Sample records for alkanes methane ethane

  1. High rates of anaerobic oxidation of methane, ethane and propane coupled to thiosulphate reduction.

    PubMed

    Suarez-Zuluaga, Diego A; Weijma, Jan; Timmers, Peer H A; Buisman, Cees J N

    2015-03-01

    Anaerobic methane oxidation coupled to sulphate reduction and the use of ethane and propane as electron donors by sulphate-reducing bacteria represent new opportunities for the treatment of streams contaminated with sulphur oxyanions. However, growth of microbial sulphate-reducing populations with methane, propane or butane is extremely slow, which hampers research and development of bioprocesses based on these conversions. Thermodynamic calculations indicate that the growth rate with possible alternative terminal electron acceptors such as thiosulphate and elemental sulphur may be higher, which would facilitate future research. Here, we investigate the use of these electron acceptors for oxidation of methane, ethane and propane, with marine sediment as inoculum. Mixed marine sediments originating from Aarhus Bay (Denmark) and Eckernförde Bay (Germany) were cultivated anaerobically at a pH between 7.2 and 7.8 and a temperature of 15 °C in the presence of methane, ethane and propane and various sulphur electron acceptors. The sulphide production rates in the conditions with methane, ethane and propane with sulphate were respectively 2.3, 2.2 and 1.8 μmol S L(-1) day(-1). For sulphur, no reduction was demonstrated. For thiosulphate, the sulphide production rates were up to 50 times higher compared to those of sulphate, with 86.2, 90.7 and 108.1 μmol S L(-1) day(-1) for methane, ethane and propane respectively. This sulphide production was partly due to disproportionation, 50 % for ethane but only 7 and 14 % for methane and propane respectively. The oxidation of the alkanes in the presence of thiosulphate was confirmed by carbon dioxide production. This is, to our knowledge, the first report of thiosulphate use as electron acceptor with ethane and propane as electron donors. Additionally, these results indicate that thiosulphate is a promising electron acceptor to increase start-up rates for sulphate-reducing bioprocesses coupled to short-chain alkane oxidation.

  2. Raman studies of methane-ethane hydrate metastability.

    PubMed

    Ohno, Hiroshi; Strobel, Timothy A; Dec, Steven F; Sloan, E Dendy; Koh, Carolyn A

    2009-03-05

    The interconversion of methane-ethane hydrate from metastable to stable structures was studied using Raman spectroscopy. sI and sII hydrates were synthesized from methane-ethane gas mixtures of 65% or 93% methane in ethane and water, both with and without the kinetic hydrate inhibitor, poly(N-vinylcaprolactam). The observed faster structural conversion rate in the higher methane concentration atmosphere can be explained in terms of the differences in driving force (difference in chemical potential of water in sI and sII hydrates) and kinetics (mass transfer of gas and water rearrangement). The kinetic hydrate inhibitor increased the conversion rate at 65% methane in ethane (sI is thermodynamically stable) but retards the rate at 93% methane in ethane (sII is thermodynamically stable), implying there is a complex interaction between the polymer, water, and hydrate guests at crystal surfaces.

  3. Demonstration of an ethane spectrometer for methane source identification.

    PubMed

    Yacovitch, Tara I; Herndon, Scott C; Roscioli, Joseph R; Floerchinger, Cody; McGovern, Ryan M; Agnese, Michael; Pétron, Gabrielle; Kofler, Jonathan; Sweeney, Colm; Karion, Anna; Conley, Stephen A; Kort, Eric A; Nähle, Lars; Fischer, Marc; Hildebrandt, Lars; Koeth, Johannes; McManus, J Barry; Nelson, David D; Zahniser, Mark S; Kolb, Charles E

    2014-07-15

    Methane is an important greenhouse gas and tropospheric ozone precursor. Simultaneous observation of ethane with methane can help identify specific methane source types. Aerodyne Ethane-Mini spectrometers, employing recently available mid-infrared distributed feedback tunable diode lasers (DFB-TDL), provide 1 s ethane measurements with sub-ppb precision. In this work, an Ethane-Mini spectrometer has been integrated into two mobile sampling platforms, a ground vehicle and a small airplane, and used to measure ethane/methane enhancement ratios downwind of methane sources. Methane emissions with precisely known sources are shown to have ethane/methane enhancement ratios that differ greatly depending on the source type. Large differences between biogenic and thermogenic sources are observed. Variation within thermogenic sources are detected and tabulated. Methane emitters are classified by their expected ethane content. Categories include the following: biogenic (<0.2%), dry gas (1-6%), wet gas (>6%), pipeline grade natural gas (<15%), and processed natural gas liquids (>30%). Regional scale observations in the Dallas/Fort Worth area of Texas show two distinct ethane/methane enhancement ratios bridged by a transitional region. These results demonstrate the usefulness of continuous and fast ethane measurements in experimental studies of methane emissions, particularly in the oil and natural gas sector.

  4. An analytical solubility model for nitrogen-methane-ethane ternary mixtures

    NASA Astrophysics Data System (ADS)

    Hartwig, Jason; Meyerhofer, Peter; Lorenz, Ralph; Lemmon, Eric

    2018-01-01

    Saturn's moon Titan has surface liquids of liquid hydrocarbons and a thick, cold, nitrogen atmosphere, and is a target for future exploration. Critical to the design and operation of vehicles for this environment is knowledge of the amount of dissolved nitrogen gas within the cryogenic liquid methane and ethane seas. This paper rigorously reviews experimental data on the vapor-liquid equilibrium of nitrogen/methane/ethane mixtures, noting the possibility for split liquid phases, and presents simple analytical models for conveniently predicting solubility of nitrogen in pure liquid ethane, pure liquid methane, and a mixture of liquid ethane and methane. Model coefficients are fit to three temperature ranges near the critical point, intermediate range, and near the freezing point to permit accurate predictions across the full range of thermodynamic conditions. The models are validated against the consolidated database of 2356 experimental data points, with mean absolute error between data and model less than 8% for both binary nitrogen/methane and nitrogen/ethane systems, and less than 17% for the ternary nitrogen/methane/ethane system. The model can be used to predict the mole fractions of ethane, methane, and nitrogen as a function of location within the Titan seas.

  5. Methane, Ethane, and Nitrogen Stability on Titan

    NASA Astrophysics Data System (ADS)

    Hanley, J.; Grundy, W. M.; Thompson, G.; Dustrud, S.; Pearce, L.; Lindberg, G.; Roe, H. G.; Tegler, S.

    2017-12-01

    Many outer solar system bodies are likely to have a combination of methane, ethane and nitrogen. In particular the lakes of Titan are known to consist of these species. Understanding the past and current stability of these lakes requires characterizing the interactions of methane and ethane, along with nitrogen, as both liquids and ices. Our cryogenic laboratory setup allows us to explore ices down to 30 K through imaging, and transmission and Raman spectroscopy. Our recent work has shown that although methane and ethane have similar freezing points, when mixed they can remain liquid down to 72 K. Concurrently with the freezing point measurements we acquire transmission or Raman spectra of these mixtures to understand how the structural features change with concentration and temperature. Any mixing of these two species together will depress the freezing point of the lake below Titan's surface temperature, preventing them from freezing. We will present new results utilizing our recently acquired Raman spectrometer that allow us to explore both the liquid and solid phases of the ternary system of methane, ethane and nitrogen. In particular we will explore the effect of nitrogen on the eutectic of the methane-ethane system. At high pressure we find that the ternary creates two separate liquid phases. Through spectroscopy we determined the bottom layer to be nitrogen rich, and the top layer to be ethane rich. Identifying the eutectic, as well as understanding the liquidus and solidus points of combinations of these species, has implications for not only the lakes on the surface of Titan, but also for the evaporation/condensation/cloud cycle in the atmosphere, as well as the stability of these species on other outer solar system bodies. These results will help interpretation of future observational data, and guide current theoretical models.

  6. Airborne Ethane Observations over the Barnett and Bakken Shale Formations: Quantification of Ethane Fluxes and Attribution of Methane Emissions

    NASA Astrophysics Data System (ADS)

    Smith, M. L.; Kort, E. A.; Karion, A.; Sweeney, C.; Peischl, J.; Ryerson, T. B.

    2014-12-01

    The largest emissions sources of methane, a potent greenhouse gas and the primary component of natural gas, are the fossil fuel sector and microbial processes that occur in agricultural settings, landfills, and wetlands. Attribution of methane to these different source sectors has proven difficult, as evidenced by persistent disagreement between the annual emissions estimated from atmospheric observations (top-down) and from inventories (bottom-up). Given the rapidly changing natural gas infrastructure in North America, and the implications of associated rapid changes in emissions of methane for climate, it is crucial we improve our ability to quantify and understand current and future methane emissions. Here, we present evidence that continuous in-situ airborne observations of ethane, which is a tracer for fossil fuel emissions, are a new and useful tool for attribution of methane emissions to specific source sectors. Additionally, with these new airborne observations we present the first tightly constrained ethane emissions estimates of oil and gas production fields using the well-known mass balance method. The ratios of ethane-to-methane (C2H6:CH4) of specific methane emissions sources were studied over regions of high oil and gas production from the Barnett, TX and Bakken, ND shale plays, using continuous (1Hz frequency) airborne ethane measurements paired with simultaneous methane measurements. Despite the complex mixture of sources in the Barnett region, the methane emissions were well-characterized by distinct C2H6:CH4 relationships indicative of a high-ethane fossil fuel source (e.g., "wet" gas), a low-ethane fossil fuel source (e.g., "dry" gas), and an ethane-free, or microbial source. The defined set of C2H6:CH4 that characterized the emissions input to the atmosphere was used in conjunction with the total ethane and methane fluxes to place bounds on the fraction of methane emissions attributable to each source. Additionally, substantial ethane fluxes

  7. NMR study of methane + ethane structure I hydrate decomposition.

    PubMed

    Dec, Steven F; Bowler, Kristen E; Stadterman, Laura L; Koh, Carolyn A; Sloan, E Dendy

    2007-05-24

    The thermally activated decomposition of methane + ethane structure I hydrate was studied with use of 13C magic-angle spinning (MAS) NMR as a function of composition and temperature. The observed higher decomposition rate of large sI cages initially filled with ethane gas can be described in terms of a model where a distribution of sI unit cells exists such that a particular unit cell contains zero, one, or two methane molecules in the unit cell; this distribution of unit cells is combined to form the observed equilibrium composition. In this model, unit cells with zero methane molecules are the least stable and decompose more rapidly than those populated with one or two methane molecules leading to the observed overall faster decomposition rate of the large cages containing ethane molecules.

  8. Structural changes and preferential cage occupancy of ethane hydrate and methane-ethane mixed gas hydrate under very high pressure.

    PubMed

    Hirai, Hisako; Takahara, Naoya; Kawamura, Taro; Yamamoto, Yoshitaka; Yagi, Takehiko

    2008-12-14

    High-pressure experiments of ethane hydrate and methane-ethane mixed hydrates with five compositions were performed using a diamond anvil cell in a pressure range of 0.1-2.8 GPa at room temperature. X-ray diffractometry and Raman spectroscopy showed structural changes as follows. The initial structure, structure I (sI), of ethane hydrate was retained up to 2.1 GPa without any structural change. For the mixed hydrates, sI was widely distributed throughout the region examined except for the methane-rich and lower pressure regions. For the ethane-rich and intermediate composition regions (73 mol % ethane sample and 53% sample), sI was maintained up to 2.1 GPa. With increasing methane component (34% and 30% samples), sI existed at pressures from 0.1 to about 1.0 GPa. Hexagonal structure (sH) appeared in addition to sI at 1.3 GPa for the 34% sample and at 1.1 GPa for the 30% sample. By further increasing the methane component (22% sample), structure II (sII) existed solely up to 0.3 GPa. From 0.3 to 0.6 GPa, sII and sI coexisted, and from 0.6 to 1.0 GPa only sI existed. At 1.2 GPa sH appeared, and sH and sI coexisted up to 2.1 GPa. Above 2.1 GPa, ethane hydrate and all of the mixed hydrates decomposed into ice VI and ethane fluid or methane-ethane fluid, respectively. The Raman study revealed that occupation of the small cages by ethane molecules occurred above 0.1 GPa in ethane hydrate and continued up to decomposition at 2.1 GPa, although it is thought that ethane molecules are contained only in the large cage.

  9. Carbon and hydrogen isotopic composition of methane and C2+ alkanes in electrical spark discharge: implications for identifying sources of hydrocarbons in terrestrial and extraterrestrial settings.

    PubMed

    Telling, Jon; Lacrampe-Couloume, Georges; Sherwood Lollar, Barbara

    2013-05-01

    The low-molecular-weight alkanes--methane, ethane, propane, and butane--are found in a wide range of terrestrial and extraterrestrial settings. The development of robust criteria for distinguishing abiogenic from biogenic alkanes is essential for current investigations of Mars' atmosphere and for future exobiology missions to other planets and moons. Here, we show that alkanes synthesized during gas-phase radical recombination reactions in electrical discharge experiments have values of δ(2)H(methane)>δ(2)H(ethane)>δ(2)H(propane), similar to those of the carbon isotopes. The distribution of hydrogen isotopes in gas-phase radical reactions is likely due to kinetic fractionations either (i) from the preferential incorporation of (1)H into longer-chain alkanes due to the more rapid rate of collisions of the smaller (1)H-containing molecules or (ii) by secondary ion effects. Similar δ(13)C(C1-C2+) and δ(2)H(C1-C2+) patterns may be expected in a range of extraterrestrial environments where gas-phase radical reactions dominate, including interstellar space, the atmosphere and liquid hydrocarbon lakes of Saturn's moon Titan, and the outer atmospheres of Jupiter, Saturn, Neptune, and Uranus. Radical recombination reactions at high temperatures and pressures may provide an explanation for the combined reversed δ(13)C(C1-C2+) and δ(2)H(C1-C2+) patterns of terrestrial alkanes documented at a number of high-temperature/pressure crustal sites.

  10. Main-group compounds selectively oxidize mixtures of methane, ethane, and propane to alcohol esters.

    PubMed

    Hashiguchi, Brian G; Konnick, Michael M; Bischof, Steven M; Gustafson, Samantha J; Devarajan, Deepa; Gunsalus, Niles; Ess, Daniel H; Periana, Roy A

    2014-03-14

    Much of the recent research on homogeneous alkane oxidation has focused on the use of transition metal catalysts. Here, we report that the electrophilic main-group cations thallium(III) and lead(IV) stoichiometrically oxidize methane, ethane, and propane, separately or as a one-pot mixture, to corresponding alcohol esters in trifluoroacetic acid solvent. Esters of methanol, ethanol, ethylene glycol, isopropanol, and propylene glycol are obtained with greater than 95% selectivity in concentrations up to 1.48 molar within 3 hours at 180°C. Experiment and theory support a mechanism involving electrophilic carbon-hydrogen bond activation to generate metal alkyl intermediates. We posit that the comparatively high reactivity of these d(10) main-group cations relative to transition metals stems from facile alkane coordination at vacant sites, enabled by the overall lability of the ligand sphere and the absence of ligand field stabilization energies in systems with filled d-orbitals.

  11. Long-term decline of global atmospheric ethane concentrations and implications for methane.

    PubMed

    Simpson, Isobel J; Sulbaek Andersen, Mads P; Meinardi, Simone; Bruhwiler, Lori; Blake, Nicola J; Helmig, Detlev; Rowland, F Sherwood; Blake, Donald R

    2012-08-23

    After methane, ethane is the most abundant hydrocarbon in the remote atmosphere. It is a precursor to tropospheric ozone and it influences the atmosphere's oxidative capacity through its reaction with the hydroxyl radical, ethane's primary atmospheric sink. Here we present the longest continuous record of global atmospheric ethane levels. We show that global ethane emission rates decreased from 14.3 to 11.3 teragrams per year, or by 21 per cent, from 1984 to 2010. We attribute this to decreasing fugitive emissions from ethane's fossil fuel source--most probably decreased venting and flaring of natural gas in oil fields--rather than a decline in its other major sources, biofuel use and biomass burning. Ethane's major emission sources are shared with methane, and recent studies have disagreed on whether reduced fossil fuel or microbial emissions have caused methane's atmospheric growth rate to slow. Our findings suggest that reduced fugitive fossil fuel emissions account for at least 10-21 teragrams per year (30-70 per cent) of the decrease in methane's global emissions, significantly contributing to methane's slowing atmospheric growth rate since the mid-1980s.

  12. Ethane's 12C/13C Ratio in Titan: Implications for Methane Replenishment

    NASA Technical Reports Server (NTRS)

    Jennings, Donald E.; Nixon, C. A.; Romani, P. N.; Bjoraker, G. L.; Sada, P. V.; Lunsford, A. W.; Boyle, R. J.; Hesman, B. E.; McCabe, G. H.

    2009-01-01

    As the .main destination of carbon in the destruction of methane in the atmosphere of Titan, ethane provides information about the carbon isotopic composition of the reservoir from which methane is replenished. If the amount of methane entering the atmosphere is presently equal to the amount converted to ethane, the 12C/13C ratio in ethane should be close to the ratio in the reservoir. We have measured the 12C/13C ratio in ethane both with Cassini CIRS(exp 1) and from the ground and find that it is very close to the telluric standard and outer planet values (89), consistent with a primordial origin for the methane reservoir. The lower 12C/13C ratio measured for methane by Huygens GCMS (82.3) can be explained if the conversion of CH4 to CH3 (and C2H6) favors 12C over 13C with a carbon kinetic isotope effect of 1.08. The time required for the atmospheric methane to reach equilibrium, i.e., for replenishment to equal destruction, is approximately 5 methane atmospheric lifetimes.

  13. Fundamental Flame Velocities of Pure Hydrocarbons I : Alkanes, Alkenes, Alkynes Benzene, and Cyclohexane

    NASA Technical Reports Server (NTRS)

    Gerstein, Melvin; Levine, Oscar; Wong, Edgar L

    1950-01-01

    The flame velocities of 37 pure hydrocarbons including normal and branched alkanes, alkenes, and alkynes; as well as benzene and cyclohexane, together with the experimental technique employed are presented. The normal alkanes have about the same flame velocity from ethane through heptane with methane being about 16 percent lower. Unsaturation increases the flame velocity in the order of alkanes, alkenes, and alkynes. Branching reduces the flame velocity.

  14. Airborne Ethane Observations in the Barnett Shale: Quantification of Ethane Flux and Attribution of Methane Emissions.

    PubMed

    Smith, Mackenzie L; Kort, Eric A; Karion, Anna; Sweeney, Colm; Herndon, Scott C; Yacovitch, Tara I

    2015-07-07

    We present high time resolution airborne ethane (C2H6) and methane (CH4) measurements made in March and October 2013 as part of the Barnett Coordinated Campaign over the Barnett Shale formation in Texas. Ethane fluxes are quantified using a downwind flight strategy, a first demonstration of this approach for C2H6. Additionally, ethane-to-methane emissions ratios (C2H6:CH4) of point sources were observationally determined from simultaneous airborne C2H6 and CH4 measurements during a survey flight over the source region. Distinct C2H6:CH4 × 100% molar ratios of 0.0%, 1.8%, and 9.6%, indicative of microbial, low-C2H6 fossil, and high-C2H6 fossil sources, respectively, emerged in observations over the emissions source region of the Barnett Shale. Ethane-to-methane correlations were used in conjunction with C2H6 and CH4 fluxes to quantify the fraction of CH4 emissions derived from fossil and microbial sources. On the basis of two analyses, we find 71-85% of the observed methane emissions quantified in the Barnett Shale are derived from fossil sources. The average ethane flux observed from the studied region of the Barnett Shale was 6.6 ± 0.2 × 10(3) kg hr(-1) and consistent across six days in spring and fall of 2013.

  15. Quantifying Emissions from the Eagle Ford Shale Using Ethane Enhancement

    NASA Astrophysics Data System (ADS)

    Roest, G. S.; Schade, G. W.

    2014-12-01

    Emissions from unconventional oil and natural gas exploration in the Eagle Ford Shale have been conjectured as a contributing factor to increasing ozone concentrations in the San Antonio Metropolitan Area, which is on track to be designated as a nonattainment area by the EPA. Primary species found in natural gas emissions are alkanes, with C3 and heavier alkanes acting as short-lived VOCs contributing to regional ozone formation. Methane emissions from the industry are also a forcing mechanism for climate change as methane is a potent greenhouse gas. Recent studies have highlighted a high variability and uncertainties in oil and natural gas emissions estimates in emissions inventories. Thus, accurately quantifying oil and natural gas emissions from the Eagle Ford Shale is necessary to assess the industry's impacts on climate forcing and regional air quality. We estimate oil and natural gas emissions in the Eagle Ford Shale using in situ ethane measurements along southwesterly trajectories from the Gulf of Mexico, dominantly during the summertime. Ethane enhancement within the drilling area is estimated by comparing ethane concentrations upwind of the shale, near the Texas coastline, to downwind measurements in the San Antonio Metropolitan Area, Odessa, and Amarillo. Upwind ethane observations indicate low background levels entering Texas in the Gulf of Mexico air masses. Significant ethane enhancement is observed between the coast and San Antonio, and is attributed to oil and natural gas operations due to the concurrent enhancements of heavier alkanes. Using typical boundary layer depths and presuming homogenous emissions across the Eagle Ford shale area, the observed ethane enhancements are used to extrapolate an estimate of oil and natural gas industry emissions in the Eagle Ford. As oil and natural gas production in the area is projected to grow rapidly over the coming years, the impacts of these emissions on regional air quality will need to be thoroughly

  16. Reactions of O/1D/ with methane and ethane.

    NASA Technical Reports Server (NTRS)

    Lin, C.-L.; Demore, W. B.

    1973-01-01

    Mixtures of nitrous oxide and methane and mixtures of nitrous oxide and ethane were photolyzed with 1849-A light. The reaction products were analyzed chromatographically. It was found that the reaction of the excited atomic oxygen with methane gives mainly CH3 and OH radicals as initial products, along with about 9% of formaldehyde and molecular hydrogen. The reaction of the excited atomic oxygen with ethane gives C2H5, OH, CH3 and CH2OH as major initial products, with only a few per cent of molecular hydrogen.

  17. Development of a Flight Instrument for in situ Measurements of Ethane and Methane

    NASA Astrophysics Data System (ADS)

    Wilkerson, J. P.; Sayres, D. S.; Anderson, J. G.

    2015-12-01

    Methane emissions data for natural gas and oil fields have high uncertainty. Better quantifying these emissions is crucial to establish an accurate methane budget for the United States. One obstacle is that these emissions often occur in areas near livestock facilities where biogenic methane abounds. Measuring ethane, which has no biogenic source, along with methane can tease these sources apart. However, ethane is typically measured by taking whole-air samples. This tactic has lower spatial resolution than making in situ measurements and requires the measurer to anticipate the location of emission plumes. This leaves unexpected plumes uncharacterized. Using Re-injection Mirror Integrated Cavity Output Spectroscopy (RIM-ICOS), we can measure both methane and ethane in flight, allowing us to establish more accurate fugitive emissions data that can more readily distinguish between different sources of this greenhouse gas.

  18. C-12/C-13 Ratio in Ethane on Titan and Implications for Methane's Replenishment

    NASA Technical Reports Server (NTRS)

    Jennings, Donald E.; Romani, Paul N.; Bjoraker, Gordon L.; Sada, Pedro V.; Nixon, Conor A.; Lunsford, Allen W.; Boyle, Robert J.; Hesman, Brigette E.; McCabe, George H.

    2009-01-01

    The C-12/C-13 abundance ratio in ethane in the atmosphere of Titan has been measured at 822 cm(sup -1) from high spectral resolution ground-based observations. The value 89(8), coincides with the telluric standard and also agrees with the ratio seen in the outer planets. It is almost identical to the result for ethane on Titan found by the composite infrared spectrometer (CIRS) on Cassini. The C-12/C-13 ratio for ethane is higher than the ratio measured in atmospheric methane by Cassini/Huygens GCMS, 82.3(l), representing an enrichment of C-12 in the ethane that might be explained by a kinetic isotope effect of approximately 1.1 in the formation of methyl radicals. If methane is being continuously resupplied to balance photochemical destruction, then we expect the isotopic composition in the ethane product to equilibrate at close to the same C-12/C-13 ratio as that in the supply. The telluric value of the ratio in ethane then implies that the methane reservoir is primordial.

  19. Estimates of methane and ethane emissions from the Texas Barnett Shale

    NASA Astrophysics Data System (ADS)

    Karion, A.; Sweeney, C.; Yacovitch, T.; Petron, G.; Wolter, S.; Conley, S. A.; Hardesty, R. M.; Brewer, A.; Kofler, J.; Newberger, T.; Herndon, S.; Miller, B. R.; Montzka, S. A.; Rella, C.; Crosson, E.; Tsai, T.; Tans, P. P.

    2013-12-01

    The recent development of horizontal drilling technology by the oil and gas industry has dramatically increased onshore U.S. natural gas and oil production in the last several years. This production boom has led to wide-spread interest from the policy and scientific communities in quantifying the climate impact of the use of natural gas as a replacement for coal. Because the primary component of natural gas is methane, a powerful greenhouse gas, natural gas leakage into the atmosphere affects its climate impact. Several recent scientific field studies have focused on using atmospheric measurements to estimate this leakage in different producing basins. Methane can be measured precisely with commercial analyzers, and deployment of such analyzers on aircraft, coupled with meteorological measurements, can allow scientists to estimate emissions from regions of concentrated production. Ethane and other light hydrocarbons, also components of raw gas, can be used as tracers for differentiating natural gas emissions from those of other methane sources, such as agriculture or landfills, which do not contain any non-methane hydrocarbons such as ethane. Here we present results from one such field campaign in the Barnett Shale near Fort Worth, Texas, in March 2013. Several 4-hour flights were conducted over the natural gas and oil production region with a small single-engine aircraft instrumented with analyzers for measuring ambient methane, carbon monoxide, carbon dioxide, and ethane at high frequencies (0.3-1Hz). The aircraft also measured horizontal winds, temperature, humidity, and pressure, and collected whole air samples in flasks analyzed later for several light hydrocarbons. In addition to the aircraft, a ground-based High-Resolution Doppler Lidar was deployed in the basin to measure profiles of horizontal winds and estimate the boundary layer height 24 hours a day over the campaign period. The aircraft and lidar measurements are used together to estimate methane and

  20. Geochemical Tracers and Rates of Short-Chain Alkane Production in Gulf of Mexico Cold Seep Sediments

    NASA Astrophysics Data System (ADS)

    Sibert, R.; Bernard, B. B.; Brooks, J. M.; Hunter, K.; Joye, S. B.

    2014-12-01

    The organic-rich cold seep sediments in the deep Gulf of Mexico commonly contain mixtures of light hydrocarbon gases either dissolved in pore fluids, adsorbed to sediment particles, trapped in methane ice, or as free gas. The dominant component in these natural gas mixtures is typically methane (C1), but ethane (C2) and propane (C3) are nearly always present in trace or major amounts. The ratio of C1:C2:C3 varies but C2 and C3 are typically present at single digit percent levels, whereas methane usually dominates at >80%. Methane production proceeds by at least two well-studied mechanisms: either 1) by thermocatalytic cracking of fossil organic matter, or 2) as a direct product of microbial metabolism, methanogenesis. In contrast, ethane and propane production in deep-sea sediments has been historically attributed only to thermocatalytic processes. However, limited data suggests production of C2/C3 compounds through the activity of archaea. Such studies of microbial- driven dynamics of C2/C3 gases (i.e. 'alkanogenesis') in cold seep sediments are rare. Furthermore, the identities of potential substrates are poorly constrained and no attempt has been made to quantify production rates of C2/C3 gases. However, carbon isotopic data on ethane and propane from deep cores from the Gulf of Mexico suggest alkanogenesis at depth in the sediment column and alkane oxidation in uppermost oxidant-rich sediments. Here, we present the results of a series of incubation experiments using sediment slurries culled from GC600, one of the most prolific natural oil and gas seeps in the Gulf of Mexico. Rates of both alkane production and oxidation were measured under a variety of conditions to assess the net rates of alkane production and elucidate the driving microbiological mechanisms and controls on the central processes of >C1 alkane cycling in cold seep sediments. Microbial processes are important both in terms of alkane production and oxidation, raising many questions as to the

  1. Recent decreases in fossil-fuel emissions of ethane and methane derived from firn air.

    PubMed

    Aydin, Murat; Verhulst, Kristal R; Saltzman, Eric S; Battle, Mark O; Montzka, Stephen A; Blake, Donald R; Tang, Qi; Prather, Michael J

    2011-08-10

    Methane and ethane are the most abundant hydrocarbons in the atmosphere and they affect both atmospheric chemistry and climate. Both gases are emitted from fossil fuels and biomass burning, whereas methane (CH(4)) alone has large sources from wetlands, agriculture, landfills and waste water. Here we use measurements in firn (perennial snowpack) air from Greenland and Antarctica to reconstruct the atmospheric variability of ethane (C(2)H(6)) during the twentieth century. Ethane levels rose from early in the century until the 1980s, when the trend reversed, with a period of decline over the next 20 years. We find that this variability was primarily driven by changes in ethane emissions from fossil fuels; these emissions peaked in the 1960s and 1970s at 14-16 teragrams per year (1 Tg = 10(12) g) and dropped to 8-10 Tg  yr(-1) by the turn of the century. The reduction in fossil-fuel sources is probably related to changes in light hydrocarbon emissions associated with petroleum production and use. The ethane-based fossil-fuel emission history is strikingly different from bottom-up estimates of methane emissions from fossil-fuel use, and implies that the fossil-fuel source of methane started to decline in the 1980s and probably caused the late twentieth century slow-down in the growth rate of atmospheric methane.

  2. Short-chain alkane cycling in deep Gulf of Mexico cold-seep sediments

    NASA Astrophysics Data System (ADS)

    Sibert, R.; Joye, S. B.; Hunter, K.

    2015-12-01

    Mixtures of light hydrocarbon gases are common in deep Gulf of Mexico cold-seep sediments, and are typically dissolved in pore fluids, adsorbed to sediment particles, trapped in methane ice, or as free gas. The dominant component in these natural gas mixtures is usually methane (>80% C1), but ethane (C2) and propane (C3) are nearly always present in trace amounts (<1% total). The processes that control the concentration and isotopic signature of these gases in sediments are well explained for methane, but the controls for C2/C3 cycling are still a relative mystery. Methane production proceeds in deep anoxic sediments by either 1) thermocatalytic cracking of fossil organic matter, or 2) as a direct product of microbial metabolism, i.e. methanogenesis. In surface sediments, it appears that both microbial consumption and chemical deposition of methane (i.e. as methane clathrate) ensures that >95% of the methane produced at depth never reaches the water column. Production of C1 and C2 in deep-sea sediments has been historically attributed only to thermocatalytic processes, though limited data suggests production of C2/C3 compounds through the activity of archaea at depth. Furthermore, carbon isotopic data on ethane and propane from deep cores of Gulf of Mexico sediments suggest alkanogenesis at >3 m depth in the sediment column and alkane oxidation in uppermost oxidant-rich sediments. Additional studies have also isolated microorganisms capable of oxidizing ethane and propane in the laboratory, but field studies of microbial-driven dynamics of C2/C3 gases in cold-seep sediments are rare. Here, we present the results of a series of incubation experiments using sediment slurries culled from surface sediments from one of the most prolific natural oil and gas seeps in the Gulf of Mexico. Rates of alkane oxidation were measured under a variety of conditions to assess the surface-driven microbial controls on C2/C3 cycling in cold-seep environments. Such microbial processes

  3. Dissociation behavior of methane--ethane mixed gas hydrate coexisting structures I and II.

    PubMed

    Kida, Masato; Jin, Yusuke; Takahashi, Nobuo; Nagao, Jiro; Narita, Hideo

    2010-09-09

    Dissociation behavior of methane-ethane mixed gas hydrate coexisting structures I and II at constant temperatures less than 223 K was studied with use of powder X-ray diffraction and solid-state (13)C NMR techniques. The diffraction patterns at temperatures less than 203 K showed both structures I and II simultaneously convert to Ih during the dissociation, but the diffraction pattern at temperatures greater than 208 K showed different dissociation behavior between structures I and II. Although the diffraction peaks from structure II decreased during measurement at constant temperatures greater than 208 K, those from structure I increased at the initial step of dissociation and then disappeared. This anomalous behavior of the methane-ethane mixed gas hydrate coexisting structures I and II was examined by using the (13)C NMR technique. The (13)C NMR spectra revealed that the anomalous behavior results from the formation of ethane-rich structure I. The structure I hydrate formation was associated with the dissociation rate of the initial methane-ethane mixed gas hydrate.

  4. Quantifying sources of methane and light alkanes in the Los Angeles Basin, California

    NASA Astrophysics Data System (ADS)

    Peischl, Jeff; Ryerson, Thomas; Atlas, Elliot; Blake, Donald; Brioude, Jerome; Daube, Bruce; de Gouw, Joost; Frost, Gregory; Gentner, Drew; Gilman, Jessica; Goldstein, Allen; Harley, Robert; Holloway, John; Kuster, William; Santoni, Gregory; Trainer, Michael; Wofsy, Steven; Parrish, David

    2013-04-01

    We use ambient measurements to apportion the relative contributions of different source sectors to the methane (CH4) emissions budget of a U.S. megacity. This approach uses ambient measurements of methane and C2-C5 alkanes (ethane through pentanes) and includes source composition information to distinguish between methane emitted from landfills and feedlots, wastewater treatment plants, tailpipe emissions, leaks of dry natural gas in pipelines and/or local seeps, and leaks of locally produced (unprocessed) natural gas. Source composition information can be taken from existing tabulations or developed by direct sampling of emissions using a mobile platform. By including C2-C5 alkane information, a linear combination of these source signatures can be found to match the observed atmospheric enhancement ratios to determine relative emissions strengths. We apply this technique to apportion CH4 emissions in Los Angeles, CA (L.A.) using data from the CalNex field project in 2010. Our analysis of L.A. atmospheric data shows the two largest CH4 sources in the city are emissions of gas from pipelines and/or from geologic seeps (47%), and emissions from landfills (40%). Local oil and gas production is a relatively minor source of CH4, contributing 8% of total CH4 emissions in L.A. Absolute CH4 emissions rates are derived by multiplying the observed CH4/CO enhancement ratio by State of California inventory values for carbon monoxide (CO) emissions in Los Angeles. Apportioning this total suggests that emissions from the combined natural and anthropogenic gas sources account for the differences between top-down and bottom-up CH4 estimates previously published for Los Angeles. Further, total CH4 emission attributed in our analysis to local gas extraction represents 17% of local production. While a derived leak rate of 17% of local production may seem unrealistically high, it is qualitatively consistent with the 12% reported in a recent state inventory survey of the L.A. oil and

  5. Measured temperature and pressure dependence of Vp and Vs in compacted, polycrystalline sI methane and sII methane-ethane hydrate

    USGS Publications Warehouse

    Helgerud, M.B.; Waite, W.F.; Kirby, S.H.; Nur, A.

    2003-01-01

    We report on compressional- and shear-wave-speed measurements made on compacted polycrystalline sI methane and sII methane-ethane hydrate. The gas hydrate samples are synthesized directly in the measurement apparatus by warming granulated ice to 17??C in the presence of a clathrate-forming gas at high pressure (methane for sI, 90.2% methane, 9.8% ethane for sII). Porosity is eliminated after hydrate synthesis by compacting the sample in the synthesis pressure vessel between a hydraulic ram and a fixed end-plug, both containing shear-wave transducers. Wave-speed measurements are made between -20 and 15??C and 0 to 105 MPa applied piston pressure.

  6. Methane, Black Carbon, and Ethane Emissions from Natural Gas Flares in the Bakken Shale, North Dakota.

    PubMed

    Gvakharia, Alexander; Kort, Eric A; Brandt, Adam; Peischl, Jeff; Ryerson, Thomas B; Schwarz, Joshua P; Smith, Mackenzie L; Sweeney, Colm

    2017-05-02

    Incomplete combustion during flaring can lead to production of black carbon (BC) and loss of methane and other pollutants to the atmosphere, impacting climate and air quality. However, few studies have measured flare efficiency in a real-world setting. We use airborne data of plume samples from 37 unique flares in the Bakken region of North Dakota in May 2014 to calculate emission factors for BC, methane, ethane, and combustion efficiency for methane and ethane. We find no clear relationship between emission factors and aircraft-level wind speed or between methane and BC emission factors. Observed median combustion efficiencies for methane and ethane are close to expected values for typical flares according to the US EPA (98%). However, we find that the efficiency distribution is skewed, exhibiting log-normal behavior. This suggests incomplete combustion from flares contributes almost 1/5 of the total field emissions of methane and ethane measured in the Bakken shale, more than double the expected value if 98% efficiency was representative. BC emission factors also have a skewed distribution, but we find lower emission values than previous studies. The direct observation for the first time of a heavy-tail emissions distribution from flares suggests the need to consider skewed distributions when assessing flare impacts globally.

  7. Potential for cometabolic biodegradation of 1,4-dioxane in aquifers with methane or ethane as primary substrates.

    PubMed

    Hatzinger, Paul B; Banerjee, Rahul; Rezes, Rachael; Streger, Sheryl H; McClay, Kevin; Schaefer, Charles E

    2017-12-01

    The objective of this research was to evaluate the potential for two gases, methane and ethane, to stimulate the biological degradation of 1,4-dioxane (1,4-D) in groundwater aquifers via aerobic cometabolism. Experiments with aquifer microcosms, enrichment cultures from aquifers, mesophilic pure cultures, and purified enzyme (soluble methane monooxygenase; sMMO) were conducted. During an aquifer microcosm study, ethane was observed to stimulate the aerobic biodegradation of 1,4-D. An ethane-oxidizing enrichment culture from these samples, and a pure culture capable of growing on ethane (Mycobacterium sphagni ENV482) that was isolated from a different aquifer also biodegraded 1,4-D. Unlike ethane, methane was not observed to appreciably stimulate the biodegradation of 1,4-D in aquifer microcosms or in methane-oxidizing mixed cultures enriched from two different aquifers. Three different pure cultures of mesophilic methanotrophs also did not degrade 1,4-D, although each rapidly oxidized 1,1,2-trichloroethene (TCE). Subsequent studies showed that 1,4-D is not a substrate for purified sMMO enzyme from Methylosinus trichosporium OB3b, at least not at the concentrations evaluated, which significantly exceeded those typically observed at contaminated sites. Thus, our data indicate that ethane, which is a common daughter product of the biotic or abiotic reductive dechlorination of chlorinated ethanes and ethenes, may serve as a substrate to enhance 1,4-D degradation in aquifers, particularly in zones where these products mix with aerobic groundwater. It may also be possible to stimulate 1,4-D biodegradation in an aerobic aquifer through addition of ethane gas. Conversely, our results suggest that methane may have limited importance in natural attenuation or for enhancing biodegradation of 1,4-D in groundwater environments.

  8. Prediction of equilibrium distributions of isotopologues for methane, ethane and propane using density functional theory

    NASA Astrophysics Data System (ADS)

    Piasecki, Alison; Sessions, Alex; Peterson, Brian; Eiler, John

    2016-10-01

    Many previous studies have examined abundances of deuterium (D) and 13C within small organic molecules. Recent advances in analytical instrumentation add the abilities to measure site-specific and multiply substituted isotopologues of natural organics. Here we perform first-principles calculations of the equilibrium distributions of 13C and D in the volatile alkanes (including both single and multiple substitutions), as a guide to the interpretation of current measurements and as a basis for anticipating isotope effects that might be examined with future analytical techniques. The models we present illustrate several common themes of the isotopic structures of the small alkanes, including; temperature dependent enrichment of clumped isotope species, with amplitudes in the order D-D > 13C-D > 13C-13C; similarity in strength of such clumped isotope effects between different molecules (e.g., 13C-D clumping is ∼5‰ enriched at 300 K in methane, ethane and propane); a ∼10× contrast between the amplitudes of stronger adjacent substitution of two heavy isotopes vs. weaker non-adjacent substitution; temperature-dependent site-specific fractionation of D and 13C into interior positions of molecules relative to terminal methyl groups; and a relatively simple additive effect to the overall amplitude of enrichment when clumped and site specific effects combine in the same isotopologue. We suggest that the most promising tools suggested by our results are isotopic thermometers based on site-specific distribution of deuterium, which exhibits strong (∼100‰), highly temperature dependent fractionation between methyl groups and methylene carbon positions in propane (and likely other larger n-alkanes).

  9. Methane source identification in Boston, Massachusetts using isotopic and ethane measurements

    NASA Astrophysics Data System (ADS)

    Down, A.; Jackson, R. B.; Plata, D.; McKain, K.; Wofsy, S. C.; Rella, C.; Crosson, E.; Phillips, N. G.

    2012-12-01

    Methane has substantial greenhouse warming potential and is the principle component of natural gas. Fugitive natural gas emissions could be a significant source of methane to the atmosphere. However, the cumulative magnitude of natural gas leaks is not yet well constrained. We used a combination of point source measurements and ambient monitoring to characterize the methane sources in the Boston urban area. We developed distinct fingerprints for natural gas and multiple biogenic methane sources based on hydrocarbon concentration and isotopic composition. We combine these data with periodic measurements of atmospheric methane and ethane concentration to estimate the fractional contribution of natural gas and biogenic methane sources to the cumulative urban methane flux in Boston. These results are used to inform an inverse model of urban methane concentration and emissions.

  10. Elastic wave speeds and moduli in polycrystalline ice Ih, si methane hydrate, and sll methane-ethane hydrate

    USGS Publications Warehouse

    Helgerud, M.B.; Waite, W.F.; Kirby, S.H.; Nur, A.

    2009-01-01

    We used ultrasonic pulse transmission to measure compressional, P, and shear, S, wave speeds in laboratory-formed polycrystalline ice Ih, si methane hydrate, and sll methane-ethane hydrate. From the wave speed's linear dependence on temperature and pressure and from the sample's calculated density, we derived expressions for bulk, shear, and compressional wave moduli and Poisson's ratio from -20 to 15??C and 22.4 to 32.8 MPa for ice Ih, -20 to 15??C and 30.5 to 97.7 MPa for si methane hydrate, and -20 to 10??C and 30.5 to 91.6 MPa for sll methane-ethane hydrate. All three materials had comparable P and S wave speeds and decreasing shear wave speeds with increasing applied pressure. Each material also showed evidence of rapid intergranular bonding, with a corresponding increase in wave speed, in response to pauses in sample deformation. There were also key differences. Resistance to uniaxial compaction, indicated by the pressure required to compact initially porous samples, was significantly lower for ice Ih than for either hydrate. The ice Ih shear modulus decreased with increasing pressure, in contrast to the increase measured in both hydrates ?? 2009.

  11. Enzymes involved in the anaerobic oxidation of n-alkanes: from methane to long-chain paraffins

    PubMed Central

    Callaghan, Amy V.

    2013-01-01

    Anaerobic microorganisms play key roles in the biogeochemical cycling of methane and non-methane alkanes. To date, there appear to be at least three proposed mechanisms of anaerobic methane oxidation (AOM). The first pathway is mediated by consortia of archaeal anaerobic methane oxidizers and sulfate-reducing bacteria (SRB) via “reverse methanogenesis” and is catalyzed by a homolog of methyl-coenzyme M reductase. The second pathway is also mediated by anaerobic methane oxidizers and SRB, wherein the archaeal members catalyze both methane oxidation and sulfate reduction and zero-valent sulfur is a key intermediate. The third AOM mechanism is a nitrite-dependent, “intra-aerobic” pathway described for the denitrifying bacterium, ‘Candidatus Methylomirabilis oxyfera.’ It is hypothesized that AOM proceeds via reduction of nitrite to nitric oxide, followed by the conversion of two nitric oxide molecules to dinitrogen and molecular oxygen. The latter can be used to functionalize the methane via a particulate methane monooxygenase. With respect to non-methane alkanes, there also appear to be novel mechanisms of activation. The most well-described pathway is the addition of non-methane alkanes across the double bond of fumarate to form alkyl-substituted succinates via the putative glycyl radical enzyme, alkylsuccinate synthase (also known as methylalkylsuccinate synthase). Other proposed mechanisms include anaerobic hydroxylation via ethylbenzene dehydrogenase-like enzymes and an “intra-aerobic” denitrification pathway similar to that described for ‘Methylomirabilis oxyfera.’ PMID:23717304

  12. Process for the preparation of methane and/or ethane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagstaff, N.

    1981-09-22

    According to Shell, methane and ethane can be produced from a C/sub 2/-C/sub 4/ paraffin feed stream (such as the by-product of mineral-oil production) by contacting the stream with certain crystalline silicates at temperatures of 800/sup 0/-1200/sup 0/F and 145 psi pressure. The crystalline silicates must be specially prepared to obtain the required characteristics.

  13. Fugitive Methane Emission Identification and Source Attribution: Ethane-to-Methane Analysis Using a Portable Cavity Ring-Down Spectroscopy Analyzer

    NASA Astrophysics Data System (ADS)

    Kim-Hak, D.; Fleck, D.

    2017-12-01

    Natural gas analysis and methane specifically have become increasingly important by virtue of methane's 28-36x greenhouse warming potential compared to CO2 and accounting for 10% of total greenhouse gas emissions in the US alone. Additionally, large uncontrolled leaks, such as the recent one from Aliso Canyon in Southern California, originating from uncapped wells, storage facilities and coal mines have increased the total global contribution of methane missions even further. Determining the specific fingerprint of methane sources by quantifying the ethane to methane (C2:C1) ratios provides us with means to understand processes yielding methane and allows for sources of methane to be mapped and classified through these processes; i.e. biogenic or thermogenic, oil vs. gas vs. coal gas-related. Here we present data obtained using a portable cavity ring-down spectrometry analyzer weighing less than 25 lbs and consuming less than 35W that simultaneously measures methane and ethane in real-time with a raw 1-σ precision of <30 ppb and <10 ppb, respectively at <1 Hz. These precisions allow for a C2:C1 ratio 1-σ measurement of <0.1% above 10 ppm in a single measurement. Furthermore, a high precision methane only mode is available for surveying and locating leakage with a 1-σ precision of <3 ppb. Source discrimination data of local leaks and methane sources using this analysis method are presented. Additionally, two-dimensional plume snapshots are constructed using an integrated onboard GPS in order to visualize horizontal plane gas propagation.

  14. Natural gas fugitive emissions rates constrained by global atmospheric methane and ethane.

    PubMed

    Schwietzke, Stefan; Griffin, W Michael; Matthews, H Scott; Bruhwiler, Lori M P

    2014-07-15

    The amount of methane emissions released by the natural gas (NG) industry is a critical and uncertain value for various industry and policy decisions, such as for determining the climate implications of using NG over coal. Previous studies have estimated fugitive emissions rates (FER)--the fraction of produced NG (mainly methane and ethane) escaped to the atmosphere--between 1 and 9%. Most of these studies rely on few and outdated measurements, and some may represent only temporal/regional NG industry snapshots. This study estimates NG industry representative FER using global atmospheric methane and ethane measurements over three decades, and literature ranges of (i) tracer gas atmospheric lifetimes, (ii) non-NG source estimates, and (iii) fossil fuel fugitive gas hydrocarbon compositions. The modeling suggests an upper bound global average FER of 5% during 2006-2011, and a most likely FER of 2-4% since 2000, trending downward. These results do not account for highly uncertain natural hydrocarbon seepage, which could lower the FER. Further emissions reductions by the NG industry may be needed to ensure climate benefits over coal during the next few decades.

  15. Quantifying alkane emissions in the Eagle Ford Shale using boundary layer enhancement

    NASA Astrophysics Data System (ADS)

    Roest, Geoffrey; Schade, Gunnar

    2017-09-01

    The Eagle Ford Shale in southern Texas is home to a booming unconventional oil and gas industry, the climate and air quality impacts of which remain poorly quantified due to uncertain emission estimates. We used the atmospheric enhancement of alkanes from Texas Commission on Environmental Quality volatile organic compound monitors across the shale, in combination with back trajectory and dispersion modeling, to quantify C2-C4 alkane emissions for a region in southern Texas, including the core of the Eagle Ford, for a set of 68 days from July 2013 to December 2015. Emissions were partitioned into raw natural gas and liquid storage tank sources using gas and headspace composition data, respectively, and observed enhancement ratios. We also estimate methane emissions based on typical ethane-to-methane ratios in gaseous emissions. The median emission rate from raw natural gas sources in the shale, calculated as a percentage of the total produced natural gas in the upwind region, was 0.7 % with an interquartile range (IQR) of 0.5-1.3 %, below the US Environmental Protection Agency's (EPA) current estimates. However, storage tanks contributed 17 % of methane emissions, 55 % of ethane, 82 % percent of propane, 90 % of n-butane, and 83 % of isobutane emissions. The inclusion of liquid storage tank emissions results in a median emission rate of 1.0 % (IQR of 0.7-1.6 %) relative to produced natural gas, overlapping the current EPA estimate of roughly 1.6 %. We conclude that emissions from liquid storage tanks are likely a major source for the observed non-methane hydrocarbon enhancements in the Northern Hemisphere.

  16. Identification of novel methane-, ethane-, and propane-oxidizing bacteria at marine hydrocarbon seeps by stable isotope probing.

    PubMed

    Redmond, Molly C; Valentine, David L; Sessions, Alex L

    2010-10-01

    Marine hydrocarbon seeps supply oil and gas to microorganisms in sediments and overlying water. We used stable isotope probing (SIP) to identify aerobic bacteria oxidizing gaseous hydrocarbons in surface sediment from the Coal Oil Point seep field located offshore of Santa Barbara, California. After incubating sediment with (13)C-labeled methane, ethane, or propane, we confirmed the incorporation of (13)C into fatty acids and DNA. Terminal restriction fragment length polymorphism (T-RFLP) analysis and sequencing of the 16S rRNA and particulate methane monooxygenase (pmoA) genes in (13)C-DNA revealed groups of microbes not previously thought to contribute to methane, ethane, or propane oxidation. First, (13)C methane was primarily assimilated by Gammaproteobacteria species from the family Methylococcaceae, Gammaproteobacteria related to Methylophaga, and Betaproteobacteria from the family Methylophilaceae. Species of the latter two genera have not been previously shown to oxidize methane and may have been cross-feeding on methanol, but species of both genera were heavily labeled after just 3 days. pmoA sequences were affiliated with species of Methylococcaceae, but most were not closely related to cultured methanotrophs. Second, (13)C ethane was consumed by members of a novel group of Methylococcaceae. Growth with ethane as the major carbon source has not previously been observed in members of the Methylococcaceae; a highly divergent pmoA-like gene detected in the (13)C-labeled DNA may encode an ethane monooxygenase. Third, (13)C propane was consumed by members of a group of unclassified Gammaproteobacteria species not previously linked to propane oxidation. This study identifies several bacterial lineages as participants in the oxidation of gaseous hydrocarbons in marine seeps and supports the idea of an alternate function for some pmoA-like genes.

  17. Methane, Ethane, and Propane Sensor for Real-time Leak Detection and Diagnostics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roscioli, Joseph R.; Herndon, Scott; Nelson, David D.

    2017-03-24

    The Phase I effort demonstrated the technical viability of a fast, sensitive, mobile hydrocarbon monitor. The instrument will enable the oil and gas industry, researchers, and regulators to rapidly identify and chemically profile leaks from facilities. This capability will allow operators to quickly narrow down and mitigate probable leaking equipment, minimizing product loss and penalties due to regulatory non-compliance. During the initial development phase, we demonstrated operation of a prototype monitor that is capable of measuring methane, ethane, and propane at sub-part-per-billion sensitivities in 1 second, using direct absorption infrared spectroscopy. To our knowledge, this is the first instrument capablemore » of fast propane measurements at atmospheric concentrations. In addition, the electrical requirements of the monitor have been reduced from the 1,200 W typical of a spectrometer, to <500 W, making it capable of being powered by a passenger vehicle, and easily deployed by the industry. The prototype monitor leverages recent advances in laser technology, using high-efficiency interband cascade lasers to access the 3 μm region of the mid-infrared, where the methane, ethane, and propane absorptions are strongest. Combined with established spectrometer technology, we have achieved precisions below 200 ppt for each compound. This allows the monitor to measure fast plumes from oil and gas facilities, as well as ambient background concentrations (typical ambient levels are 2 ppm, 1.5 ppb, and 0.7 ppb for methane, ethane and propane, respectively). Increases in instrument operating pressure were studied in order to allow for a smaller 125 W pump to be used, and passive cooling was explored to reduce the cooling load by almost 90% relative to active (refrigerated) cooling. In addition, the simulated infrared absorption profiles of ethane and propane were modified to minimize crosstalk between species, achieving <1% crosstalk between ethane and propane

  18. The Global Search for Abiogenic GHGs, via Methane Isotopes and Ethane

    NASA Astrophysics Data System (ADS)

    Malina, Edward; Muller, Jan-Peter; Walton, David; Potts, Dale

    2015-04-01

    The importance of Methane as an anthropogenic Green House Gas (GHG) is well recognized in the scientific community, and is second only to Carbon Dioxide in terms of influence on the Earth's radiation budget (Parker, et al, 2011) suggesting that the ability to apportion the source of the methane (whether it is biogenic, abiogenic or thermogenic) has never been more important. It has been proposed (Etiope, 2009) that it may be possible to distinguish between a biogenic methane source (e.g. bacteria fermentation) and an abiogenic source (e.g. gas seepage or fugitive emissions) via the retrieval of the abundances of methane isotopes (12CH4 and 13CH4) and through the ratio of ethane (C2H6) to methane (CH4) concentrations. Using ultra fine spectroscopy (<0.2cm-1 spectral resolution) from Fourier Transform Spectrometers (FTS) based on the SCISAT-1 (ACE-FTS) and GOSAT (TANSO-FTS) we are developing a retrieval scheme to map global emissions of abiogenic and biogenic methane, and provide insight into how these variations in methane might drive atmospheric chemistry, focusing on the lower levels of the atmosphere. Using HiTran2012 simulations, we show that it is possible to distinguish between methane isotopes using the FTS based instruments on ACE and GOSAT, and retrieve the abundances in the Short Wave Infra-red (SWIR) at 1.65μm, 2.3μm, 3.3μm and Thermal IR, 7.8μm wavebands for methane, and the 3.3μm and 7μm wavebands for ethane. Initially we use the spectral line database HITRAN to determine the most appropriate spectral waveband to retrieve methane isotopes (and ethane) with minimal water vapour, CO2 and NO2 impact. Following this, we have evaluated the detectability of these trace gases using the more sophisticated Radiative Transfer Models (RTMs) SCIATRAN, the Oxford RFM and MODTRAN 5 in the SWIR, in order to determine the barriers to retrieving methane isotopes in both ACE (limb profile) and GOSAT (nadir measurements) instruments, including a preliminary

  19. Metathesis of alkanes and related reactions.

    PubMed

    Basset, Jean-Marie; Copéret, Christophe; Soulivong, Daravong; Taoufik, Mostafa; Cazat, Jean Thivolle

    2010-02-16

    The transformation of alkanes remains a difficult challenge because of the relative inertness of the C-H and C-C bonds. The rewards for asserting synthetic control over unfunctionalized, saturated hydrocarbons are considerable, however, because converting short alkanes into longer chain analogues is usually a value-adding process. Alkane metathesis is a novel catalytic and direct transformation of two molecules of a given alkane into its lower and higher homologues; moreover, the process proceeds at relatively low temperature (ambient conditions or higher). It was discovered through the use of a silica-supported tantalum hydride, ([triple bond]SiO)(2)TaH, a multifunctional catalyst with a single site of action. This reaction completes the story of the metathesis reactions discovered over the past 40 years: olefin metathesis, alkyne metathesis, and ene-yne cyclizations. In this Account, we examine the fundamental mechanistic aspects of alkane metathesis as well as the novel reactions that have been derived from its study. The silica-supported tantalum hydride catalyst was developed as the result of systematic and meticulous studies of the interaction between oxide supports and organometallic complexes, a field of study denoted surface organometallic chemistry (SOMC). A careful examination of this surface-supported tantalum hydride led to the later discovery of alumina-supported tungsten hydride, W(H)(3)/Al(2)O(3), which proved to be an even better catalyst for alkane metathesis. Supported tantalum and tungsten hydrides are highly unsaturated, electron-deficient species that are very reactive toward the C-H and C-C bonds of alkanes. They show a great versatility in various other reactions, such as cross-metathesis between methane and alkanes, cross-metathesis between toluene and ethane, or even methane nonoxidative coupling. Moreover, tungsten hydride exhibits a specific ability in the transformation of isobutane into 2,3-dimethylbutane as well as in the metathesis

  20. Quantifying the Loss of Processed Natural Gas Within California's South Coast Air Basin Using Long-term Measurements of Ethane and Methane

    NASA Astrophysics Data System (ADS)

    Wunch, D.; Toon, G. C.; Hedelius, J.; Vizenor, N.; Roehl, C. M.; Saad, K.; Blavier, J. F.; Blake, D. R.; Wennberg, P. O.

    2016-12-01

    In California's South Coast Air Basin (SoCAB), the methane emissions inferred from atmospheric measurements exceed estimates based on inventories. We seek to provide insight into the sources of the discrepancy with two records of atmospheric trace gas total column abundances in the SoCAB: one temporally sparse dataset that began in the late 1980s, and a temporally dense dataset that began in 2012. We use their measurements of ethane and methane to partition the sources of the excess methane. The early few years of the sparse record show a rapid decline in ethane emissions at a much faster rate than decreasing vehicle exhaust or natural gas and crude oil production can explain. Between 2010 and 2015, ethane emissions have grown gradually, which is in contrast to the steady production of natural gas liquids over that time. Since 2012, ethane to methane ratios in the natural gas withdrawn from a storage facility within the SoCAB have been increasing; these ratios are tracked in our atmospheric measurements with about half of the rate of increase. From this, we infer that about half of the excess methane in the SoCAB between 2012-­2015 is attributable to losses from the natural gas infrastructure.

  1. Identification of Novel Methane-, Ethane-, and Propane-Oxidizing Bacteria at Marine Hydrocarbon Seeps by Stable Isotope Probing ▿ †

    PubMed Central

    Redmond, Molly C.; Valentine, David L.; Sessions, Alex L.

    2010-01-01

    Marine hydrocarbon seeps supply oil and gas to microorganisms in sediments and overlying water. We used stable isotope probing (SIP) to identify aerobic bacteria oxidizing gaseous hydrocarbons in surface sediment from the Coal Oil Point seep field located offshore of Santa Barbara, California. After incubating sediment with 13C-labeled methane, ethane, or propane, we confirmed the incorporation of 13C into fatty acids and DNA. Terminal restriction fragment length polymorphism (T-RFLP) analysis and sequencing of the 16S rRNA and particulate methane monooxygenase (pmoA) genes in 13C-DNA revealed groups of microbes not previously thought to contribute to methane, ethane, or propane oxidation. First, 13C methane was primarily assimilated by Gammaproteobacteria species from the family Methylococcaceae, Gammaproteobacteria related to Methylophaga, and Betaproteobacteria from the family Methylophilaceae. Species of the latter two genera have not been previously shown to oxidize methane and may have been cross-feeding on methanol, but species of both genera were heavily labeled after just 3 days. pmoA sequences were affiliated with species of Methylococcaceae, but most were not closely related to cultured methanotrophs. Second, 13C ethane was consumed by members of a novel group of Methylococcaceae. Growth with ethane as the major carbon source has not previously been observed in members of the Methylococcaceae; a highly divergent pmoA-like gene detected in the 13C-labeled DNA may encode an ethane monooxygenase. Third, 13C propane was consumed by members of a group of unclassified Gammaproteobacteria species not previously linked to propane oxidation. This study identifies several bacterial lineages as participants in the oxidation of gaseous hydrocarbons in marine seeps and supports the idea of an alternate function for some pmoA-like genes. PMID:20675448

  2. Continuous spectroscopic measurement of methane isotopes and ethane made on board an aircraft: instrument configuration and characterisation

    NASA Astrophysics Data System (ADS)

    Pitt, Joseph; Young, Stuart; Hopkins, James; Lee, James; Bauguitte, Stéphane; Dorsey, James; Allen, Grant; Gallagher, Martin; Yacovitch, Tara; Zahniser, Mark; Fisher, Rebecca; Lowry, Dave; Nisbet, Euan

    2017-04-01

    We describe the configuration of two commercially available absorption spectrometers for use on board the UK Facility for Airborne Atmospheric Research (FAAM) aircraft. A dual laser instrument has been used to make continuous measurements of the atmospheric 13CH4:12CH4 ratio and ethane mole fraction, using an interband cascade laser (ICL) and a recently developed type of diode laser respectively. Simultaneous measurements of atmospheric ethane have also been made using a single laser instrument employing an ICL, enabling instrument inter-comparison. Instrument performance is evaluated over a series of test flights, and initial results from the MOYA (Methane Observations and Yearly Assessments) campaign, targeting biomass burning plumes in west Africa, are also presented. We describe the calibration procedure and data analysis approaches for methane isotope measurement, involving calibration over a range of methane isotopic composition and methane mole fraction. We assess the effectiveness of this calibration technique during the first MOYA campaign period using measurements of a target cylinder of known composition.

  3. Improvement of gas hydrate preservation by increasing compression pressure to simple hydrates of methane, ethane, and propane

    NASA Astrophysics Data System (ADS)

    Kida, Masato; Jin, Yusuke; Watanabe, Mizuho; Murayama, Tetsuro; Nagao, Jiro

    2017-09-01

    In this report, we describe the dissociation behavior of gas hydrate grains pressed at 1 and 6 MPa. Certain simple gas hydrates in powder form show anomalous preservation phenomenon under their thermodynamic unstable condition. Investigation of simple hydrates of methane, ethane, and propane reveals that high pressure applied to the gas hydrate particles enhances their preservation effects. Application of high pressure increases the dissociation temperature of methane hydrate and has a restrictive effect against the dissociation of ethane and propane hydrate grains. These improvements of gas hydrate preservation by increasing pressure to the initial gas hydrate particles imply that appropriate pressure applied to gas hydrate particles enhances gas hydrate preservation effects.

  4. Catalytic conversion of light alkanes, Phase 3. Topical report, January 1990--December 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The mission of this work is to devise a new catalyst which can be used in the first simple, economic process to convert the light alkanes in natural gas to an alcohol-rich oxygenated product which can either be used as an environmentally friendly, high-performance liquid fuel, or a precursor to a liquid hydrocarbon transportation fuel. The authors have entered the proof-of-concept stage for converting isobutane to tert butyl alcohol in a practical process and are preparing to enter proof-of-concept of a propane to isopropyl alcohol process in the near future. Methane and ethane are more refractory and thus more difficultmore » to oxidize than the C{sub 3} and C{sub 4} hydrocarbons. Nonetheless, advances made in this area indicate that further research progress could achieve the goal of their direct conversion to alcohols. Progress in Phase 3 catalytic vapor phase methane and ethane oxidation over metals in regular oxidic lattices are the subject of this topical report.« less

  5. Mobile Measurement of Methane and Ethane for the Detection and Attribution of Natural Gas Pipeline Leaks Using Off-Axis Integrated Output Spectroscopy

    NASA Astrophysics Data System (ADS)

    Leen, J. B.; Spillane, S.; Gardner, A.; Hansen, P. C.; Gupta, M.; Baer, D. S.

    2015-12-01

    Natural gas leaks pose a risk to public safety both because of potential explosions as well as from the greenhouse gas potential of fugitive methane. The rapid and cost effective detection of leaks in natural gas distribution is critical to providing a system that is safe for the public and the environment. Detection of methane from a mobile platform (vehicles, aircraft, etc.) is an accepted method of identifying leaks. A robust approach to differentiating pipeline gas (thermogenic) from other biogenic sources is the detection of ethane along with methane. Ethane is present in nearly all thermogenic gas but not in biogenic sources and its presence can be used to positively identify a gas sample. We present a mobile system for the simultaneous measurement of methane and ethane that is capable of detecting pipeline leaks and differentiating pipeline gas from other biogenic sources such as landfills, swamps, sewers, and enteric fermentation. The mobile system consists of a high precision GPS, sonic anemometer, and methane/ethane analyzer based on off-axis integrated cavity output spectroscopy (OA-ICOS). In order to minimize the system cost and facilitate the wide use of mobile leak detection, the analyzer operates in the near-infrared portion of the spectrum where lasers and optics are significantly less costly than in the mid-infrared. The analyzer is capable of detecting methane with a precision of <2 ppb (1σ in 1 sec) and detecting ethane with a precision of <30 ppb (1σ in 1 sec). Additionally, measurement rates of 5 Hz allow for detection of leaks at speeds up to 50 mph. The sonic anemometer, GPS and analyzer inlet are mounted to a generic roof rack for attachment to available fleet vehicles. The system can detect leaks having a downwind concentration of as little as 10 ppb of methane above ambient, while leaks 500 ppb above ambient can be identified as thermogenic with greater than 99% certainty (for gas with 6% ethane). Finally, analysis of wind data provides

  6. Geologic Emissions of Methane and C2 - C5 Alkanes at the La Brea Tar Pits, Los Angeles, CA

    NASA Astrophysics Data System (ADS)

    Doezema, L. A.; Etiope, G.; Pacheco, C.

    2017-12-01

    Natural hydrocarbon (oil and gas) seeps are widespread in Los Angeles due to gas migration, along faults, from numerous subsurface petroleum fields. These seeps may represent important natural contributors of methane (CH4) and heavier alkanes (C2-C4) for the atmosphere. Methane flux measurements were made from various locations at the La Brea Tar Pits in Los Angeles, CA. Measurements were made using a closed-chamber method and spectroscopic sensors for CH4 and CO2, at 26 oil-asphalt seeps and 188 other sites, without gas manifestations, homogeneously distributed throughout the park. The molecular C1 - C5 composition of gas released from seeps and soil was also analyzed using either FTIR spectroscopy or gas chromatography (GC-FID). Methane emissions from seeps varied from approximately 7 to 54,000 g m-2 day-1, while emissions from soil degassing were between 0 and 9,000 g m-2 day-1. Total emissions were estimated to be in the order of 103 kg day-1 for methane, and at least 10 and 5 kg day-1 for ethane and propane, respectively. The seeping gas exhibited high C1/(C2 + C3) ratios, likely due to molecular fractionation during gas migration from a subsurface petroleum reservoir. Evidence for biodegredation in certain samples was indicated by large i-butane to n-butane ratios. These molecular alterations can be important tracers of natural seepage and should be considered in the atmospheric modelling of the relative contribution of fossil fuel (anthropogenic fugitive emission and natural geologic sources) vs biogenic sources, on local and global scales.

  7. Homogeneous nucleation in supersaturated vapors of methane, ethane, and carbon dioxide predicted by brute force molecular dynamics.

    PubMed

    Horsch, Martin; Vrabec, Jadran; Bernreuther, Martin; Grottel, Sebastian; Reina, Guido; Wix, Andrea; Schaber, Karlheinz; Hasse, Hans

    2008-04-28

    Molecular dynamics (MD) simulation is applied to the condensation process of supersaturated vapors of methane, ethane, and carbon dioxide. Simulations of systems with up to a 10(6) particles were conducted with a massively parallel MD program. This leads to reliable statistics and makes nucleation rates down to the order of 10(30) m(-3) s(-1) accessible to the direct simulation approach. Simulation results are compared to the classical nucleation theory (CNT) as well as the modification of Laaksonen, Ford, and Kulmala (LFK) which introduces a size dependence of the specific surface energy. CNT describes the nucleation of ethane and carbon dioxide excellently over the entire studied temperature range, whereas LFK provides a better approach to methane at low temperatures.

  8. Ethane C-C clumping in natural gas : a proxy for cracking processes ?

    NASA Astrophysics Data System (ADS)

    Clog, M. D.; Ferreira, A. A.; Santos Neto, E. V.; Eiler, J. M.

    2014-12-01

    Ethane (C2H6) is the second-most abundant alkane in most natural gas reservoirs, and is used to produce ethylene for petrochemical industries. It is arguably the simplest molecule that can manifest multiple 13C substitutions. There are several plausible controls on Δ13C2H6in natural gas: thermodynamically controlled homogeneous isotope exchange reactions analogous to those behind carbonate clumped isotope thermometry; inheritance from larger biomolecules that undergo thermal degradation to produce natural gas; mixing of natural gases that differ markedly in bulk isotopic composition; diffusive fractionation; or combinations of these and/or other, less expected fractionations. There is little basis for predicting which of these will control isotopic variations among natural ethanes, but we think it likely that addition of this new isotopic proxy will reveal new insights into the natural chemistry of ethane. We have developed a method to measure the abundance of 13C2H6 in natural samples, using high-resolution mass spectrometry. We define Δ13C2H6 as 1000 . ((13C2H6/12C2H6)measured/(13C2H6/12C2H6)stochastic -1). We studied several suites of natural gas samples and experimentally produced or modified ethane. Natural ethanes, including closely related samples from a single natural gas field, exhibit surprisingly large ranges in Δ13C2H6 (4 ‰ overall; up to 3 ‰ in one gas field). Such ranges cannot be explained by thermodynamic equilibrium at a range of different temperatures, or by diffusive fractionation. Kinetic isotope effects associated with 'cracking' reactions, and/or inheritance of non-equilibrium carbon isotope structures from source organics are more likely causes. We observe a correlation between Δ13C2H6 and the concentration of alkanes other than methane in several suites of natural gases, suggesting the causes of clumped isotope variations are tied to the controls on gas wetness. An experiment examining ethane residual to high-temperature pyrolysis

  9. Microbial oxidation of gaseous hydrocarbons: production of methylketones from corresponding n-alkanes by methane-utilizing bacteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, R.N.; Hou, C.T.; Laskin, A.I.

    Cell suspensions of methane-utilizing bacteria grown on methane oxidized n-alkanes (propane, butane, pentane, hexane) to their corresponding methylketones (acetone, 2-butanone, 2-pentanone, 2-hexanone). The product methylketones accumulated extracellularly. The rate of production of methylketones varied with the organism used for oxidation; however, the average rate of acetone, 2-butanone, 2-pentanone, and 2-hexanone production was 1.2, 1.0, 0.15, and 0.025 ..mu..mol/h per 5.0 mg of protein in cell suspensions. Primary alcohols and aldehydes were also detected in low amounts as products of n-alkane (propane and butane) oxidation, but were rapidly metabolized further by cell suspensions. The optimal conditions for in vivo methylketone formationmore » from n-alkanes were compared in Methylococcus capsulatus (Texas strain), Methylosinus sp. (CRL-15), and Methylobacterium sp. (CRL-26). The rate of acetone and 2-butanone production was linear for the first 60 min of incubation and directly increased with cell concentration up to 10 mg of protein per ml for all three cultures tested. The optimal temperatures for the production of acetone and 2-butanone were 35/sup 0/C for Methylosinus trichosporium sp. (CRL-15) and Methylobacterium sp. (CRL-26) and 40/sup 0/C for Methylococcus capsulatus (Texas). Metal-chelating agents inhibited the production of methylketones, suggesting the involvement of a metal-containing enzymatic system in the oxidation of n-alkanes to the corresponding methylketones. The soluble crude extracts derived from methane-utilizing bacteria contained an oxidized nicotinamide adenine dinucleotide-dependent dehydrogenase which catalyzed the oxidation of secondary alcohols.« less

  10. ANALYSIS OF DISSOLVED METHANE, ETHANE, AND ETHYLENE IN GROUND WATER BY A STANDARD GAS CHROMATOGRAPHIC TECHNIQUE

    EPA Science Inventory

    The measurement of dissolved gases such as methane, ethane, and ethylene in ground water is important in determining whether intrinsic bioremediation is occurring in a fuel- or solvent-contaminated aquifer. A simple procedure is described for the collection and subsequent analys...

  11. Photoabsorption cross sections of methane and ethane, 1380-1600 A, at T equals 295 K and T equals 200 K. [in Jupiter atmosphere

    NASA Technical Reports Server (NTRS)

    Mount, G. H.; Moos, H. W.

    1978-01-01

    Photoabsorption cross sections of methane and ethane have been determined in the wavelength range from 1380 to 1600 A at room (295 K) and dry-ice (200 K) temperatures. It is found that the room-temperature ethane data are in excellent agreement with the older measurements of Okabe and Becker (1963) rather than with more recent determinations and that a small systematic blueshift occurs at the foot of the molecular absorption edges of both gases as the gases are cooled from room temperature to 200 K, a value close to the actual temperature of the Jovian atmosphere. It is concluded that methane photoabsorption will dominate until its cross section is about 0.01 that of ethane, which occurs at about 1440 A, and that ethane should be the dominant photoabsorber in the Jovian atmosphere in the region from above 1440 A to not farther than 1575 A.

  12. Rapid and Simple Capillary-Rise/Vanishing Interfacial Tension Method To Determine Crude Oil Minimum Miscibility Pressure: Pure and Mixed CO 2 , Methane, and Ethane

    DOE PAGES

    Hawthorne, Steven B.; Miller, David J.; Jin, Lu; ...

    2016-07-20

    We report here a simplification of the capillary-rise/vanishing interfacial tension (IFT) method to measure minimum miscibility pressure (MMP) based on only requiring knowledge of when the interfacial tension approaches zero. Simply measuring the height of the crude oil in a capillary at several pressures from ambient to near the MMP pressure and extrapolating the oil height versus pressure plot to zero oil height yields the MMP without the need of the additional instrumentation and labor required to perform actual IFT measurements. A total of 2−4 MMP values can be determined per day with only one experimental apparatus, and the methodmore » greatly reduces the initial cost and complexity of the required instrumentation. The use of three capillaries having different inner diameters allows for triplicate determinations of MMP from each experiment. Because the actual MMP pressure need not be reached during the experiment, MMP values that exceed the pressure ratings of the equipment can be reasonably estimated (e.g., MMPs using pure nitrogen). The method was used to determine the MMP pressure for crude oil samples from a conventional Muddy Formation reservoir in the Powder River Basin [American Petroleum Institute (API) gravity of 35.8°] and an unconventional Bakken Formation reservoir in the Williston Basin (API gravity of 38.7°). The method is reproducible [typically <4% relative standard deviation (RSD)], and the method gave good agreement for a “live” Bakken oil with the results from a slim tube test of a commercial laboratory. Approximately 80 MMP values were measured using pure CO2, methane, and ethane as well as 0−100% mole ratios of methane/CO2 and methane/ethane. For both oil samples, ethane MMPs were ca. one-half those with CO2, while methane MMPs were ca. double or triple those with CO2. MMPs with mixed methane/CO2 showed a linear increase with mole percent methane for both crude oils, while both oils showed an exponential increase in MMP with

  13. Rapid and Simple Capillary-Rise/Vanishing Interfacial Tension Method To Determine Crude Oil Minimum Miscibility Pressure: Pure and Mixed CO 2, Methane, and Ethane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hawthorne, Steven B.; Miller, David J.; Jin, Lu

    Here, we report a simplification of the capillary-rise/vanishing interfacial tension (IFT) method to measure minimum miscibility pressure (MMP) based on only requiring knowledge of when the interfacial tension approaches zero. Simply measuring the height of the crude oil in a capillary at several pressures from ambient to near the MMP pressure and extrapolating the oil height versus pressure plot to zero oil height yields the MMP without the need of the additional instrumentation and labor required to perform actual IFT measurements. A total of 2-4 MMP values can be determined per day with only one experimental apparatus, and the methodmore » greatly reduces the initial cost and complexity of the required instrumentation. The use of three capillaries having different inner diameters allows for triplicate determinations of MMP from each experiment. Because the actual MMP pressure need not be reached during the experiment, MMP values that exceed the pressure ratings of the equipment can be reasonably estimated (e.g., MMPs using pure nitrogen). The method was used to determine the MMP pressure for crude oil samples from a conventional Muddy Formation reservoir in the Powder River Basin [American Petroleum Institute (API) gravity of 35.8°] and an unconventional Bakken Formation reservoir in the Williston Basin (API gravity of 38.7°). The method is reproducible [typically <4% relative standard deviation (RSD)], and the method gave good agreement for a “live” Bakken oil with the results from a slim tube test of a commercial laboratory. Approximately 80 MMP values were measured using pure CO 2, methane, and ethane as well as 0-100% mole ratios of methane/CO 2 and methane/ethane. For both oil samples, ethane MMPs were ca. one-half those with CO 2, while methane MMPs were ca. double or triple those with CO 2. MMPs with mixed methane/CO 2 showed a linear increase with mole percent methane for both crude oils, while both oils showed an exponential increase in MMP with

  14. Rapid and Simple Capillary-Rise/Vanishing Interfacial Tension Method To Determine Crude Oil Minimum Miscibility Pressure: Pure and Mixed CO 2, Methane, and Ethane

    DOE PAGES

    Hawthorne, Steven B.; Miller, David J.; Jin, Lu; ...

    2016-07-10

    Here, we report a simplification of the capillary-rise/vanishing interfacial tension (IFT) method to measure minimum miscibility pressure (MMP) based on only requiring knowledge of when the interfacial tension approaches zero. Simply measuring the height of the crude oil in a capillary at several pressures from ambient to near the MMP pressure and extrapolating the oil height versus pressure plot to zero oil height yields the MMP without the need of the additional instrumentation and labor required to perform actual IFT measurements. A total of 2-4 MMP values can be determined per day with only one experimental apparatus, and the methodmore » greatly reduces the initial cost and complexity of the required instrumentation. The use of three capillaries having different inner diameters allows for triplicate determinations of MMP from each experiment. Because the actual MMP pressure need not be reached during the experiment, MMP values that exceed the pressure ratings of the equipment can be reasonably estimated (e.g., MMPs using pure nitrogen). The method was used to determine the MMP pressure for crude oil samples from a conventional Muddy Formation reservoir in the Powder River Basin [American Petroleum Institute (API) gravity of 35.8°] and an unconventional Bakken Formation reservoir in the Williston Basin (API gravity of 38.7°). The method is reproducible [typically <4% relative standard deviation (RSD)], and the method gave good agreement for a “live” Bakken oil with the results from a slim tube test of a commercial laboratory. Approximately 80 MMP values were measured using pure CO 2, methane, and ethane as well as 0-100% mole ratios of methane/CO 2 and methane/ethane. For both oil samples, ethane MMPs were ca. one-half those with CO 2, while methane MMPs were ca. double or triple those with CO 2. MMPs with mixed methane/CO 2 showed a linear increase with mole percent methane for both crude oils, while both oils showed an exponential increase in MMP with

  15. Numerical Study of Contaminant Effects on Combustion of Hydrogen, Ethane, and Methane in Air

    NASA Technical Reports Server (NTRS)

    Lai, H. T.; Thomas, S. R.

    1995-01-01

    A numerical study was performed to assess the effects of vitiated air on the chemical kinetics of hydrogen, ethane, and methane combustion with air. A series of calculations in static reacting systems was performed, where the initial temperature was specified and reactions occurred at constant pressure. Three different types of test flow contaminants were considered: NP, H2O, and a combustion of H2O and CO2. These contaminants are present in the test flows of facilities used for hypersonic propulsion testing. The results were computed using a detailed reaction mechanism and are presented in terms of ignition and reaction times. Calculations were made for a wide range of contaminant concentrations, temperatures and pressures. The results indicate a pronounced kinetic effect over a range of temperatures, especially with NO contamination and, to a lesser degree, with H2O contamination. In all cases studied, CO2 remained kinetically inert, but had a thermodynamic effect on results by acting as a third body. The largest effect is observed with combustion using hydrogen fuel, less effect is seen with combustion of ethane, and little effect of contaminants is shown with methane combustion.

  16. Numerical study of contaminant effects on combustion of hydrogen, ethane, and methane in air

    NASA Technical Reports Server (NTRS)

    Lai, H. T.; Thomas, S. R.

    1995-01-01

    A numerical study was performed to assess the effects of vitiated air on the chemical kinetics of hydrogen, ethane, and methane combustion with air. A series of calculations in static reacting systems was performed, where the initial temperature was specified and reactions occurred at constant pressure. Three different types of test flow contaminants were considered: NO, H2O, and a combination of H2O and CO2. These contaminants are present in the test flows of facilities used for hypersonic propulsion testing. The results were computed using a detailed reaction mechanism and are presented in terms of ignition and reaction times. Calculations were made for a wide range of contaminant concentrations, temperatures and pressures. The results indicate a pronounced kinetic effect over a range of temperatures, especially with NO contamination and, to a lesser degree, with H2O contamination. In all cases studied, CO2 remained kinetically inert, but had a thermodynamically effect on results by acting as a third body. The largest effect is observed with combustion using hydrogen fuel, less effect is seen with combustion of ethane, and little effect of contaminants is shown with methane combustion.

  17. Cometabolism of Methyl tertiary Butyl Ether and Gaseous n-Alkanes by Pseudomonas mendocina KR-1 Grown on C5 to C8 n-Alkanes

    PubMed Central

    Smith, Christy A.; O'Reilly, Kirk T.; Hyman, Michael R.

    2003-01-01

    Pseudomonas mendocina KR-1 grew well on toluene, n-alkanes (C5 to C8), and 1° alcohols (C2 to C8) but not on other aromatics, gaseous n-alkanes (C1 to C4), isoalkanes (C4 to C6), 2° alcohols (C3 to C8), methyl tertiary butyl ether (MTBE), or tertiary butyl alcohol (TBA). Cells grown under carbon-limited conditions on n-alkanes in the presence of MTBE (42 μmol) oxidized up to 94% of the added MTBE to TBA. Less than 3% of the added MTBE was oxidized to TBA when cells were grown on either 1° alcohols, toluene, or dextrose in the presence of MTBE. Concentrated n-pentane-grown cells oxidized MTBE to TBA without a lag phase and without generating tertiary butyl formate (TBF) as an intermediate. Neither TBF nor TBA was consumed by n-pentane-grown cells, while formaldehyde, the expected C1 product of MTBE dealkylation, was rapidly consumed. Similar Ks values for MTBE were observed for cells grown on C5 to C8 n-alkanes (12.95 ± 2.04 mM), suggesting that the same enzyme oxidizes MTBE in cells grown on each n-alkane. All growth-supporting n-alkanes (C5 to C8) inhibited MTBE oxidation by resting n-pentane-grown cells. Propane (Ki = 53 μM) and n-butane (Ki = 16 μM) also inhibited MTBE oxidation, and both gases were also consumed by cells during growth on n-pentane. Cultures grown on C5 to C8 n-alkanes also exhibited up to twofold-higher levels of growth in the presence of propane or n-butane, whereas no growth stimulation was observed with methane, ethane, MTBE, TBA, or formaldehyde. The results are discussed in terms of their impacts on our understanding of MTBE biodegradation and cometabolism. PMID:14660389

  18. Rapid analysis of dissolved methane, ethylene, acetylene and ethane using partition coefficients and headspace-gas chromatography.

    PubMed

    Lomond, Jasmine S; Tong, Anthony Z

    2011-01-01

    Analysis of dissolved methane, ethylene, acetylene, and ethane in water is crucial in evaluating anaerobic activity and investigating the sources of hydrocarbon contamination in aquatic environments. A rapid chromatographic method based on phase equilibrium between water and its headspace is developed for these analytes. The new method requires minimal sample preparation and no special apparatus except those associated with gas chromatography. Instead of Henry's Law used in similar previous studies, partition coefficients are used for the first time to calculate concentrations of dissolved hydrocarbon gases, which considerably simplifies the calculation involved. Partition coefficients are determined to be 128, 27.9, 1.28, and 96.3 at 30°C for methane, ethylene, acetylene, and ethane, respectively. It was discovered that the volume ratio of gas-to-liquid phase is critical to the accuracy of the measurements. The method performance can be readily improved by reducing the volume ratio of the two phases. Method validation shows less than 6% variation in accuracy and precision except at low levels of methane where interferences occur in ambient air. Method detection limits are determined to be in the low ng/L range for all analytes. The performance of the method is further tested using environmental samples collected from various sites in Nova Scotia.

  19. Progressive Degradation of Crude Oil n-Alkanes Coupled to Methane Production under Mesophilic and Thermophilic Conditions

    PubMed Central

    Cheng, Lei; Shi, Shengbao; Li, Qiang; Chen, Jianfa; Zhang, Hui; Lu, Yahai

    2014-01-01

    Although methanogenic degradation of hydrocarbons has become a well-known process, little is known about which crude oil tend to be degraded at different temperatures and how the microbial community is responded. In this study, we assessed the methanogenic crude oil degradation capacity of oily sludge microbes enriched from the Shengli oilfield under mesophilic and thermophilic conditions. The microbial communities were investigated by terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA genes combined with cloning and sequencing. Enrichment incubation demonstrated the microbial oxidation of crude oil coupled to methane production at 35 and 55°C, which generated 3.7±0.3 and 2.8±0.3 mmol of methane per gram oil, respectively. Gas chromatography-mass spectrometry (GC-MS) analysis revealed that crude oil n-alkanes were obviously degraded, and high molecular weight n-alkanes were preferentially removed over relatively shorter-chain n-alkanes. Phylogenetic analysis revealed the concurrence of acetoclastic Methanosaeta and hydrogenotrophic methanogens but different methanogenic community structures under the two temperature conditions. Candidate divisions of JS1 and WWE 1, Proteobacteria (mainly consisting of Syntrophaceae, Desulfobacteraceae and Syntrophorhabdus) and Firmicutes (mainly consisting of Desulfotomaculum) were supposed to be involved with n-alkane degradation in the mesophilic conditions. By contrast, the different bacterial phylotypes affiliated with Caldisericales, “Shengli Cluster” and Synergistetes dominated the thermophilic consortium, which was most likely to be associated with thermophilic crude oil degradation. This study revealed that the oily sludge in Shengli oilfield harbors diverse uncultured microbes with great potential in methanogenic crude oil degradation over a wide temperature range, which extend our previous understanding of methanogenic degradation of crude oil alkanes. PMID:25409013

  20. Cloudy with a Chance of Ice: The Stratification of Titan's Vernal Ponds and Formation of Ethane Ice

    NASA Astrophysics Data System (ADS)

    Soderblom, J. M.; Steckloff, J. K.

    2017-12-01

    Cassini ISS observations revealed regions on Saturn's moon Titan that become significantly darker (lower albedo) following storm events [1]. These regions are observed to be topographically low [2], indicating that liquid (predominantly methane-ethane-nitrogen) is pooling on Titan after these storm events. These dark ponds, however, are then observed to significantly brighten (higher albedo relative to pre-storm albedo), before fading to their pre-storm albedos [2-3]. We interpret these data to indicate ethane ice formation, which cools from evaporation of methane. The formation of ethane ices results from a unique sequence of thermophysical and thermochemical phenomena. Initially, the methane in the mixture evaporates, cooling the pond. Nitrogen, dissolved primarily in the methane, exsolves, further cooling the liquid. However, because nitrogen is significantly more soluble in cooler methane-hydrocarbon mixtures, relatively more methane than nitrogen leaves the fluid, increasing the relative fraction of nitrogen. This increased nitrogen fraction increases the density of the liquid, as nitrogen is significantly denser than methane or ethane (pure ethane's density is intermediate to that of methane and nitrogen). At around 85 K the mixture is as dense as pure liquid ethane. Thus, further evaporative methane loss and cooling at the pond's surface leads to a chemical stratification, with an increasingly ethane rich epilimnion (surface layer) overlying a methane rich hypolimnion (subsurface layer). Further evaporation of methane from the ethane-rich epilimnion drives its temperature and composition toward the methane-ethane-nitrogen liquidus curve, causing pure ethane ice to precipitate out of solution and settle to the bottom of the pool. This settling would obscure the ethane ice from Cassini VIMS and ISS, which would instead continue to appear as a dark pond on the surface. As the ethane precipitates out completely, a binary methane-nitrogen liquid mixture remains

  1. Acetonitrile cluster solvation in a cryogenic ethane-methane-propane liquid: Implications for Titan lake chemistry.

    PubMed

    Corrales, L René; Yi, Thomas D; Trumbo, Samantha K; Shalloway, David; Lunine, Jonathan I; Usher, David A

    2017-03-14

    The atmosphere of Titan, Saturn's largest moon, exhibits interesting UV- and radiation-driven chemistry between nitrogen and methane, resulting in dipolar, nitrile-containing molecules. The assembly and subsequent solvation of such molecules in the alkane lakes and seas found on the moon's surface are of particular interest for investigating the possibility of prebiotic chemistry in Titan's hydrophobic seas. Here we characterize the solvation of acetonitrile, a product of Titan's atmospheric radiation chemistry tentatively detected on Titan's surface [H. B. Niemann et al., Nature 438, 779-784 (2005)], in an alkane mixture estimated to match a postulated composition of the smaller lakes during cycles of active drying and rewetting. Molecular dynamics simulations are employed to determine the potential of mean force of acetonitrile (CH 3 CN) clusters moving from the alkane vapor into the bulk liquid. We find that the clusters prefer the alkane liquid to the vapor and do not dissociate in the bulk liquid. This opens up the possibility that acetonitrile-based microscopic polar chemistry may be possible in the otherwise nonpolar Titan lakes.

  2. Investigation on the light alkanes aromatization over Zn and Ga modified HZSM-5 catalysts in the presence of methane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Qingyin; Zhang, Fengqi; Jarvis, Jack

    The catalytic co-aromatization of methane and paraffin-rich raffinate oil was investigated along with hexane, heptane and octane as its model compounds over zinc and gallium modified ZSM-5 zeolite catalysts. The benzene, toluene and xylene (BTX) components derived from light alkane aromatization were highly promoted with the assistance of methane. The co-existence of Zn and Ga metal species has a positive effect on the formation of BTX components, whereas the individual metal loaded catalyst resulted in the production of heavy aromatics, suggesting that zinc and gallium have a synergistic effect on the formation of BTX under the methane environment. When concernedmore » with gaseous analysis, the introduced methane might interact with smaller intermediates and then transform into larger hydrocarbons. From the DRIFT observation, it was witnessed that the interaction between light alkane and methane occurred on the surface of the charged Zn-Ga/ZSM-5 catalyst. According to the comprehensive catalyst characterizations, the excellent catalytic performance may be closely associated with greatly dispersed metal species on the zeolite support, improved microporous characteristic, moderate Bronsted and increased Lewis acidic sites during the paraffin-rich liquid feedstock aromatization under methane environment. This research provides a promising pathway for the highly effective and profitable utilization of petrochemical resources and natural gas.« less

  3. Investigation on the light alkanes aromatization over Zn and Ga modified HZSM-5 catalysts in the presence of methane

    DOE PAGES

    Li, Qingyin; Zhang, Fengqi; Jarvis, Jack; ...

    2018-03-16

    The catalytic co-aromatization of methane and paraffin-rich raffinate oil was investigated along with hexane, heptane and octane as its model compounds over zinc and gallium modified ZSM-5 zeolite catalysts. The benzene, toluene and xylene (BTX) components derived from light alkane aromatization were highly promoted with the assistance of methane. The co-existence of Zn and Ga metal species has a positive effect on the formation of BTX components, whereas the individual metal loaded catalyst resulted in the production of heavy aromatics, suggesting that zinc and gallium have a synergistic effect on the formation of BTX under the methane environment. When concernedmore » with gaseous analysis, the introduced methane might interact with smaller intermediates and then transform into larger hydrocarbons. From the DRIFT observation, it was witnessed that the interaction between light alkane and methane occurred on the surface of the charged Zn-Ga/ZSM-5 catalyst. According to the comprehensive catalyst characterizations, the excellent catalytic performance may be closely associated with greatly dispersed metal species on the zeolite support, improved microporous characteristic, moderate Bronsted and increased Lewis acidic sites during the paraffin-rich liquid feedstock aromatization under methane environment. This research provides a promising pathway for the highly effective and profitable utilization of petrochemical resources and natural gas.« less

  4. The fate of ethane in Titan's hydrocarbon lakes and seas

    NASA Astrophysics Data System (ADS)

    Mousis, Olivier; Lunine, Jonathan I.; Hayes, Alexander G.; Hofgartner, Jason D.

    2016-05-01

    Ethane is expected to be the dominant photochemical product on Titan's surface and, in the absence of a process that sequesters it from exposed surface reservoirs, a major constituent of its lakes and seas. Absorption of Cassini's 2.2 cm radar by Ligeia Mare however suggests that this north polar sea is dominated by methane. In order to explain this apparent ethane deficiency, we explore the possibility that Ligeia Mare is the visible part of an alkanofer that interacted with an underlying clathrate layer and investigate the influence of this interaction on an assumed initial ethane-methane mixture in the liquid phase. We find that progressive liquid entrapment in clathrate allows the surface liquid reservoir to become methane-dominated for any initial ethane mole fraction below 0.75. If interactions between alkanofers and clathrates are common on Titan, this should lead to the emergence of many methane-dominated seas or lakes.

  5. Fugitive methane emission pinpointing and source attribution using ethane measurements in a portable cavity ring-down analyzer

    NASA Astrophysics Data System (ADS)

    Fleck, Derek; Hoffnagle, John; Yiu, John; Chong, Johnston; Tan, Sze

    2017-04-01

    Methane source pinpointing and attribution is ever more important because of the vast network of natural gas distribution which has led to a very large emission sources. Ethane can be used as a tracer to distinguish gas sources between biogenic and natural gas. Having this measurement sensitive enough can even distinguish between gas distributors, or maturity through gas wetness. Here we present data obtained using a portable cavity ring-down spectrometer weighing less than 11 kg and consuming less than 35W that simultaneously measures methane and ethane with a raw 1-σ precision of 50ppb and 4.5ppb, respectively at 2 Hz. These precisions allow for a C2:C1 ratio 1-σ measurement of <0.1% above 10ppm in a single measurement. Utilizing a second onboard laser allows for a high precision methane only mode used for surveying and pinpointing. This mode measures at a rate faster than 4Hz with a 1-σ precision of <3ppb. Because methane seepages are highly variable due to air turbulence and mixing right above the ground, correlations in the variations in C2H6 and CH4 are used to derive a source C2:C1. Additional hardware is needed for steady state concentration measurements to reliably measure the C2:C1 ratio instantaneously. Source discrimination data of local leaks and methane sources using this analysis method are presented. Additionally, two-dimensional plume snapshots are constructed using an integrated onboard GPS to visualize horizontal plane gas propagation.

  6. Pond Hockey on Whitmore Lacus: the Formation of Ponds and Ethane Ice Deposits Following Storm Events on Titan

    NASA Astrophysics Data System (ADS)

    Steckloff, Jordan; Soderblom, Jason M.

    2017-10-01

    Cassini ISS observations reveled regions, later identified as topographic low spots (Soderblom et al. 2014, DPS) on Saturn’s moon Titan become significantly darker (lower albedo) following storm events (Turtle et al. 2009, GRL; 2011, Science), suggesting pools of liquid hydrocarbon mixtures (predominantly methane-ethane-nitrogen). However, these dark ponds then significantly brighten (higher albedo relative to pre-storm albedo), before fading to their pre-storm albedos (Barnes et al. 2013 Planet. Sci; Soderblom et al. 2014, DPS). We interpret these data to be the result of ethane ice formation, which cools from evaporation of methane. The formation of ethane ices results from a unique sequence of thermophysical processes. Initially, the methane in the ternary mixture evaporates, cooling the pond. Nitrogen, dissolved primarily in the methane, exsolves, further cooling the liquid. However, because nitrogen is significantly more soluble in cooler methane-hydrocarbon mixtures, the relative concentration of nitrogen in the solution increases as it cools. This increased nitrogen fraction increases the density of the pond, as nitrogen is significantly more dense thane methane or ethane (pure ethane’s density is intermediate to that of methane and nitrogen). At around ~85 K the mixture is as dense as pure liquid ethane. Thus, further evaporative methane loss and cooling at the pond’s surface leads to a chemical stratification, with an increasingly ethane rich epilimnion (surface layer) overlying a methane rich hypolimnion (subsurface layer). Further evaporation of methane from the ethane-rich epilimnion drives its temperature and composition toward the methane-ethane-nitrogen liquidus curve, causing pure ethane ice to precipitate out of solution and settle to the bottom of the pool. This settling would obscure the ethane ice from Cassini VIMS and ISS, which would instead continue to appear as a dark pond on the surface. As the ethane precipitates out completely, a

  7. Ethane: A Key to Evaluating Natural Gas Industrial Emissions

    NASA Astrophysics Data System (ADS)

    Yacovitch, T. I.; Herndon, S. C.; Agnese, M.; Roscioli, J. R.; Floerchinger, C. R.; Knighton, W. B.; Pusede, S. E.; Diskin, G. S.; DiGangi, J. P.; Sachse, G. W.; Eichler, P.; Mikoviny, T.; Müller, M.; Wisthaler, A.; Conley, S. A.; Petron, G.

    2014-12-01

    Airborne and mobile-surface measurements of ethane at 1Hz in the Denver-Julesberg oil and gas production basin in NE Colorado reveal a rich set of emission sources and magnitudes. Although ethane has only a mild influence on hemispheric ozone levels, it is often co-emitted with larger hydrocarbons including hazardous air pollutants (HAPs) and ozone precursors that impact local and regional air quality. Ethane/methane enhancement ratios provide a map of expected emission source types in different areas around greater Denver. Links are drawn between the ethane content of isolated methane emission plumes and the prevalence of concomitant HAP and ozone precursor species. The efficacy of using ethane as a dilution tracer specific to the oil & gas footprint will be demonstrated.

  8. Measurements of ethane in Antarctic ice cores

    NASA Astrophysics Data System (ADS)

    Verhulst, K. R.; Fosse, E. K.; Aydin, K. M.; Saltzman, E. S.

    2011-12-01

    Ethane is one of the most abundant hydrocarbons in the atmosphere. The major ethane sources are fossil fuel production and use, biofuel combustion, and biomass-burning emissions and the primary loss pathway is via reaction with OH. A paleoatmospheric ethane record would be useful as a tracer of biomass-burning emissions, providing a constraint on past changes in atmospheric methane and methane isotopes. An independent biomass-burning tracer would improve our understanding of the relationship between biomass burning and climate. The mean annual atmospheric ethane level at high southern latitudes is about 230 parts per trillion (ppt), and Antarctic firn air measurements suggest that atmospheric ethane levels in the early 20th century were considerably lower (Aydin et al., 2011). In this study, we present preliminary measurements of ethane (C2H6) in Antarctic ice core samples with gas ages ranging from 0-1900 C.E. Samples were obtained from dry-drilled ice cores from South Pole and Vostok in East Antarctica, and from the West Antarctic Ice Sheet Divide (WAIS-D). Gases were extracted from the ice by melting under vacuum in a glass vessel sealed by indium wire and were analyzed using high resolution GC/MS with isotope dilution. Ethane levels measured in ice core samples were in the range 100-220 ppt, with a mean of 157 ± 45 ppt (n=12). System blanks contribute roughly half the amount of ethane extracted from a 300 g ice core sample. These preliminary data exhibit a temporal trend, with higher ethane levels from 0-900 C.E., followed by a decline, reaching a minimum between 1600-1700 C.E. These trends are consistent with variations in ice core methane isotopes and carbon monoxide isotopes (Ferretti et al., 2005, Wang et al., 2010), which indicate changes in biomass burning emissions over this time period. These preliminary data suggest that Antarctic ice core bubbles contain paleoatmospheric ethane levels. With further improvement of laboratory techniques it appears

  9. Distribution, activity and function of short-chain alkane degrading phylotypes in hydrothermal vent sediments

    NASA Astrophysics Data System (ADS)

    Adams, M. M.; Joye, S. B.; Hoarfrost, A.; Girguis, P. R.

    2012-12-01

    Global geochemical analyses suggest that C2-C4 short chain alkanes are a common component of the utilizable carbon pool in deep-sea sediments worldwide and have been found in diverse ecosystems. From a thermodynamic standpoint, the anaerobic microbial oxidation of these aliphatic hydrocarbons is more energetically yielding than the anaerobic oxidation of methane (AOM). Therefore, the preferential degradation of these hydrocarbons may compete with AOM for the use of oxidants such as sulfate, or other potential oxidants. Such processes could influence the fate of methane in the deep-sea. Sulfate-reducing bacteria (SRB) from hydrocarbon seep sediments of the Gulf of Mexico and Guaymas Basin have previously been enriched that anaerobically oxidize short chain alkanes to generate CO2 with the preferential utilization of 12C-enriched alkanes (Kniemeyer et al. 2007). Different temperature regimens along with multiple substrates were tested and a pure culture (deemed BuS5) was isolated from mesophilic enrichments with propane or n-butane as the sole carbon source. Through comparative sequence analysis, strain BuS5 was determined to cluster with the metabolically diverse Desulfosarcina / Desulfococcus cluster, which also contains the SRB found in consortia with anaerobic, methane-oxidizing archaea in seep sediments. Enrichments from a terrestrial, low temperature sulfidic hydrocarbon seep also corroborated that propane degradation occurred with most bacterial phylotypes surveyed belonging to the Deltaproteobacteria, particularly Desulfobacteraceae (Savage et al. 2011). To date, no microbes capable of ethane oxidation or anaerobic C2-C4 alkane oxidation at thermophilic temperature have been isolated. The sediment-covered, hydrothermal vent systems found at Middle Valley (Juan de Fuca Ridge, eastern Pacific Ocean) are a prime environment for investigating mesophilic to thermophilic anaerobic oxidation of short-chain alkanes, given the elevated temperatures and dissolved

  10. Variability of Neptune's 12.2-micron ethane emission feature

    NASA Technical Reports Server (NTRS)

    Hammel, H. B.; Young, Leslie A.; Hackwell, J.; Lynch, D. K.; Russell, R.; Orton, Glenn S.

    1992-01-01

    It is presently shown that the ratio of ethane emission to methane emission in Neptune's 7-14 micron spectrum increased by a factor of 1.47 +/- 0.11 in the period between 1985 and 1991, and that the 12.2-micron ethan feature (rather than that of methane at 7.7 microns) is implicated in the greater part of that change. It is speculated that this variation is due either to a nonuniform increase in stratospheric temperature, or (more likely) to an increase in the ethane concentration by over 15 percent.

  11. Ethane and Xenon mixing: density functional theory (DFT) simulations and experiments on Sandia's Z machine

    NASA Astrophysics Data System (ADS)

    Magyar, Rudolph; Root, Seth; Mattsson, Thomas; Cochrane, Kyle

    2012-02-01

    The combination of ethane and xenon is one of the simplest binary mixtures in which bond breaking is expected to play a role under shock conditions. At cryogenic conditions, xenon is often understood to mix with alkanes such as Ethane as if it were also an alkane, but this model is expected to break down at higher temperatures and pressures. To investigate the breakdown, we have performed density functional theory (DFT) calculations on several xenon/ethane mixtures. Additionally, we have performed shock compression experiments on Xenon-Ethane using the Sandia Z - accelerator. The DFT and experimental results are compared to hydrodynamic simulations using different mixing models in the equation of state. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of the Lockheed Martin company, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  12. Catalytic conversion of light alkanes. Final report, January 1, 1990--October 31, 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    During the course of the first three years of the Cooperative Agreement (Phase I-III), we uncovered a family of metal perhaloporphyrin complexes which had unprecedented activity for the selective air-oxidation of fight alkanes to alcohols. The reactivity of fight hydrocarbon substrates with air or oxygen was in the order: isobutane>propane>ethane>methane, in accord with their homolytic bond dissociation energies. Isobutane was so reactive that the proof-of concept stage of a process for producing tert-butyl alcohol from isobutane was begun (Phase V). It was proposed that as more active catalytic systems were developed (Phases IV, VI), propane, then ethane and finally methanemore » oxidations will move into this stage (Phases VII through IX). As of this writing, however, the program has been terminated during the later stages of Phases V and VI so that further work is not anticipated. We made excellent progress during 1994 in generating a class of less costly new materials which have the potential for high catalytic activity. New routes were developed for replacing costly perfluorophenyl groups in the meso-position of metalloporphyrin catalysts with far less expensive and lower molecular weight perfluoromethyl groups.« less

  13. High ethylene to ethane processes for oxidative coupling

    DOEpatents

    Chafin, R.B.; Warren, B.K.

    1991-12-17

    Oxidative coupling of lower alkane to higher hydrocarbon is conducted using a catalyst comprising barium and/or strontium component and a metal oxide combustion promoter in the presence of vapor phase halogen component. High ethylene to ethane mole ratios in the product can be obtained over extended operating periods.

  14. High ethylene to ethane processes for oxidative coupling

    DOEpatents

    Chafin, Richard B.; Warren, Barbara K.

    1991-01-01

    Oxidative coupling of lower alkane to higher hydrocarbon is conducted using catalyst comprising barium and/or strontium component and a metal oxide combustion promoter in the presence of vapor phase halogen component. High ethylene to ethane mole ratios in the product can be obtained over extended operating periods.

  15. Titan's missing ethane: From the atmosphere to the subsurface

    NASA Astrophysics Data System (ADS)

    Gilliam, Ashley E.; Lerman, Abraham

    2016-09-01

    The second most abundant component of the present-day Titan atmosphere, methane (CH4), is known to undergo photolytic conversion to ethane (C2H6) that accumulates as a liquid on Titan's surface. Condensation temperature of ethane is higher than that of methane, so that ethane "rain" may be expected to occur before the liquefaction of methane. At present, the partial pressure of ethane in the atmosphere is 1E-5 bar, much lower than 1E-1 bar of CH4. Estimated 8.46E17 kg or 1.37E6 km3 of C2H6 have been produced on Titan since accretion. The Titan surface reservoirs of ethane are lakes and craters, of estimated volume of 50,000 km3 and 61,000 km3, respectively. As these are smaller than the total volume of liquid ethane produced in the course of Titan's history, the excess may be stored in the subsurface of the crust, made primarily of water ice. The minimum porosity of the crust needed to accommodate all the liquid ethane would be only 0.9% of the uppermost 2 km of the crust. The occurrence of CH4 and liquid C2H6 on Titan has led to much speculation on the possibility of life on that satellite. The aggregation of organic molecules in a "primordial soup or bullion" depends in part on the viscosity of the medium, diffusivity of organic molecules in it, and rates of polymerization reactions. The temperatures on Titan, much lower than on primordial Earth, are less favorable to the "Second Coming of life" on Titan.

  16. Kinetics of methane-ethane gas replacement in clathrate-hydrates studied by time-resolved neutron diffraction and Raman spectroscopy.

    PubMed

    Murshed, M Mangir; Schmidt, Burkhard C; Kuhs, Werner F

    2010-01-14

    The kinetics of CH(4)-C(2)H(6) replacement in gas hydrates has been studied by in situ neutron diffraction and Raman spectroscopy. Deuterated ethane structure type I (C(2)H(6) sI) hydrates were transformed in a closed volume into methane-ethane mixed structure type II (CH(4)-C(2)H(6) sII) hydrates at 5 MPa and various temperatures in the vicinity of 0 degrees C while followed by time-resolved neutron powder diffraction on D20 at ILL, Grenoble. The role of available surface area of the sI starting material on the formation kinetics of sII hydrates was studied. Ex situ Raman spectroscopic investigations were carried out to crosscheck the gas composition and the distribution of the gas species over the cages as a function of structure type and compared to the in situ neutron results. Raman micromapping on single hydrate grains showed compositional and structural gradients between the surface and core of the transformed hydrates. Moreover, the observed methane-ethane ratio is very far from the one expected for a formation from a constantly equilibrated gas phase. The results also prove that gas replacement in CH(4)-C(2)H(6) hydrates is a regrowth process involving the nucleation of new crystallites commencing at the surface of the parent C(2)H(6) sI hydrate with a progressively shrinking core of unreacted material. The time-resolved neutron diffraction results clearly indicate an increasing diffusion limitation of the exchange process. This diffusion limitation leads to a progressive slowing down of the exchange reaction and is likely to be responsible for the incomplete exchange of the gases.

  17. Active Thermochemical Tables: Sequential Bond Dissociation Enthalpies of Methane, Ethane, and Methanol and the Related Thermochemistry

    DOE PAGES

    Ruscic, Branko

    2015-03-31

    Active Thermochemical Tables (ATcT) thermochemistry for the sequential bond dissociations of methane, ethane, and methanol systems were obtained by analyzing and solving a very large thermochemical network (TN). Values for all possible C–H, C–C, C–O, and O–H bond dissociation enthalpies at 298.15 K (BDE 298) and bond dissociation energies at 0 K (D 0) are presented. The corresponding ATcT standard gas-phase enthalpies of formation of the resulting CH n, n = 4–0 species (methane, methyl, methylene, methylidyne, and carbon atom), C 2H n, n = 6–0 species (ethane, ethyl, ethylene, ethylidene, vinyl, ethylidyne, acetylene, vinylidene, ethynyl, and ethynylene), and COHmore » n, n = 4–0 species (methanol, hydroxymethyl, methoxy, formaldehyde, hydroxymethylene, formyl, isoformyl, and carbon monoxide) are also presented. The ATcT thermochemistry of carbon dioxide, water, hydroxyl, and carbon, oxygen, and hydrogen atoms is also included, together with the sequential BDEs of CO 2 and H 2O. The provenances of the ATcT enthalpies of formation, which are quite distributed and involve a large number of relevant determinations, are analyzed by variance decomposition and discussed in terms of principal contributions. The underlying reasons for periodic appearances of remarkably low and/or unusually high BDEs, alternating along the dissociation sequences, are analyzed and quantitatively rationalized. The present ATcT results are the most accurate thermochemical values currently available for these species.« less

  18. Kinetics of Ethane Clathrate Hydrate Formation under Titan-Like Conditions

    NASA Astrophysics Data System (ADS)

    Vu, T. H.; Munoz Iglesias, V.; Choukroun, M.; Maynard-Casely, H. E.

    2016-12-01

    Clathrate hydrates are inclusion compounds where small guest molecules are trapped inside highly symmetric water cages. These ice-like crystalline solids are an abundant source of hydrocarbons on Earth that primarily exist in the permafrost and marine sediments. Icy celestial bodies whose pressure and temperature conditions are favorable to the formation of gas hydrates are also expected to contain substantial amounts of these materials. One such example is Saturn's moon Titan, where clathrates are conjectured to be a major crustal component. In fact, clathrate dissociation has been suggested to play a significant role in the replenishment of atmospheric methane on this satellite. In addition to having a substantial atmosphere dominated by nitrogen, Titan is the only body in the Solar System aside from Earth that has standing bodies of liquid on its surface. Liquid methane and ethane have been identified as principal components of the hundreds of lakes that have been observed by the Cassini spacecraft on Titan's surface. As lake fluids come into contact with the pre-existing icy crust, stable layers of ethane clathrate hydrates are expected to form. In this work, we provide experimental evidence for the rapid formation of ethane clathrate from direct contact of liquid ethane with water ice at 1 bar using micro-Raman spectroscopy. Conversion of ice into clathrates is confirmed by the emergence of the characteristic peak at 999 cm-1, which represents the C-C stretch of enclathrated ethane. Kinetics experiments in the temperature range 140-173 K yields an activation energy of 6.75 ± 0.88 kJ/mol for the formation of ethane clathrate. Subsequent thermal analysis indicates a clathrate dissociation temperature of 240 K, consistent with extrapolated literature data. Preliminary synchrotron powder X-ray diffraction experiments have also been carried out to examine the formation kinetics of ethane clathrate from ice/gas mixture at 1 bar. The relatively fast timescale and

  19. An Improved Cryogen for Plunge Freezing

    PubMed Central

    Tivol, William F.; Briegel, Ariane; Jensen, Grant J.

    2011-01-01

    The use of an alkane mixture that remains liquid at 77 K to freeze specimens has advantages over the use of a pure alkane that is solid at 77 K. It was found that a mixture of methane and ethane did not give a cooling rate adequate to produce vitreous ice, but a mixture of propane and ethane did result in vitreous ice. Furthermore, the latter mixture produced less damage to specimens mounted on a very thin, fragile holey carbon substrate. PMID:18793481

  20. Stratospheric ethane on Neptune - Comparison of groundbased and Voyager IRIS retrievals

    NASA Technical Reports Server (NTRS)

    Kostiuk, Theodor; Romani, Paul; Espenak, Fred; Bezard, Bruno

    1992-01-01

    Near-simultaneous ground and spacecraft measurements of 12-micron ethane emission spectra during the Voyager encounter with Neptune have furnished bases for the determination of stratospheric ethane abundance and the testing and constraining of Neptune methane-photochemistry models. The ethane retrievals were sensitive to the thermal profile used. Contribution functions for warm thermal profiles peaked at higher altitudes, as expected, with the heterodyne functions covering lower-pressure regions. Both constant- and nonconstant-with-height profiles remain candidate distributions for Neptune's stratospheric ethane.

  1. Excess thermodynamics of mixtures involving xenon and light linear alkanes by computer simulation.

    PubMed

    Carvalho, A J Palace; Ramalho, J P Prates; Martins, Luís F G

    2007-06-14

    Excess molar enthalpies and excess molar volumes as a function of composition for liquid mixtures of xenon + ethane (at 161.40 K), xenon + propane (at 161.40 K) and xenon + n-butane (at 182.34 K) have been obtained by Monte Carlo computer simulations and compared with available experimental data. Simulation conditions were chosen to closely match those of the corresponding experimental results. The TraPPE-UA force field was selected among other force fields to model all the alkanes studied, whereas the one-center Lennard-Jones potential from Bohn et al. was used for xenon. The calculated H(m)(E) and V(m)(E) for all systems are negative, increasing in magnitude as the alkane chain length increases. The results for these systems were compared with experimental data and with other theoretical calculations using the SAFT approach. An excellent agreement between simulation and experimental results was found for xenon + ethane system, whereas for the remaining two systems, some deviations that become progressively more significant as the alkane chain length increases were observed.

  2. Geodetic data support trapping of ethane in Titan's polar crust

    NASA Astrophysics Data System (ADS)

    Sotin, Christophe; Rambaux, Nicolas

    2016-04-01

    Titan's surface is characterized by polar depressions that strongly influence interpretations of the gravity data. This study investigates several geodynamical models that can explain these depressions. For each model, the values of the three moments of inertia are computed numerically by discretizing the interior in spherical coordinates. The study shows that a Pratt model where the polar subsurface is made of ethane clathrates can explain the polar depression, the abrupt jump in altitude at about 60 degrees latitude, and the values of the degree 2 gravity coefficients. This model, proposed by Choukroun and Sotin [1], is based on the stability of ethane clathrate hydrates relative to methane clathrate hydrates. In addition to fitting the geodetic data, it explains the absence of ethane in Titan's atmosphere although ethane is the main product of the photolysis of methane. Other geophysical models based on latitudinal variations in the tidal heating production or in the heat flux at the base of the icy crust do not provide such a good match to the gravity and topographic observations. The ethane-clathrate model predicts that all the ethane produced by photolysis of methane at the present rate during the last billion years could be stored in the polar subsurface. It is consistent with the age of Titan's surface and that of Titan's atmospheric methane inferred from geological and geochemical observations by the Cassini/Huygens mission. The present study also emphasizes the role of mass anomalies on the interpretation of the degree 2 gravity coefficients. It shows that for Titan, a slow rotator, the values of the two equatorial moments of inertia (MoI) are largely affected by the polar depressions whereas the value of polar MoI is not. Therefore, as pointed out by previous calculations [2], calculating the moment of inertia (MoI) factor from the value of J2 could lead to major errors. This is not the case for our preferred Titan's model for which the negative polar

  3. Bacterial ethane formation from reduced, ethylated sulfur compounds in anoxic sediments

    USGS Publications Warehouse

    Oremland, R.S.; Whiticar, Michael J.; Strohmaier, F.E.; Kiene, R.P.

    1988-01-01

    Trace levels of ethane were produced biologically in anoxic sediment slurries from five chemically different aquatic environments. Gases from these locations displayed biogenic characteristics, having 12C-enriched values of ??13CH4 (-62 to -86%.), ??13C2H6 (-35 to -55%.) and high ratios (720 to 140,000) of CH4 [C2H6 + C3H8]. Endogenous production of ethane by slurries was inhibited by autoclaving or by addition of the inhibitor of methanogenic bacteria, 2-bromoethanesulfonic acid (BES). Ethane formation was stimulated markedly by ethanethiol (ESH), and, to a lesser extent, by diethylsulfide (DES). Formation of methane and ethane in ESH- or DES-amended slurries was blocked by BES. Experiments showed that ethionine (or an analogous compound) could be a precursor of ESH. Ethylamine or ethanol additions to slurries caused only a minor stimulation of ethane formation. Similarly, propanethiol additions resulted in only a minor enhancement of propane formation. Cell suspensions of a methyltrophic methanogen produced traces of ethane when incubated in the presence of DES, although the organism did not grow on this compound. These results indicate that methanogenic bacteria produce ethane from the traces of ethylated sulfur compounds present in recent sediments. Preliminary estimates of stable carbon isotope fractionation associated with sediment methane formation from dimethylsulfide was about 40%., while ethane formation from DES and ESH was only 4. 6 and 6.5%., respectively. ?? 1988.

  4. Low-Temperature and Rapid Growth of Large Single-Crystalline Graphene with Ethane.

    PubMed

    Sun, Xiao; Lin, Li; Sun, Luzhao; Zhang, Jincan; Rui, Dingran; Li, Jiayu; Wang, Mingzhan; Tan, Congwei; Kang, Ning; Wei, Di; Xu, H Q; Peng, Hailin; Liu, Zhongfan

    2018-01-01

    Future applications of graphene rely highly on the production of large-area high-quality graphene, especially large single-crystalline graphene, due to the reduction of defects caused by grain boundaries. However, current large single-crystalline graphene growing methodologies are suffering from low growth rate and as a result, industrial graphene production is always confronted by high energy consumption, which is primarily caused by high growth temperature and long growth time. Herein, a new growth condition achieved via ethane being the carbon feedstock to achieve low-temperature yet rapid growth of large single-crystalline graphene is reported. Ethane condition gives a growth rate about four times faster than methane, achieving about 420 µm min -1 for the growth of sub-centimeter graphene single crystals at temperature about 1000 °C. In addition, the temperature threshold to obtain graphene using ethane can be reduced to 750 °C, lower than the general growth temperature threshold (about 1000 °C) with methane on copper foil. Meanwhile ethane always keeps higher graphene growth rate than methane under the same growth temperature. This study demonstrates that ethane is indeed a potential carbon source for efficient growth of large single-crystalline graphene, thus paves the way for graphene in high-end electronical and optoelectronical applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Detection of (C-13)-ethane in Jupiter's atmosphere

    NASA Technical Reports Server (NTRS)

    Wiedemann, Guenter; Bjoraker, Gordon L.; Jennings, Donald E.

    1991-01-01

    High-resolution (C-12)- and (C-13)-ethane spectra of Jupiter were acquired with the Kitt Peak 4 m Fourier spectrometer and the Goddard postdisperser in June 1987. A relative abundance ratio (C-12/C-13) of 94 +/- 12 was derived from the measurements. This nearly terrestrial value indicates little or no fractionation of carbon isotopes when ethane is produced in the photolysis of methane in Jupiter's atmosphere.

  6. SmoXYB1C1Z of Mycobacterium sp. Strain NBB4: a Soluble Methane Monooxygenase (sMMO)-Like Enzyme, Active on C2 to C4 Alkanes and Alkenes

    PubMed Central

    Martin, Kiri E.; Ozsvar, Jazmin

    2014-01-01

    Monooxygenase (MO) enzymes initiate the aerobic oxidation of alkanes and alkenes in bacteria. A cluster of MO genes (smoXYB1C1Z) of thus-far-unknown function was found previously in the genomes of two Mycobacterium strains (NBB3 and NBB4) which grow on hydrocarbons. The predicted Smo enzymes have only moderate amino acid identity (30 to 60%) to their closest homologs, the soluble methane and butane MOs (sMMO and sBMO), and the smo gene cluster has a different organization from those of sMMO and sBMO. The smoXYB1C1Z genes of NBB4 were cloned into pMycoFos to make pSmo, which was transformed into Mycobacterium smegmatis mc2-155. Cells of mc2-155(pSmo) metabolized C2 to C4 alkanes, alkenes, and chlorinated hydrocarbons. The activities of mc2-155(pSmo) cells were 0.94, 0.57, 0.12, and 0.04 nmol/min/mg of protein with ethene, ethane, propane, and butane as substrates, respectively. The mc2-155(pSmo) cells made epoxides from ethene, propene, and 1-butene, confirming that Smo was an oxygenase. Epoxides were not produced from larger alkenes (1-octene and styrene). Vinyl chloride and 1,2-dichloroethane were biodegraded by cells expressing Smo, with production of inorganic chloride. This study shows that Smo is a functional oxygenase which is active against small hydrocarbons. M. smegmatis mc2-155(pSmo) provides a new model for studying sMMO-like monooxygenases. PMID:25015887

  7. Integrating Source Apportionment Tracers into a Bottom-up Inventory of Methane Emissions in the Barnett Shale Hydraulic Fracturing Region.

    PubMed

    Townsend-Small, Amy; Marrero, Josette E; Lyon, David R; Simpson, Isobel J; Meinardi, Simone; Blake, Donald R

    2015-07-07

    A growing dependence on natural gas for energy may exacerbate emissions of the greenhouse gas methane (CH4). Identifying fingerprints of these emissions is critical to our understanding of potential impacts. Here, we compare stable isotopic and alkane ratio tracers of natural gas, agricultural, and urban CH4 sources in the Barnett Shale hydraulic fracturing region near Fort Worth, Texas. Thermogenic and biogenic sources were compositionally distinct, and emissions from oil wells were enriched in alkanes and isotopically depleted relative to natural gas wells. Emissions from natural gas production varied in δ(13)C and alkane ratio composition, with δD-CH4 representing the most consistent tracer of natural gas sources. We integrated our data into a bottom-up inventory of CH4 for the region, resulting in an inventory of ethane (C2H6) sources for comparison to top-down estimates of CH4 and C2H6 emissions. Methane emissions in the Barnett are a complex mixture of urban, agricultural, and fossil fuel sources, which makes source apportionment challenging. For example, spatial heterogeneity in gas composition and high C2H6/CH4 ratios in emissions from conventional oil production add uncertainty to top-down models of source apportionment. Future top-down studies may benefit from the addition of δD-CH4 to distinguish thermogenic and biogenic sources.

  8. Effects of fracture and crack healing in sI methane and sII methane-ethane gas hydrate

    NASA Astrophysics Data System (ADS)

    Helgerud, M. B.; Waite, W. F.; Stern, L. A.; Kirby, S. H.

    2005-12-01

    Cracking within gas hydrate-bearing sediment can occur in the field at core-scales, due to unloading as material is brought to the surface during conventional coring, and at reservoir scales if the formation is fractured prior to production. Cracking can weaken hydrate-bearing sediment, but can also provide additional surface area for dissociation and permeability pathways for enhanced gas and fluid flow. In pulse-transmission wave speed measurements, we observe cracking in laboratory-formed pure sI methane and sII methane-ethane hydrates when samples are axially unloaded while being held under gas pressure to maintain hydrate stability. Cracking events are inferred from repeated, sharp decreases in shear wave speed occurring concurrently with abrupt increases in sample length. We also visually observe cracks in the solid samples after their recovery from the apparatus following each experiment. Following a cracking event, we observe evidence of rapid crack healing, or annealing expressed as nearly complete recovery of the shear wave speed within approximately 20 minutes. Gas hydrate recrystallization, grain growth, and annealing have also been observed in optical cell experiments and SEM imagery over a similar time frame. In a recovered hydrate-bearing core that is repressurized for storage or experimentation, rapid crack healing and recrystallization can partly restore lost mechanical strength and raise wave speeds. In a fractured portion of a hydrate-bearing reservoir, the rapid healing process can close permeable cracks and reduce the surface area available for dissociation.

  9. Understanding methane variability from 1980 - 2015 using inversions of methane, δ13C and ethane

    NASA Astrophysics Data System (ADS)

    Thompson, Rona; Nisbet, Euan

    2017-04-01

    Atmospheric methane (CH4) increased globally during the 20th century, from a pre-industrial value of approximately 722 ppb to 1773 ppb in 1999. The upward trend, however, was interrupted between 1999 and 2006, when the atmospheric growth rate of CH4 was close to zero. From 2007, atmospheric CH4 started to increase again and, in 2014, the growth rate was substantially faster (12.5 ppb/y) than in any other year since 2007. Changes in the atmospheric growth rate indicate changes in the balance of CH4 sources and sinks, however, the cause of the 1999-2006 stabilization and subsequent rise in atmospheric CH4, and its attribution to different sources is still not fully resolved. Various explanations have been proposed for the pause in the growth, including a reduction in fossil fuel and wetland emissions, and for its renewed increase, such as increasing emissions from wetlands, enteric fermentation, and fossil fuels, as well as a decline in the OH sink. To better constrain the sources and sinks of CH4, we have performed an inversion using the AGAGE 12-box model of the atmosphere using atmospheric observations of CH4, δ13C, and of ethane. Using observations of these 3 atmospheric tracers simultaneously, a stronger constraint is placed on the different sources, as well as the principal atmospheric sink via oxidation by OH. In the model, we account for all emissions grouped into microbial, fossil fuel, biomass burning, landfill and ocean sources, as well as the soil oxidation sink. We also account for the atmospheric sink of CH4 and ethane via oxidation by OH and Cl radicals. The modelled lifetimes of CH4 and ethane were 8.2 years and 1.3 months, respectively. Inversions were also performed in which the OH sink was optimized simultaneously with the emissions. We find that fossil fuel emissions were underestimated in the northern mid to high latitudes in the 1980s but were overestimated from the mid 1990s onwards with respect to the prior (EDGAR-4.2), and that there is no

  10. A reconnaissance study of 13C-13C clumping in ethane from natural gas

    NASA Astrophysics Data System (ADS)

    Clog, Matthieu; Lawson, Michael; Peterson, Brian; Ferreira, Alexandre A.; Santos Neto, Eugenio V.; Eiler, John M.

    2018-02-01

    Ethane is the second most abundant alkane in most natural gas reservoirs. Its bulk isotopic compositions (δ13C and δD) are used to understand conditions and progress of cracking reactions that lead to the accumulation of hydrocarbons. Bulk isotopic compositions are dominated by the concentrations of singly-substituted isotopologues (13CH3-12CH3 for δ13C and 12CDH2-12CH3 for δD). However, multiply-substituted isotopologues can bring additional independent constraints on the origins of natural ethane. The 13C2H6 isotopologue is particularly interesting as it can potentially inform the distribution of 13C atoms in the parent biomolecules whose thermal cracking lead to the production of natural gas. This work presents methods to purify ethane from natural gas samples and quantify the abundance of the rare isotopologue 13C2H6 in ethane at natural abundances to a precision of ±0.12 ‰ using a high-resolution gas source mass spectrometer. To investigate the natural variability in carbon-carbon clumping, we measured twenty-five samples of thermogenic ethane from a range of geological settings, supported by two hydrous pyrolysis of shales experiments and a dry pyrolysis of ethane experiment. The natural gas samples exhibit a range of 'clumped isotope' signatures (Δ13C2H6) at least 30 times larger than our analytical precision, and significantly larger than expected for thermodynamic equilibration of the carbon-carbon bonds during or after formation of ethane, inheritance from the distribution of isotopes in organic molecules or different extents of cracking of the source. However we show a relationship between the Δ13C2H6 and the proportion of alkanes in natural gas samples, which we believe can be associated to the extent of secondary ethane cracking. This scenario is consistent with the results of laboratory experiments, where breaking down ethane leaves the residue with a low Δ13C2H6 compared to the initial gas. Carbon-carbon clumping is therefore a new

  11. Modeling the phase behavior of H2S+n-alkane binary mixtures using the SAFT-VR+D approach.

    PubMed

    dos Ramos, M Carolina; Goff, Kimberly D; Zhao, Honggang; McCabe, Clare

    2008-08-07

    A statistical associating fluid theory for potential of variable range has been recently developed to model dipolar fluids (SAFT-VR+D) [Zhao and McCabe, J. Chem. Phys. 2006, 125, 104504]. The SAFT-VR+D equation explicitly accounts for dipolar interactions and their effect on the thermodynamics and structure of a fluid by using the generalized mean spherical approximation (GMSA) to describe a reference fluid of dipolar square-well segments. In this work, we apply the SAFT-VR+D approach to real mixtures of dipolar fluids. In particular, we examine the high-pressure phase diagram of hydrogen sulfide+n-alkane binary mixtures. Hydrogen sulfide is modeled as an associating spherical molecule with four off-center sites to mimic hydrogen bonding and an embedded dipole moment (micro) to describe the polarity of H2S. The n-alkane molecules are modeled as spherical segments tangentially bonded together to form chains of length m, as in the original SAFT-VR approach. By using simple Lorentz-Berthelot combining rules, the theoretical predictions from the SAFT-VR+D equation are found to be in excellent overall agreement with experimental data. In particular, the theory is able to accurately describe the different types of phase behavior observed for these mixtures as the molecular weight of the alkane is varied: type III phase behavior, according to the scheme of classification by Scott and Konynenburg, for the H2S+methane system, type IIA (with the presence of azeotropy) for the H2S+ethane and+propane mixtures; and type I phase behavior for mixtures of H2S and longer n-alkanes up to n-decane. The theory is also able to predict in a qualitative manner the solubility of hydrogen sulfide in heavy n-alkanes.

  12. Microbial Community Dynamics in Methane-Oxidizing Mesocosms from the Gulf of Mexico and U.S. Atlantic Margin

    NASA Astrophysics Data System (ADS)

    Redmond, M. C.; Sorgen, A. A.; Chan, E. W.; Kessler, J. D.

    2016-12-01

    Microbial methane oxidation at natural gas seeps plays an important role in reducing the amount of this greenhouse gas that reaches the atmosphere, but questions remain about the factors that control methane oxidation rates and organisms responsible. We collected water samples from methane seeps on the U.S. Atlantic Margin (Hudson Canyon) and the Gulf of Mexico and tracked aerobic methane oxidation with high resolution measurements of methane, carbon dioxide, and oxygen concentrations, stable isotopic changes in methane and carbon dioxide, trace metals and nutrients in ten replicate mesocosms from each site. At several time points, we collected DNA for 16S rRNA gene and metagenomic sequencing. Hudson Canyon seep mesocosm communities were dominated by methanotrophs from the family Methylococcaceae (>75% of 16S rRNA gene sequences in all samples). Methylococcaceae were also present in the Gulf of Mexico mesocosms, but were much less abundant (<50% of 16S rRNA gene sequences) and methane was consumed less rapidly than in the Hudson Canyon mesocosms. The Hudson Canyon seeps emit only methane, whereas the Gulf of Mexico seeps also emit ethane, propane, and other hydrocarbons. Consistent with this differing geochemistry, hydrocarbon degraders such as Colwellia and Cycloclasticus were also abundant in the Gulf of Mexico mesocosms, as were genes for the oxidation of longer chain alkanes and aromatic compounds.

  13. Discrepancy between simulated and observed ethane and propane levels explained by underestimated fossil emissions

    NASA Astrophysics Data System (ADS)

    Dalsøren, Stig B.; Myhre, Gunnar; Hodnebrog, Øivind; Myhre, Cathrine Lund; Stohl, Andreas; Pisso, Ignacio; Schwietzke, Stefan; Höglund-Isaksson, Lena; Helmig, Detlev; Reimann, Stefan; Sauvage, Stéphane; Schmidbauer, Norbert; Read, Katie A.; Carpenter, Lucy J.; Lewis, Alastair C.; Punjabi, Shalini; Wallasch, Markus

    2018-03-01

    Ethane and propane are the most abundant non-methane hydrocarbons in the atmosphere. However, their emissions, atmospheric distribution, and trends in their atmospheric concentrations are insufficiently understood. Atmospheric model simulations using standard community emission inventories do not reproduce available measurements in the Northern Hemisphere. Here, we show that observations of pre-industrial and present-day ethane and propane can be reproduced in simulations with a detailed atmospheric chemistry transport model, provided that natural geologic emissions are taken into account and anthropogenic fossil fuel emissions are assumed to be two to three times higher than is indicated in current inventories. Accounting for these enhanced ethane and propane emissions results in simulated surface ozone concentrations that are 5-13% higher than previously assumed in some polluted regions in Asia. The improved correspondence with observed ethane and propane in model simulations with greater emissions suggests that the level of fossil (geologic + fossil fuel) methane emissions in current inventories may need re-evaluation.

  14. Process for converting light alkanes to higher hydrocarbons

    DOEpatents

    Noceti, Richard P.; Taylor, Charles E.

    1988-01-01

    A process is disclosed for the production of aromatic-rich, gasoline boiling range hydrocarbons from the lower alkanes, particularly from methane. The process is carried out in two stages. In the first, alkane is reacted with oxygen and hydrogen chloride over an oxyhydrochlorination catalyst such as copper chloride with minor proportions of potassium chloride and rare earth chloride. This produces an intermediate gaseous mixture containing water and chlorinated alkanes. The chlorinated alkanes are contacted with a crystalline aluminosilicate catalyst in the hydrogen or metal promoted form to produce gasoline range hydrocarbons with a high proportion of aromatics and a small percentage of light hydrocarbons (C.sub.2 -C.sub.4). The light hydrocarbons can be recycled for further processing over the oxyhydrochlorination catalyst.

  15. Determining and quantifying specific sources of light alkane

    NASA Astrophysics Data System (ADS)

    Bill, M.; Conrad, M. E.

    2015-12-01

    Determining and quantifying specific sources of emission of methane (an important greenhouse gas) and light alkanes from abandoned gas and oil wells, hydraulic fracturing or associated with CO2 sequestration are a challenge in determining their contribution to the atmospheric greenhouse gas budget or to identify source of groundwater contamination. Here, we review organic biogeochemistry proprieties and isotopic fingerprinting of C1-C5 alkanes to address this problem. For instance, the concentration ratios of CH4 to C2-C5 alkanes can be used to distinguish between thermogenic and microbial generated CH4. Together C and H isotopes of CH4 are used to differentiate bacterial generated sources and thermogenic CH4 and may also identify processes such as alteration and source mixing. Carbon isotope ratios pattern of C1-C5 alkanes highlight sources and oxidation processes in the gas reservoirs. Stable carbon isotope measurements are a viable tool for monitoring the degradation progress of methane and light hydrocarbons. The carbon isotope ratios of the reactants and products are independent of the concentration and only depend on the relative progress of the particular reaction. Oxidation/degradation of light alkanes are typically associated with increasing ð13C values. Isotopic mass balances offer the possibility to independently determine the fractions coming from microbial versus thermogenic and would also permit differentiation of the isotope fractionations associated with degradation. Unlike conventional concentration measurements, this approach is constrained by the different isotopic signatures of various sources and sinks.

  16. Interplay of bonding and geometry of the adsorption complexes of light alkanes within cationic faujasites. Combined spectroscopic and computational study.

    PubMed

    Pidko, Evgeny A; Xu, Jiang; Mojet, Barbara L; Lefferts, Leon; Subbotina, Irina R; Kazansky, Vladimir B; van Santen, Rutger A

    2006-11-16

    A FT-IR spectroscopic study of methane, ethane, and propane adsorption on magnesium and calcium forms of zeolite Y reveals different vibrational properties of the adsorbed molecules depending on the exchanged cation. This is attributed to different adsorption conformations of the hydrocarbons. Two-fold eta(2) coordination of light alkanes is realized for MgY, whereas in case of CaY zeolite quite different adsorption modes are found, involving more C-H bonds in the interaction with the cation. The topological analysis of the electron density distribution function of the adsorption complexes shows that when a hydrocarbon coordinates to the exchanged Mg(2+) ions, van der Waals bonds between H atoms of the alkane and basic zeolitic oxygens significantly contribute to the overall adsorption energy, whereas in case of CaY zeolite such interactions play only an indirect role. It is found that, due to the much smaller ionic radius of the Mg(2+) ion as compared to that of Ca(2+), the former ions are significantly shielded with the surrounding oxygens of the zeolitic cation site. This results in a small electrostatic contribution to the stabilization of the adsorbed molecules. In contrast, for CaY zeolite the stabilization of alkanes in the electrostatic field of the partially shielded Ca(2+) cation significantly contributes to the adsorption energy. This is in agreement with the experimentally observed lower overall absorption of C-H stretching vibrations of alkanes loaded to MgY as compared to those for CaY zeolite. The preferred conformation of the adsorbed alkanes is controlled by the bonding within the adsorption complexes that, in turn, strongly depends on the size and location of the cations in the zeolite cavity.

  17. Fugitive Emissions Attribution via Simultaneous Measurement of Ethane and Methane Isotopic Signature in Vehicle-based Surveys

    NASA Astrophysics Data System (ADS)

    Marshall, A. D.; Williams, J. P.; Baillie, J.; MacKay, K.; Risk, D. A.; Fleck, D.

    2016-12-01

    Detecting and attributing sub-regulatory fugitive emissions in the energy sector remains a priority for industry and environmental groups alike. Vehicle-based geochemical emission detection and attribution is seeing increasingly widespread use. In order to distinguish between biogenic and thermogenic emission sources, these techniques rely on tracer species like δ13C of methane (δ13CH4). In this study, we assessed the performance of the new Picarro G2210-i, a cavity ring-down spectroscopy (CRDS) analyzer that measures δ13CH4 and ethane (C2H6) simultaneously to provide increased thermogenic tracer power. In the lab, we assessed drift and other performance characteristics relative to a G2201-i (existing isotopic CH4 and carbon dioxide analyzer). We performed model experiments to synthetically assess the new analyzer's utility for oil and gas developments with differing levels of ethane. Lastly, we also conducted survey drives in a high-ethane oilfield using both the G2210-i and G2201-i. Results were very positive. The G2210-i showed minimal drift, as expected. Allan deviation experiments showed that the G2210-i has a precision of 0.482 ppb for CH4 and 3.15 ppb for C2H6 for 1Hz measurements. Computational experiments confirmed that the resolution of C2H6 is sufficient for detecting and attributing thermogenic CH4 at distance in oil and gas settings, which was further validated in the field where we measured simultaneous departures in δ13CH4 and C2H6 within plumes from venting infrastructure. C2:C1 ratios also proved very useful for attribution. As we move to reduce emissions from the energy industry, this analyzer presents new analytical possibilities that will be of high value to industry stakeholders.

  18. Quantification of Methane and Ethane Emissions from the San Juan Basin

    NASA Astrophysics Data System (ADS)

    Smith, M. L.; Kort, E. A.; Karion, A.; Sweeney, C.; Gvakharia, A.

    2015-12-01

    Methane (CH4), a potent greenhouse gas, and the primary component of natural gas, is emitted from areas of high fossil fuel production and processing. Recently, persistent and large methane emissions (~0.59 Tg yr-1) from the four corners area of the United States have been identified using satellite (SCIAMACHY) observations taken over the years 2003 to 2009. These emissions appear to be the largest CH4 anomaly (positive deviation above background values) in the contiguous U.S., and exceed bottom-up inventory estimates for the area by 1.8 to 3.5 times. The majority of emissions sources expected to contribute to this anomalous CH4 signal are located in the San Juan basin of New Mexico, and include harvesting and processing of natural gas, coal, and coalbed CH4. The magnitude of CH4 emissions from the San Juan basin have not yet been directly quantified using airborne measurements. Additionally, changing fossil fuel-related activities in the basin may have altered the magnitude of CH4 emissions compared to estimates derived from 2003-2009 satellite measurements. Here, we present in-situ airborne observations of CH4 over the San Juan basin, which allow tight quantification of CH4 fluxes using the mass balance method. Observations over the basin were taken for multiple wind directions on multiple days in April, 2015 to obtain a robust estimate of CH4 emissions. The flux of ethane (C2H6), the second most abundant component of natural gas and a tracer species indicative of fossil-derived CH4, was also quantified. Substantial C2H6 emissions may affect regional air quality and chemistry through its influence on tropospheric ozone production.

  19. High Resolution NMR Studies of Encapsulated Proteins In Liquid Ethane

    PubMed Central

    Peterson, Ronald W.; Lefebvre, Brian G.; Wand, A. Joshua

    2005-01-01

    Many of the difficulties presented by large, aggregation-prone, and membrane proteins to modern solution NMR spectroscopy can be alleviated by actively seeking to increase the effective rate of molecular reorientation. An emerging approach involves encapsulating the protein of interest within the protective shell of a reverse micelle, and dissolving the resulting particle in a low viscosity fluid, such as the short chain alkanes. Here we present the encapsulation of proteins with high structural fidelity within reverse micelles dissolved in liquid ethane. The addition of appropriate co-surfactants can significantly reduce the pressure required for successful encapsulation. At these reduced pressures, the viscosity of the ethane solution is low enough to provide sufficiently rapid molecular reorientation to significantly lengthen the spin-spin NMR relaxation times of the encapsulated protein. PMID:16028922

  20. Controls on Methane Occurrences in Aquifers Overlying the Eagle Ford Shale Play, South Texas.

    PubMed

    Nicot, Jean-Philippe; Larson, Toti; Darvari, Roxana; Mickler, Patrick; Uhlman, Kristine; Costley, Ruth

    2017-07-01

    Assessing natural vs. anthropogenic sources of methane in drinking water aquifers is a critical issue in areas of shale oil and gas production. The objective of this study was to determine controls on methane occurrences in aquifers in the Eagle Ford Shale play footprint. A total of 110 water wells were tested for dissolved light alkanes, isotopes of methane, and major ions, mostly in the eastern section of the play. Multiple aquifers were sampled with approximately 47 samples from the Carrizo-Wilcox Aquifer (250-1200 m depth range) and Queen City-Sparta Aquifer (150-900 m depth range) and 63 samples from other shallow aquifers but mostly from the Catahoula Formation (depth <150 m). Besides three shallow wells with unambiguously microbial methane, only deeper wells show significant dissolved methane (22 samples >1 mg/L, 10 samples >10 mg/L). No dissolved methane samples exhibit thermogenic characteristics that would link them unequivocally to oil and gas sourced from the Eagle Ford Shale. In particular, the well water samples contain very little or no ethane and propane (C1/C2+C3 molar ratio >453), unlike what would be expected in an oil province, but they also display relatively heavier δ 13 C methane (>-55‰) and δD methane (>-180‰). Samples from the deeper Carrizo and Queen City aquifers are consistent with microbial methane sourced from syndepositional organic matter mixed with thermogenic methane input, most likely originating from deeper oil reservoirs and migrating through fault zones. Active oxidation of methane pushes δ 13 C methane and δD methane toward heavier values, whereas the thermogenic gas component is enriched with methane owing to a long migration path resulting in a higher C1/C2+C3 ratio than in the local reservoirs. © 2017, National Ground Water Association.

  1. In situ high temperature MAS NMR study of the mechanisms of catalysis. Ethane aromatization on Zn-modified zeolite BEA.

    PubMed

    Arzumanov, Sergei S; Gabrienko, Anton A; Freude, Dieter; Stepanov, Alexander G

    2009-04-01

    Ethane conversion into aromatic hydrocarbons over Zn-modified zeolite BEA has been analyzed by high-temperature MAS NMR spectroscopy. Information about intermediates (Zn-ethyl species) and reaction products (mainly toluene and methane), which were formed under the conditions of a batch reactor, was obtained by (13)C MAS NMR. Kinetics of the reaction, which was monitored by (1)H MAS NMR in situ at the temperature of 573K, provided information about the reaction mechanism. Simulation of the experimental kinetics within the frames of the possible kinetic schemes of the reaction demonstrates that a large amount of methane evolved under ethane aromatization arises from the stage of direct ethane hydrogenolysis.

  2. Assessing the long-term variability of acetylene and ethane in the stratosphere of Jupiter

    NASA Astrophysics Data System (ADS)

    Melin, Henrik; Fletcher, L. N.; Donnelly, P. T.; Greathouse, T. K.; Lacy, J. H.; Orton, G. S.; Giles, R. S.; Sinclair, J. A.; Irwin, P. G. J.

    2018-05-01

    Acetylene (C2H2) and ethane (C2H6) are both produced in the stratosphere of Jupiter via photolysis of methane (CH4). Despite this common source, the latitudinal distribution of the two species is radically different, with acetylene decreasing in abundance towards the pole, and ethane increasing towards the pole. We present six years of NASA IRTF TEXES mid-infrared observations of the zonally-averaged emission of methane, acetylene and ethane. We confirm that the latitudinal distributions of ethane and acetylene are decoupled, and that this is a persistent feature over multiple years. The acetylene distribution falls off towards the pole, peaking at ∼ 30°N with a volume mixing ratio (VMR) of ∼ 0.8 parts per million (ppm) at 1 mbar and still falling off at ± 70° with a VMR of ∼ 0.3 ppm. The acetylene distributions are asymmetric on average, but as we move from 2013 to 2017, the zonally-averaged abundance becomes more symmetric about the equator. We suggest that both the short term changes in acetylene and its latitudinal asymmetry is driven by changes to the vertical stratospheric mixing, potentially related to propagating wave phenomena. Unlike acetylene, ethane has a symmetric distribution about the equator that increases toward the pole, with a peak mole fraction of ∼ 18 ppm at about ± 50° latitude, with a minimum at the equator of ∼ 10 ppm at 1 mbar. The ethane distribution does not appear to respond to mid-latitude stratospheric mixing in the same way as acetylene, potentially as a result of the vertical gradient of ethane being much shallower than that of acetylene. The equator-to-pole distributions of acetylene and ethane are consistent with acetylene having a shorter lifetime than ethane that is not sensitive to longer advective timescales, but is augmented by short-term dynamics, such as vertical mixing. Conversely, the long lifetime of ethane allows it to be transported to higher latitudes faster than it can be chemically depleted.

  3. On two alternative mechanisms of ethane activation over ZSM-5 zeolite modified by Zn2+ and Ga1+ cations.

    PubMed

    Kazansky, V B; Subbotina, I R; Rane, N; van Santen, R A; Hensen, E J M

    2005-08-21

    The activation of ethane over zinc- and gallium-modified HZSM-5 dehydrogenation catalysts was studied by diffuse reflectance infrared spectroscopy. Hydrocarbon activation on HZSM-5 modified by bivalent Zn and univalent Ga cations proceeds via two distinctly different mechanisms. The stronger molecular adsorption of ethane by the acid-base pairs formed by distantly separated cationic Zn2+ and basic oxygen sites results already at room temperature in strong polarizability of adsorbed ethane and subsequent heterolytic dissociative adsorption at moderate temperatures. In contrast, molecular adsorption of ethane on Ga+ cations is weak. At high temperatures dissociative hydrocarbon adsorption takes place, resulting in the formation of ethyl and hydride fragments coordinating to the cationic gallium species. Whereas in the zinc case a Brønsted acid proton is formed upon ethane dissociation, decomposition of the ethyl fragment on gallium results in gallium dihydride species and does not lead to Brønsted acid protons. This difference in alkane activation has direct consequences for hydrocarbon conversions involving dehydrogenation.

  4. Facultative methanotrophs are abundant at terrestrial natural gas seeps.

    PubMed

    Farhan Ul Haque, Muhammad; Crombie, Andrew T; Ensminger, Scott A; Baciu, Calin; Murrell, J Colin

    2018-06-28

    Natural gas contains methane and the gaseous alkanes ethane, propane and butane, which collectively influence atmospheric chemistry and cause global warming. Methane-oxidising bacteria, methanotrophs, are crucial in mitigating emissions of methane as they oxidise most of the methane produced in soils and the subsurface before it reaches the atmosphere. Methanotrophs are usually obligate, i.e. grow only on methane and not on longer chain alkanes. Bacteria that grow on the other gaseous alkanes in natural gas such as propane have also been characterised, but they do not grow on methane. Recently, it was shown that the facultative methanotroph Methylocella silvestris grew on ethane and propane, other components of natural gas, in addition to methane. Therefore, we hypothesised that Methylocella may be prevalent at natural gas seeps and might play a major role in consuming all components of this potent greenhouse gas mixture before it is released to the atmosphere. Environments known to be exposed to biogenic methane emissions or thermogenic natural gas seeps were surveyed for methanotrophs. 16S rRNA gene amplicon sequencing revealed that Methylocella were the most abundant methanotrophs in natural gas seep environments. New Methylocella-specific molecular tools targeting mmoX (encoding the soluble methane monooxygenase) by PCR and Illumina amplicon sequencing were designed and used to investigate various sites. Functional gene-based assays confirmed that Methylocella were present in all of the natural gas seep sites tested here. This might be due to its ability to use methane and other short chain alkane components of natural gas. We also observed the abundance of Methylocella in other environments exposed to biogenic methane, suggesting that Methylocella has been overlooked in the past as previous ecological studies of methanotrophs often used pmoA (encoding the alpha subunit of particulate methane monooxygenase) as a marker gene. New biomolecular tools designed in

  5. Exhaled ethane concentration in patients with cancer of the upper gastrointestinal tract - a proof of concept study.

    PubMed

    Abela, Jo Etienne; Skeldon, Kenneth D; Stuart, Robert C; Padgett, Miles J

    2009-06-01

    There has been growing interest in the measurement of breath ethane as an optimal non-invasive marker of oxidative stress. High concentrations of various breath alkanes including ethane have been reported in a number of malignancies. Our aim was to investigate the use of novel laser spectroscopy for rapid reporting of exhaled ethane and to determine whether breath ethane concentration is related to a diagnosis of upper gastrointestinal malignancy. Two groups of patients were recruited. Group A (n = 20) had a histo-pathological diagnosis of either esophageal or gastric malignancy. Group B (n = 10) was made up of healthy controls. Breath samples were collected from these subjects and the ethane concentration in these samples was subsequently measured to an accuracy of 0.2 parts per billion, ppb. Group A patients had a corrected exhaled breath ethane concentration of 2.3 +/- 0.8 (mean +/- SEM) ppb. Group B patients registered a mean of 3.1 +/- 0.5 ppb. There was no statistically significant difference between the two groups (p = 0.39). In conclusion, concentrations of ethane in collected breath samples were not significantly elevated in upper gastrointestinal malignancy. The laser spectroscopy system provided a reliable and rapid turnaround for breath sample analysis.

  6. Trace-gas metabolic versatility of the facultative methanotroph Methylocella silvestris.

    PubMed

    Crombie, Andrew T; Murrell, J Colin

    2014-06-05

    The climate-active gas methane is generated both by biological processes and by thermogenic decomposition of fossil organic material, which forms methane and short-chain alkanes, principally ethane, propane and butane. In addition to natural sources, environments are exposed to anthropogenic inputs of all these gases from oil and gas extraction and distribution. The gases provide carbon and/or energy for a diverse range of microorganisms that can metabolize them in both anoxic and oxic zones. Aerobic methanotrophs, which can assimilate methane, have been considered to be entirely distinct from utilizers of short-chain alkanes, and studies of environments exposed to mixtures of methane and multi-carbon alkanes have assumed that disparate groups of microorganisms are responsible for the metabolism of these gases. Here we describe the mechanism by which a single bacterial strain, Methylocella silvestris, can use methane or propane as a carbon and energy source, documenting a methanotroph that can utilize a short-chain alkane as an alternative to methane. Furthermore, during growth on a mixture of these gases, efficient consumption of both gases occurred at the same time. Two soluble di-iron centre monooxygenase (SDIMO) gene clusters were identified and were found to be differentially expressed during bacterial growth on these gases, although both were required for efficient propane utilization. This report of a methanotroph expressing an additional SDIMO that seems to be uniquely involved in short-chain alkane metabolism suggests that such metabolic flexibility may be important in many environments where methane and short-chain alkanes co-occur.

  7. Quantifying sources of methane using light alkanes in the Los Angeles basin, California

    NASA Astrophysics Data System (ADS)

    Peischl, J.; Ryerson, T. B.; Brioude, J.; Aikin, K. C.; Andrews, A. E.; Atlas, E.; Blake, D.; Daube, B. C.; de Gouw, J. A.; Dlugokencky, E.; Frost, G. J.; Gentner, D. R.; Gilman, J. B.; Goldstein, A. H.; Harley, R. A.; Holloway, J. S.; Kofler, J.; Kuster, W. C.; Lang, P. M.; Novelli, P. C.; Santoni, G. W.; Trainer, M.; Wofsy, S. C.; Parrish, D. D.

    2013-05-01

    Methane (CH4), carbon dioxide (CO2), carbon monoxide (CO), and C2-C5 alkanes were measured throughout the Los Angeles (L.A.) basin in May and June 2010. We use these data to show that the emission ratios of CH4/CO and CH4/CO2 in the L.A. basin are larger than expected from population-apportioned bottom-up state inventories, consistent with previously published work. We use experimentally determined CH4/CO and CH4/CO2 emission ratios in combination with annual State of California CO and CO2 inventories to derive a yearly emission rate of CH4 to the L.A. basin. We further use the airborne measurements to directly derive CH4 emission rates from dairy operations in Chino, and from the two largest landfills in the L.A. basin, and show these sources are accurately represented in the California Air Resources Board greenhouse gas inventory for CH4. We then use measurements of C2-C5 alkanes to quantify the relative contribution of other CH4 sources in the L.A. basin, with results differing from those of previous studies. The atmospheric data are consistent with the majority of CH4 emissions in the region coming from fugitive losses from natural gas in pipelines and urban distribution systems and/or geologic seeps, as well as landfills and dairies. The local oil and gas industry also provides a significant source of CH4 in the area. The addition of CH4 emissions from natural gas pipelines and urban distribution systems and/or geologic seeps and from the local oil and gas industry is sufficient to account for the differences between the top-down and bottom-up CH4 inventories identified in previously published work.

  8. Biological formation of ethane and propane in the deep marine subsurface.

    PubMed

    Hinrichs, Kai-Uwe; Hayes, John M; Bach, Wolfgang; Spivack, Arthur J; Hmelo, Laura R; Holm, Nils G; Johnson, Carl G; Sylva, Sean P

    2006-10-03

    Concentrations and isotopic compositions of ethane and propane in cold, deeply buried sediments from the southeastern Pacific are best explained by microbial production of these gases in situ. Reduction of acetate to ethane provides one feasible mechanism. Propane is enriched in (13)C relative to ethane. The amount is consistent with derivation of the third C from inorganic carbon dissolved in sedimentary pore waters. At typical sedimentary conditions, the reactions yield free energy sufficient for growth. Relationships with competing processes are governed mainly by the abundance of H(2). Production of C(2) and C(3) hydrocarbons in this way provides a sink for acetate and hydrogen but upsets the general belief that hydrocarbons larger than methane derive only from thermal degradation of fossil organic material.

  9. Methane Fingerprinting: Isotopic Methane and Ethane-to-Methane Ratio Analysis Using a Cavity Ring-Down Spectrometer

    NASA Astrophysics Data System (ADS)

    Saad, Nabil; Fleck, Derek; Hoffnagle, John

    2016-04-01

    Emissions of Natural gas, and methane (CH4) specifically, have come under increased scrutiny by virtue of methane's 28-36x greenhouse warming potential compared to carbon dioxide (CO2) while accounting for 10% of the total greenhouse gas emissions in the US. Large uncontrolled leaks, such as the recent Aliso Canyon leak, originating from uncapped wells, coal mines and storage facilities have increased the total global contribution of methane missions even further. Determining the specific fingerprint of methane sources, by quantifying δ13C values and C2:C1 ratios, provides the means to understand methane producing processes and allows for sources of methane to be mapped and classified through these processes; i.e. biogenic vs. thermogenic, wet vs dry. In this study we present a fully developed Cavity Ring-Down Spectrometer (CRDS) that precisely measures 12CH4 concentration and its 13CH4 isotope concentration, yielding δ13C measurements, C2H6 concentration, along with CO2 and H2O. This provides real-time continuous measurements without an upfront separation requirement or multiple analyses to derive the origin of the gas samples. The highly sensitive analyzer allows for measurements of scarce molecules down to sub-ppb 1-σ precision in 5 minutes of measurement: with CH4 <0.1ppb, δ13C <1‰ C2H6 <1ppb and CO2 <1ppm. To complement this work, we provide the analysis of different methane sources providing a 2-dimensional mapping of methane sources as functions of δ13C and C2:C1 ratios, which can be thought of as a modified Bernard Plot. This dual ratio mapping can be used to discriminate between naturally occurring biogenic methane sources, naturally occurring enriched thermogenic sources, and natural gas distribution sources. This also shows future promise in aiding gas and oil exploration, in distinguishing oil vs coal gases, as well as a valuable tool in the development of methane sequestration.

  10. Low-Latitude Ethane Rain on Titan

    NASA Technical Reports Server (NTRS)

    Dalba, Paul A.; Buratti, Bonnie J.; Brown, R. H.; Barnes, J. W.; Baines, K. H.; Sotin, C.; Clark, R. N.; Lawrence, K. J.; Nicholson, P. D.

    2012-01-01

    Cassini ISS observed multiple widespread changes in surface brightness in Titan's equatorial regions over the past three years. These brightness variations are attributed to rainfall from cloud systems that appear to form seasonally. Determining the composition of this rainfall is an important step in understanding the "methanological" cycle on Titan. I use data from Cassini VIMS to complete a spectroscopic investigation of multiple rain-wetted areas. I compute "before-and-after" spectral ratios of any areas that show either deposition or evaporation of rain. By comparing these spectral ratios to a model of liquid ethane, I find that the rain is most likely composed of liquid ethane. The spectrum of liquid ethane contains multiple absorption features that fall within the 2-micron and 5-micron spectral windows in Titan's atmosphere. I show that these features are visible in the spectra taken of Titan's surface and that they are characteristically different than those in the spectrum of liquid methane. Furthermore, just as ISS saw the surface brightness reverting to its original state after a period of time, I show that VIMS observations of later flybys show the surface composition in different stages of returning to its initial form.

  11. Characteristics of atmospheric non-methane hydrocarbons during haze episode in Beijing, China.

    PubMed

    Guo, Songjun; Tan, Jihua; Duan, Jingchun; Ma, Yongliang; Yang, Fumo; He, Kebin; Hao, Jimin

    2012-12-01

    This study firstly focused on non-methane hydrocarbons (NMHCs) during three successive days with haze episode (16-18 August 2006) in Beijing. Concentrations of alkanes, alkenes, aromatic hydrocarbons, and ethyne all peaked at traffic rush hour, implying vehicular emission; and alkanes also peaked at non-traffic rush hour in the daytime, implying additional source. Especially, alkanes and aromatics clearly showed higher levels in the nighttime than that in the daytime, implying their active photochemical reactions in the daytime. Correlation coefficients (R (2)) showed that propane, n-butane, i-butane, ethene, propene, and benzene correlated with ethyne (R (2) = 0.61-0.66), suggesting that their main source is vehicular emission; 2-methylpentane and n-hexane correlated with i-pentane (R (2) = 0.61-0.64), suggesting that gasoline evaporation is their main source; and ethylbezene, m-/p-xylene, and o-xylene correlated with toluene (R (2) = 0.60-0.79), suggesting that their main source is similar to that of toluene (e.g., solvent usage). The R (2) of ethyne, i-pentane, and toluene with total NMHCs were 0.58, 0.76, and 0.60, respectively, indicating that ambient hydrocarbons are associated with vehicular emission, gasoline evaporation, and solvent usage. The sources of other hydrocarbons (e.g., ethane) might be natural gas leakage, biogenic emission, or long-range transport of air pollutants. Measured higher mean B/T ratio (0.78 ± 0.27) was caused by the more intensive photochemical activity of toluene than benzene, still indicating the dominant emission from vehicles.

  12. a Hamiltonian to Obtain a Global Frequency Analysis of all the Vibrational Bands of Ethane

    NASA Astrophysics Data System (ADS)

    Moazzen-Ahmadi, Nasser; Norooz Oliaee, Jalal

    2016-06-01

    The interest in laboratory spectroscopy of ethane stems from the desire to understand the methane cycle in the atmospheres of planets and their moons and from the importance of ethane as a trace species in the terrestrial atmosphere. Solar decomposition of methane in the upper part of these atmospheres followed by a series of reactions leads to a variety of hydrocarbon compounds among which ethane is often the second most abundant species. Because of its high abundance, ethane spectra have been measured by Voyager and Cassini in the regions around 30, 12, 7, and 3 μm. Therefore, a complete knowledge of line parameters of ethane is crucial for spectroscopic remote sensing of planetary atmospheres. Experimental characterization of torsion-vibration states of ethane lying below 1400 cm-1 have been made previously, but extension of the Hamiltonian model for treatment of the strongly perturbed νb{8} fundamental and the complex band system of ethane in the 3 micron region requires careful examination of the operators for many new torsionally mediated vibration-rotation interactions. Following the procedures outlined by Hougen, we have re-examined the transformation properties of the total angular momentum, the translational and vibrational coordinates and momenta of ethane, and for vibration-torsion-rotation interaction terms constructed by taking products of these basic operators. It is found that for certain choices of phase, the doubly degenerate vibrational coordinates with and symmetry can be made to transform under the group elements in such a way as to yield real matrix elements for the torsion-vibration-rotation couplings whereas other choices of phase may require complex algebra. In this talk, I will discuss the construction of a very general torsion-vibration-rotation Hamiltonian for ethane, as well as the prospect for using such a Hamiltonian to obtain a global frequency analysis (based in large part on an extension of earlier programs and ethane fits^a from

  13. Biological formation of ethane and propane in the deep marine subsurface

    PubMed Central

    Hinrichs, Kai-Uwe; Hayes, John M.; Bach, Wolfgang; Spivack, Arthur J.; Hmelo, Laura R.; Holm, Nils G.; Johnson, Carl G.; Sylva, Sean P.

    2006-01-01

    Concentrations and isotopic compositions of ethane and propane in cold, deeply buried sediments from the southeastern Pacific are best explained by microbial production of these gases in situ. Reduction of acetate to ethane provides one feasible mechanism. Propane is enriched in 13C relative to ethane. The amount is consistent with derivation of the third C from inorganic carbon dissolved in sedimentary pore waters. At typical sedimentary conditions, the reactions yield free energy sufficient for growth. Relationships with competing processes are governed mainly by the abundance of H2. Production of C2 and C3 hydrocarbons in this way provides a sink for acetate and hydrogen but upsets the general belief that hydrocarbons larger than methane derive only from thermal degradation of fossil organic material. PMID:16990430

  14. Infrared band intensities of saturated hydrocarbons

    NASA Technical Reports Server (NTRS)

    Pinkley, L. W.; Sethna, P. P.; Williams, D.

    1978-01-01

    Kramers-Kronig analysis is applied to measured values of spectral reflectance at near-normal incidence to determine the real and the imaginary parts of the complex index of refraction for methane, ethane, propane, n-butane, n-hexane, n-heptane, and n-decane in the liquid state. The results indicate that the strengths of the characteristic bands as measured by the integral of the imaginary part are roughly constant for all the liquid alkanes except for methane. The intensity of the CH valence vibration bands in the spectra of the alkanes except methane is directly proportional to the number of CH groups per unit volume. The relations for the intensity of the bands due to CH2 and CH3 deformations are examined. Characteristic band intensities of the type established for NH4(+) and SO4(2-) groups in solutions and crystals cannot be extended to the more closely coupled CH2 and CH3 groups in alkane molecules.

  15. The quantitative significance of Syntrophaceae and syntrophic partnerships in methanogenic degradation of crude oil alkanes

    PubMed Central

    Gray, N D; Sherry, A; Grant, R J; Rowan, A K; Hubert, C R J; Callbeck, C M; Aitken, C M; Jones, D M; Adams, J J; Larter, S R; Head, I M

    2011-01-01

    Libraries of 16S rRNA genes cloned from methanogenic oil degrading microcosms amended with North Sea crude oil and inoculated with estuarine sediment indicated that bacteria from the genera Smithella (Deltaproteobacteria, Syntrophaceace) and Marinobacter sp. (Gammaproteobacteria) were enriched during degradation. Growth yields and doubling times (36 days for both Smithella and Marinobacter) were determined using qPCR and quantitative data on alkanes, which were the predominant hydrocarbons degraded. The growth yield of the Smithella sp. [0.020 g(cell-C)/g(alkane-C)], assuming it utilized all alkanes removed was consistent with yields of bacteria that degrade hydrocarbons and other organic compounds in methanogenic consortia. Over 450 days of incubation predominance and exponential growth of Smithella was coincident with alkane removal and exponential accumulation of methane. This growth is consistent with Smithella's occurrence in near surface anoxic hydrocarbon degrading systems and their complete oxidation of crude oil alkanes to acetate and/or hydrogen in syntrophic partnership with methanogens in such systems. The calculated growth yield of the Marinobacter sp., assuming it grew on alkanes, was [0.0005 g(cell-C)/g(alkane-C)] suggesting that it played a minor role in alkane degradation. The dominant methanogens were hydrogenotrophs (Methanocalculus spp. from the Methanomicrobiales). Enrichment of hydrogen-oxidizing methanogens relative to acetoclastic methanogens was consistent with syntrophic acetate oxidation measured in methanogenic crude oil degrading enrichment cultures. qPCR of the Methanomicrobiales indicated growth characteristics consistent with measured rates of methane production and growth in partnership with Smithella. PMID:21914097

  16. The quantitative significance of Syntrophaceae and syntrophic partnerships in methanogenic degradation of crude oil alkanes.

    PubMed

    Gray, N D; Sherry, A; Grant, R J; Rowan, A K; Hubert, C R J; Callbeck, C M; Aitken, C M; Jones, D M; Adams, J J; Larter, S R; Head, I M

    2011-11-01

    Libraries of 16S rRNA genes cloned from methanogenic oil degrading microcosms amended with North Sea crude oil and inoculated with estuarine sediment indicated that bacteria from the genera Smithella (Deltaproteobacteria, Syntrophaceace) and Marinobacter sp. (Gammaproteobacteria) were enriched during degradation. Growth yields and doubling times (36 days for both Smithella and Marinobacter) were determined using qPCR and quantitative data on alkanes, which were the predominant hydrocarbons degraded. The growth yield of the Smithella sp. [0.020 g(cell-C)/g(alkane-C)], assuming it utilized all alkanes removed was consistent with yields of bacteria that degrade hydrocarbons and other organic compounds in methanogenic consortia. Over 450 days of incubation predominance and exponential growth of Smithella was coincident with alkane removal and exponential accumulation of methane. This growth is consistent with Smithella's occurrence in near surface anoxic hydrocarbon degrading systems and their complete oxidation of crude oil alkanes to acetate and/or hydrogen in syntrophic partnership with methanogens in such systems. The calculated growth yield of the Marinobacter sp., assuming it grew on alkanes, was [0.0005 g(cell-C)/g(alkane-C)] suggesting that it played a minor role in alkane degradation. The dominant methanogens were hydrogenotrophs (Methanocalculus spp. from the Methanomicrobiales). Enrichment of hydrogen-oxidizing methanogens relative to acetoclastic methanogens was consistent with syntrophic acetate oxidation measured in methanogenic crude oil degrading enrichment cultures. qPCR of the Methanomicrobiales indicated growth characteristics consistent with measured rates of methane production and growth in partnership with Smithella. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.

  17. Gas Phase Ion-Molecule Chemistry of Carbon, Nitrogen and Oxygen Compounds.

    DTIC Science & Technology

    1985-01-29

    silyl anions aza allyl anion) phosphide anion sulfides) Reactivity; nitrite estersj electron affinityMechanism’, sulfur dioxidej. (cont’d) M L..J A6*rAcr...use of silane chemistry to attack a problem of fundamental importance to all organic chemistry, the relative acidity of the alkanes.20 While it is well...alkane lost are a measure of the relative acidity of RH. For example, because ethane is lost less easily than methane, we believe that the ethyl anion

  18. Mechanisms for the dehydrogenation of alkanes on platinum: insights gained from the reactivity of gaseous cluster cations, Ptn + n=1-21.

    PubMed

    Adlhart, Christian; Uggerud, Einar

    2007-01-01

    Rates for the dihydrogen elimination of methane, ethane, and propane with cationic platinum clusters, Pt(n) (+) (1Methane is particular in the sense that reactivity is highly variable; some clusters (n=1-3, 5-9, 11, 12, 15) are very reactive towards methane, while all other clusters react with low efficiency or not at all. For propane, all clusters react efficiently, while the reactivity of ethane lies in-between that of methane and propane. By necessity, dihydrogen elimination of methane occurs according to a 1,1-elimination mechanism. Ethane dehydrogenation takes place according to both a 1,1- and a 1,2-mechanism. The difference between the 1,1- and 1,2-mechanisms is well displayed in specifically increased rates for those clusters that were inefficient in the reaction with methane, as well as in the observed selectivity for H2, HD, and D2 elimination in the reaction with [D3]-1,1,1-ethane. Some twofold dihydrogen elimination is observed as well. The outcome of reactions with C2H6 in the presence of D(2) demonstrates exchange of all hydrogen atoms in [PtnC2H4]+ with deuterium atoms. A potential energy diagram with a high barrier for the second H2 elimination summarizes these observations. For propane twofold dihydrogen elimination is dominating, and for these reactions a far less regiospecific and more random loss of the hydrogens can be inferred, as was demonstrated by the reactions with [D6]-1,1,1,3,3,3-propane.

  19. The MOYA aircraft campaign: First measurements of methane, ethane and C-13 isotopes from West African biomass burning and other regional sources using the UK FAAM aircraft

    NASA Astrophysics Data System (ADS)

    Allen, Grant; Pitt, Joseph; Lee, James; Hopkins, James; Young, Stuart; Bauguitte, Stéphane; Gallagher, Martin; Fisher, Rebecca; Lowry, David; Nisbet, Euan

    2017-04-01

    Global methane concentrations continue to rise due to an imbalance between sources and sinks. There remains little consensus on the relative components of the manifold source types and their geographical origin. The Global Methane Budget and Yearly Assessments (MOYA) project is tasked with better characterising the global methane budget through an augmented global measurement and modelling programme. As part of MOYA, the UK's Facility for Airborne Atmospheric Measurement (FAAM), will fly four campaigns based out of West Africa and Ascension Island in the period 2017-2019, to focus on the important role of tropical sources. The first of these, to be conducted in late February 2017, will focus on the biomass burning season in West Africa. This paper will present the plan for future FAAM MOYA campaigns and report on our first aircraft data gathered in the West African region. The new addition of an interband cascade laser spectrometer to the FAAM aircraft, flown in this campaign for the first time, promises to provide the first real-time, continuous, and simultaneous, airborne measurements of methane, ethane and methane C-13 isotopologues. Together, these measurements, when interpreted in combination with other trace gases and aerosol measured on the aircraft, will serve as case studies to inform modelling of regional and global fluxes through their isotopic fingerprints.

  20. The identification of liquid ethane in Titan's Ontario Lacus

    USGS Publications Warehouse

    Brown, R.H.; Soderblom, L.A.; Soderblom, J.M.; Clark, R.N.; Jaumann, R.; Barnes, J.W.; Sotin, Christophe; Buratti, B.; Baines, K.H.; Nicholson, P.D.

    2008-01-01

    Titan was once thought to have global oceans of light hydrocarbons on its surface, but after 40 close flybys of Titan by the Cassini spacecraft, it has become clear that no such oceans exist. There are, however, features similar to terrestrial lakes and seas, and widespread evidence for fluvial erosion, presumably driven by precipitation of liquid methane from Titan's dense, nitrogen-dominated atmosphere. Here we report infrared spectroscopic data, obtained by the Visual and Infrared Mapping Spectrometer (VIMS) on board the Cassini spacecraft, that strongly indicate that ethane, probably in liquid solution with methane, nitrogen and other low-molecular-mass hydrocarbons, is contained within Titan's Ontario Lacus.

  1. Alkane Oxidation: Methane Monooxygenases, Related Enzymes, and Their Biomimetics.

    PubMed

    Wang, Vincent C-C; Maji, Suman; Chen, Peter P-Y; Lee, Hung Kay; Yu, Steve S-F; Chan, Sunney I

    2017-07-12

    Methane monooxygenases (MMOs) mediate the facile conversion of methane into methanol in methanotrophic bacteria with high efficiency under ambient conditions. Because the selective oxidation of methane is extremely challenging, there is considerable interest in understanding how these enzymes carry out this difficult chemistry. The impetus of these efforts is to learn from the microbes to develop a biomimetic catalyst to accomplish the same chemical transformation. Here, we review the progress made over the past two to three decades toward delineating the structures and functions of the catalytic sites in two MMOs: soluble methane monooxygenase (sMMO) and particulate methane monooxygenase (pMMO). sMMO is a water-soluble three-component protein complex consisting of a hydroxylase with a nonheme diiron catalytic site; pMMO is a membrane-bound metalloenzyme with a unique tricopper cluster as the site of hydroxylation. The metal cluster in each of these MMOs harnesses O 2 to functionalize the C-H bond using different chemistry. We highlight some of the common basic principles that they share. Finally, the development of functional models of the catalytic sites of MMOs is described. These efforts have culminated in the first successful biomimetic catalyst capable of efficient methane oxidation without overoxidation at room temperature.

  2. Estimates of Methane and Ethane Emissions from the Barnett Shale Using Atmospheric Measurements

    NASA Astrophysics Data System (ADS)

    Karion, A.; Sweeney, C.; Kort, E. A.; Shepson, P. B.; Conley, S. A.; Lauvaux, T.; Davis, K. J.; Deng, A.; Lyon, D. R.; Smith, M. L.

    2015-12-01

    Recent development of horizontal drilling technology and advances in hydraulic fracturing techniques by the oil and gas industry have dramatically increased onshore U.S. natural gas and oil production in the last several years. The primary component of natural gas is methane (CH4), a powerful greenhouse gas; therefore, natural gas leakage into the atmosphere affects its climate impact. We present estimates of regional methane (CH4) and ethane (C2H6) emissions from oil and natural gas operations in the Barnett Shale, Texas, made in March and October 2013 as part of the Environmental Defense Fund's Barnett Coordinated Campaign. The Barnett is one of the largest production basins in the United States, with 8% of total U.S. natural gas production, and thus, our results represent a crucial step toward determining the greenhouse gas footprint of U.S. onshore natural gas production. Using a mass balance approach on eight different flight days the total CH4 emissions for the region are estimated to be 76 ± 13x 103 kg/hr, or 0.66 ± 0.11 Tg CH4 /yr; (95% CI). Repeated mass balance flights in the same basin on eight different days and two seasons demonstrate the consistency of the mass balance approach. On the basis of airborne C2H6 and CH4 measurements, we find 71-85% of the observed CH4 emissions quantified in the Barnett Shale are derived from fossil sources. The average C2H6 flux was 6.6 ± 0.2 x 103 kg/hr and consistent across six days in spring and fall of 2013. This result is the first demonstration of this approach for C2H6. We estimate that 60±11x103 kg CH4/hr (95% CI) are emitted by natural gas and oil operations, including production, processing, and distribution in the urban areas of Dallas and Fort Worth. This estimate is significantly higher than emissions reported by the EDGAR inventory or by industry to EPA's Greenhouse Gas Reporting Program.

  3. Simulation of ethane steam cracking with severity evaluation

    NASA Astrophysics Data System (ADS)

    Rosli, M. N.; Aziz, N.

    2016-11-01

    Understanding the influence of operating parameters towards cracking severity is paramount in ensuring optimum operation of an ethylene plant. However, changing the parameters in an actual plant for data collection can be dangerous. Thus, a simulation model for ethane steam cracking furnace is developed using ASPEN Plus for the assessment. The process performance is evaluated with cracking severity factors and main product yields. Three severity factors are used for evaluation due to their ease of measurement, which are methane yield (Ymet), Ethylene-Ethane Ratio (EER) and Propylene-Ethylene Ratio (PER). The result shows that cracking severity is primarily influenced by reactor temperature. Operating the furnace with coil outlet temperature ranging between 850°C to 950°C and steam-to-hydrocarbon ratio of 0.3 to 0.5 has led to optimum main product yield.

  4. Understanding oxidative dehydrogenation of ethane on Co 3O 4 nanorods from density functional theory

    DOE PAGES

    Fung, Victor; Tao, Franklin; Jiang, De-en

    2016-05-20

    Co 3O 4 is a metal oxide catalyst with weak, tunable M–O bonds promising for catalysis. Here, density functional theory (DFT) is used to study the oxidative dehydrogenation (ODH) of ethane on Co 3O 4 nanorods based on the preferred surface orientation (111) from the experimental electron-microscopy image. The pathway and energetics of the full catalytic cycle including the first and second C–H bond cleavages, hydroxyl clustering, water formation, and oxygen-site regeneration are determined. We find that both lattice O and Co may participate as active sites in the dehydrogenation, with the lattice-O pathway being favored. Here, we identify themore » best ethane ODH pathway based on the overall energy profiles of several routes. We identify that water formation from the lattice oxygen has the highest energy barrier and is likely a rate-determining step. This work of the complete catalytic cycle of ethane ODH will allow further study into tuning the surface chemistry of Co 3O 4 nanorods for high selectivity of alkane ODH reactions.« less

  5. A post-Cassini view of Titan's methane-based hydrologic cycle

    NASA Astrophysics Data System (ADS)

    Hayes, Alexander G.; Lorenz, Ralph D.; Lunine, Jonathan I.

    2018-05-01

    The methane-based hydrologic cycle on Saturn's largest moon, Titan, is an extreme analogue to Earth's water cycle. Titan is the only planetary body in the Solar System, other than Earth, that is known to have an active hydrologic cycle. With a surface pressure of 1.5 bar and temperatures of 90 to 95 K, methane and ethane condense out of a nitrogen-based atmosphere and flow as liquids on the moon's surface. Exchange processes between atmospheric, surface and subsurface reservoirs produce methane and ethane cloud systems, as well as erosional and depositional landscapes that have strikingly similar forms to their terrestrial counterparts. Over its 13-year exploration of the Saturn system, the Cassini-Huygens mission revealed that Titan's hydrocarbon-based hydrology is driven by nested methane cycles that operate over a range of timescales, including geologic, orbital (for example, Croll-Milankovitch cycles), seasonal and that of a single convective storm. In this Review Article, we describe the dominant exchange processes that operate over these timescales and present a post-Cassini view of Titan's methane-based hydrologic system.

  6. Experimental determination of the kinetics of formation of the benzene-ethane co-crystal and implications for Titan

    NASA Astrophysics Data System (ADS)

    Cable, Morgan L.; Vu, Tuan H.; Hodyss, Robert; Choukroun, Mathieu; Malaska, Michael J.; Beauchamp, Patricia

    2014-08-01

    Benzene is found on Titan and is a likely constituent of the putative evaporite deposits formed around the hydrocarbon lakes. We have recently demonstrated the formation of a benzene-ethane co-crystal under Titan-like surface conditions. Here we investigate the kinetics of formation of this new structure as a function of temperature. We show that the formation process would reach completion under Titan surface conditions in ~18 h and that benzene precipitates from liquid ethane as the co-crystal. This suggests that benzene-rich evaporite basins around ethane/methane lakes and seas may not contain pure crystalline benzene, but instead benzene-ethane co-crystals. This co-crystalline form of benzene with ethane represents a new class of materials for Titan's surface, analogous to hydrated minerals on Earth. This new structure may also influence evaporite characteristics such as particle size, dissolution rate, and infrared spectral properties.

  7. The identification of liquid ethane in Titan's Ontario Lacus

    USGS Publications Warehouse

    Brown, R.H.; Soderblom, L.A.; Soderblom, J.M.; Clark, R.N.; Jaumann, R.; Barnes, J.W.; Sotin, Christophe; Buratti, B.; Baines, K.H.; Nicholson, P.D.

    2008-01-01

    Titan was once thought to have global oceans of light hydrocarbons on its surface, but after 40 close flybys of Titan by the Cassini spacecraft, it has become clear that no such oceans exist. There are, however, features similar to terrestrial lakes and seas, and widespread evidence for fluvial erosion, presumably driven by precipitation of liquid methane from Titan's dense, nitrogen-dominated atmosphere. Here we report infrared spectroscopic data, obtained by the Visual and Infrared Mapping Spectrometer (VIMS) on board the Cassini spacecraft, that strongly indicate that ethane, probably in liquid solution with methane, nitrogen and other low-molecular-mass hydrocarbons, is contained within Titan's Ontario Lacus. ??2008 Macmillan Publishers Limited. All rights reserved.

  8. Parametric performance of circumferentially grooved heat pipes with homogeneous and graded-porosity slab wicks at cryogenic temperatures. [methane and ethane working fluids

    NASA Technical Reports Server (NTRS)

    Groll, M.; Pittman, R. B.; Eninger, J. E.

    1976-01-01

    A recently developed, potentially high-performance nonarterial wick was extensively tested. This slab wick has an axially varying porosity which can be tailored to match the local stress imposed on the wick. The purpose of the tests was to establish the usefulness of the graded-porosity slab wick at cryogenic temperatures between 110 and 260 K, with methane and ethane as working fluids. For comparison, a homogeneous (i.e., uniform porosity) slab wick was also tested. The tests included: maximum heat pipe performance as a function of fluid inventory, maximum performance as a function of operating temperature, maximum performance as a function of evaporator elevation, and influence of slab wick orientation on performance. The experimental data were compared with theoretical predictions obtained with the GRADE computer program.

  9. Increased breath ethane levels in medicated patients with schizophrenia and bipolar disorder are unrelated to erythrocyte omega-3 fatty acid abundance.

    PubMed

    Ross, Brian M; Maxwell, Ross; Glen, Iain

    2011-03-30

    Oxidative stress has been reported to be elevated in mental illness. Preliminary evidence suggests this phenomenon can be assessed non-invasively by determining breath levels of the omega-3 polyunsaturated fatty acid (PUFA) oxidation product ethane. This study compares alkane levels in chronic, medicated, patients with schizophrenia or bipolar disorder with those in healthy controls. Both ethane and butane levels were significantly increased in patients with schizophrenia or bipolar disorder, although elevated butane levels were likely due to increased ambient gas concentrations. Ethane levels were not correlated with symptom severity or with erythrocyte omega-3 PUFA levels. Our results support the hypothesis that oxidative stress is elevated in patients with schizophrenia and bipolar disorder leading to increased breath ethane abundance. This does not appear to be caused by increased abundance of omega-3 PUFA, but rather is likely due to enhanced oxidative damage of these lipids. As such, breath hydrocarbon analysis may represent a simple, non-invasive means to monitor the metabolic processes occurring in these disorders. Copyright © 2010 Elsevier Inc. All rights reserved.

  10. A numerical analysis of heat and mass transfer during the steam reforming process of ethane

    NASA Astrophysics Data System (ADS)

    Tomiczek, Marcin; Kaczmarczyk, Robert; Mozdzierz, Marcin; Brus, Grzegorz

    2017-11-01

    This paper presents a numerical analysis of heat and mass transfer during the steam reforming of ethane. From a chemical point of view, the reforming process of heavy hydrocarbons, such as ethane, is complex. One of the main issue is a set of undesired chemical reactions that causes the deposition of solid carbon and consequently blocks the catalytic property of a reactor. In the literature a carbon deposition regime is selected by thermodynamical analysis to design safe operation conditions. In the case of Computational Fluid Dynamic (CFD, hereafter) models each control volume should be investigated to determinate if carbon deposition is thermodynamically favourable. In this paper the authors combine equilibrium and kinetics analysis to simulate the steam reforming of methane-ethane rich fuel. The results of the computations were juxtaposed with experimental data for methane steam reforming, and good agreement was found. An analysis based on the kinetics of reactions was conducted to predict the influence of temperature drop and non-equilibrium composition on solid carbon deposition. It was found that strong non-uniform temperature distribution in the reactor causes conditions favourable for carbon deposition at the inlet of the reformer. It was shown that equilibrium calculations, often used in the literature, are insufficient.

  11. Emission of Methane and Heavier Alkanes From the La Brea Tar Pits Seepage Area, Los Angeles

    NASA Astrophysics Data System (ADS)

    Etiope, G.; Doezema, L. A.; Pacheco, C.

    2017-11-01

    Natural hydrocarbon (oil and gas) seeps are widespread in Los Angeles, California, due to gas migration, along faults, from numerous subsurface petroleum fields. These seeps may represent important natural contributors of methane (CH4) and heavier alkanes (C2-C4) to the atmosphere, in addition to anthropogenic fossil fuel and biogenic sources. We measured the CH4 flux by closed-chamber method from the La Brea Tar Pits park (0.1 km2), one of the largest seepage sites in Los Angeles. The gas seepage occurs throughout the park, not only from visible oil-asphalt seeps but also diffusely from the soil, affecting grass physiology. About 500 kg CH4 d-1 is emitted from the park, especially along a belt of enhanced degassing that corresponds to the 6th Street Fault. Additional emissions are from bubble plumes in the lake within the park (order of 102-103 kg d-1) and at the intersection of Wilshire Boulevard and Curson Avenue (>130 kg d-1), along the same fault. The investigated area has the highest natural gas flux measured thus far for any onshore seepage zone in the USA. Gas migration, oil biodegradation, and secondary methanogenesis altered the molecular composition of the original gas accumulated in the Salt Lake Oil Field (>300 m deep), leading to high C1/C2+ and i-butane/n-butane ratios. These molecular alterations can be important tracers of natural seepage and should be considered in the atmospheric modeling of the relative contribution of fossil fuel (anthropogenic fugitive emission and natural geologic sources) versus biogenic sources of methane, on local and global scales.

  12. Preliminary scattering kernels for ethane and triphenylmethane at cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Cantargi, F.; Granada, J. R.; Damián, J. I. Márquez

    2017-09-01

    Two potential cold moderator materials were studied: ethane and triphenylmethane. The first one, ethane (C2H6), is an organic compound which is very interesting from the neutronic point of view, in some respects better than liquid methane to produce subthermal neutrons, not only because it remains in liquid phase through a wider temperature range (Tf = 90.4 K, Tb = 184.6 K), but also because of its high protonic density together with its frequency spectrum with a low rotational energy band. Another material, Triphenylmethane is an hydrocarbon with formula C19H16 which has already been proposed as a good candidate for a cold moderator. Following one of the main research topics of the Neutron Physics Department of Centro Atómico Bariloche, we present here two ways to estimate the frequency spectrum which is needed to feed the NJOY nuclear data processing system in order to generate the scattering law of each desired material. For ethane, computer simulations of molecular dynamics were done, while for triphenylmethane existing experimental and calculated data were used to produce a new scattering kernel. With these models, cross section libraries were generated, and applied to neutron spectra calculation.

  13. Observation and simulation of ethane at 23 FTIR sites

    NASA Astrophysics Data System (ADS)

    Bader, W. M. J.; Mahieu, E.; Franco, B.; Pozzer, A.; Taraborrelli, D.; Prignon, M.; Servais, C. P.; De Maziere, M.; Vigouroux, C.; Mengistu Tsidu, G.; Sufa, G.; Mellqvist, J.; Blumenstock, T.; Hase, F.; Schneider, M.; Sussmann, R.; Nagahama, T.; Sudo, K.; Hannigan, J. W.; Ortega, I.; Morino, I.; Nakajima, H.; Smale, D.; Makarova, M.; Poberovsky, A.; Murata, I.; Grutter de la Mora, M.; Guarin, C. A.; Stremme, W.; Té, Y.; Jeseck, P.; Notholt, J.; Palm, M.; Conway, S. A.; Lutsch, E.; Strong, K.; Griffith, D. W. T.; Jones, N. B.; Paton-Walsh, C.; Friedrich, M.; Smeekes, S.

    2017-12-01

    Ethane is the most abundant non-methane hydrocarbon (NMHC) in the Earth atmosphere. Its main sources are of anthropogenic origin, with globally 62% from leakage during production and transport of natural gas, 20% from biofuel combustion and 18% from biomass burning. In the Southern hemisphere, anthropogenic emissions are lower which makes biomass burning emissions a more significant source. The main removal process is oxidation by the hydroxyl radical (OH), leading to a mean atmospheric lifetime of 2 months. Until recently, a prolonged decrease of its abundance has been documented, at rates of -1 to -2.7%/yr, with global emissions dropping from 14 to 11 Tg/yr over 1984-2010 owing to successful measures reducing fugitive emissions from its fossil fuel sources. However, subsequent investigations have reported on an upturn in the ethane trend, characterized by a sharp rise from about 2009 onwards. The ethane increase is attributed to the oil and natural gas production boom in North America, although significant changes in OH could also be at play. In the present contribution, we report the trend of ethane at 23 ground-based Fourier Transform Infrared (FTIR) sites spanning the 80ºN to 79ºS latitude range. Over 2010-2015, a significant ethane rise of 3-5%/yr is determined for most sites in the Northern Hemisphere, while for the Southern hemisphere the rates of changes are not significant at the 2-sigma uncertainty level . Dedicated model simulations by EMAC (ECHAM5/MESSy Atmospheric Chemistry; 1.8×1.8 degrees) implementing various emission scenarios are included in order to support data interpretation. The usual underestimation of the NMHCs emissions in the main inventories is confirmed here for RCP85 (Representative Concentration Pathway Database v8.5). Scaling them by 1.5 is needed to capture the background levels of atmospheric ethane. Moreover, additional and significant emissions ( 7 Tg over 2009-2015) are needed to capture the ethane rise in the Northern

  14. Identifying Methane Sources in Groundwater; Quantifying Changes in Compositional and Stable Isotope Values during Multiphase Transport

    NASA Astrophysics Data System (ADS)

    Larson, T.; Sathaye, K.

    2014-12-01

    A dramatic expansion of hydraulic fracturing and horizontal drilling for natural gas in unconventional reserves is underway. This expansion is fueling considerable public concern, however, that extracted natural gas, reservoir brines and associated fracking fluids may infiltrate to and contaminate shallower (< 500m depth) groundwater reservoirs, thereby posing a health threat. Attributing methane found in shallow groundwater to either deep thermogenic 'fracking' operations or locally-derived shallow microbial sources utilizes geochemical methods including alkane wetness and stable carbon and hydrogen isotope ratios of short chain (C1-C5) hydrocarbons. Compared to shallow microbial gas, thermogenic gas is wetter and falls within a different range of δ13C and δD values. What is not clear, however, is how the transport of natural gas through water saturated geological media may affect its compositional and stable isotope values. What is needed is a means to differentiate potential flow paths of natural gas including 'fast paths' along preexisting fractures and drill casings vs. 'slow paths' through low permeability rocks. In this study we attempt quantify transport-related effects using experimental 1-dimensional two-phase column experiments and analytical solutions to multi-phase gas injection equations. Two-phase experimental results for an injection of natural gas into a water saturated column packed with crushed illite show that the natural gas becomes enriched in methane compared to ethane and propane during transport. Carbon isotope measurements are ongoing. Results from the multi-phase gas injection equations that include methane isotopologue solubility and diffusion effects predict the development of a 'bank' of methane depleted in 13C relative to 12C at the front of a plume of fugitive natural gas. These results, therefore, suggest that transport of natural gas through water saturated geological media may complicate attribution methods needed to distinguish

  15. Measuring ethane and acetylene in Antarctic ice cores to quantify long-term hydrocarbon emissions from tropical fires

    NASA Astrophysics Data System (ADS)

    Nicewonger, M. R.; Aydin, M.; Prather, M. J.; Saltzman, E. S.

    2017-12-01

    This study examines ethane (C2H6) and acetylene (C2H2) in polar ice cores in order to reconstruct variations in the atmospheric levels of these trace gases over the past 2,000 years. Both of these non-methane hydrocarbons are released from fossil fuel, biofuel, and biomass burning. Ethane, but not acetylene, is also emitted from natural geologic outgassing of hydrocarbons. In an earlier study, we reported ethane levels in Greenland and Antarctic ice cores showing roughly equal contributions from biomass burning and geologic emissions to preindustrial atmospheric ethane levels (Nicewonger et al., 2016). Here we introduce acetylene as an additional constraint to better quantify preindustrial variations in the emissions from these natural hydrocarbon sources. Here we present 30 new measurements of ethane and acetylene from the WDC-06A ice core from WAIS Divide and the newly drilled South Pole ice core (SPICECORE). Ethane results display a gradual decline from peak levels of 110 ppt at 1400 CE to a minimum of 60-80 ppt during 1700-1875 CE. Acetylene correlates with ethane (r2 > 0.4), dropping from peak levels of 35 ppt at 1400 CE to 15-20 ppt at 1875 CE. The covariance between the two trace gases implies that the observed changes are likely caused by decreasing emissions from low latitude biomass burning. We will discuss results from chemical transport modeling and sensitivity tests and the implications for the preindustrial ethane and acetylene budgets.

  16. Distribution, abundance and carbon isotopic composition of gaseous hydrocarbons in Big Soda Lake, Nevada - An alkaline, meromictic lake

    NASA Technical Reports Server (NTRS)

    Oremland, R. S.; Des Marais, D. J.

    1983-01-01

    The study of the distribution and isotopic composition of low molecular weight hydrocarbon gases at the Big Soda Lake, Nevada, has shown that while neither ethylene nor propylene were found in the lake, ethane, propane, isobutane and n-butane concentrations all increased with water column depth. It is concluded that methane has a biogenic origin in both the sediments and the anoxic water column, and that C2-C4 alkanes have biogenic origins in the monimolimnion water and shallow sediments. The changes observed in delta C-13/CH4/ and CH4/(C2H6 + C3H8) with depth in the water column and sedimeents are probably due to bacterial processes, which may include anaerobic methane oxidation and different rates of methanogenesis, and C2-to-C4 alkane production by microorganisms.

  17. High-Resolution Spectroscopy of Stratospheric Ethane Following the Jupiter Impact of 2009

    NASA Technical Reports Server (NTRS)

    Fast, Kelly; Kostiuk, Theodor; Livengood, Timothy A.; Hewagama, Tilak; Amen, John

    2010-01-01

    We report on high-resolution infrared spectroscopy of ethane (C2H6) performed at the latitude of an impact site on Jupiter discovered on 19 July 2009 by A. Wesley from a location in Murrumbateman, Australia. The observations used the NASA Goddard Space Flight Center's Heterodyne Instrument for Planetary Wind and Composition (HIPWAC) at the NASA Infrared Telescope Facility (IRTF) on Mauna Kea, Hawaii. HIPWAC is a mid-infrared (9-12 microns) heterodyne spectrometer operating at the highest limit of spectral resolving power (lambda\\Delta\\lambda > l06), providing information on atmospheric constituent abundance and temperature through fully resolved tine shapes. Ethane is a stable trace product of methane photochemistry that is nearly uniformly mixed in Jupiter's stratosphere, providing an effective probe of that altitude region. Ethane emission line profiles near 11,74 microns in the Ug band were measured in Jupiter's stratosphere at 25 MHz (11.00083/cm) resolution. A sequence of spectra of ethane acquired over a range of longitude at the impact latitude (56S planetocentric) probes constituent abundance and temperature profile, both on and off the impact region. Near the site of the impact, ethane emission increased above levels measured well outside the impact region. Radiative transfer analysis indicates increased ethane mole fraction (30% greater). Variation in the measured continuum level and line intensities within 75deg of the impact longitude indicate the presence of an opacity source (haze) at altitudes near and above the tropopause and as high as the 10-mbar level near the impact site. The indication of possible haze opacity up to the 10-mbar level in the atmosphere is consistent with measurements made by HIPWAC's predecessor as part of the IRTF Shoemaker Levy-9 campaign in 1994.

  18. Desorption Kinetics of Ar, Kr, Xe, N2, O2, CO, Methane, Ethane, and Propane from Graphene and Amorphous Solid Water Surfaces.

    PubMed

    Smith, R Scott; May, R Alan; Kay, Bruce D

    2016-03-03

    The desorption kinetics for Ar, Kr, Xe, N2, O2, CO, methane, ethane, and propane from graphene-covered Pt(111) and amorphous solid water (ASW) surfaces are investigated using temperature-programmed desorption (TPD). The TPD spectra for all of the adsorbates from graphene have well-resolved first, second, third, and multilayer desorption peaks. The alignment of the leading edges is consistent the zero-order desorption for all of the adsorbates. An Arrhenius analysis is used to obtain desorption energies and prefactors for desorption from graphene for all of the adsorbates. In contrast, the leading desorption edges for the adsorbates from ASW do not align (for coverages < 2 ML). The nonalignment of TPD leading edges suggests that there are multiple desorption binding sites on the ASW surface. Inversion analysis is used to obtain the coverage dependent desorption energies and prefactors for desorption from ASW for all of the adsorbates.

  19. Biodegradation of individual and multiple chlorinated aliphatic hydrocarbons by methane-oxidizing cultures.

    PubMed Central

    Chang, H L; Alvarez-Cohen, L

    1996-01-01

    The microbial degradation of chlorinated and nonchlorinated methanes, ethanes, and ethanes by a mixed methane-oxidizing culture grown under chemostat and batch conditions is evaluated and compared with that by two pure methanotrophic strains: CAC1 (isolated from the mixed culture) and Methylosinus trichosporium OB3b. With the exception of 1,1-dichloroethylene, the transformation capacity (Tc) for each chlorinated aliphatic hydrocarbon was generally found to be in inverse proportion to its chlorine content within each aliphatic group (i.e., methanes, ethanes, and ethenes), whereas similar trends were not observed for degradation rate constants. Tc trends were similar for all methane-oxidizing cultures tested. None of the cultures were able to degrade the fully chlorinated aliphatics such as perchloroethylene and carbon tetrachloride. Of the four cultures tested, the chemostat-grown mixed culture exhibited the highest Tc for trichloroethylene, cis-1,2-dichloroethylene, tetrachloroethane, 1,1,1-trichloroethane, and 1,2-dichloroethane, whereas the pure batch-grown OB3b culture exhibited the highest Tc for all other compounds tested. The product toxicity of chlorinated aliphatic hydrocarbons in a mixture containing multiple compounds was cumulative and predictable when using parameters measured from the degradation of individual compounds. The Tc for each chlorinated aliphatic hydrocarbon in a mixture (Tcmix) and the total Tc for the mixture (sigma Tcmix) are functions of the individual Tc, the initial substrate concentration (S0), and the first-order rate constant (k/Ks) of each compound in the mixture, indicating the importance of identifying the properties and compositions of all potentially degradable compounds in a contaminant mixture. PMID:8795228

  20. Ground truthing for methane hotspots at Railroad Valley, NV - application to Mars

    NASA Astrophysics Data System (ADS)

    Detweiler, A. M.; Kelley, C. A.; Bebout, B.; McKay, C. P.; DeMarines, J.; Yates, E. L.; Iraci, L. T.

    2011-12-01

    During the 2010 Greenhouse gas Observing SATellite (GOSAT) calibration and validation campaign at Railroad Valley (RRV) playa, NV, unexpected methane and carbon dioxide fluctuations were observed at the dry lakebed. Possible sources included the presence of natural gas (thermogenic methane) from oil deposits in the surrounding playa, and/or methane production from microbial activity (biogenic) in the subsurface of the playa. In the summer of 2011, measurements were undertaken to identify potential methane sources at RRV. The biogenicity of the methane was determined based on δ13C values and methane/ethane ratios. Soil gas samples and sediments were collected at different sites in the playa and surrounding areas. The soils of the playa consist of a surface crust layer (upper ~ 10 cm) grading to a dense clay below about 25 cm. Soil gas from the playa, sampled at about 20 and 80 cm depths, reflected atmospheric methane concentrations, ranging from 2 to 2.4 ppm, suggesting that no methane was produced within the playa. Natural springs on the northeast and western border of the playa, detected as methane hotspots from a flyover by the Sensor Integrated Environmental Remote Research Aircraft (SIERRA), were also sampled. Bubbles in these springs had methane concentrations that ranged from 69 to 84% by volume. In addition, ethane was detected at very low concentrations, giving methane/ethane ratios in excess of 100,000, indicating biogenic methane in the springs. Soils and sediments collected at the playa and spring sites were incubated in vials over a period of ~23 days. Methane production was observed in the spring sites (avg. 228.6 ± 49.1 nmol/g/d at Kate Springs), but was not evident for the playa sites. The incubation data, therefore, corroborated in situ methane concentration measurements. Particulate organic carbon (POC) was low for all sites samples (0.05-0.38%), with the exception of Kate Springs, which had a much higher POC concentration of 3.4 ± 0

  1. Identifying Different Types of Catalysts for CO2 Reduction by Ethane through Dry Reforming and Oxidative Dehydrogenation.

    PubMed

    Porosoff, Marc D; Myint, Myat Noe Zin; Kattel, Shyam; Xie, Zhenhua; Gomez, Elaine; Liu, Ping; Chen, Jingguang G

    2015-12-14

    The recent shale gas boom combined with the requirement to reduce atmospheric CO2 have created an opportunity for using both raw materials (shale gas and CO2 ) in a single process. Shale gas is primarily made up of methane, but ethane comprises about 10 % and reserves are underutilized. Two routes have been investigated by combining ethane decomposition with CO2 reduction to produce products of higher value. The first reaction is ethane dry reforming which produces synthesis gas (CO+H2 ). The second route is oxidative dehydrogenation which produces ethylene using CO2 as a soft oxidant. The results of this study indicate that the Pt/CeO2 catalyst shows promise for the production of synthesis gas, while Mo2 C-based materials preserve the CC bond of ethane to produce ethylene. These findings are supported by density functional theory (DFT) calculations and X-ray absorption near-edge spectroscopy (XANES) characterization of the catalysts under in situ reaction conditions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Identifying different types of catalysts for CO 2 reduction by ethane through dry reforming and oxidative dehydrogenation

    DOE PAGES

    Marc D. Porosoff; Chen, Jingguang G.; Myint, Myat Noe Zin; ...

    2015-11-10

    In this study, the recent shale gas boom combined with the requirement to reduce atmospheric CO 2 have created an opportunity for using both raw materials (shale gas and CO 2) in a single process. Shale gas is primarily made up of methane, but ethane comprises about 10 % and reserves are underutilized. Two routes have been investigated by combining ethane decomposition with CO 2 reduction to produce products of higher value. The first reaction is ethane dry reforming which produces synthesis gas (CO+H 2). The second route is oxidative dehydrogenation which produces ethylene using CO 2 as a softmore » oxidant. The results of this study indicate that the Pt/CeO 2 catalyst shows promise for the production of synthesis gas, while Mo 2C-based materials preserve the C—C bond of ethane to produce ethylene. These findings are supported by density functional theory (DFT) calculations and X-ray absorption near-edge spectroscopy (XANES) characterization of the catalysts under in situ reaction conditions.« less

  3. Ethane selective IRMOF-8 and its significance in ethane-ethylene separation by adsorption.

    PubMed

    Pires, João; Pinto, Moisés L; Saini, Vipin K

    2014-08-13

    The separation of ethylene from ethane is one of the most energy-intensive single distillations practiced. This separation could be alternatively made by an adsorption process if the adsorbent would preferentially adsorb ethane over ethylene. Materials that exhibit this feature are scarce. Here, we report the case of a metal-organic framework, the IRMOF-8, for which the adsorption isotherms of ethane and ethylene were measured at 298 and 318 K up to pressures of 1000 kPa. Separation of ethane/ethylene mixtures was achieved in flow experiments using a IRMOF-8 filled column. The interaction of gas molecules with the surface of IRMOF-8 was explored using density functional theory (DFT) methods. We show both experimentally and computationally that, as a result of the difference in the interaction energies of ethane and ethylene in IRMOF-8, this material presents the preferential adsorption of ethane over ethylene. The results obtained in this study suggest that MOFs with ligands exhibiting high aromaticity character are prone to adsorb ethane preferably over ethylene.

  4. Theoretical study of the rhenium–alkane interaction in transition metal–alkane σ-complexes

    PubMed Central

    Cobar, Erika A.; Khaliullin, Rustam Z.; Bergman, Robert G.; Head-Gordon, Martin

    2007-01-01

    Metal–alkane binding energies have been calculated for [CpRe(CO)2](alkane) and [(CO)2M(C5H4)CC(C5H4)M(CO)2](alkane), where M = Re or Mn. Calculated binding energies were found to increase with the number of metal–alkane interaction sites. In all cases examined, the manganese–alkane binding energies were predicted to be significantly lower than those for the analogous rhenium–alkane complexes. The metal (Mn or Re)–alkane interaction was predicted to be primarily one of charge transfer, both from the alkane to the metal complex (70–80% of total charge transfer) and from the metal complex to the alkane (20–30% of the total charge transfer). PMID:17442751

  5. Ambient air/near-field measurements of methane and Volatile Organic Compounds (VOCs) from a natural gas facility in Northern Europe

    NASA Astrophysics Data System (ADS)

    Baudic, Alexia; Gros, Valérie; Bonsang, Bernard; Baisnee, Dominique; Vogel, Félix; Yver Kwok, Camille; Ars, Sébastien; Finlayson, Andrew; Innocenti, Fabrizio; Robinson, Rod

    2015-04-01

    Since the 1970's, the natural gas consumption saw a rapid growth in large urban centers, thus becoming an important energy resource to meet continuous needs of factories and inhabitants. Nevertheless, it can be a substantial source of methane (CH4) and pollutants in urban areas. For instance, we have determined that about 20% of Volatile Organic Compounds (VOCs) in downtown Paris are originating from this emission source (Baudic, Gros et al., in preparation). Within the framework of the "Fugitive Methane Emissions" (FuME) project (Climate-KIC, EIT); 2-weeks gas measurements were conducted at a gas compressor station in Northern Europe. Continuous ambient air measurements of methane and VOCs concentrations were performed using a cavity ring-down spectrometer (model G2201, Picarro Inc., Santa Clara, USA) and two portable GC-FID (Chromatotec, Saint-Antoine, France), respectively. On-site near-field samplings were also carried out at the source of two pipelines using stainless steel flasks (later analyzed with a laboratory GC-FID). The objective of this study aims to use VOCs as additional tracers in order to better characterize the fugitive methane emissions in a complex environment, which can be affected by several urban sources (road-traffic, others industries, etc.). Moreover, these measurements have allowed determining the chemical composition of this specific source. Our results revealed that the variability of methane and some VOCs was (rather) well correlated, especially for alkanes (ethane, propane, etc.). An analysis of selected events with strong concentrations enhancement was performed using ambient air measurements; thus allowing the preliminary identification of different emission sources. In addition, some flasks were also sampled in Paris to determine the local natural gas composition. A comparison between both was then performed. Preliminary results from these experiments will be presented here.

  6. Analyses of n-alkanes degrading community dynamics of a high-temperature methanogenic consortium enriched from production water of a petroleum reservoir by a combination of molecular techniques.

    PubMed

    Zhou, Lei; Li, Kai-Ping; Mbadinga, Serge Maurice; Yang, Shi-Zhong; Gu, Ji-Dong; Mu, Bo-Zhong

    2012-08-01

    Despite the knowledge on anaerobic degradation of hydrocarbons and signature metabolites in the oil reservoirs, little is known about the functioning microbes and the related biochemical pathways involved, especially about the methanogenic communities. In the present study, a methanogenic consortium enriched from high-temperature oil reservoir production water and incubated at 55 °C with a mixture of long chain n-alkanes (C(15)-C(20)) as the sole carbon and energy sources was characterized. Biodegradation of n-alkanes was observed as methane production in the alkanes-amended methanogenic enrichment reached 141.47 μmol above the controls after 749 days of incubation, corresponding to 17 % of the theoretical total. GC-MS analysis confirmed the presence of putative downstream metabolites probably from the anaerobic biodegradation of n-alkanes and indicating an incomplete conversion of the n-alkanes to methane. Enrichment cultures taken at different incubation times were subjected to microbial community analysis. Both 16S rRNA gene clone libraries and DGGE profiles showed that alkanes-degrading community was dynamic during incubation. The dominant bacterial species in the enrichment cultures were affiliated with Firmicutes members clustering with thermophilic syntrophic bacteria of the genera Moorella sp. and Gelria sp. Other represented within the bacterial community were members of the Leptospiraceae, Thermodesulfobiaceae, Thermotogaceae, Chloroflexi, Bacteroidetes and Candidate Division OP1. The archaeal community was predominantly represented by members of the phyla Crenarchaeota and Euryarchaeota. Corresponding sequences within the Euryarchaeota were associated with methanogens clustering with orders Methanomicrobiales, Methanosarcinales and Methanobacteriales. On the other hand, PCR amplification for detection of functional genes encoding the alkylsuccinate synthase α-subunit (assA) was positive in the enrichment cultures. Moreover, the appearance of a new ass

  7. Desorption Kinetics of Ar, Kr, Xe, N2, O2, CO, Methane, Ethane, and Propane from Graphene and Amorphous Solid Water Surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, R. Scott; May, Robert A.; Kay, Bruce D.

    2016-03-03

    The desorption kinetics for Ar, Kr, Xe, N2, O2, CO, methane, ethane, and propane from grapheme covered Pt(111) and amorphous solid water (ASW) surfaces are investigated using temperature programmed desorption (TPD). The TPD spectra for all of the adsorbates from graphene have well-resolved first, second, third, and multi- layer desorption peaks. The alignment of the leading edges is consistent the zero-order desorption for all of the adsorbates. An Arrhenius analysis is used to obtain desorption energies and prefactors for desorption from graphene for all of the adsorbates. In contrast, the leading desorption edges for the adsorbates from ASW do notmore » align (for coverages < 2 ML). The non-alignment of TPD leading edges suggests that there are multiple desorption binding sites on the ASW surface. Inversion analysis is used to obtain the coverage dependent desorption energies and prefactors for desorption from ASW for all of the adsorbates.« less

  8. A two-state computational investigation of methane C--H and ethane C--C oxidative addition to [CpM(PH3)]n+ (M = Co, Rh, Ir; n = 0, 1).

    PubMed

    Petit, Alban; Richard, Philippe; Cacelli, Ivo; Poli, Rinaldo

    2006-01-11

    Reductive elimination of methane from methyl hydride half-sandwich phosphane complexes of the Group 9 metals has been investigated by DFT calculations on the model system [CpM(PH(3))(CH(3))(H)] (M = Co, Rh, Ir). For each metal, the unsaturated product has a triplet ground state; thus, spin crossover occurs during the reaction. All relevant stationary points on the two potential energy surfaces (PES) and the minimum energy crossing point (MECP) were optimized. Spin crossover occurs very near the sigma-CH(4) complex local minimum for the Co system, whereas the heavier Rh and Ir systems remain in the singlet state until the CH(4) molecule is almost completely expelled from the metal coordination sphere. No local sigma-CH(4) minimum was found for the Ir system. The energetic profiles agree with the nonexistence of the Co(III) methyl hydride complex and with the greater thermal stability of the Ir complex relative to the Rh complex. Reductive elimination of methane from the related oxidized complexes [CpM(PH(3))(CH(3))(H)](+) (M = Rh, Ir) proceeds entirely on the spin doublet PES, because the 15-electron [CpM(PH(3))](+) products have a doublet ground state. This process is thermodynamically favored by about 25 kcal mol(-1) relative to the corresponding neutral system. It is essentially barrierless for the Rh system and has a relatively small barrier (ca. 7.5 kcal mol(-1)) for the Ir system. In both cases, the reaction involves a sigma-CH(4) intermediate. Reductive elimination of ethane from [CpM(PH(3))(CH(3))(2)](+) (M = Rh, Ir) shows a similar thermodynamic profile, but is kinetically quite different from methane elimination from [CpM(PH(3))(CH(3))(H)](+): the reductive elimination barrier is much greater and does not involve a sigma-complex intermediate. The large difference in the calculated activation barriers (ca. 12.0 and ca. 30.5 kcal mol(-1) for the Rh and Ir systems, respectively) agrees with the experimental observation, for related systems, of oxidatively

  9. Astrobiological Implications of Titan Tholin in Methane Lakes

    NASA Astrophysics Data System (ADS)

    Khare, Bishun N.; McKay, C. P.; McPherson, S.; Cruikshank, D.; Nna-Mvondo, D.; Sekine, Y.

    2010-10-01

    We report here on our ongoing research in the Laboratory for Planetary Studies at NASA Ames Research Center dedicated to determine the degree of solubility of Titan tholin in the methane-ethane lakes. Our work is also directed toward confirming the presence of any astrobiologically significant molecules via hydrolysis and pyrolysis of a simulated lake sample. Our previous work conducted at Cornell University and subsequently in the Laboratory for Planetary Studies at NASA Ames Research Center has established that Titan tholin produces amino acids (Khare et al. Icarus 1986) on hydrolysis, and many compounds including adenine on pyrolysis (Khare et al. Adv. Space Res. 1984). Also, our previous work by Thompson et al. (Icarus 1991) has clearly indicated that when energy is supplied to Titan's atmospheric composition (methane and nitrogen), tholin results from hundreds of contemporary compounds, including highly reactive compounds such as azides and isocyanides. Cassini showed that photolysis of methane produces benzene and many polycyclic aromatic hydrocarbons, along with compounds with very high molecular weights (up to 10000 amu), resulting from the photolytic reactions of CH4 with nitrogen. These heavy aerosols, termed "tholins” by Sagan and Khare (Nature 1979), are also synthesized when Titan intercepts charged particles from the magnetosphere of Saturn. Tholins resulting from both of these syntheses eventually descend to the surface of Titan, where some quantity collects in the methane-ethane lakes. This research is supported by a grant from Planetary Atmospheres.

  10. Short-chain alkanes fuel mussel and sponge Cycloclasticus symbionts from deep-sea gas and oil seeps.

    PubMed

    Rubin-Blum, Maxim; Antony, Chakkiath Paul; Borowski, Christian; Sayavedra, Lizbeth; Pape, Thomas; Sahling, Heiko; Bohrmann, Gerhard; Kleiner, Manuel; Redmond, Molly C; Valentine, David L; Dubilier, Nicole

    2017-06-19

    Cycloclasticus bacteria are ubiquitous in oil-rich regions of the ocean and are known for their ability to degrade polycyclic aromatic hydrocarbons (PAHs). In this study, we describe Cycloclasticus that have established a symbiosis with Bathymodiolus heckerae mussels and poecilosclerid sponges from asphalt-rich, deep-sea oil seeps at Campeche Knolls in the southern Gulf of Mexico. Genomic and transcriptomic analyses revealed that, in contrast to all previously known Cycloclasticus, the symbiotic Cycloclasticus appears to lack the genes needed for PAH degradation. Instead, these symbionts use propane and other short-chain alkanes such as ethane and butane as carbon and energy sources, thus expanding the limited range of substrates known to power chemosynthetic symbioses. Analyses of short-chain alkanes in the environment of the Campeche Knolls symbioses revealed that these are present at high concentrations (in the μM to mM range). Comparative genomic analyses revealed high similarities between the genes used by the symbiotic Cycloclasticus to degrade short-chain alkanes and those of free-living Cycloclasticus that bloomed during the Deepwater Horizon oil spill. Our results indicate that the metabolic versatility of bacteria within the Cycloclasticus clade is higher than previously assumed, and highlight the expanded role of these keystone species in the degradation of marine hydrocarbons.

  11. Short-chain alkanes fuel mussel and sponge Cycloclasticus symbionts from deep-sea gas and oil seeps

    PubMed Central

    Rubin-Blum, Maxim; Antony, Chakkiath Paul; Borowski, Christian; Sayavedra, Lizbeth; Pape, Thomas; Sahling, Heiko; Bohrmann, Gerhard; Kleiner, Manuel; Redmond, Molly C.; Valentine, David L.; Dubilier, Nicole

    2017-01-01

    Cycloclasticus bacteria are ubiquitous in oil-rich regions of the ocean and are known for their ability to degrade polycyclic aromatic hydrocarbons (PAHs). In this study, we describe Cycloclasticus that have established a symbiosis with Bathymodiolus heckerae mussels and poecilosclerid sponges from asphalt-rich, deep-sea oil seeps at Campeche Knolls in the southern Gulf of Mexico. Genomic and transcriptomic analyses revealed that in contrast to all known Cycloclasticus, the symbiotic Cycloclasticus appeared to lack the genes needed for PAH degradation. Instead, these symbionts use propane and other short-chain alkanes such as ethane and butane as carbon and energy sources, thus expanding the limited range of substrates known to power chemosynthetic symbioses. Analyses of short-chain alkanes in the environment of the Campeche Knolls symbioses revealed that these are present at high concentrations (in the µM to mM range). Comparative genomic analyses revealed high similarities between the genes used by the symbiotic Cycloclasticus to degrade short-chain alkanes and those of free-living Cycloclasticus that bloomed during the Deepwater Horizon (DWH) oil spill. Our results indicate that the metabolic versatility of bacteria within the Cycloclasticus clade is higher than previously assumed, and highlight the expanded role of these keystone species in the degradation of marine hydrocarbons. PMID:28628098

  12. Marine microbes rapidly adapt to consume ethane, propane, and butane within the dissolved hydrocarbon plume of a natural seep

    NASA Astrophysics Data System (ADS)

    Mendes, Stephanie D.; Redmond, Molly C.; Voigritter, Karl; Perez, Christian; Scarlett, Rachel; Valentine, David L.

    2015-03-01

    Simple hydrocarbon gases containing two to four carbons (ethane, propane, and butane) are among the most abundant compounds present in petroleum reservoirs, and are introduced into the ocean through natural seepage and industrial discharge. Yet little is known about the bacterial consumption of these compounds in ocean waters. To assess the timing by which microbes metabolize these gases, we conducted a three-phase study that tested and applied a radiotracer-based method to quantify the oxidation rates of ethane, propane, and butane in fresh seawater samples. Phase 1 involved the synthesis of tritiated ethane, propane, and butane using Grignard reagents and tritiated water. Phase 2 was a systematic assessment of experimental conditions, wherein the indigenous microbial community was found to rapidly oxidize ethane, propane, and butane. Phase 3 was the application of this tritium method near the Coal Oil Point seeps, offshore California. Spatial and temporal patterns of ethane, propane, and butane oxidation down current from the hydrocarbon seeps demonstrated that >99% of these gases are metabolized within 1.3 days following initial exposure. The oxidation of ethane outpaced oxidation of propane and butane with patterns indicating the microbial community responded to these gases by rapid adaptation or growth. Methane oxidation responded the slowest in plume waters. Estimates based on the observed metabolic rates and carbon mass balance suggest that ethane, propane, and butane-consuming microorganisms may transiently account for a majority of the total microbial community in these impacted waters.

  13. Ethene/ethane and propene/propane separation via the olefin and paraffin selective metal-organic framework adsorbents CPO-27 and ZIF-8.

    PubMed

    Böhme, Ulrike; Barth, Benjamin; Paula, Carolin; Kuhnt, Andreas; Schwieger, Wilhelm; Mundstock, Alexander; Caro, Jürgen; Hartmann, Martin

    2013-07-09

    Two types of metal-organic frameworks (MOFs) have been synthesized and evaluated in the separation of C2 and C3 olefins and paraffins. Whereas Co2(dhtp) (=Co-CPO-27 = Co-MOF-74) and Mg2(dhtp) show an adsorption selectivity for the olefins ethene and propene over the paraffins ethane and propane, the zeolitic imidazolate framework ZIF-8 behaves in the opposite way and preferentially adsorbs the alkane. Consequently, in breakthrough experiments, the olefins or paraffins, respectively, can be separated.

  14. Comment on “Isolating the non-polar contributions to the intermolecular potential for water-alkane interactions” [J. Chem. Phys. 141, 064905 (2014)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDaniel, Jesse G.; Yethiraj, Arun

    The manuscript by Ballal et al.(Ref 1) presents an interesting study demonstrating the inability of popular force fields with standard combination rules to accurately describe water/alkane interactions. The authors find that the Lorentz-Berthelot combination rules on the SPC/E water and TraPPE alkane potentials give a cross interaction that fails to predict the (low-water content) water solubility in various alkanes. Realizing that both explicit polarization as well as the static octupole moment of methane are missing in these potentials, the authors examine the effect of these terms, but are still unable to resolve the discrepancy. They conclude with the statement thatmore » “the research community lacks a complete picture of water-alkane interactions at the molecular level.« less

  15. Comment on “Isolating the non-polar contributions to the intermolecular potential for water-alkane interactions” [J. Chem. Phys. 141, 064905 (2014)

    DOE PAGES

    McDaniel, Jesse G.; Yethiraj, Arun

    2016-04-06

    The manuscript by Ballal et al.(Ref 1) presents an interesting study demonstrating the inability of popular force fields with standard combination rules to accurately describe water/alkane interactions. The authors find that the Lorentz-Berthelot combination rules on the SPC/E water and TraPPE alkane potentials give a cross interaction that fails to predict the (low-water content) water solubility in various alkanes. Realizing that both explicit polarization as well as the static octupole moment of methane are missing in these potentials, the authors examine the effect of these terms, but are still unable to resolve the discrepancy. They conclude with the statement thatmore » “the research community lacks a complete picture of water-alkane interactions at the molecular level.« less

  16. Preferential methanogenic biodegradation of short-chain n-alkanes by microbial communities from two different oil sands tailings ponds.

    PubMed

    Mohamad Shahimin, Mohd Faidz; Foght, Julia M; Siddique, Tariq

    2016-05-15

    Oil sands tailings ponds harbor diverse anaerobic microbial communities capable of methanogenic biodegradation of solvent hydrocarbons entrained in the tailings. Mature fine tailings (MFT) from two operators (Albian and CNRL) that use different extraction solvents were incubated with mixtures of either two (n-pentane and n-hexane) or four (n-pentane, n-hexane, n-octane and n-decane) n-alkanes under methanogenic conditions for ~600 d. Microbes in Albian MFT began methane production by ~80 d, achieving complete depletion of n-pentane and n-hexane in the two-alkane mixture and their preferential biodegradation in the four-alkane mixture. Microbes in CNRL MFT preferentially metabolized n-octane and n-decane in the four-alkane mixture after a ~80 d lag but exhibited a lag of ~360 d before commencing biodegradation of n-pentane and n-hexane in the two-alkane mixture. 16S rRNA gene pyrosequencing revealed Peptococcaceae members as key bacterial n-alkane degraders in all treatments except CNRL MFT amended with the four-alkane mixture, in which Anaerolineaceae, Desulfobacteraceae (Desulfobacterium) and Syntrophaceae (Smithella) dominated during n-octane and n-decane biodegradation. Anaerolineaceae sequences increased only in cultures amended with the four-alkane mixture and only during n-octane and n-decane biodegradation. The dominant methanogens were acetoclastic Methanosaetaceae. These results highlight preferential n-alkane biodegradation by microbes in oil sands tailings from different producers, with implications for tailings management and reclamation. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Microwave Spectrum and Structure of the Methane-Propane Complex

    NASA Astrophysics Data System (ADS)

    Peterson, Karen I.; Lin, Wei; Arsenault, Eric A.; Choi, Yoon Jeong; Novick, Stewart E.

    2017-06-01

    Methane is exceptional in its solid-phase orientational disorder that persists down to 24 K. Only below that temperature does the structure become partially ordered, and full crystallinity requires even lower temperatures and high pressures. Not surprisingly, methane appears to freely rotate in most van der Waals complexes, although two notable exceptions are CH_4-HF and CH_4-C_5H_5N. Of interest to us is how alkane interactions affect the methane rotation. Except for CH_4-CH_4, rotationally-resolved spectra of alkane-alkane complexes have not been studied. To fill this void, we present the microwave spectrum of CH_4-C_3H_8 which is the smallest alkane complex with a practical dipole moment. The microwave spectrum of CH_4-C_3H_8 was measured using the Fourier Transform microwave spectrometer at Wesleyan University. In the region between 7100 and 25300 MHz, we observed approximately 70 transitions that could plausibly be attributed to the CH_4-C_3H_8 complex (requiring high power and the proper mixture of gases). Of these, 16 were assigned to the A-state (lowest internal rotor state of methane) and four to the F-state. The A-state transitions were fitted with a Watson Hamiltonian using nine spectroscopic constants of which A = 7553.8144(97) MHz, B = 2483.9183(35) MHz, and C = 2041.8630(21) MHz. The A rotational constant is only 1.5 MHz higher than that of Ar-C_3H_8 and, since the a-axis of the complex passes approximately through the centers of mass of the subunits, this indicates a similar relative orientation. Thus, we find that the CH_4 is located above the plane of the propane. The center-of-mass separation of the subunits in CH_4-C_3H_8 is calculated to be 3.993 Å, 0.16 Å longer than the Ar-C_3H_8 distance of 3.825 Å, a reasonable difference considering the larger van der Waals radius of CH_4. The four F-state lines, which were about twice as strong as the A-state lines, could be fitted to A, B, and C rotational constants, and further analysis is in progress.

  18. Computational Insight into the Mechanism of Alkane Hydroxylation by Non-heme Fe(PyTACN) Iron Complexes. Effects of the Substrate and Solvent.

    PubMed

    Postils, Verònica; Company, Anna; Solà, Miquel; Costas, Miquel; Luis, Josep M

    2015-09-08

    The reaction mechanisms for alkane hydroxylation catalyzed by non-heme Fe(V)O complexes presented in the literature vary from rebound stepwise to concerted highly asynchronous processes. The origin of these important differences is still not completely understood. Herein, in order to clarify this apparent inconsistency, the hydroxylation of a series of alkanes (methane and substrates bearing primary, secondary, and tertiary C-H bonds) through a Fe(V)O species, [Fe(V)(O)(OH)(PyTACN)](2+) (PyTACN = 1-(2'-pyridylmethyl)-4,7-dimethyl-1,4,7-triazacyclononane), has been computationally examined at the gas phase and in acetonitrile solution. The initial breaking of the C-H bond can occur via hydrogen atom transfer (HAT), leading to an intermediate where there is an interaction between the radical substrate and [Fe(IV)(OH)2(PyTACN)](2+), or through hydride transfer to form a cationic substrate interacting with the [Fe(III)(OH)2(PyTACN)](+) species. Our calculations show the following: (i) except for methane in the rest of the alkanes studied, the intermediate formed by R(+) and [Fe(III)(OH)2(PyTACN)](+) is more stable than that involving the alkyl radical and the [Fe(IV)(OH)2(PyTACN)](2+) complex; (ii) in spite of (i), the first step of the reaction mechanism for all substrates is a HAT instead of hydride abstraction; (iii) the HAT is the rate-determining step for all analyzed cases; and (iv) the barrier for the HAT decreases along methane → primary → secondary → tertiary carbon. The second part of the reaction mechanism corresponds to the rebound process. Therefore, the stereospecific hydroxylation of alkane C-H bonds by non-heme Fe(V)(O) species occurs through a rebound stepwise mechanism that resembles that taking place at heme analogues. Finally, our study also shows that, to properly describe alkane hydroxylation processes mediated by Fe(V)O species, it is essential to consider the solvent effects during geometry optimizations. The use of gas-phase geometries

  19. Methane emissions from natural gas infrastructure and use in the urban region of Boston, Massachusetts.

    PubMed

    McKain, Kathryn; Down, Adrian; Raciti, Steve M; Budney, John; Hutyra, Lucy R; Floerchinger, Cody; Herndon, Scott C; Nehrkorn, Thomas; Zahniser, Mark S; Jackson, Robert B; Phillips, Nathan; Wofsy, Steven C

    2015-02-17

    Methane emissions from natural gas delivery and end use must be quantified to evaluate the environmental impacts of natural gas and to develop and assess the efficacy of emission reduction strategies. We report natural gas emission rates for 1 y in the urban region of Boston, using a comprehensive atmospheric measurement and modeling framework. Continuous methane observations from four stations are combined with a high-resolution transport model to quantify the regional average emission flux, 18.5 ± 3.7 (95% confidence interval) g CH4 ⋅ m(-2) ⋅ y(-1). Simultaneous observations of atmospheric ethane, compared with the ethane-to-methane ratio in the pipeline gas delivered to the region, demonstrate that natural gas accounted for ∼ 60-100% of methane emissions, depending on season. Using government statistics and geospatial data on natural gas use, we find the average fractional loss rate to the atmosphere from all downstream components of the natural gas system, including transmission, distribution, and end use, was 2.7 ± 0.6% in the Boston urban region, with little seasonal variability. This fraction is notably higher than the 1.1% implied by the most closely comparable emission inventory.

  20. Methane emissions from natural gas infrastructure and use in the urban region of Boston, Massachusetts

    PubMed Central

    McKain, Kathryn; Down, Adrian; Raciti, Steve M.; Budney, John; Hutyra, Lucy R.; Floerchinger, Cody; Herndon, Scott C.; Nehrkorn, Thomas; Zahniser, Mark S.; Jackson, Robert B.; Phillips, Nathan; Wofsy, Steven C.

    2015-01-01

    Methane emissions from natural gas delivery and end use must be quantified to evaluate the environmental impacts of natural gas and to develop and assess the efficacy of emission reduction strategies. We report natural gas emission rates for 1 y in the urban region of Boston, using a comprehensive atmospheric measurement and modeling framework. Continuous methane observations from four stations are combined with a high-resolution transport model to quantify the regional average emission flux, 18.5 ± 3.7 (95% confidence interval) g CH4⋅m−2⋅y−1. Simultaneous observations of atmospheric ethane, compared with the ethane-to-methane ratio in the pipeline gas delivered to the region, demonstrate that natural gas accounted for ∼60–100% of methane emissions, depending on season. Using government statistics and geospatial data on natural gas use, we find the average fractional loss rate to the atmosphere from all downstream components of the natural gas system, including transmission, distribution, and end use, was 2.7 ± 0.6% in the Boston urban region, with little seasonal variability. This fraction is notably higher than the 1.1% implied by the most closely comparable emission inventory. PMID:25617375

  1. Non-methane hydrocarbons (NMHCs) and their contribution to ozone formation potential in a petrochemical industrialized city, Northwest China

    NASA Astrophysics Data System (ADS)

    Jia, Chenhui; Mao, Xiaoxuan; Huang, Tao; Liang, Xiaoxue; Wang, Yanan; Shen, Yanjie; Jiang, Wanyanhan; Wang, Huiqin; Bai, Zhilin; Ma, Minquan; Yu, Zhousuo; Ma, Jianmin; Gao, Hong

    2016-03-01

    Hourly air concentrations of fifty-three non-methane hydrocarbons (NMHCs) were measured at downtown and suburb of Lanzhou, a petrochemical industrialized city, Northwest China in 2013. The measured data were used to investigate the seasonal characteristics of NMHCs air pollution and their contributions to the ozone formation in Lanzhou. Annually averaged NMHCs concentration was 38.29 ppbv in downtown Lanzhou. Among 53 NMHCs, alkanes, alkenes, and aromatics accounted for 57%, 23% and 20% of the total NMHCs air concentration, respectively. The atmospheric levels of toluene and propane with mean values of 4.62 and 4.56 ppbv were higher than other NMHCs, respectively. The ambient levels of NMHCs in downtown Lanzhou were compared with measured NMHCs data collected at a suburban site of Lanzhou, located near a large-scale petrochemical industry. Results show that the levels of alkanes, alkenes, and aromatics in downtown Lanzhou were lower by factors of 3-11 than that in west suburb of the city. O3-isopleth plots show that ozone was formed in VOCs control area in downtown Lanzhou and NOx control area at the west suburban site during the summertime. Propylene-equivalent (Prop-Equiv) concentration and the maximum incremental reactivity (MIR) in downtown Lanzhou indicate that cis-2-butene, propylene, and m/p-xylene were the first three compounds contributing to ozone formation potentials whereas in the petrochemical industrialized west suburb, ethane, propene, and trans-2-Butene played more important role in the summertime ozone formation. Principal component analysis (PCA) and multiple linear regression (MLR) were further applied to identify the dominant emission sources and examine their fractions in total NMHCs. Results suggest that vehicle emission, solvent usage, and industrial activities were major sources of NMHCs in the city, accounting for 58.34%, 22.19%, and 19.47% of the total monitored NMHCs in downtown Lanzhou, respectively. In the west suburb of the city

  2. MD simulation study of the diffusion and local structure of n-alkanes in liquid and supercritical methanol at infinite dilution.

    PubMed

    Feng, Huajie; Gao, Wei; Su, Li; Sun, Zhenfan; Chen, Liuping

    2017-06-01

    The diffusion coefficients of 14 n-alkanes (ranging from methane to n-tetradecane) in liquid and supercritical methanol at infinite dilution (at a pressure of 10.5 MPa and at temperatures of 299 K and 515 K) were deduced via molecular dynamics simulations. Values for the radial distribution function, coordination number, and number of hydrogen bonds were then calculated to explore the local structure of each fluid. The flexibility of the n-alkane (as characterized by the computed dihedral distribution, end-to-end distance, and radius of gyration) was found to be a major influence and hydrogen bonding to be a minor influence on the local structure. Hydrogen bonding reduces the flexibility of the n-alkane, whereas increasing the temperature enhances its flexibility, with temperature having a greater effect than hydrogen bonding on flexibility. Graphical abstract The flexibility of the alkane is a major influence and the hydrogen bonding is a minor influence on the first solvation shell; the coordination numbers of long-chain n-alkanes in the first solvation shell are rather low.

  3. Computational study of hydrocarbon adsorption in metal-organic framework Ni2(dhtp)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Xiuquan; Wick, Collin D.; Thallapally, Praveen K.

    Molecular dynamic simulations were carried out to study the sorption, structural properties, and diffusivities of n-hexane and cyclohexane adsorbed in Ni2(dhtp). The results indicated strong interactions between the alkanes and the host material. The free energy perturbation method was employed to investigate the adsorption free energies of methane, ethane, n-butane, n-hexane and cyclohexane. For linear alkanes, the free energy lowered as the length of the carbon chain increased. Also, the adsorption of n-hexane was preferred over cyclohexane, due to its ability to rearrange its structure to maximize contacts with the host. Furthermore, due to the large pore size of Ni2(dhtp),more » higher loadings of alkanes did not significantly affect the alkane structure, and enhanced the free energy of adsorption for subsequent alkanes being loaded. According to our studies, Ni2(dhtp) has a very promising potential for adsorption and storage of alkanes. This work was supported by the US Department of Energy Basic Energy Sciences' Chemical Sciences, Geosciences & Biosciences Division. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.« less

  4. Photoinduced ethane formation from reaction of ethene with matrix-isolated Ti, V, or Nb atoms.

    PubMed

    Thompson, Matthew G K; Parnis, J Mark

    2005-10-27

    The reactions of matrix-isolated Ti, V, or Nb atoms with ethene (C(2)H(4)) have been studied by FTIR absorption spectroscopy. Under conditions where the ethene dimer forms, metal atoms react with the ethene dimer to yield matrix-isolated ethane (C(2)H(6)) and methane. Under lower ethene concentration conditions ( approximately 1:70 ethene/Ar), hydridic intermediates of the types HMC(2)H(3) and H(2)MC(2)H(2) are also observed, and the relative yield of hydrocarbons is diminished. Reactions of these metals with perdeuterioethene, and equimolar mixtures of C(2)H(4) and C(2)D(4), yield products that are consistent with the production of ethane via a metal atom reaction involving at least two C(2)H(4) molecules. The absence of any other observed products suggests the mechanism also involves production of small, highly symmetric species such as molecular hydrogen and metal carbides. Evidence is presented suggesting that ethane production from the ethene dimer is a general photochemical process for the reaction of excited-state transition-metal atoms with ethene at high concentrations of ethene.

  5. Understanding the factors affecting the activation of alkane by Cp′Rh(CO)2 (Cp′ = Cp or Cp*)

    PubMed Central

    George, Michael W.; Hall, Michael B.; Jina, Omar S.; Portius, Peter; Sun, Xue-Zhong; Towrie, Michael; Wu, Hong; Yang, Xinzheng; Zarić, Snežana D.

    2010-01-01

    Fast time-resolved infrared spectroscopic measurements have allowed precise determination of the rates of activation of alkanes by Cp′Rh(CO) (Cp′ = η5-C5H5 or η5-C5Me5). We have monitored the kinetics of C─H activation in solution at room temperature and determined how the change in rate of oxidative cleavage varies from methane to decane. The lifetime of CpRh(CO)(alkane) shows a nearly linear behavior with respect to the length of the alkane chain, whereas the related Cp*Rh(CO)(alkane) has clear oscillatory behavior upon changing the alkane. Coupled cluster and density functional theory calculations on these complexes, transition states, and intermediates provide the insight into the mechanism and barriers in order to develop a kinetic simulation of the experimental results. The observed behavior is a subtle interplay between the rates of activation and migration. Unexpectedly, the calculations predict that the most rapid process in these Cp′Rh(CO)(alkane) systems is the 1,3-migration along the alkane chain. The linear behavior in the observed lifetime of CpRh(CO)(alkane) results from a mechanism in which the next most rapid process is the activation of primary C─H bonds (─CH3 groups), while the third key step in this system is 1,2-migration with a slightly slower rate. The oscillatory behavior in the lifetime of Cp*Rh(CO)(alkane) with respect to the alkane’s chain length follows from subtle interplay between more rapid migrations and less rapid primary C─H activation, with respect to CpRh(CO)(alkane), especially when the CH3 group is near a gauche turn. This interplay results in the activation being controlled by the percentage of alkane conformers. PMID:21048088

  6. Characterization of a Novel Rieske-Type Alkane Monooxygenase System in Pusillimonas sp. Strain T7-7

    PubMed Central

    Li, Ping; Wang, Lei

    2013-01-01

    The cold-tolerant bacterium Pusillimonas sp. strain T7-7 is able to utilize diesel oils (C5 to C30 alkanes) as a sole carbon and energy source. In the present study, bioinformatics, proteomics, and real-time reverse transcriptase PCR approaches were used to identify the alkane hydroxylation system present in this bacterium. This system is composed of a Rieske-type monooxygenase, a ferredoxin, and an NADH-dependent reductase. The function of the monooxygenase, which consists of one large (46.711 kDa) and one small (15.355 kDa) subunit, was further studied using in vitro biochemical analysis and in vivo heterologous functional complementation tests. The purified large subunit of the monooxygenase was able to oxidize alkanes ranging from pentane (C5) to tetracosane (C24) using NADH as a cofactor, with greatest activity on the C15 substrate. The large subunit also showed activity on several alkane derivatives, including nitromethane and methane sulfonic acid, but it did not act on any aromatic hydrocarbons. The optimal reaction condition of the large subunit is pH 7.5 at 30°C. Fe2+ can enhance the activity of the enzyme evidently. This is the first time that an alkane monooxygenase system belonging to the Rieske non-heme iron oxygenase family has been identified in a bacterium. PMID:23417490

  7. Long-Term Incubation Reveals Methanogenic Biodegradation of C5 and C6 iso-Alkanes in Oil Sands Tailings.

    PubMed

    Siddique, Tariq; Mohamad Shahimin, Mohd Faidz; Zamir, Saima; Semple, Kathleen; Li, Carmen; Foght, Julia M

    2015-12-15

    iso-Alkanes are major components of petroleum and have been considered recalcitrant to biodegradation under methanogenic conditions. However, indigenous microbes in oil sands tailings ponds exposed to solvents rich in 2-methylbutane, 2-methylpentane, 3-methylpentane, n-pentane, and n-hexane produce methane in situ. We incubated defined mixtures of iso- or n-alkanes with mature fine tailings from two tailings ponds of different ages historically exposed to different solvents: one, ~10 years old, receiving C5-C6 paraffins and the other, ~35 years old, receiving naphtha. A lengthy incubation (>6 years) revealed iso-alkane biodegradation after lag phases of 900-1800 and ~280 days, respectively, before the onset of methanogenesis, although lag phases were shorter with n-alkanes (~650-1675 and ~170 days, respectively). 2-Methylpentane and both n-alkanes were completely depleted during ~2400 days of incubation, whereas 2-methylbutane and 3-methylpentane were partially depleted only during active degradation of 2-methylpentane, suggesting co-metabolism. In both cases, pyrotag sequencing of 16S rRNA genes showed codominance of Peptococcaceae with acetoclastic (Methanosaeta) and hydrogenotrophic (Methanoregula and Methanolinea) methanogens. These observations are important for predicting long-term greenhouse-gas emissions from oil sands tailings ponds and extend the known range of hydrocarbons susceptible to methanogenic biodegradation in petroleum-impacted anaerobic environments.

  8. Organic intermediates in the anaerobic biodegradation of coal to methane under laboratory conditions

    USGS Publications Warehouse

    Orem, William H.; Voytek, Mary A.; Jones, Elizabeth J.; Lerch, Harry E.; Bates, Anne L.; Corum, Margo D.; Warwick, Peter D.; Clark, Arthur C.

    2010-01-01

    Organic intermediates in coal fluids produced by anaerobic biodegradation of geopolymers in coal play a key role in the production of methane in natural gas reservoirs. Laboratory biodegradation experiments on sub-bituminous coal from Texas, USA, were conducted using bioreactors to examine the organic intermediates relevant to methane production. Production of methane in the bioreactors was linked to acetate accumulation in bioreactor fluid. Long chain fatty acids, alkanes (C19–C36) and various low molecular weight aromatics, including phenols, also accumulated in the bioreactor fluid and appear to be the primary intermediates in the biodegradation pathway from coal-derived geopolymers to acetate and methane.

  9. Retrievals of ethane from ground-based high-resolution FTIR solar observations with updated line parameters: determination of the optimum strategy for the Jungfraujoch station.

    NASA Astrophysics Data System (ADS)

    Bader, W.; Perrin, A.; Jacquemart, D.; Sudo, K.; Yashiro, H.; Gauss, M.; Demoulin, P.; Servais, C.; Mahieu, E.

    2012-04-01

    Ethane (C2H6) is the most abundant Non-Methane HydroCarbon (NMHC) in the Earth's atmosphere, with a lifetime of approximately 2 months. C2H6 has both anthropogenic and natural emission sources such as biomass burning, natural gas loss and biofuel consumption. Oxidation by the hydroxyl radical is by far the major C2H6 sink as the seasonally changing OH concentration controls the strong modulation of the ethane abundance throughout the year. Ethane lowers Cl atom concentrations in the lower stratosphere and is a major source of peroxyacetyl nitrate (PAN) and carbon monoxide (by reaction with OH). Involved in the formation of tropospheric ozone and in the destruction of atmospheric methane through changes in OH, C2H6 is a non-direct greenhouse gas with a net-global warming potential (100-yr horizon) of 5.5. The retrieval of ethane from ground-based infrared (IR) spectra is challenging. Indeed, the fitting of the ethane features is complicated by numerous interferences by strong water vapor, ozone and methane absorptions. Moreover, ethane has a complicated spectrum with many interacting vibrational modes and the current state of ethane parameters in HITRAN (e.g. : Rothman et al., 2009, see http://www.hitran.com) was rather unsatisfactory in the 3 μm region. In fact, PQ branches outside the 2973-3001 cm-1 range are not included in HITRAN, and most P and R structures are missing. New ethane absorption cross sections recorded at the Molecular Spectroscopy Facility of the Rutherford Appleton Laboratory (Harrison et al., 2010) are used in our retrievals. They were calibrated in intensity by using reference low-resolution spectra from the Pacific Northwest National Laboratory (PNNL) IR database. Pseudoline parameters fitted to these ethane spectra have been combined with HITRAN 2004 line parameters (including all the 2006 updates) for all other species encompassed in the selected microwindows. Also, the improvement brought by the update of the line positions and intensities

  10. METABOLISM OF CHLORINATED METHANES, ETHANES, AND ETHYLENES BY A MIXED BACTERIAL CUTLURE GROWING ON METHANE

    EPA Science Inventory

    Soil was taken from the top 10 cm of a soil column that removed halogenated aliphatic hydrocarbons in the presence of natural gas. This soil was used as an enrichment inoculum to determine that the removals seen in the soil column were in fact of a microbiological nature. Methane...

  11. Catalysts for conversion of methane to higher hydrocarbons

    DOEpatents

    Siriwardane, Ranjani V.

    1993-01-01

    Catalysts for converting methane to higher hydrocarbons such as ethane and ethylene in the presence of oxygen at temperatures in the range of about 700.degree. to 900.degree. C. are described. These catalysts comprise calcium oxide or gadolinium oxide respectively promoted with about 0.025-0.4 mole and about 0.1-0.7 mole sodium pyrophosphate. A preferred reaction temperature in a range of about 800.degree. to 850.degree. C. with a preferred oxygen-to-methane ratio of about 2:1 provides an essentially constant C.sub.2 hydrocarbon yield in the range of about 12 to 19 percent over a period of time greater than about 20 hours.

  12. Wide area methane emissions mapping with airborne IPDA lidar

    NASA Astrophysics Data System (ADS)

    Bartholomew, Jarett; Lyman, Philip; Weimer, Carl; Tandy, William

    2017-08-01

    Methane emissions from natural gas production, storage, and transportation are potential sources of greenhouse gas emissions. Methane leaks also constitute revenue loss potential from operations. Since 2013, Ball Aerospace has been developing advanced airborne sensors using integrated path differential absorption (IPDA) LIDAR instrumentation to identify methane, propane, and longer-chain alkanes in the lowest region of the atmosphere. Additional funding has come from the U.S. Department of Transportation, Pipeline and Hazardous Materials Administration (PHMSA) to upgrade instrumentation to a broader swath coverage of up to 400 meters while maintaining high spatial sampling resolution and geolocation accuracy. Wide area coverage allows efficient mapping of emissions from gathering and distribution networks, processing facilities, landfills, natural seeps, and other distributed methane sources. This paper summarizes the benefits of advanced instrumentation for aerial methane emission mapping, describes the operating characteristics and design of this upgraded IPDA instrumentation, and reviews technical challenges encountered during development and deployment.

  13. Oxidation of ethane by an Acremonium species.

    PubMed Central

    Davies, J S; Wellman, A M; Zajic, J E

    1976-01-01

    Ethane oxidation was studied in ethane-grown resting cells (mycelia) of an Acremonium sp. and in cell-free preparations of such mycelia. From resting cell experiments evidence was found for a pathway of ethane oxidation via ethanol, acetaldehyde, and acetic acid. In vitro studies indicated that ethane-oxidizing activity in such mycelia occurred predominantly in the microsomal fraction of crude homogenates. Microsomal preparations were inactive in the absence of added coenzyme. Marked stimulation of activity was obtained in such preparations with reduced nicotinamide adenine dinucleotide phosphate and to a much lesser degree with nicotinamide adenine dinucleotide phosphate. Ethane oxidation was inhibited by sodium azide and carbon monoxide. PMID:9900

  14. Methyl Radicals in Oxidative Coupling of Methane Directly Confirmed by Synchrotron VUV Photoionization Mass Spectroscopy

    PubMed Central

    Luo, Liangfeng; Tang, Xiaofeng; Wang, Wendong; Wang, Yu; Sun, Shaobo; Qi, Fei; Huang, Weixin

    2013-01-01

    Gas-phase methyl radicals have been long proposed as the key intermediate in catalytic oxidative coupling of methane, but the direct experimental evidence still lacks. Here, employing synchrotron VUV photoionization mass spectroscopy, we have directly observed the formation of gas-phase methyl radicals during oxidative coupling of methane catalyzed by Li/MgO catalysts. The concentration of gas-phase methyl radicals correlates well with the yield of ethylene and ethane products. These results lead to an enhanced fundamental understanding of oxidative coupling of methane that will facilitate the exploration of new catalysts with improved performance. PMID:23567985

  15. Redox controls on methane formation, migration and fate in shallow aquifers

    NASA Astrophysics Data System (ADS)

    Humez, Pauline; Mayer, Bernhard; Nightingale, Michael; Becker, Veith; Kingston, Andrew; Taylor, Stephen; Bayegnak, Guy; Millot, Romain; Kloppmann, Wolfram

    2016-07-01

    geochemistry data revealed that the elevated δ13CCH4 values were caused by microbial oxidation of biogenic methane or post-sampling degradation of low CH4 content samples rather than migration of deep thermogenic gas. A significant number of samples (39.2 %) contained methane with predominantly biogenic C isotope ratios (δ13CCH4 < -55 ‰) accompanied by elevated concentrations of ethane and sometimes trace concentrations of propane. These gases, observed in 28.1 % of the samples, bearing both biogenic (δ13C) and thermogenic (presence of C3) characteristics, are most likely derived from shallow coal seams that are prevalent in the Cretaceous Horseshoe Canyon and neighboring formations in which some of the groundwater wells are completed. The remaining 3.7 % of samples were not assigned because of conflicting parameters in the data sets or between replicates samples. Hence, despite quite variable gas concentrations and a wide range of δ13CCH4 values in baseline groundwater samples, we found no conclusive evidence for deep thermogenic gas migration into shallow aquifers either naturally or via anthropogenically induced pathways in this baseline groundwater survey. This study shows that the combined interpretation of aqueous geochemistry data in concert with chemical and isotopic compositions of dissolved and/or free gas can yield unprecedented insights into formation and potential migration of methane in shallow groundwater. This enables the assessment of cross-formational methane migration and provides an understanding of alkane gas sources and pathways necessary for a stringent baseline definition in the context of current and future unconventional hydrocarbon exploration and exploitation.

  16. Atmospheric chemistry of ethane and ethylene

    NASA Technical Reports Server (NTRS)

    Aikin, A. C.; Herman, J. R.; Maier, E. J.; Mcquillan, C. J.

    1982-01-01

    It is shown by a study of ethane and ethylene photochemistry that the loss of ethane is controlled by OH in the troposphere and Cl in the stratosphere. Ethane observations indicating free Cl concentrations below 30 km that are only 10% of the value predicted by the present model calculations cannot be explained by heterogeneous aerosol concentration processes, and contradict current stratospheric photochemistry. The chemical destruction of ethane and ethylene leads to the generation of such compounds as carbon monoxide and formaldehyde, and it is found that the tropospheric concentrations of the latter are enhanced by nearly a factor of three for an ethylene mixing ratio of 2 ppb.

  17. Temperature dependence of carbon kinetic isotope effect for the oxidation reaction of ethane by OH radicals under atmospherically relevant conditions

    NASA Astrophysics Data System (ADS)

    Piansawan, Tammarat; Saccon, Marina; Laumer, Werner; Gensch, Iulia; Kiendler-Scharr, Astrid

    2015-04-01

    Modeling of the global distribution of atmospheric ethane sources and sinks by using the 13C isotopic composition requires accurate knowledge of the carbon kinetic isotope effect (KIE) of its atmospheric removal reactions. The quantum mechanical prediction implies the necessity to elucidate the temperature dependence of KIE within atmospherically relevant temperature range by experiment. In this study, the KIE and its temperature dependence for ethane oxidation by OH radicals was investigated at ambient pressure in a temperature range of 243 K to 303 K. The chemical reactions were carried out in a 15 L PFE reaction chamber, suspended in a thermally controlled oven. The isotope ratios of the gas phase components during the course of the reactions were measured by Thermal Desorption -- Gas Chromatography -- Isotope Ratio Mass Spectrometry (TD-GC-IRMS). For each temperature, the KIE was derived from the temporal evolution of the concentration and stable carbon isotope ratio (δ13C) of ethane using a method adapted from the relative reaction rate concept. The room temperature KIE of the ethane reaction with OH radicals was found to be 6.85 ± 0.32 ‰. This value is in agreement with the previously reported value of 8.57 ± 1.95 ‰ [Anderson et al. 2004] but has a substantially lower uncertainty. The experimental results will be discussed with the KIE temperature dependence predicted by quantum mechanical calculations. Reference: Rebecca S. Anderson, Lin Huang, Richard Iannone, Alexandra E. Thompson, and Jochen Rudolph (2004), Carbon Kinetic Isotope Effects in the Gas Phase Reactions of Light Alkanes and Ethene with the OH Radical at 296 ± 4 K, J. Phys. Chem. A, 108, 11537--11544

  18. Role of alcohol dehydrogenase activity and the acetaldehyde in ethanol- induced ethane and pentane production by isolated perfused rat liver.

    PubMed Central

    Müller, A; Sies, H

    1982-01-01

    The volatile hydrocarbons ethane and n-pentane are produced at increased rates by isolated perfused rat liver during the metabolism of acutely ethanol. The effect is half-maximal at 0.5 mM-ethanol, and its is not observed when inhibitors of alcohol dehydrogenase such as 4-methyl- or 4-propyl-pyrazole are also present. Propanol, another substrate for the dehydrogenase, is also active. Increased alkane production can be initiated by adding acetaldehyde in the presence of 4-methyl- or 4-propyl-pyrazole. An antioxidant, cyanidanol, suppresses the ethanol-induced alkane production. The data obtained with the isolated organ demonstrate that products known to arise from the peroxidation of polyunsaturated fatty acids are formed in the presence of ethanol and that the activity of alcohol dehydrogenase is required for the generation of the active radical species. The mere presence of ethanol, e.g. at binding sites of special form(s) of cytochrome P-450, it not sufficient to elicit an increased production of volatile hydrocarbons by rat liver. PMID:6751324

  19. Pairwise-additive hydrophobic effect for alkanes in water

    PubMed Central

    Wu, Jianzhong; Prausnitz, John M.

    2008-01-01

    Pairwise additivity of the hydrophobic effect is indicated by reliable experimental Henry's constants for a large number of linear and branched low-molecular-weight alkanes in water. Pairwise additivity suggests that the hydrophobic effect is primarily a local phenomenon and that the hydrophobic interaction may be represented by a semiempirical force field. By representing the hydrophobic potential between two methane molecules as a linear function of the overlap volume of the hydration layers, we find that the contact value of the hydrophobic potential (−0.72 kcal/mol) is smaller than that from quantum mechanics simulations (−2.8 kcal/mol) but is close to that from classical molecular dynamics (−0.5∼−0.9 kcal/mol). PMID:18599448

  20. The bulk isotopic composition of hydrocarbons in subaerial volcanic-hydrothermal emissions from different tectonic settings

    NASA Astrophysics Data System (ADS)

    Fiebig, J.; Tassi, F.; Vaselli, O.; Viveiros, M. F.; Silva, C.; Lopez, T. M.; D'Alessandro, W.; Stefansson, A.

    2015-12-01

    Assuming that methane and its higher chain homologues derive from a common source, carbon isotope patterns have been applied as a criterion to identify occurrences of abiogenic hydrocarbons. Based on these, it has been postulated that abiogenic hydrocarbon production occurs within several (ultra)mafic environments. More evolved volcanic-hydrothermal systems may also provide all the prerequisites necessary for abiogenic hydrocarbon production, such as availability of inorganic CO2, hydrogen and heat. We have investigated the chemical and isotopic composition of n-alkanes contained within subaerial hydrothermal discharges emitted from a range of hot spot, subduction and rift-related volcanoes to determine the origin of hydrocarbons in these systems. Amongst these are Nisyros (Greece), Vesuvio, Campi Flegrei, Ischia, Pantelleria and Vulcano (all Italy), Mt. Mageik and Trident (USA), Copahue (Argentina), Teide (Spain), Furnas and Fogo (Portugal). The carbon isotopic composition of methane emitted from these sites varies from -65 to -8‰ , whereas δ13C of ethane and propane exhibit a much narrower variation from -17‰ to -31‰. Methane that occurs most enriched in 13C is also characterized by relatively positive δD values ranging up to -80‰. Carbon isotope reversals between methane and ethane are only observed for locations exhibiting δ13C-CH4 values > -20‰, such as Teide, Pantelleria, Trident and Furnas. At Furnas, δ13C-CH4 varies by 50‰ within a relatively short distance of <50m between two vents, whereas δ13C-C2H6 varies by less than 2‰ only. For some of the investigated locations apparent carbon isotopic temperatures between methane and CO2 are in agreement with those derived from gas concentration geothermometers. At these locations methane, however seems to be in disequilibrium with ethane and propane. These findings imply that methane on the one hand and the C2+ hydrocarbons on the other hand often might derive from distinct sources.

  1. cis,cis,cis-(Acetato-κ(2) O,O')bis-[1,2-bis-(diphenyl-phosphan-yl)ethane-κ(2) P,P']ruthenium(II) 0.75-trifluoro-methane-sulfonate 0.25-chloride.

    PubMed

    Figueira, João; Rodrigues, João; Valkonen, Arto

    2013-04-01

    In the title Ru(II) carboxyl-ate compound, [Ru(C2H3O2)(C26H24P2)2](CF3O3S)0.75Cl0.25, the distorted tris-bidentate octa-hedral stereochemistry about the Ru(II) atom in the complex cation comprises four P-atom donors from two 1,2-bis-(diphenyl-phosphan-yl)ethane ligands [Ru-P = 2.2881 (13)-2.3791 (13) Å] and two O-atom donors from the acetate ligand [Ru-O = 2.191 (3) and 2.202 (3) Å]. The disordered counter-anions are located on the same site in the structure in a 3:1 ratio, the expanded formula comprising four complex cations, three trifluoro-methane-sulfonate anions and one chloride anion, with two such formula units in the unit cell.

  2. Mechanism of Oxidation of Ethane to Ethanol at Iron(IV)-Oxo Sites in Magnesium-Diluted Fe2(dobdc).

    PubMed

    Verma, Pragya; Vogiatzis, Konstantinos D; Planas, Nora; Borycz, Joshua; Xiao, Dianne J; Long, Jeffrey R; Gagliardi, Laura; Truhlar, Donald G

    2015-05-06

    The catalytic properties of the metal-organic framework Fe2(dobdc), containing open Fe(II) sites, include hydroxylation of phenol by pure Fe2(dobdc) and hydroxylation of ethane by its magnesium-diluted analogue, Fe0.1Mg1.9(dobdc). In earlier work, the latter reaction was proposed to occur through a redox mechanism involving the generation of an iron(IV)-oxo species, which is an intermediate that is also observed or postulated (depending on the case) in some heme and nonheme enzymes and their model complexes. In the present work, we present a detailed mechanism by which the catalytic material, Fe0.1Mg1.9(dobdc), activates the strong C-H bonds of ethane. Kohn-Sham density functional and multireference wave function calculations have been performed to characterize the electronic structure of key species. We show that the catalytic nonheme-Fe hydroxylation of the strong C-H bond of ethane proceeds by a quintet single-state σ-attack pathway after the formation of highly reactive iron-oxo intermediate. The mechanistic pathway involves three key transition states, with the highest activation barrier for the transfer of oxygen from N2O to the Fe(II) center. The uncatalyzed reaction, where nitrous oxide directly oxidizes ethane to ethanol is found to have an activation barrier of 280 kJ/mol, in contrast to 82 kJ/mol for the slowest step in the iron(IV)-oxo catalytic mechanism. The energetics of the C-H bond activation steps of ethane and methane are also compared. Dehydrogenation and dissociation pathways that can compete with the formation of ethanol were shown to involve higher barriers than the hydroxylation pathway.

  3. Atmospheric Implications of Light Alkane Emissions From the U.S. Oil and Natural Gas Sector

    NASA Astrophysics Data System (ADS)

    Fischer, E. V.; Tzompa Sosa, Z. A.; Henderson, B.; Travis, K.; Keller, C.; Sive, B. C.; Helmig, D.; Fried, A.; Herndon, S. C.; Yacovitch, T. I.; Mahieu, E.; Franco, B.

    2017-12-01

    New efficient drilling techniques triggered a massive growth of unconventional oil and natural gas production in North America starting in 2005. Emissions of a variety of volatile organic compounds (VOCs) from the oil and gas sector occur during well development and production phases, and emissions to the atmosphere also continue when wells are abandoned. Determining VOC emission fluxes in the context of rapid growth of the oil and natural gas industry presents a big challenge for emission inventories. In the U.S., the latest version of the 2011 National Emission Inventory (NEI2011v6.3) includes updates over important oil and natural gas basins and speciation profiles based on the Western Regional Air Partnership. We incorporated the NEI2011v6.3 into the GEOS-Chem chemical transport model to simulate the atmospheric abundances of C2-C5 alkanes over the U.S. attributed to emissions from the oil and gas sector. We present results from a nested high-resolution (0.5 degree x 0.667 degree) simulation over North America. C2-C5 alkane emissions from NEI 2011v6.3 increase across the U.S. compared to the previous NEI 2011 v2 incorporated as default in GEOS-Chem. Ethane (C2H6) and propane (C3H8) emission fluxes increased over important oil and natural gas basins. We compare our simulation to a suite of surface observations, column measurements, and aircraft profiles. Finally, we estimate the contribution that C2-C5 alkanes make to the abundance and production of important secondary species including ozone, peroxy acetyl nitrate, and several ketones.

  4. Atmospheric chemistry: The return of ethane

    NASA Astrophysics Data System (ADS)

    Hakola, Hannele; Hellén, Heidi

    2016-07-01

    Ethane emissions can lead to ozone pollution. Measurements at 49 sites show that long-declining atmospheric ethane concentrations started rising in 2010 in the Northern Hemisphere, largely due to greater oil and gas production in the USA.

  5. Abnormal exhaled ethane concentrations in scleroderma.

    PubMed

    Cope, K A; Solga, S F; Hummers, L K; Wigley, F M; Diehl, A M; Risby, T H

    2006-01-01

    Scleroderma (systemic sclerosis) is a chronic multisystem autoimmune disease in which oxidative stress is suspected to play a role in the pathophysiology. Therefore, it was postulated that patients with scleroderma would have abnormally high breath ethane concentrations, which is a volatile product of free-radical-mediated lipid peroxidation, compared with a group of controls. There was a significant difference (p<0.05) between the mean exhaled ethane concentration of 5.27 pmol ml(-1) CO(2) (SEM=0.76) in the scleroderma patients (n=36) versus the mean exhaled concentration of 2.72 pmol ml(-1) CO(2) (SEM=0.71) in a group of healthy controls (n=21). Within the scleroderma group, those subjects taking a calcium channel blocker had lower ethane concentrations compared with patients who were not taking these drugs (p=0.05). There was a significant inverse association between lung diffusion capacity for carbon monoxide (per cent of predicted) and ethane concentration (b=-2.8, p=0.026, CI=-5.2 to -0.35). These data support the presence of increased oxidative stress among patients with scleroderma that is detected by measuring breath ethane concentrations.

  6. Ultrasonic velocity dispersion in ethane-argon mixtures.

    NASA Technical Reports Server (NTRS)

    Amme, R. C.; Warren, B. E.

    1968-01-01

    Ultrasonic interferometry to measure velocity dispersion in ethane-Ar mixtures, discussing ethane relaxation characteristics and relaxation characteristics and relaxation times for particle collisions

  7. Detection of abundant ethane and methane, along with carbon monoxide and water, in comet C/1996 B2 Hyakutake: evidence for interstellar origin

    NASA Technical Reports Server (NTRS)

    Mumma, M. J.; DiSanti, M. A.; Dello Russo, N.; Fomenkova, M.; Magee-Sauer, K.; Kaminski, C. D.; Xie, D. X.

    1996-01-01

    The saturated hydrocarbons ethane (C2H6) and methane (CH4) along with carbon monoxide (CO) and water (H2O) were detected in comet C/1996 B2 Hyakutake with the use of high-resolution infrared spectroscopy at the NASA Infrared Telescope Facility on Mauna Kea, Hawaii. The inferred production rates of molecular gases from the icy, cometary nucleus (in molecules per second) are 6.4 X 10(26) for C2H6, 1.2 X 10(27) for CH4, 9.8 X 10(27) for CO, and 1.7 X 10(29) for H2O. An abundance of C2H6 comparable to that of CH4 implies that ices in C/1996 B2 Hyakutake did not originate in a thermochemically equilibrated region of the solar nebula. The abundances are consistent with a kinetically controlled production process, but production of C2H6 by gas-phase ion molecule reactions in the natal cloud core is energetically forbidden. The high C2H6/CH4 ratio is consistent with production of C2H6 in icy grain mantles in the natal cloud, either by photolysis of CH4-rich ice or by hydrogen-addition reactions to acetylene condensed from the gas phase.

  8. Variation in n-Alkane Distributions of Modern Plants: Questioning Applications of n-Alkanes in Chemotaxonomy and Paleoecology

    NASA Astrophysics Data System (ADS)

    Bush, R. T.; McInerney, F. A.

    2010-12-01

    Long chain n-alkanes (n-C21 to n-C37) are synthesized as part of the epicuticular leaf wax of terrestrial plants and are among the most recognizable and widely used plant biomarkers. n-Alkane distributions have been utilized in previous studies on modern plant chemotaxonomy, testing whether taxa can be identified based on characteristic n-alkane profiles. Dominant n-alkanes (e.g. n-C27 or n-C31) have also been ascribed to major plant groups (e.g. trees or grasses respectively) and have been used in paleoecology studies to reconstruct fluctuations in plant functional types. However, many of these studies have been based on relatively few modern plant data; with the wealth of modern n-alkane studies, a more comprehensive analysis of n-alkanes in modern plants is now possible and can inform the usefulness of n-alkane distributions as paleoecological indicators. The work presented here is a combination of measurements made using plant leaves collected from the Chicago Botanic Garden and a compilation of published literature data from six continents. We categorized plants by type: angiosperms, gymnosperms, woody plants, forbs, grasses, ferns and pteridophytes, and mosses. We then quantified n-alkane distribution parameters such as carbon preference index (CPI), average chain length (ACL), and dispersion (a measure of the spread of the profile over multiple chain lengths) and used these to compare plant groups. Among all plants, one of the emergent correlations is a decrease in dispersion with increasing CPI. Within and among plant groups, n-alkane distributions show a very large range of variation, and the results show little or no correspondence between broad plant groups and a single dominant n-alkane or a ratio of n-alkanes. These findings are true both when data from six continents are combined and when plants from a given region are compared (North America). We also compared the n-alkane distributions of woody angiosperms, woody gymnosperms, and grasses with one

  9. Analysis of Non-Methane Hydrocarbon Data from 2004-2016 in a Subtropical Area close to the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Rappenglueck, B.

    2017-12-01

    Speciated C2-C11 non-methane hydrocarbons (NMHC) have been measured online on an hourly basis at Lake Jackson/TX close to the Gulf of Mexico. Altogether 48 NMHCs along with NO, NO2, NOx, O3 have been collected continuously from January 2004-December 2016 under the auspices of the Texas Commission on Environmental Quality. Data was screened for background conditions representing marine wind sectors. The data set represents a combination of marine air masses mixed with local biogenic emissions. The data analysis addresses photochemical processing of air masses as reflected in the relationship of ln(n-butane/ethane) vs. ln(propane/ethane) and ln(i-butane/ethane) vs. ln(n-butane/ethane). In addition, key NMHC relationships for radical chemistry, e.g. i-butane vs n-butane for OH and Cl chemistry and i-pentane vs. n-pentane for NO3 chemistry, are discussed. Seasonal analysis revealed a clear trend with maximum NMHC mixing ratios in winter time and lowest mixing ratios in summer reflecting the impact of photochemical processes in summer. Propene equivalents were highest during summertime, with significant contributions from alkenes, including isoprene. The relation of propane/ethane vs ethane indicates seasonal variation with lowest values (i.e. most aged air masses) in winter.

  10. Molecular mechanism of hydrocarbons binding to the metal–organic framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Xiuquan; Wick, Collin D.; Thallapally, Praveen K.

    The adsorption and diffusivity of methane, ethane, n-butane, n-hexane and cyclohexane in a metal organic framework (MOF) with the organic linker tetrakis[4-(carboxyphenyl)oxamethyl]methane, the metal salt, Zn2+, and organic pillar, 4,4’-bipyridin was studied using molecular dynamics simulations. For the n-alkanes, the longer the chain, the lower the free energy of adsorption, which was attributed to a greater number of contacts between the alkane and MOF. Cyclohexane had a slightly higher adsorption free energy than n-hexane. Furthermore, for cyclo- and n-hexane, there were no significant differences in adsorption free energies between systems with low to moderate loadings. The diffusivity of the n-alkanesmore » was found to strongly depend on chain length with slower diffusion for longer chains. Cyclohexane had no effective diffusion, suggesting that the selectivity the MOF has towards n-hexane over cyclohexane is the result of kinetics instead of energetics. This work was supported by the U.S. Department of Energy's (DOE) Office of Basic Energy Sciences, Chemical Sciences program. The Pacific Northwest National Laboratory is operated by Battelle for DOE.« less

  11. Catalytic aromatization of methane.

    PubMed

    Spivey, James J; Hutchings, Graham

    2014-02-07

    Recent developments in natural gas production technology have led to lower prices for methane and renewed interest in converting methane to higher value products. Processes such as those based on syngas from methane reforming are being investigated. Another option is methane aromatization, which produces benzene and hydrogen: 6CH4(g) → C6H6(g) + 9H2(g) ΔG°(r) = +433 kJ mol(-1) ΔH°(r) = +531 kJ mol(-1). Thermodynamic calculations for this reaction show that benzene formation is insignificant below ∼600 °C, and that the formation of solid carbon [C(s)] is thermodynamically favored at temperatures above ∼300 °C. Benzene formation is insignificant at all temperatures up to 1000 °C when C(s) is included in the calculation of equilibrium composition. Interestingly, the thermodynamic limitation on benzene formation can be minimized by the addition of alkanes/alkenes to the methane feed. By far the most widely studied catalysts for this reaction are Mo/HZSM-5 and Mo/MCM-22. Benzene selectivities are generally between 60 and 80% at methane conversions of ∼10%, corresponding to net benzene yields of less than 10%. Major byproducts include lower molecular weight hydrocarbons and higher molecular weight substituted aromatics. However, carbon formation is inevitable, but the experimental findings show this can be kinetically limited by the use of H2 or oxidants in the feed, including CO2 or steam. A number of reactor configurations involving regeneration of the carbon-containing catalyst have been developed with the goal of minimizing the cost of regeneration of the catalyst once deactivated by carbon deposition. In this tutorial review we discuss the thermodynamics of this process, the catalysts used and the potential reactor configurations that can be applied.

  12. Bis[1-meth­oxy-2,2,2-tris­(pyrazol-1-yl-κN 2)ethane]­nickel(II) bis­(tri­fluoro­methane­sulfonate) methanol disolvate

    PubMed Central

    Lyubartseva, Ganna; Parkin, Sean; Mallik, Uma Prasad

    2013-01-01

    In the title salt, [Ni(C12H14N6O)2](CF3SO3)2·2CH3OH, the NiII ion is coordinated by six N atoms from two tridentate 1-meth­oxy-2,2,2-tris­(pyrazol-1-yl)ethane ligands in a distorted octa­hedral geometry. The NiII ion is situated on an inversion centre. The Ni—N distances range from 2.0589 (19) to 2.0757 (19) Å, intra-ligand N—Ni—N angles range from 84.50 (8) to 85.15 (8)°, and adjacent inter-ligand N—Ni—N angles range between 94.85 (8) and 95.50 (8)°. In the crystal, O—H⋯O hydrogen bonds between methanol solvent mol­ecules and tri­fluoro­methane­sulfonate anions are observed. PMID:24098170

  13. Partial oxidation of methane by pulsed corona discharges

    NASA Astrophysics Data System (ADS)

    Hoeben, W. F. L. M.; Boekhoven, W.; Beckers, F. J. C. M.; van Heesch, E. J. M.; Pemen, A. J. M.

    2014-09-01

    Pulsed corona-induced partial oxidation of methane in humid oxygen or carbon dioxide atmospheres has been investigated for future fuel synthesis applications. The obtained product spectrum is wide, i.e. saturated, unsaturated and oxygen-functional hydrocarbons. The generally observed methane conversion levels are 6-20% at a conversion efficiency of about 100-250 nmol J-1. The main products are ethane, ethylene and acetylene. Higher saturated hydrocarbons up to C6 have been detected. The observed oxygen-functional hydrocarbons are methanol, ethanol and lower concentrations of aldehydes, ketones, dimethylether and methylformate. Methanol seems to be exclusively produced with CH4/O2 mixtures at a maximum production efficiency of 0.35 nmol J-1. CH4/CO2 mixtures appear to yield higher hydrocarbons. Carboxylic acids appear to be mainly present in the aqueous reactor phase, possibly together with higher molecular weight species.

  14. Reconciling divergent estimates of oil and gas methane emissions

    PubMed Central

    Zavala-Araiza, Daniel; Lyon, David R.; Alvarez, Ramón A.; Davis, Kenneth J.; Harriss, Robert; Herndon, Scott C.; Karion, Anna; Kort, Eric Adam; Lamb, Brian K.; Lan, Xin; Marchese, Anthony J.; Pacala, Stephen W.; Robinson, Allen L.; Shepson, Paul B.; Sweeney, Colm; Talbot, Robert; Townsend-Small, Amy; Yacovitch, Tara I.; Zimmerle, Daniel J.; Hamburg, Steven P.

    2015-01-01

    Published estimates of methane emissions from atmospheric data (top-down approaches) exceed those from source-based inventories (bottom-up approaches), leading to conflicting claims about the climate implications of fuel switching from coal or petroleum to natural gas. Based on data from a coordinated campaign in the Barnett Shale oil and gas-producing region of Texas, we find that top-down and bottom-up estimates of both total and fossil methane emissions agree within statistical confidence intervals (relative differences are 10% for fossil methane and 0.1% for total methane). We reduced uncertainty in top-down estimates by using repeated mass balance measurements, as well as ethane as a fingerprint for source attribution. Similarly, our bottom-up estimate incorporates a more complete count of facilities than past inventories, which omitted a significant number of major sources, and more effectively accounts for the influence of large emission sources using a statistical estimator that integrates observations from multiple ground-based measurement datasets. Two percent of oil and gas facilities in the Barnett accounts for half of methane emissions at any given time, and high-emitting facilities appear to be spatiotemporally variable. Measured oil and gas methane emissions are 90% larger than estimates based on the US Environmental Protection Agency’s Greenhouse Gas Inventory and correspond to 1.5% of natural gas production. This rate of methane loss increases the 20-y climate impacts of natural gas consumed in the region by roughly 50%. PMID:26644584

  15. Evaluating ethane and methane emissions associated with the development of oil and natural gas extraction in North America

    NASA Astrophysics Data System (ADS)

    Franco, B.; Mahieu, E.; Emmons, L. K.; Tzompa-Sosa, Z. A.; Fischer, E. V.; Sudo, K.; Bovy, B.; Conway, S.; Griffin, D.; Hannigan, J. W.; Strong, K.; Walker, K. A.

    2016-04-01

    Sharp rises in the atmospheric abundance of ethane (C2H6) have been detected from 2009 onwards in the Northern Hemisphere as a result of the unprecedented growth in the exploitation of shale gas and tight oil reservoirs in North America. Using time series of C2H6 total columns derived from ground-based Fourier transform infrared (FTIR) observations made at five selected Network for the Detection of Atmospheric Composition Change sites, we characterize the recent C2H6 evolution and determine growth rates of ˜5% yr-1 at mid-latitudes and of ˜3% yr-1 at remote sites. Results from CAM-chem simulations with the Hemispheric Transport of Air Pollutants, Phase II bottom-up inventory for anthropogenic emissions are found to greatly underestimate the current C2H6 abundances. Doubling global emissions is required to reconcile the simulations and the observations prior to 2009. We further estimate that North American anthropogenic C2H6 emissions have increased from 1.6 Tg yr-1 in 2008 to 2.8 Tg yr-1 in 2014, i.e. by 75% over these six years. We also completed a second simulation with new top-down emissions of C2H6 from North American oil and gas activities, biofuel consumption and biomass burning, inferred from space-borne observations of methane (CH4) from Greenhouse Gases Observing SATellite. In this simulation, GEOS-Chem is able to reproduce FTIR measurements at the mid-latitudinal sites, underscoring the impact of the North American oil and gas development on the current C2H6 abundance. Finally we estimate that the North American oil and gas emissions of CH4, a major greenhouse gas, grew from 20 to 35 Tg yr-1 over the period 2008-2014, in association with the recent C2H6 rise.

  16. Mid-infrared dual-gas sensor for simultaneous detection of methane and ethane using a single continuous-wave interband cascade laser

    DOE PAGES

    Ye, Weilin; Li, Chunguang; Zheng, Chuantao; ...

    2016-07-18

    A continuous-wave (CW) interband cascade laser (ICL) based mid-infrared sensor system was demonstrated for simultaneous detection of atmospheric methane (CH 4) and ethane (C 2H 6). A 3.337 µm CW ICL with an emitting wavenumber range of 2996.0–3001.5 cm –1 was used to simultaneously target two absorption lines, C 2H 6 at 2996.88 cm –1 and CH 4 at 2999.06 cm –1, respectively. The sensor performance was first evaluated for single-gas detection by only targeting the absorption line of one gas species. Allan deviations of 11.2 parts per billion in volume (ppbv) for CH 4 and 1.86 ppbv for Cmore » 2H 6 with an averaging time of 3.4 s were achieved for the detection of these two gases. Dual-gas detection was realized by using a long-term scan signal to target both CH 4 and C 2H 6 lines. The Allan deviations increased slightly to 17.4 ppbv for CH 4 and 2.4 ppbv for C 2H 6 with an averaging time of 4.6 s due to laser temperature and power drift caused by long-term wavelength scanning. Measurements for both indoor and outdoor concentration changes of CH 4 and C 2H 6 were conducted. As a result, the reported single ICL based dual-gas sensor system has the advantages of reduced size and cost compared to two separate sensor systems.« less

  17. Mid-infrared dual-gas sensor for simultaneous detection of methane and ethane using a single continuous-wave interband cascade laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, Weilin; Li, Chunguang; Zheng, Chuantao

    A continuous-wave (CW) interband cascade laser (ICL) based mid-infrared sensor system was demonstrated for simultaneous detection of atmospheric methane (CH 4) and ethane (C 2H 6). A 3.337 µm CW ICL with an emitting wavenumber range of 2996.0–3001.5 cm –1 was used to simultaneously target two absorption lines, C 2H 6 at 2996.88 cm –1 and CH 4 at 2999.06 cm –1, respectively. The sensor performance was first evaluated for single-gas detection by only targeting the absorption line of one gas species. Allan deviations of 11.2 parts per billion in volume (ppbv) for CH 4 and 1.86 ppbv for Cmore » 2H 6 with an averaging time of 3.4 s were achieved for the detection of these two gases. Dual-gas detection was realized by using a long-term scan signal to target both CH 4 and C 2H 6 lines. The Allan deviations increased slightly to 17.4 ppbv for CH 4 and 2.4 ppbv for C 2H 6 with an averaging time of 4.6 s due to laser temperature and power drift caused by long-term wavelength scanning. Measurements for both indoor and outdoor concentration changes of CH 4 and C 2H 6 were conducted. As a result, the reported single ICL based dual-gas sensor system has the advantages of reduced size and cost compared to two separate sensor systems.« less

  18. 40 CFR 721.3248 - Ethane, 1,2,2- trichlorodifluoro-.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Ethane, 1,2,2- trichlorodifluoro-. 721... Substances § 721.3248 Ethane, 1,2,2- trichlorodifluoro-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as ethane, 1,2,2-trichlorodifluoro- (CAS No...

  19. Assessment of potential for natural attenuation of chlorinated ethenes and ethanes in ground water at a petrochemical reclamation site, Harris County, Texas

    USGS Publications Warehouse

    Huff, Glenn F.; Braun, Christopher L.; Lee, Roger W.

    2000-01-01

    Redox conditions in the Numerous Sand Channels Zone beneath a petrochemical reclamation site in Harris County, Texas, range from sulfate reducing to methanogenic as indicated by the presence of methane in ground water and the range of molecular hydrogen concentrations. Assessment of the potential for reductive dechlorination using BIOCHLOR as a screening tool indicated conditions favoring anaerobic degradation of chlorinated organic compounds in the Numerous Sand Channels Zone. Evidence supporting reductive dechlorination includes apparently biogenic cis-1,2-dichloroethene; an increased ratio of 1,2-dichloroethane to 1,1,2-trichloroethane downgradient from the assumed contaminant source area; ethene and methane concentrations greater than background concentrations within the area of the contaminant plume; and a positive correlation of the ratio of ethene to vinyl chloride as a function of methane concentrations. The body of evidence presented in this report argues for hydrogenolysis of trichloroethene to cis-1,2-dichloroethene; of 1,1,2-trichloroethane to 1,2-dichloroethane; and of vinyl chloride to ethene within the Numerous Sand Channels Zone. Simulations using BIOCHLOR yielded apparent first-order decay constants for reductive dechlorination in the sequence Tetrachloroethene --> trichloroethene --> cis-1,2-dichloroethene --> vinyl chloride --> ethene within the range of literature values reported for each compound and apparent first-order decay constants for reductive dechlorination in the sequence 1,1,2-trichloroethane --> 1,2-dichloroethane slightly greater than literature values reported for each compound along the upgradient segment of a simulated ground-water flowpath. Except for vinyl chloride, apparent rates of reductive dechlorination for all simulated species show a marked decrease along the downgradient segment of the simulated ground-water flowpath. Evidence for reductive dechlorination of chlorinated ethenes within the Numerous Sand Channels Zone

  20. Ethane-xenon mixtures under shock conditions

    NASA Astrophysics Data System (ADS)

    Flicker, Dawn; Magyar, Rudolph; Root, Seth; Cochrane, Kyle; Mattsson, Thomas

    2015-06-01

    Mixtures of light and heavy elements arise in inertial confinement fusion and planetary science. We present results on the physics of molecular scale mixing through a validation study of equation of state (EOS) properties. Density functional theory molecular dynamics (DFT/QMD) at elevated-temperature and pressure is used to obtain the properties of pure xenon, ethane, and various compressed mixture compositions along their principal Hugoniots. To validate the QMD simulations, we performed high-precision shock compression experiments using Sandia's Z-Machine. A bond tracking analysis of the simulations correlates the sharp rise in the Hugoniot curve with completion of dissociation in ethane. DFT-based simulation results compare well with experimental data and are used to provide insight into the dissociation as a function of mixture composition. Interestingly, we find that the compression ratio for complete dissociation is similar for ethane, Xe-ethane, polymethyl-pentene, and polystyrene, suggesting that a limiting compression exists for C-C bonded systems. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, Security Administration under contract DE-AC04-94AL85000.

  1. Recent increase of ethane detected in the remote atmosphere of the Northern Hemisphere

    NASA Astrophysics Data System (ADS)

    Franco, Bruno; Bader, Whitney; Bovy, Benoît; Mahieu, Emmanuel; Fischer, Emily V.; Strong, Kimberly; Conway, Stephanie; Hannigan, James W.; Nussbaumer, Eric; Bernath, Peter F.; Boone, Chris D.; Walker, Kaley A.

    2015-04-01

    Ethane (C2H6) has a large impact on tropospheric composition and air quality because of its involvement in the global VOC (volatile organic compound) - HOx - NOx chemistry responsible for generating and destroying tropospheric ozone. By acting as a major sink for tropospheric OH radicals, the abundance of C2H6 influences the atmospheric content of carbon monoxide and impacts the lifetime of methane. Moreover, it is an important source of PAN, a thermally unstable reservoir for NOx radicals. On a global scale, the main sources of C2H6 are leakage from the production, transport of natural gas loss, biofuel consumption and biomass burning, mainly located in the Northern Hemisphere. Due to its relatively long lifetime of approximately two months, C2H6 is a sensitive indicator of tropospheric pollution and transport. Using an optimized retrieval strategy (see Franco et al., 2014), we present here a 20-year long-term time series of C2H6 column abundance retrieved from ground-based Fourier Transform InfraRed (FTIR) solar spectra recorded from 1994 onwards at the high-altitude station of Jungfraujoch (Swiss Alps, 46.5° N, 3580 m a.s.l.), part of the Network for the Detection of Atmospheric Composition Change (NDACC, see http://www.ndacc.org). After a regular 1994 - 2008 decrease of the C2H6 amounts, which is very consistent with prior major studies (e.g., Aydin et al., 2011; Simpson et al., 2012) and our understanding of global C2H6 emissions, trend analysis using a bootstrap resampling tool reveals a C2H6 upturn and a statistically-significant sharp burden increase from 2009 onwards (Franco et al., 2014). We hypothesize that this observed recent increase in C2H6 could affect the whole Northern Hemisphere and may be related to the recent massive growth in the exploitation of shale gas and tight oil reservoirs. This hypothesis is supported by measurements derived from solar occultation observations performed since 2004 by the Atmospheric Chemistry Experiment - Fourier

  2. 40 CFR 60.614 - Test methods and procedures.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... or TOC (less methane and ethane) reduction efficiency shall be prior to the inlet of the control... TOC (minus methane and ethane), dry basis, ppm by volume. %O2d=Concentration of O2, dry basis, percent.... (ii) The emission reduction (R) of TOC (minus methane and ethane) shall be determined using the...

  3. n-Alkane adsorption to polar silica surfaces.

    PubMed

    Brindza, Michael R; Ding, Feng; Fourkas, John T; Walker, Robert A

    2010-03-21

    The structures of medium-length n-alkane species (C(8)-C(11)) adsorbed to a hydrophilic silica/vapor interface were examined using vibrational sum frequency spectroscopy. Experiments sampling out-of-plane orientation show a clear pattern in vibrational band intensities that implies chains having primarily all-trans conformations lying flat along the interface. Further analysis shows that the methylene groups of the alkane chains have their local symmetry axes directed into and away from the surface. Spectra acquired under different polarization conditions interlock to reinforce this picture of interfacial structure and organization. Variation in signal intensities with chain length suggests that correlation between adsorbed monomers weakens with increasing chain length. This result stands in contrast with alkane behavior at neat liquid/vapor interfaces where longer length alkanes show considerably more surface induced ordering than short chain alkanes.

  4. Variability of ethane on Jupiter

    NASA Technical Reports Server (NTRS)

    Kostiuk, Theodor; Espenak, Fred; Mumma, Michael J.; Deming, Drake; Zipoy, David

    1987-01-01

    Varying stratospheric temperature profiles and C2H6 altitude distributions furnish contexts for the evaluation of ethane abundances and distributions in the Jupiter stratosphere. Substantial ethane line emission and retrieved mole fraction variability is noted near the footprint of Io's flux tube, as well as within the auroral regions. It is suggested that this and other observed phenomena are due to the modification of local stratospheric chemistry by higher-order effects, which are in turn speculated to be due to the precipitation of charged particles along magnetic field lines.

  5. Distribution, abundance and carbon isotopic composition of gaseous hydrocarbons in Big Soda Lake, Nevada: An alkaline, meromictic lake

    USGS Publications Warehouse

    Oremland, R.S.; Des Marais, D.J.

    1983-01-01

    Distribution and isotopic composition (??13C) of low molecular weight hydrocarbon gases were studied in Big Soda Lake (depth = 64 m), an alkaline, meromictic lake with permanently anoxic bottom waters. Methane increased with depth in the anoxic mixolimnion (depth = 20-35 m), reached uniform concentrations (55 ??M/l) in the monimolimnion (35-64 m) and again increased with depth in monimolimnion bottom sediments (>400 ??M/kg below 1 m sub-bottom depth). The ??13C[CH4] values in bottom sediment below 1 m sub-bottom depth (<-70 per mil) increased with vertical distance up the core (??13C[CH4] = -55 per mil at sediment surface). Monimolimnion ??13C[CH4] values (-55 to -61 per mil) were greater than most ??13C[CH4] values found in the anoxic mixolimnion (92% of samples had ??13C[CH4] values between -20 and -48 per mil). No significant concentrations of ethylene or propylene were found in the lake. However ethane, propane, isobutane and n-butane concentrations all increased with water column depth, with respective maximum concentrations of 260, 80, 23 and 22 nM/l encountered between 50-60 m depth. Concentrations of ethane, propane and butanes decreased with depth in the bottom sediments. Ratios of CH4 [C2H6 + C3H8] were high (250-620) in the anoxic mixolimnion, decreased to ~161 in the monimolimnion and increased with depth in the sediment to values as high as 1736. We concluded that methane has a biogenic origin in both the sediments and the anoxic water column and that C2-C4 alkanes have biogenic origins in the monimolimnion water and shallow sediments. The changes observed in ??13C[CH4] and CH4 (C2H6 + C3H8) with depth in the water column and sediments are probably caused by bacteria] processes. These might include anaerobic methane oxidation and different rates of methanogenesis and C2 to C4 alkane production by microorganisms. ?? 1983.

  6. 40 CFR 60.664 - Test methods and procedures.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (less methane and ethane) reduction efficiency shall be prior to the inlet of the control device and... methane and ethane), dry basis, ppm by volume. %O2d=Concentration of O2, dry basis, percent by volume. (4... emission reduction (R) of TOC (minus methane and ethane) shall be determined using the following equation...

  7. Ethane abundance on Neptune

    NASA Technical Reports Server (NTRS)

    Kostiuk, Theodor; Espenak, Fred; Romani, Paul; Zipoy, David; Goldstein, Jeff

    1990-01-01

    IR spectroscopic measurements of the C2H6 RR (4,5) emission line at 840.9764/cm have been used to infer Neptune's ethane mole fractions; while the resulting value is lower than that obtained by Orton et al. (1987), it lies within their 2-sigma error bounds. The present results are also found to require 2.0-5.8 times more ethane in the 0.02-2 mbar pressure region than predicted by the Romani and Atreya (1989) photochemical model. Better agreement is obtainable through a reduction of eddy mixing in the lower stratosphere and/or an increase of stratospheric temperature by more than 10 K above the 6-mbar level.

  8. Evidence for a polar ethane cloud on Titan

    USGS Publications Warehouse

    Griffith, C.A.; Penteado, P.; Rannou, P.; Brown, R.; Boudon, V.; Baines, K.H.; Clark, R.; Drossart, P.; Buratti, B.; Nicholson, P.; McKay, C.P.; Coustenis, A.; Negrao, A.; Jaumann, R.

    2006-01-01

    Spectra from Cassini's Visual and Infrared Mapping Spectrometer reveal the presence of a vast tropospheric cloud on Titan at latitudes 51?? to 68?? north and all longitudes observed (10?? to 190?? west). The derived characteristics indicate that this cloud is composed of ethane and forms as a result of stratospheric subsidence and the particularly cool conditions near the moon's north pole. Preferential condensation of ethane, perhaps as ice, at Titan's poles during the winters may partially explain the lack of liquid ethane oceans on Titan's surface at middle and lower latitudes.

  9. Evidence for a polar ethane cloud on Titan.

    PubMed

    Griffith, C A; Penteado, P; Rannou, P; Brown, R; Boudon, V; Baines, K H; Clark, R; Drossart, P; Buratti, B; Nicholson, P; McKay, C P; Coustenis, A; Negrao, A; Jaumann, R

    2006-09-15

    Spectra from Cassini's Visual and Infrared Mapping Spectrometer reveal the presence of a vast tropospheric cloud on Titan at latitudes 51 degrees to 68 degrees north and all longitudes observed (10 degrees to 190 degrees west). The derived characteristics indicate that this cloud is composed of ethane and forms as a result of stratospheric subsidence and the particularly cool conditions near the moon's north pole. Preferential condensation of ethane, perhaps as ice, at Titan's poles during the winters may partially explain the lack of liquid ethane oceans on Titan's surface at middle and lower latitudes.

  10. Nanoceria Supported Single-Atom Platinum Catalysts for Direct Methane Conversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Pengfei; Pu, Tiancheng; Nie, Anmin

    Nanoceria-supported atomic Pt catalysts (denoted as Pt 1@CeO 2) have been synthesized and demonstrated with advanced catalytic performance for the non-oxidative, direct conversion of methane. These catalysts were synthesized by calcination of Pt-impregnated porous ceria nanoparticles at high temperature (ca. 1,000 °C), with the atomic dispersion of Pt characterized by combining aberra-tion-corrected high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), X-ray photoelectron spectroscopy (XPS), X-ray absorption spec-troscopy (XAS) and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) analyses. The Pt 1@CeO 2 catalysts exhibited much superior catalytic performance to its nanoparticulated counterpart, achieving 14.4% of methane conversion at 975 °C andmore » 74.6% selectivity toward C 2 products (ethane, ethylene and acetylene). Comparative studies of the Pt1@CeO 2 catalysts with different loadings as well as the nanoparticulated counterpart reveal the single-atom Pt to be the active sites for selective conversion of methane into C 2 hydrocarbons.« less

  11. Nanoceria Supported Single-Atom Platinum Catalysts for Direct Methane Conversion

    DOE PAGES

    Xie, Pengfei; Pu, Tiancheng; Nie, Anmin; ...

    2018-04-03

    Nanoceria-supported atomic Pt catalysts (denoted as Pt 1@CeO 2) have been synthesized and demonstrated with advanced catalytic performance for the non-oxidative, direct conversion of methane. These catalysts were synthesized by calcination of Pt-impregnated porous ceria nanoparticles at high temperature (ca. 1,000 °C), with the atomic dispersion of Pt characterized by combining aberra-tion-corrected high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), X-ray photoelectron spectroscopy (XPS), X-ray absorption spec-troscopy (XAS) and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) analyses. The Pt 1@CeO 2 catalysts exhibited much superior catalytic performance to its nanoparticulated counterpart, achieving 14.4% of methane conversion at 975 °C andmore » 74.6% selectivity toward C 2 products (ethane, ethylene and acetylene). Comparative studies of the Pt1@CeO 2 catalysts with different loadings as well as the nanoparticulated counterpart reveal the single-atom Pt to be the active sites for selective conversion of methane into C 2 hydrocarbons.« less

  12. On the inclusion of alkanes into the monolayer of aliphatic alcohols at the water/alkane vapor interface: a quantum chemical approach.

    PubMed

    Vysotsky, Yuri B; Fomina, Elena S; Belyaeva, Elena A; Fainerman, Valentin B; Vollhardt, Dieter

    2013-02-14

    In the framework of the quantum chemical semiempirical PM3 method thermodynamic and structural parameters of the formation and clusterization of aliphatic alcohols C(n)H(2n+1)OH (n(OH) = 8-16) at 298 K at the water/alkane vapor C(n)H(2n+2), (n(CH(3)) = 6-16) interface were calculated. The dependencies of enthalpy, entropy and Gibbs' energy of clusterization per one monomer molecule of 2D films on the alkyl chain length of corresponding alcohols and alkanes, the molar fraction of alkanes in the monolayers and the immersion degree of alcohol molecules into the water phase were shown to be linear or stepwise. The threshold of spontaneous clusterization of aliphatic alcohols at the water/alkane vapor interface was 10-11 carbon atoms at 298 K which is in line with experimental data at the air/water interface. It is shown that the presence of alkane vapor does not influence the process of alcohol monolayer formation. The structure of these monolayers is analogous to those obtained at the air/water interface in agreement with experimental data. The inclusion of alkane molecules into the amphiphilic monolayer at the water/alkane vapor interface is possible for amphiphiles with the spontaneous clusterization threshold at the air/water interface (n(s)(0)) of at least 16 methylene units in the alkyl chain, and it does not depend on the molar fraction of alkanes in the corresponding monolayer. The inclusion of alkanes from the vapor phase into the amphiphilic monolayer also requires that the difference between the alkyl chain lengths of alcohols and alkanes is not larger than n(s)(0) - 15 and n(s)(0) - 14 for the 2D film 1 and 2D film 2, respectively.

  13. Bis[1-meth­oxy-2,2,2-tris­(pyrazol-1-yl-κN 2)ethane]­nickel(II) bis­(tri­fluoro­methane­sulfonate) dihydrate

    PubMed Central

    Lyubartseva, Ganna; Parkin, Sean; Mallik, Uma Prasad

    2013-01-01

    In the title salt, [Ni(C12H14N6O)2](CF3SO3)2·2H2O, the NiII cation is located on an inversion centre and is coordinated by six N atoms from two tridentate 1-meth­oxy-2,2,2-tris­(pyrazol-1-yl)ethane ligands in a distorted octa­hedral geometry. The Ni—N distances range from 2.0594 (12) to 2.0664 (12) Å, intra-ligand N—Ni—N angles range from 84.59 (5) to 86.06 (5)°, and adjacent inter-ligand N—Ni—N angles range between 93.94 (5) and 95.41 (5)°. In the crystal, inversion-related pyrazole rings are π–π stacked, with an inter­planar spacing of 3.4494 (18) Å, forming chains that propagate parallel to the a-axis direction. Inter­molecular O—H⋯O hydrogen bonds are present between water mol­ecules and tri­fluoro­methane­sulfonate anions. PMID:24098167

  14. Direct measurements of methane emissions from abandoned oil and gas wells in Pennsylvania.

    PubMed

    Kang, Mary; Kanno, Cynthia M; Reid, Matthew C; Zhang, Xin; Mauzerall, Denise L; Celia, Michael A; Chen, Yuheng; Onstott, Tullis C

    2014-12-23

    Abandoned oil and gas wells provide a potential pathway for subsurface migration and emissions of methane and other fluids to the atmosphere. Little is known about methane fluxes from the millions of abandoned wells that exist in the United States. Here, we report direct measurements of methane fluxes from abandoned oil and gas wells in Pennsylvania, using static flux chambers. A total of 42 and 52 direct measurements were made at wells and at locations near the wells ("controls") in forested, wetland, grassland, and river areas in July, August, October 2013 and January 2014, respectively. The mean methane flow rates at these well locations were 0.27 kg/d/well, and the mean methane flow rate at the control locations was 4.5 × 10(-6) kg/d/location. Three out of the 19 measured wells were high emitters that had methane flow rates that were three orders of magnitude larger than the median flow rate of 1.3 × 10(-3) kg/d/well. Assuming the mean flow rate found here is representative of all abandoned wells in Pennsylvania, we scaled the methane emissions to be 4-7% of estimated total anthropogenic methane emissions in Pennsylvania. The presence of ethane, propane, and n-butane, along with the methane isotopic composition, indicate that the emitted methane is predominantly of thermogenic origin. These measurements show that methane emissions from abandoned oil and gas wells can be significant. The research required to quantify these emissions nationally should be undertaken so they can be accurately described and included in greenhouse gas emissions inventories.

  15. Ethane and acetylene abundances in the Jovian atmosphere

    NASA Technical Reports Server (NTRS)

    Tokunaga, A.; Knacke, R. F.; Owen, T.

    1976-01-01

    The paper reports spectra of Jupiter in the spectral region from 755 to 850 kaysers, which covers the nu-9 fundamental of ethane and contains lines from the R branch of the nu-5 fundamental of acetylene. The monochromatic absorption coefficient of the central Q branch of the nu-9 fundamental of ethane, which was determined in the laboratory, is applied in a radiative-transfer calculation to evaluate the ethane mixing ratio in the Jovian atmosphere; the present data are also used to place an upper limit on the acetylene mixing ratio. For the radiative-transfer calculation, emission intensity is computed for the region above the 0.02-atm level assuming both an isothermal inversion layer and a previously reported temperature profile. The resulting maximum mixing ratios consistent with the observations are 0.00003 for ethane and 7.5 by 10 to the -8th power for acetylene.

  16. Evidence for the existence of supercooled ethane droplets under conditions prevalent in Titan's atmosphere.

    PubMed

    Sigurbjörnsson, Omar F; Signorell, Ruth

    2008-11-07

    Recent evidence for ethane clouds and condensation in Titan's atmosphere raise the question whether liquid ethane condensation nuclei and supercooled liquid ethane droplets exist under the prevalent conditions. We present laboratory studies on the phase behaviour of pure ethane aerosols and ethane aerosols formed in the presence of other ice nuclei under conditions relevant to Titan's atmosphere. Combining bath gas cooling with infrared spectroscopy, we find evidence for the existence of supercooled liquid ethane aerosol droplets. The observed homogeneous freezing rates imply that supercooled ethane could be a long-lived species in ethane-rich regions of Titan's atmosphere similar to supercooled water in the Earth's atmosphere.

  17. Quantification of Methane Leaks from Abandoned Oil and Gas Wells in California

    NASA Astrophysics Data System (ADS)

    Lebel, E.; Kang, M.; Lu, H.; Jackson, R. B.

    2016-12-01

    Abandoned oil and gas wells can provide a pathway for subterranean methane and other gases to be emitted to the atmosphere. However, abandoned wells are unaccounted for in greenhouse gas emissions inventories. While relatively little is known about abandoned wells, previous studies have shown that emissions from abandoned wells contribute approximately 4-7% of anthropogenic methane emissions in Pennsylvania (Kang et al. 2014) and <1% of regional methane emissions in oil and gas producing regions of Colorado, Utah, Ohio, and Wyoming (Townsend-Small et al. 2015). Another study (Boothroyd et al. 2016) has shown that 30% of abandoned wells in the UK have a positive surface methane flux. California has a long history of oil and gas production, beginning from the 1860s, and currently ranks third in oil production by state. As a result, there are more than 100,000 wells across the state. Our study uses static flux chambers to measure individual abandoned wells in California to estimate state-wide methane emissions from these wells. In addition to measuring methane concentrations, we measure ethane, propane, isobutane, n-butane, and 13-CH4 to understand whether this methane has a biogenic or thermogenic source. We hope that our research will determine whether or not abandoned oil and gas wells are a significant source of anthropogenic methane emissions in California. Our results along with measurements in other parts of the United States can be used to scale up methane emission estimates to the national level, accounting for the millions of abandoned wells in the country.

  18. Non-methane hydrocarbons in a controlled ecological life support system.

    PubMed

    Dai, Kun; Yu, Qingni; Zhang, Zhou; Wang, Yuan; Wang, Xinming

    2018-02-01

    Non-methane hydrocarbons (NMHCs) are vital to people's health and plants' growth, especially inside a controlled ecological life support system (CELSS) built for long-term space explorations. In this study, we measured 54 kinds of NMHCs to study their changing trends in concentration levels during a 4-person-180-day integrated experiment inside a CELSS with four cabins for plants growing and other two cabins for human daily activities and resources management. During the experiment, the total mixing ratio of measured NMHCs was 423 ± 283 ppbv at the first day and it approached 2961 ± 323 ppbv ultimately. Ethane and propane were the most abundant alkanes and their mixing ratios kept growing from 27.5 ± 19.4 and 31.0 ± 33.6 ppbv to 2423 ± 449 ppbv and 290 ± 10 ppbv in the end. For alkenes, ethylene and isoprene presented continuously fluctuating states during the experimental period with average mixing ratios of 30.4 ± 19.3 ppbv, 7.4 ± 5.8 ppbv. For aromatic hydrocarbons, the total mixing ratios of benzene, toluene, ethylbenzene and xylenes declined from 48.0 ± 44 ppbv initially to 3.8 ± 1.1 ppbv ultimately. Biomass burning, sewage treatment, construction materials and plants all contributed to NMHCs inside CELSS. In conclusion, the results demonstrate the changing trends of NMHCs in a long-term closed ecological environment's atmosphere which provides valuable information for both the atmosphere management of CELSS and the exploration of interactions between humans and the total environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Titan's Methane Cycle is Closed

    NASA Astrophysics Data System (ADS)

    Hofgartner, J. D.; Lunine, J. I.

    2013-12-01

    Doppler tracking of the Cassini spacecraft determined a polar moment of inertia for Titan of 0.34 (Iess et al., 2010, Science, 327, 1367). Assuming hydrostatic equilibrium, one interpretation is that Titan's silicate core is partially hydrated (Castillo-Rogez and Lunine, 2010, Geophys. Res. Lett., 37, L20205). These authors point out that for the core to have avoided complete thermal dehydration to the present day, at least 30% of the potassium content of Titan must have leached into an overlying water ocean by the end of the core overturn. We calculate that for probable ammonia compositions of Titan's ocean (compositions with greater than 1% ammonia by weight), that this amount of potassium leaching is achievable via the substitution of ammonium for potassium during the hydration epoch. Formation of a hydrous core early in Titan's history by serpentinization results in the loss of one hydrogen molecule for every hydrating water molecule. We calculate that complete serpentinization of Titan's core corresponds to the release of more than enough hydrogen to reconstitute all of the methane atoms photolyzed throughout Titan's history. Insertion of molecular hydrogen by double occupancy into crustal clathrates provides a storage medium and an opportunity for ethane to be converted back to methane slowly over time--potentially completing a cycle that extends the lifetime of methane in Titan's surface atmosphere system by factors of several to an order of magnitude over the photochemically-calculated lifetime.

  20. Mid-infrared dual-gas sensor for simultaneous detection of methane and ethane using a single continuous-wave interband cascade laser.

    PubMed

    Ye, Weilin; Li, Chunguang; Zheng, Chuantao; Sanchez, Nancy P; Gluszek, Aleksander K; Hudzikowski, Arkadiusz J; Dong, Lei; Griffin, Robert J; Tittel, Frank K

    2016-07-25

    A continuous-wave (CW) interband cascade laser (ICL) based mid-infrared sensor system was demonstrated for simultaneous detection of atmospheric methane (CH4) and ethane (C2H6). A 3.337 µm CW ICL with an emitting wavenumber range of 2996.0-3001.5 cm-1 was used to simultaneously target two absorption lines, C2H6 at 2996.88 cm-1 and CH4 at 2999.06 cm-1, respectively. The sensor performance was first evaluated for single-gas detection by only targeting the absorption line of one gas species. Allan deviations of 11.2 parts per billion in volume (ppbv) for CH4 and 1.86 ppbv for C2H6 with an averaging time of 3.4 s were achieved for the detection of these two gases. Dual-gas detection was realized by using a long-term scan signal to target both CH4 and C2H6 lines. The Allan deviations increased slightly to 17.4 ppbv for CH4 and 2.4 ppbv for C2H6 with an averaging time of 4.6 s due to laser temperature and power drift caused by long-term wavelength scanning. Measurements for both indoor and outdoor concentration changes of CH4 and C2H6 were conducted. The reported single ICL based dual-gas sensor system has the advantages of reduced size and cost compared to two separate sensor systems.

  1. Modification of Encapsulation Pressure of Reverse Micelles in Liquid Ethane

    PubMed Central

    Peterson, Ronald W.; Nucci, Nathaniel V.; Wand, A. Joshua

    2011-01-01

    Encapsulation of within reverse micelles dissolved in low viscosity fluids offers a potential solution to the slow tumbling problem presented by large soluble macromolecules to solution NMR spectroscopy. The reduction in effective macromolecular tumbling is directly dependent upon the viscosity of the solvent. Liquid ethane is of sufficiently low viscosity at pressures below 5,000 p.s.i. to offer a significant advantage. Unfortunately, the viscosity of liquid ethane shows appreciable pressure dependence. Reverse micelle encapsulation in liquid ethane often requires significantly higher pressures, which obviates the potential advantages offered by liquid ethane over liquid propane. Addition of co-surfactants or co-solvents can be used to manipulate the minimum pressure required to obtain stable, well-behaved solutions of reverse micelles prepared in liquid ethane. A library of potential additives is examined and several candidates suitable for use with encapsulated proteins are described. PMID:21764613

  2. Modification of encapsulation pressure of reverse micelles in liquid ethane.

    PubMed

    Peterson, Ronald W; Nucci, Nathaniel V; Wand, A Joshua

    2011-09-01

    Encapsulation within reverse micelles dissolved in low viscosity fluids offers a potential solution to the slow tumbling problem presented by large soluble macromolecules to solution NMR spectroscopy. The reduction in effective macromolecular tumbling is directly dependent upon the viscosity of the solvent. Liquid ethane is of sufficiently low viscosity at pressures below 5000 psi to offer a significant advantage. Unfortunately, the viscosity of liquid ethane shows appreciable pressure dependence. Reverse micelle encapsulation in liquid ethane often requires significantly higher pressures, which obviates the potential advantages offered by liquid ethane over liquid propane. Addition of co-surfactants or co-solvents can be used to manipulate the minimum pressure required to obtain stable, well-behaved solutions of reverse micelles prepared in liquid ethane. A library of potential additives is examined and several candidates suitable for use with encapsulated proteins are described. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. 40 CFR 721.10086 - Ethane, 2-(difluoromethoxy)-1,1,1-trifluoro-.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Ethane, 2-(difluoromethoxy)-1,1,1... Specific Chemical Substances § 721.10086 Ethane, 2-(difluoromethoxy)-1,1,1-trifluoro-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as ethane, 2...

  4. Facile Dehydrogenation of Ethane on the IrO2(110) Surface.

    PubMed

    Bian, Yingxue; Kim, Minkyu; Li, Tao; Asthagiri, Aravind; Weaver, Jason F

    2018-02-21

    Realizing the efficient and selective conversion of ethane to ethylene is important for improving the utilization of hydrocarbon resources, yet remains a major challenge in catalysis. Herein, ethane dehydrogenation on the IrO 2 (110) surface is investigated using temperature-programmed reaction spectroscopy (TPRS) and density functional theory (DFT) calculations. The results show that ethane forms strongly bound σ-complexes on IrO 2 (110) and that a large fraction of the complexes undergo C-H bond cleavage during TPRS at temperatures below 200 K. Continued heating causes as much as 40% of the dissociated ethane to dehydrogenate and desorb as ethylene near 350 K, with the remainder oxidizing to CO x species. Both TPRS and DFT show that ethylene desorption is the rate-controlling step in the conversion of ethane to ethylene on IrO 2 (110) during TPRS. Partial hydrogenation of the IrO 2 (110) surface is found to enhance ethylene production from ethane while suppressing oxidation to CO x species. DFT predicts that hydrogenation of reactive oxygen atoms of the IrO 2 (110) surface effectively deactivates these sites as H atom acceptors, and causes ethylene desorption to become favored over further dehydrogenation and oxidation of ethane-derived species. The study reveals that IrO 2 (110) exhibits an exceptional ability to promote ethane dehydrogenation to ethylene near room temperature, and provides molecular-level insights for understanding how surface properties influence selectivity toward ethylene production.

  5. Direct measurements of methane emissions from abandoned oil and gas wells in Pennsylvania

    PubMed Central

    Kang, Mary; Kanno, Cynthia M.; Reid, Matthew C.; Zhang, Xin; Mauzerall, Denise L.; Celia, Michael A.; Chen, Yuheng; Onstott, Tullis C.

    2014-01-01

    Abandoned oil and gas wells provide a potential pathway for subsurface migration and emissions of methane and other fluids to the atmosphere. Little is known about methane fluxes from the millions of abandoned wells that exist in the United States. Here, we report direct measurements of methane fluxes from abandoned oil and gas wells in Pennsylvania, using static flux chambers. A total of 42 and 52 direct measurements were made at wells and at locations near the wells (“controls”) in forested, wetland, grassland, and river areas in July, August, October 2013 and January 2014, respectively. The mean methane flow rates at these well locations were 0.27 kg/d/well, and the mean methane flow rate at the control locations was 4.5 × 10−6 kg/d/location. Three out of the 19 measured wells were high emitters that had methane flow rates that were three orders of magnitude larger than the median flow rate of 1.3 × 10−3 kg/d/well. Assuming the mean flow rate found here is representative of all abandoned wells in Pennsylvania, we scaled the methane emissions to be 4–7% of estimated total anthropogenic methane emissions in Pennsylvania. The presence of ethane, propane, and n-butane, along with the methane isotopic composition, indicate that the emitted methane is predominantly of thermogenic origin. These measurements show that methane emissions from abandoned oil and gas wells can be significant. The research required to quantify these emissions nationally should be undertaken so they can be accurately described and included in greenhouse gas emissions inventories. PMID:25489074

  6. Absolute molecular sieve separation of ethylene/ethane mixtures with silver zeolite A.

    PubMed

    Aguado, Sonia; Bergeret, Gérard; Daniel, Cecile; Farrusseng, David

    2012-09-12

    Absolute ethylene/ethane separation is achieved by ethane exclusion on silver-exchanged zeolite A adsorbent. This molecular sieving type separation is attributed to the pore size of the adsorbent, which falls between ethylene and ethane kinetic diameters.

  7. Estimates of methane emissions from India using CH4-CO-C2H6 relationships from CARIBIC observations in monsoon convective outflow

    NASA Astrophysics Data System (ADS)

    Baker, A. K.; Rauthe-Schöch, A.; Schuck, T. J.; van Velthoven, P. F.; Slemr, F.; Brenninkmeijer, C. A.

    2010-12-01

    A large fraction of methane sources are anthropogenic, and include fossil fuel use, biomass/biofuel burning, agriculture and waste treatment. Recently, much attention regarding emissions of greenhouse gases has focused on large, developing nations, as their emissions are expected to rise rapidly over the coming decades. As the second most populous country in the world, and one of the fastest growing economies, India has been of particular interest. Arguably the most important feature of meteorology in India is the Asian summer monsoon. During the monsoon period there exists persistent deep convection over Southern Asia, and the composition of convected air masses is strongly influenced by emissions from India. This ultimately results in a well-mixed air parcel containing air from India being transported to the upper troposphere. Over the course of the 2008 monsoon period the CARIBIC (Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container) passenger aircraft conducted monthly measurement flights which probed this outflow. Data collected during these flights provides a unique opportunity to examine sources of atmospheric species in India. Here we use measurements of methane (CH4), carbon monoxide (CO) and ethane (C2H6) from whole air samples collected during CARIBIC flights to estimate emissions of methane and to quantify those emissions related to flooding during the monsoon. Methane data from the monsoon period show enhancements inside the monsoon plume, which increase as the monsoon progresses. Using emission data for CO and ΔCH4/ΔCO derived from CARIBIC measurements, we estimate total methane emissions to be ~40 Tg yr-1. Relationships of methane to ethane, which shares the bulk of its sources with methane but lacks a biological component, are further used to estimate the fraction of “extra” emissions from biological activity related to increased monsoon rains. This additional methane is a considerable fraction of

  8. Selective methylative homologation: an alternate route to alkane upgrading.

    PubMed

    Bercaw, John E; Hazari, Nilay; Labinger, Jay A; Scott, Valerie J; Sunley, Glenn J

    2008-09-10

    InI3 catalyzes the reaction of branched alkanes with methanol to produce heavier and more highly branched alkanes, which are more valuable fuels. The reaction of 2,3-dimethylbutane with methanol in the presence of InI3 at 180-200 degrees C affords the maximally branched C7 alkane, 2,2,3-trimethylbutane (triptane). With the addition of catalytic amounts of adamantane the selectivity of this transformation can be increased up to 60%. The lighter branched alkanes isobutane and isopentane also react with methanol to generate triptane, while 2-methylpentane is converted into 2,3-dimethylpentane and other more highly branched species. Observations implicate a chain mechanism in which InI3 activates branched alkanes to produce tertiary carbocations which are in equilibrium with olefins. The latter react with a methylating species generated from methanol and InI3 to give the next-higher carbocation, which accepts a hydride from the starting alkane to form the homologated alkane and regenerate the original carbocation. Adamantane functions as a hydride transfer agent and thus helps to minimize competing side reactions, such as isomerization and cracking, that are detrimental to selectivity.

  9. 10 CFR 221.11 - Natural gas and ethane.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Natural gas and ethane. 221.11 Section 221.11 Energy DEPARTMENT OF ENERGY OIL PRIORITY SUPPLY OF CRUDE OIL AND PETROLEUM PRODUCTS TO THE DEPARTMENT OF DEFENSE UNDER THE DEFENSE PRODUCTION ACT Exclusions § 221.11 Natural gas and ethane. The supply of natural gas...

  10. 10 CFR 221.11 - Natural gas and ethane.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Natural gas and ethane. 221.11 Section 221.11 Energy DEPARTMENT OF ENERGY OIL PRIORITY SUPPLY OF CRUDE OIL AND PETROLEUM PRODUCTS TO THE DEPARTMENT OF DEFENSE UNDER THE DEFENSE PRODUCTION ACT Exclusions § 221.11 Natural gas and ethane. The supply of natural gas...

  11. Gas geochemistry and methane emission from Dushanzi mud volcanoes in the southern Junggar Basin, NW China

    NASA Astrophysics Data System (ADS)

    Zheng, Guodong; Ma, Xiangxian; Guo, Zhengfu; Hilton, David R.; Xu, Wang; Liang, Shouyun; Fan, Qiaohui; Chen, Wenxing

    2017-11-01

    There are many mud volcanoes in the southern margin of the Junggar Basin, northwest China, of which the Dushanzi area is the most typical and active one, emitting large amount of greenhouse gases associated with water and mud. The emitted gas is dominated by methane (average 90.1%), together with other gases, such as ethane (4.84-5.46%), propane (0.06-0.90%), CO2 (0.67-1.0%), and N2 (2.8-3.3%). The carbon (δ13C1) and hydrogen (δD) isotopic ratios of methane are in the ranges of -40.6‰ to -45.0‰ and -221‰ to -249‰, respectively, whereas carbon isotope ratios of ethane (δ13C2) are -25.2‰ to -27.6‰. Based on δ13C values, the released gas is characterized as a thermogenic coal-type and possibly originated from the middle-low Jurassic coal-bearing sequences according to the gas-source correlation and regional geology. Helium isotopes show a crustal source. The methane flux of Dushanzi mud volcanoes from both macro-seepage (craters/vents) and micro-seepage (ground soil exhalation) ranged over the orders of magnitude, from 0.4-2.7 kg d-1 and 4950 mg m-2 d-1 on average, respectively. Positive CH4 fluxes from dry soil were widespread throughout the investigated areas. The total CH4 emission from Dushanzi mud volcanoes is estimated to be at least 22.6 tons a-1, of which about 89% is from micro-seepage surrounding the mud volcano vents.

  12. Prediction of supercritical ethane bulk solvent densities for pyrazine solvation shell average occupancy by 1, 2, 3, and 4 ethanes: combined experimental and ab initio approach.

    PubMed

    Hrnjez, Bruce J; Sultan, Samuel T; Natanov, Georgiy R; Kastner, David B; Rosman, Michael R

    2005-11-17

    We introduce a method that addresses the elusive local density at the solute in the highly compressible regime of a supercritical fluid. Experimentally, the red shift of the pyrazine n-pi electronic transition was measured at infinite dilution in supercritical ethane as a function of pressure from 0 to about 3000 psia at two temperatures, one close (35.0 degrees C) to the critical temperature and the other remote (55.0 degrees C). Computationally, stationary points were located on the potential surfaces for pyrazine and one, two, three, and four ethanes at the MP2/6-311++G(d,p) level. The vertical n-pi ((1)B(3u)) transition energies were computed for each of these geometries with a TDDFT/B3LYP/6-311++G(d,p) method. The combination of experiment and computation allows prediction of supercritical ethane bulk densities at which the pyrazine primary solvation shell contains an average of one, two, three, and four ethane molecules. These density predictions were achieved by graphical superposition of calculated shifts on the experimental shift versus density curves for 35.0 and 55.0 degrees C. Predicted densities are 0.0635, 0.0875, and 0.0915 g cm(-3) for average pyrazine primary solvation shell occupancy by one, two, and three ethanes at both 35.0 and 55.0 degrees C. Predicted densities are 0.129 and 0.150 g cm(-3) for occupancy by four ethanes at 35.0 and 55.0 degrees C, respectively. An alternative approach, designed to "average out" geometry specific shifts, is based on the relationship Deltanu = -23.9n cm(-1), where n = ethane number. Graphical treatment gives alternative predicted densities of 0.0490, 0.0844, and 0.120 g cm(-3) for average pyrazine primary solvation shell occupancy by one, two, and three ethanes at both 35.0 and 55.0 degrees C, and densities of 0.148 and 0.174 g cm(-3) for occupancy by four ethanes at 35.0 and 55.0 degrees C, respectively.

  13. Abiogenic formation of alkanes in the Earth's crust as a minor source for global hydrocarbon reservoirs.

    PubMed

    Sherwood Lollar, B; Westgate, T D; Ward, J A; Slater, G F; Lacrampe-Couloume, G

    2002-04-04

    Natural hydrocarbons are largely formed by the thermal decomposition of organic matter (thermogenesis) or by microbial processes (bacteriogenesis). But the discovery of methane at an East Pacific Rise hydrothermal vent and in other crustal fluids supports the occurrence of an abiogenic source of hydrocarbons. These abiogenic hydrocarbons are generally formed by the reduction of carbon dioxide, a process which is thought to occur during magma cooling and-more commonly-in hydrothermal systems during water-rock interactions, for example involving Fischer-Tropsch reactions and the serpentinization of ultramafic rocks. Suggestions that abiogenic hydrocarbons make a significant contribution to economic hydrocarbon reservoirs have been difficult to resolve, in part owing to uncertainty in the carbon isotopic signatures for abiogenic versus thermogenic hydrocarbons. Here, using carbon and hydrogen isotope analyses of abiogenic methane and higher hydrocarbons in crystalline rocks of the Canadian shield, we show a clear distinction between abiogenic and thermogenic hydrocarbons. The progressive isotopic trends for the series of C1-C4 alkanes indicate that hydrocarbon formation occurs by way of polymerization of methane precursors. Given that these trends are not observed in the isotopic signatures of economic gas reservoirs, we can now rule out the presence of a globally significant abiogenic source of hydrocarbons.

  14. Carbon Isotopes of Alkanes in Hydrothermal Abiotic Organic Synthesis Processes at High Temperatures and Pressures: An Experimental Study

    NASA Technical Reports Server (NTRS)

    Fu, Qi; Socki, Richard A.; Niles, Paul B.

    2010-01-01

    Observation of methane in the Martian atmosphere has been reported by different detection techniques [1-4]. With more evidence showing extensive water-rock interaction in Martian history [5-7], abiotic formation by Fischer-Tropsch Type (FTT) synthesis during serpentization reactions may be one possible process responsible for methane generation on Mars [8, 9]. While the experimental studies performed to date leave little doubt that chemical reactions exist for the abiotic synthesis of organic compounds by mineral surface-catalyzed reactions [10-12], little is known about the reaction pathways by which CO2 and/or CO are reduced under hydrothermal conditions. Carbon and hydrogen isotope measurements of alkanes have been used as an effective tool to constrain the origin and reaction pathways of hydrocarbon formation. Alkanes generated by thermal breakdown of high molecular weight organic compounds have carbon and hydrogen isotopic signatures completely distinct from those formed abiotically [13-15]. Recent experimental studies, however, showed that different abiogenic hydrocarbon formation processes (e.g., polymerization vs. depolymerization) may have different carbon and hydrogen isotopic patterns [16]. Results from previous experiments studying decomposition of higher molecular weight organic compounds (lignite) also suggested that pressure could be a crucial factor affecting fractionation of carbon isotopes [17]. Under high pressure conditions, no experimental data are available describing fractionation of carbon isotope during mineral catalyzed FTT synthesis. Thus, hydrothermal experiments present an excellent opportunity to provide the requisite carbon isotope data. Such data can also be used to identify reaction pathways of abiotic organic synthesis under experimental conditions.

  15. Selective Adsorption of Ethane over Ethylene in PCN-245: Impacts of Interpenetrated Adsorbent.

    PubMed

    Lv, Daofei; Shi, Renfeng; Chen, Yongwei; Wu, Ying; Wu, Houxiao; Xi, Hongxia; Xia, Qibin; Li, Zhong

    2018-03-07

    The separation of ethane from ethylene using cryogenic distillation is an energy-intensive process in the industry. With lower energetic consumption, the adsorption technology provides the opportunities for developing the industry with economic sustainability. We report an iron-based metal-organic framework PCN-245 with interpenetrated structures as an ethane-selective adsorbent for ethylene/ethane separation. The material maintains stability up to 625 K, even after exposure to 80% humid atmosphere for 20 days. Adsorptive separation experiments on PCN-245 at 100 kPa and 298 K indicated that ethane and ethylene uptakes of PCN-245 were 3.27 and 2.39 mmol, respectively, and the selectivity of ethane over ethylene was up to 1.9. Metropolis Monte Carlo calculations suggested that the interpenetrated structure of PCN-245 created greater interaction affinity for ethane than ethylene through the crossing organic linkers, which is consistent with the experimental results. This work highlights the potential application of adsorbents with the interpenetrated structure for ethane separation from ethylene.

  16. Long-chain alkane production by the yeast Saccharomyces cerevisiae.

    PubMed

    Buijs, Nicolaas A; Zhou, Yongjin J; Siewers, Verena; Nielsen, Jens

    2015-06-01

    In the past decade industrial-scale production of renewable transportation biofuels has been developed as an alternative to fossil fuels, with ethanol as the most prominent biofuel and yeast as the production organism of choice. However, ethanol is a less efficient substitute fuel for heavy-duty and maritime transportation as well as aviation due to its low energy density. Therefore, new types of biofuels, such as alkanes, are being developed that can be used as drop-in fuels and can substitute gasoline, diesel, and kerosene. Here, we describe for the first time the heterologous biosynthesis of long-chain alkanes by the yeast Saccharomyces cerevisiae. We show that elimination of the hexadecenal dehydrogenase Hfd1 and expression of a redox system are essential for alkane biosynthesis in yeast. Deletion of HFD1 together with expression of an alkane biosynthesis pathway resulted in the production of the alkanes tridecane, pentadecane, and heptadecane. Our study provides a proof of principle for producing long-chain alkanes in the industrial workhorse S. cerevisiae, which was so far limited to bacteria. We anticipate that these findings will be a key factor for further yeast engineering to enable industrial production of alkane based drop-in biofuels, which can allow the biofuel industry to diversify beyond bioethanol. © 2014 Wiley Periodicals, Inc.

  17. Alkanes in fungal spores.

    PubMed

    Oró, J; Laseter, J L; Weber, D

    1966-10-21

    The chlamydospores of Ustilago maydis, U. nuda, and Sphacelotheca reiliana were analyzed by gas chromatography and mass spectrometry for their hydrocarbon contents. For the first time we observed that they contain paraffinic hydrocarbons; the average contents were 42, 58, and 146 parts per million, respectively. n-Alkanes having odd numbers of carbon atoms predom-inate, with carbon-chain lengths ranging from C(14) to C(37). The major alkanes are n-C(27) in U. maydis, n-C(27) and n-C(35) in U. nuda, and n-C(29) in S. reiliana. Each type of spore carried a distinctly characteristic population of hydrocarbons.

  18. Cassini/Huygens Investigations of Titan's Methane Cycle

    NASA Astrophysics Data System (ADS)

    Griffith, C. A.; Penteado, P.

    2008-12-01

    the Methane Cycle in Titan's Atmosphere. Phil. Trans. Royal Society A. In Press (2008). Penteado, P.F. & C.A. Griffith Ground-based measurements of the methane distribution on Titan. In Preparation for submission to Icarus Griffith C.A. et al. Evidence for a Polar Ethane Cloud on Titan, Science, 313, 1620 (2006). Griffith C.A. et al. The Evolution of Titan's Mid-Latitude Clouds, Science, 310, 474 (2005).

  19. Identification and characterization of high methane-emitting abandoned oil and gas wells

    PubMed Central

    Kang, Mary; Christian, Shanna; Celia, Michael A.; Mauzerall, Denise L.; Bill, Markus; Miller, Alana R.; Chen, Yuheng; Conrad, Mark E.; Darrah, Thomas H.; Jackson, Robert B.

    2016-01-01

    Recent measurements of methane emissions from abandoned oil/gas wells show that these wells can be a substantial source of methane to the atmosphere, particularly from a small proportion of high-emitting wells. However, identifying high emitters remains a challenge. We couple 163 well measurements of methane flow rates; ethane, propane, and n-butane concentrations; isotopes of methane; and noble gas concentrations from 88 wells in Pennsylvania with synthesized data from historical documents, field investigations, and state databases. Using our databases, we (i) improve estimates of the number of abandoned wells in Pennsylvania; (ii) characterize key attributes that accompany high emitters, including depth, type, plugging status, and coal area designation; and (iii) estimate attribute-specific and overall methane emissions from abandoned wells. High emitters are best predicted as unplugged gas wells and plugged/vented gas wells in coal areas and appear to be unrelated to the presence of underground natural gas storage areas or unconventional oil/gas production. Repeat measurements over 2 years show that flow rates of high emitters are sustained through time. Our attribute-based methane emission data and our comprehensive estimate of 470,000–750,000 abandoned wells in Pennsylvania result in estimated state-wide emissions of 0.04–0.07 Mt (1012 g) CH4 per year. This estimate represents 5–8% of annual anthropogenic methane emissions in Pennsylvania. Our methodology combining new field measurements with data mining of previously unavailable well attributes and numbers of wells can be used to improve methane emission estimates and prioritize cost-effective mitigation strategies for Pennsylvania and beyond. PMID:27849603

  20. Engineering transcription factors to improve tolerance against alkane biofuels in Saccharomyces cerevisiae.

    PubMed

    Ling, Hua; Pratomo Juwono, Nina Kurniasih; Teo, Wei Suong; Liu, Ruirui; Leong, Susanna Su Jan; Chang, Matthew Wook

    2015-01-01

    Biologically produced alkanes can be used as 'drop in' to existing transportation infrastructure as alkanes are important components of gasoline and jet fuels. Despite the reported microbial production of alkanes, the toxicity of alkanes to microbial hosts could pose a bottleneck for high productivity. In this study, we aimed to improve the tolerance of Saccharomyces cerevisiae, a model eukaryotic host of industrial significance, to alkane biofuels. To increase alkane tolerance in S. cerevisiae, we sought to exploit the pleiotropic drug resistance (Pdr) transcription factors Pdr1p and Pdr3p, which are master regulators of genes with pleiotropic drug resistance elements (PDREs)-containing upstream sequences. Wild-type and site-mutated Pdr1p and Pdr3p were expressed in S. cerevisiae BY4741 pdr1Δ pdr3Δ (BYL13). The point mutations of PDR1 (F815S) and PDR3 (Y276H) in BYL13 resulted in the highest tolerance to C10 alkane, and the expression of wild-type PDR3 in BYL13 led to the highest tolerance to C11 alkane. To identify and verify the correlation between the Pdr transcription factors and tolerance improvement, we analyzed the expression patterns of genes regulated by the Pdr transcription factors in the most tolerant strains against C10 and C11 alkanes. Quantitative PCR results showed that the Pdr transcription factors differentially regulated genes associated with multi-drug resistance, stress responses, and membrane modifications, suggesting different extents of intracellular alkane levels, reactive oxygen species (ROS) production and membrane integrity. We further showed that (i) the expression of Pdr1mt1 + Pdr3mt reduced intracellular C10 alkane by 67 % and ROS by 53 %, and significantly alleviated membrane damage; and (ii) the expression of the Pdr3wt reduced intracellular C11 alkane by 72 % and ROS by 21 %. Alkane transport assays also revealed that the reduction of alkane accumulation was due to higher export (C10 and C11 alkanes) and lower import (C11

  1. CASSINI VIMS OBSERVATIONS SHOW ETHANE IS PRESENT IN TITAN'S RAINFALL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dalba, Paul A.; Buratti, Bonnie J.; Baines, Kevin H.

    2012-12-20

    Observations obtained over two years by the Cassini Imaging Science Subsystem suggest that rain showers fall on the surface. Using measurements obtained by the Visual Infrared Mapping Spectrometer, we identify the main component of the rain to be ethane, with methane as an additional component. We observe five or six probable rainfall events, at least one of which follows a brief equatorial cloud appearance, suggesting that frequent rainstorms occur on Titan. The rainfall evaporates, sublimates, or infiltrates on timescales of months, and in some cases it is associated with fluvial features but not with their creation or alteration. Thus, Titanmore » exhibits frequent 'gentle rainfall' instead of, or in addition to, more catastrophic events that cut rivers and lay down large fluvial deposits. Freezing rain may also be present, and the standing liquid may exist as puddles interspersed with patches of frost. The extensive dune deposits found in the equatorial regions of Titan imply multi-season arid conditions there, which are consistent with small, but possibly frequent, amounts of rain, in analogy to terrestrial deserts.« less

  2. Environmental controls on δ13C variations of Sphagnum derived n-alkanes in the Dajiuhu peatland, central China

    NASA Astrophysics Data System (ADS)

    Huang, X.; Xue, J.; Wang, X.; WANG, H.; Meyers, P. A.; Qin, Y.; Gong, L.; Ding, W.

    2012-12-01

    Northern peatlands are one of the very important atmospheric carbon sinks and represent about 30% of the global soil organic carbon (Gorham, 1991). In peatland conditions, high water levels and consequent anoxia make them an important source of methane. A recent study revealed that methanotrophic bacteria growing on stems or in hyaline cells of Sphagnum can provide methane derived carbon for photosynthesis (Raghoebarsing et al., 2005). This interaction has been found to be globally prevalent in peat-moss ecosystems and can contribute up to 30% of carbon for Sphagnum photosynthesis (Kip et al., 2010). Due to the uptake of 13C-depleted methane-derived CO2 and the sensitivity of methane oxidizing bacteria to the surface wetness, the carbon isotopic signatures of Sphagnum derived lipids have the potential to be used as a proxy for the surface wetness in peatlands and hence as paleoclimate archives (Nichols et al., 2009). In this study, we report the δ13C variations of the Sphagnum derived n-C23 alkane in both fresh Sphagnum and surface peat samples in the Dajiuhu peatland, a small fen located in the Shennongjia forestry region, Hubei province, central China. The δ13C23 values of Sphagnum show a negative correlation with the water level, supporting the idea that that the carbon isotope fractionation of Sphagnum is mainly manifested by the diffusion resistance of CO2 in hyaline cells of Sphagnum. However, δ13C23 values of surface peats collected in Sphagnum dominated ecosystems display a positive relation with the water level when the water level is less than 30 cm. Such an inconsistency probably results from the higher potential for methane-oxidizing activity in the lower parts of Sphagnum in fen meadows. When the water level is higher than 30 cm, the influence of symbiotic methanotrophic bacteria on Sphagnum derived n-C23 alkane is weak or nearly absent. These findings provide direct evidence to support the hypothesis that the carbon isotopic signatures of Sphagnum

  3. The Formation of Ethane from Carbon Dioxide under Cold Plasma

    NASA Astrophysics Data System (ADS)

    Zhang, Xiu-ling; Zhang, Lin; Dai, Bin; Gong, Wei-min; Liu, Chang-hou

    2001-04-01

    Pulsed-corona plasma has been used as a new method for ethane dehydrogenation at low temperature and normal pressure using carbon dioxide as an oxidant in this paper. The effect of carbon dioxide content in the feed, power input, and flow rate of the reactants on the ethane dehydrogenation has been investigated. The experimental results show that the conversion of ethane increases with the increase in the amount of carbon dioxide in the feed. The yield of ethylene and acetylene decreases with the increase in the yield of carbon monoxide, indicating that the increased carbon dioxide leads to the part of ethylene and acetylene being oxidized to carbon monoxide. Power input is primarily an electrical parameter in pulsed-corona plasma, which plays an important role in reactant conversion and product formation. When the power input reaches 16 W, ethane conversion is 41.0% and carbon dioxide conversion is 26.3%. The total yield of ethylene and acetylene is 15.6%. The reduced flow rate of feed improves the conversion of ethane, carbon dioxide and the yield of acetylene, and induces carbon deposit as well.

  4. Tropospheric and lower stratospheric vertical profiles of ethane and acetylene

    NASA Technical Reports Server (NTRS)

    Cronn, D.; Robinson, E.

    1979-01-01

    The first known vertical distributions of ethane and acetylene which extend into the lower stratosphere are reported. The average upper tropospheric concentrations, between 20,000 ft and 35,000 ft, near 37 deg N-123 deg W were 1.2 micrograms/cu m (1.0 ppb) for ethane and 0.24 micrograms /cu m (0.23 ppb) for acetylene while the values near 9 N-80 W were 0.95 micrograms/cu m (0.77 ppb) and 0.09 micrograms/cu m (0.09 ppb), respectively. Detectable quantities of both ethane and acetylene are present in the lower stratosphere. There is a sharp decrease in the levels of these two compounds as one crosses the tropopause and ascends into the lower stratosphere. The observed levels of ethane and acetylene may allow some impact on the background chemistry of the troposphere and stratosphere.

  5. Plant n-alkane production from litterfall altered the diversity and community structure of alkane degrading bacteria in litter layer in lowland subtropical rainforest in Taiwan

    NASA Astrophysics Data System (ADS)

    Huang, Tung-Yi; Hsu, Bing-Mu; Chao, Wei-Chun; Fan, Cheng-Wei

    2018-03-01

    n-Alkane and alkane-degrading bacteria have long been used as crucial biological indicators of paleoecology, petroleum pollution, and oil and gas prospecting. However, the relationship between n-alkane and alkane-degrading bacteria in natural forests is still poorly understood. In this study, long-chain n-alkane (C14-C35) concentrations in litterfall, litter layer, and topsoil as well as the diversity and abundance of n-alkane-degrading bacterial communities in litter layers were investigated in three habitats across a lowland subtropical rainforest in southern Taiwan: ravine, windward, and leeward habitats in Nanjenshan. Our results demonstrate that the litterfall yield and productivity of long-chain n-alkane were highest in the ravine habitats. However, long-chain n-alkane concentrations in all habitats were decreased drastically to a similar low level from the litterfall to the bulk soil, suggesting a higher rate of long-chain n-alkane degradation in the ravine habitat. Operational taxonomic unit (OTU) analysis using next-generation sequencing data revealed that the relative abundances of microbial communities in the windward and leeward habitats were similar and different from that in the ravine habitat. Data mining of community amplicon sequencing using the NCBI database revealed that alkB-gene-associated bacteria (95 % DNA sequence similarity to alkB-containing bacteria) were most abundant in the ravine habitat. Empirical testing of litter layer samples using semi-quantitative polymerase chain reaction for determining alkB gene levels confirmed that the ravine habitat had higher alkB gene levels than the windward and leeward habitats. Heat map analysis revealed parallels in pattern color between the plant and microbial species compositions of the habitats, suggesting a causal relationship between the plant n-alkane production and microbial community diversity. This finding indicates that the diversity and relative abundance of microbial communities in the

  6. Sophorolipids from Torulopsis bombicola: possible relation to alkane uptake.

    PubMed Central

    Ito, S; Inoue, S

    1982-01-01

    Torulopsis bombicola produces extracellular sophorolipids when it is grown on water-insoluble alkanes. Sophorolipids and related model compounds, which were not themselves used for growth, were found to stimulate markedly the growth of T. bombicola on alkanes. This stimulatory effect was restricted to growth on C10 to C20 alkanes, whereas no significantly influence was observed for growth on fatty alcohols, fatty acids, glucose, or glycerol. The nonionic methyl ester of the glycolipid supported the greatest cell yield. However, a number of synthetic nonionic surfactants were unable to replace the glycolipid. When organisms were grown on hexadecane, stimulation of growth by sophorolipids was observed almost exclusively with strains of Torulopsis yeasts. In contrast, the growth of other typical alkane-utilizing yeasts, such as candida and Pichia strains, was inhibited or not affected. It appears that sophorolipids are involved in alkane dissimilation by T. bombicola through an undetermined mechanism. PMID:7201782

  7. Expanding the product profile of a microbial alkane biosynthetic pathway.

    PubMed

    Harger, Matthew; Zheng, Lei; Moon, Austin; Ager, Casey; An, Ju Hye; Choe, Chris; Lai, Yi-Ling; Mo, Benjamin; Zong, David; Smith, Matthew D; Egbert, Robert G; Mills, Jeremy H; Baker, David; Pultz, Ingrid Swanson; Siegel, Justin B

    2013-01-18

    Microbially produced alkanes are a new class of biofuels that closely match the chemical composition of petroleum-based fuels. Alkanes can be generated from the fatty acid biosynthetic pathway by the reduction of acyl-ACPs followed by decarbonylation of the resulting aldehydes. A current limitation of this pathway is the restricted product profile, which consists of n-alkanes of 13, 15, and 17 carbons in length. To expand the product profile, we incorporated a new part, FabH2 from Bacillus subtilis , an enzyme known to have a broader specificity profile for fatty acid initiation than the native FabH of Escherichia coli . When provided with the appropriate substrate, the addition of FabH2 resulted in an altered alkane product profile in which significant levels of n-alkanes of 14 and 16 carbons in length are produced. The production of even chain length alkanes represents initial steps toward the expansion of this recently discovered microbial alkane production pathway to synthesize complex fuels. This work was conceived and performed as part of the 2011 University of Washington international Genetically Engineered Machines (iGEM) project.

  8. Separation of C2 hydrocarbons from methane in a microporous metal-organic framework

    NASA Astrophysics Data System (ADS)

    Tang, Fu-Shun; Lin, Rui-Biao; Lin, Rong-Guang; Zhao, John Cong-Gui; Chen, Banglin

    2018-02-01

    The recovery of C2 hydrocarbons including acetylene, ethylene and ethane is challenging but important for natural gas upgrading. The separation of C2 hydrocarbons over methane was demonstrated here by using a microporous metal-organic framework [Zn3(OH)2(SDB)2] (H2SDB = 4,4'-sulfonyldibenzoic acid) consisting narrow one-dimensional pore channels. Gas sorption experiments revealed that this MOF material showed considerable uptake capacity for C2H2, C2H4 and C2H6 under ambient conditions, while its capacity for CH4 was very low. High selectivity from IAST calculations for C2H2/CH4, C2H4/CH4 and C2H6/CH4 binary mixtures demonstrated that this MOF material were promising for efficiently separating important separation of C2 hydrocarbons from methane in natural gas processing.

  9. Methyl-coenzyme M reductase from methanogenic archaea: isotope effects on label exchange and ethane formation with the homologous substrate ethyl-coenzyme M.

    PubMed

    Scheller, Silvan; Goenrich, Meike; Thauer, Rudolf K; Jaun, Bernhard

    2013-10-09

    Ethyl-coenzyme M (CH3CH2-S-CH2CH2-SO3(-), Et-S-CoM) serves as a homologous substrate for the enzyme methyl-coenzyme M reductase (MCR) resulting in the product ethane instead of methane. The catalytic reaction proceeds via an intermediate that already contains all six C-H bonds of the product. Because product release occurs after a second, rate-limiting step, many cycles of intermediate formation and reconversion to substrate occur before a substantial amount of ethane is released. In deuterated buffer, the intermediate becomes labeled, and C-H activation in the back reaction rapidly leads to labeled Et-S-CoM, which enables intermediate formation to be detected. Here, we present a comprehensive analysis of this pre-equilibrium. (2)H- and (13)C-labeled isotopologues of Et-S-CoM were used as the substrates, and the time course of each isotopologue was followed by NMR spectroscopy. A kinetic simulation including kinetic isotope effects allowed determination of the primary and α- and β-secondary isotope effects for intermediate formation and for the C-H/C-D bond activation in the ethane-containing intermediate. The values obtained are in accordance with those found for the native substrate Me-S-CoM (see preceding publication, Scheller, S.; Goenrich, M.; Thauer, R. K.; Jaun, B. J. Am. Chem. Soc. 2013, 135, DOI: 10.1021/ja406485z) and thus imply the same catalytic mechanism for both substrates. The experiment by Floss and co-workers, demonstrating a net inversion of configuration to chiral ethane with CH3CDT-S-CoM as the substrate, is compatible with the observed rapid isotope exchange if the isotope effects measured here are taken into account.

  10. Stimulation of methane generation from nonproductive coal by addition of nutrients or a microbial consortium

    USGS Publications Warehouse

    Jones, Elizabeth J.P.; Voytek, Mary A.; Corum, Margo D.; Orem, William H.

    2010-01-01

    Biogenic formation of methane from coal is of great interest as an underexploited source of clean energy. The goal of some coal bed producers is to extend coal bed methane productivity and to utilize hydrocarbon wastes such as coal slurry to generate new methane. However, the process and factors controlling the process, and thus ways to stimulate it, are poorly understood. Subbituminous coal from a nonproductive well in south Texas was stimulated to produce methane in microcosms when the native population was supplemented with nutrients (biostimulation) or when nutrients and a consortium of bacteria and methanogens enriched from wetland sediment were added (bioaugmentation). The native population enriched by nutrient addition included Pseudomonas spp., Veillonellaceae, and Methanosarcina barkeri. The bioaugmented microcosm generated methane more rapidly and to a higher concentration than the biostimulated microcosm. Dissolved organics, including long-chain fatty acids, single-ring aromatics, and long-chain alkanes accumulated in the first 39 days of the bioaugmented microcosm and were then degraded, accompanied by generation of methane. The bioaugmented microcosm was dominated by Geobacter sp., and most of the methane generation was associated with growth of Methanosaeta concilii. The ability of the bioaugmentation culture to produce methane from coal intermediates was confirmed in incubations of culture with representative organic compounds. This study indicates that methane production could be stimulated at the nonproductive field site and that low microbial biomass may be limiting in situ methane generation. In addition, the microcosm study suggests that the pathway for generating methane from coal involves complex microbial partnerships.

  11. Reconstitution of plant alkane biosynthesis in yeast demonstrates that Arabidopsis ECERIFERUM1 and ECERIFERUM3 are core components of a very-long-chain alkane synthesis complex.

    PubMed

    Bernard, Amélie; Domergue, Frédéric; Pascal, Stéphanie; Jetter, Reinhard; Renne, Charlotte; Faure, Jean-Denis; Haslam, Richard P; Napier, Johnathan A; Lessire, René; Joubès, Jérôme

    2012-07-01

    In land plants, very-long-chain (VLC) alkanes are major components of cuticular waxes that cover aerial organs, mainly acting as a waterproof barrier to prevent nonstomatal water loss. Although thoroughly investigated, plant alkane synthesis remains largely undiscovered. The Arabidopsis thaliana ECERIFERUM1 (CER1) protein has been recognized as an essential element of wax alkane synthesis; nevertheless, its function remains elusive. In this study, a screen for CER1 physical interaction partners was performed. The screen revealed that CER1 interacts with the wax-associated protein ECERIFERUM3 (CER3) and endoplasmic reticulum-localized cytochrome b5 isoforms (CYTB5s). The functional relevance of these interactions was assayed through an iterative approach using yeast as a heterologous expression system. In a yeast strain manipulated to produce VLC acyl-CoAs, a strict CER1 and CER3 coexpression resulted in VLC alkane synthesis. The additional presence of CYTB5s was found to enhance CER1/CER3 alkane production. Site-directed mutagenesis showed that CER1 His clusters are essential for alkane synthesis, whereas those of CER3 are not, suggesting that CYTB5s are specific CER1 cofactors. Collectively, our study reports the identification of plant alkane synthesis enzymatic components and supports a new model for alkane production in which CER1 interacts with both CER3 and CYTB5 to catalyze the redox-dependent synthesis of VLC alkanes from VLC acyl-CoAs.

  12. 40 CFR 60.565 - Reporting and recordkeeping requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... emission control efficiency of a combustion device or the outlet concentration of TOC (minus methane and... performance test period, and (ii) The percent reduction of TOC (minus methane and ethane) achieved by the incinerator, the concentration of TOC (minus methane and ethane) (ppmv, by compound) at the outlet of the...

  13. 40 CFR 60.565 - Reporting and recordkeeping requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... emission control efficiency of a combustion device or the outlet concentration of TOC (minus methane and... performance test period, and (ii) The percent reduction of TOC (minus methane and ethane) achieved by the incinerator, the concentration of TOC (minus methane and ethane) (ppmv, by compound) at the outlet of the...

  14. 40 CFR 60.565 - Reporting and recordkeeping requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... emission control efficiency of a combustion device or the outlet concentration of TOC (minus methane and... performance test period, and (ii) The percent reduction of TOC (minus methane and ethane) achieved by the incinerator, the concentration of TOC (minus methane and ethane) (ppmv, by compound) at the outlet of the...

  15. 40 CFR 60.565 - Reporting and recordkeeping requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... emission control efficiency of a combustion device or the outlet concentration of TOC (minus methane and... performance test period, and (ii) The percent reduction of TOC (minus methane and ethane) achieved by the incinerator, the concentration of TOC (minus methane and ethane) (ppmv, by compound) at the outlet of the...

  16. 40 CFR 60.565 - Reporting and recordkeeping requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... emission control efficiency of a combustion device or the outlet concentration of TOC (minus methane and... performance test period, and (ii) The percent reduction of TOC (minus methane and ethane) achieved by the incinerator, the concentration of TOC (minus methane and ethane) (ppmv, by compound) at the outlet of the...

  17. 40 CFR 63.7893 - How do I demonstrate continuous compliance with the emissions limitations and work practice...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...(b)(2), you maintain emissions of TOC (minus methane and ethane) from all affected process vents at...), you maintain that the emissions of TOC (minus methane and ethane) from all affected process vents are...

  18. 40 CFR 63.7926 - How do I demonstrate initial compliance with the emission limitations and work practice standards...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... subpart or TOC (minus methane and ethane) from the control device, measured or determined according to the... of this subpart or TOC (minus methane and ethane) from the combustion control device, measured by a...

  19. Crystallization features of normal alkanes in confined geometry.

    PubMed

    Su, Yunlan; Liu, Guoming; Xie, Baoquan; Fu, Dongsheng; Wang, Dujin

    2014-01-21

    How polymers crystallize can greatly affect their thermal and mechanical properties, which influence the practical applications of these materials. Polymeric materials, such as block copolymers, graft polymers, and polymer blends, have complex molecular structures. Due to the multiple hierarchical structures and different size domains in polymer systems, confined hard environments for polymer crystallization exist widely in these materials. The confined geometry is closely related to both the phase metastability and lifetime of polymer. This affects the phase miscibility, microphase separation, and crystallization behaviors and determines both the performance of polymer materials and how easily these materials can be processed. Furthermore, the size effect of metastable states needs to be clarified in polymers. However, scientists find it difficult to propose a quantitative formula to describe the transition dynamics of metastable states in these complex systems. Normal alkanes [CnH2n+2, n-alkanes], especially linear saturated hydrocarbons, can provide a well-defined model system for studying the complex crystallization behaviors of polymer materials, surfactants, and lipids. Therefore, a deeper investigation of normal alkane phase behavior in confinement will help scientists to understand the crystalline phase transition and ultimate properties of many polymeric materials, especially polyolefins. In this Account, we provide an in-depth look at the research concerning the confined crystallization behavior of n-alkanes and binary mixtures in microcapsules by our laboratory and others. Since 2006, our group has developed a technique for synthesizing nearly monodispersed n-alkane containing microcapsules with controllable size and surface porous morphology. We applied an in situ polymerization method, using melamine-formaldehyde resin as shell material and nonionic surfactants as emulsifiers. The solid shell of microcapsules can provide a stable three-dimensional (3-D

  20. Low-temperature superacid catalysis: Reactions of n - butane and propane catalyzed by iron- and manganese-promoted sulfated zirconia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsz-Keung, Cheung; d`Itri, J.L.; Lange, F.C.

    1995-12-31

    The primary goal of this project is to evaluate the potential value of solid superacid catalysts of the sulfated zirconia type for light hydrocarbon conversion. The key experiments catalytic testing of the performance of such catalysts in a flow reactor fed with streams containing, for example, n-butane or propane. Fe- and Mn-promoted sulfated zirconia was used to catalyze the conversion of n-butane at atmospheric pressure, 225-450{degrees}C, and n-butane partial pressures in the range of 0.0025-0.01 atm. At temperatures <225{degrees}C, these reactions were accompanied by cracking; at temperatures >350{degrees}C, cracking and isomerization occurred. Catalyst deactivation, resulting at least in part frommore » coke formation, was rapid. The primary cracking products were methane, ethane, ethylene, and propylene. The observation of these products along with an ethane/ethylene molar ratio of nearly 1 at 450{degrees}C is consistent with cracking occurring, at least in part, by the Haag-Dessau mechanism, whereby the strongly acidic catalyst protonates n-butane to give carbonium ions. The rate of methane formation from n-butane cracking catalyzed by Fe- and Mn-promoted sulfated zirconia at 450{degrees}C was about 3 x 10{sup -8} mol/(g of catalyst {center_dot}s). The observation of butanes, pentanes, and methane as products is consistent with Olah superacid chemistry, whereby propane is first protonated by a very strong acid to form a carbonium ion. The carbonium ion then decomposes into methane and an ethyl cation which undergoes oligocondensation reactions with propane to form higher molecular weight alkanes. The results are consistent with the identification of iron- and manganese-promoted sulfated zirconia as a superacid.« less

  1. 40 CFR 60.612 - Standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... maximum production rate at which the affected facility will be operated, or 180 days after the initial... (minus methane and ethane) by 98 weight-percent, or to a TOC (minus methane and ethane) concentration of...

  2. 40 CFR 60.612 - Standards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... maximum production rate at which the affected facility will be operated, or 180 days after the initial... (minus methane and ethane) by 98 weight-percent, or to a TOC (minus methane and ethane) concentration of...

  3. 40 CFR 60.612 - Standards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... maximum production rate at which the affected facility will be operated, or 180 days after the initial... (minus methane and ethane) by 98 weight-percent, or to a TOC (minus methane and ethane) concentration of...

  4. 40 CFR 60.612 - Standards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... maximum production rate at which the affected facility will be operated, or 180 days after the initial... (minus methane and ethane) by 98 weight-percent, or to a TOC (minus methane and ethane) concentration of...

  5. 40 CFR 60.612 - Standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... start-up, whichever date comes first. Each owner or operator shall either: (a) Reduce emissions of TOC (minus methane and ethane) by 98 weight-percent, or to a TOC (minus methane and ethane) concentration of...

  6. Preliminary JIRAM results from Juno polar observations: 3. Evidence of diffuse methane presence in the Jupiter auroral regions

    NASA Astrophysics Data System (ADS)

    Moriconi, M. L.; Adriani, A.; Dinelli, B. M.; Fabiano, F.; Altieri, F.; Tosi, F.; Filacchione, G.; Migliorini, A.; Gérard, J. C.; Mura, A.; Grassi, D.; Sindoni, G.; Piccioni, G.; Noschese, R.; Cicchetti, A.; Bolton, S. J.; Connerney, J. E. P.; Atreya, S. K.; Bagenal, F.; Gladstone, G. R.; Hansen, C.; Kurth, W. S.; Levin, S. M.; Mauk, B. H.; McComas, D. J.; Turrini, D.; Stefani, S.; Olivieri, A.; Amoroso, M.

    2017-05-01

    Throughout the first orbit of the NASA Juno mission around Jupiter, the Jupiter InfraRed Auroral Mapper (JIRAM) targeted the northern and southern polar regions several times. The analyses of the acquired images and spectra confirmed a significant presence of methane (CH4) near both poles through its 3.3 μm emission overlapping the H3+ auroral feature at 3.31 μm. Neither acetylene (C2H2) nor ethane (C2H6) have been observed so far. The analysis method, developed for the retrieval of H3+ temperature and abundances and applied to the JIRAM-measured spectra, has enabled an estimate of the effective temperature for methane peak emission and the distribution of its spectral contribution in the polar regions. The enhanced methane inside the auroral oval regions in the two hemispheres at different longitude suggests an excitation mechanism driven by energized particle precipitation from the magnetosphere.

  7. Controls on Methane Occurrences in Shallow Aquifers Overlying the Haynesville Shale Gas Field, East Texas.

    PubMed

    Nicot, Jean-Philippe; Larson, Toti; Darvari, Roxana; Mickler, Patrick; Slotten, Michael; Aldridge, Jordan; Uhlman, Kristine; Costley, Ruth

    2017-07-01

    Understanding the source of dissolved methane in drinking-water aquifers is critical for assessing potential contributions from hydraulic fracturing in shale plays. Shallow groundwater in the Texas portion of the Haynesville Shale area (13,000 km 2 ) was sampled (70 samples) for methane and other dissolved light alkanes. Most samples were derived from the fresh water bearing Wilcox formations and show little methane except in a localized cluster of 12 water wells (17% of total) in a approximately 30 × 30 km 2 area in Southern Panola County with dissolved methane concentrations less than 10 mg/L. This zone of elevated methane is spatially associated with the termination of an active fault system affecting the entire sedimentary section, including the Haynesville Shale at a depth more than 3.5 km, and with shallow lignite seams of Lower Wilcox age at a depth of 100 to 230 m. The lignite spatial extension overlaps with the cluster. Gas wetness and methane isotope compositions suggest a mixed microbial and thermogenic origin with contribution from lignite beds and from deep thermogenic reservoirs that produce condensate in most of the cluster area. The pathway for methane from the lignite and deeper reservoirs is then provided by the fault system. © 2017, National Ground Water Association.

  8. Geochemical investigation of the potential for mobilizing non-methane hydrocarbons during carbon dioxide storage in deep coal beds

    USGS Publications Warehouse

    Kolak, J.J.; Burruss, R.C.

    2006-01-01

    Coal samples of different rank (lignite to anthracite) were extracted in the laboratory with supercritical CO2 (40 ??C; 10 MPa) to evaluate the potential for mobilizing non-methane hydrocarbons during CO2 storage (sequestration) or enhanced coal bed methane recovery from deep (???1-km depth) coal beds. The total measured alkane concentrations mobilized from the coal samples ranged from 3.0 to 64 g tonne-1 of dry coal. The highest alkane concentration was measured in the lignite sample extract; the lowest was measured in the anthracite sample extract. Substantial concentrations of polycyclic aromatic hydrocarbons (PAHs) were also mobilized from these samples: 3.1 - 91 g tonne-1 of dry coal. The greatest amounts of PAHs were mobilized from the high-volatile bituminous coal samples. The distributions of aliphatic and aromatic hydrocarbons mobilized from the coal samples also varied with rank. In general, these variations mimicked the chemical changes that occur with increasing degrees of coalification and thermal maturation. For example, the amount of PAHs mobilized from coal samples paralleled the general trend of bitumen formation with increasing coal rank. The coal samples yielded hydrocarbons during consecutive extractions with supercritical CO2, although the amount of hydrocarbons mobilized declined with each successive extraction. These results demonstrate that the potential for supercritical CO2 to mobilize non-methane hydrocarbons from coal beds, and the effect of coal rank on this process, are important to consider when evaluating deep coal beds for CO2 storage.

  9. Formation of a new benzene-ethane co-crystalline structure under cryogenic conditions.

    PubMed

    Vu, Tuan Hoang; Cable, Morgan L; Choukroun, Mathieu; Hodyss, Robert; Beauchamp, Patricia

    2014-06-12

    We report the first experimental finding of a solid molecular complex between benzene and ethane, two small apolar hydrocarbons, at atmospheric pressure and cryogenic temperatures. Considerable amounts of ethane are found to be incorporated inside the benzene lattice upon the addition of liquid ethane onto solid benzene at 90-150 K, resulting in formation of a distinctive co-crystalline structure that can be detected via micro-Raman spectroscopy. Two new features characteristic of these co-crystals are observed in the Raman spectra at 2873 and 1455 cm(-1), which are red-shifted by 12 cm(-1) from the υ1 (a1g) and υ11 (eg) stretching modes of liquid ethane, respectively. Analysis of benzene and ethane vibrational bands combined with quantum mechanical modeling of isolated molecular dimers reveal an interaction between the aromatic ring of benzene and the hydrogen atoms of ethane in a C-H···π fashion. The most favored configuration for the benzene-ethane dimer is the monodentate-contact structure, with a calculated interaction energy of 9.33 kJ/mol and an equilibrium bonding distance of 2.66 Å. These parameters are comparable to those for a T-shaped co-crystalline complex between benzene and acetylene that has been previously reported in the literature. These results are relevant for understanding the hydrocarbon cycle of Titan, where benzene and similar organics may act as potential hydrocarbon reservoirs due to this incorporation mechanism.

  10. Phase diagram and high-pressure boundary of hydrate formation in the ethane-water system.

    PubMed

    Kurnosov, Alexander V; Ogienko, Andrey G; Goryainov, Sergei V; Larionov, Eduard G; Manakov, Andrey Y; Lihacheva, Anna Y; Aladko, Eugeny Y; Zhurko, Fridrikh V; Voronin, Vladimir I; Berger, Ivan F; Ancharov, Aleksei I

    2006-11-02

    Dissociation temperatures of gas hydrate formed in the ethane-water system were studied at pressures up to 1500 MPa. In situ neutron diffraction analysis and X-ray diffraction analysis in a diamond anvil cell showed that the gas hydrate formed in the ethane-water system at 340, 700, and 1840 MPa and room temperature belongs to the cubic structure I (CS-I). Raman spectra of C-C vibrations of ethane molecules in the hydrate phase, as well as the spectra of solid and liquid ethane under high-pressure conditions were studied at pressures up to 6900 MPa. Within 170-3600 MPa Raman shift of the C-C vibration mode of ethane in the hydrate phase did not show any discontinuities, which could be evidence of possible phase transformations. The upper pressure boundary of high-pressure hydrate existence was discovered at the pressure of 3600 MPa. This boundary corresponds to decomposition of the hydrate to solid ethane and ice VII. The type of phase diagram of ethane-water system was proposed in the pressure range of hydrate formation (0-3600 MPa).

  11. Characterization of methane emissions from five cold heavy oil production with sands (CHOPS) facilities.

    PubMed

    Roscioli, Joseph R; Herndon, Scott C; Yacovitch, Tara I; Knighton, W Berk; Zavala-Araiza, Daniel; Johnson, Matthew R; Tyner, David R

    2018-03-07

    Cold heavy oil production with sands (CHOPS) is a common oil extraction method in the Canadian provinces of Alberta and Saskatchewan that can result in significant methane emissions due to annular venting. Little is known about the magnitude of these emissions, nor their contributions to the regional methane budget. Here the authors present the results of field measurements of methane emissions from CHOPS wells and compare them with self-reported venting rates. The tracer ratio method was used not only to analyze total site emissions but at one site it was also used to locate primary emission sources and quantify their contributions to the facility-wide emission rate, revealing the annular vent to be a dominant source. Emissions measured from five different CHOPS sites in Alberta showed large discrepancies between the measured and reported rates, with emissions being mainly underreported. These methane emission rates are placed in the context of current reporting procedures and the role that gas-oil ratio (GOR) measurements play in vented volume estimates. In addition to methane, emissions of higher hydrocarbons were also measured; a chemical "fingerprint" associated with CHOPS wells in this region reveals very low emission ratios of ethane, propane, and aromatics versus methane. The results of this study may inform future studies of CHOPS sites and aid in developing policy to mitigate regional methane emissions. Methane measurements from cold heavy oil production with sand (CHOPS) sites identify annular venting to be a potentially major source of emissions at these facilities. The measured emission rates are generally larger than reported by operators, with uncertainty in the gas-oil ratio (GOR) possibly playing a large role in this discrepancy. These results have potential policy implications for reducing methane emissions in Alberta in order to achieve the Canadian government's goal of reducing methane emissions by 40-45% below 2012 levels within 8 yr.

  12. Exhaled ethane: an in vivo biomarker of lipid peroxidation in interstitial lung diseases.

    PubMed

    Kanoh, Soichiro; Kobayashi, Hideo; Motoyoshi, Kazuo

    2005-10-01

    Oxidative stress plays a role in the pathogenesis and progression of interstitial lung disease (ILD). Exhaled ethane is a product of lipid peroxidation that has been proposed as a biomarker of oxidative stress in vivo. To determine whether the exhaled ethane level is elevated in patients with ILD and to compare it with other clinical parameters. Breath samples were collected from 34 patients with ILD, including 13 with idiopathic pulmonary fibrosis (IPF), 9 patients with cryptogenic organizing pneumonia, 6 patients with collagen vascular disease-associated interstitial pneumonia, and 6 patients with pulmonary sarcoidosis. Gas samples were obtained at hospital admission and after 3 weeks. After each expired sample was concentrated using a trap-and-purge procedure, the ethane level was analyzed by gas chromatography. Exhaled ethane levels were elevated in ILD patients (n = 34, mean +/- SD, 8.5 +/- 8.0 pmol/dL) compared with healthy volunteers (n = 16, 2.9 +/- 1.0 pmol/dL; p < 0.001). Serial measurements revealed that increase and decrease of ethane levels were largely consistent with the clinical course. Four patients with IPF who had persistently high ethane levels died or deteriorated, whereas those with ethane levels < 5.0 pmol/dL remained stable or improved. Exhaled ethane concentrations were positively correlated with levels of lactate dehydrogenase (Spearman rank correlation coefficient [rs], 0.28, p = 0.026) and C-reactive protein (rs, 0.38, p = 0.025) and were inversely correlated with Pa(O2) (rs, - 0.40, p = 0.0026). Patients showing increased uptake on (67)Ga scintigraphy demonstrated higher ethane levels (n = 19, 7.5 +/- 5.7 pmol/dL) compared with those who did not show increased uptake on scintigraphy (n = 10, 3.0 +/- 2.4 pmol/dL; p < 0.01). Exhaled ethane is elevated in patients with ILD and is correlated with the clinical outcome, suggesting that it provides useful information about ongoing oxidative stress, and thereby disease activity and severity in

  13. DITERMINAL OXIDATION OF LONG-CHAIN ALKANES BY BACTERIA1

    PubMed Central

    Kester, A. S.; Foster, J. W.

    1963-01-01

    Kester, A. S. (The University of Texas, Austin) and J. W. Foster. Diterminal oxidation of long-chain alkanes by bacteria. J. Bacteriol. 85:859–869. 1963.—A corynebacterial organism capable of growing in mineral salts with individual pure alkanes as carbon sources produces a series of acids from the C10-C14 alkanes. They have been isolated in pure form and identified as monoic, ω-hydroxy monoic, and dioic acids containing the same number of carbon atoms as the substrate alkane. Oxidation took place at both terminal methyl groups—“diterminal oxidation.” Appropriate labeling experiments indicate that omega oxidation of fatty acids occurs in this organism and that an oxygenation with O2 occurs. Images PMID:14044955

  14. Metabolism of Hydrocarbons in n-Alkane-Utilizing Anaerobic Bacteria.

    PubMed

    Wilkes, Heinz; Buckel, Wolfgang; Golding, Bernard T; Rabus, Ralf

    2016-01-01

    The glycyl radical enzyme-catalyzed addition of n-alkanes to fumarate creates a C-C-bond between two concomitantly formed stereogenic carbon centers. The configurations of the two diastereoisomers of the product resulting from n-hexane activation by the n-alkane-utilizing denitrifying bacterium strain HxN1, i.e. (1-methylpentyl)succinate, were assigned as (2S,1'R) and (2R,1'R). Experiments with stereospecifically deuterated n-(2,5-2H2)hexanes revealed that exclusively the pro-S hydrogen atom is abstracted from C2 of the n-alkane by the enzyme and later transferred back to C3 of the alkylsuccinate formed. These results indicate that the alkylsuccinate-forming reaction proceeds with an inversion of configuration at the carbon atom (C2) of the n-alkane forming the new C-C-bond, and thus stereochemically resembles a SN2-type reaction. Therefore, the reaction may occur in a concerted manner, which may avoid the highly energetic hex-2-yl radical as an intermediate. The reaction is associated with a significant primary kinetic isotope effect (kH/kD ≥3) for hydrogen, indicating that the homolytic C-H-bond cleavage is involved in the first irreversible step of the reaction mechanism. The (1-methylalkyl)succinate synthases of n-alkane-utilizing anaerobic bacteria apparently have very broad substrate ranges enabling them to activate not only aliphatic but also alkyl-aromatic hydrocarbons. Thus, two denitrifiers and one sulfate reducer were shown to convert the nongrowth substrate toluene to benzylsuccinate and further to the dead-end product benzoyl-CoA. For this purpose, however, the modified β-oxidation pathway known from alkylbenzene-utilizing bacteria was not employed, but rather the pathway used for n-alkane degradation involving CoA ligation, carbon skeleton rearrangement and decarboxylation. Furthermore, various n-alkane- and alkylbenzene-utilizing denitrifiers and sulfate reducers were found to be capable of forming benzyl alcohols from diverse alkylbenzenes

  15. Alkane inducible proteins in Geobacillus thermoleovorans B23

    PubMed Central

    2009-01-01

    Background Initial step of β-oxidation is catalyzed by acyl-CoA dehydrogenase in prokaryotes and mitochondria, while acyl-CoA oxidase primarily functions in the peroxisomes of eukaryotes. Oxidase reaction accompanies emission of toxic by-product reactive oxygen molecules including superoxide anion, and superoxide dismutase and catalase activities are essential to detoxify them in the peroxisomes. Although there is an argument about whether primitive life was born and evolved under high temperature conditions, thermophilic archaea apparently share living systems with both bacteria and eukaryotes. We hypothesized that alkane degradation pathways in thermophilic microorganisms could be premature and useful to understand their evolution. Results An extremely thermophilic and alkane degrading Geobacillus thermoleovorans B23 was previously isolated from a deep subsurface oil reservoir in Japan. In the present study, we identified novel membrane proteins (P16, P21) and superoxide dismutase (P24) whose production levels were significantly increased upon alkane degradation. Unlike other bacteria acyl-CoA oxidase and catalase activities were also increased in strain B23 by addition of alkane. Conclusion We first suggested that peroxisomal β-oxidation system exists in bacteria. This eukaryotic-type alkane degradation pathway in thermophilic bacterial cells might be a vestige of primitive living cell systems that had evolved into eukaryotes. PMID:19320977

  16. 40 CFR 60.702 - Standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... first. Each owner or operator shall either: (a) Reduce emissions of TOC (less methane and ethane) by 98 weight-percent, or to a TOC (less methane and ethane) concentration of 20 ppmv, on a dry basis corrected...

  17. 40 CFR 60.662 - Standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., whichever date comes first. Each owner or operator shall either: (a) Reduce emissions of TOC (less methane and ethane) by 98 weight-percent, or to a TOC (less methane and ethane) concentration of 20 ppmv, on a...

  18. 40 CFR 63.496 - Back-end process provisions-procedures to determine compliance using control or recovery devices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... total organic HAP (or TOC, minus methane and ethane) emissions in all process vent streams and primary... TOC (minus methane and ethane) may be measured instead of total organic HAP. (C) The mass rates shall... and outlet of the control device shall be the sum of all total organic HAP (or TOC, minus methane and...

  19. 40 CFR 721.10265 - Ethane, 2-bromo-1, 1-difluoro-.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10265 Ethane, 2-bromo-1, 1-difluoro-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as ethane, 2-bromo-1,1-difluoro-. (PMN P-04...

  20. 40 CFR 721.10265 - Ethane, 2-bromo-1, 1-difluoro-.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10265 Ethane, 2-bromo-1, 1-difluoro-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as ethane, 2-bromo-1,1-difluoro-. (PMN P-04...

  1. 40 CFR 63.7891 - How do I demonstrate initial compliance with the emissions limitations and work practice...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... § 63.7890(b)(2), you demonstrate that emissions of TOC (minus methane and ethane) from all affected... elect to meet § 63.7890(b)(4), you demonstrate that the emissions of TOC (minus methane and ethane) from...

  2. Laboratory Studies of Ethane Ice Relevant to Outer Solar System Surfaces

    NASA Technical Reports Server (NTRS)

    Moore, Marla H.; Hudson, Reggie; Raines, Lily

    2009-01-01

    Oort Cloud comets, as well as TNOs Makemake (2045 FYg), Quaoar, and Pluto, are known to contain ethane. However, even though this molecule is found on several outer Solar System objects relatively little information is available about its amorphous and crystalline phases. In new experiments, we have prepared ethane ices at temperatures applicable to the outer Solar System, and have heated and ion-irradiated these ices to study phase changes and ethane's radiation chemistry using mid-IR spectroscopy (2.2 - 16.6 microns). Included in our work is the meta-stable phase that exists at 35 - 55 K. These results, including newly obtained optical constants, are relevant to ground-based observational campaigns, the New Horizons mission, and supporting laboratory work. An improved understanding of solid-phase ethane may contribute to future searches for this and other hydrocarbons in the outer Solar System.

  3. Theoretical analysis of the rotational barrier of ethane.

    PubMed

    Mo, Yirong; Gao, Jiali

    2007-02-01

    The understanding of the ethane rotation barrier is fundamental for structural theory and the conformational analysis of organic molecules and requires a consistent theoretical model to differentiate the steric and hyperconjugation effects. Due to recently renewed controversies over the barrier's origin, we developed a computational approach to probe the rotation barriers of ethane and its congeners in terms of steric repulsion, hyperconjugative interaction, and electronic and geometric relaxations. Our study reinstated that the conventional steric repulsion overwhelmingly dominates the barriers.

  4. Increased ethane exhalation, an in vivo index of lipid peroxidation, in alcohol-abusers.

    PubMed Central

    Lettéron, P; Duchatelle, V; Berson, A; Fromenty, B; Fisch, C; Degott, C; Benhamou, J P; Pessayre, D

    1993-01-01

    Ethane exhalation was measured in 42 control subjects, 52 patients with various non-alcoholic liver diseases, and 89 alcohol abusers who had been admitted to hospital for alcohol withdrawal and assessment of liver disease (six with normal liver tests, 10 with steatosis with or without fibrosis, six with alcoholic hepatitis, 29 with cirrhosis, 34 with both cirrhosis and alcoholic hepatitis, and four with both cirrhosis and a hepatocellular carcinoma). Ethane exhalation was similar in control subjects and in patients with non-alcoholic liver diseases, but was five times higher in alcohol abusers. Ethane exhalation in alcohol abusers was significantly, but very weakly, correlated with the daily ethanol intake before hospital admission, and the histological score for steatosis, but not with the inflammation or alcoholic hepatitis scores. Ethane exhalation was inversely correlated with the duration of abstinence before the test. In nine alcoholic patients, the exhalation of ethane was measured repeatedly, and showed slow improvement during abstinence. Ethane exhalation was significantly but weakly correlated with the Pugh's score in patients with alcoholic cirrhosis. It is concluded that the mean ethane exhalation is increased in alcohol abusers. One of the possible mechanisms may be the presence of oxidizable fat in the liver. The weak correlation with the Pugh's score is consistent with the contribution of many other factors in the progression to severe liver disease. PMID:8472992

  5. On the sources of methane to the Los Angeles atmosphere.

    PubMed

    Wennberg, Paul O; Mui, Wilton; Wunch, Debra; Kort, Eric A; Blake, Donald R; Atlas, Elliot L; Santoni, Gregory W; Wofsy, Steven C; Diskin, Glenn S; Jeong, Seongeun; Fischer, Marc L

    2012-09-04

    We use historical and new atmospheric trace gas observations to refine the estimated source of methane (CH(4)) emitted into California's South Coast Air Basin (the larger Los Angeles metropolitan region). Referenced to the California Air Resources Board (CARB) CO emissions inventory, total CH(4) emissions are 0.44 ± 0.15 Tg each year. To investigate the possible contribution of fossil fuel emissions, we use ambient air observations of methane (CH(4)), ethane (C(2)H(6)), and carbon monoxide (CO), together with measured C(2)H(6) to CH(4) enhancement ratios in the Los Angeles natural gas supply. The observed atmospheric C(2)H(6) to CH(4) ratio during the ARCTAS (2008) and CalNex (2010) aircraft campaigns is similar to the ratio of these gases in the natural gas supplied to the basin during both these campaigns. Thus, at the upper limit (assuming that the only major source of atmospheric C(2)H(6) is fugitive emissions from the natural gas infrastructure) these data are consistent with the attribution of most (0.39 ± 0.15 Tg yr(-1)) of the excess CH(4) in the basin to uncombusted losses from the natural gas system (approximately 2.5-6% of natural gas delivered to basin customers). However, there are other sources of C(2)H(6) in the region. In particular, emissions of C(2)H(6) (and CH(4)) from natural gas seeps as well as those associated with petroleum production, both of which are poorly known, will reduce the inferred contribution of the natural gas infrastructure to the total CH(4) emissions, potentially significantly. This study highlights both the value and challenges associated with the use of ethane as a tracer for fugitive emissions from the natural gas production and distribution system.

  6. On the Sources of Methane to the Los Angeles Atmosphere

    NASA Technical Reports Server (NTRS)

    Wennberg, Paul O.; Mui, Wilton; Fischer, Marc L.; Wunch, Debra; Kort, Eric A.; Blake, Donald R.; Atlas, Elliot L.; Santoni, Gregory W.; Wofsy, Steven C.; Diskin, Glenn S.; hide

    2012-01-01

    We use historical and new atmospheric trace gas observations to refine the estimated source of methane (CH4) emitted into California's South Coast Air Basin (the larger Los Angeles metropolitan region). Referenced to the California Air Resources Board (CARB) CO emissions inventory, total CH4 emissions are 0.44 +/- 0.15 Tg each year. To investigate the possible contribution of fossil fuel emissions, we use ambient air observations of methane (CH4), ethane (C2H6), and carbon monoxide (CO), together with measured C2H6 to CH4 enhancement ratios in the Los Angeles natural gas supply. The observed atmospheric C2H6 to CH4 ratio during the ARCTAS (2008) and CalNex (2010) aircraft campaigns is similar to the ratio of these gases in the natural gas supplied to the basin during both these campaigns. Thus, at the upper limit (assuming that the only major source of atmospheric C2H6 is fugitive emissions from the natural gas infrastructure) these data are consistent with the attribution of most (0.39 +/- 0.15 Tg yr-1) of the excess CH4 in the basin to uncombusted losses from the natural gas system (approximately 2.5-6% of natural gas delivered to basin customers). However, there are other sources of C2H6 in the region. In particular, emissions of C2H6 (and CH4) from natural gas seeps as well as those associated with petroleum production, both of which are poorly known, will reduce the inferred contribution of the natural gas infrastructure to the total CH4 emissions, potentially significantly. This study highlights both the value and challenges associated with the use of ethane as a tracer for fugitive emissions from the natural gas production and distribution system.

  7. Alkane hydroxylase genes in psychrophile genomes and the potential for cold active catalysis.

    PubMed

    Bowman, Jeff S; Deming, Jody W

    2014-12-16

    Psychrophiles are presumed to play a large role in the catabolism of alkanes and other components of crude oil in natural low temperature environments. In this study we analyzed the functional diversity of genes for alkane hydroxylases, the enzymes responsible for converting alkanes to more labile alcohols, as found in the genomes of nineteen psychrophiles for which alkane degradation has not been reported. To identify possible mechanisms of low temperature optimization we compared putative alkane hydroxylases from these psychrophiles with homologues from nineteen taxonomically related mesophilic strains. Seven of the analyzed psychrophile genomes contained a total of 27 candidate alkane hydroxylase genes, only two of which are currently annotated as alkane hydroxylase. These candidates were mostly related to the AlkB and cytochrome p450 alkane hydroxylases, but several homologues of the LadA and AlmA enzymes, significant for their ability to degrade long-chain alkanes, were also detected. These putative alkane hydroxylases showed significant differences in primary structure from their mesophile homologues, with preferences for specific amino acids and increased flexibility on loops, bends, and α-helices. A focused analysis on psychrophile genomes led to discovery of numerous candidate alkane hydroxylase genes not currently annotated as alkane hydroxylase. Gene products show signs of optimization to low temperature, including regions of increased flexibility and amino acid preferences typical of psychrophilic proteins. These findings are consistent with observations of microbial degradation of crude oil in cold environments and identify proteins that can be targeted in rate studies and in the design of molecular tools for low temperature bioremediation.

  8. Stability of methane in reduced C-O-H fluid at 6.3 GPa and 1300-1400°C

    NASA Astrophysics Data System (ADS)

    Sokol, A. G.; Tomilenko, A. A.; Bul'bak, T. A.; Palyanova, G. A.; Palyanov, Yu. N.; Sobolev, N. V.

    2017-06-01

    The composition of a reduced C-O-H fluid was studied by the method of chromatography-mass spectrometry under the conditions of 6.3 GPa, 1300-1400°C, and fO2 typical of the base of the subcratonic lithosphere. Fluids containing water (4.4-96.3 rel. %), methane (37.6-0.06 rel. %), and variable concentrations of ethane, propane, and butane were obtained in experiments. With increasing fO2, the proportion of the CH4/C2H6 peak areas on chromatograms first increases and then decreases, whereas the CH4/C3H8 and CH4/C4H10 ratios continually decrease. The new data show that ethane and heavier HCs may be more stable to oxidation, than previously thought. Therefore, when reduced fluids pass the "redox-front," carbon is not completely released from the fluid and may be involved in diamond formation.

  9. Ethane Ices in the Outer Solar System: Spectroscopy and Chemistry

    NASA Technical Reports Server (NTRS)

    Hudson, R. L.; Moore, M. H.; Raines, L. L.

    2009-01-01

    We report recent experiments on ethane ices made at temperatures applicable to the outer Solar System. New near- and mid-infrared data for crystalline and amorphous ethane, including new spectra for a seldom-studied solid phase that exists at 35-55 K, are presented along with radiation-chemical experiments showing the formation of more-complex hydrocarbons

  10. Ethane Ices in the Outer Solar System: Spectroscopy and Chemistry

    NASA Technical Reports Server (NTRS)

    Hudson, R. L.; Moore, M. H.; Raines, L. L.

    2009-01-01

    We report recent experiments on ethane ices made at temperatures applicable to the outer Solar System. New near- and mid-infrared data for crystalline and amorphous ethane, including new spectra for a seldom-studied solid phase that exists at 35-55 K, are presented along with radiation-chemical experiments showing the formation of more-complex hydrocarbons,

  11. Kinetic modeling of ethane pyrolysis at high conversion.

    PubMed

    Xu, Chen; Al Shoaibi, Ahmed Sultan; Wang, Chenguang; Carstensen, Hans-Heinrich; Dean, Anthony M

    2011-09-29

    The primary objective of this study is to develop an improved first-principle-based mechanism that describes the molecular weight growth kinetics observed during ethane pyrolysis. A proper characterization of the kinetics of ethane pyrolysis is a prerequisite for any analysis of hydrocarbon pyrolysis and oxidation. Flow reactor experiments were performed with ~50/50 ethane/nitrogen mixtures with temperatures ranging from 550 to 850 °C at an absolute pressure of ~0.8 atm and a residence time of ~5 s. These conditions result in ethane conversions ranging from virtually no reaction to ~90%. Comparisons of predictions using our original mechanism to these data yielded very satisfactory results in terms of the temperature dependence of ethane conversion and prediction of the major products ethylene and hydrogen. However, there were discrepancies in some of the minor species concentrations that are involved in the molecular weight growth kinetics. We performed a series of CBS-QB3 analyses for the C(3)H(7), C(4)H(7), and C(4)H(9) potential energy surfaces to better characterize the radical addition reactions that lead to molecular weight growth. We also extended a published C(6)H(9) PES to include addition of vinyl to butadiene. The results were then used to calculate pressure-dependent rate constants for the multiple reaction pathways of these addition reactions. Inclusion of the unadjusted rate constants resulting from these analyses in the mechanism significantly improved the description of several of the species involved in molecular weight growth kinetics. We compare the predictions of this improved model to those obtained with a consensus model recently published as well as to ethane steam cracking data. We find that a particularly important reaction is that of vinyl addition to butadiene. Another important observation is that several radical addition reactions are partially equilibrated. Not only does this mean that reliable thermodynamic parameters are essential

  12. Emissions of organic carbon and methane from petroleum and dairy operations in California's San Joaquin Valley

    NASA Astrophysics Data System (ADS)

    Gentner, D. R.; Ford, T. B.; Guha, A.; Boulanger, K.; Brioude, J.; Angevine, W. M.; de Gouw, J. A.; Warneke, C.; Gilman, J. B.; Ryerson, T. B.; Peischl, J.; Meinardi, S.; Blake, D. R.; Atlas, E.; Lonneman, W. A.; Kleindienst, T. E.; Beaver, M. R.; St. Clair, J. M.; Wennberg, P. O.; VandenBoer, T. C.; Markovic, M. Z.; Murphy, J. G.; Harley, R. A.; Goldstein, A. H.

    2014-05-01

    Petroleum and dairy operations are prominent sources of gas-phase organic compounds in California's San Joaquin Valley. It is essential to understand the emissions and air quality impacts of these relatively understudied sources, especially for oil/gas operations in light of increasing US production. Ground site measurements in Bakersfield and regional aircraft measurements of reactive gas-phase organic compounds and methane were part of the CalNex (California Research at the Nexus of Air Quality and Climate Change) project to determine the sources contributing to regional gas-phase organic carbon emissions. Using a combination of near-source and downwind data, we assess the composition and magnitude of emissions, and provide average source profiles. To examine the spatial distribution of emissions in the San Joaquin Valley, we developed a statistical modeling method using ground-based data and the FLEXPART-WRF transport and meteorological model. We present evidence for large sources of paraffinic hydrocarbons from petroleum operations and oxygenated compounds from dairy (and other cattle) operations. In addition to the small straight-chain alkanes typically associated with petroleum operations, we observed a wide range of branched and cyclic alkanes, most of which have limited previous in situ measurements or characterization in petroleum operation emissions. Observed dairy emissions were dominated by ethanol, methanol, acetic acid, and methane. Dairy operations were responsible for the vast majority of methane emissions in the San Joaquin Valley; observations of methane were well correlated with non-vehicular ethanol, and multiple assessments of the spatial distribution of emissions in the San Joaquin Valley highlight the dominance of dairy operations for methane emissions. The petroleum operations source profile was developed using the composition of non-methane hydrocarbons in unrefined natural gas associated with crude oil. The observed source profile is

  13. Methane rising from the Deep: Hydrates, Bubbles, Oil Spills, and Global Warming

    NASA Astrophysics Data System (ADS)

    Leifer, I.; Rehder, G. J.; Solomon, E. A.; Kastner, M.; Asper, V. L.; Joye, S. B.

    2011-12-01

    Elevated methane concentrations in near-surface waters and the atmosphere have been reported for seepage from depths of nearly 1 km at the Gulf of Mexico hydrate observatory (MC118), suggesting that for some methane sources, deepsea methane is not trapped and can contribute to atmospheric greenhouse gas budgets. Ebullition is key with important sensitivity to the formation of hydrate skins and oil coatings, high-pressure solubility, bubble size and bubble plume processes. Bubble ROV tracking studies showed survival to near thermocline depths. Studies with a numerical bubble propagation model demonstrated that consideration of structure I hydrate skins transported most methane only to mid-water column depths. Instead, consideration of structure II hydrates, which are stable to far shallower depths and appropriate for natural gas mixtures, allows bubbles to survive to far shallower depths. Moreover, model predictions of vertical methane and alkane profiles and bubble size evolution were in better agreement with observations after consideration of structure II hydrate properties as well as an improved implementation of plume properties, such as currents. These results demonstrate the importance of correctly incorporating bubble hydrate processes in efforts to predict the impact of deepsea seepage as well as to understand the fate of bubble-transported oil and methane from deepsea pipeline leaks and well blowouts. Application to the DWH spill demonstrated the importance of deepsea processes to the fate of spilled subsurface oil. Because several of these parameters vary temporally (bubble flux, currents, temperature), sensitivity studies indicate the importance of real-time monitoring data.

  14. 40 CFR 63.7890 - What emissions limitations and work practice standards must I meet for process vents?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... total organic compounds (TOC) (minus methane and ethane) to a level below 1.4 kg/hr and 2.8 Mg/yr (3.0... process vents the emissions of TOC (minus methane and ethane) by 95 percent by weight or more. (c) For...

  15. Identity and mechanisms of alkane-oxidizing metalloenzymes from deep-sea hydrothermal vents

    PubMed Central

    Bertrand, Erin M.; Keddis, Ramaydalis; Groves, John T.; Vetriani, Costantino; Austin, Rachel Narehood

    2013-01-01

    Six aerobic alkanotrophs (organism that can metabolize alkanes as their sole carbon source) isolated from deep-sea hydrothermal vents were characterized using the radical clock substrate norcarane to determine the metalloenzyme and reaction mechanism used to oxidize alkanes. The organisms studied were Alcanivorax sp. strains EPR7 and MAR14, Marinobacter sp. strain EPR21, Nocardioides sp. strains EPR26w, EPR28w, and Parvibaculum hydrocarbonoclasticum strain EPR92. Each organism was able to grow on n-alkanes as the sole carbon source and therefore must express genes encoding an alkane-oxidizing enzyme. Results from the oxidation of the radical-clock diagnostic substrate norcarane demonstrated that five of the six organisms (EPR7, MAR14, EPR21, EPR26w, and EPR28w) used an alkane hydroxylase functionally similar to AlkB to catalyze the oxidation of medium-chain alkanes, while the sixth organism (EPR92) used an alkane-oxidizing cytochrome P450 (CYP)-like protein to catalyze the oxidation. DNA sequencing indicated that EPR7 and EPR21 possess genes encoding AlkB proteins, while sequencing results from EPR92 confirmed the presence of a gene encoding CYP-like alkane hydroxylase, consistent with the results from the norcarane experiments. PMID:23825470

  16. Portable optical spectroscopy for accurate analysis of ethane in exhaled breath

    NASA Astrophysics Data System (ADS)

    Patterson, Claire S.; McMillan, Lesley C.; Longbottom, Christopher; Gibson, Graham M.; Padgett, Miles J.; Skeldon, Kenneth D.

    2007-05-01

    We report on a maintenance-free, ward-portable, tunable diode laser spectroscopy system for the ultra-sensitive detection of ethane gas. Ethane is produced when cellular lipids are oxidized by free radicals. As a breath biomarker, ethane offers a unique measure of such oxidative stress. The ability to measure real-time breath ethane fluctuations will open up new areas in non-invasive healthcare. Instrumentation for such a purpose must be highly sensitive and specific to the target gas. Our technology has a sensitivity of 70 parts per trillion and a 1 s sampling rate. Based on a cryogenically cooled lead-salt laser, the instrument has a thermally managed closed-loop refrigeration system, eliminating the need for liquid coolants. Custom LabVIEW software allows automatic control by a laptop PC. We have field tested the instrument to ensure that target performance is sustained in a range of environments. We outline the novel applications underway with the instrument based on an in vivo clinical assessment of oxidative stress.

  17. Cyanide Soap? Dissolved material in Titan's Seas

    NASA Astrophysics Data System (ADS)

    Lorenz, R. D.; Lunine, J. I.; Neish, C. D.

    2011-10-01

    Although it is evident that Titan's lakes and seas are dominated by ethane, methane, nitrogen, and (in some models) propane, there is divergence on the predicted relative abundance of minor constituents such as nitriles and C-4 alkanes. Nitriles such as hydrogen cyanide and acetonitrile, which have a significant dipole moment, may have a disproportionate influence on the dielectric properties of Titan seas and may act to solvate polar molecules such as water ice. The hypothesis is offered that such salvation may act to enhance the otherwise negligible solubility of water ice bedrock in liquid hydrocarbons. Such enhanced solubility may permit solution erosion as a formation mechanism for the widespread pits and apparently karstic lakes on Titan. Prospects for testing this hypothesis in the laboratory, and with measurements on Titan, will be discussed.

  18. Frequent sampling allows detection of short and rapid surges of exhaled ethane during cardiac surgery.

    PubMed

    Stenseth, R; Nilsen, T; Haaverstad, R; Vitale, N; Dale, O

    2007-11-01

    During cardiopulmonary bypass (CPB), hypoperfusion and reperfusion may cause oxidative stress and lipid peroxidation that generates ethane. The aim of this pilot study was to assess the feasibility of frequent sampling of exhaled ethane during cardiac surgery. After approval of the Research Ethics Committee, 10 patients undergoing combined aortic valve and coronary artery bypass surgery were enrolled. Breath samples were drawn in the perioperative period and analyzed by a rapid, sensitive and validated gas-chromatographic method. Increased exhaled ethane was regularly seen following sternotomy, after the start of CPB and after aortic clamp removal, whereas no change was seen after termination of bypass. In one patient, the maximum increase in exhaled ethane was 30-fold. Peak durations lasted only 2-4 min. This study demonstrates that frequent sampling of breath ethane is feasible in a clinical setting, allowing detection of rapid ethane surges of short duration.

  19. 40 CFR 63.1426 - Process vent requirements for determining organic HAP concentration, control efficiency, and...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Production § 63.1426 Process vent requirements for determining organic HAP concentration, control efficiency..., total organic HAP, or as TOC minus methane and ethane according to the procedures specified. When... methane and ethane) concentrations in all process vent streams and primary and secondary fuels introduced...

  20. Products of Chemistry: Alkanes: Abundant, Pervasive, Important, and Essential.

    ERIC Educational Resources Information Center

    Seymour, Raymond B.

    1989-01-01

    Discusses the history and commercialization of alkanes. Examines the nomenclature and uses of alkanes. Studies polymerization and several types of polyethylenes: low-density, high-density, low-molecular-weight, cross-linked, linear low-density, and ultrahigh-molecular-weight. Includes a glossary of hydrocarbon terms. (MVL)

  1. Complete biological reductive transformation of tetrachloroethene to ethane.

    PubMed Central

    de Bruin, W P; Kotterman, M J; Posthumus, M A; Schraa, G; Zehnder, A J

    1992-01-01

    Reductive dechlorination of tetrachloroethene (perchloroethylene; PCE) was observed at 20 degrees C in a fixed-bed column, filled with a mixture (3:1) of anaerobic sediment from the Rhine river and anaerobic granular sludge. In the presence of lactate (1 mM) as an electron donor, 9 microM PCE was dechlorinated to ethene. Ethene was further reduced to ethane. Mass balances demonstrated an almost complete conversion (95 to 98%), with no chlorinated compounds remaining (less than 0.5 micrograms/liter). When the temperature was lowered to 10 degrees C, an adaptation of 2 weeks was necessary to obtain the same performance as at 20 degrees C. Dechlorination by column material to ethene, followed by a slow ethane production, could also be achieved in batch cultures. Ethane was not formed in the presence of bromoethanesulfonic acid, an inhibitor of methanogenesis. The high dechlorination rate (3.7 mumol.l-1.h-1), even at low temperatures and considerable PCE concentrations, together with the absence of chlorinated end products, makes reductive dechlorination an attractive method for removal of PCE in bioremediation processes. PMID:1622277

  2. MIR and NIR group spectra of n-alkanes and 1-chloroalkanes.

    PubMed

    Kwaśniewicz, Michał; Czarnecki, Mirosław A

    2015-05-15

    Numerous attempts were undertaken to resolve the absorption originating from different parts of alkanes. The separation of the contributions from the terminal and midchain methylene units was observed only in the spectra of solid alkanes at low temperatures. On the other hand, for liquid alkanes this effect was not reported as yet. In this study, ATR-IR, Raman and NIR spectra of eight n-alkanes and seven 1-chloroalkanes in the liquid phase were measured from 1000 to 12,000cm(-1). The spectra were analyzed by using two-dimensional (2D) correlation approach and chemometrics methods. It was shown that in 2D asynchronous contour plots, constructed from the spectra of n-alkanes and 1-chloroalkanes, the methylene band was resolved into two components. These two components were assigned to the terminal and midchain methylene groups. For the first time, the contributions from these two molecular fragments were resolved in the spectra of liquid n-alkanes and 1-chloroalkanes. MCR-ALS resolved these spectra into two components that were assigned to the ethyl and midchain methylene groups. These components represent the group spectra that can be used for assignment, spectral analysis and prediction of unknown spectra. The spectral prediction based on the group spectra provides very good results for n-alkanes, especially in the first and second overtone regions. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Synthesis of Renewable Lubricant Alkanes from Biomass-Derived Platform Chemicals.

    PubMed

    Gu, Mengyuan; Xia, Qineng; Liu, Xiaohui; Guo, Yong; Wang, Yanqin

    2017-10-23

    The catalytic synthesis of liquid alkanes from renewable biomass has received tremendous attention in recent years. However, bio-based platform chemicals have not to date been exploited for the synthesis of highly branched lubricant alkanes, which are currently produced by hydrocracking and hydroisomerization of long-chain n-paraffins. A selective catalytic synthetic route has been developed for the production of highly branched C 23 alkanes as lubricant base oil components from biomass-derived furfural and acetone through a sequential four-step process, including aldol condensation of furfural with acetone to produce a C 13 double adduct, selective hydrogenation of the adduct to a C 13 ketone, followed by a second condensation of the C 13 ketone with furfural to generate a C 23 aldol adduct, and finally hydrodeoxygenation to give highly branched C 23 alkanes in 50.6 % overall yield from furfural. This work opens a general strategy for the synthesis of high-quality lubricant alkanes from renewable biomass. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Reflectance spectroscopy of organic compounds: 1. Alkanes

    NASA Astrophysics Data System (ADS)

    Clark, Roger N.; Curchin, John M.; Hoefen, Todd M.; Swayze, Gregg A.

    2009-03-01

    Reflectance spectra of the organic compounds comprising the alkane series are presented from the ultraviolet to midinfrared, 0.35 to 15.5 μm. Alkanes are hydrocarbon molecules containing only single carbon-carbon bonds, and are found naturally on the Earth and in the atmospheres of the giant planets and Saturn's moon, Titan. This paper presents the spectral properties of the alkanes as the first in a series of papers to build a spectral database of organic compounds for use in remote sensing studies. Applications range from mapping the environment on the Earth, to the search for organic molecules and life in the solar system and throughout the universe. We show that the spectral reflectance properties of organic compounds are rich, with major diagnostic spectral features throughout the spectral range studied. Little to no spectral change was observed as a function of temperature and only small shifts and changes in the width of absorption bands were observed between liquids and solids, making remote detection of spectral properties throughout the solar system simpler. Some high molecular weight organic compounds contain single-bonded carbon chains and have spectra similar to alkanes even when they fall into other families. Small spectral differences are often present allowing discrimination among some compounds, further illustrating the need to catalog spectral properties for accurate remote sensing identification with spectroscopy.

  5. Reflectance spectroscopy of organic compounds: 1. Alkanes

    USGS Publications Warehouse

    Clark, R.N.; Curchin, J.M.; Hoefen, T.M.; Swayze, G.A.

    2009-01-01

    Reflectance spectra of the organic compounds comprising the alkane series are presented from the ultraviolet to midinfrared, 0.35 to 15.5 /??m. Alkanes are hydrocarbon molecules containing only single carbon-carbon bonds, and are found naturally on the Earth and in the atmospheres of the giant planets and Saturn's moon, Titan. This paper presents the spectral properties of the alkanes as the first in a series of papers to build a spectral database of organic compounds for use in remote sensing studies. Applications range from mapping the environment on the Earth, to the search for organic molecules and life in the solar system and throughout the. universe. We show that the spectral reflectance properties of organic compounds are rich, with major diagnostic spectral features throughout the spectral range studied. Little to no spectral change was observed as a function of temperature and only small shifts and changes in the width of absorption bands were observed between liquids and solids, making remote detection of spectral properties throughout the solar system simpler. Some high molecular weight organic compounds contain single-bonded carbon chains and have spectra similar to alkanes even ' when they fall into other families. Small spectral differences are often present allowing discrimination among some compounds, further illustrating the need to catalog spectral properties for accurate remote sensing identification with spectroscopy.

  6. The Roles of Sphagnum and Cyperaceae in the Methane Cycle of an Ombrotrophic Bog Revealed by the Carbon Isotope Ratios of Leaf Waxes

    NASA Astrophysics Data System (ADS)

    Isles, P. D.; Nichols, J. E.; Peteet, D. M.; Kenna, T. C.

    2011-12-01

    Methane is a strong greenhouse gas, and the role of the terrestrial carbon cycle in the concentrations of atmospheric methane is poorly understood. What is clear, is that northern peatlands are a significant source of methane to the atmosphere. A recent discovery, and a topic of much scrutiny, has been the relationship between Sphagnum in peatlands and symbiotic methanotrophic bacteria. These bacteria oxidize methane produced at depth in peatlands before it is released to the atmosphere, contributing 13C-depleted CO2 to Sphagnum photosynthate. We seek to better understand the fate of methane produced in peatlands at depth, and the relationship between methane release from peatland surfaces and parameters such as temperature, moisture, and vegetation type. We compare carbon isotope ratios of leaf wax n-alkanes from sphagnum and vascular plants and major element chemistry at three different microhabitats, hummock, hollow, and sedge tussock, in Mer Bleue an ombrotrophic peatland near Ottowa, Ontario, Canada. We use these compound-specific carbon isotope measurements to constrain the amount of methane-derived CO2 incorporated by Sphagnum. We also compare our multiannually resolved down-core measurements to data from long-term monitoring of climate parameters and methane flux from the same microhabitats to ground-truth our sedimentary signature of methane with instrumental measurements.

  7. 40 CFR 63.1426 - Process vent requirements for determining organic HAP concentration, control efficiency, and...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... National Emission Standards for Hazardous Air Pollutant Emissions for Polyether Polyols Production § 63... percent reduction may be measured as total epoxide, total organic HAP, or as TOC minus methane and ethane... TOC (minus methane and ethane) concentrations in all process vent streams and primary and secondary...

  8. 40 CFR 63.1426 - Process vent requirements for determining organic HAP concentration, control efficiency, and...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... National Emission Standards for Hazardous Air Pollutant Emissions for Polyether Polyols Production § 63... percent reduction may be measured as total epoxide, total organic HAP, or as TOC minus methane and ethane... TOC (minus methane and ethane) concentrations in all process vent streams and primary and secondary...

  9. Methane clumped isotopes in the Songliao Basin (China): New insights into abiotic vs. biotic hydrocarbon formation

    NASA Astrophysics Data System (ADS)

    Shuai, Yanhua; Etiope, Giuseppe; Zhang, Shuichang; Douglas, Peter M. J.; Huang, Ling; Eiler, John M.

    2018-01-01

    Abiotic hydrocarbon gas, typically generated in serpentinized ultramafic rocks and crystalline shields, has important implications for the deep biosphere, petroleum systems, the carbon cycle and astrobiology. Distinguishing abiotic gas (produced by chemical reactions like Sabatier synthesis) from biotic gas (produced from degradation of organic matter or microbial activity) is sometimes challenging because their isotopic and molecular composition may overlap. Abiotic gas has been recognized in numerous locations on the Earth, although there are no confirmed instances where it is the dominant source of commercially valuable quantities in reservoir rocks. The deep hydrocarbon reservoirs of the Xujiaweizi Depression in the Songliao Basin (China) have been considered to host significant amounts of abiotic methane. Here we report methane clumped-isotope values (Δ18) and the isotopic composition of C1-C3 alkanes, CO2 and helium of five gas samples collected from those Xujiaweizi deep reservoirs. Some geochemical features of these samples resemble previously suggested identifiers of abiotic gas (13C-enriched CH4; decrease in 13C/12C ratio with increasing carbon number for the C1-C4 alkanes; abundant, apparently non-biogenic CO2; and mantle-derived helium). However, combining these constraints with new measurements of the clumped-isotope composition of methane and careful consideration of the geological context, suggests that the Xujiaweizi depression gas is dominantly, if not exclusively, thermogenic and derived from over-mature source rocks, i.e., from catagenesis of buried organic matter at high temperatures. Methane formation temperatures suggested by clumped-isotopes (167-213 °C) are lower than magmatic gas generation processes and consistent with the maturity of local source rocks. Also, there are no geological conditions (e.g., serpentinized ultramafic rocks) that may lead to high production of H2 and thus abiotic production of CH4 via CO2 reduction. We propose

  10. Dry Reforming of Ethane and Butane with CO 2 over PtNi/CeO 2 Bimetallic Catalysts

    DOE PAGES

    Yan, Binhang; Yang, Xiaofang; Yao, Siyu; ...

    2016-09-21

    Dry reforming is a potential process to convert CO 2 and light alkanes into syngas (H 2 and CO), which can be subsequently transformed to chemicals and fuels. Here in this work, PtNi bimetallic catalysts have been investigated for dry reforming of ethane and butane using both model surfaces and supported powder catalysts. The PtNi bimetallic catalyst shows an improvement in both activity and stability as compared to the corresponding monometallic catalysts. The formation of PtNi alloy and the partial reduction of Ce 4+ to Ce 3+ under reaction conditions are demonstrated by in-situ Ambient Pressure X-ray Photoemission Spectroscopy (AP-XPS),more » X-ray Diffraction (XRD) and X-ray Absorption Fine Structure (XAFS) measurements. A Pt-rich bimetallic surface is revealed by Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) following CO adsorption. Combined in-situ experimental results and Density Functional Theory (DFT) calculations suggest that the Pt-rich PtNi bimetallic surface structure would weaken the binding of surface oxygenates/carbon species and reduce the activation energy for C-C bond scission, leading to an enhanced dry reforming activity.« less

  11. Dry Reforming of Ethane and Butane with CO 2 over PtNi/CeO 2 Bimetallic Catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Binhang; Yang, Xiaofang; Yao, Siyu

    Dry reforming is a potential process to convert CO 2 and light alkanes into syngas (H 2 and CO), which can be subsequently transformed to chemicals and fuels. Here in this work, PtNi bimetallic catalysts have been investigated for dry reforming of ethane and butane using both model surfaces and supported powder catalysts. The PtNi bimetallic catalyst shows an improvement in both activity and stability as compared to the corresponding monometallic catalysts. The formation of PtNi alloy and the partial reduction of Ce 4+ to Ce 3+ under reaction conditions are demonstrated by in-situ Ambient Pressure X-ray Photoemission Spectroscopy (AP-XPS),more » X-ray Diffraction (XRD) and X-ray Absorption Fine Structure (XAFS) measurements. A Pt-rich bimetallic surface is revealed by Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) following CO adsorption. Combined in-situ experimental results and Density Functional Theory (DFT) calculations suggest that the Pt-rich PtNi bimetallic surface structure would weaken the binding of surface oxygenates/carbon species and reduce the activation energy for C-C bond scission, leading to an enhanced dry reforming activity.« less

  12. Atmospheric methane isotopic record favors fossil sources flat in 1980s and 1990s with recent increase.

    PubMed

    Rice, Andrew L; Butenhoff, Christopher L; Teama, Doaa G; Röger, Florian H; Khalil, M Aslam K; Rasmussen, Reinhold A

    2016-09-27

    Observations of atmospheric methane (CH4) since the late 1970s and measurements of CH4 trapped in ice and snow reveal a meteoric rise in concentration during much of the twentieth century. Since 1750, levels of atmospheric CH4 have more than doubled to current globally averaged concentration near 1,800 ppb. During the late 1980s and 1990s, the CH4 growth rate slowed substantially and was near or at zero between 1999 and 2006. There is no scientific consensus on the drivers of this slowdown. Here, we report measurements of the stable isotopic composition of atmospheric CH4 ((13)C/(12)C and D/H) from a rare air archive dating from 1977 to 1998. Together with more modern records of isotopic atmospheric CH4, we performed a time-dependent retrieval of methane fluxes spanning 25 y (1984-2009) using a 3D chemical transport model. This inversion results in a 24 [18, 27] Tg y(-1) CH4 increase in fugitive fossil fuel emissions since 1984 with most of this growth occurring after year 2000. This result is consistent with some bottom-up emissions inventories but not with recent estimates based on atmospheric ethane. In fact, when forced with decreasing emissions from fossil fuel sources our inversion estimates unreasonably high emissions in other sources. Further, the inversion estimates a decrease in biomass-burning emissions that could explain falling ethane abundance. A range of sensitivity tests suggests that these results are robust.

  13. Atmospheric methane isotopic record favors fossil sources flat in 1980s and 1990s with recent increase

    NASA Astrophysics Data System (ADS)

    Rice, Andrew L.; Butenhoff, Christopher L.; Teama, Doaa G.; Röger, Florian H.; Khalil, M. Aslam K.; Rasmussen, Reinhold A.

    2016-09-01

    Observations of atmospheric methane (CH4) since the late 1970s and measurements of CH4 trapped in ice and snow reveal a meteoric rise in concentration during much of the twentieth century. Since 1750, levels of atmospheric CH4 have more than doubled to current globally averaged concentration near 1,800 ppb. During the late 1980s and 1990s, the CH4 growth rate slowed substantially and was near or at zero between 1999 and 2006. There is no scientific consensus on the drivers of this slowdown. Here, we report measurements of the stable isotopic composition of atmospheric CH4 (13C/12C and D/H) from a rare air archive dating from 1977 to 1998. Together with more modern records of isotopic atmospheric CH4, we performed a time-dependent retrieval of methane fluxes spanning 25 y (1984-2009) using a 3D chemical transport model. This inversion results in a 24 [18, 27] Tg y-1 CH4 increase in fugitive fossil fuel emissions since 1984 with most of this growth occurring after year 2000. This result is consistent with some bottom-up emissions inventories but not with recent estimates based on atmospheric ethane. In fact, when forced with decreasing emissions from fossil fuel sources our inversion estimates unreasonably high emissions in other sources. Further, the inversion estimates a decrease in biomass-burning emissions that could explain falling ethane abundance. A range of sensitivity tests suggests that these results are robust.

  14. Multi-year levels and trends of non-methane hydrocarbon concentrations observed in ambient air in France

    NASA Astrophysics Data System (ADS)

    Waked, Antoine; Sauvage, Stéphane; Borbon, Agnès; Gauduin, Julie; Pallares, Cyril; Vagnot, Marie-Pierre; Léonardis, Thierry; Locoge, Nadine

    2016-09-01

    Measurements of 31 non-methane hydrocarbons (NMHCs) were carried out at three urban (Paris, 2003-2014, Strasbourg, 2002-2014 and Lyon, 2007-2014) sites in France over the period of a decade. A trend analysis was applied by means of the Mann-Kendall non-parametric test to annual and seasonal mean concentrations in order to point out changes in specific emission sources and to assess the impact of emission controls and reduction strategies. The trends were compared to those from three rural sites (Peyrusse-Vieille, 2002-2013, Tardière, 2003-2013 and Donon, 1997-2007). The results obtained showed a significant yearly decrease in pollutant concentrations over the study period and for the majority of species in the range of -1 to -7% in accordance with the decrease of NMHC emissions in France (-5 to -9%). Concentrations of long-lived species such as ethane and propane which are recognized as tracers of distant sources and natural gas remained constant. Compounds associated with combustion processes such as acetylene, propene, ethylene and benzene showed a significant decline in the range of -2% to -5% yr-1. These trends are consistent with those recently described at urban and background sites in the northern mid-latitudes and with emission inventories. C7-C9 aromatics such as toluene and xylenes as well as C4-C5 alkanes such as isopentane and isobutane also showed a significant decrease in the range of -3% to -7% yr-1. The decreasing trends in terms of % yr-1 observed at these French urban sites were typically higher for acetylene, ethylene and benzene than those reported for French rural sites of the national observatory of Measurement and Evaluation in Rural areas of trans-boundary Air pollution (MERA). The study also highlighted the difficult choice of a long term sampling site representative of the general trends of pollutant concentrations.

  15. Surface vibrational structure at alkane liquid/vapor interfaces

    NASA Astrophysics Data System (ADS)

    Esenturk, Okan; Walker, Robert A.

    2006-11-01

    Broadband vibrational sum frequency spectroscopy (VSFS) has been used to examine the surface structure of alkane liquid/vapor interfaces. The alkanes range in length from n-nonane (C9H20) to n-heptadecane (C17H36), and all liquids except heptadecane are studied at temperatures well above their bulk (and surface) freezing temperatures. Intensities of vibrational bands in the CH stretching region acquired under different polarization conditions show systematic, chain length dependent changes. Data provide clear evidence of methyl group segregation at the liquid/vapor interface, but two different models of alkane chain structure can predict chain length dependent changes in band intensities. Each model leads to a different interpretation of the extent to which different chain segments contribute to the anisotropic interfacial region. One model postulates that changes in vibrational band intensities arise solely from a reduced surface coverage of methyl groups as alkane chain length increases. The additional methylene groups at the surface must be randomly distributed and make no net contribution to the observed VSF spectra. The second model considers a simple statistical distribution of methyl and methylene groups populating a three dimensional, interfacial lattice. This statistical picture implies that the VSF signal arises from a region extending several functional groups into the bulk liquid, and that the growing fraction of methylene groups in longer chain alkanes bears responsibility for the observed spectral changes. The data and resulting interpretations provide clear benchmarks for emerging theories of molecular structure and organization at liquid surfaces, especially for liquids lacking strong polar ordering.

  16. CFD Modeling of a Laser-Induced Ethane Pyrolysis in a Wall-less Reactor

    NASA Astrophysics Data System (ADS)

    Stadnichenko, Olga; Snytnikov, Valeriy; Yang, Junfeng; Matar, Omar

    2014-11-01

    Ethylene, as the most important feedstock, is widely used in chemical industry to produce various rubbers, plastics and synthetics. A recent study found the IR-laser irradiation induced ethane pyrolysis yields 25% higher ethylene production rates compared to the conventional steam cracking method. Laser induced pyrolysis is initiated by the generation of radicals upon heating of the ethane, then, followed by ethane/ethylene autocatalytic reaction in which ethane is converted into ethylene and other light hydrocarbons. This procedure is governed by micro-mixing of reactants and the feedstock residence time in reactor. Under mild turbulent conditions, the turbulence enhances the micro-mixing process and allows a high yield of ethylene. On the other hand, the high flow rate only allows a short residence time in the reactor which causes incomplete pyrolysis. This work attempts to investigate the interaction between turbulence and ethane pyrolysis process using large eddy simulation method. The modelling results could be applied to optimize the reactor design and operating conditions. Skolkovo Foundation through the UNIHEAT Project.

  17. The hydrodeoxygenation of bioderived furans into alkanes.

    PubMed

    Sutton, Andrew D; Waldie, Fraser D; Wu, Ruilian; Schlaf, Marcel; Silks, Louis A Pete; Gordon, John C

    2013-05-01

    The conversion of biomass into fuels and chemical feedstocks is one part of a drive to reduce the world's dependence on crude oil. For transportation fuels in particular, wholesale replacement of a fuel is logistically problematic, not least because of the infrastructure that is already in place. Here, we describe the catalytic defunctionalization of a series of biomass-derived molecules to provide linear alkanes suitable for use as transportation fuels. These biomass-derived molecules contain a variety of functional groups, including olefins, furan rings and carbonyl groups. We describe the removal of these in either a stepwise process or a one-pot process using common reagents and catalysts under mild reaction conditions to provide n-alkanes in good yields and with high selectivities. Our general synthetic approach is applicable to a range of precursors with different carbon content (chain length). This allows the selective generation of linear alkanes with carbon chain lengths between eight and sixteen carbons.

  18. The hydrodeoxygenation of bioderived furans into alkanes

    NASA Astrophysics Data System (ADS)

    Sutton, Andrew D.; Waldie, Fraser D.; Wu, Ruilian; Schlaf, Marcel; ‘Pete' Silks, Louis A.; Gordon, John C.

    2013-05-01

    The conversion of biomass into fuels and chemical feedstocks is one part of a drive to reduce the world's dependence on crude oil. For transportation fuels in particular, wholesale replacement of a fuel is logistically problematic, not least because of the infrastructure that is already in place. Here, we describe the catalytic defunctionalization of a series of biomass-derived molecules to provide linear alkanes suitable for use as transportation fuels. These biomass-derived molecules contain a variety of functional groups, including olefins, furan rings and carbonyl groups. We describe the removal of these in either a stepwise process or a one-pot process using common reagents and catalysts under mild reaction conditions to provide n-alkanes in good yields and with high selectivities. Our general synthetic approach is applicable to a range of precursors with different carbon content (chain length). This allows the selective generation of linear alkanes with carbon chain lengths between eight and sixteen carbons.

  19. Development of a pre-concentration system and auto-analyzer for dissolved methane, ethane, propane, and butane concentration measurements with a GC-FID

    NASA Astrophysics Data System (ADS)

    Chepigin, A.; Leonte, M.; Colombo, F.; Kessler, J. D.

    2014-12-01

    Dissolved methane, ethane, propane, and butane concentrations in natural waters are traditionally measured using a headspace equilibration technique and gas chromatograph with flame ionization detector (GC-FID). While a relatively simple technique, headspace equilibration suffers from slow equilibration times and loss of sensitivity due to concentration dilution with the pure gas headspace. Here we present a newly developed pre-concentration system and auto-analyzer for use with a GC-FID. This system decreases the time required for each analysis by eliminating the headspace equilibration time, increases the sensitivity and precision with a rapid pre-concentration step, and minimized operator time with an autoanalyzer. In this method, samples are collected from Niskin bottles in newly developed 1 L plastic sample bags rather than glass vials. Immediately following sample collection, the sample bags are placed in an incubator and individually connected to a multiport sampling valve. Water is pumped automatically from the desired sample bag through a small (6.5 mL) Liqui-Cel® membrane contactor where the dissolved gas is vacuum extracted and directly flushed into the GC sample loop. The gases of interest are preferentially extracted with the Liqui-Cel and thus a natural pre-concentration effect is obtained. Daily method calibration is achieved in the field with a five-point calibration curve that is created by analyzing gas standard-spiked water stored in 5 L gas-impermeable bags. Our system has been shown to substantially pre-concentrate the dissolved gases of interest and produce a highly linear response of peak areas to dissolved gas concentration. The system retains the high accuracy, precision, and wide range of measurable concentrations of the headspace equilibration method while simultaneously increasing the sensitivity due to the pre-concentration step. The time and labor involved in the headspace equilibration method is eliminated and replaced with the

  20. High-pressure oxidation of ethane

    DOE PAGES

    Hashemi, Hamid; Jacobsen, Jon G.; Rasmussen, Christian T.; ...

    2017-05-02

    Here, ethane oxidation at intermediate temperatures and high pressures has been investigated in both a laminar flow reactor and a rapid compression machine (RCM). The flow-reactor measurements at 600–900 K and 20–100 bar showed an onset temperature for oxidation of ethane between 700 and 825 K, depending on pressure, stoichiometry, and residence time. Measured ignition delay times in the RCM at pressures of 10–80 bar and temperatures of 900–1025 K decreased with increasing pressure and/or temperature. A detailed chemical kinetic model was developed with particular attention to the peroxide chemistry. Rate constants for reactions on the C 2H 5O 2more » potential energy surface were adopted from the recent theoretical work of Klippenstein. In the present work, the internal H-abstraction in CH 3CH 2OO to form CH 2CH 2OOH was treated in detail. Modeling predictions were in good agreement with data from the present work as well as results at elevated pressure from literature. The experimental results and the modeling predictions do not support occurrence of NTC behavior in ethane oxidation. Even at the high-pressure conditions of the present work where the C 2H 5 + O 2 reaction yields ethylperoxyl rather than C 2H 4 + HO 2, the chain branching sequence CH 3CH 2OO → CH 2CH 2OOH → +O2 OOCH 2CH 2OOH → branching is not competitive, because the internal H-atom transfer in CH 3CH 2OO to CH 2CH 2OOH is too slow compared to thermal dissociation to C 2H 4 and HO 2.« less

  1. Fundamental studies on kinetic isotope effect (KIE) of hydrogen isotope fractionation in natural gas systems

    USGS Publications Warehouse

    Ni, Y.; Ma, Q.; Ellis, G.S.; Dai, J.; Katz, B.; Zhang, S.; Tang, Y.

    2011-01-01

    Based on quantum chemistry calculations for normal octane homolytic cracking, a kinetic hydrogen isotope fractionation model for methane, ethane, and propane formation is proposed. The activation energy differences between D-substitute and non-substituted methane, ethane, and propane are 318.6, 281.7, and 280.2cal/mol, respectively. In order to determine the effect of the entropy contribution for hydrogen isotopic substitution, a transition state for ethane bond rupture was determined based on density function theory (DFT) calculations. The kinetic isotope effect (KIE) associated with bond rupture in D and H substituted ethane results in a frequency factor ratio of 1.07. Based on the proposed mathematical model of hydrogen isotope fractionation, one can potentially quantify natural gas thermal maturity from measured hydrogen isotope values. Calculated gas maturity values determined by the proposed mathematical model using ??D values in ethane from several basins in the world are in close agreement with similar predictions based on the ??13C composition of ethane. However, gas maturity values calculated from field data of methane and propane using both hydrogen and carbon kinetic isotopic models do not agree as closely. It is possible that ??D values in methane may be affected by microbial mixing and that propane values might be more susceptible to hydrogen exchange with water or to analytical errors. Although the model used in this study is quite preliminary, the results demonstrate that kinetic isotope fractionation effects in hydrogen may be useful in quantitative models of natural gas generation, and that ??D values in ethane might be more suitable for modeling than comparable values in methane and propane. ?? 2011 Elsevier Ltd.

  2. Online recording of ethane traces in human breath via infrared laser spectroscopy.

    PubMed

    von Basum, Golo; Dahnke, Hannes; Halmer, Daniel; Hering, Peter; Mürtz, Manfred

    2003-12-01

    A method is described for rapidly measuring the ethane concentration in exhaled human breath. Ethane is considered a volatile marker for lipid peroxidation. The breath samples are analyzed in real time during single exhalations by means of infrared cavity leak-out spectroscopy. This is an ultrasensitive laser-based method for the analysis of trace gases on the sub-parts per billion level. We demonstrate that this technique is capable of online quantifying of ethane traces in exhaled human breath down to 500 parts per trillion with a time resolution of better than 800 ms. This study includes what we believe to be the first measured expirograms for trace fractions of ethane. The expirograms were recorded after a controlled inhalation exposure to 1 part per million of ethane. The normalized slope of the alveolar plateau was determined, which shows a linear increase over the first breathing cycles and ends in a mean value between 0.21 and 0.39 liter-1. The washout process was observed for a time period of 30 min and was modelled by a threefold exponential decay function, with decay times ranging from 12 to 24, 341 to 481, and 370 to 1770 s. Our analyzer provides a promising noninvasive tool for online monitoring of the oxidative stress status.

  3. Conversion of alkanes to organoseleniums and organotelluriums

    DOEpatents

    Periana, Roy A.; Konnick, Michael M.; Hashiguchi, Brian G.

    2016-11-29

    The invention provides processes and materials for the efficient and costeffective functionalization of alkanes and heteroalkanes, comprising contacting the alkane or heteroalkane and a soft oxidizing electrophile comprising Se(VI) or Te(VI), in an acidic medium, optionally further comprising an aprotic medium, which can be carried out at a temperature of less than 300 C. Isolation of the alkylselenium or alkyltellurium intermediate allows the subsequent conversion to products not necessarily compatible with the initial reaction conditions, such as amines, stannanes, organosulfur compounds, acyls, halocarbons, and olefins.

  4. Contribution of cyanobacterial alkane production to the ocean hydrocarbon cycle

    PubMed Central

    Lea-Smith, David J.; Biller, Steven J.; Davey, Matthew P.; Cotton, Charles A. R.; Perez Sepulveda, Blanca M.; Turchyn, Alexandra V.; Scanlan, David J.; Smith, Alison G.; Chisholm, Sallie W.; Howe, Christopher J.

    2015-01-01

    Hydrocarbons are ubiquitous in the ocean, where alkanes such as pentadecane and heptadecane can be found even in waters minimally polluted with crude oil. Populations of hydrocarbon-degrading bacteria, which are responsible for the turnover of these compounds, are also found throughout marine systems, including in unpolluted waters. These observations suggest the existence of an unknown and widespread source of hydrocarbons in the oceans. Here, we report that strains of the two most abundant marine cyanobacteria, Prochlorococcus and Synechococcus, produce and accumulate hydrocarbons, predominantly C15 and C17 alkanes, between 0.022 and 0.368% of dry cell weight. Based on global population sizes and turnover rates, we estimate that these species have the capacity to produce 2–540 pg alkanes per mL per day, which translates into a global ocean yield of ∼308–771 million tons of hydrocarbons annually. We also demonstrate that both obligate and facultative marine hydrocarbon-degrading bacteria can consume cyanobacterial alkanes, which likely prevents these hydrocarbons from accumulating in the environment. Our findings implicate cyanobacteria and hydrocarbon degraders as key players in a notable internal hydrocarbon cycle within the upper ocean, where alkanes are continually produced and subsequently consumed within days. Furthermore we show that cyanobacterial alkane production is likely sufficient to sustain populations of hydrocarbon-degrading bacteria, whose abundances can rapidly expand upon localized release of crude oil from natural seepage and human activities. PMID:26438854

  5. Self-assembled highly ordered ethane-bridged periodic mesoporous organosilica and its application in HPLC.

    PubMed

    Huang, Lili; Lu, Juan; Di, Bin; Feng, Fang; Su, Mengxiang; Yan, Fang

    2011-09-01

    Monodisperse spherical periodic mesoporous organosilicas (PMOs) with ethane integrated in the framework were synthesized and their application as stationary phase for chromatographic separation is demonstrated. The ethane-PMOs were prepared by condensation of 1,2-bis(triethoxysilyl)ethane (BTSE) in basic condition using octadecyltrimethylammonium chloride (C(18)TMACl) as template and ethanol as co-solvent. The morphology and mesoporous structure of ethane-PMOs were controlled under different concentrations of sodium hydroxide (NaOH) and EtOH. The results of scanning electron microscopy (SEM), transmission electron microscopy (TEM), powder X-ray diffraction (XRD), nitrogen sorption measurement, Fourier transform infrared spectroscopy (FT-IR) and elemental analysis showed that ethane-PMOs have spherical morphology, uniform particle distribution, highly ordered pore structure, high surface area and narrow pore-size distribution. The column packed with these materials exhibits good permeability, high chemical stability and good selectivity of mixtures of aromatic hydrocarbons in normal phase high-performance liquid chromatography (HPLC). Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Methane Occurrence in a Drinking Water Aquifer Before and During Natural Gas Production from the Marcellus Shale

    NASA Astrophysics Data System (ADS)

    Saiers, J. E.; Barth-Naftilan, E.

    2017-12-01

    More than 4,000 thousand wells have punctured aquifers of Pennsylvania's northern tier to siphon natural gas from the underlying Marcellus Shale. As drilling and hydraulic fracturing ramped up a decade ago, homeowner reports of well water contamination by methane and other contaminants began to emerge. Although made infrequently compared to the number of gas wells drilled, these reports were troubling and motivated our two-year, prospective study of groundwater quality within the Marcellus Shale Play. We installed multi-level sampling wells within a bedrock aquifer of a 25 km2 area that was targeted for shale gas development. These wells were sampled on a monthly basis before, during, and after seven shale gas wells were drilled, hydraulically fractured, and placed into production. The groundwater samples, together with surface water samples collected from nearby streams, were analyzed for hydrocarbons, trace metals, major ions, and the isotopic compositions of methane, ethane, water, strontium, and dissolved inorganic carbon. With regard to methane in particular, concentrations ranged from under 0.1 to over 60 mg/L, generally increased with aquifer depth, and, at some sites, exhibited considerable temporal variability. The isotopic composition of methane and hydrocarbon ratios also spanned a large range, suggesting that methane origins are diverse and, notably, shift on the time scale of this study. We will present inferences on factors governing methane occurrence across our study area by interpreting time-series data on methane concentrations and isotopic composition in context of local hydrologic variation, companion measurements of groundwater chemistry, and the known timing of key stages of natural gas extraction.

  7. Origins and trends in ethane and propane in the United Kingdom from 1993 to 2012

    NASA Astrophysics Data System (ADS)

    Derwent, R. G.; Field, R. A.; Dumitrean, P.; Murrells, T. P.; Telling, S. P.

    2017-05-01

    Continuous, high frequency in situ observations of ethane and propane began in the United Kingdom in 1993 and have continued through to the present day at a range of kerbside, urban background and rural locations. Whilst other monitored C2 - C8 hydrocarbons have shown dramatic declines in concentrations by close to or over an order of magnitude, ethane and propane levels have remained at or close to their 1993 values. Urban ethane sources appear to be dominated by natural gas leakage. Background levels of ethane associated with long range transport are rising. However, natural gas leakage is not the sole source of urban propane. Oil and gas operations lead to elevated propane levels in urban centres when important refinery operations are located nearby. Weekend versus weekday average diurnal curves for ethane and propane at an urban background site in London show the importance of natural gas leakage for both ethane and propane, and road traffic sources for propane. The road traffic source of propane was tentatively identified as arising from petrol-engined motor vehicle refuelling and showed a strong downwards trend at the long-running urban background and rural sites. The natural gas leakage source of ethane and propane in the observations exhibits an upwards trend whereas that in the UK emission inventory trends downwards. Also, inventory emissions for natural gas leakage appeared to be significantly underestimated compared with the observations. In addition, the observed ethane to propane ratio found here for natural gas leakage strongly disagreed with the inventory ratio.

  8. Biochemistry of Short-Chain Alkanes (Tissue-Specific Biosynthesis of n-Heptane in Pinus jeffreyi).

    PubMed Central

    Savage, T. J.; Hamilton, B. S.; Croteau, R.

    1996-01-01

    Short-chain (C7-C11) alkanes accumulate as the volatile component of oleoresin (pitch) in several pine species native to western North America. To establish the tissue most amenable for use in detailed studies of short-chain alkane biosynthesis, we examined the tissue specificity of alkane accumulation and biosynthesis in Pinus jeffreyi Grev. & Balf. Short-chain alkane accumulation was highly tissue specific in both 2-year-old saplings and mature trees; heart-wood xylem accumulated alkanes up to 7.1 mg g-1 dry weight, whereas needles and other young green tissue contained oleoresin with monoterpenoid, rather than paraffinic, volatiles. These tissue-specific differences in oleoresin composition appear to be a result of tissue-specific rates of alkane and monoterpene biosynthesis; incubation of xylem tissue with [14C]sucrose resulted in accumulation of radiolabel in alkanes but not monoterpenes, whereas incubation of foliar tissue with 14CO2 resulted in the accumulation of radiolabel in monoterpenes but not alkanes. Furthermore, incubation of xylem sections with [14C]acetate resulted in incorporation of radiolabel into alkanes at rates up to 1.7 nmol h-1 g-1 fresh weight, a rate that exceeds most biosynthetic rates reported with other plant systems for the incorporation of this basic precursor into natural products. This suggests that P. jeffreyi may provide a suitable model for elucidating the enzymology and molecular biology of short-chain alkane biosynthesis. PMID:12226177

  9. 40 CFR 63.2535 - What compliance options do I have if part of my plant is subject to both this subpart and another...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... compliance, you must consider all total organic compounds, minus methane and ethane, in such equipment for... total organic compounds, minus methane and ethane, in such equipment for purposes of compliance with... greatest production on a mass basis over the 5-year period specified in paragraph (l)(1)(ii) of this...

  10. 40 CFR 63.2535 - What compliance options do I have if part of my plant is subject to both this subpart and another...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... compliance, you must consider all total organic compounds, minus methane and ethane, in such equipment for... total organic compounds, minus methane and ethane, in such equipment for purposes of compliance with... greatest production on a mass basis over the 5-year period specified in paragraph (l)(1)(ii) of this...

  11. 40 CFR 63.997 - Performance test and compliance assessment requirements for control devices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... as TOC minus methane and ethane according to the procedures specified. (i) Selection of sampling... regulated material or TOC, sampling sites shall be located as specified in paragraphs (e)(2)(i)(A)(1) and (e... shall ensure the measurement of total organic regulated material or TOC (minus methane and ethane...

  12. Ethane and n-pentane in exhaled breath are biomarkers of exposure not effect.

    PubMed

    Gorham, Katrine A; Sulbaek Andersen, Mads P; Meinardi, Simone; Delfino, Ralph J; Staimer, Norbert; Tjoa, Thomas; Rowland, F Sherwood; Blake, Donald R

    2009-02-01

    The relationship of exhaled ethane and n-pentane to exhaled NO, carbonylated proteins, and indoor/outdoor atmospheric pollutants were examined in order to evaluate ethane and n-pentane as potential markers of airway inflammation and/or oxidative stress. Exhaled NO and carbonylated proteins were found to have no significant associations with either ethane (p = 0.96 and p = 0.81, respectively) or n-pentane (p = 0.44 and 0.28, respectively) when outliers were included. In the case where outliers were removed n-pentane was found to be inversely associated with carbonylated proteins. Exhaled hydrocarbons adjusted for indoor hydrocarbon concentrations were instead found to be positively associated with air pollutants (NO, NO(2) and CO), suggesting pollutant exposure is driving exhaled hydrocarbon concentrations. Given these findings, ethane and n-pentane do not appear to be markers of airway inflammation or oxidative stress.

  13. 40 CFR 721.10148 - Acryloxy alkanoic alkane derivative with mixed metal oxides (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Acryloxy alkanoic alkane derivative... Significant New Uses for Specific Chemical Substances § 721.10148 Acryloxy alkanoic alkane derivative with...) The chemical substance identified generically as acryloxy alkanoic alkane derivative with mixed metal...

  14. Epitaxially Self-Assembled Alkane Layers for Graphene Electronics.

    PubMed

    Yu, Young-Jun; Lee, Gwan-Hyoung; Choi, Ji Il; Shim, Yoon Su; Lee, Chul-Ho; Kang, Seok Ju; Lee, Sunwoo; Rim, Kwang Taeg; Flynn, George W; Hone, James; Kim, Yong-Hoon; Kim, Philip; Nuckolls, Colin; Ahn, Seokhoon

    2017-02-01

    The epitaxially grown alkane layers on graphene are prepared by a simple drop-casting method and greatly reduce the environmentally driven doping and charge impurities in graphene. Multiscale simulation studies show that this enhancement of charge homogeneity in graphene originates from the lifting of graphene from the SiO 2 surface toward the well-ordered and rigid alkane self-assembled layers. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. The abundances of ethane and acetylene in the atmospheres of Jupiter and Saturn

    NASA Technical Reports Server (NTRS)

    Noll, K. S.; Knacke, R. F.; Tokunaga, A. T.; Lacy, J. H.; Beck, S.

    1986-01-01

    The present determination of the stratospheric abundances of ethane and acetylene on Jupiter and Saturn on the basis of IR spectra near 780/cm uses atmospheric models whose thermal and density profiles have constant mixing ratios. The ratio of ethane to acetylene is noted to be insensitive to model atmosphere assumptions; it is 55 + or - 31 for Jupiter and 23 + or - 12 where model mixing ratios are uniform. Atmospheric model density profiles adapted from theoretical photochemical models are noted to also yield a higher ethane/acetylene ratios for Jupiter.

  16. The abundances of ethane to acetylene in the atmospheres of Jupiter and Saturn

    NASA Technical Reports Server (NTRS)

    Noll, K. S.; Knacke, R. F.; Tokunaga, A. T.; Lacy, J. H.; Beck, S.; Serabyn, E.

    1986-01-01

    The present determination of the stratospheric abundances of ethane and acetylene on Jupiter and Saturn on the basis of IR spectra near 780/cm uses atmospheric models whose thermal and density profiles have constant mixing ratios. The ratio of ethane to acetylene is noted to be insensitive to model atmosphere assumptions; it is 55 + or - 31 for Jupiter and 23 + or - 12 where model mixing ratios are uniform. Atmospheric model density profiles adapted from theoretical photochemical models are noted to also yield a higher ethane/acetylene ratios for Jupiter.

  17. Photochemical dimerization and functionalization of alkanes, ethers, primary alcohols and silanes

    DOEpatents

    Crabtree, Robert H.; Brown, Stephen H.

    1988-01-01

    The space-time yield and/or the selectivity of the photochemical dimerization of alkanes, ethers, primary alcohols and tertiary silanes with Hg and U.V. light is enhanced by refluxing the substrate in the irradiated reaction zone at a temperature at which the dimer product condenses and remains condensed promptly upon its formation. Cross-dimerization of the alkanes, ethers and silanes with primary alcohols is disclosed, as is the functionalization to aldehydes of the alkanes with carbon monoxide.

  18. Photochemical dimerization and functionalization of alkanes, ethers, primary alcohols and silanes

    DOEpatents

    Crabtree, R.H.; Brown, S.H.

    1988-02-16

    The space-time yield and/or the selectivity of the photochemical dimerization of alkanes, ethers, primary alcohols and tertiary silanes with Hg and U.V. light is enhanced by refluxing the substrate in the irradiated reaction zone at a temperature at which the dimer product condenses and remains condensed promptly upon its formation. Cross-dimerization of the alkanes, ethers and silanes with primary alcohols is disclosed, as is the functionalization to aldehydes of the alkanes with carbon monoxide.

  19. Catalytic Conversion of Cellulosic Biomass or Algal Biomass plus Methane to Drop in Hydrocarbon Fuels and Chemicals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marker, Terry; Roberts, Michael; Linck, Martin

    The goal of this Bioincubator Project was to improve the pyrolysis of biomass through the use of methane. Our initial concept was to use methane as a fluidizing gas with a hydrogen transfer catalyst. The results of the experiments did show that methane as a fluidizing gas, with a hydrogen transfer catalyst, does enhance catalytic pyrolysis over that which is achieved with an inert fluidizing gas. Using methane as a fluidizing gas, with a hydrogen transfer catalyst, consistently produced better products with lower oxygen content than the products produced when an inert gas was used. These improvements were also consistentmore » with the results obtained through pure component testing as well. However, the improvement was too small to justify any significant expense. The addition of hydrogen with a hydrogen transfer catalyst consistently showed a much greater, more significant effect than methane. This indicates that hydropyrolysis is a more effective approach to improved catalytic pyrolysis than methane addition. During the course of this project, another way to significantly increase biogenic liquid yields from pyrolysis through the use of methane was discovered. We discovered a remarkably stable CO2/steam reforming catalyst which directly makes a 2:1 H2/CO synthesis gas from the CO, CO2, methane, ethane and propane product gas from integrated hydropyrolysis and hydroconversion (IH2®). The biogenic synthesis gas can then be converted to liquid hydrocarbons using Fischer Tropsch. The hydrogen for the IH2 unit would then be provided through the use of added methane. By utilizing the biogenic gas to make liquids, 40% more biogenic liquid hydrocarbons can be made from wood, thereby increasing liquid yields from IH2 from 86GPT to 126GPT. It also simplifies the hydrogen plant since no CO or CO2 removal is required.« less

  20. Intercomparison of infrared cavity leak-out spectroscopy and gas chromatography-flame ionization for trace analysis of ethane.

    PubMed

    Thelen, Sven; Miekisch, Wolfram; Halmer, Daniel; Schubert, Jochen; Hering, Peter; Mürtz, Manfred

    2008-04-15

    Comparison of two different methods for the measurement of ethane at the parts-per-billion (ppb) level is reported. We used cavity leak-out spectroscopy (CALOS) in the 3 microm wavelength region and gas chromatography-flame ionization detection (GC-FID) for the analysis of various gas samples containing ethane fractions in synthetic air. Intraday and interday reproducibilities were studied. Intercomparing the results of two series involving seven samples with ethane mixing ratios ranging from 0.5 to 100 ppb, we found a reasonable agreement between both methods. The scatter plot of GC-FID data versus CALOS data yields a linear regression slope of 1.07 +/- 0.03. Furthermore, some of the ethane mixtures were checked over the course of 1 year, which proved the long-term stability of the ethane mixing ratio. We conclude that CALOS shows equivalent ethane analysis precision compared to GC-FID, with the significant advantage of a much higher time resolution (<1 s) since there is no requirement for sample preconcentration. This opens new analytical possibilities, e.g., for real-time monitoring of ethane traces in exhaled human breath.

  1. 40 CFR 65.158 - Performance test procedures for control devices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... regulated material or as TOC (minus methane and ethane) according to the procedures specified. (1) Method 1... material or TOC, sampling sites shall be located at the inlet of the control device as specified in the... sampling sites shall ensure the measurement of total regulated material or TOC (minus methane and ethane...

  2. Microbiological investigation of methane- and hydrocarbon-discharging mud volcanoes in the Carpathian Mountains, Romania.

    PubMed

    Alain, Karine; Holler, Thomas; Musat, Florin; Elvert, Marcus; Treude, Tina; Krüger, Martin

    2006-04-01

    Paclele Mici is a terrestrial mud volcano field located in the Carpathian Mountains (Romania), where thermal alteration of sedimentary organic compounds leads to methane, higher hydrocarbons and other petroleum compounds that are continuously released into the environment. The hydrocarbons represent potential substrates for microorganisms. We studied lipid biomarkers, stable isotope ratios, the effect of substrate (methane, other organic compounds) addition and 16S rRNA genes to gain insights into the hitherto unknown microbial community at this site. Quantitative real-time polymerase chain reaction analysis demonstrated that bacteria were much more abundant than archaea. Phylogenetic analyses of 16S rDNA clone sequences indicated the presence of bacterial and archaeal lineages generally associated with the methane cycle (methanogens, aerobic and anaerobic methanotrophs), the sulfur cycle (sulfate reducers), and groups linked to the anaerobic degradation of alkanes or aromatic hydrocarbons. The presence of sulfate reducers, methanogens and methanotrophs in this habitat was also confirmed by concurrent surveys of lipid biomarkers and their isotopic signatures. Incubation experiments with several common and complex substrates revealed the potential of the indigenous microbial community for sulfate reduction, methanogenesis and aerobic methanotrophy. Additionally, consistently to the detection of methane-oxidizing archaea (ANME) and 13C-depleted archaeal lipids, a weak but significant activity of anaerobic methane oxidation was measured by radiotracer techniques and in vitro. This survey is the first to report the presence and activity of ANME in a terrestrial environment.

  3. Electrostatic and induction effects in the solubility of water in alkanes

    NASA Astrophysics Data System (ADS)

    Asthagiri, D.; Valiya Parambathu, Arjun; Ballal, Deepti; Chapman, Walter G.

    2017-08-01

    Experiments show that at 298 K and 1 atm pressure, the transfer free energy, μex, of water from its vapor to liquid normal alkanes CnH2n+2 (n =5 …12 ) is negative. Earlier it was found that with the united-atom TraPPE model for alkanes and the SPC/E model for water, one had to artificially enhance the attractive alkane-water cross interaction to capture this behavior. Here we revisit the calculation of μex using the polarizable AMOEBA and the non-polarizable Charmm General (CGenFF) forcefields. We test both the AMOEBA03 and AMOEBA14 water models; the former has been validated with the AMOEBA alkane model while the latter is a revision of AMOEBA03 to better describe liquid water. We calculate μex using the test particle method. With CGenFF, μex is positive and the error relative to experiments is about 1.5 kBT. With AMOEBA, μex is negative and deviations relative to experiments are between 0.25 kBT (AMOEBA14) and 0.5 kBT (AMOEBA03). Quantum chemical calculations in a continuum solvent suggest that zero point effects may account for some of the deviation. Forcefield limitations notwithstanding, electrostatic and induction effects, commonly ignored in consideration of water-alkane interactions, appear to be decisive in the solubility of water in alkanes.

  4. Fugitive Emissions from the Bakken Shale Illustrate Role of Shale Production in Global Ethane Shift

    NASA Technical Reports Server (NTRS)

    Kort, E. A.; Smith, M. L.; Murray, L. T.; Gvakharia, A.; Brandt, A. R.; Peischl, J.; Ryerson, T. B.; Sweeney, C.; Travis, K.

    2016-01-01

    Ethane is the second most abundant atmospheric hydrocarbon, exerts a strong influence on tropospheric ozone, and reduces the atmosphere's oxidative capacity. Global observations showed declining ethane abundances from 1984 to 2010, while a regional measurement indicated increasing levels since 2009, with the reason for this subject to speculation. The Bakken shale is an oil and gas-producing formation centered in North Dakota that experienced a rapid increase in production beginning in 2010. We use airborne data collected over the North Dakota portion of the Bakken shale in 2014 to calculate ethane emissions of 0.23 +/- 0.07 (2 sigma) Tg/yr, equivalent to 1-3% of total global sources. Emissions of this magnitude impact air quality via concurrent increases in tropospheric ozone. This recently developed large ethane source from one location illustrates the key role of shale oil and gas production in rising global ethane levels.

  5. Hydrogen stable isotopic constraints on methane emissions from oil and gas extraction in the Colorado Front Range, USA

    NASA Astrophysics Data System (ADS)

    Townsend-Small, A.; Botner, E. C.; Jimenez, K.; Blake, N. J.; Schroeder, J.; Meinardi, S.; Barletta, B.; Simpson, I. J.; Blake, D. R.; Flocke, F. M.; Pfister, G.; Bon, D.; Crawford, J. H.

    2015-12-01

    The climatic implications of a shift from oil and coal to natural gas depend on the magnitude of fugitive emissions of methane from the natural gas supply chain. Attempts to constrain methane emissions from natural gas production regions can be confounded by other sources of methane. Here we demonstrate the utility of stable isotopes, particularly hydrogen isotopes, for source apportionment of methane emissions. The Denver, Colorado area is home to a large oil and gas field with both conventional oil and gas wells and newer hydraulic fracturing wells. The region also has a large metropolitan area with several landfills and a sizable cattle population. As part of the DISCOVER-AQ and FRAPPE field campaigns in summer 2014, we collected three types of canister samples for analysis of stable isotopic composition of methane: 1), samples from methane sources; 2), samples from two stationary ground sites, one in the Denver foothills, and one in an oil and gas field; and 3), from the NCAR C-130 aircraft in samples upwind and downwind of the region. Our results indicate that hydrogen isotope ratios are excellent tracers of sources of methane in the region, as we have shown previously in California and Texas. Use of carbon isotope ratios is complicated by the similarity of natural gas isotope ratios to that of background methane. Our results indicate that, despite the large amount of natural gas production in the region, biological sources such as cattle feedlots and landfills account for at least 50% of total methane emissions in the Front Range. Future work includes comparison of isotopes and alkane ratios as tracers of methane sources, and calculation of total methane fluxes in the region using continuous measurements of methane concentrations during aircraft flights.

  6. Ethane-xenon mixtures under shock conditions

    DOE PAGES

    Magyar, Rudolph J.; Root, Seth; Mattsson, Thomas; ...

    2015-04-22

    Mixtures of light elements with heavy elements are important in inertial confinement fusion. We explore the physics of molecular scale mixing through a validation study of equation of state (EOS) properties. Density functional theory molecular dynamics (DFT-MD) at elevated temperature and pressure is used to obtain the thermodynamic state properties of pure xenon, ethane, and various compressed mixture compositions along their principal Hugoniots. In order to validate these simulations, we have performed shock compression experiments using the Sandia Z-Machine. A bond tracking analysis correlates the sharp rise in the Hugoniot curve with the completion of dissociation in ethane. Furthermore, themore » DFT-based simulation results compare well with the experimental data along the principal Hugoniots and are used to provide insight into the dissociation and temperature along the Hugoniots as a function of mixture composition. Interestingly, we find that the compression ratio for complete dissociation is similar for several compositions suggesting a limiting compression for C-C bonded systems.« less

  7. Extraction of Peace River bitumen using supercritical ethane

    NASA Astrophysics Data System (ADS)

    Rose, Jeffrey Lawrence

    2000-10-01

    As the supply of conventional crude oil continues to decline, petroleum companies are looking for alternative hydrocarbon sources. The vast reserves of heavy oil and bitumen located in northern Alberta are among the alternatives. The challenge facing engineers is to develop a process for recovering this oil which is economic, efficient and environmentally acceptable. Supercritical fluid extraction is one method being investigated which could potentially meet all of these criteria. In this study, Peace River bitumen was extracted using supercritical ethane. The bitumen was mixed with sand and packed into a semi-batch extractor. Ethane contacted the bitumen/sand mixture and the fraction of the bitumen soluble in the ethane was removed and subsequently collected in a two phase separator. The flow of ethane was such that the experiments were governed by equilibrium and not mass transfer. Experimental temperatures and pressures were varied in order to observe the effect of these parameters on the mass and composition of the extracted material. The extraction yields increased as the temperature decreased and pressure increased. Samples were collected at various time intervals to measure changes in the properties of the extracted bitumen over the duration of the process. As the extraction proceeded, the samples became heavier and more viscous. The bitumen feed was characterised and the experimental data was then modelled using the Peng-Robinson equation of state. The characterisation process involved the distillation of the bitumen into five fractions. The distillation curve and density of each fraction was measured and this data was used in conjunction with correlations to determine the critical properties of the bitumen. Interaction parameters in the equation of state were then optimised until the predicted composition of extracted bitumen matched the experimental results.

  8. Supercritical extraction of lycopene from tomato industrial wastes with ethane.

    PubMed

    Nobre, Beatriz P; Gouveia, Luisa; Matos, Patricia G S; Cristino, Ana F; Palavra, António F; Mendes, Rui L

    2012-07-11

    Supercritical fluid extraction of all-E-lycopene from tomato industrial wastes (mixture of skins and seeds) was carried out in a semi-continuous flow apparatus using ethane as supercritical solvent. The effect of pressure, temperature, feed particle size, solvent superficial velocity and matrix initial composition was evaluated. Moreover, the yield of the extraction was compared with that obtained with other supercritical solvents (supercritical CO₂ and a near critical mixture of ethane and propane). The recovery of all-E-lycopene increased with pressure, decreased with the increase of the particle size in the initial stages of the extraction and was not practically affected by the solvent superficial velocity. The effect of the temperature was more complex. When the temperature increased from 40 to 60 °C the recovery of all-E-lycopene increased from 80 to 90%. However, for a further increase to 80 °C, the recovery remained almost the same, indicating that some E-Z isomerization could have occurred, as well as some degradation of lycopene. The recovery of all-E-lycopene was almost the same for feed samples with different all-E-lycopene content. Furthermore, when a batch with a higher all-E-lycopene content was used, supercritical ethane and a near critical mixture of ethane and propane showed to be better solvents than supercritical CO₂ leading to a faster extraction with a higher recovery of the carotenoid.

  9. Ethane and n-pentane in exhaled breath are biomarkers of exposure not effect

    PubMed Central

    Gorham, Katrine A.; Sulbaek Andersen, Mads P.; Meinardi, Simone; Delfino, Ralph J.; Staimer, Norbert; Tjoa, Thomas; Rowland, F. Sherwood; Blake, Donald R.

    2013-01-01

    The relationship of exhaled ethane and n-pentane to exhaled NO, carbonylated proteins, and indoor/outdoor atmospheric pollutants were examined in order to evaluate ethane and n-pentane as potential markers of airway inflammation and/or oxidative stress. Exhaled NO and carbonylated proteins were found to have no significant associations with either ethane (p = 0.96 and p = 0.81, respectively) or n-pentane (p = 0.44 and 0.28, respectively) when outliers were included. In the case where outliers were removed n-pentane was found to be inversely associated with carbonylated proteins. Exhaled hydrocarbons adjusted for indoor hydrocarbon concentrations were instead found to be positively associated with air pollutants (NO, NO2 and CO), suggesting pollutant exposure is driving exhaled hydrocarbon concentrations. Given these find-ings, ethane and n-pentane do not appear to be markers of airway inflammation or oxidative stress. PMID:19283520

  10. Application of laser spectroscopy for measurement of exhaled ethane in patients with lung cancer.

    PubMed

    Skeldon, K D; McMillan, L C; Wyse, C A; Monk, S D; Gibson, G; Patterson, C; France, T; Longbottom, C; Padgett, M J

    2006-02-01

    There is increasing interest in ethane (C(2)H(6)) in exhaled breath as a non-invasive marker of oxidative stress (OS) and thereby a potential indicator of disease. However, the lack of real-time measurement techniques has limited progress in the field. Here we report on a novel Tunable Diode Laser Spectrometer (TDLS) applied to the analysis of exhaled ethane in patients with lung cancer. The patient group (n=52) comprised randomly selected patients presenting at a respiratory clinic. Of these, a sub-group (n=12) was subsequently diagnosed with lung cancer. An age-matched group (n=12) corresponding to the lung cancer group was taken from a larger control group of healthy adults (n=58). The concentration of ethane in a single exhaled breath sample collected from all subjects was later measured using the TDLS. This technique is capable of real-time analysis of samples with accuracy 0.1 parts per billion (ppb), over 10 times less than typical ambient levels in the northern hemisphere. After correcting for ambient background, ethane in the control group (26% smokers) ranged from 0 to 10.54 ppb (median of 1.9 ppb) while ethane in the lung cancer patients (42% smokers) ranged from 0 to 7.6 ppb (median of 0.7 ppb). Ethane among the non-lung cancer patients presenting for investigation of respiratory disease ranged from 0 to 25 ppb (median 1.45 ppb). We conclude that, while the TDLS proved effective for accurate and rapid sample analysis, there was no significant difference in exhaled ethane among any of the subject groups. Comments are made on the suitability of the technique for monitoring applications.

  11. Electrochemical Hydroxylation of C3-C12 n-Alkanes by Recombinant Alkane Hydroxylase (AlkB) and Rubredoxin-2 (AlkG) from Pseudomonas putida GPo1.

    PubMed

    Tsai, Yi-Fang; Luo, Wen-I; Chang, Jen-Lin; Chang, Chun-Wei; Chuang, Huai-Chun; Ramu, Ravirala; Wei, Guor-Tzo; Zen, Jyh-Myng; Yu, Steve S-F

    2017-08-21

    An unprecedented method for the efficient conversion of C 3 -C 12 linear alkanes to their corresponding primary alcohols mediated by the membrane-bound alkane hydroxylase (AlkB) from Pseudomonas putida GPo1 is demonstrated. The X-ray absorption spectroscopy (XAS) studies support that electrons can be transferred from the reduced AlkG (rubredoxin-2, the redox partner of AlkB) to AlkB in a two-phase manner. Based on this observation, an approach for the electrocatalytic conversion from alkanes to alcohols mediated by AlkB using an AlkG immobilized screen-printed carbon electrode (SPCE) is developed. The framework distortion of AlkB-AlkG adduct on SPCE surface might create promiscuity toward gaseous substrates. Hence, small alkanes including propane and n-butane can be accommodated in the hydrophobic pocket of AlkB for C-H bond activation. The proof of concept herein advances the development of artificial C-H bond activation catalysts.

  12. 40 CFR 60.700 - Applicability and designation of affected facility.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... compounds (TOC) (less methane and ethane) in the vent stream less than 300 ppmv as measured by Method 18 or... maximum production rate at which the affected facility will be operated, or 180 days after the initial... limits in these standards are expressed in terms of TOC, measured as TOC less methane and ethane. This...

  13. 40 CFR 60.700 - Applicability and designation of affected facility.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... compounds (TOC) (less methane and ethane) in the vent stream less than 300 ppmv as measured by Method 18 or... maximum production rate at which the affected facility will be operated, or 180 days after the initial... limits in these standards are expressed in terms of TOC, measured as TOC less methane and ethane. This...

  14. 40 CFR 60.662 - Standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... production rate at which the affected facility will be operated, or 180 days after the initial start-up, whichever date comes first. Each owner or operator shall either: (a) Reduce emissions of TOC (less methane and ethane) by 98 weight-percent, or to a TOC (less methane and ethane) concentration of 20 ppmv, on a...

  15. 40 CFR 63.1426 - Process vent requirements for determining organic HAP concentration, control efficiency, and...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... percent reduction may be measured as total epoxide, total organic HAP, or as TOC minus methane and ethane... TOC (minus methane and ethane) concentrations in all process vent streams and primary and secondary... million by volume total epoxide or TOC limit in § 63.1425(b)(1)(ii) or (b)(2)(iii), the sampling site...

  16. 40 CFR 63.7941 - How do I conduct a performance test, design evaluation, or other type of initial compliance...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... vent; Ei, Eo = Mass rate of total organic compounds (TOC) (minus methane and ethane) or total HAP, from... reduction for all affected process vents, percent Ei = Mass rate of TOC (minus methane and ethane) or total... uncontrolled vents, as calculated in this section, kilograms TOC per hour or kilograms HAP per hour; Eo = Mass...

  17. Formation of Core-Shell Ethane-Silver Clusters in He Droplets.

    PubMed

    Loginov, Evgeny; Gomez, Luis F; Sartakov, Boris G; Vilesov, Andrey F

    2017-08-17

    Ethane core-silver shell clusters consisting of several thousand particles have been assembled in helium droplets upon capture of ethane molecules followed by Ag atoms. The composite clusters were studied via infrared laser spectroscopy in the range of the C-H stretching vibrations of ethane. The spectra reveal a splitting of the vibrational bands, which is ascribed to interaction with Ag. A rigorous analysis of band intensities for a varying number of trapped ethane molecules and Ag atoms indicates that the composite clusters consist of a core of ethane that is covered by relatively small Ag clusters. This metastable structure is stabilized due to fast dissipation in superfluid helium droplets of the cohesion energy of the clusters.

  18. Modular and selective biosynthesis of gasoline-range alkanes.

    PubMed

    Sheppard, Micah J; Kunjapur, Aditya M; Prather, Kristala L J

    2016-01-01

    Typical renewable liquid fuel alternatives to gasoline are not entirely compatible with current infrastructure. We have engineered Escherichia coli to selectively produce alkanes found in gasoline (propane, butane, pentane, heptane, and nonane) from renewable substrates such as glucose or glycerol. Our modular pathway framework achieves carbon-chain extension by two different mechanisms. A fatty acid synthesis route is used to generate longer chains heptane and nonane, while a more energy efficient alternative, reverse-β-oxidation, is used for synthesis of propane, butane, and pentane. We demonstrate that both upstream (thiolase) and intermediate (thioesterase) reactions can act as control points for chain-length specificity. Specific free fatty acids are subsequently converted to alkanes using a broad-specificity carboxylic acid reductase and a cyanobacterial aldehyde decarbonylase (AD). The selectivity obtained by different module pairings provides a foundation for tuning alkane product distribution for desired fuel properties. Alternate ADs that have greater activity on shorter substrates improve observed alkane titer. However, even in an engineered host strain that significantly reduces endogenous conversion of aldehyde intermediates to alcohol byproducts, AD activity is observed to be limiting for all chain lengths. Given these insights, we discuss guiding principles for pathway selection and potential opportunities for pathway improvement. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  19. Diffusion of dioxygen in 1-alkenes and biphenyl in perfluoro- n-alkanes

    NASA Astrophysics Data System (ADS)

    Kowert, Bruce A.; Sobush, Kurtis T.; Dang, Nhan C.; Seele, Louis G., III; Fuqua, Chantel F.; Mapes, Courtney L.

    2002-02-01

    The translational diffusion constant, D, has been measured for O 2 in the even 1-alkenes 1-C 6H 12 to 1-C 16H 32 and biphenyl in n-C 6F 14 and n-C 9F 20. Deviations from the Stokes-Einstein relation were found; the use of D/ T= A/ ηp gave p=0.560±0.017 for O 2 in the 1-alkenes, the same (within experimental error) as found previously for O 2 in the n-alkanes. The charge transfer (CT) transition used to detect O 2 in the 1-alkenes is at 220 nm. The D values for biphenyl in the perfluoro- n-alkanes (PFAs) are consistent with those in the n-alkanes, where p=0.718±0.004. These results suggest that O 2 has similar solute-solvent interactions in both the 1-alkenes and n-alkanes as does biphenyl in the n-alkanes and PFAs.

  20. Reconciling Top-Down and Bottom-Up Estimates of Oil and Gas Methane Emissions in the Barnett Shale

    NASA Astrophysics Data System (ADS)

    Hamburg, S.

    2015-12-01

    Top-down approaches that use aircraft, tower, or satellite-based measurements of well-mixed air to quantify regional methane emissions have typically estimated higher emissions from the natural gas supply chain when compared to bottom-up inventories. A coordinated research campaign in October 2013 used simultaneous top-down and bottom-up approaches to quantify total and fossil methane emissions in the Barnett Shale region of Texas. Research teams have published individual results including aircraft mass-balance estimates of regional emissions and a bottom-up, 25-county region spatially-resolved inventory. This work synthesizes data from the campaign to directly compare top-down and bottom-up estimates. A new analytical approach uses statistical estimators to integrate facility emission rate distributions from unbiased and targeted high emission site datasets, which more rigorously incorporates the fat-tail of skewed distributions to estimate regional emissions of well pads, compressor stations, and processing plants. The updated spatially-resolved inventory was used to estimate total and fossil methane emissions from spatial domains that match seven individual aircraft mass balance flights. Source apportionment of top-down emissions between fossil and biogenic methane was corroborated with two independent analyses of methane and ethane ratios. Reconciling top-down and bottom-up estimates of fossil methane emissions leads to more accurate assessment of natural gas supply chain emission rates and the relative contribution of high emission sites. These results increase our confidence in our understanding of the climate impacts of natural gas relative to more carbon-intensive fossil fuels and the potential effectiveness of mitigation strategies.

  1. Alkanes in shrimp from the Buccaneer Oil Field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Middleditch, B.S.; Basile, B.; Chang, E.S.

    1982-07-01

    A total of 36 samples of shrimp were examined from the region of the Buccaneer oil field, eighteen of which were representatives of the commercial species Penaeus aztecus and the rest were various other species: Penaeus duorarum (pink shrimp), Trachypenaeus duorarum (sugar shrimp), Squilla empusa (mantis shrimp), and Sicyonia dorsalis (chevron shrimp). The alkanes and deuteriated alkanes were completely separated by GC, so a mass spectrometer was not required for their detection and quantitation. To confirm the identities of individual compounds, however, some samples were examined by combined gas chromatography-mass spectrometry. Results show that only thirteen of the forty shrimpmore » collected from the region of the Buccaneer oil field contained petroleum alkanes, and the majority of these were obtained from trawls immediately adjacent to the production platforms. It appears that shrimp caught in the region of the Buccaneer oil field are not appreciably tainted with hydrocarbons discharged from the production platforms. (JMT)« less

  2. Development of Coarse Grained Models for Long Chain Alkanes

    NASA Astrophysics Data System (ADS)

    Gyawali, Gaurav; Sternfield, Samuel; Hwang, In Chul; Rick, Steven; Kumar, Revati; Rick Group Team; Kumar Group Team

    Modeling aggregation in aqueous solution is a challenge for molecular simulations as it involves long time scales, a range of length scales, and the correct balance of hydrophobic and hydrophilic interactions. We have developed a coarse-grained model fast enough for the rapid testing of molecular structures for their aggregation properties. This model, using the Stillinger-Weber potential, achieves efficiency through a reduction in the number of interaction sites and the use of short-ranged interactions. The model can be two to three orders of magnitude more efficient than conventional all atom simulations, yet through a careful parameterization process and the use of many-body interactions can be remarkably accurate. We have developed models for long chain alkanes in water that reproduce the thermodynamics and structure of water-alkane and liquid alkane systems.

  3. 40 CFR 60.702 - Standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... § 60.704 is completed, but not later than 60 days after achieving the maximum production rate at which... first. Each owner or operator shall either: (a) Reduce emissions of TOC (less methane and ethane) by 98 weight-percent, or to a TOC (less methane and ethane) concentration of 20 ppmv, on a dry basis corrected...

  4. 40 CFR 60.702 - Standards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... § 60.704 is completed, but not later than 60 days after achieving the maximum production rate at which... first. Each owner or operator shall either: (a) Reduce emissions of TOC (less methane and ethane) by 98 weight-percent, or to a TOC (less methane and ethane) concentration of 20 ppmv, on a dry basis corrected...

  5. 40 CFR 60.700 - Applicability and designation of affected facility.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... compounds (TOC) (less methane and ethane) in the vent stream less than 300 ppmv as measured by Method 18 or a concentration of TOC in the vent stream less than 150 ppmv as measured by Method 25A is exempt... limits in these standards are expressed in terms of TOC, measured as TOC less methane and ethane. This...

  6. Breath ethane as a marker of reactive oxygen species during manipulation of diet and oxygen tension in rats.

    PubMed

    Risby, T H; Jiang, L; Stoll, S; Ingram, D; Spangler, E; Heim, J; Cutler, R; Roth, G S; Rifkind, J M

    1999-02-01

    Breath ethane, O2 consumption, and CO2 production were analyzed in 24-mo-old female Fischer 344 rats that had been fed continuously ad libitum (AL) or restricted 30% of AL level (DR) diets since 6 wk of age. Rats were placed in a glass chamber that was first flushed with air, then with a gas mixture containing 12% O2. After equilibration, a sample of the outflow was collected in gas sampling bags for subsequent analyses of ethane and CO2. The O2 and CO2 levels were also directly monitored in the outflow of the chamber. O2 consumption and CO2 production increased for DR rats. Hypoxia decreased O2 consumption and CO2 production for the AL-fed and DR rats. These changes reflect changes in metabolic rate due to diet and PO2. A significant decrease in ethane generation was found in DR rats compared with AL-fed rats. Under normoxic conditions, breath ethane decreased from 2.20 to 1.61 pmol ethane/ml CO2. During hypoxia the levels of ethane generation increased, resulting in a DR-associated decrease in ethane from 2.60 to 1.90 pmol ethane/ml CO2. These results support the hypothesis that DR reduces the level of oxidative stress.

  7. n-alkane profiles of engine lubricating oil and particulate matter by molecular sieve extraction.

    PubMed

    Caravaggio, Gianni A; Charland, Jean-Pierre; Macdonald, Penny; Graham, Lisa

    2007-05-15

    As part of the Canadian Atmospheric Fine Particle Research Program to obtain reliable primary source emission profiles, a molecular sieve method was developed to reliably determine n-alkanes in lubricating oils, vehicle emissions, and mobile source dominated ambient particulate matter (PM). This work was also initiated to better calculate carbon preference index values (CPI: the ratio of the sums of odd over even n-alkanes), a parameter for estimating anthropogenic versus biogenic contributions in PM. n-Alkanes in lubricating oil and mobile source dominated PM are difficult to identify and quantify by gas chromatography due to the presence of similar components that cannot be fully resolved. This results in a hump, the unresolved complex mixture (UCM) that leads to incorrect n-alkane concentrations and CPI values. The sieve method yielded better chromatography, unambiguous identification of n-alkanes and allowed examination of differences between n-alkane profiles in light (LDV) and heavy duty vehicle (HDV) lubricating oils that would have been otherwise difficult. These profile differences made it possible to relate the LDV profile to that of the PM samples collected during a tunnel study in August 2001 near Vancouver (British Columbia, Canada). The n-alkane PM data revealed that longer sampling times result in a negative artifact, i.e., the desorption of the more volatile n-alkanes from the filters. Furthermore, the sieve procedure yielded n-alkane data that allowed calculation of accurate CPI values for lubricating oils and PM samples. Finally, this method may prove helpful in estimating the respective diesel and gasoline contributions to ambient PM.

  8. Analysis of Ethane and Diethylbenzene Bridged Sorbents

    DTIC Science & Technology

    2017-12-13

    Leska; P.T. Charles; B.J. Melde; J.R. Taft, "Electrochemical Detection with Preconcentration: Nitroenergetic Contaminants ," Chemosensors 2, 131...monitoring of contaminants in groundwater: Sorbent development; Naval Research Laboratory: 2013. Analysis of Ethane and Diethylbenzene Bridged Sorbents 7...

  9. Sonolysis of hydrocarbons in aqueous solution

    NASA Astrophysics Data System (ADS)

    Hart, Edwin J.; Fischer, Christian-Herbert; Henglein, Arnim

    Water was irradiated with 300 kHz ultrasound under an argon atmosphere containing various amounts of methane and ethane. Limited studies were also made on ethylene, acetylene, propane and butane. The methane and ethane irradiations were carried out over the hydrocarbon-argon range of 2-100%. Maximum decomposition occurs at 15% for methane and 10% for ethane. While hydrogen is a dominant product in both cases, acetylene, ethylene and ethane are prominent products, too. Propane, propene and propin form in lesser quantities. 2-methyl-propane, n-butane, l-butene, 2-methyl-butene, butadiene and n-butin have also been identified. These hydrocarbons are similar to those found in pyrolysis and in fuel rich combustion experiments. Carbon monoxide is an important product at hydrocarbon concentrations less than 40% establishing water was an oxygen delivering reactant under these conditions. In the case of methane, the ratio of ethylene plus acetylene to ethane is used to estimate the effective temperature in the cavitation bubble. A temperature of about 2800 K is obtained for bubbles containing argon (plus water vapor and 20% CH 4) and T = 2000 K for pure methane. The rate of decomposition for unsaturated hydrocarbons is substantially greater than for the saturated ones. Low molecular weight products are mainly formed from saturated hydrocarbons whereas polymerization products are mainly formed from the unsaturated hydrocarbons. The decomposition of acetylene in argon bubbles is one of the fastest sonolytic processes.

  10. Infrared Spectroscopic Investigation on CH Bond Acidity in Cationic Alkanes

    NASA Astrophysics Data System (ADS)

    Matsuda, Yoshiyuki; Xie, Min; Fujii, Asuka

    2016-06-01

    We have demonstrated large enhancements of CH bond acidities in alcohol, ether, and amine cations through infrared predissociation spectroscopy based on the vacuum ultraviolet photoionization detection. In this study, we investigate for the cationic alkanes (pentane, hexane, and heptane) with different alkyl chain lengths. The σ electrons are ejected in the ionization of alkanes, while nonbonding electrons are ejected in ionization of alcohols, ethers, and amines. Nevertheless, the acidity enhancements of CH in these cationic alkanes have also been demonstrated by infrared spectroscopy. The correlations of their CH bond acidities with the alkyl chain lengths as well as the mechanisms of their acidity enhancements will be discussed by comparison of infrared spectra and theoretical calculations.

  11. Self-preservation and structural transition of gas hydrates during dissociation below the ice point: an in situ study using Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhong, Jin-Rong; Zeng, Xin-Yang; Zhou, Feng-He; Ran, Qi-Dong; Sun, Chang-Yu; Zhong, Rui-Qin; Yang, Lan-Ying; Chen, Guang-Jin; Koh, Carolyn A.

    2016-12-01

    The hydrate structure type and dissociation behavior for pure methane and methane-ethane hydrates at temperatures below the ice point and atmospheric pressure were investigated using in situ Raman spectroscopic analysis. The self-preservation effect of sI methane hydrate is significant at lower temperatures (268.15 to 270.15 K), as determined by the stable C-H region Raman peaks and AL/AS value (Ratio of total peak area corresponding to occupancies of guest molecules in large cavities to small cavities) being around 3.0. However, it was reduced at higher temperatures (271.15 K and 272.15 K), as shown from the dramatic change in Raman spectra and fluctuations in AL/AS values. The self-preservation effect for methane-ethane double hydrate is observed at temperatures lower than 271.15 K. The structure transition from sI to sII occurred during the methane-ethane hydrate decomposition process, which was clearly identified by the shift in peak positions and the change in relative peak intensities at temperatures from 269.15 K to 271.15 K. Further investigation shows that the selectivity for self-preservation of methane over ethane leads to the structure transition; this kind of selectivity increases with decreasing temperature. This work provides new insight into the kinetic behavior of hydrate dissociation below the ice point.

  12. Self-preservation and structural transition of gas hydrates during dissociation below the ice point: an in situ study using Raman spectroscopy

    PubMed Central

    Zhong, Jin-Rong; Zeng, Xin-Yang; Zhou, Feng-He; Ran, Qi-Dong; Sun, Chang-Yu; Zhong, Rui-Qin; Yang, Lan-Ying; Chen, Guang-Jin; Koh, Carolyn A.

    2016-01-01

    The hydrate structure type and dissociation behavior for pure methane and methane-ethane hydrates at temperatures below the ice point and atmospheric pressure were investigated using in situ Raman spectroscopic analysis. The self-preservation effect of sI methane hydrate is significant at lower temperatures (268.15 to 270.15 K), as determined by the stable C-H region Raman peaks and AL/AS value (Ratio of total peak area corresponding to occupancies of guest molecules in large cavities to small cavities) being around 3.0. However, it was reduced at higher temperatures (271.15 K and 272.15 K), as shown from the dramatic change in Raman spectra and fluctuations in AL/AS values. The self-preservation effect for methane-ethane double hydrate is observed at temperatures lower than 271.15 K. The structure transition from sI to sII occurred during the methane-ethane hydrate decomposition process, which was clearly identified by the shift in peak positions and the change in relative peak intensities at temperatures from 269.15 K to 271.15 K. Further investigation shows that the selectivity for self-preservation of methane over ethane leads to the structure transition; this kind of selectivity increases with decreasing temperature. This work provides new insight into the kinetic behavior of hydrate dissociation below the ice point. PMID:27941857

  13. Self-preservation and structural transition of gas hydrates during dissociation below the ice point: an in situ study using Raman spectroscopy.

    PubMed

    Zhong, Jin-Rong; Zeng, Xin-Yang; Zhou, Feng-He; Ran, Qi-Dong; Sun, Chang-Yu; Zhong, Rui-Qin; Yang, Lan-Ying; Chen, Guang-Jin; Koh, Carolyn A

    2016-12-12

    The hydrate structure type and dissociation behavior for pure methane and methane-ethane hydrates at temperatures below the ice point and atmospheric pressure were investigated using in situ Raman spectroscopic analysis. The self-preservation effect of sI methane hydrate is significant at lower temperatures (268.15 to 270.15 K), as determined by the stable C-H region Raman peaks and A L /A S value (Ratio of total peak area corresponding to occupancies of guest molecules in large cavities to small cavities) being around 3.0. However, it was reduced at higher temperatures (271.15 K and 272.15 K), as shown from the dramatic change in Raman spectra and fluctuations in A L /A S values. The self-preservation effect for methane-ethane double hydrate is observed at temperatures lower than 271.15 K. The structure transition from sI to sII occurred during the methane-ethane hydrate decomposition process, which was clearly identified by the shift in peak positions and the change in relative peak intensities at temperatures from 269.15 K to 271.15 K. Further investigation shows that the selectivity for self-preservation of methane over ethane leads to the structure transition; this kind of selectivity increases with decreasing temperature. This work provides new insight into the kinetic behavior of hydrate dissociation below the ice point.

  14. Active sites and states in the heterogeneous catalysis of carbon-hydrogen bonds.

    PubMed

    Somorjai, Gabor A; Marsh, Anderson L

    2005-04-15

    C-H bond activation for several alkenes (ethylene, propylene, isobutene, cyclohexene and 1-hexene) and alkanes (methane, ethane, n-hexane, 2-methylpentane and 3-methylpentane) has been studied on the (111) crystal face of platinum as a function of temperature at low (10(-6) Torr) and high (>/=1 Torr) pressures in the absence and presence of hydrogen pressures (>/=10 Torr). Sum frequency generation (SFG) vibrational spectroscopy has been used to characterize the adsorbate structures and high pressure scanning tunnelling microscopy (HP-STM) has been used to monitor their surface mobility under reaction conditions during hydrogenation, dehydrogenation and CO poisoning. C-H bond dissociation occurs at low temperatures, approximately 250 K, for all of these molecules, although only at high pressures for the weakly bound alkanes because of their low desorption temperatures. Bond dissociation is known to be surface structure sensitive and we find that it is also accompanied by the restructuring of the metal surface. The presence of hydrogen slows down dehydrogenation and for some of the molecules it influences the molecular rearrangement, thus altering reaction selectivity. Surface mobility of adsorbates is essential to produce catalytic activity. When surface diffusion is inhibited by CO adsorption, ordered surface structures form and the reaction is poisoned. Ethylene hydrogenation is surface structure insensitive, while cyclohexene hydrogenation and dehydrogenation are structure sensitive. n-Hexane and other C6 alkanes form either upright or flat-lying molecules on the platinum surface which react to produce branched isomers or benzene, respectively.

  15. Study of gas adsorption on as-produced and modified carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Rawat, Dinesh Singh

    Volumetric adsorption isotherm measurements were used to study the adsorption characteristics of Ethane (C2H6) and Butane (C 4H10) on as-produced single-walled carbon nanotubes. The binding energy of the adsorbed alkane molecule was found to increase with increasing carbon chain length. Two adsorption substeps were obtained for each alkane molecule. However, the size of the high pressure substep was found to be gradually smearing with the increase in size of the adsorbed molecule. This phenomenon is interpreted as size entropy effect for linear molecules. This interpretation was also verified by determining the specific surface area of the substrate using linear molecules of different sizes. Kinetics measurements of alkane adsorption on SWNTs were also conducted and their dependence on the molecular length was determined. Similar adsorption measurements were performed for Argon (Ar) on as-produced single-walled carbon nanotubes and nanotubes that were structurally modified using acid treatment. Enhancement of the sorptive capacity and the presence of two distinct kinetics of gas adsorption verified partial opening of single walled carbon nanotubes as a result of chemical treatment. Mutiwalled carbon nanotubes were exposed to oxygen plasma treatment for varying time periods. Afterwards, adsorption measurements of Methane (CH 4) were conducted on untreated and oxygen plasma treated tubes. The presence of an additional substep, after exposing multiwalled carbon nanotubes to oxygen plasma for varying time periods, suggested progressive cleaning of nanotube surface.

  16. Reduction of halogenated ethanes by green rust.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Loughlin, E. J.; Burris, D. R.; Environmental Research

    Green rusts, mixed Fe{sup II}/Fe{sup III} hydroxide minerals present in many suboxic environments, have been shown to reduce a number of organic and inorganic contaminants. The reduction of halogenated ethanes was examined in aqueous suspensions of green rust, both alone and with the addition of Ag{sup I} (AgGR) and Cu{sup II} (CuGR). Hexachloroethane (HCA), pentachloroethane (PCA), 1,1,1,2-tetrachloroethane (1,1,1,2-TeCA), 1,1,2,2-tetrachloroethane (1,1,2,2-TeCA), 1,1,1-trichloroethane (1,1,1-TCA), 1,1,2-trichloroethane (1,1,2-TCA), 1,1-dichloroethane (1,1-DCA), and 1,2-dibromoethane were reduced in the presence of green rust alone, AgGR, or CuGR; only 1,2-dichloroethane and chloroethane were nonreactive. The reduction was generally more rapid for more highly substituted ethanes than for ethanesmore » having fewer halogen groups (HCA > PCA > 1,1,1,2-TeCA > 1,1,1-TCA > 1,1,2,2-TeCA > 1,1,2-TCA > 1,1-DCA), and isomers with the more asymmetric distributions of halogen groups were more rapidly reduced than the isomer with greater symmetry (e.g., 1,1,1-TCA > 1,1,2-TCA). The addition of Ag{sup I} or Cu{sup II} to green rust suspensions resulted in a substantial increase in the rate of halogenated ethane reduction as well as significant differences in the product distributions with respect to green rust alone.« less

  17. Ubiquitous Presence and Novel Diversity of Anaerobic Alkane Degraders in Cold Marine Sediments.

    PubMed

    Gittel, Antje; Donhauser, Johanna; Røy, Hans; Girguis, Peter R; Jørgensen, Bo B; Kjeldsen, Kasper U

    2015-01-01

    Alkanes are major constituents of crude oil and are released to the marine environment by natural seepage and from anthropogenic sources. Due to their chemical inertness, their removal from anoxic marine sediments is primarily controlled by the activity of anaerobic alkane-degrading microorganisms. To facilitate comprehensive cultivation-independent surveys of the diversity and distribution of anaerobic alkane degraders, we designed novel PCR primers that cover all known diversity of the 1-methylalkyl succinate synthase gene (masD/assA), which catalyzes the initial activation of alkanes. We studied masD/assA gene diversity in pristine and seepage-impacted Danish coastal sediments, as well as in sediments and alkane-degrading enrichment cultures from the Middle Valley (MV) hydrothermal vent system in the Pacific Northwest. MasD/assA genes were ubiquitously present, and the primers captured the diversity of both known and previously undiscovered masD/assA gene diversity. Seepage sediments were dominated by a single masD/assA gene cluster, which is presumably indicative of a substrate-adapted community, while pristine sediments harbored a diverse range of masD/assA phylotypes including those present in seepage sediments. This rare biosphere of anaerobic alkane degraders will likely increase in abundance in the event of seepage or accidental oil spillage. Nanomolar concentrations of short-chain alkanes (SCA) were detected in pristine and seepage sediments. Interestingly, anaerobic alkane degraders closely related to strain BuS5, the only SCA degrader in pure culture, were found in mesophilic MV enrichments, but not in cold sediments from Danish waters. We propose that the new masD/assA gene lineages in these sediments represent novel phylotypes that are either fueled by naturally occurring low levels of SCA or that metabolize medium- to long-chain alkanes. Our study highlights that masD/assA genes are a relevant diagnostic marker to identify seepage and microseepage, e

  18. Conversion of alkanes to linear alkylsilanes using an iridium-iron-catalysed tandem dehydrogenation-isomerization-hydrosilylation

    NASA Astrophysics Data System (ADS)

    Jia, Xiangqing; Huang, Zheng

    2016-02-01

    The conversion of inexpensive, saturated hydrocarbon feedstocks into value-added speciality chemicals using regiospecific, catalytic functionalization of alkanes is a major goal of organometallic chemistry. Linear alkylsilanes represent one such speciality chemical—they have a wide range of applications, including release coatings, silicone rubbers and moulding products. Direct, selective, functionalization of alkanes at primary C-H bonds is difficult and, to date, methods for catalytically converting alkanes into linear alkylsilanes are unknown. Here, we report a well-defined, dual-catalyst system for one-pot, two-step alkane silylations. The system comprises a pincer-ligated Ir catalyst for alkane dehydrogenation and an Fe catalyst that effects a subsequent tandem olefin isomerization-hydrosilylation. This method exhibits exclusive regioselectivity for the production of terminally functionalized alkylsilanes. This dual-catalyst strategy has also been applied to regioselective alkane borylations to form linear alkylboronate esters.

  19. Supported organoiridium catalysts for alkane dehydrogenation

    DOEpatents

    Baker, R. Thomas; Sattelberger, Alfred P.; Li, Hongbo

    2013-09-03

    Solid supported organoiridium catalysts, a process for preparing such solid supported organoiridium catalysts, and the use of such solid supported organoiridium catalysts in dehydrogenation reactions of alkanes is provided. The catalysts can be easily recovered and recycled.

  20. Copper-Catalyzed Alkoxycarbonylation of Alkanes with Alcohols.

    PubMed

    Li, Yahui; Wang, Changsheng; Zhu, Fengxiang; Wang, Zechao; Dixneuf, Pierre H; Wu, Xiao-Feng

    2017-04-10

    Esters are important chemicals widely used in various areas, and alkoxycarbonylation represents one of the most powerful tools for their synthesis. In this communication, a new copper-catalyzed carbonylative procedure for the synthesis of aliphatic esters from cycloalkanes and alcohols was developed. Through direct activation of the Csp3 -H bond of alkanes and with alcohols as the nucleophiles, the desired esters were prepared in moderate-to-good yields. Paraformaldehyde could also be applied for in situ alcohol generation by radical trapping, and moderate yields of the corresponding esters could be produced. Notably, this is the first report on copper-catalyzed alkoxycarbonylation of alkanes. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Comparison of facility-level methane emission rates from natural gas production well pads in the Marcellus, Denver-Julesburg, and Uintah Basins

    NASA Astrophysics Data System (ADS)

    Omara, M.; Li, X.; Sullivan, M.; Subramanian, R.; Robinson, A. L.; Presto, A. A.

    2015-12-01

    The boom in shale natural gas (NG) production, brought about by advances in horizontal drilling and hydraulic fracturing, has yielded both economic benefits and concerns about environmental and climate impacts. In particular, leakages of methane from the NG supply chain could substantially increase the carbon footprint of NG, diminishing its potential role as a transition fuel between carbon intensive fossil fuels and renewable energy systems. Recent research has demonstrated significant variability in measured methane emission rates from NG production facilities within a given shale gas basin. This variability often reflect facility-specific differences in NG production capacity, facility age, utilization of emissions capture and control, and/or the level of facility inspection and maintenance. Across NG production basins, these differences in facility-level methane emission rates are likely amplified, especially if significant variability in NG composition and state emissions regulations are present. In this study, we measured methane emission rates from the NG production sector in the Marcellus Shale Basin (Pennsylvania and West Virginia), currently the largest NG production basin in the U.S., and contrast these results with those of the Denver-Julesburg (Colorado) and Uintah (Utah) shale basins. Facility-level methane emission rates were measured at 106 NG production facilities using the dual tracer flux (nitrous oxide and acetylene), Gaussian dispersion simulations, and the OTM 33A techniques. The distribution of facility-level average methane emission rate for each NG basin will be discussed, with emphasis on how variability in NG composition (i.e., ethane-to-methane ratios) and state emissions regulations impact measured methane leak rates. While the focus of this presentation will be on the comparison of methane leak rates among NG basins, the use of three complimentary top-down methane measurement techniques provides a unique opportunity to explore the

  2. 40 CFR 721.2625 - Reaction product of alkane-diol and epichlorohydrin.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Reaction product of alkane-diol and... Specific Chemical Substances § 721.2625 Reaction product of alkane-diol and epichlorohydrin. (a) Chemical... as reaction product of alkanediol and epichlorohydrin (PMN P-89-760) is subject to reporting under...

  3. 40 CFR 721.2625 - Reaction product of alkane-diol and epichlorohydrin.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Reaction product of alkane-diol and... Specific Chemical Substances § 721.2625 Reaction product of alkane-diol and epichlorohydrin. (a) Chemical... as reaction product of alkanediol and epichlorohydrin (PMN P-89-760) is subject to reporting under...

  4. Hydrogen Migration and Vinylidene Pathway for Formation of Methane in the 193 nm Photodissociation of Propene: CH3CH=CH2 and CD3CD=CD2

    NASA Technical Reports Server (NTRS)

    Zhao, Yi-Lei; Laufer, Allan H.; Halpern, Joshua B.; Fahr, Askar

    2007-01-01

    Photodissociation channels and the final product yields from the 193 nm photolysis of propene-h6 (CH2=CHCH3) and propene-d6 (CD2=CDCD3) have been investigated, employing gas chromatography, mass spectroscopy, and flame ionization (GC/MS/FID) detection methods. The yields of methane as well as butadiene relative to ethane show considerable variations when propene-h6 or propene-d6 are photolyzed. This suggests significant variances in the relative importance of primary photolytic processes and/or secondary radical reactions, occurring subsequent to the photolysis. Theoretical calculations suggest the potential occurrence of an intramolecular dissociation through a mechanism involving vinylidene formation, accompanied by an ethylenic H-migration through the pi-orbitals. This process affects the final yields of methane-h4 versus methane-d4 with respect to other products. The product yields from previous studies of the 193 nm photolysis of methyl vinyl ketone-h6 and -d6 (CH2=CHCOCH3, CD2=CDCOCD3), alternative precursors for generating methyl and vinyl radicals, are compared with the current results for propene.

  5. Thermal Vacuum Testing of Swift XRT Ethane Heat Pipes

    NASA Technical Reports Server (NTRS)

    Kobel, Mark; Ku, Jentung

    2003-01-01

    This paper presents the results obtained from a recent ethane heat pipe program. Three identical ethane heat pipes were tested individually, and then two selected heat pipes were tested collectively in their system configuration. Heat transport, thermal conductance, and non-condensable gas tests were performed on each heat pipe. To gain insight into the reflux operation as seen at spacecraft level ground testing, the test fixture was oriented in a vertical configuration. The system level test included a computer-controlled heater designed to emulate the heat load generated at the thermoelectric cooler interface. The system performance was successfully characterized for a wide range of environmental conditions while staying within the operating limits.

  6. Optimization of linear and branched alkane interactions with water to simulate hydrophobic hydration

    NASA Astrophysics Data System (ADS)

    Ashbaugh, Henry S.; Liu, Lixin; Surampudi, Lalitanand N.

    2011-08-01

    Previous studies of simple gas hydration have demonstrated that the accuracy of molecular simulations at capturing the thermodynamic signatures of hydrophobic hydration is linked both to the fidelity of the water model at replicating the experimental liquid density at ambient pressure and an accounting of polarization interactions between the solute and water. We extend those studies to examine alkane hydration using the transferable potentials for phase equilibria united-atom model for linear and branched alkanes, developed to reproduce alkane phase behavior, and the TIP4P/2005 model for water, which provides one of the best descriptions of liquid water for the available fixed-point charge models. Alkane site/water oxygen Lennard-Jones cross interactions were optimized to reproduce the experimental alkane hydration free energies over a range of temperatures. The optimized model reproduces the hydration free energies of the fitted alkanes with a root mean square difference between simulation and experiment of 0.06 kcal/mol over a wide temperature range, compared to 0.44 kcal/mol for the parent model. The optimized model accurately reproduces the temperature dependence of hydrophobic hydration, as characterized by the hydration enthalpies, entropies, and heat capacities, as well as the pressure response, as characterized by partial molar volumes.

  7. Formation and fate of alkyl nitrates from chlorine-initiated oxidation of alkanes

    NASA Astrophysics Data System (ADS)

    Wang, D. S.; Hildebrandt Ruiz, L.

    2017-12-01

    Alkanes are a main source of anthropogenic volatile organic compounds (VOCs). Studies suggest that large alkanes, despite having high carbon mass, often do not significantly contribute to secondary organic aerosol (SOA) formation due to their low reactivity towards hydroxyl radicals. Chlorine radicals react much more quickly with alkanes; for example, the reaction of Cl with n-decane is about 50 times faster than the reaction of OH with n-decane. High reactive chlorine concentrations have been reported within continental regions as well as near coastal regions. The rapid oxidation of alkanes by chlorine radicals can therefore be a potentially significant, and overlooked source of alkylperoxy radicals and SOA formation. We present results from environmental chamber experiments on chlorine-initiated oxidation of C8, C10, and C12 linear and branched alkanes. Experiments were conducted under high NOx conditions to simulate highly polluted industrial environments. Formation of multigenerational gas-phase oxidation products were monitored using a High-Resolution Time-of-Flight Chemical Ionization Mass Spectrometer (CIMS). High SOA formation was observed using an Aerosol Chemical Speciation Monitor (ACSM). Aerosol volatility was determined using a thermodenuder and a kinetic aerosol evaporation model. Particle-phase composition was investigated using a Filter Inlet for Gases and AEROsols (FIGAERO) coupled to the CIMS, where dimer and oligomer formation were observed. Results from this study can be used to more accurately represent the fate of anthropogenic alkanes and SOA loadings in the atmosphere.

  8. Alkanes as Components of Soil Hydrocarbon Status: Behavior and Indication Significance

    NASA Astrophysics Data System (ADS)

    Gennadiev, A. N.; Zavgorodnyaya, Yu. A.; Pikovskii, Yu. I.; Smirnova, M. A.

    2018-01-01

    Studies of soils on three key plots with different climatic conditions and technogenic impacts in Volgograd, Moscow, and Arkhangelsk oblasts have showed that alkanes in the soil exchange complex have some indication potential for the identification of soil processes. The following combinations of soil-forming factors and processes have been studied: (a) self-purification of soil after oil pollution; (b) accumulation of hydrocarbons coming from the atmosphere to soils of different land use patterns; and (c) changes in the soil hydrocarbon complex beyond the zone of technogenic impact due to the input of free hydrocarbon-containing gases. At the injection input of hydrocarbon pollutants, changes in the composition and proportions of alkanes allow tracing the degradation trend of pollutants in the soil from their initial content to the final stage of soil self-purification, when the background concentrations of hydrocarbons are reached. Upon atmospheric deposition of hydrocarbons onto the soil, from the composition and mass distribution of alkanes, conclusions can be drawn about the effect of toxicants on biogeochemical processes in the soil, including their manifestation under different land uses. Composition analysis of soil alkanes in natural landscapes can reveal signs of hydrocarbon emanation fluxes in soils. The indication potentials of alkanes in combination with polycyclic aromatic hydrocarbons and other components of soil hydrocarbon complex can also be used for the solution of other soil-geochemical problems.

  9. Raman spectrum of methane in nitrogen, carbon dioxide, hydrogen, ethane, and propane environments

    NASA Astrophysics Data System (ADS)

    Petrov, D. V.

    2018-02-01

    Using binary CH4 - mixtures with varied concentrations of H2, N2, CO2, C2H6 and C3H8 and a fixed ambient pressure of 25 bar, the influence of the environment on spectral characteristics (Raman shift, half-width, peak intensity) of Q-branches of the ν1, ν2, ν3, and 2ν4 methane Raman bands are investigated. It is found that depending on the environment these bands demonstrate different changes in their Raman shifts and half-widths. It is shown that the ratios of peak intensities I(ν2)/I(ν1), I(ν3)/I(ν1) and I(2ν4)/I(ν1) are very sensitive to the environment. The Raman shifts and half-widths of CH4 bands are assumed to depend on the absolute concentration of molecules in the analyzed medium. The data obtained would be useful in Raman diagnostics of natural gas.

  10. Molecular simulations for adsorption and separation of natural gas in IRMOF-1 and Cu-BTC metal-organic frameworks.

    PubMed

    Martín-Calvo, Ana; García-Pérez, Elena; Manuel Castillo, Juan; Calero, Sofia

    2008-12-21

    We use Monte Carlo simulations to study the adsorption and separation of the natural gas components in IRMOF-1 and Cu-BTC metal-organic frameworks. We computed the adsorption isotherms of pure components, binary, and five-component mixtures analyzing the siting of the molecules in the structure for the different loadings. The bulk compositions studied for the mixtures were 50 : 50 and 90 : 10 for CH4-CO2, 90 : 10 for N2-CO2, and 95 : 2.0 : 1.5 : 1.0 : 0.5 for the CH4-C2H6-N2-CO2-C3H8 mixture. We choose this composition because it is similar to an average sample of natural gas. Our simulations show that CO2 is preferentially adsorbed over propane, ethane, methane and N2 in the complete pressure range under study. Longer alkanes are favored over shorter alkanes and the lowest adsorption corresponds to N2. Though IRMOF-1 has a significantly higher adsorption capacity than Cu-BTC, the adsorption selectivity of CO2 over CH4 and N2 is found to be higher in the latter, proving that the separation efficiency is largely affected by the shape, the atomic composition and the type of linkers of the structure.

  11. A review of acetylene, ethylene and ethane molecular spectroscopy for planetary applications

    NASA Technical Reports Server (NTRS)

    Maguire, W. C.

    1982-01-01

    Spectroscopic work in acetylene, ethylene and ethane, are of particular interest since the Voyager IRIS observations of Jupiter. Acetylene and ethane but not ethylene were observed in the Jovian spectrum. Two fundamental bands of the observed gases are used to determine the spatial distribution of these hydrocarbons on Jupiter and to illuminate the photochemistry of these species. The 100 to 1000 cm region is discussed and selected examples of current laboratory work are given.

  12. Airborne Quantification of Methane Emissions in the San Francisco Bay Area of California

    NASA Astrophysics Data System (ADS)

    Guha, A.; Newman, S.; Martien, P. T.; Young, A.; Hilken, H.; Faloona, I. C.; Conley, S.

    2017-12-01

    The Bay Area Air Quality Management District, the San Francisco Bay Area's air quality regulatory agency, has set a goal to reduce the region's greenhouse gas (GHG) emissions 80% below 1990 levels by 2050, consistent with the State of California's climate protection goal. The Air District maintains a regional GHG emissions inventory that includes emissions estimates and projections which influence the agency's programs and regulatory activities. The Air District is currently working to better characterize methane emissions in the GHG inventory through source-specific measurements, to resolve differences between top-down regional estimates (Fairley and Fischer, 2015; Jeong et al., 2016) and the bottom-up inventory. The Air District funded and participated in a study in Fall 2016 to quantify methane emissions from a variety of sources from an instrumented Mooney aircraft. This study included 40 hours of cylindrical vertical profile flights that combined methane and wind measurements to derive mass emission rates. Simultaneous measurements of ethane provided source-apportionment between fossil-based and biological methane sources. The facilities sampled included all five refineries in the region, five landfills, two dairy farms and three wastewater treatment plants. The calculated mass emission rates were compared to bottom-up rates generated by the Air District and to those from facility reports to the US EPA as part of the mandatory GHG reporting program. Carbon dioxide emission rates from refineries are found to be similar to bottom-up estimates for all sources, supporting the efficacy of the airborne measurement methodology. However, methane emission estimates from the airborne method showed significant differences for some source categories. For example, methane emission estimates based on airborne measurements were up to an order of magnitude higher for refineries, and up to five times higher for landfills compared to bottom-up methods, suggesting significant

  13. Determination of ethane, pentane and isoprene in exhaled air--effects of breath-holding, flow rate and purified air.

    PubMed

    Lärstad, M A E; Torén, K; Bake, B; Olin, A-C

    2007-01-01

    Exhaled ethane, pentane and isoprene have been proposed as biomarkers of oxidative stress. The objectives were to explore whether ethane, pentane and isoprene are produced within the airways and to explore the effect of different sampling parameters on analyte concentrations. The flow dependency of the analyte concentrations, the concentrations in dead-space and alveolar air after breath-holding and the influence of inhaling purified air on analyte concentrations were investigated. The analytical method involved thermal desorption from sorbent tubes and gas chromatography. The studied group comprised 13 subjects with clinically stable asthma and 14 healthy controls. Ethane concentrations decreased slightly, but significantly, at higher flow rates in subjects with asthma (P = 0.0063) but not in healthy controls. Pentane levels were increased at higher flow rates both in healthy and asthmatic subjects (P = 0.022 and 0.0063 respectively). Isoprene levels were increased at higher flow rates, but only significantly in healthy subjects (P = 0.0034). After breath-holding, no significant changes in ethane levels were observed. Pentane and isoprene levels increased significantly after 20 s of breath-holding. Inhalation of purified air before exhalation resulted in a substantial decrease in ethane levels, a moderate decrease in pentane levels and an increase in isoprene levels. The major fractions of exhaled ethane, pentane and isoprene seem to be of systemic origin. There was, however, a tendency for ethane to be flow rate dependent in asthmatic subjects, although to a very limited extent, suggesting that small amounts of ethane may be formed in the airways.

  14. Irradiation Products On Dwarf Planet Makemake

    NASA Astrophysics Data System (ADS)

    Brown, M. E.; Schaller, E. L.; Blake, G. A.

    2015-03-01

    The dark, reddish tinged surfaces of icy bodies in the outer solar system are usually attributed to the long term irradiation of simple hydrocarbons leading to the breaking of C-H bonds, loss of hydrogen, and the production of long carbon chains. While the simple hydrocarbon methane is stable and detected on the most massive bodies in the Kuiper Belt, evidence of active irradiation chemistry is scant except for the presence of ethane on methane-rich Makemake and the possible detections of ethane on more methane-poor Pluto and Quaoar. We have obtained deep high signal-to-noise spectra of Makemake from 1.4 to 2.5 μm in an attempt to trace the radiation chemistry in the outer solar system beyond the initial ethane formation. We present the first astrophysical detection of solid ethylene and evidence for acetylene and high-mass alkanes—all expected products of the continued irradiation of methane, and use these species to map the chemical pathway from methane to long-chain hydrocarbons.

  15. Photocatalytic acceptorless alkane dehydrogenation: scope, mechanism, and conquering deactivation with carbon dioxide.

    PubMed

    Chowdhury, Abhishek Dutta; Julis, Jennifer; Grabow, Kathleen; Hannebauer, Bernd; Bentrup, Ursula; Adam, Martin; Franke, Robert; Jackstell, Ralf; Beller, Matthias

    2015-01-01

    Alkane dehydrogenation is of special interest for basic science but also offers interesting opportunities for industry. The existing dehydrogenation methodologies make use of heterogeneous catalysts, which suffer from harsh reaction conditions and a lack of selectivity, whereas homogeneous methodologies rely mostly on unsolicited waste generation from hydrogen acceptors. Conversely, acceptorless photochemical alkane dehydrogenation in the presence of trans-Rh(PMe3 )2 (CO)Cl can be regarded as a more benign and atom efficient alternative. However, this methodology suffers from catalyst deactivation over time. Herein, we provide a detailed investigation of the trans-Rh(PMe3 )2 (CO)Cl-photocatalyzed alkane dehydrogenation using spectroscopic and theoretical investigations. These studies inspired us to utilize CO2 to prevent catalyst deactivation, which leads eventually to improved catalyst turnover numbers in the dehydrogenation of alkanes that include liquid organic hydrogen carriers. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. New observations and insights into the morphology and growth kinetics of hydrate films.

    PubMed

    Li, Sheng-Li; Sun, Chang-Yu; Liu, Bei; Li, Zhi-Yun; Chen, Guang-Jin; Sum, Amadeu K

    2014-02-19

    The kinetics of film growth of hydrates of methane, ethane, and methane-ethane mixtures were studied by exposing a single gas bubble to water. The morphologies, lateral growth rates, and thicknesses of the hydrate films were measured for various gas compositions and degrees of subcooling. A variety of hydrate film textures was revealed. The kinetics of two-dimensional film growth was inferred from the lateral growth rate and initial thickness of the hydrate film. A clear relationship between the morphology and film growth kinetics was observed. The shape of the hydrate crystals was found to favour heat or mass transfer and favour further growth of the hydrate film. The quantitative results on the kinetics of film growth showed that for a given degree of subcooling, the initial film thicknesses of the double hydrates were larger than that of pure methane or ethane hydrate, whereas the thickest hydrate film and the lowest lateral growth rate occurred when the methane mole fraction was approximately 0.6.

  17. New Observations and Insights into the Morphology and Growth Kinetics of Hydrate Films

    PubMed Central

    Li, Sheng-Li; Sun, Chang-Yu; Liu, Bei; Li, Zhi-Yun; Chen, Guang-Jin; Sum, Amadeu K.

    2014-01-01

    The kinetics of film growth of hydrates of methane, ethane, and methane-ethane mixtures were studied by exposing a single gas bubble to water. The morphologies, lateral growth rates, and thicknesses of the hydrate films were measured for various gas compositions and degrees of subcooling. A variety of hydrate film textures was revealed. The kinetics of two-dimensional film growth was inferred from the lateral growth rate and initial thickness of the hydrate film. A clear relationship between the morphology and film growth kinetics was observed. The shape of the hydrate crystals was found to favour heat or mass transfer and favour further growth of the hydrate film. The quantitative results on the kinetics of film growth showed that for a given degree of subcooling, the initial film thicknesses of the double hydrates were larger than that of pure methane or ethane hydrate, whereas the thickest hydrate film and the lowest lateral growth rate occurred when the methane mole fraction was approximately 0.6. PMID:24549241

  18. 40 CFR 721.10178 - Distillates (Fischer-Tropsch), hydroisomerized middle, C10-13-branched alkane fraction.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...), hydroisomerized middle, C10-13-branched alkane fraction. 721.10178 Section 721.10178 Protection of Environment...), hydroisomerized middle, C10-13-branched alkane fraction. (a) Chemical substance and significant new uses subject... middle, C10-13-branched alkane fraction (PMN P-04-319; CAS No. 642928-30-1) is subject to reporting under...

  19. Structural optimization of interpenetrated pillared-layer coordination polymers for ethylene/ethane separation.

    PubMed

    Kishida, Keisuke; Horike, Satoshi; Watanabe, Yoshihiro; Tahara, Mina; Inubushi, Yasutaka; Kitagawa, Susumu

    2014-06-01

    With the goal of achieving effective ethylene/ethane separation, we evaluated the gas sorption properties of four pillared-layer-type porous coordination polymers with double interpenetration, [Zn2(tp)2(bpy)]n (1), [Zn2(fm)2(bpe)]n (2), [Zn2(fm)2(bpa)]n (3), and [Zn2(fm)2(bpy)]n (4) (tp = terephthalate, bpy = 4,4'-bipyridyl, fm = fumarate, bpe = 1,2-di(4-pyridyl)ethylene and bpa = 1,2-di(4-pyridyl)ethane). It was found that 4, which contains the narrowest pores of all of these compounds, exhibited ethylene-selective sorption profiles. The ethylene selectivity of 4 was estimated to be 4.6 at 298 K based on breakthrough experiments using ethylene/ethane gas mixtures. In addition, 4 exhibited a good regeneration ability compared with a conventional porous material. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Quantifying Methane Emissions from the Arctic Ocean Seabed to the Atmosphere

    NASA Astrophysics Data System (ADS)

    Platt, Stephen; Pisso, Ignacio; Schmidbauer, Norbert; Hermansen, Ove; Silyakova, Anna; Ferré, Benedicte; Vadakkepuliyambatta, Sunil; Myhre, Gunnar; Mienert, Jürgen; Stohl, Andreas; Myhre, Cathrine Lund

    2016-04-01

    Large quantities of methane are stored under the seafloor in the shallow waters of the Arctic Ocean. Some of this is in the form of hydrates which may be vulnerable to deomposition due to surface warming. The Methane Emissions from Arctic Ocean to Atmosphere MOCA, (http://moca.nilu.no/) project was established in collaboration with the Centre for Arctic Gas Hydrate, Environment and Climate (CAGE, https://cage.uit.no/). In summer 2014, and summer and autumn 2015 we deployed oceanographic CTD (Conductivity, Temperature, Depth) stations and performed state-of-the-art atmospheric measurements of CH4, CO2, CO, and other meteorological parameters aboard the research vessel Helmer Hanssen west of Prins Karl's Forland, Svalbard. Air samples were collected for isotopic analysis (13C, 2H) and quantification of other hydrocarbons (ethane, propane, etc.). Atmospheric measurements are also available from the nearby Zeppelin Observatory at a mountain close to Ny-Ålesund, Svalbard. We will present data from these measurements that show an upper constraint of the methane flux in measurement area in 2014 too low to influence the annual CH4 budget. This is further supported by top-down constraints (maximum release consistent with observations at the Helmer Hansen and Zeppelin Observatory) determined using FLEXPART foot print sensitivities and the OsloCTM3 model. The low flux estimates despite the presence of active seeps in the area (numerous gas flares were observed using echo sounding) were apparently due to the presence of a stable ocean pycnocline at ~50 m.

  1. 40 CFR 721.10625 - Distillation bottoms, alkylated benzene by-product, brominated and bromo diphenyl alkane (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... benzene by-product, brominated and bromo diphenyl alkane (generic). 721.10625 Section 721.10625 Protection... Distillation bottoms, alkylated benzene by-product, brominated and bromo diphenyl alkane (generic). (a... generically as distillation bottoms, alkylated benzene by-product, brominated and bromo diphenyl alkane (PMNs...

  2. 40 CFR 721.10625 - Distillation bottoms, alkylated benzene by-product, brominated and bromo diphenyl alkane (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... benzene by-product, brominated and bromo diphenyl alkane (generic). 721.10625 Section 721.10625 Protection... Distillation bottoms, alkylated benzene by-product, brominated and bromo diphenyl alkane (generic). (a... generically as distillation bottoms, alkylated benzene by-product, brominated and bromo diphenyl alkane (PMNs...

  3. Survival and Energy Producing Strategies of Alkane Degraders Under Extreme Conditions and Their Biotechnological Potential.

    PubMed

    Park, Chulwoo; Park, Woojun

    2018-01-01

    Many petroleum-polluted areas are considered as extreme environments because of co-occurrence of low and high temperatures, high salt, and acidic and anaerobic conditions. Alkanes, which are major constituents of crude oils, can be degraded under extreme conditions, both aerobically and anaerobically by bacteria and archaea of different phyla. Alkane degraders possess exclusive metabolic pathways and survival strategies, which involve the use of protein and RNA chaperones, compatible solutes, biosurfactants, and exopolysaccharide production for self-protection during harsh environmental conditions such as oxidative and osmotic stress, and ionic nutrient-shortage. Recent findings suggest that the thermophilic sulfate-reducing archaeon Archaeoglobus fulgidus uses a novel alkylsuccinate synthase for long-chain alkane degradation, and the thermophilic Candidatus Syntrophoarchaeum butanivorans anaerobically oxidizes butane via alkyl-coenzyme M formation. In addition, gene expression data suggest that extremophiles produce energy via the glyoxylate shunt and the Pta-AckA pathway when grown on a diverse range of alkanes under stress conditions. Alkane degraders possess biotechnological potential for bioremediation because of their unusual characteristics. This review will provide genomic and molecular insights on alkane degraders under extreme conditions.

  4. Regioselective alkane hydroxylation with a mutant AlkB enzyme

    DOEpatents

    Koch, Daniel J.; Arnold, Frances H.

    2012-11-13

    AlkB from Pseudomonas putida was engineered using in-vivo directed evolution to hydroxylate small chain alkanes. Mutant AlkB-BMO1 hydroxylates propane and butane at the terminal carbon at a rate greater than the wild-type to form 1-propanol and 1-butanol, respectively. Mutant AlkB-BMO2 similarly hydroxylates propane and butane at the terminal carbon at a rate greater than the wild-type to form 1-propanol and 1-butanol, respectively. These biocatalysts are highly active for small chain alkane substrates and their regioselectivity is retained in whole-cell biotransformations.

  5. Size and Site Dependence of the Catalytic Activity of Iridium Clusters toward Ethane Dehydrogenation.

    PubMed

    Ge, Yingbin; Jiang, Hao; Kato, Russell; Gummagatta, Prasuna

    2016-12-01

    This research focuses on optimizing transition metal nanocatalyst immobilization and activity to enhance ethane dehydrogenation. Ethane dehydrogenation, catalyzed by thermally stable Ir n (n = 8, 12, 18) atomic clusters that exhibit a cuboid structure, was studied using the B3LYP method with triple-ζ basis sets. Relativistic effects and dispersion corrections were included in the calculations. In the dehydrogenation reaction Ir n + C 2 H 6 → H-Ir n -C 2 H 5 → (H) 2 -Ir n -C 2 H 4 , the first H-elimination is the rate-limiting step, primarily because the reaction releases sufficient heat to facilitate the second H-elimination. The catalytic activity of the Ir clusters strongly depends on the Ir cluster size and the specific catalytic site. Cubic Ir 8 is the least reactive toward H-elimination in ethane: Ir 8 + C 2 H 6 → H-Ir 8 -C 2 H 5 has a large (65 kJ/mol) energy barrier, whereas Ir 12 (3 × 2 × 2 cuboid) and Ir 18 (3 × 3 × 2 cuboid) lower this energy barrier to 22 and 3 kJ/mol, respectively. The site dependence is as prominent as the size effect. For example, the energy barrier for the Ir 18 + C 2 H 6 → H-Ir 18 -C 2 H 5 reaction is 3, 48, and 71 kJ/mol at the corner, edge, or face-center sites of the Ir 18 cuboid, respectively. Energy release due to Ir cluster insertion into an ethane C-H bond facilitates hydrogen migration on the Ir cluster surface, and the second H-elimination of ethane. In an oxygen-rich environment, oxygen molecules may be absorbed on the Ir cluster surface. The oxygen atoms bonded to the Ir cluster surface may slightly increase the energy barrier for H-elimination in ethane. However, the adsorption of oxygen and its reaction with H atoms on the Ir cluster releases sufficient heat to yield an overall thermodynamically favored reaction: Ir n + C 2 H 6 + 1 / 2 O 2 → Ir n + C 2 H 4 + H 2 O. These results will be useful toward reducing the energy cost of ethane dehydrogenation in industry.

  6. Even-odd alternation of near-infrared spectra of alkane-α,ω-diols in their solid states

    NASA Astrophysics Data System (ADS)

    Toyama, Yuta; Murakami, Kohei; Yoshimura, Norio; Takayanagi, Masao

    2018-05-01

    Even-odd alternation of the melting points of α,ω-disubstituted linear alkanes such as alkane-α,ω-diols, alkane-α,ω-dinitriles and α,ω-diaminoalkanes is well known. Melting points for compounds with an even number of carbons in their alkyl chains are systematically higher than those for compounds with an odd number of carbons. In order to clarify the origin of this alternation, near-infrared absorption spectra of linear alkane-α,ω-diols with 3 to 9 carbon atoms in their alkyl chains were measured in the liquid and solid states. The band due to the first overtone of the Osbnd H stretching mode was investigated. The temperature-dependent spectra of all alkane-α,ω-diols in their liquid states were found to be similar; no even-odd alternation was observed. In the solid state, however, spectra of alkane-α,ω-diols with even and odd numbers of carbon atoms differed greatly. Spectra of alkane-α,ω-diols with an odd number of carbon atoms in their solid states were similar to those in the liquid states, although the variation of spectra observed upon lowering the temperature of liquid seemed to continue when the liquids were frozen. In contrast, spectra of alkane-α,ω-diols with an even number of carbon atoms in their liquid and solid states were found to be quite different. New bands appeared upon freezing. The observed even-odd alternation of the spectra observed for alkane-α,ω-diols in their solid states is presumably caused by their even-odd alternation of crystal structures.

  7. Microbial Incorporation of Fatty Acids Derived From n-Alkanes Into Glycerides and Waxes

    PubMed Central

    Davis, J. B.

    1964-01-01

    When n-alkanes with 13 to 20 carbon atoms were fed to a Nocardia closely related to N. salmonicolor, the produced cellular triglycerides and aliphatic waxes invariably contained fatty acids with an even or an odd number of carbon atoms subject to this feature of the n-alkane substrate. Beta-oxidation and C2 addition are both operative, as evidenced by the spectra of fatty acids incorporated into the cellular lipid components. There is no distinction in the rate of microbial incorporation of the odd-or even-numbered carbon chains. The fatty acids are apparently directly derived from the long chain n-alkanes, rather than synthesized via the classic C2-condensation route. The alcohol component of waxes produced by the Nocardia is invariably of the same chain length as the n-alkane substrate. PMID:14170957

  8. Alkanes in flower surface waxes of Momordica cochinchinensis influence attraction to Aulacophora foveicollis Lucas (Coleoptera: Chrysomelidae).

    PubMed

    Mukherjee, A; Sarkar, N; Barik, A

    2013-08-01

    Extraction, thin-layer chromatography, and gas chromatography-mass spectrophotometry analyses revealed 15 alkanes representing 97.14% of the total alkanes in the surface waxes of Momordica cochinchinensis Spreng flowers. Nonacosane was the prevailing alkane followed by hexatriacontane, nonadecane, heptacosane, and hentriacontane, accounting for 39.08%, 24.24%, 13.52%, 6.32%, and 5.12%, respectively. The alkanes from flower surface waxes followed by a synthetic mixture of alkanes mimicking alkanes of flower surface waxes elicited attraction of the female insect, Aulacophora foveicollis Lucas (Coleoptera: Chrysomelidae) between 2 and 10-μg/mL concentrations in a Y-shaped glass tube olfactometer bioassay under laboratory conditions. Synthetic nonadecane from 178.28-891.37 ng, heptacosane from 118.14-590.72 ng, and nonacosane at 784.73 ng showed attraction of the insect. A synthetic mixture of 534.82 ng nonadecane, 354.43 ng heptacosane, and 2,354.18 ng nonacosane elicited highest attraction of A. foveicollis.

  9. Catalytic dehydroaromatization of n-alkanes by pincer-ligated iridium complexes

    NASA Astrophysics Data System (ADS)

    Ahuja, Ritu; Punji, Benudhar; Findlater, Michael; Supplee, Carolyn; Schinski, William; Brookhart, Maurice; Goldman, Alan S.

    2011-02-01

    Aromatic hydrocarbons are among the most important building blocks in the chemical industry. Benzene, toluene and xylenes are obtained from the high temperature thermolysis of alkanes. Higher alkylaromatics are generally derived from arene-olefin coupling, which gives branched products—that is, secondary alkyl arenes—with olefins higher than ethylene. The dehydrogenation of acyclic alkanes to give alkylaromatics can be achieved using heterogeneous catalysts at high temperatures, but with low yields and low selectivity. We present here the first catalytic conversion of n-alkanes to alkylaromatics using homogeneous or molecular catalysts—specifically ‘pincer’-ligated iridium complexes—and olefinic hydrogen acceptors. For example, the reaction of n-octane affords up to 86% yield of aromatic product, primarily o-xylene and secondarily ethylbenzene. In the case of n-decane and n-dodecane, the resulting alkylarenes are exclusively unbranched (that is, n-alkyl-substituted), with selectivity for the corresponding o-(n-alkyl)toluene.

  10. Methane as a biomarker in the search for extraterrestrial life: Lessons learned from Mars analog hypersaline environments

    NASA Astrophysics Data System (ADS)

    Bebout, B.; Tazaz, A.; Kelley, C. A.; Poole, J. A.; Davila, A.; Chanton, J.

    2010-12-01

    Methane released from discrete regions on Mars, together with previous reports of methane determined with ground-based telescopes, has revived the possibility of past or even extant life near the surface on Mars, since 90% of the methane on Earth has a biological origin. This intriguing possibility is supported by the abundant evidence of large bodies of liquid water, and therefore of conditions conducive to the origin of life, early in the planet's history. The detection and analysis of methane is at the core of NASA’s strategies to search for life in the solar system, and on extrasolar planets. Because methane is also produced abiotically, it is important to generate criteria to unambiguously assess biogenicity. The stable carbon and hydrogen isotopic signature of methane, as well as its ratio to other low molecular weight hydrocarbons (the methane/(ethane + propane) ratio: C1/(C2 + C3)), has been suggested to be diagnostic for biogenic methane. We report measurements of the concentrations and stable isotopic signature of methane from hypersaline environments. We focus on hypersaline environments because spectrometers orbiting Mars have detected widespread chloride bearing deposits resembling salt flats. Other evaporitic minerals, e.g., sulfates, are also abundant in several regions, including those studied by the Mars Exploration Rovers. The presence of evaporitic minerals, together with the known evolution of the Martian climate, from warmer and wetter to cold and hyper-arid, suggest that evaporitic and hypersaline environments were common in the past. Hypersaline environments examined to date include salt ponds located in Baja California, the San Francisco Bay, and the Atacama Desert. Methane was found in gas produced both in the sediments, and in gypsum- and halite-hosted (endolithic) microbial communities. Maximum methane concentrations were as high as 40% by volume. The methane carbon isotopic (δ13C) composition showed a wide range of values, from about

  11. The Energy of Substituted Ethanes. Asymmetry Orbitals

    PubMed Central

    Salem, Lionel; Hoffmann, Roald; Otto, Peter

    1973-01-01

    The leading terms in the energy of a general substituted ethane are derived in explicit form as a function of the torsional angle θ, the substituent electronegativities, and their mutual overlaps. The energy is found to be the sum of all four overlaps between pairs of asymmetry orbitals, and satisfies the requisite symmetry properties. PMID:16592060

  12. Even-odd alternation of near-infrared spectra of alkane-α,ω-diols in their solid states.

    PubMed

    Toyama, Yuta; Murakami, Kohei; Yoshimura, Norio; Takayanagi, Masao

    2018-05-15

    Even-odd alternation of the melting points of α,ω-disubstituted linear alkanes such as alkane-α,ω-diols, alkane-α,ω-dinitriles and α,ω-diaminoalkanes is well known. Melting points for compounds with an even number of carbons in their alkyl chains are systematically higher than those for compounds with an odd number of carbons. In order to clarify the origin of this alternation, near-infrared absorption spectra of linear alkane-α,ω-diols with 3 to 9 carbon atoms in their alkyl chains were measured in the liquid and solid states. The band due to the first overtone of the OH stretching mode was investigated. The temperature-dependent spectra of all alkane-α,ω-diols in their liquid states were found to be similar; no even-odd alternation was observed. In the solid state, however, spectra of alkane-α,ω-diols with even and odd numbers of carbon atoms differed greatly. Spectra of alkane-α,ω-diols with an odd number of carbon atoms in their solid states were similar to those in the liquid states, although the variation of spectra observed upon lowering the temperature of liquid seemed to continue when the liquids were frozen. In contrast, spectra of alkane-α,ω-diols with an even number of carbon atoms in their liquid and solid states were found to be quite different. New bands appeared upon freezing. The observed even-odd alternation of the spectra observed for alkane-α,ω-diols in their solid states is presumably caused by their even-odd alternation of crystal structures. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. The distribution of methane in groundwater in Alberta (Canada) and associated aqueous geochemistry conditions

    NASA Astrophysics Data System (ADS)

    Humez, Pauline; Mayer, Bernhard; Nightingale, Michael; Becker, Veith; Kingston, Andrew; Taylor, Stephen; Millot, Romain; Kloppmann, Wolfram

    2016-04-01

    wide range of δ13CCH4 values in baseline groundwater samples, no conclusive evidence was found for deep thermogenic gas that had migrated in significant amounts into shallow aquifers either naturally or via anthropogenically induced pathways. This study shows that the combined interpretation of aqueous geochemistry data in concert with the chemical and isotopic composition of dissolved and/or free gas can yield unprecedented insights into formation or migration of methane in shallow groundwater. This enables the assessment of cross-formational methane migration and provides an understanding of alkane gas sources and pathways necessary for a stringent baseline definition in the context of current and future unconventional hydrocarbon exploration and exploitation.

  14. Cool-flame Extinction During N-Alkane Droplet Combustion in Microgravity

    NASA Technical Reports Server (NTRS)

    Nayagam, Vedha; Dietrich, Daniel L.; Hicks, Michael C.; Williams, Forman A.

    2014-01-01

    Recent droplet combustion experiments onboard the International Space Station (ISS) have revealed that large n-alkane droplets can continue to burn quasi-steadily following radiative extinction in a low-temperature regime, characterized by negative-temperaturecoefficient (NTC) chemistry. In this study we report experimental observations of n-heptane, n-octane, and n-decane droplets of varying initial sizes burning in oxygen/nitrogen/carbon dioxide and oxygen/helium/nitrogen environments at 1.0, 0.7, and 0.5 atmospheric pressures. The oxygen concentration in these tests varied in the range of 14% to 25% by volume. Large n-alkane droplets exhibited quasi-steady low-temperature burning and extinction following radiative extinction of the visible flame while smaller droplets burned to completion or disruptively extinguished. A vapor-cloud formed in most cases slightly prior to or following the "cool flame" extinction. Results for droplet burning rates in both the hot-flame and cool-flame regimes as well as droplet extinction diameters at the end of each stage are presented. Time histories of radiant emission from the droplet captured using broadband radiometers are also presented. Remarkably the "cool flame" extinction diameters for all the three n-alkanes follow a trend reminiscent of the ignition delay times observed in previous studies. The similarities and differences among the n-alkanes during "cool flame" combustion are discussed using simplified theoretical models of the phenomenon

  15. Role of Confinement on Adsorption and Dynamics of Ethane and an Ethane–CO 2 Mixture in Mesoporous CPG Silica

    DOE PAGES

    Patankar, Sumant; Gautam, Siddharth; Rother, Gernot; ...

    2016-02-10

    It was found that ethane is confined to mineral and organic pores in certain shale formations. Effects of confinement on structural and dynamic properties of ethane in mesoporous controlled pore glass (CPG) were studied by gravimetric adsorption and quasi-elastic neutron scattering (QENS) measurements. The obtained isotherms and scattering data complement each other by quantifying the relative strength of the solid–fluid interactions and the transport properties of the fluid under confinement, respectively. We used a magnetic suspension balance to measure the adsorption isotherms at two temperatures and over a range of pressures corresponding to a bulk density range of 0.01–0.35 g/cmmore » 3. Key confinement effects were highlighted through differences between isotherms for the two pore sizes. A comparison was made with previously published isotherms for CO 2 on the same CPG materials. Behavior of ethane in the smaller pore size was probed further using quasi-elastic neutron scattering. By extracting the self-diffusivity and residence time, we were able to study the effect of pressure and transition from gaseous to supercritical densities on the dynamics of confined ethane. Moreover, a temperature variation QENS study was also completed with pure ethane and a CO 2–ethane mixture. Activation energies extracted from the Arrhenius plots show the effects of CO 2 addition on ethane mobility.« less

  16. Leaf wax n-alkane distributions in and across modern plants: Implications for paleoecology and chemotaxonomy

    NASA Astrophysics Data System (ADS)

    Bush, Rosemary T.; McInerney, Francesca A.

    2013-09-01

    Long chain (C21 to C37) n-alkanes are among the most long-lived and widely utilized terrestrial plant biomarkers. Dozens of studies have examined the range and variation of n-alkane chain-length abundances in modern plants from around the world, and n-alkane distributions have been used for a variety of purposes in paleoclimatology and paleoecology as well as chemotaxonomy. However, most of the paleoecological applications of n-alkane distributions have been based on a narrow set of modern data that cannot address intra- and inter-plant variability. Here, we present the results of a study using trees from near Chicago, IL, USA, as well as a meta-analysis of published data on modern plant n-alkane distributions. First, we test the conformity of n-alkane distributions in mature leaves across the canopy of 38 individual plants from 24 species as well as across a single growing season and find no significant differences for either canopy position or time of leaf collection. Second, we compile 2093 observations from 86 sources, including the new data here, to examine the generalities of n-alkane parameters such as carbon preference index (CPI), average chain length (ACL), and chain-length ratios for different plant groups. We show that angiosperms generally produce more n-alkanes than do gymnosperms, supporting previous observations, and furthermore that CPI values show such variation in modern plants that it is prudent to discard the use of CPI as a quantitative indicator of n-alkane degradation in sediments. We also test the hypotheses that certain n-alkane chain lengths predominate in and therefore can be representative of particular plant groups, namely, C23 and C25 in Sphagnum mosses, C27 and C29 in woody plants, and C31 in graminoids (grasses). We find that chain-length distributions are highly variable within plant groups, such that chemotaxonomic distinctions between grasses and woody plants are difficult to make based on n-alkane abundances. In contrast

  17. A search for microorganisms producing medium-chain alkanes from aldehydes.

    PubMed

    Ito, Masakazu; Kambe, Hiromi; Kishino, Shigenobu; Muramatsu, Masayoshi; Ogawa, Jun

    2018-01-01

    Microorganisms with medium-chain alkane-producing activity are promising for the bio-production of drop-in fuel. In this study, we screened for microorganisms producing tridecane from tetradecanal. The activity of aldehyde decarbonylation was found in a wide range of microbes. In particular, the genus Klebsiella in the Enterobacteriaceae family was found to have a high ability to produce alkanes from aldehydes via enzyme catalyzed reaction. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  18. Study of ethane level in exhaled breath in patients with age-related macular degeneration: preliminary study.

    PubMed

    Cagini, C; Giordanelli, A; Fiore, T; Giardinieri, R; Malici, B; De Medio, G E; Pelli, M A; De Bellis, F; Capodicasa, E

    2011-01-01

    A variety of factors have been implicated in the pathogenesis of age-related macular degeneration (ARMD), and oxidative stress plays an important role in the onset and progression of the disease. Breath ethane is now considered a specific and non-invasive test for determining and monitoring the trend of lipid peroxidation and free radical-induced damage in vivo. This test provides an index of the patients' overall oxidative stress level. We evaluated the breath ethane concentration in exhaled air in patients with advanced ARMD. In this study, we enrolled 13 patients with advanced ARMD and a control group, and a breath analysis was carried out by gas chromatography. The mean ethane level in the ARMD patients was 0.82 ± 0.93 nmol/l (range: 0.01-2.7 nmol/l) and the mean ethane value in the control group was 0.12 ± 0.02 nmol/l (range: 0.08-0.16 nmol/l). The difference between the values of the 2 groups was statistically significant (p < 0.005). Receiver operating characteristic analysis showed an elevated area under the curve (0.831; 95% CI: 0.634-0.948), with a significance level of p < 0.0014 (area = 0.5). These preliminary results seem to indicate that breath ethane levels are higher in most patients with ARMD. The breath ethane test could thus be a useful method for evaluating the level of oxidative stress in patients with ARMD. To our knowledge, there are no data on this type of analysis applied to ARMD. Copyright © 2011 S. Karger AG, Basel.

  19. Turboexpander plant designs can provide high ethane recovery without inlet CO/sub 2/ removal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilkinson, J.D.; Hudson, H.M.

    1982-05-03

    New turboexpander plant designs can process natural gas streams containing moderate amounts of carbon dioxide (CO/sub 2/) for high ethane recovery without inlet gas treating. The designs will handle a wide range of inlet ethane-plus fractions. They also offer reduced horsepower requirements compared to other processes. CO/sub 2/ is a typical component of most natural gas streams. In many cases, processing of these gas streams in a turboexpander plant for high ethane recovery requires pre-treatment of the gas for CO/sub 2/ removal. This is required to avoid the formation of solid CO/sub 2/ (freezing) in the cold sections of themore » process and/or to meet necessary residue gas and liquid product CO/sub 2/ specifications. Depending on the quantities involved, the CO/sub 2/ removal systems is generally a significant portion of both the installed cost and operating cost for the ethane recovery facility. Therefore, turboexpander plant designs that are capable of handling increased quantities of CO/sub 2/ in the feed gas without freezing can offer the gas processor substantial economic benefits.« less

  20. Global atmospheric concentrations and source strength of ethane

    NASA Technical Reports Server (NTRS)

    Blake, D. R.; Rowland, F. S.

    1986-01-01

    A study of the variation in ethane (C2H6) concentration between northern and southern latitudes over three years is presented together with a new estimate of its source strength. Ethane concentrations vary from 0.07 to 2 p.p.b.v. (parts per billion by volume) in air samples collected in remote surface locations in the Pacific (latitude 71 N-47 S) in all four seasons between September 1984 and June 1985. The variations are consistent with southerly transport from sources located chiefly in the Northern Hemisphere, further modified by seasonal variations in the strength of the reaction of C2H6 with OH radicals. These global data can be combined with concurrent data for CH4 and the laboratory reaction rates of each with OH to provide an estimate of three months as the average atmospheric lifetime for C2H6 and 13 + or - 3 Mtons for its annual atmospheric release.

  1. Simulation studies on structural and thermal properties of alkane thiol capped gold nanoparticles.

    PubMed

    Devi, J Meena

    2017-06-01

    The structural and thermal properties of the passivated gold nanoparticles were explored employing molecular dynamics simulation for the different surface coverage densities of the self-assembled monolayer (SAM) of alkane thiol. The structural properties of the monolayer protected gold nanoparticles such us overall shape, organization and conformation of the capping alkane thiol chains were found to be influenced by the capping density. The structural order of the thiol capped gold nanoparticles enhances with the increase in the surface coverage density. The specific heat capacity of the alkane thiol capped gold nanoparticles was found to increase linearly with the thiol coverage density. This may be attributed to the enhancement in the lattice vibrational energy. The present simulation results suggest, that the structural and thermal properties of the alkane thiol capped gold nanoparticles may be modified by the suitable selection of the SAM coverage density. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Accumulation of n-alkanes and carboxylic acids in peat mounds

    NASA Astrophysics Data System (ADS)

    Gabov, D. N.; Beznosikov, V. A.; Gruzdev, I. V.; Yakovleva, E. V.

    2017-10-01

    The quantitative and qualitative compositions of n-alkanes and carboxylic acids have been identified, and the features of their vertical stratification in peat mound profiles of the forest-tundra zone of Komi Republic have been revealed. The composition of n-alkanes (structures with C23, C25, C27, C29, and C31) and carboxylic acids (C24, C26, and C28) and their proportions make it possible to determine changes in plant communities of peat mounds with time and can be used as markers for the degree of decomposition of organic matter. In cryogenic horizons, the contents of n-alkanes (mainly C23, C25, and C27) and carboxylic acids (C24, C26, and C28) significantly decrease because of the different botanic composition of cryogenic horizons (grass-woody residues) and seasonally thawing horizons (moss-subshrub residues) and the almost complete stopping of the equilibrium accumulation and transformation of organic compounds in permafrost.

  3. The Roles of Microbial Communities in n-Alkane Distribution of The Nanjenshan Lowland Subtropical Rainforest in Taiwan

    NASA Astrophysics Data System (ADS)

    Chen, Y. W.; Huang, T. Y.; Fan, C. W.; Chao, W. C.; Yang, T. N.; Huang, C. P.; Hsu, B. M.

    2016-12-01

    Analysis of total organic carbon in Nanjenshan, a lowland subtropical rainforest in southern Taiwan, revealed that the carbon storage of litter-layer was about 35% lower in ravine area than in windward and leeward areas, while the soil storage in these areas were similar. In this one year follow-up study, we aimed to investigate the kinetic changes of n-alkane (C14-C35) concentration from litter fall, litter-layer, surface soil, soil in -10 cm depth, and soil in -30 cm depth by a GC-FID method. The n-alkane distribution and n-alkane flux of these areas were also analyzed. Next generation sequencing was carried out to examine the metagenomics of uncultured microbial community in litter-layer of these areas. Our results showed that the net weight of one year-litter fall in ravine area was 30% higher than the others. The average concentration of n-alkane in leaves in ravine was 90% and 50% higher than in windward area and leeward area, respectively. Although the n-alkane flux in ravine area was twice higher than the other areas, the n-alkane concentrations in litter-layer and soils of different layers were similar among all areas, suggesting a rapid degradation of n-alkane in liter layer in ravine area. Interestingly, the character of odd over even predominance of n-alkane was gradually lost in soil layer in ravine area. Metagenomic data have showed that the structure of microbial abundance in ravine area was different from windward and leeward areas. In ravine area, the numbers in phyla of Bacteroidetes, Actinobacteria, and Proteobacteria, were higher than the other areas, while in phyla of Acidobacteria and Planctomycetes were lower. Our data provided evidence that microbial communities may not only play a role on n-alkane degradation but also change the profile in abundance of high-chain length n-alkanes.

  4. High Concentration of Methane and Magnificent gas Plumes Over gas Hydrate Field in the Eastern Margin of Japan Sea

    NASA Astrophysics Data System (ADS)

    Ishida, Y.; Matsumoto, R.; Hiruta, A.; Aoyama, C.; Tomaru, H.; Hiromatsu, M.

    2005-12-01

    Gas hydrates and prominent pockmarks have been observed on the Umitaka Spur in the eastern margin of Japan Sea, at the depth of about 900 m.Magnificent methane plumes, 550 to 600 m high, were detected by echo sounder for fish school, and massive gas hydrates were recovered by piston coring during the UT04 cruise of R/V Umitaka-maru (2004). The seawater over this area was collected by CTD and the samples of interstitial waters were extracted from sediment cores by hydraulic squeezer. The ratio of methane to ethane concentration (C1/C2) and the isotopic (δ 13C) composition of methane in the plume sites are less than 103 and from -40 to -50 (‰ PDB) respectively, suggesting that the origin of such gases are mostly thermogenic, whereas the gases in the sediments away from plumes are mostly microbial. The seawater samples demonstrated anomalously high concentration of methane over the plume sites. Maximum concentration is 160nmol/L above the methane plume site. The methane concentration values of most samples ranged from 4 to 6nmol/L. When it compared with the Nankai Trough (1 to 4nmol/L), even the base level methane is quite high. Seawater samples collected at the depth of 200 m exhibit sharp anomalies of 16 to 34nmol/L. With the intension to check the possibility of the inflow from the shelf and river waters, we collected surface waters far away from the Umitaka spur. Methane concentration was only 7nmol/L. Therefore, we conclude that anomalously high concentration at 200 m level over the spur is not likely to be explained by inflow of shelf waters, but also by methane seeps. The temperature of waters are extremely low from 0.25°C to 1.0°C below 300 m, then abruptly increases in shallow waters to about 25°C at surface water. Thus, bottom and intermediate waters are within the stability condition of methane hydrate. Under these conditions, gases from the sea floor would form gas hydrate within bottom water mass. Gas hydrate crystals would float up shallow to the

  5. A co-crystal between benzene and ethane: a potential evaporite material for Saturn’s moon Titan

    PubMed Central

    Maynard-Casely, Helen E.; Hodyss, Robert; Cable, Morgan L.; Vu, Tuan Hoang; Rahm, Martin

    2016-01-01

    Using synchrotron X-ray powder diffraction, the structure of a co-crystal between benzene and ethane formed in situ at cryogenic conditions has been determined, and validated using dispersion-corrected density functional theory calculations. The structure comprises a lattice of benzene molecules hosting ethane molecules within channels. Similarity between the intermolecular interactions found in the co-crystal and in pure benzene indicate that the C—H⋯π network of benzene is maintained in the co-crystal, however, this expands to accommodate the guest ethane molecules. The co-crystal has a 3:1 benzene:ethane stoichiometry and is described in the space group with a = 15.977 (1) Å and c = 5.581 (1) Å at 90 K, with a density of 1.067 g cm−3. The conditions under which this co-crystal forms identify it is a potential that forms from evaporation of Saturn’s moon Titan’s lakes, an evaporite material. PMID:27158505

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan Zhang; Jin-hu Wu; Dong-ke Zhang

    The cracking of oil refinery off-gas, simulated with a gas mixture containing methane (51%), ethylene (21.4%), ethane (21.1%), and propane (6.5%), over a coal char, petroleum coke, and quartz, respectively, has been studied in a fixed bed reactor. The experiments were performed at temperatures between 850 and 1000{sup o}C and at atmospheric pressure. The results show that the conversions of all species considered increased with increasing temperature. Ethane and propane completely decomposed over all three bed materials in the temperature range investigated. However, the higher initial conversion rates of methane and ethylene cracking at all temperatures were observed only overmore » the coal char and not on the petroleum coke and quartz, indicating a significant catalytic effect of the coal char on methane and ethylene cracking. Methane and ethylene conversions decreased with reaction time due to deactivation of the coal char by carbon deposition on the char surface and, in the later stage of a cracking experiment, became negative, suggesting that methane and ethylene had been formed during the cracking of ethane and propane. 16 refs., 13 figs., 2 tabs.« less

  7. Stable hydrogen and carbon isotopic compositions of long-chain (C21-C33) n-alkanes and n-alkenes in insects

    NASA Astrophysics Data System (ADS)

    Chikaraishi, Yoshito; Kaneko, Masanori; Ohkouchi, Naohiko

    2012-10-01

    We report the molecular and stable isotopic (δD and δ13C) compositions of long-chain n-alkanes in common insects including the cabbage butterfly, swallowtail, wasp, hornet, grasshopper, and ladybug. Insect n-alkanes are potential candidates of the contamination of soil and sedimentary n-alkanes that are believed to be derived from vascular plant waxes. Long-chain n-alkanes (range C21-33; maximum C23-C29) are found to be abundant in the insects (31-781 μg/dry g), with a carbon preference index (CPI) of 5.1-31.5 and an average chain length (ACL) of 24.9-29.3. The isotopic compositions (mean ± 1σ, n = 33) of the n-alkanes are -195 ± 16‰ for hydrogen and -30.6 ± 2.4‰ for carbon. The insect n-alkanes are depleted in D by approximately 30-40‰ compared with wax n-alkanes from C3 (-155 ± 25‰) and C4 vascular plants (-167 ± 13‰), whereas their δ13C values fall between those of C3 (-36.2 ± 2.4‰) and C4 plants (-20.3 ± 2.4‰). Thus, the contribution of insect-derived n-alkanes to soil and sediment could potentially shift δD records of n-alkanes toward more negative values and potentially muddle the assumed original C3/C4 balance in the δ13C records of the soil and sedimentary n-alkanes. n-Alkenes are also found in three insects (swallowtail, wasp and hornet). They are more depleted in D relative to the same carbon numbered n-alkanes (δDn-alkene - δDn-alkane = -17 ± 16‰), but the δ13C values are almost identical to those of the n-alkanes (δ13Cn-alkene - δ13Cn-alkane = 0.1 ± 0.2‰). These results suggest that these n-alkenes are desaturated products of the same carbon numbered n-alkanes.

  8. Using mobile laboratory and aircraft measurements to characterize feedlot emissions and their contribution to atmospheric methane over the Denver-Julesburg Basin

    NASA Astrophysics Data System (ADS)

    Peischl, J.; Eilerman, S. J.; Neuman, J. A.; Aikin, K. C.; Trainer, M.; Ryerson, T. B.

    2016-12-01

    Atmospheric emissions from animal husbandry are important to air quality and climate, but are hard to characterize and quantify as they vary substantially based on management practices, livestock type, and diurnal and seasonal cycles. Using a mobile laboratory, ammonia, methane, nitrous oxide, and carbon dioxide emissions were measured from several concentrated animal feeding operations (CAFOs) in northeastern Colorado. Four CAFOs were chosen for repeated diurnal and seasonal measurements. A consistent diurnal trend in the enhancement ratio of ammonia to the other compounds is clearly observed, with midday enhancement ratios approximately four times greater than nighttime values and average values consistent with statewide inventories and previous literature. These findings are used to develop a source signature for feeding operations in the area. In addition to 250+ CAFOs, the Denver-Julesburg basin (DJB) is a heavily developed oil and natural gas region with over 25,000 wells and numerous compressors and processing plants. Due to the co-location of these varied methane point sources, top-down measurements are often unable to attribute emissions to a specific source or sector. In this work, the CAFO emission signature determined from targeted mobile laboratory measurements is combined with aircraft measurements of ammonia, methane, and ethane during the spring 2015 Shale Oil and Natural Gas Nexus (SONGNEX) field campaign to attribute atmospheric methane over the DJB to either agriculture or fossil fuel sectors.

  9. The influence of fatty acid supply and aldehyde reductase deletion on cyanobacteria alkane generating pathway in Escherichia coli.

    PubMed

    Wang, Juli; Yu, Haiying; Song, Xuejiao; Zhu, Kun

    2018-05-01

    Cyanobacteria alkane synthetic pathway has been heterologously constructed in many microbial hosts. It is by far the most studied and reliable alkane generating pathway. Aldehyde deformylating oxygenase (i.e., ADO, key enzyme in this pathway) obtained from different cyanobacteria species showed diverse catalytic abilities. This work indicated that single aldehyde reductase deletions were beneficial to Nostoc punctiforme ADO-depended alkane production in Escherichia coli even better than double deletions. Fatty acid metabolism regulator (FadR) overexpression and low temperature increased C18:1 fatty acid supply, and in turn stimulated C18:1-derived heptadecene production, suggesting that supplying ADO with preferred substrate was important to overall alkane yield improvement. Using combinational methods, 1 g/L alkane was obtained in fed-batch fermentation with heptadecene accounting for nearly 84% of total alkane.

  10. Nanoscale Trapping and Squeeze-Out of Confined Alkane Monolayers.

    PubMed

    Gosvami, N N; O'Shea, S J

    2015-12-01

    We present combined force curve and conduction atomic force microscopy (AFM) data for the linear alkanes CnH2n+2 (n = 10, 12, 14, 16) confined between a gold-coated AFM tip and a graphite surface. Solvation layering is observed in the force curves for all liquids, and conduction AFM is used to study in detail the removal of the confined (mono)layer closest to the graphite surface. The squeeze-out behavior of the monolayer can be very different depending upon the temperature. Below the monolayer melting transition temperatures the molecules are in an ordered state on the graphite surface, and fast and complete removal of the confined molecules is observed. However, above the melting transition temperature the molecules are in a disordered state, and even at large applied pressure a few liquid molecules are trapped within the tip-sample contact zone. These findings are similar to a previous study for branched alkanes [ Gosvami Phys. Rev. Lett. 2008, 100, 076101 ], but the observation for the linear alkane homologue series demonstrates clearly the dependence of the squeeze-out and trapping on the state of the confined material.

  11. Observations of the release of non-methane hydrocarbons from fractured shale.

    PubMed

    Sommariva, Roberto; Blake, Robert S; Cuss, Robert J; Cordell, Rebecca L; Harrington, Jon F; White, Iain R; Monks, Paul S

    2014-01-01

    The organic content of shale has become of commercial interest as a source of hydrocarbons, owing to the development of hydraulic fracturing ("fracking"). While the main focus is on the extraction of methane, shale also contains significant amounts of non-methane hydrocarbons (NMHCs). We describe the first real-time observations of the release of NMHCs from a fractured shale. Samples from the Bowland-Hodder formation (England) were analyzed under different conditions using mass spectrometry, with the objective of understanding the dynamic process of gas release upon fracturing of the shale. A wide range of NMHCs (alkanes, cycloalkanes, aromatics, and bicyclic hydrocarbons) are released at parts per million or parts per billion level with temperature- and humidity-dependent release rates, which can be rationalized in terms of the physicochemical characteristics of different hydrocarbon classes. Our results indicate that higher energy inputs (i.e., temperatures) significantly increase the amount of NMHCs released from shale, while humidity tends to suppress it; additionally, a large fraction of the gas is released within the first hour after the shale has been fractured. These findings suggest that other hydrocarbons of commercial interest may be extracted from shale and open the possibility to optimize the "fracking" process, improving gas yields and reducing environmental impacts.

  12. 40 CFR 721.535 - Halogenated alkane (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Section 721.535 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.535 Halogenated alkane (generic). (a) Chemical substance and significant new uses subject to...

  13. Nitrated metalloporphyrins as catalysts for alkane oxidation

    DOEpatents

    Ellis, P.E. Jr.; Lyons, J.E.

    1994-01-18

    Compositions of matter comprising nitro-substituted metal complexes of porphyrins are catalysts for the oxidation of alkanes. The metal is iron, chromium, manganese, ruthenium, copper or cobalt. The porphyrin ring has nitro groups attached thereto in meso and/or [beta]-pyrrolic positions.

  14. Nitrated metalloporphyrins as catalysts for alkane oxidation

    DOEpatents

    Ellis, Jr., Paul E.; Lyons, James E.

    1994-01-01

    Compositions of matter comprising nitro-substituted metal complexes of porphyrins are catalysts for the oxidation of alkanes. The metal is iron, chromium, manganese, ruthenium, copper or cobalt. The porphyrin ring has nitro groups attached thereto in meso and/or .beta.-pyrrolic positions.

  15. Emissions of Volatile Organic Compounds from Oil and Gas Operations in Northeastern Oklahoma - Wintertime Ambient Air Studies from Three Consecutive Years

    NASA Astrophysics Data System (ADS)

    Ghosh, B.

    2017-12-01

    Volatile organic compounds (VOCs) are emitted into the atmosphere from a variety of sources including oil and gas (O&G) operations, vehicle exhausts, industrial processes, and biogenic sources. Understanding of emission sources and their air quality impact is crucial for effective environmental policymaking and its implementation. Three consecutive wintertime campaigns to study ambient air were conducted in Northeastern Oklahoma during February-March of 2015, 2016, and 2017. The goals of these campaigns were to study ambient VOCs in the region, estimate their air quality impact, and understand how the impact changes over a span of three years. This presentation highlights results from the 2017 campaign. In-situ measurements of methane, ethane, and CO were conducted by an Aerodyne Dual QCL Analyzer while ozone and NOx were measured using Teledyne monitors. In addition, 392 whole air samples were collected and non-methane hydrocarbons (NMHCs) in the samples were analyzed using GC-MS (Agilent). High levels of methane (> 8 ppm) were observed during the study. Correlation with ethane indicated that methane primarily originated from O&G operations with little biogenic contributions. Among NMHCs, C2-C5 alkanes were the most dominant with mean mixing ratios ranging from 0.9 to 6.8 ppb. Chemical tracers (propane, ethyne, CO) and isomeric ratios (iC5/nC5, Figure 1) identified oil and gas activity as the primary source of NMHCs. Photochemical age was calculated to estimate emission source composition. Ozone showed strong diurnal variation characteristic of photochemical production with a maximum mixing ratio of 58 ppb. The results from the 2017 study will be compared with results from studies in 20151 and 20162 and their significance on local air quality will be discussed. References Ghosh, B.; Volatile Organic Compound Emissions from Oil and Gas Production Sources: A Pilot Study in Northeastern Oklahoma; Poster presentation at AGU Fall Meeting; 2015; A11M-0249; (Link) Ghosh

  16. Laser-based trace gas detection of ethane as a result of photo-oxidative damage in chilled cucumber leaves (invited)

    NASA Astrophysics Data System (ADS)

    Santosa, I. E.; Laarhoven, L. J. J.; Harbinson, J.; Driscoll, S.; Harren, F. J. M.

    2003-01-01

    At low temperatures, high light intensity induces strong photooxidative lipid peroxidation in chilling sensitive cucumber leaves. A sensitive laser-based photoacoustic detector was employed to monitor on-line the evolution of ethane, one of the end products of lipid peroxidation. The Δv=2 CO laser operated in the 2.62-4.06 μm infrared wavelength region with a maximum intracavity power of 11 W. In combination with an intracavity placed photoacoustic cell the laser was able to detect ethane down to 0.5 part per billion. Cucumber leaf disks chilled in the light produce ethane; the rate of ethane production depends on the applied temperature, light intensity, and period of chilling.

  17. Dielectric constant of liquid alkanes and hydrocarbon mixtures

    NASA Technical Reports Server (NTRS)

    Sen, A. D.; Anicich, V. G.; Arakelian, T.

    1992-01-01

    The complex dielectric constants of n-alkanes with two to seven carbon atoms have been measured. The measurements were conducted using a slotted-line technique at 1.2 GHz and at atmospheric pressure. The temperature was varied from the melting point to the boiling point of the respective alkanes. The real part of the dielectric constant was found to decrease with increasing temperature and correlate with the change in the molar volume. An upper limit to all the loss tangents was established at 0.001. The complex dielectric constants of a few mixtures of liquid alkanes were also measured at room temperature. For a pentane-octane mixture the real part of the dielectric constant could be explained by the Clausius-Mosotti theory. For the mixtures of n-hexane-ethylacetate and n-hexane-acetone the real part of the dielectric constants could be explained by the Onsager theory extended to mixtures. The dielectric constant of the n-hexane-acetone mixture displayed deviations from the Onsager theory at the highest fractions of acetone. The dipole moments of ethylacetate and acetone were determined for dilute mixtures using the Onsager theory and were found to be in agreement with their accepted gas-phase values. The loss tangents of the mixtures exhibited a linear relationship with the volume fraction for low concentrations of the polar liquids.

  18. Detection of CO and Ethane in Comet 21P/Giacobini-Zinner: Evidence for Variable Chemistry in the Outer Solar Nebula

    NASA Technical Reports Server (NTRS)

    Mumma, M. J.; DiSanti, M. A.; DelloRusso, N.; Magee-Sauer, K.; Rettig, T. W.

    1999-01-01

    Ethane and carbon monoxide were detected in a short-period comet of probable Kuiper belt origin. Ethane is substantially less abundant compared with Hyakutake and Hale-Bopp, two comets from the giant-planets region of the solar nebula, suggesting a heliocentric gradient in ethane in pre-cometary ices. It is argued that processing by X-rays from the young sun may be responsible.

  19. Detection of CO and Ethane in Comet 21P/Giacobini-Zinner: Evidence for Variable Chemistry in the Outer Solar Nebula.

    PubMed

    Mumma; DiSanti; Dello Russo N; Magee-Sauer; Rettig

    2000-03-10

    Ethane and carbon monoxide were detected in a short-period comet of probable Kuiper Belt origin. Ethane is substantially less abundant compared with Hyakutake and Hale-Bopp, two comets from the giant-planet region of the solar nebula, suggesting a heliocentric gradient in ethane in precometary ices. It is argued that processing by X-rays from the young Sun may be responsible.

  20. Metagenomic analysis of carbon cycling and biogenic methane formation in terrestrial serpentinizing fluid springs

    NASA Astrophysics Data System (ADS)

    Woycheese, K. M.; Meyer-Dombard, D. R.; Cardace, D.; Arcilla, C. A.; Ono, S.

    2016-12-01

    The products of serpentinization are proposed to support a hydrogen-driven microbial biosphere in ultrabasic, highly reducing fluids. Shotgun metagenomic analysis of microbial communities collected from terrestrial serpentinizing springs in the Philippines and Turkey suggest that mutualistic relationships may help microbial communities thrive in highly oligotrophic environments. Understanding how these relationships affect production of methane in the deep subsurface is critical to applications such as carbon sequestration and natural gas production. There is conflicting evidence regarding whether methane and C2-C6 alkanes in serpentinizing ecosystems are produced abiogenically or through biotic reactions such as methanogenesis1, 2. While geochemical analysis of methane from serpentinizing ecosystems has previously indicated abiogenic and/or mixed formation3, 4, methanogens have been detected in an increasing number of investigations2. Here, putative metabolisms were identified via assembly and annotation of metagenomic sequence data from the Philippines and Turkey. At both sites, hydrogenotrophic methanogenesis and homoacetogenesis were identified as the principal autotrophic carbon fixation pathways. Heterotrophic acetogenesis and acetoclastic methanogenesis were also detected in sequence data. Other heterotrophic metabolic pathways identified included sulfate reduction, methanotrophy, and biodegradation of aromatic carbon compounds. Many of these metabolic pathways have been shown to be favorable under conditions typical of serpentinizing habitats5. Metagenomic analysis strongly suggests that at least some of the methane originating from these serpentinizing ecosystems may be biologically derived. Ongoing work will further clarify the mechanisms of methane formation by examining the clumped isotopologue ratios of dissolved methane in serpentinizing fluids. 1. Wang et al. (2015). Science. 348. doi: 10.1126/science.aaa4326 2. Kohl et al. (2016). JGR. Biogeosci

  1. 40 CFR 721.10704 - Aryl-substituted alkane.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Aryl-substituted alkane. 721.10704 Section 721.10704 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES..., Authorization, and Restriction of Chemicals in the European Union) without submitting all final reports and the...

  2. Adiabatic Coupling Constant of Nitrobenzene- n-Alkane Critical Mixtures. Evidence from Ultrasonic Spectra and Thermodynamic Data

    NASA Astrophysics Data System (ADS)

    Mirzaev, Sirojiddin Z.; Kaatze, Udo

    2016-09-01

    Ultrasonic spectra of mixtures of nitrobenzene with n-alkanes, from n-hexane to n-nonane, are analyzed. They feature up to two Debye-type relaxation terms with discrete relaxation times and, near the critical point, an additional relaxation term due to the fluctuations in the local concentration. The latter can be well represented by the dynamic scaling theory. Its amplitude parameter reveals the adiabatic coupling constant of the mixtures of critical composition. The dependence of this thermodynamic parameter upon the length of the n-alkanes corresponds to that of the slope in the pressure dependence of the critical temperature and is thus taken another confirmation of the dynamic scaling model. The change in the variation of the coupling constant and of several other mixture parameters with alkane length probably reflects a structural change in the nitrobenzene- n-alkane mixtures when the number of carbon atoms per alkane exceeds eight.

  3. Microbial Physiology of the Conversion of Residual Oil to Methane: A Protein Prospective

    NASA Astrophysics Data System (ADS)

    Morris, Brandon E. L.; Bastida-Lopez, Felipe; von Bergen, Martin; Richnow, Hans-Hermann; Suflita, Joseph M.

    2010-05-01

    Traditional petroleum recovery techniques are unable to extract the majority of oil in most petroliferous deposits. The recovery of even a fraction of residual hydrocarbon in conventional reserves could represent a substantive energy supply. To this end, the microbial conversion of residual oil to methane has gained increasing relevance in recent years [1,2]. Worldwide demand for methane is expected to increase through 2030 [3], as it is a cleaner-burning alternative to traditional fuels [4]. To investigate the microbial physiology of hydrocarbon-decomposition and ultimate methanogenesis, we initiated a two-pronged approach. First, a model alkane-degrading sulfate-reducing bacterium, Desulfoglaeba alkanexedens, was used to interrogate the predominant metabolic pathway(s) differentially expressed during growth on either n-decane or butyrate. A total of 81 proteins were differentially expressed during bacterial growth on butyrate, while 100 proteins were unique to the alkane-grown condition. Proteins related to alkylsuccinate synthase, or the homologous 1-methyl alkylsuccinate synthase, were identified only in the presence of the hydrocarbon. Secondly, we used a newly developed stable isotope probing technique [5] targeted towards proteins to monitor the flux of carbon through a residual oil-degrading bacterial consortium enriched from a gas-condensate contaminated aquifer [1]. Combined carbon and hydrogen stable isotope fractionation identified acetoclastic methanogenesis as the dominant process in this system. Such findings agree with the previous clone library characterization of the consortium. Furthermore, hydrocarbon activation was determined to be the rate-limiting process during the net conversion of residual oil to methane. References 1. Gieg, L.M., K.E. Duncan, and J.M. Suflita, Bioenegy production via microbial conversion of residual oil to natural gas. Appl Environ Micro, 2008. 74(10): p. 3022-3029. 2. Jones, D.M., et al., Crude-oil biodegradation via

  4. Methane Leakage from Oil & Gas Operations. What have we learned from recent studies in the U.S.?

    NASA Astrophysics Data System (ADS)

    Zavala-Araiza, Daniel; Hamburg, Steven

    2016-04-01

    Methane, the principal component of natural gas, is a powerful greenhouse gas. Methane losses from the natural gas supply chain erode the climate benefits of fuel switching to natural gas from other fossil fuels, reducing or eliminating them for several decades or longer. Global data on methane emissions from the oil and gas sector is uncertain and as a consequence, measuring and characterizing methane emissions is critical to the design of effective mitigation strategies. In this work, we synthesize lessons learned from dozens of U.S. studies that characterized methane emissions along each stage of the natural gas supply chain. These results are relevant to the design of methane measurement campaigns outside the U.S. A recurring theme in the research conducted in the U.S. is that public emissions inventories (e.g., The U.S. Environmental Protection Agency's National Greenhouse gas Inventory) tend to underestimate emissions for two key reasons: (1) use of non-representative emission factors and (2) inaccurate activity data (incomplete counts of facilities and equipment). Similarly, the accuracy of emission factors and the effectiveness of mitigation strategies are heavily affected by the existence of low-probability, unpredictable high emitters-which have been observed all along the supply chain- and are spatiotemporally variable. We conducted a coordinated campaign to measure methane emissions in a major gas producing region of the U.S. (Barnett Shale region of Texas) using a diversity of approaches. As part of this study we identified methods for effective quantification of regional fossil methane emissions using atmospheric data (through replicate mass balance flights and source apportionment using methane to ethane ratios) as well as how to build an accurate inventory that includes a statistical estimator that more rigorously captures the magnitude and frequency of high emitters. We found agreement between large-scale atmospheric sampling estimates and source

  5. Thermal decomposition pathways of ethane

    NASA Astrophysics Data System (ADS)

    Gordon, Mark S.; Truong, Thanh N.; Pople, John A.

    1986-10-01

    The alternate thermal decomposition pathways for ethane in its ground state have been investigated, using ab initio electronic structure calculations. Single-point energies were obtained at the full MP4/6-311 G ∗∗ level, using 6-31 G ∗ geometries for reactant, products, and transition states. The thermodynamically favored products are ethylene and molecular hydrogen, but a very large barrier (130 kcal/mol) is found for the direct 1,2-elimination of hydrogen. When calculated barriers are taken into account, the lowest-energy process is the homolytic cleavage of the C-C bond to form two methyl radicals.

  6. Fidelity of fossil n-alkanes from leaf to paleosol and applications to the Paleocene-Eocene Thermal Maximum

    NASA Astrophysics Data System (ADS)

    Bush, R. T.; McInerney, F. A.; Baczynski, A. A.; Wing, S. L.

    2011-12-01

    Long chain n-alkanes (C21-C35) are well-known as biomarkers of terrestrial plants. They can be preserved across a wide range of terrestrial and marine environments, survive in the sedimentary record for millions of years, and can serve as proxies for ancient environments. Most n-alkane records are derived from sediments rather than directly from fossil leaves. However, little is known about the fidelity of the n-alkane record: how and where leaf preservation relates to n-alkane preservation and how patterns of n-alkane carbon isotope ratios (δ13C) compare to living relatives. To examine these questions, we analyzed n-alkanes from fluvial sediments and individual leaf fossils collected in the Bighorn Basin, Wyoming, across the Paleocene-Eocene Thermal Maximum (PETM) carbon isotope excursion. We assessed the fidelity of the n-alkane signature from individual fossil leaves via three separate means. 1) Spatial variations were assessed by comparing n-alkane concentrations on a fossil leaf and in sediments both directly adjacent to the leaf and farther away. Absolute concentrations were greater within the compression fossil than in the directly adjacent sediment, which were in turn greater than in more distant sediment. 2) n-Alkane abundances and distributions were examined in fossil leaves having a range of preservational quality, from fossils with intact cuticle to carbonized fossils lacking cuticle and higher-order venation. The best preserved fossils preserved a higher concentration of n-alkanes and showed the most similar n-alkane distribution to living relatives. However, a strong odd over even predominance suggests a relatively unmodified plant source occurred in all samples regardless of preservation state. 3) n-Alkane δ13C values were measured for both fossil leaves and their living relatives. Both the saw-tooth pattern of δ13C values between odd and even chain lengths and the general decrease in δ13C values with increasing chain length are consistent with

  7. Sampling, storage, and analysis of C2-C7 non-methane hydrocarbons from the US National Oceanic and Atmospheric Administration Cooperative Air Sampling Network glass flasks.

    PubMed

    Pollmann, Jan; Helmig, Detlev; Hueber, Jacques; Plass-Dülmer, Christian; Tans, Pieter

    2008-04-25

    An analytical technique was developed to analyze light non-methane hydrocarbons (NMHC), including ethane, propane, iso-butane, n-butane, iso-pentane, n-pentane, n-hexane, isoprene, benzene and toluene from whole air samples collected in 2.5l-glass flasks used by the National Oceanic and Atmospheric Administration, Earth System Research Laboratory, Global Monitoring Division (NOAA ESRL GMD, Boulder, CO, USA) Cooperative Air Sampling Network. This method relies on utilizing the remaining air in these flasks (which is at below-ambient pressure at this stage) after the completion of all routine greenhouse gas measurements from these samples. NMHC in sample aliquots extracted from the flasks were preconcentrated with a custom-made, cryogen-free inlet system and analyzed by gas chromatography (GC) with flame ionization detection (FID). C2-C7 NMHC, depending on their ambient air mixing ratios, could be measured with accuracy and repeatability errors of generally < or =10-20%. Larger deviations were found for ethene and propene. Hexane was systematically overestimated due to a chromatographic co-elution problem. Saturated NMHC showed less than 5% changes in their mixing ratios in glass flask samples that were stored for up to 1 year. In the same experiment ethene and propene increased at approximately 30% yr(-1). A series of blank experiments showed negligible contamination from the sampling process and from storage (<10 pptv yr(-1)) of samples in these glass flasks. Results from flask NMHC analyses were compared to in-situ NMHC measurements at the Global Atmospheric Watch station in Hohenpeissenberg, Germany. This 9-months side-by-side comparison showed good agreement between both methods. More than 94% of all data comparisons for C2-C5 alkanes, isoprene, benzene and toluene fell within the combined accuracy and precision objectives of the World Meteorological Organization Global Atmosphere Watch (WMO-GAW) for NMHC measurements.

  8. Nitrated metalloporphyrins as catalysts for alkane oxidation

    DOEpatents

    Ellis, Jr., Paul E.; Lyons, James E.

    1992-01-01

    Alkanes are oxidized by contact with oxygen-containing gas in the presence as catalyst of a metalloporphyrin in which hydrogen atoms in the porphyrin ring have been replaced with one or more nitro groups. Hydrogen atoms in the porphyrin ring may also be substituted with halogen atoms.

  9. New insights into microbial responses to oil spills from the Deepwater Horizon incident

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mason, O.U.; Hazen, T.C.

    2011-06-15

    On April 20, 2010, a catastrophic eruption of methane caused the Deepwater Horizon exploratory drill rig drilling the Macondo Well in Mississippi Canyon Block 252 (MC252) to explode. The Deepwater Horizon oil spill was unprecendeted for several reasons: the volume of oil released; the spill duration; the well depth; the distance from the shore-line (77 km or about 50 miles); the type of oil (light crude); and the injection of dispersant directly at the wellhead. This study clearly demonstrated that there was a profound and significant response by certain members of the in situ microbial community in the deep-sea inmore » the Gulf of Mexico. In particular putative hydrocarbon degrading Bacteria appeared to bloom in response to the Deepwater Horizon oil spill, even though the temperature at these depths is never >5 C. As the plume aged the shifts in the microbial community on a temporal scale suggested that different, yet metabolically important members of the community were able to respond to a myriad of plume constituents, e.g. shifting from propane/ethane to alkanes and finally to methane. Thus, the biodegradation of hydrocarbons in the plume by Bacteria was a highly significant process in the natural attenuation of many compounds released during the Deepwater Horizon oil spill.« less

  10. Alkane Biosynthesis Genes in Cyanobacteria and Their Transcriptional Organization

    PubMed Central

    Klähn, Stephan; Baumgartner, Desirée; Pfreundt, Ulrike; Voigt, Karsten; Schön, Verena; Steglich, Claudia; Hess, Wolfgang R.

    2014-01-01

    In cyanobacteria, alkanes are synthesized from a fatty acyl-ACP by two enzymes, acyl–acyl carrier protein reductase and aldehyde deformylating oxygenase. Despite the great interest in the exploitation for biofuel production, nothing is known about the transcriptional organization of their genes or the physiological function of alkane synthesis. The comparison of 115 microarray datasets indicates the relatively constitutive expression of aar and ado genes. The analysis of 181 available genomes showed that in 90% of the genomes both genes are present, likely indicating their physiological relevance. In 61% of them they cluster together with genes encoding acetyl-CoA carboxyl transferase and a short-chain dehydrogenase, strengthening the link to fatty acid metabolism and in 76% of the genomes they are located in tandem, suggesting constraints on the gene arrangement. However, contrary to the expectations for an operon, we found in Synechocystis sp. PCC 6803 specific promoters for the two genes, sll0208 (ado) and sll0209 (aar), which give rise to monocistronic transcripts. Moreover, the upstream located ado gene is driven by a proximal as well as a second, distal, promoter, from which a third transcript, the ~160 nt sRNA SyR9 is transcribed. Thus, the transcriptional organization of the alkane biosynthesis genes in Synechocystis sp. PCC 6803 is of substantial complexity. We verified all three promoters to function independently from each other and show a similar promoter arrangement also in the more distant Nodularia spumigena, Trichodesmium erythraeum, Anabaena sp. PCC 7120, Prochlorococcus MIT9313, and MED4. The presence of separate regulatory elements and the dominance of monocistronic mRNAs suggest the possible autonomous regulation of ado and aar. The complex transcriptional organization of the alkane synthesis gene cluster has possible metabolic implications and should be considered when manipulating the expression of these genes in cyanobacteria. PMID

  11. n-Alkane assimilation and tert-butyl alcohol (TBA) oxidation capacity in Mycobacterium austroafricanum strains.

    PubMed

    Lopes Ferreira, Nicolas; Mathis, Hugues; Labbé, Diane; Monot, Frédéric; Greer, Charles W; Fayolle-Guichard, Françoise

    2007-06-01

    Mycobacterium austroafricanum IFP 2012, which grows on methyl tert-butyl ether (MTBE) and on tert-butyl alcohol (TBA), the main intermediate of MTBE degradation, also grows on a broad range of n-alkanes (C2 to C16). A single alkB gene copy, encoding a non-heme alkane monooxygenase, was partially amplified from the genome of this bacterium. Its expression was induced after growth on n-propane, n-hexane, n-hexadecane and on TBA but not after growth on LB. The capacity of other fast-growing mycobacteria to grow on n-alkanes (C1 to C16) and to degrade TBA after growth on n-alkanes was compared to that of M. austroafricanum IFP 2012. We studied M. austroafricanum IFP 2012 and IFP 2015 able to grow on MTBE, M. austroafricanum IFP 2173 able to grow on isooctane, Mycobacterium sp. IFP 2009 able to grow on ethyl tert-butyl ether (ETBE), M. vaccae JOB5 (M. austroaafricanum ATCC 29678) able to degrade MTBE and TBA and M. smegmatis mc2 155 with no known degradation capacity towards fuel oxygenates. The M. austroafricanum strains grew on a broad range of n-alkanes and three were able to degrade TBA after growth on propane, hexane and hexadecane. An alkB gene was partially amplified from the genome of all mycobacteria and a sequence comparison demonstrated a close relationship among the M. austroafricanum strains. This is the first report suggesting the involvement of an alkane hydroxylase in TBA oxidation, a key step during MTBE metabolism.

  12. Double C-H activation of ethane by metal-free SO2*+ radical cations.

    PubMed

    de Petris, Giulia; Cartoni, Antonella; Troiani, Anna; Barone, Vincenzo; Cimino, Paola; Angelini, Giancarlo; Ursini, Ornella

    2010-06-01

    The room-temperature C-H activation of ethane by metal-free SO(2)(*+) radical cations has been investigated under different pressure regimes by mass spectrometric techniques. The major reaction channel is the conversion of ethane to ethylene accompanied by the formation of H(2)SO(2)(*+), the radical cation of sulfoxylic acid. The mechanism of the double C-H activation, in the absence of the single activation product HSO(2)(+), is elucidated by kinetic studies and quantum chemical calculations. Under near single-collision conditions the reaction occurs with rate constant k=1.0 x 10(-9) (+/-30%) cm(3) s(-1) molecule(-1), efficiency=90%, kinetic isotope effect k(H)/k(D)=1.1, and partial H/D scrambling. The theoretical analysis shows that the interaction of SO(2)(*+) with ethane through an oxygen atom directly leads to the C-H activation intermediate. The interaction through sulfur leads to an encounter complex that rapidly converts to the same intermediate. The double C-H activation occurs by a reaction path that lies below the reactants and involves intermediates separated by very low energy barriers, which include a complex of the ethyl cation suitable to undergo H/D scrambling. Key issues in the observed reactivity are electron-transfer processes, in which a crucial role is played by geometrical constraints. The work shows how mechanistic details disclosed by the reactions of metal-free electrophiles may contribute to the current understanding of the C-H activation of ethane.

  13. Low Cost Olefin Production from Shale Gas by Laser Enhanced Pyrolysis through Spatial Beam Decoherence. Phase 1 Final Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hutton, Phillip N.

    This report describes research into an innovative laser-enhanced catalytic pyrolysis technology that has the potential to significantly decrease the cost of cracking ethane and other alkanes found in shale gas ethylene. Similar to how water is resonantly heated by microwaves, a CO 2 laser can resonantly heat ethylene, producing radicals that convert ethane to ethylene at lower reactor temperatures. Proof of concept experiments were performed to determine if commercial grade CO 2 lasers at one-twenty fifth the cost of scientific grade lasers could crack ethane at lower temperatures than conventional technology. Cr doped MgO catalyst was then inserted in themore » reaction chamber to further increase conersion rates.« less

  14. Regioselective alkane hydroxylation with a mutant CYP153A6 enzyme

    DOEpatents

    Koch, Daniel J.; Arnold, Frances H.

    2013-01-29

    Cytochrome P450 CYP153A6 from Myobacterium sp. strain HXN1500 was engineered using in-vivo directed evolution to hydroxylate small-chain alkanes regioselectively. Mutant CYP153A6-BMO1 selectively hydroxylates butane and pentane at the terminal carbon to form 1-butanol and 1-pentanol, respectively, at rates greater than wild-type CYP153A6 enzymes. This biocatalyst is highly active for small-chain alkane substrates and the regioselectivity is retained in whole-cell biotransformations.

  15. Microbial alteration of normal alkane δ13C and δD in sedimentary archives

    NASA Astrophysics Data System (ADS)

    Brittingham, A.; Hren, M. T.; Hartman, G.

    2016-12-01

    Long-carbon chain normal alkanes (e.g. C25-C33) are produced by a wide range of terrestrial plants and commonly preserved in ancient sediments. These serve as a potential paleoclimate proxy because their hydrogen (δD) and carbon (δ13C) isotope values reflect the combined effect of plant-specific species effects and responses to environmental conditions. While these are commonly believed to remain unaltered at low burial temperatures (e.g. <150°C), there is still uncertainty around the role microbes play during the breakdown of these compounds in stored sediment and the potential risk for isotopic alteration. We analyzed two sets of identical samples to assess the role of microbial and other degradation process on the hydrogen and carbon isotope composition of these compounds. The first set of sediment samples were collected in the summer of 2011 from central Armenia, a region with continental climate, and allowed to sit in sealed bags at room temperature for three years. A second and identical set was collected in 2014 and frozen immediately. Stored samples showed high amounts of medium chain length n-alkanes (C19-C26), produced by microorganisms, which were absent from the samples that were collected in 2014 and frozen immediately after sampling. Along with the presence of medium chain length n-alkanes, the average chain length of n-alkanes from C25-C33 decreased significantly in all 2011 samples. Storage of the samples over three years resulted in altered δD and δ13C values of C29 and C31 n-alkanes. While δD values were heavier relative to the control by 4-25‰, δ13C values were mostly lighter (maximum change of -4.2‰ in C29 and -2.9‰ in C31). DNA analysis of the soil showed Rhodococcus and Aeromicrobium, genera that contain multiple coding regions for alkane degrading enzymes CYP153 and AlkB, increased by an order of magnitude during sample storage (from 0.7% to 7.5% of bacteria present). The proliferation of alkane degrading bacteria, combined with

  16. Oh Magadi! Interpreting isoGDGTs and n-alkanes in a saline tropical lake: Lake Magadi, Kenya

    NASA Astrophysics Data System (ADS)

    Ferland, T. M.; Werne, J. P.; Castañeda, I. S.; Cohen, A. S.; Lowenstein, T. K.; Deocampo, D.; Renaut, R.; Bernhart, O. R.

    2017-12-01

    The Hominin Sites and Paleolakes Drilling Project (HSPDP) seeks to understand the paleoclimatic and paleoenvironmental context of hominin adaptation and evolution by analysis of paleolacustrine cores taken near key hominin fossil and artifact localities in Kenya and Ethiopia. We present biomarker and compound specific isotope data from a 200 m drill core from Lake Magadi, Kenya. Located 20 km from the Koora Plain in the southern Kenya Rift, and adjacent to the Olorgesailie basin, Lake Magadi is in one of the richest Early-Late Pleistocene archaeological localities in Africa, a region that has been key in debates about the relationship between climate and evolution. Present-day Lake Magadi is a saline pan, a descendant of a series of paleolakes that have occupied its drainage basin and progressively dried for approximately one million years. Nearly 70% of samples analyzed for n-alkanes recorded a robust terrestrial signal. The majority of samples did not contain the complete suite of branched GDGTs necessary to reconstruct temperature from the Methylation of Branched Tetraethers and Cyclisation of Branched Tetraethers (MBT/CBT; Weijers et al., 2007) proxy. The TetraEther indeX with 86 carbon atoms (TEX86; Schouten et al., 2002) temperature proxy was established for 90% of samples analyzed for isoGDGTs, however the Methane and Ring Indices (Zhang et al., 2011; Zhang et al., 2016) suggest that the TEX86 is not applicable to temperature reconstruction at Magadi. Despite this, the Magadi TEX86 temperature reconstruction appears to agree with not only the trends in our n-alkane data but with other regional and global records, including the GRIP-2 δ18O record. We compare our temperature data to other records in the region, and investigate influences on our TEX86 data including microbial community turnover and lake drying.

  17. Nickel(II) complexes of tripodal 4N ligands as catalysts for alkane oxidation using m-CPBA as oxidant: ligand stereoelectronic effects on catalysis.

    PubMed

    Balamurugan, Mani; Mayilmurugan, Ramasamy; Suresh, Eringathodi; Palaniandavar, Mallayan

    2011-10-07

    Several mononuclear Ni(II) complexes of the type [Ni(L)(CH(3)CN)(2)](BPh(4))(2) 1-7, where L is a tetradentate tripodal 4N ligand such as N,N-dimethyl-N',N'-bis(pyrid-2-ylmethyl)ethane-1,2-diamine (L1), N,N-diethyl-N',N'-bis(pyrid-2-ylmethyl)ethane-1,2-diamine (L2), N,N-dimethyl-N'-(1-methyl-1H-imidazol-2-ylmethyl)-N'-(pyrid-2-ylmethyl)ethane-1,2-diamine (L3), N,N-dimethyl-N',N'-bis(1-methyl-1H-imidazol-2-ylmethyl)ethane-1,2-diamine (L4), N,N-dimethyl-N',N'-bis(quinolin-2-ylmethyl)ethane-1,2-diamine (L5), tris(benzimidazol-2-ylmethyl)amine (L6) and tris(pyrid-2-ylmethyl)amine (L7), have been isolated and characterized using CHN analysis, UV-Visible spectroscopy and mass spectrometry. The single-crystal X-ray structures of the complexes [Ni(L1)(CH(3)CN)(H(2)O)](ClO(4))(2) 1a, [Ni(L2)(CH(3)CN)(2)](BPh(4))(2) 2, [Ni(L3)(CH(3)CN)(2)](BPh(4))(2) 3 and [Ni(L4)(CH(3)CN)(2)](BPh(4))(2) 4 have been determined. All these complexes possess a distorted octahedral coordination geometry in which Ni(II) is coordinated to four nitrogen atoms of the tetradentate ligands and two CH(3)CN (2, 3, 4) or one H(2)O and one CH(3)CN (1a) are located in cis positions. The Ni-N(py) bond distances (2.054(2)-2.078(3) Å) in 1a, 2 and 3 are shorter than the Ni-N(amine) bonds (2.127(2)-2.196(3) Å) because of sp(2) and sp(3) hybridizations of the pyridyl and tertiary amine nitrogens respectively. In 3 the Ni-N(im) bond (2.040(5) Å) is shorter than the Ni-N(py) bond (2.074(4) Å) due to the stronger coordination of imidazole compared with the pyridine donor. In dichloromethane/acetonitrile solvent mixture, all the Ni(ii) complexes possess an octahedral coordination geometry, as revealed by the characteristic ligand field bands in the visible region. They efficiently catalyze the hydroxylation of alkanes when m-CPBA is used as oxidant with turnover number (TON) in the range of 340-620 and good alcohol selectivity for cyclohexane (A/K, 5-9). By replacing one of the pyridyl donors in TPA by a weakly

  18. Photochemical dimerization and functionalization of alkanes, ethers, primary and secondary alcohols, phosphine oxides and silanes

    DOEpatents

    Crabtree, Robert H.; Brown, Stephen H.

    1989-01-01

    The space-time yield and/or the selectivity of the photochemical dimerization of alkanes, ethers, primary and secondary alcohols, phosphine oxides and primary, secondary and tertiary silanes with Hg and U.V. light is enhanced by refluxing the substrate in the irradiated reaction zone at a temperature at which the dimer product condenses and remains condensed promptly upon its formation. Cross-dimerization of the alkanes, ethers and silanes with primary alcohols is disclosed, as is the functionalization to aldehydes of the alkanes with carbon monoxide.

  19. Photochemical dimerization and functionalization of alkanes, ethers, primary and secondary alcohols, phosphine oxides and silanes

    DOEpatents

    Crabtree, R.H.; Brown, S.H.

    1989-10-17

    The space-time yield and/or the selectivity of the photochemical dimerization of alkanes, ethers, primary and secondary alcohols, phosphine oxides and primary, secondary and tertiary silanes with Hg and U.V. light is enhanced by refluxing the substrate in the irradiated reaction zone at a temperature at which the dimer product condenses and remains condensed promptly upon its formation. Cross-dimerization of the alkanes, ethers and silanes with primary alcohols is disclosed, as is the functionalization to aldehydes of the alkanes with carbon monoxide.

  20. Rate constants of nine C6-C9 alkanes with OH from 230 to 379 K: chemical tracers for [OH].

    PubMed

    Sprengnether, Michele M; Demerjian, Kenneth L; Dransfield, Timothy J; Clarke, James S; Anderson, James G; Donahue, Neil M

    2009-04-30

    We report absolute rate-constant measurements for the reactions of nine C(6)-C(9) alkanes with OH in 8-10 torr of nitrogen from 230 to 379 K in the Harvard University High-Pressure Flow System. Hydroxyl concentrations were measured using laser-induced fluorescence, and alkane concentrations were measured using Fourier transform infrared Spectroscopy. Ethane's reactivity was simultaneously measured as a test of experimental performance. Results were fit to a modified Arrhenius equation based on transition state theory (ignoring tunneling), k(T) = Be(-E(a)/T)/(T(1 - e(- 1.44nu(1)/T))(2)(1 - e(- 1.44nu(2)/T)), with nu(1) and nu(2) bending frequencies, set to 280 and 500 cm(-1). Results were as follows for B (10(-9) K cm(3) s(-1)), E(a) (K), and k(298) (10(-12) cm(3) s(-1)): cyclohexane, 3.24 +/- 0.14, 332 +/- 12, 7.13; cyclo-octane, 3.47 +/- 0.30, 149 +/- 26, 14.1; 2-methylhexane, 1.45 +/- 0.08, 110 +/- 15, 6.72; 3-methylhexane, 1.50 +/- 0.08, 128 +/- 16, 6.54; methylcyclopentane, 1.65 +/- 0.07, 109 +/- 13, 7.65; methylcyclohexane, 1.86 +/- 0.09, 83 +/- 14, 9.43; methylcycloheptane, 3.45 +/- 0.45, 142 +/- 36, 14.4; n-propylcyclohexane, 2.83 +/- 0.14, 112 +/- 15, 13.0; isopropylcyclohexane, 1.79 +/- 0.11, -44 +/- 34, 13.9. Uncertainties are one sigma results from linear regression fits and are likely underestimated. Room temperature rate coefficients of reaction are accurate to within 10% at two sigma. A comprehensive fit to 17 separate studies including the present work for cyclohexane gives good agreement with the present results: terms as above, 3.09 +/- 0.12, 326 +/- 12, 6.96. Five of these compounds are routinely measured in urban air within a suite of atmospheric nonmethane hydrocarbons and reach parts per billion levels. The remaining four are C8-C9 cycloalkanes with low anthropogenic emissions. Because of their high, specific reactivity with OH, their concentration decays may be used as an indirect measurement of [OH] in the atmosphere or laboratory. This data

  1. Estimation of incremental reactivities for multiple day scenarios: an application to ethane and dimethyoxymethane

    NASA Astrophysics Data System (ADS)

    Stockwell, William R.; Geiger, Harald; Becker, Karl H.

    Single-day scenarios are used to calculate incremental reactivities by definition (Carter, J. Air Waste Management Assoc. 44 (1994) 881-899.) but even unreactive organic compounds may have a non-negligible effect on ozone concentrations if multiple-day scenarios are considered. The concentration of unreactive compounds and their products may build up over a multiple-day period and the oxidation products may be highly reactive or highly unreactive affecting the overall incremental reactivity of the organic compound. We have developed a method for calculating incremental reactivities for multiple days based on a standard scenario for polluted European conditions. This method was used to estimate maximum incremental reactivities (MIR) and maximum ozone incremental reactivities (MOIR) for ethane and dimethyoxymethane for scenarios ranging from 1 to 6 days. It was found that the incremental reactivities increased as the length of the simulation period increased. The MIR of ethane increased faster than the value for dimethyoxymethane as the scenarios became longer. The MOIRs of ethane and dimethyoxymethane increased but the change was more modest for scenarios longer than 3 days. MOIRs of both volatile organic compounds were equal within the uncertainties of their chemical mechanisms by the 5 day scenario. These results show that dimethyoxymethane has an ozone forming potential on a per mass basis that is only somewhat greater than ethane if multiple-day scenarios are considered.

  2. Sensitive detection of n-alkanes using a mixed ionization mode proton-transfer-reaction mass spectrometer

    NASA Astrophysics Data System (ADS)

    Amador-Muñoz, Omar; Misztal, Pawel K.; Weber, Robin; Worton, David R.; Zhang, Haofei; Drozd, Greg; Goldstein, Allen H.

    2016-11-01

    Proton-transfer-reaction mass spectrometry (PTR-MS) is a technique that is widely used to detect volatile organic compounds (VOCs) with proton affinities higher than water. However, n-alkanes generally have a lower proton affinity than water and therefore proton transfer (PT) by reaction with H3O+ is not an effective mechanism for their detection. In this study, we developed a method using a conventional PTR-MS to detect n-alkanes by optimizing ion source and drift tube conditions to vary the relative amounts of different primary ions (H3O+, O2+, NO+) in the reaction chamber (drift tube). There are very few studies on O2+ detection of alkanes and the mixed mode has never been proposed before. We determined the optimum conditions and the resulting reaction mechanisms, allowing detection of n-alkanes from n-pentane to n-tridecane. These compounds are mostly emitted by evaporative/combustion process from fossil fuel use. The charge transfer (CT) mechanism observed with O2+ was the main reaction channel for n-heptane and longer n-alkanes, while for n-pentane and n-hexane the main reaction channel was hydride abstraction (HA). Maximum sensitivities were obtained at low E / N ratios (83 Td), low water flow (2 sccm) and high O2+ / NO+ ratios (Uso = 180 V). Isotopic 13C contribution was taken into account by subtracting fractions of the preceding 12C ion signal based on the number of carbon atoms and the natural abundance of 13C (i.e., 5.6 % for n-pentane and 14.5 % for n-tridecane). After accounting for isotopic distributions, we found that PT cannot be observed for n-alkanes smaller than n-decane. Instead, protonated water clusters of n-alkanes (M ṡ H3O+) species were observed with higher abundance using lower O2+ and higher water cluster fractions. M ṡ H3O+ species are probably the source for the M + H+ species observed from n-decane to n-tridecane. Normalized sensitivities to O2+ or to the sum of O2++ NO+ were determined to be a good metric with which

  3. 78 FR 62323 - MarkWest Liberty Ethane Pipeline L.L.C.; Notice of Petition for Declaratory Order

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-16

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. OR14-1-000] MarkWest Liberty Ethane Pipeline L.L.C.; Notice of Petition for Declaratory Order Take notice that on October 3, 2013...), MarkWest Liberty Ethane Pipeline L.L.C. (MarkWest) filed a petition requesting a declaratory order...

  4. Biogeographic variation of foliar n-alkanes of Juniperus communis var. saxatilis Pallas from the Balkans.

    PubMed

    Rajčević, Nemanja; Janaćković, Pedja; Dodoš, Tanja; Tešević, Vele; Marin, Petar D

    2014-12-01

    The composition of the epicuticular n-alkanes isolated from the leaves of ten populations of Juniperus communis L. var. saxatilis Pallas from central (continental) and western (coastal) areas of the Balkan Peninsula was characterized by GC-FID and GC/MS analyses. In the leaf waxes, 14 n-alkane homologues with chain-lengths ranging from C22 to C35 were identified. All samples were dominated by n-tritriacontane (C33 ), but differences in two other dominant n-alkanes allowed separating the coastal from the continental populations. Several statistical methods (ANOVA, principal component, discriminant, and cluster analyses as well as the Mantel test) were deployed to analyze the diversity and variability of the epicuticular-leaf-n-alkane patterns of the ten natural populations of J. communis var. saxatilis and their relation to different geographic and bioclimatic parameters. Cluster analysis showed a high correlation of the leaf-n-alkane patterns with the geographical distribution of the investigated samples, differentiating the coastal from the continental populations of this taxon. Several bioclimatic parameters related to aridity were highly correlated with this differentiation. Copyright © 2014 Verlag Helvetica Chimica Acta AG, Zürich.

  5. Titan's Carbon Isotopic Ratio: A Clue To Atmospheric Evolution?

    NASA Astrophysics Data System (ADS)

    Nixon, C. A.; Jennings, D. E.; Romani, P. N.; Jolly, A.; Teanby, N. A.; Irwin, P. G.; Bézard, B.; Vinatier, S.; Coustenis, A.; Flasar, F. M.

    2009-12-01

    In this presentation we describe the latest results to come from Cassini CIRS and ground-based telescopic measurements of Titan's 12C/13C ratio in atmospheric molecules, focusing on hydrocarbons. Previously, the Huygens GCMS instrument measured 12CH4/13CH4 to be 82±1 (Niemann et al., Nature, 438, 779-784, 2005), substantially and significantly lower than the VPDB inorganic Earth standard of 89.4. It is also at odds with measurements for the giant planets. Cassini CIRS infrared spectra have confirmed this enhancement in 13CH4, but also revealed that the ratio in ethane, the major photochemical product of methane photolysis, does not appear enhanced (90±7) (Nixon et al.. Icarus, 195, 778-791, 2008) and is compatible with the terrestrial and combined giant planet value (88±7, Sada et al., Ap. J., 472, p. 903-907, 1996). Recently-published results from spectroscopy using the McMath-Pierce telescope at Kitt Pitt (Jennings et al., JCP, 2009, in press) have confirmed this deviation between methane and ethane, and an explanation has been proposed. This invokes a kinetic isotope effect (KIE) in the abstraction of methane by ethynyl, a major ethane formation pathway, to preferentially partition 12C into ethane and leave an enhancement in atmospheric 13CH4 relative to the incoming flux from the reservoir. Modeling shows that a steady-state solution exists where the 12C/13C methane is decreased from the reservoir value by exactly the KIE factor (the ratio of 12CH4 to 13CH4 abstraction reaction rates): which is plausibly around 1.08, very close to the observed amount. However, a second solution exists in which we are observing Titan about ~1 methane lifetime after a major injection of methane into the atmosphere which is rapidly being eliminated. Updated measurements by Cassini CIRS of both the methane and ethane 12C/13C ratios will be presented, along with progress in interpreting this ratio. In addition, we summarize the 12C/13C measurements by CIRS in multiple other Titan

  6. Measurements of methane emissions from natural gas gathering facilities and processing plants: measurement methods

    DOE PAGES

    Roscioli, J. R.; Yacovitch, T. I.; Floerchinger, C.; ...

    2015-05-07

    Increased natural gas production in recent years has spurred intense interest in methane (CH 4) emissions associated with its production, gathering, processing, transmission, and distribution. Gathering and processing facilities (G&P facilities) are unique in that the wide range of gas sources (shale, coal-bed, tight gas, conventional, etc.) results in a wide range of gas compositions, which in turn requires an array of technologies to prepare the gas for pipeline transmission and distribution. We present an overview and detailed description of the measurement method and analysis approach used during a 20-week field campaign studying CH 4 emissions from the natural gasmore » G&P facilities between October 2013 and April 2014. Dual-tracer flux measurements and on-site observations were used to address the magnitude and origins of CH 4 emissions from these facilities. The use of a second tracer as an internal standard revealed plume-specific uncertainties in the measured emission rates of 20–47%, depending upon plume classification. Furthermore, combining downwind methane, ethane (C 2H 6), carbon monoxide (CO), carbon dioxide (CO 2), and tracer gas measurements with on-site tracer gas release allows for quantification of facility emissions and in some cases a more detailed picture of source locations.« less

  7. Direct and Indirect Measurements and Modeling of Methane Emissions in Indianapolis, Indiana.

    PubMed

    Lamb, Brian K; Cambaliza, Maria O L; Davis, Kenneth J; Edburg, Steven L; Ferrara, Thomas W; Floerchinger, Cody; Heimburger, Alexie M F; Herndon, Scott; Lauvaux, Thomas; Lavoie, Tegan; Lyon, David R; Miles, Natasha; Prasad, Kuldeep R; Richardson, Scott; Roscioli, Joseph Robert; Salmon, Olivia E; Shepson, Paul B; Stirm, Brian H; Whetstone, James

    2016-08-16

    This paper describes process-based estimation of CH4 emissions from sources in Indianapolis, IN and compares these with atmospheric inferences of whole city emissions. Emissions from the natural gas distribution system were estimated from measurements at metering and regulating stations and from pipeline leaks. Tracer methods and inverse plume modeling were used to estimate emissions from the major landfill and wastewater treatment plant. These direct source measurements informed the compilation of a methane emission inventory for the city equal to 29 Gg/yr (5% to 95% confidence limits, 15 to 54 Gg/yr). Emission estimates for the whole city based on an aircraft mass balance method and from inverse modeling of CH4 tower observations were 41 ± 12 Gg/yr and 81 ± 11 Gg/yr, respectively. Footprint modeling using 11 days of ethane/methane tower data indicated that landfills, wastewater treatment, wetlands, and other biological sources contribute 48% while natural gas usage and other fossil fuel sources contribute 52% of the city total. With the biogenic CH4 emissions omitted, the top-down estimates are 3.5-6.9 times the nonbiogenic city inventory. Mobile mapping of CH4 concentrations showed low level enhancement of CH4 throughout the city reflecting diffuse natural gas leakage and downstream usage as possible sources for the missing residual in the inventory.

  8. Crystal structures of three co-crystals of 1,2-bis-(pyridin-4-yl)ethane with 4-alk-oxy-benzoic acids: 4-eth-oxy-benzoic acid-1,2-bis-(pyridin-4-yl)ethane (2/1), 4-n-propoxybenzoic acid-1,2-bis(pyridin-4-yl)ethane (2/1) and 4-n-but-oxy-benzoic acid-1,2-bis-(pyridin-4-yl)ethane (2/1).

    PubMed

    Tabuchi, Yohei; Gotoh, Kazuma; Ishida, Hiroyuki

    2015-11-01

    The crystal structures of three hydrogen-bonded co-crystals of 4-alk-oxy-benzoic acid-1,2-bis-(pyridin-4-yl)ethane (2/1), namely, 2C9H10O3·C12H12N2, (I), 2C10H12O3·C12H12N2, (II), and 2C11H14O3·C12H12N2, (III), have been determined at 93, 290 and 93 K, respectively. In (I), the asymmetric unit consists of one 4-eth-oxy-benzoic acid mol-ecule and one half-mol-ecule of 1,2-bis-(pyridin-4-yl)ethane, which lies on an inversion centre. In (II) and (III), the asymmetric units each comprise two crystallographically independent 4-alk-oxy-benzoic acid mol-ecules and one 1,2-bis-(pyridin-4-yl)ethane mol-ecule. In each crystal, the two components are linked by O-H⋯N hydrogen bonds, forming a linear hydrogen-bonded 2:1unit of the acid and the base. Similar to the structure of 2:1 unit of (I), the units of (II) and (III) adopt nearly pseudo-inversion symmetry. The 2:1 units of (I), (II) and (III) are linked via C-H⋯O hydrogen bonds, forming tape structures.

  9. Assessing the Efficacy of the Aerobic Methanotrophic Biofilter in Methane Hydrate Environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valentine, David

    2012-09-30

    this process as a biofilter by studying the distribution of methane oxidation and disposition of methanotrophic populations in the Pacific Ocean. We investigated several environments including the basins offshore California, the continental margin off Central America, and the shallow waters around gas seeps. We succeeded in identifying the distributions of activity in these environments, identified potential physical and chemical controls on methanotrophic activity, we further revealed details about the methanotrophic communities active in these settings, and we developed new approaches to study methanotrophic communities. These findings should improve our capacity to predict the methanotrophic response in ocean waters, and further our ability to generate specific hypotheses as to the ecology and efficacy of pelagic methanotrophic communites. The discharge of methane and other hydrocarbons to Gulf of Mexico that followed the sinking of the Deepwater Horizon provided a unique opportunity to study the methanotorphic biofilter in the deep ocean environment. We set out to understand the consumption of methane and the bloom of methanotrophs resulting from this event, as a window into the regional scale release of gas hydrate under rapid warming scenarios. We found that other hydrocarbon gases, notably propane and ethane, were preferred for consumption over methane, but that methane consumption accelerated rapidly and drove the depletion of methane within a matter of months after initial release. These results revealed the identity of the responsible community, and point to the importance of the seed population in determining the rate at which a methanotrophic community is able to respond to an input of methane. Collectively, these results provide a significant advance in our understanding of the marine methanotrohic biofilter, and further provide direction and context for future investigations of this important phenomenon. This project has resulted in fourteen publications

  10. Hydrogenation and hydrodeoxygenation of biomass-derived oxygenates to liquid alkanes for transportation fuels.

    PubMed

    Sun, Shaohui; Yang, Ruishu; Wang, Xin; Yan, Shaokang

    2018-04-01

    An attractive approach for the production of transportation fuels from renewable biomass resources is to convert oxygenates into alkanes. In this paper, C 5 -C 20 alkanes formed via the hydrogenation and hydrodeoxygenation of the oligomers of furfuryl alcohol(FA) can be used as gasoline, diesel and jet fuel fraction. The first step of the process is the oligomers of FA convert into hydrogenated products over Raney Ni catalyst in a batch reactor. The second step of the process converts hydrogenated products to alkanes via hydrodeoxygenation over different bi-functional catalysts include hydrogenation and acidic deoxidization active sites. After this process, the oxygen content decreased from 22.1 wt% in the oligomers of FA to 0.58 wt% in the hydrodeoxygenation products.

  11. Conversion of crude oil to methane by a microbial consortium enriched from oil reservoir production waters

    PubMed Central

    Berdugo-Clavijo, Carolina; Gieg, Lisa M.

    2014-01-01

    The methanogenic biodegradation of crude oil is an important process occurring in petroleum reservoirs and other oil-containing environments such as contaminated aquifers. In this process, syntrophic bacteria degrade hydrocarbon substrates to products such as acetate, and/or H2 and CO2 that are then used by methanogens to produce methane in a thermodynamically dependent manner. We enriched a methanogenic crude oil-degrading consortium from production waters sampled from a low temperature heavy oil reservoir. Alkylsuccinates indicative of fumarate addition to C5 and C6 n-alkanes were identified in the culture (above levels found in controls), corresponding to the detection of an alkyl succinate synthase encoding gene (assA/masA) in the culture. In addition, the enrichment culture was tested for its ability to produce methane from residual oil in a sandstone-packed column system simulating a mature field. Methane production rates of up to 5.8 μmol CH4/g of oil/day were measured in the column system. Amounts of produced methane were in relatively good agreement with hydrocarbon loss showing depletion of more than 50% of saturate and aromatic hydrocarbons. Microbial community analysis revealed that the enrichment culture was dominated by members of the genus Smithella, Methanosaeta, and Methanoculleus. However, a shift in microbial community occurred following incubation of the enrichment in the sandstone columns. Here, Methanobacterium sp. were most abundant, as were bacterial members of the genus Pseudomonas and other known biofilm forming organisms. Our findings show that microorganisms enriched from petroleum reservoir waters can bioconvert crude oil components to methane both planktonically and in sandstone-packed columns as test systems. Further, the results suggest that different organisms may contribute to oil biodegradation within different phases (e.g., planktonic vs. sessile) within a subsurface crude oil reservoir. PMID:24829563

  12. Reprint of "Stable hydrogen and carbon isotopic compositions of long-chain (C21-C33) n-alkanes and n-alkenes in insects"

    NASA Astrophysics Data System (ADS)

    Chikaraishi, Yoshito; Kaneko, Masanori; Ohkouchi, Naohiko

    2013-06-01

    We report the molecular and stable isotopic (δD and δ13C) compositions of long-chain n-alkanes in common insects including the cabbage butterfly, swallowtail, wasp, hornet, grasshopper, and ladybug. Insect n-alkanes are potential candidates of the contamination of soil and sedimentary n-alkanes that are believed to be derived from vascular plant waxes. Long-chain n-alkanes (range C21-33; maximum C23-C29) are found to be abundant in the insects (31-781 μg/dry g), with a carbon preference index (CPI) of 5.1-31.5 and an average chain length (ACL) of 24.9-29.3. The isotopic compositions (mean ± 1σ, n = 33) of the n-alkanes are -195 ± 16‰ for hydrogen and -30.6 ± 2.4‰ for carbon. The insect n-alkanes are depleted in D by approximately 30-40‰ compared with wax n-alkanes from C3 (-155 ± 25‰) and C4 vascular plants (-167 ± 13‰), whereas their δ13C values fall between those of C3 (-36.2 ± 2.4‰) and C4 plants (-20.3 ± 2.4‰). Thus, the contribution of insect-derived n-alkanes to soil and sediment could potentially shift δD records of n-alkanes toward more negative values and potentially muddle the assumed original C3/C4 balance in the δ13C records of the soil and sedimentary n-alkanes. n-Alkenes are also found in three insects (swallowtail, wasp and hornet). They are more depleted in D relative to the same carbon numbered n-alkanes (δDn-alkene - δDn-alkane = -17 ± 16‰), but the δ13C values are almost identical to those of the n-alkanes (δ13Cn-alkene - δ13Cn-alkane = 0.1 ± 0.2‰). These results suggest that these n-alkenes are desaturated products of the same carbon numbered n-alkanes.

  13. Aminopropyl-functionalized ethane-bridged periodic mesoporous organosilica spheres: preparation and application in liquid chromatography.

    PubMed

    Li, Chun; Di, Bin; Hao, Weiqiang; Yan, Fang; Su, Mengxiang

    2011-01-21

    A synthetic approach for synthesizing spherical aminopropyl-functionalized ethane-bridged periodic mesoporous organosilicas (APEPMOs) is reported. The mesoporous material was prepared by a one-step co-condensation of 1,2-bis(triethoxysilyl)ethane (BTSE) and 3-aminopropyltriethoxysilane (APTES) using cetyltrimethylammonium chlorine (C(18)TACl) as a template with the aid of a co-solvent (methanol) in basic medium. The APEPMOs were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), powder X-ray diffraction (XRD), nitrogen sorption measurement, Fourier transform infrared spectroscopy (FT-IR) and elemental analysis. It was shown that this material exhibited spherical morphology, ordered cubic mesostructure and good mechanical strength. The APEPMOs were tested as a potential stationary phase for liquid chromatography (LC) because the column exhibited reduced back pressure. Moreover, they exhibited good chemical stability in basic mobile phase, which can be ascribed to the ethane groups in the mesoporous framework. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. Direct catalytic conversion of methane and light hydrocarbon gases. Quarterly report No. 9, October 1--December 31, 1988

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, R.B. Jr.; Posin, B.M.; Chan, Yee Wai

    The goal of this research is to develop catalysts that directly convert methane and light hydrocarbons to intermediates that later can be converted to either liquid fuels or value-added chemicals, as economics dictate. During this reporting period, we completed our IR spectroscopic examination of the Ru{sub 4}/MgO and FeRu{sub 3}/MgO systems under nitrogen and methane by examining FeRu{sub 3}/MgO under methane. This system behaved quite differently than the same system under nitrogen. Under methane, only one very broad peak is observed at room temperature. Upon heating, the catalyst transformed so that by 300{degrees}C, the spectrum of FeRu{sub 3}/MgO under methanemore » was the same as that of Ru{sub 4}/MgO. This suggests that methane promotes the segregation of the metals in the mixed metal system. The differences in catalytic activity between the FeRu{sub 3}/MgO and Ru{sub 4}/MgO systems may then be due to the presence of IR transparent species such as iron ions which cause different nucleation in the ruthenium clusters. We examined several systems for activity in the methane dehydrogenation reaction. Focusing on systems which produce C{sub 6} hydrocarbons since this is the most useful product. These systems all displayed low activity so that the amount of hydrocarbon product is very low. Some C{sub 6} hydrocarbon is observed over zeolite supports, but its production ceases after the first few hours of reaction. We prepared a new system, Ru{sub 4} supported on carbon, and examined its reactivity. Its activity was very low and in fact the carbon support had the same level of activity. We synthesized four new systems for examination as catalysts in the partial oxidation of methane. Three of these (PtTSPC/MgO, PtTSPC and PdTSPC on carbon) are analogs of PdTSPC/MgO. This system is of interest because we have observed the production of ethane from methane oxidation over PdTSPC/MgO at relatively low temperatures and we wished to explore its generality among close

  15. Isolation and characterization of Pseudomonas aeruginosa strain SJTD-2 for degrading long-chain n-alkanes and crude oil.

    PubMed

    Xu, Jing; Liu, Huan; Liu, Jianhua; Liang, Rubing

    2015-06-04

    Oil pollution poses a severe threat to ecosystems, and bioremediation is considered as a safe and efficient alternative to physicochemical. for eliminating this contaminant. In this study, a gram-negative bacteria strain SJTD-2 isolated from oil-contaminated soil was found capable of utilizing n-alkanes and crude oil as sole energy sources. The efficiency of this strain in degrading these pollutants was analyzed. Strain SJTD-2 was identified on the basis of its phenotype, its physiological features, and a comparative genetic analysis using 16S rRNA sequence. Growth of strain SJTD-2 with different carbon sources (n-alkanes of different lengths and crude oil) was assessed, and the gas chromatography-mass spectrometry method was used to analyze the degradation efficiency of strain SJTD-2 for n-alkanes and petroleum by detecting the residual n-alkane concentrations. Strain SJTD-2 was identified as Pseudomonas aeruginosa based on the phenotype, physiological features, and 16S rRNA sequence analysis. This strain can efficiently decompose medium-chain and long-chain n-alkanes (C10-C26), and petroleum as its sole carbon sources. It preferred the long-chain n-alkanes (C18-C22), and n-docosane was considered as the best carbon source for its growth. In 48 h, 500 mg/L n-docosane could be degraded completely, and 2 g/L n-docosane was decomposed to undetectable levels within 72 h. Moreover, strain SJTD-2 could utilize about 88% of 2 g/L crude oil in 7days. Compared with other alkane-utilizing strains, strain SJTD-2 showed outstanding degradation efficiency for long-chain n-alkanes and high tolerance to petroleum at elevated concentrations. The isolation and characterization of strain SJTD-2 would help researchers study the mechanisms underlying the biodegradation of n-alkanes, and this strain could be used as a potential strain for environmental governance and soil bioremediation.

  16. Monocarboxylic acids from oxidation of acyclic isoprenoid alkanes by Mycobacterium fortuitum

    NASA Technical Reports Server (NTRS)

    Cox, R. E.; Maxwell, J. R.; Myers, R. N.

    1976-01-01

    Mycobacterium fortuitum utilizes certain stereoisomeric mixtures of individual multimethyl branched alkanes as sole carbon source, including 2,6(R), 10(S), 14(RS)-tetramethylhexadecane; 2,6(R), 10(S), 14(RS)-tetramethylheptadecane; 2,6(RS), 10(RS)-trimethyltetradecane, and 2,6(R), 10(S)-trimethylpentadecane. Products of oxidation isolated from the bacterial lipids were acids derived predominantly from oxidation of the isopropyl terminus of each alkane, except in the case of 2,6(RS), 10(RS)-trimethyltetradecane. With the latter, acids from oxidation at either terminus were detected in comparable proportions.

  17. Alkane-grown Beauveria bassiana produce mycelial pellets displaying peroxisome proliferation, oxidative stress, and cell surface alterations.

    PubMed

    Huarte-Bonnet, Carla; Paixão, Flávia R S; Ponce, Juan C; Santana, Marianela; Prieto, Eduardo D; Pedrini, Nicolás

    2018-06-01

    The entomopathogenic fungus Beauveria bassiana is able to grow on insect cuticle hydrocarbons, inducing alkane assimilation pathways and concomitantly increasing virulence against insect hosts. In this study, we describe some physiological and molecular processes implicated in growth, nutritional stress response, and cellular alterations found in alkane-grown fungi. The fungal cytology was investigated using light and transmission electron microscopy while the surface topography was examined using atomic force microscopy. Additionally, the expression pattern of several genes associated with oxidative stress, peroxisome biogenesis, and hydrophobicity were analysed by qPCR. We found a novel type of growth in alkane-cultured B. bassiana similar to mycelial pellets described in other alkane-free fungi, which were able to produce viable conidia and to be pathogenic against larvae of the beetles Tenebrio molitor and Tribolium castaneum. Mycelial pellets were formed by hyphae cumulates with high peroxidase activity, exhibiting peroxisome proliferation and an apparent surface thickening. Alkane-grown conidia appeared to be more hydrophobic and cell surfaces displayed different topography than glucose-grown cells. We also found a significant induction in several genes encoding for peroxins, catalases, superoxide dismutases, and hydrophobins. These results show that both morphological and metabolic changes are triggered in mycelial pellets derived from alkane-grown B. bassiana. Copyright © 2017 British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  18. 40 CFR 721.1630 - 1,2-Ethanediol bis(4-methylbenzenesulfonate); 2,2-oxybis-ethane bis(4-methylbenzenesulfonate...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-methylbenzenesulfonate); 2,2-oxybis-ethane bis(4-methylbenzenesulfonate); ethanol, 2,2â²-[oxybis(2,1-ethanediyl oxy)]bis-, bis(4-methylbenzenesulfonate); ethanol, 2,2â²-[oxybis (2,1-ethane diyloxy)] bis-, bis(4-methylbenzenesulfonate); ethanol, 2,2â²-[[1-[(2-propenyloxy) methyl]-1,2-ethanediyl] bis(oxy)]bis-, bis(4-methylbenzene...

  19. 40 CFR 721.1630 - 1,2-Ethanediol bis(4-methylbenzenesulfonate); 2,2-oxybis-ethane bis(4-methylbenzenesulfonate...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-methylbenzenesulfonate); 2,2-oxybis-ethane bis(4-methylbenzenesulfonate); ethanol, 2,2â²-[oxybis(2,1-ethanediyl oxy)]bis-, bis(4-methylbenzenesulfonate); ethanol, 2,2â²-[oxybis (2,1-ethane diyloxy)] bis-, bis(4-methylbenzenesulfonate); ethanol, 2,2â²-[[1-[(2-propenyloxy) methyl]-1,2-ethanediyl] bis(oxy)]bis-, bis(4-methylbenzene...

  20. 40 CFR 721.1630 - 1,2-Ethanediol bis(4-methylbenzenesulfonate); 2,2-oxybis-ethane bis(4-methylbenzenesulfonate...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-methylbenzenesulfonate); 2,2-oxybis-ethane bis(4-methylbenzenesulfonate); ethanol, 2,2â²-[oxybis(2,1-ethanediyl oxy)]bis-, bis(4-methylbenzenesulfonate); ethanol, 2,2â²-[oxybis (2,1-ethane diyloxy)] bis-, bis(4-methylbenzenesulfonate); ethanol, 2,2â²-[[1-[(2-propenyloxy) methyl]-1,2-ethanediyl] bis(oxy)]bis-, bis(4-methylbenzene...

  1. Is Optical Gas Imaging Effective for Detecting Fugitive Methane Emissions? - A Technological and Policy Perspective

    NASA Astrophysics Data System (ADS)

    Ravikumar, A. P.; Wang, J.; Brandt, A. R.

    2016-12-01

    Mitigating fugitive methane emissions from the oil and gas industry has become an important concern for both businesses and regulators. While recent studies have improved our understanding of emissions from all sectors of the natural gas supply chain, cost-effectively identifying leaks over expansive natural gas infrastructure remains a significant challenge. Recently, the Environmental Protection Agency (EPA) has recommended the use of optical gas imaging (OGI) technologies to be used in industry-wide leak detection and repair (LDAR) programs. However, there has been little to no systematic study of the effectiveness of infrared-camera-based OGI technology for leak detection applications. Here, we develop a physics-based model that simulates a passive infrared camera imaging a methane leak against varying background and ambient conditions. We verify the simulation tool through a series of large-volume controlled release field experiments wherein known quantities of methane were released and imaged from a range of distances. After simulator verification, we analyze the effects of environmental conditions like temperature, wind, and imaging background on the amount of methane detected from a statistically representative survey program. We also examine the effects of LDAR design parameters like imaging distance, leak size distribution, and gas composition. We show that imaging distance strongly affects leak detection - EPA's expectation of a 60% reduction in fugitive emissions based on a semi-annual LDAR survey will be realized only if leaks are imaged at a distance less than 10 m from the source under ideal environmental conditions. Local wind speed is also shown to be important. We show that minimum detection limits are 3 to 4 times higher for wet-gas compositions that contain a significant fraction of ethane and propane, resulting a significantly large leakage rate. We also explore the importance of `super-emitters' on the performance of an OGI-based leak

  2. Toward aldehyde and alkane production by removing aldehyde reductase activity in Escherichia coli.

    PubMed

    Rodriguez, Gabriel M; Atsumi, Shota

    2014-09-01

    Advances in synthetic biology and metabolic engineering have enabled the construction of novel biological routes to valuable chemicals using suitable microbial hosts. Aldehydes serve as chemical feedstocks in the synthesis of rubbers, plastics, and other larger molecules. Microbial production of alkanes is dependent on the formation of a fatty aldehyde intermediate which is converted to an alkane by an aldehyde deformylating oxygenase (ADO). However, microbial hosts such as Escherichia coli are plagued by many highly active endogenous aldehyde reductases (ALRs) that convert aldehydes to alcohols, which greatly complicates strain engineering for aldehyde and alkane production. It has been shown that the endogenous ALR activity outcompetes the ADO enzyme for fatty aldehyde substrate. The large degree of ALR redundancy coupled with an incomplete database of ALRs represents a significant obstacle in engineering E. coli for either aldehyde or alkane production. In this study, we identified 44 ALR candidates encoded in the E. coli genome using bioinformatics tools, and undertook a comprehensive screening by measuring the ability of these enzymes to produce isobutanol. From the pool of 44 candidates, we found five new ALRs using this screening method (YahK, DkgA, GldA, YbbO, and YghA). Combined deletions of all 13 known ALRs resulted in a 90-99% reduction in endogenous ALR activity for a wide range of aldehyde substrates (C2-C12). Elucidation of the ALRs found in E. coli could guide one in reducing competing alcohol formation during alkane or aldehyde production. Copyright © 2014 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  3. Growth factor controls on the distribution and carbon isotope composition of n-alkanes in leaf wax

    NASA Astrophysics Data System (ADS)

    Jia, C.; Xie, S.; Huang, X.

    2012-12-01

    Cuticular wax plays pivotal physiological and ecological roles in the interactions between plants and the environments in which they grow. Plant-derived long-chain alkanes are more resistant to decay than other biochemical polymers. n-Alkane distributions (Carbon Preference Index (CPI) values and Average Chain Length (ACL) values) and carbon isotopic values are used widely in palaeoenvironmental reconstruction. However, there is little information available on how growth stages of the plant might influence the abundance of n-alkanes in the natural environment. In this study, we analyzed n-alkane distributions and carbon isotope data from two tree species (Cinnamomum camphora (L.) Presl. and Liquidambar formosana Hance) collected monthly from 2009 to 2011 in Nanwang Shan, Wuhan, Hubei Province. CPI values for n-alkanes from C. camphora remained stable in autumn and winter but fluctuated dramatically during spring and autumn each year. Positive correlations between CPI values and the relative content of (C27+C29) were observed in both sun and shade leaves of C. camphora from April to July. In L. formosana, CPI values decreased gradually from April to December. A similar trend was observed in all three years suggesting that growth stages rather than temperature or relative humidity affected the CPI values on a seasonal timescale. In the samples of L. formosana ACL values were negatively correlated with CPI values in the growing season (from April to July) and positively correlated with CPI values in the other seasons. The δ13C values of C29 and C31 n-alkanes displayed more negative carbon isotopic values in autumn and winter compared with leaves sampled at the start of the growing season from both trees. The δ13C values of C29 and C31 n-alkanes of L. formosana decreased from April to December. These results demonstrate the importance of elucidating the growing factors that influence the distribution and δ13C values of alkanes in modern leaves prior to using CPI

  4. The effect of environmental factors on stable isotopic composition of n-alkanes in Mediterranean olive oils

    NASA Astrophysics Data System (ADS)

    Pedentchouk, Nikolai; Mihailova, Alina; Abbado, Dimitri

    2014-05-01

    Traceability of the geographic origin of olive oils is an important issue from both commercial and health perspectives. This study evaluates the impact of environmental factors on stable C and H isotope compositions of n-alkanes in extra virgin olive oils from Croatia, France, Greece, Italy, Morocco, Portugal, Slovenia, and Spain. The data are used to investigate the applicability of stable isotope methodology for olive oil regional classification in the Mediterranean region. Analysis of stable C isotope composition of n-C29 alkane showed that extra virgin olive oils from Portugal and Spain have the most positive n-C29 alkane delta13C values. Conversely, olive oils from Slovenia, northern and central Italy are characterized by the most negative values. Overall, the n-C29 alkane delta13C values show a positive correlation with the mean air temperature during August-December and a negative correlation with the mean relative humidity during these months. Analysis of stable H isotope composition of n-C29 alkane revealed that the deltaD values are the most positive in olive oils from Greece and Morocco and the most negative in oils from northern Italy. The deltaD values of oils show significant correlation with all the analyses geographical parameters: the mean air temperature and relative humidity during August-December, the total amount of rainfall (the same months) and the annual deltaD values of precipitation. As predictor variables in the Categorical Data Analysis, the n-C29 alkane deltaD values show the most significant discriminative power, followed by the n-C29 alkane delta13C values. Overall, 93.4% of olive oil samples have been classified correctly into one of the production regions. Our findings suggest that an integrated analysis of C and H isotope compositions of n-alkanes extracted from extra virgin olive oil could become a useful tool for geographical provenancing of this highly popular food commodity.

  5. Simulation and Characterization of Methane Hydrate Formation

    NASA Astrophysics Data System (ADS)

    Dhakal, S.; Gupta, I.

    2017-12-01

    The ever rising global energy demand dictates human endeavor to explore and exploit new and innovative energy sources. As conventional oil and gas reserves deplete, we are constantly looking for newer sources for sustainable energy. Gas hydrates have long been discussed as the next big energy resource to the earth. Its global occurrence and vast quantity of natural gas stored is one of the main reasons for such interest in its study and exploration. Gas hydrates are solid crystalline substances with trapped molecules of gas inside cage-like crystals of water molecules. Gases such as methane, ethane, propane and carbon dioxide can form hydrates but in natural state, methane hydrates are the most common. Subsurface geological conditions with high pressure and low temperature favor the formation and stability of gas hydrates. While the occurrence and potential of gas hydrates as energy source has long been studied, there are still gaps in knowledge, especially in the quantitative research of gas hydrate formation and reservoir characterization. This study is focused on exploring and understanding the geological setting in which gas hydrates are formed and the subsequent changes in rock characteristics as they are deposited. It involves the numerical simulation of methane gas flow through fault to form hydrates. The models are representative of the subsurface geologic setting of Gulf of Mexico with a fault through layers of shale and sandstone. Hydrate formation simulated is of thermogenic origin. The simulations are conducted using TOUGH+HYDRATE, a numerical code developed at the Lawrence Berkley National Laboratory for modeling multiphase flow through porous medium. Simulation results predict that as the gas hydrates form in the pores of the model, the porosity, permeability and other rock properties are altered. Preliminary simulation results have shown that hydrates begin to form in the fault zone and gradually in the sandstone layers. The increase in hydrate

  6. Identifying sources, formation pathways and geological controls of methane in shallow groundwater above unconventional natural gas plays in Alberta, Canada

    NASA Astrophysics Data System (ADS)

    Mayer, B.; Humez, P.; Nightingale, M.; Ing, J.; Kingston, A. W.; Clarkson, C.; Cahill, A.; Parker, B. L.; Cherry, J. A.; Millot, R.; Kloppmann, W.; Osadetz, K.; Lawton, D.

    2015-12-01

    With the advent of shale gas development facilitated by hydraulic fracturing it has become increasingly important to develop tracer tools to scientifically determine potential impacts of stray gases on shallow aquifers. To assess potential future impacts on shallow aquifers by leakage of natural gas from unconventional energy resource development, it is essential to establish a reliable baseline. Occurrence of methane in shallow groundwater in Alberta (Canada) between 2006 and 2014 was assessed and was ubiquitous in 186 sampled monitoring wells. Free and dissolved gas sampling and measurement approaches yielded comparable results with often low methane concentrations in shallow groundwater, but in 28 samples methane exceeded 10 mg/L in dissolved gas and 300,000 ppmv in free gas. Methane concentrations in free and dissolved gas samples were found to increase with well depth and were especially elevated in groundwater obtained from aquifers containing coal seams and shale units. Carbon isotope ratios of methane averaged -69.7 ± 11.1 ‰ in free gas and -65.6 ± 8.9 ‰ in dissolved gas. δ13C values were not found to vary with well depth or lithology indicating that the methane in Alberta groundwater was formed via a similar mechanism. The low δ13C values in concert with average δ2H values of -289 ± 44 ‰ suggest that most methane was of biogenic origin predominantly generated via CO2 reduction. This interpretation is confirmed by gas dryness parameters typically >500 due to only small amounts of ethane and a lack of propane in most samples. Novel approaches of in-situ concentration and isotope measurements for methane during drilling of a 530 m deep well yielded a mud-gas profile characterizing natural gas occurrences in the intermediate zone. Comparison with mudgas profile carbon isotope data revealed that methane in the investigated shallow groundwater in Alberta is isotopically similar to hydrocarbon gases found in 100-250 meter depths in the Western

  7. Dechlorination of 1,1,1-Trichloro-2,2-bis(p-chlorophenyl)ethane by Aerobacter aerogenes

    USGS Publications Warehouse

    Wedemeyer, Gary

    1967-01-01

    Whole cells or cell-free extracts of Aerobacter aerogenes catalyze the degradation of 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (DDT) in vitro to at least seven metabolites: 1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene (DDE); 1,1-dichloro-2,2-bis(p-chlorophenyl)ethane (DDD); 1-chloro-2,2-bis(p-chlorophenyl)ethylene (DDMU); 1-chloro-2,2-bis(p-chlorophenyl)ethane (DDMS); unsym-bis(p-chlorophenyl)ethylene (DDNU); 2,2-bis(p-chlorophenyl)acetate (DDA); and 4,4′-dichlorobenzophenone (DBP). The use of metabolic inhibitors together with pH and temperature studies indicated that discrete enzymes are involved. By use of the technique of sequential analysis, the metabolic pathway was shown to be: DDT → DDD →DDMU →DDMS → DDNU → DDA → DBP, or DDT → DDE. Dechlorination was marginally enhanced by light-activated flavin mononucleotide.

  8. Microbial mineralization of ethene under sulfate-reducing conditions

    USGS Publications Warehouse

    Bradley, P.M.; Chapelle, F.H.

    2002-01-01

    A limited investigation of the potential for anaerobic ethylene biodegradation under SO4-reducing conditions was performed. Microorganisms indigenous to a lake-bed sediment completely mineralized [1,2-14C] ethylene to 14CO2 when incubated under SO4-reducing conditions. Reliance on ethylene and/or ethane accumulation as a quantitative indicator of complete reductive dechlorination of chloroethylene contaminants may not be warranted. SO4 addition stimulated SO4 reduction as indicated by decreasing SO4 concentrations (> 40% decrease) and production of dissolved sulfide (880 ??M). SO4 amendment completely suppressed the production of ethane and methane. The concomitant absence of ethane and methane production under SO4-amended conditions was consistent with previous conclusions that reduction of ethylene to ethane occurred under methanogenic conditions. A lack of ethylene accumulation under SO4-reducing conditions may reflect insignificant reductive dechlorination of vinyl chloride or efficient anaerobic mineralization of ethylene to CO2.

  9. 40 CFR 721.10163 - Chloro fluoro alkane (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Chloro fluoro alkane (generic). 721.10163 Section 721.10163 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC...)(2) of this section. (2) The significant new uses are: (i) Industrial, commercial, and consumer...

  10. MODELING OF ALKANE EMISSIONS FROM A WOOD STAIN

    EPA Science Inventory

    The article discusses full-scale residential house tests to evaluate the effects of organic emissions from a wood finishing product--wood stain--on indoor air quality (IAQ). The test house concentrations of three alkane species, nonane, decane, and undecane, were measured as a fu...

  11. Berberine cation: A fluorescent chemosensor for alkanes and other low-polarity compounds. An explanation of this phenomenon

    PubMed

    Cossio; Arrieta; Cebolla; Membrado; Vela; Garriga; Domingo

    2000-07-27

    Alkanes in the presence of berberine sulfate provide an enhancement of fluorescent signal, which depends on alkane concentration and structure, when the system is irradiated with monochromatic UV light. Computational analysis suggests that an ion-induced dipole between alkanes and berberine sulfate is responsible for this phenomenon. This interaction can properly model the experimentally obtained fluorescent response. The proposed explanation allows other interacting systems to be designed, which have been experimentally confirmed.

  12. Production of Low-Freezing-Point Highly Branched Alkanes through Michael Addition.

    PubMed

    Jing, Yaxuan; Xia, Qineng; Liu, Xiaohui; Wang, Yanqin

    2017-12-22

    A new approach for the production of low-freezing-point, high-quality fuels from lignocellulose-derived molecules was developed with Michael addition as the key step. Among the investigated catalysts, CoCl 2 ⋅6 H 2 O was found most active for the Michael addition of 2,4-pentanedione with FA (single aldol adduct of furfural and acetone, 4-(2-furanyl)-3-butene-2-one). Over CoCl 2 ⋅6 H 2 O, a high carbon yield of C 13 oxygenates (about 75 %) can be achieved under mild conditions (353 K, 20 h). After hydrodeoxygenation, low-freezing-point (<223 K) branched alkanes with 13 carbons within jet fuel ranges were obtained over a Pd/NbOPO 4 catalyst. Furthermore, C 18,23 fuel precursors could be easily synthesized through Michael addition of 2,4-pentanedione with DFA (double-condensation product of furfural and acetone) under mild conditions and the molar ratio of C 18 /C 23 is dependent on the reaction conditions of Michael addition. After hydrodeoxygenation, high density (0.8415 g mL -1 ) and low-freezing-point (<223 K) branched alkanes with 18, 23 carbons within lubricant range were also obtained over a Pd/NbOPO 4 catalyst. These highly branched alkanes can be directly used as transportation fuels or additives. This work opens a new strategy for the synthesis of highly branched alkanes with low freezing point from renewable biomass. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Determination of Ethane-1,2-diamine in Inert Complexes.

    ERIC Educational Resources Information Center

    Searle, Graeme H.

    1985-01-01

    Describes a procedure for determining ethane-1,2-diamine (EN) which is generally applicable for inert or labile complexes or for EN in its salts, although it cannot be used directly with ammonium or coordinated ammonia. It gives results with five percent accuracy or better and requires less than one hour laboratory time. (JN)

  14. n-Alkane distributions as indicators of novel ecosystem development in western boreal forest soils

    NASA Astrophysics Data System (ADS)

    Norris, Charlotte; Dungait, Jennifer; Quideau, Sylvie

    2013-04-01

    Novel ecosystem development is occurring within the western boreal forest of Canada due to land reclamation following surface mining in the Athabasca Oil Sands Region. Sphagnum peat is the primary organic matter amendment used to reconstruct soils in the novel ecosystems. We hypothesised that ecosystem recovery would be indicated by an increasing similarity in the biomolecular characteristics of novel reconstructed soil organic matter (SOM) derived from peat to those of natural boreal ecosystems. In this study, we evaluated the use of the homologous series of very long chain (>C20) n-alkanes with odd-over-even predominance as biomarker signatures to monitor the re-establishment of boreal forests on reconstructed soils. The lipids were extracted from dominant vegetation inputs and SOM from a series of natural and novel ecosystem reference plots. We observed unique very long n-alkane signatures of the source vegetation, e.g. Sphagnum sp. was dominated by C31 and aspen (Populus tremuloides Michx.) leaves by C25. Greater concentrations of very long chain n-alkanes were extracted from natural than novel ecosystem SOM (p<0.01), and their distribution differed between the two systems (p<0.001) and reflected the dominant vegetation input. Our results indicate that further research is required to clarify the influence of vegetation or disturbance on the signature of very long chain n-alkanes in SOM; however, the use of n-alkanes as biomarkers of ecosystem development is a promising method.

  15. Whole-cell bacterial bioreporter for actively searching and sensing of alkanes and oil spills.

    PubMed

    Zhang, Dayi; He, Yi; Wang, Yun; Wang, Hui; Wu, Lin; Aries, Eric; Huang, Wei E

    2012-01-01

    Acinetobacter baylyi ADP1 was found to tolerate seawater and have a special ability of adhering to an oil-water interface of 10-80 µm emulsified mineral and crude oil droplets. These properties make ADP1 an ideal bacterial chassis for constructing bioreporters that are able to actively search and sense oil spill in water and soils. Acinetobacter baylyi bioreporter ADPWH_alk was developed and applied to the detection of alkanes and alkenes in water, seawater and soils. Bioreporter ADPWH_alk was able to detect a broad range of alkanes and alkenes with carbon chain length from C7 to C36. So far, ADPWH_alk is the only bioreporter that is able to detect alkane with carbon chain length greater than C18. This bioreporter responded to the alkanes in about 30 min and it was independent to the cell growth phase because of two point mutations in alkM promoter recognized by alkane regulatory protein ALKR. ADPWH_alk was applied to detect mineral oil, Brent, Chestnut and Sirri crude oils in water and seawater in the range 0.1-100 mg l(-1), showing that the bioreporter oil detection was semi-quantitative. This study demonstrates that ADPWH_alk is a rapid, sensitive and semi-quantitative bioreporter that can be useful for environmental monitoring and assessment of oil spills in seawater and soils. © 2011 The Authors. Microbial Biotechnology © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.

  16. n-Alkanes in sediments from the Yellow River Estuary, China: Occurrence, sources and historical sedimentary record.

    PubMed

    Wang, Shanshan; Liu, Guijian; Yuan, Zijiao; Da, Chunnian

    2018-04-15

    A total of 21 surface sediments from the Yellow River Estuary (YRE) and a sediment core from the abandoned Old Yellow River Estuary (OYRE) were analyzed for n-alkanes using gas chromatography-mass spectrometry (GC-MS). n-Alkanes in the range C 12 -C 33 and C 13 -C 34 were identified in the surface sediments and the core, respectively. The homologous series were mainly bimodal distribution pattern without odd/even predominance in the YRE and OYRE. The total n-alkanes concentrations in the surface sediments ranged from 0.356 to 0.572mg/kg, with a mean of 0.434mg/kg on dry wt. Evaluation of n-alkanes proxies indicated that the aliphatic hydrocarbons in the surface sediments were derived mainly from a petrogenic source with a relatively low contribution of submerged/floating macrophytes, terrestrial and emergent plants. The dated core covered the time period 1925-2012 and the mean sedimentation rate was ca. 0.5cm/yr. The total n-alkanes concentrations in the core ranged from 0.0394 to 0.941mg/kg, with a mean of 0.180mg/kg. The temporal evolution of n-alkanes reflected the historical input of aliphatic hydrocarbons and was consistent with local and regional anthropogenic activity. In general, the investigation on the sediment core revealed a trend of regional environmental change and the role of anthropogenic activity in environmental change. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. The rotational barrier in ethane: a molecular orbital study.

    PubMed

    Quijano-Quiñones, Ramiro F; Quesadas-Rojas, Mariana; Cuevas, Gabriel; Mena-Rejón, Gonzalo J

    2012-04-20

    The energy change on each Occupied Molecular Orbital as a function of rotation about the C-C bond in ethane was studied using the B3LYP, mPWB95 functional and MP2 methods with different basis sets. Also, the effect of the ZPE on rotational barrier was analyzed. We have found that σ and π energies contribution stabilize a staggered conformation. The σ(s) molecular orbital stabilizes the staggered conformation while the stabilizes the eclipsed conformation and destabilize the staggered conformation. The π(z) and molecular orbitals stabilize both the eclipsed and staggered conformations, which are destabilized by the π(v) and molecular orbitals. The results show that the method of calculation has the effect of changing the behavior of the energy change in each Occupied Molecular Orbital energy as a function of the angle of rotation about the C-C bond in ethane. Finally, we found that if the molecular orbital energy contribution is deleted from the rotational energy, an inversion in conformational preference occurs.

  18. Strategies for electrooptic film fabrication. Influence of pyrrole-pyridine-based dibranched chromophore architecture on covalent self-assembly, thin-film microstructure, and nonlinear optical response.

    PubMed

    Facchetti, Antonio; Beverina, Luca; van der Boom, Milko E; Dutta, Pulak; Evmenenko, Guennadi; Shukla, Atindra D; Stern, Charlotte E; Pagani, Giorgio A; Marks, Tobin J

    2006-02-15

    The new dibranched, heterocyclic "push-pull" chromophores bis{1-(pyridin-4-yl)-2-[2-(N-methylpyrrol-5-yl)]ethane}methane (1), 1-(pyrid-4-yl)-2-(N-methyl-5-formylpyrrol-2-yl)ethylene (2), {1-(N-methylpyridinium-4-yl)-2-[2-(N-methylpyrrol-5-yl)]ethane}{(1-(pyridin-4-yl)-2-[2-(N-methylpyrrol-5-yl)]ethane}methane (3), N-methyl-2-[1-(N-methylpyrid-4-yl)ethen-2-yl]-5-[pyrid-4-yl]ethen-2-yl]pyrrole iodide (4), bis{1-(N-methyl-4-pyridinio)-2-[2-(N-methylpyrrol-5-yl)]ethane}methane iodide (5), and N-methyl-2,5-[1-(N-methylpyrid-4-yl)ethen-2-yl]pyrrole iodide (6) have been synthesized and characterized. The neutral (1 and 2) and monomethyl salts (3 and 4) undergo chemisorptive reaction with iodobenzyl-functionalized surfaces to afford chromophore monolayers SA-1/SA-2 and SA-3/SA-4, respectively. Molecular structures and other physicochemical properties have been defined by (1)H NMR, optical spectroscopy, and XRD. Thin-film characterization by a variety of techniques (optical spectroscopy, specular X-ray reflectivity, atomic force microscopy, X-ray photoelectron spectroscopy, and angle-dependent polarized second harmonic generation) underscore the importance of the chromophore molecular architecture as well as film growth method on film microstructure and optical/electrooptic response.

  19. Raman study of local ordering processes of solid n-alkanes

    NASA Astrophysics Data System (ADS)

    Hacura, A.; Zimnicka, B.; Wrzalik, R.

    2016-02-01

    The microphase separation of n-alkanes with different chain length was investigated by Raman spectroscopy for binary mixture rapidly quenched from the melt. The process was observed as a function of time. The first several minutes after solidification were crucial for the demixing process. For a few weeks old sample the orientational order parameters and were calculated based on the analysis of polarized spectra recorded in the area of the formed domains. The measured values are significantly greater than zero (from 0.17 to 0.32), which indicates the mutual parallel arrangement of the molecules in the domains composed of n-alkanes of the same chain length.

  20. Cyano- and polycyanometalloporphyrins as catalysts for alkane oxidation

    DOEpatents

    Ellis, Jr., Paul E.; Lyons, James E.

    1992-01-01

    Alkanes are oxidized by contact with oxygen-containing gas in the presence as catalyst of a metalloporphyrin in which hydrogen atoms in the porphyrin ring have been substituted with one or more cyano groups. Hydrogen atoms in the porphyrin ring may also be substituted with halogen atoms.