Science.gov

Sample records for alkane radical cations

  1. Roaming radical pathways for the decomposition of alkanes.

    SciTech Connect

    Harding, L. B.; Klippenstein, S. J.

    2010-01-01

    CASPT2 calculations predict the existence of roaming radical pathways for the decomposition of propane, n-butane, isobutane and neopentane. The roaming radical paths lead to the formation of an alkane and an alkene instead of the expected radical products. The predicted barriers for the roaming radical paths lie {approx}1 kcal/mol below the corresponding radical asymptotes.

  2. Halogenated silanes, radicals, and cations

    NASA Astrophysics Data System (ADS)

    Wang, Liming; He, Yi-Liang

    2008-09-01

    Quantum chemistry study has been carried out on the structure and energetics of halogenated silanes, radicals, and cations (SiHxXy0,+1, X = F, Cl, Br; x + y = 1-4). The geometries are optimized at B3LYP/6-31+G(2df,p) level. The adiabatic ionization energiess (IEas), relative energetics of cations, proton affinities (PAs) of silanes, and the enthalpies of formation are predicted using G3(CC) model chemistry. Non-classical ion complex structures are found for hydrogenated cations and transition states connecting classical and non-classical structures are also located. The most stable cations for silylene and silyl radicals have their classical divalent and trivalent structures, and those for silanes have non-classical structures except for SiH3Br+ and SiH2Br2+. The non-classical structures for halosilane cations imply difficulty in experimentally measurement of the adiabatic ionization energies using photoionization or photoelectron studies. For SiH3X, SiH2X2, and SiHX3, the G3(CC) adiabatic IEas to classical ionic structures closest to their neutrals agree better with the photoelectron spectroscopic measurements. The transition states between classical and non-classical structures also hamper the photoionization determination of the appearance energies for silylene cations from silanes. The G3(CC) results for SiHx0,+1 agree excellently with the photoionization mass spectrometric study, and the results for fluorinated and chlorinated species also agree with the previous theoretical predictions at correlation levels from BAC-MP4 to CCSD(T)/CBS. The predicted enthalpy differences between SiH2Cl+, SiHCl2+, and SiCl3+ are also in accordance with previous kinetics study. The G3(CC) results show large discrepancies to the collision-induced charge transfer and/or dissociation reactions involving SiFx+ and SiClx+ ions, for which the G3(CC) enthalpies of formation are also significantly differed from the previous theoretical predictions, especially on SiFx+ (x = 2-4). The G3

  3. Radiolytic generation of radical cations in xenon matrices. Tetramethylcyclopropane radical cation and its transformations

    SciTech Connect

    Qin, X.Z.; Trifunac, A.D. )

    1990-04-05

    Radiolytic generation of radical cations in xenon matrices containing electron scavengers is illustrated by studying the 1,1,2,2-tetramethylcyclopropane radical cation. Dilute and concentrated solutions of tetramethylcyclopropane in xenon without electron scavengers and neat tetramethylcyclopropane yielded neutral radicals upon {gamma}-irradiation. Speculation on the mechanisms of radical formation is presented. The radical species observed in the {gamma}-irradiation of neat tetramethylcyclopropane appears to be identical with the paramagnetic species observed in CF{sub 2}ClCFCl{sub 2} above 120 K, suggesting that a neutral radical rather than the ring-opened distonic radical cation is observed in the CF{sub 2}ClCFCl{sub 2} matrix.

  4. Calculation of structures and bond dissociation energies of radical cations: The importance of through-bond delocalization in bibenzylic systems

    SciTech Connect

    Camaioni, D.M. )

    1990-12-19

    Structures ad energies ({Delta}H{degree}{sub f}) of radical cations and their radical and cationic fragments have been calculated by use of AM1 semiempirical molecular orbital theory and compared with experimental data in the literature. Experimental {Delta}H{degree}{sub f} correlate linearly with calculated heats giving nonzero intercepts and nonunit slopes. The best correlations as judged by the variance of the fit are obtained when performed according to structure types, i.e., aromatic radical cations, alkane radical cations, radicals, and cations. These correlations enable corrections to AM1 values that allow prediction of experimental {Delta}H{degree}{sub f} with uncertainties that approach experimental uncertainties. Used in this way, AM1 can augment experimental thermochemical data and enable confident predictions of reaction enthalpies. Bibenzylic radical cations are calculated to have charge and sin localized in only one of the aromatic rings ether through space or through the ethylenic bond are found.

  5. Dynamics of poly(4-hydroxystyrene) radical cation

    NASA Astrophysics Data System (ADS)

    Okamoto, Kazumasa; Kozawa, Takahiro; Tagawa, Seiichi

    2008-03-01

    Poly(4-hydroxystyrene) (PHS) has been used in KrF excimer laser (248 nm) lithography as a backbone polymer, and is also a promising material for EUV or electron beam lithography. Analysis of the intermediate species is important for the control of reactions in resist materials. Since the size of integrated circuits fabricated for mass production will decrease below 30 nm and the size error must also be decreased to the molecular level, the elucidation of proton dynamics at the molecular level is also important for reducing the deviation of the resist pattern size. In this study, the dynamics of PHS radical cations were studied, because PHS radical cation is main source of proton. The transient absorption of PHS was observed in the near-infrared region (NIR) in p-dioxane solutions by pulse radiolysis. The intramolecular PHS dimer radical cation (M2 +.) were observed, whereas p-cresol shows no distinct CR band. Although the radical cations of phenol derivatives are known to be easily deprotonated, it was found that M2 +. formation prevents deprotonation by its charge resonance stabilization.

  6. Electronic spectrum of 9-methylanthracenium radical cation

    NASA Astrophysics Data System (ADS)

    O'Connor, Gerard D.; Sanelli, Julian A.; Dryza, Vik; Bieske, Evan J.; Schmidt, Timothy W.

    2016-04-01

    The predissociation spectrum of the cold, argon-tagged, 9-methylanthracenium radical cation is reported from 8000 cm-1 to 44 500 cm-1. The reported spectrum contains bands corresponding to at least eight electronic transitions ranging from the near infrared to the ultraviolet. These electronic transitions are assigned through comparison with ab initio energies and intensities. The infrared D1←D0 transitions exhibit significant vibronic activity, which is assigned through comparison with TD-B3LYP excited state frequencies and intensities, as well as modelled vibronic interactions. Dissociation of 9-methylanthracenium is also observed at high visible-photon energies, resulting in the loss of either CH2 or CH3. The relevance of these spectra, and the spectra of other polycyclic aromatic hydrocarbon radical cations, to the largely unassigned diffuse interstellar bands, is discussed.

  7. Gas-Phase Reactions of Atomic Gold Cations with Linear Alkanes (C2-C9).

    PubMed

    Zhang, Ting; Li, Zi-Yu; Zhang, Mei-Qi; He, Sheng-Gui

    2016-06-30

    To develop proper ionization methods for alkanes, the reactivity of bare or ligated transition metal ions toward alkanes has attracted increasing interests. In this study, the reactions of the gold cations with linear alkanes from ethane up to nonane (CnH2n+2, n = 2-9) under mild conditions have been characterized by mass spectrometry and density functional theory calculations. When reacting with Au(+), small alkanes (n = 2-6) were confirmed to follow specific reaction channels of dehydrogenation for ethane and hydride transfer for others to generate product ions characteristic of the original alkanes, which indicates that Au(+) can act as a reagent ion to ionize alkanes from ethane to n-hexane. Strong dependence of the chain length of alkanes was observed for the rate constants and reaction efficiencies. Extensive fragmentation took place for larger alkanes (n > 6). Theoretical results show that the fragmentation induced by the hydride transfer occurs after the release of AuH. Moreover, the fragmentation of n-heptane was successfully avoided when the reaction took place in a high-pressure reactor. This implies that Au(+) is a potential reagent ion to ionize linear and even the branched alkanes. PMID:27266670

  8. Fragmentation Pathways in the Uracil Radical Cation

    SciTech Connect

    Zhou, Congyi; Matsika, Spiridoula; Kotur, Marija; Weinacht, Thomas C.

    2012-08-24

    We investigate pathways for fragmentation in the uracil radical cation using ab initio electronic structure calculations. We focus on the main fragments produced in pump–probe dissociative ionization experiments. These are fragments with mass to charge ratios (m/z) of 69, 28, 41, and 42. Barriers to dissociation along the ground ionic surface are reported, which provide an estimate of the energetic requirements for the production of the main fragments. Finally, direct and sequential fragmentation mechanisms have been analyzed, and it is concluded that sequential fragmentation after production of fragment with m/z 69 is the dominant mechanism for the production of the smaller fragments.

  9. Electron Spin Resonance Spectroscopic Studies of Radical Cation Reactions.

    NASA Astrophysics Data System (ADS)

    Dai, Sheng

    1990-01-01

    A spin Hamiltonian suitable for theoretical analyses of ESR spectra in this work is derived by using the general effective Hamiltonian theory in the usual Schrodinger representation. The Permutation Indices method is extended to obtain the dynamic exchange equations used in ESR lineshape simulation. The correlation between beta-hydrogen coupling constants and their geometric orientations is derived through the use of a perturbation method. The three electron bond model is extended to rationalize unimolecular rearrangements of radical cations. The ring-closed radical cations of 9,10-octalin oxide and syn-sesquinorbornene oxide have been characterized by ESR spectroscopy in the CFCl_3 matrix at low temperature. The ESR spectra of the former radical cation exhibit a novel alternating linewidth effect arising from an internal relation between the coupling constants for the four equivalent pairs of hydrogens. The self-electron-transfer rate constants between the methyl viologen dication and cation have been determined by dynamic ESR lineshape simulations at room temperature in allyl alcohol, water, methanol and propargyl alcohol solvents. The radical cation formed by the radiolytic oxidation of allylamine in Freon matrices at 77 K is shown to be the 3-iminiopropyl distonic species(3-iminium-1-propyl radical) resulting from a symmetry-allowed 1,2-hydrogen shift in the parent radical cation. The nucleophilic endocyclization of the but-3-en-1-ol radical cation to the protonated tetrahydrofuran -3-yl radical was observed in the radiolytic oxidation of but-3-en-1-ol in Freon matrices. ESR studies of the radiolytic oxidation of 1,5-hexadiyne have resulted in the first spectroscopic characterization of the radical cation Cope rearrangement, the 1,5-hexadiyne radical cation isomerizing to the 1,2,4,5 -hexatetraene radical cation. ESR studies show that the symmetric(C_{rm 2v}) bicyclo (3.3.0) -octa-2,6-diene-4,8-diyl(a bridged 1,4 -bishomobenzene species) radical cation is

  10. ESR study of the aziridine and azetidine radical cations: evidence for the C. C ring-opened aziridine radical cation

    SciTech Connect

    Qin, X.Z.; Williams, F.

    1986-05-22

    The radical cations from aziridine and azetidine have been characterized by ESR spectroscopy following their generation in the solid state by ..gamma.. irradiation of dilute solutions of the parent compounds in the CFCl/sub 3/ matrix at 77 K. The ESR parameters of the azetidine radical cation are typical of those for nitrogen-centered amine radical cations such as Me/sub 2/NH*/sup +/. On the other hand, the radical cation formed from aziridine has very different ESR parameters that compare closely to those for the isoelectronic C...C ring-opened form of the oxirane radical cation and the allyl radical. The radical cation formed from azetidine is therefore assigned a ring-closed structure with the unpaired electron in a 2p/sub z/ orbital on nitrogen perpendicular to the ring plane, whereas the cation from aziridine is an allylic C...C ring-opened planar isomer with the unpaired electron in a nonbonding ..pi.. orbital centered mainly on the two end carbon atoms. The neutral 1-aziridinyl and 1-azetidinyl radicals have been detected as radical products following the ..gamma.. irradiation of the parent compounds in the CFCl/sub 2/CF/sub 2/Cl and CF/sub 3/CCl/sub 3/ matrices. In particular, the 1-azetidinyl radical is produced cleanly from the azetidine radical cation in the CFCl/sub 2/CF/sub 2/Cl matrix at ca. 100 K.

  11. Oxidation Products of Semi-volatile Alkanes by Hydroxyl Radicals

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Worton, D. R.; Nah, T.; Goldstein, A. H.; Wilson, K. R.

    2013-12-01

    Alkanes are ubiquitous in the atmosphere and are important components that influence atmospheric chemistry. Semi-volatile alkanes are partitioned between the gas- and the particle-phases and can be readily oxidized in both phases. Previous studies have demonstrated that reaction rates and the products of OH oxidation are very different for organic compounds in the gas- and particle phases. In the present study, n-octadecane (C18H38), n-eicosane (C20H42), n-docosane (C22H46), n-tricosane (C24H50), and n-pentadecylcyclohexane (C21H42) were chosen as model compounds for semi-volatile alkanes to examine their OH-initiated oxidation reactions in a flow tube reactor. OH exposure was varied in the experiments, equivalent to oxidation of up to one week in the atmosphere. Oxidation products were collected on filters and analyzed using two-dimensional gas chromatography coupled to a high-resolution time-of-flight electron impact ionization and vacuum ultraviolet photoionization mass spectrometer. Most of the oxygenated higher molecular weight isomers were separated and quantified. Our results suggest that aerosol samples formed in the n-octadecane experiment were more oxidized than the other model compounds (i.e., functionalization products with three oxygen atoms per molecule compared to two oxygen atoms per molecule) at similar OH exposures and aerosol mass loadings. This is likely due to the concentration of n-octadecane in the gas phase where oxidation is more rapid. We find that the first-generation gas-phase oxidation products quickly partition to the particle phase after which higher-generation oxidation likely occurs in the particle phase. Interestingly, functionalized carbonyl isomers for the normal alkanes were only observed on the 4 carbon positions closest to the molecule end in all cases, which is in contrast to structure-reactivity relationship (SRR) predictions for gas-phase reactions. For n-octadecane, the concentrations of first-generation functionalization

  12. Effect of alkane chain length and counterion on the freezing transition of cationic surfactant adsorbed film at alkane mixture - water interfaces.

    PubMed

    Tokiwa, Yuhei; Sakamoto, Hiroyasu; Takiue, Takanori; Aratono, Makoto; Matsubara, Hiroki

    2015-05-21

    Penetration of alkane molecules into the adsorbed film gives rise to a surface freezing transition of cationic surfactant at the alkane-water interface. To examine the effect of the alkane chain length and counterion on the surface freezing, we employed interfacial tensiometry and ellipsometry to study the interface of cetyltrimethylammonium bromide and cetyltrimethylammonium chloride aqueous solutions against dodecane, tetradecane, hexadecane, and their mixtures. Applying theoretical equations to the experimental results obtained, we found that the alkane molecules that have the same chain length as the surfactant adsorb preferentially into the surface freezing film. Furthermore, we demonstrated that the freezing transition temperature of cationic surfactant adsorbed film was independent of the kind of counterion. PMID:25932500

  13. Aryl sulfoxide radical cations. Generation, spectral properties, and theoretical calculations.

    PubMed

    Baciocchi, Enrico; Del Giacco, Tiziana; Gerini, Maria Francesca; Lanzalunga, Osvaldo

    2006-08-17

    Aromatic sulfoxide radical cations have been generated by pulse radiolysis and laser flash photolysis techniques. In water (pulse radiolysis) the radical cations showed an intense absorption band in the UV region (ca. 300 nm) and a broad less intense band in the visible region (from 500 to 1000 nm) whose position depends on the nature of the ring substituent. At very low pulse energy, the radical cations decayed by first-order kinetics, the decay rate increasing as the pH increases. It is suggested that the decay involves a nucleophilic attack of H(2)O or OH(-) (in basic solutions) to the positively charged sulfur atom to give the radical ArSO(OH)CH(3)(*). By sensitized [N-methylquinolinium tetrafluoborate (NMQ(+))] laser flash photolysis (LFP) the aromatic sulfoxide radical cations were generated in acetonitrile. In these experiments, however, only the band of the radical cation in the visible region could be observed, the UV band being covered by the UV absorption of NMQ(+). The lambda(max) values of the bands in the visible region resulted almost identical to those observed in water for the same radical cations. In the LFP experiments the sulfoxide radical cations decayed by second-order kinetics at a diffusion-controlled rate, and the decay is attributed to the back electron transfer between the radical cation and NMQ(*). DFT calculations were also carried out for a number of 4-X ring substituted (X = H, Me, Br, OMe, CN) aromatic sulfoxide radical cations (and their neutral parents). In all radical cations, the conformation with the S-O bond almost coplanar with the aromatic ring is the only one corresponding to the energy minimum. The maximum of energy corresponds to the conformation where the S-O bond is perpendicular to the aromatic ring. The rotational energy barriers are not very high, ranging from 3.9 to 6.9 kcal/mol. In all radical cations, the major fraction of charge and spin density is localized on the SOMe group. However, a substantial delocalization

  14. Photochemical generation, isomerization, and oxygenation of stilbene cation radicals

    SciTech Connect

    Lewis, F.D.; Bedell, A.M.; Dykstra, R.E.; Elbert, J.E. ); Gould, I.R.; Farid, S. )

    1990-10-24

    The cation radicals of cis- and trans-stilbene and several of their ring-substituted derivatives have been generated in solution directly by means of pulsed-laser-induced electron transfer to singlet cyanoanthracenes or indirectly via electron transfer from biphenyl to the singlet cyanoanthracene followed by secondary electron transfer from the stilbenes to the biphenyl cation radical. Transient absorption spectra of the cis- and trans-stilbene cation radicals generated by secondary electron transfer are similar to those previously obtained in 77 K matrices. Quantum yields for radical ion-pair cage escape have been measured for direct electron transfer from the stilbenes to three neutral and one charged singlet acceptor. These values increase as the ion-pair energy increases due to decreased rate constants for radical ion-pair return electron transfer, in accord with the predictions of Marcus theory for highly exergonic electron transfer. Cage-escape efficiencies are larger for trans- vs cis-stilbene cation radicals, possibly due to the greater extent of charge delocalization in the planar trans vs nonpolar cis cation radicals. Cage-escape stilbene cation radicals can initiate a concentration-dependent one way cis- {yields} trans-stilbene isomerization reaction.

  15. Radical-radical interactions among oxidized guanine bases including guanine radical cation and dehydrogenated guanine radicals.

    PubMed

    Zhao, Jing; Wang, Mei; Yang, Hongfang; Zhang, Meng; Liu, Ping; Bu, Yuxiang

    2013-09-19

    We present here a theoretical investigation of the structural and electronic properties of di-ionized GG base pairs (G(•+)G(•+),G(-H1)(•)G(•+), and G(-H1)(•)G(-H1)(•)) consisting of the guanine cation radical (G(•+)) and/or dehydrogenated guanine radical (G(-H1)(•)) using density functional theory calculations. Different coupling modes (Watson-Crick/WC, Hoogsteen/Hoog, and minor groove/min hydrogen bonding, and π-π stacking modes) are considered. We infer that a series of G(•+)G(•+) complexes can be formed by the high-energy radiation. On the basis of density functional theory and complete active space self-consistent (CASSCF) calculations, we reveal that in the H-bonded and N-N cross-linked modes, (G(•+)G(•+))WC, (G(-H1)(•)G(-H1)(•))WC, (G(-H1)(•)G(-H1)(•))minI, and (G(-H1)(•)G(-H1)(•))minIII have the triplet ground states; (G(•+)G(•+))HoogI, (G(-H1)(•)G(•+))WC, (G(-H1)(•)G(•+))HoogI, (G(-H1)(•)G(•+))minI, (G(-H1)(•)G(•+))minII, and (G(-H1)(•)G(-H1)(•))minII possess open-shell broken-symmetry diradical-characterized singlet ground states; and (G(•+)G(•+))HoogII, (G(•+)G(•+))minI, (G(•+)G(•+))minII, (G(•+)G(•+))minIII, (G(•+)G(•+))HoHo, (G(-H1)(•)G(•+))minIII, (G(-H1)(•)G(•+))HoHo, and (G(-H1)(•)G(-H1)(•))HoHo are the closed-shell systems. For these H-bonded diradical complexes, the magnetic interactions are weak, especially in the diradical G(•+)G(•+) series and G(-H1)(•)G(-H1)(•) series. The magnetic coupling interactions of the diradical systems are controlled by intermolecular interactions (H-bond, electrostatic repulsion, and radical coupling). The radical-radical interaction in the π-π stacked di-ionized GG base pairs ((G(•+)G(•+))ππ, (G(-H1)(•)G(•+))ππ, and (G(-H1)(•)G(-H1)(•))ππ) are also considered, and the magnetic coupling interactions in these π-π stacked base pairs are large. This is the first theoretical prediction that some di

  16. Investigation of Fragmentation of Tryptophan Nitrogen Radical Cation

    NASA Astrophysics Data System (ADS)

    Piatkivskyi, Andrii; Happ, Marshall; Lau, Justin Kai-Chi; Siu, K. W. Michael; Hopkinson, Alan C.; Ryzhov, Victor

    2015-08-01

    This work describes investigation of the fragmentation mechanism of tryptophan N-indolyl radical cation, H3N+-TrpN• ( m/ z 204) studied via DFT calculations and several gas-phase experimental techniques. The main fragment ion at m/ z 131, shown to be a mixture of up to four isomers including 3-methylindole (3MI) π-radical cation, was found to undergo further loss of an H atom to yield one of the two isomeric m/ z 130 ions. 3-Methylindole radical cation generated independently (via CID of [CuII(terpy)3MI]•2+) displayed gas-phase reactivity partially similar to that of the m/ z 131 fragment, further confirming our proposed mechanism. CID of deuterated tryptophan N-indolyl radical cation ( m/ z 208) suggested that up to six H atoms are involved in the pathway to formation of the m/ z 131 ion, consistent with hydrogen atom scrambling during CID of protonated Trp.

  17. DFT study on the cycloreversion of thietane radical cations.

    PubMed

    Domingo, Luis R; Pérez-Ruiz, Raúl; Argüello, Juan E; Miranda, Miguel A

    2011-06-01

    The molecular mechanism of the cycloreversion (CR) of thietane radical cations has been analyzed in detail at the UB3LYP/6-31G* level of theory. Results have shown that the process takes place via a stepwise mechanism leading to alkenes and thiobenzophenone; alternatively, formal [4+2] cycloadducts are obtained. Thus, the CR of radical cations 1a,b(•+) is initiated by C2-C3 bond breaking, giving common intermediates INa,b. At this stage, two reaction pathways are feasible involving ion molecule complexes IMCa,b (i) or radical cations 4a,b(•+) (ii). Calculations support that 1a(•+) follows reaction pathway ii (leading to the formal [4+2] cycloadducts 5a). By contrast, 1b(•+) follows pathway i, leading to trans-stilbene radical cation (2b(•+)) and thiobenzophenone. PMID:21561127

  18. Mechanism for radical cation transport in duplex DNA oligonucleotides.

    PubMed

    Liu, Chu-Sheng; Hernandez, Rigoberto; Schuster, Gary B

    2004-03-10

    We investigated the photoinduced one-electron oxidation of a series of DNA oligomers having a covalently linked anthraquinone group (AQ) and containing [(A)(n)GG](m) or [(T)(n)GG](m) segments. These oligomers have m GG steps, where m = 4 or 6, separated by (A)(n) or (T)(n) segments, where n = 1-7 for the (A)(n) set and 1-5 for the (T)(n) set. Irradiation with UV light that is absorbed by the AQ causes injection of a radical cation into the DNA. The radical cation migrates through the DNA, causing chemical reaction, primarily at GG steps, that leads to strand cleavage after piperidine treatment. The uniform, systematic structure of the DNA oligonucleotides investigated permits the numerical solution of a kinetic scheme that models these reactions. This analysis yields two rate constants, k(hop), for hopping of the radical cation from one site to adjacent sites, and k(trap), for irreversible reaction of the radical cation with H(2)O or O(2). Analysis of these findings indicates that radical cation hopping in these duplex DNA oligomers is a process that occurs on a microsecond time scale. The value of k(hop) depends on the number of base pairs in the (A)(n) and (T)(n) segments in a systematic way. We interpret these results in terms of a thermally activated adiabatic mechanism for radical cation hopping that we identify as phonon-assisted polaron hopping. PMID:14995205

  19. A Supramolecularly Activated Radical Cation for Accelerated Catalytic Oxidation.

    PubMed

    Jiao, Yang; Li, Wan-Lu; Xu, Jiang-Fei; Wang, Guangtong; Li, Jun; Wang, Zhiqiang; Zhang, Xi

    2016-07-25

    Tuning the activity of radicals is crucial for radical reactions and radical-based materials. Herein, we report a supramolecular strategy to accelerate the Fenton reaction through the construction of supramolecularly activated radical cations. As a proof of the concept, cucurbit[7]uril (CB[7]) was introduced, through host-guest interactions, onto each side of a derivative of 1,4-diketopyrrolo[3,4-c]pyrrole (DPP), a model dye for Fenton oxidation. The DPP radical cation, the key intermediate in the oxidation process, was activated by the electrostatically negative carbonyl groups of CB[7]. The activation induced a drastic decrease in the apparent activation energy and greatly increased the reaction rate. This facile supramolecular strategy is a promising method for promoting radical reactions. It may also open up a new route for the catalytic oxidation of organic pollutants for water purification and widen the realm of supramolecular catalysis. PMID:27273046

  20. Pyridine radical cation and its fluorine substituted derivatives

    USGS Publications Warehouse

    Bondybey, V.E.; English, J.H.; Shiley, R.H.

    1982-01-01

    The spectra and relaxation of the pyridine cation and of several of its fluorinated derivatives are studied in low temperature Ne matrices. The ions are generated by direct photoionization of the parent compounds. Of the compounds studied, laser induced → and → fluorescence is observed only for the 2, 6‐difluoropyridine cation. The analysis of the spectrum indicates that the ion is planar both in the and states. The large variety in the spectroscopic and relaxation behavior of fluoropyridine radical cations is explained in terms of their electronic structure and of the differential shifts of the individual electronic states caused by the fluorine substitution.

  1. Carotenoid cation radicals: electrochemical, optical, and EPR study

    SciTech Connect

    Grant, J.L.; Kramer, V.J.; Ding, R.; Kispert, L.D.

    1988-03-30

    The general aim of this investigation is to determine whether carotenoid cation radicals can be produced, and stabilized, electrochemically. Hence, the authors have undertaken a detailed study of the electrooxidation of various carotenoids (..beta..-carotene (I), ..beta..-apo-8'-carotenal (II), and canthaxanthin (III) using the techniques of cyclic voltammetry, controlled-potential electrolysis (cpe) in conjunction with optical spectroscopy, and EPR spectroscopy coupled with in situ electrolysis. They report the successful generation of carotenoid cation radicals via electrochemical oxidation and, furthermore, the stabilization of these radicals for several minutes in CH/sub 2/Cl/sub 2/ and C/sub 2/H/sub 4/Cl/sub 2/ solvents.

  2. Electron transfer reactions within zeolites: Radical cation from benzonorbornadiene

    SciTech Connect

    Pitchumani, K.; Ramamurthy, V.; Corbin, D.R.

    1996-08-28

    Zeolites are being used as solid acid catalysts in a number of commercial processes. Occasionally zeolites are also reported to perform as electron transfer agents. Recently, we observed that radical cations of certain olefins and thiophene oligomers can be generated spontaneously within ZSM-5 zeolites. We noticed that these radical cations generated from diphenyl polyenes and thiophene oligomers were remarkably stable (at room temperature) within ZSM-5 and can be characterized spectroscopically at leisure. We have initiated a program on electron transfer processes within large pore zeolites. The basis of this approach is that once a cation radical is generated within a large pore zeolite, it will have sufficient room to undergo a molecular transformation. Our aim is to identify a condition under which electron transfer can be routinely and reliably carried out within large pore zeolites such as faujasites. To our great surprise, when benzonorbornadiene A and a number of olefins were included in divalent cation exchanged faujasites. they were transformed into products very quickly (<15 min). This observation allowed us to explore the use of zeolites as oxidants. Results of our studies on benzonorbornadiene are presented in this communication. 16 refs., 1 fig.

  3. Absorption and electroabsorption spectra of carotenoid cation radical and dication

    NASA Astrophysics Data System (ADS)

    Krawczyk, Stanisław

    1998-05-01

    Radical cations and dications of two carotenoids astaxanthin and canthaxanthin were prepared by oxidation with FeCl 3 in fluorinated alcohols at room temperature. Absorption and electroabsorption (Stark effect) spectra were recorded for astaxanthin cations in mixed frozen matrices at temperatures about 160 K. The D 0→D 2 transition in cation radical is at 835 nm. The electroabsorption spectrum for the D 0→D 2 transition exhibits a negative change of molecular polarizability, Δ α=-1.2·10 -38 C·m 2/V (-105 A 3), which seems to originate from the change in bond order alternation in the ground state rather than from the electric field-induced interaction of D 1 and D 2 excited states. Absorption spectrum of astaxanthin dication is located at 715-717 nm, between those of D 0→D 2 in cation radical and S 0→S 2 in neutral carotenoid. Its shape reflects a short vibronic progression and strong inhomogeneous broadening. The polarizability change on electronic excitation, Δ α=2.89·10 -38 C·m 2/V (260 A 3), is five times smaller than in neutral astaxanthin. This value reflects the larger energetic distance from the lowest excited state to the higher excited states than in the neutral molecule.

  4. Oxoferryl porphyrin cation radicals in model systems: Evidence for variable metal-radical spin coupling

    NASA Astrophysics Data System (ADS)

    Bill, E.; Bominaar, E. L.; Ding, X.-Q.; Trautwein, A. X.; Winkler, H.; Mandon, D.; Weiss, R.; Gold, A.; Jayaraj, K.; Toney, G. E.

    1990-07-01

    Magnetic properties of frozen solutions of highly oxidized iron porphyrin complexes were investigated by EPR and Mössbauer spectroscopy. The Mössbauer spectra, recorded at low temperatures in various magnetic fields, were analyzed on the basis of spin Hamiltonian simulations. Spin coupling between ferryl iron (FeIV) and porphyrin cation radical was taken into account explicitly. Hyperfine and spin-coupling parameters are given for several complexes, together with zero-field parameters. One of the complexes exhibits weak spin coupling, it is the first model system exhibiting properties comparable to those of the oxoferryl cation radical enzyme Horse Radish Peroxidase I.

  5. ESR of the cation radicals from γ-irradiated ketenes in haloalkane and SF 6 matrices

    NASA Astrophysics Data System (ADS)

    Shimokoshi, Kazuo; Fujisawa, Jun; Nakamura, Kazutaka; Sato, Shin; Shida, Tadamasa

    1983-08-01

    The cation radicals of ketene and its methyl and ethyl derivatives have been produced in γ-irradiated solid solutions of haloalkanes and SF 6. From the observed isotropic proton hyperfine parameters of these cation radicals and UHF MO (INDO) calculations, the cations are found to be characteristic of ordinary π-radicals.

  6. Changes in fluorescent emission of cationic fluorophores in the presence of n-alkanes and alcohols in different polarity solvents

    NASA Astrophysics Data System (ADS)

    Delgado-Camón, Arantzazu; Garriga, Rosa; Mateos, Elena; Cebolla, Vicente L.; Galbán, Javier; Membrado, Luis; Marcos, Susana de; Gálvez, Eva M.

    2011-01-01

    Berberine and coralyne experience either fluorescence enhancement or quenching when long hydrocarbon chain compounds (e.g., n-alkanes or alcohols) are added to their solutions, depending on solvent polarity. In polar solvents, as methanol or acetonitrile, the added compounds provide an apolar microenvironment that hinders alternative relaxation mechanisms, favouring fluorescence emission. However, alkane additions produce quenching in dichloromethane, which has been explained taking into account ion pairing between cationic fluorophore and counterion. The strong quenching measured after alcohol additions in dichloromethane suggests reversed micelle formation. Procedures and results described here may find practical applications in the development of analytical methods.

  7. Polyoxometalate salts of cationic nitronyl nitroxide free radicals

    NASA Astrophysics Data System (ADS)

    Coronado, Eugenio; Giménez-Saiz, Carlos; Gómez-García, Carlos J.; Romero, Francisco M.

    2008-12-01

    The cationic nitronyl nitroxide free radical of the N-methylpyridinium type p-MepyNN + has been combined with [Mo 8O 26] 4- and Keggin [SiW 12O 40] 4- polyanions to afford salts ( p-MepyNN) 4[Mo 8O 26]·DMSO (DMSO = dimethylsulfoxide) ( 1) and ( p-MepyNN) 4[SiW 12O 40]·6DMF (DMF = dimethylformamide) ( 2). Herein, their structural and magnetic properties are described.

  8. Ab initio study of the phenol-water cation radical

    NASA Astrophysics Data System (ADS)

    Hobza, Pavel; Burcl, Rudolf; Špirko, Vladimír; Dopfer, Otto; Müller-Dethlefs, Klaus; Schlag, Edward W.

    1994-07-01

    The phenol-water cation radical has been investigated by ab initio theory using the spin-restricted open-shell Hartree-Fock and spin-restricted open-shell second-order Møller-Plesset theories with 3-21G*(O) and 6-31G* basis sets. The full geometrical optimization was performed for several hydrogen-bonded structures and one hemibonded structure. Clearly, the most stable structure has been found for Cs symmetry with the linear hydrogen bond between the proton of the OH group of the phenol cation radical and the oxygen of the water, and the water hydrogens pointing away from the phenyl ring. For this structure harmonic (and for some intermolecular modes anharmonic) vibrational frequencies have been computed for various isotopic complexes. The computed shifts of phenol-localized intramolecular modes on complexation and on deuteration as well as the calculated intermolecular frequencies of the different isotopic complexes allow for an assignment of vibrational frequencies observed in the experimental zero-kinetic-energy (ZEKE) photoelectron spectra. Five out of a possible six intermolecular vibrations and several intramolecular modes have been assigned, including the 18b vibration which shows a strong blue shift in frequency upon complexation. Structure and properties of the phenol-water cation radical are compared with those of the corresponding neutral complex.

  9. Electron exchange involving a sulfur-stabilized ruthenium radical cation.

    PubMed

    Shaw, Anthony P; Ryland, Bradford L; Norton, Jack R; Buccella, Daniela; Moscatelli, Alberto

    2007-07-01

    Half-sandwich Ru(II) amine, thiol, and thiolate complexes were prepared and characterized by X-ray crystallography. The thiol and amine complexes react slowly with acetonitrile to give free thiol or amine and the acetonitrile complex. With the thiol complex, the reaction is dissociative. The thiolate complex has been oxidized to its Ru(III) radical cation and the solution EPR spectrum of that radical cation recorded. Cobaltocene reduces the thiol complex to the thiolate complex. The 1H and 31P NMR signals of the thiolate complex in acetonitrile become very broad whenever the thiolate and thiol complexes are present simultaneously. The line broadening is primarily due to electron exchange between the thiolate complex and its radical cation; the latter is generated by an unfavorable redox equilibrium between the thiol and thiolate complexes. Pyramidal inversion of sulfur in the thiol complex is fast at room temperature but slow at lower temperatures; major and minor conformers of the thiol complex were observed by 31P NMR at -98 degrees C in CD2Cl2. PMID:17569530

  10. Multi-State Vibronic Interactions in Fluorinated Benzene Radical Cations.

    NASA Astrophysics Data System (ADS)

    Faraji, S.; Köppel, H.

    2009-06-01

    Conical intersections of potential energy surfaces have emerged as paradigms for signalling strong nonadiabatic coupling effects. An important class of systems where some of these effects have been analyzed in the literature, are the benzene and benzenoid cations, where the electronic structure, spectroscopy, and dynamics have received great attention in the literature. In the present work a brief overview is given over our theoretical treatments of multi-mode and multi-state vibronic interactions in the benzene radical cation and some of its fluorinated derivatives. The fluorobenzene derivatives are of systematic interest for at least two different reasons. (1) The reduction of symmetry by incomplete fluorination leads to a disappearance of the Jahn-Teller effect present in the parent cation. (2) A specific, more chemical effect of fluorination consists in the energetic increase of the lowest σ-type electronic states of the radical cations. The multi-mode multi-state vibronic interactions between the five lowest electronic states of the fluorobenzene radical cations are investigated theoretically, based on ab initio electronic structure data, and employing the well-established linear vibronic coupling model, augmented by quadratic coupling terms for the totally symmetric vibrational modes. Low-energy conical intersections, and strong vibronic couplings are found to prevail within the set of tilde{X}-tilde{A} and tilde{B}-tilde{C}-tilde{D} cationic states, while the interactions between these two sets of states are found to be weaker and depend on the particular isomer. This is attributed to the different location of the minima of the various conical intersections occurring in these systems. Wave-packet dynamical simulations for these coupled potential energy surfaces, utilizing the powerful multi-configuration time-dependent Hartree method are performed. Ultrafast internal conversion processes and the analysis of the MATI and photo-electron spectra shed new light

  11. Understanding electrochromic processes initiated by dithienylcyclopentene cation-radicals.

    PubMed

    Guirado, Gonzalo; Coudret, Christophe; Hliwa, Mohamed; Launay, Jean-Pierre

    2005-09-22

    Simple photochromic dithienylethylenes with either a perfluoro or a perhydro cyclopentene ring, and a variety of substituents (chlorine, iodine, trimethylsilyl, phenylthio, aldehyde, carboxylic acid, and ethynylanisyl), have been prepared and their electrochemical behavior was explored by cyclic voltammetry. All dithienylethylenes present two-electron irreversible oxidation waves in their open form, but the cation-radical of the open isomers can follow two different reaction pathways: dimerization or ring closure, whereas the halogen derivatives follow a dimerization mechanism, the presence of donor groups, such as the phenylthio-substituted compound, promote an efficient oxidative ring closure following an ECE/DISP mechanism. Electrochromic properties are also found in the corresponding ring-closed isomers. Depending on the substituents on the thiophene ring, and the perfluro or perhydro cyclopentene ring, open isomers can be obtained from oxidation (chemical or electrochemical) of the corresponding ring-closed isomers via an EC mechanism. This reaction pathway is favored by the presence of electron-withdrawing groups in the molecule. For all these compounds, closed or open, the oxidation lies between 0.8 and 1.5 V vs SCE, and provokes a permanent modification of the color, even after an oxidation-reduction cycle. This could be qualified as "electrochromism with memory". On the other hand, the ring-closed electron-rich isomers (E degrees < 0.8 V), which show reversible waves at the cation-radical or even dication level, give rise to "true electrochromism", for which no structural changes are observed. The experimental study was completed by theoretical calculations at the DFT level, using B3LYP density functional, which gave information on the total energy, the geometry, and the electronic structures of several representative compounds, either in the neutral form or in the cation-radical state. These results are important for the potential design of photochromic

  12. Theoretical studies on the dimerization of substituted paraphenylenediamine radical cations

    NASA Astrophysics Data System (ADS)

    Punyain, Kraiwan; Kelterer, Anne-Marie; Grampp, Günter

    2011-12-01

    Organic radical cations form dicationic dimers in solution, observed experimentally as diamagnetic species in temperature-dependent EPR and low temperature UV/Vis spectroscopy. Dimerization of paraphenylenediamine, N,N-dimethyl-paraphenylenediamine and 2,3,5,6-tetramethyl-paraphenylenediamine radical cation in ethanol/diethylether mixture was investigated theoretically according to geometry, energetics and UV/Vis spectroscopy. Density Functional Theory including dispersion correction describes stable dimers after geometry optimization with conductor-like screening model of solvation and inclusion of the counter-ion. Energy corrections were done on double-hybrid Density Functional Theory with perturbative second-order correlation (B2PLYP-D) including basis set superposition error (BSSE), and multireference Møller-Plesset second-order perturbation theory method (MRMP2) based on complete active space method (CASSCF(2,2)) single point calculation, respectively. All three dication π-dimers exhibit long multicenter π-bonds around 2.9 ± 0.1 Å with strongly interacting orbitals. Substitution with methyl groups does not influence the dimerization process substantially. Dispersion interaction and electrostatic attraction from counter-ion play an important role to stabilize the dication dimers in solution. Dispersion-corrected double hybrid functional B2PLYP-D and CASSCF(2,2) can describe the interaction energetics properly. Vertical excitations were computed with Tamm-Dancoff approximation for time-dependent Density Functional Theory (TDA-DFT) at the B3LYP level with the cc-pVTZ basis set including ethanol solvent molecules explicitly. A strong interaction of the counter-ion and the solvent ethanol with the monomeric species is observed, whereas in the dimers the strong interaction of both radical cation species is the dominating factor for the additional peak in UV/Vis spectra.

  13. The formation of DNA sugar radicals from photoexcitation of guanine cation radicals.

    PubMed

    Shukla, Lata I; Pazdro, Robert; Huang, James; DeVreugd, Christopher; Becker, David; Sevilla, Michael D

    2004-05-01

    In this investigation of radical formation and reaction in gamma- irradiated DNA and model compounds, we report the conversion of the guanine cation radical (one-electron oxidized guanine, G(.+)) to the C1' sugar radical and another sugar radical at the C3' or C4' position (designated C3'(.)/C4'(.)) by visible and UV photolysis. Electron spin resonance (ESR) spectroscopic investigations were performed on salmon testes DNA as well as 5'-dGMP, 3'-dGMP, 2'-deoxyguanosine and other nucleosides/nucleotides as model systems. DNA samples (25- 150 mg/ml D(2)O) were prepared with Tl(3+) or Fe(CN)(3-)(6) as electron scavengers. Upon gamma irradiation of such samples at 77 K, the electron-gain path in the DNA is strongly suppressed and predominantly G(.+) is found; after UV or visible photolysis, the fraction of the C1' sugar radical increases with a concomitant reduction in the fraction of G(.+). In model systems, 3'- dGMP(+.) and 5'-dGMP(+.) were produced by attack of Cl(.-)(2) on the parent nucleotide in 7 M LiCl glass. Subsequent visible photolysis of the 3'-dGMP(+.) (77 K) results predominantly in formation of C1'(.) whereas photolysis of 5'-dGMP(+.) results predominantly in formation of C3'(.)/C4'(.). We propose that sugar radical formation is a result of delocalization of the hole in the electronically excited base cation radical into the sugar ring, followed by deprotonation at specific sites on the sugar. PMID:15161365

  14. Excited state dynamics of the astaxanthin radical cation

    NASA Astrophysics Data System (ADS)

    Amarie, Sergiu; Förster, Ute; Gildenhoff, Nina; Dreuw, Andreas; Wachtveitl, Josef

    2010-07-01

    Femtosecond transient absorption spectroscopy in the visible and NIR and ultrafast fluorescence spectroscopy were used to examine the excited state dynamics of astaxanthin and its radical cation. For neutral astaxanthin, two kinetic components corresponding to time constants of 130 fs (decay of the S 2 excited state) and 5.2 ps (nonradiative decay of the S 1 excited state) were sufficient to describe the data. The dynamics of the radical cation proved to be more complex. The main absorption band was shifted to 880 nm (D 0 → D 3 transition), showing a weak additional band at 1320 nm (D 0 → D 1 transition). We found, that D 3 decays to the lower-lying D 2 within 100 fs, followed by a decay to D 1 with a time constant of 0.9 ps. The D 1 state itself exhibited a dual behavior, the majority of the population is transferred to the ground state in 4.9 ps, while a small population decays on a longer timescale of 40 ps. Both transitions from D 1 were found to be fluorescent.

  15. Structure and Reactivity of the N-Acetyl-Cysteine Radical Cation and Anion: Does Radical Migration Occur?

    NASA Astrophysics Data System (ADS)

    Osburn, Sandra; Berden, Giel; Oomens, Jos; O'Hair, Richard A. J.; Ryzhov, Victor

    2011-10-01

    The structure and reactivity of the N-acetyl-cysteine radical cation and anion were studied using ion-molecule reactions, infrared multi-photon dissociation (IRMPD) spectroscopy, and density functional theory (DFT) calculations. The radical cation was generated by first nitrosylating the thiol of N-acetyl-cysteine followed by the homolytic cleavage of the S-NO bond in the gas phase. IRMPD spectroscopy coupled with DFT calculations revealed that for the radical cation the radical migrates from its initial position on the sulfur atom to the α-carbon position, which is 2.5 kJ mol-1 lower in energy. The radical migration was confirmed by time-resolved ion-molecule reactions. These results are in contrast with our previous study on cysteine methyl ester radical cation (Osburn et al., Chem. Eur. J. 2011, 17, 873-879) and the study by Sinha et al. for cysteine radical cation ( Phys. Chem. Chem. Phys. 2010, 12, 9794-9800) where the radical was found to stay on the sulfur atom as formed. A similar approach allowed us to form a hydrogen-deficient radical anion of N-acetyl-cysteine, (M - 2H) •- . IRMPD studies and ion-molecule reactions performed on the radical anion showed that the radical remains on the sulfur, which is the initial and more stable (by 63.6 kJ mol-1) position, and does not rearrange.

  16. Magnetic Resonance Studies of Proton Loss from Carotenoid Radical Cations

    SciTech Connect

    Kispert, Lowell D; Focsan, A Ligia; Konovalova, Tatyana A; Lawrence, Jesse; Bowman, Michael K; Dixon, David A; Molnar, Peter; Deli, Jozsef

    2007-06-11

    Carotenoids, intrinsic components of reaction centers and pigment-protein complexes in photosynthetic membranes, play a photoprotective role and serve as a secondary electron donor. Before optimum use of carotenoids can be made in artificial photosynthetic systems, their robust nature in living materials requires extensive characterization of their electron transfer, radical trapping ability, stability, structure in and on various hosts, and photochemical behavior. Pulsed ENDOR and 2D-HYSCORE studies combined with DFT calculations reveal that photo-oxidation of natural zeaxanthin (I) and violaxanthin (II) on silica-alumina produces not only the carotenoid radical cations (Car•+) but also neutral radicals (#Car•) by proton loss from the methyl groups at positions 5 or 5', and possibly 9 or 9' and 13 or 13'. Notably, the proton loss favored in I at the 5 position by DFT calculations, is unfavorable in II due to the epoxide at the 5, 6 position. DFT calculations predict the isotropic methyl proton couplings of 8-10 MHz for Car•+ which agree with the ENDOR for carotenoid α-conjugated radical cations. Large α-proton hyperfine coupling constants (>10 MHz) determined from HYSCORE are assigned from the DFT calculations to neutral carotenoid radicals. Proton loss upon photolysis was also examined as a function of carotenoid polarity [Lycopene (III) versus 8'-apo-β-caroten-8'-al (IV)]; hydrogen bonding [Lutein (V) versus III]; host [silica-alumina versus MCM-41 molecular sieve]; and substituted metal in MCM-41. Loss of H+ from the 5(5'), 9(9') or 13(13') methyl positions has importance in photoprotection. Photoprotection involves nonphotochemical quenching (NPQ) in which 1Ch1* decays via energy transfer to the carotenoid which returns to the ground state by thermal dissipation; or via electron transfer to form a charge transfer state (I •+…Chl•-), lower in energy than 1Chl*. Formation of I •+ results in bond lengthening, a mechanism for nonradiative energy

  17. Structure and reactions of cation-radicals of esters in freon matrices

    SciTech Connect

    Belevskii, V.N.; Belopushkin, S.I.; Fel'dman, V.I.

    1987-11-01

    In CFCl/sub 3/ matrices the cation-radicals of methyl and ethyl formates, formed in ..gamma..-irradiated solutions, at 77 K efficiently undergo intramolecular H atom transfer to form the secondary cation-radicals HC(OH)OCH/sub 2/CH/sub 2/ and DC(OH)OCD/sub 2/CH/sub 2/. This process does not occur in the deuteroformate cation-radical DCOOCH/sub 2/CD/sub 3//sup +./, which is observed in the ESR spectra in different conformations, depending on the temperature. Ion-molecule reactions involving cation-radicals are indicated

  18. Gas-Phase Reactions of Doubly Charged Lanthanide Cations with Alkanes and Alkenes. Trends in Metal(2+) Reactivity

    SciTech Connect

    Gibson, John K.; Marcalo, Joaquim; Santos, Marta; Pires de Matos, Antonio; Haire, Richard G.

    2008-12-08

    The gas-phase reactivity of doubly-charged lanthanide cations, Ln2+ (Ln = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu), with alkanes (methane, ethane, propane, n-butane) and alkenes (ethene, propene, 1-butene) was studied by Fourier transform ion cyclotron resonance mass spectrometry. The reaction products consisted of different combinations of doubly-charged organometallic ions?adducts or species formed via metal-ion-induced hydrogen, dihydrogen, alkyl, or alkane eliminations from the hydrocarbons?and singly-charged ions that resulted from electron, hydride, or methide transfers from the hydrocarbons to the metal ions. The only lanthanide cations capable of activating the hydrocarbons to form doubly-charged organometallic ions were La2+, Ce2+, Gd2+, and Tb2+, which have ground-state or low-lying d1 electronic configurations. Lu2+, with an accessible d1 electronic configuration but a rather high electron affinity, reacted only through transfer channels. The remaining Ln2+ reacted via transfer channels or adduct formation. The different accessibilities of d1 electronic configurations and the range of electron affinities of the Ln2+ cations allowed for a detailed analysis of the trends for metal(2+) reactivity and the conditions for occurrence of bond activation, adduct formation, and electron, hydride, and methide transfers.

  19. Reactions and structural investigation of chlorpromazine radical cation

    NASA Astrophysics Data System (ADS)

    Joshi, Ravi; Ghanty, Tapan K.; Mukherjee, T.

    2008-10-01

    Experimental and theoretical studies have been carried out to understand pro-oxidant behaviour of chlorpromazine radical cation (CPZ rad + ). Pulse radiolysis studies have shown that CPZ rad + oxidizes physiological antioxidants (uric acid and bilirubin), and biomolecules like, tyrosine and proteins (bovine serum albumin and casein), thereby acting as a pro-oxidant. Ab-initio quantum chemical calculations suggest structural and electronic changes on oxidation of CPZ. The calculations with Hartree-Fock and density functional methods show that ring nitrogen atom is the site of electron removal from CPZ and sulfur atom is the site of maximum spin in CPZ rad + . The calculations also suggest that oxidation of CPZ leads to increase in planarity of the tricyclic ring as well as tilting of alkyl side chain towards chlorine containing ring. The structural changes on oxidation of CPZ and spin delocalization in CPZ rad + fairly explain the pro-oxidant activity of CPZ.

  20. Spectroscopy of free-base N-confused tetraphenylporphyrin radical anion and radical cation.

    PubMed

    Alemán, Elvin A; Manríquez Rocha, Juan; Wongwitwichote, Wongwit; Godínez Mora-Tovar, Luis Arturo; Modarelli, David A

    2011-06-23

    The radical anions and radical cations of the two tautomers (1e and 1i) of 5,10,15,20-tetraphenyl N-confused free-base porphyrin have been studied using a combination of cyclic voltammetry, steady state absorption spectroscopy, and computational chemistry. N-Confused porphyrins (NCPs), alternatively called 2-aza-21-carba-5,10,15,20-tetraphenylporphyrins or inverted porphyrins, are of great interest for their potential as building blocks in assemblies designed for artificial photosynthesis, and understanding the absorption spectra of the corresponding radical ions is paramount to future studies in multicomponent arrays where electron-transfer reactions are involved. NCP 1e was shown to oxidize at a potential of E(ox) 0.65 V vs Fc(+)|Fc in DMF and reduce at E(red) -1.42 V, while the corresponding values for 1i in toluene were E(ox) 0.60 V and E(red) -1.64 V. The geometries of these radical ions were computed at the B3LYP/6-31+G(d)//B3LYP/6-31G(d) level in the gas phase and in solution using the polarizable continuum model (PCM). From these structures and that of H(2)TPP and its corresponding radical ions, the computed redox potentials for 1e and 1i were calculated using the Born-Haber cycle. While the computed reduction potentials and electron affinities were in excellent agreement with the experimental reduction potentials, the calculated oxidation potentials displayed a somewhat less ideal relationship with experiment. The absorption spectra of the four radical ions were also measured experimentally, with radical cations 1e(•+) and 1i(•+) displaying significant changes in the Soret and Q-band regions as well as new low energy absorption bands in the near-IR region. The changes in the absorption spectra of radical anions 1e(•-) and 1i(•-) were not as dramatic, with the changes occurring only in the Soret and Q-band regions. These results were favorably modeled using time-dependent density functional calculations at the TD-B3LYP/6-31+G(d)//B3LYP/6-31G

  1. Electronic spectra of the tetraphenylcyclobutadienecyclopentadienylnickel(II) cation and radical

    DOE PAGESBeta

    Peter R. Craig; Miller, John R.; Havlas, Zdenek; Trujillo, Marianela; Rempala, Pawel; Kirby, James P.; Noll, Bruce C.; Michl, Josef

    2016-05-02

    In this study, properties of the tetraphenylcyclobutadienecyclopentadienylnickel(II) cation 1 and its tetra-o-fluoro derivative 1a have been measured and calculated. The B3LYP/TZP optimized geometry of the free cation 1 agrees with a single-crystal X-ray diffraction structure except that in the crystal one of the phenyl substituents is strongly twisted to permit a close-packing interaction of two of its hydrogens with a nearby BF–4 anion. The low-energy parts of the solution electronic absorption and magnetic circular dichroism (MCD) spectra of 1 and 1a have been interpreted by comparison with TD-DFT (B3LYP/TZP) results. Reduction or pulse radiolysis lead to a neutral 19-electron radical,more » whose visible absorption and MCD spectra have been recorded and interpreted as well. The reduction is facilitated by ~0.1 V upon going from 1 to 1a« less

  2. Electronic Spectra of the Tetraphenylcyclobutadienecyclopentadienylnickel(II) Cation and Radical.

    PubMed

    Craig, Peter R; Havlas, Zdeněk; Trujillo, Marianela; Rempala, Pawel; Kirby, James P; Miller, John R; Noll, Bruce C; Michl, Josef

    2016-05-26

    Properties of the tetraphenylcyclobutadienecyclopentadienylnickel(II) cation 1 and its tetra-o-fluoro derivative 1a have been measured and calculated. The B3LYP/TZP optimized geometry of the free cation 1 agrees with a single-crystal X-ray diffraction structure except that in the crystal one of the phenyl substituents is strongly twisted to permit a close-packing interaction of two of its hydrogens with a nearby BF4(-) anion. The low-energy parts of the solution electronic absorption and magnetic circular dichroism (MCD) spectra of 1 and 1a have been interpreted by comparison with TD-DFT (B3LYP/TZP) results. Reduction or pulse radiolysis lead to a neutral 19-electron radical, whose visible absorption and MCD spectra have been recorded and interpreted as well. The reduction is facilitated by ∼0.1 V upon going from 1 to 1a. Unsuccessful attempts to prepare several other aryl substituted derivatives of 1 by the classical synthetic route are described in the Supporting Information . PMID:27136127

  3. Observation of radical cations by swiftness or by stealth.

    SciTech Connect

    Werst, D. W.; Trifunac, A. D.; Chemistry

    1998-01-01

    David W. Werst was born in Missouri and educated at the University of Missouri (B.S.) and the University of Minnesota (Ph.D.). His thesis work was carried out under the supervision of Paul Barbara and Ronald Gentry. He joined the Chemistry Division of Argonne National Laboratory in 1985 to conduct postdoctoral research in the group of Alexander Trifunac and has been a staff member of the Radiation and Photochemistry Group since 1989. His primary research interests are in the study of radical cation structure and reactivity and ionization processes in ordered and amorphous solids. Alexander D. Trifunac was born in Yugoslavia. He was educated at Columbia University (B.A.) and the University of Chicago (Ph.D.). His thesis work was on CIDNP, radical pair theory and experiments, with Gerhard L. Closs. He joined the Chemistry Division of Argonne National Laboratory in 1972 in a postdoctoral position. He is a senior scientist and is (since 1982) a group leader of the Radiation and Photochemistry Group. His research interests are in the study of chemistry of transient paramagnetic species involved in energy and charge-transfer processes occurring in radiolysis and in photoionization in liquids, glasses, and amorphous solids.

  4. Sugar radicals formed by photo-excitation of guanine cation radical in oligonucleotides

    PubMed Central

    Adhikary, Amitava; Collins, Sean; Khanduri, Deepti; Sevilla, Michael D.

    2008-01-01

    This work presents evidence that photo-excitation of guanine cation radical (G•+) in dGpdG and DNA-oligonucleotides: TGT, TGGT, TGGGT, TTGTT, TTGGTT, TTGGTTGGTT, AGA and AGGGA in frozen glassy aqueous solutions at low temperatures leads to hole transfer to the sugar phosphate backbone and results in high yields of deoxyribose radicals. In this series of oligonucleotides we find that, G•+ on photo-excitation, at 143 K leads to the formation of predominantly C5′• and C1′• with small amounts of C3′•. Photo-conversion yields of G•+ to sugar radicals in oligonucleotides decreased as the overall chain length increased. However, for high molecular weight dsDNA (salmon testes) in frozen aqueous solutions substantial conversion of G•+ to C1′• (only) sugar radical is still found (ca. 50%). Within the cohort of sugar radicals formed we find a relative increase in the formation of C1′• with length of the oligonucleotide along with decreases in C3′• and C5′• For dsDNA in frozen solutions, only the formation of C1′• is found via photo-excitation of G•+ without a significant temperature dependence (77 K to 180 K). Long wavelength visible light (>540 nm) is observed to be about as effective as light under 540 nm for photoconversion of G•+ to sugar radicals for short oligonucleotides but gradually loses effectiveness with chain length. This wavelength dependence is attributed to base-to-base hole transfer for wavelengths >540 nm. Base-to-sugar hole transfer is suggested to dominate under 540 nm. These results may have implications for a number of investigations of hole transfer through DNA in which DNA-holes are subjected to continuous visible illumination. PMID:17547448

  5. The chemistry of amine radical cations produced by visible light photoredox catalysis

    PubMed Central

    Hu, Jie; Wang, Jiang; Nguyen, Theresa H

    2013-01-01

    Summary Amine radical cations are highly useful reactive intermediates in amine synthesis. They have displayed several modes of reactivity leading to some highly sought-after synthetic intermediates including iminium ions, α-amino radicals, and distonic ions. One appealing method to access amine radical cations is through one-electron oxidation of the corresponding amines under visible light photoredox conditions. This approach and subsequent chemistries are emerging as a powerful tool in amine synthesis. This article reviews synthetic applications of amine radical cations produced by visible light photocatalysis. PMID:24204409

  6. Halogenated benzene radical cations and ground state degeneracy splitting by asymmetric substitution

    USGS Publications Warehouse

    Bondybey, V.E.; Vaughn, C.R.; Miller, T.A.; English, J.H.; Shiley, R.H.

    1981-01-01

    The absorption and laser induced fluorescence of several halogenated benzene radical cations were studied in solid Ne matrices. The spectra of 1,2,4-trifluorobenzene, l,3-dichloro-5-fluorobenzene, and l-chloro-3,5- difluorobenzene radical cations are observed and analyzed. Studies of fluorescence polarization and a photoselection technique were used to examine the splitting of the degeneracy of the benzene cation ground state by asymmetric subsitution. ?? 1981 American Institute of Physics.

  7. Gas-phase electronic spectrum of the indole radical cation

    NASA Astrophysics Data System (ADS)

    Chalyavi, N.; Catani, K. J.; Sanelli, J. A.; Dryza, V.; Bieske, E. J.

    2015-08-01

    The visible and near-UV electronic spectrum of the indole radical cation is measured in the gas phase by photodissociation of indole+-Ar and indole+-He complexes in a tandem mass spectrometer. A series of resolved vibronic transitions extending from 610 to 460 nm are assigned to the D2 ← D0 band system, while weak transitions between 390 and 360 nm are assigned to the D3 ← D0 system, and a stronger, broad, unresolved absorption between 350 and 300 nm is attributed to the D4 ← D0 system. Time-dependent density functional theory calculations are used to assign vibronic structure of the D2 ← D0 band system, and show that the main active vibrational modes correspond to in-plane ring deformations. The strongest D2 ← D0 vibronic transitions of indole+-He do not correspond with any catalogued diffuse interstellar bands, even considering band displacements of up to 50 cm-1possibly caused by the attached He atom.

  8. Structure and Reactivity of the Distonic and Aromatic Radical Cations of Tryptophan

    NASA Astrophysics Data System (ADS)

    Piatkivskyi, Andrii; Osburn, Sandra; Jaderberg, Kendall; Grzetic, Josipa; Steill, Jeffrey D.; Oomens, Jos; Zhao, Junfang; Lau, Justin Kai-Chi; Verkerk, Udo H.; Hopkinson, Alan C.; Siu, K. W. Michael; Ryzhov, Victor

    2013-04-01

    In this work, we regiospecifically generate and compare the gas-phase properties of two isomeric forms of tryptophan radical cations—a distonic indolyl N-radical (H3N+ - TrpN•) and a canonical aromatic π (Trp•+) radical cation. The distonic radical cation was generated by nitrosylating the indole nitrogen of tryptophan in solution followed by collision-induced dissociation (CID) of the resulting protonated N-nitroso tryptophan. The π-radical cation was produced via CID of the ternary [CuII(terpy)(Trp)] •2+ complex. CID spectra of the two isomeric species were found to be very different, suggesting no interconversion between the isomers. In gas-phase ion-molecule reactions, the distonic radical cation was unreactive towards n-propylsulfide, whereas the π radical cation reacted by hydrogen atom abstraction. DFT calculations revealed that the distonic indolyl radical cation is about 82 kJ/mol higher in energy than the π radical cation of tryptophan. The low reactivity of the distonic nitrogen radical cation was explained by spin delocalization of the radical over the aromatic ring and the remote, localized charge (at the amino nitrogen). The lack of interconversion between the isomers under both trapping and CID conditions was explained by the high rearrangement barrier of ca.137 kJ/mol. Finally, the two isomers were characterized by infrared multiple-photon dissociation (IRMPD) spectroscopy in the ~1000-1800 cm-1 region. It was found that some of the main experimental IR features overlap between the two species, making their distinction by IRMPD spectroscopy in this region problematic. In addition, DFT theoretical calculations showed that the IR spectra are strongly conformation-dependent.

  9. Photoinactivation of PS2 secondary donors by PS2 cation radicals and superoxide radicals

    SciTech Connect

    Chen, G.X.; Cheniae, G.M.; Blubaugh, D.J.; Golbeck, J.H.

    1991-12-31

    Illumination of Mn- and Cl-depleted PS2 causes rapid irreversible inactivation of specific redox-active components on the donor side of the PS2 Reaction Center (RC). Under aerobic conditions, weak light preillumination of NH{sub 2}OH-PS2 causes rapid loss of Y{sub Z}{sup {plus_minus}} formation, Y{sub Z} {yields} P{sub 680}{sup +}, the A{sub T}-band thermoluminescence emission, the Y{sub Z}{sup +}-dependent (Site 1) photooxidation of exogenous e{sup {minus}} donors, and the capability to photoligate Mn{sup 2+} into the water oxidizing enzyme (photoactivation), all without significantly affecting P{sub 680}{sup +}/Q{sub A}{sup {minus}} charge separation. In contrast, aerobic high light preillumination of Mn-depleted PS2 promotes very rapid and parallel loss of photoactivation and A{sub T}-band emission capabilities significantly than loss of either Y{sub Z}{sup +}-formation or P{sub 680}{sup +}/Q{sub A}{sup {minus}} charge separation capabilities. These photodamages and those to Cl-depleted thylakoids (4,5) generally are believed to be caused by reactions between the highly oxidizing cation radicals (P{sub 680}{sup +}/Chl{sup +}) and nearby amino acid residues of D{sub 1}>D{sub 2}. The reported promotion of the photodamages by e{sup {minus}} acceptors of Q{sub A}{sup {minus}}/Q{sub B}{sup {minus}} their inhibition by e{sup {minus}} donors to Y{sub Z}{sup +} and their occurrence under strict anaerobic conditions all tend to support the idea of direct damage by P{sub 680}{sup +}/Chl{sup +}. Our studies lead us to conclude that the photodamages to the donor side components are caused minimally by a rapid mechanism requiring both superoxide and PS2 cation radicals; and by a slower mechanism driven by the PS2 cation radicals only.

  10. Catalytic Carbocation Generation Enabled by the Mesolytic Cleavage of Alkoxyamine Radical Cations.

    PubMed

    Zhu, Qilei; Gentry, Emily C; Knowles, Robert R

    2016-08-16

    A new catalytic method is described to access carbocation intermediates via the mesolytic cleavage of alkoxyamine radical cations. In this process, electron transfer between an excited state oxidant and a TEMPO-derived alkoxyamine substrate gives rise to a radical cation with a remarkably weak C-O bond. Spontaneous scission results in the formation of the stable nitroxyl radical TEMPO(.) as well as a reactive carbocation intermediate that can be intercepted by a wide range of nucleophiles. Notably, this process occurs under neutral conditions and at comparatively mild potentials, enabling catalytic cation generation in the presence of both acid sensitive and easily oxidized nucleophilic partners. PMID:27403637

  11. UVA-visible photo-excitation of guanine radical cations produces sugar radicals in DNA and model structures

    PubMed Central

    Adhikary, Amitava; Malkhasian, Aramice Y. S.; Collins, Sean; Koppen, Jessica; Becker, David; Sevilla, Michael D.

    2005-01-01

    This work presents evidence that photo-excitation of guanine radical cations results in high yields of deoxyribose sugar radicals in DNA, guanine deoxyribonucleosides and deoxyribonucleotides. In dsDNA at low temperatures, formation of C1′• is observed from photo-excitation of G•+ in the 310–480 nm range with no C1′• formation observed ≥520 nm. Illumination of guanine radical cations in 2′dG, 3′-dGMP and 5′-dGMP in aqueous LiCl glasses at 143 K is found to result in remarkably high yields (∼85–95%) of sugar radicals, namely C1′•, C3′• and C5′•. The amount of each of the sugar radicals formed varies dramatically with compound structure and temperature of illumination. Radical assignments were confirmed using selective deuteration at C5′ or C3′ in 2′-dG and at C8 in all the guanine nucleosides/tides. Studies of the effect of temperature, pH, and wavelength of excitation provide important information about the mechanism of formation of these sugar radicals. Time-dependent density functional theory calculations verify that specific excited states in G•+ show considerable hole delocalization into the sugar structure, in accord with our proposed mechanism of action, namely deprotonation from the sugar moiety of the excited molecular radical cation. PMID:16204456

  12. Pt/[Fe]ZSM-5 modified by Na and Cs cations: an active and selective catalyst for dehydrogenation of n-alkanes to n-alkenes.

    PubMed

    Li, Xuebing; Iglesia, Enrique

    2008-02-01

    Pt clusters within [Fe]ZSM-5 channels provide active and stable sites for the selective catalytic dehydrogenation of n-alkanes to n-alkenes. Cs and Na cations titrate acid sites and inhibit skeletal isomerization and cracking side reactions. PMID:18209800

  13. Radical formation in the [MeReO3]-catalyzed aqueous peroxidative oxidation of alkanes: a theoretical mechanistic study.

    PubMed

    Kuznetsov, Maxim L; Pombeiro, Armando J L

    2009-01-01

    Plausible mechanisms of radical formation in the catalytic system [MeReO(3)]/H(2)O(2)/H(2)O-CH(3)CN for the oxidation of alkanes to alcohols and ketones, via radical pathways, are investigated extensively at the density functional theory level. The most favorable route is based on the monoperoxo complex [MeReO(2)(O(2))(H(2)O)] and includes the formation of an H(2)O(2) adduct, water-assisted H-transfer from H(2)O(2) to the peroxo ligand, and generation of HOO(*). The thus formed reduced Re(VI) complex [MeReO(2)(OOH)(H(2)O)] reacts with H(2)O(2), resulting, upon water-assisted H-transfer and O-OH bond homolysis, in the regeneration of the oxo-Re(VII) catalyst and formation of the HO(*) radical that reacts further with the alkane. Water plays a crucial role by (i) stabilizing transition states for the proton migrations and providing easy intramolecular H-transfers in the absence of any N,O-ligands and (ii) saturating the Re coordination sphere what leads to a decrease of the activation barrier for the formation of HOO(*). The activation energy of the radical formation calculated for [MeReO(3)] (17.7 kcal/mol) is compatible with that determined experimentally [Shul'pin et al. J. Chem. Soc., Perkin Trans. 2 2001, 1351 .] for oxo-V-based catalytic systems (17 +/- 2 kcal/mol), and the overall type of mechanism proposed for such V catalysts is also effective for [MeReO(3)]. PMID:19049432

  14. Electronic absorption spectroscopy of polycyclic aromatic hydrocarbons (PAHs) radical cations generated in oleum: A superacid medium

    NASA Astrophysics Data System (ADS)

    Cataldo, Franco; Iglesias-Groth, Susana; Manchado, Arturo

    2010-12-01

    Oleum (fuming sulphuric acid), a well known superacid, was used as medium for the generation of the radical cation of a series of selected PAHs. The resulting radical cation spectra were studied by electronic absorption spectroscopy. Not only common PAHs like naphthalene, anthracene, tetracene, pentacene, perylene, pyrene, benzo[ a]pyrene, phenanthrene and picene were studied but also the less common and very large PAHs relevant also for the astrochemical research, like coronene, hexabenzocoronene, quaterrylene, dicoronylene and a coronene oligomer. A correlation between the first ionization potential ( IP1) of the PAHs studied and the energy to the so-called A-type band of the radical cations observed in oleum has led to the equation IP1 = 1.30 EA + 4.39 (in eV) which permits to estimate the energy of the PAHs radical cation transition ( EA) in the VIS-NIR knowing the relative ionization potential or vice versa.

  15. Radical cations of sulfides and disulfides: An ESR study

    SciTech Connect

    Bonazzola, L.; Michaut, J.P.; Roncin, J.

    1985-09-15

    Exposure of dilute solutions of dimethylsulfide, methanethiol, tetrahydrothiophene, terbutyl and diterbutyl-sulfides, dimethyl-disulfide, and diterbutyldisulfide, in freon at 77 K to /sup 60/Co ..gamma.. rays gave the corresponding cations. From the reported ESR spectra, g tensors were obtained. It was found that both sulfide and disulfide cations exhibit the same g tensor: (g/sub max/ = 2.034 +- 0.002, g/sub int/ = 2.017 +- 0.001, g/sub min/ = 2.001 +- 0.005). From this result it has been shown that the disulfide cation is planar. This finding was supported by fully optimized geometry ab initio calculations.

  16. UV/Vis Action Spectroscopy and Structures of Tyrosine Peptide Cation Radicals in the Gas Phase.

    PubMed

    Viglino, Emilie; Shaffer, Christopher J; Tureček, František

    2016-06-20

    We report the first application of UV/Vis photodissociation action spectroscopy for the structure elucidation of tyrosine peptide cation radicals produced by oxidative intramolecular electron transfer in gas-phase metal complexes. Oxidation of Tyr-Ala-Ala-Ala-Arg (YAAAR) produces Tyr-O radicals by combined electron and proton transfer involving the phenol and carboxyl groups. Oxidation of Ala-Ala-Ala-Tyr-Arg (AAAYR) produces a mixture of cation radicals involving electron abstraction from the Tyr phenol ring and N-terminal amino group in combination with hydrogen-atom transfer from the Cα positions of the peptide backbone. PMID:27159034

  17. Low-temperature EPR and quantum chemical study of lactone radical cations and their transformations

    NASA Astrophysics Data System (ADS)

    Naumov, S.; Janovský, I.; Knolle, W.; Mehnert, R.; Turin, D. A.

    2005-07-01

    Radical cations of a number of lactones ( β-butyro-, γ-butyro-, γ-valero-, δ-hexano-, δ-valero- and ɛ-capro-) were radiolytically generated in CF 3CCl 3 matrix and investigated by EPR spectroscopy. The primary radical cation of the 4-membered ring β-butyrolactone is unstable even at 77 K and undergoes spontaneous ring opening and fragmentation, leading to the deprotonated neutral (CH 2CHCH 2) rad radical. The stability of the primary carbonyl-centred radical cations of the 5-, 6- and 7-membered lactone rings towards intramolecular H-shift from the C1 in α-position to carbonyl oxygen depends primarily on the ring size, which determines the activation energy of the transformation and distance L(H-O) of the carbonyl oxygen to the nearest H-atom on the ring. The larger the ring, the smaller the L(H-O) and also activation energy of the H-shift, making the transformation of the primary radical cation more feasible. The quantum chemical calculations facilitated the interpretation of the EPR spectra of the secondary radical cations.

  18. Comparing the gas-phase fragmentation reactions of protonated and radical cations of the tripeptides GXR

    NASA Astrophysics Data System (ADS)

    Wee, Sheena; O'Hair, Richard A. J.; McFadyen, W. David

    2004-05-01

    Electrospray ionization (ESI) mass spectrometry of methanolic solutions of mixtures of the copper salt (2,2':6',2''-terpyridine)copper(II) nitrate monohydrate ([Cu(II)(tpy)(NO3)2].H2O) and a tripeptide GXR (where X = 1 of the 20 naturally occurring amino acids) yielded [Cu(II)(tpy)(GXR)][radical sign]2+ ions, which were then subjected to collision induced dissociation (CID). In all but one case (GRR), these [Cu(II)(tpy)(GXR)][radical sign]2+ ions fragment to form odd electron GXR[radical sign]+ radical cations with sufficient abundance to examine their gas-phase fragmentation reactions. The GXR[radical sign]+ radical cations undergo a diverse range of fragmentation reactions which depend on the nature of the side chain of X. Many of these reactions can be rationalized as arising from the intermediacy of isomeric distonic ions in which the charge (i.e. proton) is sequestered by the highly basic arginine side chain and the radical site is located at various positions on the tripeptide including the peptide back bone and side chains. The radical sites in these distonic ions often direct the fragmentation reactions via the expulsion of small radicals (to yield even electron ions) or small neutrals (to form radical cations). Both classes of reaction can yield useful structural information, allowing for example, distinction between leucine and isoleucine residues. The gas-phase fragmentation reactions of the GXR[radical sign]+ radical cations are also compared to their even electron [GXR+H]+ and [GXR+2H]2+ counterparts. The [GXR+H]+ ions give fewer sequence ions and more small molecule losses while the [GXR+2H]2+ ions yield more sequence information, consistent with the [`]mobile proton model' described in previous studies. In general, all three classes of ions give complementary structural information, but the GXR[radical sign]+ radical cations exhibit a more diverse loss of small species (radicals and neutrals). Finally, links between these gas-phase results and key

  19. p53 Mutagenesis by benzo[a]pyrene derived radical cations.

    PubMed

    Sen, Sushmita; Bhojnagarwala, Pratik; Francey, Lauren; Lu, Ding; Penning, Trevor M; Field, Jeffrey

    2012-10-15

    Benzo[a]pyrene (B[a]P), a major human carcinogen in combustion products such as cigarette smoke and diesel exhaust, is metabolically activated into DNA-reactive metabolites via three different enzymatic pathways. The pathways are the anti-(+)-benzo[a]pyrene 7,8-diol 9,10-epoxide pathway (P450/epoxide hydrolase catalyzed) (B[a]PDE), the benzo[a]pyrene o-quinone pathway (aldo ketose reductase (AKR) catalyzed) and the B[a]P radical cation pathway (P450 peroxidase catalyzed). We used a yeast p53 mutagenesis system to assess mutagenesis by B[a]P radical cations. Because radical cations are short-lived, they were generated in situ by reacting B[a]P with cumene hydroperoxide (CuOOH) and horse radish peroxidase (HRP) and then monitoring the generation of the more stable downstream products, B[a]P-1,6-dione and B[a]P-3,6-dione. On the basis of B[a]P-1,6 and 3,6-dione formation, approximately 4 μM of radical cation was generated. In the mutagenesis assays, the radical cations produced in situ showed a dose-dependent increase in mutagenicity from 0.25 μM to 10 μM B[a]P with no significant increase seen with further escalation to 50 μM B[a]P. However, mutagenesis was 200-fold less than with the AKR pathway derived B[a]P, 7-8-dione. Mutant p53 plasmids, which yield red colonies, were recovered from the yeast to study the pattern and spectrum of mutations. The mutation pattern observed was G to T (31%) > G to C (29%) > G to A (14%). The frequency of codons mutated by the B[a]P radical cations was essentially random and not enriched at known cancer hotspots. The quinone products of radical cations, B[a]P-1,6-dione and B[a]P-3,6-dione were more mutagenic than the radical cation reactions, but still less mutagenic than AKR derived B[a]P-7,8-dione. We conclude that B[a]P radical cations and their quinone products are weakly mutagenic in this yeast-based system compared to redox cycling PAH o-quinones. PMID:22768918

  20. Generation and characterization of 1,2-diaryl-1,1,2,2-tetramethyldisilane cation radicals.

    PubMed

    Guirado, Gonzalo; Haze, Olesya; Dinnocenzo, Joseph P

    2010-05-21

    Nanosecond laser flash photolysis methods were used to generate and spectrally characterize the cation radicals of 1,2-diaryl-1,1,2,2,-tetramethyldisilanes (Ar = p-X-Ph, X = H, CH(3), OCH(3)) in hexafluoroisopropanol (HFIP) at room temperature. The disilane cation radicals rapidly reacted with methanol, with bimolecular rate constants ranging from 0.63 to 2.1 x 10(8) M(-1) s(-1). The cation radicals were found to react with tert-butanol 4-5 times more slowly than methanol, consistent with a small steric effect for nucleophile-assisted fragmentation of the Si-Si bond. The standard potentials for oxidation of the disilanes in HFIP were determined by two different methods: first, by measuring equilibrium constants for electron exchange between the disilanes and the cation radical of hexaethylbenzene and, second, by combining electrochemical data from cyclic voltammetry with the lifetimes of the disilane cation radicals measured by laser flash photolysis in the same media. Agreement between the two methods was excellent (

  1. Carbon-hydrogen vs. carbon-carbon bond cleavage of 1,2-diarylethane radical cations in acetonitrile-water

    SciTech Connect

    Camaioni, D.M.; Franz, J.A.

    1984-05-04

    Radical cations of 1,2-diarylethanes and 1-phenyl-2-arylethanes (Ar = phenyl, p-tolyl, p-anisyl) were generated in acidic 70% acetonitrile-water by Cu/sup 2 +/-catalyzed peroxydisulfate oxidation. The radical cations fragment mainly by loss of benzylic protons (C-H cleavage) rather than by alkyl C-C bond cleavage. The 1,2-diarylethanol products undergo further selective oxidation to aryl aldehydes and arylmethanols via rapid equilibration of diarylethane and diarylethanol radical cations. The radical cation of 2,3-dimethyl-2,3-diphenylbutane fragments efficiently by C-C cleavage, forming cumyl radical and cumyl cation. Oxidations of bibenzyl-bicumyl mixtures show selective oxidation of bicumyl dependent on total substrate concentration, providing evidence of equilibrating radical cations and showing that bicumyl fragments faster than bibenzyl loses protons. The effects of reaction conditions and substrate structure on reactivity are discussed.

  2. Theoretical study of second-order hyperpolarizability for nitrogen radical cation

    NASA Astrophysics Data System (ADS)

    Tarazkar, Maryam; Romanov, Dmitri A.; Levis, Robert J.

    2015-05-01

    We report calculations of the static and dynamic hyperpolarizabilities of the nitrogen radical cation in doublet state. The electronic contributions were computed analytically using density functional theory and multi-configurational self-consistent field method with extended basis sets for non-resonant excitation. The open-shell electronic system of nitrogen radical cation provides negative second-order optical nonlinearity, suggesting that the hyperpolarizability coefficient, {{γ }(2)}, in the non-resonant regime is mainly composed of combinations of virtual one-photon transitions rather than two-photon transitions. The second-order optical properties of nitrogen radical cation have been calculated as a function of bond length starting with the neutral molecular geometry (S0 minimum) and stretching the N-N triple bond, reaching the ionic D0 relaxed geometry all the way toward dissociation limit, to investigate the effect of internuclear bond distance on second-order hyperpolarizability.

  3. Berberine cation: A fluorescent chemosensor for alkanes and other low-polarity compounds. An explanation of this phenomenon

    PubMed

    Cossio; Arrieta; Cebolla; Membrado; Vela; Garriga; Domingo

    2000-07-27

    Alkanes in the presence of berberine sulfate provide an enhancement of fluorescent signal, which depends on alkane concentration and structure, when the system is irradiated with monochromatic UV light. Computational analysis suggests that an ion-induced dipole between alkanes and berberine sulfate is responsible for this phenomenon. This interaction can properly model the experimentally obtained fluorescent response. The proposed explanation allows other interacting systems to be designed, which have been experimentally confirmed. PMID:10930271

  4. Stability of phenol and thiophenol radical cations - interpretation by comparative quantum chemical approaches

    NASA Astrophysics Data System (ADS)

    Hermann, R.; Naumov, S.; Mahalaxmi, G. R.; Brede, O.

    2000-07-01

    The deprotonation kinetics of phenol-type radical cations, formed via a very efficient electron transfer in the pulse radiolysis of non-polar solutions, for example n-chlorobutane, is governed mainly by electronic effects due to the nature of the phenol substituents, whereas steric effects are of minor importance; thiophenols, which are sulphur analogues of phenols, exhibit a similar behavior. Comparative quantum chemical calculations show that the calculated spin densities at the hetero atoms correlate well with the experimentally determined radical cation lifetimes. Not only the Density Functional Theory (DTF) B3LYP but also the semiempirical quantum chemical model PM3 can be applied for the open shell systems mentioned.

  5. Multimetallic catalysed radical oxidative C(sp(3))-H/C(sp)-H cross-coupling between unactivated alkanes and terminal alkynes.

    PubMed

    Tang, Shan; Wang, Pan; Li, Haoran; Lei, Aiwen

    2016-01-01

    Radical involved transformations are now considered as extremely important processes in modern organic synthetic chemistry. According to the demand by atom-economic and sustainable chemistry, direct C(sp(3))-H functionalization through radical oxidative coupling represents an appealing strategy for C-C bond formations. However, the selectivity control of reactive radical intermediates is still a great challenge in these transformations. Here we show a selective radical oxidative C(sp(3))-H/C(sp)-H cross-coupling of unactivated alkanes with terminal alkynes by using a combined Cu/Ni/Ag catalytic system. It provides a new way to access substituted alkynes from readily available materials. Preliminary mechanistic studies suggest that this reaction proceeds through a radical process and the C(sp(3))-H bond cleavage is the rate-limiting step. This study may have significant implications for controlling selective C-C bond formation of reactive radical intermediates by using multimetallic catalytic systems. PMID:27339161

  6. Spin Manipulation by Creation of Single-Molecule Radical Cations

    NASA Astrophysics Data System (ADS)

    Karan, Sujoy; Li, Na; Zhang, Yajie; He, Yang; Hong, I.-Po; Song, Huanjun; Lü, Jing-Tao; Wang, Yongfeng; Peng, Lianmao; Wu, Kai; Michelitsch, Georg S.; Maurer, Reinhard J.; Diller, Katharina; Reuter, Karsten; Weismann, Alexander; Berndt, Richard

    2016-01-01

    All-trans-retinoic acid (ReA), a closed-shell organic molecule comprising only C, H, and O atoms, is investigated on a Au(111) substrate using scanning tunneling microscopy and spectroscopy. In dense arrays single ReA molecules are switched to a number of states, three of which carry a localized spin as evidenced by conductance spectroscopy in high magnetic fields. The spin of a single molecule may be reversibly switched on and off without affecting its neighbors. We suggest that ReA on Au is readily converted to a radical by the abstraction of an electron.

  7. Gas-phase structure and reactivity of the keto tautomer of the deoxyguanosine radical cation.

    PubMed

    Feketeová, Linda; Chan, Bun; Khairallah, George N; Steinmetz, Vincent; Maître, Philippe; Radom, Leo; O'Hair, Richard A J

    2015-10-21

    Guanine radical cations are formed upon oxidation of DNA. Deoxyguanosine (dG) is used as a model, and the gas-phase infrared (IR) spectroscopic signature and gas-phase unimolecular and bimolecular chemistry of its radical cation, dG˙(+), A, which is formed via direct electrospray ionisation (ESI/MS) of a methanolic solution of Cu(NO3)2 and dG, are examined. Quantum chemistry calculations have been carried out on 28 isomers and comparisons between their calculated IR spectra and the experimentally-measured spectra suggest that A exists as the ground-state keto tautomer. Collision-induced dissociation (CID) of A proceeds via cleavage of the glycosidic bond, while its ion–molecule reactions with amine bases occur via a number of pathways including hydrogen-atom abstraction, proton transfer and adduct formation. A hidden channel, involving isomerisation of the radical cation via adduct formation, is revealed through the use of two stages of CID, with the final stage of CID showing the loss of CH2O as a major fragmentation pathway from the reformed radical cation, dG˙(+). Quantum chemistry calculations on the unimolecular and bimolecular reactivity are also consistent with A being present as a ground-state keto tautomer. PMID:25942055

  8. Spectroscopy and decay dynamics of several methyl-and fluorine-substituted benzene radical cations

    USGS Publications Warehouse

    Bondybey, V.E.; Vaughn, C.; Miller, T.A.; English, J.H.; Shiley, R.H.

    1981-01-01

    Spectra of several fluorobenzene cation radicals containing 1-3 methyl substituents were observed in solid Ne matrix and analyzed. Comparisons between these compounds and other fluorobenzenes studied previously as well as comparisons between the B?? state lifetimes in the gas phase and in the matrix are used to gain a deeper insight into the B?? state decay dynamics. ?? 1981 American Chemical Society.

  9. Participation of cationic intermediates in radical-induced homopolymerization of maleic anhydride

    SciTech Connect

    Gaylord, N.G.; Koo, J.Y.

    1981-03-01

    Since the failure to promote MAH polymerization in the presence of amine-containing redox catalyst systems suggested the presence of cationic intermediates, the radical-induced polymerization of MAH was carried out in the absence and in the presence of N,N-dimethylformamide (DMF) and N, N-dimethylaniline (DMA).

  10. Gas phase regioselectivity in the deprotonation of p-cresol radical cation

    NASA Astrophysics Data System (ADS)

    Chiavarino, B.; Crestoni, M. E.; Fornarini, S.

    2003-04-01

    The deprotonation of the radical cation of p-cresol, a model of tyrosine residues, has been studied kinetically in the gas phase. The reaction has revealed the operation of competitive deprotonation sites depending on the strength of the base, as shown by an FT-ICR study using d-labelling.

  11. Isomerization of 4-vinylcyclohexene radical cation. A tandem mass spectrometry study

    SciTech Connect

    Vollmer, D.; Rempel, D.L.; Gross, M. L. ); Williams, F. )

    1995-02-08

    Investigation by matrix-isolation ESR has shown that 4-vinylcyclohexene, 1, surprisingly undergoes isomerization to the bicyclo[3.2.1]oct-2-ene ion, 3. Here we demonstrate the occurrence of this isomerization in the gas phase by use of tandem (MS/MS) sector and Fourier transform (FT) mass spectrometries. The radical cations of 4-vinylcyclohexene (IE = 8.93 eV) or bicyclo[3.2.1]oct-2-ene (approximately 14 kcal/mol more stable than that of 4-vinylcyclohexene) were formed, in separate trials, in a chemical ionization (CI) source by electron ionization (EI). The radical cations were then studied by obtaining their collisionally activated decomposition (CAD) spectra. The CAD spectra are similar, indicating that the isomerization has occurred. Both the sector and the FT mass spectrometer results reflect those obtained in the matrix-isolation ESR investigation. That is isomerizes to 3 at high internal energy, but is stable at low internal energy. Two mechanisms explain this rearrangement. The second mechanism is questionable because the most stable olefin radical cation formed from 5 is that of bicyclo[2.2.2]-2-octene, which gives different ESR and CAD spectra than those of 1 or 3. The CAD spectrum of bicyclo[2.2.2]-2-octene radical cation indicates that the retro-Diels-Alder loss of ethylene is more facile than that from 1 or 3. 18 refs., 3 figs.

  12. Ground and Excited-Electronic-State Dissociations of Hydrogen-Rich and Hydrogen-Deficient Tyrosine Peptide Cation Radicals

    NASA Astrophysics Data System (ADS)

    Viglino, Emilie; Lai, Cheuk Kuen; Mu, Xiaoyan; Chu, Ivan K.; Tureček, František

    2016-09-01

    We report a comprehensive study of collision-induced dissociation (CID) and near-UV photodissociation (UVPD) of a series of tyrosine-containing peptide cation radicals of the hydrogen-rich and hydrogen-deficient types. Stable, long-lived, hydrogen-rich peptide cation radicals, such as [AAAYR + 2H]+● and several of its sequence and homology variants, were generated by electron transfer dissociation (ETD) of peptide-crown-ether complexes, and their CID-MS3 dissociations were found to be dramatically different from those upon ETD of the respective peptide dications. All of the hydrogen-rich peptide cation radicals contained major (77%-94%) fractions of species having radical chromophores created by ETD that underwent photodissociation at 355 nm. Analysis of the CID and UVPD spectra pointed to arginine guanidinium radicals as the major components of the hydrogen-rich peptide cation radical population. Hydrogen-deficient peptide cation radicals were generated by intramolecular electron transfer in CuII(2,2 ':6 ',2 ″-terpyridine) complexes and shown to contain chromophores absorbing at 355 nm and undergoing photodissociation. The CID and UVPD spectra showed major differences in fragmentation for [AAAYR]+● that diminished as the Tyr residue was moved along the peptide chain. UVPD was found to be superior to CID in localizing Cα-radical positions in peptide cation radical intermediates.

  13. Ground and Excited-Electronic-State Dissociations of Hydrogen-Rich and Hydrogen-Deficient Tyrosine Peptide Cation Radicals.

    PubMed

    Viglino, Emilie; Lai, Cheuk Kuen; Mu, Xiaoyan; Chu, Ivan K; Tureček, František

    2016-09-01

    We report a comprehensive study of collision-induced dissociation (CID) and near-UV photodissociation (UVPD) of a series of tyrosine-containing peptide cation radicals of the hydrogen-rich and hydrogen-deficient types. Stable, long-lived, hydrogen-rich peptide cation radicals, such as [AAAYR + 2H](+●) and several of its sequence and homology variants, were generated by electron transfer dissociation (ETD) of peptide-crown-ether complexes, and their CID-MS(3) dissociations were found to be dramatically different from those upon ETD of the respective peptide dications. All of the hydrogen-rich peptide cation radicals contained major (77%-94%) fractions of species having radical chromophores created by ETD that underwent photodissociation at 355 nm. Analysis of the CID and UVPD spectra pointed to arginine guanidinium radicals as the major components of the hydrogen-rich peptide cation radical population. Hydrogen-deficient peptide cation radicals were generated by intramolecular electron transfer in Cu(II)(2,2':6',2″-terpyridine) complexes and shown to contain chromophores absorbing at 355 nm and undergoing photodissociation. The CID and UVPD spectra showed major differences in fragmentation for [AAAYR](+●) that diminished as the Tyr residue was moved along the peptide chain. UVPD was found to be superior to CID in localizing Cα-radical positions in peptide cation radical intermediates. Graphical Abstract ᅟ. PMID:27278824

  14. Ground and Excited-Electronic-State Dissociations of Hydrogen-Rich and Hydrogen-Deficient Tyrosine Peptide Cation Radicals

    NASA Astrophysics Data System (ADS)

    Viglino, Emilie; Lai, Cheuk Kuen; Mu, Xiaoyan; Chu, Ivan K.; Tureček, František

    2016-06-01

    We report a comprehensive study of collision-induced dissociation (CID) and near-UV photodissociation (UVPD) of a series of tyrosine-containing peptide cation radicals of the hydrogen-rich and hydrogen-deficient types. Stable, long-lived, hydrogen-rich peptide cation radicals, such as [AAAYR + 2H]+● and several of its sequence and homology variants, were generated by electron transfer dissociation (ETD) of peptide-crown-ether complexes, and their CID-MS3 dissociations were found to be dramatically different from those upon ETD of the respective peptide dications. All of the hydrogen-rich peptide cation radicals contained major (77%-94%) fractions of species having radical chromophores created by ETD that underwent photodissociation at 355 nm. Analysis of the CID and UVPD spectra pointed to arginine guanidinium radicals as the major components of the hydrogen-rich peptide cation radical population. Hydrogen-deficient peptide cation radicals were generated by intramolecular electron transfer in CuII(2,2':6',2″-terpyridine) complexes and shown to contain chromophores absorbing at 355 nm and undergoing photodissociation. The CID and UVPD spectra showed major differences in fragmentation for [AAAYR]+● that diminished as the Tyr residue was moved along the peptide chain. UVPD was found to be superior to CID in localizing Cα-radical positions in peptide cation radical intermediates.

  15. Efficient scavenging of β-carotene radical cations by antiinflammatory salicylates.

    PubMed

    Cheng, Hong; Liang, Ran; Han, Rui-Min; Zhang, Jian-Ping; Skibsted, Leif H

    2014-02-01

    The radical cation generated during photobleaching of β-carotene is scavenged efficiently by the anion of methyl salicylate from wintergreen oil in a second-order reaction approaching the diffusion limit with k2 = 3.2 × 10(9) L mol(-1) s(-1) in 9 : 1 v/v chloroform-methanol at 23 °C, less efficiently by the anion of salicylic acid with 2.2 × 10(8) L mol(-1) s(-1), but still of possible importance for light-exposed tissue. Surprisingly, acetylsalicylate, the aspirin anion, reacts with an intermediate rate in a reaction assigned to the anion of the mixed acetic-salicylic acid anhydride formed through base induced rearrangements. The relative scavenging rate of the β-carotene radical cation by the three salicylates is supported by DFT-calculations. PMID:24336797

  16. Multi-state vibronic interactions in the 1,2,3-trifluorobenzene radical cation.

    PubMed

    Faraji, Shirin; Köppel, Horst

    2012-12-14

    The multi-state and multi-mode vibronic interactions between the five lowest electronic states of the title compound are investigated theoretically by an ab initio quantum dynamical approach. The well-established linear vibronic coupling scheme is adopted, augmented by quadratic coupling terms for the totally symmetric modes. The pertinent system parameters are obtained from outer valence Greens function and equation-of-motion coupled-cluster ab initio calculations. Large-scale quantum dynamical simulations are performed employing a powerful wavepacket propagation scheme. The band shapes and line structures (as far as available) of the experimental photoelectron spectra are well reproduced. Time-dependent electronic populations reveal ultrafast internal conversion processes and allow for important insight into the fluorescence properties of the radical cation. The relation to other fluoro derivatives of the benzene radical cation is discussed. PMID:23249068

  17. Electronic structures, vibrational spectra, and revised assignment of aniline and its radical cation: Theoretical study

    NASA Astrophysics Data System (ADS)

    Wojciechowski, Piotr M.; Zierkiewicz, Wiktor; Michalska, Danuta; Hobza, Pavel

    2003-06-01

    Comprehensive studies of the molecular and electronic structures, vibrational frequencies, and infrared and Raman intensities of the aniline radical cation, C6H5NH2+ have been performed by using the unrestricted density functional (UB3LYP) and second-order Møller-Plesset (UMP2) methods with the extended 6-311++G(df,pd) basis set. For comparison, analogous calculations were carried out for the closed-shell neutral aniline. The studies provided detailed insight into the bonding changes that take place in aniline upon ionization. The natural bond orbital (NBO) analysis has revealed that the pπ-radical conjugative interactions are of prime importance in stabilizing the planar, quinoid-type structure of the aniline radical cation. It is shown that the natural charges calculated for aniline are consistent with the chemical properties of this molecule (an ortho- and para-directing power of the NH2 group in electrophilic substitutions), whereas Mulliken charges are not reliable. The theoretical vibrational frequencies of aniline, calculated by the B3LYP method, show excellent agreement with the available experimental data. In contrast, the MP2 method is deficient in predicting the frequencies of several modes in aniline, despite the use of the extended basis set in calculations. The frequencies of aniline radical cation, calculated at the UB3LYP/6-311++G(df,pd) level, are in very good agreement with the recently reported experimental data from zero kinetic energy photoelectron and infrared depletion spectroscopic studies. The clear- cut assignment of the IR and Raman spectra of the investigated molecules has been made on the basis of the calculated potential energy distributions. Several bands in the spectra have been reassigned. It is shown that ionization of aniline can be easily identified by the appearance of the very strong band at about 1490 cm-1, in the Raman spectrum. The redshift of the N-H stretching frequencies and the blueshift of the C-H stretching

  18. Triarylporphyrin meso-Oxy Radicals: Remarkable Chemical Stabilities and Oxidation to Oxophlorin π-Cations.

    PubMed

    Shimizu, Daiki; Oh, Juwon; Furukawa, Ko; Kim, Dongho; Osuka, Atsuhiro

    2015-12-16

    5-Hydroxy-10,15,20-triarylporphyrin (oxophlorin) and its Ni(II) and Zn(II) complexes were oxidized with PbO2 to give the corresponding porphyrin meso-oxy radicals as remarkably stable species. These radicals were fully characterized with X-ray diffraction analysis, UV/vis/NIR absorption and ESR spectroscopies, magnetic susceptibility measurement, electrochemical studies, and theoretical calculations. Free-base radical and its Ni(II) complex have been shown to exist as a monoradical in solution, while the Zn(II) complex exists in an equilibrium between monomer (doublet monoradical) and dimer (a non-Kekulé singlet biradicaloid) with a dimerization constant of KD = 3.0 × 10(5) M(-1) in noncoordinating CH2Cl2 but becomes a pyridine-coordinated monoradical upon addition of pyridine. Variable temperature magnetic susceptibility measurements of these radicals revealed different magnetic interactions in the solid-states, which has been interpreted in terms of their different packing structures in a microscopic sense. These radicals undergo one-electron oxidation and reduction in a reversible manner within narrow potential windows of 0.57-0.82 V. Finally, one-electron oxidation of Ni(II) and Zn(II) porphyrin meso-oxy radicals with tris(4-bromophenyl)aminium hexachloroantimonate furnished oxophlorin π-cations, which displayed nonaromatic closed-shell character, NIR absorption, and significant double bond character of the C-O bond. PMID:26609815

  19. Solvent effects on the resonance Raman spectra of bacteriochlorophyll a cation radical

    NASA Astrophysics Data System (ADS)

    Misono, Yasuhito; Nishizawa, Ei-ichi; Limantara, Leenawaty; Koyama, Yasushi; Itoh, Koichi

    1995-04-01

    Resonance Raman (RR) spectra were measured for the cation radical of bacteriochlorophyll a in acetone, methanol, dichloromethane and mixed solvents of acetone and methanol. The ring-breathing (C a-C m stretching) frequency of the radical (abbreviated as vr+) was observed at 1601 cm -1 in acetone (forming a penta-coordinated monomer), at 1587 cm -1 in a methanol (forming a hexa-coordinated monomer) and at 1600 cm -1 in dichloromethane (forming a penta-coordinated aggregate). The RR spectrum of the radical in dichloromethane is almost identical to the transient RR spectrum ascribed to 'the aggregated T 1 species of Bchl a' formed in the particular solvent by Nishizawa, Limantara, Nanjou, Nagae, Kakuno and Koyama, indicating that their interpretation needs to be revised.

  20. Novel Cβ-Cγ Bond Cleavages of Tryptophan-Containing Peptide Radical Cations

    NASA Astrophysics Data System (ADS)

    Song, Tao; Hao, Qiang; Law, Chun-Hin; Siu, Chi-Kit; Chu, Ivan K.

    2012-02-01

    In this study, we observed unprecedented cleavages of the Cβ-Cγ bonds of tryptophan residue side chains in a series of hydrogen-deficient tryptophan-containing peptide radical cations (M•+) during low-energy collision-induced dissociation (CID). We used CID experiments and theoretical density functional theory (DFT) calculations to study the mechanism of this bond cleavage, which forms [M - 116]+ ions. The formation of an α-carbon radical intermediate at the tryptophan residue for the subsequent Cβ-Cγ bond cleavage is analogous to that occurring at leucine residues, producing the same product ions; this hypothesis was supported by the identical product ion spectra of [LGGGH - 43]+ and [WGGGH - 116]+, obtained from the CID of [LGGGH]•+ and [WGGGH]•+, respectively. Elimination of the neutral 116-Da radical requires inevitable dehydrogenation of the indole nitrogen atom, leaving the radical centered formally on the indole nitrogen atom ([Ind]•-2), in agreement with the CID data for [WGGGH]•+ and [W1-CH3GGGH]•+; replacing the tryptophan residue with a 1-methyltryptophan residue results in a change of the base peak from that arising from a neutral radical loss (116 Da) to that arising from a molecule loss (131 Da), both originating from Cβ-Cγ bond cleavage. Hydrogen atom transfer or proton transfer to the γ-carbon atom of the tryptophan residue weakens the Cβ-Cγ bond and, therefore, decreases the dissociation energy barrier dramatically.

  1. Multimetallic catalysed radical oxidative C(sp3)–H/C(sp)–H cross-coupling between unactivated alkanes and terminal alkynes

    PubMed Central

    Tang, Shan; Wang, Pan; Li, Haoran; Lei, Aiwen

    2016-01-01

    Radical involved transformations are now considered as extremely important processes in modern organic synthetic chemistry. According to the demand by atom-economic and sustainable chemistry, direct C(sp3)–H functionalization through radical oxidative coupling represents an appealing strategy for C–C bond formations. However, the selectivity control of reactive radical intermediates is still a great challenge in these transformations. Here we show a selective radical oxidative C(sp3)–H/C(sp)–H cross-coupling of unactivated alkanes with terminal alkynes by using a combined Cu/Ni/Ag catalytic system. It provides a new way to access substituted alkynes from readily available materials. Preliminary mechanistic studies suggest that this reaction proceeds through a radical process and the C(sp3)–H bond cleavage is the rate-limiting step. This study may have significant implications for controlling selective C–C bond formation of reactive radical intermediates by using multimetallic catalytic systems. PMID:27339161

  2. Electrochemical and electron paramagnetic resonance studies of a carotenoid cation radicals and dications: Effect of deuteration

    SciTech Connect

    Khaled, M.; Hadjipetrou, A.; Kispert, L. )

    1990-06-14

    The oxidation process involving the transfer of two electrons for {beta}-carotene is confirmed by bulk electrolysis in a CH{sub 2}Cl{sub 2} solvent and the observation of {Delta}E = 42 mV from cyclic voltammetric measurements. A similar process is also found to occur for {beta}-apo-8{prime}-carotenal and canthaxanthin. An additional cathodic peak between 0.2 0.5 relative to SCE is shown to be dependent on the initial formation of dications followed by the loss of H{sup +} as evidenced by a large isotope effect and most likely due to the reduction of a carotenoid cation. EPR evidence exists for the formation of radical cations by the reaction of diffusing carotenoid dictations with neutral carotenoids. The rate of formation is consistent with the differences in the diffusion coefficients of the carotenoids deduced by chronocoulometric measurements, being fastest for canthaxanthin.

  3. External electric field promotes proton transfer in the radical cation of adenine-thymine

    NASA Astrophysics Data System (ADS)

    Zhang, Guiqing; Xie, Shijie

    2016-07-01

    According to pKa measurements, it has been predicted that proton transfer would not occur in the radical cation of adenine-thymine (A:T). However, recent theoretical calculations indicate that proton transfer takes place in the base pair in water below the room temperature. We have performed simulations of proton transfer in the cation of B-DNA stack composed of 10 A:T base pairs in water from 20 K to 300 K. Proton transfer occurs below the room temperature, meanwhile it could also be observed at the room temperature under the external electric field. Another case that interests us is that proton transfer bounces back after ˜300 fs from the appearance of proton transfer at low temperatures.

  4. Spin-coupling in ferric metalloporphyrin radical cation complexes: Mössbauer and susceptibility studies

    NASA Astrophysics Data System (ADS)

    Lang, George; Boso, Brian; Erler, Brian S.; Reed, Christopher A.

    1986-03-01

    The ferric metalloporphyrin π-radical cation complexes Fe(III) (OClO3)2 (TPP.) and [Fe(III) Cl (TPP.)] [SbCl6] were examined in microcrystalline form by Mössbauer spectroscopy and magnetic susceptometry over a range of temperatures and applied fields. All measurements on the six-coordinate Fe(OClO3)2 (TPP.) were consistent with isolated molecules having an S=5/2 iron site with zero field splitting (12 cm-1) S2z that is ferromagnetically coupled to the S=1/2 porphyrin radical by an energy term (-110 cm-1) Sṡs. Thus the ground state is overall spin-3. In the five-coordinate [FeCl (TPP.)] [SbCl6] the susceptibility is in reasonable agreement with the results of a calculation based on zero field splitting (12 cm-1) S2z for the S=5/2 iron and antiferromagnetic coupling (200 cm-1) Sṡs with the radical to give an overall spin-2 ground state. However, the Mössbauer measurements require a more complicated model having the same large intramolecular iron-radical coupling, a smaller zero field splitting (3 cm-1) S2z, and weak intermolecular antiferromagnetic coupling between heme pairs given by (32 cm-1) s1ṡs2 or, equivalently, (0.65 cm-1) S1ṡS2. A slightly improved correspondence with the measured susceptibility results. The intermolecular antiferromagnetic coupling probably results from crystallization of the [FeCl (TPP.)]+ cations in face-to-face dimers as observed in other closely related five-coordinate iron (III) porphyrins.

  5. Oxygen-18 tracer studies of enzyme reactions with radical/cation diagnostic probes

    SciTech Connect

    Moe, Luke A.; Fox, Brian G. . E-mail: bgfox@biochem.wisc.edu

    2005-12-09

    This review considers reactions of enzymes with the cyclopropanoid radical/cation diagnostic probes norcarane, 1,1-dimethylcyclopropane, and 1,1-diethylcyclopropane as elaborated by the use of {sup 18}O{sub 2} and {sup 18}OH{sub 2} to trace the origin of O-atoms incorporated during catalysis. The reactions of soluble and integral membrane diiron enzymes are summarized and compared to results obtained from cytochrome P450 studies. Norcarane proved to be an excellent substrate for the diiron enzyme toluene 4-monooxygenase and its engineered isoforms, with k {sub cat} and coupling between NADH utilization and total hydroxylated products comparable to that determined for toluene, the natural substrate. Results obtained with toluene 4-monooxygenase show that the un-rearranged and radical-rearranged alcohol products have a high percentage of O-atom incorporation (>80-95%) from O{sub 2}, while the cation-derived ring-expansion products have O-atom incorporation primarily derived from solvent water. Mechanistic possibilities accounting for this difference are discussed.

  6. Zeaxanthin Radical Cation Formation in Minor Light-Harvesting Complexes of Higher Plant Antenna

    SciTech Connect

    Avenson, Thomas H.; Ahn, Tae Kyu; Zigmantas, Donatas; Niyogi, Krishna K.; Li, Zhirong; Ballottari, Matteo; Bassi, Roberto; Fleming, Graham R.

    2008-01-31

    Previous work on intact thylakoid membranes showed that transient formation of a zeaxanthin radical cation was correlated with regulation of photosynthetic light-harvesting via energy-dependent quenching. A molecular mechanism for such quenching was proposed to involve charge transfer within a chlorophyll-zeaxanthin heterodimer. Using near infrared (880-1100 nm) transient absorption spectroscopy, we demonstrate that carotenoid (mainly zeaxanthin) radical cation generation occurs solely in isolated minor light-harvesting complexes that bind zeaxanthin, consistent with the engagement of charge transfer quenching therein. We estimated that less than 0.5percent of the isolated minor complexes undergo charge transfer quenching in vitro, whereas the fraction of minor complexes estimated to be engaged in charge transfer quenching in isolated thylakoids was more than 80 times higher. We conclude that minor complexes which bind zeaxanthin are sites of charge transfer quenching in vivo and that they can assume Non-quenching and Quenching conformations, the equilibrium LHC(N)<--> LHC(Q) of which is modulated by the transthylakoid pH gradient, the PsbS protein, and protein-protein interactions.

  7. Internal rotation of the methyl group in the radical cation of dimethyl ether

    NASA Astrophysics Data System (ADS)

    Matsushita, Michio; Momose, Takamasa; Shida, Tadamasa

    1990-04-01

    The radical cation of dimethyl ether has been studied by ESR in the temperature region of 6-140 K for focusing on the internal rotation of the methyl groups. The methyl groups rotate almost freely at above 70 K to give a septet ESR spectrum. At temperatures below 40 K there emerge extra lines due to the tunneling rotation of the methyl groups. From the analysis of the line shape, the interaction potential for the rotation of the two methyl groups, if any, should be approximated as proportional to cos 3theta1 cos 3theta2, where theta1 and theta2 denote the rotational angles of the methyl groups measured from the potential minima of the internal rotation of the methyl groups. The activation energy for the thermally induced internal rotation is determined to be about 100 cal/mol at temperatures above 25 K, whereas at lower temperatures the apparent activation energy drops sharply, which is consistent with the quantum tunneling of the methyl protons. The small activation energy of 100 cal/mol for the radical cation is compatible with the result of ab initio MO calculation for the potential barrier.

  8. Novel Cβ-Cγ bond cleavages of tryptophan-containing peptide radical cations.

    PubMed

    Song, Tao; Hao, Qiang; Law, Chun-Hin; Siu, Chi-Kit; Chu, Ivan K

    2012-02-01

    In this study, we observed unprecedented cleavages of the C(β)-C(γ) bonds of tryptophan residue side chains in a series of hydrogen-deficient tryptophan-containing peptide radical cations (M(•+)) during low-energy collision-induced dissociation (CID). We used CID experiments and theoretical density functional theory (DFT) calculations to study the mechanism of this bond cleavage, which forms [M - 116](+) ions. The formation of an α-carbon radical intermediate at the tryptophan residue for the subsequent C(β)-C(γ) bond cleavage is analogous to that occurring at leucine residues, producing the same product ions; this hypothesis was supported by the identical product ion spectra of [LGGGH - 43](+) and [WGGGH - 116](+), obtained from the CID of [LGGGH](•+) and [WGGGH](•+), respectively. Elimination of the neutral 116-Da radical requires inevitable dehydrogenation of the indole nitrogen atom, leaving the radical centered formally on the indole nitrogen atom ([Ind](•)-2), in agreement with the CID data for [WGGGH](•+) and [W(1-CH3)GGGH](•+); replacing the tryptophan residue with a 1-methyltryptophan residue results in a change of the base peak from that arising from a neutral radical loss (116 Da) to that arising from a molecule loss (131 Da), both originating from C(β)-C(γ) bond cleavage. Hydrogen atom transfer or proton transfer to the γ-carbon atom of the tryptophan residue weakens the C(β)-C(γ) bond and, therefore, decreases the dissociation energy barrier dramatically. PMID:22135037

  9. Gas-phase reactions of aryl radicals with 2-butyne: experimental and theoretical investigation employing the N-methyl-pyridinium-4-yl radical cation.

    PubMed

    Lam, A K Y; Li, C; Khairallah, G; Kirk, B B; Blanksby, S J; Trevitt, A J; Wille, U; O'Hair, R A J; da Silva, G

    2012-02-21

    Aromatic radicals form in a variety of reacting gas-phase systems, where their molecular weight growth reactions with unsaturated hydrocarbons are of considerable importance. We have investigated the ion-molecule reaction of the aromatic distonic N-methyl-pyridinium-4-yl (NMP) radical cation with 2-butyne (CH(3)C≡CCH(3)) using ion trap mass spectrometry. Comparison is made to high-level ab initio energy surfaces for the reaction of NMP and for the neutral phenyl radical system. The NMP radical cation reacts rapidly with 2-butyne at ambient temperature, due to the apparent absence of any barrier. The activated vinyl radical adduct predominantly dissociates via loss of a H atom, with lesser amounts of CH(3) loss. High-resolution Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry allows us to identify small quantities of the collisionally deactivated reaction adduct. Statistical reaction rate theory calculations (master equation/RRKM theory) on the NMP+2-butyne system support our experimental findings, and indicate a mechanism that predominantly involves an allylic resonance-stabilized radical formed via H atom shuttling between the aromatic ring and the C(4) side-chain, followed by cyclization and/or low-energy H atom β-scission reactions. A similar mechanism is demonstrated for the neutral phenyl radical (Ph˙)+2-butyne reaction, forming products that include 3-methylindene. The collisionally deactivated reaction adduct is predicted to be quenched in the form of a resonance-stabilized methylphenylallyl radical. Experiments using a 2,5-dichloro substituted methyl-pyridiniumyl radical cation revealed that in this case CH(3) loss from the 2-butyne adduct is favoured over H atom loss, verifying the key role of ortho H atoms, and the shuttling mechanism, in the reactions of aromatic radicals with alkynes. As well as being useful phenyl radical analogues, pyridiniumyl radical cations may form in the ionosphere of Titan, where they could undergo rapid

  10. Dynamics of radical cations of poly(4-hydroxystyrene) in the presence and absence of triphenylsulfonium triflate as determined by pulse radiolysis of its highly concentrated solution

    NASA Astrophysics Data System (ADS)

    Okamoto, Kazumasa; Ishida, Takuya; Yamamoto, Hiroki; Kozawa, Takahiro; Fujiyoshi, Ryoko; Umegaki, Kikuo

    2016-07-01

    Pulse radiolysis of highly concentrated poly(4-hydroxystyrene) (PHS) solutions in cyclohexanone and p-dioxane was performed both with and without an onium-type photoacid generator (PAG). With increasing PHS concentration, the rate constant of deprotonation of PHS radical cations was found to decrease. In the presence of PAG, the yield of the multimer radical cation of PHS was shown to decrease. We found that pairing between the anions produced by the attachment of dissociative electrons of PAGs and the monomer PHS radical cations restrict local molecular motions, leading to the formation of the multimer PHS radical cations.

  11. Single-Crystal X-ray Structures of conductive π-Stacking Dimers of Tetrakis(alkylthio)benzene Radical Cations.

    PubMed

    Chen, Xiaoyu; Gao, Feng; Yang, Wuqin

    2016-01-01

    Salts containing radical cations of 1,2,4,5-tetrakis(isopropylthio)benzene (TPB) and 1,2,4,5-tetrakis(ethylthio) benzene (TEB) have been successfully synthesized with . These newly synthesized salts have been characterized by UV-Vis absorption, EPR spectroscopy, conductivity measurement, single crystal X-ray diffraction analysis as well as DFT calculation. This study raises the first crystal structure of conductive π-stacking radical cation with single phenyl ring and reveals their conductivity has relationship with the stack structure which affected by the substituent. PMID:27403720

  12. Single-Crystal X-ray Structures of conductive π-Stacking Dimers of Tetrakis(alkylthio)benzene Radical Cations

    PubMed Central

    Chen, Xiaoyu; Gao, Feng; Yang, Wuqin

    2016-01-01

    Salts containing radical cations of 1,2,4,5-tetrakis(isopropylthio)benzene (TPB) and 1,2,4,5-tetrakis(ethylthio) benzene (TEB) have been successfully synthesized with . These newly synthesized salts have been characterized by UV-Vis absorption, EPR spectroscopy, conductivity measurement, single crystal X-ray diffraction analysis as well as DFT calculation. This study raises the first crystal structure of conductive π-stacking radical cation with single phenyl ring and reveals their conductivity has relationship with the stack structure which affected by the substituent. PMID:27403720

  13. Single-Crystal X-ray Structures of conductive π-Stacking Dimers of Tetrakis(alkylthio)benzene Radical Cations

    NASA Astrophysics Data System (ADS)

    Chen, Xiaoyu; Gao, Feng; Yang, Wuqin

    2016-07-01

    Salts containing radical cations of 1,2,4,5-tetrakis(isopropylthio)benzene (TPB) and 1,2,4,5-tetrakis(ethylthio) benzene (TEB) have been successfully synthesized with . These newly synthesized salts have been characterized by UV-Vis absorption, EPR spectroscopy, conductivity measurement, single crystal X-ray diffraction analysis as well as DFT calculation. This study raises the first crystal structure of conductive π-stacking radical cation with single phenyl ring and reveals their conductivity has relationship with the stack structure which affected by the substituent.

  14. Jahn-Teller and pseudo-Jahn-Teller effects in trifluoromethane radical cation

    NASA Astrophysics Data System (ADS)

    Ghanta, Susanta

    2016-08-01

    Jahn-Teller (JT) and pseudo-Jahn-Teller (PJT) effects in the ground, first and second excited electronic states of the trifluoromethane radical cation are theoretically examined here. Extensive ab initio computation of electronic potential energy surfaces and their coupling surfaces are performed. Full quantum dynamics are obtained by both time-independent and time-dependent quantum mechanical methods. This system belongs to (E+A)⊗e JT-PJT family. Our results compare well with the experimental data. JT interactions are fairly strong in the second excited B˜2 E electronic state and the PJT interaction between A˜2A2 - B˜2 E electronic states is stronger which cause an increase of the spectral line density of the vibronic spectrum.

  15. Aqueous oxidation of sulfonamide antibiotics: aromatic nucleophilic substitution of an aniline radical cation.

    PubMed

    Tentscher, Peter R; Eustis, Soren N; McNeill, Kristopher; Arey, J Samuel

    2013-08-19

    Sulfonamide antibiotics are an important class of organic micropollutants in the aquatic environment. For several, sulfur dioxide extrusion products have been previously reported upon photochemical or dark oxidation. Using quantum chemical modeling calculations and transient absorption spectroscopy, it is shown that single-electron oxidation from sulfadiazine produces the corresponding aniline radical cation. Density functional theory calculations indicate that this intermediate can exist in four protonation states. One species exhibits a low barrier for an intramolecular nucleophilic attack at the para position of the oxidized aniline ring, in which a pyrimidine nitrogen acts as a nucleophile. This attack can lead to a rearranged structure, which exhibits the same connectivity as the SO2 -extruded oxidation product that was previously observed in the aquatic environment and characterized by NMR spectroscopy. We report a detailed reaction mechanism for this intramolecular aromatic nucleophilic substitution, and we discuss the possibility of this reaction pathway for other sulfonamide drugs. PMID:23828254

  16. Excited state properties of the astaxanthin radical cation: A quantum chemical study

    NASA Astrophysics Data System (ADS)

    Dreuw, Andreas; Starcke, Jan Hendrik; Wachtveitl, Josef

    2010-07-01

    Using time-dependent density functional theory, the excited electronic states of the astaxanthin radical cation (AXT rad + ) are investigated. While the optically allowed excited D 1 and D 3 states are typical ππ∗ excited states, the D 2 and D 4 states are nπ∗ states. Special emphasis is put onto the influence of the carbonyl groups onto the excited states. For this objective, the excited states of four hypothetical carotenoids and zeaxanthin have been computed. Addition of a carbonyl group to a conjugated carbon double bond system does essentially not change the vertical excitation energies of the optically allowed ππ∗ states due to two counter-acting effects: the excitation energy should increase due to the -M-effect of the carbonyl group and at the same time decrease owing to the elongation of the conjugated double bond system by the carbonyl group itself.

  17. Excited states and electrochromism of radical cation of the carotenoid astaxanthin

    NASA Astrophysics Data System (ADS)

    Krawczyk, Stanisław

    1998-09-01

    Radical cations of the carotenoid astaxanthin were generated by chemical oxidation with Fe(Cl) 3, and their absorption and electroabsorption (Stark) spectra at temperatures about 150 K were recorded in the spectral range from 5900 to 26000 cm -1 (380 to 1700 nm), covering two absorptive electronic transitions from D 0 (ground) to D 1 and D 2 excited states. The changes in static polarizability are negative and equal -40±10 A 3 for D 0→D 1 and -105±15 A 3 for D 0→D 2, pointing that dominant contribution to polarizabilities results from the coupling of D 1 and D 2 with the ground state. An approximate localization of the next excited state with ground-state parity is estimated based on arguments from perturbation theory.

  18. The mechanism of the retro-Diels-Alder reaction in 4-vinylcyclohexene cation radical

    NASA Astrophysics Data System (ADS)

    Pancíř, J.; Tureček, F.

    1984-06-01

    Butadiene cation radicals are produced symmetrically from the ring and side-chain of the vinylcyclohexene cation radical near the onset of the fragmentation. The appearance energies of C 4H 6+- and C 4H 2D 4+- from (3,3,6,6-D 4)vinylcyclohex ene were measured as 11.07 ± 0.05 and 11.06 ± 0.06 eV, respectively. This sets the barrier to retro-Diels-Alder decomposition at 1140 kJ mol -1 above the energy of 1 and 44 kJ mol -1 above the thermochemical threshold corresponding to C 4H 6+- + C 4H 6. Topological molecular orbital calculations indicate that this lowest-energy path involves a sequential rupture of the C 3C 4 and C 5C 6 bonds, with a calculated barrier of 211 kJ mol -1. The second, two-step reaction channel proceeds by subsequent fission of the C 5C 6 and C 3C 4 bonds with a barrier of 299 kJ mol -1. This channel is found experimentally as a break on the ionization efficiency curve at 12.1 eV. Both the supra-supra and the supra-antara pericyclic reactions go through energy maxima and are therefore forbidden. The supra-supra process is the most favorable route for decomposition from the first excited state, the activation energy being 333 kJ mol -1. The preference for the two-step mechanism is due to hyperconjugative stabilization of intermediate molecular configurations.

  19. Simultaneous electrochemical and electron paramagnetic resonance studies of carotenoid cation radicals and dications

    SciTech Connect

    Khaled, M.; Hadjipetrou, A.; Kispert, L.D. ); Allendoerfer, R.D. )

    1991-03-21

    Comproportionation equilibrium constants have been determined from simultaneous electrochemical and EPR measurements for the carotenoid cation radicals (CAR{sup {sm bullet}+}) and dications (CAR {sup 2+}) of {beta}-carotene (1), {beta}-apo-8{prime}-carotenal (2), and canthaxanthin (3). K(1){sub com} = 2.4 {times} 10{sup {minus}2}, K{sub com}(2) = 1.8 {times} 10{sup {minus}2}, K{sub com}(3) = 2.1 {times} 10{sup 3}. These indicated that, upon oxidation of 3, 96% CAR{sup {sm bullet}+} would be formed while 99.7% CAR{sup 2+} would be formed for 1 and 2 if the oxidation potential was 100 mV anodic of the first observed voltammetric wave. This explains the reason for the strong EPR spectrum observed for 3 and the weak EPR spectra observed for 1 and 2. Rotating disk experiments confirm that oxidation of carotenoids occurs by an EE rather than by an ECE mechanism and are highly quasireversible systems. The second oxidation peak in the CV spectrum of 2 has been shown not to be due to a dication analogous to the CV of 3 but to a radical apparently from the oxidation of a decay product of the dication from 2.

  20. Mechanistic Investigation of Phosphate Ester Bond Cleavages of Glycylphosphoserinyltryptophan Radical Cations under Low-Energy Collision-Induced Dissociation

    NASA Astrophysics Data System (ADS)

    Quan, Quan; Hao, Qiang; Song, Tao; Siu, Chi-Kit; Chu, Ivan K.

    2013-04-01

    Under the conditions of low-energy collision-induced dissociation (CID), the canonical glycylphosphoserinyltryptophan radical cation having its radical located on the side chain of the tryptophan residue ([G p SW]•+) fragments differently from its tautomer with the radical initially generated on the α-carbon atom of the glycine residue ([G• p SW]+). The dissociation of [G• p SW]+ is dominated by the neutral loss of H3PO4 (98 Da), with backbone cleavage forming the [b2 - H]•+/y1 + pair as the minor products. In contrast, for [G p SW]•+, competitive cleavages along the peptide backbone, such as the formation of [G p SW - CO2]•+ and the [c2 + 2H]+/[z1 - H]•+ pair, significantly suppress the loss of neutral H3PO4. In this study, we used density functional theory (DFT) to examine the mechanisms for the tautomerizations of [G• p SW]+ and [G p SW]•+ and their dissociation pathways. Our results suggest that the dissociation reactions of these two peptide radical cations are more efficient than their tautomerizations, as supported by Rice-Ramsperger-Kassel-Marcus (RRKM) modeling. We also propose that the loss of H3PO4 from both of these two radical cationic tautomers is preferentially charge-driven, similar to the analogous dissociations of even-electron protonated peptides. The distonic radical cationic character of [G• p SW]+ results in its charge being more mobile, thereby favoring charge-driven loss of H3PO4; in contrast, radical-driven pathways are more competitive during the CID of [G p SW]•+.

  1. Synthesis of the iron phthalocyaninate radical cation μ-nitrido dimer and its interaction with hydrogen peroxide

    NASA Astrophysics Data System (ADS)

    Grishina, E. S.; Makarova, A. S.; Kudrik, E. V.; Makarov, S. V.; Koifman, O. I.

    2016-03-01

    The iron phthalocyaninate μ-nitrido dimer radical cation, as well as the μ-nitrido dimer complexes of iron phthalocyaninate, was found to have high catalytic activity in the oxidation of organic compounds. It was concluded that this compound is of interest as a model of active intermediates—catalase and oxidase enzymes.

  2. Solvent effects on the resonance Raman and electronic absorption spectra of bacteriochlorophyll a cation radical

    SciTech Connect

    Misono, Yasuhito; Itoh, Koichi; Limanatara, Leenawaty; Koyama, Yasushi

    1996-02-08

    Resonance Raman and electronic absorption spectra of bacteriocholrophyll a cation radical (BChl a{sup .+}) were recorded in 14 different kinds of solvents. The frequency of the ring-breathing Raman band of BChl a{sup .+} was in the region of 1596-1599 cm{sup -1} in solvents forming the pentacoordinated state in neutral bacteriochlorophyll a (BChl a), while it was in the region of 1584-1588 cm{sup -1} in solvents forming the hexacoordinated state. BChl a{sup .+} exhibited a key absorption band in the regions 546-554 and 557-563 nm in the above penta- and hexa-coordinating solvents. Therefore, it has been concluded that the penta- and hexa-coordinated states are retained even after conversion of BChl a into BChl a{sup .+} (one-electron oxidization). Application of this rule to the case of 2-propanol solution showed transformation from the penta- to the hexa-coordinated state upon one-electron oxidation in this particular solution. The coordination states of BChl a{sup .+} could be correlated with the donor number(DN) and the Taft parameters, {Beta} and {pi}{sup *}, of the solvent: The hexacoordinated state was formed in solvents with DN >= 18 or {Beta} > 0.5 showing higher electron donating power, while the pentacoordinated state was formed in solvents with {pi}{sup *} > 0.65 showing higher dielectric stabilization. 27 refs., 8 figs., 3 tabs.

  3. Reactive Pathways in the Chlorobenzene-Ammonia Dimer Cation Radical: New Insights from Experiment and Theory

    NASA Astrophysics Data System (ADS)

    Nyambo, Silver; Uhler, Brandon; Kalume, Aimable; Muzangwa, Lloyd; Reid, Scott

    2014-06-01

    Previously, we have studied non-covalent interactions in mono-halogenated benzene clusters using mass selected resonant 2-photon ionization methods. We have extended our studies by investigating the interaction between these mono-halobenzenes with a prototypical N atom donor (NH_3). Thus, we have obtained electronic spectra of PhX…(NH_3)n ( X=F, Cl, Br and n=1,2….) complexes in the region of the PhX monomer S_0-S_1 (ππ*) transition. Here we are mainly focusing on PhCl…NH_3 dimer. We found that upon ionization of the dimer, three reactive pathways of the [PhCl…NH_3]+. have been evidenced. The primary pathway is the Cl atom elimination, previously evidenced. The second and third pathways, HCl elimination and H atom elimination are identified for the first time in the R2PI studies of the dimer. Electronic spectra obtained for the three pathways shows that they originate from a common precursor. The reactive pathways in this system were extensively characterized computationally. We used DFT and post-Hartree Fock electronic structure calculations, Frank-Condon analysis to support our experimental findings. The results were consistent with previous direct ab initio molecular dynamics calculations, we found two nearly iso-energetic Wheland intermediates which lie significantly lower in energy than the initially formed dimer cation radical [PhCl…NH_3]+..

  4. Unconventional hydrogen bonding to organic ions in the gas phase: Stepwise association of hydrogen cyanide with the pyridine and pyrimidine radical cations and protonated pyridine

    NASA Astrophysics Data System (ADS)

    Hamid, Ahmed M.; El-Shall, M. Samy; Hilal, Rifaat; Elroby, Shaaban; Aziz, Saadullah G.

    2014-08-01

    Equilibrium thermochemical measurements using the ion mobility drift cell technique have been utilized to investigate the binding energies and entropy changes for the stepwise association of HCN molecules with the pyridine and pyrimidine radical cations forming the C5H5N+.(HCN)n and C4H4N2+.(HCN)n clusters, respectively, with n = 1-4. For comparison, the binding of 1-4 HCN molecules to the protonated pyridine C5H5NH+(HCN)n has also been investigated. The binding energies of HCN to the pyridine and pyrimidine radical cations are nearly equal (11.4 and 12.0 kcal/mol, respectively) but weaker than the HCN binding to the protonated pyridine (14.0 kcal/mol). The pyridine and pyrimidine radical cations form unconventional carbon-based ionic hydrogen bonds with HCN (CHδ+⋯NCH). Protonated pyridine forms a stronger ionic hydrogen bond with HCN (NH+⋯NCH) which can be extended to a linear chain with the clustering of additional HCN molecules (NH+⋯NCH..NCH⋯NCH) leading to a rapid decrease in the bond strength as the length of the chain increases. The lowest energy structures of the pyridine and pyrimidine radical cation clusters containing 3-4 HCN molecules show a strong tendency for the internal solvation of the radical cation by the HCN molecules where bifurcated structures involving multiple hydrogen bonding sites with the ring hydrogen atoms are formed. The unconventional H-bonds (CHδ+⋯NCH) formed between the pyridine or the pyrimidine radical cations and HCN molecules (11-12 kcal/mol) are stronger than the similar (CHδ+⋯NCH) bonds formed between the benzene radical cation and HCN molecules (9 kcal/mol) indicating that the CHδ+ centers in the pyridine and pyrimidine radical cations have more effective charges than in the benzene radical cation.

  5. Investigation of the molecular structure of radical cation of s-trioxane: quantum chemical calculations and low-temperature EPR results

    NASA Astrophysics Data System (ADS)

    Janovský, I.; Naumov, S.; Knolle, W.; Mehnert, R.

    2003-06-01

    s-Trioxane radical cation was radiolytically generated in freon matrix and the changes of the EPR spectra with temperature, arising from conformational interconversion involving ring, were observed. The equilibration, leading to six equivalent protons (hfs splitting constant 5.9 mT) characteristic of the average planar geometry of the radical cation, occurs at ˜120 K in CF 3CCl 3. Supplementary experiments with 1,3-dioxane, which forms a radical cation with a similar electronic structure, were also performed. DFT quantum chemical calculations were used to support the experimental results.

  6. The Guanine Cation Radical: Investigation of Deprotonation States by ESR and DFT

    PubMed Central

    Adhikary, Amitava; Kumar, Anil; Becker, David; Sevilla, Michael D.

    2008-01-01

    This work reports ESR studies that identify the favored site of deprotonation of the guanine cation radical (G•+) in an aqueous medium at 77 K. Using ESR and UV-visible spectroscopy, one-electron oxidized guanine is investigated in frozen aqueous D2O solutions of 2′-deoxyguanosine (dGuo) at low temperatures at various pHs at which the guanine cation, G•+ (pH 3–5), singly deprotonated species, G(-H)• (pH 7–9) and doubly deprotonated species, G(-2H)•− (pH>11) are found. C-8-deuteration of dGuo to give 8-D-dGuo removes the major proton hyperfine coupling at C-8. This isolates the anisotropic nitrogen couplings for each of the three species and aids our analyses. These anisotropic nitrogen couplings were assigned to specific nitrogen sites by use of 15N substituted derivatives at N1, N2 N3 atoms in dGuo. Both ESR and UV-visible spectra are reported for each of the species: G•+, G(-H)•, and G(-2H)•−. The experimental anisotropic ESR hyperfine couplings are compared to those obtained from DFT calculations for the various tautomers of G(-H)•. Using the B3LYP/6–31G(d) method, the geometries and energies of G•+ and its singly deprotonated state in its two tautomeric forms, G(N1-H)• and G(N2-H)•, were investigated. In a non-hydrated state G(N2-H)• is found to be more stable than G(N1-H)• but on hydration with 7 water molecules G(N1-H)• is found to be more stable than G(N2-H)•. The theoretically calculated hyperfine coupling constants (HFCC) of G•+, G(N1-H)• and G(-2H)•− match the experimentally observed HFCCs best on hydration with 7 or more waters. For G(-2H)•−, the hyperfine coupling constant (HFCC) at the exocyclic nitrogen atom (N2) is especially sensitive to the number of hydrating water molecules; good agreement with experiment is not obtained until 9 or 10 waters of hydration are included. PMID:17125389

  7. The dynamical behavior of the s-trioxane radical cation-A low-temperature EPR and theoretical study.

    PubMed

    Naumov, Sergej S; Knolle, Wolfgang; Naumov, Sergej P; Pöppl, Andreas; Janovský, Igor

    2014-01-01

    The radical cation of s-trioxane, radiolytically generated in a freon (CF3CCl3) matrix, was studied in the 10-140 K temperature region. Reversible changes of the EPR spectra were observed, arising from both ring puckering and ring inversion through the molecular plane. The ESREXN program based on the Liouville density matrix equation, allowing the treatment of dynamical exchange, has been used to analyze the experimental results. Two limiting conformer structures of the s-trioxane radical cation were taken into account, namely "rigid" half-boat and averaged planar ones, differing strongly in their electron distribution. The spectrum due to the "rigid" half-boat conformer can be observed only at very low (<60 K) temperatures, when the exchange of conformers is very slow. Two transition states for interconversion by puckering and ring-inversion were identified, close in activation energy (2.3 and 3.0 kJ/mol calculated). Since the energy difference is very small, both processes set on at a comparable temperature. In the case of nearly complete equilibration (fast exchange) between six energetically equivalent structures at T > 120 K in CF3CCl3, a septet due to six equivalent protons (hfs splitting constant 5.9 mT) is observed, characteristic of the dynamically averaged planar geometry of the radical cation. DFT quantum chemical calculations and spectral simulation including intramolecular dynamical exchange support the interpretation. PMID:25353382

  8. To jump or not to jump? Cα hydrogen atom transfer in post-cleavage radical-cation complexes.

    PubMed

    Bythell, Benjamin J

    2013-02-14

    Conventionally, electron capture or transfer to a polyprotonated peptide ion produces an initial radical-cation intermediate which dissociates "directly" to generate complementary c(n)' and z(m)(•) sequence ions (or ions and neutrals). Alternatively, or in addition, the initial radical-cation intermediate can undergo H(•) migration to produce c(n)(•) (or c(n) - H(•)) and z(m)' (or z(m)(•) + H(•)) species prior to complex separation ("nondirect"). This reaction significantly complicates spectral interpretation, creates ambiguity in peak assignment, impairs effective algorithmic processing (reduction of the spectrum to solely (12)C m/z values), and reduces sequence ion signal-to-noise. Experimental evidence indicates that the products of hydrogen atom transfer reactions are substantially less prevalent for higher charge state precursors. This effect is generally rationalized on the basis of decreased complex lifetime. Here, we present a theoretical study of these reactions in post N-C(α) bond cleavage radical-cation complexes as a function of size and precursor charge state. This approach provides a computational estimate of the barriers associated with these processes for highly charged peptides with little charge solvation. The data indicate that the H(•) migration is an exothermic process and that the barrier governing this reaction rises steeply with precursor ion charge state. There is also some evidence for immediate product separation following N-C(α) bond cleavage at higher charge state. PMID:22809411

  9. Multistep π dimerization of tetrakis(n-decyl)heptathienoacene radical cations: a combined experimental and theoretical study.

    PubMed

    Ferrón, Cristina Capel; Capdevila-Cortada, Marçal; Balster, Russell; Hartl, František; Niu, Weijun; He, Mingqian; Novoa, Juan J; López Navarrete, Juan T; Hernández, Víctor; Ruiz Delgado, M Carmen

    2014-08-11

    Radical cations of a heptathienoacene α,β-substituted with four n-decyl side groups (D4T7(.) (+) ) form exceptionally stable π-dimer dications already at ambient temperature (Chem. Comm. 2011, 47, 12622). This extraordinary π-dimerization process is investigated here with a focus on the ultimate [D4T7(.) (+) ]2 π-dimer dication and yet-unreported transitory species formed during and after the oxidation. To this end, we use a joint experimental and theoretical approach that combines cyclic voltammetry, in situ spectrochemistry and spectroelectrochemistry, EPR spectroscopy, and DFT calculations. The impact of temperature, thienoacene concentration, and the nature and concentration of counteranions on the π-dimerization process is also investigated in detail. Two different transitory species were detected in the course of the one-electron oxidation: 1) a different transient conformation of the ultimate [D4T7(.) (+) ]2 π-dimer dications, the stability of which is strongly affected by the applied experimental conditions, and 2) intermediate [D4T7]2 (.) (+) π-dimer radical cations formed prior to the fully oxidized [D4T7]2 (.) (+) π-dimer dications. Thus, this comprehensive work demonstrates the formation of peculiar supramolecular species of heptathienoacene radical cations, the stability, nature, and structure of which have been successfully analyzed. We therefore believe that this study leads to a deeper fundamental understanding of the mechanism of dimer formation between conjugated aromatic systems. PMID:25043826

  10. On the time behaviour of the concentration of pyrazinium radical cations in the early stage of the Maillard reaction

    NASA Astrophysics Data System (ADS)

    Stoesser, Reinhard; Klein, Jeannette; Peschke, Simone; Zehl, Andrea; Cämmerer, Bettina; Kroh, Lothar W.

    2007-08-01

    During the early stage of the Maillard reaction pyrazinium radical cations were detected by ESR within the reaction system D-glucose/glycine. The spectra were characterized by completely resolved hyperfine structure. The partial pressure of oxygen and the radical concentrations were measured directly in the reaction mixture by ESR using solutions of the spin probe TEMPOL and of DPPH, respectively. There are quantitative and qualitative relations of the actual concentration of the radical ions to the partial pressure of oxygen, the temperature-time regime and the mechanical mixing of the reaction system. These macroscopic parameters significantly affect both the induction period and the velocity of the time-dependent formation of free radicals. From in situ variations of p(O 2) and p(Ar) including the connected mixing effects caused by the passing the gases through the reaction mixture, steric and chemical effects of the stabilization of the radical ions were established. The determination of suitable and relevant conditions for stabilization and subsequent radical reactions contributes to the elucidation of the macroscopically known antioxidant activity of Maillard products.

  11. Collision cross-sections of [C,H,O] cations and radical cations from aliphatic [C,H,O] compounds

    NASA Astrophysics Data System (ADS)

    van Houte, J. J.; van Thuijl, J.

    1994-05-01

    Over 260 collision cross-section [sigma]ot, expressed in »ngströms squared, have been determined for the studied ions at 20 and 70 eV by extrapolation of [sigma]t to zero target gas pressure, and these yield two types of structural information. The first type concerns occurrence and detection of cyclic ions, the second isomerization of parent molecular ions and different product ion distributions at 20 and 70 eV. In addition, examples of two distinct fragmentation mechanisms operative in the formation of identical daughter ions from a given precursor could be traced. Formation of cyclic daughter ions is, for instance, observed for C2H3O+ from oxirane, C3H5O+ from oxetane, C4H7O+2 from 4-methyl-1,3-dioxolane. Cyclic molecular ions are formed in varying proportions from oxirane, tetrahydrofuran, 2- and 4-methyl-1,3-dioxolane but not from porpylene oxide, oxetane and 1,3-dioxolane. Isomerization of the parent molecular ion is proposed for the following fragmentations: CH2 from allyl alcohol, CHO2+ from formic acid, C2H2O·+ from oxirane, and C3H6O·+ from 3-methyl butanal and 2-methyl pentanal. Different product ion distributions at 20 and 70 eV were found for C3H5O+ from ethyl propionate and 2-pentanone, C2H4O·+ and C4H8O·+ from butane-1,3-diol, and C3H6O·+ from 2- and 4-methyl-1,3-dioxolane. Two distinct fragmentation mechanisms were traced for the following processes: CH2OH, C2H2O·+ and C2H3O+ from methyl vinyl ether, CH2 and C2H5O+ from butane-1,3-diol and C2H2O·+ from butanone. Self protonation of acetaldehyde also appears to take place by two mechanisms. Energy partitioning is evident in the formation of formyl cations HCO+ but wears off for processes in which larger daughter ions are formed. For formyl cations from straight chain aldehydes, the 70 eV collision cross-section is linearly related to the logarithm of the reciprocal of the number of degrees of freedom in the parent molcule, log (1/DFp). One example of a proton-bound dimer is given, that of

  12. Non-photochemical Fluorescence Quenching in Photosystem II Antenna Complexes by the Reaction Center Cation Radical.

    PubMed

    Paschenko, V Z; Gorokhov, V V; Grishanova, N P; Korvatovskii, B N; Ivanov, M V; Maksimov, E G; Mamedov, M D

    2016-06-01

    efficiency for non-photochemical antenna fluorescence quenching by RC cation radical in comparison to that of photochemical quenching are discussed. PMID:27301286

  13. The loss of NH2O from the N-hydroxyacetamide radical cation CH3C(O)NHOH+

    NASA Astrophysics Data System (ADS)

    Jobst, Karl J.; Burgers, Peter C.; Ruttink, Paul J. A.; Terlouw, Johan K.

    2006-08-01

    A previous study [Ch. Lifshitz, P.J.A. Ruttink, G. Schaftenaar, J.K. Terlouw, Rapid Commun. Mass Spectrom. 1 (1987) 61] shows that metastable N-hydroxyacetamide ions CH3C(O)NHOH+ (HA-1) do not dissociate into CH3CO+ + NHOH by direct bond cleavage but rather yield CH3CO+ + NH2OE The tandem mass spectrometry based experiments of the present study on the isotopologue CH3C(O)NDOD+ reveal that the majority of the metastable ions lose the NH2O radical as NHDO rather than ND2O. A mechanistic analysis using the CBS-QB3 model chemistry shows that the molecular ions HA-1 rearrange into hydrogen-bridged radical cations [OCC(H2)H...N(H)OH]+ whose acetyl cation component then catalyses the transformation NHOH --> NH2O prior to dissociation. The high barrier for the unassisted 1,2-H shift in the free radical, 43 kcal mol-1, is reduced to a mere 7 kcal mol-1 for the catalysed transformation which can be viewed as a quid-pro-quo reaction involving two proton transfers.

  14. Phthalocyanine. pi. -cation-radical species: photochemical and electrochemical preparation of (ZnPc(-1))/sup. +/ in solution

    SciTech Connect

    Nyokong, T.; Gasyna, Z.; Stillman, M.J.

    1987-02-25

    The ..pi..-cation-radical species of ZnPc, (ZnPc(-1))/sup .+/ (Pc = phthalocyanine), has been formed quantitatively as a stable product in solution following photochemical reactions with visible-region light in the presence of electron acceptors. The photolyses were carried out by excitation into the phthalocyanine's Q band (lambda > 580 nm), with carbon tetrabromide as an irreversible electron acceptor. The neutral parent species could be regenerated following photooxidation by the addition of sodium dithionite. Cyclic voltammetry of neutral ZnPcL species identified the ring oxidation potentials; for ZnPc(py) and ZnPc(im) (py = pyridine; im = imidazole). In dimethylacetamide, there is one oxidation couple at 0.70 and 0.71 V vs. SCE, respectively, and there are two reduction couples, at -0.96 and -1.28 V vs SCE, for the pyridine complex, and at -0.98 and -1.53 V vs SCE, for the imidazole complex. Each of these reactions was reversible on the cyclic voltammetry time scale. The electrochemical and photochemical oxidation products were characterized by absorption, magnetic circular dichroism (MCD), and electron paramagnetic resonance (EPR) spectroscopies. Four clearly resolvable, optical transitions, centered at 440, 500, 720, and 825 nm, are observed in the absorption spectrum of the cation radical species. EPR spectra obtained from frozen solutions of the ..pi.. cation radicals gave isotropic g values that are characteristic of the oxidation at the phthalocyanine ligand (the g values were between 2.0055 and 2.0068). 52 references, 4 figures, 2 tables.

  15. Photo-excitation of adenine cation radical [A•+] in the near UV-vis region produces sugar radicals in Adenosine and in its nucleotides

    PubMed Central

    Adhikary, Amitava; Khanduri, Deepti; Kumar, Anil; Sevilla, Michael D.

    2011-01-01

    In this study, we report the formation of ribose sugar radicals in high yields (85 – 100%) via photo-excitation of adenine cation radical (A•+) in Ado and its ribonucleotides. Photo-excitation of A•+ at low temperatures in homogenous aqueous glassy samples of Ado, 2′-AMP, 3′-AMP and 5′-AMP forms sugar radicals predominantly at C5′- and also at C3′-sites. The C5′• and C3′• sugar radicals were identified employing Ado deuterated at specific carbon sites: C1′, C2′, and at C5′. Phosphate substitution is found to deactivate sugar radical formation at the site of substitution. Thus, in 5′-AMP, C3′• is observed to be the main radical formed via photo-excitation at ca. 143 K whereas in 3′-AMP, C5′• is the only species found. These results were supported by results obtained employing 5′-AMP with specific deuteration at C5′-site (i.e., 5′,5′-D,D-5′-AMP). Moreover, contrary to the C5′• observed in 3′-dAMP, we find that C5′• in 3′-AMP shows a clear pH dependent conformational change as evidenced by a large increase in the C4′ β–hyperfine coupling on increasing the pH from 6 to 9. Calculations performed employing DFT (B3LYP/6-31G*) for C5′• in 3′-AMP show that the two conformations of C5′• result from strong hydrogen bond formation between the O5′-H and the 3′-phosphate dianion at higher pHs. Employing time-dependent density functional theory [TD-DFT, B3LYP/6-31G(d)] we show that in the excited state, the hole transfers to the sugar moiety and has significant hole localization at the C5′-site in a number of allowed transitions. This hole localization is proposed to lead to the formation of the neutral C5′-radical (C5′•) via deprotonation. PMID:19367991

  16. Detection of the short-lived radical cation intermediate in the electrooxidation of N,N-dimethylaniline by mass spectrometry.

    PubMed

    Brown, Timothy A; Chen, Hao; Zare, Richard N

    2015-09-14

    The N,N-dimethylaniline (DMA) radical cation DMA(.+) , a long-sought transient intermediate, was detected by mass spectrometry (MS) during the electrochemical oxidation of DMA. This was accomplished by coupling desorption electrospray ionization (DESI) MS with a waterwheel working electrode setup to sample the surface of the working electrode during electrochemical analysis. This study clearly shows that DESI-based electrochemical MS is capable of capturing electrochemically generated intermediates with half-lives on the order of microseconds, which is 4-5 orders of magnitude faster than previously reported electrochemical mass spectrometry techniques. PMID:26352029

  17. Cations or Radicals? Inherent Reactivity of Biosynthetic Intermediates in the B-Ring Formation of Rotenoid Natural Products.

    PubMed

    Kirkpatrick, Adam K; Siebert, Matthew R

    2016-04-21

    Compounds of the rotenoid class are naturally occurring in the Leguminosae and Nyctaginacae families. Rotenoids have found a myriad of uses, for example, in the agricultural industry as an insecticide and piscicide, and as an anticancer therapeutic. The scientific literature questions whether cyclization of the rotenoid B-ring occurs via a pathway containing either cationic or free-radical intermediates. In this work, both propositions are analyzed using DFT (B3LYP and M06-2X) and the G3 composite method in gas- and (implicit) solution-phase. The accuracy of these methods is compared to several experimental C-H bond dissociation energies (BDEs). We find that of the methods surveyed M06-2X provides the most accurate BDEs. Further, there is a clear thermodynamic preference for the free-radical pathway. PMID:27014924

  18. Positive exchange interaction in the radical ion pair of benzophenone anion and 1,4-diazabicyclo[2,2,2]octane cation radicals studied by FT-EPR spectroscopy

    NASA Astrophysics Data System (ADS)

    Sekiguchi, Shinji; Akiyama, Kimio; Tero-Kubota, Shozo

    1996-12-01

    Electron spin polarization generated from the photoreduction of benzophenone (BP) and its derivatives in the presence of 1,4-diazabicyclo[2,2,2]octane (DABCO) was studied in various solvents. The DABCO cation radical obtained showed a CIDEP spectrum with A/E (absorption/emission) polarization by RPM, while other neutral radicals gaee an E/A pattern. Using triplet quenchers, it was confirmed that these RPM signals were generated through the triplet reaction process. The present results revealed that the radical ion pair including the BP anion and DABCO +. cation radicals has a positive J, while the neutral radical pairs generated under the same condition have a negative J. The sign of J is independent of the polarity of the organic solvents used.

  19. Key Role of End-Capping Groups in Optoelectronic Properties of Poly-p-phenylene Cation Radicals

    PubMed Central

    2015-01-01

    Poly-p-phenylenes (PPs) are prototype systems for understanding the charge transport in π-conjugated polymers. In a combined computational and experimental study, we demonstrate that the smooth evolution of redox and optoelectronic properties of PP cation radicals toward the polymeric limit can be significantly altered by electron-donating iso-alkyl and iso-alkoxy end-capping groups. A multiparabolic model (MPM) developed and validated here rationalizes this unexpected effect by interplay of the two modes of hole stabilization: due to the framework of equivalent p-phenylene units and due to the electron-donating end-capping groups. A symmetric, bell-shaped hole in unsubstituted PPs becomes either slightly skewed and shifted toward an end of the molecule in iso-alkyl-capped PPs or highly deformed and concentrated on a terminal unit in PPs with strongly electron-donating iso-alkoxy capping groups. The MPM shows that the observed linear 1/n evolution of the PP cation radical properties toward the polymer limit originates from the hole stabilization due to the growing chain of p-phenylene units, while shifting of the hole toward electron-donating end-capping groups leads to early breakdown of these 1/n dependencies. These insights, along with the readily applicable and flexible multistate parabolic model, can guide studies of complex donor–spacer–acceptor systems and doped molecular wires to aid the design of the next generation materials for long-range charge transport and photovoltaic applications. PMID:25264475

  20. Electrochemical Behavior of meso-Substituted Porphyrins: The Role of Cation Radicals to the Half-Wave Oxidation Potential Splitting.

    PubMed

    Tran, Thai T H; Chang, Yan-Ru; Hoang, Tuan K A; Kuo, Ming-Yu; Su, Yuhlong O

    2016-07-21

    In this study, the electrochemical behavior of free base and zinc meso-substituted porphyrins is examined by cyclic voltammetry (CV) and density functional theory (DFT). The results show that the half-wave oxidation potential splitting of the two oxidation states (ΔE= second E1/2 - first E1/2) of tetraphenylporphyrin (H2TPP) and its zinc complex (ZnTPP) are higher than those of porphyrins and their zinc complexes with meso-substituted five-membered heterocylic rings. The ΔE values follow the trend of TPP > T(3'-thienyl)P > T(3'-furyl)P > T(2'-thienyl)P for both meso-porphyrins and their respective zinc complexes. By employing DFT calculations, we have found that the trend of ΔE values is consistent with that of highest spin density (HSD) distribution and HOMO-LUMO energy gaps of cationic radicals as well as the π-conjugation between central porphyrin and meso-substituted rings. Also, they exhibit the better resonance between the porphyrin ring with meso-substituted rings as moving from porphyrins and their zinc complexes with phenyl rings to five-membered heterocyclic rings. A good agreement between calculated and experimental results indicates that cationic radicals, especially their spin density distribution, do play an important role in half-wave oxidation potential splitting of meso-porphyrins and their zinc complexes. PMID:27379447

  1. Unconventional hydrogen bonding to organic ions in the gas phase: Stepwise association of hydrogen cyanide with the pyridine and pyrimidine radical cations and protonated pyridine

    SciTech Connect

    Hamid, Ahmed M.; El-Shall, M. Samy; Hilal, Rifaat; Elroby, Shaaban; Aziz, Saadullah G.

    2014-08-07

    Equilibrium thermochemical measurements using the ion mobility drift cell technique have been utilized to investigate the binding energies and entropy changes for the stepwise association of HCN molecules with the pyridine and pyrimidine radical cations forming the C{sub 5}H{sub 5}N{sup +·}(HCN){sub n} and C{sub 4}H{sub 4}N{sub 2}{sup +·}(HCN){sub n} clusters, respectively, with n = 1–4. For comparison, the binding of 1–4 HCN molecules to the protonated pyridine C{sub 5}H{sub 5}NH{sup +}(HCN){sub n} has also been investigated. The binding energies of HCN to the pyridine and pyrimidine radical cations are nearly equal (11.4 and 12.0 kcal/mol, respectively) but weaker than the HCN binding to the protonated pyridine (14.0 kcal/mol). The pyridine and pyrimidine radical cations form unconventional carbon-based ionic hydrogen bonds with HCN (CH{sup δ+}⋯NCH). Protonated pyridine forms a stronger ionic hydrogen bond with HCN (NH{sup +}⋯NCH) which can be extended to a linear chain with the clustering of additional HCN molecules (NH{sup +}⋯NCH··NCH⋯NCH) leading to a rapid decrease in the bond strength as the length of the chain increases. The lowest energy structures of the pyridine and pyrimidine radical cation clusters containing 3-4 HCN molecules show a strong tendency for the internal solvation of the radical cation by the HCN molecules where bifurcated structures involving multiple hydrogen bonding sites with the ring hydrogen atoms are formed. The unconventional H-bonds (CH{sup δ+}⋯NCH) formed between the pyridine or the pyrimidine radical cations and HCN molecules (11–12 kcal/mol) are stronger than the similar (CH{sup δ+}⋯NCH) bonds formed between the benzene radical cation and HCN molecules (9 kcal/mol) indicating that the CH{sup δ+} centers in the pyridine and pyrimidine radical cations have more effective charges than in the benzene radical cation.

  2. Electronic and vibrational spectra of matrix isolated anthracene radical cations - Experimental and theoretical aspects

    NASA Technical Reports Server (NTRS)

    Szczepanski, Jan; Vala, Martin; Talbi, Dahbia; Parisel, Olivier; Ellinger, Yves

    1993-01-01

    The IR vibrational and visible/UV electronic absorption spectra of the anthracene cation, An(+), were studied experimentally, in argon matrices at 12 K, as well as theoretically, using ab initio calculations for the vibrational modes and enhanced semiempirical methods with configuration interaction for the electronic spectra. It was found that both approaches predicted well the observed photoelectron spectrum. The theoretical IR intensities showed some remarkable differences between neutral and ionized species (for example, the CH in-plane bending modes and CC in-plane stretching vibrations were predicted to increase by several orders of magnitude upon ionization). Likewise, estimated experimental IR intensities showed a significant increase in the cation band intensities over the neutrals. The implication of these findings for the hypothesis that polycyclic aromatic hydrocarbon cations are responsible for the unidentified IR emission bands from interstellar space is discussed.

  3. Mechanistic Examination of Cβ–Cγ Bond Cleavages of Tryptophan Residues during Dissociations of Molecular Peptide Radical Cations

    SciTech Connect

    Song, Tao; Ma, Ching-Yung; Chu, Ivan K.; Siu, Chi-Kit; Laskin, Julia

    2013-02-14

    In this study, we used collision-induced dissociation (CID) to examine the gas-phase fragmentations of [GnW]•+ (n = 2-4) and [GXW]•+ (X = C, S, L, F, Y, Q) species. The Cβ–Cγ bond cleavage of a C-terminal decarboxylated tryptophan residue ([M - CO2]•+) can generate [M - CO2 - 116]+, [M - CO2 - 117]•+, and [1H-indole]•+ (m/z 117) species as possible product ions. Competition between the formation of [M - CO2 - 116]+ and [1H-indole]•+ systems implies the existence of a proton-bound dimer formed between the indole ring and peptide backbone. Formation of such a proton-bound dimer is facile via a protonation of the tryptophan γ-carbon atom as suggested by density functional theory (DFT) calculations. DFT calculations also suggested the initially formed ion 2--the decarboxylated species that is active against Cβ–Cγ bond cleavage -can efficiently isomerize to form a more-stable -radical isomer (ion 9) as supported by Rice-Ramsperger-Kassel-Marcus (RRKM) modeling. The Cβ–Cγ bond cleavage of a tryptophan residue also can occur directly from peptide radical cations containing a basic residue. CID of [WGnR]•+ (n = 1-3) radical cations consistently resulted in predominant formation of [M-116]+ product ions. It appears that the basic arginine residue tightly sequesters the proton and allows the charge-remote Cβ–Cγ bond cleavage to prevail over the charge-directed one. DFT calculations predicted the barrier for the former is 6.2 kcal mol -1 lower than that of the latter. Furthermore, the pathway involving a salt-bridge intermediate also was accessible during such a bond cleavage event.

  4. Theoretical study of electronically excited radical cations of naphthalene and anthracene as archetypal models for astrophysical observations. Part I. Static aspects.

    PubMed

    Ghanta, S; Reddy, V Sivaranjana; Mahapatra, S

    2011-08-28

    Motivated by the recent discovery of new diffuse interstellar bands and results from laboratory experiments, ab initio quantum chemistry calculations are carried out for the lowest six electronic states of naphthalene and anthracene radical cations. The calculated adiabatic electronic energies are utilized to construct suitable diabatic electronic Hamiltonians in order to perform nuclear dynamics studies in Part II. Complex entanglement of the electronic states is established for both the radical cations and the coupling surfaces among them are also derived in accordance with the symmetry selection rules. Critical examination of the coupling parameters of the Hamiltonian suggests that 29 (out of 48) and 31 (out of 66) vibrational modes are relevant in the nuclear dynamics in the six lowest electronic states of naphthalene and anthracene radical cations, respectively. PMID:21750790

  5. Xe-bearing hydrocarbon ions: Observation of Xe.acetylene+rad and Xe.benzene+rad radical cations and calculations of their ground state structures

    NASA Astrophysics Data System (ADS)

    Cui, Zhong-hua; Attah, Isaac K.; Platt, Sean P.; Aziz, Saadullah G.; Kertesz, Miklos; El-Shall, M. S.

    2016-04-01

    This work reports evidence for novel types of Xe-bearing hydrocarbon radical cations. The Xe.acetylene+rad radical cation adduct is observed at nearly room temperature using the mass-selected drift cell technique. The irreversible addition of the Xe atom and the lack of back dissociation to HCCH+rad + Xe is consistent with the calculated binding energy of 0.85 eV to be contrasted with the metastable nature of the neutral Xe.acetylene adduct. The observed Xe.benzene+rad radical cation appears to be a weakly bound complex stabilized mainly by ion-induced dipole interaction consistent with a calculated binding energy in the range of 0.14-0.17 eV.

  6. N-substituted phenothiazine derivatives: how the stability of the neutral and radical cation forms affects overcharge performance in lithium-ion batteries.

    PubMed

    Narayana, Kishore Anand; Casselman, Matthew D; Elliott, Corrine F; Ergun, Selin; Parkin, Sean R; Risko, Chad; Odom, Susan A

    2015-04-27

    Phenothiazine and five N-substituted derivatives were evaluated as electrolyte additives for overcharge protection in LiFePO4 /synthetic graphite lithium-ion batteries. We report on the stability and reactivity of both the neutral and radical-cation forms of these six compounds. While three of the compounds show extensive overcharge protection, the remaining three last for only one to a few cycles. UV/Vis studies of redox shuttle stability in the radical cation form are consistent with the overcharge performance: redox shuttles with spectra that show little change over time exhibit extensive overcharge performance, whereas those with changing spectra have limited overcharge protection. In one case, we determined that a C-N bond cleaves upon oxidation, forming the phenothiazine radical cation and leading to premature overcharge protection failure; in another case, poor solubility appears to limit protection. PMID:25504135

  7. Pentachlorophenol radical cations generated on Fe(III)-montmorillonite initiate octachlorodibenzo-p-dioxin formation in clays: DFT and FTIR studies

    PubMed Central

    Gu, Cheng; Liu, Cun; Johnston, Cliff T.; Teppen, Brian J.; Li, Hui; Boyd, Stephen A.

    2011-01-01

    Octachlorodibenzodioxin (OCDD) forms spontaneously from pentachlorophenol (PCP) on the surfaces of Fe(III)-saturated smectite clay (1). Here, we used in situ FTIR methods and quantum mechanical calculations to determine the mechanism by which this reaction is initiated. As the clay was dehydrated, vibrational spectra showed new peaks that grew and then reversibly disappeared as the clay rehydrated. First principle DFT calculations of hydrated Fe-PCP clusters reproduced these transient FTIR peaks when inner-sphere complexation and concomitant electron transfer produced Fe(II) and PCP radical cations. Thus, our experimental (FTIR) and theoretical (quantum mechanical) results mutually support the hypothesis that OCDD formation on Fe-smectite surfaces is initiated by the reversible formation of metastable PCP radical cations via single electron transfer from PCP to Fe(III). The negatively charged clay surface apparently selects for this reaction mechanism by stabilizing PCP radical cations. PMID:21254769

  8. Ne matrix spectra of the sym-C6Br3F3+ radical cation

    USGS Publications Warehouse

    Bondybey, V.E.; Sears, T.J.; Miller, T.A.; Vaughn, C.; English, J.H.; Shiley, R.S.

    1981-01-01

    The electronic absorption and laser excited, wavelength resolved fluorescence spectra of the title cation have been observed in solid Ne matrix and vibrationally analysed. The vibrational structure of the excited B2A2??? state shows close similarity to the parent compound. The X2E??? ground state structure is strongly perturbed and irregular owing to a large Jahn-Teller distortion. The data are analysed in terms of a recently developed, sophisticated multimode Jahn-Teller theoretical model. We have generated the sym-C6Br3F3+ cations in solid Ne matrix and obtained their wavelength resolved emission and absorption spectra. T ground electronic X2E??? state exhibits an irregular and strongly perturbed vibrational structure, which can be successfully modeled using sophisticated multimode Jahn-Teller theory. ?? 1981.

  9. Theoretical study of the electronically excited radical cations of naphthalene and anthracene as archetypal models for astrophysical observations. Part II. Dynamics consequences.

    PubMed

    Ghanta, S; Reddy, V Sivaranjana; Mahapatra, S

    2011-08-28

    Nuclear dynamics is investigated theoretically from first principles by employing the ab initio vibronic models of the prototypical naphthalene and anthracene radical cations developed in Part I. This Part is primarily aimed at corroborating a large amount of available experimental data with a specific final goal to establish an unambiguous link with the current observations in astrophysics and astronomy. The detailed analyses presented here perhaps establish that these two prototypical polycyclic aromatic hydrocarbon radical cations are indeed potential carriers of the observed diffuse interstellar bands. PMID:21750791

  10. Synthesis of a calix[4]arene derivative for isolation of a stable cation radical salt for use as a colorimetric sensor of nitric oxide.

    PubMed

    Rathore, Rajendra; Abdelwahed, Sameh H; Guzei, Ilia A

    2004-10-27

    We have designed and synthesized a modified calixarene derivative (1) that allows, for the first time, the isolation of a stable cation radical salt that binds a single molecule of nitric oxide deep within its cavity with remarkable efficiency (KNO >108 M-1), as demonstrated by isolation of a crystalline complex [1, NO]+ and its characterization by X-ray crystallography as well as by optical spectroscopy. Furthermore, the ready accessibility of the calixarene cation radical will allow the exploration of its use for developing efficient sensing devices for nitric oxide based on the accompanied color changes. PMID:15493892

  11. Vibrational studies of reactive intermediates of aromatic amines. IV. Radical cation time-resolved resonance Raman investigation of N, N-dimethylaniline and N, N-diethylaniline derivatives

    NASA Astrophysics Data System (ADS)

    Poizat, O.; Guichard, V.; Buntinx, G.

    1989-05-01

    The radical cation time-resolved resonance Raman spectra of various isotopic derivatives of N, N-dimethylaniline (DMA), N, N-diethylaniline (DEA), N, N-dimethyl-p-toluidine (4MDMA) and 3, 5, N, N-tetramethylaniline (3,5DMDMA) are reported in the 300-1800 cm-1 range. Excitation was in the weak radical cation absorption around 480 nm. Complete vibrational assignments are proposed. The band activity and the changes in frequency with respect to the neutral molecules are consistent with a quinoidal-type conformation of the framework close to planarity. Stabilization of this conformation is observed when the phenyl ring contains methyl substituents. The analysis of the Raman enhancements suggests that the quinoidal character of the radical structure is significantly lowered in the resonant excited state. An obvious analogy is found between the spectra of DMA+ ṡ and of the biphenyl radical cation, which clearly indicates that (i) a nearly common chromophore structure characterizes these two radical cations and (ii) the distortion of this chromophore structure in the resonant excited state is comparable in both compounds, i.e., the biphenyl+ ṡ* ←biphenyl+ ṡ and DMA+ ṡ* ←DMA+ ṡ transitions are of similar nature. These results are consistent with structural previsions from simple molecular orbital considerations and a comprehensive interpretation of the Raman spectra is given in terms of HOMO population.

  12. Comparison of the Reactivity of the Three Distonic Isomers of the Pyridine Radical Cation Toward Tetrahydrofuran in Solution and in the Gas Phase

    NASA Astrophysics Data System (ADS)

    Widjaja, Fanny; Jin, Zhicheng; Nash, John J.; Kenttämaa, Hilkka I.

    2013-04-01

    The reactivity of the three distonic isomers of the pyridine radical cation toward tetrahydrofuran is compared in solution and in the gas phase. In solution, the distonic ions were generated by UV photolysis at 300 nm from iodo-precursors in acidic 50:50 tetrahydrofuran/water solutions. In the gas phase, the ions were generated by collisionally activated dissociation (CAD) of protonated iodo-precursors in an FT-ICR mass spectrometer, as described in the literature. The same major reaction, hydrogen atom abstraction, was observed in solution and in the gas phase. Attempts to cleave the iodine atom from the 2-iodopyridinium cation in the gas phase and in solution yielded the 2-pyridyl cation in addition to the desired 2-dehydropyridinium cation. In the gas phase, this ion was ejected prior to the examination of the desired ion's chemical properties. This was not possible in solution. This study suggests that solvation effects are not significant for radical reactions of charged radicals. On the other hand, the even-electron ion studied, the 2-pyridyl cation, shows substantial solvation effects. For example, in solution, the 2-pyridyl cation forms a stable adduct with tetrahydrofuran, whereas in the gas phase, only addition/elimination reactions were observed.

  13. Efficient radical cation stabilization of PANI-ZnO and PANI-ZnO-GO composites and its optical activity

    NASA Astrophysics Data System (ADS)

    Mathavan, T.; Divya, A.; Archana, J.; Ramasubbu, A.; Benial, A. Milton Franklin; Jothirajan, M. A.

    2016-05-01

    Polyaniline (PANI) and its composites PANI-ZnO (Zinc oxide) and PANI-ZnO-GO (Graphene oxide) were successfully constructed. These materials were characterized by electron spin resonance (ESR) technique and ultraviolet visible spectrometry. The parameters such as line width, g-factor and spin concentration were deduced from ESR spectra, from the results the radical cation stabilization of PANI, PANI-ZnO and PANI-ZnO-GO composites were compared by the polaron and bipolaron formation. The absorption features obtained in the UV absorption spectra reveal the band gap of these modified PANI composites and also predicted the information of increasing and decreasing features of signal intensity and spin concentration.

  14. Umbrella motion of the methyl cation, radical, and anion molecules. I. Potentials, energy levels and partition functions

    NASA Astrophysics Data System (ADS)

    Ragni, Mirco; Bitencourt, Ana Carla P.; Prudente, Frederico V.; Barreto, Patricia R. P.; Posati, Tamara

    2016-03-01

    A study of the umbrella motion of the methyl cation, radical, and anion molecules is presented. This is the floppiest mode of vibration of all three species and its characterization is of fundamental importance for understanding their reactivity. Minimum Energy Paths of the umbrella motions according to the hyperspherical treatment were obtained, by single point calculations, at the CCSD(T)/aug-cc-pVQT level of theory in the Born-Oppenheimer approximation. These energy profiles permit us to calculate the vibrational levels through the Hyperquantization algorithm, which is shown appropriated for the description of the umbrella motion of these three molecules. The adiabatic electron affinity and ionization potentials were estimated to good accuracy. Partition functions are also calculated in order to obtain information on the reaction rates involving these groups.

  15. Topological and spectroscopic study of three-electron bonded compounds as models of radical cations of methionine-containing dipeptides

    NASA Astrophysics Data System (ADS)

    Fourré, Isabelle; Bergès, Jacqueline; Braïda, Benoît; Houée-Levin, Chantal

    2008-12-01

    Small models of radical cations of methionine-containing dipeptides, which are stabilized by formation of two-centre three-electron (2c-3e) S∴X bonds (X = S, N and O), were investigated at the BH&HLYP/6-31G(d) level and by means of topological tools. The SX distance is not so important for stability but the relative orientation of both fragments is. The AIM and ELF topological analyses shows that the nature of the S∴X bond varies with X, from purely 2c-3e in S∴S + entities to electrostatic in S∴O + ones. The σSX → σSX∗ wavelengths, obtained at the TD-BH&HLYP/cc-pVTZ level, strongly depend on X and on conformation.

  16. Hg(2+) -induced in situ generated radical cation of (S)-BINOL-based polymer for highly enantioselective recognition of phenylalaninol.

    PubMed

    Jiao, Jiemin; Li, Fei; Zhang, Shuwei; Quan, Yiwu; Zheng, Wenhua; Cheng, Yixiang; Zhu, Chengjian

    2014-08-01

    Phenylalaninol enantiomers are one of the most important chiral compounds due to its presence in biologically active molecules and pharmaceutical products. In this paper, a novel chiral fluorescence polymer sensor incorporating (S)-BINOL and oligomeric aniline via a nucleophilic addition-elimination reaction is designed and synthesized. Polymer sensor exhibits "turn-off" fluorescence quenching response upon the addition of Hg(2+) , and "turn-on" moderate fluorescence enhancement behavior towards phenylalaninol enantiomers. Meanwhile, this kind of (S)-BINOL-based polymer sensor can exhibit highly selective enantioselective recognition response towards (L)-phenylalaninol upon the addition of Hg(2+) and the value of ef can reach as high as 5.4, which can be attributed to the formation of in situ generated radical cation arisen from oligomeric aniline moiety by Hg(2+) induction. PMID:25048009

  17. Formaldehyde mediated proton-transport catalysis in the ketene-water radical cation CH2C(O)OH2+

    NASA Astrophysics Data System (ADS)

    Lee, Richard; Ruttink, Paul J. A.; Burgers, Peter C.; Terlouw, Johan K.

    2006-09-01

    Previous studies have shown that the solitary ketene-water ion CH2C(O)OH2+ (1) does not isomerize into CH2C(OH)2+ (2), its more stable hydrogen shift isomer. Tandem mass spectrometry based collision experiments reveal that this isomerization does take place in the CH2O loss from low-energy 1,3-dihydroxyacetone ions (HOCH2)2CO+. A mechanistic analysis using the CBS-QB3 model chemistry shows that such molecular ions rearrange into hydrogen-bridged radical cations [CH2C(O)O(H)-H...OCH2]+ in which the CH2O molecule catalyzes the transformation 1 --> 2 prior to dissociation. The barrier for the unassisted reaction, 29 kcal mol-1, is reduced to a mere 0.6 kcal mol-1 for the catalysed transformation. Formaldehyde is an efficient catalyst because its proton affinity meets the criterion for facile proton-transport catalysis.

  18. Synthesis, Physical Properties and Reactivity of Stable Antiaromatic 1,4-DIHYDROPYRAZINES and Their Associated Radical Cations

    NASA Astrophysics Data System (ADS)

    Brook, David James Rawsthorne

    Self condensation of 3-(chloromethyl)-5,6-dihydro -5,5-dimethyl oxazin-2-one and 3-(chloromethyl)-5,6-dihydro -1,5, 5-trimethylpyrazin-2-one gave the 1,4-dihydropyrazines, 4a,8a-diaza-2,6-dioxa-3,4,7,8-tetrahydro- 4,4,8,8 -tetramethylanthracene-1,5,-dione (DDTTA), and 2,4,4,6,8,8-hexamethyl-2,4a,6,8a-tetraaza - 3,4,7,8-tetrahydroanthracene-1,5-dione (HTTA), respectively. Extension of this reaction to other systems resulted in failure. Thionation of DDTTA with phosphorus pentasulphide in pyridine gave mono and dithiono ester derivatives. The dihydropyrazine rings of these systems were planar and showed long wavelength pi-pi^* electronic absorption resulting in the compounds being coloured. The long wavelength band showed significant solvatochromism. NMR measurements indicated that the rings are also paratropic. DDTTA, HTTA and the thiones all showed reversible one electron oxidation to the radical cation which was characterised by electron spin resonance spectroscopy. HTTA and DDTTA also showed reversible oxidation of the radical cation to the dication. Hydrogenation of DDTTA resulted in a tetrahydropyrazine derivative, 4a,8a-diaza-2,6-dioxa -3,4,7,8,9,9a-hexahydro- 4,4,8,8-tetramethylanthracene -1,5-dione (4.5), which underwent atmospheric oxidation back to DDTTA and the alcohol 4a,8a-diaza-2,6-dioxa-3,4,7,8,9,9a -hexahydro-9a-hydroxy- 4,4,8,8-tetramethylanthracene -1,5-dione (4.6). The HTTA analogue 2,4,4,6,8,8-hexamethyl -3,4,7,8,9,9a-hexahydro- 2,4a,6,8a-tetraazaanthracene -1,5-dione (4.9) is stable under the same conditions. The difference in behaviour was explained as a result of the captodative effect. DDTTA was found to undergo rapid (2 + 2) cycloaddition to the dienophile, 4-phenyl-1,2,4-triazoline -3,5-dione (PTAD). Reaction of DDTTA with ^ {3}O_{2} was found to be solvent dependent. In acetic acid the dioxetane 4a,8a-diaza-2,6-dioxa-9,9a-epidioxy-3,4,7,8,9,9a -hexahydro- 4,4,8,8-tetramethylanthracene -1,5-dione was observed; whereas, in acetonitrile

  19. Fluorescence of the perylene radical cation and an inaccessible D0/D1 conical intersection: An MMVB, RASSCF, and TD-DFT computational study

    NASA Astrophysics Data System (ADS)

    Tokmachev, Andrei M.; Boggio-Pasqua, Martial; Mendive-Tapia, David; Bearpark, Michael J.; Robb, Michael A.

    2010-01-01

    The photophysics of the perylene radical cation (Pe•+) was studied using the molecular mechanics-valence bond (MMVB) hybrid force field. Potential energy surfaces of the first three electronic states were investigated. Geometry optimizations of critical points—including conical intersections between the relevant electronic states—were performed using the MMVB analytical energy gradient for cations. No accessible planar conical intersection between the D0 and D1 states of Pe•+ was found; this is consistent with the experimentally observed D1 lifetimes and the observation of D1 emission from this cation in the condensed phase. Benchmark RASSCF and TD-DFT calculations support the reliability of the MMVB results.

  20. A 1,2,3-dithiazolyl-o-naphthoquinone: a neutral radical with isolable cation and anion oxidation states.

    PubMed

    Smithson, Chad S; MacDonald, Daniel J; Matt Letvenuk, T; Carello, Christian E; Jennings, Michael; Lough, Alan J; Britten, James; Decken, Andreas; Preuss, Kathryn E

    2016-06-21

    Under aprotic conditions, the reaction of 4-amino-1,2-naphthoquinone with excess S2Cl2 generates 4,5-dioxo-naphtho[1,2-d][1,2,3]dithiazol-2-ium chloride in a typical Herz condensation. By contrast, prior literature reports an imine (NH) product, 4,5-dioxo-1H-naphtho[1,2-d][1,2,3]dithiazole, for the same reaction performed in acetic acid. Herein, the cation product is isolated with four different counter-anions (Cl(-), GaCl4(-), FeCl4(-) and OTf(-)). Reduction of the cation generates a neutral radical 1,2,3-dithiazolyl-o-naphthoquinone, with potential ligand properties. Further reduction generates a closed shell anion, isolated as a water-stable Li(+) complex and exhibiting O,O-bidentate chelation. The hydroxy (OH) isomer of the original imine (NH) product is reported, and this can be readily deprotonated and acylated (OAc). All species are structurally characterized. Solution redox behaviour and EPR are discussed where appropriate. PMID:27216412

  1. Characterizing radiation-induced oxidation of DNA by way of the monohydrated guanine-cytosine radical cation.

    PubMed

    Jaeger, Heather M; Schaefer, Henry F

    2009-06-11

    The interaction of one water molecule with the guanine-cytosine radical cation has been studied with ab initio and density functional methods in order to help elucidate the nature of oxidized aqueous DNA. The theoretical spin density of [GC]*(+) reveals that the radical center is localized on guanine. The adiabatic ionization potential lowers from 7.63 to 6.71 eV in concurrence with the formation of the Watson-Crick base pair and hydration by one water molecule. A natural bond orbital analysis of partial charges shows that approximately 80% of the positive charge persists on guanine upon hydration and formation of the Watson-Crick base pair with cytosine. Hydration energies were computed with second-order Z-averaged perturbation theory (ZAPT2) using the aug-cc-pVDZ basis set at 11 stationary points on the B3LYP/DZP++ potential energy surface. The hydration energy at the global minimum is 14.2 kcal mol(-1). The lowest energy structures correspond to hydration near the glycosidic bond sites. Structural changes in the Watson-Crick base pair are predominantly seen for monohydration in the groove regions of double-helix DNA. PMID:19445496

  2. Vinylogous tetrathiafulvalene (TTF) {pi}-electron donors and derived radical cations: ESR spectroscopic, magnetic, and X-ray structural studies

    SciTech Connect

    Bryce, M.R.; Moore, A.J.; Tanner, B.K.

    1996-06-01

    The properties of new 2,2`-ethanediylidene(1,3-diethile) derivatives 5, 6 and 8-11 are reported. Cyclic voltammetric studies establish that they are efficient donor molecules, with the extended conjugation resulting in stabilization of dications, relative to tetrathiafulvalene TTF (1). Radical cations are generated by oxidation of the neutral compounds with trifluoroacetic acid or anhydrous silver perchlorate in dichloromethane, and their ESR and proton ENDOR spectra are reported. The bulk of the spin population resides in the central S{sub 2} {double_bond}C-C{double_bond}CS{sub 2} part of the {pi}-system. The X-ray crystal structure of donor 6 reveals that the 2,2`-ethanediylidene(1,3-dithiole) framework is planar. Donor 6 forms a crystalline 1:1 charge-transfer complex with TCNQ, the X-ray crystal structure of which shows a mixed stack structure. A solution of this complex in acetonitrile exhibits ESR spectra of both radical ions, 6{sup {lg_bullet}}{sup +} and TCNQ{sup {lg_bullet}}{sup +}. Static susceptibility data are reported for TCNQ complexes of some of these donors. 20 refs., 9 figs., 7 tabs.

  3. Identification and yields of 1,4-hydroxynitrates formed from the reactions of C8-C16 n-alkanes with OH radicals in the presence of NO(x).

    PubMed

    Yeh, Geoffrey K; Ziemann, Paul J

    2014-09-25

    A series of C8-C16 n-alkanes were reacted with OH radicals in the presence of NOx in an environmental chamber and particulate 1,4-hydroxynitrate reaction products were collected by filtration, extracted, and analyzed by high-performance liquid chromatography with UV absorption and electron ionization mass spectrometry (HPLC/UV/MS). Observed mass spectral patterns can be explained by using proposed ion fragmentation mechanisms, permitting the identification of each hydroxynitrate isomer. Reversed-phase retention of these compounds was dictated by the length of the longer of two alkyl chains attached to the 1,4-hydroxynitrate subunit. 1,4-Hydroxynitrates were quantified in particles using an authentic analytical standard for calibration, and the results were combined with gas chromatography measurements of the n-alkanes to determine the molar yields. Yields based on analyses of particles increased with increasing carbon number from 0.00 for C8 to an average plateau value of 0.130 ± 0.008 for C14-C16, due primarily to corresponding increases in gas-to-particle partitioning. The value at the plateau, where essentially all 1,4-hydroxynitrates were in particles, was equal to the average total yield of C14-C16 1,4-hydroxynitrates. The average branching ratio for the formation of C14-C16 1,4-hydroxynitrates from the reaction of NO with the corresponding 1,4-hydroxyperoxy radicals was 0.184 ± 0.011. This value is ∼20% higher than the plateau value of 0.15 for reactions of secondary 1,2-hydroxyperoxy radicals and ∼40% lower than the plateau value of 0.29 for reactions of secondary alkyl peroxy radicals, both of which were reported previously. The branching ratios determined here were used with values reported previously to calculate the yields of C7-C18 alkyl nitrates, 1,4-hydroxynitrates, and 1,4-hydroxycarbonyls, the three products formed from the reactions of these n-alkanes. PMID:25144881

  4. On the dissociation of the naphthalene radical cation: new iPEPICO and tandem mass spectrometry results.

    PubMed

    West, Brandi; Joblin, Christine; Blanchet, Valerie; Bodi, Andras; Sztáray, Bálint; Mayer, Paul M

    2012-11-15

    The dissociation of the naphthalene radical cation has been reinvestigated here by a combination of tandem mass spectrometry and imaging photoelectron photoion coincidence spectroscopy (iPEPICO). Six reactions were explored: (R1) C(10)H(8)(•+) → C(10)H(7)(+) + H (m/z = 127); (R2) C(10)H(8)(•+) → C(8)H(6)(•+) + C(2)H(2) (m/z = 102); (R3) C(10)H(8)(•+) → C(6)H(6)(•+) + C(4)H(2) (m/z = 78); (R4) C(10)H(8)(•+) → C(10)H(6)(•+) + H(2) (m/z = 126); (R5) C(10)H(7)(+) → C(6)H(5)(+) + C(4)H(2) (m/z = 77); (R6) C(10)H(7)(+) → C(10)H(6)(•+) + H (m/z = 126). The E(0) activation energies for the reactions deduced from the present measurements are (in eV) 4.20 ± 0.04 (R1), 4.12 ± 0.05 (R2), 4.27 ± 0.07 (R3), 4.72 ± 0.06 (R4), 3.69 ± 0.26 (R5), and 3.20 ± 0.13 (R6). The corresponding entropies of activation, ΔS(‡)(1000K), derived in the present study are (in J K(-1) mol(-1)) 2 ± 2 (R1), 0 ± 2 (R2), 4 ± 4 (R3), 11 ± 4 (R4), 5 ± 15 (R5), and -19 ± 11 (R6). The derived E(0) value, combined with the previously reported IE of naphthalene (8.1442 eV) results in an enthalpy of formation for the naphthyl cation, Δ(f)H°(0K) = 1148 ± 14 kJ mol(-1)/Δ(f)H°(298K) = 1123 ± 14 kJ mol(-1) (site of dehydrogenation unspecified), slightly lower than the previous estimate by Gotkis and co-workers. The derived E(0) for the second H-loss leads to a Δ(f)H° for ion 7, the cycloprop[a]indene radical cation, of Δ(f)H°(0K) =1457 ± 27 kJ mol(-1)/Δ(f)H°(298K)(C(10)H(6)(+)) = 1432 ± 27 kJ mol(-1). Detailed comparisons are provided with values (experimental and theoretical) available in the literature. PMID:23088182

  5. Chronoamperometric study of the films formed by 4,4'-bipyridyl cation radical salts on mercury in the presence of iodide ions: consecutive two-dimensional phase transitions.

    PubMed

    Gómez, L; Ruiz, J J; Camacho, L; Rodríguez-Amaro, R

    2005-01-01

    This paper reports a new mathematical model for consecutive two-dimensional phase transitions that accounts for the chronoamperometric behavior observed in the formation of electrochemical phases by 4,4'-bipyridyl cation radical (BpyH(2)(*)(+)) on mercury in aqueous iodide solutions. Also, a new interpretation for the induction time is proposed. PMID:15620326

  6. Formation of environmentally persistent free radical (EPFR) in iron(III) cation-exchanged smectite clay.

    PubMed

    Nwosu, Ugwumsinachi G; Roy, Amitava; dela Cruz, Albert Leo N; Dellinger, Barry; Cook, Robert

    2016-01-01

    Environmentally persistent free radicals (EPFRs) have been found at a number of Superfund sites, with EPFRs being formed via a proposed redox process at ambient environmental conditions. The possibility of such a redox process taking place at ambient environmental conditions is studied utilizing a surrogate soil system of phenol and iron(III)-exchanged calcium montmorillonite clay, Fe(III)CaM. Sorption of phenol by the Fe(III)CaM is demonstrated by Fourier-transformed infra-red (FT-IR) spectroscopy, as evidenced by the peaks between 1345 cm(-1) and 1595 cm(-1), and at lower frequencies between 694 cm(-1) and 806 cm(-1), as well as X-ray diffraction (XRD) spectroscopy, as shown by an increase in interlayer spacing within Fe(III)CaM. The formation and characterization of the EPFRs is determined by electron paramagnetic resonance (EPR) spectroscopy, showing phenoxyl-type radical with a g-factor of 2.0034 and ΔHP-P of 6.1 G at an average concentration of 7.5 × 10(17) spins per g. EPFRs lifetime data are indicative of oxygen and water molecules being responsible for EPFR decay. The change in the oxidation state of the iron redox center is studied by X-ray absorption near-edge structure (XANES) spectroscopy, showing that 23% of the Fe(III) is reduced to Fe(II). X-ray photoemission spectroscopy (XPS) results confirm the XANES results. These findings, when combined with the EPFR concentration data, demonstrate that the stoichiometry of the EPFR formation under the conditions of this study is 1.5 × 10(-2) spins per Fe(II) atom. PMID:26647158

  7. 15N electron nuclear double resonance of the primary donor cation radical P+.865 in reaction centers of Rhodopseudomonas sphaeroides: additional evidence for the dimer model.

    PubMed Central

    Lubitz, W; Isaacson, R A; Abresch, E C; Feher, G

    1984-01-01

    Four 15N hyperfine coupling constants, including signs, have been measured by electron nuclear double resonance (ENDOR) and electron nuclear nuclear triple resonance (TRIPLE) for the bacteriochlorophyll a radical cation, BChla+., in vitro and for the light-induced primary donor radical cation, P+.865, in reaction centers of Rhodopseudomonas sphaeroides R-26. A comparison of the data shows that the hyperfine coupling constants have the same sign in both radicals and are, on the average, smaller by a factor of 2 in P+.865. These results provide additional evidence that P+.865 is a bacteriochlorophyll dimer and are in contradiction with the monomer structure of P+.865 recently proposed by O'Malley and Babcock. The reduction factors of the individual 15N couplings, together with the evidence from proton ENDOR data and molecular orbital calculations, indicate a dimer structure in which only two rings (either I and I or III and III) of the bacteriochlorophyll macrocycles overlap. PMID:6096857

  8. Analysis of diarylmethylamine compounds using electrospray mass spectrometry: formation mechanisms of radical ions and dehydro cations.

    PubMed

    Cai, Tian; Xu, Xiao-Ying; Wu, Zhi-Jun

    2015-12-01

    A series of diarylmethylamine compounds were analyzed using electrospray ionization quadrupole time-of-flight mass spectrometry (ESI-QTOF-MS). [M](+)˙ and [M - H](+) were both observed, but showed different abundances. A possible mechanism for the formation of [M](+)˙ and [M - H](+) was proposed to explicate the rule for the ratio change of I([M](+)˙)/I([M-H](+)). The [M](+)˙ has two structures, which can interconvert into each other in the gas phase. The substituted groups on the benzene rings play a crucial role in the transfer between the two structures. Electron withdrawing groups can prevent the formation of carbocations, thus nitro-containing diarylmethylamines remained mainly as structure I and were detected as [M](+)˙. On the contrary, electron donating groups help to stabilize carbocations. This makes structure I transfer to structure II, and structure II prefers to further generate [M - H](+) by loss of an H radical. Nuclear magnetic resonance and D-labelled MS experiments indicate that the 1-C-H bond has strong activity. PMID:26465612

  9. Compound ES of cytochrome c peroxidase contains a Trp {pi}-cation radical. Characterization by CW and pulsed Q-band ENDOR spectroscopy

    SciTech Connect

    Huyett, J.E.; Doan, P.E.; Gurbiel, R.; Houseman, A.L.P.; Sivaraja, M.; Hoffman, B.M.; Goodin, D.B.

    1995-09-06

    The fully oxidized state of cytochrome c peroxidase (CcP), called ES, contains two oxidizing equivalents, one as an oxyferryl heme and the other as an organic radical on an amino acid residue. The unusual electron paramagnetic resonance spectrum of ES has been shown to be due to a weak distributed exchange coupling between the two paramagnetic redox centers. Various residues have been proposed as the radical site over the years. In this paper continuous wave and pulsed Q-band electron nuclear double resonance (ENDOR) spectroscopy confirms that the radical is located on Trp-191, as previously proposed. The paper completes the characterization of the active site of compound ES as being comprized of an oxyferryl heme coupled to the Trp-191 {pi}-cation radical by a weak spin exchange. 47 refs., 11 figs., 2 tabs.

  10. Theoretical study of reactivity of methane, methyl fluoride, and methyl chloride: Interaction with their radical cations and proton donors

    SciTech Connect

    Hess, B.A. Jr. ); Zahradnik, R. )

    1990-07-18

    This work deals with interactions between CH{sub 4} and CH{sub 4}{sup {sm bullet}+}, CH{sub 3}F and CH{sub 3}F{sup {sm bullet}+}, and CH{sub 3}Cl and CH{sub 3}Cl{sup {sm bullet}+}. The calculated {Delta}H{sub 0} values (MP4/6-31G**//MP2/6-31G**, ZPE included) for processes leading to CH{sub 5}{sup +} and CH{sub 3}{sup {sm bullet}}, and to CFH{sub 4} and CH{sub 2}F{sup {sm bullet}} amount to {minus}1.8 and {minus}21.0 kcal/mol, respectively. The {Delta}H{sub 0} leading to CClH{sub 4}{sup +} and CH{sub 2}Cl{sup {sm bullet}} (MP4/6-31G**//SCF/6-31G**, ZPE included) is {minus}2.3 kcal/mol. The calculated reaction heat for the first interaction is significantly closer to experimental values ({minus}4.16 and {minus}6 kcal/mol, respectively) than their previous theoretical estimates. The structures of the radical cations (CH{sub 4}{sup {sm bullet}+}, CH{sub 3}F{sup {sm bullet}+}) possess features of van der Waals associates.

  11. Dimerization of the octaethylporphyrin {pi} cation radical complex of cobalt(II): Thermodynamic, kinetic, and spectroscopic studies

    SciTech Connect

    Ni, Y.; Lee, S.; Wayland, B.B.

    1999-08-23

    One electron oxidation of cobalt(II) can occur from either the cobalt d or porphyrin {pi} orbitals depending on the choice of porphyrin and reaction media. Oxidation of (octaethylporphyrinato)cobalt(II), (OEP)Co{sup II} (1), in the presence of ligands such as H{sub 2}O and CO produces diamagnetic five and six coordinate complexes of cobalt(III). In the absence of additional ligands to coordinate with Co(III) the first oxidation of [(OEP)Co{sup II}]{sup +} (2). Metalloporphyrin {pi} cation radical complexes and dimers of the OEP derivatives have been extensively investigated. This article reports on the interconversion of the paramagnetic (S = 1) monomer, [(OEP)Co{sup II}]{sup +} (2), with a diamagnetic dimer, [(OEP)-Co{sup II}]{sub 2}{sup 2+} (3), in dichloromethane solvant. {sup 1}H NMR shift and line width studies in CD{sub 2}Cl{sub 2} are applied in evaluating the thermodynamic and activation parameters for homolytic dissociation of the diamagnetic dimer (3).

  12. Communication: Ion mobility of the radical cation dimers: (Naphthalene)2+• and naphthalene+•-benzene: Evidence for stacked sandwich and T-shape structures

    NASA Astrophysics Data System (ADS)

    Platt, Sean P.; Attah, Isaac K.; Aziz, Saadullah; El-Shall, M. Samy

    2015-05-01

    Dimer radical cations of aromatic and polycyclic aromatic molecules are good model systems for a fundamental understanding of photoconductivity and ferromagnetism in organic materials which depend on the degree of charge delocalization. The structures of the dimer radical cations are difficult to determine theoretically since the potential energy surface is often very flat with multiple shallow minima representing two major classes of isomers adopting the stacked parallel or the T-shape structure. We present experimental results, based on mass-selected ion mobility measurements, on the gas phase structures of the naphthalene+ṡ ṡ naphthalene homodimer and the naphthalene+ṡ ṡ benzene heterodimer radical cations at different temperatures. Ion mobility studies reveal a persistence of the stacked parallel structure of the naphthalene+ṡ ṡ naphthalene homodimer in the temperature range 230-300 K. On the other hand, the results reveal that the naphthalene+ṡ ṡ benzene heterodimer is able to exhibit both the stacked parallel and T-shape structural isomers depending on the experimental conditions. Exploitation of the unique structural motifs among charged homo- and heteroaromatic-aromatic interactions may lead to new opportunities for molecular design and recognition involving charged aromatic systems.

  13. Electronic Characterization of Reaction Intermediates: The Fluorenylium, Phenalenylium, and Benz[f]indenylium Cations and Their Radicals.

    PubMed

    Fulara, Jan; Chakraborty, Arghya; Maier, John P

    2016-03-01

    Three vibrationally resolved absorption systems commencing at 538, 518, and 392 nm were detected in a 6 K neon matrix after mass-selected deposition of C13 H9 (+) ions (m/z=165) produced from fluorene in a hot-cathode discharge ion source. The benz[f]indenylium (BfI(+) : 538 nm), fluorenylium (FL9(+) : 518 nm), and phenalenylium (PHL(+) : 392 nm) cations are the absorbing molecules. Two electronic systems corresponding to neutral species are apparent at 490 and 546 nm after irradiation of the matrix with λ<260 nm photons and were assigned to the FL9 and BfI radicals, respectively. The strongest peak at 518 nm is the origin of the 2 (1) B2 ←X̃ (1) A1 absorption of FL9(+) , and the 490 nm band is the 2 (2) A2 ←X̃ (2) B1 origin of FL9. The electronic systems commencing at 538 nm and 546 nm were assigned to the 1 (1) A1 ←X̃ (1) A1 and 1 (2) A2 ←X̃ (2) A2 transitions of BfI(+) and BfI. The 392 nm band is the 1 (1) E'←X̃ (1) A1 ' transition of PHL(+). The electronic spectra of C13 H9 (+) /C13 H9 were assigned on the basis of the vertical excitation energies calculated with SAC-CI and MS-CASPT2 methods. PMID:26845059

  14. C{sub 8}H{sub 8} radical cations of cyclooctatetraene, semibullvalene, and their common bisallylic rearrangement product. Electronic structure and potential energy surfaces

    SciTech Connect

    Bally, T.; Truttmann, L.; Dai, S.; Williams, F.

    1995-08-02

    The recently discovered access paths to the radical cation of bicyclo[3,3,0]octa-2,6-diene-4,8-diyl (BOD{sup +}) are explored by electronic absorption (EA) spectroscopy whereby previous ESR results are confirmed. The electronic and molecular structure of BOD{sup +} and of its photoprecursor, the radical cation of cyclooctatetraene (COT{sup +}), are discussed on the basis of their EA spectra and ab initio calculations. The ground and excited state potential surfaces common to the title cations are explored, and it is shown that the COT{sup +} {yields} BOD{sup +} photorearrangement proceeds mainly by virtue of a pronounced Jahn-Teller distortion of the second excited state of COT{sup +} ({sup 2}E). This distortion competes effectively with internal conversion to the first excited state, leads to an inversion of the ground state symmetry, and covers a substantial part of the reaction path leading to the bisallylic cation. 37 refs., 8 figs., 4 tabs.

  15. One-electron oxidation of alcohols by the 1,3,5-trimethoxybenzene radical cation in the excited state during two-color two-laser flash photolysis.

    PubMed

    Cai, Xichen; Sakamoto, Masanori; Fujitsuka, Mamoru; Majima, Tetsuro

    2007-03-15

    One-electron oxidation of alcohols such as methanol, ethanol, and 2-propanol by 1,3,5-trimethoxybenzene radical cation (TMB*+) in the excited state (TMB*+*) was observed during the two-color two-laser flash photolysis. TMB*+ was formed by the photoinduced bimolecular electron-transfer reaction from TMB to 2,3,5,6-tetrachlorobenzoquinone (TCQ) in the triplet excited-state during the first 355-nm laser flash photolysis. Then, TMB*+* was generated from the selective excitation of TMB*+ during the second 532 nm laser flash photolysis. Hole transfer rate constants from TMB*+* to methanol, ethanol, and 2-propanol were calculated to be (5.2 +/- 0.5) x 10(10), (1.4 +/- 0.3) x 10(11), and (3.2 +/- 0.6) x 10(11) M-1 s-1, respectively. The order of the hole transfer rate constants is consistent with oxidation potentials of alcohol. Formation of TCQH radical (TCQH*) with a characteristic absorption peak at 435 nm was observed in the microsecond time scale, suggesting that deprotonation of the alcohol radical cation occurs after the hole transfer and that TCQ radical anion (TCQ*-), generated together with TMB*+ by the photoinduced electron-transfer reaction, reacts with H+ to give TCQH*. PMID:17295459

  16. Alkyl nitrate formation from the reactions of C8-C14 n-alkanes with OH radicals in the presence of NO(x): measured yields with essential corrections for gas-wall partitioning.

    PubMed

    Yeh, Geoffrey K; Ziemann, Paul J

    2014-09-18

    In this study, C8-C14 n-alkanes were reacted with OH radicals in the presence of NO(x) in a Teflon film environmental chamber and isomer-specific yields of alkyl nitrates were determined using gas chromatography. Because results indicated significant losses of alkyl nitrates to chamber walls, gas-wall partitioning was investigated by monitoring the concentrations of a suite of synthesized alkyl nitrates added to the chamber. Gas-to-wall partitioning increased with increasing carbon number and with proximity of the nitrooxy group to the terminal carbon, with losses as high as 86%. The results were used to develop a structure-activity model to predict the effects of carbon number and isomer structure on gas-wall partitioning, which was used to correct the measured yields of alkyl nitrate isomers formed in chamber reactions. The resulting branching ratios for formation of secondary alkyl nitrates were similar for all isomers of a particular carbon number, and average values, which were almost identical to alkyl nitrate yields, were 0.219, 0.206, 0.254, 0.291, and 0.315 for reactions of n-octane, n-decane, n-dodecane, n-tridecane, and n-tetradecane, respectively. The increase in average branching ratios and alkyl nitrate yields with increasing carbon number to a plateau value of ∼0.30 at about C13-C14 is consistent with predictions of a previously developed model, indicating that the model is valid for alkane carbon numbers ≥C3. PMID:24654572

  17. Exploiting time-resolved magnetic field effects for determining radical ion reaction rates

    NASA Astrophysics Data System (ADS)

    Bessmertnykh, A. O.; Borovkov, V. I.; Bagryansky, V. A.; Molin, Yu N.

    2016-07-01

    The capabilities of the method of time-resolved magnetic field effect in determining the rates of charge transfer reactions between radical ions and molecules on a nanosecond time scale have been investigated. The approach relies on the electron spin coherence in radical pair's partners generated by ionizing radiation. The spin evolution of the pair is sensitive to the reaction since the latter results in changing magnetic interactions of the unpaired electron. This process can be monitored by magnetic-field-sensitive fluorescence from an irradiated sample that is illustrated using reactions involving alkane radical cations. The accuracy and limitations of the approach are discussed.

  18. Photocatalytic degradation of 1,10-dichlorodecane in aqueous suspensions of TiO{sub 2}: A reaction of adsorbed chlorinated alkane with surface hydroxyl radicals

    SciTech Connect

    El-Morsi, T.M.; Bubakowski, W.R.; Abd-El-Aziz, A.S.; Friesen, K.J.

    2000-03-15

    1,10-Dichlorodecane (D{sub 2}C{sub 10}) is shown to be effectively photodegraded in aqueous suspensions of TiO{sub 2} using a photoreactor equipped with 300 nm lamps. Solutions exposed to UV light intensities of 3.6 x 10{sup {minus}5} Ein L{sup {minus}1} min{sup {minus}1}, established by ferrioxalate actinometry, showed negligible direct photolysis in the absence of TiO{sub 2} and a D{sub 2}C{sub 10} concentration approaching its solubility limit. Kinetics of photodegradation followed a Langmuir-Hinshelwood model suggesting that the reaction occurred on the surface of the photocatalyst. The presence of h{sup +}{sub vb} and OH{sm_bullet} radical scavengers, including methanol and iodide, inhibited the degradation supporting a photooxidation reaction. Electron scavengers (Ag{sup +}, Cu{sup 2+}, and Fe{sup 3+}) had small effects on the degradation rate. The lack of transformation of D{sub 2}C{sub 10} in acetonitrile as solvent indicated that the major oxidants were OH{sm_bullet} radicals. The presence of tetranitromethane, effectively eliminating the formation of free OH{sm_bullet} radicals, did not affect the degradation rates significantly. This result, combined with observed increases in photolysis rates with the degree of adsorption of D{sub 2}C{sub 10} onto the surface of the photocatalyst, confirmed that the reaction involved adsorbed 1,10-dichlorodecane and surface bound OH{sm_bullet} radicals.

  19. Möbius-Hückel topology switching in an expanded porphyrin cation radical as studied by EPR and ENDOR spectroscopy.

    PubMed

    Möbius, Klaus; Plato, Martin; Klihm, Gudrun; Laurich, Christoph; Savitsky, Anton; Lubitz, Wolfgang; Szyszko, Bartosz; Stępień, Marcin; Latos-Grażyński, Lechosław

    2015-03-01

    The symmetry of the arrangement of objects has fascinated philosophers, artists and scientists for a long time, and still does. Symmetries often exist in nature, but are also created artificially, for instance by chemical synthesis of novel molecules and materials. The one-sided, non-orientable Möbius band topology is a paradigm of such a symmetry-based fascination. In the early 1960s, in synthetic organic chemistry the interest in molecules with Möbius symmetry was greatly stimulated by a short paper by Edgar Heilbronner. He predicted that sufficiently large [n]annulenes with a closed-shell electron configuration of 4n π-electrons should allow for sufficient π-overlap stabilization to be synthesizable by twisting them with a 180° phase change into the Möbius symmetry of their hydrocarbon skeleton. In 2007, the group of Lechosław Latos-Grażyński succeeded in synthesizing the compound di-p-benzi[28]hexa-phyrin(1.1.1.1.1.1), compound 1, which can dynamically switch between Hückel and Möbius conjugation depending, in a complex manner, on the polarity and temperature of the surrounding solvent. This discovery of "topology switching" between the two-sided (Hückel) and one-sided (Möbius) molecular state with closed-shell electronic configuration was based primarily on the results of NMR spectroscopy and DFT calculations. The present EPR and ENDOR work on the radical cation state of compound 1 is the first study of a ground-state open-shell system which exhibits a Hückel-Möbius topology switch that is controlled by temperature, like in the case of the closed-shell precursor. The unpaired electron interacting with magnetic nuclei in the molecule is used as a sensitive probe for the electronic structure and its symmetry properties. For a Hückel conformer with its higher symmetry, we expect - and observe - fewer ENDOR lines than for a Möbius conformer. The ENDOR results are supplemented by and in accordance with theoretical calculations based on density

  20. On the Electronic Spectroscopy of Closed Shell Cations Derived from Resonance Stabilized Radicals: Insights from Theory and Franck-Condon Analysis

    NASA Astrophysics Data System (ADS)

    Troy, Tyler P.; Kable, Scott H.; Schmidt, Timothy W.; Reid, Scott A.

    2012-06-01

    Recent attention has been directed on closed shell aromatic cations as potential carriers of the diffuse interstellar bands. The spectra of mass-selected, matrix-isolated benzylium and tropylium cations were recently reported [Nagy, A., Fulara, J., Garkusha, I. and Maier, J. P. (2011), Angew. Chem. Int. Ed., 50: 3022-3025]. The benzylium spectrum shows an extended progression in a low frequency (510 cm-1) ring distortion mode. Modeling of the benzylium spectrum using (TD)DFT and MCSCF-PT2 methods in concert with multidimensional Franck-Condon (FC) analysis is found to yield excellent agreement with the experimental spectrum. We extended this analysis to larger (2 and 3 ring) PAH cations derived from resonance stabilized radicals, which are predicted to show strong S0 → Sn transitions in the visible region. The FC progression is significantly quenched in the larger species, and our results for 1-napthylmethylium are in excellent agreement with very recent experiments [Nagy, A., Fulara, J., and Maier, J. P. (2011), J. Am. Chem. Soc., 133, 19796]. Since carriers of the DIBs should exhibit spectra dominated by a single vibronic transition, our results demonstrate that closed-shell cations may present spectra with the required properties. Furthermore, the calculated ionization energies of a range of CSCs were found to be in the 13-14 eV range, consistent with variations in behaviour of the DIB carriers with respect to various astrophysical environments.

  1. Ion/molecule reactions of 2-chloro- and 2-bromopropene radical cations with methanol and ethanol--FT-ICR spectrometry and DFT calculations

    NASA Astrophysics Data System (ADS)

    Grützmacher, Hans-Friedrich; Büchner, Michael; Zipse, Hendrik

    2005-02-01

    Continuing the studies of ion/molecule reactions of haloalkene radical cations with nucleophiles, the reactions of the radical cations of 2-chloropropene, 1+, and 2-bromopropene. 2+, with methanol and ethanol, respectively, have been investigated by FT-ICR spectrometry and by computational analysis using DFT calculation (BHLYP/6-311 + G(2d,p)//BHLYP/6-31 + G(d) level). Only slow reactions (reaction efficiency <1%) are observed for 1+/methanol and 2+/methanol. Slow proton transfer is the main process for 1+/methanol besides minor addition of methanol to 1+ followed by loss of HCl or Cl. Addition of methanol accompanied by loss of Br is the exclusive process observed for 2+/methanol. In contrast, both 1+ and 2+ react efficiently with ethanol yielding protonated acetaldehyde as the exclusive (1+) or by far dominant (2+) primary reaction product. The computational analysis of these ion/molecule reactions shows that in the case of 1+/methanol and 2+/methanol all processes are either endothermic or blocked by large activation energies. Nonetheless, addition of methanol to the ionized CC double bond of 1+ or 2+ is exothermic, yielding in each case a pair of isomeric [beta]-distonic methoxonium ions. A new reaction mechanism has been found for the HX (X = Cl, Br) elimination from the less stable isomer of the distonic intermediates. Further, an energetically favorable transition state has been detected for hydrogen atom transfer from the [alpha]-CH2 group of alcohol to the halogenoalkene radical cations. These findings lead to a revised mechanism of the oxidation process and provide a plausible explanation for the excessive H/D exchange between 1+ and CD3OH during their slow reaction.

  2. A search for blues brothers: X-ray crystallographic/spectroscopic characterization of the tetraarylbenzidine cation radical as a product of aging of solid magic blue.

    PubMed

    Talipov, Marat R; Hossain, Mohammad M; Boddeda, Anitha; Thakur, Khushabu; Rathore, Rajendra

    2016-03-14

    Magic blue (MB+˙ SbCl6− salt), i.e. tris-4-bromophenylamminium cation radical, is a routinely employed one-electron oxidant that slowly decomposes in the solid state upon storage to form so called ‘blues brothers’, which often complicate the quantitative analyses of the oxidation processes. Herein, we disclose the identity of the main ‘blues brother’ as the cation radical and dication of tetrakis-(4-bromophenyl)benzidine (TAB) by a combined DFT and experimental approach, including isolation of TAB+˙ SbCl6− and its X-ray crystallography characterization. The formation of TAB in aged magic blue samples occurs by a Scholl-type coupling of a pair of MB followed by a loss of molecular bromine. The recognition of this fact led us to the rational design and synthesis of tris(2-bromo-4-tert-butylphenyl)amine, referred to as ‘blues cousin’ (BC: Eox1 = 0.78 V vs. Fc/Fc+, λmax(BC+˙) = 805 nm, εmax = 9930 cm−1 M−1), whose oxidative dimerization is significantly hampered by positioning the sterically demanding tert-butyl groups at the para-positions of the aryl rings. A ready two-step synthesis of BC from triphenylamine and the high stability of its cation radical (BC+˙) promise that BC will serve as a ready replacement for MB and an oxidant of choice for mechanistic investigations of one-electron transfer processes in organic, inorganic, and organometallic transformations. PMID:26878458

  3. Cu(II) and Cu(I) coordination complexes involving two tetrathiafulvalene-1,3-benzothiazole hybrid ligands and their radical cation salts.

    PubMed

    Yokota, Sayo; Tsujimoto, Keijiro; Hayashi, Sadayoshi; Pointillart, Fabrice; Ouahab, Lahcène; Fujiwara, Hideki

    2013-06-01

    Preparations, crystal structure analyses, and magnetic property investigations on a new Cu(II)(hfac)2 complex coordinated with two TTF-CH═CH-BTA ligands, where hfac is hexafluoroacetylacetonate, TTF is tetrathiafulvalene, and BTA is 1,3-benzothiazole, are reported together with those of its dicationic AsF6(-) salt, [Cu(hfac)2(TTF-CH═CH-BTA)2](AsF6)2, in which each TTF part is in a radical cation state. In these Cu(II)(hfac)2 complexes, two ligands are bonded to the central Cu atom of the Cu(hfac)2 part through the nitrogen atom of the 1,3-benzothiazole ring and occupy the two apical positions of the Cu(hfac)2 complex with an elongated octahedral geometry. These two ligands are located parallelly in a transverse head-to-tail manner, and the Cu(hfac)2 moiety is closely sandwiched by these two ligands. In the AsF6(-) salt of the Cu(hfac)2 complex, each TTF dimer is separated by the AsF6(-) anions and has no overlap with each other within the one-dimensional arrays, resulting in an insulating behavior. Both Cu(hfac)2 complexes showed the simple Curie-like temperature dependence of paramagnetic susceptibilities (χM), indicating that no interaction exists between the paramagnetic Cu(II) d spins. Furthermore, crystal structure analysis and magnetic/conducting properties of a radical cation ReO4(-) salt of the Cu(I) complex with two TTF-CH═CH-BTA ligands, [Cu(TTF-CH═CH-BTA)2](ReO4)2, are also described. Two nitrogen atoms of the ligands are connected to the central Cu(I) in a linear dicoordination with a Cu-N bond length of 1.879(9) Å. Two TTF parts of the neighboring complexes form a dimerized structure, and such a TTF dimer forms a one-dimensional uniform array along the a direction with a short S-S contact of 3.88 Å. Magnetic property measurement suggested the existence of a strongly antiferromagnetic one-dimensional uniform chain of S = 1/2 spins that originate from the radical cation states of the TTF dimers. Due to the construction of the one

  4. Discovery and Mechanistic Studies of Facile N-Terminal Cα–C Bond Cleavages in the Dissociation of Tyrosine-Containing Peptide Radical Cations

    SciTech Connect

    Mu, Xiaoyan; Song, Tao; Xu, Minjie; Lai, Cheuk-Kuen; Siu, Chi-Kit; Laskin, Julia; Chu, Ivan K.

    2014-03-28

    Gas phase fragmentations of protein and peptide (M) ions in a mass spectrometer—induced by, for example, electron-capture dissociation1-2 and electron-transfer dissociation3-422 —form the foundation for top-down amino acid sequencing approaches for the rapid identification of protein components in complex biological samples. During these processes, protonated protein and peptide radicals ([M + nH]•(n – 1)+)5–8 are generated; their fragmentations are governed largely by the properties of the unpaired electron. Because of their importance in modern bioanalytical chemistry, considerable attention has been drawn recently toward understanding the radical cation chemistry behind the fragmentations of these odd-electron biomolecular ions in the gas phase.

  5. A complete map of the ion chemistry of the naphthalene radical cation? DFT and RRKM modeling of a complex potential energy surface

    NASA Astrophysics Data System (ADS)

    Solano, Eduardo A.; Mayer, Paul M.

    2015-09-01

    The fragmentation mechanisms of the naphthalene molecular ion to [M-C4H2]+•, [M-C2H2]+•, [M-H2]+•, and [M-H•]+ were obtained at the UB3LYP/6-311+G(3df,2p)//UB3LYP/6-31G(d) level of theory and were subsequently used to calculate the microcanonical rate constants, k(E)'s, for all the steps by the Rice-Ramsperger-Kassel-Marcus formalism. The pre-equilibrium and steady state approximations were applied on different regions of the potential energy profiles to obtain the fragmentation k(E)'s and calculate the relative abundances of the ions as a function of energy. These results reproduce acceptably well the imaging photoelectron-photoion coincidence spectra of naphthalene, in the photon-energy range 14.0-18.8 eV that was previously reported by our group. Prior to dissociation, the molecular ion rapidly equilibrates with a set of isomers that includes the Z- and E-phenylvinylacetylene (PVA) radical cations. The naphthalene ion is the predominant isomer below 10 eV internal energy, with the other isomers remaining at steady state concentrations. Later on, new steady-state intermediates are formed, such as the azulene and 1-phenyl-butatriene radical cations. The naphthalene ion does not eject an H atom directly but eliminates an H2 molecule in a two-step fragmentation. H• loss occurs instead from the 1-phenyl-butatriene ion. The PVA ions initiate the ejection of diacetylene (C4H2) to yield the benzene radical cation. Acetylene elimination yields the pentalene cation at low energies (where it can account for 45.9%-100.0% of the rate constant of this channel), in a three-step mechanism starting from the azulene ion. However, above 7.6 eV, the major [M-C2H2]+• structure is the phenylacetylene cation.

  6. A complete map of the ion chemistry of the naphthalene radical cation? DFT and RRKM modeling of a complex potential energy surface.

    PubMed

    Solano, Eduardo A; Mayer, Paul M

    2015-09-14

    The fragmentation mechanisms of the naphthalene molecular ion to [M-C4H2](+•), [M-C2H2](+•), [M-H2](+•), and [M-H(•)](+) were obtained at the UB3LYP/6-311+G(3df,2p)//UB3LYP/6-31G(d) level of theory and were subsequently used to calculate the microcanonical rate constants, k(E)'s, for all the steps by the Rice-Ramsperger-Kassel-Marcus formalism. The pre-equilibrium and steady state approximations were applied on different regions of the potential energy profiles to obtain the fragmentation k(E)'s and calculate the relative abundances of the ions as a function of energy. These results reproduce acceptably well the imaging photoelectron-photoion coincidence spectra of naphthalene, in the photon-energy range 14.0-18.8 eV that was previously reported by our group. Prior to dissociation, the molecular ion rapidly equilibrates with a set of isomers that includes the Z- and E-phenylvinylacetylene (PVA) radical cations. The naphthalene ion is the predominant isomer below 10 eV internal energy, with the other isomers remaining at steady state concentrations. Later on, new steady-state intermediates are formed, such as the azulene and 1-phenyl-butatriene radical cations. The naphthalene ion does not eject an H atom directly but eliminates an H2 molecule in a two-step fragmentation. H(•) loss occurs instead from the 1-phenyl-butatriene ion. The PVA ions initiate the ejection of diacetylene (C4H2) to yield the benzene radical cation. Acetylene elimination yields the pentalene cation at low energies (where it can account for 45.9%-100.0% of the rate constant of this channel), in a three-step mechanism starting from the azulene ion. However, above 7.6 eV, the major [M-C2H2](+•) structure is the phenylacetylene cation. PMID:26374033

  7. A complete map of the ion chemistry of the naphthalene radical cation? DFT and RRKM modeling of a complex potential energy surface

    SciTech Connect

    Solano, Eduardo A.; Mayer, Paul M.

    2015-09-14

    The fragmentation mechanisms of the naphthalene molecular ion to [M–C{sub 4}H{sub 2}]{sup +•}, [M–C{sub 2}H{sub 2}]{sup +•}, [M–H{sub 2}]{sup +•}, and [M–H{sup •}]{sup +} were obtained at the UB3LYP/6-311+G(3df,2p)//UB3LYP/6-31G(d) level of theory and were subsequently used to calculate the microcanonical rate constants, k(E)’s, for all the steps by the Rice-Ramsperger-Kassel-Marcus formalism. The pre-equilibrium and steady state approximations were applied on different regions of the potential energy profiles to obtain the fragmentation k(E)’s and calculate the relative abundances of the ions as a function of energy. These results reproduce acceptably well the imaging photoelectron-photoion coincidence spectra of naphthalene, in the photon-energy range 14.0–18.8 eV that was previously reported by our group. Prior to dissociation, the molecular ion rapidly equilibrates with a set of isomers that includes the Z- and E-phenylvinylacetylene (PVA) radical cations. The naphthalene ion is the predominant isomer below 10 eV internal energy, with the other isomers remaining at steady state concentrations. Later on, new steady-state intermediates are formed, such as the azulene and 1-phenyl-butatriene radical cations. The naphthalene ion does not eject an H atom directly but eliminates an H{sub 2} molecule in a two-step fragmentation. H{sup •} loss occurs instead from the 1-phenyl-butatriene ion. The PVA ions initiate the ejection of diacetylene (C{sub 4}H{sub 2}) to yield the benzene radical cation. Acetylene elimination yields the pentalene cation at low energies (where it can account for 45.9%–100.0% of the rate constant of this channel), in a three-step mechanism starting from the azulene ion. However, above 7.6 eV, the major [M–C{sub 2}H{sub 2}]{sup +•} structure is the phenylacetylene cation.

  8. Reactions of 5-methylcytosine cation radicals in DNA and model systems: thermal deprotonation from the 5-methyl group vs. excited state deprotonation from sugar

    PubMed Central

    Adhikary, Amitava; Kumar, Anil; Palmer, Brian J.; Todd, Andrew D.; Heizer, Alicia N.; Sevilla, Michael D.

    2014-01-01

    Purpose To study the formation and subsequent reactions of the 5-methyl-2′-deoxycytidine cation radical (5-Me-2′-dC•+) in nucleosides and DNA-oligomers and compare to one electron oxidized thymidine. Materials and methods Employing electron spin resonance (ESR), cation radical formation and its reactions were investigated in 5-Me-2′-dC, thymidine (Thd) and their derivatives, in fully double stranded (ds) d[GC*GC*GC*GC*]2 and in the 5-Me-C/A mismatched, d[GGAC*AAGC:CCTAATCG], where C* = 5-Me-C. Results We report 5-Me-2′-dC•+ production by one-electron oxidation of 5-Me-2′-dC by Cl2•− via annealing in the dark at 155 K. Progressive annealing of 5-Me-2′-dC•+ at 155 K produces the allylic radical (C-CH2•). However, photoexcitation of 5-Me-2′-dC•+ by 405 nm laser or by photoflood lamp leads to only C3′• formation. Photoexcitation of N3-deprotonated thyminyl radical in Thd and its 5′-nucleotides leads to C3′• formation but not in 3′-TMP which resulted in the allylic radical (U-CH2•) and C5′• production. For excited 5-Me-2′,3′-ddC•+, absence of the 3′-OH group does not prevent C3′• formation. For d[GC*GC*GC*GC*]2 and d[GGAC*AAGC:CCTAATCG], intra-base paired proton transferred form of G cation radical (G(N1-H)•:C(+H+)) is found with no observable 5-Me-2′-dC•+ formation. Photoexcitation of (G(N1-H)•:C(+H+)) in d[GC*GC*GC*GC*]2 produced only C1′• and not the expected photoproducts from 5-Me-2′-dC•+. However, photoexcitation of (G(N1-H)•:C(+H+)) in d[GGAC*AAGC:CCTAATCG] led to C5′• and C1′• formation. Conclusions C-CH2• formation from 5-Me-2′-dC•+ occurs via ground state deprotonation from C5-methyl group on the base. In the excited 5-Me-2′-dC•+ and 5-Me-2′,3′-ddC•+, spin and charge localization at C3′ followed by deprotonation leads to C3′• formation. Thus, deprotonation from C3′ in the excited cation radical is kinetically controlled and sugar C-H bond energies are

  9. Terthiophene radical cations end-capped by bicyclo[2.2.2]octene units: formation of bent pi-dimers mutually attracted at the central position.

    PubMed

    Yamazaki, Daisuke; Nishinaga, Tohru; Tanino, Nobuhide; Komatsu, Koichi

    2006-11-15

    A terthiophene fused with bicyclo[2.2.2]octene units only at both ends was newly synthesized. Since there is no steric hindrance at the central position, this terthiophene has a possibility to interact only at the central position. One-electron oxidation of this terthiophene afforded a highly stable radical-cation salt as deep blue crystals. The result of X-ray crystal structural analysis demonstrated a characteristically bent pi-dimereric structure, which is formed by mutual attraction of single radical-cation species at the central position to minimize the steric repulsion. Remarkably short intermolecular distances between the central thiophene rings of each unit of the dimeric pair, that is, 2.976(10) A for Cbeta-Cbeta, 3.091(10) A for Calpha-Calpha, and 3.779(3) A for S-S, are good indication of the existence of attracting interaction, which was confirmed by theoretical calculations. This interaction was experimentally demonstrated by the reversible formation of the pi-dimer in CH2Cl2 solution using ESR and UV-vis-NIR spectroscopy. The crystal of the pi-dimer is in its singlet state and ESR silent in the solid state at 300 K, but the signal of a triplet state of the pi-dimer was observed by heating the solid at 400 K. This indicates that this pi-dimer has a quite small triplet-singlet enegy gap and the triplet state is thermally accessible. PMID:17090025

  10. Synthesis and Characterization of [n]CPP (n = 5, 6, 8, 10, and 12) Radical Cation and Dications: Size-Dependent Absorption, Spin, and Charge Delocalization.

    PubMed

    Kayahara, Eiichi; Kouyama, Takahiko; Kato, Tatsuhisa; Yamago, Shigeru

    2016-01-13

    Radical cations and dications of [n]cyclo-p-phenylenes ([n]CPPs, n = 5, 6, 10, and 12), which are the models of those of linear oligo-p-phenylenes without a terminus, were synthesized as hexafluoroantimonate salts by the one- and two-electron chemical oxidation of CPP by NOSbF6 or SbF5. The radical cations, [n]CPP(•+), and dications, [n]CPP(2+), exhibited remarkable bathochromic shifts in their UV-vis-NIR absorption bands, suggesting that [n]CPP(•+) and larger [n]CPP(2+) exhibit longer polyene character than the shorter analogues. The larger bathochromic shift was consistent with the narrower HOMO-SOMO and HOMO-LUMO gaps in larger [n]CPP(•+) and [n]CPP(2+), respectively. In [n]CPP(•+), the spins and charges were equally and fully delocalized over the p-phenylene rings of the CPPs, as noted by ESR. (1)H NMR revealed that the hydrogen of [n]CPP(2+) shifted to a high magnetic field from the neutral compounds due to the diamagnetic ring current derived from the in-plane aromaticity of [n]CPP(2+). The single resonances observed in all [n]CPP(2+) strongly suggest the complete delocalization of the charges over the CPPs. Furthermore, the contribution of biradical character was clarified for [10]- and [12]CPP by VT-NMR experiment and theoretical calculation. PMID:26675620

  11. Polymerization of ionized acetylene clusters into covalent bonded ions: evidence for the formation of benzene radical cation.

    PubMed

    Momoh, Paul O; Abrash, Samuel A; Mabrouki, Ridha; El-Shall, M Samy

    2006-09-27

    Since the discovery of acetylene and benzene in protoplanetary nebulae under powerful ultraviolet ionizing radiation, efforts have been made to investigate the polymerization of ionized acetylene. Here we report the efficient formation of benzene ions within gas-phase ionized acetylene clusters (C2H2)n+ with n = 3-60. The results from experiments, which use mass-selected ion mobility techniques, indicate that the (C2H2)3+ ion has unusual stability similar to that of the benzene cation; its primary fragment ions are similar to those reported from the benzene cation, and it has a collision cross section of 47.4 A2 in helium at 300 K, similar to the value of 47.9 A2 reported for the benzene cation. In other words, (C2H2)3+ structurally looks like benzene, it has stability similar to that of benzene, it fragments such as benzene, therefore, it must be benzene! PMID:16984178

  12. Acid-base equilibria involved in secondary reactions following the 4-carboxybenzophenone sensitized photooxidation of methionylglycine in aqueous solution. Spectral and time resolution of the decaying (S...N){sup +} radical cation

    SciTech Connect

    Hug, G.L.; Marciniak, B. |; Bobrowski, K. ||

    1996-09-05

    A radical cation with an intramolecular sulfur-nitrogen bond was formed in the photoinitiated transfer of an electron from the sulfur atom of the dipeptide Met-Gly to 4-carboxybenzophenone in its triplet state. The sulfur-nitrogen coupling involved two-center, three-electron bonds. The kinetics of the reactions of these radical cations, which were initiated by a laser flash, were followed over time. The principal method of implementing the spectral resolutions was accomplished through a multiple linear regression technique. This spectral analysis was repeated for numerous time windows during the lifetime of the transients` decays. The resulting concentrations of the transients were consistent with an independent factor analysis. It was found that the decay of the radical cations was multiexponential and that the decay varied with pH. A simplified reaction scheme was proposed whereby the absorbing radical cations can alternatively decay by an irreversible channel or react reversibly with OH{sup -}. Rate constants for the three elementary reactions of this scheme were determined from an analysis of the decay of the concentration of the radical cations. In addition, the equilibrium constant for the reversible reaction was determined by two separate procedures. 35 refs., 7 figs., 2 tabs.

  13. Effect of Base Stacking on the Acid-Base Properties of the Adenine Cation Radical [A•+] in Solution: ESR and DFT Studies

    PubMed Central

    Adhikary, Amitava; Kumar, Anil; Khanduri, Deepti

    2015-01-01

    In this study, the acid–base properties of the adenine cation radical are investigated by means of experiment and theory. Adenine cation radical (A•+) is produced by one-electron oxidation of dAdo and of the stacked DNA-oligomer (dA)6 by Cl2•− in aqueous glass (7.5 M LiCl in H2O and in D2O) and investigated by ESR spectroscopy. Theoretical calculations and deuterium substitution at C8–H and N6–H in dAdo aid in our assignments of structure. We find the pKa value of A•+ in this system to be ca. 8 at 150 K in seeming contradiction to the accepted value of ≤ 1 at ambient temperature. However, upon thermal annealing to ≥160 K, complete deprotonation of A•+ occurs in dAdo in these glassy systems even at pH ca. 3. A•+ found in (dA)6 at 150 K also deprotonates on thermal annealing. The stability of A•+ at 150 K in these systems is attributed to charge delocalization between stacked bases. Theoretical calculations at various levels (DFT B3LYP/6-31G*, MPWB95, and HF-MP2) predict binding energies for the adenine stacked dimer cation radical of 12 to 16 kcal/mol. Further DFT B3LYP/6-31G* calculations predict that, in aqueous solution, monomeric A•+ should deprotonate spontaneously (a predicted pKa of ca. −0.3 for A•+). However, the charge resonance stabilized dimer AA•+ is predicted to result in a significant barrier to deprotonation and a calculated pKa of ca. 7 for the AA•+ dimer which is 7 pH units higher than the monomer. These theoretical and experimental results suggest that A•+ isolated in solution and A•+ in adenine stacks have highly differing acid–base properties resulting from the stabilization induced by hole delocalization within adenine stacks. PMID:18611019

  14. The O-H stretching vibrations in the hydrogen bonded (PHENOL) 2+ radical cationic dimer. A gradient-corrected hybrid Hartree-Fock-density functional study

    NASA Astrophysics Data System (ADS)

    Pejov, Ljupčo

    2003-07-01

    The global minimum on B3LYP, mPW1PW91 and PBE1PBE/6-31++G(d,p) potential energy surfaces (PESs) of the (phenol) 2+ cationic radical dimer corresponds to O-H +⋯O hydrogen-bonded structure, with an additional, although much weaker C-H⋯O hydrogen bond, as revealed by AIM analysis. Excellent agreement with experimental data is obtained for the anharmonic vibrational frequency shift of the dangling O-H oscillator on the basis of one-dimensional DFT O-H stretching potentials. However, theoretical calculations suggest that the ν(O-H +⋯O) mode due to the hydrogen-bonded O-H oscillator should appear at significantly lower frequencies than it was first estimated on the basis of experimental dissociation spectroscopy combined with an ion trap technique data.

  15. A kinetic study of the reaction between N,N-dimethyl-p-toluidine and its electrogenerated radical cation in a room temperature ionic liquid.

    PubMed

    Evans, Russell G; Compton, Richard G

    2006-02-13

    The reaction between N,N-dimethyl-p-toluidine (DMT) and the radical cation generated through its one-electron oxidation has been studied electrochemically in the room temperature ionic liquid N-methyl-N-butylpyrrolidinium bis(trifluoromethylsulfonyl)imide, [Py14][NTf2]. Kinetic information obtained as linear sweep and cyclic voltammetry collected at 5 microm, 10 microm and 0.3 mm diameter platinum disk electrodes over a range of initial substrate concentrations and scan rates spanning five orders of magnitude was complemented by chronoamperometric measurements designed to probe the rate of diffusion. At the fastest scan rates the homogeneous reactions following the initial electron transfer were effectively out-run, facilitating an assessment of the electrode kinetics using DIGISIM and a validated Nicholson's method. Through digital simulation the voltammetry was then shown to be consistent with a mechanism established for the same reaction in acetonitrile, involving dimerisation of the DMT radicals following an initial and rate-determining proton transfer step. After careful consideration of all parameters, a bimolecular rate constant of (3.4 +/- 1.1) x 10(2) dm3 mol(-1) s(-1) was deduced by fitting the data. This was compared to the equivalent value for acetonitrile and, in light of this, the implications on the viability of ionic liquids for use as alternative mainstream solvents briefly assessed. PMID:16463338

  16. Biochemical studies on the metabolic activation of halogenated alkanes.

    PubMed Central

    Cheeseman, K H; Albano, E F; Tomasi, A; Slater, T F

    1985-01-01

    This paper reviews recent investigations by Slater and colleagues into the metabolic activation of halogenated alkanes in general and carbon tetrachloride in particular. It is becoming increasingly accepted that free radical intermediates are involved in the toxicity of many such compounds through mechanisms including lipid peroxidation, covalent binding, and cofactor depletion. Here we describe the experimental approaches that are used to establish that halogenated alkanes are metabolized in animal tissues to reactive free radicals. Electron spin resonance spectroscopy is used to identify free-radical products, often using spin-trapping compounds. The generation of specific free radicals by radiolytic methods is useful in the determination of the precise reactivity of radical intermediates postulated to be injurious to the cell. The enzymic mechanism of the production of such free radicals and their subsequent reactions with biological molecules is studied with specific metabolic inhibitors and free-radical scavengers. These combined techniques provide considerable insight into the process of metabolic activation of halogenated compounds. It is readily apparent, for instance, that the local oxygen concentration at the site of activation is of crucial importance to the subsequent reactions; the formation of peroxy radical derivatives from the primary free-radical product is shown to be of great significance in relation to carbon tetrachloride and may be of general importance. However, while these studies have provided much information on the biochemical mechanisms of halogenated alkane toxicity, it is clear that many problems remain to be solved. PMID:3007102

  17. Chemistry of carotenoid neutral radicals.

    PubMed

    Ligia Focsan, A; Magyar, Adam; Kispert, Lowell D

    2015-04-15

    Proton loss from the carotenoid radical cations (Car(+)) to form neutral radicals (#Car) was investigated by numerous electrochemical, EPR, ENDOR and DFT studies described herein. The radical cation and neutral radicals were formed in solution electrochemically and stabilized on solid silica-alumina and MCM-41 matrices. Carotenoid neutral radicals were recently identified in Arabidopsis thaliana plant and photosystem II samples. Deprotonation at the terminal ends of a zeaxanthin radical cation could provide a secondary photoprotection pathway which involves quenching excited state chlorophyll by the long-lived zeaxanthin neutral radicals formed. PMID:25687648

  18. Structures and stabilities of hemi-bonded vs proton-transferred isomers of dimer radical cation systems (XH3sbnd YH3)+ (X,Y = N, P, As)

    NASA Astrophysics Data System (ADS)

    Ji, Li Fei; Li, An Yong; Li, Zhuo Zhe

    2015-01-01

    Structures, bonding and relative stabilities of the radical dimer cations (XH3sbnd YH3)+ (X,Y = N, P, As) have been studied theoretically. Two kinds of structures (hemi-bonded and proton-transferred isomers) are obtained for each system. For (NH3sbnd N/P/AsH3)+ the stable conformer is the proton-transferred structure; for (PH3sbnd PH3)+ and (AsH3sbnd AsH3)+ the stable structure is the hemi-bonded one; for (PH3sbnd AsH3)+ three proton-transferred and one hemi-bonded isomers were found with the stability order: (Hsbnd PH3+⋯AsH2) I > (H3PH+⋯AsH2) II > (H3P⋯AsH3+) > (H3AsH+⋯PH2) III. The hemi-bonds have large interaction energies 25.2-35.1 kcal/mol and are partially covalent in nature, while the proton-transferred structures have moderate interaction energies 6.5-22.2 kcal/mol.

  19. Full dimensional quantum-mechanical simulations for the vibronic dynamics of difluorobenzene radical cation isomers using the multilayer multiconfiguration time-dependent Hartree method

    NASA Astrophysics Data System (ADS)

    Meng, Qingyong; Faraji, Shirin; Vendrell, Oriol; Meyer, Hans-Dieter

    2012-10-01

    Full dimensional multilayer multiconfiguration time-dependent Hartree (ML-MCTDH) calculations of the dynamics of the three difluorobenzene cationic isomers in five lowest-lying doublet electronic states using the ab initio multistate multimode vibronic coupling Hamiltonian (MMVCH) model are carried out using the Heidelberg MCTDH package. The same dynamical problems, but treated with the MCTDH scheme and using a reduced dimensional ab initio MMVCH model, have been previously reported [S. Faraji, H.-D. Meyer, and H. Köppel, "Multistate vibronic interactions in difluorobenzene radical cations. II Quantum dynamical simulations," J. Chem. Phys. 129, 074311 (2008), 10.1063/1.2958918]. For easy comparison with the reduced dimensional results, 11D or 10D ML-MCTDH calculations are also performed. Extensive ML-MCTDH test calculations are performed to find appropriate ML-MCTDH wavefunction structures (ML-trees), and the convergence of the ML-MCTDH calculations are carefully checked to ensure accurate results. Based on the appropriate ML-trees, the photoelectron (PE) spectrum and the mass analyzed threshold ionization (MATI) spectrum are simulated, analyzed, and compared with corresponding experimental spectra. Because of its efficient simulation capability for large systems, ML-MCTDH calculations save a considerable amount of central processing unit (CPU)-time, even when a reduced dimensional MMVCH is used, i.e., the same reduced model as in the corresponding MCTDH calculations. Simulations of the experimental PE spectra by full dimensional ML-MCTDH calculations reproduced main peaks, which originate from different electronic states. The agreement is improved as compared to the reduced dimensionality calculations. Unfortunately, the experimental PE spectra are not very well resolved. Therefore, we compare our calculations additionally with highly resolved MATI spectra, which, however, are only available for the tilde{X} state. Based on a series of ML-MCTDH simulations with

  20. Full dimensional quantum-mechanical simulations for the vibronic dynamics of difluorobenzene radical cation isomers using the multilayer multiconfiguration time-dependent Hartree method.

    PubMed

    Meng, Qingyong; Faraji, Shirin; Vendrell, Oriol; Meyer, Hans-Dieter

    2012-10-01

    Full dimensional multilayer multiconfiguration time-dependent Hartree (ML-MCTDH) calculations of the dynamics of the three difluorobenzene cationic isomers in five lowest-lying doublet electronic states using the ab initio multistate multimode vibronic coupling Hamiltonian (MMVCH) model are carried out using the Heidelberg MCTDH package. The same dynamical problems, but treated with the MCTDH scheme and using a reduced dimensional ab initio MMVCH model, have been previously reported [S. Faraji, H.-D. Meyer, and H. Köppel, "Multistate vibronic interactions in difluorobenzene radical cations. II Quantum dynamical simulations," J. Chem. Phys. 129, 074311 (2008)]. For easy comparison with the reduced dimensional results, 11D or 10D ML-MCTDH calculations are also performed. Extensive ML-MCTDH test calculations are performed to find appropriate ML-MCTDH wavefunction structures (ML-trees), and the convergence of the ML-MCTDH calculations are carefully checked to ensure accurate results. Based on the appropriate ML-trees, the photoelectron (PE) spectrum and the mass analyzed threshold ionization (MATI) spectrum are simulated, analyzed, and compared with corresponding experimental spectra. Because of its efficient simulation capability for large systems, ML-MCTDH calculations save a considerable amount of central processing unit (CPU)-time, even when a reduced dimensional MMVCH is used, i.e., the same reduced model as in the corresponding MCTDH calculations. Simulations of the experimental PE spectra by full dimensional ML-MCTDH calculations reproduced main peaks, which originate from different electronic states. The agreement is improved as compared to the reduced dimensionality calculations. Unfortunately, the experimental PE spectra are not very well resolved. Therefore, we compare our calculations additionally with highly resolved MATI spectra, which, however, are only available for the X̃ state. Based on a series of ML-MCTDH simulations with longer propagation time

  1. Crystal Structure of the New Radical Cation Salt (DOET){sub 4}[Fe(CN){sub 5}NO]{sub 1.25}(C{sub 6}H{sub 5}Cl){sub 0.75}

    SciTech Connect

    Zorina, L.V.; Khasanov, S.S.; Shibaeva, R.P.; Shevyakova, I.Yu.; Kotov, A.I.; Yagubskii, E.B.

    2004-11-01

    A new radical cation salt based on 4,5-(1,4-dioxanediyl-2,3-dithio)-4{sup '},5{sup '}-ethylenedithiotetrathiafulvalene (DOET) with the photochromic anion [Fe(CN){sub 5}NO]{sup 2-}, namely, (DOET){sub 4}[Fe(CN){sub 5}NO]{sub 1.25}(C{sub 6}H{sub 5}Cl){sub 0.75} , is synthesized. Single crystals of this salt are studied using X-ray diffraction [a = 10.398(2) A, b = 11.168(2) A, c = 18.499(4) A, {alpha} = 103.14(3) deg., {beta} = 92.80(3) deg., {gamma} = 106.02(3) deg., V = 1996.3(7) A{sup 3} , space group P1-bar, and Z = 1]. In the structure, radical cation layers alternate with anion layers along the c axis. The centrosymmetric dimers are formed by DOET radical cations in the donor layer with packing of the {beta} type. Like the vast majority of DOET-based salts, the new salt possesses semiconductor properties.

  2. C---lH...O and O...H...O bonded intermediates in the dissociation of low energy methyl glycolate radical cations

    NASA Astrophysics Data System (ADS)

    Suh, Dennis; Kingsmill, Carol A.; Ruttink, Paul J. A.; Burgers, Peter C.; Terlouw, Johan K.

    1995-08-01

    Low energy methyl glycolate radical cations HOCH2C(=O)OCH3+, 1, abundantly lose HCO, yielding protonated methyl formate H---C(OH)OCH3+. Tandem mass spectrometry based experiments on 2H, 13C and 18O labelled isotopologues show that this loss is largely (about 75%) atom specific. Analysis of the atom connectivity in the product ions indicates that the reaction proceeds analogously to the loss of HCO and CH3CO from ionized acetol HOCH2C(=O)CH3+ and acetoin HOCH(CH3)C(=O)CH3+, respectively. The mechanism, it is proposed, involves isomerization of 1 to the key intermediate CH2=O... H---C(=O)OCH3+, an H-bridged ion-dipole complex of neutral formaldehyde and ionized methyl formate. Next, charge transfer takes place to produce CH3OC(H)=O...HC(H)=O+, an H-bridged ion-dipole complex of ionized formaldehyde and neutral methyl formate, followed by proton transfer to generate the products. Preliminary ab initio calculations executed at the UMP3/6-31G*//6-31G*+ZPVE level of theory are presented in support of this proposal. The non-specific loss of HCO from 1 (about 25%) is rationalized to occur via the same mechanism, but after communication with isomeric dimethyl carbonate ions CH3OC(=O)OCH3+, 2, via the O...H...O bonded intermediate [CH2=O...H...O=C---OCH3]+. The latter pathway is even more important in the formation of CH2OH+ ions from 1 which, it is shown, is not a simple bond cleavage reaction, but may involve consecutive or concerted losses of CH3 and CO2 from the above O...H...O bonded species. Ionized methyl lactate HOCH(CH3)C(=O)OCH3+, the higher homologue of 1, shows a unimolecular chemistry which is akin to that of 1.

  3. Spectroscopic and Kinetic Characterization of Peroxidase-Like π-Cation Radical Pinch-Porphyrin-Iron(III) Reaction Intermediate Models of Peroxidase Enzymes.

    PubMed

    Hernández Anzaldo, Samuel; Arroyo Abad, Uriel; León García, Armando; Ramírez Rosales, Daniel; Zamorano Ulloa, Rafael; Reyes Ortega, Yasmi

    2016-01-01

    The spectroscopic and kinetic characterization of two intermediates from the H₂O₂ oxidation of three dimethyl ester [(proto), (meso), (deuteroporphyrinato) (picdien)]Fe(III) complexes ([FePPPic], [FeMPPic] and [FeDPPic], respectively) pinch-porphyrin peroxidase enzyme models, with s = 5/2 and 3/2 Fe(III) quantum mixed spin (qms) ground states is described herein. The kinetic study by UV/Vis at λmax = 465 nm showed two different types of kinetics during the oxidation process in the guaiacol test for peroxidases (1-3 + guaiacol + H₂O₂ → oxidation guaiacol products). The first intermediate was observed during the first 24 s of the reaction. When the reaction conditions were changed to higher concentration of pinch-porphyrins and hydrogen peroxide only one type of kinetics was observed. Next, the reaction was performed only between pinch-porphyrins-Fe(III) and H₂O₂, resulting in only two types of kinetics that were developed during the first 0-4 s. After this time a self-oxidation process was observed. Our hypotheses state that the formation of the π-cation radicals, reaction intermediates of the pinch-porphyrin-Fe(III) family with the ligand picdien [N,N'-bis-pyridin-2-ylmethyl-propane-1,3-diamine], occurred with unique kinetics that are different from the overall process and was involved in the oxidation pathway. UV-Vis, ¹H-NMR and ESR spectra confirmed the formation of such intermediates. The results in this paper highlight the link between different spectroscopic techniques that positively depict the kinetic traits of artificial compounds with enzyme-like activity. PMID:27355940

  4. Selective hydroxylation of alkanes by an extracellular fungal peroxygenase.

    PubMed

    Peter, Sebastian; Kinne, Matthias; Wang, Xiaoshi; Ullrich, René; Kayser, Gernot; Groves, John T; Hofrichter, Martin

    2011-10-01

    Fungal peroxygenases are novel extracellular heme-thiolate biocatalysts that are capable of catalyzing the selective monooxygenation of diverse organic compounds, using only H(2)O(2) as a cosubstrate. Little is known about the physiological role or the catalytic mechanism of these enzymes. We have found that the peroxygenase secreted by Agrocybe aegerita catalyzes the H(2)O(2)-dependent hydroxylation of linear alkanes at the 2-position and 3-position with high efficiency, as well as the regioselective monooxygenation of branched and cyclic alkanes. Experiments with n-heptane and n-octane showed that the hydroxylation proceeded with complete stereoselectivity for the (R)-enantiomer of the corresponding 3-alcohol. Investigations with a number of model substrates provided information about the route of alkane hydroxylation: (a) the hydroxylation of cyclohexane mediated by H(2)(18)(2) resulted in complete incorporation of (18)O into the hydroxyl group of the product cyclohexanol; (b) the hydroxylation of n-hexane-1,1,1,2,2,3,3-D(7) showed a large intramolecular deuterium isotope effect [(k(H)/k(D))(obs)] of 16.0 ± 1.0 for 2-hexanol and 8.9 ± 0.9 for 3-hexanol; and (c) the hydroxylation of the radical clock norcarane led to an estimated radical lifetime of 9.4 ps and an oxygen rebound rate of 1.06 × 10(11) s(-1). These results point to a hydrogen abstraction and oxygen rebound mechanism for alkane hydroxylation. The peroxygenase appeared to lack activity on long-chain alkanes (> C(16)) and highly branched alkanes (e.g. tetramethylpentane), but otherwise exhibited a broad substrate range. It may accordingly have a role in the bioconversion of natural and anthropogenic alkane-containing structures (including alkyl chains of complex biomaterials) in soils, plant litter, and wood. PMID:21812933

  5. Crystalline bipyridinium radical complexes and uses thereof

    DOEpatents

    Fahrenbach, Albert C.; Barnes, Jonathan C.; Li, Hao; Stoddart, J. Fraser; Basuray, Ashish Neil; Sampath, Srinivasan

    2015-09-01

    Described herein are methods of generating 4,4'-bipyridinium radical cations (BIPY.sup..cndot.+), and methods for utilizing the radical-radical interactions between two or more BIPY.sup..cndot.+ radical cations that ensue for the creation of novel materials for applications in nanotechnology. Synthetic methodologies, crystallographic engineering techniques, methods of physical characterization, and end uses are described.

  6. Effect of electrolytes and temperature on dications and radical cations of carotenoids: Electrochemical, optical absorption, and high-performance liquid chromatography studies

    SciTech Connect

    He, Z.; Kispert, L.D.

    1999-11-25

    The effect of supporting electrolytes and temperature on the behavior of dications and radical cations of carotenoids is studied. Cyclic voltammograms (CVs) of canthaxanthin (I) at 23 and {minus}25 C show that Car{sup sm{underscore}bullet+} of I has similar stability during the time of the CV scan, when using tetrabutylammonium perchlorate (TBAPC), tetrabutylammonium tetrafluoroborate (TBATFB), or tetrabutylammonium hexafluorophosphate (TBAHFP) as supporting electrolyte. However, the stability of Car{sup 2+} decreases when using TBAPC or TBATFB; {beta}-carotene (II) shows similar behavior. The CV of I at {minus}25 C shows a strong cathodic wave (wave 6) near {minus}0.15 V (vs Ag) with an intensity about half that of the neutral oxidation wave when TBAPC or TBATFB is the supporting electrolyte. When TBAHFP is used, wave 6 (ca. {minus}0.05 V vs Ag) is ca. 8 times weaker than when TBAPC or TBATFB is used. This wave results from the reduction of a species that may be a decay product of Car{sup 2+} of I. Results show that these electrolytes commonly used in electrochemical studies may affect the studied systems to different extents. In simultaneous bulk electrolysis (BE) and optical absorption spectroscopic measurements, the absorption band of Car{sup 2+} of I in the presence of 0.1 M TBAHFP can be observed by lowering the BE temperature to {minus}20 C. In the presence of 0.1 M TBAPC or TBATFB, this band is not observed, even at {minus}50 C. Isomerization of neutral I (as shown by HPLC and its blue absorption band shift) is observed only when the Car{sup 2+} absorption band is absent during BE. This observation, along with an increase of the neutral absorption band after stopping BE, suggests that the equilibrium Car + Car{sup 2+} {r{underscore}equilibrium} 2Car{sup {sm{underscore}bullet}+} is shifted to the left because Car{sup 2+} decays more quickly than Car{sup {sm{underscore}bullet}+} in the presence of electrolyte and this is a major path for formation of cis

  7. Radical prostatectomy

    MedlinePlus

    Prostatectomy - radical; Radical retropubic prostatectomy; Radical perineal prostatectomy; Laparoscopic radical prostatectomy; LRP; Robotic-assisted laparoscopic prostatectomy; RALP; Pelvic lymphadenectomy; ...

  8. Metabolism of Hydrocarbons in n-Alkane-Utilizing Anaerobic Bacteria.

    PubMed

    Wilkes, Heinz; Buckel, Wolfgang; Golding, Bernard T; Rabus, Ralf

    2016-01-01

    The glycyl radical enzyme-catalyzed addition of n-alkanes to fumarate creates a C-C-bond between two concomitantly formed stereogenic carbon centers. The configurations of the two diastereoisomers of the product resulting from n-hexane activation by the n-alkane-utilizing denitrifying bacterium strain HxN1, i.e. (1-methylpentyl)succinate, were assigned as (2S,1'R) and (2R,1'R). Experiments with stereospecifically deuterated n-(2,5-2H2)hexanes revealed that exclusively the pro-S hydrogen atom is abstracted from C2 of the n-alkane by the enzyme and later transferred back to C3 of the alkylsuccinate formed. These results indicate that the alkylsuccinate-forming reaction proceeds with an inversion of configuration at the carbon atom (C2) of the n-alkane forming the new C-C-bond, and thus stereochemically resembles a SN2-type reaction. Therefore, the reaction may occur in a concerted manner, which may avoid the highly energetic hex-2-yl radical as an intermediate. The reaction is associated with a significant primary kinetic isotope effect (kH/kD ≥3) for hydrogen, indicating that the homolytic C-H-bond cleavage is involved in the first irreversible step of the reaction mechanism. The (1-methylalkyl)succinate synthases of n-alkane-utilizing anaerobic bacteria apparently have very broad substrate ranges enabling them to activate not only aliphatic but also alkyl-aromatic hydrocarbons. Thus, two denitrifiers and one sulfate reducer were shown to convert the nongrowth substrate toluene to benzylsuccinate and further to the dead-end product benzoyl-CoA. For this purpose, however, the modified β-oxidation pathway known from alkylbenzene-utilizing bacteria was not employed, but rather the pathway used for n-alkane degradation involving CoA ligation, carbon skeleton rearrangement and decarboxylation. Furthermore, various n-alkane- and alkylbenzene-utilizing denitrifiers and sulfate reducers were found to be capable of forming benzyl alcohols from diverse alkylbenzenes

  9. Process for functionalizing alkanes

    DOEpatents

    Bergman, R.G.; Janowicz, A.H.; Periana, R.A.

    1988-05-24

    Process for functionalizing saturated hydrocarbons comprises: (a) reacting said saturated hydrocarbons of the formula: R[sub 1]H wherein H represents a hydrogen atom; and R[sub 1] represents a saturated hydrocarbon radical, with a metal complex of the formula: CpRh[P(R[sub 2])[sub 3

  10. Copper-Catalyzed Intermolecular Amidation and Imidation of Unactivated Alkanes

    PubMed Central

    2015-01-01

    We report a set of rare copper-catalyzed reactions of alkanes with simple amides, sulfonamides, and imides (i.e., benzamides, tosylamides, carbamates, and phthalimide) to form the corresponding N-alkyl products. The reactions lead to functionalization at secondary C–H bonds over tertiary C–H bonds and even occur at primary C–H bonds. [(phen)Cu(phth)] (1-phth) and [(phen)Cu(phth)2] (1-phth2), which are potential intermediates in the reaction, have been isolated and fully characterized. The stoichiometric reactions of 1-phth and 1-phth2 with alkanes, alkyl radicals, and radical probes were investigated to elucidate the mechanism of the amidation. The catalytic and stoichiometric reactions require both copper and tBuOOtBu for the generation of N-alkyl product. Neither 1-phth nor 1-phth2 reacted with excess cyclohexane at 100 °C without tBuOOtBu. However, the reactions of 1-phth and 1-phth2 with tBuOOtBu afforded N-cyclohexylphthalimide (Cy-phth), N-methylphthalimide, and tert-butoxycyclohexane (Cy-OtBu) in approximate ratios of 70:20:30, respectively. Reactions with radical traps support the intermediacy of a tert-butoxy radical, which forms an alkyl radical intermediate. The intermediacy of an alkyl radical was evidenced by the catalytic reaction of cyclohexane with benzamide in the presence of CBr4, which formed exclusively bromocyclohexane. Furthermore, stoichiometric reactions of [(phen)Cu(phth)2] with tBuOOtBu and (Ph(Me)2CO)2 at 100 °C without cyclohexane afforded N-methylphthalimide (Me-phth) from β-Me scission of the alkoxy radicals to form a methyl radical. Separate reactions of cyclohexane and d12-cyclohexane with benzamide showed that the turnover-limiting step in the catalytic reaction is the C–H cleavage of cyclohexane by a tert-butoxy radical. These mechanistic data imply that the tert-butoxy radical reacts with the C–H bonds of alkanes, and the subsequent alkyl radical combines with 1-phth2 to form the corresponding N-alkyl imide product

  11. Process for functionalizing alkanes

    DOEpatents

    Bergman, Robert G.; Janowicz, Andrew H.; Periana, Roy A.

    1988-01-01

    Process for functionalizing saturated hydrocarbons comprising: (a) reacting said saturated hydrocarbons of the formula: R.sub.1 H wherein H represents a hydrogen atom; and R.sub.1 represents a saturated hydrocarbon radical, with a metal complex of the formula: CpRh[P(R.sub.2).sub.3 ]H.sub.2 wherein Cp represents a cyclopentadienyl or alkylcyclopentadienyl radical; Rh represents a rhodium atom; P represents a phosphorus atom; R.sub.2 represents a hydrocarbon radical; H represents a hydrogen atom, in the presence of ultraviolet radiation to form a hydridoalkyl complex of the formula: CpRh[P(R.sub.2).sub.3 ](R.sub.1)H (b) reacting said hydridoalkyl complex with an organic halogenating agent such as a tetrahalomethane or a haloform of the formulas: CX'X''X'''X'''' or CHX'X''X''' wherein X', X'', X'", X"" represent halogens selected from bromine, iodine or chlorine atom, at a temperature in the range of about -60.degree. to -17.degree. C. to form the corresponding haloalkyl complex of step (a) having the formula: CpRhPMe.sub.3 RX; and, (c) reacting said haloalkyl complex formed in (b) with halogen (X.sub.2) at a temperature in the range of about -60.degree. to 25.degree. C. (i.e., ambient) to form a functional haloalkyl compound.

  12. Charge transfer complexes of fullerenes containing C60˙(-) and C70˙(-) radical anions with paramagnetic Co(II)(dppe)2Cl(+) cations (dppe: 1,2-bis(diphenylphosphino)ethane).

    PubMed

    Konarev, Dmitri V; Troyanov, Sergey I; Otsuka, Akihiro; Yamochi, Hideki; Saito, Gunzi; Lyubovskaya, Rimma N

    2016-04-12

    The reduction of Co(II)(dppe)Cl2 with sodium fluorenone ketyl produces a red solution containing the Co(I) species. The dissolution of C60 in the obtained solution followed by the precipitation of crystals with hexane yields a salt {Co(I)(dppe)2(+)}(C60˙(-))·2C6H4Cl2 and a novel complex {Co(dppe)2Cl}(C60) (). With C70, only the crystals of {Co(dppe)2Cl}(C70)·0.5C6H4Cl2 () are formed. Complex contains zig-zag fullerene chains whereas closely packed double chains are formed from fullerenes in . According to the optical spectra and magnetic data charge transfer occurs in both and with the formation of the Co(II)(dppe)2Cl(+) cations and the C60˙(-) or C70˙(-) radical anions. In spite of the close packing in crystals, C60˙(-) or C70˙(-) retain their monomeric form at least down to 100 K. The effective magnetic moments of and of 1.98 and 2.27μB at 300 K, respectively, do not attain the value of 2.45μB expected for the system with two non-interacting S = 1/2 spins at full charge transfer to fullerenes. Most probably diamagnetic {Co(I)(dppe)2Cl}(0) and neutral fullerenes are partially preserved in the samples which can explain the weak magnetic coupling of spins and the absence of fullerene dimerization in both complexes. The EPR spectra of and show asymmetric signals approximated by several lines with g-factors ranging from 2.0009 to 2.3325. These signals originate from the exchange interaction between the paramagnetic Co(II)(dppe)2Cl(+) cations and the fullerene˙(-) radical anions. PMID:26956368

  13. Process for functionalizing alkanes

    DOEpatents

    Bergman, Robert G.; Janowicz, Andrew H.; Periana-Pillai, Roy A.

    1985-01-01

    Process for functionalizing saturated hydrocarbons selectively in the terminal position comprising: (a) reacting said saturated hydrocarbons of the formula: RH where: H represents a hydrogen atom, and R represents a saturated hydrocarbon radical, with a metal complex of the formula: CpRhPMe.sub.3 H.sub.2 where: Cp represents a pentamethylated cyclopentadienyl radical, Rh represents a rhodium atom, P represents a phosphorous atom, Me represents a methyl group, H represents a hydrogen atom, in the presence of ultraviolet radiation at a temperature maintained at about -60.degree. to -17.degree. C. to form a hydridoalkyl complex of the formula: CpRhPMe.sub.3 RH (b) reacting said hydridoalkyl complex with a haloform of the formula: CHX.sub.3 where: X represents a bromine, iodine or chlorine atom, at a temperature in the range of about -60.degree. to -17.degree. C. to form the corresponding haloalkyl complex of step (a) having the formula: CpRhPMe.sub.3 RX; and, (c) reacting said haloalkyl complex formed in (b) with halogen (X.sub.2) at a temperature in the range of about -60.degree. to 25.degree. C. (i.e. ambient) to form a functional haloalkyl compound.

  14. Process for functionalizing alkanes

    SciTech Connect

    Bergman, R. G.; Janowicz, A. H.; Periana-Pillai, R. A.

    1985-04-16

    Process for functionalizing saturated hydrocarbons selectively in the terminal position comprising: (a) reacting said saturated hydrocarbons of the formula: RH where: H represents a hydrogen atom, and R represents a saturated hydrocarbon radical, with a metal complex of the formula: C /SUB p/ RhPMe/sub 3/H/sub 2/ where: C /SUB p/ represents a pentamethylated cyclopentadienyl radical, Rh represents a rhodium atom, P represents a phosphorous atom, Me represents a methyl group, H represents a hydrogen atom, in the presence of ultraviolet radiation at a temperature maintained at about -60/sup 0/ to -17/sup 0/ C. to form a hydridoalkyl complex of the formula: C /SUB p/ RhPMe/sub 3/RH (b) reacting said hydridoalkyl complex with a haloform of the formula: CHX/sub 3/ where: X represents a bromine, iodine or chlorine atom, at a temperature in the range of about -60/sup 0/ to -17/sup 0/ C. to form the corresponding haloalkyl complex of step (a) having the formula: C /SUB p/ RhMe/sub 3/RX; and, (c) reacting said haloalkyl complex formed in (b) with halogen (X/sub 2/) at a temperature in the range of about -60/sup 0/ to 25/sup 0/ C. (i.e. ambient) to form a functional haloalkyl compound.

  15. Liquid-liquid interfaces of semifluorinated alkane diblock copolymers with water, alkanes, and perfluorinated alkanes.

    SciTech Connect

    Perahia, Dvora, Dr.; Pierce, Flint; Tsige, Mesfin; Grest, Gary Stephen, Dr.

    2008-08-01

    The liquid-liquid interface between semifluorinated alkane diblock copolymers of the form F3C(CF2)n-1-(CH2)m-1CH3 and water, protonated alkanes, and perfluorinated alkanes are studied by fully atomistic molecular dynamics simulations. A modified version of the OPLS-AA (Optimized Parameter for Liquid Simulation All-Atom) force field of Jorgensen et al. has been used to study the interfacial behavior of semifluorinated diblocks. Aqueous interfaces are found to be sharp, with correspondingly large values of the interfacial tension. Due to the reduced hydrophobicity of the protonated block compared to the fluorinated block, hydrogen enhancement is observed at the interface. Water dipoles in the interfacial region are found to be oriented nearly parallel to the liquid-liquid interface. A number of protonated alkanes and perfluorinated alkanes are found to be mutually miscible with the semifluorinated diblocks. For these liquids, interdiffusion follows the expected Fickian behavior, and concentration-dependent diffusivities are determined.

  16. Actinide cation-cation complexes

    SciTech Connect

    Stoyer, N.J.; Seaborg, G.T.

    1994-12-01

    The +5 oxidation state of U, Np, Pu, and Am is a linear dioxo cation (AnO{sub 2}{sup +}) with a formal charge of +1. These cations form complexes with a variety of other cations, including actinide cations. Other oxidation states of actinides do not form these cation-cation complexes with any cation other than AnO{sub 2}{sup +}; therefore, cation-cation complexes indicate something unique about AnO{sub 2}{sup +} cations compared to actinide cations in general. The first cation-cation complex, NpO{sub 2}{sup +}{center_dot}UO{sub 2}{sup 2+}, was reported by Sullivan, Hindman, and Zielen in 1961. Of the four actinides that form AnO{sub 2}{sup +} species, the cation-cation complexes of NpO{sub 2}{sup +} have been studied most extensively while the other actinides have not. The only PuO{sub 2}{sup +} cation-cation complexes that have been studied are with Fe{sup 3+} and Cr{sup 3+} and neither one has had its equilibrium constant measured. Actinides have small molar absorptivities and cation-cation complexes have small equilibrium constants; therefore, to overcome these obstacles a sensitive technique is required. Spectroscopic techniques are used most often to study cation-cation complexes. Laser-Induced Photacoustic Spectroscopy equilibrium constants for the complexes NpO{sub 2}{sup +}{center_dot}UO{sub 2}{sup 2+}, NpO{sub 2}{sup +}{center_dot}Th{sup 4+}, PuO{sub 2}{sup +}{center_dot}UO{sub 2}{sup 2+}, and PuO{sub 2}{sup +}{center_dot}Th{sup 4+} at an ionic strength of 6 M using LIPAS are 2.4 {plus_minus} 0.2, 1.8 {plus_minus} 0.9, 2.2 {plus_minus} 1.5, and {approx}0.8 M{sup {minus}1}.

  17. Communication: Oscillating charge migration between lone pairs persists without significant interaction with nuclear motion in the glycine and Gly-Gly-NH-CH{sub 3} radical cations

    SciTech Connect

    Vacher, Morgane; Bearpark, Michael J.; Robb, Michael A.

    2014-05-28

    Coupled electron-nuclear dynamics has been studied, using the Ehrenfest method, for four conformations of the glycine molecule and a single conformation of Gly-Gly-NH-CH{sub 3}. The initial electronic wavepacket was a superposition of eigenstates corresponding to ionization from the σ lone pairs associated with the carbonyl oxygens and the amine nitrogen. For glycine, oscillating charge migration (when the nuclei were frozen) was observed for the 4 conformers studied with periods ranging from 2 to 5 fs, depending on the energy gap between the lone pair cationic states. When coupled nuclear motion was allowed (which was mainly NH{sub 2} partial inversion), the oscillations hardly changed. For Gly-Gly-NH-CH{sub 3}, charge migration between the carbonyl oxygens and the NH{sub 2} lone pair can be observed with a period similar to glycine itself, also without interaction with nuclear motion. These simulations suggest that charge migration between lone pairs can occur independently of the nuclear motion.

  18. Infrared spectra of the 1-pyridinium (C5H5NH+) cation and pyridinyl (C5H5NH and 4-C5H6N) radicals isolated in solid para-hydrogen.

    PubMed

    Golec, Barbara; Das, Prasanta; Bahou, Mohammed; Lee, Yuan-Pern

    2013-12-19

    Protonated pyridine and its neutral counterparts (C5H6N) are important intermediates in organic and biological reactions and in the atmosphere. We have recorded the IR absorption spectra of the 1-pyridinium (C5H5NH(+)) cation, 1-pyridinyl (C5H5NH), and 4-pyridinyl (4-C5H6N) produced on electron bombardment during matrix deposition of a mixture of pyridine (C5H5N) and p-H2 at 3.2 K; all spectra were previously unreported. The IR features of C5H5NH(+) diminished in intensity after the matrix was maintained in darkness for 15 h, whereas those of C5H5NH and 4-C5H6N radicals increased. Irradiation of this matrix with light at 365 nm diminished lines of C5H5NH(+) and C5H5NH but enhanced lines of 4-C5H6N slightly, whereas irradiation at 405 nm diminished lines of 4-C5H6N significantly. Observed wavenumbers and relative intensities of these species agree satisfactorily with the anharmonic vibrational wavenumbers and IR intensities predicted with the B3LYP/6-31++G(d,p) method. Assignments of C5H5NH and 4-C5H6N radicals were further supported by the observation of similar spectra when a Cl2/C5H5N/p-H2 matrix was irradiated first at 365 nm and then with IR light to generate H atoms to induce the H + C5H5N reaction. PMID:24024629

  19. Catalytic conversion of light alkanes

    SciTech Connect

    Lyons, J.E.

    1992-06-30

    The second Quarterly Report of 1992 on the Catalytic Conversion of Light Alkanes reviews the work done between April 1, 1992 and June 31, 1992 on the Cooperative Agreement. The mission of this work is to devise a new catalyst which can be used in a simple economic process to convert the light alkanes in natural gas to oxygenate products that can either be used as clean-burning, high octane liquid fuels, as fuel components or as precursors to liquid hydrocarbon uwspomdon fuel. During the past quarter we have continued to design, prepare, characterize and test novel catalysts for the mild selective reaction of light hydrocarbons with air or oxygen to produce alcohols directly. These catalysts are designed to form active metal oxo (MO) species and to be uniquely active for the homolytic cleavage of the carbon-hydrogen bonds in light alkanes producing intermediates which can form alcohols. We continue to investigate three molecular environments for the active catalytic species that we are trying to generate: electron-deficient macrocycles (PHASE I), polyoxometallates (PHASE II), and regular oxidic lattices including zeolites and related structures as well as other molecular surface structures having metal oxo groups (PHASE I).

  20. Multiphoton processes in cyclohexane and trans-decalin and the formation of high-mobility cations

    SciTech Connect

    Liu, A.; Sauer, M.C. Jr.; Trifunac, A.D. )

    1993-10-28

    The dependence of the absolute efficiencies of production of free electrons and HM[sub +] (positive ions with anomalously high mobility) on the intensity of 248- and 308-nm laser pulses has been measured for neat cyclohexane and trans-decalin and for solutions containing aromatic compounds. In the neat solvents, the yields of electrons and HM[sub +] have the same intensity dependence; for ionization of these two alkanes, two photons are required at 248 nm and three photons at 308 nm. In solutions containing aromatic solutes, where the major fraction of the light absorption is by the solute, yields of both free electron and HM[sub +] are markedly higher, and at both 248 and 308 nm the intensity dependences indicate two photons are required for ionization but that three photons are required to create HM[sub +]. This is consistent with the explanation, based on previously reported product analysis studies from this laboratory, that the aromatic solute is ionized when its excited state, created by the first photon, absorbs a second photon and the radical cation absorbs a third photon, which enables it to react with the solvent, creating HM[sub +]. Examination of previously reported results on anthracene in 2-propanol supports a similar explanation for the observed decrease in the quantum yield of the anthracene radical cation with increasing intensity. 39 refs., 12 figs., 4 tabs.

  1. Wurster's Blue-type cation radicals framed in a 5,10-dihydrobenzo[a]indolo[2,3-c]carbazole (BIC) skeleton: dual electrochromism with drastic changes in UV/Vis/NIR and fluorescence.

    PubMed

    Suzuki, Takanori; Sakano, Yuto; Tokimizu, Yusuke; Miura, Youhei; Katoono, Ryo; Fujiwara, Kenshu; Yoshioka, Naoki; Fujii, Nobutaka; Ohno, Hiroaki

    2014-07-01

    Electron-donating dihydrobenzindolocarbazoles (BICs) 1 a-c, which adopt planar disk-shaped geometries, were prepared by gold(I)-catalyzed cyclization as a key step. Due to the presence of a 1,4-phenylenediamine (PD) moiety in the framework, they undergo reversible one-electron oxidation to the corresponding Wurster's Blue (WB)-type species that exhibits NIR absorptions up to λ=1200 nm. In the case of the N,N'-dimethyl derivative, cation radical 1 c(+.) is stable enough to be isolated as a salt and X-ray analysis indicated paraquinoid-type bond alternation in the WB core unit, whereas the bond lengths in the peripheral benzene rings are identical to those in the neutral donor. Upon electrochemical interconversion, the redox pairs of 1 a-c and 1 a-c(+.) exhibited an electrochromic response in the UV/Vis/NIR region, which was accompanied by a drastic change in the fluorescence spectrum because only neutral donors 1 a-c are highly emissive (Φ(F) : 0.7-0.8). PMID:24861822

  2. Alkane biohydroxylation: Interests, constraints and future developments.

    PubMed

    Soussan, Laurence; Pen, Nakry; Belleville, Marie-Pierre; Marcano, José Sanchez; Paolucci-Jeanjean, Delphine

    2016-03-20

    Alkanes constitute one of the vastest reserves of raw materials for the production of fine chemicals. This paper focuses on recent advances in alkane biohydroxylation, i.e. the bioactivation of alkanes into their corresponding alcohols. Enzyme and whole-cell biocatalysts have been reviewed. Process considerations to implement such biocatalysts in bioreactors at large scale by coupling the bioconversion with cofactor regeneration and product removal are also discussed. PMID:26853477

  3. Reaction pathway for alkane dehydrocyclization

    SciTech Connect

    Shi, Buchang; Davis, B.H.

    1996-08-01

    Naphtha reforming to produce high octane gasoline is an important process. Many reaction mechanisms are involved in this process. For example, the study of the fundamentals of this process led to the concept of bi- or poly-functional catalysis. The results of this study provide additional mechanistic information about the dehydrocyclization of an n-alkane to produce aromatics. The reaction coordinate diagram advanced to account for the observation of irreversible adsorption should be modified to account for the present results. 32 refs., 1 fig.

  4. Oxidation of alkanes by cobalt(II) salts of weakly coordinating anions

    SciTech Connect

    Goldstein, A.S.; Drago, R.S. )

    1991-11-27

    Catalysts which effect the selective oxidation of alkanes under mild reaction conditions are highly desired. Commercial processes exist which involve the oxidation of alkanes by O{sub 2} with cobalt carboxylate catalysts. Elevated temperatures and pressures are required, and the metal ion function is to decompose hydroperoxides formed in a radical-chain process. The authors have demonstrated that a weakly solvated cobalt-acetonitrile complex (Co(NCCH{sub 3}){sub 4})(PF{sub 6}){sub 2}, with a weakly coordinating anion catalyzes the air oxidation of alkanes under mild conditions (75C and 3 atm). Cyclohexane and adamantane are converted to the corresponding alcohol and ketone products. The commercial catalyst for cyclohexane oxidation does not function under these milder conditions. Experiments indicate a mechanism in which the metal ion functions both as an initiator and as a hydroperoxide decomposition catalyst.

  5. Alkane-Based Urethane Potting Compounds

    NASA Technical Reports Server (NTRS)

    Morris, D. E.

    1986-01-01

    New low viscosity urethanes easily mixed, molded, and outgassed. Alkane-based urethanes resist hydrolysis and oxidation and have excellent dielectric properties. Low-viscosity alkane-based urethane prepolymer prepared by one-step reaction of either isophorone diisocyanate or methyl-bis (4-cyclohexyl isocyanate) with hydrogenated, hydroxy-terminated polybutadiene (HTPBD).

  6. The anaerobic degradation of gaseous, nonmethane alkanes — From in situ processes to microorganisms

    PubMed Central

    Musat, Florin

    2015-01-01

    The short chain, gaseous alkanes ethane, propane, n- and iso-butane are released in significant amounts into the atmosphere, where they contribute to tropospheric chemistry and ozone formation. Biodegradation of gaseous alkanes by aerobic microorganisms, mostly bacteria and fungi isolated from terrestrial environments, has been known for several decades. The first indications for short chain alkane anaerobic degradation were provided by geochemical studies of deep-sea environments around hydrocarbon seeps, and included the uncoupling of the sulfate-reduction and anaerobic oxidation of methane rates, the consumption of gaseous alkanes in anoxic sediments, or the enrichment in 13C of gases in interstitial water vs. the source gas. Microorganisms able to degrade gaseous alkanes were recently obtained from deep-sea and terrestrial sediments around hydrocarbon seeps. Up to date, only sulfate-reducing pure or enriched cultures with ethane, propane and n-butane have been reported. The only pure culture presently available, strain BuS5, is affiliated to the Desulfosarcina–Desulfococcus cluster of the Deltaproteobacteria. Other phylotypes involved in gaseous alkane degradation have been identified based on stable-isotope labeling and whole-cell hybridization. Under anoxic conditions, propane and n-butane are activated similar to the higher alkanes, by homolytic cleavage of the C—H bond of a subterminal carbon atom, and addition of the ensuing radical to fumarate, yielding methylalkylsuccinates. An additional mechanism of activation at the terminal carbon atoms was demonstrated for propane, which could in principle be employed also for the activation of ethane. PMID:25904994

  7. Transient formation of the oxo-iron(IV) porphyrin radical cation during the reaction of iron(III) tetrakis-5,10,15,20-(N-methyl-4-pyridyl)porphyrin with hydrogen peroxide in aqueous solution.

    PubMed

    Saha, Tapan Kumar; Karmaker, Subarna; Tamagake, Keietsu

    2003-01-01

    The reaction of iron(III) tetrakis-5,10,15,20-(N-methyl-4-pyridyl)porphyrin (Fe(III)TMPyP) with hydrogen peroxide (H(2)O(2)) and the catalytic activity of the reaction intermediates on the luminescent peroxidation of luminol in aqueous solution were studied by using a double-mixing stopped-flow system. The observed luminescence intensities showed biphasic decay depending on the conditions. The initial flashlight decayed within <1 s followed by a sustained emission for more than 30 s. Computer deconvolution of the time-resolved absorption spectra under the same conditions revealed that the initial flashlight appeared during the formation of the oxo-iron(IV) porphyrin, TMPyPFe(IV) = O, which is responsible for the sustained emission. The absorption spectra 0.0-0.5 s did not reproduce well by a simple combination of the two spectra of Fe(III)TMPyP and TMPyPFe(IV) = O, indicating that transient species was formed at the initial stage. Addition of uric acid (UA) caused a significant delay in the initiation of the luminol emission as well as in the formation of the TMPyPFe(IV) = O. Both of them were completely diminished in the presence of UA equimolar with H(2)O(2), while mannitol had no effect at all. The delay of the light emission as well as the appearance of TMPyPFe(IV) = O was directly proportional to the [UA](0) but other kinetic profiles were not changed significantly. Based on these observations and the kinetic analysis, we confirmed the involvement of the oxo-iron(IV) porphyrin radical cation, (TMPyP)(.+)Fe(IV) = O, as an obligatory intermediate in the rate-determining step of the overall reaction, Fe(III)TMPyP + H(2)O(2) --> TMPyPFe(IV) = O, with a rate constant of k = 4.3 x 10(4)/mol/L/s. The rate constants for the reaction between the (TMPyP)(.+)Fe(IV) = O and luminol, and between the TMPyPFe(IV) = O and luminol were estimated to be 3.6 x 10(6)/mol/L/s and 1.31 x 10(4)/mol/L/s, respectively. PMID:12701092

  8. Selective Generation of the Radical Cation Isomers [CH3CN](•+) and [CH2CNH](•+) via VUV Photoionization of Different Neutral Precursors and Their Reactivity with C2H4.

    PubMed

    Polášek, Miroslav; Zins, Emilie-Laure; Alcaraz, Christian; Žabka, Ján; Křížová, Věra; Giacomozzi, Linda; Tosi, Paolo; Ascenzi, Daniela

    2016-07-14

    Experimental and theoretical studies have been carried out to demonstrate the selective generation of two different C2H3N(+) isomers, namely, the acetonitrile [CH3CN](•+) and the ketenimine [CH2CNH](•+) radical cations. Photoionization and dissociative photoionization experiments from different neutral precursors (acetonitrile and butanenitrile) have been performed using vacuum ultraviolet (VUV) synchrotron radiation in the 10-15 eV energy range, delivered by the DESIRS beamline at the SOLEIL storage ring. For butanenitrile (CH3CH2CH2CN) an experimental ionization threshold of 11.29 ± 0.05 eV is obtained, whereas the appearance energy for the formation of [CH2CNH](•+) fragments is 11.52 ± 0.05 eV. Experimental findings are fully supported by theoretical calculations at the G4 level of theory (ZPVE corrected energies at 0 K), giving a value of 11.33 eV for the adiabatic ionization energy of butanenitrile and an exothermicity of 0.49 for fragmentation into [CH2CNH](•+) plus C2H4, hampered by an energy barrier of 0.29 eV. The energy difference between [CH3CN](•+) and [CH2CNH](•+) is 2.28 eV (with the latter being the lowest energy isomer), and the isomerization barrier is 0.84 eV. Reactive monitoring experiments of the [CH3CN](•+) and [CH2CNH](•+) isomers with C2H4 have been performed using the CERISES guided ion beam tandem mass spectrometer and exploiting the selectivity of ethylene that gives exothermic charge exchange and proton transfer reactions with [CH3CN](•+) but not with [CH2CNH](•+) isomers. In addition, minor reactive channels are observed leading to the formation of new C-C bonds upon reaction of [CH3CN](•+) with C2H4, and their astrochemical implications are briefly discussed. PMID:26890990

  9. High-level ab initio predictions for the ionization energy, electron affinity, and heats of formation of cyclopentadienyl radical, cation, and anion, C5H5/C5H5+/C5H5-.

    PubMed

    Lo, Po-Kam; Lau, Kai-Chung

    2014-04-01

    The ionization energy (IE), electron affinity (EA), and heats of formation (ΔH°f0/ΔH°f298) for cyclopentadienyl radical, cation, and anion, C5H5/C5H5(+)/C5H5(-), have been calculated by wave function-based ab initio CCSDT/CBS approach, which involves approximation to complete basis set (CBS) limit at coupled-cluster level with up to full triple excitations (CCSDT). The zero-point vibrational energy correction, core-valence electronic correction, scalar relativistic effect, and higher-order corrections beyond the CCSD(T) wave function are included in these calculations. The allylic [C5H5((2)A2)] and dienylic [C5H5((2)B1)] forms of cyclopentadienyl radical are considered: the ground state structure exists in the dienyl form and it is about 30 meV more stable than the allylic structure. Both structures are lying closely and are interconvertible along the normal mode of b2 in-plane vibration. The CCSDT/CBS predictions (in eV) for IE[C5H5(+)((3)A1')←C5H5((2)B1)] = 8.443, IE[C5H5(+)((1)A1)←C5H5((2)B1)] = 8.634 and EA[C5H5(-)((1)A1')←C5H5((2)B1)] = 1.785 are consistent with the respective experimental values of 8.4268 ± 0.0005, 8.6170 ± 0.0005, and 1.808 ± 0.006, obtained from photoelectron spectroscopic measurements. The ΔH°f0/ΔH°f298's (in kJ/mol) for C5H5/C5H5(+)/C5H5(-) have also been predicted by the CCSDT/CBS method: ΔH°f0/ΔH°f298[C5H5((2)B1)] = 283.6/272.0, ΔH°f0/ΔH°f298[C5H5(+)((3)A1')] = 1098.2/1086.9, ΔH°f0/ΔH°f298[C5H5(+)((1)A1)] = 1116.6/1106.0, and ΔH°f0/ΔH°f298[C5H5(-)((1)A1')] = 111.4/100.0. The comparisons between the CCSDT/CBS predictions and the experimental values suggest that the CCSDT/CBS procedure is capable of predicting reliable IE(C5H5)'s and EA(C5H5) with uncertainties of ± 17 and ± 23 meV, respectively. PMID:24621131

  10. Supported organoiridium catalysts for alkane dehydrogenation

    DOEpatents

    Baker, R. Thomas; Sattelberger, Alfred P.; Li, Hongbo

    2013-09-03

    Solid supported organoiridium catalysts, a process for preparing such solid supported organoiridium catalysts, and the use of such solid supported organoiridium catalysts in dehydrogenation reactions of alkanes is provided. The catalysts can be easily recovered and recycled.

  11. Solar photothermochemical alkane reverse combustion

    PubMed Central

    Chanmanee, Wilaiwan; Islam, Mohammad Fakrul; Dennis, Brian H.; MacDonnell, Frederick M.

    2016-01-01

    A one-step, gas-phase photothermocatalytic process for the synthesis of hydrocarbons, including liquid alkanes, aromatics, and oxygenates, with carbon numbers (Cn) up to C13, from CO2 and water is demonstrated in a flow photoreactor operating at elevated temperatures (180–200 °C) and pressures (1–6 bar) using a 5% cobalt on TiO2 catalyst and under UV irradiation. A parametric study of temperature, pressure, and partial pressure ratio revealed that temperatures in excess of 160 °C are needed to obtain the higher Cn products in quantity and that the product distribution shifts toward higher Cn products with increasing pressure. In the best run so far, over 13% by mass of the products were C5+ hydrocarbons and some of these, i.e., octane, are drop-in replacements for existing liquid hydrocarbons fuels. Dioxygen was detected in yields ranging between 64% and 150%. In principle, this tandem photochemical–thermochemical process, fitted with a photocatalyst better matched to the solar spectrum, could provide a cheap and direct method to produce liquid hydrocarbons from CO2 and water via a solar process which uses concentrated sunlight for both photochemical excitation to generate high-energy intermediates and heat to drive important thermochemical carbon-chain-forming reactions. PMID:26903631

  12. Solar photothermochemical alkane reverse combustion.

    PubMed

    Chanmanee, Wilaiwan; Islam, Mohammad Fakrul; Dennis, Brian H; MacDonnell, Frederick M

    2016-03-01

    A one-step, gas-phase photothermocatalytic process for the synthesis of hydrocarbons, including liquid alkanes, aromatics, and oxygenates, with carbon numbers (Cn) up to C13, from CO2 and water is demonstrated in a flow photoreactor operating at elevated temperatures (180-200 °C) and pressures (1-6 bar) using a 5% cobalt on TiO2 catalyst and under UV irradiation. A parametric study of temperature, pressure, and partial pressure ratio revealed that temperatures in excess of 160 °C are needed to obtain the higher Cn products in quantity and that the product distribution shifts toward higher Cn products with increasing pressure. In the best run so far, over 13% by mass of the products were C5+ hydrocarbons and some of these, i.e., octane, are drop-in replacements for existing liquid hydrocarbons fuels. Dioxygen was detected in yields ranging between 64% and 150%. In principle, this tandem photochemical-thermochemical process, fitted with a photocatalyst better matched to the solar spectrum, could provide a cheap and direct method to produce liquid hydrocarbons from CO2 and water via a solar process which uses concentrated sunlight for both photochemical excitation to generate high-energy intermediates and heat to drive important thermochemical carbon-chain-forming reactions. PMID:26903631

  13. Carbon and hydrogen isotopic composition of methane and C2+ alkanes in electrical spark discharge: implications for identifying sources of hydrocarbons in terrestrial and extraterrestrial settings.

    PubMed

    Telling, Jon; Lacrampe-Couloume, Georges; Sherwood Lollar, Barbara

    2013-05-01

    The low-molecular-weight alkanes--methane, ethane, propane, and butane--are found in a wide range of terrestrial and extraterrestrial settings. The development of robust criteria for distinguishing abiogenic from biogenic alkanes is essential for current investigations of Mars' atmosphere and for future exobiology missions to other planets and moons. Here, we show that alkanes synthesized during gas-phase radical recombination reactions in electrical discharge experiments have values of δ(2)H(methane)>δ(2)H(ethane)>δ(2)H(propane), similar to those of the carbon isotopes. The distribution of hydrogen isotopes in gas-phase radical reactions is likely due to kinetic fractionations either (i) from the preferential incorporation of (1)H into longer-chain alkanes due to the more rapid rate of collisions of the smaller (1)H-containing molecules or (ii) by secondary ion effects. Similar δ(13)C(C1-C2+) and δ(2)H(C1-C2+) patterns may be expected in a range of extraterrestrial environments where gas-phase radical reactions dominate, including interstellar space, the atmosphere and liquid hydrocarbon lakes of Saturn's moon Titan, and the outer atmospheres of Jupiter, Saturn, Neptune, and Uranus. Radical recombination reactions at high temperatures and pressures may provide an explanation for the combined reversed δ(13)C(C1-C2+) and δ(2)H(C1-C2+) patterns of terrestrial alkanes documented at a number of high-temperature/pressure crustal sites. PMID:23683048

  14. Metathesis of alkanes and related reactions.

    PubMed

    Basset, Jean-Marie; Copéret, Christophe; Soulivong, Daravong; Taoufik, Mostafa; Cazat, Jean Thivolle

    2010-02-16

    The transformation of alkanes remains a difficult challenge because of the relative inertness of the C-H and C-C bonds. The rewards for asserting synthetic control over unfunctionalized, saturated hydrocarbons are considerable, however, because converting short alkanes into longer chain analogues is usually a value-adding process. Alkane metathesis is a novel catalytic and direct transformation of two molecules of a given alkane into its lower and higher homologues; moreover, the process proceeds at relatively low temperature (ambient conditions or higher). It was discovered through the use of a silica-supported tantalum hydride, ([triple bond]SiO)(2)TaH, a multifunctional catalyst with a single site of action. This reaction completes the story of the metathesis reactions discovered over the past 40 years: olefin metathesis, alkyne metathesis, and ene-yne cyclizations. In this Account, we examine the fundamental mechanistic aspects of alkane metathesis as well as the novel reactions that have been derived from its study. The silica-supported tantalum hydride catalyst was developed as the result of systematic and meticulous studies of the interaction between oxide supports and organometallic complexes, a field of study denoted surface organometallic chemistry (SOMC). A careful examination of this surface-supported tantalum hydride led to the later discovery of alumina-supported tungsten hydride, W(H)(3)/Al(2)O(3), which proved to be an even better catalyst for alkane metathesis. Supported tantalum and tungsten hydrides are highly unsaturated, electron-deficient species that are very reactive toward the C-H and C-C bonds of alkanes. They show a great versatility in various other reactions, such as cross-metathesis between methane and alkanes, cross-metathesis between toluene and ethane, or even methane nonoxidative coupling. Moreover, tungsten hydride exhibits a specific ability in the transformation of isobutane into 2,3-dimethylbutane as well as in the metathesis

  15. Structural insights into diversity and n-alkane biodegradation mechanisms of alkane hydroxylases

    PubMed Central

    Ji, Yurui; Mao, Guannan; Wang, Yingying; Bartlam, Mark

    2013-01-01

    Environmental microbes utilize four degradation pathways for the oxidation of n-alkanes. Although the enzymes degrading n-alkanes in different microbes may vary, enzymes functioning in the first step in the aerobic degradation of alkanes all belong to the alkane hydroxylases. Alkane hydroxylases are a class of enzymes that insert oxygen atoms derived from molecular oxygen into different sites of the alkane terminus (or termini) depending on the type of enzymes. In this review, we summarize the different types of alkane hydroxylases, their degrading steps, and compare typical enzymes from various classes with regard to their three-dimensional structures, in order to provide insights into how the enzymes mediate their different roles in the degradation of n-alkanes and what determines their different substrate ranges. Through the above analyzes, the degrading mechanisms of enzymes can be elucidated and molecular biological methods can be utilized to expand their catalytic roles in the petrochemical industry or in bioremediation of oil-contaminated environments. PMID:23519435

  16. The hydrodeoxygenation of bioderived furans into alkanes

    NASA Astrophysics Data System (ADS)

    Sutton, Andrew D.; Waldie, Fraser D.; Wu, Ruilian; Schlaf, Marcel; ‘Pete' Silks, Louis A.; Gordon, John C.

    2013-05-01

    The conversion of biomass into fuels and chemical feedstocks is one part of a drive to reduce the world's dependence on crude oil. For transportation fuels in particular, wholesale replacement of a fuel is logistically problematic, not least because of the infrastructure that is already in place. Here, we describe the catalytic defunctionalization of a series of biomass-derived molecules to provide linear alkanes suitable for use as transportation fuels. These biomass-derived molecules contain a variety of functional groups, including olefins, furan rings and carbonyl groups. We describe the removal of these in either a stepwise process or a one-pot process using common reagents and catalysts under mild reaction conditions to provide n-alkanes in good yields and with high selectivities. Our general synthetic approach is applicable to a range of precursors with different carbon content (chain length). This allows the selective generation of linear alkanes with carbon chain lengths between eight and sixteen carbons.

  17. The hydrodeoxygenation of bioderived furans into alkanes.

    PubMed

    Sutton, Andrew D; Waldie, Fraser D; Wu, Ruilian; Schlaf, Marcel; Silks, Louis A Pete; Gordon, John C

    2013-05-01

    The conversion of biomass into fuels and chemical feedstocks is one part of a drive to reduce the world's dependence on crude oil. For transportation fuels in particular, wholesale replacement of a fuel is logistically problematic, not least because of the infrastructure that is already in place. Here, we describe the catalytic defunctionalization of a series of biomass-derived molecules to provide linear alkanes suitable for use as transportation fuels. These biomass-derived molecules contain a variety of functional groups, including olefins, furan rings and carbonyl groups. We describe the removal of these in either a stepwise process or a one-pot process using common reagents and catalysts under mild reaction conditions to provide n-alkanes in good yields and with high selectivities. Our general synthetic approach is applicable to a range of precursors with different carbon content (chain length). This allows the selective generation of linear alkanes with carbon chain lengths between eight and sixteen carbons. PMID:23609095

  18. Enzymes and genes involved in aerobic alkane degradation

    PubMed Central

    Wang, Wanpeng; Shao, Zongze

    2013-01-01

    Alkanes are major constituents of crude oil. They are also present at low concentrations in diverse non-contaminated because many living organisms produce them as chemo-attractants or as protecting agents against water loss. Alkane degradation is a widespread phenomenon in nature. The numerous microorganisms, both prokaryotic and eukaryotic, capable of utilizing alkanes as a carbon and energy source, have been isolated and characterized. This review summarizes the current knowledge of how bacteria metabolize alkanes aerobically, with a particular emphasis on the oxidation of long-chain alkanes, including factors that are responsible for chemotaxis to alkanes, transport across cell membrane of alkanes, the regulation of alkane degradation gene and initial oxidation. PMID:23755043

  19. Low-temperature functionalisation of alkanes and cycloalkanes by 'classical' and 'non-classical' (superacidic) Friedel-Crafts complexes

    NASA Astrophysics Data System (ADS)

    Akhrem, Irena S.; Orlinkov, Alexander V.; Vol'pin, Mark E.

    1996-10-01

    The results of studies on direct functionalisation of activated alkanes and cycloalkanes under the action of 'classical' Friedel-Crafts complexes (viz. equimolar complexes of acyl halides with aluminium halides) and related systems containing smaller or somewhat larger amounts of aluminium halide are surveyed. The studies carried out during the last decade on functionalisation of saturated hydrocarbons devoid of tertiary carbon atoms, by aprotic organic superacids RCOX . 2AlCl3 are summarised. Reactions of alkanes with acylium cations in superacidic media are considered. The published data on the structure of complexes RCOX . AlCl3 and RCOX . 2AlCl3 and on the nature of the active complexes in the reactions of arenes with acylium cations and with complexes RCOX . AlCl3 in both acidic and organic media as well as in the reactions of alkanes with acylium salts in protic superacids and with superacidic complexes RCOX . 2AlCl3 in aprotic solvents are analysed. The prospects for the synthesis of organic compounds from alkanes and cycloalkanes under the action of complexes of acyl halides with aluminium halides are outlined. The bibliography includes 128 references.

  20. Improved Alkane Production in Nitrogen-Fixing and Halotolerant Cyanobacteria via Abiotic Stresses and Genetic Manipulation of Alkane Synthetic Genes.

    PubMed

    Kageyama, Hakuto; Waditee-Sirisattha, Rungaroon; Sirisattha, Sophon; Tanaka, Yoshito; Mahakhant, Aparat; Takabe, Teruhiro

    2015-07-01

    Cyanobacteria possess the unique capacity to produce alkane. In this study, effects of nitrogen deficiency and salt stress on biosynthesis of alkanes were investigated in three kinds of cyanobacteria. Intracellular alkane accumulation was increased in nitrogen-fixing cyanobacterium Anabaena sp. PCC7120, but decreased in non-diazotrophic cyanobacterium Synechococcus elongatus PCC7942 and constant in a halotolerant cyanobacterium Aphanothece halophytica under nitrogen-deficient condition. We also found that salt stress increased alkane accumulation in Anabaena sp. PCC7120 and A. halophytica. The expression levels of two alkane synthetic genes were not upregulated significantly under nitrogen deficiency or salt stress in Anabaena sp. PCC7120. The transformant Anabaena sp. PCC7120 cells with additional alkane synthetic gene set from A. halophytica increased intracellular alkane accumulation level compared to control cells. These results provide a prospect to improve bioproduction of alkanes in nitrogen-fixing halotolerant cyanobacteria via abiotic stresses and genetic engineering. PMID:25971893

  1. 40 CFR 721.10163 - Chloro fluoro alkane (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Chloro fluoro alkane (generic). 721... Substances § 721.10163 Chloro fluoro alkane (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as chloro fluoro alkane (PMN...

  2. 40 CFR 721.10163 - Chloro fluoro alkane (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Chloro fluoro alkane (generic). 721... Substances § 721.10163 Chloro fluoro alkane (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as chloro fluoro alkane (PMN...

  3. In situ detection of anaerobic alkane metabolites in subsurface environments

    PubMed Central

    Agrawal, Akhil; Gieg, Lisa M.

    2013-01-01

    Alkanes comprise a substantial fraction of crude oil and refined fuels. As such, they are prevalent within deep subsurface fossil fuel deposits and in shallow subsurface environments such as aquifers that are contaminated with hydrocarbons. These environments are typically anaerobic, and host diverse microbial communities that can potentially use alkanes as substrates. Anaerobic alkane biodegradation has been reported to occur under nitrate-reducing, sulfate-reducing, and methanogenic conditions. Elucidating the pathways of anaerobic alkane metabolism has been of interest in order to understand how microbes can be used to remediate contaminated sites. Alkane activation primarily occurs by addition to fumarate, yielding alkylsuccinates, unique anaerobic metabolites that can be used to indicate in situ anaerobic alkane metabolism. These metabolites have been detected in hydrocarbon-contaminated shallow aquifers, offering strong evidence for intrinsic anaerobic bioremediation. Recently, studies have also revealed that alkylsuccinates are present in oil and coal seam production waters, indicating that anaerobic microbial communities can utilize alkanes in these deeper subsurface environments. In many crude oil reservoirs, the in situ anaerobic metabolism of hydrocarbons such as alkanes may be contributing to modern-day detrimental effects such as oilfield souring, or may lead to more beneficial technologies such as enhanced energy recovery from mature oilfields. In this review, we briefly describe the key metabolic pathways for anaerobic alkane (including n-alkanes, isoalkanes, and cyclic alkanes) metabolism and highlight several field reports wherein alkylsuccinates have provided evidence for anaerobic in situ alkane metabolism in shallow and deep subsurface environments. PMID:23761789

  4. Crossed-beam DC slice imaging of fluorine atom reactions with linear alkanes

    SciTech Connect

    Shi, Yuanyuan; Kamasah, Alexander; Joalland, Baptiste; Suits, Arthur G.

    2015-05-14

    We report the reaction dynamics of F atom with selected alkanes studied by crossed beam scattering with DC slice ion imaging. The target alkanes are propane, n-butane, and n-pentane. The product alkyl radicals are probed by 157 nm single photon ionization following reaction at a collision energy of ∼10 kcal mol{sup −1}. The analyzed data are compared with the corresponding theoretical studies. Reduced translational energy distributions for each system show similar trends with little of the reaction exoergicity appearing in translation. However, the pentane reaction shows a somewhat smaller fraction of available energy in translation than the other two, suggesting greater energy channeled into pentyl internal degrees of freedom. The center-of-mass angular distributions all show backscattering as well as sharp forward scattering that decreases in relative intensity with the size of the molecule. Possible reasons for these trends are discussed.

  5. Nitrated metalloporphyrins as catalysts for alkane oxidation

    DOEpatents

    Ellis, Jr., Paul E.; Lyons, James E.

    1994-01-01

    Compositions of matter comprising nitro-substituted metal complexes of porphyrins are catalysts for the oxidation of alkanes. The metal is iron, chromium, manganese, ruthenium, copper or cobalt. The porphyrin ring has nitro groups attached thereto in meso and/or .beta.-pyrrolic positions.

  6. Reflectance spectroscopy of organic compounds: 1. Alkanes

    USGS Publications Warehouse

    Clark, R.N.; Curchin, J.M.; Hoefen, T.M.; Swayze, G.A.

    2009-01-01

    Reflectance spectra of the organic compounds comprising the alkane series are presented from the ultraviolet to midinfrared, 0.35 to 15.5 /??m. Alkanes are hydrocarbon molecules containing only single carbon-carbon bonds, and are found naturally on the Earth and in the atmospheres of the giant planets and Saturn's moon, Titan. This paper presents the spectral properties of the alkanes as the first in a series of papers to build a spectral database of organic compounds for use in remote sensing studies. Applications range from mapping the environment on the Earth, to the search for organic molecules and life in the solar system and throughout the. universe. We show that the spectral reflectance properties of organic compounds are rich, with major diagnostic spectral features throughout the spectral range studied. Little to no spectral change was observed as a function of temperature and only small shifts and changes in the width of absorption bands were observed between liquids and solids, making remote detection of spectral properties throughout the solar system simpler. Some high molecular weight organic compounds contain single-bonded carbon chains and have spectra similar to alkanes even ' when they fall into other families. Small spectral differences are often present allowing discrimination among some compounds, further illustrating the need to catalog spectral properties for accurate remote sensing identification with spectroscopy.

  7. Nitrated metalloporphyrins as catalysts for alkane oxidation

    DOEpatents

    Ellis, Jr., Paul E.; Lyons, James E.

    1992-01-01

    Alkanes are oxidized by contact with oxygen-containing gas in the presence as catalyst of a metalloporphyrin in which hydrogen atoms in the porphyrin ring have been replaced with one or more nitro groups. Hydrogen atoms in the porphyrin ring may also be substituted with halogen atoms.

  8. Nitrated metalloporphyrins as catalysts for alkane oxidation

    DOEpatents

    Ellis, P.E. Jr.; Lyons, J.E.

    1994-01-18

    Compositions of matter comprising nitro-substituted metal complexes of porphyrins are catalysts for the oxidation of alkanes. The metal is iron, chromium, manganese, ruthenium, copper or cobalt. The porphyrin ring has nitro groups attached thereto in meso and/or [beta]-pyrrolic positions.

  9. A new approach to the non-oxidative conversion of gaseous alkanes in a barrier discharge and features of the reaction mechanism

    NASA Astrophysics Data System (ADS)

    Kudryashov, S.; Ryabov, A.; Shchyogoleva, G.

    2016-01-01

    A new approach to the non-oxidative conversion of C1-C4 alkanes into gaseous and liquid products in a barrier discharge is proposed. It consists in inhibiting the formation of deposits on the reactor electrode surfaces due to the addition of distilled water into the flow of hydrocarbon gases. The energy consumption on hydrocarbon conversion decreases from methane to n-butane from ~46 to 35 eV molecule-1. The main gaseous products of the conversion of light alkanes are hydrogen and C2-C4 hydrocarbons. The liquid reaction products contain C5+ alkanes with a predominantly isomeric structure. The results of modeling the kinetics of chemical reactions show that an increase in the molecular weight of the reaction products is mainly due to processes involving CH2 radical and the recombination of alkyl radicals.

  10. Structural and Kinetic Studies of Novel Cytochrome P450 Small-Alkane Hydroxylases

    SciTech Connect

    Arnold, Frances H.

    2012-02-27

    The goals of this project are to investigate (1) the kinetics and stabilities of engineered cytochrome P450 (P450) small alkane hydroxylases and their evolutionary intermediates, (2) the structural basis for catalytic proficiency on small alkanes of these engineered P450s, and (3) the changes in redox control resulting from protein engineering. To reach these goals, we have established new methods for determining the kinetics and stabilities of multicomponent P450s such as CYP153A6. Using these, we were able to determine that CYP153A6 is proficient for hydroxylation of alkanes as small as ethane, an activity that has never been observed previously in any natural P450. To elucidate the structures of the engineered P450s, we obtained x-ray diffraction data for two variants in the P450PMO (propane monooxygenase) lineage and a preliminary structure for the most evolved variant. This structure shows changes in the substrate binding regions of the enzyme and a reduction in active site volume that are consistent with the observed changes in substrate specificity from fatty acids in the native enzyme to small alkanes in P450PMO. We also constructed semi-rational designed libraries mutating only residues in the enzyme active site that in one round of mutagenesis and screening produced variants that achieved nearly half of the activity of the most evolved enzymes of the P450PMO lineage. Finally, we found that changes in redox properties of the laboratory-evolved P450 alkane hydroxylases did not reflect the improvement in their electron transfer efficiency. The heme redox potential remained constant throughout evolution, while activity increased and coupling efficiency improved from 10% to 90%. The lack of correlation between heme redox potential and enzyme activity and coupling efficiency led us to search for other enzyme properties that could be better predictors for activity towards small alkanes, specifically methane. We investigated the oxidation potential of the radical

  11. Radical Hysterectomy

    MedlinePlus

    ... the base of her partner’s penis during intercourse. Orgasm after radical hysterectomy Women who have had a ... the surgery will affect their ability to have orgasms. This has not been studied a great deal, ...

  12. Mechanically Stabilized Tetrathiafulvalene Radical Dimers

    SciTech Connect

    Coskun, Ali; Spruell, Jason M.; Barin, Gokhan; Fahrenbach, Albert C.; Forgan, Ross S.; Colvin, Michael T.; Carmieli, Raanan; Benitez, Diego; Tkatchouk, Ekaterina; Friedman, Douglas C.; Sarjeant, Amy A.; Wasielewski, Michael R.; Goddard, William A.; Stoddart, J. Fraser

    2011-01-01

    Two donor-acceptor [3]catenanes—composed of a tetracationic molecular square, cyclobis(paraquat-4,4'-biphenylene), as the π-electron deficient ring and either two tetrathiafulvalene (TTF) and 1,5-dioxynaphthalene (DNP) containing macrocycles or two TTF-butadiyne-containing macrocycles as the π-electron rich components—have been investigated in order to study their ability to form TTF radical dimers. It has been proven that the mechanically interlocked nature of the [3]catenanes facilitates the formation of the TTF radical dimers under redox control, allowing an investigation to be performed on these intermolecular interactions in a so-called “molecular flask” under ambient conditions in considerable detail. In addition, it has also been shown that the stability of the TTF radical-cation dimers can be tuned by varying the secondary binding motifs in the [3]catenanes. By replacing the DNP station with a butadiyne group, the distribution of the TTF radical-cation dimer can be changed from 60% to 100%. These findings have been established by several techniques including cyclic voltammetry, spectroelectrochemistry and UV-vis-NIR and EPR spectroscopies, as well as with X-ray diffraction analysis which has provided a range of solid-state crystal structures. The experimental data are also supported by high-level DFT calculations. The results contribute significantly to our fundamental understanding of the interactions within the TTF radical dimers.

  13. Density functional steric analysis of linear and branched alkanes.

    PubMed

    Ess, Daniel H; Liu, Shubin; De Proft, Frank

    2010-12-16

    Branched alkane hydrocarbons are thermodynamically more stable than straight-chain linear alkanes. This thermodynamic stability is also manifest in alkane bond separation energies. To understand the physical differences between branched and linear alkanes, we have utilized a novel density functional theory (DFT) definition of steric energy based on the Weizäcker kinetic energy. Using the M06-2X functional, the total DFT energy was partitioned into a steric energy term (E(s)[ρ]), an electrostatic energy term (E(e)[ρ]), and a fermionic quantum energy term (E(q)[ρ]). This analysis revealed that branched alkanes have less (destabilizing) DFT steric energy than linear alkanes. The lower steric energy of branched alkanes is mitigated by an equal and opposite quantum energy term that contains the Pauli component of the kinetic energy and exchange-correlation energy. Because the steric and quantum energy terms cancel, this leaves the electrostatic energy term that favors alkane branching. Electrostatic effects, combined with correlation energy, explains why branched alkanes are more stable than linear alkanes. PMID:21086970

  14. Density Functional Steric Analysis of Linear and Branched Alkanes

    SciTech Connect

    Ess, Daniel H.; Liu, Shubin; De Proft, Frank

    2010-11-18

    Branched alkane hydrocarbons are thermodynamically more stable than straight-chain linear alkanes. This thermodynamic stability is also manifest in alkane bond separation energies. To understand the physical differences between branched and linear alkanes, we have utilized a novel density functional theory (DFT) definition of steric energy based on the Weizäcker kinetic energy. Using the M06-2X functional, the total DFT energy was partitioned into a steric energy term (Ee[[ρ]), an electrostatic energy term (Ee[ρ]), and a fermionic quantum energy term (Eq[[ρ]). This analysis revealed that branched alkanes have less (destabilizing) DFT steric energy than linear alkanes. The lower steric energy of branched alkanes is mitigated by an equal and opposite quantum energy term that contains the Pauli component of the kinetic energy and exchange-correlation energy. Because the steric and quantum energy terms cancel, this leaves the electrostatic energy term that favors alkane branching. Electrostatic effects, combined with correlation energy, explains why branched alkanes are more stable than linear alkanes.

  15. Oxidative dehydrogenation of alkanes to unsaturated hydrocarbons

    DOEpatents

    Kung, Harold H.; Chaar, Mohamed A.

    1988-01-01

    Oxidative dehydrogenation of alkanes to unsaturated hydrocarbons is carried out over metal vanadate catalysts under oxidizing conditions. The vanadate catalysts are represented by the formulas M.sub.3 (VO.sub.4).sub.2 and MV.sub.2 O.sub.6, M representing Mg, Zn, Ca, Pb, or Cd. The reaction is carried out in the presence of oxygen, but the formation of oxygenate by-products is suppressed.

  16. Oxidative dehydrogenation of alkanes to unsaturated hydrocarbons

    DOEpatents

    Kung, H.H.; Chaar, M.A.

    1988-10-11

    Oxidative dehydrogenation of alkanes to unsaturated hydrocarbons is carried out over metal vanadate catalysts under oxidizing conditions. The vanadate catalysts are represented by the formulas M[sub 3](VO[sub 4])[sub 2] and MV[sub 2]O[sub 6], M representing Mg, Zn, Ca, Pb, or Cd. The reaction is carried out in the presence of oxygen, but the formation of oxygenate by-products is suppressed.

  17. Alkane metathesis by tandem alkane-dehydrogenation-olefin-metathesis catalysis and related chemistry.

    PubMed

    Haibach, Michael C; Kundu, Sabuj; Brookhart, Maurice; Goldman, Alan S

    2012-06-19

    Methods for the conversion of both renewable and non-petroleum fossil carbon sources to transportation fuels that are both efficient and economically viable could greatly enhance global security and prosperity. Currently, the major route to convert natural gas and coal to liquids is Fischer-Tropsch catalysis, which is potentially applicable to any source of synthesis gas including biomass and nonconventional fossil carbon sources. The major desired products of Fischer-Tropsch catalysis are n-alkanes that contain 9-19 carbons; they comprise a clean-burning and high combustion quality diesel, jet, and marine fuel. However, Fischer-Tropsch catalysis also results in significant yields of the much less valuable C(3) to C(8)n-alkanes; these are also present in large quantities in oil and gas reserves (natural gas liquids) and can be produced from the direct reduction of carbohydrates. Therefore, methods that could disproportionate medium-weight (C(3)-C(8)) n-alkanes into heavy and light n-alkanes offer great potential value as global demand for fuel increases and petroleum reserves decrease. This Account describes systems that we have developed for alkane metathesis based on the tandem operation of catalysts for alkane dehydrogenation and olefin metathesis. As dehydrogenation catalysts, we used pincer-ligated iridium complexes, and we initially investigated Schrock-type Mo or W alkylidene complexes as olefin metathesis catalysts. The interoperability of the catalysts typically represents a major challenge in tandem catalysis. In our systems, the rate of alkane dehydrogenation generally limits the overall reaction rate, whereas the lifetime of the alkylidene complexes at the relatively high temperatures required to obtain practical dehydrogenation rates (ca. 125 -200 °C) limits the total turnover numbers. Accordingly, we have focused on the development and use of more active dehydrogenation catalysts and more stable olefin-metathesis catalysts. We have used thermally

  18. Catalytic Radical Domino Reactions in Organic Synthesis

    PubMed Central

    Sebren, Leanne J.; Devery, James J.; Stephenson, Corey R.J.

    2014-01-01

    Catalytic radical-based domino reactions represent important advances in synthetic organic chemistry. Their development benefits synthesis by providing atom- and step-economical methods to complex molecules. Intricate combinations of radical, cationic, anionic, oxidative/reductive, and transition metal mechanistic steps result in cyclizations, additions, fragmentations, ring-expansions, and rearrangements. This Perspective summarizes recent developments in the field of catalytic domino processes. PMID:24587964

  19. Stimulation of Lipase Production During Bacterial Growth on Alkanes

    PubMed Central

    Breuil, Colette; Shindler, D. B.; Sijher, J. S.; Kushner, D. J.

    1978-01-01

    Acinetobacter lwoffi strain O16, a facultative psychrophile, can grow on crude oil, hexadecane, octadecane, and most alkanes when tested at 20 but not at 30°C. Growth occurred on a few alkanes at 30°C but after a longer lag than at 20°C. Cells grown on alkanes as sole carbon sources had high levels of cell-bound lipase. In contrast, previous work has shown that those grown on complex medium produced cell-free lipase and those grown on defined medium without alkanes produced little or no lipase. Low concentrations of the detergent Triton X-100 caused the liberation of most of the lipase activity of alkane-grown cells and increased total lipase activity. When ethanol and hexadecane were both present in a mineral medium, diauxic growth occurred; until the ethanol was completely used up, hexadecane was not utilized, and the lipase activity was very low. When growth on hexadecane began, lipase activity increased, reaching a level 50- to 100-fold higher than that of cells growing on ethanol. A similar pattern of lipase formation and hexadecane utilization was observed with Pseudomonas aeruginosa. Whenever A. lwoffi and other bacteria degraded alkanes they exhibited substantial lipase activity. Not all bacteria that produced lipase, however, could attack alkanes. Bacteria that could not produce lipase did not attack alkanes. The results suggest that a correlation may exist between lipase formation and alkane utilization. PMID:627533

  20. Gas-Phase Tropospheric Chemistry of Volatile Organic Compounds: 1. Alkanes and Alkenes

    SciTech Connect

    Atkinson, R. |

    1997-03-01

    Literature data (through mid-1996) concerning the gas-phase reactions of alkanes and alkenes (including isoprene and monoterpenes) leading to their first generation products are reviewed and evaluated for tropospheric conditions. The recommendations of the most recent IUPAC evaluation [J. Phys. Chem. Ref. Data, {bold 26}, No. 3 (1997)] are used for the {le}C{sub 3} organic compounds, unless more recent data necessitates reevaluation. The most recent review and evaluation of Atkinson [J. Phys. Chem. Ref. Data, Monograph {bold 2}, 1 (1994)] concerning the kinetics of the reactions of OH radicals, NO{sub 3} radicals, and O{sub 3} is also updated for these two classes of volatile organic compounds. {copyright} {ital 1997 American Institute of Physics and American Chemical Society.} {copyright} {ital 1997} {ital American Institute of Physics and American Chemical Society}

  1. Conformation of liquid N-alkanes.

    PubMed Central

    Goodsaid-Zalduondo, F; Engelman, D M

    1981-01-01

    The conformations of liquid n-alkanes have been studied using neutron scattering techniques to better understand the conformational forces present in membrane lipid interiors. We have studied hydrocarbon chains having lengths comparable to those found for esterified membrane lipid fatty acids, and find that the steric constraints of packing in the liquid state do not change the conformational distributions of hydrocarbon chains from those imposed by the intrachain forces present in the gas phase. It follows that the central region of membranes containing lipids in the disordered state should contain hydrocarbon chain conformations determined primarily by intrachain forces. PMID:7272453

  2. Products of Chemistry: Alkanes: Abundant, Pervasive, Important, and Essential.

    ERIC Educational Resources Information Center

    Seymour, Raymond B.

    1989-01-01

    Discusses the history and commercialization of alkanes. Examines the nomenclature and uses of alkanes. Studies polymerization and several types of polyethylenes: low-density, high-density, low-molecular-weight, cross-linked, linear low-density, and ultrahigh-molecular-weight. Includes a glossary of hydrocarbon terms. (MVL)

  3. 40 CFR 721.535 - Halogenated alkane (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.535 Halogenated alkane (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as halogenated alkane (PMN P-01-433) is...

  4. 40 CFR 721.536 - Halogenated phenyl alkane.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.536 Halogenated phenyl alkane. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as halogenated phenyl alkane (PMN P-89-867)...

  5. 40 CFR 721.535 - Halogenated alkane (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.535 Halogenated alkane (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as halogenated alkane (PMN P-01-433) is...

  6. Thomas Reiche Kuhn populations in alkanes

    NASA Astrophysics Data System (ADS)

    Lazzeretti, P.; Caputo, M. C.; Ferraro, M. B.

    1999-07-01

    Atomic populations in a molecule have been defined via the Thomas-Reiche-Kuhn sum rule for oscillator strengths written within the acceleration gauge. These atomic populations are related to nuclear electric shieldings, i.e., to geometrical derivatives of electric dipole moment, and can therefore be connected with observable infrared intensities. A number of relationships can be considered to test a priori the quality of calculated electronic charges and to assess their physical meaning. It is shown via extended numerical tests on the first members of the alkane series that the Thomas-Reiche-Kuhn populations are consistent with a (small) polarity C +-H - of carbon-hydrogen bond in methane, for which a bond dipole moment can be exactly defined. Although the idea of bond dipole cannot be extended to the C-H fragments belonging to other alkane molecules in the absence of local C3 v symmetry, the calculations prove that the same electron charge polarization should characterize the whole homologous series.

  7. Ion-radical intermediates of the radiation-chemical transformations of organic carbonates

    NASA Astrophysics Data System (ADS)

    Shiryaeva, Ekaterina S.; Sosulin, Ilya S.; Saenko, Elizaveta V.; Feldman, Vladimir I.

    2016-07-01

    The spectral features and reactions of ion-radical intermediates produced from organic carbonates in low-temperature matrices were investigated by EPR spectroscopy and quantum-chemical calculations. It was shown that radical cations of diethyl carbonate and dimethyl carbonate underwent intramolecular hydrogen transfer to yield alkyl-type species, as was suggested previously. Meanwhile, radical cation of EC demonstrates a ring cleavage even at 77 K, while radical cation of PC is probably intrinsically stable and undergo an ion-molecule reaction with a neighboring neutral molecule in dimers or associates. Radical anions were obtained in glassy matrices of diethyl ether or perdeuteroethanol. The radical anions of linear carbonates show photoinduced fragmentation to yield the corresponding alkyl radicals; such process may also occur directly under radiolysis. Radical anions of cyclic carbonates are relatively stable and yield only trace amounts of fragmentation products under similar conditions.

  8. Oligorotaxane Radicals under Orders.

    PubMed

    Wang, Yuping; Frasconi, Marco; Liu, Wei-Guang; Sun, Junling; Wu, Yilei; Nassar, Majed S; Botros, Youssry Y; Goddard, William A; Wasielewski, Michael R; Stoddart, J Fraser

    2016-02-24

    A strategy for creating foldameric oligorotaxanes composed of only positively charged components is reported. Threadlike components-namely oligoviologens-in which different numbers of 4,4'-bipyridinium (BIPY(2+)) subunits are linked by p-xylylene bridges, are shown to be capable of being threaded by cyclobis(paraquat-p-phenylene) (CBPQT(4+)) rings following the introduction of radical-pairing interactions under reducing conditions. UV/vis/NIR spectroscopic and electrochemical investigations suggest that the reduced oligopseudorotaxanes fold into highly ordered secondary structures as a result of the formation of BIPY(•+) radical cation pairs. Furthermore, by installing bulky stoppers at each end of the oligopseudorotaxanes by means of Cu-free alkyne-azide cycloadditions, their analogous oligorotaxanes, which retain the same stoichiometries as their progenitors, can be prepared. Solution-state studies of the oligorotaxanes indicate that their mechanically interlocked structures lead to the enforced interactions between the dumbbell and ring components, allowing them to fold (contract) in their reduced states and unfold (expand) in their fully oxidized states as a result of Coulombic repulsions. This electrochemically controlled reversible folding and unfolding process, during which the oligorotaxanes experience length contractions and expansions, is reminiscent of the mechanisms of actuation associated with muscle fibers. PMID:27163033

  9. Oligorotaxane Radicals under Orders

    PubMed Central

    2016-01-01

    A strategy for creating foldameric oligorotaxanes composed of only positively charged components is reported. Threadlike components—namely oligoviologens—in which different numbers of 4,4′-bipyridinium (BIPY2+) subunits are linked by p-xylylene bridges, are shown to be capable of being threaded by cyclobis(paraquat-p-phenylene) (CBPQT4+) rings following the introduction of radical-pairing interactions under reducing conditions. UV/vis/NIR spectroscopic and electrochemical investigations suggest that the reduced oligopseudorotaxanes fold into highly ordered secondary structures as a result of the formation of BIPY•+ radical cation pairs. Furthermore, by installing bulky stoppers at each end of the oligopseudorotaxanes by means of Cu-free alkyne–azide cycloadditions, their analogous oligorotaxanes, which retain the same stoichiometries as their progenitors, can be prepared. Solution-state studies of the oligorotaxanes indicate that their mechanically interlocked structures lead to the enforced interactions between the dumbbell and ring components, allowing them to fold (contract) in their reduced states and unfold (expand) in their fully oxidized states as a result of Coulombic repulsions. This electrochemically controlled reversible folding and unfolding process, during which the oligorotaxanes experience length contractions and expansions, is reminiscent of the mechanisms of actuation associated with muscle fibers. PMID:27163033

  10. Simultaneous Interaction of Hydrophilic and Hydrophobic Solvents with Ethylamino Neurotransmitter Radical Cations: Infrared Spectra of Tryptamine(+)-(H2O)m-(N2)n Clusters (m,n ≤ 3).

    PubMed

    Schütz, Markus; Sakota, Kenji; Moritz, Raphael; Schmies, Matthias; Ikeda, Takamasa; Sekiya, Hiroshi; Dopfer, Otto

    2015-10-01

    Solvation of biomolecules by a hydrophilic and hydrophobic environment strongly affects their structure and function. Here, the structural, vibrational, and energetic properties of size-selected clusters of the microhydrated tryptamine cation with N2 ligands, TRA(+)-(H2O)m-(N2)n (m,n ≤ 3), are characterized by infrared photodissociation spectroscopy in the 2800-3800 cm(-1) range and dispersion-corrected density functional theory calculations at the ωB97X-D/cc-pVTZ level to investigate the simultaneous solvation of this prototypical neurotransmitter by dipolar water and quadrupolar N2 ligands. In the global minimum structure of TRA(+)-H2O generated by electron ionization, H2O is strongly hydrogen-bonded (H-bonded) as proton acceptor to the acidic indolic NH group. In the TRA(+)-H2O-(N2)n clusters, the weakly bonded N2 ligands do not affect the H-bonding motif of TRA(+)-H2O and are preferentially H-bonded to the OH groups of the H2O ligand, whereas stacking to the aromatic π electron system of the pyrrole ring of TRA(+) is less favorable. The natural bond orbital analysis reveals that the H-bond between the N2 ligand and the OH group of H2O cooperatively strengthens the adjacent H-bond between the indolic NH group of TRA(+) and H2O, while π stacking is slightly noncooperative. In the larger TRA(+)-(H2O)m clusters, the H2O ligands form a H-bonded solvent network attached to the indolic NH proton, again stabilized by strong cooperative effects arising from the nearby positive charge. Comparison with the corresponding neutral TRA-(H2O)m clusters illustrates the strong impact of the excess positive charge on the structure of the microhydration network. PMID:26353045

  11. Alkanes in benthic organisms from the Buccaneer oil field

    SciTech Connect

    Middleditch, B.S.; Basile, B.

    1980-06-01

    About 200 g per day of alkanes are present in brine discharged from each of two production platforms in the Buccaneer oil field in the NW Gulf of Mexico. These alkanes disperse rapidly in the water column, so that seawater concentrations of petroleum alkanes in this region are generally very low. They can be taken up to some extent by plankton, fish, and barnacles, but the petroleum alkane concentrations in these organisms are also relatively low. The largest pool of petroleum alkanes is in the surficial sediments, where concentrations of up to 25 ppM are observed, with concentration gradients extending more than 20 m from the production platforms. Organisms are examined which are exposed to these sediments and, for comparison, other specimens from control sites around structures from which there are no discharges.

  12. Utilization of n-Alkanes by Cladosporium resinae

    PubMed Central

    Teh, J. S.; Lee, K. H.

    1973-01-01

    Four different isolates of Cladosporium resinae from Australian soils were tested for their ability to utilize liquid n-alkanes ranging from n-hexane to n-octadecane under standard conditions. The isolates were unable to make use of n-hexane, n-heptane, and n-octane for growth. In fact, these hydrocarbons, particularly n-hexane, exerted an inhibitory effect on spore germination and mycelial growth. All higher n-alkanes from n-nonane to n-octadecane were assimilated by the fungus, although only limited growth occurred on n-nonane and n-decane. The long chain n-alkanes (C14 to C18) supported good growth of all isolates, but there was no obvious correlation between cell yields and chain lengths of these n-alkanes. Variation in growth responses to individual n-alkane among the different isolates was also observed. The cause of this variation is unknown. PMID:4735447

  13. Sophorolipids from Torulopsis bombicola: possible relation to alkane uptake.

    PubMed Central

    Ito, S; Inoue, S

    1982-01-01

    Torulopsis bombicola produces extracellular sophorolipids when it is grown on water-insoluble alkanes. Sophorolipids and related model compounds, which were not themselves used for growth, were found to stimulate markedly the growth of T. bombicola on alkanes. This stimulatory effect was restricted to growth on C10 to C20 alkanes, whereas no significantly influence was observed for growth on fatty alcohols, fatty acids, glucose, or glycerol. The nonionic methyl ester of the glycolipid supported the greatest cell yield. However, a number of synthetic nonionic surfactants were unable to replace the glycolipid. When organisms were grown on hexadecane, stimulation of growth by sophorolipids was observed almost exclusively with strains of Torulopsis yeasts. In contrast, the growth of other typical alkane-utilizing yeasts, such as candida and Pichia strains, was inhibited or not affected. It appears that sophorolipids are involved in alkane dissimilation by T. bombicola through an undetermined mechanism. PMID:7201782

  14. Formation of ions and radicals from icy grains in comets

    NASA Technical Reports Server (NTRS)

    Jackson, William M.

    1992-01-01

    Two theoretical models for the formation of radicals from ice grains are examined to determine if this can explain the jets in comets. It is shown that the production rates for these radicals by the photolysis of molecules in the icy grains are not high enough to explain the jets. A new mechanism is proposed involving the release of cations and anions in the gas phase as the icy mantle surrounding the grains is evaporated. Solar visible radiation can then form radicals by photodetachment of the electrons from these anions. The production rate of radicals formed in this manner is in accord with the production rates of the observed radicals.

  15. Spectroscopy of the tilde A state of NO-alkane complexes (alkane = methane, ethane, propane, and n-butane)

    NASA Astrophysics Data System (ADS)

    Tamé-Reyes, Victor M.; Gardner, Adrian M.; Harris, Joe P.; McDaniel, Jodie; Wright, Timothy G.

    2012-12-01

    We have recorded (1+1) resonance-enhanced multiphoton ionization spectra of complexes formed between NO and the alkanes: CH4, C2H6, C3H8, and n-C4H10. The spectra correspond to the tilde A ← tilde X transition, which is a NO-localized 3s ← 2pπ* transition. In line with previous work, the spectrum for NO-CH4 has well-defined structure, but this is only partially resolved for the other complexes. The spectra recorded in the NO+-alkane mass channels all show a slowly rising onset, followed by a sharp offset, which is associated with dissociation of NO-alkane, from which binding energies in the tilde X and tilde A states are deduced. Beyond this sharp offset, there is a further rise in signal, which is attributed to fragmentation of higher complexes, NO-(alkane)n. Analysis of these features allows binding energies for (NO-alkane) ... alkane to be estimated, and these suggest that in the NO-(alkane)2 complexes, the second alkane molecule is bound to the first, rather than to NO. Calculated structures for the 1:1 complexes are reported, as well as binding energies.

  16. Comparative study of alkali-vapour cells with alkane-, alkeneand 1-nonadecylbenzene-based antirelaxation wall coatings

    NASA Astrophysics Data System (ADS)

    Balabas, M. V.; Tretiak, O. Yu

    2013-12-01

    The dependence of both longitudinal and transverse relaxation times of ground-state magnetic polarisation in alkali atoms on the coating temperature is experimentally studied for the first time in a rubidium-vapour cell with 1-nonadecylbenzene antirelaxation coating of inner walls. The comparison of these times with the relaxation times in a caesium-vapour cell with alkane wall coatings is presented. It is found that within the studied temperature range (294 - 340K) the transverse relaxation time decreases with increasing temperature of alkene and 1-nonadecylbenzene coatings. For the alkane coating such a dependence was not explicitly found. The longitudinal relaxation time begins to decrease in all cases when passing a certain critical temperature of the coating material. It is found that the unsaturated radical structure of the coating material molecules strongly affects its antirelaxation properties.

  17. Comparative study of alkali-vapour cells with alkane-, alkeneand 1-nonadecylbenzene-based antirelaxation wall coatings

    SciTech Connect

    Balabas, M V; Tretiak, O Yu

    2013-12-31

    The dependence of both longitudinal and transverse relaxation times of ground-state magnetic polarisation in alkali atoms on the coating temperature is experimentally studied for the first time in a rubidium-vapour cell with 1-nonadecylbenzene antirelaxation coating of inner walls. The comparison of these times with the relaxation times in a caesium-vapour cell with alkane wall coatings is presented. It is found that within the studied temperature range (294 – 340K) the transverse relaxation time decreases with increasing temperature of alkene and 1-nonadecylbenzene coatings. For the alkane coating such a dependence was not explicitly found. The longitudinal relaxation time begins to decrease in all cases when passing a certain critical temperature of the coating material. It is found that the unsaturated radical structure of the coating material molecules strongly affects its antirelaxation properties. (optical pumping)

  18. Roaming Radicals

    NASA Astrophysics Data System (ADS)

    Bowman, Joel M.; Shepler, Benjamin C.

    2011-05-01

    Roaming is a recently verified unusual pathway to molecular products from unimolecular dissociation of an energized molecule. Here we present the evidence for this pathway for H2CO and CH3CHO. Theoretical analysis shows that this path visits the plateau region of the potential energy surface near dissociation to radical products. It is not clear whether roaming is a distinct isolated pathway, in addition to the conventional one via the well-known molecular saddle-point transition state. Evidence is presented to suggest that the two pathways may originate from a single, but highly complicated, dividing surface. Other examples of unusual reaction dynamics are also reviewed.

  19. Specific deuterium isotope effects on the rates of electron transfer within geminate radical-ion pairs

    SciTech Connect

    Gould, I.R.; Farid, S.

    1988-11-09

    The results of the first systematic study of the effect of isotopic substitution on the rates of electron transfer for reactions in the inverted region are reported. Rates of return electron transfer within germinate radical ion pairs of 9,10-dicyanoanthracene (DCA) and 2,6,9,10-tetracyanoanthracene (TCA) radical ions and radical cations of perdeuteriated methyl-substituted benzene derivatives determined by a previously reported method are tabulated. The free energies of the electron-transfer reactions for both sets of ion pairs have been calculated, and in each case the reactions with deuterated cations was slower than with undeuterated radical cations. 1 fig., 2 tabs.

  20. Kinetic study of asphaltene dissolution in amphiphile/alkane solutions

    SciTech Connect

    Permsukarome, P.; Chang, C.; Fogler, H.S.

    1997-09-01

    The kinetics of dissolution of pentane-insoluble solid asphaltene precipitates by amphiphile/alkane solutions were investigated using a differential reactor flow system. Two amphiphiles, dodecylbenzenesulfonic acid and nonylphenol, and five alkane solvents, ranging from hexane to hexadecane, were used. Results showed that the rate of asphaltene dissolution in amphiphile/alkane fluids could be approximated with a first-order kinetics with respect to the undissolved asphaltene mass in solution. The specific dissolution rate constant, k, varied with the concentration of amphiphiles, the type of alkane solvents, the temperature, and the fluid flow rate. The rate of asphaltene dissolution displayed a Langmuir-Hinshelwood kinetics with respect to the concentration of amphiphiles. Increasing the temperature of amphiphile/alkane fluids also enhanced the rate of asphaltene dissolution. The apparent activation energy for asphaltene dissolution was approximated to be 4--7 kcal/mol. The rate of asphaltene dissolution was also greater in amphiphile solutions containing lighter alkanes, such as hexane, with lower viscosities. These trends suggest that both surface reaction and mass transfer processes are important to the rate of asphaltene dissolution in amphiphile/alkane fluids.

  1. Long-chain alkane production by the yeast Saccharomyces cerevisiae.

    PubMed

    Buijs, Nicolaas A; Zhou, Yongjin J; Siewers, Verena; Nielsen, Jens

    2015-06-01

    In the past decade industrial-scale production of renewable transportation biofuels has been developed as an alternative to fossil fuels, with ethanol as the most prominent biofuel and yeast as the production organism of choice. However, ethanol is a less efficient substitute fuel for heavy-duty and maritime transportation as well as aviation due to its low energy density. Therefore, new types of biofuels, such as alkanes, are being developed that can be used as drop-in fuels and can substitute gasoline, diesel, and kerosene. Here, we describe for the first time the heterologous biosynthesis of long-chain alkanes by the yeast Saccharomyces cerevisiae. We show that elimination of the hexadecenal dehydrogenase Hfd1 and expression of a redox system are essential for alkane biosynthesis in yeast. Deletion of HFD1 together with expression of an alkane biosynthesis pathway resulted in the production of the alkanes tridecane, pentadecane, and heptadecane. Our study provides a proof of principle for producing long-chain alkanes in the industrial workhorse S. cerevisiae, which was so far limited to bacteria. We anticipate that these findings will be a key factor for further yeast engineering to enable industrial production of alkane based drop-in biofuels, which can allow the biofuel industry to diversify beyond bioethanol. PMID:25545362

  2. Copper-catalyzed oxidative dehydrogenative carboxylation of unactivated alkanes to allylic esters via alkenes.

    PubMed

    Tran, Ba L; Driess, Matthias; Hartwig, John F

    2014-12-10

    We report copper-catalyzed oxidative dehydrogenative carboxylation (ODC) of unactivated alkanes with various substituted benzoic acids to produce the corresponding allylic esters. Spectroscopic studies (EPR, UV-vis) revealed that the resting state of the catalyst is [(BPI)Cu(O2CPh)] (1-O2CPh), formed from [(BPI)Cu(PPh3)2], oxidant, and benzoic acid. Catalytic and stoichiometric reactions of 1-O2CPh with alkyl radicals and radical probes imply that C-H bond cleavage occurs by a tert-butoxy radical. In addition, the deuterium kinetic isotope effect from reactions of cyclohexane and d12-cyclohexane in separate vessels showed that the turnover-limiting step for the ODC of cyclohexane is C-H bond cleavage. To understand the origin of the difference in products formed from copper-catalyzed amidation and copper-catalyzed ODC, reactions of an alkyl radical with a series of copper-carboxylate, copper-amidate, and copper-imidate complexes were performed. The results of competition experiments revealed that the relative rate of reaction of alkyl radicals with the copper complexes follows the trend Cu(II)-amidate > Cu(II)-imidate > Cu(II)-benzoate. Consistent with this trend, Cu(II)-amidates and Cu(II)-benzoates containing more electron-rich aryl groups on the benzamidate and benzoate react faster with the alkyl radical than do those with more electron-poor aryl groups on these ligands to produce the corresponding products. These data on the ODC of cyclohexane led to preliminary investigation of copper-catalyzed oxidative dehydrogenative amination of cyclohexane to generate a mixture of N-alkyl and N-allylic products. PMID:25389772

  3. Copper-Catalyzed Oxidative Dehydrogenative Carboxylation of Unactivated Alkanes to Allylic Esters via Alkenes

    PubMed Central

    2015-01-01

    We report copper-catalyzed oxidative dehydrogenative carboxylation (ODC) of unactivated alkanes with various substituted benzoic acids to produce the corresponding allylic esters. Spectroscopic studies (EPR, UV–vis) revealed that the resting state of the catalyst is [(BPI)Cu(O2CPh)] (1-O2CPh), formed from [(BPI)Cu(PPh3)2], oxidant, and benzoic acid. Catalytic and stoichiometric reactions of 1-O2CPh with alkyl radicals and radical probes imply that C–H bond cleavage occurs by a tert-butoxy radical. In addition, the deuterium kinetic isotope effect from reactions of cyclohexane and d12-cyclohexane in separate vessels showed that the turnover-limiting step for the ODC of cyclohexane is C–H bond cleavage. To understand the origin of the difference in products formed from copper-catalyzed amidation and copper-catalyzed ODC, reactions of an alkyl radical with a series of copper–carboxylate, copper–amidate, and copper–imidate complexes were performed. The results of competition experiments revealed that the relative rate of reaction of alkyl radicals with the copper complexes follows the trend Cu(II)–amidate > Cu(II)–imidate > Cu(II)–benzoate. Consistent with this trend, Cu(II)–amidates and Cu(II)–benzoates containing more electron-rich aryl groups on the benzamidate and benzoate react faster with the alkyl radical than do those with more electron-poor aryl groups on these ligands to produce the corresponding products. These data on the ODC of cyclohexane led to preliminary investigation of copper-catalyzed oxidative dehydrogenative amination of cyclohexane to generate a mixture of N-alkyl and N-allylic products. PMID:25389772

  4. Direct construction of 2-alkylbenzo-1,3-azoles via C-H activation of alkanes for C-C and C-X (X = O, S) bond formation.

    PubMed

    Yadav, Arvind K; Yadav, Lal Dhar S

    2015-03-01

    Copper catalyzed straightforward synthesis of 2-alkylbenzoxa(thia)azoles from aryl isocyanates/isothiocyanates and simple alkanes is reported. The protocol utilizes ditertiary butyl peroxide (DTBP) as a radical initiator and involves sequential formation of C-C and C-X (X = O, S) bonds followed by aromatization in a one-pot procedure. PMID:25578954

  5. Alkanes-filled photonic crystal fibers as sensor transducers

    NASA Astrophysics Data System (ADS)

    Marć, P.; Przybysz, N.; Stasiewicz, K.; Jaroszewicz, L. R.

    2015-09-01

    In this paper we propose alkanes-filled PCFs as the new class of transducers for optical fiber sensors. We investigated experimentally thermo-optic properties of a commercially available LMA8 partially filled with different alkanes with a higher number of carbon atoms. A partially filled PCF spliced with standard SMFs constitutes one of the newest type transducer. We have selected a group of eight alkanes which have melting points in different temperatures. An analysis of temperature spectral characteristics of these samples will allow to design an optical fiber sensor with different temperature thresholds at specific wavelengths.

  6. Abnormal carbon and hydrogen isotopes of alkane gases from the Qingshen gas field, Songliao Basin, China, suggesting abiogenic alkanes?

    NASA Astrophysics Data System (ADS)

    Liu, Quanyou; Dai, Jinxing; Jin, Zhijun; Li, Jian; Wu, Xiaoqi; Meng, Qingqiang; Yang, Chun; Zhou, Qinghua; Feng, Zihui; Zhu, Dongya

    2016-01-01

    It is great debate that the alkane gases of abiogenic origin would constitute a major portion of the commercial accumulation of the Qingshen gas field, Songliao Basin, China. In this study, abiogenic gases characterized by heavy δ13C1 values, reversal of the usual carbon isotopic trend of C1-C5 alkanes, very narrow variation in δ2HC1 values, and low CH4/3He ratios associated with high R/Ra values (>1) were identified. The hydrocarbon gas in the Qingshen gas field is a mixture of thermogenic alkanes derived from Cretaceous mudstone (type I kerogen) or Jurassic coal (type III kerogen) and abiogenic alkanes (mainly CH4) from mantle degassing. A quantitative estimation of abiogenic alkanes contribution to the Qingshen gas field is made based on a δ13C1 vs. δ13C2 plot: about 30-40% of alkane gases in the Qingshen gas field, along with its helium, are estimated to be derived from the mantle via magmatic activity. Particularly, the abiogenic formation of CH4 generated from the reduction of CO2 by hydrothermal activity may contribute. Our study suggests that abiogenic alkane gases in certain geological settings could be more widespread than previously thought, and may accumulate into economic reservoirs.

  7. Study on cationic photopolymerization reaction of epoxy polysiloxane

    NASA Astrophysics Data System (ADS)

    Sun, F.; Jiang, S. L.; Liu, J.

    2007-11-01

    The effects of epoxy monomers, concentration of photoinitiator and radical photoinitiators on the photosensitive properties of cationic phopolymerization system with a novel epoxy polysiloxane oligomer (CEPS) were investigated via a gel yield method. The results showed that among the tested epoxy monomers, the reactivity of ERL-4221 with cycloaliphatic epoxy groups was the highest. The optimum concentration of diaryldiodonium salt (SR-1012) was determined as 4-5 wt.%. Increasing the amounts of ERL-4221 in the CEPS cationic photopolymerization system, UV-curing rate increased. Radical photoinitiators with ArC dbnd O structure possessed sensitization capacity to the cationic photoinitiator SR-1012. The photosensitivity of the CEPS system could be up to 165 mJ/cm 2. Adding a small amount of IPA and BP could greatly improve the photosensitivity of CEPS cationic photosensitive system. The optimal quantity of isopropanol added to the system was not more than 2 wt.%.

  8. Cationic RAFT polymerization using ppm concentrations of organic acid.

    PubMed

    Uchiyama, Mineto; Satoh, Kotaro; Kamigaito, Masami

    2015-02-01

    A metal-free, cationic, reversible addition-fragmentation chain-transfer (RAFT) polymerization was proposed and realized. A series of thiocarbonylthio compounds were used in the presence of a small amount of triflic acid for isobutyl vinyl ether to give polymers with controlled molecular weight of up to 1×10(5) and narrow molecular-weight distributions (Mw /Mn <1.1). This "living" or controlled cationic polymerization is applicable to various electron-rich monomers including vinyl ethers, p-methoxystyrene, and even p-hydroxystyrene that possesses an unprotected phenol group. A transformation from cationic to radical RAFT polymerization enables the synthesis of block copolymers between cationically and radically polymerizable monomers, such as vinyl ether and vinyl acetate or methyl acrylate. PMID:25511364

  9. Process for converting light alkanes to higher hydrocarbons

    DOEpatents

    Noceti, Richard P.; Taylor, Charles E.

    1988-01-01

    A process is disclosed for the production of aromatic-rich, gasoline boiling range hydrocarbons from the lower alkanes, particularly from methane. The process is carried out in two stages. In the first, alkane is reacted with oxygen and hydrogen chloride over an oxyhydrochlorination catalyst such as copper chloride with minor proportions of potassium chloride and rare earth chloride. This produces an intermediate gaseous mixture containing water and chlorinated alkanes. The chlorinated alkanes are contacted with a crystalline aluminosilicate catalyst in the hydrogen or metal promoted form to produce gasoline range hydrocarbons with a high proportion of aromatics and a small percentage of light hydrocarbons (C.sub.2 -C.sub.4). The light hydrocarbons can be recycled for further processing over the oxyhydrochlorination catalyst.

  10. Contribution of cyanobacterial alkane production to the ocean hydrocarbon cycle.

    PubMed

    Lea-Smith, David J; Biller, Steven J; Davey, Matthew P; Cotton, Charles A R; Perez Sepulveda, Blanca M; Turchyn, Alexandra V; Scanlan, David J; Smith, Alison G; Chisholm, Sallie W; Howe, Christopher J

    2015-11-01

    Hydrocarbons are ubiquitous in the ocean, where alkanes such as pentadecane and heptadecane can be found even in waters minimally polluted with crude oil. Populations of hydrocarbon-degrading bacteria, which are responsible for the turnover of these compounds, are also found throughout marine systems, including in unpolluted waters. These observations suggest the existence of an unknown and widespread source of hydrocarbons in the oceans. Here, we report that strains of the two most abundant marine cyanobacteria, Prochlorococcus and Synechococcus, produce and accumulate hydrocarbons, predominantly C15 and C17 alkanes, between 0.022 and 0.368% of dry cell weight. Based on global population sizes and turnover rates, we estimate that these species have the capacity to produce 2-540 pg alkanes per mL per day, which translates into a global ocean yield of ∼ 308-771 million tons of hydrocarbons annually. We also demonstrate that both obligate and facultative marine hydrocarbon-degrading bacteria can consume cyanobacterial alkanes, which likely prevents these hydrocarbons from accumulating in the environment. Our findings implicate cyanobacteria and hydrocarbon degraders as key players in a notable internal hydrocarbon cycle within the upper ocean, where alkanes are continually produced and subsequently consumed within days. Furthermore we show that cyanobacterial alkane production is likely sufficient to sustain populations of hydrocarbon-degrading bacteria, whose abundances can rapidly expand upon localized release of crude oil from natural seepage and human activities. PMID:26438854

  11. Contribution of cyanobacterial alkane production to the ocean hydrocarbon cycle

    PubMed Central

    Lea-Smith, David J.; Biller, Steven J.; Davey, Matthew P.; Cotton, Charles A. R.; Perez Sepulveda, Blanca M.; Turchyn, Alexandra V.; Scanlan, David J.; Smith, Alison G.; Chisholm, Sallie W.; Howe, Christopher J.

    2015-01-01

    Hydrocarbons are ubiquitous in the ocean, where alkanes such as pentadecane and heptadecane can be found even in waters minimally polluted with crude oil. Populations of hydrocarbon-degrading bacteria, which are responsible for the turnover of these compounds, are also found throughout marine systems, including in unpolluted waters. These observations suggest the existence of an unknown and widespread source of hydrocarbons in the oceans. Here, we report that strains of the two most abundant marine cyanobacteria, Prochlorococcus and Synechococcus, produce and accumulate hydrocarbons, predominantly C15 and C17 alkanes, between 0.022 and 0.368% of dry cell weight. Based on global population sizes and turnover rates, we estimate that these species have the capacity to produce 2–540 pg alkanes per mL per day, which translates into a global ocean yield of ∼308–771 million tons of hydrocarbons annually. We also demonstrate that both obligate and facultative marine hydrocarbon-degrading bacteria can consume cyanobacterial alkanes, which likely prevents these hydrocarbons from accumulating in the environment. Our findings implicate cyanobacteria and hydrocarbon degraders as key players in a notable internal hydrocarbon cycle within the upper ocean, where alkanes are continually produced and subsequently consumed within days. Furthermore we show that cyanobacterial alkane production is likely sufficient to sustain populations of hydrocarbon-degrading bacteria, whose abundances can rapidly expand upon localized release of crude oil from natural seepage and human activities. PMID:26438854

  12. The cubyl cation rearrangements.

    PubMed

    Jalife, Said; Mondal, Sukanta; Cabellos, Jose Luis; Martinez-Guajardo, Gerardo; Fernandez-Herrera, Maria A; Merino, Gabriel

    2016-02-25

    Born-Oppenheimer molecular dynamics simulations and high-level ab initio computations predict that the cage-opening rearrangement of the cubyl cation to the 7H(+)-pentalenyl cation is feasible in the gas phase. The rate-determining step is the formation of the cuneyl cation with an activation barrier of 25.3 kcal mol(-1) at the CCSD(T)/def2-TZVP//MP2/def2-TZVP level. Thus, the cubyl cation is kinetically stable enough to be formed and trapped at moderate temperatures, but it may be rearranged at higher temperatures. PMID:26880646

  13. Kinetics and mechanism of alkane hydroperoxidation with tert-butyl hydroperoxide catalysed by a vanadate anion.

    PubMed

    Shul'pin, Georgiy B; Kozlov, Yuriy N

    2003-07-01

    tert-Butyl hydroperoxide oxidizes alkanes in acetonitrile at 60 degrees C if the soluble vanadium(v) salt, n-Bu4NVO3, is used as a catalyst. Alkyl hydroperoxides are formed as main products which decompose during the course of the reaction to produce the more stable corresponding alcohols and ketones. Turnover numbers (ie. numbers of moles of products per one mole of a catalyst) attained 250. The kinetics and selectivity of the reaction have been studied. The mechanism proposed involves the formation of a complex between the V(V) species and t-BuOOH (K5 was estimated to be 5 dm3 mol(-1)) followed by decomposition of this complex (k6 = 0.2 s(-1)). The generated V(IV) species reacts with another t-BuOOH molecule to produce an active t-BuO* radical which attacks the hydrocarbon. PMID:12945701

  14. Iron-phthalocyanine immobilized on activated carbon black: A selective catalyst for alkane oxidation

    SciTech Connect

    Parton, R.F.; Neys, P.E.; Jacobs, P.A.

    1996-12-01

    Carbon black is tested as a support for iron-phthalocyanine within the frame of the oxidation of hydrocarbons with t-butyl-hydroperoxide as oxygen donor. The increased hydrophobicity of the carrier surface, with respect to zeolite Y, changes the adsorption behavior of the components in the reaction mixture towards the alkane. A major improvement in the oxidation conversion and efficiency of cyclohexane has been established. Furthermore, the kinetic isotope effect and the reactivity order of secondary and tertiary carbon atoms measured with adamantane provide evidence for an {open_quotes}oxygen rebound{close_quotes} reaction mechanism, a non-free-radical oxidation pathway where the metallo-complex is responsible for the hydrogen abstraction. 40 refs., 7 figs., 2 tabs.

  15. Enzymes involved in the anaerobic oxidation of n-alkanes: from methane to long-chain paraffins

    PubMed Central

    Callaghan, Amy V.

    2013-01-01

    Anaerobic microorganisms play key roles in the biogeochemical cycling of methane and non-methane alkanes. To date, there appear to be at least three proposed mechanisms of anaerobic methane oxidation (AOM). The first pathway is mediated by consortia of archaeal anaerobic methane oxidizers and sulfate-reducing bacteria (SRB) via “reverse methanogenesis” and is catalyzed by a homolog of methyl-coenzyme M reductase. The second pathway is also mediated by anaerobic methane oxidizers and SRB, wherein the archaeal members catalyze both methane oxidation and sulfate reduction and zero-valent sulfur is a key intermediate. The third AOM mechanism is a nitrite-dependent, “intra-aerobic” pathway described for the denitrifying bacterium, ‘Candidatus Methylomirabilis oxyfera.’ It is hypothesized that AOM proceeds via reduction of nitrite to nitric oxide, followed by the conversion of two nitric oxide molecules to dinitrogen and molecular oxygen. The latter can be used to functionalize the methane via a particulate methane monooxygenase. With respect to non-methane alkanes, there also appear to be novel mechanisms of activation. The most well-described pathway is the addition of non-methane alkanes across the double bond of fumarate to form alkyl-substituted succinates via the putative glycyl radical enzyme, alkylsuccinate synthase (also known as methylalkylsuccinate synthase). Other proposed mechanisms include anaerobic hydroxylation via ethylbenzene dehydrogenase-like enzymes and an “intra-aerobic” denitrification pathway similar to that described for ‘Methylomirabilis oxyfera.’ PMID:23717304

  16. Electrochemistry and spectroelectrochemistry of nitroxyl free radicals

    SciTech Connect

    Fish, J.R.; Swarts, S.G.; Sevilla, M.D.; Malinski, T.

    1988-06-30

    This work reports electrochemical and spectroelectrochemical studies of the two nitroxyl radicals 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) and 3-carbamoyl-2,2,5,5-tetramethyl-3-pyrrolin-1-yloxy (3-carbamoyl-PROXYL). Oxidation and reduction reactions have been observed in aqueous media over the pH range 2-12 in the potential range -0.8 to +0.8 V by differential pulse voltammetry, cyclic voltammetry, and thin-layer UV-visible spectroelectrochemistry, and the reaction products have been characterized by IR, NMR, and ESR spectrometry. At pH values less than 10, characteristic electrochemical behavior is observed to be analogous for both radicals, and the products from electron transfer compare quite favorably with those found by pulse radiolysis of aqueous solutions of nitroxyl radicals. At pH 2-9, a stable cation from a reversible oxidation and hydroxylamine following an irreversible reduction, as well as hydroxylated cation at pH higher than 9, are the same as those obtained in pulse radiolysis experiments. Spectroscopic evidence indicates that behavior following reduction at high pH differs for the two radicals. At pH 12, reduced TEMPO may undergo structural changes leading to the formation of a new radical consisting of a seven-membered ring.

  17. Isomerization and dissociation of n-butylbenzene radical cation.

    PubMed

    Halbert, Stéphanie; Bouchoux, Guy

    2012-02-01

    Fragmentation mechanisms of ionized butylbenzene to give m/z 91 and m/z 92 fragment ions have been examined at the G3B3 and G3MP2B3 levels of theory. It is shown that the energetically favored pathways lead to tropylium, Tr(+), and methylene-2,4-cyclohexadiene, MCD(•+), ions. Formation of m/z 91 benzyl ions, Bz(+), by a simple bond fission (SBF) process, needs about 30 kJ/mol more energy than Tr(+). Possible formation of C(7)H(8)(•+) ions of structures different from the retro-ene rearrangement (RER) product, MCD(•+), has been also considered. Comparison with experimental data of this "thermometer" system is done through a kinetic modeling using Rice-Ramsperger-Kassel-Marcus (RRKM) and orbiting transition state (OTS) rate constant calculations on the G3MP2B3 0 K energy surface. The results agree with previous experimental observation if (i) the competitive formation of Tr(+) and Bz(+) is taken into account in the m/z 91 pathway, and (ii) the stepwise character of the RER fragmentation is introduced in the m/z 92 fragmentation route. PMID:22229805

  18. Peroxyl radical reactions with carotenoids in microemulsions: Influence of microemulsion composition and the nature of peroxyl radical precursor.

    PubMed

    El-Agamey, Ali; McGarvey, David J

    2016-01-01

    The reactions of acetylperoxyl radicals with different carotenoids (7,7'-dihydro-β-carotene and ζ-carotene) in SDS and CTAC microemulsions of different compositions were investigated using laser flash photolysis (LFP) coupled with kinetic absorption spectroscopy. The primary objective of this study was to explore the influence of microemulsion composition and the type of surfactant used on the yields and kinetics of various transients formed from the reaction of acetylperoxyl radicals with carotenoids. Also, the influence of the site (hydrocarbon phases or aqueous phase) of generation of the peroxyl radical precursor was examined by using 4-acetyl-4-phenylpiperidine hydrochloride (APPHCl) and 1,1-diphenylacetone (11DPA) as water-soluble and lipid-soluble peroxyl radical precursors, respectively. LFP of peroxyl radical precursors with 7,7'-dihydro-β-carotene (77DH) in different microemulsions gives rise to the formation of three distinct transients namely addition radical (λmax=460 nm), near infrared transient1 (NIR, λmax=700 nm) and 7,7'-dihydro-β-carotene radical cation (77DH(•+), λmax=770 nm). In addition, for ζ-carotene (ZETA) two transients (near infrared transient1 (NIR1, λmax=660 nm) and ζ-carotene radical cation (ZETA(•+), λmax=730-740 nm)) are generated following LFP of peroxyl radical precursors in the presence of ζ-carotene (ZETA) in different microemulsions. The results show that the composition of the microemulsion strongly influences the observed yield and kinetics of the transients formed from the reactions of peroxyl radicals (acetylperoxyl radicals) with carotenoids (77DH and ZETA). Also, the type of surfactant used in the microemulsions influences the yield of the transients formed. The dependence of the transient yields and kinetics on microemulsion composition (or the type of surfactant used in the microemulsion) can be attributed to the change of the polarity of the microenvironment of the carotenoid. Furthermore, the nature of

  19. Antioxidant, electrochemical, thermal, antimicrobial and alkane oxidation properties of tridentate Schiff base ligands and their metal complexes

    NASA Astrophysics Data System (ADS)

    Ceyhan, Gökhan; Çelik, Cumali; Uruş, Serhan; Demirtaş, İbrahim; Elmastaş, Mahfuz; Tümer, Mehmet

    2011-10-01

    In this study, two Schiff base ligands (HL 1 and HL 2) and their Cu(II), Co(II), Ni(II), Pd(II) and Ru(III) metal complexes were synthesized and characterized by the analytical and spectroscopic methods. Alkane oxidation activities of the metal complexes were studied on cyclohexane as substrate. The ligands and their metal complexes were evaluated for their antimicrobial activity against Corynebacterium xerosis, Bacillus brevis, Bacillus megaterium, Bacillus cereus, Mycobacterium smegmatis, Staphylococcus aureus, Micrococcus luteus and Enterococcus faecalis (as Gram-positive bacteria) and Pseudomonas aeruginosa, Klebsiella pneumoniae, Escherichia coli, Yersinia enterocolitica, Klebsiella fragilis, Saccharomyces cerevisiae, and Candida albicans (as Gram-negative bacteria). The antioxidant properties of the Schiff base ligands were evaluated in a series of in vitro tests: 1,1-diphenyl-2-picrylhydrazyl (DPPH rad ) free radical scavenging and reducing power activity of superoxide anion radical generated non-enzymatic systems. Electrochemical and thermal properties of the compounds were investigated.

  20. Variation in n-Alkane Distributions of Modern Plants: Questioning Applications of n-Alkanes in Chemotaxonomy and Paleoecology

    NASA Astrophysics Data System (ADS)

    Bush, R. T.; McInerney, F. A.

    2010-12-01

    Long chain n-alkanes (n-C21 to n-C37) are synthesized as part of the epicuticular leaf wax of terrestrial plants and are among the most recognizable and widely used plant biomarkers. n-Alkane distributions have been utilized in previous studies on modern plant chemotaxonomy, testing whether taxa can be identified based on characteristic n-alkane profiles. Dominant n-alkanes (e.g. n-C27 or n-C31) have also been ascribed to major plant groups (e.g. trees or grasses respectively) and have been used in paleoecology studies to reconstruct fluctuations in plant functional types. However, many of these studies have been based on relatively few modern plant data; with the wealth of modern n-alkane studies, a more comprehensive analysis of n-alkanes in modern plants is now possible and can inform the usefulness of n-alkane distributions as paleoecological indicators. The work presented here is a combination of measurements made using plant leaves collected from the Chicago Botanic Garden and a compilation of published literature data from six continents. We categorized plants by type: angiosperms, gymnosperms, woody plants, forbs, grasses, ferns and pteridophytes, and mosses. We then quantified n-alkane distribution parameters such as carbon preference index (CPI), average chain length (ACL), and dispersion (a measure of the spread of the profile over multiple chain lengths) and used these to compare plant groups. Among all plants, one of the emergent correlations is a decrease in dispersion with increasing CPI. Within and among plant groups, n-alkane distributions show a very large range of variation, and the results show little or no correspondence between broad plant groups and a single dominant n-alkane or a ratio of n-alkanes. These findings are true both when data from six continents are combined and when plants from a given region are compared (North America). We also compared the n-alkane distributions of woody angiosperms, woody gymnosperms, and grasses with one

  1. Detailed chemical kinetic models for large n-alkanes and iso-alkanes found in conventional and F-T diesel fuels

    SciTech Connect

    Westbrook, C K; Pitz, W J; Curran, H J; Mehl, M

    2008-12-15

    Detailed chemical kinetic models are needed to simulate the combustion of current and future transportation fuels. These models should represent the various chemical classes in these fuels. Conventional diesel fuels are composed of n-alkanes, iso-alkanes, cycloalkanes and aromatics (Farrell et al. 2007). For future fuels, there is a renewed interest in Fischer-Tropsch (F-T) processes which can be used to synthesize diesel and other transportation fuels from biomass, coal and natural gas. F-T diesel fuels are expected to be similar to F-T jet fuels which are commonly comprised of iso-alkanes with some n-alkanes (Smith and Bruno, 2008). Thus, n-alkanes and iso-alkanes are common chemical classes in these conventional and future fuels. This paper reports on the development of chemical kinetic models of large n-alkanes and iso-alkanes to represent these chemical classes in conventional and future fuels. Two large iso-alkanes are 2,2,4,4,6,8,8-heptamethylnonane, which is a primary reference fuel for diesel, and isooctane, a primary reference fuel for gasoline. Other iso-alkanes are branched alkanes with a single methyl side chain, typical of most F-T fuels. The chemical kinetic models are then used to predict the effect of these fuel components on ignition characteristics under conditions found in internal combustion engines.

  2. Alkane inducible proteins in Geobacillus thermoleovorans B23

    PubMed Central

    2009-01-01

    Background Initial step of β-oxidation is catalyzed by acyl-CoA dehydrogenase in prokaryotes and mitochondria, while acyl-CoA oxidase primarily functions in the peroxisomes of eukaryotes. Oxidase reaction accompanies emission of toxic by-product reactive oxygen molecules including superoxide anion, and superoxide dismutase and catalase activities are essential to detoxify them in the peroxisomes. Although there is an argument about whether primitive life was born and evolved under high temperature conditions, thermophilic archaea apparently share living systems with both bacteria and eukaryotes. We hypothesized that alkane degradation pathways in thermophilic microorganisms could be premature and useful to understand their evolution. Results An extremely thermophilic and alkane degrading Geobacillus thermoleovorans B23 was previously isolated from a deep subsurface oil reservoir in Japan. In the present study, we identified novel membrane proteins (P16, P21) and superoxide dismutase (P24) whose production levels were significantly increased upon alkane degradation. Unlike other bacteria acyl-CoA oxidase and catalase activities were also increased in strain B23 by addition of alkane. Conclusion We first suggested that peroxisomal β-oxidation system exists in bacteria. This eukaryotic-type alkane degradation pathway in thermophilic bacterial cells might be a vestige of primitive living cell systems that had evolved into eukaryotes. PMID:19320977

  3. Diffusion of Benzene and Alkylbenzenes in n-Alkanes.

    PubMed

    Kowert, Bruce A; Register, Paul M

    2015-10-01

    The translational diffusion constants, D, of benzene and a series of alkylbenzenes have been determined in four n-alkanes at room temperature using capillary flow techniques. The alkylbenzenes are toluene, ethylbenzene, 1-phenylpropane, 1-phenylpentane, 1-phenyloctane, 1-phenylundecane, 1-phenyltetradecane, and 1-phenylheptadecane. The n-alkanes are n-nonane, n-decane, n-dodecane, and n-pentadecane. Ratios of the solutes' D values are independent of solvent and in general agreement with the predictions of diffusion models for cylinders and lollipops. For the latter, an alkylbenzene's phenyl ring is the lollipop's candy; the alkyl chain is its handle. A model that considers the solutes to be spheres with volumes determined by the van der Waals increments of their constituent atoms is not in agreement with experiment. The diffusion constants of 1-alkene and n-alkane solutes in n-alkane solvents also are compared with the cylinder model; reasonably good agreement is found. The n-alkanes are relatively extended, and this appears to be the case for the alkyl chains of the 1-alkenes and alkylbenzenes as well. PMID:26417941

  4. Photolytic formation of free radicals and their effect on hydrocarbon pyrolysis chemistry in a concentrated solar environment: Final report

    SciTech Connect

    Hunjan, M.; Mok, W.S.; Antal, M.J. Jr.

    1987-01-01

    The objective of this research was two-fold: (1) to determine whether uv photons available in a concentrated solar environment can be used as a photolytic source to dissociate vapor phase acetone; and (2) to explore the effects of photolysis on rate and selectivity of free radical reactions. The experiments were conducted in a 1 kW arc image furnace/tubular flow reactor system. The results obtained conclusively showed that acetone readily photodissociates in a 1000 sun environment, leading to the formation of free radicals. It was further observed that Beer-Lambert law can be used to predict the rate of photolysis of acetone. Furthermore, acetone, when used as source of methyl radicals, sensitized the reaction chemistry of alkanes and alkenes at a temperature of 350/sup 0/C. The methyl radicals from photolysis of acetone enhanced the cracking reactions of the alkanes yielding smaller alkanes and alkenes. When the initial hydrocarbon reactant was an alkene, a sensitization of the addition reaction was observed leading to formation of next higher alkene. To gain a theoretical insight into the reaction chemistry of alkanes, a numerical simulation model was developed to study the photosensitized decomposition of n-butane and the simulation results thus obtained were found to be in close agreement with experimental results. 64 refs., 10 figs., 22 tabs.

  5. Additional chain-branching pathways in the low-temperature oxidation of branched alkanes

    DOE PAGESBeta

    Wang, Zhandong; Zhang, Lidong; Moshammer, Kai; Popolan-Vaida, Denisia M.; Shankar, Vijai Shankar Bhavani; Lucassen, Arnas; Hemken, Christian; Taatjes, Craig A.; Leone, Stephen R.; Kohse-Hoinghaus, Katharina; et al

    2015-12-31

    Chain-branching reactions represent a general motif in chemistry, encountered in atmospheric chemistry, combustion, polymerization, and photochemistry; the nature and amount of radicals generated by chain-branching are decisive for the reaction progress, its energy signature, and the time towards its completion. In this study, experimental evidence for two new types of chain-branching reactions is presented, based upon detection of highly oxidized multifunctional molecules (HOM) formed during the gas-phase low-temperature oxidation of a branched alkane under conditions relevant to combustion. The oxidation of 2,5-dimethylhexane (DMH) in a jet-stirred reactor (JSR) was studied using synchrotron vacuum ultra-violet photoionization molecular beam mass spectrometry (SVUV-PI-MBMS).more » Specifically, species with four and five oxygen atoms were probed, having molecular formulas of C8H14O4 (e.g., diketo-hydroperoxide/keto-hydroperoxy cyclic ether) and C8H16O5 (e.g., keto-dihydroperoxide/dihydroperoxy cyclic ether), respectively. The formation of C8H16O5 species involves alternative isomerization of OOQOOH radicals via intramolecular H-atom migration, followed by third O2 addition, intramolecular isomerization, and OH release; C8H14O4 species are proposed to result from subsequent reactions of C8H16O5 species. The mechanistic pathways involving these species are related to those proposed as a source of low-volatility highly oxygenated species in Earth's troposphere. At the higher temperatures relevant to auto-ignition, they can result in a net increase of hydroxyl radical production, so these are additional radical chain-branching pathways for ignition. Furthermore, the results presented herein extend the conceptual basis of reaction mechanisms used to predict the reaction behavior of ignition, and have implications on atmospheric gas-phase chemistry and the oxidative stability of organic substances.« less

  6. Rate Constants for the Reactions of Hydroxyl Radical with Several Alkanes, Cycloalkanes, and Dimethyl Ether

    NASA Technical Reports Server (NTRS)

    DeMore, W.; Bayes, K.

    1998-01-01

    Relative rate experiements were used to measure rate constants and temperature denpendencies of the reactions of OH with propane, n-butane, n-pentane, n-hexane, cyclopropane, cyclobutane, cyclopentane, and dimethyl ether.

  7. Alkanes in shrimp from the Buccaneer Oil Field

    SciTech Connect

    Middleditch, B.S.; Basile, B.; Chang, E.S.

    1982-07-01

    A total of 36 samples of shrimp were examined from the region of the Buccaneer oil field, eighteen of which were representatives of the commercial species Penaeus aztecus and the rest were various other species: Penaeus duorarum (pink shrimp), Trachypenaeus duorarum (sugar shrimp), Squilla empusa (mantis shrimp), and Sicyonia dorsalis (chevron shrimp). The alkanes and deuteriated alkanes were completely separated by GC, so a mass spectrometer was not required for their detection and quantitation. To confirm the identities of individual compounds, however, some samples were examined by combined gas chromatography-mass spectrometry. Results show that only thirteen of the forty shrimp collected from the region of the Buccaneer oil field contained petroleum alkanes, and the majority of these were obtained from trawls immediately adjacent to the production platforms. It appears that shrimp caught in the region of the Buccaneer oil field are not appreciably tainted with hydrocarbons discharged from the production platforms. (JMT)

  8. High Temperature Chemical Kinetic Combustion Modeling of Lightly Methylated Alkanes

    SciTech Connect

    Sarathy, S M; Westbrook, C K; Pitz, W J; Mehl, M

    2011-03-01

    Conventional petroleum jet and diesel fuels, as well as alternative Fischer-Tropsch (FT) fuels and hydrotreated renewable jet (HRJ) fuels, contain high molecular weight lightly branched alkanes (i.e., methylalkanes) and straight chain alkanes (n-alkanes). Improving the combustion of these fuels in practical applications requires a fundamental understanding of large hydrocarbon combustion chemistry. This research project presents a detailed high temperature chemical kinetic mechanism for n-octane and three lightly branched isomers octane (i.e., 2-methylheptane, 3-methylheptane, and 2,5-dimethylhexane). The model is validated against experimental data from a variety of fundamental combustion devices. This new model is used to show how the location and number of methyl branches affects fuel reactivity including laminar flame speed and species formation.

  9. BIODEGRADATION AND GAS-EXCHANGE OF GASEOUS ALKANES IN MODEL ESTUARINE ECOSYSTEMS

    EPA Science Inventory

    Gas exchange-biodegradation experiments conducted in model estuarine ecosystems indicate that the ease of degradation of gaseious normal alkanes increases with chain length. The behavior of gaseous perhalogenated alkanes can be explained by gas exchange alone with no degradation....

  10. Modeling of alkane emissions from a wood stain

    SciTech Connect

    Chang, J.C.S.; Guo, Z.

    1993-01-01

    The article discusses full-scale residential house tests to evaluate the effects of organic emissions from a wood finishing product--wood stain--on indoor air quality (IAQ). The test house concentrations of three alkane species, nonane, decane, and undecane, were measured as a function of time after the application of the wood stain. It was found that the test house concentrations can be simulated by an integrated IAQ model which takes into consideration source, sink, and ventilation effects. The alkane emissions were controlled by an evaporation-like process.

  11. Catalytic, mild, and selective oxyfunctionalization of linear alkanes: current challenges.

    PubMed

    Bordeaux, Mélanie; Galarneau, Anne; Drone, Jullien

    2012-10-22

    Selective catalysts for sustainable oxidation of alkanes are highly demanded because of the abundance of these molecules in the environment, the possibility to transform them into higher-value compounds, such as chemicals or synthetic fuels, and the fact that, kinetically speaking, this is a difficult reaction. Numerous chemical and biological catalysts have been developed in the lasts decades for this purpose, rendering the overview over this field of chemistry difficult. After giving a definition of the ideal catalyst for alkane oxyfunctionalization, this review aims to present the catalysts available today that are closest to ideal. PMID:22996726

  12. A nonequilibrium molecular dynamics study of the rheology of alkanes

    SciTech Connect

    Gupta, S.A.; Cui, S.T.; Cummings, P.T.; Cochran, H.D. |

    1996-05-01

    We examine the rheological properties of four different alkanes: n-decane, n-hexadecane, n-tetracosane, and squalane. Simulations of Couette flow are performed for a range of shear rates with 100 molecules in each case using a replicated data version of our code. Number of interaction sites ranges from 1000 to 3000. We have performed extremely long simulations required to obtain acceptable statistics at low shear rates. The alkanes show a transition from non-Newtonian to Newtonian behavior as the shear rate decreases to low values. 1 tab, 1 fig, 17 refs.

  13. Regioselective alkane hydroxylation with a mutant AlkB enzyme

    DOEpatents

    Koch, Daniel J.; Arnold, Frances H.

    2012-11-13

    AlkB from Pseudomonas putida was engineered using in-vivo directed evolution to hydroxylate small chain alkanes. Mutant AlkB-BMO1 hydroxylates propane and butane at the terminal carbon at a rate greater than the wild-type to form 1-propanol and 1-butanol, respectively. Mutant AlkB-BMO2 similarly hydroxylates propane and butane at the terminal carbon at a rate greater than the wild-type to form 1-propanol and 1-butanol, respectively. These biocatalysts are highly active for small chain alkane substrates and their regioselectivity is retained in whole-cell biotransformations.

  14. Assimilation of chlorinated alkanes by hydrocarbon-utilizing fungi

    SciTech Connect

    Murphy, G.L.; Perry, J.J.

    1984-12-01

    The fatty acid compositions of two filamentous fungi (Cunninghamella elegans and Penicillium zonatum) and a yeast (Candida lipolytica) were determined after the organisms were grown on 1-chlorohexadecane or 1-chlorooctadecane. These organisms utilized the chlorinated alkanes as sole sources of carbon and energy. Analyses of the fatty acids present after growth on the chlorinated alkanes indicated that 60 to 70% of the total fatty acids in C. elegans were chlorinated. Approximately 50% of the fatty acids in C. lipolytica were also chlorinated. P. zonatum contained 20% 1-chlorohexadecanoic acid after growth on either substrate but did not incorporate C/sub 18/ chlorinated fatty acids.

  15. Formation of a stable radical by oxidation of a tetraorganoborate.

    PubMed

    Braunschweig, Holger; Krummenacher, Ivo; Mailänder, Lisa; Pentecost, Leanne; Vargas, Alfredo

    2016-05-19

    Herein, we describe the selective formation of a stable neutral spiroborate radical by one-electron oxidation of the corresponding tetraorganoborate salt Li[B(C4Ph4)2], formally containing a tetrahedral borate centre and a s-cis-butadiene radical cation as the spin-bearing site. Spectroscopic and computational methods have been used to determine the spin distribution and the chromism observed in the solid state. PMID:27157624

  16. 40 CFR 721.785 - Halogenated alkane aromatic compound (generic name).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Halogenated alkane aromatic compound... Specific Chemical Substances § 721.785 Halogenated alkane aromatic compound (generic name). (a) Chemical... as a halogenated alkane aromatic compound (PMN P-94-1747) is subject to reporting under this...

  17. 40 CFR 721.785 - Halogenated alkane aromatic compound (generic name).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Halogenated alkane aromatic compound... Specific Chemical Substances § 721.785 Halogenated alkane aromatic compound (generic name). (a) Chemical... as a halogenated alkane aromatic compound (PMN P-94-1747) is subject to reporting under this...

  18. 40 CFR 721.785 - Halogenated alkane aromatic compound (generic name).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Halogenated alkane aromatic compound... Specific Chemical Substances § 721.785 Halogenated alkane aromatic compound (generic name). (a) Chemical... as a halogenated alkane aromatic compound (PMN P-94-1747) is subject to reporting under this...

  19. 40 CFR 721.785 - Halogenated alkane aromatic compound (generic name).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Halogenated alkane aromatic compound... Specific Chemical Substances § 721.785 Halogenated alkane aromatic compound (generic name). (a) Chemical... as a halogenated alkane aromatic compound (PMN P-94-1747) is subject to reporting under this...

  20. 40 CFR 721.785 - Halogenated alkane aromatic compound (generic name).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Halogenated alkane aromatic compound... Specific Chemical Substances § 721.785 Halogenated alkane aromatic compound (generic name). (a) Chemical... as a halogenated alkane aromatic compound (PMN P-94-1747) is subject to reporting under this...

  1. Use of n-hexadecane-1,2-{sup 13}C to understand the cracking mechanism and kinetics of normal alkanes in crude oils

    SciTech Connect

    Burnham, A.K.; Gregg, H.R.; Ward, R.L.; Knauss, K.G.

    1995-12-01

    Adjacent {sup 13}C atoms are rare in natural abundance, so their use as isotopic tracers provides a sensitive and selective method to follow reaction pathways of specific molecules in complex reaction matrices. N-hexadecane-1,2-{sup 13}C added to neat hexedecane and three distinctly different crude oils has enabled us to outline similarities and differences in the high-pressure alkane cracking reactions in these different matrices, with and without added water. Reaction progress was monitored by GC-MS (P+2) and {sup 13}C NMR ({open_quotes}INADEQUATE{close_quotes} pulse sequence). The overall cracking rate is 60% slower in real oils, apparently because more labile sources in the crude oil preferentially donate hydrogen to the alkyl radicals. The oil matrices also inhibit the formation of larger branched alkanes by alkyl addition of alkenes.

  2. Cross-dehydrogenative coupling of α-C(sp(3))-H of ethers/alkanes with C(sp(2))-H of heteroarenes under metal-free conditions.

    PubMed

    Ambala, Srinivas; Thatikonda, Thanusha; Sharma, Shweta; Munagala, Gurunadham; Yempalla, Kushalava Reddy; Vishwakarma, Ram A; Singh, Parvinder Pal

    2015-12-14

    Here we have developed an effective metal-free dehydrogenative coupling method wherein α-oxyalkyl and alkyl radicals were generated from various ethers and alkanes to undergo coupling with a variety of electron-deficient heteroarenes such as un/substituted iso-quinolones, quinolines, pyridines, pyrazines and pyrimidines. The persulfate-acetone-water system was optimized for the dehydrogenative coupling with cyclic ethers which gave moderate to excellent yields of α-oxyalkyl containing heteroarenes. We have also optimized the conditions for coupling with cyclic alkanes and alicyclic ethers and demonstrated by conducting the reactions with a variety of electron-deficient heteroarenes. Further, the present method is also applicable to electron deficient arenes like naphthoquinones and moreover, it didn't require any external acid. PMID:26419479

  3. DNA Binding Hydroxyl Radical Probes

    PubMed Central

    Tang, Vicky J; Konigsfeld, Katie M; Aguilera, Joe A; Milligan, Jamie R

    2011-01-01

    The hydroxyl radical is the primary mediator of DNA damage by the indirect effect of ionizing radiation. It is a powerful oxidizing agent produced by the radiolysis of water and is responsible for a significant fraction of the DNA damage associated with ionizing radiation. There is therefore an interest in the development of sensitive assays for its detection. The hydroxylation of aromatic groups to produce fluorescent products has been used for this purpose. We have examined four different chromophores which produce fluorescent products when hydroxylated. Of these, the coumarin system suffers from the fewest disadvantages. We have therefore examined its behavior when linked to a cationic peptide ligand designed to bind strongly to DNA. PMID:22125376

  4. Radical prostatectomy - discharge

    MedlinePlus

    ... prostatectomy - discharge; Laparoscopic radical prostatectomy - discharge; LRP - discharge; Robotic-assisted laparoscopic prostatectomy - discharge ; RALP - discharge; Pelvic lymphadenectomy - ...

  5. Sunlight and free radicals

    NASA Astrophysics Data System (ADS)

    Tidwell, Thomas

    2013-08-01

    Thomas Tidwell reflects on the overlooked -- but prescient -- proposal by the British chemists Arthur Downes and Thomas Blunt for photochemical free-radical formation, decades before Moses Gomberg launched the field of radical chemistry by preparing triphenylmethyl, the first stable organic radical.

  6. Cyano- and polycyanometallo-porphyrins as catalysts for alkane oxidation

    DOEpatents

    Ellis, P.E. Jr.; Lyons, J.E.

    1993-05-18

    New compositions of matter comprising cyano-substituted metal complexes of porphyrins are catalysts for the oxidation of alkanes. The metal is iron, chromium, manganese, ruthenium, copper or cobalt. The porphyrin ring has cyano groups attached thereto in meso- and/or [beta]-pyrrolic positions.

  7. Cyano- and polycyanometallo-porphyrins as catalysts for alkane oxidation

    DOEpatents

    Ellis, Jr., Paul E.; Lyons, James E.

    1993-01-01

    New compositions of matter comprising cyano-substituted metal complexes of porphyrins are catalysts for the oxidation of alkanes. The metal is iron, chromium, manganese, ruthenium, copper or cobalt. The porphyrin ring has cyano groups attached thereto in meso and/or .beta.-pyrrolic positions.

  8. Cyano- and polycyanometallo-porphyrins as catalysts for alkane oxidation

    DOEpatents

    Ellis, P.E. Jr.; Lyons, J.E.

    1995-01-17

    New compositions of matter comprising cyano-substituted metal complexes of porphyrins are catalysts for the oxidation of alkanes. The metal is iron, chromium, manganese, ruthenium, copper or cobalt. The porphyrin ring has cyano groups attached thereto in meso and/or [beta]-pyrrolic positions.

  9. Cyano- and polycyanometallo-porphyrins as catalysts for alkane oxidation

    DOEpatents

    Ellis, Jr., Paul E.; Lyons, James E.

    1995-01-01

    New compositions of matter comprising cyano-substituted metal complexes of porphyrins are catalysts for the oxidation of alkanes. The metal is iron, chromium, manganese, ruthenium, copper or cobalt. The porphyrin ring has cyano groups attached thereto in meso and/or .beta.-pyrrolic positions.

  10. MODELING OF ALKANE EMISSIONS FROM A WOOD STAIN

    EPA Science Inventory

    The article discusses full-scale residential house tests to evaluate the effects of organic emissions from a wood finishing product--wood stain--on indoor air quality (IAQ). The test house concentrations of three alkane species, nonane, decane, and undecane, were measured as a fu...

  11. Analysis of the vibrational bandwidths of alkane-urea clathrates

    NASA Astrophysics Data System (ADS)

    Wood, Kurt A.; Snyder, Robert G.; Strauss, Herbert L.

    1989-11-01

    The only large amplitude motion possible for an n-alkane molecule in urea-inclusion compounds is libration-torsion about the long axis of the chain. We present a quantitative model that incorporates the effect of this motion on the widths of the alkane vibrational bands. This model explains the difference in the widths of the different vibrations of the alkanes and their temperature dependence. Two effects are combined: (1) a modulation of the angles between the components of the polarizability in the space and the molecule-fixed frames for Raman spectra or between the components of the dipole moment for the infrared spectra, and (2) a modulation of the frequency of the alkane vibration via anharmonic coupling terms with the libration-torsion. The first effect gives rise to a distinctly non-Lorentzian band shape, which is convoluted with the approximately Lorentzian band of the second effect to produce the final result. The libration-torsional motion is modeled as that of a Brownian harmonic oscillator. Most of the parameters that enter the calculation are obtained from data other than that involving the bandwidths themselves. The libration-torsion relaxation time of about 1 ps obtained from fitting the observed bandwidths agrees with the value obtained from recent quasielastic neutron scattering experiments. Other bandwidth mechanisms that have been proposed are evaluated and it is shown that site hopping is too slow to account for the observations.

  12. Diverse alkane hydroxylase genes in microorganisms and environments

    PubMed Central

    Nie, Yong; Chi, Chang-Qiao; Fang, Hui; Liang, Jie-Liang; Lu, She-Lian; Lai, Guo-Li; Tang, Yue-Qin; Wu, Xiao-Lei

    2014-01-01

    AlkB and CYP153 are important alkane hydroxylases responsible for aerobic alkane degradation in bioremediation of oil-polluted environments and microbial enhanced oil recovery. Since their distribution in nature is not clear, we made the investigation among thus-far sequenced 3,979 microbial genomes and 137 metagenomes from terrestrial, freshwater, and marine environments. Hundreds of diverse alkB and CYP153 genes including many novel ones were found in bacterial genomes, whereas none were found in archaeal genomes. Moreover, these genes were detected with different distributional patterns in the terrestrial, freshwater, and marine metagenomes. Hints for horizontal gene transfer, gene duplication, and gene fusion were found, which together are likely responsible for diversifying the alkB and CYP153 genes adapt to the ubiquitous distribution of different alkanes in nature. In addition, different distributions of these genes between bacterial genomes and metagenomes suggested the potentially important roles of unknown or less common alkane degraders in nature. PMID:24829093

  13. Improving alkane synthesis in Escherichia coli via metabolic engineering.

    PubMed

    Song, Xuejiao; Yu, Haiying; Zhu, Kun

    2016-01-01

    Concerns about energy security and global petroleum supply have made the production of renewable biofuels an industrial imperative. The ideal biofuels are n-alkanes in that they are chemically and structurally identical to the fossil fuels and can "drop in" to the transportation infrastructure. In this work, an Escherichia coli strain that produces n-alkanes was constructed by heterologous expression of acyl-acyl carrier protein (ACP) reductase (AAR) and aldehyde deformylating oxygenase (ADO) from Synechococcus elongatus PCC7942. The accumulation of alkanes ranged from 3.1 to 24.0 mg/L using different expressing strategies. Deletion of yqhD, an inherent aldehyde reductase in E. coli, or overexpression of fadR, an activator for fatty acid biosynthesis, exhibited a nearly twofold increase in alkane titers, respectively. Combining yqhD deletion and fadR overexpression resulted in a production titer of 255.6 mg/L in E. coli, and heptadecene was the most abundant product. PMID:26476644

  14. Cyano- and polycyanometalloporphyrins as catalysts for alkane oxidation

    DOEpatents

    Ellis, Jr., Paul E.; Lyons, James E.

    1992-01-01

    Alkanes are oxidized by contact with oxygen-containing gas in the presence as catalyst of a metalloporphyrin in which hydrogen atoms in the porphyrin ring have been substituted with one or more cyano groups. Hydrogen atoms in the porphyrin ring may also be substituted with halogen atoms.

  15. Integrated process for preparing a carboxylic acid from an alkane

    DOEpatents

    Benderly, Abraham; Chadda, Nitin; Sevon, Douglass

    2011-12-20

    The present invention relates to an integrated process for producing unsaturated carboxylic acids from the corresponding C.sub.2-C.sub.4 alkane. The process begins with performance of thermally integrated dehydrogenation reactions which convert a C.sub.2-C.sub.4 alkane to its corresponding C.sub.2-C.sub.4 alkene, and which involve exothermically converting a portion of an alkane to its corresponding alkene by oxidative dehydrogenation in an exothermic reaction zone, in the presence of oxygen and a suitable catalyst, and then feeding the products of the exothermic reaction zone to an endothermic reaction zone wherein at least a portion of the remaining unconverted alkane is endothermically dehydrogenated to form an additional quantity of the same corresponding alkene, in the presence of carbon dioxide and an other suitable catalyst. The alkene products of the thermally integrated dehydrogenation reactions are then provided to a catalytic vapor phase partial oxidation process for conversion of the alkene to the corresponding unsaturated carboxylic acid or nitrile. Unreacted alkene and carbon dioxide are recovered from the oxidation product stream and recycled back to the thermally integrated dehydrogenation reactions.

  16. Modular and selective biosynthesis of gasoline-range alkanes.

    PubMed

    Sheppard, Micah J; Kunjapur, Aditya M; Prather, Kristala L J

    2016-01-01

    Typical renewable liquid fuel alternatives to gasoline are not entirely compatible with current infrastructure. We have engineered Escherichia coli to selectively produce alkanes found in gasoline (propane, butane, pentane, heptane, and nonane) from renewable substrates such as glucose or glycerol. Our modular pathway framework achieves carbon-chain extension by two different mechanisms. A fatty acid synthesis route is used to generate longer chains heptane and nonane, while a more energy efficient alternative, reverse-β-oxidation, is used for synthesis of propane, butane, and pentane. We demonstrate that both upstream (thiolase) and intermediate (thioesterase) reactions can act as control points for chain-length specificity. Specific free fatty acids are subsequently converted to alkanes using a broad-specificity carboxylic acid reductase and a cyanobacterial aldehyde decarbonylase (AD). The selectivity obtained by different module pairings provides a foundation for tuning alkane product distribution for desired fuel properties. Alternate ADs that have greater activity on shorter substrates improve observed alkane titer. However, even in an engineered host strain that significantly reduces endogenous conversion of aldehyde intermediates to alcohol byproducts, AD activity is observed to be limiting for all chain lengths. Given these insights, we discuss guiding principles for pathway selection and potential opportunities for pathway improvement. PMID:26556131

  17. Diffusion of squalene in n-alkanes and squalane.

    PubMed

    Kowert, Bruce A; Watson, Michael B; Dang, Nhan C

    2014-02-27

    Squalene, an intermediate in the biosynthesis of cholesterol, has a 24-carbon backbone with six methyl groups and six isolated double bonds. Capillary flow techniques have been used to determine its translational diffusion constant, D, at room temperature in squalane, n-C16, and three n-C8-squalane mixtures. The D values have a weaker dependence on viscosity, η, than predicted by the Stokes-Einstein relation, D = kBT/(6πηr). A fit to the modified relation, D/T = ASE/η(p), gives p = 0.820 ± 0.028; p = 1 for the Stokes-Einstein limit. The translational motion of squalene appears to be much like that of n-alkane solutes with comparable chain lengths; their D values show similar deviations from the Stokes-Einstein model. The n-alkane with the same carbon chain length as squalene, n-C24, has a near-equal p value of 0.844 ± 0.018 in n-alkane solvents. The values of the hydrodynamic radius, r, for n-C24, squalene, and other n-alkane solutes decrease as the viscosity increases and have a common dependence on the van der Waals volumes of the solute and solvent. The possibility of studying squalene in lipid droplets and membranes is discussed. PMID:24528091

  18. Catalytic oxidation of light alkanes in presence of a base

    DOEpatents

    Bhinde, Manoj V.; Bierl, Thomas W.

    1998-01-01

    The presence of a base in the reaction mixture in a metal-ligand catalyzed partial oxidation of alkanes results in sustained catalyst activity, and in greater percent conversion as compared with oxidation in the absence of base, while maintaining satisfactory selectivity for the desired oxidation, for example the oxidation of isobutane to isobutanol.

  19. Catalytic oxidation of light alkanes in presence of a base

    DOEpatents

    Bhinde, M.V.; Bierl, T.W.

    1998-03-03

    The presence of a base in the reaction mixture in a metal-ligand catalyzed partial oxidation of alkanes results in sustained catalyst activity, and in greater percent conversion as compared with oxidation in the absence of base, while maintaining satisfactory selectivity for the desired oxidation, for example the oxidation of isobutane to isobutanol. 1 fig.

  20. MODELING OF ALKANE EMISSIONS FROM A WOOD STAIN

    EPA Science Inventory

    The article discusses full-scale residential house tests to evaluate the effects of organic emissions from a wood finishing product--wood stain--on indoor air quality (IAQ). he test house concentrations of three alkane species, nonane, decane, and undecane, were measured as a fun...

  1. A superoleophobic textile repellent towards impacting drops of alkanes

    NASA Astrophysics Data System (ADS)

    Artus, Georg R. J.; Zimmermann, Jan; Reifler, Felix A.; Brewer, Stuart A.; Seeger, Stefan

    2012-02-01

    A commercially available polyester fabric has been rendered superoleophobic by coating with silicone nanofilaments and subsequent plasma fluorination. The treated samples show outstanding oil-repellency. They achieve the highest possible oil-repellency grade of 8, repel impacting drops of alkanes and show a plastron layer in hexadecane. The oil repellency is shown to depend on the topography of the silicone nanofilament coating.

  2. Isolating the non-polar contributions to the intermolecular potential for water-alkane interactions

    NASA Astrophysics Data System (ADS)

    Ballal, Deepti; Venkataraman, Pradeep; Fouad, Wael A.; Cox, Kenneth R.; Chapman, Walter G.

    2014-08-01

    Intermolecular potential models for water and alkanes describe pure component properties fairly well, but fail to reproduce properties of water-alkane mixtures. Understanding interactions between water and non-polar molecules like alkanes is important not only for the hydrocarbon industry but has implications to biological processes as well. Although non-polar solutes in water have been widely studied, much less work has focused on water in non-polar solvents. In this study we calculate the solubility of water in different alkanes (methane to dodecane) at ambient conditions where the water content in alkanes is very low so that the non-polar water-alkane interactions determine solubility. Only the alkane-rich phase is simulated since the fugacity of water in the water rich phase is calculated from an accurate equation of state. Using the SPC/E model for water and TraPPE model for alkanes along with Lorentz-Berthelot mixing rules for the cross parameters produces a water solubility that is an order of magnitude lower than the experimental value. It is found that an effective water Lennard-Jones energy ɛW/k = 220 K is required to match the experimental water solubility in TraPPE alkanes. This number is much higher than used in most simulation water models (SPC/E—ɛW/k = 78.2 K). It is surprising that the interaction energy obtained here is also higher than the water-alkane interaction energy predicted by studies on solubility of alkanes in water. The reason for this high water-alkane interaction energy is not completely understood. Some factors that might contribute to the large interaction energy, such as polarizability of alkanes, octupole moment of methane, and clustering of water at low concentrations in alkanes, are examined. It is found that, though important, these factors do not completely explain the anomalously strong attraction between alkanes and water observed experimentally.

  3. Secondary organic aerosol composition from C12 alkanes.

    PubMed

    Schilling Fahnestock, Katherine A; Yee, Lindsay D; Loza, Christine L; Coggon, Matthew M; Schwantes, Rebecca; Zhang, Xuan; Dalleska, Nathan F; Seinfeld, John H

    2015-05-14

    The effects of structure, NOx conditions, relative humidity, and aerosol acidity on the chemical composition of secondary organic aerosol (SOA) are reported for the photooxidation of three C12 alkanes: n-dodecane, cyclododecane, and hexylcyclohexane. Acidity was modified through seed particle composition: NaCl, (NH4)2SO4, and (NH4)2SO4 + H2SO4. Off-line analysis of SOA was carried out by solvent extraction and gas chromatography-mass spectrometry (GC/MS) and direct analysis in real-time mass spectrometry. We report here 750 individual masses of SOA products identified from these three alkane systems and 324 isomers resolved by GC/MS analysis. The chemical compositions for each alkane system provide compelling evidence of particle-phase chemistry, including reactions leading to oligomer formation. Major oligomeric species for alkane SOA are peroxyhemiacetals, hemiacetals, esters, and aldol condensation products. Furans, dihydrofurans, hydroxycarbonyls, and their corresponding imine analogues are important participants in these oligomer-producing reactions. Imines are formed in the particle phase from the reaction of the ammonium sulfate seed aerosol with carbonyl-bearing compounds present in all the SOA systems. Under high-NO conditions, organonitrate products can lead to an increase of aerosol volume concentration by up to a factor of 5 over that in low-NO conditions. Structure was found to play a key role in determining the degree of functionalization and fragmentation of the parent alkane, influencing the mean molecular weight of the SOA produced and the mean atomic O:C ratio. PMID:24814371

  4. Relative yields of radicals produced in deuterated methanol by irradiation

    NASA Astrophysics Data System (ADS)

    Nakagawa, Seiko

    2016-05-01

    The relative yields of radicals produced in four kinds of methanols; i.e., CH3OH, CH3OD, CD3OH and CD3OD, by γ-irradiation have been studied using ESR spin trapping with PBN. Both PBN-H and PBN-D were produced from CH3OD and CD3OH. This means that the proton transfer to the neutral methanol from the cationic one is one of the processes to produce both the methoxy and hydoxy-methyl radicals. The yield of the methoxy radical adduct relative to the hydroxy-methyl radical adduct decreased in the order CD3OH>CD3OD>CH3OH>CH3OD. The difference in the rates of the proton transfer and hydrogen abstraction reactions by substitution with deuterium is the reason for the variation in the relative radical yield.

  5. Contemporary Radical Prostatectomy

    PubMed Central

    Fu, Qiang; Moul, Judd W.; Sun, Leon

    2011-01-01

    Purpose. Patients diagnosed with clinically localized prostate cancer have more surgical treatment options than in the past. This paper focuses on the procedures' oncological or functional outcomes and perioperative morbidities of radical retropubic prostatectomy, radical perineal prostatectomy, and robotic-assisted laparoscopic radical prostatectomy. Materials and Methods. A MEDLINE/PubMed search of the literature on radical prostatectomy and other new management options was performed. Results. Compared to the open procedures, robotic-assisted radical prostatectomy has no confirmed significant difference in most literatures besides less blood loss and blood transfusion. Nerve sparing is a safe means of preserving potency on well-selected patients undergoing radical prostatectomy. Positive surgical margin rates of radical prostatectomy affect the recurrence and survival of prostate cancer. The urinary and sexual function outcomes have been vastly improved. Neoadjuvant treatment only affects the rate of positive surgical margin. Adjuvant therapy can delay and reduce the risk of recurrence and improve the survival of the high risk prostate cancer. Conclusions. For the majority of patients with organ-confined prostate cancer, radical prostatectomy remains a most effective approach. Radical perineal prostatectomy remains a viable approach for patients with morbid obesity, prior pelvic surgery, or prior pelvic radiation. Robot-assisted laparoscopic prostatectomy (RALP) has become popular among surgeons but has not yet become the firmly established standard of care. Long-term data have confirmed the efficacy of radical retropubic prostatectomy with disease control rates and cancer-specific survival rates. PMID:22110994

  6. Oxidizing properties of CCl 3O .2 radicals studied by pulse radiolysis

    NASA Astrophysics Data System (ADS)

    Grodkowski, J.; Stuglik, Z.; Czajkowski, W.

    CCl 3O .2 radicals were produced by reactions of solvated electrons with CCl 4 in the presence of O 2 in the solutions. The reducing species e -solv were thus converted into oxidizing radicals. There are presented examples of organic radical-cations production by reactions of appropriate solutes with CCl 3O .2 in methanol and 2-propanol solutions, which are rather typical media for reduction processes.

  7. The vibrational spectrum of water in liquid alkanes.

    PubMed Central

    Conrad, M P; Strauss, H L

    1985-01-01

    The water wire hypothesis of hydrogen-ion transport in lipid bilayers has prompted a search for water aggregates in bulk hydrocarbons. The asymmetric stretching vibration of the water dissolved in n-decane and in a number of other alkanes and alkenes has been observed. The water band in the alkanes is very wide and fits to the results of a J-diffusion calculation for the water rotation. This implies that the water is freely rotating between collisions with the solvent and certainly not hydrogen bonded to anything. The existence of water aggregates is thus most unlikely. In contrast, water in an alkene is hydrogen bonded to the solvent molecules (although not to other water molecules) and shows an entirely different spectrum. PMID:4016205

  8. Site isolation in vanadium phosphorus oxide alkane oxidation

    SciTech Connect

    Thompson, M R; Ebner, J R

    1991-06-01

    Single crystal X-ray diffraction studies of vanadyl pyrophosphate indicate that at least two polytypical structures exists for this active and selective alkane oxidation catalyst. The crystal structures of these materials differ with respect to the symmetry and direction of columns of vanadyl groups within the unit cell. Single crystals of vanadyl pyrophosphate have been generated at extreme temperatures not often experienced by microcrystalline catalysts. The crystallography of the system suggests that other crystalline modifications or disordered phases might also exist. Zeroth-order models of crystal surface termination of vanadyl pyrophosphate have been constructed which conceptually illustrate the ability of vanadyl pyrophosphate to accommodate varying amounts of surface phosphorus parallel to (1,0,0), (0,1,0) and (0,2,4). Pyrophosphate termination of surfaces parallel to (1,0,0) likely results in the isolation of clusters of reactive centers and limits overoxidation of the alkane substrate. 23 refs., 6 figs.

  9. Flash Points of Secondary Alcohol and n-Alkane Mixtures.

    PubMed

    Esina, Zoya N; Miroshnikov, Alexander M; Korchuganova, Margarita R

    2015-11-19

    The flash point is one of the most important characteristics used to assess the ignition hazard of mixtures of flammable liquids. To determine the flash points of mixtures of secondary alcohols with n-alkanes, it is necessary to calculate the activity coefficients. In this paper, we use a model that allows us to obtain enthalpy of fusion and enthalpy of vaporization data of the pure components to calculate the liquid-solid equilibrium (LSE) and vapor-liquid equilibrium (VLE). Enthalpy of fusion and enthalpy of vaporization data of secondary alcohols in the literature are limited; thus, the prediction of these characteristics was performed using the method of thermodynamic similarity. Additionally, the empirical models provided the critical temperatures and boiling temperatures of the secondary alcohols. The modeled melting enthalpy and enthalpy of vaporization as well as the calculated LSE and VLE flash points were determined for the secondary alcohol and n-alkane mixtures. PMID:26491811

  10. Adsorption of n-alkane vapours at the water surface.

    PubMed

    Biscay, Frédéric; Ghoufi, Aziz; Malfreyt, Patrice

    2011-06-21

    Monte Carlo simulations are reported here to predict the surface tension of the liquid-vapour interface of water upon adsorption of alkane vapours (methane to hexane). A decrease of the surface tension has been established from n-pentane. A correlation has been evidenced between the decrease of the surface tension and the absence of specific arrangement at the water surface for n-pentane and n-hexane. The thermodynamic stability of the adsorption layer and the absence of film for longer alkanes have been checked through the calculation of a potential of mean force. This complements the work recently published [Ghoufi et al., Phys. Chem. Chem. Phys., 2010, 12, 5203] concerning the adsorption of methane at the water surface. The decrease of the surface tension has been interpreted in terms of the degree of hydrogen bonding of water molecules at the liquid-vapour interface upon adsorption. PMID:21584320

  11. Alkane Biosynthesis Genes in Cyanobacteria and Their Transcriptional Organization

    PubMed Central

    Klähn, Stephan; Baumgartner, Desirée; Pfreundt, Ulrike; Voigt, Karsten; Schön, Verena; Steglich, Claudia; Hess, Wolfgang R.

    2014-01-01

    In cyanobacteria, alkanes are synthesized from a fatty acyl-ACP by two enzymes, acyl–acyl carrier protein reductase and aldehyde deformylating oxygenase. Despite the great interest in the exploitation for biofuel production, nothing is known about the transcriptional organization of their genes or the physiological function of alkane synthesis. The comparison of 115 microarray datasets indicates the relatively constitutive expression of aar and ado genes. The analysis of 181 available genomes showed that in 90% of the genomes both genes are present, likely indicating their physiological relevance. In 61% of them they cluster together with genes encoding acetyl-CoA carboxyl transferase and a short-chain dehydrogenase, strengthening the link to fatty acid metabolism and in 76% of the genomes they are located in tandem, suggesting constraints on the gene arrangement. However, contrary to the expectations for an operon, we found in Synechocystis sp. PCC 6803 specific promoters for the two genes, sll0208 (ado) and sll0209 (aar), which give rise to monocistronic transcripts. Moreover, the upstream located ado gene is driven by a proximal as well as a second, distal, promoter, from which a third transcript, the ~160 nt sRNA SyR9 is transcribed. Thus, the transcriptional organization of the alkane biosynthesis genes in Synechocystis sp. PCC 6803 is of substantial complexity. We verified all three promoters to function independently from each other and show a similar promoter arrangement also in the more distant Nodularia spumigena, Trichodesmium erythraeum, Anabaena sp. PCC 7120, Prochlorococcus MIT9313, and MED4. The presence of separate regulatory elements and the dominance of monocistronic mRNAs suggest the possible autonomous regulation of ado and aar. The complex transcriptional organization of the alkane synthesis gene cluster has possible metabolic implications and should be considered when manipulating the expression of these genes in cyanobacteria. PMID

  12. Hydroxylation of alkanes using sodium hypochlorite catalyzed by iron porphyrins

    SciTech Connect

    Sorokin, A.B.; Khenkin, A.M.

    1988-10-01

    This communication presents data about the oxidation of alkanes to alcohols with hypochlorite in the presence of Fe(III) phenylporphyrin derivatives in the system water-benzene. We used as catalysts the following compounds: tetraphenylporphyrin iron chloride, tetramesitylporphyrin iron chloride, tetra(2-fluorophenyl)porphyrin from chloride, and tetra (2-ntrophenyl)porphyrin iron chloride. The reaction products were analyzed by gas-liquid chromatography. The efficiency of the reaction was determined by the structure of the porphyrin used.

  13. Modeling SOA production from the oxidation of intermediate volatility alkanes

    NASA Astrophysics Data System (ADS)

    Aumont, B.; Mouchel-Vallon, C.; Camredon, M.; Lee-Taylor, J.; Madronich, S.

    2012-12-01

    Secondary Organic Aerosols (SOA) production and ageing is a multigenerational oxidation process involving the formation of successive organic compounds with higher oxidation degree and lower vapour pressure. This process was investigated using the explicit oxidation model GECKO-A (Generator for Explicit Chemistry and Kinetics of Organics in the Atmosphere). Results for the C8-C24 n-alkane series show the expected trends, i.e. (i) SOA yield grows with the carbon backbone of the parent hydrocarbon, (ii) SOA yields decreases with the decreasing pre-existing organic aerosol concentration, (iii) the number of generations required to describe SOA production increases when the pre-existing organic aerosol concentration decreases. Most SOA contributors were found to be not oxidized enough to be categorized as highly oxygenated organic aerosols (OOA) but reduced enough to be categorized as hydrocarbon like organic aerosols (HOA). Branched alkanes are more prone to fragment in the early stage of the oxidation than their corresponding linear analogues. Fragmentation is expected to alter both the yield and the mean oxidation state of the SOA. Here, GECKO-A is applied to generate highly detailed oxidation schemes for various series of branched and cyclised alkanes. Branching and cyclisation effects on SOA yields and oxidation states will be examined.

  14. Nanoscale Trapping and Squeeze-Out of Confined Alkane Monolayers.

    PubMed

    Gosvami, N N; O'Shea, S J

    2015-12-01

    We present combined force curve and conduction atomic force microscopy (AFM) data for the linear alkanes CnH2n+2 (n = 10, 12, 14, 16) confined between a gold-coated AFM tip and a graphite surface. Solvation layering is observed in the force curves for all liquids, and conduction AFM is used to study in detail the removal of the confined (mono)layer closest to the graphite surface. The squeeze-out behavior of the monolayer can be very different depending upon the temperature. Below the monolayer melting transition temperatures the molecules are in an ordered state on the graphite surface, and fast and complete removal of the confined molecules is observed. However, above the melting transition temperature the molecules are in a disordered state, and even at large applied pressure a few liquid molecules are trapped within the tip-sample contact zone. These findings are similar to a previous study for branched alkanes [ Gosvami Phys. Rev. Lett. 2008, 100, 076101 ], but the observation for the linear alkane homologue series demonstrates clearly the dependence of the squeeze-out and trapping on the state of the confined material. PMID:26529283

  15. Dielectric constant of liquid alkanes and hydrocarbon mixtures

    NASA Technical Reports Server (NTRS)

    Sen, A. D.; Anicich, V. G.; Arakelian, T.

    1992-01-01

    The complex dielectric constants of n-alkanes with two to seven carbon atoms have been measured. The measurements were conducted using a slotted-line technique at 1.2 GHz and at atmospheric pressure. The temperature was varied from the melting point to the boiling point of the respective alkanes. The real part of the dielectric constant was found to decrease with increasing temperature and correlate with the change in the molar volume. An upper limit to all the loss tangents was established at 0.001. The complex dielectric constants of a few mixtures of liquid alkanes were also measured at room temperature. For a pentane-octane mixture the real part of the dielectric constant could be explained by the Clausius-Mosotti theory. For the mixtures of n-hexane-ethylacetate and n-hexane-acetone the real part of the dielectric constants could be explained by the Onsager theory extended to mixtures. The dielectric constant of the n-hexane-acetone mixture displayed deviations from the Onsager theory at the highest fractions of acetone. The dipole moments of ethylacetate and acetone were determined for dilute mixtures using the Onsager theory and were found to be in agreement with their accepted gas-phase values. The loss tangents of the mixtures exhibited a linear relationship with the volume fraction for low concentrations of the polar liquids.

  16. Alkane production from biomass: chemo-, bio- and integrated catalytic approaches.

    PubMed

    Deneyer, Aron; Renders, Tom; Van Aelst, Joost; Van den Bosch, Sander; Gabriëls, Dries; Sels, Bert F

    2015-12-01

    Linear, branched and cyclic alkanes are important intermediates and end products of the chemical industry and are nowadays mainly obtained from fossil resources. In search for alternatives, biomass feedstocks are often presented as a renewable carbon source for the production of fuels, chemicals and materials. However, providing a complete market for all these applications seems unrealistic due to both financial and logistic issues. Despite the very large scale of current alkane-based fuel applications, biomass definitely has the potential to offer a partial solution to the fuel business. For the smaller market of chemicals and materials, a transition to biomass as main carbon source is more realistic and even probably unavoidable in the long term. The appropriate use and further development of integrated chemo- and biotechnological (catalytic) process strategies will be crucial to successfully accomplish this petro-to-bio feedstock transition. Furthermore, a selection of the most promising technologies from the available chemo- and biocatalytic tool box is presented. New opportunities will certainly arise when multidisciplinary approaches are further explored in the future. In an attempt to select the most appropriate biomass sources for each specific alkane-based application, a diagram inspired by van Krevelen is applied, taking into account both the C-number and the relative functionality of the product molecules. PMID:26360875

  17. Additional chain-branching pathways in the low-temperature oxidation of branched alkanes

    SciTech Connect

    Wang, Zhandong; Zhang, Lidong; Moshammer, Kai; Popolan-Vaida, Denisia M.; Shankar, Vijai Shankar Bhavani; Lucassen, Arnas; Hemken, Christian; Taatjes, Craig A.; Leone, Stephen R.; Kohse-Hoinghaus, Katharina; Hansen, Nils; Dagaut, Philippe; Sarathy, S. Mani

    2015-12-31

    Chain-branching reactions represent a general motif in chemistry, encountered in atmospheric chemistry, combustion, polymerization, and photochemistry; the nature and amount of radicals generated by chain-branching are decisive for the reaction progress, its energy signature, and the time towards its completion. In this study, experimental evidence for two new types of chain-branching reactions is presented, based upon detection of highly oxidized multifunctional molecules (HOM) formed during the gas-phase low-temperature oxidation of a branched alkane under conditions relevant to combustion. The oxidation of 2,5-dimethylhexane (DMH) in a jet-stirred reactor (JSR) was studied using synchrotron vacuum ultra-violet photoionization molecular beam mass spectrometry (SVUV-PI-MBMS). Specifically, species with four and five oxygen atoms were probed, having molecular formulas of C8H14O4 (e.g., diketo-hydroperoxide/keto-hydroperoxy cyclic ether) and C8H16O5 (e.g., keto-dihydroperoxide/dihydroperoxy cyclic ether), respectively. The formation of C8H16O5 species involves alternative isomerization of OOQOOH radicals via intramolecular H-atom migration, followed by third O2 addition, intramolecular isomerization, and OH release; C8H14O4 species are proposed to result from subsequent reactions of C8H16O5 species. The mechanistic pathways involving these species are related to those proposed as a source of low-volatility highly oxygenated species in Earth's troposphere. At the higher temperatures relevant to auto-ignition, they can result in a net increase of hydroxyl radical production, so these are additional radical chain-branching pathways for ignition. Furthermore, the results presented herein extend the conceptual basis of reaction mechanisms used to predict the reaction behavior of ignition, and have

  18. Reassessing Radical Pedagogy.

    ERIC Educational Resources Information Center

    Sweet, Stephen

    1998-01-01

    Responds to comments about, and critiques of, his own article on radical pedagogy. Outlines major points of contention raised by other commentators and responds to them, including matters of definition, power relations in the classroom, and tempering radical theory with pragmatism. (DSK)

  19. [Alchemists' humid radical].

    PubMed

    Lafont, Olivier

    2007-01-01

    The term radical has been used by chemists since the beginnings and even when they still were alchemists. The term "humid radical" is present in numerous alchemists' texts. It was used to represent a kind of "humid", which was considered as different from what is nowadays called "humid", but was a sort of principle necessary for life. PMID:17575839

  20. Laboratory spectroscopic analyses of electron irradiated alkanes and alkenes in solar system ices

    NASA Astrophysics Data System (ADS)

    Hand, K. P.; Carlson, R. W.

    2012-03-01

    We report results from laboratory experiments of 10 keV electron irradiation of thin ice films of water and short-chain hydrocarbons at ˜10-8 Torr and temperatures ranging from 70-100 K. Hydrocarbon mixtures include water with C3H8, C3H6, C4H10 (butane and isobutane), and C4H8, (1-butene and cis/trans-2-butene). The double bonds of the alkenes in our initial mixtures were rapidly destroyed or converted to single carbon bonds, covalent bonds with hydrogen, bonds with -OH (hydroxyl), bonds with oxygen (C-O), or double bonds with oxygen (carbonyl). Spectra resulting from irradiation of alkane and alkene ices are largely indistinguishable; the initial differences in film composition are destroyed and the resulting mixture includes long-chain, branched aliphatics, aldehydes, ketones, esters, and alcohols. Methane was observed as a product during radiolysis but CO was largely absent. We find that while some of the carbon is oxidized and lost to CO2 formation, some carbon is sequestered into highly refractory, long-chain aliphatic compounds that remain as a thin residue even after the ice film has been raised to standard temperature and pressure. We conclude that the high availability of hydrogen in our experiments leads to the formation of the formyl radical which then serves as the precursor for formaldehyde and polymerization of longer hydrocarbon chains.

  1. Modeling the role of alkanes, polycyclic aromatic hydrocarbons, and their oligomers in secondary organic aerosol formation.

    PubMed

    Pye, Havala O T; Pouliot, George A

    2012-06-01

    A computationally efficient method to treat secondary organic aerosol (SOA) from various length and structure alkanes as well as SOA from polycyclic aromatic hydrocarbons (PAHs) is implemented in the Community Multiscale Air Quality (CMAQ) model to predict aerosol concentrations over the United States. Oxidation of alkanes is predicted to produce more aerosol than oxidation of PAHs driven by relatively higher alkane emissions. SOA from alkanes and PAHs, although small in magnitude, can be a substantial fraction of the SOA from anthropogenic hydrocarbons, particularly in winter, and could contribute more if emission inventories lack intermediate volatility alkanes (>C(13)) or if the vehicle fleet shifts toward diesel-powered vehicles. The SOA produced from oxidation of alkanes correlates well with ozone and odd oxygen in many locations, but the lower correlation of anthropogenic oligomers with odd oxygen indicates that models may need additional photochemically dependent pathways to low-volatility SOA. PMID:22568386

  2. Fundamental Flame Velocities of Pure Hydrocarbons I : Alkanes, Alkenes, Alkynes Benzene, and Cyclohexane

    NASA Technical Reports Server (NTRS)

    Gerstein, Melvin; Levine, Oscar; Wong, Edgar L

    1950-01-01

    The flame velocities of 37 pure hydrocarbons including normal and branched alkanes, alkenes, and alkynes; as well as benzene and cyclohexane, together with the experimental technique employed are presented. The normal alkanes have about the same flame velocity from ethane through heptane with methane being about 16 percent lower. Unsaturation increases the flame velocity in the order of alkanes, alkenes, and alkynes. Branching reduces the flame velocity.

  3. Photochemical dimerization and functionalization of alkanes, ethers, primary alcohols and silanes

    DOEpatents

    Crabtree, Robert H.; Brown, Stephen H.

    1988-01-01

    The space-time yield and/or the selectivity of the photochemical dimerization of alkanes, ethers, primary alcohols and tertiary silanes with Hg and U.V. light is enhanced by refluxing the substrate in the irradiated reaction zone at a temperature at which the dimer product condenses and remains condensed promptly upon its formation. Cross-dimerization of the alkanes, ethers and silanes with primary alcohols is disclosed, as is the functionalization to aldehydes of the alkanes with carbon monoxide.

  4. Draft Genome Sequence of Gordonia sihwensis Strain 9, a Branched Alkane-Degrading Bacterium

    PubMed Central

    Brown, Lisa M.; Gunasekera, Thusitha S.; Striebich, Richard C.

    2016-01-01

    Gordonia sihwensis strain 9 is a Gram-positive bacterium capable of efficient aerobic degradation of branched and normal alkanes. The draft genome of G. sihwensis S9 is 4.16 Mb in size, with 3,686 coding sequences and 68.1% G+C content. Alkane monooxygenase and P-450 cytochrome genes required for alkane degradation are predicted in G. sihwensis S9. PMID:27340079

  5. Photochemical dimerization and functionalization of alkanes, ethers, primary alcohols and silanes

    DOEpatents

    Crabtree, R.H.; Brown, S.H.

    1988-02-16

    The space-time yield and/or the selectivity of the photochemical dimerization of alkanes, ethers, primary alcohols and tertiary silanes with Hg and U.V. light is enhanced by refluxing the substrate in the irradiated reaction zone at a temperature at which the dimer product condenses and remains condensed promptly upon its formation. Cross-dimerization of the alkanes, ethers and silanes with primary alcohols is disclosed, as is the functionalization to aldehydes of the alkanes with carbon monoxide.

  6. Molecular screening for alkane hydroxylase genes in Gram-negative and Gram-positive strains.

    PubMed

    Smits, T H; Röthlisberger, M; Witholt, B; van Beilen, J B

    1999-08-01

    We have developed highly degenerate oligonucleotides for polymerase chain reaction (PCR) amplification of genes related to the Pseudomonas oleovorans GPo1 and Acinetobacter sp. ADP1 alkane hydroxylases, based on a number of highly conserved sequence motifs. In all Gram-negative and in two out of three Gram-positive strains able to grow on medium- (C6-C11) or long-chain n-alkanes (C12-C16), PCR products of the expected size were obtained. The PCR fragments were cloned and sequenced and found to encode peptides with 43.2-93.8% sequence identity to the corresponding fragment of the P. oleovorans GPo1 alkane hydroxylase. Strains that were unable to grow on n-alkanes did not yield PCR products with homology to alkane hydroxylase genes. The alkane hydroxylase genes of Acinetobacter calcoaceticus EB104 and Pseudomonas putida P1 were cloned using the PCR products as probes. The two genes allow an alkane hydroxylase-negative mutant of Acinetobacter sp. ADP1 and an Escherichia coli recombinant containing all P. oleovorans alk genes except alkB, respectively, to grow on n-alkanes, showing that the cloned genes do indeed encode alkane hydroxylases. PMID:11207749

  7. Identification and use of an alkane transporter plug-in for applications in biocatalysis and whole-cell biosensing of alkanes

    NASA Astrophysics Data System (ADS)

    Grant, Chris; Deszcz, Dawid; Wei, Yu-Chia; Martínez-Torres, Rubéns Julio; Morris, Phattaraporn; Folliard, Thomas; Sreenivasan, Rakesh; Ward, John; Dalby, Paul; Woodley, John M.; Baganz, Frank

    2014-07-01

    Effective application of whole-cell devices in synthetic biology and biocatalysis will always require consideration of the uptake of molecules of interest into the cell. Here we demonstrate that the AlkL protein from Pseudomonas putida GPo1 is an alkane import protein capable of industrially relevant rates of uptake of C7-C16 n-alkanes. Without alkL expression, native E.coli n-alkane uptake was the rate-limiting step in both the whole-cell bioconversion of C7-C16 n-alkanes and in the activation of a whole-cell alkane biosensor by C10 and C11 alkanes. By coexpression of alkL as a transporter plug-in, specific yields improved by up to 100-fold for bioxidation of >C12 alkanes to fatty alcohols and acids. The alkL protein was shown to be toxic to the host when overexpressed but when expressed from a vector capable of controlled induction, yields of alkane oxidation were improved a further 10-fold (8 g/L and 1.7 g/g of total oxidized products). Further testing of activity on n-octane with the controlled expression vector revealed the highest reported rates of 120 μmol/min/g and 1 g/L/h total oxidized products. This is the first time AlkL has been shown to directly facilitate enhanced uptake of C10-C16 alkanes and represents the highest reported gain in product yields resulting from its use.

  8. DFT studies of all fluorothiophenes and their cations as candidate monomers for conductive polymers

    SciTech Connect

    Shirani, Hossein; Jameh-Bozorghi, Saeed; Yousefi, Ali

    2015-01-22

    In this paper, electronic, structural, and properties of mono-, di-, tri-, and tetrafluorothiophenes and their radical cations are studied using the density functional theory and B3LYP method with 6-311++G** basis set. Also, the effects of the number and position of the substituent of fluorine atoms on the properties of the thiophene ring have been studied using optimized structures obtained for these molecules and their radical cations; vibrational frequencies, spin-density distribution, size and direction of the dipole moment vector, ionization potential, electric Polarizabilities, HOMO–LUMO gaps and NICS values of these compounds have been calculated and analyzed.

  9. Radiation induced redox reactions and fragmentation of constituent ions in ionic liquids II. Imidazolium cations.

    SciTech Connect

    Shkrob, I. A.; Marin, T. W.; Chemerisov, S. D.; Hatcher, J.; Wishart, J.

    2011-04-14

    In part 1 of this study, radiolytic degradation of constituent anions in ionic liquids (ILs) was examined. The present study continues the themes addressed in part 1 and examines the radiation chemistry of 1,3-dialkyl substituted imidazolium cations, which currently comprise the most practically important and versatile class of ionic liquid cations. For comparison, we also examined 1,3-dimethoxy- and 2-methyl-substituted imidazolium and 1-butyl-4-methylpyridinium cations. In addition to identification of radicals using electron paramagnetic resonance spectroscopy (EPR) and selective deuterium substitution, we analyzed stable radiolytic products using {sup 1}H and {sup 13}C nuclear magnetic resonance (NMR) and tandem electrospray ionization mass spectrometry (ESMS). Our EPR studies reveal rich chemistry initiated through 'ionization of the ions': oxidation and the formation of radical dications in the aliphatic arms of the parent cations (leading to deprotonation and the formation of alkyl radicals in these arms) and reduction of the parent cation, yielding 2-imidazolyl radicals. The subsequent reactions of these radicals depend on the nature of the IL. If the cation is 2-substituted, the resulting 2-imidazolyl radical is relatively stable. If there is no substitution at C(2), the radical then either is protonated or reacts with the parent cation forming a C(2)-C(2) {sigma}{sigma}*-bound dimer radical cation. In addition to these reactions, when methoxy or C{sub {alpha}}-substituted alkyl groups occupy the N(1,3) positions, their elimination is observed. The elimination of methyl groups from N(1,3) was not observed. Product analyses of imidazolium liquids irradiated in the very-high-dose regime (6.7 MGy) reveal several detrimental processes, including volatilization, acidification, and oligomerization. The latter yields a polymer with m/z of 650 {+-} 300 whose radiolytic yield increases with dose (0.23 monomer units per 100 eV for 1-methyl-3-butylimidazolium

  10. Radical chemistry of artemisinin

    NASA Astrophysics Data System (ADS)

    Denisov, Evgenii T.; Solodova, S. L.; Denisova, Taisa G.

    2010-12-01

    The review summarizes physicochemical characteristics of the natural sesquiterpene peroxide artemisinin. The kinetic schemes of transformations of artemisinin radicals under anaerobic conditions are presented and analyzed. The sequence of radical reactions of artemisinin in the presence of oxygen is considered in detail. Special emphasis is given to the intramolecular chain oxidation resulting in the transformation of artemisinin into polyatomic hydroperoxide. The kinetic characteristics of elementary reaction steps involving alkyl, alkoxyl, and peroxyl radicals generated from artemisinin are discussed. The results of testing of artemisinin and its derivatives for the antimalarial activity and the scheme of the biochemical synthesis of artemisinin in nature are considered.

  11. MLKL forms cation channels

    PubMed Central

    Xia, Bingqing; Fang, Sui; Chen, Xueqin; Hu, Hong; Chen, Peiyuan; Wang, Huayi; Gao, Zhaobing

    2016-01-01

    The mixed lineage kinase domain-like (MLKL) protein is a key factor in tumor necrosis factor-induced necroptosis. Recent studies on necroptosis execution revealed a commitment role of MLKL in membrane disruption. However, our knowledge of how MLKL functions on membrane remains very limited. Here we demonstrate that MLKL forms cation channels that are permeable preferentially to Mg2+ rather than Ca2+ in the presence of Na+ and K+. Moreover, the N-terminal domain containing six helices (H1-H6) is sufficient to form channels. Using the substituted cysteine accessibility method, we further determine that helix H1, H2, H3, H5 and H6 are transmembrane segments, while H4 is located in the cytoplasm. Finally, MLKL-induced membrane depolarization and cell death exhibit a positive correlation to its channel activity. The Mg2+-preferred permeability and five transmembrane segment topology distinguish MLKL from previously identified Mg2+-permeable channels and thus establish MLKL as a novel class of cation channels. PMID:27033670

  12. Preliminary assessment of halogenated alkanes as vapor-phase tracers

    SciTech Connect

    Adams, Michael C.; Moore, Joseph N.; Hirtz, Paul

    1991-01-01

    New tracers are needed to evaluate the efficiency of injection strategies in vapor-dominated environments. One group of compounds that seems to meet the requirements for vapor-phase tracing are the halogenated alkanes (HCFCs). HCFCs are generally nontoxic, and extrapolation of tabulated thermodynamic data indicate that they will be thermally stable and nonreactive in a geothermal environment. The solubilities and stabilities of these compounds, which form several homologous series, vary according to the substituent ratios of fluorine, chlorine, and hydrogen. Laboratory and field tests that will further define the suitability of HCFCs as vapor-phase tracers are under way.

  13. Transporter engineering for improved tolerance against alkane biofuels in Saccharomyces cerevisiae

    PubMed Central

    2013-01-01

    Background Hydrocarbon alkanes, components of major fossil fuels, are considered as next-generation biofuels because their biological production has recently been shown to be possible. However, high-yield alkane production requires robust host cells that are tolerant against alkanes, which exhibit cytotoxicity. In this study, we aimed to improve alkane tolerance in Saccharomyces cerevisiae, a key industrial microbial host, by harnessing heterologous transporters that potentially pump out alkanes. Results To this end, we attempted to exploit ABC transporters in Yarrowia lipolytica based on the observation that it utilizes alkanes as a carbon source. We confirmed the increased transcription of ABC2 and ABC3 transporters upon exposure to a range of alkanes in Y. lipolytica. We then showed that the heterologous expression of ABC2 and ABC3 transporters significantly increased tolerance against decane and undecane in S. cerevisiae through maintaining lower intracellular alkane level. In particular, ABC2 transporter increased the tolerance limit of S. cerevisiae about 80-fold against decane. Furthermore, through site-directed mutagenesis for glutamate (E988 for ABC2, and E989 for ABC3) and histidine (H1020 for ABC2, and H1021 for ABC3), we provided the evidence that glutamate was essential for the activity of ABC2 and ABC3 transporters, with ATP most likely to be hydrolyzed by a catalytic carboxylate mechanism. Conclusions Here, we demonstrated that transporter engineering through expression of heterologous efflux pumps led to significantly improved tolerance against alkane biofuels in S. cerevisiae. We believe that our results laid the groundwork for developing robust alkane-producing yeast cells through transporter engineering, which will greatly aid in next-generation alkane biofuel production and recovery. PMID:23402697

  14. Cationic Antimicrobial Polymers and Their Assemblies

    PubMed Central

    Carmona-Ribeiro, Ana Maria; de Melo Carrasco, Letícia Dias

    2013-01-01

    Cationic compounds are promising candidates for development of antimicrobial agents. Positive charges attached to surfaces, particles, polymers, peptides or bilayers have been used as antimicrobial agents by themselves or in sophisticated formulations. The main positively charged moieties in these natural or synthetic structures are quaternary ammonium groups, resulting in quaternary ammonium compounds (QACs). The advantage of amphiphilic cationic polymers when compared to small amphiphilic molecules is their enhanced microbicidal activity. Besides, many of these polymeric structures also show low toxicity to human cells; a major requirement for biomedical applications. Determination of the specific elements in polymers, which affect their antimicrobial activity, has been previously difficult due to broad molecular weight distributions and random sequences characteristic of radical polymerization. With the advances in polymerization control, selection of well defined polymers and structures are allowing greater insight into their structure-antimicrobial activity relationship. On the other hand, antimicrobial polymers grafted or self-assembled to inert or non inert vehicles can yield hybrid antimicrobial nanostructures or films, which can act as antimicrobials by themselves or deliver bioactive molecules for a variety of applications, such as wound dressing, photodynamic antimicrobial therapy, food packing and preservation and antifouling applications. PMID:23665898

  15. Effect of polar solvents on beta-carotene radical precursor.

    PubMed

    Tian, Yu-Xi; Han, Rui-Min; Zhang, Jian-Ping; Skibsted, Leif H

    2008-03-01

    Beta-carotene forms radicals in chloroform upon photo-excitation (i) in the femtosecond time-scale by direct electron ejection into chloroform and (ii) in the microsecond time-scale by secondary reactions with chloroform radicals formed in the faster reactions. The precursor for beta-carotene radical cation decays in a second-order reaction in the mixed solvents, with a rate decreasing for increasing dielectric constant of cosolvent (acetic acid < ethanol < acetonitrile approximately methanol). The precursor is assigned as an ion pair from which the beta-carotene radical cation is formed in neat chloroform, but in more polar solvents it reacts at least partly through disproportionation in a bimolecular reaction promoted by the presence of ions. The stabilization of the radical precursor by increased solvent polarity, allowing for deactivation of the precursor by an alternative reaction channel, is discussed in relation to the balance of pro- and antioxidative properties of beta-carotene at lipid/water interfaces. PMID:18344123

  16. Hydroxyl radicals in indoor environments

    NASA Astrophysics Data System (ADS)

    Sarwar, Golam; Corsi, Richard; Kimura, Yosuke; Allen, David; Weschler, Charles J.

    Indoor hydroxyl radical concentrations were estimated using a new indoor air quality model which employs the SAPRC-99 atmospheric chemistry model to simulate indoor homogenous reactions. Model results indicate that typical indoor hydroxyl radical concentrations are lower than typical outdoor summertime urban hydroxyl radical levels of 5-10×10 6 molecules cm -3; however, indoor levels can be similar to or greater than typical nighttime outdoor hydroxyl radical levels of approximately 5×10 4 molecules cm -3. Effects of selected parameters on indoor hydroxyl radical concentrations are presented herein. Indoor hydroxyl radical concentrations are predicted to increase non-linearly with increasing outdoor ozone concentrations, indoor alkene emission rates, and air exchange rates. Indoor hydroxyl radical concentrations decrease with increasing outdoor nitric oxide concentrations. Indoor temperature and indoor light intensity have moderate impacts on indoor hydroxyl radical concentrations. Outdoor hydroxyl radical concentrations, outdoor nitrate (NO 3rad ) radical concentrations, outdoor hydroperoxy radical concentrations, and hydroxyl radical removal by indoor surfaces are predicted to have no appreciable impact on indoor hydroxyl radical concentrations. Production of hydroxyl radicals in indoor environments appears to be controlled primarily by reactions of alkenes with ozone, and nitric oxide with hydroperoxy radical. Estimated indoor hydroxyl radical levels may potentially affect indoor air quality. Two examples are presented in which reactions of d-limonene and α-pinene with indoor hydroxyl radicals produce aldehydes, which may be of greater concern than the original compounds.

  17. Accelerated crystallization of zeolites via hydroxyl free radicals.

    PubMed

    Feng, Guodong; Cheng, Peng; Yan, Wenfu; Boronat, Mercedes; Li, Xu; Su, Ji-Hu; Wang, Jianyu; Li, Yi; Corma, Avelino; Xu, Ruren; Yu, Jihong

    2016-03-11

    In the hydrothermal crystallization of zeolites from basic media, hydroxide ions (OH(-)) catalyze the depolymerization of the aluminosilicate gel by breaking the Si,Al-O-Si,Al bonds and catalyze the polymerization of the aluminosilicate anions around the hydrated cation species by remaking the Si,Al-O-Si,Al bonds. We report that hydroxyl free radicals (•OH) are involved in the zeolite crystallization under hydrothermal conditions. The crystallization processes of zeolites-such as Na-A, Na-X, NaZ-21, and silicalite-1-can be accelerated with hydroxyl free radicals generated by ultraviolet irradiation or Fenton's reagent. PMID:26965626

  18. On the Route to the Photogeneration of Heteroaryl Cations. The Case of Halothiophenes.

    PubMed

    Raviola, Carlotta; Chiesa, Francesco; Protti, Stefano; Albini, Angelo; Fagnoni, Maurizio

    2016-08-01

    2-Chloro-, 2-bromo-, and 2-iodothiophenes undergo photochemical dehalogenation via the triplet state. In the presence of suitable π-bond nucleophiles, thienylation occurs with modest yield from chloro and bromo derivatives (via photogenerated triplet 2-thienyl cation). Specific trapping by using oxygen along with computational analysis carried out by means of a density functional method support that, in the case of iodo derivatives, homolytic thienyl-I bond fragmentation occurs first and heteroaryl cations are formed by electron transfer within the triplet radical pair, thus opening an indirect access to such cations. PMID:27383725

  19. 40 CFR 721.4464 - Mixture of hydrofluoro alkanes and hydrofluoro alkene.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... hydrofluoro alkene. 721.4464 Section 721.4464 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.4464 Mixture of hydrofluoro alkanes and hydrofluoro alkene. (a) Chemical... as a mixture of hydrofluoro alkanes and hydrofluoro alkene (PMNs P-96-945/946/947/948) are subject...

  20. 40 CFR 721.4464 - Mixture of hydrofluoro alkanes and hydrofluoro alkene.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... hydrofluoro alkene. 721.4464 Section 721.4464 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.4464 Mixture of hydrofluoro alkanes and hydrofluoro alkene. (a) Chemical... as a mixture of hydrofluoro alkanes and hydrofluoro alkene (PMNs P-96-945/946/947/948) are subject...

  1. 40 CFR 721.4464 - Mixture of hydrofluoro alkanes and hydrofluoro alkene.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... hydrofluoro alkene. 721.4464 Section 721.4464 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.4464 Mixture of hydrofluoro alkanes and hydrofluoro alkene. (a) Chemical... as a mixture of hydrofluoro alkanes and hydrofluoro alkene (PMNs P-96-945/946/947/948) are subject...

  2. 40 CFR 721.4464 - Mixture of hydrofluoro alkanes and hydrofluoro alkene.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... hydrofluoro alkene. 721.4464 Section 721.4464 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.4464 Mixture of hydrofluoro alkanes and hydrofluoro alkene. (a) Chemical... as a mixture of hydrofluoro alkanes and hydrofluoro alkene (PMNs P-96-945/946/947/948) are subject...

  3. 40 CFR 721.4464 - Mixture of hydrofluoro alkanes and hydrofluoro alkene.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... hydrofluoro alkene. 721.4464 Section 721.4464 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.4464 Mixture of hydrofluoro alkanes and hydrofluoro alkene. (a) Chemical... as a mixture of hydrofluoro alkanes and hydrofluoro alkene (PMNs P-96-945/946/947/948) are subject...

  4. 40 CFR 721.2625 - Reaction product of alkane-diol and epichlorohydrin.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.2625 Reaction product of alkane-diol and epichlorohydrin. (a) Chemical... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Reaction product of alkane-diol...

  5. 40 CFR 721.2625 - Reaction product of alkane-diol and epichlorohydrin.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.2625 Reaction product of alkane-diol and epichlorohydrin. (a) Chemical... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Reaction product of alkane-diol...

  6. 40 CFR 721.2625 - Reaction product of alkane-diol and epichlorohydrin.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.2625 Reaction product of alkane-diol and epichlorohydrin. (a) Chemical... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Reaction product of alkane-diol...

  7. 40 CFR 721.2625 - Reaction product of alkane-diol and epichlorohydrin.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.2625 Reaction product of alkane-diol and epichlorohydrin. (a) Chemical... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Reaction product of alkane-diol...

  8. 40 CFR 721.2625 - Reaction product of alkane-diol and epichlorohydrin.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.2625 Reaction product of alkane-diol and epichlorohydrin. (a) Chemical... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Reaction product of alkane-diol...

  9. Measurement of n-alkanals and hydroxyalkenals in biological samples.

    PubMed

    Holley, A E; Walker, M K; Cheeseman, K H; Slater, T F

    1993-09-01

    A modified method was developed to measure nM levels of a range of n-alkanals and hydroxyalkenals in biological samples such as blood plasma and tissue homogenates and also in Folch lipid extracts of these samples. Butylated hydroxytoluene (BHT) and desferrioxamine (Desferal) were added to samples to prevent artifactual peroxidation. Aldehydes were reacted with 1,3-cyclohexanedione (CHD), cleaned up by solid-phase extraction on a Sep-Pak C18 cartridge and the fluorescent decahydroacridine derivatives resolved by reverse-phase high-performance liquid chromatography (HPLC) with gradient elution. A wider range of aldehydes was detected in lipid extracts of plasma and liver homogenate compared to whole (unextracted) samples. Human plasma contained nM levels of acetaldehyde, propanal, butanal, pentanal, hexanal, and heptanal. 4-Hydroxynonenal (0.93 nmol/g) and alkanals with two to six carbons (up to 7.36 nmol/g) were detected in rat liver. Recovery of aldehydes added to whole plasma or to lipid extracts of plasma was dependent on carbon chain length, varying from 95% for acetaldehyde to 8% for decanal. Recovery from biological samples was significantly less than that of standards taken through the Sep-Pak clean-up procedure, suggesting that aldehydes can bind to plasma protein and lipid components. PMID:8406128

  10. Direct hydrodeoxygenation of raw woody biomass into liquid alkanes.

    PubMed

    Xia, Qineng; Chen, Zongjia; Shao, Yi; Gong, Xueqing; Wang, Haifeng; Liu, Xiaohui; Parker, Stewart F; Han, Xue; Yang, Sihai; Wang, Yanqin

    2016-01-01

    Being the only sustainable source of organic carbon, biomass is playing an ever-increasingly important role in our energy landscape. The conversion of renewable lignocellulosic biomass into liquid fuels is particularly attractive but extremely challenging due to the inertness and complexity of lignocellulose. Here we describe the direct hydrodeoxygenation of raw woods into liquid alkanes with mass yields up to 28.1 wt% over a multifunctional Pt/NbOPO4 catalyst in cyclohexane. The superior performance of this catalyst allows simultaneous conversion of cellulose, hemicellulose and, more significantly, lignin fractions in the wood sawdust into hexane, pentane and alkylcyclohexanes, respectively. Investigation on the molecular mechanism reveals that a synergistic effect between Pt, NbOx species and acidic sites promotes this highly efficient hydrodeoxygenation of bulk lignocellulose. No chemical pretreatment of the raw woody biomass or separation is required for this one-pot process, which opens a general and energy-efficient route for converting raw lignocellulose into valuable alkanes. PMID:27025898

  11. Multiple sources of alkanes in Quaternary oceanic sediment of Antarctica

    USGS Publications Warehouse

    Kvenvolden, K.A.; Rapp, J.B.; Golan-Bac, M.; Hostettler, F.D.

    1987-01-01

    Normal alkanes (n-C13n-C36), isoprenoid hydrocarbons (i-C15, i-C16, i-C18, i-C19, and i-C20) triterpanes (C27C32), and (C27C29) are present in low concentrations offshore Antarctica in near-surface, Quaternary sediment of the Wilkes Land continental margin and of the western Ross Sea. The distributions of these hydrocarbons are interpreted relative to possible sources and processes. The hydrocarbons appear to be mixtures of primary and recycled material from marine and terrigenous sources. The n-alkanes are most abundant and are characterized by two distinct populations, one of probable marine origin and the other likely from terrigenous, vascular plant sources. Because the continent of Antarctica today is devoid of higher plants, the plant-derived hydrocarbons in these offshore sediments probably came from wind-blown material and recycled Antarctic sediment that contains land-plant remains from an earlier period of time. Isoprenoid hydrocarbons are partially recycled and mainly of marine origin; the dominance of pristane over phytane suggests oxic paleoenvironmental conditions. Both modern and ancient triterpanes and steranes are present, and the distribution of these indicates a mixture of primary and recycled bacterial, algal, and possible higher-plant materials. Although the sampled sediments were deposited during the Quaternary, they apparently contain a significant component of hydrocarbons of pre-Quaternary age. ?? 1987.

  12. Direct hydrodeoxygenation of raw woody biomass into liquid alkanes

    PubMed Central

    Xia, Qineng; Chen, Zongjia; Shao, Yi; Gong, Xueqing; Wang, Haifeng; Liu, Xiaohui; Parker, Stewart F.; Han, Xue; Yang, Sihai; Wang, Yanqin

    2016-01-01

    Being the only sustainable source of organic carbon, biomass is playing an ever-increasingly important role in our energy landscape. The conversion of renewable lignocellulosic biomass into liquid fuels is particularly attractive but extremely challenging due to the inertness and complexity of lignocellulose. Here we describe the direct hydrodeoxygenation of raw woods into liquid alkanes with mass yields up to 28.1 wt% over a multifunctional Pt/NbOPO4 catalyst in cyclohexane. The superior performance of this catalyst allows simultaneous conversion of cellulose, hemicellulose and, more significantly, lignin fractions in the wood sawdust into hexane, pentane and alkylcyclohexanes, respectively. Investigation on the molecular mechanism reveals that a synergistic effect between Pt, NbOx species and acidic sites promotes this highly efficient hydrodeoxygenation of bulk lignocellulose. No chemical pretreatment of the raw woody biomass or separation is required for this one-pot process, which opens a general and energy-efficient route for converting raw lignocellulose into valuable alkanes. PMID:27025898

  13. Geologic seepage of methane and light alkanes in Los Angeles

    NASA Astrophysics Data System (ADS)

    Doezema, L. A.; Chang, K.; Baril, R.; Nwachuku, I.; Contreras, P.; Marquez, A.; Howard, D.

    2013-12-01

    Natural geologic seepage of methane from underground oil and natural gas reservoirs has been suggested to be an underreported part of the global methane budget. Other light alkanes are also given off in combination with the methane seepage, making it possible that geologic seepage is also a potentially significant global source of these light alkanes. This study reports C1-C5 findings from geologic seepage made in the Los Angeles region. Microseepage, invisible escape of gases, was measured primarily at Kenneth Hahn Regional Park, while macroseepage, the visible release of gases, was measured at the La Brea Tar Pits. Samples were collected using stainless steel canisters and flux chambers and were analyzed using gas chromatography with flame ionization detectors (GC-FID). Average microseepage flux rates of 0.95 μg m-2 h-1 for ethane and 0.51 μg m-2 h-1 were found for propane, while average macroseepage rates for methane, ethane, and propane were 664, 19.8, and 18.1 mg m-2 h-1 respectively. Relationships between microseepage flux rate and location of underground oil and natural deposit and earthquake fault lines are presented. Additionally, the relative importance of findings in context with global budgets and local air quality is discussed.

  14. Photoinduced free radicals from chlorpromazine and related phenothiazines: relationship to phenothiazine-induced photosensitization.

    PubMed Central

    Chignell, C F; Motten, A G; Buettner, G R

    1985-01-01

    Chlorpromazine and several other related phenothiazines are known to cause both phototoxic and photoallergic reactions in the skin and eyes of patients receiving these drugs. While the detailed mechanisms of photosensitization are not known, it is obvious that the first step must be the absorption of light by the drug, its metabolites, or photoproducts, or possibly an induced endogenous chemical. In this review, the free-radical photochemistry of phenothiazines is described, and the evidence for the involvement of photoinduced free radicals in photosensitization is examined. Upon irradiation chlorpromazine yields a variety of free radicals including the corresponding cation radical (via photoionization), the neutral promazinyl radical and a chlorine atom (Cl.) (via homolytic cleavage), and a sulfur-centered peroxy radical. The chlorpromazine cation radical is probably responsible for some of the observed in vitro phototoxic effects of this drug. However, it seems unlikely that the cation radical is involved in phototoxicity in vivo, since photoionization only occurs when chlorpromazine is excited into the S2 level (lambda ex less than 280 nm). The promazinyl radical is a more likely candidate for the phototoxic species both in vivo and in vitro. In addition, this radical can react covalently with proteins and other macromolecules to yield antigens which could be responsible for the photoallergic response to chlorpromazine. Neither oxygen-derived radicals nor singlet oxygen (1O2*), appear to be important in chlorpromazine photosensitization. In contrast, it would seem that promazine-induced phototoxicity may result in part from the generation of superoxide (O2-.).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2869942

  15. Geomicrobiological linkages between short-chain alkane consumption and sulfate reduction rates in seep sediments

    PubMed Central

    Bose, Arpita; Rogers, Daniel R.; Adams, Melissa M.; Joye, Samantha B.; Girguis, Peter R.

    2013-01-01

    Marine hydrocarbon seeps are ecosystems that are rich in methane, and, in some cases, short-chain (C2–C5) and longer alkanes. C2–C4 alkanes such as ethane, propane, and butane can be significant components of seeping fluids. Some sulfate-reducing microbes oxidize short-chain alkanes anaerobically, and may play an important role in both the competition for sulfate and the local carbon budget. To better understand the anaerobic oxidation of short-chain n-alkanes coupled with sulfate-reduction, hydrocarbon-rich sediments from the Gulf of Mexico (GoM) were amended with artificial, sulfate-replete seawater and one of four n-alkanes (C1–C4) then incubated under strict anaerobic conditions. Measured rates of alkane oxidation and sulfate reduction closely follow stoichiometric predictions that assume the complete oxidation of alkanes to CO2 (though other sinks for alkane carbon likely exist). Changes in the δ13C of all the alkanes in the reactors show enrichment over the course of the incubation, with the C3 and C4 incubations showing the greatest enrichment (4.4 and 4.5‰, respectively). The concurrent depletion in the δ13C of dissolved inorganic carbon (DIC) implies a transfer of carbon from the alkane to the DIC pool (−3.5 and −6.7‰ for C3 and C4 incubations, respectively). Microbial community analyses reveal that certain members of the class Deltaproteobacteria are selectively enriched as the incubations degrade C1–C4 alkanes. Phylogenetic analyses indicate that distinct phylotypes are enriched in the ethane reactors, while phylotypes in the propane and butane reactors align with previously identified C3–C4 alkane-oxidizing sulfate-reducers. These data further constrain the potential influence of alkane oxidation on sulfate reduction rates (SRRs) in cold hydrocarbon-rich sediments, provide insight into their contribution to local carbon cycling, and illustrate the extent to which short-chain alkanes can serve as electron donors and govern microbial

  16. Closed-Shell Polycyclic Aromatic Hydrocarbon Cations: A New Category of Interstellar Polycyclic Aromatic Hydrocarbons

    NASA Technical Reports Server (NTRS)

    Hudgins, Douglas M.; Bauschlicher, Charles W., Jr.; Allamandola, Louis J.; DeVincenzi, Donald (Technical Monitor)

    2001-01-01

    Density functional theory has been employed to calculate the harmonic frequencies and intensities of a range of polycyclic aromatic hydrocarbon (PAH) cations that explore both size and electronic structure effects of the infrared spectroscopic properties of these species. The sample extends the size range of PAH species considered to more than 50 carbon atoms and includes several representatives from each of two heretofore unexplored categories of PAH cations: (1) fully benzenoid PAH cations whose carbon skeleton is composed of an odd number of carbon atoms (C(sub odd) PAHs); and (2) protonated PAH cations (HPAH+). Unlike the radical electronic structures of the PAH cations that have been the subject of previous theoretical and experimental work, the species in these two classes have a closed-shell electronic configuration. The calculated spectra of circumcoronene, C54H18 in both neutral and (radical) cationic form are also reported and compared with those of the other species. Overall, the C(sub odd) PAHs spectra are dominated by strong CC stretching modes near 1600 cm(exp -1) and display spectra that are remarkably insensitive to molecular size. The HPAH+ species evince a more complex spectrum consistent with the added contributions of aliphatic modes and their generally lower symmetry. Finally, for both classes of closed-shell cations, the intensity of the aromatic CH stretching modes is found to increase with molecular size far out of proportion with the number of CH groups, approaching a value more typical of neutral PAHs for the largest species studied.

  17. Free Radical Reactions in Food.

    ERIC Educational Resources Information Center

    Taub, Irwin A.

    1984-01-01

    Discusses reactions of free radicals that determine the chemistry of many fresh, processed, and stored foods. Focuses on reactions involving ascorbic acid, myoglobin, and palmitate radicals as representative radicals derived from a vitamin, metallo-protein, and saturated lipid. Basic concepts related to free radical structure, formation, and…

  18. Green light radiation effects on free radicals inhibition in cellular and chemical systems.

    PubMed

    Comorosan, Sorin; Polosan, Silviu; Jipa, Silviu; Popescu, Irinel; Marton, George; Ionescu, Elena; Cristache, Ligia; Badila, Dumitru; Mitrica, Radu

    2011-01-10

    Free radicals generation is inhibited through green light (GL) irradiation in cellular systems and in chemical reactions. Standard melanocyte cultures were UV-irradiated and the induced cellular reactive oxygen species (ROS) were quantified by the fluorescence technique. The same cell cultures, previously protected by a 24h GL exposure, displayed a significantly lower ROS production. A simple chemical reaction is subsequently chosen, in which the production of free radicals is well defined. Paraffin wax and mineral oil were GL irradiated during thermal degradation and the oxidation products checked by chemiluminescence [CL] and Fourier transform infrared spectra [FT-IR]. The same clear inhibition of the radical oxidation of alkanes is recorded. A quantum chemistry modeling of these results is performed and a mechanism involving a new type of Rydberg macromolecular systems with implications for biology and medicine is suggested. PMID:20934350

  19. Flow reactor studies of non-equilibrium plasma-assisted oxidation of n-alkanes.

    PubMed

    Tsolas, Nicholas; Lee, Jong Guen; Yetter, Richard A

    2015-08-13

    The oxidation of n-alkanes (C1-C7) has been studied with and without the effects of a nanosecond, non-equilibrium plasma discharge at 1 atm pressure from 420 to 1250 K. Experiments have been performed under nearly isothermal conditions in a flow reactor, where reactive mixtures are diluted in Ar to minimize temperature changes from chemical reactions. Sample extraction performed at the exit of the reactor captures product and intermediate species and stores them in a multi-position valve for subsequent identification and quantification using gas chromatography. By fixing the flow rate in the reactor and varying the temperature, reactivity maps for the oxidation of fuels are achieved. Considering all the fuels studied, fuel consumption under the effects of the plasma is shown to have been enhanced significantly, particularly for the low-temperature regime (T<800 K). In fact, multiple transitions in the rates of fuel consumption are observed depending on fuel with the emergence of a negative-temperature-coefficient regime. For all fuels, the temperature for the transition into the high-temperature chemistry is lowered as a consequence of the plasma being able to increase the rate of fuel consumption. Using a phenomenological interpretation of the intermediate species formed, it can be shown that the active particles produced from the plasma enhance alkyl radical formation at all temperatures and enable low-temperature chain branching for fuels C3 and greater. The significance of this result demonstrates that the plasma provides an opportunity for low-temperature chain branching to occur at reduced pressures, which is typically observed at elevated pressures in thermal induced systems. PMID:26170423

  20. Dissecting the cation-cation interaction between two uranyl units.

    PubMed

    Tecmer, Paweł; Hong, Sung W; Boguslawski, Katharina

    2016-07-21

    We present a state-of-the-art computational study of the uranyl(vi) and uranyl(v) cation-cation interactions (dications) in aqueous solution. Reliable electronic structures of two interacting uranyl(vi) and uranyl(v) subunits as well as those of the uranyl(vi) and uranyl(v) clusters are presented for the first time. Our theoretical study elucidates the impact of cation-cation interactions on changes in the molecular structure as well as changes in vibrational and UV-Vis spectra of the bare uranyl(vi) and uranyl(v) moieties for different total spin-states and total charges of the dications. PMID:27335229

  1. Modeling of Alkane Oxidation Using Constituents and Species

    NASA Technical Reports Server (NTRS)

    Bellan, Jasette; Harstad, Kenneth G.

    2010-01-01

    It is currently not possible to perform simulations of turbulent reactive flows due in particular to complex chemistry, which may contain thousands of reactions and hundreds of species. This complex chemistry results in additional differential equations, making the numerical solution of the equation set computationally prohibitive. Reducing the chemical kinetics mathematical description is one of several important goals in turbulent reactive flow modeling. A chemical kinetics reduction model is proposed for alkane oxidation in air that is based on a parallel methodology to that used in turbulence modeling in the context of the Large Eddy Simulation. The objective of kinetic modeling is to predict the heat release and temperature evolution. This kinetic mechanism is valid over a pressure range from atmospheric to 60 bar, temperatures from 600 K to 2,500 K, and equivalence ratios from 0.125 to 8. This range encompasses diesel, HCCI, and gas-turbine engines, including cold ignition. A computationally efficient kinetic reduction has been proposed for alkanes that has been illustrated for n-heptane using the LLNL heptane mechanism. This model is consistent with turbulence modeling in that scales were first categorized into either those modeled or those computed as progress variables. Species were identified as being either light or heavy. The heavy species were decomposed into defined 13 constituents, and their total molar density was shown to evolve in a quasi-steady manner. The light species behave either in a quasi-steady or unsteady manner. The modeled scales are the total constituent molar density, Nc, and the molar density of the quasi-steady light species. The progress variables are the total constituent molar density rate evolution and the molar densities of the unsteady light species. The unsteady equations for the light species contain contributions of the type gain/loss rates from the heavy species that are modeled consistent with the developed mathematical

  2. Equilibrium thermophysical properties of alkanes at very high temperatures

    SciTech Connect

    Arunachalam, C.; Bozkurt, B.; Eubank, P.T.

    1996-01-01

    In order to perform calculations for thermal plasmas, sparks, and arcs, as in the thermal arc and electrical discharge machining (EDM) processes, thermophysical properties, such as the density, enthalpy, and heat capacity, of the original ambient dielectric liquid are required at very high temperatures and often pressures in the plasma state. A statistical model has been developed to provide these properties. At high temperatures, these hydrocarbons undergo a series of reactions to first dissociate and then to ionize to produce a plasma. The partition functions of each of the species generated are calculated and sued to determine the equilibrium mole fractions or particle fractions of each constituent of the resultant plasma. Only the hydrogen-to-carbon ratio matters so mixtures of alkanes can also be used. Specifically, tables of particles fractions, densities, enthalpies, and specific heat capacities are provided for methane and for hexadecane to 60,000 K and 10 kbar.

  3. Thermal analysis of n-alkane phase change material mixtures

    SciTech Connect

    Chio, Y.I.; Choi, E.; Lorsch, H.G.

    1991-03-31

    Tests were performed to characterize the thermal behavior of it number of n-alkanes to be used as phase change materials (PCMs) in district cooling applications. Hexadecane and tetradecane were mixed in different fractions, and their thermal behavior was experimentally evaluated. Test results for melting temperature and fusion energy for laboratory grade hexadecane and tetradecane showed good agreement with datain the literature. However, values for commercial grade hexadecane were found to be considerably lower. In the range of temperatures of interest for district cooling, mixtures of tetradecane and hexadecane can be treated as homogeneous substances. However, their heats of fusion are slightly lower than those of the pure substances. Their melting temperatures are also lower by an amount that can be predicted.

  4. Cometabolism of Methyl tertiary Butyl Ether and Gaseous n-Alkanes by Pseudomonas mendocina KR-1 Grown on C5 to C8 n-Alkanes

    PubMed Central

    Smith, Christy A.; O'Reilly, Kirk T.; Hyman, Michael R.

    2003-01-01

    Pseudomonas mendocina KR-1 grew well on toluene, n-alkanes (C5 to C8), and 1° alcohols (C2 to C8) but not on other aromatics, gaseous n-alkanes (C1 to C4), isoalkanes (C4 to C6), 2° alcohols (C3 to C8), methyl tertiary butyl ether (MTBE), or tertiary butyl alcohol (TBA). Cells grown under carbon-limited conditions on n-alkanes in the presence of MTBE (42 μmol) oxidized up to 94% of the added MTBE to TBA. Less than 3% of the added MTBE was oxidized to TBA when cells were grown on either 1° alcohols, toluene, or dextrose in the presence of MTBE. Concentrated n-pentane-grown cells oxidized MTBE to TBA without a lag phase and without generating tertiary butyl formate (TBF) as an intermediate. Neither TBF nor TBA was consumed by n-pentane-grown cells, while formaldehyde, the expected C1 product of MTBE dealkylation, was rapidly consumed. Similar Ks values for MTBE were observed for cells grown on C5 to C8 n-alkanes (12.95 ± 2.04 mM), suggesting that the same enzyme oxidizes MTBE in cells grown on each n-alkane. All growth-supporting n-alkanes (C5 to C8) inhibited MTBE oxidation by resting n-pentane-grown cells. Propane (Ki = 53 μM) and n-butane (Ki = 16 μM) also inhibited MTBE oxidation, and both gases were also consumed by cells during growth on n-pentane. Cultures grown on C5 to C8 n-alkanes also exhibited up to twofold-higher levels of growth in the presence of propane or n-butane, whereas no growth stimulation was observed with methane, ethane, MTBE, TBA, or formaldehyde. The results are discussed in terms of their impacts on our understanding of MTBE biodegradation and cometabolism. PMID:14660389

  5. Imidazole Metalloporphyrins as Photosensitizers for Photodynamic Therapy: Role of Molecular Charge, Central Metal and Hydroxyl Radical Production

    PubMed Central

    Mroz, Pawel; Bhaumik, Jayeeta; Dogutan, Dilek K.; Aly, Zarmeneh; Kamal, Zahra; Khalid, Laiqua; Kee, Hooi Ling; Bocian, David F.; Holten, Dewey; Lindsey, Jonathan S.; Hamblin, Michael R.

    2009-01-01

    SUMMARY The in vitro photodynamic therapy activity of four imidazole-substituted metalloporphyrins has been studied using human (HeLa) and mouse (CT26) cancer cell lines: an anionic Zn porphyrin and a homologous series of three cationic Zn, Pd or InCl porphyrins. A dramatic difference in phototoxicity was found: Pd cationic > InCl cationic > Zn cationic > Zn anionic. HeLa cells were more susceptible than CT26 cells. Induction of apoptosis was demonstrated using a fluorescent caspase assay. The anionic Zn porphyrin localized in lysosomes while the cationic Zn porphyrin localized in lysosomes and mitochondria, as assessed by fluorescence microscopy. Studies using fluorescent probes suggested that the cationic Pd porphyrin produced more hydroxyl radicals as the reactive oxygen species. Thus, the cationic Pd porphyrin has high potential as a photosensitizer and gives insights into characteristics for improved molecular designs. PMID:19346065

  6. Enrichment and Characterization of a Psychrotolerant Consortium Degrading Crude Oil Alkanes Under Methanogenic Conditions.

    PubMed

    Ding, Chen; Ma, Tingting; Hu, Anyi; Dai, Lirong; He, Qiao; Cheng, Lei; Zhang, Hui

    2015-08-01

    Anaerobic alkane degradation via methanogenesis has been intensively studied under mesophilic and thermophilic conditions. While there is a paucity of information on the ability and composition of anaerobic alkane-degrading microbial communities under low temperature conditions. In this study, we investigated the ability of consortium Y15, enriched from Shengli oilfield, to degrade hydrocarbons under different temperature conditions (5-35 °C). The consortium could use hexadecane over a low temperature range (15-30 °C). No growth was detected below 10 °C and above 35 °C, indicating the presence of cold-tolerant species capable of alkane degradation. The preferential degradation of short chain n-alkanes from crude oil was observed by this consortium. The structure and dynamics of the microbial communities were examined using terminal restriction fragment length polymorphism (T-RFLP) fingerprinting and Sanger sequencing of 16S rRNA genes. The core archaeal communities were mainly composed of aceticlastic Methanosaeta spp. Syntrophaceae-related microorganisms were always detected during consecutive transfers and dominated the bacterial communities, sharing 94-96 % sequence similarity with Smithella propionica strain LYP(T). Phylogenetic analysis of Syntrophaceae-related clones in diverse methanogenic alkane-degrading cultures revealed that most of them were clustered into three sublineages. Syntrophaceae clones retrieved from this study were mainly clustered into sublineage I, which may represent psychrotolerant, syntrophic alkane degraders. These results indicate the wide geographic distribution and ecological function of syntrophic alkane degraders. PMID:25783218

  7. MIR and NIR group spectra of n-alkanes and 1-chloroalkanes

    NASA Astrophysics Data System (ADS)

    Kwaśniewicz, Michał; Czarnecki, Mirosław A.

    2015-05-01

    Numerous attempts were undertaken to resolve the absorption originating from different parts of alkanes. The separation of the contributions from the terminal and midchain methylene units was observed only in the spectra of solid alkanes at low temperatures. On the other hand, for liquid alkanes this effect was not reported as yet. In this study, ATR-IR, Raman and NIR spectra of eight n-alkanes and seven 1-chloroalkanes in the liquid phase were measured from 1000 to 12,000 cm-1. The spectra were analyzed by using two-dimensional (2D) correlation approach and chemometrics methods. It was shown that in 2D asynchronous contour plots, constructed from the spectra of n-alkanes and 1-chloroalkanes, the methylene band was resolved into two components. These two components were assigned to the terminal and midchain methylene groups. For the first time, the contributions from these two molecular fragments were resolved in the spectra of liquid n-alkanes and 1-chloroalkanes. MCR-ALS resolved these spectra into two components that were assigned to the ethyl and midchain methylene groups. These components represent the group spectra that can be used for assignment, spectral analysis and prediction of unknown spectra. The spectral prediction based on the group spectra provides very good results for n-alkanes, especially in the first and second overtone regions.

  8. The cation-π interaction.

    PubMed

    Dougherty, Dennis A

    2013-04-16

    The chemistry community now recognizes the cation-π interaction as a major force for molecular recognition, joining the hydrophobic effect, the hydrogen bond, and the ion pair in determining macromolecular structure and drug-receptor interactions. This Account provides the author's perspective on the intellectual origins and fundamental nature of the cation-π interaction. Early studies on cyclophanes established that water-soluble, cationic molecules would forego aqueous solvation to enter a hydrophobic cavity if that cavity was lined with π systems. Important gas phase studies established the fundamental nature of the cation-π interaction. The strength of the cation-π interaction (Li(+) binds to benzene with 38 kcal/mol of binding energy; NH4(+) with 19 kcal/mol) distinguishes it from the weaker polar-π interactions observed in the benzene dimer or water-benzene complexes. In addition to the substantial intrinsic strength of the cation-π interaction in gas phase studies, the cation-π interaction remains energetically significant in aqueous media and under biological conditions. Many studies have shown that cation-π interactions can enhance binding energies by 2-5 kcal/mol, making them competitive with hydrogen bonds and ion pairs in drug-receptor and protein-protein interactions. As with other noncovalent interactions involving aromatic systems, the cation-π interaction includes a substantial electrostatic component. The six (four) C(δ-)-H(δ+) bond dipoles of a molecule like benzene (ethylene) combine to produce a region of negative electrostatic potential on the face of the π system. Simple electrostatics facilitate a natural attraction of cations to the surface. The trend for (gas phase) binding energies is Li(+) > Na(+) > K(+) > Rb(+): as the ion gets larger the charge is dispersed over a larger sphere and binding interactions weaken, a classical electrostatic effect. On other hand, polarizability does not define these interactions. Cyclohexane is

  9. The Cation-π Interaction

    PubMed Central

    DOUGHERTY, DENNIS A.

    2014-01-01

    CONSPECTUS The chemistry community now recognizes the cation-π interaction as a major force for molecular recognition, joining the hydrophobic effect, the hydrogen bond, and the ion pair in determining macromolecular structure and drug-receptor interactions. This Account provides the author’s perspective on the intellectual origins and fundamental nature of the cation-π interaction. Early studies on cyclophanes established that water-soluble, cationic molecules would forgo aqueous solvation to enter a hydrophobic cavity if that cavity was lined with π systems. Important gas phase studies established the fundamental nature of the cation-π interaction. The strength of the cation-π interaction – Li+ binds to benzene with 38 kcal/mol of binding energy; NH4+ with 19 kcal/mol– distinguishes it from the weaker polar-π interactions observed in the benzene dimer or water-benzene complexes. In addition to the substantial intrinsic strength of the cation-π interaction in gas phase studies, the cation-π interaction remains energetically significant in aqueous media and under biological conditions. Many studies have shown that cation-π interactions can enhance binding energies by 2 – 5 kcal/mol, making them competitive with hydrogen bonds and ion pairs in drug-receptor and protein-protein interactions. As with other noncovalent interactions involving aromatic systems, the cation-π interaction includes a substantial electrostatic component. The six (four) Cδ−–Hδ+ bond dipoles of a molecule like benzene (ethylene) combine to produce a region of negative electrostatic potential on the face of the π system. Simple electrostatics facilitate a natural attraction of cations to the surface. The trend for (gas phase) binding energies is Li+>Na+>K+>Rb+: as the ion gets larger the charge is dispersed over a larger sphere and binding interactions weaken, a classical electrostatic effect. On other hand, polarizability does not define these interactions. Cyclohexane

  10. Cationic lipid-mediated nucleic acid delivery: beyond being cationic.

    PubMed

    Rao, N Madhusudhana

    2010-03-01

    Realization of the potential of nucleic acids as drugs is intricately linked to their in vivo delivery. Cationic lipids demonstrated tremendous potential as safe, efficient and scalable in vitro carriers of nucleic acids. For in vivo delivery of nucleic acids, the extant two component liposomal preparations consisting of cationic lipids and nucleic acids have been largely found to be insufficient. Being a soft matter, liposomes readily respond to many physiological variables leading to complex component and morphological changes, thus confounding the efforts in a priori identification of a "competent" formulation. In the recent past many chemical moieties that provide advantage in facing the challenges of barriers in vivo, were incorporated into cationic lipids to improve the transfection efficiency. The cationic lipids, essential for DNA condensation and protection, definitely require additional components to be efficient in vivo. In addition, formulations of cationic lipid carriers with non-lipidic components, mainly peptides, have demonstrated success in in vivo transfection. The present review describes some recent successes of in vivo nucleic acid delivery by cationic lipids. PMID:20060819

  11. Energy and Entropy Effects in Dissociation of Peptide Radical Anions

    SciTech Connect

    Laskin, Julia; Yang, Zhibo; Lam, Corey; Chu, Ivan K.

    2012-04-15

    Time- and collision energy-resolved surface-induced dissociation (SID) of peptide radical anions was studied for the first time using a Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS) configured for SID experiments. Peptide radical cations and anions were produced by gas-phase fragmentation of CoIII(salen)-peptide complexes. The effect of the charge, radical, and the presence of a basic residue on the energetics and dynamics of dissociation of peptide ions was examined using RVYIHPF (1) and HVYIHPF (2) as model systems. Comparison of the survival curves for of [M+H]{sup +}, [M-H]{sup -}, M{sup +{sm_bullet}}, and [M-2H]{sup -{sm_bullet}} ions of these precursors demonstrated that even-electron ions are more stable towards fragmentation than their odd-electron counterparts. RRKM modeling of the experimental data demonstrated that the lower stability of the positive radicals is mainly attributed to lower dissociation thresholds while entropy effects are responsible the relative instability of the negative radicals. Substitution of arginine with less basic histidine residue has a strong destabilizing effect on the [M+H]{sup +} ions and a measurable stabilizing effect on the odd-electron ions. Lower threshold energies for dissociation of both positive and negative radicals of 1 are attributed to the presence of lower-energy dissociation pathways that are most likely promoted by the presence of the basic residue.

  12. [Aging and free radicals].

    PubMed

    Manso, C

    1992-02-01

    Several theories on aging are presented. All of them give important contributions but none explains all the aspects of the problem. Oxygen radicals produced during cellular combustion contribute to aging through multiple cumulative microlesions throughout life. The importance of glucose is emphasized; it forms early and late Maillard compounds. Other causes of aging are discussed. PMID:1595373

  13. Radical School Reform.

    ERIC Educational Resources Information Center

    Gross, Beatrice, Ed.; Gross, Ronald, Ed.

    This book provides a comprehensive examination of the nature of the school crisis and the ways in which radical thinkers and educators are dealing with it. Excerpts from the writings of Jonathan Kozol, John Holt, Kenneth Clark, and others are concerned with the realities of education in ghettos and suburbs. Paul Goodman, Marshall McLuhan, Sylvia…

  14. Adsorption of alkanes on stoichiometric and oxygen-rich RuO2(110).

    PubMed

    Li, Tao; Kim, Minkyu; Rai, Rahul; Liang, Zhu; Asthagiri, Aravind; Weaver, Jason F

    2016-08-10

    We investigated the molecular adsorption of methane, ethane, propane and n-butane on stoichiometric and oxygen-rich RuO2(110) surfaces using temperature-programmed desorption (TPD) and dispersion-corrected density functional theory (DFT-D3) calculations. We find that each alkane adsorbs strongly on the coordinatively-unsaturated Ru (Rucus) atoms of s-RuO2(110), with desorption from this state producing a well-defined TPD peak at low alkane coverage. As the coverage increases, we find that alkanes first form a compressed layer on the Rucus atoms and subsequently adsorb on the bridging O atoms of the surface until the monolayer saturates. DFT-D3 calculations predict that methane preferentially adsorbs on top of a Rucus atom and that the C2 to C4 alkanes preferentially adopt bidentate configurations in which each molecule aligns parallel to the Rucus atom row and datively bonds to neighboring Rucus atoms. DFT-D3 predicts binding energies that agree quantitatively with our experimental estimates for alkane σ-complexes on RuO2(110). We find that oxygen atoms adsorbed on top of Rucus atoms (Oot atoms) stabilize the adsorbed alkane complexes that bind in a given configuration, while also blocking the sites needed for σ-complex formation. This site blocking causes the coverage of the most stable, bidentate alkane complexes to decrease sharply with increasing Oot coverage. Concurrently, we find that a new peak develops in the C2 to C4 alkane TPD spectra with increasing Oot coverage, and that the desorption yield in this TPD feature passes through a maximum at Oot coverages between ∼50% and 60%. We present evidence that the new TPD peak arises from C2 to C4 alkanes that adsorb in upright, monodentate configurations on stranded Rucus sites located within the Oot layer. PMID:27477390

  15. Biodegradation of variable-chain-length alkanes at low temperatures by a psychrotrophic Rhodococcus sp.

    SciTech Connect

    Whyte, L.G.; Hawari, J.; Zhou, E.; Bourbonniere, L.; Greer, C.W.; Inniss, W.E.

    1998-07-01

    The psychrotroph Rhodococcus sp. strain Q15 was examined for its ability to degrade individual n-alkanes and diesel fuel at low temperatures, and its alkane catabolic pathway was investigated by biochemical and genetic techniques. At 0 and 5 C, Q15 mineralized the short-chain alkanes dodecane and hexadecane to a greater extent than that observed for the long-chain alkanes octacosane and dotriacontane. Q15 utilized a broad range of aliphatics (C{sub 10} to C{sub 21} alkanes, branched alkanes, and a substituted cyclohexane) present in diesel fuel at 5 C. Mineralization of hexadecane at 5 C was significantly greater in both hydrocarbon-contaminated and pristine soil microcosms seeded with Q15 cells than in uninoculated control soil microcosms. The detection of hexadecane and dodecane metabolic intermediates (1-hexadecanol and 2-hexadecanol and 1-do-decanol and 2-dodecanone, respectively) by solid-phase microextraction-gas chromatography-mass spectrometry and the utilization of potential metabolic intermediates indicated that Q15 oxidizes alkanes by both the terminal oxidation pathway and the subterminal oxidation pathway. Genetic characterization by PCR and nucleotide sequence analysis indicated that Q15 possesses an aliphatic aldehyde dehydrogenase gene highly homologous to the Rhodococcus erythropolis thcA gene. Rhodococcus sp. strain Q15 possessed two large plasmids of approximately 90 and 115 kb (shown to mediate Cd resistance) which were not required for alkane mineralization, although the 90-kb plasmid enhanced mineralization of some alkanes and growth on diesel oil at both 5 and 25 C.

  16. Compound-specific hydrogen isotope composition of n-alkanes in combustion residuals of fossil fuels

    NASA Astrophysics Data System (ADS)

    Bai, Huiling; Peng, Lin; Li, Zhongping; Liu, Xiaofeng; Song, Chongfang; Mu, Ling

    2014-11-01

    The hydrogen isotope compositions (δD) of n-alkanes present in the combustion residuals of fossil fuels (coal, gasoline, and diesel) were measured using GC-IRMS to distinguish between coal soot and vehicle exhaust. The n-alkane δD values of industrial and domestic coal soot ranged from -95.3‰ to -219.6‰ and -128.1‰ to -188.6‰, respectively, exhibiting similar tendencies. The δD values of the C15-C18n-alkanes in both types of coal soot were nearly consistent, and the δD values of the C19-C24n-alkanes exhibited a zigzag profile. The δD values of C16-C22n-alkanes in gasoline exhaust exhibited a saw-tooth distribution, decreased with the carbon number, and were more positive than the δD values of C16-C22n-alkanes in diesel exhaust, which increased with the carbon number. However, the δD values of the C23-C29n-alkanes in gasoline and diesel vehicle exhaust were mostly consistent. The weighted average δD values of the C16-C19n-alkanes in industrial and domestic coal soot were similar to the average δD values in gasoline and diesel vehicle exhausts; however, the average δD values of the C21-C29n-alkanes in vehicle exhausts were richer in D than those in coal soot.

  17. Structural Characterization of Hydroxyl Radical Adducts in Aqueous Media

    NASA Astrophysics Data System (ADS)

    Janik, Ireneusz; Tripathi, G. N. R.

    2015-06-01

    The oxidation by the hydroxyl (OH) radical is one of the most widely studied reactions because of its central role in chemistry, biology, organic synthesis, and photocatalysis in aqueous environments, wastewater treatment, and numerous other chemical processes. Although the redox potential of OH is very high, direct electron transfer (ET) is rarely observed. If it happens, it mostly proceeds through the formation of elusive OH adduct intermediate which facilitates ET and formation of hydroxide anion. Using time resolved resonance Raman technique we structurally characterized variety of OH adducts to sulfur containing organic compounds, halide ions as well as some metal cations. The bond between oxygen of OH radical and the atom of oxidized molecule differs depending on the nature of solute that OH radical reacts with. For most of sulfur containing organics, as well as halide and pseudo-halide ions, our observation suggested that this bond has two-center three-electron character. For several metal aqua ions studied, the nature of the bond depends on type of the cation being oxidized. Discussion on spectral parameters of all studied hydroxyl radical adducts as well as the role solvent plays in their stabilization will be presented.

  18. Intercalation of stable organic radicals into layered saponite clay.

    PubMed

    Hemme, Wilhelm L; Fujita, Wataru; Awaga, Kunio; Eckert, Hellmut

    2009-10-14

    2-(3- and 4-N-methylpyridinium)-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazol-1-oxyl 3-N-oxide (abbreviated as m- and p-MPYNN), the butyl derivative (m- and p-BuPYNN), 4-(N-ethylammonium)-2,2,5,5-tetramethylpiperidin-1-oxyl (ETEP) and N,N,N',N'-Tetramethyl-1,4-phenylenediamine radical cation (TMPD(+)) have been successfully intercalated into saponite clay. The amount of intercalated material has been determined via UV/VIS spectroscopy, elemental analysis and EPR spectroscopy, and the expansion of the layer distance from approximately 12.0 to ca. 15 A has been measured by X-ray powder diffraction. The magnetic properties of these materials, which result from the interplay of the modified intermolecular interactions between the guest species, and the additional interaction with the host lattice, have been characterized by magnetic susceptibility, EPR and solid state NMR measurements. While the (29)Si and (27)Al NMR spectra show little influence of the radical species on the local structural environments of the nuclei in the host lattice, the guest-host interaction manifests itself in significant line-broadening and (in some cases) resonance displacements of the (1)H NMR signals belonging to the molecular radical cations. In the case of TMPD(+) intercalates, the NMR and EPR data indicate predominant radical dimerization within the interlayer space. PMID:19771362

  19. Calmodulin Methionine Residues are Targets For One-Electron Oxidation by Hydroxyl Radicals: Formation of S therefore N three-electron bonded Radical Complexes

    SciTech Connect

    Nauser, Thomas; Jacoby, Michael E.; Koppenol, Willem H.; Squier, Thomas C.; Schoneich, Christian

    2005-02-01

    The one-electron (1e) oxidation of organic sulfides and methionine (Met) constitutes an important reaction mechanism in vivo.1,2 Evidence for a Cu(II)-catalyzed oxidation of Met35 in the Alzheimer's disease -amyloid peptide was obtained,3 and, based on theoretical studies, Met radical cations were proposed as intermediates.4 In the structure of -amyloid peptide, the formation of Met radical cations appears to be facilitated by a preexisting close sulfur-oxygen (S-O) interaction between the Met35 sulfur and the carbonyl oxygen of the peptide bond C-terminal to Ile31.5 Substitution of Ile31 with Pro31 abolishes this S-O interaction,5 significantly reducing the ability of -amyloid to reduce Cu(II), and converts the neurotoxic wild-type -amyloid into a non-toxic peptide.6 The preexisting S-O bond characterized for wild-type -amyloid suggests that electron transfer from Met35 to Cu(II) is supported through stabilization of the Met radical cation by the electron-rich carbonyl oxygen, generating an SO-bonded7 sulfide radical cation (Scheme 1, reaction 1).5

  20. Tyrosyl Radicals in Dehaloperoxidase

    PubMed Central

    Dumarieh, Rania; D'Antonio, Jennifer; Deliz-Liang, Alexandria; Smirnova, Tatyana; Svistunenko, Dimitri A.; Ghiladi, Reza A.

    2013-01-01

    Dehaloperoxidase (DHP) from Amphitrite ornata, having been shown to catalyze the hydrogen peroxide-dependent oxidation of trihalophenols to dihaloquinones, is the first oxygen binding globin that possesses a biologically relevant peroxidase activity. The catalytically competent species in DHP appears to be Compound ES, a reactive intermediate that contains both a ferryl heme and a tyrosyl radical. By simulating the EPR spectra of DHP activated by H2O2, Thompson et al. (Thompson, M. K., Franzen, S., Ghiladi, R. A., Reeder, B. J., and Svistunenko, D. A. (2010) J. Am. Chem. Soc. 132, 17501–17510) proposed that two different radicals, depending on the pH, are formed, one located on either Tyr-34 or Tyr-28 and the other on Tyr-38. To provide additional support for these simulation-based assignments and to deduce the role(s) that tyrosyl radicals play in DHP, stopped-flow UV-visible and rapid-freeze-quench EPR spectroscopic methods were employed to study radical formation in DHP when three tyrosine residues, Tyr-28, Tyr-34, and Tyr-38, were replaced either individually or in combination with phenylalanines. The results indicate that radicals form on all three tyrosines in DHP. Evidence for the formation of DHP Compound I in several tyrosine mutants was obtained. Variants that formed Compound I showed an increase in the catalytic rate for substrate oxidation but also an increase in heme bleaching, suggesting that the tyrosines are necessary for protecting the enzyme from oxidizing itself. This protective role of tyrosines is likely an evolutionary adaptation allowing DHP to avoid self-inflicted damage in the oxidative environment. PMID:24100039

  1. Characterization of cyclic and acyclic alkanes in Forties and Kuwait petroleum crudes

    SciTech Connect

    Jones, D.W. ); Pakdel, H. ); Bartle, K.D. )

    1990-01-01

    Alkane hydrocarbon fractions from Forties (North Sea) and Kuwait petroleum crudes, separated by distillation, solvent extraction and silicagel column chromatography and sub-fractionated by molecular-sieve adsorption, have been examined by gas chromatography (GC), {sup 1}H and {sup 13}C NMR spectroscopy, GC-mass spectrometry (MS) and field desorption (FD)MS. GC indicates that Forties contains rather more acyclic isoprenoids and cyclic alkanes than Kuwait; FDMS of Kuwait shows molecular-weight ranges for mono-, di-, tri-, tetra-, and pentacyclic alkanes. {sup 13}C NMR spectra provide evidence of higher aromatic carbon, C{sub A}, in Forties than Kuwait and longer T{sub 1} relaxation times.

  2. Adsorption and dissociation kinetics of alkanes on CaO(100)

    NASA Astrophysics Data System (ADS)

    Chakradhar, A.; Liu, Y.; Schmidt, J.; Kadossov, E.; Burghaus, U.

    2011-08-01

    The adsorption kinetics of ethane, butane, pentane, and hexane on CaO(100) have been studied by multi-mass thermal desorption (TDS) spectroscopy. The sample cleanliness was checked by Auger electron spectroscopy. A molecular and dissociative adsorption pathway was evident for the alkanes, except for ethane, which does not undergo bond activation. Two TDS peaks appeared when recording the parent mass, which are assigned to different adsorption sites/configurations of the molecularly adsorbed alkanes. Bond activation leads to desorption of hydrogen and several alkane fragments assigned to methane and ethylene formation. Only one TDS feature is seen in this case. Formation of carbon residuals was absent.

  3. Photochemical dimerization and functionalization of alkanes, ethers, primary and secondary alcohols, phosphine oxides and silanes

    DOEpatents

    Crabtree, Robert H.; Brown, Stephen H.

    1989-01-01

    The space-time yield and/or the selectivity of the photochemical dimerization of alkanes, ethers, primary and secondary alcohols, phosphine oxides and primary, secondary and tertiary silanes with Hg and U.V. light is enhanced by refluxing the substrate in the irradiated reaction zone at a temperature at which the dimer product condenses and remains condensed promptly upon its formation. Cross-dimerization of the alkanes, ethers and silanes with primary alcohols is disclosed, as is the functionalization to aldehydes of the alkanes with carbon monoxide.

  4. Photochemical dimerization and functionalization of alkanes, ethers, primary and secondary alcohols, phosphine oxides and silanes

    DOEpatents

    Crabtree, R.H.; Brown, S.H.

    1989-10-17

    The space-time yield and/or the selectivity of the photochemical dimerization of alkanes, ethers, primary and secondary alcohols, phosphine oxides and primary, secondary and tertiary silanes with Hg and U.V. light is enhanced by refluxing the substrate in the irradiated reaction zone at a temperature at which the dimer product condenses and remains condensed promptly upon its formation. Cross-dimerization of the alkanes, ethers and silanes with primary alcohols is disclosed, as is the functionalization to aldehydes of the alkanes with carbon monoxide.

  5. Effect of n-alkanes on asphaltene structuring in petroleum oils.

    PubMed

    Stachowiak, Christian; Viguié, Jean-Romain; Grolier, Jean-Pierre E; Rogalski, Marek

    2005-05-24

    The interactions between asphaltenes and short- to medium-chain n-alkanes were studied using titration microcalorimetry and inverse chromatography. The exothermic heat effects observed upon mixing of asphaltenes and n-alkanes were interpreted in terms of assembling of the two types of compounds into mixed structures. We show that the energy of the interactions between n-alkanes and the asphaltene hydrocarbon chains is close to the energy of the interactions between the asphaltene chains. We propose that the latter interactions are responsible for the formation of the asphaltene aggregates and are the driving force of the aggregate assembly into higher structures. PMID:15896019

  6. Light alkane conversion processes - Suprabiotic catalyst systems for selective oxidation of light alkane gases to fuel oxygenates.

    SciTech Connect

    Lyons, J.E.

    1992-07-01

    The objective of the work presented in this paper is to develop new, efficient catalysts for the selective transformation of the light alkanes in natural gas to alcohols for use as liquid transportation fuels, fuel precursors and chemical products. There currently exists no DIRECT one-step catalytic air-oxidation process to convert these substrates to alcohols. Such a one-step route would represent superior useful technology for the utilization of natural gas and similar refinery-derived light hydrocarbon streams. Processes for converting natural gas or its components (methane, ethane, propane, and the butanes) to alcohols for use as motor fuels, fuel additives or fuel precursors will not only add a valuable alternative to crude oil but will produce a clean-burning, high octane alternative to conventional gasoline.

  7. Light alkane conversion processes - Suprabiotic catalyst systems for selective oxidation of light alkane gases to fuel oxygenates

    SciTech Connect

    Lyons, J.E.

    1992-01-01

    The objective of the work presented in this paper is to develop new, efficient catalysts for the selective transformation of the light alkanes in natural gas to alcohols for use as liquid transportation fuels, fuel precursors and chemical products. There currently exists no DIRECT one-step catalytic air-oxidation process to convert these substrates to alcohols. Such a one-step route would represent superior useful technology for the utilization of natural gas and similar refinery-derived light hydrocarbon streams. Processes for converting natural gas or its components (methane, ethane, propane, and the butanes) to alcohols for use as motor fuels, fuel additives or fuel precursors will not only add a valuable alternative to crude oil but will produce a clean-burning, high octane alternative to conventional gasoline.

  8. Characterization of the Medium- and Long-Chain n-Alkanes Degrading Pseudomonas aeruginosa Strain SJTD-1 and Its Alkane Hydroxylase Genes

    PubMed Central

    Liu, Huan; Xu, Jing; Liang, Rubing; Liu, Jianhua

    2014-01-01

    A gram-negative aliphatic hydrocarbon-degrading bacterium SJTD-1 isolated from oil-contaminated soil was identified as Pseudomonas aeruginosa by comparative analyses of the 16S rRNA sequence, phenotype, and physiological features. SJTD-1 could efficiently mineralize medium- and long-chain n-alkanes (C12-C30) as its sole carbon source within seven days, showing the most optimal growth on n-hexadecane, followed by n-octadecane, and n-eicosane. In 36 h, 500 mg/L of tetradecane, hexadecane, and octadecane were transformed completely; and 2 g/L n-hexadecane was degraded to undetectable levels within 72 h. Two putative alkane-degrading genes (gene 3623 and gene 4712) were characterized and our results indicated that their gene products were rate-limiting enzymes involved in the synergetic catabolism of C12–C16 alkanes. On the basis of bioinformatics and transcriptional analysis, two P450 monooxygenases, along with a putative AlmA-like oxygenase, were examined. Genetically defective mutants lacking the characteristic alkane hydroxylase failed to degrade n-octadecane, thereby suggesting a different catalytic mechanism for the microbial transformation of alkanes with chain lengths over C18. PMID:25165808

  9. Novel reactions of one-electron oxidized radicals of selenomethionine in comparison with methionine.

    PubMed

    Mishra, B; Sharma, A; Naumov, S; Priyadarsini, K I

    2009-05-28

    Pulse radiolysis studies on hydroxyl (*OH) radical reactions of selenomethionine (SeM), a selenium analogue of methionine, were carried out, and the resultant transient radical cations and their subsequent reactions have been reported. At pH<3, the >Se*-OH radical adducts produced on reaction of SeM with *OH radical were converted to selenium centered radical cations (Se*+M), which react with another molecule of SeM to form dimer radical cation M(Se therefore Se)M+. At pH 7, the >Se*-OH radical adducts were converted to a monomer radical of the type (Se therefore N)M+ that acquires intramolecular stability through interaction with the lone pair of the N atom and this radical is denoted as SeM*+. SeM*+ decayed by first order kinetics, and the reduction potential of the couple SeM*+/SeM was determined to be 1.21+/-0.05 V vs NHE at pH 7. SeM*+ oxidized ABTS2- and TMPD with rate constants of (2.5+/-0.1)x10(8) and (6.1+/-0.2)x10(8) M(-1) s(-1), respectively, and reacted with hydroxide ion with a rate constant of (3.8+/-0.9)x10(5) M(-1) s(-1). SeM*+ reacts with molecular oxygen, and the rate constant for this reaction was determined to be (4.3+/-0.2)x10(8) M(-1) s(-1); similar reaction with methionine could not be observed experimentally. Like methionine radical cations, SeM*+ undergoes decarboxylation, although with lesser yield, to produce reducing 3-methyl-selenopropyl amino radicals (referred as alpha-amino radicals). The formation of these radicals was confirmed both by the estimation of the liberated CO2 and by one-electron reduction of MV2+, thionine, and PNAP. These results have been supported by quantum chemical calculations. Implications of these results in the biological role of SeM have also been briefly discussed. PMID:19408939

  10. Capturing Polyradical Protein Cations after an Electron Capture Event: Evidence for their Stable Distonic Structures in the Gas Phase

    NASA Astrophysics Data System (ADS)

    Baba, Takashi; Campbell, J. Larry

    2015-08-01

    We report on the formation and "capture" of polyradical protein cations after an electron capture event. Performed in a unique electron-capture dissociation (ECD) instrument, these experiments can generate reduced forms of multiply protonated proteins by sequential charge reduction using electrons with ~1 eV. The true structures of these possible polyradicals is considered: Do the introduced unpaired electrons recombine quickly to form a new two-electron bond, or do these unpaired electrons exist as radical sites with appropriate chemical reactivity? Using an established chemical probe—radical quenching with molecular oxygen—we demonstrate that these charge-reduced protein cations are indeed polyradicals that form adducts with up to three molecules of oxygen (i.e., tri-radical protein cations) that are stable for at least 100 ms.

  11. Kinetics of CH(X 2Pi) radical reactions with cyclopropane, cyclopentane, and cyclohexane

    NASA Technical Reports Server (NTRS)

    Zabarnick, S.; Fleming, J. W.; Lin, M. C.

    1988-01-01

    Rate constants have been obtained for CH(X 2Pi) radical reactions with cyclopropane, cyclopentane, and cyclohexane in order to establish the rate of CH insertion into secondary C-H bonds in alkanes. Data indicate that there is no measurable dependence on photolysis laser energy. The reactions all exhibited rate constants that decrease with increasing temperature. It is suggested that a possible set of pathways for the cycloalkane reactions is a ring-opening process where the excited adduct decomposes to a hydrogen atom and a diene.

  12. Numerical and experimental studies of ethanol flames and autoignition theory for higher alkanes

    NASA Astrophysics Data System (ADS)

    Saxena, Priyank

    oxides of nitrogen and other potential pollutants in similar partially premixed flames of ethanol and other fuels for comparison purposes. The computational results with the present mechanism are in reasonable agreement with experiment and perform as well as or better than predictions of other, generally much larger, mechanisms available in the literature. Further research is, however, warranted for providing additional and more stringent tests of the mechanism and its predictions, especially for condition at higher pressures. The second part of the dissertation consists of analytical study of autoignition of higher alkane fuels. It is shown that, above about 1000 K, ignition delay times for propane and all higher alkanes, as well as for a number of other fuels, can be calculated well by employing rate parameters of only three types of elementary steps, namely CmHn+HO2→C mHn-1+H2O2, H2O2+M→2OH+M and 2HO2→H2O2+O2, only the first of which is fuel-specific, the other two clearly being common to all fuels. The prediction of this remarkably simple result relies on a steady-state approximation for HO2, as well as steady states for more active radicals during induction. The resulting approximation to the chemistry exhibits a slow, finite-rate buildup of H2O2 and removal of fuel during the induction period. The criterion employed for termination of the induction period is the complete depletion of the original fuel subject to the approximations introduced. Numerical comparisons of the ignition-time formula with the experiments show that the predictions work well not only for higher alkanes but also for propene and JP-10. The analytical approximation thus produces reasonable results for a wide range of fuels. These results provide a new perspective on high-temperature autoignition chemistry and a general means of easily estimating ignition times of the large number of fuels of practical importance.

  13. Toward Radicalizing Community Service Learning

    ERIC Educational Resources Information Center

    Sheffield, Eric C.

    2015-01-01

    This article advocates a radicalized theoretical construction of community service learning. To accomplish this radicalization, I initially take up a discussion of traditional understandings of CSL rooted in pragmatic/progressive thought. I then suggest that this traditional structural foundation can be radicalized by incorporating Deborah…

  14. STRUCTURE-REACTIVITY RELATIONSHIPS IN DEHYDROHALOGENATION REACTIONS OF POLYCHLORINATED AND POLYBROMINATED ALKANES

    EPA Science Inventory

    Current information is inadequate to predict the rates at which polyhalogenated alkanes undergo dehydrohalogenation rations under environmental conditions, forming olefins that are frequently more toxic and more recalcitrant than the products of substitution reactions. o permit e...

  15. Modeling the Role of Alkanes, Polycyclic Aromatic Hydrocarbons, and Their Oligomers in Secondary Organic Aerosol Formation

    EPA Science Inventory

    A computationally efficient method to treat secondary organic aerosol (SOA) from various length and structure alkanes as well as SOA from polycyclic aromatic hydrocarbons (PAHs) is implemented in the Community Multiscale Air Quality (CMAQ) model to predict aerosol concentrations ...

  16. Draft Genome Sequence of the Versatile Alkane-Degrading Bacterium Aquabacterium sp. Strain NJ1

    PubMed Central

    Shiwa, Yuh; Yoshikawa, Hirofumi; Zylstra, Gerben J.

    2014-01-01

    The draft genome sequence of a soil bacterium, Aquabacterium sp. strain NJ1, capable of utilizing both liquid and solid alkanes, was deciphered. This is the first report of an Aquabacterium genome sequence. PMID:25477416

  17. 40 CFR 721.10148 - Acryloxy alkanoic alkane derivative with mixed metal oxides (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES... mixed metal oxides (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as acryloxy alkanoic alkane derivative with mixed...

  18. Production of Liquid Alkanes by Aqueous-Phase Processing of Biomass-Derived Carbohydrates

    NASA Astrophysics Data System (ADS)

    Huber, George W.; Chheda, Juben N.; Barrett, Christopher J.; Dumesic, James A.

    2005-06-01

    Liquid alkanes with the number of carbon atoms ranging from C7 to C15 were selectively produced from biomass-derived carbohydrates by acid-catalyzed dehydration, which was followed by aldol condensation over solid base catalysts to form large organic compounds. These molecules were then converted into alkanes by dehydration/hydrogenation over bifunctional catalysts that contained acid and metal sites in a four-phase reactor, in which the aqueous organic reactant becomes more hydrophobic and a hexadecane alkane stream removes hydrophobic species from the catalyst before they go on further to form coke. These liquid alkanes are of the appropriate molecular weight to be used as transportation fuel components, and they contain 90% of the energy of the carbohydrate and H2 feeds.

  19. Photocatalytic acceptorless alkane dehydrogenation: scope, mechanism, and conquering deactivation with carbon dioxide.

    PubMed

    Chowdhury, Abhishek Dutta; Julis, Jennifer; Grabow, Kathleen; Hannebauer, Bernd; Bentrup, Ursula; Adam, Martin; Franke, Robert; Jackstell, Ralf; Beller, Matthias

    2015-01-01

    Alkane dehydrogenation is of special interest for basic science but also offers interesting opportunities for industry. The existing dehydrogenation methodologies make use of heterogeneous catalysts, which suffer from harsh reaction conditions and a lack of selectivity, whereas homogeneous methodologies rely mostly on unsolicited waste generation from hydrogen acceptors. Conversely, acceptorless photochemical alkane dehydrogenation in the presence of trans-Rh(PMe3 )2 (CO)Cl can be regarded as a more benign and atom efficient alternative. However, this methodology suffers from catalyst deactivation over time. Herein, we provide a detailed investigation of the trans-Rh(PMe3 )2 (CO)Cl-photocatalyzed alkane dehydrogenation using spectroscopic and theoretical investigations. These studies inspired us to utilize CO2 to prevent catalyst deactivation, which leads eventually to improved catalyst turnover numbers in the dehydrogenation of alkanes that include liquid organic hydrogen carriers. PMID:25346450

  20. Alkane oxidation with porphyrins and metal complexes thereof having haloalkyl side chains

    DOEpatents

    Wijesekera, T.; Lyons, J.E.; Ellis, P.E. Jr.; Bhinde, M.V.

    1998-06-23

    Transition metal complexes of meso-haloalkylporphyrins are disclosed, wherein the haloalkyl groups contain 2 to 8 carbon atoms have been found to be highly effective catalysts for oxidation of alkanes and for the decomposition of hydroperoxides. 7 figs.

  1. Alkane oxidation with porphyrins and metal complexes thereof having haloalkyl side chains

    DOEpatents

    Wijesekera, Tilak; Lyons, James E.; Ellis, Jr., Paul E.; Bhinde, Manoj V.

    1998-01-01

    Transition metal complexes of meso-haloalkylporphyrins, wherein the haloalkyl groups contain 2 to 8 carbon atoms have been found to be highly effective catalysts for oxidation of alkanes and for the decomposition of hydroperoxides.

  2. Free radical explosive composition

    DOEpatents

    Walker, Franklin E.; Wasley, Richard J.

    1979-01-01

    An improved explosive composition is disclosed and comprises a major portion of an explosive having a detonation velocity between about 1500 and 10,000 meters per second and a minor amount of a getter additive comprising a compound or mixture of compounds capable of capturing or deactivating free radicals or ions under mechanical or electrical shock conditions and which is not an explosive. Exemplary getter additives are isocyanates, olefins and iodine.

  3. Cation Diffusion in Xenotime

    NASA Astrophysics Data System (ADS)

    Cherniak, D. J.

    2004-05-01

    Xenotime is an important mineral in metamorphic paragenesis, and useful in isotopic dating, garnet-xenotime thermometry, and monazite-xenotime thermometry, so diffusion data for xenotime of cations of geochronological and geochemical importance are of some interest. We report here on diffusion of the rare earth elements Sm, Dy and Yb in synthetic xenotime under dry conditions. The synthetic xenotime was grown via a Na2}CO{3}-MoO_{3 flux method. The source of diffusant for the experiments were REE phosphate powders, with experiments run with sources containing a single REE. Experiments were performed by placing source and xenotime in Pt capsules, and annealing capsules in 1 atm furnaces for times ranging from thirty minutes to a month, at temperatures from 1000 to 1400C. The REE distributions in the xenotime were profiled by Rutherford Backscattering Spectrometry (RBS). The following Arrhenius relations are obtained for diffusion in xenotime, normal to (101): DSm = 1.7x10-4 exp(-442 kJ mol-1/RT) m2}sec{-1 DDy = 3.5x10-7 exp(-365 kJ mol-1/RT) m2}sec{-1 DYb = 7.4x10-7 exp(-371 kJ mol-1/RT) m2}sec{-1. Diffusivities of these REE do not differ greatly in xenotime, in contrast to the findings noted for the REE in zircon (Cherniak et al., 1997), where the LREE diffuse more slowly, and with higher activation energies for diffusion, than the heavier rare earths. In zircon, these differences among diffusion of the rare earths are attributed to the relatively large size of the REE with respect to Zr, for which they substitute in the zircon lattice. With the systematic increase in ionic radius from the heavy to lighter REE, this size mismatch becomes more pronounced and diffusivities of the LREE are as consequence slower. Although xenotime is isostructural with zircon, the REE are more closely matched in size to Y, so in xenotime this effect appears much smaller and the REE diffuse at similar rates. In addition, the process of diffusion in xenotime likely involves simple REE+3

  4. Biodegradation of variable-chain-length n-alkanes in Rhodococcus opacus R7 and the involvement of an alkane hydroxylase system in the metabolism

    PubMed Central

    2014-01-01

    Rhodococcus opacus R7 is a Gram-positive bacterium isolated from a polycyclic aromatic hydrocarbon contaminated soil for its versatile metabolism; indeed the strain is able to grow on naphthalene, o-xylene, and several long- and medium-chain n-alkanes. In this work we determined the degradation of n-alkanes in Rhodococcus opacus R7 in presence of n-dodecane (C12), n-hexadecane (C16), n-eicosane (C20), n-tetracosane (C24) and the metabolic pathway in presence of C12. The consumption rate of C12 was 88%, of C16 was 69%, of C20 was 51% and of C24 it was 78%. The decrement of the degradation rate seems to be correlated to the length of the aliphatic chain of these hydrocarbons. On the basis of the metabolic intermediates determined by the R7 growth on C12, our data indicated that R. opacus R7 metabolizes medium-chain n-alkanes by the primary alcohol formation. This represents a difference in comparison with other Rhodococcus strains, in which a mixture of the two alcohols was observed. By GC-MSD analysis we also identified the monocarboxylic acid, confirming the terminal oxidation. Moreover, the alkB gene cluster from R. opacus R7 was isolated and its involvement in the n-alkane degradation system was investigated by the cloning of this genomic region into a shuttle-vector E. coli-Rhodococcus to evaluate the alkane hydroxylase activity. Our results showed an increased biodegradation of C12 in the recombinant strain R. erythropolis AP (pTipQT1-alkR7) in comparison with the wild type strain R. erythropolis AP. These data supported the involvement of the alkB gene cluster in the n-alkane degradation in the R7 strain. PMID:25401074

  5. Regulation of the Alkane Hydroxylase CYP153 Gene in a Gram-Positive Alkane-Degrading Bacterium, Dietzia sp. Strain DQ12-45-1b

    PubMed Central

    Liang, Jie-Liang; JiangYang, Jing-Hong

    2015-01-01

    CYP153, one of the most common medium-chain n-alkane hydroxylases belonging to the cytochrome P450 superfamily, is widely expressed in n-alkane-degrading bacteria. CYP153 is also thought to cooperate with AlkB in degrading various n-alkanes. However, the mechanisms regulating the expression of the protein remain largely unknown. In this paper, we studied CYP153 gene transcription regulation by the potential AraC family regulator (CypR) located upstream of the CYP153 gene cluster in a broad-spectrum n-alkane-degrading Gram-positive bacterium, Dietzia sp. strain DQ12-45-1b. We first identified the transcriptional start site and the promoter of the CYP153 gene cluster. Sequence alignment of upstream regions of CYP153 gene clusters revealed high conservation in the −10 and −35 regions in Actinobacteria. Further analysis of the β-galactosidase activity in the CYP153 gene promoter-lacZ fusion cell indicated that the CYP153 gene promoter was induced by n-alkanes comprised of 8 to 14 carbon atoms, but not by derived decanol and decanic acid. Moreover, we constructed a cypR mutant strain and found that the CYP153 gene promoter activities and CYP153 gene transcriptional levels in the mutant strain were depressed compared with those in the wild-type strain in the presence of n-alkanes, suggesting that CypR served as an activator for the CYP153 gene promoter. By comparing CYP153 gene arrangements in Actinobacteria and Proteobacteria, we found that the AraC family regulator is ubiquitously located upstream of the CYP153 gene, suggesting its universal regulatory role in CYP153 gene transcription. We further hypothesize that the observed mode of CYP153 gene regulation is shared by many Actinobacteria. PMID:26567302

  6. Pulsed Dipolar Spectroscopy Reveals That Tyrosyl Radicals Are Generated in Both Monomers of the Cyclooxygenase-2 Dimer.

    PubMed

    Orlando, Benjamin J; Borbat, Peter P; Georgieva, Elka R; Freed, Jack H; Malkowski, Michael G

    2015-12-22

    Cyclooxygenases (COXs) are heme-containing sequence homodimers that utilize tyrosyl radical-based catalysis to oxygenate substrates. Tyrosyl radicals are formed from a single turnover of substrate in the peroxidase active site generating an oxy-ferryl porphyrin cation radical intermediate that subsequently gives rise to a Tyr-385 radical in the cyclooxygenase active site and a Tyr-504 radical nearby. We have utilized double-quantum coherence (DQC) spectroscopy to determine the distance distributions between Tyr-385 and Tyr-504 radicals in COX-2. The distances obtained with DQC confirm that Tyr-385 and Tyr-504 radicals were generated in each monomer and accurately match the distances measured in COX-2 crystal structures. PMID:26636181

  7. Free radical propulsion concept

    NASA Technical Reports Server (NTRS)

    Hawkins, C. E.; Nakanishi, S.

    1981-01-01

    The concept of a free radical propulsion system, utilizing the recombination energy of dissociated low molecular weight gases to produce thrust, is analyzed. The system, operating at a theoretical impulse with hydrogen, as high as 2200 seconds at high thrust to power ratio, is hypothesized to bridge the gap between chemical and electrostatic propulsion capabilities. A comparative methodology is outlined by which characteristics of chemical and electric propulsion for orbit raising mission can be investigated. It is noted that free radicals proposed in rockets previously met with difficulty and complexity in terms of storage requirements; the present study proposes to eliminate the storage requirements by using electric energy to achieve a continuous-flow product of free radicals which are recombined to produce a high velocity propellant. Microwave energy used to dissociate a continuously flowing gas is transferred to the propellant via three-body-recombination for conversion to propellant kinetic energy. Microwave plasma discharge was found in excess of 90 percent over a broad range of pressure in preliminary experiments, and microwave heating compared to electrothermal heating showed much higher temperatures in gasdynamic equations.

  8. Laparoscopic radical cystectomy

    PubMed Central

    Fergany, Amr

    2012-01-01

    Objective Laparoscopic radical cystectomy (LRC) has emerged as a minimally invasive alternative to open radical cystectomy (ORC). This review focuses on patient selection criteria, technical aspects and postoperative outcomes of LRC. Methods Material for the review was obtained by a PubMed search over the last 10 years, using the keywords ‘laparoscopic radical cystectomy’ and ‘laparoscopic bladder cancer’ in human subjects. Results Twenty-two publications selected for relevance and content were used for this review from the total search yield. The level of evidence was IIb and III. LRC results in comparable short- and intermediate-range oncological outcomes to ORC, with generally longer operative times but decreased blood loss, postoperative pain and hospital stay. Overall operative and postoperative morbidity are equivalent. Conclusion In experienced hands, LRC is an acceptable minimally invasive alternative to ORC in selected patients, with the main advantage of decreased blood loss and postoperative pain, as well as a shorter hospital stay and recovery. PMID:26558003

  9. THERMOCHEMISTRY OF HYDROCARBON RADICALS

    SciTech Connect

    Kent M. Ervin, Principal Investigator

    2004-08-17

    Gas phase negative ion chemistry methods are employed to determine enthalpies of formation of hydrocarbon radicals that are important in combustion processes and to investigate the dynamics of ion-molecule reactions. Using guided ion beam tandem mass spectrometry, we measure collisional threshold energies of endoergic proton transfer and hydrogen atom transfer reactions of hydrocarbon molecules with negative reagent ions. The measured reaction threshold energies for proton transfer yield the relative gas phase acidities. In an alternative methodology, competitive collision-induced dissociation of proton-bound ion-molecule complexes provides accurate gas phase acidities relative to a reference acid. Combined with the electron affinity of the R {center_dot} radical, the gas phase acidity yields the RH bond dissociation energy of the corresponding neutral molecule, or equivalently the enthalpy of formation of the R{center_dot} organic radical, using equation: D(R-H) = {Delta}{sub acid}H(RH) + EA(R) - IE(H). The threshold energy for hydrogen abstraction from a hydrocarbon molecule yields its hydrogen atom affinity relative to the reagent anion, providing the RH bond dissociation energy directly. Electronic structure calculations are used to evaluate the possibility of potential energy barriers or dynamical constrictions along the reaction path, and as input for RRKM and phase space theory calculations. In newer experiments, we have measured the product velocity distributions to obtain additional information on the energetics and dynamics of the reactions.

  10. The Number of High-Energy Bands in the Photoelectron Spectrum of Alkanes

    NASA Astrophysics Data System (ADS)

    Merris, Russell; Gutman, Ivan

    2000-12-01

    It was observed that within the Bieri-Dill-Heilbronner-Schmelzer model for the calculation of the ion-ization energies of alkanes CnH2n+2, there are exactly n C2s -electron energy levels lying below the degenerate α-ß manifold. We now show that, indeed, this regularity is obeyed by practically all alkane species. Exceptions do exist, but they must possess a (chemically infeasible) group of more than six mutually connected quaternary carbon atoms.

  11. Measuring long chain alkanes in diesel engine exhaust by thermal desorption PTR-MS

    NASA Astrophysics Data System (ADS)

    Erickson, M. H.; Gueneron, M.; Jobson, B. T.

    2014-01-01

    A method using thermal desorption sampling and analysis by proton transfer reaction mass spectrometry (PTR-MS) to measure long chain alkanes (C12-C18) and other larger organics associated with diesel engine exhaust emissions is described. Long chain alkanes undergo dissociative proton transfer reactions forming a series of fragment ions with formula CnH2n+1. The PTR-MS is insensitive to n-alkanes less than C8 but displays an increasing sensitivity for larger alkanes. Fragment ion distribution and sensitivity is a function of drift conditions. At 80 Td the most abundant ion fragments from C10 to C16 n-alkanes were m/z 57, 71 and 85. The mass spectrum of gasoline and diesel fuel at 80 Td displayed ion group patterns that can be related to known fuel constituents, such as alkanes, alkylbenzenes and cycloalkanes, and other compound groups that are inferred from molecular weight distributions such as dihydronapthalenes and naphthenic monoaromatics. It is shown that thermal desorption sampling of gasoline and diesel engine exhausts at 80 Td allows for discrimination against volatile organic compounds, allowing for quantification of long chain alkanes from the abundance of CnH2n+1 fragment ions. The total abundance of long chain alkanes in diesel engine exhaust was measured to be similar to the total abundance of C1-C4 alkylbenzene compounds. The abundance patterns of compounds determined by thermal desorption sampling may allow for emission profiles to be developed to better quantify the relative contributions of diesel and gasoline exhaust emissions on organic compounds concentrations in urban air.

  12. The quantitative significance of Syntrophaceae and syntrophic partnerships in methanogenic degradation of crude oil alkanes

    PubMed Central

    Gray, N D; Sherry, A; Grant, R J; Rowan, A K; Hubert, C R J; Callbeck, C M; Aitken, C M; Jones, D M; Adams, J J; Larter, S R; Head, I M

    2011-01-01

    Libraries of 16S rRNA genes cloned from methanogenic oil degrading microcosms amended with North Sea crude oil and inoculated with estuarine sediment indicated that bacteria from the genera Smithella (Deltaproteobacteria, Syntrophaceace) and Marinobacter sp. (Gammaproteobacteria) were enriched during degradation. Growth yields and doubling times (36 days for both Smithella and Marinobacter) were determined using qPCR and quantitative data on alkanes, which were the predominant hydrocarbons degraded. The growth yield of the Smithella sp. [0.020 g(cell-C)/g(alkane-C)], assuming it utilized all alkanes removed was consistent with yields of bacteria that degrade hydrocarbons and other organic compounds in methanogenic consortia. Over 450 days of incubation predominance and exponential growth of Smithella was coincident with alkane removal and exponential accumulation of methane. This growth is consistent with Smithella's occurrence in near surface anoxic hydrocarbon degrading systems and their complete oxidation of crude oil alkanes to acetate and/or hydrogen in syntrophic partnership with methanogens in such systems. The calculated growth yield of the Marinobacter sp., assuming it grew on alkanes, was [0.0005 g(cell-C)/g(alkane-C)] suggesting that it played a minor role in alkane degradation. The dominant methanogens were hydrogenotrophs (Methanocalculus spp. from the Methanomicrobiales). Enrichment of hydrogen-oxidizing methanogens relative to acetoclastic methanogens was consistent with syntrophic acetate oxidation measured in methanogenic crude oil degrading enrichment cultures. qPCR of the Methanomicrobiales indicated growth characteristics consistent with measured rates of methane production and growth in partnership with Smithella. PMID:21914097

  13. Marine hydrocarbonoclastic bacteria as whole-cell biosensors for n-alkanes

    PubMed Central

    Sevilla, Emma; Yuste, Luis; Rojo, Fernando

    2015-01-01

    Whole-cell biosensors offer potentially useful, cost-effective systems for the in-situ monitoring of seawater for hydrocarbons derived from accidental spills. The present work compares the performance of a biosensor system for the detection of alkanes in seawater, hosted in either Escherichia coli (commonly employed in whole-cell biosensors but not optimized for alkane assimilation) or different marine bacteria specialized in assimilating alkanes. The sensor system was based on the Pseudomonas putida AlkS regulatory protein and the PalkB promoter fused to a gene encoding the green fluorescent protein. While the E. coli sensor provided the fastest response to pure alkanes (25-fold induction after 2 h under the conditions used), a sensor based on Alcanivorax borkumensis was slower, requiring 3–4 h to reach similar induction values. However, the A. borkumensis sensor showed a fourfold lower detection threshold for octane (0.5 μM), and was also better at sensing the alkanes present in petrol. At petrol concentrations of 0.0125%, the A. borkumensis sensor rendered a sevenfold induction, while E. coli sensor showed no response. We discuss possible explanations to this behaviour in terms of the cellular adaptations to alkane uptake and the basal fluorescence produced by each bacterial strain, which was lowest for A. borkumensis. PMID:25874658

  14. Two distinct monooxygenases for alkane oxidation in Nocardioides sp. strain CF8.

    PubMed

    Hamamura, N; Yeager, C M; Arp, D J

    2001-11-01

    Alkane monooxygenases in Nocardioides sp. strain CF8 were examined at the physiological and genetic levels. Strain CF8 can utilize alkanes ranging in chain length from C(2) to C(16). Butane degradation by butane-grown cells was strongly inhibited by allylthiourea, a copper-selective chelator, while hexane-, octane-, and decane-grown cells showed detectable butane degradation activity in the presence of allylthiourea. Growth on butane and hexane was strongly inhibited by 1-hexyne, while 1-hexyne did not affect growth on octane or decane. A specific 30-kDa acetylene-binding polypeptide was observed for butane-, hexane-, octane-, and decane-grown cells but was absent from cells grown with octane or decane in the presence of 1-hexyne. These results suggest the presence of two monooxygenases in strain CF8. Degenerate primers designed for PCR amplification of genes related to the binuclear-iron-containing alkane hydroxylase from Pseudomonas oleovorans were used to clone a related gene from strain CF8. Reverse transcription-PCR and Northern blot analysis showed that this gene encoding a binuclear-iron-containing alkane hydroxylase was expressed in cells grown on alkanes above C(6). These results indicate the presence of two distinct monooxygenases for alkane oxidation in Nocardioides sp. strain CF8. PMID:11679317

  15. Alkanes in flower surface waxes of Momordica cochinchinensis influence attraction to Aulacophora foveicollis Lucas (Coleoptera: Chrysomelidae).

    PubMed

    Mukherjee, A; Sarkar, N; Barik, A

    2013-08-01

    Extraction, thin-layer chromatography, and gas chromatography-mass spectrophotometry analyses revealed 15 alkanes representing 97.14% of the total alkanes in the surface waxes of Momordica cochinchinensis Spreng flowers. Nonacosane was the prevailing alkane followed by hexatriacontane, nonadecane, heptacosane, and hentriacontane, accounting for 39.08%, 24.24%, 13.52%, 6.32%, and 5.12%, respectively. The alkanes from flower surface waxes followed by a synthetic mixture of alkanes mimicking alkanes of flower surface waxes elicited attraction of the female insect, Aulacophora foveicollis Lucas (Coleoptera: Chrysomelidae) between 2 and 10-μg/mL concentrations in a Y-shaped glass tube olfactometer bioassay under laboratory conditions. Synthetic nonadecane from 178.28-891.37 ng, heptacosane from 118.14-590.72 ng, and nonacosane at 784.73 ng showed attraction of the insect. A synthetic mixture of 534.82 ng nonadecane, 354.43 ng heptacosane, and 2,354.18 ng nonacosane elicited highest attraction of A. foveicollis. PMID:23949856

  16. Combustion Characteristics of Liquid Normal Alkane Fuels in a Model Combustor of Supersonic Combustion Ramjet Engine

    NASA Astrophysics Data System (ADS)

    今村, 宰; 石川, 雄太; 鈴木, 俊介; 福本, 皓士郎; 西田, 俊介; 氏家, 康成; 津江, 光洋

    Effect of kinds of one-component n-alkane liquid fuels on combustion characteristics was investigated experimentally using a model combustor of scramjet engine. The inlet condition of a model combustor is 2.0 of Mach number, up to 2400K of total temperature, and 0.38MPa of total pressure. Five kinds of n-alkane are tested, of which carbon numbers are 7, 8, 10, 13, and 16. They are more chemically active and less volatile with an increase of alkane carbon number. Fuels are injected to the combustor in the upstream of cavity with barbotage nitrogen gas and self-ignition performance was investigated. The result shows that self-ignition occurs with less equivalence ratio when alkane carbon number is smaller. This indicates that physical characteristic of fuel, namely volatile of fuel, is dominant for self-ignition behavior. Effect on flame-holding performance is also examined with adding pilot hydrogen and combustion is kept after cutting off pilot hydrogen with the least equivalence ratio where alkane carbon number is from 8 to 10. These points are discussed qualitatively from the conflict effect of chemical and physical properties on alkane carbon number.

  17. Characterization of the hyperline of D1/D0 conical intersections between the maleic acid and fumaric acid anion radicals

    NASA Astrophysics Data System (ADS)

    Takahashi, Ohgi; Sumita, Masato

    2004-10-01

    The cation and anion radicals of symmetrical 1,2-disubstituted ethylenes are expected to have a symmetry-allowed conical intersection (CI) between the ground doublet state (D0) and the lowest excited doublet state (D1) near a 90°-twisted geometry. By the complete active space self-consistent field method, we characterized the hyperline formed by D1/D0 CIs between the anion radicals of maleic acid (cis) and fumaric acid (trans). An implication of the results for the known one-way cis→trans photoisomerization of the maleic acid anion radical and other related ion radicals is presented.

  18. Cation Ordering in Layered Nickelates

    NASA Astrophysics Data System (ADS)

    Nelson-Cheeseman, Brittany; Zhou, Hua; Cammarata, Antonio; Hoffman, Jason; Balachandran, Prasanna; Rondinelli, James; Bhattacharya, Anand

    2013-03-01

    The single layer Ruddlesden-Popper nickelates present a model system to understand how the effects of digital dopant cation ordering may affect the properties of 2-dimensional conducting sheets. We investigate the effects of aliovalent A-site cation order on LaSrNiO4 films. Using molecular beam epitaxy, we interleave full layers of SrO and LaO in a series of chemically equivalent films, varying the pattern of SrO and LaO layers relative to the NiO2 layers. Through synchrotron surface x-ray diffraction and Coherant Bragg Rod Analysis (COBRA), we directly investigate the A-site cation order and the resulting atomic displacements for each ordering pattern. We correlate these results with theoretical calculations and transport measurements of the layered nickelate films.

  19. Conversion of alkanes to linear alkylsilanes using an iridium-iron-catalysed tandem dehydrogenation-isomerization-hydrosilylation

    NASA Astrophysics Data System (ADS)

    Jia, Xiangqing; Huang, Zheng

    2016-02-01

    The conversion of inexpensive, saturated hydrocarbon feedstocks into value-added speciality chemicals using regiospecific, catalytic functionalization of alkanes is a major goal of organometallic chemistry. Linear alkylsilanes represent one such speciality chemical—they have a wide range of applications, including release coatings, silicone rubbers and moulding products. Direct, selective, functionalization of alkanes at primary C-H bonds is difficult and, to date, methods for catalytically converting alkanes into linear alkylsilanes are unknown. Here, we report a well-defined, dual-catalyst system for one-pot, two-step alkane silylations. The system comprises a pincer-ligated Ir catalyst for alkane dehydrogenation and an Fe catalyst that effects a subsequent tandem olefin isomerization-hydrosilylation. This method exhibits exclusive regioselectivity for the production of terminally functionalized alkylsilanes. This dual-catalyst strategy has also been applied to regioselective alkane borylations to form linear alkylboronate esters.

  20. [Sources, Migration and Conversion of Dissolved Alkanes, Dissolved Fatty Acids in a Karst Underground River Water, in Chongqing Area].

    PubMed

    Liang, Zuo-bing; Sun, Yu-chuan; Wang, Zun-bo; Shi, Yang; Jiang, Ze-li; Zhang, Mei; Xie, Zheng-Lan; Liao, Yu

    2015-09-01

    Dissolved alkanes and dissolved fatty acids were collected from Qingmuguan underground river in July, October 2013. By gas chromatography-mass spectrometer (GC-MS), alkanes and fatty acids were quantitatively analyzed. The results showed that average contents of alkanes and fatty acids were 1 354 ng.L-1, 24203 ng.L-1 in July, and 667 ng.L-1, 2526 ng.L-1 in October respectively. With the increasing migration distance of dissolved alkanes and dissolved fatty acids in underground river, their contents decreased. Based on the molecular characteristic indices of alkanes, like CPI, OEP, Paq and R, dissolved alkanes were mainly originated from microorganisms in July, and aquatic plants in October. Saturated straight-chain fatty acid had the highest contents in all samples with the dominant peak in C16:0, combined with the characteristics of carbon peak, algae or bacteria might be the dominant source of dissolved fatty acids. PMID:26717680

  1. Conversion of alkanes to linear alkylsilanes using an iridium-iron-catalysed tandem dehydrogenation-isomerization-hydrosilylation.

    PubMed

    Jia, Xiangqing; Huang, Zheng

    2016-02-01

    The conversion of inexpensive, saturated hydrocarbon feedstocks into value-added speciality chemicals using regiospecific, catalytic functionalization of alkanes is a major goal of organometallic chemistry. Linear alkylsilanes represent one such speciality chemical-they have a wide range of applications, including release coatings, silicone rubbers and moulding products. Direct, selective, functionalization of alkanes at primary C-H bonds is difficult and, to date, methods for catalytically converting alkanes into linear alkylsilanes are unknown. Here, we report a well-defined, dual-catalyst system for one-pot, two-step alkane silylations. The system comprises a pincer-ligated Ir catalyst for alkane dehydrogenation and an Fe catalyst that effects a subsequent tandem olefin isomerization-hydrosilylation. This method exhibits exclusive regioselectivity for the production of terminally functionalized alkylsilanes. This dual-catalyst strategy has also been applied to regioselective alkane borylations to form linear alkylboronate esters. PMID:26791899

  2. Structure and Function of Benzylsuccinate Synthase and Related Fumarate-Adding Glycyl Radical Enzymes.

    PubMed

    Heider, Johann; Szaleniec, Maciej; Martins, Berta M; Seyhan, Deniz; Buckel, Wolfgang; Golding, Bernard T

    2016-01-01

    The pathway of anaerobic toluene degradation is initiated by a remarkable radical-type enantiospecific addition of the chemically inert methyl group to the double bond of a fumarate cosubstrate to yield (R)-benzylsuccinate as the first intermediate, as catalyzed by the glycyl radical enzyme benzylsuccinate synthase. In recent years, it has become clear that benzylsuccinate synthase is the prototype enzyme of a much larger family of fumarate-adding enzymes, which play important roles in the anaerobic metabolism of further aromatic and even aliphatic hydrocarbons. We present an overview on the biochemical properties of benzylsuccinate synthase, as well as its recently solved structure, and present the results of an initial structure-based modeling study on the reaction mechanism. Moreover, we compare the structure of benzylsuccinate synthase with those predicted for different clades of fumarate-adding enzymes, in particular the paralogous enzymes converting p-cresol, 2-methylnaphthalene or n-alkanes. PMID:26959246

  3. Synchrotron-based valence shell photoionization of CH radical.

    PubMed

    Gans, B; Holzmeier, F; Krüger, J; Falvo, C; Röder, A; Lopes, A; Garcia, G A; Fittschen, C; Loison, J-C; Alcaraz, C

    2016-05-28

    We report the first experimental observations of X(+) (1)Σ(+)←X (2)Π and a(+) (3)Π←X (2)Π single-photon ionization transitions of the CH radical performed on the DESIRS beamline at the SOLEIL synchrotron facility. The radical was produced by successive hydrogen-atom abstractions on methane by fluorine atoms in a continuous microwave discharge flow tube. Mass-selected ion yields and photoelectron spectra were recorded as a function of photon energy using a double imaging photoelectron/photoion coincidence spectrometer. The ion yield appears to be strongly affected by vibrational and electronic autoionizations, which allow the observation of high Rydberg states of the neutral species. The photoelectron spectra enable the first direct determinations of the adiabatic ionization potential and the energy of the first triplet state of the cation with respect to its singlet ground state. This work also brings valuable information on the complex electronic structure of the CH radical and its cation and adds new observations to complement our understanding of Rydberg states and autoionization processes. PMID:27250306

  4. Synchrotron-based valence shell photoionization of CH radical

    NASA Astrophysics Data System (ADS)

    Gans, B.; Holzmeier, F.; Krüger, J.; Falvo, C.; Röder, A.; Lopes, A.; Garcia, G. A.; Fittschen, C.; Loison, J.-C.; Alcaraz, C.

    2016-05-01

    We report the first experimental observations of X+ 1Σ+←X 2Π and a+ 3Π←X 2Π single-photon ionization transitions of the CH radical performed on the DESIRS beamline at the SOLEIL synchrotron facility. The radical was produced by successive hydrogen-atom abstractions on methane by fluorine atoms in a continuous microwave discharge flow tube. Mass-selected ion yields and photoelectron spectra were recorded as a function of photon energy using a double imaging photoelectron/photoion coincidence spectrometer. The ion yield appears to be strongly affected by vibrational and electronic autoionizations, which allow the observation of high Rydberg states of the neutral species. The photoelectron spectra enable the first direct determinations of the adiabatic ionization potential and the energy of the first triplet state of the cation with respect to its singlet ground state. This work also brings valuable information on the complex electronic structure of the CH radical and its cation and adds new observations to complement our understanding of Rydberg states and autoionization processes.

  5. π-Radical to σ-Radical Tautomerization in One-Electron-Oxidized 1-Methylcytosine and Its Analogs.

    PubMed

    Adhikary, Amitava; Kumar, Anil; Bishop, Casandra T; Wiegand, Tyler J; Hindi, Ragda M; Adhikary, Ananya; Sevilla, Michael D

    2015-09-01

    In this work, iminyl σ-radical formation in several one-electron-oxidized cytosine analogs, including 1-MeC, cidofovir, 2'-deoxycytidine (dCyd), and 2'-deoxycytidine 5'-monophosphate (5'-dCMP), were investigated in homogeneous, aqueous (D2O or H2O) glassy solutions at low temperatures by employing electron spin resonance (ESR) spectroscopy. Upon employing density functional theory (DFT) (DFT/B3LYP/6-31G* method), the calculated hyperfine coupling constant (HFCC) values of iminyl σ-radical agree quite well with the experimentally observed ones, thus confirming its assignment. ESR and DFT studies show that the cytosine iminyl σ-radical is a tautomer of the deprotonated cytosine π-cation radical [cytosine π-aminyl radical, C(N4-H)(•)]. Employing 1-MeC samples at various pHs ranging from ca. 8 to 11, ESR studies show that the tautomeric equilibrium between C(N4-H)(•) and the iminyl σ-radical at low temperature is too slow to be established without added base. ESR and DFT studies agree that, in the iminyl σ-radical, the unpaired spin is localized on the exocyclic nitrogen (N4) in an in-plane pure p-orbital. This gives rise to an anisotropic nitrogen hyperfine coupling (Azz = 40 G) from N4 and a near isotropic β-nitrogen coupling of 9.7 G from the cytosine ring nitrogen at N3. Iminyl σ-radical should exist in its N3-protonated form, as the N3-protonated iminyl σ-radical is stabilized in solution by over 30 kcal/mol (ΔG = -32 kcal/mol) over its conjugate base, the N3-deprotonated form. This is the first observation of an isotropic β-hyperfine ring nitrogen coupling in an N-centered DNA radical. Our theoretical calculations predict that the cytosine iminyl σ-radical can be formed in double-stranded DNA by a radiation-induced ionization-deprotonation process that is only 10 kcal/mol above the lowest energy path. PMID:26237072

  6. Are positive ion radicals formed in pulse radiolysis of alkylbenzenesulfonates. [7 MeV linear accelerator

    SciTech Connect

    Behar, D. )

    1991-05-30

    Oxidation of alkylbenzenesulfonates by OH radicals proceeds via two routes: 75-85% of the OH radicals react via addition to the benzene ring, while the rest abstract an H atom from the alkyl group. The relative distribution between the two paths of reaction depends on the nature of the alkyl group. No evidence for the formation of cation radicals from OH adducts was found. H radicals add to the benzene ring to form cyclohexadienyl type radicals, but when reacted with isopropylbenzenesulfonate about 15% of the H radicals abstract hydrogen from the alkyl to form the benzyl type radical. The reaction of SO{sub 4}{sup {sm bullet}{minus}} with alkylbenzenesulfonates produces 50-70% OH adducts and the rest are the benzyl type radicals. At high concentrations of solute and persulfate a short-lived precursor to the benzyl radicals has been observed. The precursors observed with p-toluenesulfonate, isopropylbenzenesulfonate, and m-toluenesulfonate decay in a first-order process with the rates 1.4 {times} 10{sup 6}, 9.4 {times} 10{sup 5}, and 2.5 {times} 10{sup 5} s{sup {minus}1}, respectively. The short-lived precursor is identified as an unstable OH adduct to the benzene ring.

  7. Radically innovative steelmaking technologies

    NASA Astrophysics Data System (ADS)

    Szekely, Julian

    1980-09-01

    The steel industry is faced with serious problems caused by the increasing cost of energy, labor and capital and by tough overseas competition, employing new highly efficient process plants. The very high cost of capital and of capital equipment renders the construction of new green field site plants, exemplifying the best available technology economically unattractive. For this reason, over the long term the development radically innovative steelmaking technologies appears to be the only satisfactory resolution of this dilemma. The purpose of this article is to present a critical review of some of the radically innovative steelmaking technologies that have been proposed during the past few years and to develop the argument that these indeed do deserve serious consideration at the present time. It should be stressed, however, that these innovative technologies can be implemented only as part of a carefully conceived long range plan, which contains as a subset short term solutions, such as trigger prices improved investment credits, and so forth and intermediate term solutions, such as more extensive use of continuous casting, external desulfurization and selective modernization in general.

  8. Cation-cation interactions and cation exchange in a series of isostructural framework uranyl tungstates

    NASA Astrophysics Data System (ADS)

    Balboni, Enrica; Burns, Peter C.

    2014-05-01

    The isotypical compounds (UO2)3(WO6)(H2O)5 (1), Ag(UO2)3(WO6)(OH)(H2O)3 (2), K(UO2)3(WO6)OH(H2O)4 (3), Rb(UO2)3(WO6)(OH)(H2O)3.5 (4), and Cs(UO2)3(WO6)OH(H2O)3 (5) were synthesized, characterized, and their structures determined. Each crystallizes in space group Cc. (1): a=12.979 (3), b=10.238 (2), c=11.302 (2), β=102.044 (2); (2): a=13.148 (2), b=9.520 (1), c=11.083 (2), β=101.568 (2); (3): a=13.111 (8), b=9.930 (6), c=11.242 (7), β=101.024 (7); (4): a=12.940 (2), b=10.231 (2), c=11.259(2), β=102.205 (2); (5): a=12.983 (3), b=10.191 (3), c=11.263 (4), β=101.661 (4). Compounds 1-5 are a framework of uranyl and tungsten polyhedra containing cation-cation interactions. The framework has three symmetrically distinct U(VI) cations, one tungsten, sixteen to eighteen oxygen atoms, and in 2-5, one monovalent cation. Each atom occupies a general position. Each U(VI) cation is present as a typical (UO2)2+ uranyl ion in an overall pentagonal bipyramidal coordination environment. Each pentagonal bipyramid shares two equatorial edges with two other pentagonal bipyramids, forming a trimer. Trimers are connected into chains by edge-sharing with WO6 octahedra. Chains are linked through cation-cation interactions between two symmetrically independent uranyl ions. This yields a remarkably complex system of intersecting channels that extend along [0 0 1] and [-1 1 0]. The cation exchange properties of 2 and 3 were characterized at room temperature and at 140 °C.

  9. Anaerobic alkane biodegradation by cultures enriched from oil sands tailings ponds involves multiple species capable of fumarate addition.

    PubMed

    Tan, BoonFei; Semple, Kathleen; Foght, Julia

    2015-05-01

    A methanogenic short-chain alkane-degrading culture (SCADC) was enriched from oil sands tailings and transferred several times with a mixture of C6, C7, C8 and C10 n-alkanes as the predominant organic carbon source, plus 2-methylpentane, 3-methylpentane and methylcyclopentane as minor components. Cultures produced ∼40% of the maximum theoretical methane during 18 months incubation while depleting the n-alkanes, 2-methylpentane and methylcyclopentane. Substrate depletion correlated with detection of metabolites characteristic of fumarate activation of 2-methylpentane and methylcyclopentane, but not n-alkane metabolites. During active methanogenesis with the mixed alkanes, reverse-transcription PCR confirmed the expression of functional genes (assA and bssA) associated with hydrocarbon addition to fumarate. Pyrosequencing of 16S rRNA genes amplified during active alkane degradation revealed enrichment of Clostridia (particularly Peptococcaceae) and methanogenic Archaea (Methanosaetaceae and Methanomicrobiaceae). Methanogenic cultures transferred into medium containing sulphate produced sulphide, depleted n-alkanes and produced the corresponding succinylated alkane metabolites, but were slow to degrade 2-methylpentane and methylcyclopentane; these cultures were enriched in Deltaproteobacteria rather than Clostridia. 3-Methylpentane was not degraded by any cultures. Thus, nominally methanogenic oil sands tailings harbour dynamic and versatile hydrocarbon-degrading fermentative syntrophs and sulphate reducers capable of degrading n-, iso- and cyclo-alkanes by addition to fumarate. PMID:25873461

  10. [Distribution Characteristics and Source Apportionment of n-Alkanes in Water from Yellow River in Henan Section].

    PubMed

    Feng, Jing-lan; Xi, Nan-nan; Zhang, Fei; Liu, Shu-hui; Sun, Jian-hui

    2016-03-15

    To investigate the distributions and possible sources of n-alkanes in water and suspended particulate matter from Yellow River in Henan section, 26 water and suspended particulate matter samples were collected in August 2010 and 22 n-alkanes (C₁₄-C₃₆) were quantitatively determined by gas chromatography-mass spectrometer (GC-MS). Potential sources of n-alkanes were analyzed using different characteristic parameters. The results indicated that total concentrations of 22 n-alkanes were 521-5,843 ng · L⁻¹ with a mean concentration of 1,409 ng · L⁻¹, while the total amounts of n-alkanes in the suspended particulate matter were 463-11,142 ng · L⁻¹ with a mean value of 1,951 ng · L⁻¹. The composition profiles of n-alkanes in water showed unimodal distribution with a peak at C₂₅ in water. However, the composition characteristics of n-alkanes in SPM were of bimodal type, but still with the advantage of high carbon hydrocarbons peak at C₂₅. Results of characteristic parameters including CPI, TAR, OEP and % WaxCn showed that n-alkanes in the studied area were derived mainly from combustion of fossil fuel, while terrestrial higher plant played a role in the existence of n-alkanes in water and suspended particulate matter from Yellow River in Henan section. PMID:27337879

  11. Oxygen radicals and renal diseases.

    PubMed

    Klahr, S

    1997-01-01

    Reactive oxygen metabolites (superoxide, hydrogen peroxide, hydroxyl radical, and hypochlorous acid) are important mediators of renal damage in acute renal failure and glomerular and tubulointerstitial diseases. The role of these oxygen metabolites in the above entities is discussed, and the effects of antioxidants and scavengers of O2 radicals are considered. The role of oxygen radicals in the regulation of gene transcription is also considered. PMID:9387104

  12. Rate constants for OH with selected large alkanes : shock-tube measurements and an improved group scheme.

    SciTech Connect

    Sivaramakrishnan, R.; Michael, J. V.; Chemical Sciences and Engineering Division

    2009-04-30

    High-temperature rate constant experiments on OH with the five large (C{sub 5}-C{sub 8}) saturated hydrocarbons n-heptane, 2,2,3,3-tetramethylbutane (2,2,3,3-TMB), n-pentane, n-hexane, and 2,3-dimethylbutane (2,3-DMB) were performed with the reflected-shock-tube technique using multipass absorption spectrometric detection of OH radicals at 308 nm. Single-point determinations at {approx}1200 K on n-heptane, 2,2,3,3-TMB, n-hexane, and 2,3-DMB were previously reported by Cohen and co-workers; however, the present work substantially extends the database to both lower and higher temperature. The present experiments span a wide temperature range, 789-1308 K, and represent the first direct measurements of rate constants at T > 800 K for n-pentane. The present work utilized 48 optical passes corresponding to a total path length of {approx}4.2 m. As a result of this increased path length, the high OH concentration detection sensitivity permitted pseudo-first-order analyses for unambiguously measuring rate constants. The experimental results can be expressed in Arrhenius form in units of cm{sup 3} molecule{sup -1} s{sup -1} as follows: K{sub OH+n-heptane} = (2.48 {+-} 0.17) x 10{sup -10} exp[(-1927 {+-} 69 K)/T] (838-1287 K); k{sub OH+2,2,3,3-TMB} = (8.26 {+-} 0.89) x 10{sup -11} exp[(-1337 {+-} 94 K)/T] (789-1061 K); K{sub OH+n-pentane} = (1.60 {+-} 0.25) x 10{sup -10} exp[(-1903 {+-} 146 K)/T] (823-1308 K); K{sub OH+n-hexane} = (2.79 {+-} 0.39) x 10{sup -10} exp[(-2301 {+-} 134 K)/T] (798-1299 K); and k{sub OH+2,3-DMB} = (1.27 {+-} 0.16) x 10{sup -10} exp[(-1617 {+-} 118 K)/T] (843-1292 K). The available experimental data, along with lower-T determinations, were used to obtain evaluations of the experimental rate constants over the temperature range from {approx}230 to 1300 K for most of the title reactions. These extended-temperature-range evaluations, given as three-parameter fits, are as follows: k{sub OH+n-heptane} = 2.059 x 10{sup -5}T{sup 1.401} exp(33 K/T) cm{sup 3

  13. Transformation of anthracene on various cation-modified clay minerals.

    PubMed

    Li, Li; Jia, Hanzhong; Li, Xiyou; Wang, Chuanyi

    2015-01-01

    In this study, anthracene was employed as a probe to explore the potential catalytic effect of clay minerals in soil environment. Clay minerals saturated with various exchangeable cations were tested. The rate of anthracene transformation follows the order: Fe-smectite > Cu-smectite > Al-smectite ≈ Ca-smectite ≈ Mg-smectite ≈ Na-smectite. This suggests that transition-metal ions such as Fe(III) play an important role in anthracene transformation. Among Fe(III)-saturated clays, Fe(III)-smectite exhibits the highest catalytic activity followed by Fe(III)-illite, Fe(III)-pyrophyllite, and Fe(III)-kaolinite, which is in agreement with the interlayer Fe(III) content. Moreover, effects by two common environmental factors, pH and relative humidity (RH), were evaluated. With an increase in pH or RH, the rate of anthracene transformation decreases rapidly at first and then is leveled off. GC-MS analysis identifies that the final product of anthracene transformation is 9,10-anthraquinone, a more bioavailable molecule compared to anthracene. The transformation process mainly involves cation-π bonding, electron transfer leading to cation radical, and further oxidation by chemisorbed O2. The present work provides valuable insights into the abiotic transformation and the fate of PAHs in the soil environment and the development of contaminated land remediation technologies. PMID:25135171

  14. ESR and ENDOR study of the guanine cation: Secondary product in 5'-dGMP

    SciTech Connect

    Hole, E.O.; Nelson, W.H.; Close, D.M.; Sagstuen, E.

    1987-05-01

    Previous ESR studies of x-irradiated single crystals of 2'-deoxyguanosine-5'-monophosphate have indicated the presence of a radical thought to be formed by deprotonation of a primary base cation at N1. In this communication are reported some results of detailed ESR and ENDOR experiments at 10 K conflicting with the above results. One of the radicals detected exhibited two ..cap alpha..-proton type couplings. The data analysis shows that one coupling is due to the exchangeable proton of the extra-annular NH/sub 2/ group, while the other is due to the proton bonded at C8. The experimental spin densities were rho(N10) = 0.33, and rho(C8) = 0.18. The results agree reasonably well with the INDO calculated spin density distribution of a radical formed by deprotonation at N10 of a primary cation radical. The radical is stable on warming to about 200 K where it anneals rapidly.

  15. Leaf wax n-alkane distributions in and across modern plants: Implications for paleoecology and chemotaxonomy

    NASA Astrophysics Data System (ADS)

    Bush, Rosemary T.; McInerney, Francesca A.

    2013-09-01

    Long chain (C21 to C37) n-alkanes are among the most long-lived and widely utilized terrestrial plant biomarkers. Dozens of studies have examined the range and variation of n-alkane chain-length abundances in modern plants from around the world, and n-alkane distributions have been used for a variety of purposes in paleoclimatology and paleoecology as well as chemotaxonomy. However, most of the paleoecological applications of n-alkane distributions have been based on a narrow set of modern data that cannot address intra- and inter-plant variability. Here, we present the results of a study using trees from near Chicago, IL, USA, as well as a meta-analysis of published data on modern plant n-alkane distributions. First, we test the conformity of n-alkane distributions in mature leaves across the canopy of 38 individual plants from 24 species as well as across a single growing season and find no significant differences for either canopy position or time of leaf collection. Second, we compile 2093 observations from 86 sources, including the new data here, to examine the generalities of n-alkane parameters such as carbon preference index (CPI), average chain length (ACL), and chain-length ratios for different plant groups. We show that angiosperms generally produce more n-alkanes than do gymnosperms, supporting previous observations, and furthermore that CPI values show such variation in modern plants that it is prudent to discard the use of CPI as a quantitative indicator of n-alkane degradation in sediments. We also test the hypotheses that certain n-alkane chain lengths predominate in and therefore can be representative of particular plant groups, namely, C23 and C25 in Sphagnum mosses, C27 and C29 in woody plants, and C31 in graminoids (grasses). We find that chain-length distributions are highly variable within plant groups, such that chemotaxonomic distinctions between grasses and woody plants are difficult to make based on n-alkane abundances. In contrast

  16. Ubiquitous Presence and Novel Diversity of Anaerobic Alkane Degraders in Cold Marine Sediments

    PubMed Central

    Gittel, Antje; Donhauser, Johanna; Røy, Hans; Girguis, Peter R.; Jørgensen, Bo B.; Kjeldsen, Kasper U.

    2015-01-01

    Alkanes are major constituents of crude oil and are released to the marine environment by natural seepage and from anthropogenic sources. Due to their chemical inertness, their removal from anoxic marine sediments is primarily controlled by the activity of anaerobic alkane-degrading microorganisms. To facilitate comprehensive cultivation-independent surveys of the diversity and distribution of anaerobic alkane degraders, we designed novel PCR primers that cover all known diversity of the 1-methylalkyl succinate synthase gene (masD/assA), which catalyzes the initial activation of alkanes. We studied masD/assA gene diversity in pristine and seepage-impacted Danish coastal sediments, as well as in sediments and alkane-degrading enrichment cultures from the Middle Valley (MV) hydrothermal vent system in the Pacific Northwest. MasD/assA genes were ubiquitously present, and the primers captured the diversity of both known and previously undiscovered masD/assA gene diversity. Seepage sediments were dominated by a single masD/assA gene cluster, which is presumably indicative of a substrate-adapted community, while pristine sediments harbored a diverse range of masD/assA phylotypes including those present in seepage sediments. This rare biosphere of anaerobic alkane degraders will likely increase in abundance in the event of seepage or accidental oil spillage. Nanomolar concentrations of short-chain alkanes (SCA) were detected in pristine and seepage sediments. Interestingly, anaerobic alkane degraders closely related to strain BuS5, the only SCA degrader in pure culture, were found in mesophilic MV enrichments, but not in cold sediments from Danish waters. We propose that the new masD/assA gene lineages in these sediments represent novel phylotypes that are either fueled by naturally occurring low levels of SCA or that metabolize medium- to long-chain alkanes. Our study highlights that masD/assA genes are a relevant diagnostic marker to identify seepage and microseepage, e

  17. Ubiquitous Presence and Novel Diversity of Anaerobic Alkane Degraders in Cold Marine Sediments.

    PubMed

    Gittel, Antje; Donhauser, Johanna; Røy, Hans; Girguis, Peter R; Jørgensen, Bo B; Kjeldsen, Kasper U

    2015-01-01

    Alkanes are major constituents of crude oil and are released to the marine environment by natural seepage and from anthropogenic sources. Due to their chemical inertness, their removal from anoxic marine sediments is primarily controlled by the activity of anaerobic alkane-degrading microorganisms. To facilitate comprehensive cultivation-independent surveys of the diversity and distribution of anaerobic alkane degraders, we designed novel PCR primers that cover all known diversity of the 1-methylalkyl succinate synthase gene (masD/assA), which catalyzes the initial activation of alkanes. We studied masD/assA gene diversity in pristine and seepage-impacted Danish coastal sediments, as well as in sediments and alkane-degrading enrichment cultures from the Middle Valley (MV) hydrothermal vent system in the Pacific Northwest. MasD/assA genes were ubiquitously present, and the primers captured the diversity of both known and previously undiscovered masD/assA gene diversity. Seepage sediments were dominated by a single masD/assA gene cluster, which is presumably indicative of a substrate-adapted community, while pristine sediments harbored a diverse range of masD/assA phylotypes including those present in seepage sediments. This rare biosphere of anaerobic alkane degraders will likely increase in abundance in the event of seepage or accidental oil spillage. Nanomolar concentrations of short-chain alkanes (SCA) were detected in pristine and seepage sediments. Interestingly, anaerobic alkane degraders closely related to strain BuS5, the only SCA degrader in pure culture, were found in mesophilic MV enrichments, but not in cold sediments from Danish waters. We propose that the new masD/assA gene lineages in these sediments represent novel phylotypes that are either fueled by naturally occurring low levels of SCA or that metabolize medium- to long-chain alkanes. Our study highlights that masD/assA genes are a relevant diagnostic marker to identify seepage and microseepage, e

  18. Oxidative capacity of the Mexico City atmosphere - Part 1: A radical source perspective

    NASA Astrophysics Data System (ADS)

    Volkamer, R.; Sheehy, P. M.; Molina, L. T.; Molina, M. J.

    2007-04-01

    A detailed analysis of OH, HO2 and RO2 radical sources is presented for the near field photochemical regime inside the Mexico City Metropolitan Area (MCMA). During spring of 2003 (MCMA-2003 field campaign) an extensive set of measurements was collected to quantify time resolved ROx (sum of OH, HO2, RO2) radical production rates from day- and nighttime radical sources. The Master Chemical Mechanism (MCMv3.1) was constrained by measurements of (1) concentration time-profiles of photosensitive radical precursors, i.e., nitrous acid (HONO), formaldehyde (HCHO), ozone (O3), glyoxal (CHOCHO), and other oxygenated volatile organic compounds (OVOCs); (2) respective photolysis-frequencies (J-values); (3) concentration time-profiles of alkanes, alkenes, and aromatic VOCs (103 compound are treated) and oxidants, i.e., OH- and NO3 radicals, O3; and (4) NO, NO2, meteorological and other parameters. The ROx production rate was calculated directly from these observations; MCM was used to estimate further ROx production from unconstrained sources, and express overall ROx production as OH-equivalents (i.e., taking into account the propagation efficiencies of RO2 and HO2 radicals into OH radicals). Daytime radical production is found to be about 10-25 times higher than at night; it does not track the abundance of sunlight. 12-h average daytime contributions of individual sources are: HCHO and O3 photolysis, each about 20%; O3/alkene reactions and HONO photolysis, each about 15%; unmeasured sources about 30%. While the direct contribution of O3/alkene reactions appears to be moderately small, source-apportionment of ambient HCHO and HONO identifies O3/alkene reactions as being largely responsible for jump-starting photochemistry about one hour after sunrise. The peak radical production is found to be higher than in any other urban influenced environment studied to date; further, differences exist in the timing of radical production. Our measurements and analysis comprise a database

  19. Biodegradation of C7 and C8 iso-alkanes under methanogenic conditions.

    PubMed

    Abu Laban, Nidal; Dao, Anh; Semple, Kathleen; Foght, Julia

    2015-12-01

    Iso-alkanes comprise a substantial proportion of petroleum and refined products that impact the environment, but their fate is cryptic under methanogenic conditions. We investigated methanogenic biodegradation of C7 and C8 iso-alkanes found in naphtha, specifically 2-methylhexane, 3-methylhexane, 2-methylheptane, 4-methylheptane and 3-ethylhexane. These were incubated as a mixture or individually with enrichment cultures derived from oil sands tailings ponds that generate methane from naphtha components; substrate depletion and methane production were monitored for up to 663 days. 3-Methylhexane and 4-methylheptane were degraded both singly and in the mixture, whereas 2-methylhexane and 2-methylheptane resisted degradation as single substrates but were depleted in the iso-alkane mixture, suggesting co-metabolism. 3-Ethylhexane was degraded neither singly nor with co-substrates. Putative metabolites consistent with succinylated C7 and C8 were detected, suggesting activation by addition of iso-alkanes to fumarate and corresponding to detection of alkylsuccinate synthase-like genes. 454 pyrotag sequencing, cloning and terminal restriction fragment length polymorphism of 16S rRNA genes revealed predominance of a novel member of the family Peptococcaceae (order Clostridiales) and Archaea affiliated with Methanoregula and Methanosaeta. We report here isomer-specific metabolism of C7 -C8 iso-alkanes under methanogenic conditions and propose their activation by a novel Peptococcaceae via addition to fumarate. PMID:25331365

  20. Effects of fuel properties on the burning characteristics of collision-merged alkane/water droplets

    SciTech Connect

    Wang, C.H.; Pan, K.L.; Huang, W.C.; Wen, H.C.; Yang, J.Y.; Law, C.K.

    2008-04-15

    The combustion characteristics of freely falling droplets, individually generated by the merging of colliding alkane and water droplets, were experimentally investigated. The outcome of the collision droplets was first studied and then the subsequent burning processes such as the flame appearance, ignition and burning behaviors were recorded, through either visual observation or microphotography with the aid of stroboscopic lighting. If the merged droplets were exhibited in an insertive manner, while the water droplet inserted into the alkane droplet, these yield the burning behaviors prior to the end of flame were very much similar to that of pure alkane. The burning was ended with droplet extinction for lower-C alkane, and with either droplet ''flash vaporization'' or extinction for hexadecane. And if the merged droplets were in adhesive manner, for hexadecane with large water content, they either could not be ignited for the large merged droplets, or be ignited with a much prolonged ignition delay, followed by a soot-reducing flame and an ending of droplet extinction for the small merged droplets. ''Homogeneous'' explosion was not observed in any of the tests, and ''heterogeneous'' explosion, induced by trapped air bubbles, occasionally occurred for merged droplets with C-atom in alkane is higher than dodecane. And the sudden disappearance of droplet definitely decreased the burning time and thus enhanced the burning intensity. Besides, the fuel mass consumption rates were increased, even in the cases that having droplet extinction, because of the enlargement of the surface area due to the stuffing of water droplet. (author)

  1. Whole‐cell bacterial bioreporter for actively searching and sensing of alkanes and oil spills

    PubMed Central

    Zhang, Dayi; He, Yi; Wang, Yun; Wang, Hui; Wu, Lin; Aries, Eric; Huang, Wei E.

    2012-01-01

    Summary Acinetobacter baylyi ADP1 was found to tolerate seawater and have a special ability of adhering to an oil–water interface of 10–80 µm emulsified mineral and crude oil droplets. These properties make ADP1 an ideal bacterial chassis for constructing bioreporters that are able to actively search and sense oil spill in water and soils. Acinetobacter baylyi bioreporter ADPWH_alk was developed and applied to the detection of alkanes and alkenes in water, seawater and soils. Bioreporter ADPWH_alk was able to detect a broad range of alkanes and alkenes with carbon chain length from C7 to C36. So far, ADPWH_alk is the only bioreporter that is able to detect alkane with carbon chain length greater than C18. This bioreporter responded to the alkanes in about 30 min and it was independent to the cell growth phase because of two point mutations in alkM promoter recognized by alkane regulatory protein ALKR. ADPWH_alk was applied to detect mineral oil, Brent, Chestnut and Sirri crude oils in water and seawater in the range 0.1–100 mg l−1, showing that the bioreporter oil detection was semi‐quantitative. This study demonstrates that ADPWH_alk is a rapid, sensitive and semi‐quantitative bioreporter that can be useful for environmental monitoring and assessment of oil spills in seawater and soils. PMID:21951420

  2. Toward aldehyde and alkane production by removing aldehyde reductase activity in Escherichia coli

    PubMed Central

    Rodriguez, Gabriel M.; Atsumi, Shota

    2015-01-01

    Advances in synthetic biology and metabolic engineering have enabled the construction of novel biological routes to valuable chemicals using suitable microbial hosts. Aldehydes serve as chemical feedstocks in the synthesis of rubbers, plastics, and other larger molecules. Microbial production of alkanes is dependent on the formation of a fatty aldehyde intermediate which is converted to an alkane by an aldehyde deformylating oxygenase (ADO). However, microbial hosts such as Escherichia coli are plagued by many highly active endogenous aldehyde reductases (ALRs) that convert aldehydes to alcohols, which greatly complicates strain engineering for aldehyde and alkane production. It has been shown that the endogenous ALR activity outcompetes the ADO enzyme for fatty aldehyde substrate. The large degree of ALR redundancy coupled with an incomplete database of ALRs represents a significant obstacle in engineering E. coli for either aldehyde or alkane production. In this study, we identified 44 ALR candidates encoded in the E. coli genome using bioinformatics tools, and undertook a comprehensive screening by measuring the ability of these enzymes to produce isobutanol. From the pool of 44 candidates, we found five new ALRs using this screening method (YahK, DkgA, GldA, YbbO, and YghA). Combined deletions of all 13 known ALRs resulted in a 90–99% reduction in endogenous ALR activity for a wide range of aldehyde substrates (C2–C12). Elucidation of the ALRs found in E. coli could guide one in reducing competing alcohol formation during alkane or aldehyde production. PMID:25108218

  3. Biogeographic variation of foliar n-alkanes of Juniperus communis var. saxatilis Pallas from the Balkans.

    PubMed

    Rajčević, Nemanja; Janaćković, Pedja; Dodoš, Tanja; Tešević, Vele; Marin, Petar D

    2014-12-01

    The composition of the epicuticular n-alkanes isolated from the leaves of ten populations of Juniperus communis L. var. saxatilis Pallas from central (continental) and western (coastal) areas of the Balkan Peninsula was characterized by GC-FID and GC/MS analyses. In the leaf waxes, 14 n-alkane homologues with chain-lengths ranging from C22 to C35 were identified. All samples were dominated by n-tritriacontane (C33 ), but differences in two other dominant n-alkanes allowed separating the coastal from the continental populations. Several statistical methods (ANOVA, principal component, discriminant, and cluster analyses as well as the Mantel test) were deployed to analyze the diversity and variability of the epicuticular-leaf-n-alkane patterns of the ten natural populations of J. communis var. saxatilis and their relation to different geographic and bioclimatic parameters. Cluster analysis showed a high correlation of the leaf-n-alkane patterns with the geographical distribution of the investigated samples, differentiating the coastal from the continental populations of this taxon. Several bioclimatic parameters related to aridity were highly correlated with this differentiation. PMID:25491336

  4. Free radical propulsion concept

    NASA Technical Reports Server (NTRS)

    Hawkins, C. E.; Nakanishi, S.

    1981-01-01

    A free radical propulsion concept utilizing the recombination energy of dissociated low molecular weight gases to produce thrust was examined. The concept offered promise of a propulsion system operating at a theoretical impulse, with hydrogen, as high as 2200 seconds at high thrust to power ratio, thus filling the gas existing between chemical and electrostatic propulsion capabilities. Microwave energy used to dissociate a continuously flowing gas was transferred to the propellant via three body recombination for conversion to propellant kinetic energy. Power absorption by the microwave plasma discharge was in excess of 90 percent over a broad range of pressures. Gas temperatures inferred from gas dynamic equations showed much higher temperatures from microwave heating than from electrothermal heating. Spectroscopic analysis appeared to corroborate the inferred temperatures of one of the gases tested.

  5. Radicals in Berkeley?

    PubMed Central

    Linn, Stuart

    2015-01-01

    In a previous autobiographical sketch for DNA Repair (Linn, S. (2012) Life in the serendipitous lane: excitement and gratification in studying DNA repair. DNA Repair 11, 595–605), I wrote about my involvement in research on mechanisms of DNA repair. In this Reflections, I look back at how I became interested in free radical chemistry and biology and outline some of our bizarre (at the time) observations. Of course, these studies could never have succeeded without the exceptional aid of my mentors: my teachers; the undergraduate and graduate students, postdoctoral fellows, and senior lab visitors in my laboratory; and my faculty and staff colleagues here at Berkeley. I am so indebted to each and every one of these individuals for their efforts to overcome my ignorance and set me on the straight and narrow path to success in research. I regret that I cannot mention and thank each of these mentors individually. PMID:25713083

  6. Anaerobic oxidation of short-chain alkanes in hydrothermal sediments: potential influences on sulfur cycling and microbial diversity

    SciTech Connect

    Adams, MM; Hoarfrost, AL; Bose, A; Joye, SB; Girguis, PR

    2013-05-14

    Short-chain alkanes play a substantial role in carbon and sulfur cycling at hydrocarbon-rich environments globally, yet few studies have examined the metabolism of ethane (C-2), propane (C-3), and butane (C-4) in anoxic sediments in contrast to methane (C-1). In hydrothermal vent systems, short-chain alkanes are formed over relatively short geological time scales via thermogenic processes and often exist at high concentrations. The sediment-covered hydrothermal vent systems at Middle Valley (MV Juan de Fuca Ridge) are an ideal site for investigating the anaerobic oxidation of C-1-C-4 alkanes, given the elevated temperatures and dissolved hydrocarbon species characteristic of these metalliferous sediments. We examined whether MV microbial communities oxidized C-1-C-4 alkanes under mesophilic to thermophilic sulfate-reducing conditions. Here we present data from discrete temperature (25, 55, and 75 degrees C) anaerobic batch reactor incubations of MV sediments supplemented with individual alkanes. Co-registered alkane consumption and sulfate reduction (SR) measurements provide clear evidence for C-1-C-4 alkane oxidation linked to SR over time and across temperatures. In these anaerobic batch reactor sediments, 16S ribosomal RNA pyrosequencing revealed that Deltaproteobacteria, particularly a novel sulfate-reducing lineage, were the likely phylotypes mediating the oxidation of C-2-C-4 alkanes. Maximum C-1-C-4 alkane oxidation rates occurred at 55 degrees C, which reflects the mid-core sediment temperature profile and corroborates previous studies of rate maxima for the anaerobic oxidation of methane (AOM). Of the alkanes investigated, C-3 was oxidized at the highest rate over time, then C-4, C-2, and C-1, respectively. The implications of these results are discussed with respect to the potential competition between the anaerobic oxidation of C-2-C(4)alkanes with AOM for available oxidants and the influence on the fate of C-1 derived from these hydrothermal systems.

  7. Cationic electrodepositable coating composition comprising lignin

    DOEpatents

    Fenn, David; Bowman, Mark P; Zawacky, Steven R; Van Buskirk, Ellor J; Kamarchik, Peter

    2013-07-30

    A cationic electrodepositable coating composition is disclosed. The present invention in directed to a cationic electrodepositable coating composition comprising a lignin-containing cationic salt resin, that comprises (A) the reaction product of: lignin, an amine, and a carbonyl compound; (B) the reaction product of lignin, epichlorohydrin, and an amine; or (C) combinations thereof.

  8. Catalytic dehydroaromatization of n-alkanes by pincer-ligated iridium complexes

    NASA Astrophysics Data System (ADS)

    Ahuja, Ritu; Punji, Benudhar; Findlater, Michael; Supplee, Carolyn; Schinski, William; Brookhart, Maurice; Goldman, Alan S.

    2011-02-01

    Aromatic hydrocarbons are among the most important building blocks in the chemical industry. Benzene, toluene and xylenes are obtained from the high temperature thermolysis of alkanes. Higher alkylaromatics are generally derived from arene-olefin coupling, which gives branched products—that is, secondary alkyl arenes—with olefins higher than ethylene. The dehydrogenation of acyclic alkanes to give alkylaromatics can be achieved using heterogeneous catalysts at high temperatures, but with low yields and low selectivity. We present here the first catalytic conversion of n-alkanes to alkylaromatics using homogeneous or molecular catalysts—specifically ‘pincer’-ligated iridium complexes—and olefinic hydrogen acceptors. For example, the reaction of n-octane affords up to 86% yield of aromatic product, primarily o-xylene and secondarily ethylbenzene. In the case of n-decane and n-dodecane, the resulting alkylarenes are exclusively unbranched (that is, n-alkyl-substituted), with selectivity for the corresponding o-(n-alkyl)toluene.

  9. Dehydrogenation of n-alkanes catalyzed by iridium ``pincer`` complexes: Regioselective formation of {alpha}-olefins

    SciTech Connect

    Liu, F.; Singh, B.; Goldman, A.S.; Pak, E.B.; Jensen, C.M.

    1999-04-28

    The development of methods for the functionalization of alkanes is of cardinal importance in catalytic chemistry. A specific functionalization of particularly great potential value is the conversion of n-alkanes to the corresponding 1-alkenes ({alpha}-olefins) since these serve as precursors for a wide range of commodity-scale chemicals (>2 {times} 10{sup 9} kg/yr). Such a conversion is also an intriguing challenge as viewed from a fundamental perspective. n-Alkanes are the simplest organic molecules with the potential to undergo regioselective transformations; {alpha}-olefins are the thermodynamically least stable of the corresponding double-bond isomers and any mechanism for their formation must presumably involve activation of the strongest bond (primary C-{single_bond}H) in the molecule.

  10. Distribution, activity and function of short-chain alkane degrading phylotypes in hydrothermal vent sediments

    NASA Astrophysics Data System (ADS)

    Adams, M. M.; Joye, S. B.; Hoarfrost, A.; Girguis, P. R.

    2012-12-01

    Global geochemical analyses suggest that C2-C4 short chain alkanes are a common component of the utilizable carbon pool in deep-sea sediments worldwide and have been found in diverse ecosystems. From a thermodynamic standpoint, the anaerobic microbial oxidation of these aliphatic hydrocarbons is more energetically yielding than the anaerobic oxidation of methane (AOM). Therefore, the preferential degradation of these hydrocarbons may compete with AOM for the use of oxidants such as sulfate, or other potential oxidants. Such processes could influence the fate of methane in the deep-sea. Sulfate-reducing bacteria (SRB) from hydrocarbon seep sediments of the Gulf of Mexico and Guaymas Basin have previously been enriched that anaerobically oxidize short chain alkanes to generate CO2 with the preferential utilization of 12C-enriched alkanes (Kniemeyer et al. 2007). Different temperature regimens along with multiple substrates were tested and a pure culture (deemed BuS5) was isolated from mesophilic enrichments with propane or n-butane as the sole carbon source. Through comparative sequence analysis, strain BuS5 was determined to cluster with the metabolically diverse Desulfosarcina / Desulfococcus cluster, which also contains the SRB found in consortia with anaerobic, methane-oxidizing archaea in seep sediments. Enrichments from a terrestrial, low temperature sulfidic hydrocarbon seep also corroborated that propane degradation occurred with most bacterial phylotypes surveyed belonging to the Deltaproteobacteria, particularly Desulfobacteraceae (Savage et al. 2011). To date, no microbes capable of ethane oxidation or anaerobic C2-C4 alkane oxidation at thermophilic temperature have been isolated. The sediment-covered, hydrothermal vent systems found at Middle Valley (Juan de Fuca Ridge, eastern Pacific Ocean) are a prime environment for investigating mesophilic to thermophilic anaerobic oxidation of short-chain alkanes, given the elevated temperatures and dissolved

  11. The low temperature phase transition in octane and its possible generalisation to other n-alkanes

    NASA Astrophysics Data System (ADS)

    Neumann, M. A.; Johnson, M. R.; Radaelli, P. G.

    2001-05-01

    A neutron powder diffraction study of three n-alkanes, octane, nonane and pentadecane, down to 2 K is presented. The temperature dependence of the octane diffraction pattern reveals a solid state phase transition between 40 and 55 K, which involves a doubling of the unit cell in the b direction, the space group remaining P 1¯. Confirmation of the phase transition, which results in a doubling of the number of crystallographically inequivalent methyl groups, is sought in the published NMR, tunnelling data and neutron scattering, vibrational data. Density functional theory and force field techniques are used to simulate spectroscopic data based on the measured structures. While no unequivocal evidence is found in spectroscopic data, the published data does not rule out the existence of energetically inequivalent methyl groups. Indeed close inspection of the spectroscopic data for other n-alkanes suggests that the phase transition may be common to many alkanes.

  12. The synergetic effect of starch and alpha amylase on the biodegradation of n-alkanes.

    PubMed

    Karimi, M; Biria, D

    2016-06-01

    The impact of adding soluble starch on biodegradation of n-alkanes (C10-C14) by Bacillus subtilis TB1 was investigated. Gas chromatography was employed to measure the residual hydrocarbons in the system. It was observed that the efficiency of biodegradation improved with the presence of starch and the obtained residual hydrocarbons in the system were 53% less than the samples without starch. The produced bacterial enzymes were studied through electrophoresis and reverse zymography for explaining the observations. The results indicated that the produced amylase by the bacteria can degrade hydrocarbons and the same was obtained by the application of a commercial alpha amylase sample. In addition, in silico docking of alpha-amylase with n-alkanes with different molecular weights was studied by Molegro virtual docker which showed high negative binding energies and further substantiated the experimental observations. Overall, the findings confirmed the catalytic effect of alpha amylase on n-alkanes degradation. PMID:26971168

  13. n-Alkanes in surficial sediments of Visakhapatnam harbour, east coast of India

    NASA Astrophysics Data System (ADS)

    Punyu, V. R.; Harji, R. R.; Bhosle, N. B.; Sawant, S. S.; Venkat, K.

    2013-04-01

    Surface sediments collected from 19 stations along Visakhapatnam harbour were analysed for organic carbon (OC), δ 13Coc, total lipids (TL), total hydrocarbon (THC), n-alkane concentration and composition. OC, δ 13Coc, TL and THC ranged from 0.6% to 7.6%, -29.3 to -23.8‰, 300 to 14,948 \\upmu g g - 1 dw, and 0.2 to 2,277 \\upmu g g - 1 dw, respectively. Predominance of even carbon numbers n-alkanes C12-C21 with carbon preference index (CPI) of <1 suggests major microbial influence. Fair abundance of odd carbon number n-alkanes in the range of C15-C22 and C23-C33 indicates some input from phytoplankton and terrestrial sources, respectively. Petrogenic input was evident from the presence of hopanes and steranes. The data suggest that organic matter (OM) sources varied spatially and were mostly derived from mixed source.

  14. Ion radical cycloadditions and the synthesis of novel, electron-rich polymer structures

    NASA Astrophysics Data System (ADS)

    Roh, Yeonsuk

    The aminium salt initiated cation radical chain cycloaddition polymerization of various oxygenated difunctional monomers is investigated in order to minimize a limiting factor, a competing carbocation pathway, by applying a dichloromethane/water binary solvent mixture. Polymerizations have also been initiated by electrochemical oxidation and photosensitized electron transfer. The synthesis of cation radical cycloaddition polymers of difunctional carbazole monomers which contain reactive trans-1-propenyl groups for polymerization in the N-, 3- or 6-positions of carbazole, is presented. All polymers containing carbazole units in the polymer main chain show good solubility in halogenated organic solvents, high molecular weights, and high thermal stabilities. The reaction appears to proceed via a highly efficient cation radical chain mechanism which circumvents the usual hole transfer step of the propagation cycle. This polymerization represents the first observation of direct cation radical Diels-Alder cycloaddition polymerization and affords a novel polymer structure. The cation radical Diels-Alder cycloadditions of monofunctional, highly electron-rich substrates such as N-(trans-1-propenyl)carbazoles and N-phenyl-3-(trans-1-propenyl)carbazole to generate monomers of interest in connection with ring-opening metathesis polymerization are also presented. The cycloadditions of various electron-rich monomers to 1,3-cyclopentadiene efficiently generate norbornene monomers, which readily undergo ring-opening metathesis polymerization to yield electron rich polymers. Both ring-opened homopolymers and copolymers containing carbazole groups are synthesized. In addition, investigations of photorefractive effects resulting from a combination of photoconductive and electro-optic effects (change in refractive index in response to an electric field) in composites which utilize new carbazole-containing polymers as charge transport components are carried out, and their

  15. Gaseous protein cations are amphoteric

    SciTech Connect

    Stephenson, J.L. Jr.; McLuckey, S.A.

    1997-02-19

    Singly- and multiply-protonated ubiquitin molecules are found to react with iodide anions, and certain other anions, by attachment of the anion, in competition with proton transfer to the anion. The resulting adduct ions are relatively weakly bound and dissociate upon collisional activation by loss of the neutral acid derived from the anion. Adduct ions that behave similarly can also be formed via ion/molecule reactions involving the neutral acid. The ion/molecule reaction phenomenology, however, stands in contrast with that expected based on the reaction site(s) being charged. Reaction rates increase inversely with charge state and the total number of neutral molecules that add to the protein cations increases inversely with cation charge. These observations are inconsistent with the formation of proton-bound clusters but are fully consistent with the formation of ion pairs or dipole/dipole bonding involving the neutral acid and neutral basic sites in the protein. The ion/ion reactions can be interpreted on the basis of conjugate acid/base chemistry in which the anion, which is a strong gaseous base, reacts with a protonated site, which is a strong gaseous acid. Adduct ions can also be formed via ion/molecule reaction which, on the basis of microscopic reversibility, implies that the neutral acid interacts with neutral basic sites on the protein cation. 26 refs., 10 figs., 1 tab.

  16. Leaf-wax n-alkanes record the plant–water environment at leaf flush

    PubMed Central

    Tipple, Brett J.; Berke, Melissa A.; Doman, Christine E.; Khachaturyan, Susanna; Ehleringer, James R.

    2013-01-01

    Leaf-wax n-alkanes 2H/1H ratios are widely used as a proxy in climate reconstruction. Although the broad nature of the relationship between n-alkanes δ2H values and climate is appreciated, the quantitative details of the proxy remain elusive. To examine these details under natural environmental conditions, we studied a riparian broadleaf angiosperm species, Populus angustifolia, growing on water with a constant δ2H value and monitored the δ2H values of leaf-wax n-alkanes and of stem, leaf, stream, and atmospheric waters throughout the entire growing season. Here we found the δ2H values of leaf-wax n-alkanes recorded only a 2-wk period during leaf flush and did not vary for the 19 weeks thereafter when leaves remained active. We found δ2H values of leaf-wax n-alkanes of P. angustifolia record conditions earlier in the season rather than fully integrating the entire growing season. Using these data, we modeled precipitation δ2H values during the time of wax synthesis. We observed that the isotope ratios of this precipitation generally were 2H-enriched compared with mean annual precipitation. This model provides a mechanistic basis of the often-observed 2H-enrichment from the expected fractionation values in studies of broadleaf angiosperm leaf-wax δ2H. In addition, these findings may have implications for the spatial and temporal uses of n-alkane δ2H values in paleoapplications; when both plant community and growth form are known, this study allows the isolation of the precipitation dynamics of individual periods of the growing season. PMID:23359675

  17. Structure and Mass Transport Characteristics at the Intrinsic Liquid-Vapor Interfaces of Alkanes.

    PubMed

    Chilukoti, Hari Krishna; Kikugawa, Gota; Ohara, Taku

    2016-07-28

    In this paper, an instantaneous interface definition has been used to study the intrinsic structure and self-diffusion coefficient in the vicinity of the liquid-vapor interfaces of decane and tetracosane at three different temperatures using molecular dynamics simulations, and the results have been compared with those obtained on the basis of the conventional Gibbs dividing surface (time- and space-averaged interface). The alkane molecules were modeled using the united atom NERD force field. Partial layered structures of alkane molecules at the liquid-vapor interface are observed as a pinned structure of alkane liquids based on the intrinsic interface. This kind of characteristic has not been observed in the density profiles obtained based on the Gibbs dividing surface. By examining the orientation order parameter and radius of gyration of the alkane molecules, it was observed that the alkane molecules were preferentially oriented to be more parallel to the intrinsic interface than to the Gibbs dividing surface, and the shape of the alkane molecules is slightly changed in the vicinity of the liquid-vapor interfaces. The self-diffusion coefficient parallel to the intrinsic interface was examined using the Green-Kubo relation, where the projection of the velocity in the parallel direction to the local intrinsic interface is used in the velocity correlation function. It was found that the self-diffusion coefficient in the direction parallel to the intrinsic interface changes as the position approaches the interface in a more obvious manner as compared with the self-diffusion coefficient obtained with respect to the Gibbs dividing surface. These results suggest that the use of an instantaneous interface definition allowed us to capture sharp variations in transport properties which are originating due to steeper structure at the liquid-vapor interfaces. PMID:27387788

  18. Isomerization of alkanes on sulfated zirconia: Promotion by Pt and by adamantyl hydride transfer species

    SciTech Connect

    Iglesia, E.; Soled, S.L.; Kramer, G.M. )

    1993-11-01

    The work shows that hydride transfer species, such as adamantane, increase isomerization rates and inhibit C-C scission reactions. n-Heptane isomerization rates show positive hydrogen kinetic orders, suggesting that the reaction proceeds on Pt/ZrO[sub 2]-SO[sub 4] via chain transfer pathways, in which carbenium ions propagate, after a chain initiation step involvings loss of hydrogen from alkanes, by hydride transfer from neutral species to carbonations. These pathways contrast with those involved in the bifunctional (metal-acid) catalytic sequences usually required for alkane isomerization, in which metal sites catalyze alkane dehydrogenation and acid sites catalyze skeletal rearrangements of alkenes. Rate-limiting hydride transfer steps are consistent with the strong influence of molecular hydride transfer agents such as adamantane, which act as co-catalysts and increase isomerization rate and selectivity. The addition of small amounts of adamantane (0.1-0.8 wt%) to n-heptane increases isomerizations rates by a factor of 3 and inhibits undesirable cracking reactions. Adamantane increases hydride transfer and carbenium ion termination rates, thus reducing the surface residence time required for a catalytic turnover. As a result, desorption occurs before secondary cracking of isomerized carbenium ions. Less effective hydride transfer agents (n-alkanes, isoalkanes) also increase n-alkanes isomerization rate and selectivity, but require much higher concentrations than adamantane. Dihydrogen also acts as a hydride source in alkane isomerization catalysis, but it requires the additional presence of metals or reducible oxides, which catalyze H[sub 2] dissociation and the formation of hydridic and protonic forms of hydrogen. 40 refs., 10 figs., 4 tabs.

  19. n-Alkane assimilation and tert-butyl alcohol (TBA) oxidation capacity in Mycobacterium austroafricanum strains.

    PubMed

    Lopes Ferreira, Nicolas; Mathis, Hugues; Labbé, Diane; Monot, Frédéric; Greer, Charles W; Fayolle-Guichard, Françoise

    2007-06-01

    Mycobacterium austroafricanum IFP 2012, which grows on methyl tert-butyl ether (MTBE) and on tert-butyl alcohol (TBA), the main intermediate of MTBE degradation, also grows on a broad range of n-alkanes (C2 to C16). A single alkB gene copy, encoding a non-heme alkane monooxygenase, was partially amplified from the genome of this bacterium. Its expression was induced after growth on n-propane, n-hexane, n-hexadecane and on TBA but not after growth on LB. The capacity of other fast-growing mycobacteria to grow on n-alkanes (C1 to C16) and to degrade TBA after growth on n-alkanes was compared to that of M. austroafricanum IFP 2012. We studied M. austroafricanum IFP 2012 and IFP 2015 able to grow on MTBE, M. austroafricanum IFP 2173 able to grow on isooctane, Mycobacterium sp. IFP 2009 able to grow on ethyl tert-butyl ether (ETBE), M. vaccae JOB5 (M. austroaafricanum ATCC 29678) able to degrade MTBE and TBA and M. smegmatis mc2 155 with no known degradation capacity towards fuel oxygenates. The M. austroafricanum strains grew on a broad range of n-alkanes and three were able to degrade TBA after growth on propane, hexane and hexadecane. An alkB gene was partially amplified from the genome of all mycobacteria and a sequence comparison demonstrated a close relationship among the M. austroafricanum strains. This is the first report suggesting the involvement of an alkane hydroxylase in TBA oxidation, a key step during MTBE metabolism. PMID:17347817

  20. Exchangeable cations-mediated photodegradation of polycyclic aromatic hydrocarbons (PAHs) on smectite surface under visible light.

    PubMed

    Jia, Hanzhong; Li, Li; Chen, Hongxia; Zhao, Yue; Li, Xiyou; Wang, Chuanyi

    2015-04-28

    Clay minerals saturated with different exchangeable cations are expected to play various roles in photodegradation of polycyclic aromatic hydrocarbons (PAHs) via direct and/or indirect pathways on clay surfaces. In the present study, anthracene and phenanthrene were selected as molecule probes to investigate the roles of exchangeable cations on their photodegradation under visible light irradiation. For five types of cation-modified smectite clays, the photodegradation rate of anthracene and phenanthrene follows the order: Fe(3+)>Al(3+)>Cu(2+)>Ca(2+)>K(+)>Na(+), which is consistent with the binding energy of cation-π interactions between PAHs and exchangeable cations. The result suggests that PAHs photolysis rate depends on cation-π interactions on clay surfaces. Meanwhile, the deposition of anthracene at the Na(+)-smectite and K(+)-smectite surface favors solar light absorption, resulting in enhanced direct photodecomposition of PAHs. On the other hand, smectite clays saturated with Fe(3+), Al(3+), and Cu(2+) are highly photoreactive and can act as potential catalysts giving rise to oxidative radicals such as O2(-) , which initiate the transformation of PAHs. The present work provides valuable insights into understanding the transformation and fate of PAHs in the natural soil environment and sheds light on the development of technologies for contaminated land remediation. PMID:25621830

  1. Oxidative capacity of the Mexico City atmosphere - Part 1: A radical source perspective

    NASA Astrophysics Data System (ADS)

    Volkamer, R.; Sheehy, P.; Molina, L. T.; Molina, M. J.

    2010-07-01

    A detailed analysis of OH, HO2 and RO2 radical sources is presented for the near field photochemical regime inside the Mexico City Metropolitan Area (MCMA). During spring of 2003 (MCMA-2003 field campaign) an extensive set of measurements was collected to quantify time-resolved ROx (sum of OH, HO2, RO2) radical production rates from day- and nighttime radical sources. The Master Chemical Mechanism (MCMv3.1) was constrained by measurements of (1) concentration time-profiles of photosensitive radical precursors, i.e., nitrous acid (HONO), formaldehyde (HCHO), ozone (O3), glyoxal (CHOCHO), and other oxygenated volatile organic compounds (OVOCs); (2) respective photolysis-frequencies (J-values); (3) concentration time-profiles of alkanes, alkenes, and aromatic VOCs (103 compound are treated) and oxidants, i.e., OH- and NO3 radicals, O3; and (4) NO, NO2, meteorological and other parameters. The ROx production rate was calculated directly from these observations; the MCM was used to estimate further ROx production from unconstrained sources, and express overall ROx production as OH-equivalents (i.e., taking into account the propagation efficiencies of RO2 and HO2 radicals into OH radicals). Daytime radical production is found to be about 10-25 times higher than at night; it does not track the abundance of sunlight. 12-h average daytime contributions of individual sources are: Oxygenated VOC other than HCHO about 33%; HCHO and O3 photolysis each about 20%; O3/alkene reactions and HONO photolysis each about 12%, other sources <3%. Nitryl chloride photolysis could potentially contribute ~15% additional radicals, while NO2* + water makes - if any - a very small contribution (~2%). The peak radical production of ~7.5 107 molec cm-3 s-1 is found already at 10:00 a.m., i.e., more than 2.5 h before solar noon. O3/alkene reactions are indirectly responsible for ~33% of these radicals. Our measurements and analysis comprise a database that enables testing of the representation of

  2. 40 CFR 721.10103 - Naphtha (Fischer-Tropsch), C4-11-alkane, branched and linear.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Naphtha (Fischer-Tropsch), C4-11... Significant New Uses for Specific Chemical Substances § 721.10103 Naphtha (Fischer-Tropsch), C4-11-alkane... substance identified as naphtha (fischer-tropsch), C4-11-alkane, branched and linear (PMN P-04-235; CAS...

  3. 40 CFR 721.10103 - Naphtha (Fischer-Tropsch), C4-11-alkane, branched and linear.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Naphtha (Fischer-Tropsch), C4-11... Significant New Uses for Specific Chemical Substances § 721.10103 Naphtha (Fischer-Tropsch), C4-11-alkane... substance identified as naphtha (fischer-tropsch), C4-11-alkane, branched and linear (PMN P-04-235; CAS...

  4. 40 CFR 721.10103 - Naphtha (Fischer-Tropsch), C4-11-alkane, branched and linear.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Naphtha (Fischer-Tropsch), C4-11... Significant New Uses for Specific Chemical Substances § 721.10103 Naphtha (Fischer-Tropsch), C4-11-alkane... substance identified as naphtha (fischer-tropsch), C4-11-alkane, branched and linear (PMN P-04-235; CAS...

  5. 40 CFR 721.10103 - Naphtha (Fischer-Tropsch), C4-11-alkane, branched and linear.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Naphtha (Fischer-Tropsch), C4-11... Significant New Uses for Specific Chemical Substances § 721.10103 Naphtha (Fischer-Tropsch), C4-11-alkane... substance identified as naphtha (fischer-tropsch), C4-11-alkane, branched and linear (PMN P-04-235; CAS...

  6. 40 CFR 721.10103 - Naphtha (Fischer-Tropsch), C4-11-alkane, branched and linear.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Naphtha (Fischer-Tropsch), C4-11... Significant New Uses for Specific Chemical Substances § 721.10103 Naphtha (Fischer-Tropsch), C4-11-alkane... substance identified as naphtha (fischer-tropsch), C4-11-alkane, branched and linear (PMN P-04-235; CAS...

  7. 40 CFR 721.10625 - Distillation bottoms, alkylated benzene by-product, brominated and bromo diphenyl alkane (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Distillation bottoms, alkylated... Distillation bottoms, alkylated benzene by-product, brominated and bromo diphenyl alkane (generic). (a... generically as distillation bottoms, alkylated benzene by-product, brominated and bromo diphenyl alkane...

  8. 40 CFR 721.10625 - Distillation bottoms, alkylated benzene by-product, brominated and bromo diphenyl alkane (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Distillation bottoms, alkylated... Distillation bottoms, alkylated benzene by-product, brominated and bromo diphenyl alkane (generic). (a... generically as distillation bottoms, alkylated benzene by-product, brominated and bromo diphenyl alkane...

  9. Regioselective alkane hydroxylation with a mutant CYP153A6 enzyme

    DOEpatents

    Koch, Daniel J.; Arnold, Frances H.

    2013-01-29

    Cytochrome P450 CYP153A6 from Myobacterium sp. strain HXN1500 was engineered using in-vivo directed evolution to hydroxylate small-chain alkanes regioselectively. Mutant CYP153A6-BMO1 selectively hydroxylates butane and pentane at the terminal carbon to form 1-butanol and 1-pentanol, respectively, at rates greater than wild-type CYP153A6 enzymes. This biocatalyst is highly active for small-chain alkane substrates and the regioselectivity is retained in whole-cell biotransformations.

  10. Thermodynamic functions of formation of n-alkane complexes with crystalline urea

    SciTech Connect

    Tolmachev, V.V.; Semenov, L.V.; Gaile, A.A.; Proskuryakov, V.A.

    1987-07-10

    For optimization of the conditions of deparaffination of petroleum fractions with the aid of urea, with the composition of the feedstock taken into account, it is important to know the equilibrium constants of formation of complexes of urea with n-alkanes differing in the number of carbon atoms in their molecules, as functions of temperature. In this investigation they obtained experimental data necessary for calculating the thermodynamic functions of formation of n-alkane complexes with crystalline urea up to the decomposition temperature, using Kirchhoff's equations.

  11. Monocarboxylic acids from oxidation of acyclic isoprenoid alkanes by Mycobacterium fortuitum

    NASA Technical Reports Server (NTRS)

    Cox, R. E.; Maxwell, J. R.; Myers, R. N.

    1976-01-01

    Mycobacterium fortuitum utilizes certain stereoisomeric mixtures of individual multimethyl branched alkanes as sole carbon source, including 2,6(R), 10(S), 14(RS)-tetramethylhexadecane; 2,6(R), 10(S), 14(RS)-tetramethylheptadecane; 2,6(RS), 10(RS)-trimethyltetradecane, and 2,6(R), 10(S)-trimethylpentadecane. Products of oxidation isolated from the bacterial lipids were acids derived predominantly from oxidation of the isopropyl terminus of each alkane, except in the case of 2,6(RS), 10(RS)-trimethyltetradecane. With the latter, acids from oxidation at either terminus were detected in comparable proportions.

  12. Mass effect on the Soret coefficient in n-alkane mixtures.

    PubMed

    Alonso de Mezquia, David; Bou-Ali, M Mounir; Madariaga, J Antonio; Santamaría, Carlos

    2014-02-28

    We have determined the Soret coefficient of different equimolar and non equimolar n-alkane mixtures from measurements of the molecular diffusion and thermal diffusion coefficients. It is shown that equimolar mixtures behave as isotopic-like mixtures in which only the mass effect contributes to the Soret effect. In non equimolar mixtures, a small linear dependence with the molar fraction is observed. Finally, we have obtained a new correlation, which allows the determination of the Soret coefficient of n-alkane mixtures using the data of viscosity, the thermal expansion coefficient of the pure components, and the density of the equimolar mixture. PMID:24588181

  13. Determination of n-alkane content in middle and heavy distillates by gas chromatography

    SciTech Connect

    Fadeev, V.S.; Shteingardt, N.S.

    1987-07-01

    The authors have modified a procedure of determination of n-alkane content in middle and heavy distillates by gas chromatography. The zeolite is replaced by a surface-layer absorbent consisting of grains of diatomite on which there has been deposited a surface layer of MgA zeolite particles, and the helium is replaced by hydrogen. A special chromatograph attachment is described and the chromatograms are calculated on the basis of the heights or areas of the peaks of the charge and the impurity hydrocarbons which are not n-alkanes.

  14. Detailed chemical kinetic models for large n-alkanes and iso-alkanes found in conventional and F-T diesel fuels

    SciTech Connect

    Westbrook, C K; Pitz, W J; Mehl, M; Curran, H J

    2009-03-09

    n-Hexadecane and 2,2,4,4,6,8,8-heptamethylnonane represent the primary reference fuels for diesel that are used to determine cetane number, a measure of the ignition property of diesel fuel. With the development of chemical kinetics models for both primary reference fuels, a new capability is now available to model diesel fuel ignition. Additionally, we have developed chemical kinetic models for a whole series of large n-alkanes and a large iso-alkane to represent these chemical classes in fuel surrogates for conventional and future fuels. These chemical kinetic models are used to predict the effect of the aforementioned fuel components on ignition characteristics under conditions found in internal combustion engines.

  15. Radical rebound mechanism in cytochrome P-450-catalyzed hydroxylation of the multifaceted radical clocks alpha- and beta-thujone.

    PubMed

    He, Xiang; de Montellano, Paul R Ortiz

    2004-09-17

    Alpha-thujone (1alpha) and beta-thujone (1beta) were used to investigate the mechanism of hydrocarbon hydroxylation by cytochromes P-450(cam) (CYP101) and P-450(BM3) (CYP102). The thujones are hydroxylated by these enzymes at various positions, but oxidation at C-4 gives rise to both rearranged and unrearranged hydroxylation products. Rearranged products result from the formation of a radical intermediate that can undergo either inversion of stereochemistry or ring opening of the adjacent cyclopropane ring. Both of these rearrangements, as well as a C-4 desaturation reaction, are observed. The ring opening clock gives oxygen rebound rates that range from 0.2 x 10(10) to 2.8 x 10(10) s(-1) for the different substrate and enzyme combinations. The C-4 inversion reaction provides independent confirmation of a radical intermediate. The phenol product expected if a C-4 cationic rather than radical intermediate is formed is not detected. The results are consistent with a two-state process and provide support for a radical rebound but not a hydroperoxide insertion mechanism for cytochrome P-450 hydroxylation. PMID:15258138

  16. Hyperconjugation in diethyl ether cation versus diethyl sulfide cation.

    PubMed

    Morita, Masato; Matsuda, Yoshiyuki; Endo, Tomoya; Mikami, Naohiko; Fujii, Asuka; Takahashi, Kaito

    2015-09-28

    Ionization of a molecule can greatly alter its electronic structure as well as its geometric structure. In this collaborative experimental and theoretical study, we examined variance in hyperconjugation upon ionization of diethyl ether (DEE) and diethyl sulfide (DES). We obtained the experimental gas phase vibrational spectra of DEE, DES, DEE(+), DES(+), DEE(+)-Ar, and DES(+)-Ar in the wavenumber region of 2500 to 3600 cm(-1). For DEE(+) and DEE(+)-Ar, we observed a greatly red shifted CH stretching peak at 2700 cm(-1), while the lowest CH stretching peaks for DEE, DES, DES(+) and DES(+)-Ar were observed around 2850 cm(-1). For DEE(+), we calculated a drastic red shifted CH stretching peak at 2760 cm(-1), but for DEE, DES, and DES(+) the lowest CH stretching peaks were calculated to be at 2860, 2945, and 2908 cm(-1), respectively. In addition, for DEE, the minima (maxima) geometry in the neutral state becomes a maxima (minima) geometry in the cationic state, while similar minima geometries are seen in neutral and cationic states of DES. These experimental and theoretical findings were rationalized through the natural bond orbital analysis by quantifying the hyperconjugation between the σCH orbital and the ionized singly occupied p orbital of the oxygen (sulfur) in DEE(+) (DES(+)). This study showed how orientation with the ionized orbital can greatly affect the neighboring CH bond strength and its polarity, as well as the geometry of the system. Furthermore, this change in the CH bond strength between DEE(+) and DES(+) is quantified from the energies for intramolecular proton transfer in the two cations. PMID:26300267

  17. Enhanced translocation and growth of Rhodococcus erythropolis PR4 in the alkane phase of aqueous-alkane two phase cultures were mediated by GroEL2 overexpression.

    PubMed

    Takihara, Hayato; Ogihara, Jun; Yoshida, Takao; Okuda, Shujiro; Nakajima, Mutsuyasu; Iwabuchi, Noriyuki; Sunairi, Michio

    2014-01-01

    We previously reported that R. erythropolis PR4 translocated from the aqueous to the alkane phase, and then grew in two phase cultures to which long-chain alkanes had been added. This was considered to be beneficial for bioremediation. In the present study, we investigated the proteins involved in the translocation of R. erythropolis PR4. The results of our proteogenomic analysis suggested that GroEL2 was upregulated more in cells that translocated inside of the pristane (C19) phase than in those located at the aqueous-alkane interface attached to the n-dodecane (C12) surface. PR4 (pK4-EL2-1) and PR4 (pK4-ΔEL2-1) strains were constructed to confirm the effects of the upregulation of GroEL2 in translocated cells. The expression of GroEL2 in PR4 (pK4-EL2-1) was 15.5-fold higher than that in PR4 (pK4-ΔEL2-1) in two phase cultures containing C12. The growth and cell surface lipophilicity of PR4 were enhanced by the introduction of pK4-EL2-1. These results suggested that the plasmid overexpression of groEL2 in PR4 (pK4-EL2-1) led to changes in cell localization, enhanced growth, and increased cell surface lipophilicity. Thus, we concluded that the overexpression of GroEL2 may play an important role in increasing the organic solvent tolerance of R. erythropolis PR4 in aqueous-alkane two phase cultures. PMID:25311591

  18. Adiabatic Coupling Constant of Nitrobenzene- n-Alkane Critical Mixtures. Evidence from Ultrasonic Spectra and Thermodynamic Data

    NASA Astrophysics Data System (ADS)

    Mirzaev, Sirojiddin Z.; Kaatze, Udo

    2016-09-01

    Ultrasonic spectra of mixtures of nitrobenzene with n-alkanes, from n-hexane to n-nonane, are analyzed. They feature up to two Debye-type relaxation terms with discrete relaxation times and, near the critical point, an additional relaxation term due to the fluctuations in the local concentration. The latter can be well represented by the dynamic scaling theory. Its amplitude parameter reveals the adiabatic coupling constant of the mixtures of critical composition. The dependence of this thermodynamic parameter upon the length of the n-alkanes corresponds to that of the slope in the pressure dependence of the critical temperature and is thus taken another confirmation of the dynamic scaling model. The change in the variation of the coupling constant and of several other mixture parameters with alkane length probably reflects a structural change in the nitrobenzene- n-alkane mixtures when the number of carbon atoms per alkane exceeds eight.

  19. Nickel(ii) radical complexes of thiosemicarbazone ligands appended by salicylidene, aminophenol and aminothiophenol moieties.

    PubMed

    Kochem, Amélie; Gellon, Gisèle; Jarjayes, Olivier; Philouze, Christian; du Moulinet d'Hardemare, Amaury; van Gastel, Maurice; Thomas, Fabrice

    2015-07-28

    The nickel(ii) complexes of three unsymmetrical thiosemicarbazone-based ligands featuring a sterically hindered salicylidene (1), aminophenol (2) or thiophenol (3) moiety were synthesized and structurally characterized. The metal ion lies in an almost square planar geometry in all the complexes. The cyclic voltammetry (CV) curve of 1 shows an irreversible oxidation wave at E = 0.49 V, which is assigned to the phenoxyl/phenolate redox couple. The CV curves of 2 and 3 display a reversible one-electron oxidation wave (E1/2 = 0.26 and 0.22 V vs. Fc(+)/Fc, respectively) and an one-electron reduction wave (E1/2 = -1.55 and -1.46 V, respectively). The cations 2(+) and 3(+) as well as the anions 2(-) and 3(-) were generated. The EPR spectra of the cations in THF show a rhombic signal at g1 = 2.034, g2 = 2.010 and g3 = 1.992 (2(+)) and g1 = 2.069, g2 = 2.018, g3 = 1.986 (3(+)) that is consistent with a main radical character of the complexes. The difference in anisotropy is assigned to the different nature of the radical, iminosemiquinonate vs. iminothiosemiquinonate. The anions display an isotropic EPR signal at giso = 2.003 (2(+)) and 2.006 (3(+)), which is indicative of a main α-diimine radical character of the compounds. Both the anions and cations exhibit charge transfer transitions of low to moderate intensity in their visible spectrum. Quantum chemical calculations (B3LYP) reproduce both the g-values and Vis-NIR spectra of the complexes. The radical anions readily react with dioxygen to give the radical cations. 2(+) catalyzes the aerobic oxidation of benzyl alcohol into benzaldehyde. PMID:26086684

  20. Changes in iso- and n-alkane distribution during biodegradation of crude oil under nitrate and sulphate reducing conditions.

    PubMed

    Hasinger, Marion; Scherr, Kerstin E; Lundaa, Tserennyam; Bräuer, Leopold; Zach, Clemens; Loibner, Andreas Paul

    2012-02-20

    Crude oil consists of a large number of hydrocarbons with different susceptibility to microbial degradation. The influence of hydrocarbon structure and molecular weight on hydrocarbon biodegradation under anaerobic conditions is not fully explored. In this study oxygen, nitrate and sulphate served as terminal electron acceptors (TEAs) for the microbial degradation of a paraffin-rich crude oil in a freshly contaminated soil. During 185 days of incubation, alkanes from n-C11 to n-C39, three n- to iso-alkane ratios commonly used as weathering indicators and the unresolved complex mixture (UCM) were quantified and statistically analyzed. The use of different TEAs for hydrocarbon degradation resulted in dissimilar degradative patterns for n- and iso-alkanes. While n-alkane biodegradation followed well-established patterns under aerobic conditions, lower molecular weight alkanes were found to be more recalcitrant than mid- to high-molecular weight alkanes under nitrate-reducing conditions. Biodegradation with sulphate as the TEA was most pronounced for long-chain (n-C32 to n-C39) alkanes. The observation of increasing ratios of n-C17 to pristane and of n-C18 to phytane provides first evidence of the preferential degradation of branched over normal alkanes under sulphate reducing conditions. The formation of distinctly different n- and iso-alkane biodegradation fingerprints under different electron accepting conditions may be used to assess the occurrence of specific degradation processes at a contaminated site. The use of n- to iso-alkane ratios for this purpose may require adjustment if applied for anaerobic sites. PMID:22001845