerization ability. Among the promoters, Ru was an optimum to decrease selectivity to alkenes while maintain high selectivity to iso-alkanes, and Mo40RuP showed better stability than MoP. At 380 °C and 3.0 MPa, the conversion of methyl laurate, the total selectivity to C11 and C12 hydrocarbons and the selectivity to iso-alkanes maintained at 100%, ∼94% and ∼30% on Mo40RuP during 102 h, respectively. The good stability of Mo40RuP is ascribed to that the presence of Ru prevented the sintering of MoP particles and suppressed carbon deposition.
NASA Astrophysics Data System (ADS)
Meenakshi; Agnihotri, Deepak; Jeet, Kiran; Sharma, Hitesh
2016-11-01
Nanoconfinement improves dehydrogenation kinetics of complex metal hydrides. The present paper reports effect of confinement of MXH4, where M = Na, Li and X = Al, B inside carbon nanotubes (CNTs) (n, 0) n = 9-11 chirality and diameter of 7.47 Å, 7.87 Å, 8.73 Å, respectively, using Density Functional calculations. The MXH4 interacts strongly with the surface atoms of CNT (11, 0) and is found to be the smallest stable system for confinement of MXH4 clusters. The Hydrogen release energy (E Hre) of NaAlH4 decreases sharply by 68.3 % , w.r.t. pure NaAlH4 cluster when confined inside CNT(11, 0). Similarly, in CNT (11, 0) E Hre decreases by 38.1 % for LiAlH4, 12.7 % for NaBH4 and 19.1 % for LiBH4. Thus, resulting confinement had a profound effect in improving the energetics of complex metal hydride nanoparticles without catalyst.
Structure Characterization and Catalytic Properties of Cr2O3 Doped with MgO Supported on MgF2
NASA Astrophysics Data System (ADS)
Goslar, J.; Wojciechowska, M.; Zieliński, M.; Tomska-Foralewska, I.; Przystajko, W.
2006-08-01
A characterization of double oxide systems containing Cr2O3 doped with MgO and supported on MgF2 was carried out. The catalysts were prepared by impregnation and co-impregnation methods and characterized by the Brunauer-Emmett-Teller method, EPR, and temperature programmed reduction. The results proved the interactions between supported oxides and the presence of spinel-like phase after treatment at 400 ºC. Magnesium oxide clearly influences the catalytic activity as well as selectivity of chromium catalysts supported on MgF2. The MgO-Cr2O3/MgF2 systems were active and selective in the reaction of CO oxidation at the room temperature and in the dehydrogenation of cyclohexene.
Low-Temperature Catalytic Process To Produce Hydrocarbons From Sugars
Cortright, Randy D.; Dumesic, James A.
2005-11-15
Disclosed is a method of producing hydrogen from oxygenated hydrocarbon reactants, such as methanol, glycerol, sugars (e.g. glucose and xylose), or sugar alcohols (e.g. sorbitol). The method takes place in the condensed liquid phase. The method includes the steps of reacting water and a water-soluble oxygenated hydrocarbon in the presence of a metal-containing catalyst. The catalyst contains a metal selected from the group consisting of Group VIIIB transitional metals, alloys thereof, and mixtures thereof. The disclosed method can be run at lower temperatures than those used in the conventional steam reforming of alkanes.
NASA Astrophysics Data System (ADS)
Atwan, Mohammed H.; Macdonald, Charles L. B.; Northwood, Derek O.; Gyenge, Elod L.
Supported colloidal Au and Au-alloys (Au-Pt and Au-Pd, 1:1 atomic ratio) on Vulcan XC-72 (with 20 wt% metal load) were prepared by the Bönneman method. The electrocatalytic activity of the colloidal metals with respect to borohydride electro-oxidation for fuel cell applications was investigated by voltammetry on static and rotating electrodes, chronoamperometry, chronopotentiometry and fuel cell experiments. The fundamental electrochemical techniques showed that alloying Au, a metal that leads to the maximum eight-electron oxidation of BH 4 -, with Pd or Pt, well-known catalysts of dehydrogenation reactions, improved the electrode kinetics of BH 4 - oxidation. Fuel cell experiments corroborated the kinetic studies. Using 5 mg cm -2 colloidal metal load on the anode, it was found that Au-Pt was the most active catalyst giving a cell voltage of 0.47 V at 100 mA cm -2 and 333 K, while under identical conditions the cell voltage using colloidal Au was 0.17 V.
Liu, Jing; Chen, Pan; Deng, Lihong; He, Jing; Wang, Luying; Rong, Long; Lei, Jiandu
2015-01-01
The development of a novel non-sulfided catalyst with high activity for the hydrotreatment processing of plant oils, is of high interest as a way to improve the efficient production of renewable diesel. To attempt to develop such a catalyst, we first synthesized a high activity flower-like Ni-PTA catalyst used in the hydrotreatment processes of plant oils. The obtained catalyst was characterized with SEM, EDX, HRTEM, BET, XRD, H2-TPR, XPS and TGA. A probable formation mechanism of flower-like Ni(OH)2 is proposed on the basis of a range of contrasting experiments. The results of GC showed that the conversion yield of Jatropha oil was 98.95%, and the selectivity of C11-C18 alkanes was 70.93% at 360 °C, 3 MPa, and 15 h−1. The activity of this flower-like Ni-PTA catalyst was more than 15 times higher than those of the conventional Ni-PTA/Al2O3 catalysts. Additionally, the flower-like Ni-PTA catalyst exhibited good stability during the process of plant oil hydrotreatment. PMID:26503896
Phenolate constrained geometry polymerization catalyst and method for preparing
Marks, T.J.; Chen, Y.X.
1999-01-05
The subject invention involves a method of preparing and the constrained geometry catalyst thereby prepared of the general formula Ar{prime}R4(O)Ar{double_prime}R{prime}{sub 4}M(CH{sub 2}Ph){sub 2} where Ar{prime} is a phenyl or naphthyl group; Ar{double_prime} is a cyclopentadienyl or indenyl group, R and R{prime} are H or alkyl substituents (C{<=}10) and M is Ti, Zr or Hf. The synthetic method involves a simple alkane elimination approach which permits a ``one-pot`` procedure. The catalyst, when combined with a cocatalyst such as Pb{sub 3}C{sup +}B(Ar{sub 3}{sup F}){sub 4}BAr{sub 3}{sup F} or methyl alumoxane where Ar{sup F} is a fluoroaryl group, is an effective catalyst for the polymerization of {alpha}-olefins such as ethylene, propylene and styrene. 1 fig.
Huang, Xu; Xiao, Xuezhang; Shao, Jie; Zhai, Bing; Fan, Xiulin; Cheng, Changjun; Li, Shouquan; Ge, Hongwei; Wang, Qidong; Chen, Lixin
2016-08-21
Nanoscale catalyst doping is regarded as one of the most effective strategies to improve the kinetics performance of hydrogen storage materials, but the agglomeration of nanoparticles is usually unavoidable during the repeated de/rehydrogenation processes. Herein, hierarchically structured catalysts (Fe/C, Co/C and Ni/C) were designed and fabricated to overcome the agglomeration issue of nanocatalysts applied to the 2LiBH4-MgH2 system for the first time. Uniform transition metal (TM) nanoparticles (∼10 nm) wrapped by few layers of carbon are synthesized by pyrolysis of the corresponding metal-organic frameworks (MOFs), and introduced into the 2LiBH4-MgH2 reactive hydride composites (RHCs) by ball milling. The particular features of the carbon-wrapped architecture effectively avoid the agglomeration of the TM nanoparticles during hydrogen storage cycling, and high catalysis is maintained during the subsequent de/rehydrogenation processes. After de/rehydrogenation cycling, FeB, CoB and MgNi3B2 can be formed as the catalytically active components with a particle size of 5-15 nm, which show a homogeneous distribution in the hydride matrix. Among the three catalysts, in situ-formed MgNi3B2 shows the best catalytic efficiency. The incubation period of the Fe/C, Co/C and Ni/C-doped 2LiBH4-MgH2 system between the two dehydrogenation steps was reduced to about 8 h, 4 h and 2 h, respectively, which is about 8 h, 12 h and 14 h shorter than that of the undoped 2LiBH4-MgH2 sample. In addition, the two-step dehydrogenation peak temperatures of the Ni/C-doped 2LiBH4-MgH2 system drop to 323.4 °C and 410.6 °C, meanwhile, the apparent activation energies of dehydrogenated MgH2 and LiBH4 decrease by 58 kJ mol(-1) and 71 kJ mol(-1), respectively. In particular, the cycling hydrogen desorption of the Ni/C-doped 2LiBH4-MgH2 sample exhibits very good stability compared with the undoped sample. The present approach, which ideally addresses the agglomeration of nanoparticles with efficient catalysis on the RHCs, provides a new inspiration to practical hydrogen storage application for high performance complex hydrides.
Sad, María E; Neurock, Matthew; Iglesia, Enrique
2011-12-21
This study reports evidence for catalytic deoxygenation of alkanols, alkanals, and alkanediols on dispersed Cu clusters with minimal use of external H(2) and with the concurrent formation of new C-C and C-O bonds. These catalysts selectively remove O-atoms from these oxygenates as CO or CO(2) through decarbonylation or decarboxylation routes, respectively, that use C-atoms present within reactants or as H(2)O using H(2) added or formed in situ from CO/H(2)O mixtures via water-gas shift. Cu catalysts fully convert 1,3-propanediol to equilibrated propanol-propanal intermediates that subsequently form larger oxygenates via aldol-type condensation and esterification routes without detectable involvement of the oxide supports. Propanal-propanol-H(2) equilibration is mediated by their chemisorption and interconversion at surfaces via C-H and O-H activation and propoxide intermediates. The kinetic effects of H(2), propanal, and propanol pressures on turnover rates, taken together with measured selectivities and the established chemical events for base-catalyzed condensation and esterification reactions, indicate that both reactions involve kinetically relevant bimolecular steps in which propoxide species, acting as the base, abstract the α-hydrogen in adsorbed propanal (condensation) or attack the electrophilic C-atom at its carbonyl group (esterification). These weakly held basic alkoxides render Cu surfaces able to mediate C-C and C-O formation reactions typically catalyzed by basic sites inherent in the catalyst, instead of provided by coadsorbed organic moieties. Turnover rates for condensation and esterification reactions decrease with increasing Cu dispersion, because low-coordination corner and edge atoms prevalent on small clusters stabilize adsorbed intermediates and increase the activation barriers for the bimolecular kinetically relevant steps required for both reactions. © 2011 American Chemical Society
Catalytic Ketone Hydrodeoxygenation Mediated by Highly Electrophilic Phosphonium Cations.
Mehta, Meera; Holthausen, Michael H; Mallov, Ian; Pérez, Manuel; Qu, Zheng-Wang; Grimme, Stefan; Stephan, Douglas W
2015-07-06
Ketones are efficiently deoxygenated in the presence of silane using highly electrophilic phosphonium cation (EPC) salts as catalysts, thus affording the corresponding alkane and siloxane. The influence of distinct substitution patterns on the catalytic effectiveness of several EPCs was evaluated. The deoxygenation mechanism was probed by DFT methods. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wang, Hongliang; Ruan, Hao; Feng, Maoqi; Qin, Yuling; Job, Heather; Luo, Langli; Wang, Chongmin; Engelhard, Mark H; Kuhn, Erik; Chen, Xiaowen; Tucker, Melvin P; Yang, Bin
2017-04-22
The synthesis of high-efficiency and low-cost catalysts for hydrodeoxygenation (HDO) of waste lignin to advanced biofuels is crucial for enhancing current biorefinery processes. Inexpensive transition metals, including Fe, Ni, Cu, and Zn, were severally co-loaded with Ru on HY zeolite to form bimetallic and bifunctional catalysts. These catalysts were subsequently tested for HDO conversion of softwood lignin and several lignin model compounds. Results indicated that the inexpensive earth-abundant metals could modulate the hydrogenolysis activity of Ru and decrease the yield of low-molecular-weight gaseous products. Among these catalysts, Ru-Cu/HY showed the best HDO performance, affording the highest selectivity to hydrocarbon products. The improved catalytic performance of Ru-Cu/HY was probably a result of the following three factors: (1) high total and strong acid sites, (2) good dispersion of metal species and limited segregation, and (3) high adsorption capacity for polar fractions, including hydroxyl groups and ether bonds. Moreover, all bifunctional catalysts proved to be superior over the combination catalysts of Ru/Al 2 O 3 and HY zeolite. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hongliang; Ruan, Hao; Feng, Maoqi
2017-02-22
Here, the synthesis of high-efficiency and low-cost catalysts for hydrodeoxygenation (HDO) of waste lignin to advanced biofuels is crucial for enhancing current biorefinery processes. Inexpensive transition metals, including Fe, Ni, Cu, and Zn, were severally co-loaded with Ru on HY zeolite to form bimetallic and bifunctional catalysts. These catalysts were subsequently tested for HDO conversion of softwood lignin and several lignin model compounds. Results indicated that the inexpensive earth-abundant metals could modulate the hydrogenolysis activity of Ru and decrease the yield of low-molecular-weight gaseous products. Among these catalysts, Ru-Cu/HY showed the best HDO performance, affording the highest selectivity to hydrocarbonmore » products. The improved catalytic performance of Ru-Cu/HY was probably a result of the following three factors: (1) high total and strong acid sites, (2) good dispersion of metal species and limited segregation, and (3) high adsorption capacity for polar fractions, including hydroxyl groups and ether bonds. Moreover, all bifunctional catalysts proved to be superior over the combination catalysts of Ru/Al 2O 3 and HY zeolite.« less
Gao, Song; Rupp, Erik; Bell, Suzanne; Willinger, Martin; Foley, Theresa; Barbaris, Brian; Sáez, A. Eduardo; Arnold, Robert G.; Betterton, Eric
2010-01-01
A new thermocatalytic method to destroy chlorinated solvents has been developed in the laboratory and tested in a pilot field study. The method employs a conventional Pt/Rh catalyst on a ceramic honeycomb. Reactions proceed at moderate temperatures in the simultaneous presence of oxygen and a reductant (mixed redox conditions) to minimize catalyst deactivation. In the laboratory, stable operation with high conversions (above 90% at residence times shorter than 1 s) for perchloroethylene (PCE) is achieved using hydrogen as the reductant. A molar ratio of H2/O2 = 2 yields maximum conversions; the temperature required to produce maximum conversions is sensitive to influent PCE concentration. When a homologous series of aliphatic alkanes is used to replace hydrogen as the reductant, the resultant mixed redox conditions also produce high PCE conversions. It appears that the dissociation energy of the C–H bond in the respective alkane molecule is a strong determinant of the activation energy, and therefore the reaction rate, for PCE conversion. This new method was employed in a pilot field study in Tucson, Arizona. The mixed redox system was operated semicontinuously for 240 days with no degradation of catalyst performance and complete destruction of PCE and trichloroethylene in a soil vapor extraction gas stream. Use of propane as the reductant significantly reduced operating costs. Mixed redox destruction of chlorinated solvents provides a potentially viable alternative to current soil and groundwater remediation technologies. PMID:18991945
NASA Technical Reports Server (NTRS)
Locke, Darren R.; Yazzie, Cyriah A.; Burton, Aaron S.; Niles, Paul B.; Johnson, Natasha M.
2015-01-01
Abiotic synthesis of complex organic compounds in the early solar nebula that formed our solar system is hypothesized to occur via a Fischer-Tropsch type (FTT) synthesis involving the reaction of hydrogen and carbon monoxide gases over metal and metal oxide catalysts. In general, at low temperatures (less than 200 C), FTT synthesis is expected to form abundant alkane compounds while at higher temperatures (greater than 200 C) it is expected to product lesser amounts of n-alkanes and greater amounts of alkene, alcohol, and polycyclic aromatic hydrocarbons (PAHs). Experiments utilizing a closed-gas circulation system to study the effects of FTT reaction temperature, catalysts, and number of experimental cycles on the resulting solid insoluble organic products are being performed in the laboratory at NASA Goddard Space Flight Center. These experiments aim to determine whether or not FTT reactions on grain surfaces in the protosolar nebula could be the source of the insoluble organic matter observed in meteorites. The resulting solid organic products are being analyzed at NASA Johnson Space Center by pyrolysis gas chromatography mass spectrometry (PY-GCMS). PY-GCMS yields the types and distribution of organic compounds released from the insoluble organic matter generated from the FTT reactions. Previously, exploratory work utilizing PY-GCMS to characterize the deposited organic materials from these reactions has been reported. Presented here are new organic analyses using magnetite catalyst to produce solid insoluble organic FTT products with varying reaction temperatures and number of experimental cycles.
Surface chemistry and catalytic performance of amorphous NiB/Hβ catalyst for n-hexane isomerization
NASA Astrophysics Data System (ADS)
Chen, Jinshe; Cai, Tingting; Jing, Xiaohui; Zhu, Lijun; Zhou, Yulu; Xiang, Yuzhi; Xia, Daohong
2016-12-01
The amorphous NiB nanoparticles were synthesized and a novel type of NiB/Hβ catalyst was prepared for the isomerization of n-hexane. The optimum preparation conditions were investigated and the effect of preparation conditions on the surface chemistry information of catalysts was characterized by XRD, N2 sorption studies, XPS, TPD and other related means. It was demonstrated that the loading amounts of NiB have effect on textural properties and the acid properties of surface. The loading amounts of NiB were also related to the amount of strong Lewis acid sites and the ratios of weak acid to strong acid of samples. Meanwhile, calcination temperatures of samples were closely associated with the structure of active components that function as metal centers. When the loading amount of NiB was 5 wt.% and calcination temperature was 200 °C, the catalyst had proper surface acidity sites and metal active sites to provide suitable synergistic effects. The mechanism for n-hexane isomerization was also investigated and the existence of unique structure of Bsbnd Nisbnd H was proved, which could provide good hydrogenation-dehydrogenation functions.
Neary, Michelle C; Parkin, Gerard
2015-03-01
The cyclopentadienyl molybdenum hydride compounds, Cp R Mo(PMe 3 ) 3- x (CO) x H (Cp R = Cp, Cp*; x = 0, 1, 2 or 3), are catalysts for the dehydrogenation of formic acid, with the most active catalysts having the composition Cp R Mo(PMe 3 ) 2 (CO)H. The mechanism of the catalytic cycle is proposed to involve (i) protonation of the molybdenum hydride complex, (ii) elimination of H 2 and coordination of formate, and (iii) decarboxylation of the formate ligand to regenerate the hydride species. NMR spectroscopy indicates that the nature of the resting state depends on the composition of the catalyst. For example, (i) the resting states for the CpMo(CO) 3 H and CpMo(PMe 3 )(CO) 2 H systems are the hydride complexes themselves, (ii) the resting state for the CpMo(PMe 3 ) 3 H system is the protonated species [CpMo(PMe 3 ) 3 H 2 ] + , and (iii) the resting state for the CpMo(PMe 3 ) 2 (CO)H system is the formate complex, CpMo(PMe 3 ) 2 (CO)(κ 1 -O 2 CH), in the presence of a high concentration of formic acid, but CpMo(PMe 3 ) 2 (CO)H when the concentration of acid is low. While CO 2 and H 2 are the principal products of the catalytic reaction induced by Cp R Mo(PMe 3 ) 3- x (CO) x H, methanol and methyl formate are also observed. The generation of methanol is a consequence of disproportionation of formic acid, while methyl formate is a product of subsequent esterification. The disproportionation of formic acid is a manifestation of a transfer hydrogenation reaction, which may also be applied to the reduction of aldehydes and ketones. Thus, CpMo(CO) 3 H also catalyzes the reduction of a variety of ketones and aldehydes to alcohols by formic acid, via a mechanism that involves ionic hydrogenation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soloveichik, Grigorii
2015-11-30
EFRC vision. The direct use of organic hydrides in fuel cells as virtual hydrogen carriers that generate stable organic molecules, protons, and electrons upon electro-oxidation and can be electrochemically charged by re-hydrogenating the oxidized carrier was the major focus of the Center for Electrocatalysis, Transport Phenomena and Materials for Innovative Energy Storage (EFRC-ETM). Compared to a hydrogen-on-demand design that includes thermal decomposition of organic hydrides in a catalytic reactor, the proposed approach is much simpler and does not require additional dehydrogenation catalysts or heat exchangers. Further, this approach utilizes the advantages of a flow battery (i.e., separation of power andmore » energy, ease of transport and storage of liquid fuels) with fuels that have system energy densities similar to current hydrogen PEM fuel cells. EFRC challenges. Two major EFRC challenges were electrocatalysis and transport phenomena. The electrocatalysis challenge addresses fundamental processes which occur at a single molecular catalyst (microscopic level) and involve electron and proton transfer between the hydrogen rich and hydrogen depleted forms of organic liquid fuel and the catalyst. To form stable, non-radical dehydrogenation products from the organic liquid fuel, it is necessary to ensure fast transport of at least two electrons and two protons (per double bond formation). The same is true for the reverse hydrogenation reaction. The transport phenomena challenge addresses transport of electrons to/from the electrocatalyst and the current collector as well as protons across the polymer membrane. Additionally it addresses prevention of organic liquid fuel, water and oxygen transport through the PEM. In this challenge, the transport of protons or molecules involves multiple sites or a continuum (macroscopic level) and water serves as a proton conducting medium for the majority of known sulfonic acid based PEMs. Proton transfer in the presence of prospective organic liquid fuels was studied. During EFRC program various types of electrocatalysts, classes of fuels, and membranes have been investigated.« less
El-Eskandarany, M. Sherif
2016-01-01
Because of its low density, storage of hydrogen in the gaseous and liquids states possess technical and economic challenges. One practical solution for utilizing hydrogen in vehicles with proton-exchange fuel cells membranes is storing hydrogen in metal hydrides. Magnesium hydride (MgH2) remains the best hydrogen storage material due to its high hydrogen capacity and low cost of production. Due to its high activation energy and poor hydrogen sorption/desorption kinetics at moderate temperatures, the pure form of MgH2 is usually mechanically treated by high-energy ball mills and catalyzed with different types of catalysts. These steps are necessary for destabilizing MgH2 to enhance its kinetics behaviors. In the present work, we used a small mole fractions (5 wt.%) of metallic glassy of Zr70Ni20Pd10 powders as a new enhancement agent to improve its hydrogenation/dehydrogenation behaviors of MgH2. This short-range ordered material led to lower the decomposition temperature of MgH2 and its activation energy by about 121 °C and 51 kJ/mol, respectively. Complete hydrogenation/dehydrogenation processes were successfully achieved to charge/discharge about 6 wt.%H2 at 100 °C/200 °C within 1.18 min/3.8 min, respectively. In addition, this new nanocomposite system shows high performance of achieving continuous 100 hydrogen charging/discharging cycles without degradation. PMID:27220994
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hongliang; Ruan, Hao; Feng, Maoqi
2017-03-16
The synthesis of high-efficiency and low-cost multifunctional catalysts for hydrodeoxygenation (HDO) of waste lignin into advanced biofuels is crucial for enhancing current biorefinery processes. Inexpensive transition metals, including Fe, Ni, Cu, Zn, were severally co-loaded with Ru on HY zeolite to form bimetallic and bifunctional catalysts. These catalysts were subsequently tested for HDO conversion of softwood lignin and several lignin model compounds. Results indicated that the inexpensive earth abundant metals could modulate the hydrogenolysis activity of Ru and decrease the yield of low molecular weight gaseous side-products. Among all the prepared catalysts, Ru-Cu/HY showed the best HDO performance, giving themore » highest selectivity to hydrocarbon products. The improved catalytic performance of Ru-Cu/HY was probably due to the following three factors: (1) high total and strong acid sites, (2) good dispersion of metal species and limited segregation, (3) high adsorption capacity for polar fractions, including hydroxyl groups and ether bonds. Moreover, all the bifunctional catalysts were proven to be superior over the combination catalysts of Ru/Al2O3 and HY zeolite, and this could be attributed to the “intimacy criterion”. The practical use of the designed catalysts would be promising in lignin valorization.« less
Liu, Jing; Lei, Jiandu; He, Jing; Deng, Lihong; Wang, Luying; Fan, Kai; Rong, Long
2015-01-01
The non-sulfided Ni-PTA/Al2O3 catalyst was developed to produce green diesel from the hydroprocessing of Jatropha oil. The Ni-PTA/Al2O3 catalyst was prepared by one-pot synthesis of Ni/Al2O3 with the co-precipitation method and then impregnanting Ni/Al2O3 with PTA solution. The catalysts were characterized with BET, SEM-EDX, TEM, XRD, XPS, TGA and NH3-TPD. The Ni and W species of the Ni-PTA/Al2O3 catalyst were much more homogeneously distributed on the surface than that of commercial Al2O3. Catalytic performance in the hydroprocessing of Jatropha oil was evaluated by GC. The maximum conversion of Jatropha oil (98.5 wt%) and selectivity of the C15-C18 alkanes fraction (84.5 wt %) occurred at 360 °C, 3.0 MPa, 0.8 h−1. The non-sulfided Ni-PTA/Al2O3 catalyst is more environmentally friendly than the conventional sulfided hydroprocessing catalyst, and it exhibited the highest catalytic activity than the Ni-PTA catalyst supported with commercial Al2O3 grain and Al2O3 powder. PMID:26162092
The degradation of wheat straw lignin
NASA Astrophysics Data System (ADS)
Liang, Jiaqi
2017-03-01
Lignin is a kind of formed by polymerization of aromatic alcohol, prices are lower and sources of renewable resources. Using lignin as raw material, through the push to resolve together preparation phenolic high value-added fine chemicals alkanes and aromatic hydrocarbons, such as the high grade biofuels, can partly replace fossil fuels as raw material to the production process, biomass resources is an important part of the comprehensive utilization of effective components. In lignin push solve clustering method, catalytic hydrogenolysis can directly to the lignin into liquid fuels, low oxygen content in the use of biofuels shows great potential. In this paper, through the optimization of the reaction time, reaction temperature, catalyst type and solvent type, dosage of catalyst, etc factors, determines the alcoholysis - hydrogen solution two-step degradation of lignin, the optimal process conditions: lignin alcoholysis under 50% methanol and NaOH catalyst in the solution, the lignin in methanol solution and 50% hydrogen solution under the Pd/C catalyst. In this process, the degradation of lignin yield can reach 42%.
Co-processing CH4 and oxygenates on Mo/H-ZSM-5: 2. CH4-CO2 and CH4-HCOOH mixtures.
Bedard, Jeremy; Hong, Do-Young; Bhan, Aditya
2013-08-07
Co-processing of formic acid or carbon dioxide with CH4 (FA/CH4 = 0.01-0.03 and CO2/CH4 = 0.01-0.03) on Mo/H-ZSM-5 catalysts at 950 K with the prospect of kinetically coupling dehydrogenation and deoxygenation cycles results instead in a two-zone, staged bed reactor configuration consisting of upstream oxygenate/CH4 reforming and downstream CH4 dehydroaromatization. The addition of an oxygenate co-feed (oxygenate/CH4 = 0.01-0.03) causes oxidation of the active molybdenum carbide catalyst while producing CO and H2 until completely converted. Forward rates of C6H6 synthesis are unaffected by the introduction of an oxygenate co-feed after rigorously accounting for the thermodynamic reversibility caused by the H2 produced in oxygenate reforming reactions and the fraction of the active catalyst deemed unavailable for CH4 DHA. All effects of co-processing oxygenates with CH4 can be construed in terms of an approach to equilibrium.
New Insights into Reaction Mechanisms of Ethanol Steam Reforming on Co-ZrO2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Junming; Karim, Ayman M.; Mei, Donghai
2015-01-01
The reaction pathway of ethanol steam reforming on Co-ZrO2 has been identified and the active sites associated with each step are proposed. Ethanol is converted to acetaldehyde and then to acetone, followed by acetone steam reforming. More than 90% carbon was found to follow this reaction pathway. N2-Sorption, X-ray Diffraction (XRD), Temperature Programmed Reduction (TPR), in situ X-ray Photoelectron Spectroscopy (XPS), Transmission Electron Microscopy, as well as theoretical Density Functional Theory (DFT) calculations have been employed to identify the structure and functionality of the catalysts, which was further used to correlate their performance in ESR. It was found that metallicmore » cobalt is mainly responsible for the acetone steam reforming reactions; while, CoO and basic sites on the support play a key role in converting ethanol to acetone via dehydrogenation and condensation/ketonization reaction pathways. The current work provides fundamental understanding of the ethanol steam reforming reaction mechanisms on Co-ZrO2 catalysts and sheds light on the rational design of selective and durable ethanol steam reforming catalysts.« less
Efficient chemoenzymatic dynamic kinetic resolution of 1-heteroaryl ethanols.
Vallin, Karl S A; Wensbo Posaric, David; Hamersak, Zdenko; Svensson, Mats A; Minidis, Alexander B E
2009-12-18
The scope and limitation of the combined ruthenium-lipase induced dynamic kinetic resolution (DKR) through O-acetylation of racemic heteroaromatic secondary alcohols, i.e., 1-heteroaryl substituted ethanols, was investigated. After initial screening of reaction conditions, Candida antarctica lipase B (Novozyme 435, N435) together with 4-chloro-phenylacetate as acetyl-donor for kinetic resolution (KR), in conjunction with the ruthenium-based Shvo catalyst for substrate racemization in toluene at 80 degrees C, enabled DKR with high yields and stereoselectivity of various 1-heteroaryl ethanols, such as oxadiazoles, isoxazoles, 1H-pyrazole, or 1H-imidazole. In addition, DFT calculations based on a simplified catalyst complex model for the catalytic (de)hydrogenation step are in agreement with the previously reported outer sphere mechanism. These results support the further understanding of the mechanistic aspects behind the difference in reactivity of 1-heteroaryl substituted ethanols in comparison to reference substrates, as often referred to in the literature.
Reversible hydrogen storage materials
Ritter, James A [Lexington, SC; Wang, Tao [Columbia, SC; Ebner, Armin D [Lexington, SC; Holland, Charles E [Cayce, SC
2012-04-10
In accordance with the present disclosure, a process for synthesis of a complex hydride material for hydrogen storage is provided. The process includes mixing a borohydride with at least one additive agent and at least one catalyst and heating the mixture at a temperature of less than about 600.degree. C. and a pressure of H.sub.2 gas to form a complex hydride material. The complex hydride material comprises MAl.sub.xB.sub.yH.sub.z, wherein M is an alkali metal or group IIA metal, Al is the element aluminum, x is any number from 0 to 1, B is the element boron, y is a number from 0 to 13, and z is a number from 4 to 57 with the additive agent and catalyst still being present. The complex hydride material is capable of cyclic dehydrogenation and rehydrogenation and has a hydrogen capacity of at least about 4 weight percent.
Hydroisomerization of n-Hexane Using Acidified Metal-Organic Framework and Platinum Nanoparticles.
Sabyrov, Kairat; Jiang, Juncong; Yaghi, Omar M; Somorjai, Gabor A
2017-09-13
Exceptionally high surface area and ordered nanopores of a metal-organic framework (MOF) are exploited to encapsulate and homogeneously disperse a considerable amount of phosphotungstic acid (PTA). When combined with platinum nanoparticles positioned on the external surface of the MOF, the construct shows a high catalytic activity for hydroisomerization of n-hexane, a reaction requiring hydrogenation/dehydrogenation and moderate to strong Brønsted acid sites. Characterization of the catalytic activity and acidic sites as a function of PTA loading demonstrates that both the concentration and strength of acidic sites are highest for the catalyst with the largest amount of PTA. The MOF construct containing 60% PTA by weight produces isoalkanes with 100% selectivity and 9-fold increased mass activity as compared to a more traditional aluminosilicate catalyst, further demonstrating the capacity of the MOF to contain a high concentration of active sites necessary for the isomerization reaction.
Methods and apparatuses for deoxygenating pyrolysis oil
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baird, Lance Awender; Brandvold, Timothy A.; Frey, Stanley Joseph
Methods and apparatuses are provided for deoxygenating pyrolysis oil. A method includes contacting a pyrolysis oil with a deoxygenation catalyst in a first reactor at deoxygenation conditions to produce a first reactor effluent. The first reactor effluent has a first oxygen concentration and a first hydrogen concentration, based on hydrocarbons in the first reactor effluent, and the first reactor effluent includes an aromatic compound. The first reactor effluent is contacted with a dehydrogenation catalyst in a second reactor at conditions that deoxygenate the first reactor effluent while preserving the aromatic compound to produce a second reactor effluent. The second reactormore » effluent has a second oxygen concentration lower than the first oxygen concentration and a second hydrogen concentration that is equal to or lower than the first hydrogen concentration, where the second oxygen concentration and the second hydrogen concentration are based on the hydrocarbons in the second reactor effluent.« less
Xiao, Chaoxian; Maligal-Ganesh, Raghu V; Li, Tao; Qi, Zhiyuan; Guo, Zhiyong; Brashler, Kyle T; Goes, Shannon; Li, Xinle; Goh, Tian Wei; Winans, Randall E; Huang, Wenyu
2013-10-01
We report the synthesis, structural characterization, thermal stability study, and regeneration of nanostructured catalysts made of 2.9 nm Pt nanoparticles sandwiched between a 180 nm SiO2 core and a mesoporous SiO2 shell. The SiO2 shell consists of 2.5 nm channels that are aligned perpendicular to the surface of the SiO2 core. The nanostructure mimics Pt nanoparticles that sit in mesoporous SiO2 wells (Pt@MSWs). By using synchrotron-based small-angle X-ray scattering, we were able to prove the ordered structure of the aligned mesoporous shell. By using high-temperature cyclohexane dehydrogenation as a model reaction, we found that the Pt@MSWs of different well depths showed stable activity at 500 °C after the induction period. Conversely, a control catalyst, SiO2 -sphere-supported Pt nanoparticles without a mesoporous SiO2 shell (Pt/SiO2 ), was deactivated. We deliberately deactivated the Pt@MSWs catalyst with a 50 nm deep well by using carbon deposition induced by a low H2 /cyclohexane ratio. The deactivated Pt@MSWs catalyst was regenerated by calcination at 500 °C with 20 % O2 balanced with He. After the regeneration treatments, the activity of the Pt@MSWs catalyst was fully restored. Our results suggest that the nanostructured catalysts-Pt nanoparticles confined inside mesoporous SiO2 wells-are stable and regenerable for treatments and reactions that require high temperatures. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Teng; Manna, Kuntal; Lin, Wenbin
New and active earth-abundant metal catalysts are critically needed to replace precious metal-based catalysts for sustainable production of commodity and fine chemicals. We report here the design of highly robust, active, and reusable cobalt-bipyridine- and cobalt-phenanthroline-based metal–organic framework (MOF) catalysts for alkene hydrogenation and hydroboration, aldehyde/ketone hydroboration, and arene C–H borylation. In alkene hydrogenation, the MOF catalysts tolerated a variety of functional groups and displayed unprecedentedly high turnover numbers of ~2.5 × 10 6 and turnover frequencies of ~1.1 × 10 5 h –1. Structural, computational, and spectroscopic studies show that site isolation of the highly reactive (bpy)Co(THF) 2 speciesmore » in the MOFs prevents intermolecular deactivation and stabilizes solution-inaccessible catalysts for broad-scope organic transformations. Computational, spectroscopic, and kinetic evidence further support a hitherto unknown (bpy•–)CoI(THF) 2 ground state that coordinates to alkene and dihydrogen and then undergoing σ-complex-assisted metathesis to form (bpy)Co(alkyl)(H). Reductive elimination of alkane followed by alkene binding completes the catalytic cycle. MOFs thus provide a novel platform for discovering new base-metal molecular catalysts and exhibit enormous potential in sustainable chemical catalysis.« less
Mitigation of PAH and nitro-PAH emissions from nonroad diesel engines.
Liu, Z Gerald; Wall, John C; Ottinger, Nathan A; McGuffin, Dana
2015-03-17
More stringent emission requirements for nonroad diesel engines introduced with U.S. Tier 4 Final and Euro Stage IV and V regulations have spurred the development of exhaust aftertreatment technologies. In this study, several aftertreatment configurations consisting of diesel oxidation catalysts (DOC), diesel particulate filters (DPF), Cu zeolite-, and vanadium-based selective catalytic reduction (SCR) catalysts, and ammonia oxidation (AMOX) catalysts are evaluated using both Nonroad Transient (NRTC) and Steady (8-mode NRSC) Cycles in order to understand both component and system-level effects of diesel aftertreatment on emissions of polycyclic aromatic hydrocarbons (PAH) and their nitrated derivatives (nitro-PAH). Emissions are reported for four configurations including engine-out, DOC+CuZ-SCR+AMOX, V-SCR+AMOX, and DOC+DPF+CuZ-SCR+AMOX. Mechanisms responsible for the reduction, and, in some cases, the formation of PAH and nitro-PAH compounds are discussed in detail, and suggestions are provided to minimize the formation of nitro-PAH compounds through aftertreatment design optimizations. Potency equivalency factors (PEFs) developed by the California Environmental Protection Agency are then applied to determine the impact of aftertreatment on PAH-derived exhaust toxicity. Finally, a comprehensive set of exhaust emissions including criteria pollutants, NO2, total hydrocarbons (THC), n-alkanes, branched alkanes, saturated cycloalkanes, aromatics, aldehydes, hopanes and steranes, and metals is provided, and the overall efficacy of the aftertreatment configurations is described. This detailed summary of emissions from a current nonroad diesel engine equipped with advanced aftertreatment can be used to more accurately model the impact of anthropogenic emissions on the atmosphere.
Transition-metal-catalyzed direct arylation of (hetero)arenes by C-H bond cleavage.
Ackermann, Lutz; Vicente, Rubén; Kapdi, Anant R
2009-01-01
The area of transition-metal-catalyzed direct arylation through cleavage of C-H bonds has undergone rapid development in recent years, and is becoming an increasingly viable alternative to traditional cross-coupling reactions with organometallic reagents. In particular, palladium and ruthenium catalysts have been described that enable the direct arylation of (hetero)arenes with challenging coupling partners--including electrophilic aryl chlorides and tosylates as well as simple arenes in cross-dehydrogenative arylations. Furthermore, less expensive copper, iron, and nickel complexes were recently shown to be effective for economically attractive direct arylations.
Supported metal alloy catalysts
Barrera, Joseph; Smith, David C.
2000-01-01
A process of preparing a Group IV, V, or VI metal carbonitride including reacting a Group IV, V, or VI metal amide complex with ammonia to obtain an intermediate product; and, heating the intermediate product to temperatures and for times sufficient to form a Group IV, V, or VI metal carbonitride is provided together with the product of the process and a process of reforming an n-alkane by use of the product.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lilga, Michael A.; Padmaperuma, Asanga B.; Auberry, Deanna L.
We studied a new process for direct conversion of either levulinic acid (LA) or γ-valerolactone (GVL) to hydrocarbon fuel precursors. The process involves passing an aqueous solution of LA or GVL containing a reducing agent, such as ethylene glycol or formic acid, over a ketonization catalyst at 380–400 °C and atmospheric pressure to form a biphasic liquid product. The organic phase is significantly oligomerized and deoxygenated and comprises a complex mixture of open-chain alkanes and olefins, aromatics, and low concentrations of ketones, alcohols, ethers, and carboxylates or lactones. Carbon content in the aqueous phase decreases with decreasing feed rate; themore » aqueous phase can be reprocessed through the same catalyst to form additional organic oils to improve carbon yield. Catalysts are readily regenerated to restore initial activity. Furthermore, the process might be valuable in converting cellulosics to biorenewable gasoline, jet, and diesel fuels as a means to decrease petroleum use and decrease greenhouse gas emissions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Settle, Amy E.; Berstis, Laura; Rorrer, Nicholas A.
In this tutorial review, we provide an overview of heterogeneous Diels–Alder catalysis for the production of lignocellulosic biomass-derived aromatic compounds. Diels–Alder reactions afford an extremely selective and efficient route for carbon–carbon cycloadditions to produce intermediates that can readily undergo subsequent dehydration or dehydrogenation reactions for aromatization. As a result, catalysis of Diels–Alder reactions with biomass-derived dienes and dienophiles has seen a growth of interest in recent years; however, significant opportunities remain to (i) tailor heterogeneous catalyst materials for tandem Diels–Alder and aromatization reactions, and (ii) utilize biomass-derived dienes and dienophiles to access both conventional and novel aromatic monomers. As such,more » this review discusses the mechanistic aspects of Diels–Alder reactions from both an experimental and computational perspective, as well as the synergy of Brønsted–Lewis acid catalysts to facilitate tandem Diels–Alder and aromatization reactions. Heterogeneous catalyst design strategies for Diels–Alder reactions are reviewed for two exemplary solid acid catalysts, zeolites and polyoxometalates, and recent efforts for targeting direct replacement aromatic monomers from biomass are summarized. In conclusion, we point out important research directions for progressing Diels–Alder catalysis to target novel, aromatic monomers with chemical functionality that enables new properties compared to monomers that are readily accessible from petroleum.« less
The effect of Sn on the reactions of n-hexane and cyclohexane over polycrystalline Pt foils
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fujikawa, T.; Ribeiro, F.H.; Somorjai, G.A.
The modification of the catalytic properties of a polycrystalline platinum foil by the addition of tin was studied by the reactions of n-hexane and cyclohexane in excess H{sub 2}. The reactions were studied at 13.3 kPa of n-hexane, 450 kPa of H{sub 2} and 740 K, and 6.7 kPa of cyclohexane, 450 kPa of H{sub 2} and 573 K. The Pt-Sn catalyst was characterized by Auger electron spectroscopy and by temperature-programmed desorption of CO before and after the reactions. The sites that bind CO most strongly on the Pt foil also have the highest initial turnover rate and are themore » first ones to be poisoned by carbon deposits from hydrocarbon reactions or by sulfur when a sulfur-containing compound (thiophene) is present in the feed. The addition of tin can block these sites preferentially, thus decreasing the undesirable high initial hydrogenolysis rate of platinum catalysts in reforming reactions and eliminating the need for presulfiding the catalyst. Also, tin suppressed the hydrogenolysis reaction preferentially to the isomerization and cyclization reactions thus increasing the selectivities to isomerization and cyclization. The amount of carbon deposited was smaller on tin containing platinum catalysts during the dehydrogenation of cyclohexane and n-hexane.« less
Modeling the Kinetics of Deactivation of Catalysts during the Upgrading of Bio-Oil
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weber, Robert S.; Olarte, Mariefel V.; Wang, Huamin
The fouling of catalysts for the upgrading of bio-oils appears to be very different from the fouling of catalysts for the hydroprocessing of petroleum-derived streams. There are two reasons for the differences: a) bio-oil contains polarizable components and phases that can stabilize reaction intermediates exhibiting charge separation and b) bio-oil components contain functional groups that contain O, notably carbonyls (>C=O). Aldol condensation of carbonyls affords very different pathways for the production of oligomeric, refractory deposits than does dehydrogenation/polymerization of petroleum-derived hydrocarbons. Colloquially, we refer to the bio-oil derived deposits as “gunk” to discriminate them from coke, the carbonaceous deposits encounteredmore » in petroleum refining. Classical gelation, appears to be a suitable model for the “gunking” reaction. Our work has helped explain the temperature range at which bio-oil should be pre-processed (“stabilized”) to confer longer lifetimes on the catalysts used for more severe processing. Stochastic modeling (kinetic Monte Carlo simulations) appears suitable to capture the rates of oligomerization of bio-oil. This work was supported by the US Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle.« less
Heterogeneous Diels–Alder catalysis for biomass-derived aromatic compounds
Settle, Amy E.; Berstis, Laura; Rorrer, Nicholas A.; ...
2017-05-17
In this tutorial review, we provide an overview of heterogeneous Diels–Alder catalysis for the production of lignocellulosic biomass-derived aromatic compounds. Diels–Alder reactions afford an extremely selective and efficient route for carbon–carbon cycloadditions to produce intermediates that can readily undergo subsequent dehydration or dehydrogenation reactions for aromatization. As a result, catalysis of Diels–Alder reactions with biomass-derived dienes and dienophiles has seen a growth of interest in recent years; however, significant opportunities remain to (i) tailor heterogeneous catalyst materials for tandem Diels–Alder and aromatization reactions, and (ii) utilize biomass-derived dienes and dienophiles to access both conventional and novel aromatic monomers. As such,more » this review discusses the mechanistic aspects of Diels–Alder reactions from both an experimental and computational perspective, as well as the synergy of Brønsted–Lewis acid catalysts to facilitate tandem Diels–Alder and aromatization reactions. Heterogeneous catalyst design strategies for Diels–Alder reactions are reviewed for two exemplary solid acid catalysts, zeolites and polyoxometalates, and recent efforts for targeting direct replacement aromatic monomers from biomass are summarized. In conclusion, we point out important research directions for progressing Diels–Alder catalysis to target novel, aromatic monomers with chemical functionality that enables new properties compared to monomers that are readily accessible from petroleum.« less
Adsorption, hydrogenation and dehydrogenation of C2H on a CoCu bimetallic layer
NASA Astrophysics Data System (ADS)
Wu, Donghai; Yuan, Jinyun; Yang, Baocheng; Chen, Houyang
2018-05-01
In this paper, adsorption, hydrogenation and dehydrogenation of C2H on a single atomic layer of bimetallic CoCu were investigated using first-principles calculations. The CoCu bimetallic layer is formed by Cu replacement of partial Co atoms on the top layer of a Co(111) surface. Our adsorption and reaction results showed those sites, which have stronger adsorption energy of C2H, possess higher reactivity. The bimetallic layer possesses higher reactivity than either of the pure monometallic layer. A mechanism of higher reactivity of the bimetallic layer is proposed and identified, i.e. in the bimetallic catalyst, the catalytic performance of one component is promoted by the second component, and in our work, the catalytic performance of Co atoms in the bimetallic layer are improved by introducing Cu atoms, lowing the activation barrier of the reaction of C2H. The bimetallic layer could tune adsorption and reaction of C2H by modulating the ratio of Co and Cu. Results of adsorption energies and adsorption configurations reveal that C2H prefers to be adsorbed in parallel on both the pure Co metallic and CoCu bimetallic layers, and Co atoms in subsurface which support the metallic or bimetallic layer have little effect on C2H adsorption. For hydrogenation reactions, the products greatly depend on the concentration and initial positions of hydrogen atoms, and the C2H hydrogenation forming acetylene is more favorable than forming vinylidene in both thermodynamics and kinetics. This study would provide fundamental guidance for hydrocarbon reactions on Co-based and/or Cu-based bimetallic surface chemistry and for development of new bimetallic catalysts.
Dry Reforming of Ethane and Butane with CO 2 over PtNi/CeO 2 Bimetallic Catalysts
Yan, Binhang; Yang, Xiaofang; Yao, Siyu; ...
2016-09-21
Dry reforming is a potential process to convert CO 2 and light alkanes into syngas (H 2 and CO), which can be subsequently transformed to chemicals and fuels. Here in this work, PtNi bimetallic catalysts have been investigated for dry reforming of ethane and butane using both model surfaces and supported powder catalysts. The PtNi bimetallic catalyst shows an improvement in both activity and stability as compared to the corresponding monometallic catalysts. The formation of PtNi alloy and the partial reduction of Ce 4+ to Ce 3+ under reaction conditions are demonstrated by in-situ Ambient Pressure X-ray Photoemission Spectroscopy (AP-XPS),more » X-ray Diffraction (XRD) and X-ray Absorption Fine Structure (XAFS) measurements. A Pt-rich bimetallic surface is revealed by Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) following CO adsorption. Combined in-situ experimental results and Density Functional Theory (DFT) calculations suggest that the Pt-rich PtNi bimetallic surface structure would weaken the binding of surface oxygenates/carbon species and reduce the activation energy for C-C bond scission, leading to an enhanced dry reforming activity.« less
Dry Reforming of Ethane and Butane with CO 2 over PtNi/CeO 2 Bimetallic Catalysts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Binhang; Yang, Xiaofang; Yao, Siyu
Dry reforming is a potential process to convert CO 2 and light alkanes into syngas (H 2 and CO), which can be subsequently transformed to chemicals and fuels. Here in this work, PtNi bimetallic catalysts have been investigated for dry reforming of ethane and butane using both model surfaces and supported powder catalysts. The PtNi bimetallic catalyst shows an improvement in both activity and stability as compared to the corresponding monometallic catalysts. The formation of PtNi alloy and the partial reduction of Ce 4+ to Ce 3+ under reaction conditions are demonstrated by in-situ Ambient Pressure X-ray Photoemission Spectroscopy (AP-XPS),more » X-ray Diffraction (XRD) and X-ray Absorption Fine Structure (XAFS) measurements. A Pt-rich bimetallic surface is revealed by Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) following CO adsorption. Combined in-situ experimental results and Density Functional Theory (DFT) calculations suggest that the Pt-rich PtNi bimetallic surface structure would weaken the binding of surface oxygenates/carbon species and reduce the activation energy for C-C bond scission, leading to an enhanced dry reforming activity.« less
Method for the synthesis of chlorosilanes
Wheeler, D.R.; Pollagi, T.P.
1999-08-17
A novel method is described for the synthesis of chlorinated or partially chlorinated organosilanes and organopolysilanes. The chlorination is effected by contacting an organosilanes or organopolysilanes with anhydrous CuCl{sub 2} in a nonpolar alkane solvent, preferably pentane or hexadecane, without the use of a catalyst. Copper metal, which is easily filtered, is a reaction product. The filtrate containing the chlorinated organosilane or organopolysilane can be used directly as a reactant to produce, for example, aminoorganosilanes.
Method for the synthesis of chlorosilanes
Wheeler, David R.; Pollagi, Timothy P.
1999-01-01
A novel method for the synthesis of chlorinated or partially chlorinated organosilanes and organopolysilanes. The chlorination is effected by contacting an organosilanes or organopolysilanes with anhydrous CuCl.sub.2 in a nonpolar alkane solvent, preferably pentane or hexadecane, without the use of a catalyst. Copper metal, which is easily filtered, is a reaction product. The filtrate containing the chlorinated organosilane or organopolysilane can be used directly as a reactant to produce, for example, aminoorganosilanes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yung, Matthew M.; Stanton, Alexander R.; Iisa, Kristiina
Metal-impregnated (Ni or Ga) ZSM-5 catalysts were studied for biomass pyrolysis vapor upgrading to produce hydrocarbons using three reactors constituting a 100 000x change in the amount of catalyst used in experiments. Catalysts were screened for pyrolysis vapor phase upgrading activity in two small-scale reactors: (i) a Pyroprobe with a 10 mg catalyst in a fixed bed and (ii) a fixed-bed reactor with 500 mg of catalyst. The best performing catalysts were then validated with a larger scale fluidized-bed reactor (using ~1 kg of catalyst) that produced measurable quantities of bio-oil for analysis and evaluation of mass balances. Despite somemore » inherent differences across the reactor systems (such as residence time, reactor type, analytical techniques, mode of catalyst and biomass feed) there was good agreement of reaction results for production of aromatic hydrocarbons, light gases, and coke deposition. Relative to ZSM-5, Ni or Ga addition to ZSM-5 increased production of fully deoxygenated aromatic hydrocarbons and light gases. In the fluidized bed reactor, Ga/ZSM-5 slightly enhanced carbon efficiency to condensed oil, which includes oxygenates in addition to aromatic hydrocarbons, and reduced oil oxygen content compared to ZSM-5. Ni/ZSM-5, while giving the highest yield of fully deoxygenated aromatic hydrocarbons, gave lower overall carbon efficiency to oil but with the lowest oxygen content. Reaction product analysis coupled with fresh and spent catalyst characterization indicated that the improved performance of Ni/ZSM-5 is related to decreasing deactivation by coking, which keeps the active acid sites accessible for the deoxygenation and aromatization reactions that produce fully deoxygenated aromatic hydrocarbons. The addition of Ga enhances the dehydrogenation activity of the catalyst, which leads to enhanced olefin formation and higher fully deoxygenated aromatic hydrocarbon yields compared to unmodified ZSM-5. Catalyst characterization by ammonia temperature programmed desorption, surface area measurements, and postreaction temperature-programmed oxidation (TPO) also showed that the metal-modified zeolites retained a greater percentage of their initial acidity and surface area, which was consistent between the reactor scales. These results demonstrate that the trends observed with smaller (milligram to gram) catalyst reactors are applicable to larger, more industrially relevant (kg) scales to help guide catalyst research toward application.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Li; Wu, Zili; Nelson, Nicholas
Catalytic performance and the nature of surface adsorbates were investigated for high-surface-area ceria during ethylbenzene oxidative dehydrogenation (ODH) reaction using CO2 as a soft oxidant. A template assisted method was used to synthesize the high-surface-area ceria. The interactions between ethylbenzene, styrene and CO2 on the surface of ceria and the role of CO2 for the ethylbenzene ODH reaction have been investigated in detail by using activity test, in situ Diffuse Reflectance Infrared and Raman spectroscopy. Not only did CO2 as an oxidant favor the higher yield of styrene, but it also inhibited the deposition of coke during the ethylbenzene ODHmore » reaction. Ethylbenzene ODH reaction over ceria followed a two-step pathway: Ethylbenzene is first dehydrogenated to styrene with H2 formed simultaneously, and then CO2 reacts with H2 via the reverse water gas shift. The styrene produced can easily polymerize to form polystyrene, a key intermediate for coke formation. In the absence of CO2, the polystyrene transforms into graphite-like coke at temperatures above 500 °C, which leads to catalyst deactivation. While in the presence of CO2, the coke deposition can be effectively removed via oxidation with CO2.« less
Ventura-Espinosa, David; Carretero-Cerdán, Alba; Baya, Miguel; García, Hermenegildo; Mata, Jose A
2017-08-10
The compound [Ru(p-cym)(Cl) 2 (NHC)] is an effective catalyst for the room-temperature coupling of silanes and alcohols with the concomitant formation of molecular hydrogen. High catalyst activity is observed for a variety of substrates affording quantitative yields in minutes at room temperature and with a catalyst loading as low as 0.1 mol %. The coupling reaction is thermodynamically and, in the presence of a Ru complex, kinetically favourable and allows rapid molecular hydrogen generation on-demand at room temperature, under air, and without any additive. The pair silane/alcohol is a potential liquid organic hydrogen carrier (LOHC) for energy storage over long periods in a safe and secure way. Silanes and alcohols are non-toxic compounds and do not require special handling precautions such as high pressure or an inert atmosphere. These properties enhance the practical applications of the pair silane/alcohol as a good LOHC in the automotive industry. The variety and availability of silanes and alcohols permits a pair combination that fulfils the requirements for developing an efficient LOHC. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Synthesis and characterization of catalysts and electrocatalysts using combinatorial methods
NASA Astrophysics Data System (ADS)
Ramanathan, Ramnarayanan
This thesis documents attempts at solving three problems. Bead-based parallel synthetic and screening methods based on matrix algorithms were developed. The method was applied to search for new heterogeneous catalysts for dehydrogenation of methylcyclohexane. The most powerful use of the method to date was to optimize metal adsorption and evaluate catalysts as a function of incident energy, likely to be important in the future, should availability of energy be an optimization parameter. This work also highlighted the importance of order of addition of metal salts on catalytic activity and a portion of this work resulted in a patent with UOP LLC, Desplaines, Illinois. Combinatorial methods were also investigated as a tool to search for carbon-monoxide tolerant anode electrocatalysts and methanol tolerant cathode electrocatalysts, resulting in discovery of no new electrocatalysts. A physically intuitive scaling criterion was developed to analyze all experiments on electrocatalysts, providing insight for future experiments. We attempted to solve the CO poisoning problem in polymer electrolyte fuel cells using carbon molecular sieves as a separator. This approach was unsuccessful in solving the CO poisoning problem, possibly due to the tendency of the carbon molecular sieves to concentrate CO and CO 2 in pore walls.
Schwach, Pierre; Pan, Xiulian; Bao, Xinhe
2017-07-12
The quest for an efficient process to convert methane efficiently to fuels and high value-added chemicals such as olefins and aromatics is motivated by their increasing demands and recently discovered large reserves and resources of methane. Direct conversion to these chemicals can be realized either oxidatively via oxidative coupling of methane (OCM) or nonoxidatively via methane dehydroaromatization (MDA), which have been under intensive investigation for decades. While industrial applications are still limited by their low yield (selectivity) and stability issues, innovations in new catalysts and concepts are needed. The newly emerging strategy using iron single sites to catalyze methane conversion to olefins, aromatics, and hydrogen (MTOAH) attracted much attention when it was reported. Because the challenge lies in controlled dehydrogenation of the highly stable CH 4 and selective C-C coupling, we focus mainly on the fundamentals of C-H activation and analyze the reaction pathways toward selective routes of OCM, MDA, and MTOAH. With this, we intend to provide some insights into their reaction mechanisms and implications for future development of highly selective catalysts for direct conversion of methane to high value-added chemicals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rousseau, Roger J.; Dixon, David A.; Kay, Bruce D.
2014-01-01
Supported early transition metal oxides have important applications in numerous catalytic reactions. In this article we review preparation and activity of well-defined model WO3 and MoO3 catalysts prepared via deposition of cyclic gas-phase (WO3)3 and (MoO3)3 clusters generated by sublimation of WO3 and MoO3 powders. Conversion of small aliphatic alcohols to alkenes, aldehydes/ketons, and ethers is employed to probe the structure-activity relationships on model WO3 and MoO3 catalysts ranging from unsupported (WO3)3 and (MoO3)3 clusters embedded in alcohol matrices, to (WO3)3 clusters supported on surfaces of other oxides, and epitaxial and nanoporous WO3 films. Detailed theoretical calculations reveal the underlyingmore » reaction mechanisms and provide insight into the origin of the differences in the WO3 and MoO3 reactivity. For the range of interrogated (WO3)3 they further shed light into the role structure and binding of (WO3)3 clusters with the support play in determining their catalytic activity.« less
Main-group compounds selectively oxidize mixtures of methane, ethane, and propane to alcohol esters.
Hashiguchi, Brian G; Konnick, Michael M; Bischof, Steven M; Gustafson, Samantha J; Devarajan, Deepa; Gunsalus, Niles; Ess, Daniel H; Periana, Roy A
2014-03-14
Much of the recent research on homogeneous alkane oxidation has focused on the use of transition metal catalysts. Here, we report that the electrophilic main-group cations thallium(III) and lead(IV) stoichiometrically oxidize methane, ethane, and propane, separately or as a one-pot mixture, to corresponding alcohol esters in trifluoroacetic acid solvent. Esters of methanol, ethanol, ethylene glycol, isopropanol, and propylene glycol are obtained with greater than 95% selectivity in concentrations up to 1.48 molar within 3 hours at 180°C. Experiment and theory support a mechanism involving electrophilic carbon-hydrogen bond activation to generate metal alkyl intermediates. We posit that the comparatively high reactivity of these d(10) main-group cations relative to transition metals stems from facile alkane coordination at vacant sites, enabled by the overall lability of the ligand sphere and the absence of ligand field stabilization energies in systems with filled d-orbitals.
Foo, Guo Shiou; Hood, Zachary D.; Wu, Zili
2017-12-05
For this research, to gain an in-depth understanding of the surface properties relevant for catalysis using ternary oxides, we report the acid–base pair reactivity of shape-controlled SrTiO 3 (STO) nanocrystals for the dehydrogenation of ethanol. Cubes, truncated cubes, dodecahedra, and etched cubes of STO with varying ratios of (001) and (110) crystal facets were synthesized using a hydrothermal method. Low-energy ion scattering (LEIS) analysis revealed that the (001) surface on cubes of STO is enriched with SrO due to surface reconstruction, resulting in a high ratio of strong base sites. Chemical treatment with dilute nitric acid to form etched cubesmore » of STO resulted in a surface enriched with Ti cations and strong acidity. Furthermore, the strength and distribution of surface acidic sites increase with the ratio of (110) facet from cubes to truncated cubes to dodecahedra for STO. Kinetic, isotopic, and spectroscopy methods show that the dehydrogenation of ethanol proceeds through the facile dissociation of the alcohol group, followed by the cleavage of the C α–H bond, which is the rate-determining step. Co-feeding of various probe molecules during catalysis, such as NH 3, 2,6-di-tert-butylpyridine, CO 2, and SO 2, reveals that a pair of Lewis acid site and basic surface oxygen atom is involved in the dehydrogenation reaction. The surface density of acid–base site pairs was measured using acetic acid as a probe molecule, allowing initial acetaldehyde formation turnover rates to be obtained. Comparison among various catalysts reveals no simple correlation between ethanol turnover rate and the percentage of either surface facet ((001) or (110)) of the STO nanocrystals. Instead, the reaction rate is found to increase with the strength of acid sites but reversely with the strength of base sites. The acid–base property is directly related to the surface composition as a result from different surface reconstruction behaviors of the shaped STO nanocrystals. Lastly, the finding in this work underscores the importance of characterizing the top surface compositions and sites properties when assessing the catalytic performance of shape-controlled complex oxides such as perovskites.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Foo, Guo Shiou; Hood, Zachary D.; Wu, Zili
For this research, to gain an in-depth understanding of the surface properties relevant for catalysis using ternary oxides, we report the acid–base pair reactivity of shape-controlled SrTiO 3 (STO) nanocrystals for the dehydrogenation of ethanol. Cubes, truncated cubes, dodecahedra, and etched cubes of STO with varying ratios of (001) and (110) crystal facets were synthesized using a hydrothermal method. Low-energy ion scattering (LEIS) analysis revealed that the (001) surface on cubes of STO is enriched with SrO due to surface reconstruction, resulting in a high ratio of strong base sites. Chemical treatment with dilute nitric acid to form etched cubesmore » of STO resulted in a surface enriched with Ti cations and strong acidity. Furthermore, the strength and distribution of surface acidic sites increase with the ratio of (110) facet from cubes to truncated cubes to dodecahedra for STO. Kinetic, isotopic, and spectroscopy methods show that the dehydrogenation of ethanol proceeds through the facile dissociation of the alcohol group, followed by the cleavage of the C α–H bond, which is the rate-determining step. Co-feeding of various probe molecules during catalysis, such as NH 3, 2,6-di-tert-butylpyridine, CO 2, and SO 2, reveals that a pair of Lewis acid site and basic surface oxygen atom is involved in the dehydrogenation reaction. The surface density of acid–base site pairs was measured using acetic acid as a probe molecule, allowing initial acetaldehyde formation turnover rates to be obtained. Comparison among various catalysts reveals no simple correlation between ethanol turnover rate and the percentage of either surface facet ((001) or (110)) of the STO nanocrystals. Instead, the reaction rate is found to increase with the strength of acid sites but reversely with the strength of base sites. The acid–base property is directly related to the surface composition as a result from different surface reconstruction behaviors of the shaped STO nanocrystals. Lastly, the finding in this work underscores the importance of characterizing the top surface compositions and sites properties when assessing the catalytic performance of shape-controlled complex oxides such as perovskites.« less
Wang, Lin; Onishi, Naoya; Murata, Kazuhisa; Hirose, Takuji; Muckerman, James T; Fujita, Etsuko; Himeda, Yuichiro
2017-03-22
A series of new imidazoline-based iridium complexes has been developed for hydrogenation of CO 2 and dehydrogenation of formic acid. One of the proton-responsive complexes bearing two -OH groups at ortho and para positions on a coordinating pyridine ring (3 b) can catalyze efficiently the chemical fixation of CO 2 and release H 2 under mild conditions in aqueous media without using organic additives/solvents. Notably, hydrogenation of CO 2 can be efficiently carried out under CO 2 and H 2 at atmospheric pressure in basic water by 3 b, achieving a turnover frequency of 106 h -1 and a turnover number of 7280 at 25 °C, which are higher than ever reported. Moreover, highly efficient CO-free hydrogen production from formic acid in aqueous solution employing the same catalyst under mild conditions has been achieved, thus providing a promising potential H 2 -storage system in water. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Cimarelli, Cristina; Di Nicola, Matteo; Diomedi, Simone; Giovannini, Riccardo; Hamprecht, Dieter; Properzi, Roberta; Sorana, Federico; Marcantoni, Enrico
2015-12-28
The benzimidazole core is a common moiety in a large number of natural products and pharmacologically active small molecules. The synthesis of novel benzimidazole derivatives remains a main focus in medicinal research. In continuation of the efforts towards Ce(III) catalysts for organic transformations, we observed for the first time the activity of the iodide ion and copper cation in activating CeCl3·7H2O in the selective formation of prototypical 2-substituted benzimidazoles. The one-pot CeCl3·7H2O-CuI catalytic system procedure includes the cyclo-dehydrogenation of aniline Schiff's bases, generated in situ from the condensation of 1,2-phenylenediamine and aldehydes, followed by the oxidation with iodine, which works as a hydrogen sponge. Mild reaction conditions, good to excellent yields, and clean reactions make the procedure a useful contribution to the synthesis of biologically active fused heterocycles containing benzimidazoquinazolines.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Wei-Zhen; Nie, Lei; Cheng, Yingwen
With the capability of MgAl2O4 spinel {111} nano-facets in stabilizing small Rh, Ir and Pt particles, bimetallic Ir-Pt catalysts on the same support were investigated, aiming at further lowering the catalyst cost by substituting expensive Pt with cheaper Ir in the bulk. Small Pt-Ir nano-alloy particles (< 2nm) were successfully stabilized on the spinel {111} nano-facets as expected. Interestingly, methanol oxidative dehydrogenation (ODH) rate on the surface Pt atoms increases with oxidizing aging but decreases upon reducing treatment, where Ir is almost inactive under the same reaction conditions. Up to three times enhancement in Pt exposure was achieved when themore » sample was oxidized at 800 °C in air for 1 week and subsequently reduced by H2 for 2 h, demonstrating successful surface enrichment of Pt on Pt-Ir nano-alloy particles. A dynamic stabilization mechanism involving wetting\
Hu, Peng; Fogler, Eran; Diskin-Posner, Yael; Iron, Mark A.; Milstein, David
2015-01-01
Hydrogen is an efficient green fuel, but its low energy density when stored under high pressure or cryogenically, and safety issues, presents significant disadvantages; hence finding efficient and safe hydrogen carriers is a major challenge. Of special interest are liquid organic hydrogen carriers (LOHCs), which can be readily loaded and unloaded with considerable amounts of hydrogen. However, disadvantages include high hydrogen pressure requirements, high reaction temperatures for both hydrogenation and dehydrogenation steps, which require different catalysts, and high LOHC cost. Here we present a readily reversible LOHC system based on catalytic peptide formation and hydrogenation, using an inexpensive, safe and abundant organic compound with high potential capacity to store and release hydrogen, applying the same catalyst for loading and unloading hydrogen under relatively mild conditions. Mechanistic insight of the catalytic reaction is provided. We believe that these findings may lead to the development of an inexpensive, safe and clean liquid hydrogen carrier system. PMID:25882348
Wang, Lin; Onishi, Naoya; Murata, Kazuhisa; ...
2016-12-28
A series of new imidazoline-based iridium complexes has been developed for hydrogenation of CO 2 and dehydrogenation of formic acid. One of the proton-responsive complexes bearing two –OH groups at ortho and para positions on a coordinating pyridine ring (3 b) can catalyze efficiently the chemical fixation of CO 2 and release H 2 under mild conditions in aqueous media without using organic additives/solvents. Notably, hydrogenation of CO 2 can be efficiently carried out under CO 2 and H 2 at atmospheric pressure in basic water by 3 b, achieving a turnover frequency of 106 h –1 and a turnovermore » number of 7280 at 25 °C, which are higher than ever reported. Furthermore, highly efficient CO-free hydrogen production from formic acid in aqueous solution employing the same catalyst under mild conditions has been achieved, thus providing a promising potential H 2-storage system in water.« less
Yi, Chae S.; Zeczycki, Tonya N.; Guzei, Ilia A.
2008-01-01
The tetrametallic ruthenium-oxo-hydroxo-hydride complex {[(PCy3)(CO)RuH]4(μ4-O)(μ3-OH)(μ2-OH)} (1) was synthesized in two steps from the monomeric complex (PCy3)(CO)RuHCl (2). The tetrameric complex 1 was found to be a highly effective catalyst for the transfer dehydrogenation of alcohols. Complex 1 showed a different catalytic activity pattern towards primary and secondary benzyl alcohols, as indicated by the Hammett correlation for the oxidation reaction of p-X-C6H4CH2OH (ρ = −0.45) and p-X-C6H4CH(OH)CH3 (ρ = +0.22) (X = OMe, CH3, H, Cl, CF3). Both a sigmoidal curve from the plot of initial rate vs [PhCH(OH)CH3] (K0.5 = 0.34 M; Hill coefficient, n = 4.2±0.1) and the phosphine inhibition kinetics revealed the highly cooperative nature of the complex for the oxidation of secondary alcohols. PMID:18726005
Ketonization of levulinic acid and γ-valerolactone to hydrocarbon fuel precursors
Lilga, Michael A.; Padmaperuma, Asanga B.; Auberry, Deanna L.; ...
2017-06-21
We studied a new process for direct conversion of either levulinic acid (LA) or γ-valerolactone (GVL) to hydrocarbon fuel precursors. The process involves passing an aqueous solution of LA or GVL containing a reducing agent, such as ethylene glycol or formic acid, over a ketonization catalyst at 380–400 °C and atmospheric pressure to form a biphasic liquid product. The organic phase is significantly oligomerized and deoxygenated and comprises a complex mixture of open-chain alkanes and olefins, aromatics, and low concentrations of ketones, alcohols, ethers, and carboxylates or lactones. Carbon content in the aqueous phase decreases with decreasing feed rate; themore » aqueous phase can be reprocessed through the same catalyst to form additional organic oils to improve carbon yield. Catalysts are readily regenerated to restore initial activity. Furthermore, the process might be valuable in converting cellulosics to biorenewable gasoline, jet, and diesel fuels as a means to decrease petroleum use and decrease greenhouse gas emissions.« less
Synthesis of high density aviation fuel with cyclopentanol derived from lignocellulose
NASA Astrophysics Data System (ADS)
Sheng, Xueru; Li, Ning; Li, Guangyi; Wang, Wentao; Yang, Jinfan; Cong, Yu; Wang, Aiqin; Wang, Xiaodong; Zhang, Tao
2015-03-01
For the first time, renewable high density aviation fuels were synthesized at high overall yield (95.6%) by the Guerbet reaction of cyclopentanol which can be derived from lignocellulose, followed by the hydrodeoxygenation (HDO). The solvent-free Guerbet reaction of cyclopentanol was carried out under the co-catalysis of solid bases and Raney metals. Among the investigated catalyst systems, the combinations of magnesium-aluminium hydrotalcite (MgAl-HT) and Raney Ni (or Raney Co) exhibited the best performances. Over them, high carbon yield (96.7%) of C10 and C15 oxygenates was achieved. The Guerbet reaction products were further hydrodeoxygenated to bi(cyclopentane) and tri(cyclopentane) over a series of Ni catalysts. These alkanes have high densities (0.86 g mL-1 and 0.91 g mL-1) and can be used as high density aviation fuels or additives to bio-jet fuel. Among the investigated HDO catalysts, the 35 wt.% Ni-SiO2-DP prepared by deposition-precipitation method exhibited the highest activity.
NASA Astrophysics Data System (ADS)
Zadehahmadi, Farnaz; Tangestaninejad, Shahram; Moghadam, Majid; Mirkhani, Valiollah; Mohammadpoor-Baltork, Iraj; Khosropour, Ahmad R.; Kardanpour, Reihaneh
2014-10-01
In the present work, chloromethylated MIL-101(Cr) modified with imidazole, Im-MIL-101, was applied as a support for immobilizing of tetraphenylporphyrinatomangenese(III) chloride. The imidazole-bound MIL-101, Im-MIL-101, not only used as support for immobilization of manganese porphyrin but also applied as a heterogeneous axial base. The Mn(TPP)Cl@Im-MIL-101 catalyst was characterized by UV-vis, FT-IR, X-ray diffraction (XRD), N2 adsorption, field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray (EDX), elemental analysis and inductively coupled plasma (ICP) methods. The catalytic activity of this new catalytic system was investigated in the alkene epoxidation and alkane hydroxylation using NaIO4 as an oxidant in CH3CN/H2O at room temperature. This heterogeneous catalyst is highly efficient, stable and reusable in the oxidation of hydrocarbons.
Synthesis of high density aviation fuel with cyclopentanol derived from lignocellulose.
Sheng, Xueru; Li, Ning; Li, Guangyi; Wang, Wentao; Yang, Jinfan; Cong, Yu; Wang, Aiqin; Wang, Xiaodong; Zhang, Tao
2015-03-31
For the first time, renewable high density aviation fuels were synthesized at high overall yield (95.6%) by the Guerbet reaction of cyclopentanol which can be derived from lignocellulose, followed by the hydrodeoxygenation (HDO). The solvent-free Guerbet reaction of cyclopentanol was carried out under the co-catalysis of solid bases and Raney metals. Among the investigated catalyst systems, the combinations of magnesium-aluminium hydrotalcite (MgAl-HT) and Raney Ni (or Raney Co) exhibited the best performances. Over them, high carbon yield (96.7%) of C10 and C15 oxygenates was achieved. The Guerbet reaction products were further hydrodeoxygenated to bi(cyclopentane) and tri(cyclopentane) over a series of Ni catalysts. These alkanes have high densities (0.86 g mL(-1) and 0.91 g mL(-1)) and can be used as high density aviation fuels or additives to bio-jet fuel. Among the investigated HDO catalysts, the 35 wt.% Ni-SiO2-DP prepared by deposition-precipitation method exhibited the highest activity.
Novel Carbon (C)-Boron (B)-Nitrogen (N)-Containing H2 Storage Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Shih-Yuan; Giustra, Zachary X.; Autrey, Tom
The following summarizes the research conducted for DOE project DE-EE0005658 “Novel Carbon(C)-Boron(B)-Nitrogen(N)-Containing H2 Storage Materials”. This work focused in part on the continued study of two materials identified from the preceding project DE-FG360GO18143 (“Hydrogen Storage by Novel CBN Heterocycle Materials”) as lead candidates to meet the DOE technical targets for either vehicular or non-automotive hydrogen storage applications. Specifically, a room-temperature liquid, 3-methyl-1,2-cyclopentane (B), and a high H2 capacity solid, 1,2-BN-cyclohexane (J), were selected for further characterization and performance optimization. In addition to these compounds, the current project also aimed to prepare several new materials predicted to be disposed towards directmore » reversibility of H2 release and uptake, a feature deemed critical to achieving efficient recycling of spent fuel end products. To assist in the rational design of these and other next-generation materials, this project undertook to investigate the mechanism of hydrogen release from established compounds (mainly B and J) using a combined experimental/computational approach. Among this project’s signature accomplishments, the preliminary synthetic route to B was optimized for production on decagram scale. With such quantities of material available, its performance in powering an actual 30 W proton exchange membrane (PEM) fuel cell stack was tested and found to be identical to that of facility H2. Despite this positive proof-of-concept achievement, however, further consideration of neat B as a potential hydrogen storage material was abandoned due to evidence of thermal instability. Specifically, mass spectrometry-coupled thermogravimetric analysis (TGA-MS) revealed significant H2 release from B to initiate at 50 °C, well below the 60 °C minimum threshold set by the DOE. This result prompted a more extensive investigation in the decomposition mechanism of B vis-à-vis that of J, which exhibited in neat form a substantially higher onset temperature for spontaneous H2 release (70 °C). Solution-phase kinetic experiments using ReactIR established a second-order dependence for the initial loss of H2 from both B and J; Arrhenius analysis, however, revealed the activation barrier for this reaction was lower for B than for J, which presumably contributes to the diminished thermal stability of the former. On the basis of these and other experimental results, extensive computational efforts yielded a reasonable mechanistic model for the dehydrogenation of 1,2-BN-cycloalkane materials. While the prospect of neat B as a suitable hydrogen storage material was discarded, it was proposed that the combination of B with more thermally stable amine-borane-based materials might afford mixtures with improved properties. Indeed, when B was combined with ammonia borane (AB) in a 2:1 molar ratio, the two materials formed a liquid. More significantly, this mixture remained liquid even after complete dehydrogenation, thus establishing the potential for a single-phase fuel cycle. (In contrast, the dehydrogenation product of neat B is a low melting solid (mp = 28-30 °C).) Another advantage conferred by the blend formulation was a dramatic reduction in the amount of borazine produced by AB. Borazine is a well-known contaminant of H2 produced by the thermal decomposition of neat AB, and exerts deleterious effects on fuel cell performance. Residual gas analysis (RGA) of the gas stream generated from the B-AB blend, however, detected just 0.01% borazine content when a Pt-Ni nanoparticle dehydrogenation catalyst was used. In all ii then, the 2:1 B-AB blend marks a major achievement in the effort to develop a suitable liquid amine-borane hydrogen storage material, and merits further investigation into the optimization for practical adoption. Similar realization of the potential of J as a high % wt. H2 material required a method to dehydrogenate the carbonaceous components of the molecule without the use of a sacrificial hydrogen acceptor, as had been reported in the previous project. Ultimately, this reaction was achieved for a B,N-disubstituted BN-cyclohexene model substrate using a gas flow system with a fixed Pd/C catalyst bed. Considerable work remains, however, to translate these initial results into a general protocol for complete dehydrogenation of fully saturated BN-cycloalkane materials such as J. With concrete confirmation of the possibility to perform both BN and CC dehydrogenation on a single theoretical substrate, COMSOL modeling was used to evaluate the effects of thermodynamically coupling the two reactions. It was hypothesized that the heat generated from exothermic BN dehydrogenation would partially drive the endothermic CC dehydrogenation reaction; this additional heat consumption was expected to in turn confer the benefit of lowering the maximum reactor temperature. A two-dimensional model of an axisymmetric reactor including experimental kinetic and calculated thermodynamic parameters for both reactions did indeed predict these outcomes. The extent to which the effects of thermodynamic coupling actually manifested, however, were also revealed to depend strongly on the relative rates of the two reactions, as well as the magnitude of the equilibrium constant governing the progress of the endothermic process. Given the evident complexity of attaining high effective % wt. H2 capacity with J, alternative systems were investigated for greater facility of extensive H2 release. Among those studied, 1,2,4,5-bis-BN-cyclohexane (H) demonstrated the most favorable properties, particularly with respect to thermal stability: rather than decompose, a neat sample instead sublimed when heated above 150 °C. Nevertheless, two commercially available catalytic systems were identified to effect release of two H2 equivalents from H. Release of further equivalents were apparently impeded by the formation of either polymeric material or one of two dimeric cage compounds depending on the catalyst used. Notably, a method to regenerate H from these product mixtures remains to be developed. Thus, while H may prove useful for certain long-term energy storage needs, it is currently less suited applications involving frequent fuel consumption. Similar difficulties were also encountered in attempts to realize the complete fuel cycle of 1,3-BN-cyclohexane (E) and B,N-substituted derivatives thereof. It had been initially proposed that E would provide for readily reversible BN dehydrogenation through a measure of frustrated Lewis pair-type character. Indeed, computations predicted this reaction would be essentially thermoneutral in solution. In the course of attempts to fully hydrogenate the spent fuel, however, dimeric species formed and proved resistant to further BN reduction. While a number of monomeric cyclic compounds were also successfully synthesized as formal boron-nitrogen frustrated Lewis pairs, none demonstrated any capacity to split H2 across the BN unit. The challenge of developing a practical amine-borane-based material for readily reversible hydrogen storage thus remains unresolved at this time. As such, it deserves consideration as a major objective of any future work.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dagle, Vanessa; Flake, Matthew D.; Lemmon, Teresa
2018-05-18
A ternary Ag/ZrO2/SiO2 catalyst system was studied for the single-step conversion of ethanol to butadiene by varying the catalyst composition (Ag, Ir, or Pt metal component, Ag/ZrO2 loading, and choice of SiO2 support) and operating conditions (space velocity and feed gas composition). Exceptional catalytic performance was achieved over a 1%Ag/4%ZrO2/SiO2-SBA-16 catalyst leading to 99% conversion and 71% butadiene selectivity while operating under mild conditions (325ºC, 1 atm, 0.23 hr-1). Several classes of silica (i.e., silica gels, fumed silicas, meoporous silicas) were evaluated as support, and SBA-16 was found to be the most promising. The nature of the SiO2 support wasmore » found to have a strong influence on both conversion and selectivity. Higher SiO2 catalyst surface areas lead to greater conversion due to increased Ag dispersion thus accelerating the initial ethanol dehydrogenation reaction. By independently varying Ag and ZrO2 loading, Ag was found to be the main component affecting ethanol conversion. Butadiene selectivity varied depending on the concentration of ZrO2 and acidic characteristics of the SiO2 support. A direct relationship between butadiene selectivity and concentration of Lewis acid sites was evidenced. Also, adding H2 to the feed had little effect on conversion while improving catalytic stability, however, selectivity to butadiene was decreased. Finally, catalyst regenerability was successfully demonstrated for several cycles.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dagle, Vanessa Lebarbier; Flake, Matthew D.; Lemmon, Teresa L.
A ternary Ag/ZrO2/SiO2 catalyst system was studied for the single-step conversion of ethanol to butadiene by varying the catalyst composition (Ag, Ir, or Pt metal component, Ag/ZrO2 loading, and choice of SiO2 support) and operating conditions (space velocity and feed gas composition). Exceptional catalytic performance was achieved over a 1%Ag/4%ZrO2/SiO2-SBA-16 catalyst leading to 99% conversion and 71% butadiene selectivity while operating under mild conditions (325ºC, 1 atm, 0.23 hr-1). Several classes of silica (i.e., silica gels, fumed silicas, meoporous silicas) were evaluated as support, and SBA-16 was found to be the most promising. The nature of the SiO2 support wasmore » found to have a strong influence on both conversion and selectivity. Higher SiO2 catalyst surface areas lead to greater conversion due to increased Ag dispersion thus accelerating the initial ethanol dehydrogenation reaction. By independently varying Ag and ZrO2 loading, Ag was found to be the main component affecting ethanol conversion. Butadiene selectivity varied depending on the concentration of ZrO2 and acidic characteristics of the SiO2 support. A direct relationship between butadiene selectivity and concentration of Lewis acid sites was evidenced. Also, adding H2 to the feed had little effect on conversion while improving catalytic stability, however, selectivity to butadiene was decreased. Finally, catalyst regenerability was successfully demonstrated for several cycles.« less
Ionic Liquids in Selective Oxidation: Catalysts and Solvents.
Dai, Chengna; Zhang, Jie; Huang, Chongpin; Lei, Zhigang
2017-05-24
Selective oxidation has an important role in environmental and green chemistry (e.g., oxidative desulfurization of fuels and oxidative removal of mercury) as well as chemicals and intermediates chemistry to obtain high-value-added special products (e.g., organic sulfoxides and sulfones, aldehydes, ketones, carboxylic acids, epoxides, esters, and lactones). Due to their unique physical properties such as the nonvolatility, thermal stability, nonexplosion, high polarity, and temperature-dependent miscibility with water, ionic liquids (ILs) have attracted considerable attention as reaction solvents and media for selective oxidations and are considered as green alternatives to volatile organic solvents. Moreover, for easy separation and recyclable utilization, IL catalysts have attracted unprecedented attention as "biphasic catalyst" or "immobilized catalyst" by immobilizing metal- or nonmetal-containing ILs onto mineral or polymer supports to combine the unique properties of ILs (chemical and thermal stability, capacity for extraction of polar substrates and reaction products) with the extended surface of the supports. This review highlights the most recent outcomes on ILs in several important typical oxidation reactions. The contents are arranged in the series of oxidation of sulfides, oxidation of alcohols, epoxidation of alkenes, Baeyer-Villiger oxidation reaction, oxidation of alkanes, and oxidation of other compounds step by step involving ILs as solvents, catalysts, reagents, or their combinations.
Lefort, I; Herreros, J M; Tsolakis, A
2014-02-18
The interactions between exhaust gas species and their effect (promotion or inhibition) on the light-off and activity of a diesel oxidation catalyst (DOC) for the removal of pollutants are studied, using actual engine exhaust gases from the combustion of diesel, alternative fuels (rapeseed methyl ester and gas-to-liquid fuel) and diesel/propane dual fuel combustion. The activity of the catalyst was recorded during a heating temperature ramp where carbon monoxide (CO) and hydrocarbon (HC) light-off curves were obtained. From the catalyst activity tests, it was found that the presence of species including CO, medium-heavy HC, alkenes, alkanes, and NOx and their concentration influence the catalyst ability to reduce CO and total HC emissions before release to the atmosphere. CO could inhibit itself and other species oxidation (e.g., light and medium-heavy hydrocarbons) while suffering from competitive adsorption with NO. Hydrocarbon species were also found to inhibit their own oxidation as well as CO through adsorption competition. On the other hand, NO2 was found to promote low temperature HC oxidation through its partial reduction, forming NO. The understanding of these exhaust species interactions within the DOC could aid the design of an efficient aftertreatment system for the removal of diesel exhaust pollutants.
Sheng, Xueru; Li, Ning; Li, Guangyi; Wang, Wentao; Wang, Aiqin; Cong, Yu; Wang, Xiaodong; Zhang, Tao
2017-03-09
For the first time, we demonstrated two integrated processes for the direct synthesis of dodecanol or 2,4,8-trimethylnonane (a jet fuel range C 12 -branched alkane) using methyl isobutyl ketone (MIBK) that can be derived from lignocellulose. The reactions were carried out in dual-bed continuous flow reactors. In the first bed, MIBK was selectively converted to a mixture of C 12 alcohol and ketone. Over the Pd-modified magnesium- aluminium hydrotalcite (Pd-MgAl-HT) catalyst, a high total carbon yield (73.0 %) of C 12 oxygenates can be achieved under mild conditions. In the second bed, the C 12 oxygenates generated in the first bed were hydrogenated to dodecanol over a Ru/C catalyst or hydrodeoxygenated to 2,4,8-trimethylnonane over a Cu/SiO 2 catalyst. The as-obtained dodecanol can be used as feedstock in the production of sodium dodecylsulfate (SDS) and sodium dodecyl benzene sulfonate (SDBS), which are widely used as surfactants or detergents. The asobtained 2,4,8-trimethylnonane can be blended into conventional jet fuel without hydroisomerization. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Yung, Matthew M.; Stanton, Alexander R.; Iisa, Kristiina; ...
2016-10-07
Metal-impregnated (Ni or Ga) ZSM-5 catalysts were studied for biomass pyrolysis vapor upgrading to produce hydrocarbons using three reactors constituting a 100 000x change in the amount of catalyst used in experiments. Catalysts were screened for pyrolysis vapor phase upgrading activity in two small-scale reactors: (i) a Pyroprobe with a 10 mg catalyst in a fixed bed and (ii) a fixed-bed reactor with 500 mg of catalyst. The best performing catalysts were then validated with a larger scale fluidized-bed reactor (using ~1 kg of catalyst) that produced measurable quantities of bio-oil for analysis and evaluation of mass balances. Despite somemore » inherent differences across the reactor systems (such as residence time, reactor type, analytical techniques, mode of catalyst and biomass feed) there was good agreement of reaction results for production of aromatic hydrocarbons, light gases, and coke deposition. Relative to ZSM-5, Ni or Ga addition to ZSM-5 increased production of fully deoxygenated aromatic hydrocarbons and light gases. In the fluidized bed reactor, Ga/ZSM-5 slightly enhanced carbon efficiency to condensed oil, which includes oxygenates in addition to aromatic hydrocarbons, and reduced oil oxygen content compared to ZSM-5. Ni/ZSM-5, while giving the highest yield of fully deoxygenated aromatic hydrocarbons, gave lower overall carbon efficiency to oil but with the lowest oxygen content. Reaction product analysis coupled with fresh and spent catalyst characterization indicated that the improved performance of Ni/ZSM-5 is related to decreasing deactivation by coking, which keeps the active acid sites accessible for the deoxygenation and aromatization reactions that produce fully deoxygenated aromatic hydrocarbons. The addition of Ga enhances the dehydrogenation activity of the catalyst, which leads to enhanced olefin formation and higher fully deoxygenated aromatic hydrocarbon yields compared to unmodified ZSM-5. Catalyst characterization by ammonia temperature programmed desorption, surface area measurements, and postreaction temperature-programmed oxidation (TPO) also showed that the metal-modified zeolites retained a greater percentage of their initial acidity and surface area, which was consistent between the reactor scales. These results demonstrate that the trends observed with smaller (milligram to gram) catalyst reactors are applicable to larger, more industrially relevant (kg) scales to help guide catalyst research toward application.« less
Porous Materials for Hydrolytic Dehydrogenation of Ammonia Borane
Umegaki, Tetsuo; Xu, Qiang; Kojima, Yoshiyuki
2015-01-01
Hydrogen storage is still one of the most significant issues hindering the development of a “hydrogen energy economy”. Ammonia borane is notable for its high hydrogen densities. For the material, one of the main challenges is to release efficiently the maximum amount of the stored hydrogen. Hydrolysis reaction is a promising process by which hydrogen can be easily generated from this compound. High purity hydrogen from this compound can be evolved in the presence of solid acid or metal based catalyst. The reaction performance depends on the morphology and/or structure of these materials. In this review, we survey the research on nanostructured materials, especially porous materials for hydrogen generation from hydrolysis of ammonia borane. PMID:28793453
Zhang, Xin; Liu, Yongfeng; Wang, Ke; Li, You; Gao, Mingxia; Pan, Hongge
2015-12-21
A nanocrystalline CeO2@C-containing NaAlH4 composite is successfully synthesized in situ by hydrogenating a NaH-Al mixture doped with CeO2@C. Compared with NaAlH4 , the as-prepared CeO2@C-containing NaAlH4 composite, with a minor amount of excess Al, exhibits significantly improved hydrogen storage properties. The dehydrogenation onset temperature of the hydrogenated [NaH-Al-7 wt % CeO2@C]-0.04Al sample is 77 °C lower than that of the pristine sample because of a reduced kinetic barrier. More importantly, the dehydrogenated sample absorbs ∼4.7 wt % hydrogen within 35 min at 100°C and 10 MPa of hydrogen. Compositional and structural analyses reveal that CeO2 is converted to CeH2 during ball milling and that the newly formed CeH2 works with the excess of Al to synergistically improve the hydrogen storage properties of NaAlH4. Our findings will aid in the rational design of novel catalyst-doped complex hydride systems with low operating temperatures, fast kinetics, and long-term cyclability. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yan; Wei, Zhehao; Gao, Feng
2015-05-01
In this work, CeO2 nanocubes with controlled particle size and dominating (100) facets are synthesized as supports for VOx catalysts. Combined TEM, SEM, XRD, and Raman study reveals that the oxygen vacancy density of CeO2 supports can be tuned by tailoring the particle sizes without altering the dominating facets, where smaller particle sizes result in larger oxygen vacancy densities. At the same vanadium coverage, the VOx catalysts supported on small-sized CeO2 supports with higher oxygen defect densities exhibit promoted redox property and lower activation energy for methoxyl group decomposition, as evidenced by H2-TPR and methanol TPD study. These results furthermore » confirm that the presence of oxygen vacancies plays an important role in promoting the activity of VOx species in methanol oxidation. We gratefully acknowledge financial support from the U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. Part of this work was conducted in the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by DOE’s Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is a multiprogram national laboratory operated for the DOE by Battelle.« less
NASA Astrophysics Data System (ADS)
Tveritinova, E. A.; Zhitnev, Yu. N.; Chernyak, S. A.; Arkhipova, E. A.; Savilov, S. V.; Lunin, V. V.
2017-03-01
Carbon nanomaterials with the structure of graphene and different compositions of the surface groups are used as catalysts for the conversion of C2-C4 aliphatic alcohols. The conversions of ethanol, propanol- 1, propanol-2, butanol-1, butanol-2, and tert-butanol on carbon nanotubes, nanoflakes, and nanoflakes doped with nitrogen are investigated. Oxidized and nonoxidized multiwalled carbon nanotubes, nanoflakes, and nanoflakes doped with nitrogen are synthesized. X-ray diffraction analysis, X-ray photoelectron spectroscopy, scanning and transmission electronic microscopies, Brunauer-Emmett-Teller method, derivatographic analyses, and the pulsed microcatalytic method are used to characterize comprehensively the prepared catalysts. It was established that all of the investigated carbon nanomaterials (with the exception of nondoped carbon nanoflakes) are bifunctional catalysts for the conversion of aliphatic alcohols, and promote dehydration reactions with the formation of olefins and dehydrogenation reactions with the formation of aldehydes or ketones. Nanoflakes doped with nitrogen are inert with respect to secondary alcohols and tert-butanol. The role of oxygen-containing and nitrogen-containing surface groups, and of the geometrical structure of the carbon matrix of graphene nanocarbon materials in the catalytic conversion of aliphatic alcohols, is revealed. Characteristics of the conversion of aliphatic alcohols that are associated with their structure are identified.
Reversible catalytic dehydrogenation of alcohols for energy storage
Bonitatibus, Peter J.; Chakraborty, Sumit; Doherty, Mark D.; Siclovan, Oltea; Jones, William D.; Soloveichik, Grigorii L.
2015-01-01
Reversibility of a dehydrogenation/hydrogenation catalytic reaction has been an elusive target for homogeneous catalysis. In this report, reversible acceptorless dehydrogenation of secondary alcohols and diols on iron pincer complexes and reversible oxidative dehydrogenation of primary alcohols/reduction of aldehydes with separate transfer of protons and electrons on iridium complexes are shown. This reactivity suggests a strategy for the development of reversible fuel cell electrocatalysts for partial oxidation (dehydrogenation) of hydroxyl-containing fuels. PMID:25588879
Reversible catalytic dehydrogenation of alcohols for energy storage
Bonitatibus, Jr., Peter J.; Chakraborty, Sumit; Doherty, Mark D.; ...
2015-01-14
Reversibility of a dehydrogenation/hydrogenation catalytic reaction has been an elusive target for homogeneous catalysis. In this paper, reversible acceptorless dehydrogenation of secondary alcohols and diols on iron pincer complexes and reversible oxidative dehydrogenation of primary alcohols/reduction of aldehydes with separate transfer of protons and electrons on iridium complexes are shown. Finally, this reactivity suggests a strategy for the development of reversible fuel cell electrocatalysts for partial oxidation (dehydrogenation) of hydroxyl-containing fuels.
NASA Astrophysics Data System (ADS)
Xie, Xiubo; Chen, Ming; Liu, Peng; Shang, Jiaxiang; Liu, Tong
2017-12-01
Nickel sulfides decorated reduced graphene oxide (rGO) has been produced by co-reducing Ni2+ and graphene oxide (GO), and is subsequently ball milled with Mg nanoparticles (NPs) produced by hydrogen plasma metal reaction (HPMR). The nickel sulfides of about 800 nm completely in situ change to MgS, Mg2Ni and Ni multiple catalysts after first hydrogenation/dehydrogenation process at 673 K. The Mg-5wt%NiS/rGO nanocomposite shows the highest hydrogen desorption kinetics and capacity properties, and the catalytic effect order of the additives is NiS/rGO, NiS and rGO. At 573 K, the Mg-NiS/rGO nanocomposite can quickly desorb 3.7 wt% H2 in 10 min and 4.5 wt% H2 in 60 min. The apparent hydrogen absorption and desorption activation energies of the Mg-5wt%NiS/rGO nanocomposite are decreased to 44.47 and 63.02 kJ mol-1, smaller than those of the Mg-5wt%rGO and Mg-5wt%NiS samples. The best hydrogen desorption properties of the Mg-5wt%NiS/rGO nanocomposite can be explained by the synergistic catalytic effects of the highly dispersed MgS, Mg2Ni and Ni catalysts on the rGO sheets, and the more nucleation sites between the catalysts, rGO sheets and Mg matrix.
Sheng, Tian; Lin, Xiao; Chen, Zhao-Yang; Hu, P; Sun, Shi-Gang; Chu, You-Qun; Ma, Chun-An; Lin, Wen-Feng
2015-10-14
In exploration of low-cost electrocatalysts for direct methanol fuel cells (DMFCs), Pt modified tungsten carbide (WC) materials are found to be great potential candidates for decreasing Pt usage whilst exhibiting satisfactory reactivity. In this work, the mechanisms, onset potentials and activity for electrooxidation of methanol were studied on a series of Pt-modified WC catalysts where the bare W-terminated WC(0001) substrate was employed. In the surface energy calculations of a series of Pt-modified WC models, we found that the feasible structures are mono- and bi-layer Pt-modified WCs. The tri-layer Pt-modified WC model is not thermodynamically stable where the top layer Pt atoms tend to accumulate and form particles or clusters rather than being dispersed as a layer. We further calculated the mechanisms of methanol oxidation on the feasible models via methanol dehydrogenation to CO involving C-H and O-H bonds dissociating subsequently, and further CO oxidation with the C-O bond association. The onset potentials for the oxidation reactions over the Pt-modified WC catalysts were determined thermodynamically by water dissociation to surface OH* species. The activities of these Pt-modified WC catalysts were estimated from the calculated kinetic data. It has been found that the bi-layer Pt-modified WC catalysts may provide a good reactivity and an onset oxidation potential comparable to pure Pt and serve as promising electrocatalysts for DMFCs with a significant decrease in Pt usage.
Yan, Jun-Min; Li, Si-Jia; Yi, Sha-Sha; Wulan, Ba-Ri; Zheng, Wei-Tao; Jiang, Qing
2018-03-01
Hydrogen is widely considered to be a sustainable and clean energy alternative to the use of fossil fuels in the future. Its high hydrogen content, nontoxicity, and liquid state at room temperature make formic acid a promising hydrogen carrier. Designing highly efficient and low-cost heterogeneous catalysts is a major challenge for realizing the practical application of formic acid in the fuel-cell-based hydrogen economy. Herein, a simple but effective and rapid strategy is proposed, which demonstrates the synthesis of NiPd bimetallic ultrafine particles (UPs) supported on NH 2 -functionalized and N-doped reduced graphene oxide (NH 2 -N-rGO) at room temperature. The introduction of the NH 2 N group to rGO is the key reason for the formation of the ultrafine and well-dispersed Ni 0.4 Pd 0.6 UPs (1.8 nm) with relatively large surface area and more active sites. Surprisingly, the as-prepared low-cost NiPd/NH 2 -N-rGO dsiplays excellent hydrophilicity, 100% H 2 selectivity, 100% conversion, and remarkable catalytic activity (up to 954.3 mol H 2 (mol catalyst) -1 h -1 ) for FA decomposition at room temperature even with no additive, which is much higher than that of the best catalysts so far reported. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Randy Cortright
2006-06-30
This project involved the investigation and development of catalysts and reactor systems that will be cost-effective to generate hydrogen from potential sorbitol streams. The intention was to identify the required catalysts and reactors systems as well as the design, construction, and operation of a 300 grams per hour hydrogen system. Virent was able to accomplish this objective with a system that generates 2.2 kgs an hour of gas containing both hydrogen and alkanes that relied directly on the work performed under this grant. This system, funded in part by the local Madison utility, Madison, Gas & Electric (MGE), is describedmore » further in the report. The design and development of this system should provide the necessary scale-up information for the generation of hydrogen from corn-derived sorbitol.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dagle, Vanessa Lebarbier; Flake, Matthew D.; Lemmon, Teresa L.
A ternary Ag/ZrO 2/SiO 2 catalyst system was studied for single-step conversion of ethanol to butadiene by varying the catalyst composition (Ag, Ir, or Pt metal component, Ag/ZrO 2 loading, and choice of SiO 2 support) and operating conditions (space velocity and feed gas composition). Exceptional catalytic performance was achieved over a 1%Ag/4%ZrO 2/SiO 2-SBA-16 catalyst leading to 99% conversion and 71% butadiene selectivity while operating under mild conditions (325°C, 1 atm, and 0.23 h –1). Several classes of silica—silica gels, fumed silicas, mesoporous silicas)—were evaluated as catalyst supports, and SBA-16 was found to be the most promising choice. Themore » SiO 2 support was found to significantly influence both conversion and selectivity. A higher SiO 2 catalyst surface area facilitates increased Ag dispersion which leads to greater conversion due to the accelerated initial ethanol dehydrogenation reaction step. By independently varying Ag and ZrO 2 loading, Ag was found to be the main component that affects ethanol conversion. ZrO 2 loading and thus Lewis acid sites concentration was found to have little impact on the ethanol conversion. Butadiene selectivity depends on the concentration of Lewis acid site, which in turn differs depending on the choice of SiO 2 support material. We observed a direct relationship between butadiene selectivity and concentration of Lewis acid sites. Butadiene selectivity decreases as the concentration of Lewis acid sites increases, which corresponds to an increase in ethanol dehydration to ethylene and diethyl ether. Additionally, adding H 2 to the feed had little effect on conversion while improving catalytic stability; however, selectivity to butadiene decreased. Lastly, catalyst regenerability was successfully demonstrated for several cycles.« less
Dagle, Vanessa Lebarbier; Flake, Matthew D.; Lemmon, Teresa L.; ...
2018-05-19
A ternary Ag/ZrO 2/SiO 2 catalyst system was studied for single-step conversion of ethanol to butadiene by varying the catalyst composition (Ag, Ir, or Pt metal component, Ag/ZrO 2 loading, and choice of SiO 2 support) and operating conditions (space velocity and feed gas composition). Exceptional catalytic performance was achieved over a 1%Ag/4%ZrO 2/SiO 2-SBA-16 catalyst leading to 99% conversion and 71% butadiene selectivity while operating under mild conditions (325°C, 1 atm, and 0.23 h –1). Several classes of silica—silica gels, fumed silicas, mesoporous silicas)—were evaluated as catalyst supports, and SBA-16 was found to be the most promising choice. Themore » SiO 2 support was found to significantly influence both conversion and selectivity. A higher SiO 2 catalyst surface area facilitates increased Ag dispersion which leads to greater conversion due to the accelerated initial ethanol dehydrogenation reaction step. By independently varying Ag and ZrO 2 loading, Ag was found to be the main component that affects ethanol conversion. ZrO 2 loading and thus Lewis acid sites concentration was found to have little impact on the ethanol conversion. Butadiene selectivity depends on the concentration of Lewis acid site, which in turn differs depending on the choice of SiO 2 support material. We observed a direct relationship between butadiene selectivity and concentration of Lewis acid sites. Butadiene selectivity decreases as the concentration of Lewis acid sites increases, which corresponds to an increase in ethanol dehydration to ethylene and diethyl ether. Additionally, adding H 2 to the feed had little effect on conversion while improving catalytic stability; however, selectivity to butadiene decreased. Lastly, catalyst regenerability was successfully demonstrated for several cycles.« less
Thomas, J M; Raja, R; Sankar, G; Bell, R G
2001-03-01
Framework-substituted, molecular-sieve, aluminophosphate, microporous solids are the centerpieces of a new approach to the aerobic oxyfunctionalization of saturated hydrocarbons. The sieves, and the few percent of the Al(III) sites within them that are replaced by catalytically active, transition-metal ions in high oxidation states (Co(III), Mn(III), Fe(III)), are designed so as to allow free access of oxygen in to and out of the interior of these high-area solids. Certain metal-substituted, molecular sieves permit only end-on approach of linear alkanes to the active centers, thereby favoring enhanced reactivity of the terminal methyl groups. By optimizing cage dimension, with respect to that of the hydrocarbon reactant, as well as adjusting the average separation of active centers within a cage, and by choosing the sieve with the appropriate pore aperture, highly selective conversions such as n-hexane to hexanoic acid or adipic acid, and cyclohexane to cyclohexanol, cyclohexanone, or adipic acid, may be effected at low temperature, heterogeneously in air.
Catalytic conversion of light alkanes, Phase 3. Topical report, January 1990--December 1992
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The mission of this work is to devise a new catalyst which can be used in the first simple, economic process to convert the light alkanes in natural gas to an alcohol-rich oxygenated product which can either be used as an environmentally friendly, high-performance liquid fuel, or a precursor to a liquid hydrocarbon transportation fuel. The authors have entered the proof-of-concept stage for converting isobutane to tert butyl alcohol in a practical process and are preparing to enter proof-of-concept of a propane to isopropyl alcohol process in the near future. Methane and ethane are more refractory and thus more difficultmore » to oxidize than the C{sub 3} and C{sub 4} hydrocarbons. Nonetheless, advances made in this area indicate that further research progress could achieve the goal of their direct conversion to alcohols. Progress in Phase 3 catalytic vapor phase methane and ethane oxidation over metals in regular oxidic lattices are the subject of this topical report.« less
Modifying the catalytic and adsorption properties of metals and oxides
NASA Astrophysics Data System (ADS)
Yagodovskii, V. D.
2015-11-01
A new approach to interpreting the effect of promoters (inhibitors) of nonmetals and metals added to a host metal (catalyst) is considered. Theoretical calculations are based on a model of an actual two-dimensional electron gas and adsorbate particles. An equation is derived for the isotherm of induced adsorption on metals and semiconductors with respect to small fillings of θ ~ 0.1-0.15. The applicability of this equation is verified experimentally for metals (Ag, Pd, Cu, Fe, and Ni), graphitized ash, and semiconductor oxides Ta2O5, ZnO, and Ni. The applicability of the theoretical model of promotion is verified by the hydrogenation reaction of CO on ultradispersed nickel powder. The use of plasmachemical surface treatments of metals and oxides, accompanied by an increase in activity and variation in selectivity, are investigated based on the dehydrocyclization reactions of n-hexane and the dehydrogenation and dehydration of alcohols. It is established that such treatments for metals (Pt, Cu, Ni, and Co) raise their activity due to the growth of the number of active centers upon an increase in the activation energy. Applying XPES and XRD methods to metallic catalysts, it is shown that the rise in activity is associated with a change in their surface states (variation in the structural characteristics of metal particles and localization of certain forms of carbon in catalytically active centers). It is shown that plasmachemical treatments also alter their surface composition, surface activity, and raise their activity when used with complex phosphate oxides of the NASICON type. It is shown by the example of conversion of butanol-2 that abrupt variations in selectivity (prevalence of dehydration over dehydrogenation and vice versa) occur, depending on the type of plasma. It is concluded that plasmachemical treatments of metals and ZnO and NiO alter the isosteric heats and entropies of adsorption of isopropanol.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Zhanyong; Peters, Aaron W.; Platero-Prats, Ana E.
Few-atom cobalt-oxide clusters, when dispersed on a Zr-based metal–organic framework (MOF) NU-1000, have previously been shown to be active for the oxidative dehydrogenation (ODH) of propane at low temperatures (< 230 °C), affording a selective and stable propene production catalyst. In our current work, a series of promoter ions with varying Lewis acidity, including Ni(II), Zn(II), Al(III), Ti(IV) and Mo(VI), are anchored as metal-oxide,hydroxide clusters to NU-1000 via SIM (solvothermal deposition within MOFs–specifically the nodes) followed by incorporation of Co(II) ions via vapor-phase AIM (atomic layer deposition (ALD) in MOFs). This process yields a series of NU-1000-supported bimetallic-oxo,hydroxo,aqua clusters. Usingmore » difference envelope density (DED) analyses, the spatial locations of the promoter ions and catalytic cobalt ions are determined. For all samples the SIM-anchored promoter ions are sited between pairs of Zr 6 nodes along the MOF c-axis (channel-aligned axis) whereas the location of the AIM-anchored cobalt ions varies depending on the identity of promoter metal ion. With Ni(II)-, Al(III)-, or Ti(IV)-containing clusters as promoters, the oxy-cobalt species are sited atop the promoter sites; with Mo(VI) they grow exclusively on the MOF nodes sites (hexa-Zr(IV)- oxo,hydroxo,aqua units); with Zn(II) they grow on both the node and promoter. The NU-1000- supported bimetallic-oxide clusters are active for propane ODH after thermal activation under O 2 to open a cobalt coordination site and to oxidize Co(II) to Co(III), as evidenced by operando Xray absorption spectroscopy at the Co K-edge. The cobalt component is exclusively responsible for the observed catalysis. In accord with the decreasing Lewis acidity of the promoter ion, catalytic activity increases in the order: Mo(VI)« less
Li, Zhanyong; Peters, Aaron W.; Platero-Prats, Ana E.; ...
2017-10-04
Few-atom cobalt-oxide clusters, when dispersed on a Zr-based metal–organic framework (MOF) NU-1000, have previously been shown to be active for the oxidative dehydrogenation (ODH) of propane at low temperatures (< 230 °C), affording a selective and stable propene production catalyst. In our current work, a series of promoter ions with varying Lewis acidity, including Ni(II), Zn(II), Al(III), Ti(IV) and Mo(VI), are anchored as metal-oxide,hydroxide clusters to NU-1000 via SIM (solvothermal deposition within MOFs–specifically the nodes) followed by incorporation of Co(II) ions via vapor-phase AIM (atomic layer deposition (ALD) in MOFs). This process yields a series of NU-1000-supported bimetallic-oxo,hydroxo,aqua clusters. Usingmore » difference envelope density (DED) analyses, the spatial locations of the promoter ions and catalytic cobalt ions are determined. For all samples the SIM-anchored promoter ions are sited between pairs of Zr 6 nodes along the MOF c-axis (channel-aligned axis) whereas the location of the AIM-anchored cobalt ions varies depending on the identity of promoter metal ion. With Ni(II)-, Al(III)-, or Ti(IV)-containing clusters as promoters, the oxy-cobalt species are sited atop the promoter sites; with Mo(VI) they grow exclusively on the MOF nodes sites (hexa-Zr(IV)- oxo,hydroxo,aqua units); with Zn(II) they grow on both the node and promoter. The NU-1000- supported bimetallic-oxide clusters are active for propane ODH after thermal activation under O 2 to open a cobalt coordination site and to oxidize Co(II) to Co(III), as evidenced by operando Xray absorption spectroscopy at the Co K-edge. The cobalt component is exclusively responsible for the observed catalysis. In accord with the decreasing Lewis acidity of the promoter ion, catalytic activity increases in the order: Mo(VI)« less
Synthesis of high density aviation fuel with cyclopentanol derived from lignocellulose
Sheng, Xueru; Li, Ning; Li, Guangyi; Wang, Wentao; Yang, Jinfan; Cong, Yu; Wang, Aiqin; Wang, Xiaodong; Zhang, Tao
2015-01-01
For the first time, renewable high density aviation fuels were synthesized at high overall yield (95.6%) by the Guerbet reaction of cyclopentanol which can be derived from lignocellulose, followed by the hydrodeoxygenation (HDO). The solvent-free Guerbet reaction of cyclopentanol was carried out under the co-catalysis of solid bases and Raney metals. Among the investigated catalyst systems, the combinations of magnesium-aluminium hydrotalcite (MgAl-HT) and Raney Ni (or Raney Co) exhibited the best performances. Over them, high carbon yield (96.7%) of C10 and C15 oxygenates was achieved. The Guerbet reaction products were further hydrodeoxygenated to bi(cyclopentane) and tri(cyclopentane) over a series of Ni catalysts. These alkanes have high densities (0.86 g mL−1 and 0.91 g mL−1) and can be used as high density aviation fuels or additives to bio-jet fuel. Among the investigated HDO catalysts, the 35 wt.% Ni-SiO2-DP prepared by deposition-precipitation method exhibited the highest activity. PMID:25826744
Novel Co- or Ni-Mn binary oxide catalysts with hydroxyl groups for NH3-SCR of NOx at low temperature
NASA Astrophysics Data System (ADS)
Gao, Fengyu; Tang, Xiaolong; Yi, Honghong; Zhao, Shunzheng; Wang, Jiangen; Shi, Yiran; Meng, Xiaomi
2018-06-01
Novel hydroxyl-containing Me-Mn binary oxides (Me = Co, Ni) were prepared for the selective catalytic reduction of NOx with NH3 by a combined complexation-esterification method. The binary oxides of Co-MnOx and Ni-MnOx with mixed crystal phases of Mn3O4 and Co3O4, Mn2O3 and NiMnO3 were obtained at 550 °C. SCR activity decreased in the order of Mn3O4-Co3O4-OH > Mn2O3-NiMnO3-OH > Mn2O3-OH > Mn3O4-OH, benefiting from the high concentration of chemisorbed oxygen and effective electron transformation of cations. Mn2O3-containing catalysts had better selectivity to N2 than those containing Mn3O4. Higher selectivity to N2O over Mn3O4-containing catalysts was attributed to the depth dehydrogenation of coordinated NH3 by the active oxygen species with lower Mnsbnd O band energy. The typical Eley-Rideal mechanism over Mn3O4-OH and Mn3O4-Co3O4-OH, and the additional formation pathway of NH4NO3 species over Mn2O3-OH and Mn2O3-NiMnO3-OH catalysts were proposed via the in-situ DRIFTS experiments. Although the Co and Ni elements had a good role in delaying the poisoning of SO2, these catalysts were eventually sulfated by SO2 over the postponement, which might due to the metal sulfate and ammonia hydrogensulfite species.
Conversion of KCl into KBH4 by Mechano-Chemical Reaction and its Catalytic Decomposition
NASA Astrophysics Data System (ADS)
Bilen, Murat; Gürü, Metin; Çakanyildirim, Çetin
2017-07-01
Production of KBH4, in the presence of KCl, B2O3 and MgH2 by means of a mechanical reaction and a dehydrogenation kinetic, constitute the main parts of this study. Operating time and reactant ratio are considered as two parameters for the mechanical reaction to obtain the maximum yield. The production process was carried out in a ball milling reactor, and the product residue was purified with ethylene diamine (EDA) and subsequently characterized by Fourier Transform Infrared Spectroscopy (FT-IR) and x-ray Diffraction (XRD) analyses. Optimum time for mechano-chemical treatment and reactant ratio (MgH2/KCl) were obtained as 1000 min and 1.0, respectively. Synthesized and commercial KBH4 were compared by hydrolysis tests in the presence of Co1-xNix/Al2O3 heterogeneous catalyst. Hydrogen generation rates, activation energy and order of the KBH4 decomposition reaction were obtained as 1578 {mL}_{{{{H}}2 }} \\min^{ - 1} {g}_{{catalyst}}^{ - 1}, 39.2 kJ mol-1 and zero order, respectively.
Crampton, Andrew S.; Rötzer, Marian D.; Ridge, Claron J.; ...
2016-01-28
The sensitivity, or insensitivity, of catalysed reactions to catalyst structure is a commonly employed fundamental concept. Here we report on the nature of nano-catalysed ethylene hydrogenation, investigated through experiments on size-selected Pt n (n=8-15) clusters soft-landed on magnesia and first-principles simulations, yielding benchmark information about the validity of structure sensitivity/insensitivity at the bottom of the catalyst size range. Both ethylene-hydrogenation-to-ethane and the parallel hydrogenation–dehydrogenation ethylidyne-producing route are considered, uncovering that at the <1 nm size-scale the reaction exhibits characteristics consistent with structure sensitivity, in contrast to structure insensitivity found for larger particles. The onset of catalysed hydrogenation occurs for Ptmore » n (n≥10) clusters at T>150 K, with maximum room temperature reactivity observed for Pt 13. Structure insensitivity, inherent for specific cluster sizes, is induced in the more active Pt 13 by a temperature increase up to 400 K leading to ethylidyne formation. As a result, control of sub-nanometre particle size may be used for tuning catalysed hydrogenation activity and selectivity.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Wei -Zhen; Nie, Lei; Cheng, Yingwen
With the capability of MgAl 2O 4 spinel {111} nano-facets in stabilizing small Rh, Ir and Pt particles, bimetallic Ir-Pt catalysts on the same support were investigated in this paper, aiming at further lowering the catalyst cost by substituting expensive Pt with cheaper Ir in the bulk. Small Pt-Ir nano-alloy particles (< 2 nm) were successfully stabilized on the spinel {111} nano-facets as expected. Interestingly, methanol oxidative dehydrogenation (ODH) rate on the surface Pt atoms increases with oxidizing aging but decreases upon reducing treatment, where Ir is almost inactive under the same reaction conditions. Up to three times enhancement inmore » Pt exposure was achieved when the sample was oxidized at 800 °C in air for 1 week and subsequently reduced by H 2 for 2 h, demonstrating successful surface enrichment of Pt on Pt-Ir nano-alloy particles. Finally, a dynamic stabilization mechanism involving wetting/nucleation seems to be responsible for the evolution of surface compositions upon cyclic oxidizing and reducing thermal treatments.« less
Crampton, Andrew S.; Rötzer, Marian D.; Ridge, Claron J.; Schweinberger, Florian F.; Heiz, Ueli; Yoon, Bokwon; Landman, Uzi
2016-01-01
The sensitivity, or insensitivity, of catalysed reactions to catalyst structure is a commonly employed fundamental concept. Here we report on the nature of nano-catalysed ethylene hydrogenation, investigated through experiments on size-selected Ptn (n=8–15) clusters soft-landed on magnesia and first-principles simulations, yielding benchmark information about the validity of structure sensitivity/insensitivity at the bottom of the catalyst size range. Both ethylene-hydrogenation-to-ethane and the parallel hydrogenation–dehydrogenation ethylidyne-producing route are considered, uncovering that at the <1 nm size-scale the reaction exhibits characteristics consistent with structure sensitivity, in contrast to structure insensitivity found for larger particles. The onset of catalysed hydrogenation occurs for Ptn (n≥10) clusters at T>150 K, with maximum room temperature reactivity observed for Pt13. Structure insensitivity, inherent for specific cluster sizes, is induced in the more active Pt13 by a temperature increase up to 400 K leading to ethylidyne formation. Control of sub-nanometre particle size may be used for tuning catalysed hydrogenation activity and selectivity. PMID:26817713
NASA Astrophysics Data System (ADS)
Crampton, Andrew S.; Rötzer, Marian D.; Ridge, Claron J.; Schweinberger, Florian F.; Heiz, Ueli; Yoon, Bokwon; Landman, Uzi
2016-01-01
The sensitivity, or insensitivity, of catalysed reactions to catalyst structure is a commonly employed fundamental concept. Here we report on the nature of nano-catalysed ethylene hydrogenation, investigated through experiments on size-selected Ptn (n=8-15) clusters soft-landed on magnesia and first-principles simulations, yielding benchmark information about the validity of structure sensitivity/insensitivity at the bottom of the catalyst size range. Both ethylene-hydrogenation-to-ethane and the parallel hydrogenation-dehydrogenation ethylidyne-producing route are considered, uncovering that at the <1 nm size-scale the reaction exhibits characteristics consistent with structure sensitivity, in contrast to structure insensitivity found for larger particles. The onset of catalysed hydrogenation occurs for Ptn (n>=10) clusters at T>150 K, with maximum room temperature reactivity observed for Pt13. Structure insensitivity, inherent for specific cluster sizes, is induced in the more active Pt13 by a temperature increase up to 400 K leading to ethylidyne formation. Control of sub-nanometre particle size may be used for tuning catalysed hydrogenation activity and selectivity.
Li, Wei -Zhen; Nie, Lei; Cheng, Yingwen; ...
2017-01-13
With the capability of MgAl 2O 4 spinel {111} nano-facets in stabilizing small Rh, Ir and Pt particles, bimetallic Ir-Pt catalysts on the same support were investigated in this paper, aiming at further lowering the catalyst cost by substituting expensive Pt with cheaper Ir in the bulk. Small Pt-Ir nano-alloy particles (< 2 nm) were successfully stabilized on the spinel {111} nano-facets as expected. Interestingly, methanol oxidative dehydrogenation (ODH) rate on the surface Pt atoms increases with oxidizing aging but decreases upon reducing treatment, where Ir is almost inactive under the same reaction conditions. Up to three times enhancement inmore » Pt exposure was achieved when the sample was oxidized at 800 °C in air for 1 week and subsequently reduced by H 2 for 2 h, demonstrating successful surface enrichment of Pt on Pt-Ir nano-alloy particles. Finally, a dynamic stabilization mechanism involving wetting/nucleation seems to be responsible for the evolution of surface compositions upon cyclic oxidizing and reducing thermal treatments.« less
Synthesis and Stabilization of Supported Metal Catalysts by Atomic Layer Deposition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Junling; Elam, Jeffrey W.; Stair, Peter C.
2013-03-12
Supported metal nanoparticles are among the most important cata-lysts for many practical reactions, including petroleum refining, automobile exhaust treatment, and Fischer–Tropsch synthesis. The catalytic performance strongly depends on the size, composition, and structure of the metal nanoparticles, as well as the underlying support. Scientists have used conventional synthesis methods including impregnation, ion exchange, and deposition–precipitation to control and tune these factors, to establish structure–performance relationships, and to develop better catalysts. Meanwhile, chemists have improved the stability of metal nanoparticles against sintering by the application of protective layers, such as polymers and oxides that encapsulate the metal particle. This often leadsmore » to decreased catalytic activity due to a lack of precise control over the thickness of the protective layer. A promising method of catalyst synthesis is atomic layer deposition (ALD). ALD is a variation on chemical vapor deposition in which metals, oxides, and other materials are deposited on surfaces by a sequence of self-limiting reactions. The self-limiting character of these reactions makes it possible to achieve uniform deposits on high-surface-area porous solids. Therefore, design and synthesis of advanced catalysts on the nanoscale becomes possible through precise control over the structure and composition of the underlying support, the catalytic active sites, and the protective layer. In this Account, we describe our advances in the synthesis and stabilization of supported metal catalysts by ALD. After a short introduction to the technique of ALD, we show several strategies for metal catalyst synthesis by ALD that take advantage of its self-limiting feature. Monometallic and bimetallic catalysts with precise control over the metal particle size, composition, and structure were achieved by combining ALD sequences, surface treatments, and deposition temperature control. Next, we describe ALD oxide overcoats applied with atomically precise thickness control that stabilize metal catalysts while preserving their catalytic function. We also discuss strategies for generation and control over the porosity of the overcoats that allow the embedded metal particles to remain accessible by reactants, and the details for ALD alumina overcoats on metal catalysts. Moreover, using methanol decomposition and oxidative dehydrogenation of ethane as probe reactions, we demonstrate that selectively blocking low coordination metal sites by oxide overcoats can provide another strategy to enhance both the durability and selectivity of metal catalysts.« less
Synthesis of Acetone-Derived C6 , C9 , and C12 Carbon Scaffolds for Chemical and Fuel Applications.
Moore, Cameron M; Jenkins, Rhodri W; Janicke, Michael T; Kubic, William L; Polikarpov, Evgueni; Semelsberger, Troy A; Sutton, Andrew D
2016-12-20
A simple, inexpensive catalyst system (Amberlyst 15 and Ni/SiO 2 -Al 2 O 3 ) is described for the upgrading of acetone to a range of chemicals and potential fuels. Stepwise hydrodeoxygenation of the produced ketones can yield branched alcohols, alkenes, and alkanes. An analysis of these products is provided, which demonstrates that this approach can provide a product profile of valuable bioproducts and potential biofuels. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Tetraalykylammonium polyoxoanionic oxidation catalysts
Ellis, Paul E.; Lyons, James E.; Myers, Jr., Harry K.; Shaikh, Shahid N.
1998-01-01
Alkanes are catalytically oxidized in air or oxygen using iron-substituted polyoxoanions (POAs) of the formula: H.sub.e-z ›(n-C.sub.4 H.sub.9).sub.4 N!.sub.z (XM.sub.11 M'O.sub.39).sup.-e The M' (e.g., iron(III)/iron(II)) reduction potential of the POAs is affected by selection of the central atom X and the framework metal M, and by the number of tetrabutyl-ammonium groups. Decreased Fe(III)/Fe(II) reduction potential has been found to correlate to increased oxidation activity.
Tetraalklylammonium polyoxoanionic oxidation catalysts
Ellis, P.E.; Lyons, J.E.; Myers, H.K. Jr.; Shaikh, S.N.
1998-10-06
Alkanes are catalytically oxidized in air or oxygen using iron-substituted polyoxoanions (POAs) of the formula: H{sub e{minus}z}[(n-C{sub 4}H{sub 9}){sub 4}N]{sub z}(XM{sub 11}M{prime}O{sub 39}){sup {minus}e}. The M{prime} (e.g., iron(III)/iron(II)) reduction potential of the POAs is affected by selection of the central atom X and the framework metal M, and by the number of tetrabutyl-ammonium groups. Decreased Fe(III)/Fe(II) reduction potential has been found to correlate to increased oxidation activity.
Dehydrogenation of benzene on Pt(111) surface
NASA Astrophysics Data System (ADS)
Gao, W.; Zheng, W. T.; Jiang, Q.
2008-10-01
The dehydrogenation of benzene on Pt(111) surface is studied by ab initio density functional theory. The minimum energy pathways for benzene dehydrogenation are found with the nudge elastic band method including several factors of the associated barriers, reactive energies, intermediates, and transient states. The results show that there are two possible parallel minimum energy pathways on the Pt(111) surface. Moreover, the tilting angle of the H atom in benzene can be taken as an index for the actual barrier of dehydrogenation. In addition, the properties of dehydrogenation radicals on the Pt(111) surface are explored through their adsorption energy, adsorption geometry, and electronic structure on the surface. The vibrational frequencies of the dehydrogenation radicals derived from the calculations are in agreement with literature data.
Dehydrogenation of benzene on Pt(111) surface.
Gao, W; Zheng, W T; Jiang, Q
2008-10-28
The dehydrogenation of benzene on Pt(111) surface is studied by ab initio density functional theory. The minimum energy pathways for benzene dehydrogenation are found with the nudge elastic band method including several factors of the associated barriers, reactive energies, intermediates, and transient states. The results show that there are two possible parallel minimum energy pathways on the Pt(111) surface. Moreover, the tilting angle of the H atom in benzene can be taken as an index for the actual barrier of dehydrogenation. In addition, the properties of dehydrogenation radicals on the Pt(111) surface are explored through their adsorption energy, adsorption geometry, and electronic structure on the surface. The vibrational frequencies of the dehydrogenation radicals derived from the calculations are in agreement with literature data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bitterwolf, Thomas E.
2014-12-09
Successful catalytic dehydrogenation of aminoborane, H 3NBH 3, prompted questions as to the potential role of N-H oxidative addition in the mechanisms of these processes. N-H oxidative addition reactions are rare, and in all cases appear to involve initial dative bonding to the metal by the amine lone pairs followed by transfer of a proton to the basic metal. Aminoborane and its trimethylborane derivative block this mechanism and, in principle, should permit authentic N-H oxidative attrition to occur. Extensive experimental work failed to confirm this hypothesis. In all cases either B-H complexation or oxidative addition of solvent C-H bonds dominatemore » the chemistry.« less
A DFT Investigation of the Mechanism of Propene Ammoxidation over α-Bismuth Molybdate
Licht, Rachel B.; Bell, Alexis T.
2016-11-17
We investigated the mechanisms and energetics for the propene oxidation and ammoxidation occurring on the (010) surface of Bi 2 Mo 3 O 12 using density functional theory (DFT). An energetically feasible sequence of elementary steps for propene oxidation to acrolein, propene ammoxidation to acrylonitrile, and acrolein ammoxidation to acrylonitrile is proposed. Consistent with experimental findings, the rate-limiting step for both propene oxidation and ammoxidation is the initial hydrogen abstraction from the methyl group of propene, which is calculated to have an apparent activation energy of 27.3 kcal/mol. The allyl species produced in this reaction is stabilized as an allylmore » alkoxide, which can then undergo hydrogen abstraction to form acrolein or react with ammonia adsorbed on under-coordinated surface Bi 3+ cations to form allylamine. Dehydrogenation of allylamine is shown to produce acrylonitrile, whereas reaction with additional adsorbed ammonia leads to the formation of acetonitrile and hydrogen cyanide. The dehydrogenation of allyalkoxide species is found to have a significantly higher activation barrier than reaction with adsorbed ammonia, consistent with the observation that very little acrolein is produced when ammonia is present. Finally, we found that rapid reoxidation of the catalyst surface to release wate the driving force for all reactions involving the cleavage of C-H or N-H bonds, because practically all of these steps are endothermic. (Chemical Equation Presented).« less
Simple and rapid hydrogenation of p-nitrophenol with aqueous formic acid in catalytic flow reactors
Kawasaki, Shin-ichiro; Suzuki, Akira
2013-01-01
Summary The inner surface of a metallic tube (i.d. 0.5 mm) was coated with a palladium (Pd)-based thin metallic layer by flow electroless plating. Simultaneous plating of Pd and silver (Ag) from their electroless-plating solution produced a mixed distributed bimetallic layer. Preferential acid leaching of Ag from the Pd–Ag layer produced a porous Pd surface. Hydrogenation of p-nitrophenol was examined in the presence of formic acid simply by passing the reaction solution through the catalytic tubular reactors. p-Aminophenol was the sole product of hydrogenation. No side reaction occurred. Reaction conversion with respect to p-nitrophenol was dependent on the catalyst layer type, the temperature, pH, amount of formic acid, and the residence time. A porous and oxidized Pd (PdO) surface gave the best reaction conversion among the catalytic reactors examined. p-Nitrophenol was converted quantitatively to p-aminophenol within 15 s of residence time in the porous PdO reactor at 40 °C. Evolution of carbon dioxide (CO2) was observed during the reaction, although hydrogen (H2) was not found in the gas phase. Dehydrogenation of formic acid did not occur to any practical degree in the absence of p-nitrophenol. Consequently, the nitro group was reduced via hydrogen transfer from formic acid to p-nitrophenol and not by hydrogen generated by dehydrogenation of formic acid. PMID:23843908
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-09-01
Previous research has revealed that the catalytic performance of metal/zeolite catalysts can be significantly modified by exposing the catalyst precursor to H[sub 2]O vapor during the period after calcination, but before reduction. For bimetallic PdCo/NaY catalysts used for CO hydrogenation, the selectivity was changed from predominant production of oxygenates to predominant production of higher hydrocarbons. For Pt/H-mordenite catalysts, this water treatment has been reported to improve the alkane isomerization activity. Although it is certain that Lewis sites are transformed to Bronsted sites by reaction with H[sub 2]O, the activity of the catalyst is affected most when the water is addedmore » after calcination, when the noble metal is present as ligand-free ions. This observation led to the hypothesis that complexation of transition metal ions with water might be instrumental for the observed effects. In zeolites containing cages, such as Y, the formation of metal-ligand complex ions appears to incite their migration from small to large cages. In cageless zeolites such as mordenite, however, it is not clear, a priori, whether hydration of transition metal ions will increase or decrease their reducibility and whether it will ultimately result in higher or lower metal dispersion. The authors have therefore undertaken research to clarify these issues. Palladium supported in H-mordenite (Pd/HMor) or Na-mordenite (Pd/Na-Mor) has been tested using methylcyclopentane as a probe reaction; temperature-programmed reduction (TPR), desorption (TPD), and extended X-ray absorption fine structure (EXAFS) spectroscopy have been used to characterize the effects of water treatment on the samples.« less
NASA Astrophysics Data System (ADS)
Ulfa, S. M.; Pramesti, I. N.; Mustafidah, H.
2018-01-01
Modification of furfural by condensation and hydrogenation reaction is a promising approach to produce higher alkane derivatives (C8-C13) as diesel fraction. This research investigated the catalytic activity of Ni/MgO as bifunctional catalyst compared with MgO-Ni/Al2O3 mixed catalyst for condensation-hydrogenation reaction. The Ni/MgO and Ni/Al2O3 with 20% Ni loading were prepared by wet impregnation methods using Ni(NO3)2.6H2O salt, calcined and reduced at 500°C. The catalyst performance was tested for one-step condensation-hydrogenation reaction using autoclave oil batch reactor. The reaction was conducted by reacting furfural and acetone in 1:1 ratio using water as solvent. Condensation reaction was performed at 100°C for 8 hours, followed by hydrogenation at 120°C during 7 hours. Analysis by gas chromatography showed that C=C double bond of furfurylidene acetone were successfully hydrogenated. Using Ni/MgO catalyst at 120°C, the products were identified as 1,5-bis-(2-furanyl)-1,4-penta-1-ene-3-one (2.68%) and 1,5-bis-(2-furanyl)-1,4-pentan-3-one (trace amount). On the other hand, reaction using mixed catalyst, MgO-Ni/Al2O3 showed better activity over bifunctional Ni/MgO at the same reaction temperature. The products were identified as 4-(2-furanyl)-3-butan-2-one (27.30%); 1,5-bis-(2-furanyl)-1,4-penta-1-ene-3-one (3.82%) and 1,5-bis-(2-furanyl)-1,4-pentan-3-one (1.11%). The impregnation of Ni on MgO decrease the physical properties of catalyst, confirmed by surface area analysis (SAA).
Yang, Lan; Luo, Wei; Cheng, Gongzhen
2013-08-28
Well-dispersed magnetically recyclable core-shell Ag@M (M = Co, Ni, Fe) nanoparticles (NPs) supported on graphene have been synthesized via a facile in situ one-step procedure, using methylamine borane (MeAB) as a reducing agent under ambient condition. Their catalytic activity toward hydrolysis of ammonia borane (AB) were studied. Although the Ag@Fe/graphene NPs are almost inactive, the as-prepared Ag@Co/graphene NPs are the most reactive catalysts, followed by Ag@Ni/graphene NPs. Compared with AB and NaBH4, the as-synthesized Ag@Co/graphene catalysts which reduced by MeAB exert the highest catalytic activity. Additionally, the Ag@Co NPs supported on graphene exhibit higher catalytic activity than the catalysts with other conventional supports, such as the SiO2, carbon black, and γ-Al2O3. The as-synthesized Ag@Co/graphene NPs exert satisfied catalytic activity, with the turnover frequency (TOF) value of 102.4 (mol H2 min(-1) (mol Ag)(-1)), and the activation energy Ea value of 20.03 kJ/mol. Furthermore, the as-synthesized Ag@Co/graphene NPs show good recyclability and magnetically reusability for the hydrolytic dehydrogenation of AB and MeAB, which make the practical reusing application of the catalysts more convenient. Moreover, this simple synthetic method indicates that MeAB could be used as not only a potential hydrogen storage material but also an efficient reducing agent. It can be easily extended to facile preparation of other graphene supported metal NPs.
Shinde, S S; Kim, Dong-Hyung; Yu, Jin-Young; Lee, Jung-Ho
2017-06-01
The rational design of stable, inexpensive catalysts with excellent hydrogen dynamics and sorption characteristics under realistic environments for reversible hydrogen storage remains a great challenge. Here, we present a simple and scalable strategy to fabricate a monodispersed, air-stable, magnesium hydride embedded in three-dimensional activated carbon with periodic synchronization of transition metals (MHCH). The high surface area, homogeneous distribution of MgH 2 nanoparticles, excellent thermal stability, high energy density, steric confinement by carbon, and robust architecture of the catalyst resulted in a noticeable enhancement of the hydrogen storage performance. The resulting MHCH-5 exhibited outstanding hydrogen storage performance, better than that of most reported Mg-based hydrides, with a high storage density of 6.63 wt% H 2 , a rapid kinetics loading in <5 min at 180 °C, superior reversibility, and excellent long-term cycling stability over ∼435 h. The significant reduction of the enthalpy and activation energy observed in the MHCH-5 demonstrated enhancement of the kinetics of de-/hydrogenation compared to that of commercial MgH 2 . The origin of the intrinsic hydrogen thermodynamics was elucidated via solid state 1 H NMR. This work presents a readily scaled-up strategy towards the design of realistic catalysts with superior functionality and stability for applications in reversible hydrogen storage, lithium ion batteries, and fuel cells.
Fe-Based Nano-Materials in Catalysis
Konstantopoulos, Christos
2018-01-01
The role of iron in view of its further utilization in chemical processes is presented, based on current knowledge of its properties. The addition of iron to a catalyst provides redox functionality, enhancing its resistance to carbon deposition. FeOx species can be formed in the presence of an oxidizing agent, such as CO2, H2O or O2, during reaction, which can further react via a redox mechanism with the carbon deposits. This can be exploited in the synthesis of active and stable catalysts for several processes, such as syngas and chemicals production, catalytic oxidation in exhaust converters, etc. Iron is considered an important promoter or co-catalyst, due to its high availability and low toxicity that can enhance the overall catalytic performance. However, its operation is more subtle and diverse than first sight reveals. Hence, iron and its oxides start to become a hot topic for more scientists and their findings are most promising. The scope of this article is to provide a review on iron/iron-oxide containing catalytic systems, including experimental and theoretical evidence, highlighting their properties mainly in view of syngas production, chemical looping, methane decomposition for carbon nanotubes production and propane dehydrogenation, over the last decade. The main focus goes to Fe-containing nano-alloys and specifically to the Fe–Ni nano-alloy, which is a very versatile material. PMID:29772842
Lesnard, Hervé; Bocquet, Marie-Laure; Lorente, Nicolas
2007-04-11
We have performed a theoretical study on the dehydrogenation of benzene and pyridine molecules on Cu(100) induced by a scanning tunneling microscope (STM). Density functional theory calculations have been used to characterize benzene, pyridine, and different dehydrogenation products. The adiabatic pathways for single and double dehydrogenation have been evaluated with the nudge elastic band method. After identification of the transition states, the analysis of the electronic structure along the reaction pathway yields interesting information on the electronic process that leads to H-scission. The adiabatic barriers show that the formation of double dehydrogenated fragments is difficult and probably beyond reach under the actual experimental conditions. However, nonadiabatic processes cannot be ruled out. Hence, in order to identify the final dehydrogenation products, the inelastic spectra are simulated and compared with the experimental ones. We can then assign phenyl (C6H5) and alpha-pyridil (alpha-C5H4N) as the STM-induced dehydrogenation products of benzene and pyridine, respectively. Our simulations permit us to understand why phenyl, pyridine, and alpha-pyridil present tunneling-active C-H stretch modes in opposition to benzene.
Dehydrogenation and dehalogenation of amines in MALDI-TOF MS investigated by isotopic labeling.
Kang, Chuanqing; Zhou, Yihan; Du, Zhijun; Bian, Zheng; Wang, Jianwei; Qiu, Xuepeng; Gao, Lianxun; Sun, Yuequan
2013-12-01
Secondary and tertiary amines have been reported to form [M-H](+) that correspond to dehydrogenation in matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS). In this investigation, we studied the dehydrogenation of amines in MALDI-TOF MS by isotopic labeling. Aliphatic amines were labeled with deuterium on the methylene of an N-benzyl group, which resulted in the formation of [M-D](+) and [M-H](+) ions by dedeuteration and dehydrogenation, respectively. This method revealed the proton that was removed. The spectra of most tertiary amines with an N-benzyl group showed high-intensity [M-D](+) and [M-H](+) ion peaks, whereas those of secondary amines showed low-intensity ion peaks. Ratios between the peak intensities of [M-D](+) and [M-H](+) greater than 1 suggested chemoselective dehydrogenation at the N-benzyl groups. The presence of an electron donor group on the N-benzyl groups enhanced the selectivity. The dehalogenation of amines with an N-(4-halobenzyl) group was also observed alongside dehydrogenation. The amino ions from dehalogenation can undergo second dehydrogenation. These results provide the first direct evidence about the position at which dehydrogenation of an amine occurs and the first example of dehalogenation of haloaromatic compounds in MALDI-TOF MS. These results should be helpful in the structural identification and elucidation of synthetic and natural molecules. Copyright © 2013 John Wiley & Sons, Ltd.
NASA Technical Reports Server (NTRS)
Nooner, D. W.; Gibert, J. M.; Gelpi, E.; Oro, J.
1976-01-01
Experiments were performed in which meteoritic iron, iron ore and nickel-iron alloy were used to catalyze (in Fischer-Tropsch synthesis) the reaction of deuterium and carbon monoxide in a closed vessel. Normal alkanes and alkenes and their monomethyl substituted isomers and aromatic hydrocarbons were synthesized. Iron oxide and oxidized-reduced Canyon Diablo used as Fischer-Tropsch catalysts were found to produce aromatic hydrocarbons in distributions having many of the features of those observed in carbonaceous chondrites, but only at temperatures and reaction times well above 300 C and 6-8 h.
An aqueous rechargeable formate-based hydrogen battery driven by heterogeneous Pd catalysis.
Bi, Qing-Yuan; Lin, Jian-Dong; Liu, Yong-Mei; Du, Xian-Long; Wang, Jian-Qiang; He, He-Yong; Cao, Yong
2014-12-01
The formate-based rechargeable hydrogen battery (RHB) promises high reversible capacity to meet the need for safe, reliable, and sustainable H2 storage used in fuel cell applications. Described herein is an additive-free RHB which is based on repetitive cycles operated between aqueous formate dehydrogenation (discharging) and bicarbonate hydrogenation (charging). Key to this truly efficient and durable H2 handling system is the use of highly strained Pd nanoparticles anchored on graphite oxide nanosheets as a robust and efficient solid catalyst, which can facilitate both the discharging and charging processes in a reversible and highly facile manner. Up to six repeated discharging/charging cycles can be performed without noticeable degradation in the storage capacity. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
High catalytic activity of oriented 2.0.0 copper(I) oxide grown on graphene film
Primo, Ana; Esteve-Adell, Ivan; Blandez, Juan F.; Dhakshinamoorthy, Amarajothi; Álvaro, Mercedes; Candu, Natalia; Coman, Simona M.; Parvulescu, Vasile I.; García, Hermenegildo
2015-01-01
Metal oxide nanoparticles supported on graphene exhibit high catalytic activity for oxidation, reduction and coupling reactions. Here we show that pyrolysis at 900 °C under inert atmosphere of copper(II) nitrate embedded in chitosan films affords 1.1.1 facet-oriented copper nanoplatelets supported on few-layered graphene. Oriented (1.1.1) copper nanoplatelets on graphene undergo spontaneous oxidation to render oriented (2.0.0) copper(I) oxide nanoplatelets on few-layered graphene. These films containing oriented copper(I) oxide exhibit as catalyst turnover numbers that can be three orders of magnitude higher for the Ullmann-type coupling, dehydrogenative coupling of dimethylphenylsilane with n-butanol and C–N cross-coupling than those of analogous unoriented graphene-supported copper(I) oxide nanoplatelets. PMID:26509224
NASA Astrophysics Data System (ADS)
Galownia, Jonathan M.
This thesis is composed of two separate and unrelated projects. The first part of this thesis outlines an investigation into the synthesis and characterization of a novel zeolite supported super-base capable of carbon-carbon olefin addition to alkyl aromatics. A zeolite supported basic material capable of such reactions would benefit many fine chemical syntheses, as well as vastly improve the economics associated with production of the high performance thermoplastic polyester polyethylene naphthalate. The thermal decomposition of alkali---metal azides impregnated in zeolite X is investigated as a novel route to the synthesis of a zeolite supported super-base. Impregnation of the alkali---metal azide precursor is shown to result in azide species occluded within the pores of the zeolite support by using high speed, solid-state 23Na MAS and 2D MQMAS NMR, FTIR, and TGA characterization methods. Addition of alkali---metal azides to the zeolite results in redistribution of the extra-lattice cations in the zeolite framework. Thermal decomposition of impregnated azide species produces further cation redistribution, but no neutral metallic clusters are detected by high speed, solid-state 23Na MAS NMR following thermal activation of the materials. Instead, it is possible that inactive ionic clusters are formed. The thermally activated materials do not promote base catalysis for the isomerization of 1-butene, the ethylation of toluene and o-xylene, and the alkenylation of o-xylene with 1,3-butadiene to produce 5-ortho-tolyl-pent-2-ene (5-OTP). The lack of catalytic activity in the materials is attributed to failure of the materials to form neutral metallic clusters during thermal treatment, possibly due to preferential formation of NMR silent ionic clusters. The formation of neutral metallic clusters is found to be insensitive to synthesis technique and activation procedure. It is concluded that the impregnation of alkali---metal azides in zeolite X does not provide a reliable precursor for the formation of zeolite supported super-basic materials. The second part of this thesis describes the oxidative dehydrogenation of ethane over partially reduced heteropolyanions. Niobium and pyridine exchanged salts of phosphomolybdic (NbPMo12Pyr) and phosphovanadomolybdic (NbPMo11VPyr) acids are investigated as catalyst precursors to prepare materials for catalyzing the oxidative dehydrogenation of ethane to ethylene and acetic acid at atmospheric pressure. The effects of feed composition, steam flow, temperature, and precursor composition on catalytic activity and selectivity are presented for both ethane and ethylene oxidation. Production of ethylene and acetic acid from ethane using the catalytic materials exceeds that reported in the literature for Mo-V-Nb-Ox systems under atmospheric or elevated pressure. Production of acetic acid from ethylene is also greater than that observed for Mo-V-Nb-Ox systems. Addition of vanadium reduces catalytic activity and selectivity to both ethylene and acetic acid while niobium is essential for the formation of acetic acid from ethane. Other metals such as antimony, iron, and gallium do not provide the same beneficial effect as niobium. Molybdenum in close proximity to niobium is the active site for ethane activation while niobium is directly involved in the transformation of ethylene to acetic acid. A balance of niobium and protonated pyridine is required to produce an active catalyst. Water is found to aid in desorption of acetic acid, thereby limiting deep oxidation to carbon oxides. A reaction scheme is proposed for the production of acetic acid from ethane over the catalytic materials.
NASA Astrophysics Data System (ADS)
Kalenchuk, A. N.; Bogdan, V. I.; Kustov, L. M.
2015-01-01
The efficiency of a variety of ceramic membranes for the purification of hydrogen obtained by dehydrogenation of perhydro- m-terphenyl in a catalytic flow reactor from vapors of initial hydrocarbons and dehydrogenation products is investigated.
Adlhart, Christian; Uggerud, Einar
2007-01-01
Rates for the dihydrogen elimination of methane, ethane, and propane with cationic platinum clusters, Pt(n) (+) (1
Miandad, R; Barakat, M A; Rehan, M; Aburiazaiza, A S; Ismail, I M I; Nizami, A S
2017-11-01
This study aims to examine the catalytic pyrolysis of various plastic wastes in the presence of natural and synthetic zeolite catalysts. A small pilot scale reactor was commissioned to carry out the catalytic pyrolysis of polystyrene (PS), polypropylene (PP), polyethylene (PE) and their mixtures in different ratios at 450°C and 75min. PS plastic waste resulted in the highest liquid oil yield of 54% using natural zeolite and 50% using synthetic zeolite catalysts. Mixing of PS with other plastic wastes lowered the liquid oil yield whereas all mixtures of PP and PE resulted in higher liquid oil yield than the individual plastic feedstocks using both catalysts. The GC-MS analysis revealed that the pyrolysis liquid oils from all samples mainly consisted of aromatic hydrocarbons with a few aliphatic hydrocarbon compounds. The types and amounts of different compounds present in liquid oils vary with some common compounds such as styrene, ethylbenzene, benzene, azulene, naphthalene, and toluene. The FT-IR data also confirmed that liquid oil contained mostly aromatic compounds with some alkanes, alkenes and small amounts of phenol group. The produced liquid oils have high heating values (HHV) of 40.2-45MJ/kg, which are similar to conventional diesel. The liquid oil has potential to be used as an alternative source of energy or fuel production. Copyright © 2017 Elsevier Ltd. All rights reserved.
Enhancing Dissociative Adsorption of Water on Cu(111) via Chemisorbed Oxygen
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Qianqian; Li, Jonathan; Tong, Xiao
We have used X-ray photoelectron spectroscopy to study the dehydrogenation of H 2O molecules on the clean and oxygenated Cu(111) surfaces. The clean surface does not show reactivity toward H 2O dehydrogenation. By contrast, H 2O molecules on the oxygenated Cu(111) dissociate into OH species by reacting with chemisorbed oxygen until the complete consumption of the chemisorbed oxygen at which the surface loses its reactivity toward H 2O dehydrogenation. Increasing the temperature to 200 °C and above decreases molecularly adsorbed H 2O for dehydrogenation, thereby resulting in less loss of chemisorbed O. In conjunction with density-functional theory calculations, a three-stepmore » reaction pathway is proposed to account for the chemisorbed O assisted dehydrogenation of H 2O molecules and the net loss of surface oxygen. Finally, these results provide insight into understanding the elemental steps of the dehydrogenation of H 2O molecules and the controllable conditions for tuning H 2O dissociation on metal surfaces.« less
Enhancing Dissociative Adsorption of Water on Cu(111) via Chemisorbed Oxygen
Liu, Qianqian; Li, Jonathan; Tong, Xiao; ...
2017-05-16
We have used X-ray photoelectron spectroscopy to study the dehydrogenation of H 2O molecules on the clean and oxygenated Cu(111) surfaces. The clean surface does not show reactivity toward H 2O dehydrogenation. By contrast, H 2O molecules on the oxygenated Cu(111) dissociate into OH species by reacting with chemisorbed oxygen until the complete consumption of the chemisorbed oxygen at which the surface loses its reactivity toward H 2O dehydrogenation. Increasing the temperature to 200 °C and above decreases molecularly adsorbed H 2O for dehydrogenation, thereby resulting in less loss of chemisorbed O. In conjunction with density-functional theory calculations, a three-stepmore » reaction pathway is proposed to account for the chemisorbed O assisted dehydrogenation of H 2O molecules and the net loss of surface oxygen. Finally, these results provide insight into understanding the elemental steps of the dehydrogenation of H 2O molecules and the controllable conditions for tuning H 2O dissociation on metal surfaces.« less
Dehydrogenation of indanol by rabbit liver 3-hydroxyhexobarbital dehydrogenase.
Takenoshita, R; Toki, S
1977-06-01
1. Among the several enzyme activities in rabbit liver cytosol able to dehydrogenate 1-indanol, only the main activity was not separable from 3-hydroxyhexobarbital dehydrogenase during purification including polyacrylamide gel disc electrophoresis. 2. Results of mixed substrate method indicated that the same enzyme catalyses the dehydrogenation of 1-indanol and 3-hydroxyhexobarbital. The ratio between the two dehydrogenation activities was almost constant as the enzyme underwent thermal inactivation. The Ki values of p-chloromercuribenzoate, the Km values for NAD+, and the Km values for NADP+ were very similar for the two dehydrogenations. These results lead to the conclusion that the same enzyme catalyses the dehydrogenation of 3-hydroxyhexobarbital and 1-indanol. 3. 1-Tetralol, 1-acenaphthenol, 9-fluorenol, thiochroman-4-ol and 4-chromanol also served as substrate of the enzyme, but 2-indanol, 2-tetralol, and trans- and cis-indan-1,2-diol were not oxidized. 4. Reversibility of the reaction was also confirmed using 1-indanone as substrate.
Interstellar dehydrogenated PAH anions: vibrational spectra
NASA Astrophysics Data System (ADS)
Buragohain, Mridusmita; Pathak, Amit; Sarre, Peter; Gour, Nand Kishor
2018-03-01
Interstellar polycyclic aromatic hydrocarbon (PAH) molecules exist in diverse forms depending on the local physical environment. Formation of ionized PAHs (anions and cations) is favourable in the extreme conditions of the interstellar medium (ISM). Besides in their pure form, PAHs are also likely to exist in substituted forms; for example, PAHs with functional groups, dehydrogenated PAHs etc. A dehydrogenated PAH molecule might subsequently form fullerenes in the ISM as a result of ongoing chemical processes. This work presents a density functional theory (DFT) calculation on dehydrogenated PAH anions to explore the infrared emission spectra of these molecules and discuss any possible contribution towards observed IR features in the ISM. The results suggest that dehydrogenated PAH anions might be significantly contributing to the 3.3 μm region. Spectroscopic features unique to dehydrogenated PAH anions are highlighted that may be used for their possible identification in the ISM. A comparison has also been made to see the size effect on spectra of these PAHs.
Yang, Yongxing; Ochoa-Hernández, Cristina; de la Peña O'Shea, Víctor A; Pizarro, Patricia; Coronado, Juan M; Serrano, David P
2015-09-01
A series of catalysts constituted by nanoparticles of transition metal (M = Fe, Co, Ni and Mo) phosphides (TMP) dispersed on SBA-15 were synthesized by reduction of the corresponding metal phosphate precursors previously impregnated on the mesostructured support. All the samples contained a metal-loading of 20 wt% and with an initial M/P mole ratio of 1, and they were characterized by X-ray diffraction (XRD), N2 sorption, H2-TPR and transmission electron microscopy (TEM). Metal phosphide nanocatalysts were tested in a high pressure continuous flow reactor for the hydrodeoxygenation (HDO) of a methyl ester blend containing methyl oleate (C17H33-COO-CH3) as main component (70%). This mixture constitutes a convenient surrogate of triglycerides present in vegetable oils, and following catalytic hydrotreating yields mainly n-alkanes. The results of the catalytic assays indicate that Ni2P/SBA-15 catalyst presents the highest ester conversion, whereas the transformation rate is about 20% lower for MoP/SBA-15. In contrast, catalysts based on Fe and Co phosphides show a rather limited activity. Hydrocarbon distribution in the liquid product suggests that both hydrodeoxygenation and decarboxylation/decarbonylation reactions occur simultaneously over the different catalysts, although MoP/SBA-15 possess a selectivity towards hydrodeoxygenation exceeding 90%. Accordingly, the catalyst based on MoP affords the highest yield of n-octadecane, which is the preferred product in terms of carbon atom economy. Subsequently, in order to conjugate the advantages of both Ni and Mo phosphides, a series of catalysts containing variable proportions of both metals were prepared. The obtained results reveal that the mixed phosphides catalysts present a catalytic behavior intermediate between those of the monometallic phosphides. Accordingly, only marginal enhancement of the yield of n-octadecane is obtained for the catalysts with a Mo/Ni ratio of 3. Nevertheless, owing to this high selectivity for hydrodeoxygenation MoP/SBA-15 appears as a very promising catalyst for the production of advanced biofuels.
Acid-catalyzed dehydrogenation of amine-boranes
Stephens, Frances Helen; Baker, Ralph Thomas
2010-01-12
A method of dehydrogenating an amine-borane using an acid-catalyzed reaction. The method generates hydrogen and produces a solid polymeric [R.sup.1R.sup.2B--NR.sup.3R.sup.4].sub.n product. The method of dehydrogenating amine-boranes may be used to generate H.sub.2 for portable power sources.
Li, Tong; Zhang, Jian-Guo
2018-02-08
Metal hydrazineboranes (MHBs), as a kind of new hydrogen storage materials, show excellent hydrogen storage performance and dehydrogenation properties. Herein, we designed multiple dehydrogenation pathways to compare the metal-controlled effect. Quantum chemistry theory is used to calculate the crystal structure for determining the molecular structure. With an increase of the metal radius, the energy difference of the isomers also increases. The dehydrogenation pathways of lithium hydrazineborane (path A) and sodium hydrazineborane (path B) appear totally similar to each other in the dehydrogenation process despite the energy barrier, as well as the comparison paths A' (for LiHB) and B' (for NaHB). In contrast with LiHB and NaHB, the tautomeric reaction occurs in the potassium hydrazineborane (KHB) first, and the following dehydrogenation path is similar to that of the LiHB and NaHB. It explores the hydrogen-release properties of the different metal hydrazineboranes and also indcates the affection of the metal in the metal hydrazineboranes hydrogen-storage system.
Microbiological and chemical dehydrogenation of withaferin A.
Fuska, J; Proska, B; Williamson, J; Rosazza, J P
1987-01-01
Arthrobacter simplex dehydrogenated withaferin A to 4-dehydrowithaferin A but it was not able to dehydrogenate this substrate in position 27. 27-Dehydrowithaferin A was prepared chemically using pyridinium chlorochromate. Whereas 4-dehydrowithaferin A surpassed in its effect on leukemic (388 cells the original compound and all its derivates synthesized so far, 27-dehydrowithaferin A was biologically inactive.
Catalytic conversion of light alkanes. Final report, January 1, 1990--October 31, 1994
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
During the course of the first three years of the Cooperative Agreement (Phase I-III), we uncovered a family of metal perhaloporphyrin complexes which had unprecedented activity for the selective air-oxidation of fight alkanes to alcohols. The reactivity of fight hydrocarbon substrates with air or oxygen was in the order: isobutane>propane>ethane>methane, in accord with their homolytic bond dissociation energies. Isobutane was so reactive that the proof-of concept stage of a process for producing tert-butyl alcohol from isobutane was begun (Phase V). It was proposed that as more active catalytic systems were developed (Phases IV, VI), propane, then ethane and finally methanemore » oxidations will move into this stage (Phases VII through IX). As of this writing, however, the program has been terminated during the later stages of Phases V and VI so that further work is not anticipated. We made excellent progress during 1994 in generating a class of less costly new materials which have the potential for high catalytic activity. New routes were developed for replacing costly perfluorophenyl groups in the meso-position of metalloporphyrin catalysts with far less expensive and lower molecular weight perfluoromethyl groups.« less
Bering, Luis; Paulussen, Felix M; Antonchick, Andrey P
2018-04-06
The nitrosonium ion-catalyzed dehydrogenative coupling of heteroarenes under mild reaction conditions is reported. The developed method utilizes ambient molecular oxygen as a terminal oxidant, and only water is produced as byproduct. Dehydrogenative coupling of heteroarenes translated into the rapid discovery of novel hedgehog signaling pathway inhibitors, emphasizing the importance of the developed methodology.
Autothermal hydrogen storage and delivery systems
Pez, Guido Peter [Allentown, PA; Cooper, Alan Charles [Macungie, PA; Scott, Aaron Raymond [Allentown, PA
2011-08-23
Processes are provided for the storage and release of hydrogen by means of dehydrogenation of hydrogen carrier compositions where at least part of the heat of dehydrogenation is provided by a hydrogen-reversible selective oxidation of the carrier. Autothermal generation of hydrogen is achieved wherein sufficient heat is provided to sustain the at least partial endothermic dehydrogenation of the carrier at reaction temperature. The at least partially dehydrogenated and at least partially selectively oxidized liquid carrier is regenerated in a catalytic hydrogenation process where apart from an incidental employment of process heat, gaseous hydrogen is the primary source of reversibly contained hydrogen and the necessary reaction energy.
NASA Astrophysics Data System (ADS)
Jin, Lei
2011-12-01
This thesis contains two parts: 1) Studies of novel synthesis methods and characterization of advanced functional manganese oxide octahedral molecular sieves (OMS) and their applications in Li/Air batteries, solvent free toluene oxidations, and ethane oxydehydrogenation (ODH) in the presence of CO2, recycling the green house gas. 2) Development of unique Ln2O2CO3 (Ln = rare earth) layered materials and ZnO/La2O2CO3 composites as clean energy biofuel catalysts. These parts are separated into five different focused topics included in this thesis. The first topic presents studies of catalytic activities of a single step synthesized gamma-MnO2 octahedral molecular sieve nano fiber in solvent free atmospheric oxidation of toluene with molecular oxygen. Solvent free atmospheric oxidation of toluene is a notoriously difficult liquid phase oxidation process due to the challenge of oxidizing sp³ hybridized carbon in inactive hydrocarbons. The synthesized gamma-MnO2 showed excellent catalytic activity and good selectivity under the mild atmospheric reflux system. Under optimized conditions, a 47.8% conversion of toluene, along with 57% selectivity of benzoic acid and 15% of benzaldehyde were obtained. The effects of reaction time, amount of catalyst and initiator, and the reusability of the catalyst were investigated. The second topic involves developing titanium containing gamma-MnO 2 (TM) hollow spheres as electrocatalysts in Li/Air Batteries. Li/air batteries have recently attracted interest because they have the largest theoretical specific energy (11,972 Wh.kg-1) among all practical electrochemical couples. In this study, unique hollow aspheric materials were prepared for the first time using a one-step synthesis method and fully characterized by various techniques. These prepared materials were found to have excellent electrocatalytic activation as cathode materials in lithium-air batteries with a very high specific capacity (up to 2.3 A.h/g of carbon). The third topic in this thesis presents studies of ethane oxydehydrogenation (ODH) in the presence of CO2 over the octahedral molecular sieve (OMS-2) catalyst. Conversion of CO2 into organic compounds has been studied intensively. Ethane catalytic oxydehydrogenation in the presence of CO2 offers an attractive route for converting CO2. In this study, using OMS-2 as the catalyst in C2H6 dehydrogenation in the presence of CO2 is an example where extreme conditions are used to drive high conversions of ethane (> 70%) and CO2 (up to 56%) with high selectivity towards ethylene (87%) with a short contact time (0.6 s). This inexpensive material also showed high stability during the process, and the presence of CO2 removed coke depositions throughout the catalyst. The results obtained from this study open up new possibilities for olefin dehydrogenations in the presence of CO2, a perfect feedstock for any process involving ethylene carbonylation with the recycling of the greenhouse gas. The fourth part of this thesis presents a ZnO/La2O2CO 3 composite prepared by a new and easy method and discusses the use of these materials as heterogeneous catalysts for ultra-fast microwave biodiesel production at low temperatures. The search for solid state materials with high catalytic activities is one of the key steps toward reducing the cost of producing biodiesel. We present a high biodiesel yield (> 95%) in less than 5 minutes under mild reaction conditions (< 100°C) on a ZnO/La 2O2CO3 heterogeneous catalyst, showing no Zn and La leaching into the reaction medium. The catalyst has a higher reaction rate than the homogeneous KOH catalyst with the assistance of microwave irradiation. All of these results promote the industrial application of the synthesized ZnO/La2O2CO3 as a potential heterogeneous catalyst for fast biodiesel production, avoiding many of the issues found in both commercial and independently published catalysts. Following the fourth part of this thesis, the fifth part presents the synthesis and characterization of a series of rare earth Ln2O 2CO3 (Ln = La, Eu, Nd, and Sm) layered materials as novel basic materials for the biodiesel production. Reports on rare earth oxycarbonate Ln2O2CO3 (Ln = rare earths) layered materials as heterogeneous basic catalysts having novel low temperature catalytic activities are rare. In this thesis I successfully synthesized active rare earth (Ln = La, Nd, Eu, and Sm) metal oxycarbonate based layered materials to catalyze the transesterification process under mild conditions (< 85°C), obtaining a high fatty acid methyl ester (FAME) yield (> 95%) in a short reaction time (< 20 minutes). The results of low temperature activities and short reaction times with minimum energy consumption show them to have solid potential as alkali metal hydroxide/alkoxide alternatives for industrial applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsz-Keung, Cheung; d`Itri, J.L.; Lange, F.C.
1995-12-31
The primary goal of this project is to evaluate the potential value of solid superacid catalysts of the sulfated zirconia type for light hydrocarbon conversion. The key experiments catalytic testing of the performance of such catalysts in a flow reactor fed with streams containing, for example, n-butane or propane. Fe- and Mn-promoted sulfated zirconia was used to catalyze the conversion of n-butane at atmospheric pressure, 225-450{degrees}C, and n-butane partial pressures in the range of 0.0025-0.01 atm. At temperatures <225{degrees}C, these reactions were accompanied by cracking; at temperatures >350{degrees}C, cracking and isomerization occurred. Catalyst deactivation, resulting at least in part frommore » coke formation, was rapid. The primary cracking products were methane, ethane, ethylene, and propylene. The observation of these products along with an ethane/ethylene molar ratio of nearly 1 at 450{degrees}C is consistent with cracking occurring, at least in part, by the Haag-Dessau mechanism, whereby the strongly acidic catalyst protonates n-butane to give carbonium ions. The rate of methane formation from n-butane cracking catalyzed by Fe- and Mn-promoted sulfated zirconia at 450{degrees}C was about 3 x 10{sup -8} mol/(g of catalyst {center_dot}s). The observation of butanes, pentanes, and methane as products is consistent with Olah superacid chemistry, whereby propane is first protonated by a very strong acid to form a carbonium ion. The carbonium ion then decomposes into methane and an ethyl cation which undergoes oligocondensation reactions with propane to form higher molecular weight alkanes. The results are consistent with the identification of iron- and manganese-promoted sulfated zirconia as a superacid.« less
NASA Astrophysics Data System (ADS)
Tang, Xiao-Dan
2017-09-01
The charge transport properties of phosphapentacene (P-PEN) derivatives were systematically explored by theoretical calculation. The dehydrogenated P-PENs have reasonable frontier molecular orbital energy levels to facilitate both electron and hole injection. The reduced reorganization energies of dehydrogenated P-PENs could be intimately connected to the bonding nature of phosphorus atoms. From the idea of homology modeling, the crystal structure of TIPSE-4P-2p is constructed and fully optimized. Fascinatingly, TIPSE-4P-2p shows the intrinsic property of ambipolar transport in both hopping and band models. Thus, introducing dehydrogenated phosphorus atoms into pentacene core could be an efficient strategy for designing ambipolar material.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tolstopyatova, A.A.; Balandin, A.A.; Yu, C.
1963-10-01
All the relative adsorption coefficients of the dehydrogenation and dehydration products of isopropyl alcohol and dehydrogenation products of tetralin are temperaturedependent. The inhibiting action of the products, propylene, water, and acetone in the isopropyl alcohol reaction and hydrogen in the tetralin reaction diminishes as the temperature is raised. Acetone and water possess a relatively high inhibiting effect. The bond energies of C, H, and 0 with La/sub 2/O/sub 3/ were determined by means of the kinetic method from the activation energies. It was found that Q/sub C-Cat/ < Q/sub H-Cat/ < Q/sub O-Cat/ . (auth)
Bio-ethanol, a suitable fuel to produce hydrogen for a molten carbonate fuel cell
NASA Astrophysics Data System (ADS)
Frusteri, Francesco; Freni, Salvatore
Catalytic and technological aspects in the use of bio-ethanol as fuel to produce hydrogen in both internal (IR-MCFC) and indirect internal reforming (IIR-MCFC) configurations have been considered. In MCFC conditions, even operating at total ethanol conversion, hydrogen productivity depends on the catalyst efficiency to convert methane formed through a mechanism, which foresees as first step the dehydrogenation of ethanol to acetaldehyde and as a second step the decomposition of acetaldehyde to CO and CH 4. Potassium doped Ni/MgO, Ni/La 2O 3 and Rh/MgO resulted to be the most promising catalysts to be used for the hydrogen production by steam reforming of bio-ethanol. Coke formation represents a serious problem, however, it can be drastically depressed by adding to the reaction stream a low amount of oxygen. On the basis of catalytic and technological evaluations, indirect internal reforming configuration should be the more suitable to operate with bio-ethanol. MCFC electric performance using a hydrogen rich gas coming from steam reforming of bio-ethanol is very similar to that of MCFC fed with pure hydrogen. However, the high content of steam in the flow reaction stream must be careful computed for a good thermal balance of the overall plant.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oliveira, P.G. Pries de; Eon, J.G.; Volta, J.C.
1992-09-01
Vanadium oxides were immobilized by grafting VOCl{sub 3} on AlNbO oxides calcined between 500 and 750 C. Chemical analysis, XPS, and STEM measurements suggest an incomplete but homogeneous stoichiometric reaction between superficial hydroxyl groups and vanadyl oxychloride. By FTIR studies, it is observed that the interaction involves preferentially basic hydroxyl groups bonded to aluminium cations. UV-visible spectra show that mainly V{sup 5+} is present at the solid surface. Corresponding spectra are compatible with tetrahedral symmetry, in agreement with a previous {sup 51}V NMR investigation. The acido-basic properties of the catalyst were tested by isopropanol decomposition and compared with the correspondingmore » supports. It has been observed that basicity is higher for VO{sub x} grafted on AlBnO oxide calcined at high temperature and corresponding to the AlNbO{sub 4} structure. VO{sub x} grafted on AlNbO oxides calcined at intermediate temperatures and corresponding to a AlNbO disorganized structure present a good selectivity for the oxidative dehydrogenation of propane into propene. It has been observed that, for both reactions, the turnover number increases with the temperature of calcination of the catalysts. The reactivity of the aluminium niobiate support.« less
Chen, Xiaoyun; Abdullah, Hairus; Kuo, Dong-Hau
2017-01-01
A conservative CO2-Methanol (CH3OH) regeneration cycle, to capture and reutilize the greenhouse gas of CO2 by aqueous hydrogenation for industry-useful CH3OH and to convert aqueous CH3OH solution by dehydrogenation for the clean energy of hydrogen (H2), is demonstrated at normal temperature and pressure (NTP) with two kinds of CuMnOS nanoflower catalysts. The [Cu+]-high CuMnOS led to a CH3OH yield of 21.1 mmol·g−1catal.·h−1 in the CuMnOS-CO2-H2O system and the other [Cu+]-low one had a H2 yield of 7.65 mmol·g−1catal.·h−1 in the CuMnOS-CH3OH-H2O system. The successful redox reactions at NTP rely on active lattice oxygen of CuMnOS catalysts and its charge (hole or electron) transfer ability between Cu+ and Cu2+. The CO2-hydrogenated CH3OH in aqueous solution is not only a fuel but also an ideal liquid hydrogen storage system for transportation application. PMID:28117456
NASA Astrophysics Data System (ADS)
Chen, Xiaoyun; Abdullah, Hairus; Kuo, Dong-Hau
2017-01-01
A conservative CO2-Methanol (CH3OH) regeneration cycle, to capture and reutilize the greenhouse gas of CO2 by aqueous hydrogenation for industry-useful CH3OH and to convert aqueous CH3OH solution by dehydrogenation for the clean energy of hydrogen (H2), is demonstrated at normal temperature and pressure (NTP) with two kinds of CuMnOS nanoflower catalysts. The [Cu+]-high CuMnOS led to a CH3OH yield of 21.1 mmol·g-1catal.·h-1 in the CuMnOS-CO2-H2O system and the other [Cu+]-low one had a H2 yield of 7.65 mmol·g-1catal.·h-1 in the CuMnOS-CH3OH-H2O system. The successful redox reactions at NTP rely on active lattice oxygen of CuMnOS catalysts and its charge (hole or electron) transfer ability between Cu+ and Cu2+. The CO2-hydrogenated CH3OH in aqueous solution is not only a fuel but also an ideal liquid hydrogen storage system for transportation application.
Chen, Xiaoyun; Abdullah, Hairus; Kuo, Dong-Hau
2017-01-24
A conservative CO 2 -Methanol (CH 3 OH) regeneration cycle, to capture and reutilize the greenhouse gas of CO 2 by aqueous hydrogenation for industry-useful CH 3 OH and to convert aqueous CH 3 OH solution by dehydrogenation for the clean energy of hydrogen (H 2 ), is demonstrated at normal temperature and pressure (NTP) with two kinds of CuMnOS nanoflower catalysts. The [Cu + ]-high CuMnOS led to a CH 3 OH yield of 21.1 mmol·g -1 catal.·h -1 in the CuMnOS-CO 2 -H 2 O system and the other [Cu + ]-low one had a H 2 yield of 7.65 mmol·g -1 catal.·h -1 in the CuMnOS-CH 3 OH-H 2 O system. The successful redox reactions at NTP rely on active lattice oxygen of CuMnOS catalysts and its charge (hole or electron) transfer ability between Cu + and Cu 2+ . The CO 2 -hydrogenated CH 3 OH in aqueous solution is not only a fuel but also an ideal liquid hydrogen storage system for transportation application.
Assaud, Loïc; Monyoncho, Evans; Pitzschel, Kristina; Allagui, Anis; Petit, Matthieu; Hanbücken, Margrit
2014-01-01
Summary Three-dimensionally (3D) nanoarchitectured palladium/nickel (Pd/Ni) catalysts, which were prepared by atomic layer deposition (ALD) on high-aspect-ratio nanoporous alumina templates are investigated with regard to the electrooxidation of formic acid in an acidic medium (0.5 M H2SO4). Both deposition processes, Ni and Pd, with various mass content ratios have been continuously monitored by using a quartz crystal microbalance. The morphology of the Pd/Ni systems has been studied by electron microscopy and shows a homogeneous deposition of granularly structured Pd onto the Ni substrate. X-ray diffraction analysis performed on Ni and NiO substrates revealed an amorphous structure, while the Pd coating crystallized into a fcc lattice with a preferential orientation along the [220]-direction. Surface chemistry analysis by X-ray photoelectron spectroscopy showed both metallic and oxide contributions for the Ni and Pd deposits. Cyclic voltammetry of the Pd/Ni nanocatalysts revealed that the electrooxidation of HCOOH proceeds through the direct dehydrogenation mechanism with the formation of active intermediates. High catalytic activities are measured for low masses of Pd coatings that were generated by a low number of ALD cycles, probably because of the cluster size effect, electronic interactions between Pd and Ni, or diffusion effects. PMID:24605281
Zhu, Jingwen; Zins, Emilie-Laure; Alikhani, Mohammad Esmaïl
2016-12-01
For over a decade, amine-borane has been considered as a potential chemical hydrogen vector in the context of a search for cleaner energy sources. When catalyzed by organometallic complexes, the reaction mechanisms currently considered involve the formation of β-BH agostic intermediates. A thorough understanding of these intermediates may constitute a crucial step toward the identification of ideal catalysts. Topological approaches such as QTAIM and ELF revealed to be particularly suitable for the description of β-agostic interactions. When studying model catalysts, accurate theoretical calculations may be carried out. However, for a comparison with experimental data, calculations should also be carried out on large organo-metallic species, often including transition metals belonging to the second or the third row. In such a case, DFT methods are particularly attractive. Unfortunately, triple-ζ all electrons basis sets are not easily available for heavy transition metal elements. Thus, a subtle balance should be reached between the affordable level of calculations and the required accuracy of the electronic description of the systems. Herein we propose the use of B3LYP functional in combination with the LanL2DZ pseudopotential for the metal atom and 6-311++G(2d,2p) basis set for the other atoms, followed by a single point using the DKH2 relativistic Hamiltonian in combination with the B3LYP/DZP-DKH level, as a "minimum level of theory" leading to a consistent topological description of the interaction within the ELF and QTAIM framework, in the context of isolated (gas-phase) group 4 metallocene catalysts.
Silylation of C-H bonds in aromatic heterocycles by an Earth-abundant metal catalyst
NASA Astrophysics Data System (ADS)
Toutov, Anton A.; Liu, Wen-Bo; Betz, Kerry N.; Fedorov, Alexey; Stoltz, Brian M.; Grubbs, Robert H.
2015-02-01
Heteroaromatic compounds containing carbon-silicon (C-Si) bonds are of great interest in the fields of organic electronics and photonics, drug discovery, nuclear medicine and complex molecule synthesis, because these compounds have very useful physicochemical properties. Many of the methods now used to construct heteroaromatic C-Si bonds involve stoichiometric reactions between heteroaryl organometallic species and silicon electrophiles or direct, transition-metal-catalysed intermolecular carbon-hydrogen (C-H) silylation using rhodium or iridium complexes in the presence of excess hydrogen acceptors. Both approaches are useful, but their limitations include functional group incompatibility, narrow scope of application, high cost and low availability of the catalysts, and unproven scalability. For this reason, a new and general catalytic approach to heteroaromatic C-Si bond construction that avoids such limitations is highly desirable. Here we report an example of cross-dehydrogenative heteroaromatic C-H functionalization catalysed by an Earth-abundant alkali metal species. We found that readily available and inexpensive potassium tert-butoxide catalyses the direct silylation of aromatic heterocycles with hydrosilanes, furnishing heteroarylsilanes in a single step. The silylation proceeds under mild conditions, in the absence of hydrogen acceptors, ligands or additives, and is scalable to greater than 100 grams under optionally solvent-free conditions. Substrate classes that are difficult to activate with precious metal catalysts are silylated in good yield and with excellent regioselectivity. The derived heteroarylsilane products readily engage in versatile transformations enabling new synthetic strategies for heteroaromatic elaboration, and are useful in their own right in pharmaceutical and materials science applications.
FTIR study of methanol decomposition on gold catalyst for fuel cells
NASA Astrophysics Data System (ADS)
Boccuzzi, F.; Chiorino, A.; Manzoli, M.
The interaction of methanol (m), methanol-water (mw) and methanol-water-oxygen (mwo) on Au/TiO 2 catalyst has been investigated by in situ infrared spectroscopy (FTIR) and quadrupole mass spectrometry (QMS) at different temperatures. The aim of the work is to elucidate the nature and the abundance of the surface intermediates formed in different experimental conditions and to understand the mechanisms of methanol decomposition, of steam reforming and of combined reforming reactions. FTIR spectra run at room temperature in the different reaction mixtures show that differently coordinated methoxy species, that is on top species adsorbed on oxygen vacancy sites, on top species on uncoordinated Ti 4+ sites and bridged species on two Ti 4+ ions, are produced in all the mixtures. Quite strong formaldehyde and formate species adsorbed on gold are produced already at 403 K only in the combined reforming reaction mixture. At 473 K, on top species on uncoordinated Ti 4+ sites and methoxy species adsorbed on oxygen vacancy sites reduce their intensity and, at the same time, some formate species adsorbed on the support are produced in the steam reforming and combined reforming mixtures. At 523 K, on both methanol and methanol-water reaction mixtures, no more definite surface species are evidenced by FTIR on the catalysts, while in the methanol-water-oxygen mixture some residual methoxy and formate species are still present. Moreover, methanol is no more detected by QMS in the gas phase. A role of oxygen adsorbed on gold particles near oxygen vacancies of the support in the oxidative dehydrogenation of methanol is proposed.
Enhanced methanol electro-oxidation reaction on Pt-CoOx/MWCNTs hybrid electro-catalyst
NASA Astrophysics Data System (ADS)
Nouralishahi, Amideddin; Rashidi, Ali Morad; Mortazavi, Yadollah; Khodadadi, Abbas Ali; Choolaei, Mohammadmehdi
2015-04-01
The electro-catalytic behavior of Pt-CoOx/MWCNTs in methanol electro-oxidation reaction (MOR) is investigated and compared to that of Pt/MWCNTs. The electro-catalysts were synthesized by an impregnation method using NaBH4 as the reducing agent. The morphological and physical characteristics of samples are examined by XRD, TEM, ICP and EDS techniques. In the presence of CoOx, Pt nanoparticles were highly distributed on the support with an average particle size of 2 nm, an obvious decrease from 5.1 nm for Pt/MWCNTs. Cyclic voltammetry, CO-stripping, Chronoamperometry, and electrochemical impedance spectroscopy (EIS) measurements are used to study the electrochemical behavior of the electro-catalysts. The results revealed a considerable enhancement in the oxidation kinetics of COads on Pt active sites by the participation of CoOx. Compared to Pt/MWCNTs, Pt-CoOx/MWCNTs sample has a larger electrochemical active surface area (ECSA) and higher electro-catalytic activity and stability toward methanol electro-oxidation. According to the results of cyclic voltammetry, the forward anodic peak current density enhances more than 89% at the optimum atomic ratio of Pt:Co = 2:1. Furthermore, inclusion of cobalt oxide species causes the onset potential of methanol electro-oxidation reaction to shift 84 mV to negative values compared to that on Pt/MWCNTs. Based on EIS data, dehydrogenation of methanol is the rate-determining step of MOR on both Pt/MWCNTs and Pt-CoOx/MWCNTs, at small overpotentials. However, at higher overpotentials, the oxidation of adsorbed oxygen-containing groups controls the total rate of MOR process.
Dehydrogenation of formic acid catalyzed by magnesium hydride anions, HMgL2- (L = Cl and HCO2)
NASA Astrophysics Data System (ADS)
Khairallah, George N.; O'Hair, Richard A. J.
2006-08-01
A two step gas-phase catalytic cycle for the dehydrogenation of formic acid was established using a combination of experiments carried out on a quadrupole ion trap mass spectrometer and DFT calculations. The catalysts are the magnesium hydride anions HMgL2- (L = Cl and HCO2), which are formed from the formate complexes, HCO2MgL2-, via elimination of carbon dioxide under conditions of collision induced dissociation. This is followed by an ion-molecule reaction between HMgL2- and formic acid, which yields hydrogen and also reforms the formate complex, HCO2MgL2-. A kinetic isotope effect in the range 2.3-2.9 was estimated for the rate determining decarboxylation step by carrying out CID on the (HCO2)(DCO2)MgCl2- and subjecting the resultant mixture of (H)(DCO2)MgCl2- and (HCO2)(D)MgCl2- ions at m/z 106 to ion-molecule reactions. DFT calculations (at the B3LYP/6-31 + G* level of theory) were carried out on the HMgCl2- system and revealed that: (i) the decarboxylation of HCO2MgCl2- is endothermic by 47.8 kcal mol-1, consistent with the need to carry out CID to form the HMgCl2-; (ii) HMgCl2- can react with formic acid via either a four centred transition state or a six centred transition state. The former reaction is favoured by 7.8 kcal mol-1.
Oxidative dehydrogenation of isobutane over vanadia catalysts supported by titania nanoshapes
Kraemer, Shannon K.; Rondinone, Adam Justin; Tsai, Yu-Tung; ...
2015-11-02
Support plays a complex role in catalysis by supported metal oxides and the exact support effect still remains elusive. One of the approaches to gain fundamental insights into the support effect is to utilize model support systems. In this study, we employed for the first time titania nanoshapes as the model supports and investigated how the variation of surface structure of the support (titania, TiO 2) impacts the catalysis of supported oxide (vanadia, VO x). TiO 2 truncated rhombi, spheres and rods were synthesized via hydrothermal method and characterized with XRD and TEM. These TiO 2 nanoshapes represent different mixturesmore » of surface facets including [1 0 1], [0 1 0] and [0 0 1] and were used to support vanadia. The structure of supported VO x species was characterized in detail with in situ Raman spectroscopy as a function of loading on the three TiO 2 nanoshapes. Oxidative dehydrogenation (ODH) of isobutane to isobutene was used as a model reaction to test how the support shape influences the activity, selectivity and activation energy of the surface VO x species. It was shown that the shape of TiO 2 support does not pose evident effect on either the structure of surface VO x species or the catalytic performance of surface VO x species in isobutane ODH reaction. Finally, this insignificant support shape effect was ascribed to the small difference in the surface oxygen vacancy formation energy among the different TiO 2 surfaces and the multi-faceting nature of the TiO 2 nanoshapes.« less
Oxidative dehydrogenation of isobutane over vanadia catalysts supported by titania nanoshapes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kraemer, Shannon; Rondinone, Adam J.; Tsai, Yu-Tong
2016-04-01
Support plays a complex role in catalysis by supported metal oxides and the exact support effect still remains elusive. One of the approaches to gain fundamental insights into the support effect is to utilize model support systems. In this paper, we employed for the first time titania nanoshapes as the model supports and investigated how the variation of surface structure of the support (titania, TiO2) impacts the catalysis of supported oxide (vanadia, VOx). TiO2 truncated rhombi, spheres and rods were synthesized via hydrothermal method and characterized with XRD and TEM. These TiO2 nanoshapes represent different mixtures of surface facets includingmore » [1 0 1], [0 1 0] and [0 0 1] and were used to support vanadia. The structure of supported VOx species was characterized in detail with in situ Raman spectroscopy as a function of loading on the three TiO2 nanoshapes. Oxidative dehydrogenation (ODH) of isobutane to isobutene was used as a model reaction to test how the support shape influences the activity, selectivity and activation energy of the surface VOx species. It was shown that the shape of TiO2 support does not pose evident effect on either the structure of surface VOx species or the catalytic performance of surface VOx species in isobutane ODH reaction. This insignificant support shape effect was ascribed to the small difference in the surface oxygen vacancy formation energy among the different TiO2 surfaces and the multi-faceting nature of the TiO2 nanoshapes.« less
Pt-Zn Clusters on Stoichiometric MgO(100) and TiO2(110): Dramatically Different Sintering Behavior
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dadras, Mostafa J.; Shen, Lu; Alexandrova, Anastassia N.
2015-03-02
Zn was suggested to be a promising additive to Pt in the catalysis of dehydrogenation reactions. In this work, mixed Pt-Zn clusters deposited on two simple oxides, MgO(100) and TiO2(110), were investigated. The stability of these systems against cluster sintering, one of the major mechanisms of catalyst deactivation, is simulated using a Metropolis Monte Carlo scheme under the assumption of the Ostwald ripening mechanism. Particle migration, association to and dissociation from clusters, and evaporation and redeposition of monomers were all included in the simulations. Simulations are done at several high temperatures relevant to reactions of catalytic dehydrogenation. The effect ofmore » temperature is included via both the Metropolis algorithm and the Boltzmann-weighted populations of the global and thermally accessible local minima on the density functional theory potential energy surfaces of clusters of all sizes and compositions up to tetramers. On both surfaces, clusters are shown to sinter quite rapidly. However, the resultant compositions of the clusters most resistant to sintering are quite different on the two supports. On TiO2(110), Pt and Zn appear to phase separate, preferentially forming clusters rich in just one or the other metal. On MgO(100), Pt and Zn remain well-mixed and form a range of bimetallic clusters of various compositions that appear relatively stable. However, Zn is more easily lost from MgO through evaporation. These phenomena were rationalized by several means of chemical bonding analysis.« less
Cluster size selectivity in the product distribution of ethene dehydrogenation on niobium clusters.
Parnis, J Mark; Escobar-Cabrera, Eric; Thompson, Matthew G K; Jacula, J Paul; Lafleur, Rick D; Guevara-García, Alfredo; Martínez, Ana; Rayner, David M
2005-08-18
Ethene reactions with niobium atoms and clusters containing up to 25 constituent atoms have been studied in a fast-flow metal cluster reactor. The clusters react with ethene at about the gas-kinetic collision rate, indicating a barrierless association process as the cluster removal step. Exceptions are Nb8 and Nb10, for which a significantly diminished rate is observed, reflecting some cluster size selectivity. Analysis of the experimental primary product masses indicates dehydrogenation of ethene for all clusters save Nb10, yielding either Nb(n)C2H2 or Nb(n)C2. Over the range Nb-Nb6, the extent of dehydrogenation increases with cluster size, then decreases for larger clusters. For many clusters, secondary and tertiary product masses are also observed, showing varying degrees of dehydrogenation corresponding to net addition of C2H4, C2H2, or C2. With Nb atoms and several small clusters, formal addition of at least six ethene molecules is observed, suggesting a polymerization process may be active. Kinetic analysis of the Nb atom and several Nb(n) cluster reactions with ethene shows that the process is consistent with sequential addition of ethene units at rates corresponding approximately to the gas-kinetic collision frequency for several consecutive reacting ethene molecules. Some variation in the rate of ethene pick up is found, which likely reflects small energy barriers or steric constraints associated with individual mechanistic steps. Density functional calculations of structures of Nb clusters up to Nb(6), and the reaction products Nb(n)C2H2 and Nb(n)C2 (n = 1...6) are presented. Investigation of the thermochemistry for the dehydrogenation of ethene to form molecular hydrogen, for the Nb atom and clusters up to Nb6, demonstrates that the exergonicity of the formation of Nb(n)C2 species increases with cluster size over this range, which supports the proposal that the extent of dehydrogenation is determined primarily by thermodynamic constraints. Analysis of the structural variations present in the cluster species studied shows an increase in C-H bond lengths with cluster size that closely correlates with the increased thermodynamic drive to full dehydrogenation. This correlation strongly suggests that all steps in the reaction are barrierless, and that weakening of the C-H bonds is directly reflected in the thermodynamics of the overall dehydrogenation process. It is also demonstrated that reaction exergonicity in the initial partial dehydrogenation step must be carried through as excess internal energy into the second dehydrogenation step.
Dong, Jia Jia; Unjaroen, Duenpen; Mecozzi, Francesco; Harvey, Emma C; Saisaha, Pattama; Pijper, Dirk; de Boer, Johannes W; Alsters, Paul; Feringa, Ben L; Browne, Wesley R
2013-09-01
An efficient and simple method for selective oxidation of secondary alcohols and oxidation of alkanes to ketones is reported. An in situ prepared catalyst is employed based on manganese(II) salts, pyridine-2-carboxylic acid, and butanedione, which provides good-to-excellent conversions and yields with high turnover numbers (up to 10 000) with H2 O2 as oxidant at ambient temperatures. In substrates bearing multiple alcohol groups, secondary alcohols are converted to ketones selectively and, in general, benzyl C-H oxidation proceeds in preference to aliphatic C-H oxidation. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Generic approach to access barriers in dehydrogenation reactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Liang; Vilella, Laia; Abild-Pedersen, Frank
The introduction of linear energy correlations, which explicitly relate adsorption energies of reaction intermediates and activation energies in heterogeneous catalysis, has proven to be a key component in the computational search for new and promising catalysts. A simple linear approach to estimate activation energies still requires a significant computational effort. To simplify this process and at the same time incorporate the need for enhanced complexity of reaction intermediates, we generalize a recently proposed approach that evaluates transition state energies based entirely on bond-order conservation arguments. Here, we show that similar variation of the local electronic structure along the reaction coordinatemore » introduces a set of general functions that accurately defines the transition state energy and are transferable to other reactions with similar bonding nature. With such an approach, more complex reaction intermediates can be targeted with an insignificant increase in computational effort and without loss of accuracy.« less
Inducing Axial Chirality in a Supramolecular Catalyst.
Wenz, Katharina Marie; Leonhardt-Lutterbeck, Günter; Breit, Bernhard
2018-03-06
A new type of ligand, which is able to form axially chiral, supramolecular complexes was designed using DFT calculations. Two chiral monomers, each featuring a covalently bound chiral auxiliary, form a bidentate phosphine ligand with a twisted, hydrogen-bonded backbone upon coordination to a transition metal center which results in two diastereomeric, tropos complexes. The ratio of the diastereomers in solution is very temperature- and solvent-dependent. Rhodium and platinum complexes were analyzed through a combination of NMR studies, ESI-MS measurements, as well as UV-VIS and circular dichroism spectroscopy. The chiral self-organized ligands were evaluated in the rhodium-catalyzed asymmetric hydrogenation of α-dehydrogenated amino acids and resulted in good conversion and high enantioselectivity. This research opens the way for new ligand designs based on stereocontrol of supramolecular assemblies through stereodirecting chiral centers. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Advanced thermally stable jet fuels. Technical progress report, January 1995--March 1995
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schobert, H.H.; Eser, S.; Song, C.
Quantitative structure-property relationships have been applied to study the thermal stability of pure hydrocarbons typical of jet fuel components. A simple method of chemical structure description in terms of Benson groups was tested in searching for structure-property relationships for the hydrocarbons tested experimentally in this program. Molecular connectivity as a structure-based approach to chemical structure-property relationship analysis was also tested. Further development of both the experimental data base and computational methods will be necessary. Thermal decomposition studies, using glass tube reactors, were extended to two additional model compounds: n-decane and n-dodecane. Efforts on refining the deposit growth measurement and characterizationmore » of suspended matter in stressed fuels have lead to improvements in the analysis of stressed fuels. Catalytic hydrogenation and dehydrogenation studies utilizing a molybdenum sulfide catalyst are also described.« less
Generic approach to access barriers in dehydrogenation reactions
Yu, Liang; Vilella, Laia; Abild-Pedersen, Frank
2018-03-08
The introduction of linear energy correlations, which explicitly relate adsorption energies of reaction intermediates and activation energies in heterogeneous catalysis, has proven to be a key component in the computational search for new and promising catalysts. A simple linear approach to estimate activation energies still requires a significant computational effort. To simplify this process and at the same time incorporate the need for enhanced complexity of reaction intermediates, we generalize a recently proposed approach that evaluates transition state energies based entirely on bond-order conservation arguments. Here, we show that similar variation of the local electronic structure along the reaction coordinatemore » introduces a set of general functions that accurately defines the transition state energy and are transferable to other reactions with similar bonding nature. With such an approach, more complex reaction intermediates can be targeted with an insignificant increase in computational effort and without loss of accuracy.« less
The cluster Ir4 and its interaction with a hydrogen impurity. A density functional study.
Bussai, Chuenchit; Krüger, Sven; Vayssilov, Georgi N; Rösch, Notker
2005-07-07
To contribute to the understanding of how iridium particles act as catalysts for hydrogenation and dehydrogenation of hydrocarbons, we have determined structures and binding energies of various isomers of Ir(4) as well as HIr(4) on the basis of relativistic density functional theory. The most stable isomer of Ir(4) showed a square planar structure with eight unpaired electrons. The tetrahedral structure, experimentally suggested for supported species, was calculated 49 kJ mol(-1) less stable. Hydrogen coordinates preferentially to a single Ir center of the planar cluster with a binding energy of up to 88 kJ mol(-1) with respect to the atom in the H(2) molecule. Terminal interaction of hydrogen with an Ir(4) tetrahedron causes the cluster to open to a butterfly structure. We calculated terminal binding of hydrogen at different Ir(4) isomers to be more stable than bridge coordination, at variance with earlier studies.
Iridium-catalyzed Arene ortho-Silylation by Formal Hydroxyl-directed C-H Activation
Simmons, Eric M.; Hartwig, John F.
2010-01-01
A strategy for the ortho-silylation of aryl ketone, benzaldehyde and benzyl alcohol derivatives has been developed in which a hydroxyl group formally serves as the directing element for Ir-catalyzed arene C-H bond activation. One-pot generation of a (hydrido)silyl ether from the carbonyl compound or alcohol is followed by dehydrogenative cyclization at 80–100 °C in the presence of norbornene as hydrogen acceptor and the combination of 1 mol % [Ir(cod)OMe]2 and 1,10-phenanthroline as catalyst to form benzoxasiloles. The synthetic utility of the benzoxasilole products is demonstrated by conversion to phenol or biaryl derivatives by Tamao-Fleming oxidation or Hiyama cross-coupling. Both of these transformations of the C-H silylation products exploit the Si-O bond in the system and proceed by activation of the silyl moiety with hydroxide, rather than fluoride. PMID:21077625
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klobukowski, Erik
2011-01-01
This work involves two projects. The first project entails the study of bulk gold as a catalyst in oxidation reactions of isocyanides and amines. The main goal of this project was to study the activation and reactions of molecules at metal surfaces in order to assess how organometallic principles for homogeneous processes apply to heterogeneous catalysis. Since previous work had used oxygen as an oxidant in bulk gold catalyzed reactions, the generality of gold catalysis with other oxidants was examined. Amine N-oxides were chosen for study, due to their properties and use in the oxidation of carbonyl ligands in organometallicmore » complexes. When amine N-oxides were used as an oxidant in the reaction of isocyanides with amines, the system was able to produce ureas from a variety of isocyanides, amines, and amine N-oxides. In addition, the rate was found to generally increase as the amine N-oxide concentration increased, and decrease with increased concentrations of the amine. Mechanistic studies revealed that the reaction likely involves transfer of an oxygen atom from the amine N-oxide to the adsorbed isocyanide to generate an isocyanate intermediate. Subsequent nucleophilic attack by the amine yields the urea. This is in contrast to the bulk gold-catalyzed reaction mechanism of isocyanides with amines and oxygen. Formation of urea in this case was proposed to proceed through a diaminocarbene intermediate. Moreover, formation of the proposed isocyanate intermediate is consistent with the reactions of metal carbonyl ligands, which are isoelectronic to isocyanides. Nucleophilic attack at coordinated CO by amine N-oxides produces CO{sub 2} and is analogous to the production of an isocyanate in this gold system. When the bulk gold-catalyzed oxidative dehydrogenation of amines was examined with amine N-oxides, the same products were afforded as when O{sub 2} was used as the oxidant. When the two types of oxidants were directly compared using the same reaction system and conditions, it was found that the oxidative dehydrogenation of dibenzylamine to Nbenzylidenebenzylamine, with N-methylmorpholine N-oxide (NMMO), was nearly quantitative (96%) within 24 h. However, the reaction with oxygen was much slower, with only a 52% yield of imine product over the same time period. Moreover, the rate of reaction was found to be influenced by the nature of the amine N-oxide. For example, the use of the weakly basic pyridine N-oxide (PyNO) led to an imine yield of only 6% after 24 h. A comparison of amine N-oxide and O2 was also examined in the oxidation of PhCH{sub 2}OH to PhCHO catalyzed by bulk gold. In this reaction, a 52% yield of the aldehyde was achieved when NMMO was used, while only a 7% product yield was afforded when O{sub 2} was the oxidant after 48 h. The bulk gold-catalyzed oxidative dehydrogenation of cyclic amines generates amidines, which upon treatment with Aerosil and water were found to undergo hydrolysis to produce lactams. Moreover, 5-, 6-, and 7-membered lactams could be prepared through a one-pot reaction of cyclic amines by treatment with oxygen, water, bulk gold, and Aerosil. This method is much more atom economical than industrial processes, does not require corrosive acids, and does not generate undesired byproducts. Additionally, the gold and Aerosil catalysts can be readily separated from the reaction mixture. The second project involved studying iron(III) tetraphenylporphyrin chloride, Fe(TPP)Cl, as a homogeneous catalyst for the generation of carbenes from diazo reagents and their reaction with heteroatom compounds. Fe(TPP)Cl, efficiently catalyzed the insertion of carbenes derived from methyl 2-phenyldiazoacetates into O-H bonds of aliphatic and aromatic alcohols. Fe(TPP)Cl was also found to be an effective catalyst for tandem N-H and O-H insertion/cyclization reactions when 1,2-diamines and 1,2-alcoholamines were treated with diazo reagents. This approach provides a one-pot process for synthesizing piperazinones and morpholinones and related analogues such as quinoxalinones and benzoxazin-2-ones.« less
Oil-in-oil emulsions: a unique tool for the formation of polymer nanoparticles.
Klapper, Markus; Nenov, Svetlin; Haschick, Robert; Müller, Kevin; Müllen, Klaus
2008-09-01
Polymer latex particles are nanofunctional materials with widespread applications including electronics, pharmaceuticals, photonics, cosmetics, and coatings. These materials are typically prepared using waterborne heterogeneous systems such as emulsion, miniemulsion, and suspension polymerization. However, all of these processes are limited to water-stable catalysts and monomers mainly polymerizable via radical polymerization. In this Account, we describe a method to overcome this limitation: nonaqueous emulsions can serve as a versatile tool for the synthesis of new types of polymer nanoparticles. To form these emulsions, we first needed to find two nonmiscible nonpolar/polar aprotic organic solvents. We used solvent mixtures of either DMF or acetonitrile in alkanes and carefully designed amphiphilic block and statistical copolymers, such as polyisoprene- b-poly(methyl methacrylate) (PI- b-PMMA), as additives to stabilize these emulsions. Unlike aqueous emulsions, these new emulsion systems allowed the use of water-sensitive monomers and catalysts. Although polyaddition and polycondensation reactions usually lead to a large number of side products and only to oligomers in the aqueous phase, these new conditions resulted in high-molecular-weight, defect-free polymers. Furthermore, conducting nanoparticles were produced by the iron(III)-induced synthesis of poly(ethylenedioxythiophene) (PEDOT) in an emulsion of acetonitrile in cyclohexane. Because metallocenes are sensitive to nitrile and carbonyl groups, the acetonitrile and DMF emulsions were not suitable for carrying out metallocene-catalyzed olefin polymerization. Instead, we developed a second system, which consists of alkanes dispersed in perfluoroalkanes. In this case, we designed a new amphipolar polymeric emulsifier with fluorous and aliphatic side chains to stabilize the emulsions. Such heterogeneous mixtures facilitated the catalytic polymerization of ethylene or propylene to give spherical nanoparticles of high molecular weight polyolefins. These nonaqueous systems also allow for the combination of different polymerization techniques to obtain complex architectures such as core-shell structures. Previously, such structures primarily used vinylic monomers, which greatly limited the number of polymer combinations. We have demonstrated how nonaqueous emulsions allow the use of a broad variety of hydrolyzable monomers and sensitive catalysts to yield polyester, polyurethane, polyamide, conducting polymers, and polyolefin latex particles in one step under ambient reaction conditions. This nonpolar emulsion strategy dramatically increases the chemical palette of polymers that can form nanoparticles via emulsion polymerization.
van der Westhuizen, Rina; Potgieter, Hein; Prinsloo, Nico; de Villiers, André; Sandra, Pat
2011-05-27
In oligomerisation products of High Temperature Fischer-Tropsch (HTFT) derived light alkenes using a solid phosphoric acid (SPA) catalyst, the presence of cyclics was presumed although their occurrence could not be explained by the generally accepted oligomerisation mechanism. Notwithstanding the use of GC×GC-TOFMS, the cyclic alkanes could not be differentiated from the alkenes. On the one hand, compounds co-eluted in GC×GC and, on the other hand, MS cannot distinguish between these classes because of identical molecular masses and very similar mass fragmentation patterns. An LC pre-fractionation procedure utilising a silver-modified column was developed to separate the saturates from the unsaturates. Using this approach we were able, for the first time, to confirm the presence of cyclics, probably resulting from secondary reactions, in HTFT oligomerisation products. The occurrence of cyclics can be an indication of the beginning of carbonaceous deposit formation that could eventually lead to catalyst deactivation. Copyright © 2010 Elsevier B.V. All rights reserved.
Pai, Sung Jin; Yeo, Byung Chul; Han, Sang Soo
2016-01-21
Liquid CBN (carbon-boron-nitrogen) hydrogen-storage materials such as 3-methyl-1,2-BN-cyclopentane have the advantage of being easily accessible for use in current liquid-fuel infrastructure. To develop practical liquid CBN hydrogen-storage materials, it is of great importance to understand the reaction pathways of hydrogenation/dehydrogenation in the liquid phase, which are difficult to discover by experimental methods. Herein, we developed a reactive force field (ReaxFFCBN) from quantum mechanical (QM) calculations based on density functional theory for the storage of hydrogen in BN-substituted cyclic hydrocarbon materials. The developed ReaxFFCBN provides similar dehydrogenation pathways and energetics to those predicted by QM calculations. Moreover, molecular dynamics (MD) simulations with the developed ReaxFFCBN can predict the stability and dehydrogenation behavior of various liquid CBN hydrogen-storage materials. Our simulations reveal that a unimolecular dehydrogenation mechanism is preferred in liquid CBN hydrogen-storage materials. However, as the temperature in the simulation increases, the contribution of a bimolecular dehydrogenation mechanism also increases. Moreover, our ReaxFF MD simulations show that in terms of thermal stability and dehydrogenation kinetics, liquid CBN materials with a hexagonal structure are more suitable materials than those with a pentagonal structure. We expect that the developed ReaxFFCBN could be a useful protocol in developing novel liquid CBN hydrogen-storage materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacobs, G.; Padro, C.L.; Resasco, D.E.
The n-hexane aromatization has been studied on Pt/KL, Pt/Mg(Al)O, and Pt/SiO{sub 2} catalysts at 773 K using sulfur-free and 0.6 ppm sulfur containing feedstocks. Examination of the product distribution as a function of conversion suggests that the formation of benzene is preceded by the formation of hexenes. In contrast with previous reports, it has been found that the Pt/KL catalyst exhibits much higher aromatization activity than the Pt/Mg(Al)O catalyst. On Pt/KL the main product is benzene, with hexenes and lighter compounds as the principal by-products. By contrast, on the Pt/Mg(Al)O, the main products were hexenes. Since hexenes are primary productsmore » and benzene is a secondary product, the exceptional aromatization activity of Pt/KL is explained in terms of its ability to convert hexene into benzene. In the presence of sulfur, the Pt/KL exhibits a rapid loss in n-hexane conversion and benzene selectivity. Under these conditions, the sulfided Pt/KL catalyst presents a catalytic behavior typical of Pt/Mg(Al)O and Pt/SiO{sub 2}, generating larger amounts of hexenes. The observed results are consistent with the hypothesis that the most important role of the zeolite is to inhibit bimolecular interactions that lead to coke formation. The formation of coke has the net effect of selectively deactivating aromatization sites which require a large ensemble of atoms to constitute the active site but not affecting the dehydrogenation activity which is less ensemble-sensitive. Therefore, those particles that are not protected against coking inside the channels of the zeolite rapidly become unselective. In support of this hypothesis, the hydrogenolysis reaction which also requires a large ensemble of atoms, decreases in parallel with the aromatization reaction. The high sensitivity of Pt/KL to sulfur may be due to a combination of effects which may involve growth of metal particles outside the zeolite which would become unselective and partial poisoning of the particles inside the zeolite, causing a similar selective deactivation.« less
Hanson, Susan K; Baker, R Tom
2015-07-21
This work began as part of a biomass conversion catalysis project with UC Santa Barbara funded by the first NSF Chemical Bonding Center, CATSB. Recognizing that catalytic aerobic oxidation of diol C-C bonds could potentially be used to break down lignocellulose, we began to synthesize oxovanadium complexes and explore their fundamental reactivity. Of course there were theories regarding the oxidation mechanism, but our mechanistic studies soon revealed a number of surprises of the type that keep all chemists coming back to the bench! We realized that these reactions were also exciting in that they actually used the oxygen-on-every-carbon property of biomass-derived molecules to control the selectivity of the oxidation. When we found that these oxovanadium complexes tended to convert sugars predominantly to formic acid and carbon dioxide, we replaced one of the OH groups with an ether and entered the dark world of lignin chemistry. In this Account, we summarize results from our collaboration and from our individual labs. In particular, we show that oxidation selectivity (C-C vs C-O bond cleavage) of lignin models using air and vanadium complexes depends on the ancillary ligands, the reaction solvent, and the substrate structure (i.e., phenolic vs non-phenolic). Selected vanadium complexes in the presence of added base serve as effective alcohol oxidation catalysts via a novel base-assisted dehydrogenation pathway. In contrast, copper catalysts effect direct C-C bond cleavage of these lignin models, presumably through a radical pathway. The most active vanadium catalyst exhibits unique activity for the depolymerization of organosolv lignin. After Weckhuysen's excellent 2010 review on lignin valorization, the number of catalysis studies and approaches on both lignin models and extracts has expanded rapidly. Today we are seeing new start-ups and lignin production facilities sprouting up across the globe as we all work to prove wrong the old pulp and paper chemist's adage: you can make anything from lignin except money!
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Haichao; Iglesia, Enrique
RuO2 domains supported on SnO2, ZrO2, TiO2, Al2O3, and SiO2 catalyze the oxidative conversion of methanol to formaldehyde, methylformate, and dimethoxymethane with unprecedented rates and high combined selectivity (>99 percent) and yield at low temperatures (300-400 K). Supports influence turnover rates and the ability of RuO2 domains to undergo redox cycles required for oxidation turnovers. Oxidative dehydrogenation turnover rates and rates of stoichiometric reduction of RuO2 in H2 increased in parallel when RuO2 domains were dispersed on more reducible supports. These support effects, the kinetic effects of CH3OH and O2 on reaction rates, and the observed kinetic isotope effects withmore » CH3OD and CD3OD reactants are consistent with a sequence of elementary steps involving kinetically relevant H-abstraction from adsorbed methoxide species using lattice oxygen atoms and with methoxide formation in quasi-equilibrated CH3OH dissociation on nearly stoichiometric RuO2 surfaces. Anaerobic transient experiments confirmed that CH3OH oxidation to HCHO requires lattice oxygen atoms and that selectivities are not influenced by the presence of O2. Residence time effects on selectivity indicate that secondary HCHO-CH3OH acetalization reactions lead to hemiacetal or methoxymethanol intermediates that convert to dimethoxymethane in reactions with CH3OH on support acid sites or dehydrogenate to form methylformate on RuO2 and support redox sites. These conclusions are consistent with the tendency of Al2O3 and SiO2 supports to favor dimethoxymethane formation, while SnO2, ZrO2, and TiO2 preferentially form methylformate. These support effects on secondary reactions were confirmed by measured CH3OH oxidation rates and selectivities on physical mixtures of supported RuO2 catalysts and pure supports. Ethanol also reacts on supported RuO2 domains to form predominately acetaldehyde and diethoxyethane at 300-400 K. The bifunctional nature of these reaction pathways and the remarkable ability of RuO2-based catalysts to oxidize CH3OH to HCHO at unprecedented low temperatures introduce significant opportunities for new routes to complex oxygenates, including some containing C-C bonds, using methanol or ethanol as intermediates derived from natural gas or biomass.« less
Supported Dendrimer-Encapsulated Metal Clusters: Toward Heterogenizing Homogeneous Catalysts
Ye, Rong; Zhukhovitskiy, Aleksandr V.; Deraedt, Christophe V.; ...
2017-07-13
Recyclable catalysts, especially those that display selective reactivity, are vital for the development of sustainable chemical processes. Among available catalyst platforms, heterogeneous catalysts are particularly well-disposed toward separation from the reaction mixture via filtration methods, which renders them readily recyclable. Furthermore, heterogeneous catalysts offer numerous handles—some without homogeneous analogues—for performance and selectivity optimization. These handles include nanoparticle size, pore profile of porous supports, surface ligands and interface with oxide supports, and flow rate through a solid catalyst bed. Despite these available handles, however, conventional heterogeneous catalysts are themselves often structurally heterogeneous compared to homogeneous catalysts, which complicates efforts to optimizemore » and expand the scope of their reactivity and selectivity. Ongoing efforts in our laboratories are aimed to address the above challenge by heterogenizing homogeneous catalysts, which can be defined as the modification of homogeneous catalysts to render them in a separable (solid) phase from the starting materials and products. Specifically, we grow the small nanoclusters in dendrimers, a class of uniform polymers with the connectivity of fractal trees and generally radial symmetry. Thanks to their dense multivalency, shape persistence, and structural uniformity, dendrimers have proven to be versatile scaffolds for the synthesis and stabilization of small nanoclusters. Then these dendrimer-encapsulated metal clusters (DEMCs) are adsorbed onto mesoporous silica. Through this method, we have achieved selective transformations that had been challenging to accomplish in a heterogeneous setting, e.g., π-bond activation and aldol reactions. Extensive investigation into the catalytic systems under reaction conditions allowed us to correlate the structural features (e.g., oxidation states) of the catalysts and their activity. Moreover, we have demonstrated that supported DEMCs are also excellent catalysts for typical heterogeneous reactions, including hydrogenation and alkane isomerization. Critically, these investigations also confirmed that the supported DEMCs are heterogeneous and stable against leaching. Catalysts optimization is achieved through the modulation of various parameters. The clusters are oxidized (e.g., with PhICl 2) or reduced (e.g., with H 2) in situ. Changing the dendrimer properties (e.g., generation, terminal functional groups) is analogous to ligand modification in homogeneous catalysts, which affect both catalytic activity and selectivity. Similarly, pore size of the support is another factor in determining product distribution. In a flow reactor, the flow rate is adjusted to control the residence time of the starting material and intermediates, and thus the final product selectivity. Our approach to heterogeneous catalysis affords various advantages: (1) the catalyst system can tap into the reactivity typical to homogeneous catalysts, which conventional heterogeneous catalysts could not achieve; (2) unlike most homogeneous catalysts with comparable performance, the heterogenized homogeneous catalysts can be recycled; (3) improved activity or selectivity compared to conventional homogeneous catalysts is possible because of uniquely heterogeneous parameters for optimization. Here in this Account, we will briefly introduce metal clusters and describe the synthesis and characterizations of supported DEMCs. We will present the catalysis studies of supported DEMCs in both the batch and flow modes. Lastly, we will summarize the current state of heterogenizing homogeneous catalysis and provide future directions for this area of research.« less
NASA Technical Reports Server (NTRS)
Locke, Darren R.; Yazzie, Cyriah A.; Burton, Aaron S.; Niles, Paul B.; Johnson, Natasha M.
2014-01-01
Abiotic generation of complex organic compounds, in the early solar nebula that formed our solar system, is hypothesized by some to occur via Fischer-Tropsch (FT) synthesis. In its simplest form, FT synthesis involves the low temperature (<300degC) catalytic reaction of hydrogen and carbon monoxide gases to form more complex hydrocarbon compounds, primarily n-alkanes, via reactive nano-particulate iron, nickel, or cobalt, for example. Industrially, this type of synthesis has been utilized in the gas-to-liquid process to convert syngas, produced from coal, natural gas, or biomass, into paraffin waxes that can be cracked to produce liquid diesel fuels. In general, the effect of increasing reaction temperature (>300degC) produces FT products that include lesser amounts of n-alkanes and greater alkene, alcohol, and polycyclic aromatic hydrocarbon (PAH) compounds. We have begun to experimentally investigate FT synthesis in the context of abiotic generation of organic compounds in the early solar nebula. It is generally thought that the early solar nebula included abundant hydrogen and carbon monoxide gases and nano-particulate matter such as iron and metal silicates that could have catalyzed the FT reaction. The effect of FT reaction temperature, catalyst type, and experiment duration on the resulting products is being investigated. These solid organic products are analyzed by thermal-stepwise pyrolysis-GCMS and yield the types and distribution of hydrocarbon compounds released as a function of temperature. We show how the FT products vary by reaction temperature, catalyst type, and experimental duration and compare these products to organic compounds found to be indigenous to ordinary chondrite meteorites. We hypothesize that the origin of organics in some chondritic meteorites, that represent an aggregation of materials from the early solar system, may at least in part be from FT synthesis that occurred in the early solar nebula.
Solar photothermochemical alkane reverse combustion
Chanmanee, Wilaiwan; Islam, Mohammad Fakrul; Dennis, Brian H.; MacDonnell, Frederick M.
2016-01-01
A one-step, gas-phase photothermocatalytic process for the synthesis of hydrocarbons, including liquid alkanes, aromatics, and oxygenates, with carbon numbers (Cn) up to C13, from CO2 and water is demonstrated in a flow photoreactor operating at elevated temperatures (180–200 °C) and pressures (1–6 bar) using a 5% cobalt on TiO2 catalyst and under UV irradiation. A parametric study of temperature, pressure, and partial pressure ratio revealed that temperatures in excess of 160 °C are needed to obtain the higher Cn products in quantity and that the product distribution shifts toward higher Cn products with increasing pressure. In the best run so far, over 13% by mass of the products were C5+ hydrocarbons and some of these, i.e., octane, are drop-in replacements for existing liquid hydrocarbons fuels. Dioxygen was detected in yields ranging between 64% and 150%. In principle, this tandem photochemical–thermochemical process, fitted with a photocatalyst better matched to the solar spectrum, could provide a cheap and direct method to produce liquid hydrocarbons from CO2 and water via a solar process which uses concentrated sunlight for both photochemical excitation to generate high-energy intermediates and heat to drive important thermochemical carbon-chain-forming reactions. PMID:26903631
Theoretical study of the rhenium–alkane interaction in transition metal–alkane σ-complexes
Cobar, Erika A.; Khaliullin, Rustam Z.; Bergman, Robert G.; Head-Gordon, Martin
2007-01-01
Metal–alkane binding energies have been calculated for [CpRe(CO)2](alkane) and [(CO)2M(C5H4)CC(C5H4)M(CO)2](alkane), where M = Re or Mn. Calculated binding energies were found to increase with the number of metal–alkane interaction sites. In all cases examined, the manganese–alkane binding energies were predicted to be significantly lower than those for the analogous rhenium–alkane complexes. The metal (Mn or Re)–alkane interaction was predicted to be primarily one of charge transfer, both from the alkane to the metal complex (70–80% of total charge transfer) and from the metal complex to the alkane (20–30% of the total charge transfer). PMID:17442751
Shul'pin, Georgiy B
2013-09-28
This brief essay consists of a few "exciting stories" devoted to relations within a metal-complex catalyst between a metal ion and a coordinated ligand. When, as in the case of a human couple, the rapport of the partners is cordial and a love cements these relations, a chemist finds an ideal married couple, in other words he obtains a catalyst of choice which allows him to functionalize C-H bonds very efficiently and selectively. Examples of such lucky marriages in the catalytic world of ions and ligands are discussed here. Activity of the catalyst is characterized by turnover number (TON) or turnover frequency (TOF) as well as by yield of a target product. Introducing a chelating N,N- or N,O-ligand to the catalyst molecule (this can be an iron or manganese derivative) sharply enhances its activity. However, the activity of vanadium derivatives (with additionally added to the solution pyrazinecarboxylic acid, PCA) as well as of various osmium complexes does not dramatically depend on the nature of ligands surrounding metal ions. Complexes of these metals are very efficient catalysts in oxidations with H2O2. Osmium derivatives are record-holders exhibiting extremely high TONs whereas vanadium complexes are on the second position. Finally, elegant examples of alkane functionalization on the ions of non-transition metals (aluminium, gallium etc.) are described when one ligand within the metal complex (namely, hydroperoxyl ligand HOO(-)) helps other ligand of this complex (H2O2 molecule coordinated to the metal) to disintegrate into two species, generating very reactive hydroxyl radical. Hydrogen peroxide molecule, even ligated to the metal ion, is perfectly stable without the assistance of the neighboring HOO(-) ligand. This ligand can be easily oxidized donating an electron to its partner ligand (H2O2). In an analogous case, when the central ion in the catalyst is a transition metal, this ion changing its oxidation state can donate an electron to the coordinated H2O2 fragment. This provokes the O-O bond rupture in the hydrogen peroxide molecule as is assumed for the role of Fe(2+) ions in the Fenton system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ye, Rong; Zhukhovitskiy, Aleksandr V.; Deraedt, Christophe V.
Recyclable catalysts, especially those that display selective reactivity, are vital for the development of sustainable chemical processes. Among available catalyst platforms, heterogeneous catalysts are particularly well-disposed toward separation from the reaction mixture via filtration methods, which renders them readily recyclable. Furthermore, heterogeneous catalysts offer numerous handles—some without homogeneous analogues—for performance and selectivity optimization. These handles include nanoparticle size, pore profile of porous supports, surface ligands and interface with oxide supports, and flow rate through a solid catalyst bed. Despite these available handles, however, conventional heterogeneous catalysts are themselves often structurally heterogeneous compared to homogeneous catalysts, which complicates efforts to optimizemore » and expand the scope of their reactivity and selectivity. Ongoing efforts in our laboratories are aimed to address the above challenge by heterogenizing homogeneous catalysts, which can be defined as the modification of homogeneous catalysts to render them in a separable (solid) phase from the starting materials and products. Specifically, we grow the small nanoclusters in dendrimers, a class of uniform polymers with the connectivity of fractal trees and generally radial symmetry. Thanks to their dense multivalency, shape persistence, and structural uniformity, dendrimers have proven to be versatile scaffolds for the synthesis and stabilization of small nanoclusters. Then these dendrimer-encapsulated metal clusters (DEMCs) are adsorbed onto mesoporous silica. Through this method, we have achieved selective transformations that had been challenging to accomplish in a heterogeneous setting, e.g., π-bond activation and aldol reactions. Extensive investigation into the catalytic systems under reaction conditions allowed us to correlate the structural features (e.g., oxidation states) of the catalysts and their activity. Moreover, we have demonstrated that supported DEMCs are also excellent catalysts for typical heterogeneous reactions, including hydrogenation and alkane isomerization. Critically, these investigations also confirmed that the supported DEMCs are heterogeneous and stable against leaching. Catalysts optimization is achieved through the modulation of various parameters. The clusters are oxidized (e.g., with PhICl 2) or reduced (e.g., with H 2) in situ. Changing the dendrimer properties (e.g., generation, terminal functional groups) is analogous to ligand modification in homogeneous catalysts, which affect both catalytic activity and selectivity. Similarly, pore size of the support is another factor in determining product distribution. In a flow reactor, the flow rate is adjusted to control the residence time of the starting material and intermediates, and thus the final product selectivity. Our approach to heterogeneous catalysis affords various advantages: (1) the catalyst system can tap into the reactivity typical to homogeneous catalysts, which conventional heterogeneous catalysts could not achieve; (2) unlike most homogeneous catalysts with comparable performance, the heterogenized homogeneous catalysts can be recycled; (3) improved activity or selectivity compared to conventional homogeneous catalysts is possible because of uniquely heterogeneous parameters for optimization. Here in this Account, we will briefly introduce metal clusters and describe the synthesis and characterizations of supported DEMCs. We will present the catalysis studies of supported DEMCs in both the batch and flow modes. Lastly, we will summarize the current state of heterogenizing homogeneous catalysis and provide future directions for this area of research.« less
Xu, Zhen-Feng; Wang, Yixuan
2011-01-01
The adsorption and dehydrogenation reactions of ethanol over bimetallic clusters, Pt3M (M = Pt, Ru, Sn, Re, Rh, and Pd), have been extensively investigated with density functional theory. Both the α-hydrogen and hydroxyl adsorptions on Pt as well as on the alloyed transition metal M sites of PtM were considered as initial reaction steps. The adsorptions of ethanol on Pt and M sites of some PtM via the α-hydrogen were well established. Although the α-hydrogen adsorption on Pt site is weaker than the hydroxyl, the potential energy profiles show that the dehydrogenation via the α-hydrogen path has much lower energy barrier than that via the hydroxyl path. Generally for the α-hydrogen path the adsorption is a rate-determining-step because of rather low dehydrogenation barrier for the α-hydrogen adsorption complex (thermodynamic control), while the hydroxyl path is determined by its dehydrogenation step (kinetic control). The effects of alloyed metal on the catalysis activity of Pt for ethanol partial oxidation, including adsorption energy, energy barrier, electronic structure, and eventually rate constant were discussed. Among all of the alloyed metals only Sn enhances the rate constant of the dehydrogenation via the α-hydrogen path on the Pt site of Pt3Sn as compared with Pt alone, which interprets why the PtSn is the most active to the oxidation of ethanol. PMID:22102920
Interconversion of CO2 and formic acid by bio-inspired Ir complexes with pendent bases.
Fujita, Etsuko; Muckerman, James T; Himeda, Yuichiro
2013-01-01
Recent investigations of the interconversion of CO2 and formic acid using Ru, Ir and Fe complexes are summarized in this review. During the past several years, both the reaction rates and catalyst stabilities have been significantly improved. Remarkably, the interconversion (i.e., reversibility) has also been achieved under mild conditions in environmentally benign water solvent by slightly changing the pH of the aqueous solution. Only a few catalysts seem to reflect a bio-inspired design such as the use of proton responsive ligands, ligands with pendent bases or acids for a second-coordination-sphere interaction, electroresponsive ligands, and/or ligands having a hydrogen bonding function with a solvent molecule or an added reagent. The most successful of these is an iridium dinuclear complex catalyst that at least has the first three of these characteristics associated with its bridging ligand. By utilizing an acid/base equilibrium for proton removal, the ligand becomes a strong electron donor, resulting in Ir(I) character with a vacant coordination site at each metal center in slightly basic solution. Complemented by DFT calculations, kinetic studies of the rates of formate production using a related family of Ir complexes with and without such functions on the ligand reveal that the rate-determining step for the CO2 hydrogenation is likely to be H2 addition through heterolytic cleavage involving a "proton relay" through the pendent base. The dehydrogenation of formic acid, owing to the proton responsive ligands changing character under slightly acidic pH conditions, is likely to occur by a mechanism with a different rate-determining step. This article is part of a Special Issue entitled: Metals in Bioenergetics and Biomimetics Systems. Copyright © 2012 Elsevier B.V. All rights reserved.
Dehydrogenation of goethite in Earth’s deep lower mantle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Qingyang; Kim, Duck Young; Liu, Jin
2017-01-31
The cycling of hydrogen influences the structure, composition, and stratification of Earth’s interior. Our recent discovery of pyrite-structured iron peroxide (designated as the P phase) and the formation of the P phase from dehydrogenation of goethite FeO 2H implies the separation of the oxygen and hydrogen cycles in the deep lower mantle beneath 1,800 km. Here we further characterize the residual hydrogen, x, in the P-phase FeO 2Hx. Using a combination of theoretical simulations and high-pressure–temperature experiments, we calibrated the x dependence of molar volume of the P phase. Within the current range of experimental conditions, we observed a compositionalmore » range of P phase of 0.39 < x < 0.81, corresponding to 19–61% dehydrogenation. Increasing temperature and heating time will help release hydrogen and lower x, suggesting that dehydrogenation could be approaching completion at the high-temperature conditions of the lower mantle over extended geological time. Our observations indicate a fundamental change in the mode of hydrogen release from dehydration in the upper mantle to dehydrogenation in the deep lower mantle, thus differentiating the deep hydrogen and hydrous cycles.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hutton, Phillip N.
This report describes research into an innovative laser-enhanced catalytic pyrolysis technology that has the potential to significantly decrease the cost of cracking ethane and other alkanes found in shale gas ethylene. Similar to how water is resonantly heated by microwaves, a CO 2 laser can resonantly heat ethylene, producing radicals that convert ethane to ethylene at lower reactor temperatures. Proof of concept experiments were performed to determine if commercial grade CO 2 lasers at one-twenty fifth the cost of scientific grade lasers could crack ethane at lower temperatures than conventional technology. Cr doped MgO catalyst was then inserted in themore » reaction chamber to further increase conersion rates.« less
Wijesekera, T.; Lyons, J.E.; Ellis, P.E. Jr.
1996-11-05
The invention comprises new compositions of matter, which are iron, manganese, cobalt or ruthenium complexes of porphyrins having hydrogen, haloalkyl or haloaryl groups in meso positions, two of the opposed meso atoms or groups being hydrogen or haloaryl, and two of the opposed meso atoms or groups being hydrogen or haloalkyl, but not all four of the meso atoms or groups being hydrogen. The invention also comprises new compositions of matter in which all four of the meso positions are substituted with haloalkyl groups and the beta positions are substituted with halogen atoms. A new method of synthesizing porphyrinogens is also provided. The novel compositions and others made according to the process of the invention are useful as hydrocarbon conversion catalysts; for example, for the oxidation of alkanes and the decomposition of hydroperoxides.
Wijesekera, Tilak; Lyons, James E.; Ellis, Jr., Paul E.
1996-01-01
The invention comprises new compositions of matter, which are iron, manganese, cobalt or ruthenium complexes of porphyrins having hydrogen, haloalkyl or haloaryl groups in meso positions, two of the opposed meso atoms or groups being hydrogen or haloaryl, and two of the opposed meso atoms or groups being hydrogen or haloalkyl, but not all four of the meso atoms or groups being hydrogen. The invention also comprises new compositions of matter in which all four of the meso positions are substituted with haloalkyl groups and the beta positions are substituted with halogen atoms. A new method of synthesizing porphyrinogens is also provided. The novel compositions and others made according to the process of the invention are useful as hydrocarbon conversion catalysts; for example, for the oxidation of alkanes and the decomposition of hydroperoxides.
The Synthesis, Characterization and Dehydrogenation of Sigma‐Complexes of BN‐Cyclohexanes
Kumar, Amit; Ishibashi, Jacob S. A.; Hooper, Thomas N.; Mikulas, Tanya C.; Dixon, David A.
2015-01-01
Abstract The coordination chemistry of the 1,2‐BN‐cyclohexanes 2,2‐R2‐1,2‐B,N‐C4H10 (R2=HH, MeH, Me2) with Ir and Rh metal fragments has been studied. This led to the solution (NMR spectroscopy) and solid‐state (X‐ray diffraction) characterization of [Ir(PCy3)2(H)2(η2η2‐H2BNR2C4H8)][BArF 4] (NR2=NH2, NMeH) and [Rh(iPr2PCH2CH2CH2PiPr2)(η2η2‐H2BNR2C4H8)][BArF 4] (NR2=NH2, NMeH, NMe2). For NR2=NH2 subsequent metal‐promoted, dehydrocoupling shows the eventual formation of the cyclic tricyclic borazine [BNC4H8]3, via amino‐borane and, tentatively characterized using DFT/GIAO chemical shift calculations, cycloborazane intermediates. For NR2=NMeH the final product is the cyclic amino‐borane HBNMeC4H8. The mechanism of dehydrogenation of 2,2‐H,Me‐1,2‐B,N‐C4H10 using the {Rh(iPr2PCH2CH2CH2PiPr2)}+ catalyst has been probed. Catalytic experiments indicate the rapid formation of a dimeric species, [Rh2(iPr2PCH2CH2CH2PiPr2)2H5][BArF 4]. Using the initial rate method starting from this dimer, a first‐order relationship to [amine‐borane], but half‐order to [Rh] is established, which is suggested to be due to a rapid dimer–monomer equilibrium operating. PMID:26602704
The Synthesis, Characterization and Dehydrogenation of Sigma-Complexes of BN-Cyclohexanes
Kumar, Amit; Ishibashi, Jacob S. A.; Hooper, Thomas N.; ...
2015-11-25
The coordination chemistry of the 1,2-BN-cyclohexanes 2,2-R 2-1,2-B,N-C 4H 10 (R 2=HH, MeH, Me 2) with Ir and Rh metal fragments has been studied. This led to the solution (NMR spectroscopy) and solid-state (X-ray diffraction) characterization of [Ir(PCy 3) 2(H) 2(η 2η 2-H 2BNR 2C 4H 8)][BAr F 4] (NR 2=NH 2, NMeH) and [Rh( iPr 2PCH 2CH 2CH 2P iPr 2)(η 2η 2-H 2BNR 2C 4H 8)][BAr F 4] (NR 2=NH 2, NMeH, NMe 2). For NR 2=NH 2 subsequent metal-promoted, dehydrocoupling shows the eventual formation of the cyclic tricyclic borazine [BNC 4H 8] 3, via amino-borane and, tentativelymore » characterized using DFT/GIAO chemical shift calculations, cycloborazane intermediates. For NR 2=NMeH the final product is the cyclic amino-borane HBNMeC 4H 8. The mechanism of dehydrogenation of 2,2-H,Me-1,2-B,N-C 4H 10 using the {Rh( iPr 2PCH 2CH 2CH 2P iPr 2)} + catalyst has been probed. Catalytic experiments indicate the rapid formation of a dimeric species, [Rh 2( iPr 2PCH 2CH 2CH 2P iPr 2) 2H 5][BAr F 4]. Using the initial rate method starting from this dimer, a first-order relationship to [amine-borane], but half-order to [Rh] is established, which is suggested to be due to a rapid dimer–monomer equilibrium operating.« less
Chaudhuri, Santanu; Graetz, Jason; Ignatov, Alex; Reilly, James J; Muckerman, James T
2006-09-06
We report the results of an experimental and theoretical study of hydrogen storage in sodium alanate (NaAlH(4)). Reversible hydrogen storage in this material is dependent on the presence of 2-4% Ti dopant. Our combined study shows that the role of Ti may be linked entirely to Ti-containing active catalytic sites in the metallic Al phase present in the dehydrogenated NaAlH(4). The EXAFS data presented here show that dehydrogenated samples contain a highly disordered distribution of Ti-Al distances with no long-range order beyond the second coordination sphere. We have used density functional theory techniques to calculate the chemical potential of possible Ti arrangements on an Al(001) surface for Ti coverages ranging from 0.125 to 0.5 monolayer (ML) and have identified those that can chemisorb molecular hydrogen via spontaneous or only moderately activated pathways. The chemisorption process exhibits a characteristic nodal symmetry property for the low-barrier sites: the incipient doped surface-H(2) adduct's highest occupied molecular orbital (HOMO) incorporates the sigma antibonding molecular orbital of hydrogen, allowing the transfer of charge density from the surface to dissociate the molecular hydrogen. This work also proposes a plausible mechanism for the transport of an aluminum hydride species back into the NaH lattice that is supported by Car-Parrinello molecular dynamics (CPMD) simulations of the stability and mobility of aluminum clusters (alanes) on Al(001). As an experimental validation of the proposed role of titanium and the subsequent diffusion of alanes, we demonstrate experimentally that AlH(3) reacts with NaH to form NaAlH(4) without any requirement of a catalyst or hydrogen overpressure.
Li, Qiang; Xu, Jie; Wu, Zhangxiong; Feng, Dan; Yang, Jianping; Wei, Jing; Wu, Qingling; Tu, Bo; Cao, Yong; Zhao, Dongyuan
2010-09-28
Highly ordered mesoporous ZrO(2)/carbon (FDU-15) composites have been synthesized via a facile evaporation induced triconstituent co-assembly (EISA) approach by using Pluronic F127 as a template and zirconium oxychloride octahydrate and resol as Zr and carbon sources. The synthesized mesoporous composites exhibit a highly ordered two-dimensional (2-D) hexagonal mesostructure with relatively high specific surface areas (up to 947 m(2) g(-1)), pore sizes around 3.8 nm and high pore volumes (up to 0.71 cm(3) g(-1)). The results clearly show that the crystalline zirconia nanoparticles (ca. 1.9-3.9 nm) are well-dispersed in amorphous matrices of the ordered mesoporous carbon FDU-15 materials, which construct the nanocomposites. The ordered mesostructures of the obtained ZrO(2)/FDU-15 composites can be well-retained even at the high pyrolysis temperature (up to 900 degrees C), suggesting a high thermal stability. The zirconia content of the ZrO(2)/FDU-15 composites can be tunable in a wide range (up to 47%). Moreover, the resultant mesoporous ZrO(2)/FDU-15 composites exhibit high catalytic activity in oxidative dehydrogenation (ODH) of ethylbenzene (EB) to styrene (ST), with high ethylbenzene conversion (59.6%) and styrene selectivity (90.4%), which is mainly attributed to the synergistic catalytic effect between the oxygen-containing groups located on the carbon pore walls and weakly basic sites of the nanocrystalline ZrO(2). Furthermore, the high specific surface areas and opening pore channels are also responsible for their high catalytic activity. Therefore, it is a very promising catalyst material in styrene production on an industrial scale.
Ledger, Araminta E W; Ellul, Charles E; Mahon, Mary F; Williams, Jonathan M J; Whittlesey, Michael K
2011-07-25
Addition of the amine-boranes H(3)B⋅NH(2)tBu, H(3)B⋅NHMe(2) and H(3)B⋅NH(3) to the cationic ruthenium fragment [Ru(xantphos)(PPh(3))(OH(2))H][BAr(F)(4)] (2; xantphos=4,5-bis(diphenylphosphino)-9,9-dimethylxanthene; BAr(F)(4)=[B{3,5-(CF(3))(2)C(6)H(3)}(4)](-)) affords the η(1)-B-H bound amine-borane complexes [Ru(xantphos)(PPh(3))(H(3)B⋅NH(2)tBu)H][BAr(F)(4)] (5), [Ru(xantphos)(PPh(3))(H(3) B⋅NHMe(2))H][BAr(F)(4)] (6) and [Ru(xantphos)(PPh(3))(H(3)B⋅NH(3))H][BAr(F)(4)] (7). The X-ray crystal structures of 5 and 7 have been determined with [BAr(F)(4)] and [BPh(4)] anions, respectively. Treatment of 2 with H(3)B⋅PHPh(2) resulted in quite different behaviour, with cleavage of the B-P interaction taking place to generate the structurally characterised bis-secondary phosphine complex [Ru(xantphos)(PHPh(2))(2)H][BPh(4)] (9). The xantphos complexes 2, 5 and 9 proved to be poor precursors for the catalytic dehydrogenation of H(3)B⋅NHMe(2). While the dppf species (dppf=1,1'-bis(diphenylphosphino)ferrocene) [Ru(dppf)(PPh(3))HCl] (3) and [Ru(dppf)(η(6)-C(6)H(5)PPh(2))H][BAr(F)(4)] (4) showed better, but still moderate activity, the agostic-stabilised N-heterocyclic carbene derivative [Ru(dppf)(ICy)HCl] (12; ICy=1,3-dicyclohexylimidazol-2-ylidene) proved to be the most efficient catalyst with a turnover number of 76 h(-1) at room temperature. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Franke, J.-H.; Kosov, D. S.
We study the adsorption and ring-opening of lactide on the naturally chiral metal surface Pt(321){sup S}. Lactide is a precursor for polylactic acid ring-opening polymerization, and Pt is a well known catalyst surface. We study, here, the energetics of the ring-opening of lactide on a surface that has a high density of kink atoms. These sites are expected to be present on a realistic Pt surface and show enhanced catalytic activity. The use of a naturally chiral surface also enables us to study potential chiral selectivity effects of the reaction at the same time. Using density functional theory with amore » functional that includes the van der Waals forces in a first-principles manner, we find modest adsorption energies of around 1.4 eV for the pristine molecule and different ring-opened states. The energy barrier to be overcome in the ring-opening reaction is found to be very small at 0.32 eV and 0.30 eV for LL- and its chiral partner DD-lactide, respectively. These energies are much smaller than the activation energy for a dehydrogenation reaction of 0.78 eV. Our results thus indicate that (a) ring-opening reactions of lactide on Pt(321) can be expected already at very low temperatures, and Pt might be a very effective catalyst for this reaction; (b) the ring-opening reaction rate shows noticeable enantioselectivity.« less
Kim, Minjune; Su, Yaqiong; Fukuoka, Atsushi; Hensen, Emiel J M; Nakajima, Kiyotaka
2018-05-14
The utilization of 5-(hydroxymethyl)furfural (HMF) for the large-scale production of essential chemicals has been largely limited by the formation of solid humin as a byproduct, which prevents the operation of stepwise batch-type and continuous flow-type processes. The reaction of HMF with 1,3-propanediol produces an HMF acetal derivative that exhibits excellent thermal stability. Aerobic oxidation of the HMF acetal with a CeO 2 -supported Au catalyst and Na 2 CO 3 in water gives a 90-95 % yield of furan 2,5-dicarboxylic acid, an increasingly important commodity chemical for the biorenewables industry, from concentrated solutions (10-20 wt %) without humin formation. The six-membered acetal ring suppresses thermal decomposition and self-polymerization of HMF in concentrated solutions. Kinetic studies supported by DFT calculations identify two crucial steps in the reaction mechanism, that is, the partial hydrolysis of the acetal into 5-formyl-2-furan carboxylic acid involving OH - and Lewis acid sites on CeO 2 , and subsequent oxidative dehydrogenation of the in situ generated hemiacetal involving Au nanoparticles. These results represent a significant advance over the current state of the art, overcoming an inherent limitation of the oxidation of HMF to an important monomer for biopolymer production. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zavahir, Sifani; Zhu, Huaiyong
2015-01-26
Catalytic oxidation of amine to imine is of intense present interest since imines are important intermediates for the synthesis of fine chemicals, pharmaceuticals, and agricultural chemicals. However, considerable efforts have been made to develop efficient methods for the oxidation of secondary amines to imines, while little attention has until recently been given to the oxidation of primary amines, presumably owing to the high reactivity of generated imines of primary amines that are easily dehydrogenated to nitriles. Herein, we report the oxidative coupling of a series of primary benzylic amines into corresponding imines with dioxygen as the benign oxidant over composite catalysts of TiO2 (anatase)-silicate under visible light irradiation of λ > 460 nm. Visible light response of this system is believed to be as a result of high population of defects and contacts between silicate and anatase crystals in the composite and the strong interaction between benzylic amine and the catalyst. It is found that tuning the intensity and wavelength of the light irradiation and the reaction temperature can remarkably enhance the reaction activity. Water can also act as a green medium for the reaction with an excellent selectivity. This report contributes to the use of readily synthesized, environmentally benign, TiO2 based composite photocatalyst and solar energy to realize the transformation of primary amines to imine compounds.
Rhodium-Catalyzed Dehydrogenative Borylation of Cyclic Alkenes
Kondoh, Azusa; Jamison, Timothy F.
2010-01-01
A rhodium-catalyzed dehydrogenative borylation of cyclic alkenes is described. This reaction provides direct access to cyclic 1-alkenylboronic acid pinacol esters, useful intermediates in organic synthesis. Suzuki-Miyaura cross-coupling applications are also presented. PMID:20107646
Activation mechanism and dehydrogenation behavior in bulk hypo/hyper-eutectic Mg-Ni alloy
NASA Astrophysics Data System (ADS)
Ding, Xin; Chen, Ruirun; Jin, Yinling; Chen, Xiaoyu; Guo, Jingjie; Su, Yanqing; Ding, Hongsheng; Fu, Hengzhi
2018-01-01
To investigate the effect of microstructure on the better de-/hydrogenation property of Mg-based alloy, hypo-eutectic Mg-8Ni (at. %) alloy and hyper-eutectic Mg-15Ni alloy are prepared by metallurgy method. The phase constitutions and microstructures are characterized by XRD and SEM/EDS. Mg-8/15Ni alloy is composed of primary Mg/Mg2Ni and eutectic Mg-Mg2Ni. In isothermal sorption test, Mg-15Ni alloy shows preferable activation performance and faster de-/hydrogenation rates than Mg-8Ni alloy. The respective hydrogen uptake capacity in 165min is 5.62 wt% and 5.76 wt% H2 at 300 °C 3 MPa. Intersections of Mg-Mg2Ni eutectic phase boundaries with particle surface provide excellent sites and paths for the dissociation and permeation of hydrogen. The de-/hydrogenation enthalpy and entropy values are determined by PCI measurement. Based on the DSC curves at different heating rates, the desorption behavior of Mg-8/15Ni hydride is revealed and the respective activation energy is calculated to be 134.67 kJ mol-1 and 88.34 kJ mol-1 H2 by Kissinger method. Synergic dehydrogenation occurs in eutectic MgH2-Mg2NiH4, which facilitates the primary MgH2 in Mg-8Ni hydride to decompose at a lower temperature. The rapid H diffusion and synergic effect in eutectic MgH2-Mg2NiH4 collectively contribute to the lower dehydrogenation energy barrier of Mg-15Ni hydride.
Catalytic aromatization of methane.
Spivey, James J; Hutchings, Graham
2014-02-07
Recent developments in natural gas production technology have led to lower prices for methane and renewed interest in converting methane to higher value products. Processes such as those based on syngas from methane reforming are being investigated. Another option is methane aromatization, which produces benzene and hydrogen: 6CH4(g) → C6H6(g) + 9H2(g) ΔG°(r) = +433 kJ mol(-1) ΔH°(r) = +531 kJ mol(-1). Thermodynamic calculations for this reaction show that benzene formation is insignificant below ∼600 °C, and that the formation of solid carbon [C(s)] is thermodynamically favored at temperatures above ∼300 °C. Benzene formation is insignificant at all temperatures up to 1000 °C when C(s) is included in the calculation of equilibrium composition. Interestingly, the thermodynamic limitation on benzene formation can be minimized by the addition of alkanes/alkenes to the methane feed. By far the most widely studied catalysts for this reaction are Mo/HZSM-5 and Mo/MCM-22. Benzene selectivities are generally between 60 and 80% at methane conversions of ∼10%, corresponding to net benzene yields of less than 10%. Major byproducts include lower molecular weight hydrocarbons and higher molecular weight substituted aromatics. However, carbon formation is inevitable, but the experimental findings show this can be kinetically limited by the use of H2 or oxidants in the feed, including CO2 or steam. A number of reactor configurations involving regeneration of the carbon-containing catalyst have been developed with the goal of minimizing the cost of regeneration of the catalyst once deactivated by carbon deposition. In this tutorial review we discuss the thermodynamics of this process, the catalysts used and the potential reactor configurations that can be applied.
Bimetallic Nanocatalysts in Mesoporous Silica for Hydrogen Production from Coal-Derived Fuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuila, Debasish; Ilias, Shamsuddin
2013-02-13
In steam reforming reactions (SRRs) of alkanes and alcohols to produce H 2, noble metals such as platinum (Pt) and palladium (Pd) are extensively used as catalyst. These metals are expensive; so, to reduce noble-metal loading, bi-metallic nanocatalysts containing non-noble metals in MCM-41 (Mobil Composition of Material No. 41, a mesoporous material) as a support material with high-surface area were synthesized using one-pot hydrothermal procedure with a surfactant such as cetyltrimethylammonium bromide (CTAB) as a template. Bi-metallic nanocatalysts of Pd-Ni and Pd-Co with varying metal loadings in MCM-41 were characterized by x-ray diffraction (XRD), N 2 adsorption, and Transmission electronmore » microscopy (TEM) techniques. The BET surface area of MCM-41 (~1000 m 2/g) containing metal nanoparticles decreases with the increase in metal loading. The FTIR studies confirm strong interaction between Si-O-M (M = Pd, Ni, Co) units and successful inclusion of metal into the mesoporous silica matrix. The catalyst activities were examined in steam reforming of methanol (SRM) reactions to produce hydrogen. Reference tests using catalysts containing individual metals (Pd, Ni and Co) were also performed to investigate the effect of the bimetallic system on the catalytic behavior in the SRM reactions. The bimetallic system remarkably improves the hydrogen selectivity, methanol conversion and stability of the catalyst. The results are consistent with a synergistic behavior for the Pd-Ni-bimetallic system. The performance, durability and thermal stability of the Pd-Ni/MCM-41 and Pd-Co/MCM-41 suggest that these materials may be promising catalysts for hydrogen production from biofuels. A part of this work for synthesis and characterization of Pd-Ni-MCM-41 and its activity for SRM reactions has been published (“Development of Mesoporous Silica Encapsulated Pd-Ni Nanocatalyst for Hydrogen Production” in “Production and Purification of Ultraclean Transportation Fuels”; Hu, Y., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 2011.)« less