Science.gov

Sample records for alkanethiolate self-assembled monolayers

  1. Alkanethiols on platinum: multicomponent self-assembled monolayers.

    PubMed

    Petrovykh, Dmitri Y; Kimura-Suda, Hiromi; Opdahl, Aric; Richter, Lee J; Tarlov, Michael J; Whitman, Lloyd J

    2006-03-14

    We have studied the formation of self-assembled monolayers (SAMs) of n-alkanethiols on platinum thin films using X-ray photoelectron spectroscopy (XPS), reflection-absorption infrared spectroscopy (RAIRS), spectroscopic ellipsometry (SE), and contact angle (CA) measurements. Specifically, SAMs of 1-hexanethiol, 1-dodecanethiol, and 1-octadecanethiol were grown on polycrystalline Pt films, and the effects of Pt surface preparation, deposition conditions, and solvent treatments on the initial quality and stability of the monolayer in air were investigated. The SAMs prepared under ambient conditions on piranha-cleaned and UV/ozone-cleaned substrates were compared to monolayers formed on template-stripped Pt in an inert atmosphere. We found that alkanethiols deposited from 1 mM ethanolic solutions on piranha-cleaned Pt formed densely packed monolayers in which alkyl chains were oriented close to the surface normal. Stored in the laboratory ambient, these monolayers were unchanged over about 1 week but were largely oxidized in about 1 month. No evidence was found of molecules being weakly bound within the monolayer or having undergone C-S bond scission; however, three distinct sulfur states were observed for all samples in the XPS of the S 2p region. The lowest- and highest-binding-energy components are assigned to alkylthiolate and partially oxidized alkylthiolate species, respectively. The remaining S 2p component (approximately one-third of the sulfur layer), intermediate in binding energy between the other two components, is attributed to a chemisorbed species with a S binding configuration distinct from the majority alkylthiolate: for example, S bound to Pt bound to O, S with a different Pt coordination number, or S in an adsorbed disulfide.

  2. Coadsorption of ferrocene-terminated and unsubstituted alkanethiols on gold: Electroactive self-assembled monolayers

    SciTech Connect

    Chidsey, C.E.D.; Bertozzi, C.R.; Putvinski, T.M.; Mujsce, A.M. )

    1990-05-23

    Self-assembled monolayers provide an ideal system for disentangling the fundamental events in interfacial electron transfer. Coadsorption of ferrocene-terminated alkanethiols with unsubstituted n-alkanethiols on evaporated gold films yields stable, electroactive self-assembled monolayers. Monolayers containing low concentrations of alkanethiols linked to ferrocene by a polar ester group (FcCO{sub 2}(CH{sub 2}){sub n}SH, Fc = ({eta}{sup 5}-C{sub 5}H{sub 5})Fe({eta}{sup 5}-C{sub 5}H{sub 4})) show thermodynamically ideal surface electrochemistry in 1 M HClO{sub 4}, indicating the ferrocene groups to be homogeneous and noninteracting. Higher surface concentrations or use of alkanethiols linked directly to the nonpolar ferrocene group (Fc(CH{sub 2}){sub n}SH) lead to broadened electrochemical features, indicating interactions among ferrocene groups or inhomogeneous sites. Longer chain lengths and lower ferrocene surface concentrations result in slower electron-transfer kinetics with the ferrocene groups. A fraction of the thiols in a monolayer exchange with thiols in an ethanol solution, but much of the monolayer remains unequilibrated after 10 days.

  3. Anodic passivation of tin by alkanethiol self-assembled monolayers examined by cyclic voltammetry and coulometry.

    PubMed

    Worley, Barrett C; Ricks, William A; Prendergast, Michael P; Gregory, Brian W; Collins, Ross; Cassimus, John J; Thompson, Raymond G

    2013-10-22

    The self-assembly of medium chain length alkanethiol monolayers on polycrystalline Sn electrodes has been investigated by cyclic voltammetry and coulometry. These studies have been performed in order to ascertain the conditions under which their oxidative deposition can be achieved directly on the oxide-free Sn surface, and the extent to which these electrochemically prepared self-assembled monolayers (SAMs) act as barriers to surface oxide growth. This work has shown that the potentials for their oxidative deposition are more cathodic (by 100-200 mV) than those for Sn surface oxidation and that the passivating abilities of these SAMs improve with increasing film thickness (or chain length). Oxidative desorption potentials for these films have been observed to shift more positively, and in a highly linear fashion, with increasing film thickness (~75 mV/CH2). Although reductive desorption potentials for the SAMs are in close proximity to those for reduction of the surface oxide (SnOx), little or no SnOx formation occurs unless the potential is made sufficiently anodic that the monolayers start to be removed oxidatively. Our coulometric data indicate that the charge involved with alkanethiol reductive desorption or oxidative deposition is consistent with the formation of a close-packed monolayer, given uncertainties attributable to surface roughness and heterogeneity phenomena. These experiments also reveal that the quantity of charge passed during oxidative desorption is significantly larger than what would be predicted for simple alkylsulfinate or alkylsulfonate formation, suggesting that oxidative removal involves a more complex oxidation mechanism. Analogous chronocoulometric experiments for short-chain alkanethiols on polycrystalline Au electrodes have evidenced similar oxidative charge densities. This implies that the mechanism for oxidative desorption on both surfaces may be very similar, despite the significant differences in the inherent dissolution

  4. Improving the Dielectric Properties of Ethylene-Glycol Alkanethiol Self-Assembled Monolayers

    PubMed Central

    2014-01-01

    Self-assembled monolayers (SAMs) can be formed at the interface between solids and fluids, and are often used to modify the surface properties of the solid. One of the most widely employed SAM systems is exploiting thiol-gold chemistry, which, together with alkane-chain-based molecules, provides a reliable way of SAM formation to modify the surface properties of electrodes. Oligo ethylene-glycol (OEG) terminated alkanethiol monolayers have shown excellent antifouling properties and have been used extensively for the coating of biosensor electrodes to minimize nonspecific binding. Here, we report the investigation of the dielectric properties of COOH-capped OEG monolayers and demonstrate a strategy to improve the dielectric properties significantly by mixing the OEG SAM with small concentrations of 11-mercaptoundecanol (MUD). The monolayer properties and composition were characterized by means of impedance spectroscopy, water contact angle, ellipsometry and X-ray photoelectron spectroscopy. An equivalent circuit model is proposed to interpret the EIS data and to determine the conductivity of the monolayer. We find that for increasing MUD concentrations up to about 5% the resistivity of the SAM steadily increases, which together with a considerable decrease of the phase of the impedance, demonstrates significantly improved dielectric properties of the monolayer. Such monolayers will find widespread use in applications which depend critically on good dielectric properties such as capacitive biosensor. PMID:24447311

  5. Advancing atomic nanolithography: cold atomic Cs beam exposure of alkanethiol self-assembled monolayers

    NASA Astrophysics Data System (ADS)

    O'Dwyer, C.; Gay, G.; Viaris de Lesegno, B.; Weiner, J.; Mützel, M.; Haubrich, D.; Meschede, D.; Ludolph, K.; Georgiev, G.; Oesterschulze, E.

    2005-01-01

    We report the results of a study into the quality of functionalized surfaces for nanolithographic imaging. Self-assembled monolayer (SAM) coverage, subsequent post-etch pattern definition and minimum feature size all depend on the quality of the Au substrate used in atomic nanolithographic experiments. We find sputtered Au substrates yield much smoother surfaces and a higher density of {111} oriented grains than evaporated Au surfaces. A detailed study of the self-assembly mechanism using molecular resolution AFM and STM has shown that the monolayer is composed of domains with sizes typically of 5-25 nm, and multiple molecular domains can exist within one Au grain. Exposure of the SAM to an optically-cooled atomic Cs beam traversing a two-dimensional array of submicron material masks ans also standing wave optical masks allowed determination of the minimum average Cs dose (2 Cs atoms per SAM molecule) and the realization of < 50 nm structures. The SAM monolayer contains many non-uniformities such as pin-holes, domain boundaries and monoatomic depressions which are present in the Au surface prior to SAM adsorption. These imperfections limit the use of alkanethiols as a resist in atomic nanolithography experiments. These studies have allowed us to realize an Atom Pencil suitable for deposition of precision quantities of material at the microand nanoscale to an active surface.

  6. Removal of self-assembled monolayers of alkanethiolates on gold by plasma cleaning

    NASA Astrophysics Data System (ADS)

    Raiber, Kevin; Terfort, Andreas; Benndorf, Carsten; Krings, Norman; Strehblow, Hans-Henning

    2005-12-01

    Plasmas of hydrogen or oxygen were used to remove self-assembled monolayers (SAMs) of alkanethiolates from gold surfaces. X-ray photoelectron spectroscopy (XPS), scanning tunneling microscopy (STM), ellipsometry, and contact angle measurements were used to compare the efficiency of the different plasmas and to explore their respective influence on the surface topology. Both plasmas were able to remove the SAM from the gold surface within less than 60 s. While the hydrogen plasma produces a de facto sulfur-free surface, oxygen plasma cleaning leads to an Au 2O 3 surface contaminated with oxidized sulfur species (probably sulfonates and sulfate). Nevertheless, the plasmas alter the roughness of the gold surfaces only marginally, as demonstrated by STM.

  7. Charge-transfer dynamics in azobenzene alkanethiolate self-assembled monolayers on gold

    NASA Astrophysics Data System (ADS)

    Gahl, Cornelius; Schmidt, Roland; Brete, Daniel; Paarmann, Stephanie; Weinelt, Martin

    2016-01-01

    We have studied the charge-transfer dynamics in azobenzene-functionalized alkanethiolate self-assembled monolayers. We compare the core-hole-clock technique, i.e., resonant vs. non-resonant contributions in the azobenzene autoionization of the Cls-π* core exciton, with the lifetime of a molecular resonance determined by two-photon photoemission spectroscopy using femtosecond laser pulses. Both techniques yield comparable charge-transfer times of 80 ± 20 fs for a linker consisting of three CH2 groups and one oxygen unit. Thus the quenching of the excitation is about one order of magnitude faster than the time required for the trans to cis isomerization of the azobenzene photoswitch in solution.

  8. Understanding the Phase Diagram of Self-Assembled Monolayers of Alkanethiolates on Gold

    PubMed Central

    2016-01-01

    Alkanethiolate monolayers on gold are important both for applications in nanoscience as well as fundamental studies of adsorption and self-assembly at metal surfaces. While considerable experimental effort has been put into understanding the phase diagram of these systems, theoretical work based on density functional theory (DFT) has long been hampered by the inability of conventional exchange-correlation functionals to describe dispersive interactions. In this work, we combine dispersion-corrected DFT calculations using the new vdW-DF-CX functional with the ab initio thermodynamics method to study the stability of dense standing-up and low-coverage lying-down phases on Au(111). We demonstrate that the lying-down phase has a thermodynamic region of stability starting from thiolates with alkyl chains consisting of n ≈ 3 methylene units. This phase emerges as a consequence of a competition between dispersive chain–chain and chain–substrate interactions, where the strength of the latter varies more strongly with n. A phase diagram is derived under ultrahigh-vacuum conditions, detailing the phase transition temperatures of the system as a function of the chain length. The present work illustrates that accurate ab initio modeling of dispersive interactions is both feasible and essential for describing self-assembled monolayers. PMID:27313813

  9. Influence of Self-Assembled Alkanethiol Monolayers on Stochastic Amperometric On-Chip Detection of Silver Nanoparticles.

    PubMed

    Krause, Kay J; Adly, Nouran; Yakushenko, Alexey; Schnitker, Jan; Mayer, Dirk; Offenhäusser, Andreas; Wolfrum, Bernhard

    2016-04-01

    We investigate the influence of self-assembled alkanethiol monolayers at the surface of platinum microelectrode arrays on the stochastic amperometric detection of citrate-stabilized silver nanoparticles in aqueous solutions. The measurements were performed using a microelectrode array featuring 64 individually addressable electrodes that are recorded in parallel with a sampling rate of 10 kHz for each channel. We show that both the functional end group and the total length of the alkanethiol influence the charge transfer. Three different terminal groups, an amino, a hydroxyl, and a carboxyl, were investigated using two different molecule lengths of 6 and 11 carbon atoms. Finally, we show that a monolayer of alkanethiols with a length of 11 carbon atoms and a carboxyl terminal group can efficiently block the charge transfer of free nanoparticles in an aqueous solution.

  10. Self-Assembled Monolayers of n-Alkanethiols Suppress Hydrogen Evolution and Increase the Efficiency of Rechargeable Iron Battery Electrodes

    SciTech Connect

    Malkhandi, S; Yang, B; Manohar, AK; Prakash, GKS; Narayanan, SR

    2013-01-09

    Iron-based rechargeable batteries, because of their low cost, eco-friendliness, and durability, are extremely attractive for large-scale energy storage. A principal challenge in the deployment of these batteries is their relatively low electrical efficiency. The low efficiency is due to parasitic hydrogen evolution that occurs on the iron electrode during charging and idle stand. In this study, we demonstrate for the first time that linear alkanethiols are very effective in suppressing hydrogen evolution on alkaline iron battery electrodes. The alkanethiols form self-assembled monolayers on the iron electrodes. The degree of suppression of hydrogen evolution by the alkanethiols was found to be greater than 90%, and the effectiveness of the alkanethiol increased with the chain length. Through steady-state potentiostatic polarization studies and impedance measurements on high-purity iron disk electrodes, we show that the self-assembly of alkanethiols suppressed the parasitic reaction by reducing the interfacial area available for the electrochemical reaction. We have modeled the effect of chain length of the alkanethiol on the surface coverage, charge-transfer resistance, and double-layer capacitance of the interface using a simple model that also yields a value for the interchain interaction energy. We have verified the improvement in charging efficiency resulting from the use of the alkanethiols in practical rechargeable iron battery electrodes. The results of battery tests indicate that alkanethiols yield among the highest faradaic efficiencies reported for the rechargeable iron electrodes, enabling the prospect of a large-scale energy storage solution based on low-cost iron-based rechargeable batteries.

  11. Bacterial adhesion to hydroxyl- and methyl-terminated alkanethiol self-assembled monolayers.

    PubMed Central

    Wiencek, K M; Fletcher, M

    1995-01-01

    The attachment of bacteria to solid surfaces is influenced by substratum chemistry, but to determine the mechanistic basis of this relationship, homogeneous, well-defined substrata are required. Self-assembled monolayers (SAMs) were constructed from alkanethiols to produce a range of substrata with different exposed functional groups, i.e., methyl and hydroxyl groups and a series of mixtures of the two. Percentages of hydroxyl groups in the SAMs and substratum wettability were measured by X-ray photoelectron spectroscopy and contact angles of water and hexadecane, respectively. SAMs exhibited various substratum compositions and wettabilities, ranging from hydrophilic, hydroxyl-terminated monolayers to hydrophobic, methyl-terminated monolayers. The kinetics of attachment of an estuarine bacterium to these surfaces in a laminar flow chamber were measured over periods of 120 min. The initial rate of net adhesion, the number of cells attached after 120 min, the percentage of attached cells that adsorbed or desorbed between successive measurements, and the residence times of attached cells were quantified by phase-contrast microscopy and digital image processing. The greatest numbers of attached cells occurred on hydrophobic surfaces, because (i) the initial rates of adhesion and the mean numbers of cells that attached after 120 min increased with the methyl content of the SAM and the contact angle of water and (ii) the percentage of cells that desorbed between successive measurements (ca. 2 min) decreased with increasing substratum hydrophobicity. With all surfaces, 60 to 80% of the cells that desorbed during the 120-min exposure period had residence times of less than 10 min, suggesting that establishment of firm adhesion occurred quickly on all of the test surfaces. PMID:7721687

  12. Structure and Phase Behavior of Mixed Self-Assembled Alkanethiolate Monolayers on Gold Nanoparticles: A Monte Carlo Study.

    PubMed

    Fetisov, Evgenii O; Siepmann, J Ilja

    2016-03-01

    Configurational-bias Monte Carlo (CBMC) simulations are carried out to investigate the structure and phase behavior of self-assembled monolayers consisting of equimolar alkanethiolate mixtures chemisorbed on the surface of gold nanoparticles. The simulations probe the effects of variations in the chain length, nanoparticle curvature, and exchange of alkanethiolates between nanoparticles. The TraPPE-UA force field is used for the alkanethiolates, whereas the nanoparticle is represented by gold atoms placed on the surface of a sphere. CBMC identity exchange moves are used to enhance sampling of the spatial distribution of the different ligands and to ensure that thermodynamic equilibrium is reached. At a temperature of 298 K, mixtures differing in length by four methylene units exhibit some degree of local segregation. In contrast, the hexanethiolate/tetradecanethiolate mixture yields Janus-like arrangement when the ligands are confined to a single nanoparticle but global demixing when the ligands are allowed to distribute between two nanoparticles. PMID:26702673

  13. Inhibition of Escherichia coli biofilm formation by self-assembled monolayers of functional alkanethiols on gold.

    PubMed

    Hou, Shuyu; Burton, Erik A; Simon, Karen A; Blodgett, Dustin; Luk, Yan-Yeung; Ren, Dacheng

    2007-07-01

    Bacterial biofilms cause serious problems, such as antibiotic resistance and medical device-related infections. To further understand bacterium-surface interactions and to develop efficient control strategies, self-assembled monolayers (SAMs) of alkanethiols presenting different functional groups on gold films were analyzed to determine their resistance to biofilm formation. Escherichia coli was labeled with green florescence protein, and its biofilm formation on SAM-modified surfaces was monitored by confocal laser scanning microscopy. The three-dimensional structures of biofilms were analyzed with the COMSTAT software to obtain information about biofilm thickness and surface coverage. SAMs presenting methyl, L-gulonamide (a sugar alcohol tethered with an amide bond), and tri(ethylene glycol) (TEG) groups were tested. Among these, the TEG-terminated SAM was the most resistant to E. coli biofilm formation; e.g., it repressed biofilm formation by E. coli DH5alpha by 99.5% +/- 0.1% for 1 day compared to the biofilm formation on a bare gold surface. When surfaces were patterned with regions consisting of methyl-terminated SAMs surrounded by TEG-terminated SAMs, E. coli formed biofilms only on methyl-terminated patterns. Addition of TEG as a free molecule to growth medium at concentrations of 0.1 and 1.0% also inhibited biofilm formation, while TEG at concentrations up to 1.5% did not have any noticeable effects on cell growth. The results of this study suggest that the reduction in biofilm formation on surfaces modified with TEG-terminated SAMs is a result of multiple factors, including the solvent structure at the interface, the chemorepellent nature of TEG, and the inhibitory effect of TEG on cell motility.

  14. Mechanical and charge transport properties of alkanethiol self-assembled monolayers on Au (111) surface: The Role of Molecular Tilt

    SciTech Connect

    Mulleregan, Alice; Qi, Yabing; Ratera, Imma; Park, Jeong Y.; Ashby, Paul D.; Quek, Su Ying; Neaton, J. B.; Salmeron, Miquel

    2007-11-12

    The relationship between charge transport and mechanical properties of alkanethiol self-assembled monolayers (SAM) on Au(111) films has been investigated using an atomic force microscope with a conductive tip. Molecular tilts induced by the pressure applied by the tip cause stepwise increases in film conductivity. A decay constant {beta} = 0.57 {+-} 0.03 {angstrom}{sup -1} was found for the current passing through the film as a function of tip-substrate separation due to this molecular tilt. This is significantly smaller than the value of {approx} 1 {angstrom}{sup -1} found when the separation is changed by changing the length of the alkanethiol molecules. Calculations indicate that for isolated dithiol molecules S-bonded to hollow sites, the junction conductance does not vary significantly as a function of molecular tilt. The impact of S-Au bonding on SAM conductance is discussed.

  15. Development of a DNA Sensor Based on Alkanethiol Self-Assembled Monolayer-Modified Electrodes

    PubMed Central

    Loaiza, Óscar A.; Campuzano, Susana; López-Berlanga, María; Pedrero, María; Pingarrón, José M.

    2005-01-01

    An electrochemical DNA biosensor based on recognition of double or single stranded DNA (ds-DNA/ss-DNA) immobilised on a self-assembled modified gold electrode is presented for denaturalisation and hybridisation detection. DNA is covalently bond on a self assembled 3-mercaptopropionic acid monolayer by using water soluble N-3-(dimethylaminopropyl)-N prime;ethylcarbodiimide hydrochloride (EDC) and N-hydroxisulfosuccinimide (NHSS) as linkers. The interaction between the immobilised DNA and methylene blue (MB) is investigated using square wave voltammetry (SWV). The increase or diminution of peak currents of the MB upon the hybridisation or denaturalisation event at the modified electrode surface is studied.

  16. Automated scanning probe lithography with n-alkanethiol self assembled monolayers on Au(111): Application for teaching undergraduate laboratories

    PubMed Central

    Brown, Treva T.; LeJeune, Zorabel M.; Liu, Kai; Hardin, Sean; Li, Jie-Ren; Rupnik, Kresimir; Garno, Jayne C.

    2010-01-01

    Controllers for scanning probe instruments can be programmed for automated lithography to generate desired surface arrangements of nanopatterns of organic thin films, such as n-alkanethiol self-assembled monolayers (SAMs). In this report, atomic force microscopy (AFM) methods of lithography known as nanoshaving and nanografting are used to write nanopatterns within organic thin films. Commercial instruments provide software to control the length, direction, speed, and applied force of the scanning motion of the tip. For nanoshaving, higher forces are applied to an AFM tip to selectively remove regions of the matrix monolayer, exposing bare areas of the gold substrate. Nanografting is accomplished by force-induced displacement of molecules of a matrix SAM, followed immediately by the surface self-assembly of n-alkanethiol molecules from solution. Advancements in AFM automation enable rapid protocols for nanolithography, which can be accomplished within the tight time restraints of undergraduate laboratories. Example experiments with scanning probe lithography (SPL) will be described in this report that were accomplished by undergraduate students during laboratory course activities and research internships in the chemistry department of Louisiana State University. Students were introduced to principles of surface analysis and gained “hands-on” experience with nanoscale chemistry. PMID:21483651

  17. Self-assembled alkanethiol monolayers on a Zn substrate: Interface studied by XPS

    NASA Astrophysics Data System (ADS)

    Lang, P.; Nogues, C.

    2008-07-01

    After having presented the organization and self-assembly of alkanethiols on zinc substrates, we focus here on the bond between the thiol sulfur and the metal. The interfacial bond between decanethiol and bulk Zn platelet has been investigated by X-ray photoelectron spectroscopy. In the presence of traces of oxygen, the Zn is oxidized and subsequently the thiolate -Zn(II)-SR is formed whatever the adsorption time tads and ageing conditions. This is attributed to the inability of the thiol to reduce the Zn(II). Results for the Zn substrate are discussed and we put into perspective the behaviour of Zn compared to other metals in the light of its great affinity towards sulfur and its complexing, soft acid and reducing properties.

  18. Atmospheric corrosion of Cu, Zn, and Cu-Zn alloys protected by self-assembled monolayers of alkanethiols

    NASA Astrophysics Data System (ADS)

    Hosseinpour, Saman; Forslund, Mattias; Johnson, C. Magnus; Pan, Jinshan; Leygraf, Christofer

    2016-06-01

    In this article results from earlier studies have been compiled in order to compare the protection efficiency of self-assembled monolayers (SAM) of alkanethiols for copper, zinc, and copper-zinc alloys exposed to accelerated indoor atmospheric corrosion conditions. The results are based on a combination of surface spectroscopy and microscopy techniques. The protection efficiency of investigated SAMs increases with chain length which is attributed to transport hindrance of the corrosion stimulators in the atmospheric environment, water, oxygen and formic acid, towards the copper surface. The transport hindrance is selective and results in different corrosion products on bare and on protected copper. Initially the molecular structure of SAMs on copper is well ordered, but the ordering is reduced with exposure time. Octadecanethiol (ODT), the longest alkanethiol investigated, protects copper significantly better than zinc, which may be attributed to the higher bond strength of Cu-S than of Zn-S. Despite these differences, the corrosion protection efficiency of ODT for the single phase Cu20Zn brass alloy is equally efficient as for copper, but significantly less for the heterogeneous double phase Cu40Zn brass alloy.

  19. Microwave-Accelerated Surface Modification of Plasmonic Gold Thin Films with Self-Assembled Monolayers of Alkanethiols

    PubMed Central

    Grell, Tsehai A.J.; Alabanza, Anginelle M.; Gaskell, Karen; Aslan, Kadir

    2013-01-01

    A rapid surface modification technique for the formation of self-assembled monolayers (SAMs) of alkanethiols on gold thin films using microwave heating in less than 10 min is reported. In this regard, SAMs of two model alkanethiols, 11-mercaptoundecanoic acid (11-MUDA, to generate a hydrophilic surface) and undecanethiol (UDET, a hydrophobic surface), were successfully formed on gold thin films using selective microwave heating in 1) a semi-continuous and 2) a continuous fashion and at room temperature (24 hours, control experiment, no microwave heating). The formation of SAMs of 11-MUDA and UDET were confirmed by contact angle measurements, Fourier–transform infrared (FT-IR) spectroscopy and X-ray photoelectron spectroscopy (XPS). The contact angles for water on SAMs formed by the selective microwave heating and conventional room temperature incubation technique (24 hours) were measured to be similar for 11-MUDA and UDET. FT-IR spectroscopy results confirmed that the internal structure of SAMs prepared using both microwave heating and at room temperature were similar. XPS results revealed that the organic and sulfate contaminants found on bare gold thin films were replaced by SAMs after the surface modification process was carried out using both microwave heating and at room temperature. PMID:24083414

  20. Substrate-mediated effects in photothermal patterning of alkanethiol self-assembled monolayers with microfocused continuous-wave lasers.

    PubMed

    Schröter, Anja; Kalus, Mark; Hartmann, Nils

    2012-01-01

    In recent years, self-assembled monolayers (SAMs) have been demonstrated to provide promising new approaches to nonlinear laser processing. Most notably, because of their ultrathin nature, indirect excitation mechanisms can be exploited in order to fabricate subwavelength structures. In photothermal processing, for example, microfocused lasers are used to locally heat the substrate surface and initiate desorption or decomposition of the coating. Because of the strongly temperature-dependent desorption kinetics, the overall process is highly nonlinear in the applied laser power. For this reason, subwavelength patterning is feasible employing ordinary continuous-wave lasers. The lateral resolution, generally, depends on both the type of the organic monolayer and the nature of the substrate. In previous studies we reported on photothermal patterning of distinct types of SAMs on Si supports. In this contribution, a systematic study on the impact of the substrate is presented. Alkanethiol SAMs on Au-coated glass and silicon substrates were patterned by using a microfocused laser beam at a wavelength of 532 nm. Temperature calculations and thermokinetic simulations were carried out in order to clarify the processes that determine the performance of the patterning technique. Because of the strongly temperature-dependent thermal conductivity of Si, surface-temperature profiles on Au/Si substrates are very narrow ensuring a particularly high lateral resolution. At a 1/e spot diameter of 2 µm, fabrication of subwavelength structures with diameters of 300-400 nm is feasible. Rapid heat dissipation, though, requires high laser powers. In contrast, patterning of SAMs on Au/glass substrates is strongly affected by the largely distinct heat conduction within the Au film and in the glass support. This results in broad surface temperature profiles. Hence, minimum structure sizes are larger when compared with respective values on Au/Si substrates. The required laser powers, though

  1. Empirical Evidence for Roughness-Dependent Limit in Observation of Odd-Even Effect in Wetting Properties of Polar Liquids on n-Alkanethiolate Self-Assembled Monolayers.

    PubMed

    Wang, Zhengjia; Chen, Jiahao; Oyola-Reynoso, Stephanie; Thuo, Martin

    2016-08-16

    Substrate roughness influences the wetting properties of self-assembled monolayers (SAMs), but details on this dependency at the sub-nanometer level are still lacking. This study investigates the effect of surface roughness on interfacial properties of n-alkanethiolate SAMs, specifically wetting, and confirms the predicted limit to the observation of the odd-even effect in hydrophobicity. This article studies static contact angles of polar and nonpolar probe liquids on a series of n-alkanethiolate SAMs on surfaces with tunable roughness. We prepared Ag surfaces with root-mean-square roughness (Rrms) of ∼0.6-2.2 nm and compared the wetting properties of n-alkanethiolate SAMs fabricated on these surfaces. We measured the static contact angles, θs, formed between SAM and probe liquids [water, glycerol, and hexadecane]. Hexadecane showed an odd-even effect on all surfaces irrespective of the degree of roughness. Polar liquids (water and glycerol), however, showed a dependency on the roughness of the substrate with an odd-even effect observable only on smooth, but not rougher (Rrms ≥ 1.15 nm), surfaces. These results confirm that the previously predicted limit to observation of the odd-even effect in hydrophobicity (here extended to polar liquids) is real. From the results with glycerol, we infer that this limit is not limited just to hydrophobicity but may extend to other polar liquids. Results from hexadecane, however, suggest that this limit may not be a universal property of the SAM. PMID:27448027

  2. Empirical Evidence for Roughness-Dependent Limit in Observation of Odd-Even Effect in Wetting Properties of Polar Liquids on n-Alkanethiolate Self-Assembled Monolayers.

    PubMed

    Wang, Zhengjia; Chen, Jiahao; Oyola-Reynoso, Stephanie; Thuo, Martin

    2016-08-16

    Substrate roughness influences the wetting properties of self-assembled monolayers (SAMs), but details on this dependency at the sub-nanometer level are still lacking. This study investigates the effect of surface roughness on interfacial properties of n-alkanethiolate SAMs, specifically wetting, and confirms the predicted limit to the observation of the odd-even effect in hydrophobicity. This article studies static contact angles of polar and nonpolar probe liquids on a series of n-alkanethiolate SAMs on surfaces with tunable roughness. We prepared Ag surfaces with root-mean-square roughness (Rrms) of ∼0.6-2.2 nm and compared the wetting properties of n-alkanethiolate SAMs fabricated on these surfaces. We measured the static contact angles, θs, formed between SAM and probe liquids [water, glycerol, and hexadecane]. Hexadecane showed an odd-even effect on all surfaces irrespective of the degree of roughness. Polar liquids (water and glycerol), however, showed a dependency on the roughness of the substrate with an odd-even effect observable only on smooth, but not rougher (Rrms ≥ 1.15 nm), surfaces. These results confirm that the previously predicted limit to observation of the odd-even effect in hydrophobicity (here extended to polar liquids) is real. From the results with glycerol, we infer that this limit is not limited just to hydrophobicity but may extend to other polar liquids. Results from hexadecane, however, suggest that this limit may not be a universal property of the SAM.

  3. Cytochrome c self-assembly on alkanethiol monolayer electrodes as characterized by AFM, IR, QCM, and direct electrochemistry.

    PubMed

    Nakano, Koji; Yoshitake, Tadateru; Yamashita, Yasunori; Bowden, Edmond F

    2007-05-22

    With the advantage of carbodiimide coupling chemistry, horse heart cytochrome c (cyt c) has been covalently immobilized onto self-assembled monolayers (SAMs) from 11-mercaptoundecanoic acid (MUDA) developed on single-crystal or polycrystalline gold substrate surfaces. The cyt c immobilized substrates thus prepared have been characterized by atomic force microscopy (AFM); we have succeeded in obtaining surface topographical images down to single-protein resolution. AFM imaging has also shown densely packed, uniform protein monolayer formation that is highly suggestive of self-assembly of cyt c molecules on MUDA SAMs. Covalent attachment of cyt c has been further evidenced by reflection-absorption FT-IR as well as microgravimetric analysis using a quartz crystal microbalance (QCM). In the latter, the specific MUDA and cyt c surface concentrations were determined to be 0.86 +/- 0.11 nmol cm-2 (n = 5) and 28 +/- 12 pmol cm-2 (n = 5), both of which agree fairly well with their theoretical counterparts. The obtained QCM chips having the cyt c/MUDA/Au interfacial structure were found to be capable of the direct electrochemistry of the surface-attached cyt c molecules. Cyclic voltammetric measurements on the chips gave particular redox waves showing characteristics of surface process. The electroactive protein surface concentration was determined to be 7.2 +/- 4.8 pmol cm-2 (n = 6); it was almost consistent with values found in literature, while it was limited to 26% in magnitude for the QCM data. This was deemed to have arisen from the orientation variation of the surface-confined cyt c molecules and is discussed briefly.

  4. Binary self-assembled monolayers of alkanethiols on gold: deposition from solution versus microcontact printing and the study of surface nanobubbles.

    PubMed

    Bayat, Haider; Tranchida, Davide; Song, Bo; Walczyk, Wiktoria; Sperotto, Elena; Schönherr, Holger

    2011-02-15

    The coadsorption of alkanethiols on noble metals has been recognized for a long time as a suitable means of affording surfaces with systematically varied wettability and other properties. In this article, we report on a comparative study of the composition of the mixed self-assembled monolayers (SAMs) obtained (i) by the coadsorption of octadecanethiol (ODT) and 16-mercaptohexadecanoic acid (MHDA) from ethanol and chloroform onto gold substrates and (ii) by microcontact printing using poly(dimethyl siloxane) (PDMS) stamps. SAMs prepared by coadsorption from solution showed a preferential adsorption of ODT for both solvents, but this trend was reversed in microcontact-printed SAMs when using chloroform as a solvent, as evidenced by contact angle and Fourier transform infrared (FTIR) spectroscopy measurements. An approximately linear relationship between the static contact angle and the degree of swelling with different solvents was observed, which suggests that the surface composition can be controlled by the interaction of the solvent and the PDMS elastomer. The altered preference is attributed to the different partitioning of the two thiols into solvent-swelled PDMS, as shown by (1)H NMR spectroscopy. Finally, molecularly mixed binary SAMs on ODT and MHDA on template-stripped gold were applied to study the effect of surface nanobubbles on wettability by atomic force microscopy (AFM). With a decreasing macroscopic contact angle measured through water, the nanoscopic contact angle was found to decrease as well. PMID:21117682

  5. Controlling self assembled monolayers

    NASA Astrophysics Data System (ADS)

    Wei, Yanhu

    2007-12-01

    In this thesis, we demonstrate novel methods of controlling the morphology of self-assembled monolayers at the solution-graphite interface. Scanning tunneling microscopy is used to evaluate the capacity of chain length and weak dipolar interactions to direct packing and neighboring chain selection within monolayers. We designed and synthesized a series of 1,5-substituted anthracene derivatives and investigated the relationship between side chain structure and monolayer morphology. We report that the morphology of monolayers formed on HOPG from symmetrically substituted anthracene derivatives switches from a 2D racemate to a 2D conglomerate by the addition of a single methylene unit to each side chain, i.e., by changing the side chain lengths from even to odd. We introduced ether groups into the side chains of anthracene derivatives in an attempt to use dipolar interactions to alter monolayer morphology. We report that the insertion of electronegative oxygen atoms into the side chains of anthracene derivatives can disturb the odd - even effect of chain length and influence monolayer morphology. By introducing a proper number of ether groups at specific side chain locations, we designed two self-repelling and complementary chains: COC12OC and C2OC10OC 2. COC12OC (or C2OC10OC2) chains repel themselves but select the other C2OC10OC 2 (or COC12OC) chains as their neighbors in self-assembled monolayers. Taking into account chain length matching and dipolar complementary as mechanisms for adjacent side chain selection, we designed and synthesized two symmetrical anthracenes 12 (COC12OC-An-COC 12OC), 13 (C2OC10OC2-An-C 2OC10OC2) and two unsymmetrical anthracenes 15 (C11OC-An-COC12OC) and 16 (C 18OC2-An-C2OC10OC2). Using a mixture solution of these molecules, we prepared a highly ordered AABB monolayer pattern in which paired rows of 15 alternate with paired rows of 16, and a highly ordered AAB monolayer pattern in which rows consisting of 12 are sandwiched between paired

  6. The Origin of the Odd-Even Effect in the Tunneling Rates across EGaIn Junctions with Self-Assembled Monolayers (SAMs) of n-Alkanethiolates.

    PubMed

    Jiang, Li; Sangeeth, C S Suchand; Nijhuis, Christian A

    2015-08-26

    Odd-even effects in molecular junctions with self-assembled monolayers (SAMs) of n-alkanethiolates have been rarely observed. It is challenging to pinpoint the origin of odd-even effects and address the following question: are the odd-even effects an interface effect, caused by the intrinsic properties of the SAMs, or a combination of both? This paper describes the odd-even effects in SAM-based tunnel junctions of the form Ag(A-TS)-SC(n)//GaO(x)/EGaIn junctions with a large range of molecular lengths (n = 2 to 18) that are characterized by both AC and DC methods along with a detailed statistical analysis of the data. This combination of techniques allowed us to separate interface effects from the contributions of the SAMs and to show that the odd-even effect observed in the value of J obtained by DC-methods are caused by the intrinsic properties of the SAMs. Impedance spectroscopy (an AC technique) allowed us to analyze the SAM resistance (R(SAM)), SAM capacitance (C(SAM)), and contact resistance, within the junctions separately. We found clear odd-even effects in the values of both R(SAM) and C(SAM), but the odd-even effect in contact resistance is very weak (and not responsible for the observed odd-even effect in the current densities obtained by J(V) measurements). Therefore, the odd-even effects in Ag(A-TS)-SC(n)//GaO(x)/EGaIn junctions are attributed to the properties of the SAMs and SAM-electrode interactions which both determine the shape of the tunneling barrier.

  7. Multifunctional self-assembled monolayers

    SciTech Connect

    Zawodzinski, T.; Bar, G.; Rubin, S.; Uribe, F.; Ferrais, J.

    1996-06-01

    This is the final report of at three year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The specific goals of this research project were threefold: to develop multifunctional self-assembled monolayers, to understand the role of monolayer structure on the functioning of such systems, and to apply this knowledge to the development of electrochemical enzyme sensors. An array of molecules that can be used to attach electrochemically active biomolecules to gold surfaces has been synthesized. Several members of a class of electroactive compounds have been characterized and the factors controlling surface modification are beginning to be characterized. Enzymes have been attached to self-assembled molecules arranged on the gold surface, a critical step toward the ultimate goal of this project. Several alternative enzyme attachment strategies to achieve robust enzyme- modified surfaces have been explored. Several means of juxtaposing enzymes and mediators, electroactive compounds through which the enzyme can exchange electrons with the electrode surface, have also been investigated. Finally, the development of sensitive biosensors based on films loaded with nanoscale-supported gold particles that have surface modified with the self-assembled enzyme and mediator have been explored.

  8. Microcontact printing of self-assembled monolayers: applications in microfabrication

    NASA Astrophysics Data System (ADS)

    Wilbur, James L.; Kumar, Amit; Biebuyck, Hans A.; Kim, Enoch; Whitesides, George M.

    1996-12-01

    This paper describes applications in microfabrication using patterned self-assembled monolayers (SAMs) formed by microcontact printing. Microcontact printing 0957-4484/7/4/028/img1 is a flexible new technique that forms patterned SAMs with regions terminated by different chemical functionalities (and thus different physical and chemical properties), in patterns with 0957-4484/7/4/028/img2 dimensions. Patterns of SAM are formed using an alkanethiol as an `ink', and printing the alkanethiol on a metal support with elastomeric `stamp'. We fabricate the stamp by moulding a silicone elastomer using a master prepared by optical or x-ray microlithography or by other techniques. SAMs of long-chain alkanethiolates on gold and other metals can act as nanometer resists by protecting the supporting metal from corrosion by appropriately formulated etchants: the fabrication of microstructures of gold and silicon demonstrates the utility of patterned SAMs (formed by 0957-4484/7/4/028/img3) as nm resists. Patterned SAMs formed by 0957-4484/7/4/028/img3 can also control the wettability of a surface on the 0957-4484/7/4/028/img2 scale. The organization of liquids in patterned arrays with 0957-4484/7/4/028/img2 dimensions, and the patterned deposition of microcrystals and microcrystal arrays illustrate the use of controlled wettability for microfabrication.

  9. Kinetics of self-assembled monolayer formation on individual nanoparticles.

    PubMed

    Smith, Jeremy G; Jain, Prashant K

    2016-08-24

    Self-assembled monolayer (SAM) formation of alkanethiols on nanoparticle surfaces is an extensively studied surface reaction. But the nanoscale aspects of the rich microscopic kinetics of this reaction may remain hidden due to ensemble-averaging in colloidal samples, which is why we investigated in real-time how alkanethiol SAMs form on a single Ag nanoparticle. From single-nanoparticle trajectories obtained using in situ optical spectroscopy, the kinetics of SAM formation appears to be limited by the growth of the layer across the nanoparticle surface. A significant spread in the growth kinetics is seen between nanoparticles. The single-nanoparticle rate distributions suggest two distinct modes for SAM growth: spillover of adsorbed thiols from the initial binding sites on the nanoparticle and direct adsorption of thiol from solution. At low concentrations, wherein direct adsorption from solution is not prevalent and growth takes place primarily by adsorbate migration, the SAM formation rate was less variable from one nanoparticle to another. On the other hand, at higher thiol concentrations, when both modes of growth were operative, the population of nanoparticles with inherent variations in surface conditions and/or morphology exhibited a heterogeneous distribution of rates. These new insights into the complex dynamics of SAM formation may inform synthetic strategies for ligand passivation and functionalization of nanoparticles and models of reactive adsorption and catalysis on nanoparticles. PMID:27523488

  10. Ordering and defects in self-assembled monolayers on nanoporous gold

    NASA Astrophysics Data System (ADS)

    Patel, Dipna A.; Weller, Andrew M.; Chevalier, Robert B.; Karos, Constantine A.; Landis, Elizabeth C.

    2016-11-01

    Self-assembled monolayers are commonly used to tailor nanoporous structures for applications, and they also provide a model system for determining the effects of nanoscale structure on self-assembly. We have investigated the ordering and defects in alkanethiol self-assembled monolayers on nanoporous gold, a high surface area mesoporous material. Infrared reflection absorption spectroscopy was used to characterize the effects of alkyl chain length and nanoporous gold pore size on molecular layer ordering. Cyclic voltammetry was used to characterize the monolayer density and ordering, with ferrocenylalkylthiolates used to quantify and characterize defect sites. We find that dense and well-ordered molecular layers form quickly with low defect levels. However, we do not observe differences in molecular layer ordering or defects with changes in pore size.

  11. Fast self-assembly kinetics of alkanethiols on gold nanoparticles: simulation and characterization by localized surface plasmon resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Asiaei, Sasan; Denomme, Ryan C.; Marr, Chelsea; Nieva, Patricia M.; Vijayan, Mathilakath M.

    2012-03-01

    This study demonstrates improved kinetics for the formation of self-assembled monolayers (SAMs) of alkanethiols on gold nanoparticle substrates. A computational model was developed to predict SAM growth kinetics. Based on the predictions from the model, SAMs of 11-mercaptoundecanoic acid (11-MUA) and 1-octanethiol (1-OT) were formed by incubation of gold nanoparticle chips in an ethanolic 10 mM solution within 20 min. The performance of this novel rapid SAM formation protocol was compared with a conventional 24 hour incubation protocol. Binding capacity of the alkanethiol SAM was investigated for a 20 min incubation protocol using biotin-streptavidin. For this purpose, the SAM loaded gold nanoparticle chips were modified with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) to allow attachment of EZ-Link amine PEG3 biotin to the 11-MUA molecules. Binding reactions were monitored in real time using localized surface plasmon resonance (LSPR) spectroscopy. The resulting LSPR absorbance peak shift was comparable to the experimental results for biotin-streptavidin reported in literature. Results of this study suggest that formation of a high quality alkanethiol SAM within 20 min on gold nanoparticles surfaces is possible and could greatly reduce the time and cost compared to conventional 24 h incubation protocols.

  12. Scanning tunneling microscopy study of organic molecules and self-assembled monolayers

    NASA Astrophysics Data System (ADS)

    Park, Hayn

    In this dissertation I present my findings on alkanethiol self-assembled monolayers (SAM) on Au(111), as well as investigations of the self-assembly and electron transport properties of a custom-synthesized organic molecule (bis-phenyloxazole: BPO) chosen for its interesting physical and electronic structure. Utilizing scanning tunneling microscopy (STM) techniques, we observed unique molecular structures at the boundaries of single-species alkanethiol SAM domains, and propose packing arrangements for the observed structures. We also found evidence for island formation in alkanethiol SAMs; these islands were dynamic and exhibited ordered packing of the adsorbed molecules. For codeposited two-species (dodecanethiol, octanethiol) SAMs, we observed preferential insertion of the longer molecules at domain boundaries, edges, and defect sites, and found that they tended to segregate into separate domains. Scanning tunneling spectroscopy (STS) of the inserted dodecanethiol molecules revealed evidence of conduction resonances within the HOMO-LUMO gap. We explored the charge transport and self-assembly properties of the BPO molecules on a Au(111) surface. The molecules self-assembled into a novel columnar structure after annealing in vacuum. We compare tunneling spectroscopy results to ab initio computations of the molecular orbitals.

  13. Molecular Dynamics in Self-Assembled Monolayers

    NASA Astrophysics Data System (ADS)

    Bochinski, Jason; Stevens, Derrick; Scott, Mary; Guy, Laura; Dedeugd, Casey; Clarke, Laura

    2007-03-01

    Silane self-assembled monolayers (SAMs) are an important tool for both scientific research and technological applications. Despite their widespread use, few experimental investigations have addressed molecular motion within these films, which offer a unique and useful physical system for fundamental scientific studies, such as observing dipolar and other glass transitions in two-dimensions. In addition, relaxations such as ``rotator'' phases where molecular groups rotate in a plane parallel to the surface have been correlated with film conductivity, adhesive, and wetting properties. We utilize surface-sensitive, dielectric relaxation spectroscopy to probe molecular motion as a function of temperature within silane chemistry-based monolayers formed upon interdigitated electrodes. Our latest results exploring a previously published motion as well as comparisons to linear polymer films will be discussed.

  14. Photocatalytic Nanolithography of Self-Assembled Monolayers and Proteins

    PubMed Central

    2013-01-01

    Self-assembled monolayers of alkylthiolates on gold and alkylsilanes on silicon dioxide have been patterned photocatalytically on sub-100 nm length-scales using both apertured near-field and apertureless methods. Apertured lithography was carried out by means of an argon ion laser (364 nm) coupled to cantilever-type near-field probes with a thin film of titania deposited over the aperture. Apertureless lithography was carried out with a helium–cadmium laser (325 nm) to excite titanium-coated, contact-mode atomic force microscope (AFM) probes. This latter approach is readily implementable on any commercial AFM system. Photodegradation occurred in both cases through the localized photocatalytic degradation of the monolayer. For alkanethiols, degradation of one thiol exposed the bare substrate, enabling refunctionalization of the bare gold by a second, contrasting thiol. For alkylsilanes, degradation of the adsorbate molecule provided a facile means for protein patterning. Lines were written in a protein-resistant film formed by the adsorption of oligo(ethylene glycol)-functionalized trichlorosilanes on glass, leading to the formation of sub-100 nm adhesive, aldehyde-functionalized regions. These were derivatized with aminobutylnitrilotriacetic acid, and complexed with Ni2+, enabling the binding of histidine-labeled green fluorescent protein, which yielded bright fluorescence from 70-nm-wide lines that could be imaged clearly in a confocal microscope. PMID:23971891

  15. Etchant-free graphene transfer using facile intercalation of alkanethiol self-assembled molecules at graphene/metal interfaces.

    PubMed

    Ohtomo, Manabu; Sekine, Yoshiaki; Wang, Shengnan; Hibino, Hiroki; Yamamoto, Hideki

    2016-06-01

    We report a novel etchant-free transfer method of graphene using the intercalation of alkanethiol self-assembled monolayers (SAMs) at the graphene/Cu interfaces. The early stage of intercalation proceeds through graphene grain boundaries or defects within a few seconds at room temperature until stable SAMs are formed after a few hours. The formation of SAMs releases the compressive strain of graphene induced by Cu substrates and make graphene slightly n-doped due to the formation of interface dipoles of the SAMs on metal surfaces. After SAM formation, the graphene is easily delaminated off from the metal substrates and transferred onto insulating substrates. The etchant-free process enables us to decrease the density of charged impurities and the magnitude of potential fluctuation in the transferred graphene, which suppress scattering of carriers. We also demonstrate the removal of alkanethiol SAMs and reuse the substrate. This method will dramatically reduce the cost of graphene transfer, which will benefit industrial applications such as of graphene transparent electrodes. PMID:27198918

  16. Optimized modification of gold nanoparticles with a self-assembled monolayer for suppression of nonspecific binding in DNA assays

    NASA Astrophysics Data System (ADS)

    Esashika, Keiko; Saiki, Toshiharu

    2016-10-01

    Homogeneous DNA assays using gold nanoparticles (AuNPs) require the reduction of nonspecific binding between AuNPs to improve sensitivity in detecting the target molecule. In this study, we employed alkanethiol self-assembled monolayers (SAMs) for modifying the AuNP surface to attain both good dispersability and high hybridization efficiency. The alkanethiol SAMs enhance the repulsive interaction between AuNPs, reducing nonspecific binding and promoting the extension of surface-immobilized ssDNA into the solvent, thus enhancing the hybridization process. Introduction of oligoethylene glycol into the alkanethiol prevented nonspecific binding caused by the entanglement of alkane chains. Finally, the conditions were optimized by controlling the surface charge density through the introduction of a COOH group at the alkanethiol terminus, resulting in the complete blocking of nonspecific binding and the maintenance of high hybridization efficiency.

  17. Self-Assembled Monolayers as Templates for Heme Crystallization.

    SciTech Connect

    Wang, Xuefeng; Ingall, Ellery; Lai, Barry; Stack, Andrew G

    2010-01-01

    Homogeneous self-assembled monolayers (SAMs) of alkanethiols (HS(CH{sub 2}){sub n}X) on Au(111) were used as substrates for crystallization of ferriprotoporphyrin IX (heme) in acidic aqueous solution. Different terminal functional groups (X = OH, COOH, NH{sub 2}, CH{sub 3}) were used on the SAMs as models of sites where heme crystallization takes place in blood-feeding organisms. Atomic force microscopy, X-ray diffraction (XRD), and X-ray absorption near edge spectroscopy (XANES) were employed to characterize particle morphology, density, crystallographic orientation, and the coordination environment. It was found that the morphology and extent of growth of particulates were strongly affected by the environment in which they crystallize. As has been previously observed, acicular crystals form in DMSO-methanol solution, whereas irregular aggregates of crystals form in acidic aqueous solution. Here tabular crystals were found to form on -NH{sub 2} and -OH terminated SAMs, whereas inclined crystals formed on -COOH and -CH{sub 3} terminated substrates. Particulate coverage on these SAMs decreased in the order of -NH{sub 2}, -COOH, -CH{sub 3}, and -OH. Chloroquine, a widely used antimalaria drug, slowed particle nucleation rate on the SAMs with varying efficacy but was most efficient on the -COOH SAM. XANES measurements showed that the coordination environment surrounding iron in the particles was found to be the same, regardless of the preparation method and matches existing spectra of hemozoin produced in vivo and synthetic {beta}-hematin. Different crystallographic planes were found to be expressed depending on the identity of the SAM using XRD. The interaction between the terminal functional group of the SAM and the density and orientation of crystals is discussed.

  18. Self-Assembled Monolayers as Templates for Heme Crystallization

    SciTech Connect

    Wang, Xuefeng; Ingall, Ellery; Lai, Barry; Stack, Andrew G; Allard Jr, Lawrence Frederick

    2010-01-01

    Homogeneous self-assembled monolayers (SAMs) of alkanethiols (HS(CH{sub 2}){sub n}X) on Au(111) were used as substrates for crystallization of ferriprotoporphyrin IX (heme) in acidic aqueous solution. Different terminal functional groups (X = OH, COOH, NH{sub 2}, CH{sub 3}) were used on the SAMs as models of sites where heme crystallization takes place in blood-feeding organisms. Atomic force microscopy, X-ray diffraction (XRD), and X-ray absorption near edge spectroscopy (XANES) were employed to characterize particle morphology, density, crystallographic orientation, and the coordination environment. It was found that the morphology and extent of growth of particulates were strongly affected by the environment in which they crystallize. As has been previously observed, acicular crystals form in DMSO-methanol solution, whereas irregular aggregates of crystals form in acidic aqueous solution. Here tabular crystals were found to form on -NH{sub 2} and -OH terminated SAMs, whereas inclined crystals formed on -COOH and -CH{sub 3} terminated substrates. Particulate coverage on these SAMs decreased in the order of -NH{sub 2}, -COOH, -CH{sub 3}, and -OH. Chloroquine, a widely used antimalaria drug, slowed particle nucleation rate on the SAMs with varying efficacy but was most efficient on the -COOH SAM. XANES measurements showed that the coordination environment surrounding iron in the particles was found to be the same, regardless of the preparation method and matches existing spectra of hemozoin produced in vivo and synthetic {beta}-hematin. Different crystallographic planes were found to be expressed depending on the identity of the SAM using XRD. The interaction between the terminal functional group of the SAM and the density and orientation of crystals is discussed.

  19. Study of the scale formation mechanism on gold modified with an alkanethiol monolayer.

    PubMed

    Clément, Maxime; St-Jean, Émilie; Bouchard, Nicolas-Alexandre; Ménard, Hugues

    2013-02-01

    Scaling is a problem in many industrial processes. To control and minimize it, it is important to understand the dynamics of the scale formation. In this paper, the scale formation was examined on two kinds of gold surfaces. One was a pure metallic gold surface, and the other was a gold surface modified with an alkanethiol self-assembled monolayer. A series of surface characterization experiments were performed to ensure a good understanding of the gold-thiol bond stability in a caustic solution.

  20. Reaction of 5-40 eV ions with self-assembled monolayers.

    PubMed

    Qin, Xiangdong; Tzvetkov, Tochko; Jacobs, Dennis C

    2006-02-01

    The reaction of 5-40 eV O(+) and Ne(+) ions with alkanethiolate and semifluorinated alkanethiolate self-assembled monolayers (SAMs) is studied under ultrahigh vacuum (UHV) conditions. Whereas Ne(+) simply sputters fragments from the surface, O(+) can also abstract surface atoms and break C-C bonds in both the hydrocarbon and fluorocarbon SAM chains. Isotopic labeling experiments reveal that O(+) initially abstracts hydrogen atoms from the outermost two carbon atoms on an alkanethiolate SAM chain. However, the position of the isotopic label quickly becomes scrambled along the chain as the SAM is damaged through continuous ion bombardment. Scanning tunneling microscopy (STM) monitors changes in the SAM conformational structure at various stages during 5 eV ion bombardment. STM images indicate that O(+) reacts less efficiently with dodecanethiolate molecules packed internally within a structural domain than it does with molecules adsorbed at domain boundaries or near defect sites. STM images recorded after Ne(+) bombardment suggest that Ne(+) attacks the SAM exclusively near the domain boundaries. Taken collectively, these experiments advance our understanding of the degradation pathways suffered by polymeric satellite materials in the low-earth orbit (LEO) space environment.

  1. Actinide sequestration using self-assembled monolayers on mesoporous supports.

    PubMed

    Fryxell, Glen E; Lin, Yuehe; Fiskum, Sandy; Birnbaum, Jerome C; Wu, Hong; Kemner, Ken; Kelly, Shelley

    2005-03-01

    Surfactant templated synthesis of mesoporous ceramics provides a versatile foundation upon which to create high efficiency environmental sorbents. These nanoporous ceramic oxides condense a huge amount of surface area into a very small volume. The ceramic oxide interface is receptive to surface functionalization through molecular self-assembly. The marriage of mesoporous ceramics with self-assembled monolayer chemistry creates a powerful new class of environmental sorbent materials called self-assembled monolayers on mesoporous supports (SAMMS). These SAMMS materials are highly efficient sorbents whose interfacial chemistry can be fine-tuned to selectively sequester a specific target species, such as heavy metals, tetrahedral oxometalate anions, and radionuclides. Details addressing the design, synthesis, and characterization of SAMMS materials specifically designed to sequester actinides, of central importance to the environmental cleanup necessary after 40 years of weapons-grade plutonium production, as well as evaluation of their binding affinities and kinetics are presented.

  2. Actinide sequestration using self-assembled monolayers on mesoporous supports.

    PubMed

    Fryxell, Glen E; Lin, Yuehe; Fiskum, Sandy; Birnbaum, Jerome C; Wu, Hong; Kemner, Ken; Kelly, Shelley

    2005-03-01

    Surfactant templated synthesis of mesoporous ceramics provides a versatile foundation upon which to create high efficiency environmental sorbents. These nanoporous ceramic oxides condense a huge amount of surface area into a very small volume. The ceramic oxide interface is receptive to surface functionalization through molecular self-assembly. The marriage of mesoporous ceramics with self-assembled monolayer chemistry creates a powerful new class of environmental sorbent materials called self-assembled monolayers on mesoporous supports (SAMMS). These SAMMS materials are highly efficient sorbents whose interfacial chemistry can be fine-tuned to selectively sequester a specific target species, such as heavy metals, tetrahedral oxometalate anions, and radionuclides. Details addressing the design, synthesis, and characterization of SAMMS materials specifically designed to sequester actinides, of central importance to the environmental cleanup necessary after 40 years of weapons-grade plutonium production, as well as evaluation of their binding affinities and kinetics are presented. PMID:15787373

  3. Actinide Sequestration Using Self-Assembled Monolayers on Mesoporous Supports

    SciTech Connect

    Fryxell, Glen E.; Lin, Yuehe; Fiskum, Sandra K.; Birnbaum, Jerome C.; Wu, Hong; Kemner, K. M.; Kelly, Shelley

    2005-03-01

    Surfactant templated synthesis of mesoporous ceramics provides a versatile foundation upon which to create high efficiency environmental sorbents. These nanoporous ceramic oxides condense a huge amount of surface area into a very small volume. The ceramic oxide interface is receptive to surface functionalization through molecular self-assembly. The marriage of mesoporous ceramics with self-assembled monolayer chemistry creates a powerful new class of environmental sorbent materials called self-assembled monolayers on mesoporous supports (SAMMS). These SAMMS materials are highly efficient sorbents, whose interfacial chemistry can be fine-tuned to selectively sequester a specific target species, such as heavy metals, tetrahedral oxometallate anions and radionuclides. Details addressing the design, synthesis and characterization of SAMMS materials specifically designed to sequester actinides, of central importance to the environmental clean-up necessary after 40 years of weapons grade plutonium production, as well as evaluation of their binding affinities and kinetics are presented.

  4. Molecular junctions of self-assembled monolayers with conducting polymer contacts.

    PubMed

    Neuhausen, Alexander B; Hosseini, Ali; Sulpizio, Joseph A; Chidsey, Christopher E D; Goldhaber-Gordon, David

    2012-11-27

    We present a method to fabricate individually addressable junctions of self-assembled monolayers (SAMs) that builds on previous studies which have shown that soft conductive polymer top contacts virtually eliminate shorts through the SAMs. We demonstrate devices with nanoscale lateral dimensions, representing an order of magnitude reduction in device area, with high yield and relatively low device-to-device variation, improving several features of previous soft contact devices. The devices are formed in pores in an inorganic dielectric layer with features defined by e-beam lithography and dry etching. We replace the aqueous PEDOT:PSS conductive polymer used in prior devices with Aedotron P, a low-viscosity, amphiphilic polymer, allowing incorporation of self-assembled monolayers with either hydrophobic or hydrophilic termination with the same junction geometry and materials. We demonstrate the adaptability of this new design by presenting transport measurements on SAMs composed of alkanethiols with methyl, thiol, carboxyl, and azide terminations. We establish that the observed room-temperature tunnel barrier is primarily a function of monolayer thickness, independent of the terminal group's hydrophilicity. Finally, we investigate the temperature dependence of transport and show that the low-temperature behavior is based on the energy distribution of sites from which carriers can tunnel between the polymer and gold contacts, as described by a model of variable-range hopping transport in a disordered conductor.

  5. Molecular junctions of self-assembled monolayers with conducting polymer contacts.

    PubMed

    Neuhausen, Alexander B; Hosseini, Ali; Sulpizio, Joseph A; Chidsey, Christopher E D; Goldhaber-Gordon, David

    2012-11-27

    We present a method to fabricate individually addressable junctions of self-assembled monolayers (SAMs) that builds on previous studies which have shown that soft conductive polymer top contacts virtually eliminate shorts through the SAMs. We demonstrate devices with nanoscale lateral dimensions, representing an order of magnitude reduction in device area, with high yield and relatively low device-to-device variation, improving several features of previous soft contact devices. The devices are formed in pores in an inorganic dielectric layer with features defined by e-beam lithography and dry etching. We replace the aqueous PEDOT:PSS conductive polymer used in prior devices with Aedotron P, a low-viscosity, amphiphilic polymer, allowing incorporation of self-assembled monolayers with either hydrophobic or hydrophilic termination with the same junction geometry and materials. We demonstrate the adaptability of this new design by presenting transport measurements on SAMs composed of alkanethiols with methyl, thiol, carboxyl, and azide terminations. We establish that the observed room-temperature tunnel barrier is primarily a function of monolayer thickness, independent of the terminal group's hydrophilicity. Finally, we investigate the temperature dependence of transport and show that the low-temperature behavior is based on the energy distribution of sites from which carriers can tunnel between the polymer and gold contacts, as described by a model of variable-range hopping transport in a disordered conductor. PMID:23035989

  6. Simulations of calcite crystallization on self-assembled monolayers.

    PubMed

    Freeman, Colin L; Harding, John H; Duffy, Dorothy M

    2008-09-01

    This paper presents simulations of calcium carbonate ordering in contact with self-assembled monolayers. The calculations use potential-based molecular dynamics to model the crystallization of calcium carbonate to calcite expressing both the (00.1) and (01.2) surfaces. The effect of monolayer properties: ionization; epitaxial matching; charge density; and headgroup orientation on the crystallization process are examined in detail. The results demonstrate that highly charged surfaces are vital to stimulate ordering and crystallization. Template directed crystallization requires charge epitaxy between both the crystal surface and the monolayer. The orientation of the headgroup appears to make no contribution to the selection of the crystal surface.

  7. Monitoring the formation of self-assembled monolayers of alkanedithiols using a micromechanical cantilever sensor.

    PubMed

    Kohale, Swapnil; Molina, Sara M; Weeks, Brandon L; Khare, Rajesh; Hope-Weeks, Louisa J

    2007-01-30

    Using a micromechanical cantilever device, the surface stress induced during the growth of alkanedithiol (HS(CH2)nSH) monolayers on gold in solution is continuously monitored and reported. Adsorption of alkanedithiols of varying chain lengths is observed and compared to each other, as well as to the adsorption of hydroxyalkanethiols (HS(CH2)nOH) and alkanethiols (HS(CH2)nCH3). The results have revealed a significant change in surface stress on the basis of the chain length of the alkanedithiol. The long-chain (n > 10) alkanedithiol adsorption imposes a tensile stress on the gold-coated surface of the cantilever rather than the compressive stress exhibited by both alkanethiols and short-chain dithiols. Our results suggest a phenomenon in which the two thiols of the alkanedithiol adsorb onto the gold surface forming a loop inducing a tensile stress on the cantilever for long chain lengths. This study shows that micromechanical cantilever sensors can be very valuable tools in the exploration and characterization of self-assembled monolayers.

  8. Thermal curing of a self-assembled monolayer at the nanoscale

    NASA Astrophysics Data System (ADS)

    Zhang, Zhengqing; Kim, Hyojeong; Noh, Jaegeun; Ahn, Yoonho; Son, Jong Yeog; Jang, Joonkyung

    2015-12-01

    On fabrication by contact printing, a nanostructured self-assembled monolayer (SAM) of alkanethiol contains a substantial fraction of unbound molecules that are either inverted among other upright molecules or piled on top of the SAM. The molecular dynamics simulation in the present study demonstrates that thermal annealing cures these defects for a SAM island of octadecanethiol. The SAM island melted partially as a result of heating, so the unbound molecules that had piled on top of the SAM island penetrated down to make contact with the surface, and the inverted molecules flipped to achieve adsorption. With subsequent cooling, the packing of sulfur atoms and alignment of alkyl chains of the SAM island were recovered. The molecular pathways for the adsorption of the unbound molecules were unraveled. The transition state and activation energy, calculated for each pathway in the absence of annealing, showed that these defects are incurable without the help of annealing.On fabrication by contact printing, a nanostructured self-assembled monolayer (SAM) of alkanethiol contains a substantial fraction of unbound molecules that are either inverted among other upright molecules or piled on top of the SAM. The molecular dynamics simulation in the present study demonstrates that thermal annealing cures these defects for a SAM island of octadecanethiol. The SAM island melted partially as a result of heating, so the unbound molecules that had piled on top of the SAM island penetrated down to make contact with the surface, and the inverted molecules flipped to achieve adsorption. With subsequent cooling, the packing of sulfur atoms and alignment of alkyl chains of the SAM island were recovered. The molecular pathways for the adsorption of the unbound molecules were unraveled. The transition state and activation energy, calculated for each pathway in the absence of annealing, showed that these defects are incurable without the help of annealing. Electronic supplementary

  9. Endohedral metallofullerenes in self-assembled monolayers.

    PubMed

    Gimenez-Lopez, Maria Del Carmen; Gardener, Jules A; Shaw, Adam Q; Iwasiewicz-Wabnig, Agnieszka; Porfyrakis, Kyriakos; Balmer, Claire; Dantelle, Geraldine; Hadjipanayi, Maria; Crossley, Alison; Champness, Neil R; Castell, Martin R; Briggs, G Andrew D; Khlobystov, Andrei N

    2010-01-01

    A method has been developed for the attachment of a dithiolane group to endohedral metallofullerenes via a 1,3-dipolar cycloaddition reaction. This sulfur-containing functional group serves as an anchor, enabling efficient immobilisation of endohedral fullerenes on Au(111) surfaces at room temperature, directly from the solution phase. The functionalised fullerenes form disordered monolayers that exhibit no long-range ordering, which is attributed to both the strong bonding of the dithiolane anchor to the surface and to the conformational flexibility of the functional group. Endohedral fullerenes Er(3)N@C(80) and Sc(3)N@C(80) have been used as models for functionalisation and subsequent surface deposition. Their chemical reactivity towards dithiolane functionalisation and their surface behaviour have been compared to that of C(60). The endohedral fullerenes appear to be significantly less reactive towards the functionalisation than C(60), however they bind in a similar manner to a gold surface as their dithiolane terminated C(60) counterparts. The optical activity of Er(3)N@C(80) molecules is preserved after attachment of the functional group. We report a splitting of the endohedral Er(3+) emission lines due to the reduction in symmetry of the functionalised fullerene cage, as compared to the highly symmetrical icosahedral C(80) cage of pristine Er(3)N@C(80).

  10. Electrochemical Properties of Organosilane Self Assembled Monolayers on Aluminum 2024

    NASA Technical Reports Server (NTRS)

    Hintze, Paul E.; Calle, Luz Marina

    2004-01-01

    Self assembled monolayers are commonly used to modify surfaces. Within the last 15 years, self assembled monolayers have been investigated as a way to protect from corrosion[1,2] or biofouling.[3] In this study, self assembled monolayers of decitriethoxysilane (C10H21Si(OC2H5)3) and octadecyltriethoxysilane (C18H37Si(OC2H5)3) were formed on aluminum 2024-T3. The modified surfaces and bare Al 2024 were characterized by dynamic water contact angle measurements, x-ray photoelectron spectroscopy (XIPS) and infrared spectroscopy. Electrochemical impedance spectroscopy (EIS) in 0.5 M NaCl was used to characterize the monolayers and evaluate their corrosion protection properties. The advancing water contact angle and infrared measurements show that the mono layers form a surface where the hydrocarbon chains are packed and oriented away from the surface, consistent with what is found in similar systems. The contact angle hysteresis measured in these systems is relatively large, perhaps indicating that the hydrocarbon chains are not as well packed as monolayers formed on other substrates. The results of the EIS measurements were modeled using a Randle's circuit modified by changing the capacitor to a constant phase element. The constant phase element values were found to characterize the monolayer. The capacitance of the monolayer modified surface starts lower than the bare Al 2024, but approaches values similar to the bare Al 2024 within 24 hours as the monolayer is degraded. The n values found for bare Al 2024 quickly approach the value of a true capacitor and are greater than 0.9 within hours after the start of exposure. For the monolayer modified structure, n can stay lower than 0.9 for a longer period of time. In fact, n for the monolayer modified surfaces is different from the bare surface even after the capacitance values have converged. This indicates that the deviation from ideal capacitance is the most sensitive indicator of the presence of the monolayer.

  11. Molecular motion in alkylsilane self-assembled monolayers

    NASA Astrophysics Data System (ADS)

    Stevens, Derrick; Scott, Mary; Guy, Laura; Bochinski, Jason; Clarke, Laura

    2008-03-01

    We have investigated intra-molecular rotation within polar-substituted alkylsilane self-assembled monolayers (SAMs) on fused silica, utilizing surface-sensitive dielectric spectroscopy. Both trichlorosilanes (which allow crosslinking within the SAM) and monochlorosilanes (attached only to the surface) are utilized to grow monolayer and submonolayer films. Dielectric loss spectra as a function of temperature have been obtained for SAMs with varying carbon chain length, surface coverage, and alkyl terminal group. As shown by ellipsometry, contact angle measurements, and AFM, monochlorosilanes form a more disordered monolayer than trichlorosilanes. This more disordered film may result in additional degrees of freedom within the monolayer, or in the language of phase transitions, a rotator phase. Issues such as uncontrolled vertical polymerization and film growth by island formation and their effect on rotational dynamics will be discussed.

  12. Improving neuron-to-electrode surface attachment via alkanethiol self-assembly: an alternating current impedance study.

    PubMed

    Slaughter, Gymama E; Bieberich, Erhard; Wnek, Gary E; Wynne, Kenneth J; Guiseppi-Elie, Anthony

    2004-08-17

    In this work, the omega-amine alkanethiols, cysteamine (CA) and 11-amino-1-undecanethiol (11-AUT), were chemisorbed as self-assembled monolayers (SAMs) onto 250-microm gold microelectrodes that were microlithographically fabricated within eight-well cell culture plates and investigated as a means to improve neuron-to-electrode surface attachment (NESA). Dynamic contact angle (DCA) measurements showed similar advancing, theta(a) (69 degrees and 65 degrees ), but contrasting receding contact angles, theta(r) (9 and 30 degrees ) for CA- and 11-AUT-SAMs, respectively. The corresponding hysteresis (Deltatheta(ar) = 60 and 35 degrees, respectively) indicates the CA-SAM displays greater amphiphilic character than the 11-AUT-SAM. A portion of the greater Deltatheta(ar) for CA-SAMs may arise from surface heterogeneity, as compared to sputter-deposited gold and 11-AUT-SAMs. Tapping mode atomic force microscopy (AFM) confirmed a 6% increase (CA-SAM) and a 22% decrease (11-AUT-SAM) in surface roughness when compared to clean but unmodified, sputter-deposited gold. The extracellular matrix cell adhesion proteins, collagen, fibronectin, and laminin, were covalently coupled to the aminoalkanethiol-decorated gold electrodes via acid-amine heterobifunctional cross-linking. Using fluorescein isothiocyanate-tagged laminin, confocal fluorescence microscopy of both CA- and 11-AUT-SAM-modified and unmodified gold microelectrodes confirmed coupling of the protein to the electrode and was readily distinguishable from nonspecifically adsorbed protein. DCA measurements of laminin physisorbed directly onto gold or covalently immobilized via CA- or 11-AUT-SAM had similar advancing (ca. 63-65 degrees ) and receding (ca. 7-9 degrees ) contact angles. Tapping mode AFM of these protein-bearing surfaces likewise showed dimerized protein aggregates of similar surface roughness. PC-12 cells cultured to confluence on both unmodified and SAM-modified, protein-derivatized gold microelectrodes were

  13. Infrared spectroscopy of self-assembled monolayer films on silicon

    NASA Astrophysics Data System (ADS)

    Rowell, N. L.; Tay, Lilin; Boukherroub, R.; Lockwood, D. J.

    2007-07-01

    Infrared vibrational spectroscopy in an attenuated total reflection (ATR) geometry has been employed to investigate the presence of organic thin layers on Si-wafer surfaces. The phenomena have been simulated to show there can be a field enhancement with the presented single-reflection ATR (SR-ATR) approach which is substantially larger than for conventional ATR or specular reflection. In SR-ATR, a discontinuity of the field normal to the film contributes a field enhancement in the lower index thin film causing a two order of magnitude increase in sensitivity. SR-ATR was employed to characterize a single monolayer of undecylenic acid self-assembled on Si(1 1 1) and to investigate a two monolayer system obtained by adding a monolayer of bovine serum albumin protein.

  14. Self assembled monolayers of octadecyltrichlorosilane for dielectric materials

    NASA Astrophysics Data System (ADS)

    Kumar, Vijay; Puri, Paridhi; Nain, Shivani; Bhat, K. N.; Sharma, N. N.

    2016-04-01

    Treatment of surfaces to change the interaction of fluids with them is a critical step in constructing useful microfluidics devices, especially those used in biological applications. Selective modification of inorganic materials such as Si, SiO2 and Si3N4 is of great interest in research and technology. We evaluated the chemical formation of OTS self-assembled monolayers on silicon substrates with different dielectric materials. Our investigations were focused on surface modification of formerly used common dielectric materials SiO2, Si3N4 and a-poly. The improvement of wetting behaviour and quality of monolayer films were characterized using Atomic force microscope, Scanning electron microscope, Contact angle goniometer, Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) monolayer deposited oxide surface.

  15. Self assembly of highly-ordered nanoparticle monolayers.

    SciTech Connect

    Bigioni, T. P.; Lin, X.-M.; Nguyen, T. T.; Corwin, E. I.; Witten, T. A.; Jaeger, H. M.; Univ. of Chicago

    2006-01-01

    When a drop of a colloidal solution of nanoparticles dries on a surface, it leaves behind coffee-stain-like rings of material with lace-like patterns or clumps of particles in the interior. These non-uniform mass distributions are manifestations of far-from-equilibrium effects, such as fluid flows and solvent fluctuations during late-stage drying. However, recently a strikingly different drying regime promising highly uniform, long-range-ordered nanocrystal monolayers has been found. Here we make direct, real-time and real-space observations of nanocrystal self-assembly to reveal the mechanism. We show how the morphology of drop-deposited nanoparticle films is controlled by evaporation kinetics and particle interactions with the liquid-air interface. In the presence of an attractive particle-interface interaction, rapid early-stage evaporation dynamically produces a two-dimensional solution of nanoparticles at the liquid-air interface, from which nanoparticle islands nucleate and grow. This self-assembly mechanism produces monolayers with exceptional long-range ordering that are compact over macroscopic areas, despite the far-from-equilibrium evaporation process. This new drop-drying regime is simple, robust and scalable, is insensitive to the substrate material and topography, and has a strong preference for forming monolayer films. As such, it stands out as an excellent candidate for the fabrication of technologically important ultra thin film materials for sensors, optical devices and magnetic storage media.

  16. Sensing self-assembled alkanethiols by differential transmission interrogation with terahertz metamaterials.

    PubMed

    Wu, Xiaojun; Quan, Baogang; Pan, Xuecong; Xu, Xinlong; Lu, Xinchao; Xia, Xiaoxiang; Li, Junjie; Gu, Changzhi; Wang, Li

    2013-07-10

    Surface-enhanced electromagnetic response in the resonant regions of split-ring resonators offers a sensitive way to probe the surface dipoles formed by alkanethiol molecules with a terahertz wave by a differential transmission (DT) interrogation method. The DT signal mainly comes from the interaction between alkanethiols and metamaterials by electron transfer and/or the variation of the dielectric constant. The Lorentz model is used to demonstrate the principle of DT interrogation theoretically, which suggests the variation of both frequency and damping of resonance can be captured cooperatively. This method has been employed to experimentally demonstrate the sensing feasibility for the chain length dependence of the alkanethiol molecules. Numerical simulations confirm that the enhancement is large at the gap and corner regions of this kind of metamaterials.

  17. Origins of viscoelastic dissipation in self-assembled organic monolayers

    SciTech Connect

    Shinn, N.D.; Michalske, T.A.

    1998-04-01

    Although self-assembled monolayers (SAMs) are promising candidates for interfacial lubricants in micro-electromechanical systems, the relationship between the monolayer structure and its viscoelastic properties is not understood. Using Acoustic Wave Damping (AWD), the authors have measured the complex shear modulus of linear alkane thiol monolayers, HS(CH{sub 2}){sub n{minus}1}CH{sub 3} denoted as C{sub n}, on Au(111)-textured substrates. The AWD technique measures the elastic energy storage and dissipative loss within a SAM adsorbed onto the electrodes of a quartz crystal microbalance. For C{sub 12}, C{sub 14} and C{sub 18} SAMs, the storage modulus increases with alkane chain length, but the loss modulus exhibits no systematic correlation. To investigate the origins of energy dissipation, the authors used a new, high-sensitivity oscillator circuit to simultaneously monitor the adsorption kinetics and acoustic damping during monolayer growth from the gas phase. For both C{sub 9} and C{sub 12} thiols, the dissipation in the growing monolayer can be correlated with distinct two-dimensional fluid phases and the nucleation and growth of condensed-phase islands.

  18. Scanning tunneling microscopy studies of mixed self-assembled monolayers

    NASA Astrophysics Data System (ADS)

    Raigoza, Annette Fernandez

    This thesis examines the formation of multicomponent self-assembled mono-layers (SAMs) on the Au(111) surface using scanning tunneling microscopy. Two methods, sequential adsorption and coadsorption, are used to create these mixed SAMs. In the sequential adsorption experiments, a clean Au(111)-on-mica sub-strate is exposed to the first molecular species and then this adsorbate-covered sample is exposed to the second molecular species. Alternately, in the coadsorption experiments, a gold surface is exposed to both adsorbates simultaneously. Exposing a coronene- or dithiocarbamate-covered surface to excess thiol in the vapor phase results in a drastic restructuring of the initial surface. This is primarily driven by the kinetics of the octanethiol monolayer formation process, but the extent to which this happens is dependent on the molecule-molecule and molecule-surface interactions of the adsorbate due to the initial coverage and order of the monolayer. An octanethiolate monolayer is also substantially modified when immersed in a solution containing dithiocarbamate (DTC). Defects in the octanethiol monolayer are prime sites for molecular exchange. A surplus of DTC in the solution drives substitution that can lead to the complete removal of thiol from the surface. When a Au(111) surface is exposed to solutions containing both octanethiol and dithiocarbamate (DTC), both molecular species compete for available ad- sorption sites. At equal octanethiol-to-DTC ratios, molecular exchange hinders octanethiol monolayer formation. Higher octanethiol concentration in solution results in the incorporation of thiol into the resulting monolayer, with a strong dependence on the chain length of the DTC molecules.

  19. Electrochemistry of redox-active self-assembled monolayers

    PubMed Central

    Eckermann, Amanda L.; Feld, Daniel J.; Shaw, Justine A.; Meade, Thomas J.

    2010-01-01

    Redox-active self-assembled monolayers (SAMs) provide an excellent platform for investigating electron transfer kinetics. Using a well-defined bridge, a redox center can be positioned at a fixed distance from the electrode and electron transfer kinetics probed using a variety of electrochemical techniques. Cyclic voltammetry, AC voltammetry, electrochemical impedance spectroscopy, and chronoamperometry are most commonly used to determine the rate of electron transfer of redox-activated SAMs. A variety of redox species have been attached to SAMs, and include transition metal complexes (e.g., ferrocene, ruthenium pentaammine, osmium bisbipyridine, metal clusters) and organic molecules (e.g., galvinol, C60). SAMs offer an ideal environment to study the outer-sphere interactions of redox species. The composition and integrity of the monolayer and the electrode material influence the electron transfer kinetics and can be investigated using electrochemical methods. Theoretical models have been developed for investigating SAM structure. This review discusses methods and monolayer compositions for electrochemical measurements of redox-active SAMs. PMID:20563297

  20. A self assembled monolayer based microfluidic sensor for urea detection

    NASA Astrophysics Data System (ADS)

    Srivastava, Saurabh; Solanki, Pratima R.; Kaushik, Ajeet; Ali, Md. Azahar; Srivastava, Anchal; Malhotra, B. D.

    2011-07-01

    Urease (Urs) and glutamate dehydrogenase (GLDH) have been covalently co-immobilized onto a self-assembled monolayer (SAM) comprising of 10-carboxy-1-decanthiol (CDT) via EDC-NHS chemistry deposited onto one of the two patterned gold (Au) electrodes for estimation of urea using poly(dimethylsiloxane) based microfluidic channels (2 cm × 200 μm × 200 μm). The CDT/Au and Urs-GLDH/CDT/Au electrodes have been characterized using Fourier transform infrared (FTIR) spectroscopy, contact angle (CA), atomic force microscopy (AFM) and electrochemical cyclic voltammetry (CV) techniques. The electrochemical response measurement of a Urs-GLDH/CDT/Au bioelectrode obtained as a function of urea concentration using CV yield linearity as 10 to 100 mg dl-1, detection limit as 9 mg dl-1 and high sensitivity as 7.5 μA mM-1 cm-2.

  1. Nanoscale Nitrogen Doping in Silicon by Self-Assembled Monolayers

    PubMed Central

    Guan, Bin; Siampour, Hamidreza; Fan, Zhao; Wang, Shun; Kong, Xiang Yang; Mesli, Abdelmadjid; Zhang, Jian; Dan, Yaping

    2015-01-01

    This Report presents a nitrogen-doping method by chemically forming self-assembled monolayers on silicon. Van der Pauw technique, secondary-ion mass spectroscopy and low temperature Hall effect measurements are employed to characterize the nitrogen dopants. The experimental data show that the diffusion coefficient of nitrogen dopants is 3.66 × 10−15 cm2 s−1, 2 orders magnitude lower than that of phosphorus dopants in silicon. It is found that less than 1% of nitrogen dopants exhibit electrical activity. The analysis of Hall effect data at low temperatures indicates that the donor energy level for nitrogen dopants is located at 189 meV below the conduction band, consistent with the literature value. PMID:26227342

  2. Nanoscale Nitrogen Doping in Silicon by Self-Assembled Monolayers

    NASA Astrophysics Data System (ADS)

    Guan, Bin; Siampour, Hamidreza; Fan, Zhao; Wang, Shun; Kong, Xiang Yang; Mesli, Abdelmadjid; Zhang, Jian; Dan, Yaping

    2015-07-01

    This Report presents a nitrogen-doping method by chemically forming self-assembled monolayers on silicon. Van der Pauw technique, secondary-ion mass spectroscopy and low temperature Hall effect measurements are employed to characterize the nitrogen dopants. The experimental data show that the diffusion coefficient of nitrogen dopants is 3.66 × 10-15 cm2 s-1, 2 orders magnitude lower than that of phosphorus dopants in silicon. It is found that less than 1% of nitrogen dopants exhibit electrical activity. The analysis of Hall effect data at low temperatures indicates that the donor energy level for nitrogen dopants is located at 189 meV below the conduction band, consistent with the literature value.

  3. Crossbar nanoarchitectonics of the crosslinked self-assembled monolayer

    PubMed Central

    2014-01-01

    A bottom-up approach was devised to build a crossbar device using the crosslinked SAM of the 5,5′-bis (mercaptomethyl)-2,2′-bipyridine-Ni2+ (BPD- Ni2+) on a gold surface. To avoid metal diffusion through the organic film, the author used (i) nanoscale bottom electrodes to reduce the probability of defects on the bottom electrodes and (ii) molecular crosslinked technology to avoid metal diffusion through the SAMs. The properties of the crosslinked self-assembled monolayer were determined by XPS. I-V characteristics of the device show thermally activated hopping transport. The implementation of this type of architecture will open up new vistas for a new class of devices for transport, storage, and computing. PMID:24994952

  4. Controlling the stereochemistry and regularity of butanethiol self-assembled monolayers on au(111).

    PubMed

    Yan, Jiawei; Ouyang, Runhai; Jensen, Palle S; Ascic, Erhad; Tanner, David; Mao, Bingwei; Zhang, Jingdong; Tang, Chunguang; Hush, Noel S; Ulstrup, Jens; Reimers, Jeffrey R

    2014-12-10

    The rich stereochemistry of the self-assembled monolayers (SAMs) of four butanethiols on Au(111) is described, the SAMs containing up to 12 individual C, S, or Au chiral centers per surface unit cell. This is facilitated by synthesis of enantiomerically pure 2-butanethiol (the smallest unsubstituted chiral alkanethiol), followed by in situ scanning tunneling microscopy (STM) imaging combined with density functional theory molecular dynamics STM image simulations. Even though butanethiol SAMs manifest strong headgroup interactions, steric interactions are shown to dominate SAM structure and chirality. Indeed, steric interactions are shown to dictate the nature of the headgroup itself, whether it takes on the adatom-bound motif RS(•)Au(0)S(•)R or involves direct binding of RS(•) to face-centered-cubic or hexagonal-close-packed sites. Binding as RS(•) produces large, organizationally chiral domains even when R is achiral, while adatom binding leads to rectangular plane groups that suppress long-range expression of chirality. Binding as RS(•) also inhibits the pitting intrinsically associated with adatom binding, desirably producing more regularly structured SAMs.

  5. Lipid dip-pen nanolithography on self-assembled monolayers

    NASA Astrophysics Data System (ADS)

    Gavutis, Martynas; Navikas, Vytautas; Rakickas, Tomas; Vaitekonis, Šarūnas; Valiokas, Ramūnas

    2016-02-01

    Dip-pen nanolithography (DPN) with lipids as an ink enables functional micro/nanopatterning on different substrates at high process speeds. However, only a few studies have addressed the influence of the physicochemical properties of the surface on the structure and phase behavior of DPN-printed lipid assemblies. Therefore, by combining the scanning probe and optical imaging techniques in this work we have analyzed lipid microdomain formation on the self-assembled monolayers (SAMs) on gold as well-defined model surfaces that displayed hydrophilic (protein-repellent) or hydrophobic (protein-adhesive) characteristics. We have found that on the tri(ethylene glycol)-terminated SAM the lipid ink transfer was fast (~10-1 μm3 s-1), quasi-linear and it yielded unstable, sparsely packed lipid microspots. Contrary to this, on the methyl-terminated SAM the lipid transfer was ~20 times slower, nonlinear, and the obtained stable dots of ~1 μm in diameter consisted of lipid multilayers. Our comparative analysis indicated that the measured lipid transfer was consistent with the previously reported so-called polymer transfer model (Felts et al 2012, Nanotechnology 23 215301). Further on, by employing the observed distinct contrast in the DPN ink behavior we constructed confined lipid microdomains on pre-patterned SAMs, in which the lipids assembled either into monolayer or multilamellar phases. Such microdomains can be further utilized for lipid membrane mimetics in microarray and lab-on-a-chip device formats.

  6. Tunnel magnetoresistance in Self-Assembled Monolayers Based Tunnel Junctions

    NASA Astrophysics Data System (ADS)

    Mattana, Richard; Barraud, Clément; Tatay, Sergio; Galbiati, Marta; Seneor, Pierre; Bouzehouane, Karim; Jacquet, Eric; Deranlot, Cyrile; Fert, Albert; Petroff, Frédéric

    2012-02-01

    Organic/molecular spintronics is a rising research field at the frontier between spintronics and organic chemistry. Organic molecule and semiconductors were first seen as promising for spintronics devices due to their expected long spin lifetime. But an exciting challenge has also been to find opportunities arising from chemistry to develop new spintronics functionalities. It was shown that the molecular structure and the ferromagnetic metal/molecule hybridization can strongly influence interfacial spin properties going from spin polarization enhancement to its sign control in spintronics devices. In this scenario, while scarcely studied, self-assembled monolayers (SAMs) are expected to become perfect toy barriers to further test these tailoring properties in molecular magnetic tunnel junctions (MTJs). Due to its very high spin polarization and air stability LSMO has positioned itself as the electrode of choice in most of the organic spintronics devices. We will present a missing building block for molecular spintronics tailoring: the grafting and film characterization of organic monofunctionalized long alkane chains over LSMO. We have obtained 35% of magnetoresistance in LSMO/SAMs/Co MTJs. We will discuss the unusual behaviour of the bias voltage dependence of the TMR.

  7. Self-Assembled Monolayer And Method Of Making

    DOEpatents

    Fryxell, Glen E.; Zemanian, Thomas S.; Liu, Jun; Shin, Yongsoon

    2004-06-22

    According to the present invention, the previously known functional material having a self-assembled monolayer on a substrate has a plurality of assembly molecules each with an assembly atom with a plurality of bonding sites (four sites when silicon is the assembly molecule) wherein a bonding fraction (or fraction) of fully bonded assembly atoms (the plurality of bonding sites bonded to an oxygen atom) has a maximum when made by liquid solution deposition, for example a maximum of 40% when silicon is the assembly molecule, and maximum surface density of assembly molecules was 5 silanes per square nanometer. Note that bonding fraction and surface population are independent parameters. The method of the present invention is an improvement to the known method for making a siloxane layer on a substrate, wherein instead of a liquid phase solution chemistry, the improvement is a supercritical phase chemistry. The present invention has the advantages of greater fraction of oxygen bonds, greater surface density of assembly molecules and reduced time for reaction of about 5 minutes to about 24 hours.

  8. Self-assembled monolayer and method of making

    DOEpatents

    Fryxell, Glen E [Kennewick, WA; Zemanian, Thomas S [Richland, WA; Liu, Jun [West Richland, WA; Shin, Yongsoon [Richland, WA

    2003-03-11

    According to the present invention, the previously known functional material having a self-assembled monolayer on a substrate has a plurality of assembly molecules each with an assembly atom with a plurality of bonding sites (four sites when silicon is the assembly molecule) wherein a bonding fraction (or fraction) of fully bonded assembly atoms (the plurality of bonding sites bonded to an oxygen atom) has a maximum when made by liquid solution deposition, for example a maximum of 40% when silicon is the assembly molecule, and maximum surface density of assembly molecules was 5 silanes per square nanometer. Note that bonding fraction and surface population are independent parameters. The method of the present invention is an improvement to the known method for making a siloxane layer on a substrate, wherein instead of a liquid phase solution chemistry, the improvement is a supercritical phase chemistry. The present invention has the advantages of greater fraction of oxygen bonds, greater surface density of assembly molecules and reduced time for reaction of about 5 minutes to about 24 hours.

  9. Self-Assembled Monolayer And Method Of Making

    DOEpatents

    Fryxell, Glen E.; Zemanian, Thomas S.; Liu, Jun; Shin, Yongsoon

    2005-01-25

    According to the present invention, the previously known functional material having a self-assembled monolayer on a substrate has a plurality of assembly molecules each with an assembly atom with a plurality of bonding sites (four sites when silicon is the assembly molecule) wherein a bonding fraction (or fraction) of fully bonded assembly atoms (the plurality of bonding sites bonded to an oxygen atom) has a maximum when made by liquid solution deposition, for example a maximum of 40% when silicon is the assembly molecule, and maximum surface density of assembly molecules was 5 silanes per square nanometer. Note that bonding fraction and surface population are independent parameters. The method of the present invention is an improvement to the known method for making a siloxane layer on a substrate, wherein instead of a liquid phase solution chemistry, the improvement is a supercritical phase chemistry. The present invention has the advantages of greater fraction of oxygen bonds, greater surface density of assembly molecules and reduced time for reaction of about 5 minutes to about 24 hours.

  10. Self-assembled monolayer and method of making

    DOEpatents

    Fryxell, Glen E.; Zemanian, Thomas S.; Liu, Jun; Shin, Yongsoon

    2004-05-11

    According to the present invention, the previously known functional material having a self-assembled monolayer on a substrate has a plurality of assembly molecules each with an assembly atom with a plurality of bonding sites (four sites when silicon is the assembly molecule) wherein a bonding fraction (or fraction) of fully bonded assembly atoms (the plurality of bonding sites bonded to an oxygen atom) has a maximum when made by liquid solution deposition, for example a maximum of 40% when silicon is the assembly molecule, and maximum surface density of assembly molecules was 5 silanes per square nanometer. Note that bonding fraction and surface population are independent parameters. The method of the present invention is an improvement to the known method for making a siloxane layer on a substrate, wherein instead of a liquid phase solution chemistry, the improvement is a supercritical phase chemistry. The present invention has the advantages of greater fraction of oxygen bonds, greater surface density of assembly molecules and reduced time for reaction of about 5 minutes to about 24 hours.

  11. Investigation of functionalized silicon nanowires by self-assembled monolayer

    NASA Astrophysics Data System (ADS)

    Hemed, Nofar Mintz; Convertino, Annalisa; Shacham-Diamand, Yosi

    2016-03-01

    The functionalization using self assembled monolayer (SAM) of silicon nanowires (SiNW) fabricated by plasma enhanced chemical vapor deposition (PECVD) is reported here. The SAM is being utilized as the first building block in the functionalization process. The morphology of the SiNW comprises a polycrystalline core wrapped by an hydrogenated amorphous silicon (α-Si:H) shell. Since most of the available methods for SAM verification and characterization are suitable only for flat substrates; therefore, in addition to the SiNW α-Si:H on flat samples were produced in the same system as the SiNWs. First we confirmed the SAM's presence on the flat α-Si:H samples using the following methods: contact angle measurement to determine the change in surface energy; atomic force microscopy (AFM) to determine uniformity and molecular coverage. Spectroscopic ellipsometry and X-ray reflectivity (XRR) were performed to measure SAM layer thickness and density. X-ray photoelectron spectroscopy (XPS) was applied to study the chemical states of the surface. Next, SiNW/SAM were tested by electrochemical impedance spectroscopy (EIS), and the results were compared to α-Si:H/SAM. The SAM electrical coverage on SiNW and α-Si:H was found to be ∼37% and ∼65 ± 3%, respectively. A model, based on transmission line theory for the nanowires is presented to explain the disparity in results between the nanowires and flat surface of the same materials.

  12. Growth and properties of self-assembled monolayers on metals

    NASA Astrophysics Data System (ADS)

    Zhuang, Y. X.; Hansen, O.; He, J. C.

    2009-03-01

    Self-assembled monolayers (SAMs) grown from organosilane are promising candidate for anti-stiction coatings. It is well know that the application of hydrocarbon- and fluorocarbon-based SAMs can significantly reduce stiction and adhesion in silicon micro/nanostructures in Micro-Electro-Mechancial System (MEMS). There are often various metals involved in MEMS, such as Au, Al, Ti, etc. In the process of growing anti-stiction SAMs on the silicon microstructures, SAM will be unavoidably deposited on the metals, which will significantly change surface properties of the materials. Therefore, it is necessary to investigate how the organosilane SAMs grow on the metals, and affect the surface properties of the materials. In this paper, CF3(CF2)5(CH2)2SiCl3 (FOTS) SAMs were grown on various metals using a vapour phase process in a home-made setup. The metals investigated are thin film Pd, Au, Ni, Al, Ti, Cr with thickness of 100 nm, which are deposited on monocrystal-silicon substrates using e-beam evaporation. The SAMs were characterized by static contact angle, surface energy, roughness, nano-scale adhesion force and friction force.

  13. Asphaltene Adsorption onto Self-Assembled Monolayers of Mixed Aromatic

    SciTech Connect

    Turgman-Cohen, S.; Smith, M; Fischer, D; Kilpatrick, P; Genzer, J

    2009-01-01

    The adsorption of asphaltenes onto flat solid surfaces modified with mixed self-assembled monolayers (SAMs) of aliphatic and aromatic trichlorosilanes with varying wettabilities, aromaticities, and thicknesses is tested. The mixed SAMs are characterized by means of contact angle to assess hydrophobicity and molecular and chemical uniformity, spectroscopic ellipsometry to measure the thickness of the films, and near edge X-ray absorption fine structure (NEXAFS) spectroscopy to assess chemical and molecular composition. The molecular characteristics of the adsorbed asphaltene layer and the extent of asphaltene adsorption are determined using NEXAFS and spectroscopic ellipsometry, respectively. The SAMs are formed by depositing phenyl-, phenethyl-, butyl-, and octadecyl- trichlorosilanes from toluene solutions onto silica-coated substrates; the chemical composition and the wettability of the SAM surface is tuned systematically by varying the trichlorosilane composition in the deposition solutions. The adsorption of asphaltenes on the substrates does not correlate strongly with the SAM chemical composition. Instead, the extent of asphaltene adsorption decreases with increasing SAM thickness. This observation suggests that the leading interaction governing the adsorption of asphaltenes is their interaction with the polar silica substrate and that the chemical composition of the SAM is of secondary importance.

  14. Free energy calculations in electroactive self-assembled monolayers (SAMs): impact of the chain length on the redox reaction.

    PubMed

    Filippini, Gaelle; Israeli, Yael; Goujon, Florent; Limoges, Benoit; Bonal, Christine; Malfreyt, Patrice

    2011-10-13

    The free energy approach is used to study the effect of the relative chain length of the two constituents of electroactive self-assembled monolayers (SAMs) on gold. In this study, the ferrocene groups are exposed to the electrolyte solution. This situation is achieved by using shorter diluent alkanethiol chains. To this end, the mixed monolayers formed by the self-assembly of 11-ferrocenylundecanethiol and butanethiol FcC(11)S/C(4)S and of 6-ferrocenylhexanethiol and butanethiol FcC(6)S/C(4)S onto a gold surface are studied. Calculation of enthalpy and entropy differences are also performed using molecular simulations. Additionally, the electrochemical signatures of these systems are determined to allow a direct comparison with our calculations. The thermodynamic properties are discussed in terms of enthalpy and entropy changes. Two effects account for the thermodynamic behavior. The first one involves the ion pairing between the ferrocenium group and the perchlorate anion. The second one concerns the desolvation of the first hydration shell of the anions. Finally, this work is also completed with a microscopic description associated with an energy characterization of these SAMs as a function of the surface coverage under conditions close to experiments. PMID:21866943

  15. Inside Front Cover: Manipulating the Local Light Emission in Organic Light-Emitting Diodes by using Patterned Self-Assembled Monolayers (Adv. Mater. 14/2008).

    PubMed

    Mathijssen, Simon G J; van Hal, Paul A; van den Biggelaar, Ton J M; Smits, Edsger C P; de Boer, Bert; Kemerink, Martijn; Janssen, René A J; de Leeuw, Dago M

    2008-07-17

    The inside cover shows an optical micrograph picture of an organic light-emitting diode with patterned, micro-contact-printed self-assembled monolayers (SAMs) that modify the work function of the anode, reported by Simon Mathijssen, Dago de Leeuw, and co-workers on p. 2703. In this particular light-emitting diode a fluorinated alkanethiol has been used that increases the work function and therefore improves the injection of holes. This results in a higher light emission on the positions where the SAM has been printed, which can be observed as the red pattern. PMID:25213911

  16. Patterning Self-Assembled Monolayers on Gold: Green Materials Chemistry in the Teaching Laboratory

    ERIC Educational Resources Information Center

    McFarland, Adam D.; Huffman, Lauren M.; Parent, Kathryn, E.; Hutchison, James E.; Thompson, John E.

    2004-01-01

    An experiment demonstrating self-assembled monolayer (SAM) chemistry, organic thin-film patterning and the use of molecular functionality to control macroscopic properties is described. Several important green chemistry principles are introduced.

  17. Stability of antibacterial self-assembled monolayers on hydroxyapatite.

    PubMed

    Torres, Nelson; Oh, Sunho; Appleford, Mark; Dean, David D; Jorgensen, James H; Ong, Joo L; Agrawal, C Mauli; Mani, Gopinath

    2010-08-01

    Open fractures are common in battlefields, motor vehicle accidents, gunshot wounds, sports injuries, and high-energy falls. Such fractures are treated using hydroxyapatite (HA)-based bone graft substitutes. However, open fracture wounds are highly susceptible to bacterial infections. Hence, this study was focused on incorporating antibacterial properties to HA using silver (Ag) carrying self-assembled monolayers (SAMs). Also, the stability of Ag carrying SAMs on HA was investigated under sterilization and physiological conditions. Initially, the -COOH terminated phosphonic acid SAMs of two different chain lengths (11 carbon atoms - shorter chain and 16 carbon atoms - longer chain) were deposited on HA. Antibacterial SAMs (ASAMs) were prepared by chemically attaching Ag to shorter and longer chain SAMs coated HA. X-ray photoelectron spectroscopy, atomic force microscopy, and contact angle goniometry collectively confirmed the attachment of Ag onto SAMs coated HA. The bacterial adhesion study showed that the adherence of Staphylococcus aureus was significantly reduced on ASAMs coated HA when compared to control-HA. The stability studies showed that gas plasma, dry heat and autoclave degraded most of the ASAMs on HA. UV irradiation did not damage the shorter chain ASAMs as vigorously as other treatments, while it degraded the longer chain ASAMs completely. Ethylene oxide treatment did not degrade the longer chain ASAMs unlike all other treatments but it severely damaged the shorter chain ASAMs. Both shorter and longer chain ASAMs significantly desorbed from the HA surfaces under physiological conditions although longer chain ASAMs exhibited better stability than shorter chain ASAMs. This study demonstrated the potential for using ASAMs to provide antibacterial properties to HA and the need for developing techniques to improve stability of SAMs under sterilization and physiological conditions. PMID:20188873

  18. Soft-Landing of CoIII(salen)+ and MnIII(salen)+ on Self-Assembled Monolayer Surfaces

    SciTech Connect

    Laskin, Julia; Wang, Peng; Hadjar, Omar

    2010-03-25

    Soft-landing of mass-selected CoIII(salen)+ and MnIII(salen)+ complexes was performed using self-assembled monolayer surfaces of alkanethiol (HSAM) and fluorinated alkanethiol (FSAM) on gold as targets. Physical processes associated with ion deposition were studied using time-resolved in situ secondary ion mass spectrometry (SIMS) in a specially designed Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS). We demonstrate charge retention by a significant fraction of precursor ions on the FSAM and complete neutralization on the HSAM surface. Our results indicate efficient electron transfer from gold to the deposited species for the HSAM surface and inefficient, if any, electron transfer on the FSAM surface. Formation of abundant cluster ions observed in SIMS spectra is attributed to gas-phase reactions in the SIMS plume. Detailed analysis allowed us to extract the kinetics of both ionic and neutral complexes trapped on the FSAM surface. The results indicate that neutralization on this surface most likely takes place on the defect sites.

  19. Patterned Growth of Organic Semiconductors: Selective Nucleation of Perylene on Self-Assembled Monolayers.

    PubMed

    Pick, André; Witte, Gregor

    2016-08-16

    Organic semiconductors (OSC) have received a large amount of attention because they afford the fabrication of flexible electronic devices. However, the limited resistance to radiation and etching of such materials does not permit their patterning by photolithography, which has been a driving force for the development of integrated circuits and therefore requires alternative structuring techniques. One approach is based on precoating the substrate with self-assembled monolayers (SAMs) to control the nucleation of subsequently deposited OSC layers, but the underlying mechanism is barely understood. Here, we used alkanethiols with different chemical terminations to prepare SAMs on gold substrates serving as model systems to identify the mechanism of selective nucleation for the case of the OSC perylene. Using atomic force microscopy and fluorescence microscopy, we demonstrate that the chemical functionalization of the SAMs determines the adhesion forces for the OSC that are smallest for CF3-terminated and largest for OH-terminated SAMs, hence yielding distinctly different sticking probabilities upon perylene deposition at room temperature. Microcontact printing and immersion were employed to prepare SAM patterns that enable the selective growth of polycrystalline perylene films. A quite different situation is found upon printing long-chain thiols with low vapor pressure, which leads to the transfer of multilayers and favors the growth of perylene single crystallites. In a more abstract scenario, patterns of silicone oil droplets were printed on a gold substrate, which was previously covered with a repelling fluorinated SAM. Such droplets provide nucleation centers for liquid-mediated growth, often yielding platelet-shaped perylene single crystallites without unwanted perylene nucleation on the remaining surface. PMID:27441921

  20. Investigation of cellular and protein interactions with model self-assembled monolayer surfaces

    NASA Astrophysics Data System (ADS)

    Tegoulia, Vassiliki Apostolou

    Self-assembled monolayers (SAMs) of alkanethiolates on gold have been used to investigate the effect of substrate surface properties on bacterial and blood cell adhesion in the presence and absence of blood proteins. Protein adsorption and binding strength on SAMs as well as complement activation by these model surfaces were also studied. It is hoped that information gained, regarding factors that influence biological processes, will lead to strategies for designing materials and surfaces that specifically inhibit cell adhesion and protein adsorption. Single component SAMs of the general formula HS(CH2) 10X, where X = CH3, CH2OH. COOH and CH2(OCH 2CH2)3OH, and two component mixed SAMs created from binary solutions of HS(CH2), OCH3 and HS(CH 2)10CH2OH, were used. Adhesion was investigated under well-defined flow conditions. Adhesion was found to be higher for the hydrophobic methyl and minimal for the tri(ethyleneoxide) terminated SAM. Preincubation of the SAMs with fibrinogen led to an increase in cell adhesion for bacteria and a decrease for leukocyte adhesion. The effect of surface chemistry on protein adsorption was studied for three blood proteins, fibrinogen, fibronectin and albumin. Adsorption was found to be higher on the hydrophobic CH3 surface and lower but comparable for the other surfaces while proteins adsorbed strongly on all surfaces. SAMs were also used to evaluate complement activation by foreign surfaces. The hydroxyl rich SAMs were found to activate complement more significantly than the anionic carboxyl and the hydrophobic methyl terminated SAMs. A surface modification was introduced to incorporate a zwitterionic phosphorylcholine (PC) group on a hydroxyl monolayer in an effort to create a biomimetic surface that could minimize cell adhesion and protein adsorption. The good antifouling properties of the phosphorylcholine modified surface led to the synthesis of a novel phosphorylcholine functionalized thiol. Single component and two component

  1. Multifunctional Self-Assembled Monolayers for Organic Field-Effect Transistors

    NASA Astrophysics Data System (ADS)

    Cernetic, Nathan

    Organic field effect transistors (OFETs) have the potential to reach commercialization for a wide variety of applications such as active matrix display circuitry, chemical and biological sensing, radio-frequency identification devices and flexible electronics. In order to be commercially competitive with already at-market amorphous silicon devices, OFETs need to approach similar performance levels. Significant progress has been made in developing high performance organic semiconductors and dielectric materials. Additionally, a common route to improve the performance metric of OFETs is via interface modification at the critical dielectric/semiconductor and electrode/semiconductor interface which often play a significant role in charge transport properties. These metal oxide interfaces are typically modified with rationally designed multifunctional self-assembled monolayers. As means toward improving the performance metrics of OFETs, rationally designed multifunctional self-assembled monolayers are used to explore the relationship between surface energy, SAM order, and SAM dipole on OFET performance. The studies presented within are (1) development of a multifunctional SAM capable of simultaneously modifying dielectric and metal surface while maintaining compatibility with solution processed techniques (2) exploration of the relationship between SAM dipole and anchor group on graphene transistors, and (3) development of self-assembled monolayer field-effect transistor in which the traditional thick organic semiconductor is replaced by a rationally designed self-assembled monolayer semiconductor. The findings presented within represent advancement in the understanding of the influence of self-assembled monolayers on OFETs as well as progress towards rationally designed monolayer transistors.

  2. Self assembled molecular monolayers on high surface area materials as molecular getters

    DOEpatents

    King, D.E.; Herdt, G.C.; Czanderna, A.W.

    1997-01-07

    The present invention relates to a gettering material that may be used as a filtration medium to remove pollutants from the environment. The gettering material comprises a high surface area material having a metal surface that chemically bonds n-alkanethiols in an organized manner thereby forming a molecular monolayer over the metal surface. The n-alkanethiols have a free functional group that interacts with the environment thereby binding specific pollutants that may be present. The gettering material may be exposed to streams of air in heating, ventilation, and air conditioning systems or streams of water to remove specific pollutants from either medium. 9 figs.

  3. Self assembled molecular monolayers on high surface area materials as molecular getters

    DOEpatents

    King, David E.; Herdt, Gregory C.; Czanderna, Alvin W.

    1997-01-01

    The present invention relates to a gettering material that may be used as a filtration medium to remove pollutants from the environment. The gettering material comprises a high surface area material having a metal surface that chemically bonds n-alkanethiols in an organized manner thereby forming a molecular monolayer over the metal surface. The n-alkanethiols have a free functional group that interacts with the environment thereby binding specific pollutants that may be present. The gettering material may be exposed to streams of air in heating, ventilation, and air conditioning systems or streams of water to remove specific pollutants from either medium.

  4. Orientation and Mg Incorporation of Calcite Grown on Functionalized Self-Assembled Monolayers: A Synchrotron X-ray Study

    SciTech Connect

    Kwak,S.; DiMasi, E.; Han, Y.; Aizenberg, J.; Kuzmenko, I.

    2005-01-01

    Calcite crystals were nucleated from MgCl2/CaCl2 solutions onto functionalized self-assembled monolayers adsorbed onto E-beam evaporated Au films. Synchrotron X-ray scattering studies of the crystals reveal new information about preferred orientation and Mg incorporation. The Au [111] axis is distributed within 2.6 degrees of the film surface normal, but the oriented crystals may be tilted up to 6 degrees away from this axis. For low Mg{sup 2+} content, SO{sub 3}--functionalized films nucleated primarily near the (106) calcite face, odd-chain-length carboxylic acid terminated alkanethiol films nucleated near the (012) face, and even-chain-length carboxylic acid terminated alkanethiol films nucleated near the (113) face. [Mg{sup 2+}]/[Ca{sup 2+}] concentration ratios (n) of 2 and greater defeated this preferred orientation and created a powder texture. Diffraction patterns within the layer plane from the coarse calcite powders indicated a shift to higher 2 accompanied by peak broadening with increasing n. For 0.5 < n < 3.5, a double set of calcite peaks is observed, showing that two distinct Mg calcite phases form: one of comparatively lower Mg content, derived from the templated crystals, and a Mg-rich phase derived from amorphous precursor particles. According to the refinement of lattice parameters, Mg incorporation of up to 18 mol % occurs for n = 4, independent of film functionality. We discuss the differences between the differently functionalized monolayers and also introduce the hypothesis that two separate routes to Mg calcite formation occur in this system.

  5. Fully printable mesoscopic perovskite solar cells with organic silane self-assembled monolayer.

    PubMed

    Liu, Linfeng; Mei, Anyi; Liu, Tongfa; Jiang, Pei; Sheng, Yusong; Zhang, Lijun; Han, Hongwei

    2015-02-11

    By the introduction of an organic silane self-assembled monolayer, an interface-engineering approach is demonstrated for hole-conductor-free, fully printable mesoscopic perovskite solar cells based on a carbon counter electrode. The self-assembled silane monolayer is incorporated between the TiO2 and CH3NH3PbI3, resulting in optimized interface band alignments and enhanced charge lifetime. The average power conversion efficiency is improved from 9.6% to 11.7%, with a highest efficiency of 12.7%, for this low-cost perovskite solar cell.

  6. Asymmetric printing of molecules and zeolites on self assembled monolayers.

    PubMed

    Kehr, Nermin Seda; Schäfer, Andreas; Ravoo, Bart Jan; De Cola, Luisa

    2010-04-01

    Microcontact printing (mCP) is used to immobilize dyes and peptides asymmetrically, by a "peptide coupling" reaction, on monolayers of zeolite L crystals in the contact area between the stamp and the surface of the monolayer. Chemically patterned surfaces of monolayers of zeolite L crystals are obtained by using patterned stamps with different ink solutions. Additional printing of functionalized nano-objects on SAMs of zeolite L crystals is demonstrated.

  7. Self-assembling and self-limiting monolayer deposition

    NASA Astrophysics Data System (ADS)

    Foest, Rüdiger; Schmidt, Martin; Gargouri, Hassan

    2014-02-01

    Effects of spatial ordering of molecules on surfaces are commonly utilized to deposit ultra-thin films with a thickness of a few nm. In this review paper, several methods are discussed, that are distinguished from other thin film deposition processes by exactly these effects that lead to self-assembling and self-limiting layer growth and eventually to coatings with unique and fascinating properties and applications in micro-electronics, optics, chemistry, or biology. Traditional methods for the formation of self-assembled films of ordered organic molecules, such as the Langmuir-Blodgett technique along with thermal atomic layer deposition (ALD) of inorganic molecules are evaluated. The overview is complemented by more recent developments for the deposition of organic or hybrid films by molecular layer deposition. Particular attention is given to plasma assisted techniques, either as a preparative, supplementary step or as inherent part of the deposition as in plasma enhanced ALD or plasma assisted, repeated grafting deposition. The different methods are compared and their film formation mechanisms along with their advantages are presented from the perspective of a plasma scientist. The paper contains lists of established film compounds and a collection of the relevant literature is provided for further reading.

  8. Self-Assembled Monolayers of Dithiophosphinic Acids on Gold

    NASA Astrophysics Data System (ADS)

    San Juan, Ronan Roca

    This dissertation reports the synthesis of derivatives of dithiophosphinic acids (R1R2DTPAs), and the formation and characterization of DTPA SAMs on gold to build a knowledge base on their nature of binding, organization of the alkyl chains and electrochemical barrier properties. The binding of DTPA molecules on gold depends on the morphology of the gold film: They bind in a mixed monodentate and bidentate modes on standard as-deposited (As-Dep) gold, while they fully chelate on smoother template-stripped (TS) gold. Chapter 2 focuses on van der Waals interactions of various alkyl chain lengths of symmetrical R2DTPA SAMs, which increase with increasing chain lengths similar to those of the analogous n-alkanethiol SAMs, but with alkyl chains that are generally less dense than those of n-alkanethiol SAMs. Chapter 3 addresses why the DTPA compounds do not chelate on the standard As-Dep gold by comparing (C16)2DTPA SAM to (C16 )2DDP SAM. Here, side chain crystallinity stabilizes DTPA SAM structure at the expense of chelation of the DTPA molecules, which leads to a mixture of bidentate and monodentate DTPA molecules, whereas the increased flexibility of the chains in DDP due to the oxygen atoms retains chelation of the DDP molecules. Chapter 4 focuses on the SAMs formed from RlongRshort DTPAs, which shows that the length of the short chain spacer affects SAM packing density and thickness. The SAMs of these molecules also show homogeneous mixing of Rlong and Rshort chains. Chapter 5 investigates PhRDTPA SAMs in preparation for molecular junction studies. The chelation of PhRDTPA molecules on TS gold allows the PhRDTPAs to act as molecular alligator clips. The length of the alkyl chains controls the density of the phenyl group and they fill in the voids between adsorbates to prevent electrical shorting. Finally, Chapter 6 incorporates OH tail group(s) to control the wettability of DTPA SAMs. The presence of OH groups in DTPAs forms hydrophilic SAMs. The symmetrical OH

  9. Deposition of Ag nanoparticles on fluoroalkylsilane self-assembled monolayers with varying chain length

    NASA Astrophysics Data System (ADS)

    Zuo, Juan; Keil, Patrick; Valtiner, Markus; Thissen, Peter; Grundmeier, Guido

    2008-12-01

    Silver nanoparticles were prepared by means of electron beam evaporation of silver on top of self-assembled fluoroalkylsilane monolayers with different fluoroalkyl chain length. The surface properties of the different self-assembled monolayers (SAMs) were evaluated by surface energy measurements and X-ray photoelectron spectroscopy. The morphology of the silver nanostructures, characterized by their size, size distribution, shape and interparticle separation, was observed to be dependent on the chemical composition, fluoroalkyl chain length and surface energy of the sub-layer as well as the degradation of the monolayer during the deposition process. The resulting morphology of the evaporated Ag nanostructures on the different surfaces could be explained based on the basis of surface energy and the role of ordering, disordering and defects of the monolayers caused by the impinging silver atoms during evaporation. Depending on the fluoroalkyl chain length significant changes in the chemical and physical structure of the SAMs after the evaporation process could be detected.

  10. Alkanephosphonates on hafnium-modified gold: a new class of self-assembled organic monolayers.

    PubMed

    Jespersen, Michael L; Inman, Christina E; Kearns, Gregory J; Foster, Evan W; Hutchison, James E

    2007-03-14

    A new method for assembling organic monolayers on gold is reported that employs hafnium ions as linkers between a phosphonate headgroup and the gold surface. Monolayers of octadecylphosphonic acid (ODPA) formed on gold substrates that had been pretreated with hafnium oxychloride are representative of this new class of organic thin films. The monolayers are dense enough to completely block assembly of alkanethiols and resist displacement by alkanethiols. The composition and structure of the monolayers were investigated by contact angle goniometry, XPS, PM-IRRAS, and TOF-SIMS. From these studies, it was determined that this assembly strategy leads to the formation of ODPA monolayers similar in quality to those typically formed on metal oxide substrates. The assembly method allows for the ready generation of patterned surfaces that can be easily prepared by first patterning hafnium on the gold surface followed by alkanephosphonate assembly. Using the bifunctional (thiol-phosphonate) 2-mercaptoethylphosphonic acid (2-MEPA), we show that this new assembly chemistry is compatible with gold-thiol chemistry and use TOF-SIMS to show that the molecule attaches through the phosphonate functionality in the patterned region and through the thiol in the bare gold regions. These results demonstrate the possibility of functionalizing metal substrates with monolayers typically formed on metal oxide surfaces and show that hafnium-gold chemistry is complementary and orthogonal to well-established gold-thiol assembly strategies.

  11. Self-assembled monolayers for studying enzyme immobilization and ion recognition

    NASA Astrophysics Data System (ADS)

    Kang, Jie

    This thesis explores the use of self-assembled monolayers on gold for studying enzyme immobilization and ion recognition. Chapter 1 serves as a general introduction to biosensing, self-assembled monolayers, protein immobilization, and surface characterization techniques. Chapter 2 through Chapter 5 describe the immobilization of a redox enzyme, glucose oxidase, to a variety of functional self-assembled monolayers by either noncovalent adsorption or covalent attachment. The characteristics of different immobilization methods are investigated, and the activity of the immobilized enzyme is assessed electrochemically. Chapter 2 presents detailed procedures for measuring glucose oxidase activity by an electrochemical technique---cyclic voltammetry. Chapter 3 describes the adsorption of glucose oxidase to hydrophobic and hydrophilic self-assembled monolayers (SAMs). Significant glucose oxidase adsorption to hydrophobic, methyl-terminated SAMs was observed, while long chain, hydrophilic SAMs terminated by hydroxyl and carboxyl groups resist enzyme adsorption. Chapter 4 examines the covalent attachment of glucose oxidase to N-hydroxysuccinimide ester (NHS ester)-terminated self-assembled monolayers. The reactivity of the surface NHS ester group is found to increase as its coverage is lowered. This observation is explained by the steric effect. Chapter 5 reports the electrostatic adsorption of glucose oxidase to self-assembled monolayers of cystamine. The adsorbed enzyme shows superior activity to enzyme immobilized by other means. The rate constants of surface enzyme catalysis are determined and compared with those of the enzyme in solution. Chapter 6 is concerned with iron (III) recognition by a self-assembled monolayer terminated with a siderophore group, desferrioxamine (H3DFO). We first demonstrate that the iron coverage of the ferrioxamine (FeDFO)-terminated SAM can be successfully assayed by cyclic voltammetry. We then present results for iron (III) binding to the H3

  12. Spectral and electrochemical properties of phenylazonaphthalene based on a self-assembled monolayer

    NASA Astrophysics Data System (ADS)

    Zhang, Aidong; Qin, Jingui; Gu, Jianhua; Lu, Zu-Hong

    1998-08-01

    A thiol-terminated phenylazonaphthalene derivative, namely 1-mercapto-6-[1-(4-phenylazonaphthoxy)]hexane 1, was synthesized by diazo coupling of aniline with 1-naphthol, etherification with 1,6-dibromohexane and thiol derivatization, subsequently. By self-assembly technology, the compound was spontaneously absorbed in thin, optically transparent gold film and formed stable self-assembled monolayer (SAM). The self-assembly course was monitored by UV-visible absorption spectra which gave direct evidence for the self-assembly mechanism of self-assembled monolayer, i.e., chemically adsorbed firstly, then came through a long- time orientation. Meanwhile, cyclic voltammogram was employed to study the electrochemical reduction and oxidation of the immobilized phenylazonaphthalene. The single molecular area obtained using the two methods was almost the same: ca. 0.9 nm2. The irreversibility of the electrode process, sluggish reaction and reduction peak splitting all were originated from the well molecular orientation, not the dense packing in the SAM. This implied the process of oxidation and reduction accompanied the molecular conformation change which needed more free space for the movement of the molecular chain during the electrode processes.

  13. Interactions of N-alcohols with self-assembled monolayer surfaces on nickel(111) studied by temperature-programmed desorption

    NASA Astrophysics Data System (ADS)

    Vogt, Andrew Dale

    1999-12-01

    The interactions of molecules with self-assembled monolayer (SAM) surfaces formed on nickel (111) as studied by temperature-programmed desorption (TPD) are discussed. First, the adsorption of 11-mercaptoundecanoic acid (HS(CH 2)10COOH), 11-mercaptoundecanol (HS(CH2) 11OH) and octadecyl mercaptan (HS(CH2)17CH 3) was characterized by X-ray photoelectron spectroscopy (XPS) and angle-dependent XPS (ADXPS). These long-chain functionalized n-alkanethiols adsorbed onto a clean nickel (111) single crystal via their sulfur atom and the alkyl chain and the carboxyl-, hydroxyl- and methyl-terminal groups were disposed away from the nickel surface. The basic concepts of XPS, AMPS and TPD are discussed. Second, TPD showed that the interactions of low-molecular-weight straight-chain alcohols (n- CxH2x+1 OH for x = 1 through 6) with the carboxyl-, hydroxyl- and methyl-terminated SAM surfaces exhibited an alcohol-coverage-dependent effect on the alcohol's desorption energy based on their respective sets of TPD spectra at different alcohol coverages and based on the desorption spectra's subsequent analysis for desorption energy. The threshold TPD method (TTPD) was used to determine the desorption energy as a function of coverage for all alcohol-substrate pairs. For these adsorbate-substrate systems the desorption energies (TTPD) were the lowest (10--25 kJ mol-1) for the lowest relative alcohol coverages and increased to a desorption energy of 40--60 kJ mol-1 that was invariant with relative coverage after reaching a monolayer. The constant desorption energy (TTPD) at high relative coverages suggests there might be a completely formed hydrogen bonding network between adsorbates on the surfaces at alcohol coverages near a monolayer. The Redhead method, the "complete analysis" and the TTPD method are discussed and compared.

  14. Self-assembled selenium monolayers: from nanotechnology to materials science and adaptive catalysis.

    PubMed

    Romashov, Leonid V; Ananikov, Valentine P

    2013-12-23

    Self-assembled monolayers (SAMs) of selenium have emerged into a rapidly developing field of nanotechnology with several promising opportunities in materials chemistry and catalysis. Comparison between sulfur-based self-assembled monolayers and newly developed selenium-based monolayers reveal outstanding complimentary features on surface chemistry and highlighted the key role of the headgroup element. Diverse structural properties and reactivity of organosulfur and organoselenium groups on the surface provide flexible frameworks to create new generations of materials and adaptive catalysts with unprecedented selectivity. Important practical utility of adaptive catalytic systems deals with development of sustainable technologies and industrial processes based on natural resources. Independent development of nanotechnology, materials science and catalysis has led to the discovery of common fundamental principles of the surface chemistry of chalcogen compounds.

  15. Biointerfaces on indium-tin oxide prepared from organophosphonic acid self-assembled monolayers.

    PubMed

    Chockalingam, Muthukumar; Magenau, Astrid; Parker, Stephen G; Parviz, Maryam; Vivekchand, S R C; Gaus, Katharina; Gooding, J Justin

    2014-07-22

    Herein we show the development of biointerfaces on indium-tin oxide (ITO) surfaces prepared from organophosphonate self-assembled monolayers. The interfaces were prepared in a stepwise fabrication procedure containing a base monolayer modified with oligo(ethylene oxide) species to which biological recognition ligands were attached. The density of ligands was controlled by varying the ratio of two oligo(ethylene oxide) species such that only one is compatible with further coupling. The final biointerface on ITO was assessed using cell adhesion studies, which showed that the biointerfaces prepared on ITO performed similarly to equivalent monolayers on gold or silicon.

  16. Molecular self-assembly at bare semiconductor surfaces: preparation and characterization of highly organized octadecanethiolate monolayers on GaAs(001).

    PubMed

    McGuiness, Christine L; Shaporenko, Andrey; Mars, Carole K; Uppili, Sundararajan; Zharnikov, Michael; Allara, David L

    2006-04-19

    Through rigorous control of preparation conditions, organized monolayers with a highly reproducible structure can be formed by solution self-assembly of octadecanethiol on GaAs (001) at ambient temperature. A combination of characterization probes reveal a structure with conformationally ordered alkyl chains tilted on average at 14 +/- 1 degrees from the surface normal with a 43 +/- 5 degrees twist, a highly oleophobic and hydrophobic ambient surface, and direct S-GaAs attachment. Analysis of the tilt angle and film thickness data shows a significant mismatch of the average adsorbate molecule spacings with the spacings of an intrinsic GaAs(001) surface lattice. The monolayers are stable up to approximately 100 degrees C and exhibit an overall thermal stability which is lower than that of the same monolayers on Au[111] surfaces. A two-step solution assembly process is observed: rapid adsorption of molecules over the first several hours to form disordered structures with molecules lying close to the substrate surface, followed by a slow densification and asymptotic approach to final ordering. This process, while similar to the assembly of alkanethiols on Au[111], is nearly 2 orders of magnitude slower. Finally, despite differences in assembly rates and the thermal stability, exchange experiments with isotopically tagged molecules show that the octadecanethiol on GaAs(001) monolayers undergo exchange with solute thiol molecules at roughly the same rate as the corresponding exchanges of the same monolayers on Au[111]. PMID:16608359

  17. Molecular self-assembly at bare semiconductor surfaces: preparation and characterization of highly organized octadecanethiolate monolayers on GaAs(001).

    PubMed

    McGuiness, Christine L; Shaporenko, Andrey; Mars, Carole K; Uppili, Sundararajan; Zharnikov, Michael; Allara, David L

    2006-04-19

    Through rigorous control of preparation conditions, organized monolayers with a highly reproducible structure can be formed by solution self-assembly of octadecanethiol on GaAs (001) at ambient temperature. A combination of characterization probes reveal a structure with conformationally ordered alkyl chains tilted on average at 14 +/- 1 degrees from the surface normal with a 43 +/- 5 degrees twist, a highly oleophobic and hydrophobic ambient surface, and direct S-GaAs attachment. Analysis of the tilt angle and film thickness data shows a significant mismatch of the average adsorbate molecule spacings with the spacings of an intrinsic GaAs(001) surface lattice. The monolayers are stable up to approximately 100 degrees C and exhibit an overall thermal stability which is lower than that of the same monolayers on Au[111] surfaces. A two-step solution assembly process is observed: rapid adsorption of molecules over the first several hours to form disordered structures with molecules lying close to the substrate surface, followed by a slow densification and asymptotic approach to final ordering. This process, while similar to the assembly of alkanethiols on Au[111], is nearly 2 orders of magnitude slower. Finally, despite differences in assembly rates and the thermal stability, exchange experiments with isotopically tagged molecules show that the octadecanethiol on GaAs(001) monolayers undergo exchange with solute thiol molecules at roughly the same rate as the corresponding exchanges of the same monolayers on Au[111].

  18. Self-assembly of defect-free particle monolayers on flexible films

    NASA Astrophysics Data System (ADS)

    Hossain, Md. Shahadat; Dalal, Bhavin; Gurupatham, Sathishkumar; Fischer, Ian; Singh, Pushpendra; Aubry, Nadine

    2013-03-01

    We have recently shown that the capillarity-based process for self-assembling particle monolayers on fluid-liquid interfaces can be improved by applying an electric field in the direction normal to the interface. The electric field gives rise to repulsive dipole-dipole forces amongst the particles causing them to move apart, and thus allowing them to move freely without blocking one another. The latter is important in the formation of virtually defect-free monolayers with long-range order. In this talk, we present a technique for freezing these expanded monolayers onto the surface of a flexible thin film. The technique involves assembling the monolayer on the interface between a UV-curable resin and a fluid which can be air or another liquid, and then curing the resin by applying UV light. The monolayer becomes embedded on the surface of the solidified resin film.

  19. Strain-relief by single dislocation loops in calcite crystals grown on self-assembled monolayers

    NASA Astrophysics Data System (ADS)

    Ihli, Johannes; Clark, Jesse N.; Côté, Alexander S.; Kim, Yi-Yeoun; Schenk, Anna S.; Kulak, Alexander N.; Comyn, Timothy P.; Chammas, Oliver; Harder, Ross J.; Duffy, Dorothy M.; Robinson, Ian K.; Meldrum, Fiona C.

    2016-06-01

    Most of our knowledge of dislocation-mediated stress relaxation during epitaxial crystal growth comes from the study of inorganic heterostructures. Here we use Bragg coherent diffraction imaging to investigate a contrasting system, the epitaxial growth of calcite (CaCO3) crystals on organic self-assembled monolayers, where these are widely used as a model for biomineralization processes. The calcite crystals are imaged to simultaneously visualize the crystal morphology and internal strain fields. Our data reveal that each crystal possesses a single dislocation loop that occupies a common position in every crystal. The loops exhibit entirely different geometries to misfit dislocations generated in conventional epitaxial thin films and are suggested to form in response to the stress field, arising from interfacial defects and the nanoscale roughness of the substrate. This work provides unique insight into how self-assembled monolayers control the growth of inorganic crystals and demonstrates important differences as compared with inorganic substrates.

  20. Characterization of anti-adhesive self-assembled monolayer for nanoimprint lithography

    NASA Astrophysics Data System (ADS)

    Zhou, Weimin; Zhang, Jing; Liu, Yanbo; Li, Xiaoli; Niu, Xiaomin; Song, Zhitang; Min, Guoquan; Wan, YongZhong; Shi, Liyi; Feng, Songlin

    2008-12-01

    In nanoimprint lithography process, resist adhesion to the mold was usually self-assembled and a release agent on the mold surface to detach easily from the imprinted resist. In the paper, the commercially available silane, 1 H,1 H,2 H,2 H-perfluorodecyltrichlorosilane (CF 3-(CF 2) 7-(CH 2) 2-SiCl 3 or FDTS) was used to investigate the anti-adhesion for UV-nanoimprint lithography. A water contact angle as high as 113.11 was achieved by self-assembled monolayer (SAM) deposited on the quarter mold by vapor evaporation, which is desirable for a good anti-adhesion agent between the fused silica and the curing resist. The homogeneous monolayer was also evaluated by AFM and XPS. UV-NIL using FDTS-coated fused silica process good pattern transfer fidelity. It is shown that the FDTS is an excellent and promising release agent material for UV-nanoimprint lithography.

  1. Strain-relief by single dislocation loops in calcite crystals grown on self-assembled monolayers

    PubMed Central

    Ihli, Johannes; Clark, Jesse N.; Côté, Alexander S.; Kim, Yi-Yeoun; Schenk, Anna S.; Kulak, Alexander N.; Comyn, Timothy P.; Chammas, Oliver; Harder, Ross J.; Duffy, Dorothy M.; Robinson, Ian K.; Meldrum, Fiona C.

    2016-01-01

    Most of our knowledge of dislocation-mediated stress relaxation during epitaxial crystal growth comes from the study of inorganic heterostructures. Here we use Bragg coherent diffraction imaging to investigate a contrasting system, the epitaxial growth of calcite (CaCO3) crystals on organic self-assembled monolayers, where these are widely used as a model for biomineralization processes. The calcite crystals are imaged to simultaneously visualize the crystal morphology and internal strain fields. Our data reveal that each crystal possesses a single dislocation loop that occupies a common position in every crystal. The loops exhibit entirely different geometries to misfit dislocations generated in conventional epitaxial thin films and are suggested to form in response to the stress field, arising from interfacial defects and the nanoscale roughness of the substrate. This work provides unique insight into how self-assembled monolayers control the growth of inorganic crystals and demonstrates important differences as compared with inorganic substrates. PMID:27302863

  2. Strain-relief by single dislocation loops in calcite crystals grown on self-assembled monolayers.

    PubMed

    Ihli, Johannes; Clark, Jesse N; Côté, Alexander S; Kim, Yi-Yeoun; Schenk, Anna S; Kulak, Alexander N; Comyn, Timothy P; Chammas, Oliver; Harder, Ross J; Duffy, Dorothy M; Robinson, Ian K; Meldrum, Fiona C

    2016-01-01

    Most of our knowledge of dislocation-mediated stress relaxation during epitaxial crystal growth comes from the study of inorganic heterostructures. Here we use Bragg coherent diffraction imaging to investigate a contrasting system, the epitaxial growth of calcite (CaCO3) crystals on organic self-assembled monolayers, where these are widely used as a model for biomineralization processes. The calcite crystals are imaged to simultaneously visualize the crystal morphology and internal strain fields. Our data reveal that each crystal possesses a single dislocation loop that occupies a common position in every crystal. The loops exhibit entirely different geometries to misfit dislocations generated in conventional epitaxial thin films and are suggested to form in response to the stress field, arising from interfacial defects and the nanoscale roughness of the substrate. This work provides unique insight into how self-assembled monolayers control the growth of inorganic crystals and demonstrates important differences as compared with inorganic substrates. PMID:27302863

  3. Semiconductor nanocrystals covalently bound to solid inorganic surfaces using self-assembled monolayers

    DOEpatents

    Alivisatos, A. Paul; Colvin, Vicki L.

    1998-01-01

    Methods are described for attaching semiconductor nanocrystals to solid inorganic surfaces, using self-assembled bifunctional organic monolayers as bridge compounds. Two different techniques are presented. One relies on the formation of self-assembled monolayers on these surfaces. When exposed to solutions of nanocrystals, these bridge compounds bind the crystals and anchor them to the surface. The second technique attaches nanocrystals already coated with bridge compounds to the surfaces. Analyses indicate the presence of quantum confined clusters on the surfaces at the nanolayer level. These materials allow electron spectroscopies to be completed on condensed phase clusters, and represent a first step towards synthesis of an organized assembly of clusters. These new products are also disclosed.

  4. Semiconductor nanocrystals covalently bound to solid inorganic surfaces using self-assembled monolayers

    DOEpatents

    Alivisatos, A.P.; Colvin, V.L.

    1998-05-12

    Methods are described for attaching semiconductor nanocrystals to solid inorganic surfaces, using self-assembled bifunctional organic monolayers as bridge compounds. Two different techniques are presented. One relies on the formation of self-assembled monolayers on these surfaces. When exposed to solutions of nanocrystals, these bridge compounds bind the crystals and anchor them to the surface. The second technique attaches nanocrystals already coated with bridge compounds to the surfaces. Analyses indicate the presence of quantum confined clusters on the surfaces at the nanolayer level. These materials allow electron spectroscopies to be completed on condensed phase clusters, and represent a first step towards synthesis of an organized assembly of clusters. These new products are also disclosed. 10 figs.

  5. Polarity switching of charge transport and thermoelectricity in self-assembled monolayer devices.

    PubMed

    Egger, David A; Rissner, Ferdinand; Zojer, Egbert; Heimel, Georg

    2012-08-22

    Self-assembled monolayer devices can exhibit drastically different charge-transport characteristics and thermoelectric properties despite being composed of isomeric molecules with essentially identical frontier-orbital energies. This is rationalized by the cooperative electrostatic action of local intramolecular dipoles in otherwise nonpolar species, thus revealing new challenges but also new opportunities for the targeted design of functional building blocks in future nanoelectronics. PMID:22807087

  6. Self-assembled monolayers improve protein distribution on holey carbon cryo-EM supports

    PubMed Central

    Meyerson, Joel R.; Rao, Prashant; Kumar, Janesh; Chittori, Sagar; Banerjee, Soojay; Pierson, Jason; Mayer, Mark L.; Subramaniam, Sriram

    2014-01-01

    Poor partitioning of macromolecules into the holes of holey carbon support grids frequently limits structural determination by single particle cryo-electron microscopy (cryo-EM). Here, we present a method to deposit, on gold-coated carbon grids, a self-assembled monolayer whose surface properties can be controlled by chemical modification. We demonstrate the utility of this approach to drive partitioning of ionotropic glutamate receptors into the holes, thereby enabling 3D structural analysis using cryo-EM methods. PMID:25403871

  7. Unveiling self-assembled monolayers' potential for molecular spintronics: spin transport at high voltage.

    PubMed

    Galbiati, Marta; Barraud, Clément; Tatay, Sergio; Bouzehouane, Karim; Deranlot, Cyrile; Jacquet, Eric; Fert, Albert; Seneor, Pierre; Mattana, Richard; Petroff, Frédéric

    2012-12-18

    Molecular magnetic tunnel junctions using self-assembled monolayers (SAMs) as tunnel barriers show stable and efficient spin transport properties. Large tunnel magnetoresistance with a flat bias voltage dependence of the magnetoresistance is observed in La(2/3) Sr(1/3) MnO(3) /dodecylphosphonic acid SAM/Co nanocontacts. This opens the door to spintronic tailoring though SAM engineering and could also lead to new venues for spin injection in organic devices.

  8. Structure-property Relationships for Methyl-terminated Alkyl Self-assembled Monolayers

    SciTech Connect

    F DelRio; D Rampulla; C Jaye; G Stan; R Gates; D Fischer; R Cook

    2011-12-31

    Structure-property relationships for methyl-terminated alkyl self-assembled monolayers (SAMs) are developed using near-edge X-ray absorption fine structure (NEXAFS) spectroscopy and atomic force microscopy (AFM). NEXAFS C K-edge spectra are used to compute the dichroic ratio, which provides a quantitative measure of the molecular structure. AFM data are analyzed with an elastic adhesive contact model, modified by a first-order elastic perturbation method to include substrate effects, to extract the monolayer mechanical properties. Using this approach, the measured mechanical properties are not influenced by the substrate, which allows universal structure-property relationships to be developed for methyl-terminated alkyl SAMs.

  9. Lanthanide Selective Sorbents: Self-Assembled Monolayers on Mesoporous Supports (SAMMS)

    SciTech Connect

    Fryxell, Glen E.; Wu, Hong; Lin, Yuehe; Shaw, Wendy J.; Birnbaum, Jerome C.; Linehan, John C.; Nie, Zimin; Kemner, Kenneth M.; Kelly, Shelley

    2004-11-01

    Through the marriage of mesoporous ceramics with self-assembled monolayer chemistry, the genesis of a powerful new class of environmental sorbent materials has been realized. By coating the mesoporous ceramic backbone with a monolayer terminated with a lanthanide-specific ligand, it is possible to couple high lanthanide binding affinity with the high loading capacity (resulting from the extremely high surface area of the support). This lanthanide-specific ligand field is created by pairing a “hard” anionic Lewis base with a suitable synergistic ligand, in a favorable chelating geometry. Details of the synthesis, characterization, lanthanide binding studies, binding kinetics, competition experiments and sorbent regeneration studies are summarized.

  10. Electron-beam-induced alteration of the dielectric properties of sandwiched self-assembled organic monolayers

    NASA Astrophysics Data System (ADS)

    Balaur, Eugeniu; Peele, Andrew G.

    2010-04-01

    Electrical transport through octadecyltrichlorosilane self-assembled monolayers sandwiched between a silicon substrate and an aluminum film was altered using electron-beams (e-beams) with different energies and doses. Under certain e-beam conditions, improvement of the dielectric performance was observed compared with the unmodified monolayers. This was ascribed to partial "healing" of the gauche defects within the alkyl chains under the electron flux. It was also possible to vary the barrier height between 2 and 2.35 eV, an effect attributed to the creation of amorphous carbon under prolonged exposure times. Factors that influenced these effects were identified and discussed.

  11. Lanthanide Selective Sorbents: Self-Assembled Monolayers on Mesoporous Supports (SAMMS)

    SciTech Connect

    Fryxell, Glen E.; Wu, Hong; Lin, Yuehe; Shaw, Wendy J.; Birnbaum, Jerome C.; Linehan, John C.; Nie, Zimin; Kemner, K. M.; Kelly, Shelley

    2004-11-01

    Through the marriage of mesoporous ceramics with self-assembled monolayer chemistry, the genesis of a powerful new class of environmental sorbent materials has been realized. By coating the mesoporous ceramic backbone with a monolayer terminated with a lanthanide-specific ligand, it is possible to couple high lanthanide binding affinity with the high loading capacity (resulting from the extremely high surface area of the support). This lanthanide-specific ligand field is created by pairing a ''hard'' anionic Lewis base with a suitable synergistic ligand, in a favorable chelating geometry. Details of the synthesis, characterization, lanthanide binding studies, binding kinetics, competition experiments and sorbent regeneration studies are summarized

  12. Preparation, characterization, and photoelectric properties of a covalently self-assembled monolayer of ferrocenyl hemicyanine.

    PubMed

    Li, Lin-Ying; Chen, Xi; Xu, Meng-Yun; Zhang, Qian-Jin; Wang, Ke-Zhi

    2011-11-01

    A monolayer of a ferrocenyl hemicyanine was covalently self-assembled on an indium tin oxide (ITO)-coated glass substrate, and was characterized by UV/Vis absorption and X-ray photoelectron spectroscopy, and cyclic voltammetry. The photoelectrochemical properties and mechanism of photocurrent generation have also been studied. This monolayer film was found to exhibit a large anodic photocurrent density of 0.13 microA/cm2 with the highest photoelectric yield of 3.32% under irradiation of white light (730 nm > lambda > 325 nm) at a bias potential of +0.4 V versus saturated calomel electrode.

  13. Influence of self-assembled monolayer surface chemistry on Candida antarctica lipase B adsorption and specific activity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Immobilization of Candida antarctica B lipase was examined on gold surfaces modified with either methyl- or hydroxyl-terminated self-assembled alkylthiol monolayers (SAMs), representing hydrophobic and hydrophilic surfaces, respectively. Lipase adsorption was monitored gravimetrically using a quart...

  14. Chemically Transformable Configurations of Mercaptohexadecanoic Acid Self-Assembled Monolayers Adsorbed on Au(111)

    SciTech Connect

    van Buuren, T; Bostedt, C; Nelson, A J; Terminello, L J; Vance, A L; Fadley, C S; Willey, T M

    2003-10-21

    Carboxyl terminated Self-Assembled Monolayers (SAMs) are commonly used in a variety of applications, with the assumption that the molecules form well ordered monolayers. In this work, NEXAFS verifies well ordered monolayers can be formed using acetic acid in the solvent. Disordered monolayers with unbound molecules present in the result using only ethanol. A stark reorientation occurs upon deprotonation of the endgroup by rinsing in a KOH solution. This reorientation of the endgroup is reversible with tilted over, hydrogen bound carboxyl groups while carboxylate-ion endgroups are upright. C1s photoemission shows that SAMs formed and rinsed with acetic acid in ethanol, the endgroups are protonated, while without, a large fraction of the molecules on the surface are carboxylate terminated.

  15. Pseudorotational epitaxy of self-assembled octadecyltrichlorosilane monolayers on sapphire (0001)

    DOE PAGES

    Steinrück, H. -G.; Magerl, A.; Deutsch, M.; Ocko, B. M.

    2014-10-06

    The structure of octadecyltrichlorosilane self-assembled monolayers (SAMs) on sapphire (0001) was studied by Å-resolution surface-specific x-ray scattering methods. The monolayer was found to consist of three sublayers where the outermost layer corresponds to vertically oriented, closely packed alkyl tails. Laterally, the monolayer is hexagonally packed and exhibits pseudorotational epitaxy to the sapphire, manifested by a broad scattering peak at zero relative azimuthal rotation, with long powderlike tails. The lattice mismatch of ~1% – 3% to the sapphire’s and the different length scale introduced by the lateral Si-O-Si bonding prohibit positional epitaxy. However, the substrate induces an intriguing increase in themore » crystalline coherence length of the SAM’s powderlike crystallites when rotationally aligned with the sapphire’s lattice. As a result, the increase correlates well with the rotational dependence of the separation of corresponding substrate-monolayer lattice sites.« less

  16. Pseudorotational epitaxy of self-assembled octadecyltrichlorosilane monolayers on sapphire (0001)

    SciTech Connect

    Steinrück, H. -G.; Magerl, A.; Deutsch, M.; Ocko, B. M.

    2014-10-06

    The structure of octadecyltrichlorosilane self-assembled monolayers (SAMs) on sapphire (0001) was studied by Å-resolution surface-specific x-ray scattering methods. The monolayer was found to consist of three sublayers where the outermost layer corresponds to vertically oriented, closely packed alkyl tails. Laterally, the monolayer is hexagonally packed and exhibits pseudorotational epitaxy to the sapphire, manifested by a broad scattering peak at zero relative azimuthal rotation, with long powderlike tails. The lattice mismatch of ~1% – 3% to the sapphire’s and the different length scale introduced by the lateral Si-O-Si bonding prohibit positional epitaxy. However, the substrate induces an intriguing increase in the crystalline coherence length of the SAM’s powderlike crystallites when rotationally aligned with the sapphire’s lattice. As a result, the increase correlates well with the rotational dependence of the separation of corresponding substrate-monolayer lattice sites.

  17. Pit Formation during the Self-Assembly of Dithiol Monolayers on Au(111)

    NASA Astrophysics Data System (ADS)

    Macdairmid, A. R.; Cappello, M. L.; Keeler, W. J.; Banks, J. T.; Gallagher, M. C.

    2000-03-01

    The formation of pits one gold atom deep during the growth of alkanethiol monolayers on Au(111), has been observed previously by others. Explanations for pit formation include etching of the substrate, or mass transport of gold atom + thiol molecule on the surface, due to changes in surface energy^1. We have investigated the structure of dithiothreitol (DTT) SAMs on Au(111). Ex situ STM measurements indicate similar pitting occurs during formation of the dithiol monolayer. The degree of pitting depends on exposure time, sample temperature during formation, and subsequent annealing of the sample. Pitting is enhanced considerasbly when DTT is coordinated with Ti, in fact DTT/Ti films exhibit considerable pit motion during STM imaging. ^1 F. Teran et al. Electrochimica Acta 44, 1053 (1998).

  18. Spontaneous phase separation during self-assembly in bi-dispersed spherical iron oxide nanoparticle monolayers

    SciTech Connect

    Stanley, Jacob; Boucheron, Leandra; Shpyrko, Oleg E-mail: oshpyrko@physics.ucsd.edu; Lin, Binhua E-mail: oshpyrko@physics.ucsd.edu; Meron, Mati

    2015-04-20

    Recent developments in the synthesis of iron oxide nanoparticles have resulted in the ability to fabricate roughly spherical particles with extremely high size uniformity (low polydispersity). These particles can form self-assembled monolayer films at an air-water interface. When the polydispersity of the particles is low, these monolayers can be well-ordered over a length scale dozens of times the particle size. The van der Waals force between the particles is what drives this self-assembly. Through the use of Grazing Incidence X-Ray Diffraction we demonstrate that, when these films are formed at the liquid surface from bi-dispersed solutions containing 10 and 20 nm spherical particles suspended in chloroform, the particles phase separate into well-ordered patches during the self-assembly process. Furthermore, the domain sizes of these phase separated regions are at most 2–3 times smaller than that of a film comprising only mono-dispersed particles and their degree of disorder is comparable. This is shown for multiple solutions with differing ratios of 10 and 20 nm particles.

  19. Self-assembly of noble metal monolayers on transition metal carbide nanoparticle catalysts.

    PubMed

    Hunt, Sean T; Milina, Maria; Alba-Rubio, Ana C; Hendon, Christopher H; Dumesic, James A; Román-Leshkov, Yuriy

    2016-05-20

    We demonstrated the self-assembly of transition metal carbide nanoparticles coated with atomically thin noble metal monolayers by carburizing mixtures of noble metal salts and transition metal oxides encapsulated in removable silica templates. This approach allows for control of the final core-shell architecture, including particle size, monolayer coverage, and heterometallic composition. Carbon-supported Ti(0.1)W(0.9)C nanoparticles coated with Pt or bimetallic PtRu monolayers exhibited enhanced resistance to sintering and CO poisoning, achieving an order of magnitude increase in specific activity over commercial catalysts for methanol electrooxidation after 10,000 cycles. These core-shell materials provide a new direction to reduce the loading, enhance the activity, and increase the stability of noble metal catalysts.

  20. Self-assembled monolayer facilitates epithelial-mesenchymal interactions mimicking odontogenesis.

    PubMed

    Muni, Tanvi; Mrksich, Milan; George, Anne

    2014-01-01

    Cell-cell interactions are vital for embryonic organ development and normal function of differentiated cells and tissues. In this study we have developed a self-assembled monolayer-based co-culture system to study tooth morphogenesis. Specifically, we designed a 2-D microenvironment present in the dental tissue by creating a well-structured, laterally organized epithelial and mesenchymal cell co-culture system by patterning the cell-attachment substrate. Chemical modifications were used to develop tunable surface patterns to facilitate epithelial-mesenchymal interactions mimicking the developing tooth. Such a design promoted interactions between monolayer's of the 2 cell types and provided signaling cues that resulted in cellular differentiation and mineralized matrix formation. Gene expression analysis showed that these co-cultures mimicked in-vivo conditions than monolayer cultures of a single cell type.

  1. Structural characterization of self-assembled monolayers within molecular junctions: Effects of metallization and of substrate lateral confinement

    NASA Astrophysics Data System (ADS)

    Colavita, Paula Elena

    The structure of the molecules within metal-organic-metal junctions (MOMs) fabricated via evaporation of a metal on a self-assembled monolayer (SAM), as well as the nature of the interface between the molecule and the metallic leads, can determine the electronic properties measured using these junctions. The effects that vapor deposition of a copper overlayer has on the conformation, degree of order and defect density of SAMs of both test molecules (alkanethiols) and of a prospective molecular wire (an oligo(phenylene-ethynylene), OPE) were investigated. A combination of electrochemistry, FTIR, XPS and Ion Scattering Spectroscopy was used. Results indicate that molecular conformation, orientation and monolayer order, change upon metal evaporation. Therefore, probing the conductivity of SAMs within MOMS is not necessarily equivalent to probing their conductivity prior to the formation of the second metallic contact. The nature of the SAM/Cu interface was also investigated, determining that copper tends to diffuse throughout the thickness of the monolayer over time, and that chemical interactions can take place between copper atoms and the terminal groups of molecular wires. We also report on the fabrication of gold nanowell electrode ensembles that were used to determine the density of defects found in SAMs assembled on substrates whose lateral dimensions are confined to the few hundred nanometer range. SAMs of dodecanethiol (DT) and OPE were characterized via metal decoration on polished gold macro- and nanoelectrodes (200 nm diameter). It was found that whereas OPE SAMs display a comparable number of defects on both macro- and nanoelectrodes, DT SAMs are more defective on nanoelectrodes. The second part of this thesis describes results obtained for two additional research projects. First, an investigation toward the development of an enzymatic assay for detection of native DNA nucleotides is reported. Second, the design of an aerosol deposition system for calcium

  2. Spontaneous waveguide Raman spectroscopy of self-assembled monolayers in silica micropores.

    PubMed

    Calkins, Jacob A; Peacock, Anna C; Sazio, Pier J A; Allara, David L; Badding, John V

    2011-01-18

    Advances in nanoscience are critically dependent on the ability to control and probe chemical and physical phenomena in confined geometries. A key challenge is to identify confinement structures with high surface area to volume ratios and controlled surface boundaries that can be probed quantitatively at the molecular level. Herein we report an approach for probing molecular structures within nano- to microscale pores by the application of spontaneous Raman spectroscopy. We demonstrate the method by characterization of the structural features of picomole quantities of well-organized octadecyltrichlorosilane (OTS) monolayers self-assembled on the interior pore surfaces of high aspect ratio (1 μm diameter × 1-10 cm length), near-atomically smooth silica microstructured optical fibers (MOFs). The simple Raman backscattering collection geometry employed is well suited for a wide variety of diagnostic applications as demonstrated by tracking the combustion of the hydrocarbon chains of the OTS self-assembled monolayer (SAM) and spectral confirmation of the formation of an adsorbed monolayer of human serum albumin (HSA) protein. Using this MOF Raman approach, molecular processes in precisely defined, highly confined geometries can be probed at high pressures and temperatures, with a wide range of excitation wavelengths from the visible to the near-IR, and under other external perturbations such as electric and magnetic fields.

  3. The nucleation and growth of calcium oxalate monohydrate on self- assembled monolayers (SAMs)

    SciTech Connect

    Campbell, A.A.; Tarasevich, B.J.; Graff, G.L.; Fryxell, G.E.; Rieke, P.C.

    1992-05-01

    A physical chemical approach was used to study calcium oxalate monohydrate (COM) nucleation and growth on various organic interfaces. Self-assembling monolayers (SAMs), containing derivatized organic functional groups, were designed to mimic various amino acid residues present in both urine and stone matrix macromolecules. Derivatized surfaces include SAMs with terminal methyl, bromo, imidazole, and thiazolidine-carboxylic acid functional groups. Pronounced differences in COM deposition were observed for the various interfaces with the imidazole and thiazolidine surfaces having the greatest effect and the methyl and bromo groups having little or no nucleating potential.

  4. Enhancing solid-liquid interface thermal transport using self-assembled monolayers

    NASA Astrophysics Data System (ADS)

    Tian, Zhiting; Marconnet, Amy; Chen, Gang

    2015-05-01

    The thermal conductance across solid-liquid interfaces is of interest for many applications. Using time-domain thermoreflectance, we measure the thermal conductance across self-assembled monolayers, grown on Au, to ethanol. We systematically study the effect of different functional groups and the alkyl chain length on the thermal conductance. The results show that adding this extra molecular layer can enhance the thermal transport across the solid-liquid interface. While the enhancement is up to 5 times from hexanedithiol, the enhancement from hexanethiol, undecanethiol, and hexadecanethiol is approximately a factor of 2.

  5. Method for selective immobilization of macromolecules on self assembled monolayer surfaces

    DOEpatents

    Laskin, Julia; Wang, Peng

    2011-11-29

    Disclosed is a method for selective chemical binding and immobilization of macromolecules on solid supports in conjunction with self-assembled monolayer (SAM) surfaces. Immobilization involves selective binding of peptides and other macromolecules to SAM surfaces using reactive landing (RL) of mass-selected, gas phase ions. SAM surfaces provide a simple and convenient platform for tailoring chemical properties of a variety of substrates. The invention finds applications in biochemistry ranging from characterization of molecular recognition events at the amino acid level and identification of biologically active motifs in proteins, to development of novel biosensors and substrates for stimulated protein and cell adhesion.

  6. Examining the effects of self-assembled monolayers on nanoporous gold based amperometric glucose biosensors.

    PubMed

    Xiao, Xinxin; Li, Hui; Wang, Meng'en; Zhang, Kai; Si, Pengchao

    2014-01-21

    Nanoporous gold (NPG) based biosensors have been constructed by covalently immobilizing glucose oxidase (GOx) onto self-assembled monolayers (SAMs). With p-benzoquinone (BQ) as a mediator, diffusion behavior and amperometric biosensor performance are evaluated by electrochemical characterization. The enzyme modified electrodes are demonstrated to show a thickness-sensitive behavior. Compared with planar polycrystalline gold, the unique porous structure of NPG has also been characterized via an electrochemical surface reconstruction process. Single-crystal gold-like electrochemical behavior on NPG and a comprehensive understanding of its impacts on sensor performance have been proposed. PMID:24256634

  7. Removal of Cryptosporidium parvum by silica coated with functionalized self-assembled monolayers.

    PubMed

    Majewski, Peter J; Chan, Chiu Ping

    2008-12-01

    This study focuses a novel method to remove the human pathogens cryptosporidium parvum from water by silica particles coated with functionalized self-assembled monolayers. The results of this investigation clearly show that the pathogen can efficiently and completely be removed at pH ranges of drinking water by stirring the coated particles in the contaminated water for up to 60 min and finally filtrating the powder. The removal is believed to be caused by electrostatic attraction and immobilization of pathogen on the surface of the particles. At higher pH vales, even chemisorption may occur.

  8. Dependence of the Contact Angle on Self-Assembled Monolayer Production Method

    NASA Astrophysics Data System (ADS)

    Ollander, Brooke; Sayko, Ryan; Nutter, Jared; Petersen, Shannon; Poynor, Adele

    2015-03-01

    When water is forced in contact with a hydrophobic surface, it attempts to reduce its contact by forming a depletion layer. A depletion layer is defined as a nanometer scale low density region of water molecules at the surface. To alter the hydrophobicity of the slide, self-assembled monolayers (SAMs) are formed by utilizing the following organothiol solutions: 11-mercaptoundecanoic acid (hydrophilic) and 1-octadecanethiol (hydrophobic). The contact angle of slides with different organothiol solution exposure times is measured using a homemade goniometer and ImageJ software.

  9. ADO-phosphonic acid self-assembled monolayer modified dielectrics for organic thin film transistors

    NASA Astrophysics Data System (ADS)

    Zhefeng, Li; Xianye, Luo

    2014-10-01

    This study explores a strategy of using the phosphonic acid derivative (11-((12-(anthracen-2-yl)dodecyl)oxy)-11-oxoundecyl) phosphonic acid (ADO-phosphonic acid) as self-assembled monolayers (SAMs) on a Si/SiO2 surface to induce the crystallization of rubrene in vacuum deposited thin film transistors, which showed a field-effect mobility as high as 0.18 cm2/(V·s). It is found that ADO-phosphonic acid SAMs play a unique role in modulating the morphology of rubrene to form a crystalline film in the thin-film transistors.

  10. Monitoring of the self-assembled monolayer of 1-hexadecanethiol on a gold surface at nanomolar concentration using a piezo-excited millimeter-sized cantilever sensor.

    PubMed

    Campbell, Gossett A; Mutharasan, Raj

    2005-12-01

    In this paper, we describe a new method of measuring alkanethiol monolayer formation on a gold surface. A gold-coated millimeter-sized rectangular-shaped lead zirconate titanate (PZT) cantilever of dimensions 3.5 x 2 x 0.05 mm, previously shown to detect a picogram level of mass change, was used to measure the adsorption kinetics of 1-hexadecanethiol in ethanol over six orders of concentration range (1 nM to 10 mM) in real time. The flexural mode of cantilever vibration, 45.5 +/- 0.01 kHz, was monitored during the self-assembly. The total resonant frequency change obtained for the 1 nM, 10 nM, 100 nM, 1 microM, 4 mM, 8 mM, and 10 mM thiol concentrations were 116 +/- 2 (n = 2), 225 (n = 1), 270 +/- 10 (n = 2), 440 +/- 10 (n = 2), 900 +/- 10 (n = 2), 900 +/- 10 (n = 2), and 900 +/- 10 (n = 2) Hz, respectively. These results compare favorably to literature results in that the rate of the monolayer formation is concentration-dependent and the exponential change during adsorption follows the reversible first-order Langmuir kinetic model. The rate constants of adsorption and desorption were 0.061 M(-1) s(-1) and 3.61 x 10(-4) s(-1), respectively. The significance of the results is that millimeter-sized PZT cantilevers can be used in real-time for characterizing self-assembly of monolayer formation at nanomolar concentration levels. In addition, at 1 nM, the adsorption was found not to be diffusion limited.

  11. Self-assembled monolayer of graphene/Pt as counter electrode for efficient dye-sensitized solar cell.

    PubMed

    Gong, Feng; Wang, Hong; Wang, Zhong-Sheng

    2011-10-21

    Monolayer of PDDA/graphene/PDDA/H(2)PtCl(6) is fabricated on conductive glass using electrostatic layer-by-layer self-assembly technique, which is then converted to graphene/Pt monolayer for use as counter electrode in dye-sensitized solar cell (DSSC). As compared to the sputtered Pt counter electrode, the self-assembled monolayer reduces the Pt amount by about 1000-fold but exhibits comparable photovoltaic performance. This finding provides a new route to fabrication of cheap and efficient counter electrodes for flow-line production of DSSCs. PMID:21909512

  12. Nano-scale characterization of binary self-assembled monolayers under an ambient condition with STM and TERS.

    PubMed

    Horimoto, Noriko N; Tomizawa, Shigeru; Fujita, Yasuhiko; Kajimoto, Shinji; Fukumura, Hiroshi

    2014-09-01

    Gold surfaces were modified by benzyl-mercaptan (BM) and then partly replaced with benzenethiol (BT), which formed binary self-assembled monolayers (SAM). Initially BT randomly replaced BM in the monolayer, but at long exchange times >15 nm radius domains were observed with specific relative composition of BT and BM.

  13. Functionalized self-assembled monolayers as templates for mineral oxide thin film deposition

    NASA Astrophysics Data System (ADS)

    Collins, Rochael Jeannine

    Alkyl-trichlorosilanes functionalized with thioacetate and nitrate groups were synthesized and deposited to form Self-Assembled Monolayers (SAMs). In situ transformation of the thioacetate and nitrate moieties yielded monolayers functionalized with sulfonate and alcohol groups, respectively. Percent conversion was determined to be 98% by X-ray photoelectron spectroscopy (XPS) for the thioacetate to sulfonate transformation, and 100% by XPS and IR for the nitrate to alcohol transformation. The as-deposited and transformed monolayers were characterized by wettability, XPS and ellipsometry. The alcohol terminated films were investigated as templates for the deposition of subsequent self-assembled monolayers. Multilayers, up to three layers, were demonstrated for nitrate films, with each layer adding an average of 2.25 nm to the overall film thickness. A fourth layer of octadecyltrichlorosilane was deposited and was found to add an additional 1.31 nm to the structure. Analysis of the multilayer constructions revealed increasing disorder as the number of layers increases. Other in situ functionalizations of alcohol terminated monolayers were demonstrated. Transformation to electrophilic, haloacetyl films was accomplished, and their reactivity with thiol nucleophiles was examined. In addition, the alcohol terminated SAMs were functionalized, in situ, with sulfate and phosphate groups. These films were characterized by wettability, XPS and ellipsometry. Furthermore, photopatterning of terminal functional groups was accomplished by irradiation through a mask. Patterned monolayers consisting of regions of thioacetate (masked)/sulfonate (irradiated) and nitrate (masked)/alcohol (irradiated) were demonstrated. Characterization of the patterned monolayers was carried out by XPS and SEM. A variety of terminal functional groups on the SAM were investigated as templates for bioinspired deposition of mineral oxide films. Thin films of FeOOH, SiOsb2,\\ TiOsb2,\\ Ysb2Osb3,\\ ZrOsb2

  14. Attenuated total reflection surface-enhanced infrared absorption spectroscopy of carboxyl terminated self-assembled monolayers on gold.

    PubMed

    Goutev, Nikolay; Futamata, Masayuki

    2003-05-01

    A new recipe for surface-enhanced infrared absorption (SEIRA) active island Au films with improved adhesion in aqueous solution, low resistivity, and enhancement of the infrared (IR) absorption of about 300 was developed. The Au films prepared were utilized in studies of the ionization of self-assembled monolayers of 11-mercaptoundecanoic acid in Na2SO4 aqueous solutions by attenuated total reflection surface-enhanced infrared absorption (ATR-SEIRA) spectroscopy. It was found that the carboxyl end groups of the self-assembled monolayer turn into carboxylate anions on going from anodic to cathodic potentials or from acidic to alkaline pH. The water molecules close to the self-assembled monolayer in acidic solutions or at anodic potentials are preferentially aligned with their dipole moments parallel to the interface. This type of alignment can be ascribed to the dipole-dipole interaction between the carboxyl groups and the water molecules. On the other hand, in alkaline solutions or at cathodic potentials the structure of water close to the self-assembled monolayer is essentially bulk-like, with randomly oriented water molecules. This observation suggests that in alkaline solutions or at cathodic potentials the charge of the carboxylate anions is almost completely compensated for by strongly adsorbed counter cations. As a result, the electric field close to the surface of the ionized self-assembled monolayer is weak and has little influence on the orientation and hydrogen bonding of the water molecules.

  15. Controlling surface functionality through generation of thiol groups in a self-assembled monolayer.

    SciTech Connect

    Lud, S. Q.; Neppl, S.; Richter, G.; Bruno, P.; Gruen, D. M.; Jordan, R.; Feulner, P.; Stutzmann, M.; Garrido, J. A.; Materials Science Division; Technische Univ. Munchen

    2010-01-01

    A lithographic method to generate reactive thiol groups on functionalized synthetic diamond for biosensor and molecular electronic applications is developed. We demonstrate that ultrananocrystalline diamond (UNCD) thin films covalently functionalized with surface-generated thiol groups allow controlled thiol-disulfide exchange surface hybridization processes. The generation of the thiol functional head groups was obtained by irradiating phenylsulfonic acid (PSA) monolayers on UNCD surfaces. The conversion of the functional headgroup of the self-assembled monolayer was verified by using X-ray photoelectron spectroscopy (XPS), near-edge X-ray absorption fine structure (NEXAFS), and fluorescence microscopy. Our findings indicate the selective generation of reactive thiol surface groups. Furthermore, we demonstrate the grafting of yeast cytochrome c to the thiol-modified diamond surface and the electron transfer between protein and electrode.

  16. Morphology control of perovskite light-emitting diodes by using amino acid self-assembled monolayers

    NASA Astrophysics Data System (ADS)

    Wang, Nana; Cheng, Lu; Si, Junjie; Liang, Xiaoyong; Jin, Yizheng; Wang, Jianpu; Huang, Wei

    2016-04-01

    Amino acid self-assembled monolayers are used in the fabrication of light-emitting diodes based on organic-inorganic halide perovskites. The monolayers of amino acids provide modified interfaces by anchoring to the surfaces of ZnO charge-transporting layers using carboxyl groups, leaving the amino groups to facilitate the nucleation of MAPbBr3 perovskite films. This surface-modification strategy, together with chlorobenzene-assisted fast crystallization method, results in good surface coverage and reduced defect density of the perovskite films. These efforts lead to green perovskite light emitting diodes with a low turn-on voltage of 2 V and an external quantum efficiency of 0.43% at a brightness of ˜5000 cd m-2.

  17. A dielectric model of self-assembled monolayer interfaces by capacitive spectroscopy.

    PubMed

    Góes, Márcio S; Rahman, Habibur; Ryall, Joshua; Davis, Jason J; Bueno, Paulo R

    2012-06-26

    The presence of self-assembled monolayers at an electrode introduces capacitance and resistance contributions that can profoundly affect subsequently observed electronic characteristics. Despite the impact of this on any voltammetry, these contributions are not directly resolvable with any clarity by standard electrochemical means. A capacitive analysis of such interfaces (by capacitance spectroscopy), introduced here, enables a clean mapping of these features and additionally presents a means of studying layer polarizability and Cole-Cole relaxation effects. The resolved resistive term contributes directly to an intrinsic monolayer uncompensated resistance that has a linear dependence on the layer thickness. The dielectric model proposed is fully aligned with the classic Helmholtz plate capacitor model and additionally explains the inherently associated resistive features of molecular films.

  18. Phase transitions of an ionic liquid self-assembled monolayer on Au.

    PubMed

    Branca, Mathieu; Correia-Ledo, Debby; Bolduc, Olivier R; Ratel, Mathieu; Schmitzer, Andreea R; Masson, Jean-Francois

    2011-07-01

    The properties of a surface modified with an ionic liquid self-assembled monolayer (IL-SAM) can be tuned by simply changing the deposition temperature. Mid-IR, SERS, and molecular modelling demonstrated that 1-(12-mercaptododecyl)-3-methylimidazolium bromide (MDMIBr) exhibited a crystalline monolayer for deposition temperatures below 25 °C. Above 25 °C, the aliphatic chain collapsed into a disordered conformation. At 40 °C, another phase transition occurs due to the imidazolium group tilting parallel to the surface. Consequently, the wettability of IL-SAM was tuned over a broad range of contact angle (from 20° to nearly 40°) by varying the deposition temperature. Permeation of redox mediators to a Au electrode coated with MDMIBr strongly depends on the net charge of the redox mediator. Electron transfer was excellent for neutral and negatively charged redox mediators on electrodes coated with IL-SAM regardless of deposition temperature. PMID:21625701

  19. Multichannel surface imaging and analysis of self-assembled monolayers and proteins

    NASA Astrophysics Data System (ADS)

    Pyo, Hyeon-Bong; Shin, Yong-Beom; Kim, Min-Gon; Yoon, Hyun C.

    2004-03-01

    Multichannel images of 11-Mercaptoundecanoic acid and 11-Mercapto-1-undecanol self-assembled monolayers (SAMs) together with a biospecific interferon-gamma (IFN-gamma)/anti-IFN-gamma antibody immunoreaction were observed by two-dimensional surface plasmon resonance (2D-SPR) imaging system. Patterning process for SAM was simplified by exploiting direct photooxidation of thiol bonding (photolysis) instead of conventional photolithography. Sharper images were resolved by using a white light source in combination with a narrow bandpass filter, minimizing the diffraction patterns on the images. The line profile calibration of the image contrast caused by different resonance conditions at each points on the sensor surface enabled us to discriminate the monolayer thickness in a sub-nanometer scale. For protein patterning, a precipitation scheme induced by biocatalytic reaction was implied for the signal amplification. Specific binding of IFN-gamma antigen with surface-immobilized antibody was found detectable down to the concentration of 1 ng/mL.

  20. High-Efficiency Colloidal Quantum Dot Photovoltaics via Robust Self-Assembled Monolayers.

    PubMed

    Kim, Gi-Hwan; García de Arquer, F Pelayo; Yoon, Yung Jin; Lan, Xinzheng; Liu, Mengxia; Voznyy, Oleksandr; Jagadamma, Lethy Krishnan; Abbas, Abdullah Saud; Yang, Zhenyu; Fan, Fengjia; Ip, Alexander H; Kanjanaboos, Pongsakorn; Hoogland, Sjoerd; Kim, Jin Young; Sargent, Edward H

    2015-11-11

    The optoelectronic tunability offered by colloidal quantum dots (CQDs) is attractive for photovoltaic applications but demands proper band alignment at electrodes for efficient charge extraction at minimal cost to voltage. With this goal in mind, self-assembled monolayers (SAMs) can be used to modify interface energy levels locally. However, to be effective SAMs must be made robust to treatment using the various solvents and ligands required for to fabricate high quality CQD solids. We report robust self-assembled monolayers (R-SAMs) that enable us to increase the efficiency of CQD photovoltaics. Only by developing a process for secure anchoring of aromatic SAMs, aided by deposition of the SAMs in a water-free deposition environment, were we able to provide an interface modification that was robust against the ensuing chemical treatments needed in the fabrication of CQD solids. The energy alignment at the rectifying interface was tailored by tuning the R-SAM for optimal alignment relative to the CQD quantum-confined electron energy levels. This resulted in a CQD PV record power conversion efficiency (PCE) of 10.7% with enhanced reproducibility relative to controls.

  1. Localized dealloying corrosion mediated by self-assembled monolayers used as an inhibitor system.

    PubMed

    Shrestha, B R; Bashir, A; Ankah, G N; Valtiner, M; Renner, F U

    2015-01-01

    The structure and chemistry of thiol or selenol self-assembled organic monolayers have been frequently addressed due to the unique opportunities in functionalization of materials. Such organic films can also act as effective inhibition layers to mitigate oxidation or corrosion. Cu-Au alloy substrates covered by self-assembled monolayers show a different dealloying mechanism compared to bare surfaces. The organic surface layer inhibits dealloying of noble metal alloys by a suppression of surface diffusion at lower potentials but at higher applied potentials dealloying proceeds in localized regions due to passivity breakdown. We present an in situ atomic force microscopy study of a patterned thiol layer applied on Cu-Au alloy surfaces and further explore approaches to change the local composition of the surface layers by exchange of molecules. The pattern for the in situ experiment has been applied by micro-contact printing. This allows the study of corrosion protection with its dependence on different molecule densities at different sites. Low-density thiol areas surrounding the high-density patterns are completely protected and initiation of dealloying proceeds only along the areas with the lowest inhibitor concentration. Dealloying patterns are highly influenced and controlled by molecular thiol to selenol exchange and are also affected by introducing structural defects such as scratches or polishing defects. PMID:25920488

  2. Atomic force microscopy reveals two phases in single stranded DNA self-assembled monolayers.

    PubMed

    Kosaka, Priscila M; González, Sheila; Domínguez, Carmen M; Cebollada, Alfonso; San Paulo, Alvaro; Calleja, Montserrat; Tamayo, Javier

    2013-08-21

    We have investigated the structure of single-stranded (ss) DNA self-assembled monolayers (SAMs) on gold by combining peak force tapping, Kelvin probe and phase contrast atomic force microscopy (AFM) techniques. The adhesion, surface potential and phase shift signals show heterogeneities in the DNA film structure at two levels: microscale and nanoscale; which cannot be clearly discerned in the topography. Firstly, there is multilayer aggregation covering less than 5% of the surface. The DNA multilayers seem to be ordered phases and their existence suggests that DNA end-to-end interaction can play a role in the self-assembly process. Secondly, we find the formation of two phases in the DNA monolayer, which differ both in surface energy and surface potential. We relate the two domains to differences in the packing density and in the ssDNA conformation. The discovered heterogeneities in ssDNA SAMs provide a new scenario in our vision of these relevant films that have direct consequences on their biological, chemical and physical properties. PMID:23832284

  3. Strain-relief by single dislocation loops in calcite crystals grown on self-assembled monolayers

    DOE PAGES

    Ihli, Johannes; Clark, Jesse N.; Côté, Alexander S.; Kim, Yi-Yeoun; Schenk, Anna S.; Kulak, Alexander N.; Comyn, Timothy P.; Chammas, Oliver; Harder, Ross J.; Duffy, Dorothy M.; et al

    2016-06-15

    Most of our knowledge of dislocation-mediated stress relaxation during epitaxial crystal growth comes from the study of inorganic heterostructures. In this study, we use Bragg coherent diffraction imaging to investigate a contrasting system, the epitaxial growth of calcite (CaCO3) crystals on organic self-assembled monolayers, where these are widely used as a model for biomineralization processes. The calcite crystals are imaged to simultaneously visualize the crystal morphology and internal strain fields. Our data reveal that each crystal possesses a single dislocation loop that occupies a common position in every crystal. The loops exhibit entirely different geometries to misfit dislocations generated inmore » conventional epitaxial thin films and are suggested to form in response to the stress field, arising from interfacial defects and the nanoscale roughness of the substrate. In conclusion, this work provides unique insight into how self-assembled monolayers control the growth of inorganic crystals and demonstrates important differences as compared with inorganic substrates.« less

  4. Self-assembled monolayer-functionalized half-metallic manganite for molecular spintronics.

    PubMed

    Tatay, Sergio; Barraud, Clément; Galbiati, Marta; Seneor, Pierre; Mattana, Richard; Bouzehouane, Karim; Deranlot, Cyrile; Jacquet, Eric; Forment-Aliaga, Alicia; Jegou, Pascale; Fert, Albert; Petroff, Frédéric

    2012-10-23

    (La,Sr)MnO(3) manganite (LSMO) has emerged as the standard ferromagnetic electrode in organic spintronic devices due to its highly spin-polarized character and air stability. Whereas organic semiconductors and polymers have been mainly envisaged to propagate spin information, self-assembled monolayers (SAMs) have been overlooked and should be considered as promising materials for molecular engineering of spintronic devices. Surprisingly, up to now the first key step of SAM grafting protocols over LSMO surface thin films is still missing. We report the grafting of dodecyl (C12P) and octadecyl (C18P) phosphonic acids over the LSMO half-metallic oxide. Alkylphosphonic acids form ordered self-assembled monolayers, with the phosphonic group coordinated to the surface and alkyl chains tilted from the surface vertical by 43° (C12P) and 27° (C18P). We have electrically characterized these SAMs in nanodevices and found that they act as tunnel barriers, opening the door toward the integration of alkylphosphonic acid//LSMO SAMs into future molecular/organic spintronic devices such as spin OLEDs.

  5. Protection of beryllium metal against microbial influenced corrosion using silane self-assembled monolayers

    NASA Astrophysics Data System (ADS)

    Vaidya, Rajendra U.; Deshpande, Alina; Hersman, Larry; Brozik, Susan M.; Butt, Darryl

    1999-08-01

    The effectiveness of a self-assembled silane monolayer as protection for beryllium against microbiologically influenced corrosion (MIC) was demonstrated. Four-point bend tests on coated and uncoated beryllium samples were conducted after microbiological exposures, and the effectiveness of these coatings as MIC protection was reported through mechanical property evaluations. Application of the silane monolayer to the beryllium surfaces was found to prevent degradation of the failure strength and displacement-to-failure of beryllium in bending. In contrast, the uncoated beryllium samples exhibited a severe reduction in these mechanical properties in the presence of the marine Pseudomonas bacteria. The potentiodynamic measurements showed that both the uncoated and coated samples pitted at the open-circuit potential. However, the size and distribution of the corrosion pits formed on the surface of the beryllium samples were significantly different for the various cases (coated vs uncoated samples exposed to control vs inoculated medium). This study demonstrates the following: (1) the deleterious effects of MIC on the mechanical properties of beryllium and (2) the potential for developing fast, easy, and cost-effective MIC protection for beryllium metal using silane self-assemblies.

  6. Fabrication of a Polyaniline Ultramicroelectrode via a Self Assembled Monolayer Modified Gold Electrode

    PubMed Central

    Bolat, Gulcin; Kuralay, Filiz; Eroglu, Gunes; Abaci, Serdar

    2013-01-01

    Herein, we report a simple and inexpensive way for the fabrication of an ultramicroelectrode and present its characterization by electrochemical techniques. The fabrication of polyaniline UME involves only two steps: modification of a gold (Au) electrode by self assembled monolayers (SAM) and then electrodeposition of polyaniline film on this thiol-coated Au electrode by using cyclic voltammetry and constant potential electrolysis methods. Two types of self-assembled monolayers (4-mercapto-1-butanol, MB, and 11-mercaptoundecanoic acid, MUA) were used, respectively, to see the effect of chain length on microelectrode formation. Microelectrode fabrication and utility of the surface was investigated by cyclic voltammetric measurements in a redox probe. The thus prepared polyaniline microelectrode was then used for DNA immobilization. Discrimination between double-stranded DNA (dsDNA) and single-stranded DNA (ssDNA) was obtained with enhanced electrochemical signals compared to a polyaniline-coated Au electrode. Different modifications on the electrode surfaces were examined using scanning electron microscopy (SEM). PMID:23797740

  7. Atomic force microscopy reveals two phases in single stranded DNA self-assembled monolayers.

    PubMed

    Kosaka, Priscila M; González, Sheila; Domínguez, Carmen M; Cebollada, Alfonso; San Paulo, Alvaro; Calleja, Montserrat; Tamayo, Javier

    2013-08-21

    We have investigated the structure of single-stranded (ss) DNA self-assembled monolayers (SAMs) on gold by combining peak force tapping, Kelvin probe and phase contrast atomic force microscopy (AFM) techniques. The adhesion, surface potential and phase shift signals show heterogeneities in the DNA film structure at two levels: microscale and nanoscale; which cannot be clearly discerned in the topography. Firstly, there is multilayer aggregation covering less than 5% of the surface. The DNA multilayers seem to be ordered phases and their existence suggests that DNA end-to-end interaction can play a role in the self-assembly process. Secondly, we find the formation of two phases in the DNA monolayer, which differ both in surface energy and surface potential. We relate the two domains to differences in the packing density and in the ssDNA conformation. The discovered heterogeneities in ssDNA SAMs provide a new scenario in our vision of these relevant films that have direct consequences on their biological, chemical and physical properties.

  8. Surface modification and functionalization through the self-assembled monolayer and graft polymerization.

    PubMed

    Ruckenstein, E; Li, Z F

    2005-03-17

    The modification of a surface at the molecular level with precise control of the building blocks generates an integrated molecular system. This field has progressed rapidly in recent years through the use of self-assembled monolayer (SAM) interfaces. Recent developments on surface-initiated chemical reactions, functionalization, and graft polymerization on SAM interfaces are emphasized in the present review. A number of surface modifications by grafting are reviewed. The grafting of polyaniline on a glass surface, previously modified with a silane self-assembled monolayer (SAM), is examined in detail for both planar and 3-D systems, such as fibers, nanoparticles, and even polymer patterned surfaces. We also discuss the graft polymerization of water-soluble polymers on the surface of silicon nanoparticles, which generate stable aqueous colloidal solutions and have numerous applications. Finally, we compare and review some surface-modification techniques on the surfaces of polymers, such as two-solvent entrapment, polymer blending, and chemical grafting, which improve their biocompatibility.

  9. Characterization of perfluorodecanoate self-assembled monolayers on aluminum and comparison of stability with phosphonate and siloxy self-assembled monolayers

    NASA Astrophysics Data System (ADS)

    DeRose, J. A.; Hoque, E.; Bhushan, B.; Mathieu, H. J.

    2008-04-01

    The long term performance of micro-/nano-electromechanical systems (MEMS/NEMS) depends on their stability to operating conditions, contact friction, adhesion, and wear. Aluminum (Al) substrates have been chemically reacted with perfluorodecanoic acid (PFDA) to form a self-assembled monolayer (SAM) and their surface properties (chemical composition, roughness, friction, and adhesion) characterized by X-ray photoelectron spectroscopy (XPS), contact angle measurement (CAM), and atomic force microscopy (AFM). In addition, stability of the PFDA/Al SAM films have been tested via exposure to corrosive conditions (aqueous solutions of low pH and different temperatures) for various periods of time. The sessile drop static contact angle of pure water demonstrates that PFDA/Al is extremely hydrophobic, giving values typically >125° compared to that of <10° for unmodified Al. A systematic comparison of stability between SAM films formed by reaction of Al with perfluorodecylphosphonic acid (PFDP), octadecylphosphonic acid (ODP), and perfluorodecyldimethylchlorosilane (PFMS) shows PFDA/Al to be less stable than PFDP/Al and ODP/Al, but more stable than PFMS/Al.

  10. Electronic Transport through Self Assembled Thiol Molecules: Effect of Monolayer Order, Dynamics and Temperature

    NASA Technical Reports Server (NTRS)

    Dholakia, Geetha; Fan, Wendy; Meyyappan, M.

    2005-01-01

    We present the charge transport and tunneling conductance of self assembled organic thiol molecules and discuss the influence of order and dynamics in the monolayer on the transport behavior and the effect of temperature. Conjugated thiol molecular wires and organometals such as terpyridine metal complexes provide a new platform for molecular electronic devices and we study their self assembly on Au(111) substrates by the scanning tunneling microscope. Determining the organization of the molecule and the ability to control the nature of its interface with the substrate is important for reliable performance of the molecular electronic devices. By concurrent scanning tunneling microscopy and spectroscopy studies on SAMs formed from oligo (phenelyne ethynelyne) monolayers with and without molecular order, we show that packing and order determine the response of a self assembled monolayer (SAM) to competing interactions. Molecular resolution STM imaging in vacuum shows that the OPES adopt an imcommensurate SAM structure on Au(111) with a rectangular unit cell. Tunneling spectroscopic measurements were performed on the SAM as a function of junction resistance. STS results show that the I-Vs are non linear and asymmetric due to the inherent asymmetry in the molecular structure, with larger currents at negative sample biases. The asymmetry increases with increasing junction resistance due to the asymmetry in the coupling to the leads. This is brought out clearly in the differential conductance, which also shows a gap at the Fermi level. We also studied the effect of order and dynamics in the monolayer on the charge transport and found that competing forces between the electric field, intermolecular interactions, tip-molecule physisorption and substrate-molecule chemisorption impact the transport measurements and its reliability and that the presence of molecular order is very important for reproducible transport measurements. Thus while developing new electronic platforms

  11. Born-Haber cycle for monolayer self-assembly at the liquid-solid interface: assessing the enthalpic driving force.

    PubMed

    Song, Wentao; Martsinovich, Natalia; Heckl, Wolfgang M; Lackinger, Markus

    2013-10-01

    The driving force for self-assembly is the associated gain in free energy with decisive contributions from both enthalpy and entropy differences between final and initial state. For monolayer self-assembly at the liquid-solid interface, solute molecules are initially dissolved in the liquid phase and then become incorporated into an adsorbed monolayer. In this work, we present an adapted Born-Haber cycle for obtaining precise enthalpy values for self-assembly at the liquid-solid interface, a key ingredient for a profound thermodynamic understanding of this process. By choosing terephthalic acid as a model system, it is demonstrated that all required enthalpy differences between well-defined reference states can be independently and consistently assessed by both experimental and theoretical methods, giving in the end a reliable value of the overall enthalpy gain for self-assembly of interfacial monolayers. A quantitative comparison of enthalpy gain and entropy cost reveals essential contributions from solvation and dewetting, which lower the entropic cost and render monolayer self-assembly a thermodynamically favored process.

  12. Self-assembled monolayer films of C[sub 60]/on cysteamine-modified gold

    SciTech Connect

    Caldwell, W.B.; Chen, K.; Mirkin, C.A.; Babinec, S.J. Dow Chemical Company, Midland, MI )

    1993-08-01

    Self-assembled monolayer films (SAMs) of C[sub 60] on cysteamine-modified and cysteamine/ethanethiol-modified Au are reported. The monolayers were characterized via contact angle measurements, X-ray photoelectron spectroscopy, electrochemistry, and quartz crystal microbalance (QCM) measurements. C[sub 60] surface coverage (2.0 [times] 10[sup [minus]10] mol/cm[sup 2]) for a film formed on pure cysteamine was determined by QCM measurements and compares remarkably well with monolayer coverage (1.9 [times] 10[sup [minus]10] mol/cm[sup 2]) predicted by a model based on crystallographic data for C[sub 60]. These experiments demonstrate the utility of the QCM in characterizing and monitoring the growth of fullerene SAMs. C[sub 60] SAMs formed on pure cysteamine yield strikingly different electrochemical responses than those formed on prelayers consisting of varying ratios of ethanethiol and cysteamine and previously reported monolayers of C[sub 60] on (aminopropyl)silanized oxide surfaces. Although the C[sub 60] SAMs are stable under ambient conditions, the fullerenes may be desorbed from the surface through electrochemical reduction of the films for extended periods of time (> 10 min). 11 refs., 2 figs.

  13. Improved aging performance of vapor phase deposited hydrophobic self-assembled monolayers

    NASA Astrophysics Data System (ADS)

    Gnanappa, Arun Kumar; O'Murchu, Cian; Slattery, Orla; Peters, Frank; O'Hara, Tony; Aszalós-Kiss, Balázs; Tofail, Syed A. M.

    2011-02-01

    A hydrophobic self-assembled monolayer (SAM) of fluoro-octyl-trichloro-silane (FOTS) was deposited on silicon using a vapor phase technique. The aging of the hydrophobic layer was examined using water contact angle measurements. It has been found that while such monolayer films suffer from a loss of hydrophobicity with time, pre-immersion nitrogen annealing can significantly improve the aging characteristics of these monolayers. The effect of nitrogen annealing on the improved aging properties of SAM coatings has been investigated by atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). The hydrolytic stability and the effect of nitrogen annealing were studied by morphological evolution during immersion. A spontaneous formation of silane mounds on the surface of the monolayers was found by AFM. These mounds have been irreversibly transformed from initially uniform hydrophobic surface layers. It is highly probable that the compliance of these mounds can reasonably allow hydrophilic sites to be located around the mounds. Interestingly, the density of these mounds formation is very less on the annealed samples. XPS reveals a higher level of coverage by the N2-annealed film due to agglomeration. A relative abundance of CF3 and CF2 moieties in the annealed film may explain the enhancement of the hydrophobicity as revealed by higher level of water contact angle. This hydrophobicity was found to be significantly stable in water. This novel finding explains the improved hydrophobic stability of FOTS monolayers as primarily a morpho-chemical effect that originates from the densification of the monolayers upon annealing.

  14. Synthesis and Characterization of Self-Assembled Monolayers Derived Electrochemically from o-Functionalized Alkyl Thiosulfates

    NASA Astrophysics Data System (ADS)

    Labukas, Joseph Paul

    The ability to control the placement of molecules onto substrates is an important challenge for advancing the development of sensor technologies. Although self-assembled monolayers (SAMs) of alkyl thiolates on gold have been rigorously studied, achieving regiochemical control in this system is more challenging. Using alkyl thiosulfates, SAM formation can be directed electrochemically, thereby alleviating potential difficulties associated with approaches that use thiol chemistry. The first challenge of this research was to determine which u-functionalities are compatible with the electrosynthesis of monolayers from alkyl thiosulfates. The elemental compositions of methyl-, perfluoroalkyl-, carboxylic acid-, amide-, and methyl ester-terminated SAMs derived from alkyl thiosulfates were similar to those measured for analogous SAMs derived from thiols. In contrast, x-ray photoelectron spectroscopy (XPS) revealed that by-products of the electrosynthesis react with the terminal functionality of the hydroxyl- and vinyl-terminated SAMs. Mixed monolayers formed from solutions containing two-different alkyl thiosulfates allowed enhanced flexibility in controlling the surface properties of electrodes. The surface composition of these two-component systems was determined kinetically and was therefore linearly related to the solution composition from which they were derived. To demonstrate the selectivity of the electrosynthesis, different monolayers were directed onto individually addressable electrodes in arrays. Initially, four different monolayers were placed on four adjacent electrodes on a single substrate. To gain insight into the applicability of this technology at the microscale, an array containing three microelectrodes was functionalized sequentially with a different monolayer on each electrode. Using XPS and measurements of wettability, the presence of u-functionalized SAMs was detected only on electrodes to which they were directed.

  15. Multiscale simulations of protein G B1 adsorbed on charged self-assembled monolayers.

    PubMed

    Liu, Jie; Liao, Chenyi; Zhou, Jian

    2013-09-10

    The orientation of an antibody plays an important role in the development of immunosensors. Protein G is an antibody binding protein, which specifically targets the Fc fragment of an antibody. In this work, the orientation of prototypical and mutated protein G B1 adsorbed on positively and negatively charged self-assembled monolayers was studied by parallel tempering Monte Carlo and all-atom molecular dynamics simulations. Both methods present generally similar orientation distributions of protein G B1 for each kind of surface. The root-mean-square deviation, DSSP, gyration radius, eccentricity, dipole moment, and superimposed structures of protein G B1 were analyzed. Moreover, the orientation of binding antibody was also predicted in this work. Simulation results show that with the same orientation trends, the mutant exhibits narrower orientation distributions than does the prototype, which was mainly caused by the stronger dipole of the mutant. Both kinds of proteins adsorbed on charged surfaces were induced by the competition of electrostatic interaction and vdW interaction; the electrostatic interaction energy dominated the adsorption behavior. The protein adsorption was also largely affected by the distribution of charged residues within the proteins. Thus, the prototype could adsorb on a negatively charged surface, although it keeps a net charge of -4 e. The mutant has imperfect opposite orientation when it adsorbed on oppositely charged surfaces. For the mutant on a carboxyl-functionalized self-assembled monolayer (COOH-SAM), the orientation was the same as that inferred by experiments. While for the mutant on amine-functionalized self-assembled monolayer (NH2-SAM), the orientation was induced by the competition between attractive interactions (led by ASP40 and GLU56) and repulsive interactions (led by LYS10); thus, the perfect opposite orientation could not be obtained. On both surfaces, the adsorbed protein could retain its native conformation. The desired

  16. Conversion of self-assembled monolayers into nanocrystalline graphene: structure and electric transport.

    PubMed

    Turchanin, Andrey; Weber, Dirk; Büenfeld, Matthias; Kisielowski, Christian; Fistul, Mikhail V; Efetov, Konstantin B; Weimann, Thomas; Stosch, Rainer; Mayer, Joachim; Gölzhäuser, Armin

    2011-05-24

    Graphene-based materials have been suggested for applications ranging from nanoelectronics to nanobiotechnology. However, the realization of graphene-based technologies will require large quantities of free-standing two-dimensional (2D) carbon materials with tunable physical and chemical properties. Bottom-up approaches via molecular self-assembly have great potential to fulfill this demand. Here, we report on the fabrication and characterization of graphene made by electron-radiation induced cross-linking of aromatic self-assembled monolayers (SAMs) and their subsequent annealing. In this process, the SAM is converted into a nanocrystalline graphene sheet with well-defined thickness and arbitrary dimensions. Electric transport data demonstrate that this transformation is accompanied by an insulator to metal transition that can be utilized to control electrical properties such as conductivity, electron mobility, and ambipolar electric field effect of the fabricated graphene sheets. The suggested route opens broad prospects toward the engineering of free-standing 2D carbon materials with tunable properties on various solid substrates and on holey substrates as suspended membranes. PMID:21491948

  17. The impact of solution agglomeration on the deposition of self-assembled monolayers

    SciTech Connect

    BUNKER,BRUCE C.; CARPICK,ROBERT W.; ASSINK,ROGER A.; THOMAS,MICHAEL L.; HANKINS,MATTHEW G.; VOIGT,JAMES A.; SIPOLA,DIANA L.; DE BOER,MAARTEN P.; GULLEY,GERALD L.

    2000-04-17

    Self-assembled monolayers (SAMS) are commonly produced by immersing substrates in organic solutions containing trichlorosilane coupling agents. Unfortunately, such deposition solutions can also form alternate structures including inverse micelles and lamellar phases. The formation of alternate phases is one reason for the sensitivity of SAM depositions to factors such as the water content of the deposition solvent. If such phases are present, the performance of thin films used for applications such as minimization of friction and stiction in micromachines can be seriously compromised. Inverse micelle formation has been studied in detail for depositions involve 1H-, 1H-, 2H-, 2H-perfluorodecyltrichlorosilane (FDTS) in isooctane. Nuclear magnetic resonance experiments have been used to monitor the kinetics of hydrolysis and condensation reactions between water and FDTS. Light scattering experiments show that when hydrolyzed FDTS concentrations reach a critical concentration, there is a burst of nucleation to form high concentrations of spherical agglomerates. Atomic force microscopy results show that the agglomerates then deposit on substrate surfaces. Deposition conditions leading to monolayer formation involve using deposition times that are short relative to the induction time for agglomeration. After deposition, inverse micelles can be converted into lamellar or monolayer structures with appropriate heat treatments if surface concentrations are relatively low.

  18. Amino-terminated biphenylthiol self-assembled monolayers as highly reactive molecular templates

    SciTech Connect

    Meyerbroeker, N.; Waske, P.; Zharnikov, M.

    2015-03-14

    Self-assembled monolayers (SAMs) with amino tail groups are of interest due to their ability of coupling further compounds. Such groups can be, in particular, created by electron irradiation of nitro- or nitrile-substituted aromatic SAMs, which provide a basis for chemical nanolithography and the fabrication of functionalized nanomembranes. An estimate of reactivity of the created amino groups requires a reference system of homogeneous, amino-terminated aromatic SAMs, which can also be used as a highly reactive molecular template. Here, we describe the synthesis of 4′-aminobiphenyl-4-thiol (ABPT) and SAMs prepared from this precursor on Au(111). The monolayers were characterized by X-ray photoelectron spectroscopy and near edge X-ray absorption fine structure spectroscopy, which revealed that they are well defined, chemically uniform, densely packed, and highly ordered. To examine the influence of electron irradiation on the reactivity of the terminal amino groups, ABPT SAMs were exposed to low energy (50 eV) electrons up to a dose of 40 mC/cm{sup 2} and, subsequently, immersed in either trifluoroacetic, pentafluoropropionic, or heptafluorobutyric anhydride. Analysing the amount of the attached anhydride species made it possible to determine the percentage of reactive amino groups as well as the effect of steric hindrance upon the coupling reaction. The above results are compared with those obtained for the well-established nitro-substituted biphenylthiol monolayers.

  19. Amino-terminated biphenylthiol self-assembled monolayers as highly reactive molecular templates

    NASA Astrophysics Data System (ADS)

    Meyerbroeker, N.; Waske, P.; Zharnikov, M.

    2015-03-01

    Self-assembled monolayers (SAMs) with amino tail groups are of interest due to their ability of coupling further compounds. Such groups can be, in particular, created by electron irradiation of nitro- or nitrile-substituted aromatic SAMs, which provide a basis for chemical nanolithography and the fabrication of functionalized nanomembranes. An estimate of reactivity of the created amino groups requires a reference system of homogeneous, amino-terminated aromatic SAMs, which can also be used as a highly reactive molecular template. Here, we describe the synthesis of 4'-aminobiphenyl-4-thiol (ABPT) and SAMs prepared from this precursor on Au(111). The monolayers were characterized by X-ray photoelectron spectroscopy and near edge X-ray absorption fine structure spectroscopy, which revealed that they are well defined, chemically uniform, densely packed, and highly ordered. To examine the influence of electron irradiation on the reactivity of the terminal amino groups, ABPT SAMs were exposed to low energy (50 eV) electrons up to a dose of 40 mC/cm2 and, subsequently, immersed in either trifluoroacetic, pentafluoropropionic, or heptafluorobutyric anhydride. Analysing the amount of the attached anhydride species made it possible to determine the percentage of reactive amino groups as well as the effect of steric hindrance upon the coupling reaction. The above results are compared with those obtained for the well-established nitro-substituted biphenylthiol monolayers.

  20. Amino-terminated biphenylthiol self-assembled monolayers as highly reactive molecular templates.

    PubMed

    Meyerbroeker, N; Waske, P; Zharnikov, M

    2015-03-14

    Self-assembled monolayers (SAMs) with amino tail groups are of interest due to their ability of coupling further compounds. Such groups can be, in particular, created by electron irradiation of nitro- or nitrile-substituted aromatic SAMs, which provide a basis for chemical nanolithography and the fabrication of functionalized nanomembranes. An estimate of reactivity of the created amino groups requires a reference system of homogeneous, amino-terminated aromatic SAMs, which can also be used as a highly reactive molecular template. Here, we describe the synthesis of 4'-aminobiphenyl-4-thiol (ABPT) and SAMs prepared from this precursor on Au(111). The monolayers were characterized by X-ray photoelectron spectroscopy and near edge X-ray absorption fine structure spectroscopy, which revealed that they are well defined, chemically uniform, densely packed, and highly ordered. To examine the influence of electron irradiation on the reactivity of the terminal amino groups, ABPT SAMs were exposed to low energy (50 eV) electrons up to a dose of 40 mC/cm(2) and, subsequently, immersed in either trifluoroacetic, pentafluoropropionic, or heptafluorobutyric anhydride. Analysing the amount of the attached anhydride species made it possible to determine the percentage of reactive amino groups as well as the effect of steric hindrance upon the coupling reaction. The above results are compared with those obtained for the well-established nitro-substituted biphenylthiol monolayers. PMID:25770508

  1. Interaction of bovine serum albumin protein with self assembled monolayer of mercaptoundecanoic acid

    NASA Astrophysics Data System (ADS)

    Poonia, Monika; Agarwal, Hitesh; Manjuladevi, V.; Gupta, R. K.

    2016-05-01

    Detection of proteins and other biomolecules in liquid phase is the essence for the design of a biosensor. The sensitivity of a sensor can be enhanced by the appropriate functionalization of the sensing area so as to establish the molecular specific interaction. In the present work, we have studied the interaction of bovine serum albumin (BSA) protein with a chemically functionalized surface using a quartz crystal microbalance (QCM). The gold-coated quartz crystals (AT-cut/5 MHz) were functionalized by forming self-assembled monolayer (SAM) of 11-Mercaptoundecanoic acid (MUA). The adsorption characteristics of BSA onto SAM of MUA on quartz crystal are reported. BSA showed the highest affinity for SAM of MUA as compared to pure gold surface. The SAM of MUA provides carboxylated surface which enhances not only the adsorption of the BSA protein but also a very stable BSA-MUA complex in the liquid phase.

  2. Electroanalysis of dopamine at a gold electrode modified with N-acetylcysteine self-assembled monolayer.

    PubMed

    Liu, Ting; Li, Meixian; Li, Qianyuan

    2004-07-01

    Voltammetric behavior of dopamine (DA) on a gold electrode modified with the self-assembled monolayer (SAM) of N-acetylcysteine has been investigated, and one pair of well-defined redox peaks of dopamine is obtained at the SAM modified gold electrode. The oxidation peak current increases linearly with the concentration of dopamine in the range of 1.0x10 (-6)to 2.0x10 (-4)moll(-1). The detection limit is 8.0x10(-7)moll(-1). This method will be applicable to the determination of dopamine in injection of dopamine hydrochloride, and the good recovery of dopamine is obtained. Furthermore, The SAM modified gold electrode can resolve well the voltammetric responses of dopamine and ascorbic acid (AA), so it can also be applied to the determination of dopamine in the presence of ascorbic acid.

  3. Self-assembled monolayers of shape-persistent macrocycles on graphite: interior design and conformational polymorphism.

    PubMed

    Vollmeyer, Joscha; Eberhagen, Friederike; Höger, Sigurd; Jester, Stefan-S

    2014-01-01

    Three shape-persistent naphthylene-phenylene-acetylene macrocycles of identical backbone structures and extraannular substitution patterns but different (empty, apolar, polar) nanopore fillings are self-assembled at the solid/liquid interface of highly oriented pyrolytic graphite and 1,2,4-trichlorobenzene. Submolecularly resolved images of the resulting two-dimensional (2D) crystalline monolayer patterns are obtained by in situ scanning tunneling microscopy. A concentration-dependent conformational polymorphism is found, and open and more dense packing motifs are observed. For all three compounds alike lattice parameters are found, therefore the intermolecular macrocycle distances are mainly determined by their size and symmetry. This is an excellent example that the graphite acts as a template for the macrocycle organization independent from their specific interior.

  4. Thermal stability of vapor phase deposited self-assembled monolayers for MEMS anti-stiction

    NASA Astrophysics Data System (ADS)

    Zhuang, Yan Xin; Hansen, Ole; Knieling, Thomas; Wang, Christian; Rombach, Pirmin; Lang, Walter; Benecke, Wolfgang; Kehlenbeck, Markus; Koblitz, Jörn

    2006-11-01

    Six different source chemicals (organosilanes) were successfully used for deposition of self-assembled monolayers (SAMs) onto silicon substrates by a vapor phase process. Five different fluorocarbon coatings and one hydrocarbon coating were deposited. The thermal stability of the coatings was studied in detail with respect to degradation as a function of temperature, and for the fluorocarbon coatings also the degradation rate at 400 °C. For fluorocarbon coatings deposited from FDTS a useful lifetime of approximately 90 min at 400 °C was found allowing the coating to survive high temperature MEMS packaging operations, while fluorocarbon coatings deposited from FOTS, FOMDS, FOTES and FOMMS were less stable. The hydrocarbon coating deposited from OTS degrades already at approximately 200 °C. The thermal stability of the SAM coatings was found to be significantly reduced if aggregations from the deposition process are present on the coatings.

  5. Periodic ZnO nanorod arrays defined by polystyrene microsphere self-assembled monolayers.

    PubMed

    Liu, D F; Xiang, Y J; Wu, X C; Zhang, Z X; Liu, L F; Song, L; Zhao, X W; Luo, S D; Ma, W J; Shen, J; Zhou, W Y; Wang, G; Wang, C Y; Xie, S S

    2006-10-01

    We demonstrate a low-cost and effective method to fabricate hexagonally patterned, vertically aligned ZnO nanorod arrays. Selective wet-etching is used to develop the catalyzing gold particle hexagonal pattern with the aid of a polystyrene microsphere self-assembled monolayer. The gold particles have tunable sizes independent of the polystyrene microsphere's diameter and are inherently round in shape. Each ZnO rod is grown individually from a catalyzing site via catalyst-initiated epitaxy, and the original hexagonal periodicity is well-preserved. The rods have flat ends, and the diameters of the rods can be controlled well by the amount of source materials. This method provides a promising way to create ZnO one-dimensional nanostructures for applications as two-dimensional photonic crystal, sensor arrays, nanolaser arrays, and optoelectronic devices. PMID:17034114

  6. Creating periodic local strain in monolayer graphene with nanopillars patterned by self-assembled block copolymer

    SciTech Connect

    Mi, Hongyi; Mikael, Solomon; Seo, Jung-Hun; Gui, Gui; Ma, Alice L.; Ma, Zhenqiang E-mail: mazq@engr.wisc.edu; Liu, Chi-Chun; Nealey, Paul F. E-mail: mazq@engr.wisc.edu

    2015-10-05

    A simple and viable method was developed to produce biaxial strain in monolayer graphene on an array of SiO{sub 2} nanopillars. The array of SiO{sub 2} nanopillars (1 cm{sup 2} in area, 80 nm in height, and 40 nm in pitch) was fabricated by employing self-assembled block copolymer through simple dry etching and deposition processes. According to high resolution micro-Raman spectroscopy and atomic force microscopy analyses, 0.9% of maximum biaxial tensile strain and 0.17% of averaged biaxial tensile strain in graphene were created. This technique provides a simple and viable method to form biaxial tensile strain in graphene and offers a practical platform for future studies in graphene strain engineering.

  7. Suppression of the coffee-ring effect by self-assembling graphene oxide and monolayer titania

    NASA Astrophysics Data System (ADS)

    Sun, Pengzhan; Ma, Renzhi; Wang, Kunlin; Zhong, Minlin; Wei, Jinquan; Wu, Dehai; Sasaki, Takayoshi; Zhu, Hongwei

    2013-02-01

    The in situ self-assembly of two types of typical two-dimensional (2D) nanomaterials (i.e., graphene oxide (GO) and monolayer titania (TO)) is realized using a simple drop-casting method. Within the as-prepared hybrid films, the GO and TO nanosheets arrange alternately into a lamellar structure. Notably, the hybridization of GO and TO suppresses the formation of coffee-rings when drop-cast, which is attributed to the strong interactions between the GO and TO nanosheets. Finally, the mechanism for the in situ hybridization of these two types of nanosheets into heterogeneous lamellar films and the suppression of the coffee-ring effect are discussed. These results demonstrate the potential applications of drop-cast hybrid films for high-quality membrane deposition from liquid phases.

  8. Molecular-like hierarchical self-assembly of monolayers of mixtures of particles

    PubMed Central

    Singh, P.; Hossain, M.; Gurupatham, S. K.; Shah, K.; Amah, E.; Ju, D.; Janjua, M.; Nudurupati, S.; Fischer, I.

    2014-01-01

    We present a technique that uses an externally applied electric field to self-assemble monolayers of mixtures of particles into molecular-like hierarchical arrangements on fluid-liquid interfaces. The arrangements consist of composite particles (analogous to molecules) which are arranged in a pattern. The structure of a composite particle depends on factors such as the relative sizes of the particles and their polarizabilities, and the electric field intensity. If the particles sizes differ by a factor of two or more, the composite particle has a larger particle at its core and several smaller particles form a ring around it. The number of particles in the ring and the spacing between the composite particles depend on their polarizabilities and the electric field intensity. Approximately same sized particles form chains (analogous to polymeric molecules) in which positively and negatively polarized particles alternate. PMID:25510331

  9. Electrical resistivity of nanoporous gold modified with thiol self-assembled monolayers

    NASA Astrophysics Data System (ADS)

    Hakamada, Masataka; Kato, Naoki; Mabuchi, Mamoru

    2016-11-01

    The electrical resistivity of nanoporous gold (NPG) modified with thiol self-assembled monolayers (SAMs) has been measured at 298 K using a four-probe method. We found that the adsorption of thiol SAMs increases the electrical resistivity of NPG by up to 22.2%. Dependence of the electrical resistivity on the atmosphere (air or water) was also observed in SAMs-modified NPG, suggesting that the electronic states of the tail groups affect the electrons of the binding sulfur and adjacent surface gold atoms. The present results suggest that adsorption of thiol molecules can influence the behavior of the conducting electrons in NPG and that modification of NPG with SAMs may be useful for environmental sensing.

  10. Self assembled monolayer based liquid crystal biosensor for free cholesterol detection

    NASA Astrophysics Data System (ADS)

    Tyagi, Mukta; Chandran, Achu; Joshi, Tilak; Prakash, Jai; Agrawal, V. V.; Biradar, A. M.

    2014-04-01

    A unique cholesterol oxidase (ChOx) liquid crystal (LC) biosensor, based on the disruption of orientation in LCs, is developed for cholesterol detection. A self-assembled monolayer (SAM) of Dimethyloctadecyl[3-(trimethoxysilyl)propyl]ammonium chloride (DMOAP) and (3-Aminopropyl)trimethoxy-silane (APTMS) is prepared on a glass plate by adsorption. The enzyme (ChOx) is immobilized on SAM surface for 12 h before utilizing the film for biosensing purpose. LC based biosensing study is conducted on SAM/ChOx/LC (5CB) cells for cholesterol concentrations ranging from 10 mg/dl to 250 mg/dl. The sensing mechanism has been verified through polarizing optical microscopy, scanning electron microscopy, and spectrometric techniques.

  11. Atomic Structure of Self-Assembled Monolayer of Thiolates on a Tetragonal Au92 Nanocrystal.

    PubMed

    Zeng, Chenjie; Liu, Chong; Chen, Yuxiang; Rosi, Nathaniel L; Jin, Rongchao

    2016-07-20

    Unveiling the ligand binding mode on the crystalline surfaces is important for deciphering the long-standing structural enigma in self-assembled monolayers (SAMs). Here, the binding and patterning structures of thiolates (SR) on the Au(100) crystalline facet are revealed on the basis of the atomic structure of a highly regular, single crystalline Au92(SR)44 nanocrystal. The six exposed facets of this tetragonal nanocrystal give rise to six pieces of "nanoSAMs". We found that thiolates bind to the planar (100) facets of the nanocrystal via a simple bridge-like mode and are assembled into an overlayer with c(2 × 2) symmetry. The Au-S binding mode and translational symmetry in the kernel and on the surface of the Au92 nanocrystal can be generalized infinitely to construct the bulk two-dimensional SAMs and various tetragonal nanocrystals.

  12. Controlling liquid crystal alignment using photocleavable cyanobiphenyl self-assembled monolayers.

    PubMed

    Prompinit, Panida; Achalkumar, Ammathnadu S; Bramble, Jonathan P; Bushby, Richard J; Wälti, Christoph; Evans, Stephen D

    2010-12-01

    We report on the development of novel cyano-biphenyl-based thiolate self-assembled monolayers designed to promote homeotropic alignment of calamitic liquid crystals. The molecules developed contain an ortho-nitrobenzyl protected carboxylic acid group that on irradiation by soft UV (365 nm) is cleaved to yield carboxylic acid groups exposed at the surface that promote planar alignment. Using a combination of wetting, X-ray photoelectron spectroscopy, Fourier transform-infrared reflection absorption spectroscopy, and ellipsometry we show that high photolysis yields (>90%) can be achieved and that the patterned SAMs are suitable for the controlled alignment of calamitic liquid crystals. This study further shows that such photo-patterned SAMs can be used to control the formation of focal conic domains (FCDs) in the smectic-A phase in terms of positioning and size confinement on surfaces. PMID:21069978

  13. Neutron Reflection Study of Bovine β-Casein Adsorbed on OTS Self- Assembled Monolayers

    NASA Astrophysics Data System (ADS)

    Fragneto, Giovanna; Thomas, Robert K.; Rennie, Adrian R.; Penfold, Jeffrey

    1995-02-01

    Specular neutron reflection has been used to determine the structure and composition of bovine β-casein adsorbed on a solid surface from an aqueous phosphate-buffered solution at pH 7. The protein was adsorbed on a hydrophobic monolayer self-assembled from deuterated octadecyltrichlorosilane solution on a silicon (111) surface. A two-layer structure formed consisting of one dense layer of thickness 23 ± 1 angstroms and a surface coverage of 1.9 milligrams per square meter adjacent to the surface and an external layer protruding into the solution of thickness 35 ± 1 angstroms and 12 percent protein volume fraction. The structure of the (β-casein) layer is explained in terms of the charge distribution in the protein.

  14. Atomic force microscopy electrostatic nanolithography on self-assembled monolayer of organo-mercaptan molecules

    NASA Astrophysics Data System (ADS)

    Reagan, Michael A.; Juhl, Shane; Umemura, Kazuo

    2005-03-01

    We report a novel technique for manipulating SAM molecules at the nanoscale. An initial stage, the AFM probe induces local modification of the self-assembled monolayer involving cleavage of the sulfur-metal bond. This leads to depressions appearing on the surface's topography images followed by the removal (diffusion) of the desorbed specie. It is known from the macroscopic scale electrochemical experiments that oxidative desorption of the organo-mercaptans from the gold surface takes place at potentials greater than +0.8 V (vs. Ag/AgCl) in aqueous KOH solutions. This corresponds to about -3.9 V in the absolute potential scale. A weak positive bias of the metal substrate is expected to result in the dissociative electron transfer from the mercaptan to the gold, taking place in the surface region localized near the scanning probe tip, where the water can be condensed from the ambient environment forming a nanoscale electrochemical cell.

  15. Measurement of molecular length of self-assembled monolayer probed by localized surface plasmon resonance

    NASA Astrophysics Data System (ADS)

    Ito, Juri; Kajikawa, Kotaro

    2016-02-01

    We propose a method to measure the variation of the molecular length of self-assembled monolayers (SAMs) when it is exposed to solutions at different pH conditions. The surface immobilized gold nanospheres (SIGNs) shows strong absorption peak at the wavelengths of 600-800 nm when p-polarized light is illuminated. The peak wavelength depends on the length of the gap distance between the SIGNs and the substrate. The gap is supported by the SAM molecules. According to the analytical calculation based on multiple expansion, the relation between the peak wavelength of the SIGN structures and the gap distance is calculated, to evaluate the molecular length of the SAM through the optical absorption spectroscopy for the SIGN structures. The molecular length of the SIGN structure was measured in air, water, acidic, and basic solutions. It was found that the molecular lengths are longer in acidic solutions.

  16. Soft-Landing of Peptide IOns Onto Self-Assembled Monolayer Surfaces: an Overview

    SciTech Connect

    Laskin, Julia; Wang, Peng; Hadjar, Omar

    2008-02-28

    This review is focused on what has been learned in recent research studies concerned with fundamental aspects of soft-landing and reactive landing of peptide ions on self-assembled monolayer surfaces (SAMs). Peptide ions are particularly attractive model systems that provide important insights on the behavior of soft landed proteins, while SAMs provide a convenient and flexible platform for tailoring the interfacial properties of metals and semiconductor surfaces. Deposition of mass-selected ions on surfaces is accompanied by a number of processes including charge reduction, neutralization, covalent and non-covalent binding, and thermal desorption of ions and molecules from the substrate. Factors that affect the competition between these processes are discussed.

  17. Formation of Ordered 4-Fluorobenzenethiol Self-Assembled Monolayers on Au(111) from Vapor Phase Deposition.

    PubMed

    Kang, Hungu; Ito, Eisuke; Hara, Masahiko; Noh, Jaegeun

    2016-03-01

    Self-assembled monolayers (SAMs) were formed by the spontaneous adsorption of 4-fluorobenzenethiol (4-FBT) on Au(111) using both solution and ambient-pressure vapor deposition methods at room temperature. The surface structure and thermal desorption properties of 4-FBT SAMs were examined by scanning tunneling microscopy (STM) and thermal desorption spectroscopy (TDS). STM imaging showed that 4-FBT SAMs formed in solution at room temperature mainly contained disordered phase with gold adatom islands, while those formed by ambient-pressure vapor deposition had well-ordered phase, which can be described as a (2 x 2√13)R45 degrees structure. In addition, thermal desorption spectroscopy (TDS) measurements showed that strong desorption peak for parent mass fragment (m/z = 128, FC6H5SH+) for 4-FBT SAMs on Au(111) was observed at 460 K, as a result of hydrogen abstract reaction of chemisorbed thiolates during desorption. PMID:27455712

  18. Fabrication and testing of engineered forms of self-assembled monolayers on mesoporous silica (SAMMS) material

    SciTech Connect

    Mattigod, S.V.; Liu, J.; Fryxell, G.E.; Baskaran, S.; Gong, M.; Nie, Z.; Feng, X.; Klasson, K.T.

    1998-09-01

    A number of engineered forms such as flexible extrudates, beads, and rods were fabricated using thiol-SAMMS (Self-Assembled Monolayers on Mesoporous Silica) and tested for their mercury adsorption capacities. The flexible extrudate form had a mercury adsorption capacity of 340 mg/g but was found to be structurally unstable. A structurally sound bead form of thiol-SAMMS was fabricated with 5, 10, 25, and 40% by weight clay binder (attapulgite) and successfully functionalized. A structurally stable but non-optimized rod form of thiol-SAMMS was also fabricated. Bench-scale processes were developed to silanize and functionalize mesoporous silica beads made with attapulgite clay binder. Contact angle measurements were conducted to assess the degree of surface coverage by functional groups on mesoporous silica materials.

  19. Calculation of Electrochemical Reorganization Energies for Redox Molecules at Self-Assembled Monolayer Modified Electrodes.

    PubMed

    Ghosh, Soumya; Hammes-Schiffer, Sharon

    2015-01-01

    Electrochemical electron transfer reactions play an important role in energy conversion processes with many technological applications. Electrodes modified by self-assembled monolayers (SAMs) exhibit reduced double layer effects and are used in molecular electronics. An important quantity for calculating the electron transfer rate constant is the reorganization energy, which is associated with changes in the solute geometry and the environment. In this Letter, an approach for calculating the electrochemical reorganization energy for a redox molecule attached to or near a SAM modified electrode is presented. This integral equations formalism polarizable continuum model (IEF-PCM) approach accounts for the detailed electronic structure of the molecule, as well as the contributions from the electrode, SAM, and electronic and inertial solvent responses. The calculated total reorganization energies are in good agreement with experimental data for a series of metal complexes in aqueous solution. This approach will be useful for calculating electron transfer rate constants for molecular electrocatalysts. PMID:26263083

  20. Effect of order in self-assembled monolayers on the orientation of poly(3-hexylthiophene) crystallites

    SciTech Connect

    Meredig, B; Salleo, A; Gee, R H

    2008-05-21

    Molecular dynamics simulations are used to study the influence of the molecular properties of chemically functionalized substrates on the orientation of poly(3-hexylthiophene) (P3HT) crystallites. The effects of alkyl-trichlorosilane self-assembled monolayer packing density, packing order, and end-group functionality are independently, and parametrically investigated. From these simulations, the potential energy surface presented by the substrate to the P3HT molecules is determined to be the main driver of P3HT ordering. Disordered substrates with a smoothly varying potential energy landscape are found to encourage ideal edge-on P3HT orientation for thin-film transistor applications; highly ordered substrates with undesirable periodic potential energy wells are found to trap a fraction of P3HT side chains out of their natural geometry and hence disrupt favorable ordering.

  1. Self-assembled monolayers of shape-persistent macrocycles on graphite: interior design and conformational polymorphism

    PubMed Central

    Vollmeyer, Joscha; Eberhagen, Friederike; Höger, Sigurd

    2014-01-01

    Summary Three shape-persistent naphthylene–phenylene–acetylene macrocycles of identical backbone structures and extraannular substitution patterns but different (empty, apolar, polar) nanopore fillings are self-assembled at the solid/liquid interface of highly oriented pyrolytic graphite and 1,2,4-trichlorobenzene. Submolecularly resolved images of the resulting two-dimensional (2D) crystalline monolayer patterns are obtained by in situ scanning tunneling microscopy. A concentration-dependent conformational polymorphism is found, and open and more dense packing motifs are observed. For all three compounds alike lattice parameters are found, therefore the intermolecular macrocycle distances are mainly determined by their size and symmetry. This is an excellent example that the graphite acts as a template for the macrocycle organization independent from their specific interior. PMID:25550743

  2. Self assembled monolayer based liquid crystal biosensor for free cholesterol detection

    SciTech Connect

    Tyagi, Mukta; Agrawal, V. V.; Chandran, Achu; Joshi, Tilak; Prakash, Jai; Biradar, A. M.

    2014-04-14

    A unique cholesterol oxidase (ChOx) liquid crystal (LC) biosensor, based on the disruption of orientation in LCs, is developed for cholesterol detection. A self-assembled monolayer (SAM) of Dimethyloctadecyl[3-(trimethoxysilyl)propyl]ammonium chloride (DMOAP) and (3-Aminopropyl)trimethoxy-silane (APTMS) is prepared on a glass plate by adsorption. The enzyme (ChOx) is immobilized on SAM surface for 12 h before utilizing the film for biosensing purpose. LC based biosensing study is conducted on SAM/ChOx/LC (5CB) cells for cholesterol concentrations ranging from 10 mg/dl to 250 mg/dl. The sensing mechanism has been verified through polarizing optical microscopy, scanning electron microscopy, and spectrometric techniques.

  3. Affinity purification of proteins binding to kinase inhibitors immobilized on self-assembling monolayers.

    PubMed

    Bantscheff, Marcus; Hobson, Scott; Kuster, Bernhard

    2012-01-01

    Kinase inhibitors represent a relatively new class of drugs that offer novel therapies targeting specific -malfunctioning kinase-mediated signaling pathways in oncology and potentially inflammation. As the ATP binding sites of the ∼500 human kinases are structurally conserved and because most current drugs target the ATP binding site, there is a need to profile all the kinases that a drug may bind and/or inhibit. We have developed a chemical proteomics method that affinity purifies kinases from cell or tissue lysates using kinase inhibitors immobilized on self-assembling monolayers. The method can be applied to assess the selectivity of a given kinase inhibitor and thus to guide its preclinical or clinical development.

  4. Trapping dynamics of diindenoperylene (DIP) in self-assembled monolayers using molecular simulation

    NASA Astrophysics Data System (ADS)

    Kaushik, Ananth P.; Clancy, Paulette

    2011-07-01

    All-atom Molecular Dynamics simulation methods employing a well-tested intermolecular potential model, MM3 (Molecular Mechanics 3), demonstrate the propensity for diindenoperylene (DIP) molecules to insert between molecules of a self-assembled monolayer (SAM) during a deposition process intended to grow a thin film of this organic semiconductor molecule onto the surface of self-assembled monolayers. The tendency to insert between SAM molecules is fairly prevalent at normal growth temperatures and conditions, but is most strongly dependent on the density and the nature of the SAM. We posit the existence of an optimal density to favor surface adsorption over insertion for this system. DIP is less likely to insert in fluorinated SAMs, like FOTS (fluorooctatrichlorosilane), than its unfluorinated analog, OTS (octatrichlorosilane). It is also less likely to insert between shorter SAMs (e.g., less insertion in OTS than ODTS (octadecyltrichlorosilane)). Very short length, surface-coating molecules, like HDMS (hexamethyldisilazane), are more likely to scatter energetic incoming DIP molecules with little insertion on first impact (depending on the incident energy of the DIP molecule). Grazing angles of incidence of the depositing molecules generally favor surface adsorption, at least in the limit of low coverage, but are shown to be dependent on the nature of the SAM. The validity of these predictions is confirmed by comparison of the predicted sticking coefficients of DIP at a variety of incident energies on OTS, ODTS, and FOTS SAMs with results obtained experimentally by Desai et al. (2010) [23]. The simulation predictions of the tendency of DIP to insert can be explained, in large part, in terms of binding energies between SAM and DIP molecules. However, we note that entropic and stochastic events play a role in the deposition outcomes. Preliminary studies of multiple deposition events, emulating growth, show an unexpected diffusion of DIP molecules inserted within the

  5. The Molecular Boat: A Hands-On Experiment to Demonstrate the Forces Applied to Self-Assembled Monolayers at Interfaces

    ERIC Educational Resources Information Center

    Chan, Charlene J.; Salaita, Khalid

    2012-01-01

    Demonstrating how surface chemistry and self-assembled monolayers (SAMs) control the macroscopic properties of materials is challenging as it often necessitates the use of specialized instrumentation. In this hands-on experiment, students directly measure a macroscopic property, the floatation of glass coverslips on water as a function of…

  6. Gold Electrodes Modified with Self-Assembled Monolayers for Measuring L-Ascorbic Acid: An Undergraduate Analytical Chemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Ito, Takashi; Perera, D. M. Neluni T.; Nagasaka, Shinobu

    2008-01-01

    This article describes an undergraduate electrochemistry laboratory experiment in which the students measure the L-ascorbic acid content of a real sample. Gold electrodes modified with self-assembled monolayers (SAMs) of thioctic acid and cysteamine are prepared to study the effects of surface modification on the electrode reaction of L-ascorbic…

  7. Organic chemistry on surfaces: Direct cyclopropanation by dihalocarbene addition to vinyl terminated self-assembled monolayers (SAMs)

    PubMed Central

    Adamkiewicz, Malgorzata

    2014-01-01

    Summary C11-Vinyl-terminated self-assembled monolayers (SAMs) on silica surfaces are successfully modified in C–C bond forming reactions with dihalocarbenes to generate SAMs, terminated with dihalo- (fluoro, chloro, bromo) cyclopropane motifs with about 30% surface coverage. PMID:25550756

  8. Manipulating the Local Light Emission in Organic Light-Emitting Diodes by using Patterned Self-Assembled Monolayers.

    PubMed

    Mathijssen, Simon G J; van Hal, Paul A; van den Biggelaar, Ton J M; Smits, Edsger C P; de Boer, Bert; Kemerink, Martijn; Janssen, René A J; de Leeuw, Dago M

    2008-07-17

    Patterned organic light-emitting diodes are fabricated by using microcontact- printed self-assembled monolayers on a gold anode (see background figure). Molecules with dipole moments in opposite directions result in an increase or a decrease of the local work function (foreground picture), providing a direct handle on charge injection and enabling local modification of the light emission. PMID:25213893

  9. Electroanalytical applications of cationic self-assembled monolayers: square-wave voltammetric determination of dopamine and ascorbate.

    PubMed

    Raj, C R; Tokuda, K; Ohsaka, T

    2001-03-01

    Gold electrodes modified with cationic self-assembled monolayers (SAMs) of 2,2'-dithiobisethaneamine (CYST) and 6,6'-dithiobishexaneamine (DTH) were used for the simultaneous determination of dopamine (DA) and ascorbate (AA). The cationic SAM modified electrodes have several advantages over the bare electrode for the oxidation of AA. A very large (approximately 450 mV) decrease in the overpotential for the oxidation of AA when compared with the bare electrode has been observed at the cationic monolayer-modified electrode. The electrostatic interaction of negatively charged AA with the monolayer shift the oxidation peak potential of AA to less positive potential and enhances the peak current. On the other hand, the positively charged DA is repelled from the monolayer and the oxidation potential shifts to more positive potential when compared to the bare electrode. The electrochemical oxidation of AA at the mixed monolayer of CYST and diethyl disulfide (DEDS) supports the influence of cationic terminal group of the monolayer on the oxidation of AA. Since the oxidation of AA occurs well before the oxidation potential of DA is reached, the homogeneous catalytic oxidation of AA by the oxidized DA has been advantageously eliminated at the monolayer-modified electrode. The cationic self-assembled monolayers successfully detect DA in the presence of high concentration of AA. The sensitivity of the electrode modified with CYST monolayer was found to be 0.036 and 0.021 microA/microM towards AA and DA, respectively.

  10. Surface-specific interaction of the extracellular domain of protein L1 with nitrilotriacetic acid-terminated self-assembled monolayers.

    PubMed

    Fick, Jörg; Wolfram, Tobias; Belz, Ferdinand; Roke, Sylvie

    2010-01-19

    We report a study on the interaction of the extracellular domain of trans-membrane proteins N-cadherin and L1 with nitrilotriacetic acid (NTA)-terminated self-assembled monolayers (SAMs) grown on silver and gold surfaces. Quartz crystal microbalance (QCM) and reflection absorption infrared spectroscopy (RAIRS) measurements reveal that upon addition of protein to an NTA-SAM there is a subsequent change in the mass and average chemical structure inside the films formed on the metal substrates. By using vibrational sum frequency generation (VSFG) spectroscopy and making a comparison to SAMs prepared with n-alkanethiols, we find that the formed NTA-SAMs are terminated by ethanol molecules from solution. The ethanol signature vanishes after the addition of L1, which indicates that the L1 proteins can interact specifically with the NTA complex. Although the RAIRS spectra display signatures in the amide and fingerprint regions, the VSFG spectra display only a weak feature at 866 cm(-1), which possibly indicates that some of the abundant phenyl rings in the complex are ordered. Although cell biology experiments suggest the directional complexation of L1, the VSFG experiments suggest that the alpha-helices and beta-sheets of L1 lack any preferential ordering.

  11. Metamaterial Absorbers for Infrared Detection of Molecular Self-Assembled Monolayers

    PubMed Central

    Ishikawa, Atsushi; Tanaka, Takuo

    2015-01-01

    The emerging field of plasmonic metamaterials has introduced new degree of freedom to manipulate optical field from nano to macroscopic scale, offering an attractive platform for sensing applications. So far, metamaterial sensor concepts, however, have focused on hot-spot engineering to improve the near-field enhancement, rather than fully exploiting tailored material properties. Here, we present a novel spectroscopic technique based on the metamaterial infrared (IR) absorber allowing for a low-background detection scheme as well as significant plasmonic enhancement. Specifically, we experimentally demonstrate the resonant coupling of plasmonic modes of a metamaterial absorber and IR vibrational modes of a molecular self-assembled monolayer. The metamaterial consisting of an array of Au/MgF2/Au structures exhibits an anomalous absorption at ~3000 cm−1, which spectrally overlaps with C-H stretching vibrational modes. Symmetric/asymmetric C-H stretching modes of a 16-Mercaptohexadecanoic acid monolayer are clearly observed as Fano-like anti-resonance peaks within a broad plasmonic absorption of the metamaterial. Spectral analysis using Fano line-shape fitting reveals the underlying resonant interference in plasmon-molecular coupled systems. Our metamaterial approach achieves the attomole sensitivity with a large signal-to-noise ratio in the far-field measurement, thus may open up new avenues for realizing ultrasensitive IR inspection technologies. PMID:26229011

  12. Disordered self assembled monolayer dielectric induced hysteresis in organic field effect transistors.

    PubMed

    Padma, N; Saxena, Vibha; Sudarsan, V; Rava, Harshil; Sen, Shaswati

    2014-06-01

    A memory device using an organic field effect transistor (OFET) with copper phthalocyanine (CuPc) as active material was fabricated and studied. For this purpose, SiO2 dielectric surface was modified with a disordered self assembled monolayer (SAM) of octadecyltrichlorosilane (OTS) molecule which was found to induce large disorder in CuPc film thereby generating more traps for charge carriers. Drain current-drain voltage characteristics at zero gate voltage exhibited large hysteresis which was not observed in OFET devices with ordered OTS monolayer modified and unmodified SiO2 dielectrics. The extent of hysteresis and drain current on/off ratio, reading voltage etc. were found to be dependent on the sweep rate/step voltage employed during scanning. Highest hysteresis with on/off ratio of about 240 was obtained for an optimum step voltage of 2 V while it decreased with further reduction in the same. This was attributed to the longer scanning time leading to release of trapped carriers during forward scan itself. The OFET device was found to exhibit excellent memory retention capability where OFF and ON current measured for about 2 hours after stressing the device at write and erase voltages showed good retention of on/off ratio. PMID:24738406

  13. 1-Dodecanethiol based highly stable self-assembled monolayers for germanium passivation

    NASA Astrophysics Data System (ADS)

    Cai, Qi; Xu, Baojian; Ye, Lin; Di, Zengfeng; Huang, Shanluo; Du, Xiaowei; Zhang, Jishen; Jin, Qinghui; Zhao, Jianlong

    2015-10-01

    As a typical semiconductor material, germanium has the potential to replace silicon for future-generation microelectronics, due to its better electrical properties. However, the lack of stable surface state has limited its extensive use for several decades. In this work, we demonstrated highly stable self-assembled monolayers (SAMs) on Ge surface to prevent oxidization for further applications. After the pretreatment in hydrochloric acid, the oxide-free and Cl-terminated Ge could be further coated with 1-dodecanethiol (NDM) SAMs. The influence factors including reaction time, solvent component and reaction temperature were optimized to obtain stable passivated monolayer for oxidation resistance. Contact angle analysis, atomic force microscopy, ellipsometer and X-ray photoelectron spectroscopy were performed to characterize the functionalized Ge surface respectively. Meanwhile, the reaction mechanism and stability of thiols SAMs on Ge (1 1 1) surface were investigated. Finally, highly stable passivated NDM SAMs on Ge surface could be formed through immersing oxide-free Ge in mixture solvent (water/ethanol, v/v = 1:1) at appropriately elevated temperature (∼80 °C) for 24 h. And the corresponding optimized passivated Ge surface was stable for more than 10 days even in water condition, which was much longer than the data reported and paved the way for the future practical applications of Ge.

  14. Structure and Order of Phosphonic Acid-Based Self-Assembled Monolayers on Si(100)

    PubMed Central

    Dubey, Manish; Weidner, Tobias; Gamble, Lara J.; Castner, David G.

    2010-01-01

    Organophosphonic acid self-assembled monolayers (SAMs) on oxide surfaces have recently seen increased use in electrical and biological sensor applications. The reliability and reproducibility of these sensors require good molecular organization in these SAMs. In this regard, packing, order and alignment in the SAMs is important, as it influences the electron transport measurements. In this study, we examine the order of hydroxyl- and methyl- terminated phosphonate films deposited onto silicon oxide surfaces by the tethering by aggregation and growth method using complementary, state-of-art surface characterization tools. Near edge x-ray absorption fine structure (NEXAFS) spectroscopy and in situ sum frequency generation (SFG) spectroscopy are used to study the order of the phosphonate SAMs in vacuum and under aqueous conditions, respectively. X-ray photoelectron spectroscopy and time of flight secondary ion mass spectrometry results show that these samples form chemically intact monolayer phosphonate films. NEXAFS and SFG spectroscopy showed that molecular order exists in the octadecylphosphonic acid and 11-hydroxyundecylphosphonic acid SAMs. The chain tilt angles in these SAMs were approximately 37° and 45°, respectively. PMID:20735054

  15. Interfacial friction of surfaces grafted with one- and two-component self-assembled monolayers.

    PubMed

    Zhang, Qing; Archer, Lynden A

    2005-06-01

    We present a quantitative study of the nanoscale frictional properties of one-component (pure) and two-component (mixed) alkylsilane self-assembled monolayers (SAMs). The load and velocity dependence of the friction force was measured in air and ethanol using lateral force microscopy (LFM). It was observed that for SAMs with well-ordered structure (pure SAMs and mixed SAMs composed of two long chain molecules) friction depends nonlinearly on load, at low loads, both in air and in ethanol. These observations are consistent with the low-load contact area predictions of the Johnson-Kendall-Roberts (JKR) theory, indicating that for well-ordered SAMs friction force is proportional to contact area and that the true contact area is determined by elastic deformation of the SAM by the LFM probe. In ambient air, the magnitude of the friction force measured using mixed SAMs is found to be similar to that obtained using pure SAMs at the same external load. Changing the medium to ethanol, however, leads to dramatically lower friction in the mixed SAMs. An analysis of the friction data using a thermally activated Eyring model that takes into account the monolayer viscoelasticity suggests that the better friction properties of the mixed SAMs are a consequence of greater disorder and higher molecular mobility in the outer layer/canopy. These findings indicate that multi-tiered SAM coatings comprising a highly ordered underlayer and a disordered, mobile canopy can provide the basis for low-friction coatings for small mechanical systems.

  16. Molecular Anchors for Self-Assembled Monolayers on ZnO: A Direct Comparison of the Thiol and Phosphic Acid Moieties

    SciTech Connect

    Perkins, C. L.

    2009-01-01

    Two of the most promising schemes for attaching organic molecules to metal oxides are based on the chemistry of the thiol and phosphonic acid moieties. We have made a direct comparison of the efficacy of these two molecular anchors on zinc oxide by comparing the chemical and physical properties of n-hexane derivatives of both. The surface properties of polycrystalline ZnO thin films and ZnO(000)-O crystals modified with 1-hexanethiol and 1-hexanephosphonic acid were examined with a novel quartz crystal microbalance (QCM)-based flow cell reactor, angle-resolved and temperature-dependent photoelectron spectroscopy, and contact angle measurements. A means of using ammonium chloride as a probe of molecule-ZnO interactions is introduced and used to ascertain the relative quality of self-assembled monolayers (SAMs) based on thiols and phosphonic acids. QCM data shows that a phosphonic acid-anchored alkyl chain only six carbons long can provide significant corrosion protection for ZnO against Bronsted acids, reducing the etch rate relative to the bare ZnO surface by a factor of more than nine. In contrast, we find that monolayers from the analogous molecule hexanethiol are more defective as revealed by their higher ionic permeability and lower hydrophobicity. Substrate attenuation X-ray photoelectron spectroscopy (XPS) experiments were used to determine the thickness of SAMs formed by the two hexane derivatives and it was found that SAMs from phosphonic acids were approximately twice as thick as those formed by hexanethiol. The thermal stability of the two linking groups was also explored and we find that previous claims of highly stable alkanethiolate monolayers on ZnO are suspect. Taken as a whole, our results indicate that the phosphonic acid moiety is preferred over thiols for the attachment of short alkyl groups to ZnO.

  17. Structural investigations of self-assembled monolayers for organic electronics: results from X-ray reflectivity.

    PubMed

    Khassanov, Artoem; Steinrück, Hans-Georg; Schmaltz, Thomas; Magerl, Andreas; Halik, Marcus

    2015-07-21

    Self-assembled monolayers (SAMs) have been established as crucial interlayers and electronically active layers in organic electronic devices, such as organic light emitting diodes (OLEDs), organic photovoltaics (OPVs), organic thin film transistors (OTFTs), and nonvolatile memories (NVMs). The use of self-assembling functionalized organic molecules is beneficial due to mainly three advantages compared with common thin film deposition approaches. (1) Molecular self-assembly occurs with surface selectivity, determined by the interaction between the functional anchor group of the organic molecules and the target surface. (2) The film thickness of the resulting layers is perfectly controllable on the angstrom scale, due to the self-terminating film formation to only a single molecular layer. And finally, (3) the wide variability in the chemical structure of such molecules enables different SAM functionalities for devices, ranging from electrical insulation to charge storage to charge transport. The SAM approach can be further expanded by employing several functionalized molecules to create mixed SAMs with consequently mixed properties. The function of SAMs in devices depends not only on the chemical structure of the molecules but also on their final arrangement and orientation on the surface. A reliable and nondestructive in-depth characterization of SAMs on nonconductive oxide surfaces is still challenging because of the very small thickness and the impracticality of methods such as scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (XPS). In this Account, we illustrate how X-ray reflectivity (XRR) provides analytical access to major questions of SAM composition, morphology, and even formation by means of investigations of pure and mixed SAMs based on phosphonic acids (PAs) of various chain structures on flat alumina (AlOx) surfaces. XRR is an analytical method that provides access to spatially averaged structural depth profiles over a relatively

  18. Self-assembled monolayer as optical transducers using spiropyran photochromic material

    NASA Astrophysics Data System (ADS)

    Ortiz Ramírez, Alicia; Delgado Macuil, Raúl; Rojas López, Marlon; López Gayou, Valentin; Orduña Díaz, Abdu

    2011-09-01

    The self assembled monolayers (SAM) have become in the most popular strategy for design and generate surfaces characterizing by specific functional organic groups. The aimed of this work is applied this SAM as optical transducer in biosensors. The techniques, Infrared (in ATR mode) and UV/Vis spectroscopy have been used to study the films generated in each step in the self assembled process. The SAM was generated as follow; first silane group was added to the glass substrate. After that, the substrates were immersed in a solution containing carbomiide group (EDC). Finally the spiropyran 1',3'-Dihydro-8-methoxy-1',3',3'-trimethyl-6-nitrospiro[2H-1-benzopyran-2,2'-(2H)-indole] was attached to functionalized slides. In each process absorbance was analyzed by UV/Vis (270 to 500 nm) and FTIR (650 to 1800 cm-1). In UV, the spectra shows an absorbance band centered at 280 associated to EDC film and a lower intensity band centered at 380 nm associated to spiropyran. In FTIR spectra, the Si-Si and Si-O bond are present below the 1250 cm-1. The EDC film shows very weak bands in the region from 1300 to 1800 cm-1. For the spiropyran film the band associated to the C-N, N-O, C=C, C-H and aromatic ring have a very well defined peaks. Once the transducer bands were detected, it was immersed in glucose solution; the infrared spectral show bands are associated to glucose in the transducer.

  19. Gold nanoparticles modified with self-assembled hybrid monolayer of triblock aptamers as a photoreversible anticoagulant.

    PubMed

    Huang, San-Shan; Wei, Shih-Chun; Chang, Huan-Tsung; Lin, Han-Jia; Huang, Chih-Ching

    2016-01-10

    We demonstrated that thrombin-binding aptamer-conjugated gold nanoparticles (TBA-Au NPs), prepared from a self-assembled hybrid monolayer (SAHM) of triblock aptamers on Au NPs (13 nm), can effectively inhibit thrombin activity toward fibrinogen. The first block poly(adenine) at the end of the triblock TBA was used for the self-assembly on Au NP surface. The second block, in the middle of TBA, was composed of oligonucleotides that could hybridize with each other. The third block, containing TBA15 (15-base, binding to the exosite I of thrombin) and TBA29 (29-base, binding to the exosite II of thrombin) provided bivalent interaction with thrombin. The SAHM triblock aptamers have optimal distances between TBA15 and TBA29, aptamer density, and orientation on the Au NP surfaces. These properties strengthen the interactions with thrombin (Kd=1.5 × 10(-11)M), resulting in an extremely high anticoagulant potency. The thrombin clotting time mediated by SAHM TBA15/TBA29-Au NPs was >10 times longer than that of four commercially available drugs (heparin, argatroban, hirudin, or warfarin). In addition, the rat-tail bleeding assay time further demonstrated that the SAHM TBA15/TBA29-Au NPs were superior to heparin. The SAHM TBA15/TBA29-Au NPs exhibited excellent stability in the human plasma (half-life >14 days) and good biocompatibility (low cytotoxicity and hemolysis). Most interestingly, the inhibition by SAHM TBA15/TBA29-Au NPs was controllable by the irradiation of green laser, via heat transfer-induced TBA release from Au NPs. Therefore, these easily prepared (self-assembled), low cost (non-thiolated aptamer), photo-controllable, multivalent TBA15/TBA29-Au NPs (high density of TBA15/TBA29 on Au NPs) show good potential for the treatment of various diseases related to blood-clotting disorders. Our study opens up the possibility of regulation of molecule binding, protein recognition, and enzyme activity using SAHM aptamer-functionalized nanomaterials.

  20. Gold nanoparticles modified with self-assembled hybrid monolayer of triblock aptamers as a photoreversible anticoagulant.

    PubMed

    Huang, San-Shan; Wei, Shih-Chun; Chang, Huan-Tsung; Lin, Han-Jia; Huang, Chih-Ching

    2016-01-10

    We demonstrated that thrombin-binding aptamer-conjugated gold nanoparticles (TBA-Au NPs), prepared from a self-assembled hybrid monolayer (SAHM) of triblock aptamers on Au NPs (13 nm), can effectively inhibit thrombin activity toward fibrinogen. The first block poly(adenine) at the end of the triblock TBA was used for the self-assembly on Au NP surface. The second block, in the middle of TBA, was composed of oligonucleotides that could hybridize with each other. The third block, containing TBA15 (15-base, binding to the exosite I of thrombin) and TBA29 (29-base, binding to the exosite II of thrombin) provided bivalent interaction with thrombin. The SAHM triblock aptamers have optimal distances between TBA15 and TBA29, aptamer density, and orientation on the Au NP surfaces. These properties strengthen the interactions with thrombin (Kd=1.5 × 10(-11)M), resulting in an extremely high anticoagulant potency. The thrombin clotting time mediated by SAHM TBA15/TBA29-Au NPs was >10 times longer than that of four commercially available drugs (heparin, argatroban, hirudin, or warfarin). In addition, the rat-tail bleeding assay time further demonstrated that the SAHM TBA15/TBA29-Au NPs were superior to heparin. The SAHM TBA15/TBA29-Au NPs exhibited excellent stability in the human plasma (half-life >14 days) and good biocompatibility (low cytotoxicity and hemolysis). Most interestingly, the inhibition by SAHM TBA15/TBA29-Au NPs was controllable by the irradiation of green laser, via heat transfer-induced TBA release from Au NPs. Therefore, these easily prepared (self-assembled), low cost (non-thiolated aptamer), photo-controllable, multivalent TBA15/TBA29-Au NPs (high density of TBA15/TBA29 on Au NPs) show good potential for the treatment of various diseases related to blood-clotting disorders. Our study opens up the possibility of regulation of molecule binding, protein recognition, and enzyme activity using SAHM aptamer-functionalized nanomaterials. PMID:26643617

  1. Supramolecular Chemistry And Self-assembly Special Feature: Selective immobilization of proteins to self-assembled monolayers presenting active site-directed capture ligands

    NASA Astrophysics Data System (ADS)

    Hodneland, Christian D.; Lee, Young-Sam; Min, Dal-Hee; Mrksich, Milan

    2002-04-01

    This paper describes a method for the selective and covalent immobilization of proteins to surfaces with control over the density and orientation of the protein. The strategy is based on binding of the serine esterase cutinase to a self-assembled monolayer presenting a phosphonate ligand and the subsequent displacement reaction that covalently binds the ligand to the enzyme active site. Surface plasmon resonance (SPR) spectroscopy showed that cutinase binds irreversibly to a monolayer presenting the capture ligand at a density of 1% mixed among tri(ethylene glycol) groups. The covalent immobilization is specific for cutinase, and the glycol-terminated monolayer effectively prevents unwanted nonspecific adsorption of proteins. To demonstrate that the method could be used to immobilize proteins of interest, a cutinase-calmodulin fusion protein was constructed and immobilized to the monolayer. SPR showed that calcineurin selectively associated with the immobilized calmodulin. This capture ligand immobilization method combines the advantages that the immobilization reaction is highly selective for the intended protein, the tether is covalent and, hence, stable, and the method avoids the need for synthetic modification and rigorous purification of proteins before immobilization. These characteristics make the method well suited to a range of applications and, in particular, for constructing protein microarrays.

  2. Electron transfer and ligand binding to cytochrome c' immobilized on self-assembled monolayers.

    PubMed

    de Groot, Matheus T; Evers, Toon H; Merkx, Maarten; Koper, Marc T M

    2007-01-16

    We have successfully immobilized Allochromatium vinosum cytochrome c' on carboxylic acid-terminated thiol monolayers on gold and have investigated its electron-transfer and ligand binding properties. Immobilization could only be achieved for pH's ranging from 3.5 to 5.5, reflecting the fact that the protein is only sufficiently positively charged below pH 5.5 (pI = 4.9). Upon immobilization, the protein retains a near-native conformation, as is suggested by the observed potential of 85 mV vs SHE for the heme FeIII/FeII transition, which is close to the value of 60 mV reported in solution. The electron-transfer rate to the immobilized protein depends on the length of the thiol spacer, displaying distance-dependent electron tunneling for long thiols and distance-independent protein reorganization for short thiols. The unique CO-induced dimer-to-monomer transition observed for cytochrome c' in solution also seems to occur for immobilized cytochrome c'. Upon saturation with CO, a new anodic peak corresponding to the oxidation of an FeII-CO adduct is observed. CO binding is accompanied by a significant decrease in protein coverage, which could be due to weaker electrostatic interactions between the self-assembled monolayer and cytochrome c' in its monomeric form as compared to those in its dimeric form. The observed CO binding rate of 24 M-1 s-1 is slightly slower than the binding rate in solution (48 M-1 s-1), which could be due to electrostatic protein-electrode interactions or could be the result of protein crowding on the surface. This study shows that the use of carboxyl acid-terminated thiol monolayers as a protein friendly method to immobilize redox proteins on gold electrodes is not restricted to cytochrome c, but can also be used for other proteins such as cytochrome c'.

  3. Chemical stability of nonwetting, low adhesion self-assembled monolayer films formed by perfluoroalkylsilanization of copper

    NASA Astrophysics Data System (ADS)

    Hoque, E.; DeRose, J. A.; Hoffmann, P.; Bhushan, B.; Mathieu, H. J.

    2007-03-01

    A self-assembled monolayer (SAM) has been produced by reaction of 1H,1H,2H,2H-perfluorodecyldimethylchlorosilane (PFMS) with an oxidized copper (Cu) substrate and investigated by x-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), friction force microscopy (FFM), a derivative of AFM, and contact angle measurement. FFM showed a significant reduction in the adhesive force and friction coefficient of PFMS modified Cu (PFMS/Cu) compared to unmodified Cu. The perfluoroalkyl SAM on Cu is found to be extremely hydrophobic, yielding sessile drop static contact angles of more than 130° for pure water and a "surface energy" (which is proportional to the Zisman critical surface tension for a Cu surface with 0rms roughness) of 14.5mJ/m2(nM/m). Treatment by exposure to harsh conditions showed that PFMS/Cu SAM can withstand boiling nitric acid (pH=1.8), boiling water, and warm sodium hydroxide (pH =12, 60°C) solutions for at least 30min. Furthermore, no SAM degradation was observed when PFMS/Cu was exposed to warm nitric acid solution for up to 70min at 60°C or 50min at 80°C. Extremely hydrophobic (low surface energy) and stable PFMS/Cu SAMs could be useful as corrosion inhibitors in micro/nanoelectronic devices and/or as promoters for antiwetting, low adhesion surfaces or dropwise condensation on heat exchange surfaces.

  4. Chemical stability of nonwetting, low adhesion self-assembled monolayer films formed by perfluoroalkylsilanization of copper.

    PubMed

    Hoque, E; DeRose, J A; Hoffmann, P; Bhushan, B; Mathieu, H J

    2007-03-21

    A self-assembled monolayer (SAM) has been produced by reaction of 1H,1H,2H,2H-perfluorodecyldimethylchlorosilane (PFMS) with an oxidized copper (Cu) substrate and investigated by x-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), friction force microscopy (FFM), a derivative of AFM, and contact angle measurement. FFM showed a significant reduction in the adhesive force and friction coefficient of PFMS modified Cu (PFMS/Cu) compared to unmodified Cu. The perfluoroalkyl SAM on Cu is found to be extremely hydrophobic, yielding sessile drop static contact angles of more than 130 degrees for pure water and a "surface energy" (which is proportional to the Zisman critical surface tension for a Cu surface with 0 rms roughness) of 14.5 mJm2(nMm). Treatment by exposure to harsh conditions showed that PFMS/Cu SAM can withstand boiling nitric acid (pH=1.8), boiling water, and warm sodium hydroxide (pH=12, 60 degrees C) solutions for at least 30 min. Furthermore, no SAM degradation was observed when PFMS/Cu was exposed to warm nitric acid solution for up to 70 min at 60 degrees C or 50 min at 80 degrees C. Extremely hydrophobic (low surface energy) and stable PFMS/Cu SAMs could be useful as corrosion inhibitors in micro/nanoelectronic devices and/or as promoters for antiwetting, low adhesion surfaces or dropwise condensation on heat exchange surfaces.

  5. Utilizing self-assembled-monolayer-based gate dielectrics to fabricate molybdenum disulfide field-effect transistors

    NASA Astrophysics Data System (ADS)

    Kawanago, Takamasa; Oda, Shunri

    2016-01-01

    In this study, we apply self-assembled-monolayer (SAM)-based gate dielectrics to the fabrication of molybdenum disulfide (MoS2) field-effect transistors. A simple fabrication process involving the selective formation of a SAM on metal oxides in conjunction with the dry transfer of MoS2 flakes was established. A subthreshold slope (SS) of 69 mV/dec and no hysteresis were demonstrated with the ultrathin SAM-based gate dielectrics accompanied by a low gate leakage current. The small SS and no hysteresis indicate the superior interfacial properties of the MoS2/SAM structure. Cross-sectional transmission electron microscopy revealed a sharp and abrupt interface of the MoS2/SAM structure. The SAM-based gate dielectrics are found to be applicable to the fabrication of low-voltage MoS2 field-effect transistors and can also be extended to various layered semiconductor materials. This study opens up intriguing possibilities of SAM-based gate dielectrics in functional electronic devices.

  6. Micropatterning of perfluoroalkyl self-assembled monolayers for arraying proteins and cells on chips

    NASA Astrophysics Data System (ADS)

    Kira, Atsushi; Okano, Kazunori; Hosokawa, Yoichiroh; Naito, Akira; Fuwa, Koh; Yuyama, Jyunpei; Masuhara, Hiroshi

    2009-06-01

    Organosilane self-assembled monolayers (SAMs) with perfluoroalkyl groups ( Rf) on glass surfaces were used for arraying proteins and cells on chips. Quartz crystal microbalance measurements confirmed the inhibition of protein adsorption on Rf-SAM-modified surfaces and showed efficient adsorption on hydroxyl-, carboxyl-, and amino group-modified surfaces. The characteristics of Rf-modified surfaces were evaluated using solvent contact angle measurement and Fourier transform infrared (FTIR) spectroscopy. The Rf surface was highly water- and oil-resistant, as inferred from the contact angles of water, oleic acid, and hexadecane. Specific peaks of IR spectra were detected in the region from 1160 to 1360 cm -1. Etching with dry plasma completely exfoliated the Rf-SAM, exposing the underlying intact glass surface. Modification conditions were optimized using contact angle and FTIR measurements. After dry plasma processing, the contact angles of all solvents became undetectable, and the IR peaks disappeared. Micrometer scale protein and cell patterns can be fabricated using the proposed method. Protein adsorption on micropatterned Rf-SAM-modified chips was evaluated using fluorescence analysis; protein adsorption was easily controlled by patterning Rf-SAM. PC12 and HeLa cells grew well on micropatterned Rf-SAM-modified chips. Micropatterning of Rf-SAM by dry plasma treatment with photolithography is useful for the spatial arrangement of proteins and cells.

  7. Immunosensor interface based on physical and chemical immunoglobulin G adsorption onto mixed self-assembled monolayers.

    PubMed

    Wang, Zhan-Hui; Viana, Ana S; Jin, Gang; Abrantes, Luísa M

    2006-10-01

    An immunosensor interface based on mixed hydrophobic self-assembled monolayers (SAMs) of methyl and carboxylic acid terminated thiols with covalently attached human Immunoglobulin G (hIgG), is investigated. The densely packed and organised SAMs were characterised by contact angle measurements and cyclic voltammetry. The effect of the non-ionic surfactant, Tween 20, in preventing nonspecific adsorption is addressed by ellipsometry during physical and covalent hIgG immobilization on pure and mixed SAMs, respectively. It is clearly demonstrated that nonspecific adsorption due to hydrophobic interactions of hIgG on methyl ended groups is totally inhibited, whereas electrostatic/hydrogen bonding interactions with the exposed carboxylic groups prevail in the presence of surfactant. Results of ellipsometry and Atomic Force Microscopy, reveal that the surface concentration of covalently immobilized hIgG is determined by the ratio of COOH / CH(3)-terminated thiols in SAM forming solution. Moreover, the ellipsometric data demonstrates that the ratio of bound anti-hIgG / hIgG depends on the density of hIgG on the surface and that the highest ratio is close to three. We also report the selectivity and high sensitivity achieved by chronoamperometry in the detection of adsorbed hIgG and the reaction with its antibody.

  8. Stabilization of Insulin by Adsorption on a Hydrophobic Silane Self-Assembled Monolayer.

    PubMed

    Mauri, Sergio; Volk, Martin; Byard, Stephen; Berchtold, Harald; Arnolds, Heike

    2015-08-18

    The interaction between many proteins and hydrophobic functionalized surfaces is known to induce β-sheet and amyloid fibril formation. In particular, insulin has served as a model peptide to understand such fibrillation, but the early stages of insulin misfolding and the influence of the surface have not been followed in detail under the acidic conditions relevant to the synthesis and purification of insulin. Here we compare the adsorption of human insulin on a hydrophobic (-CH3-terminated) silane self-assembled monolayer to a hydrophilic (-NH3(+)-terminated) layer. We monitor the secondary structure of insulin with Fourier transform infrared attenuated total reflection and side-chain orientation with sum frequency spectroscopy. Adsorbed insulin retains a close-to-native secondary structure on both hydrophobic and hydrophilic surfaces for extended periods at room temperature and converts to a β-sheet-rich structure only at elevated temperature. We propose that the known acid stabilization of human insulin and the protection of the aggregation-prone hydrophobic domains on the insulin monomer by adsorption on the hydrophobic surface work together to inhibit fibril formation at room temperature.

  9. Redox Equilibria of Cytochrome C3 Immobilised on Self-Assembled Monolayers Coated Silver Electrodes

    NASA Astrophysics Data System (ADS)

    Di Paolo, R. E.; Rivas, L.; Murgida, D.; Hildebrandt, P.

    2005-01-01

    Cytochromes c3 are soluble electron transfer proteins in the periplasm of sulphate-reducing bacteria. They act as electron-proton couplers between hydrogenase and the electron transfer chain of sulphate respiration. In this work, cytochrome c3 (Cyt-c3) obtained from both Desulfovibrio vulgaris and Desulfovibrio gigas, is electrostatically adsorbed on Ag electrodes coated with self-assembled monolayers of 11-mercaptoundecanoic acid. The redox equilibria of the adsorbed tetraheme protein are studied by surface enhanced resonance Raman spectroscopy (SERRS). The quantitative analysis of the SERR spectra, which were measured as a function of the electrode potential, allows determining the redox potentials for the individual hemes of Cyt-c3. The values obtained of the redox potentials are compared with the data provided by NMR experiments and by molecular dynamics simulation studies of the electrostatically bound protein on a coated electrode. It is found that immobilisation causes substantial shifts of the redox potential, which would have an impact on the intramolecular electron flow.

  10. Enhancing the Thermal Conductance of Polymer and Sapphire Interface via Self-Assembled Monolayer.

    PubMed

    Zheng, Kun; Sun, Fangyuan; Zhu, Jie; Ma, Yongmei; Li, Xiaobo; Tang, Dawei; Wang, Fosong; Wang, Xiaojia

    2016-08-23

    Interfacial thermal conductance (ITC) receives enormous consideration because of its significance in determining thermal performance of hybrid materials, such as polymer based nanocomposites. In this study, the ITC between sapphire and polystyrene (PS) was systematically investigated by time domain thermoreflectance (TDTR) method. Silane based self-assembled monolayers (SAMs) with varying end groups, -NH2, -Cl, -SH and -H, were introduced into sapphire/PS interface, and their effects on ITC were investigated. The ITC was found to be enhanced up by a factor of 7 through functionalizing the sapphire surface with SAM, which ends with a chloride group (-Cl). The results show that the enhancement of the thermal transport across the SAM-functionalized interface comes from both strong covalent bonding between sapphire and silane-based SAM, and the high compatibility between the SAM and PS. Among the SAMs studied in this work, we found that the ITC almost linearly depends on solubility parameters, which could be the dominant factor influencing on the ITC compared with wettability and adhesion. The SAMs serve as an intermediate layer that bridges the sapphire and PS. Such a feature can be applied to ceramic-polymer immiscible interfaces by functionalizing the ceramic surface with molecules that are miscible with the polymer materials. This research provides guidance on the design of critical-heat transfer materials such as composites and nanofluids for thermal management.

  11. Vibrational mismatch of metal leads controls thermal conductance of self-assembled monolayer junctions.

    PubMed

    Majumdar, Shubhaditya; Sierra-Suarez, Jonatan A; Schiffres, Scott N; Ong, Wee-Liat; Higgs, C Fred; McGaughey, Alan J H; Malen, Jonathan A

    2015-05-13

    We present measurements of the thermal conductance of self-assembled monolayer (SAM) junctions formed between metal leads (Au, Ag, Pt, and Pd) with mismatched phonon spectra. The thermal conductance obtained from frequency domain thermoreflectance experiments is 65 ± 7 MW/m(2) K for matched Au-alkanedithiol-Au junctions, while the mismatched Au-alkanedithiol-Pd junctions yield a thermal conductance of 36 ± 3 MW/m(2) K. The experimental observation that junction thermal conductance (per molecule) decreases as the mismatch between the lead vibrational spectra increases, paired with results from molecular dynamics (MD) simulations, suggest that phonons scatter elastically at the metal-SAM interfaces. Furthermore, we resolve a known discrepancy between measurements and MD predictions of SAM thermal conductance by using a contact mechanics model to predict 54 ± 15% areal contact in the Au-alkanedithiol-Au experimental junction. This incomplete contact obscures the actual junction thermal conductance of 115 ± 22 MW/m(2) K, which is comparable to that of metal-dielectric interfaces.

  12. High-performance and high-sensitivity applications of graphene transistors with self-assembled monolayers.

    PubMed

    Yeh, Chao-Hui; Kumar, Vinod; Moyano, David Ricardo; Wen, Shao-Hsuan; Parashar, Vyom; Hsiao, She-Hsin; Srivastava, Anchal; Saxena, Preeti S; Huang, Kun-Ping; Chang, Chien-Chung; Chiu, Po-Wen

    2016-03-15

    Charge impurities and polar molecules on the surface of dielectric substrates has long been a critical obstacle to using graphene for its niche applications that involve graphene's high mobility and high sensitivity nature. Self-assembled monolayers (SAMs) have been found to effectively reduce the impact of long-range scatterings induced by the external charges. Yet, demonstrations of scalable device applications using the SAMs technique remains missing due to the difficulties in the device fabrication arising from the strong surface tension of the modified dielectric environment. Here, we use patterned SAM arrays to build graphene electronic devices with transport channels confined on the modified areas. For high-mobility applications, both rigid and flexible radio-frequency graphene field-effect transistors (G-FETs) were demonstrated, with extrinsic cutoff frequency and maximum oscillation frequency enhanced by a factor of ~2 on SiO2/Si substrates. For high sensitivity applications, G-FETs were functionalized by monoclonal antibodies specific to cancer biomarker chondroitin sulfate proteoglycan 4, enabling its detection at a concentration of 0.01 fM, five orders of magnitude lower than that detectable by a conventional colorimetric assay. These devices can be very useful in the early diagnosis and monitoring of a malignant disease. PMID:26547427

  13. Nanostructured Ceramic Films Formation on Self-Assembled Monolayers via a Biomimetic Approach

    SciTech Connect

    Zhang, Guangneng; Blom, Douglas Allen; Coffey, Dorothy W; Allard Jr, Lawrence Frederick; Cho, Junghyun

    2006-01-01

    A biomimetic approach is employed to deposit ceramic films on organic self-assembled monolayers (SAMs) coated substrates. Specifically, zirconia (ZrO{sub 2}) films are grown in a zirconium sulfate precursor solution at near room temperatures ({approx}70 C). This process, directed by the nanoscale organic template, mimics the controlled nucleation and growth of the biominerals such as bones and teeth. The resultant zirconia films consist of nanosized particles (5-10 nm) that are precipitated out in a supersaturated precursor solution. Cross-sectional TEM and STEM works were performed to quantitatively analyze the film structure and chemistry, as well as interfacial region of the ceramic-SAM films. A stepwise deposition process was developed to avoid excessive formation of aggregation. Further, the dynamic nanoindentation testing was employed to assess the thickness and film-only intrinsic mechanical properties for direct comparison among the films processed with different processing parameters and microstructures. The films with finer particulate structure displayed higher intrinsic modulus than did those with coarser structure.

  14. Substrate Changes Associated with the Chemistry of Self-Assembled Monolayers on Silicon.

    SciTech Connect

    Mcintire, Theresa M.; Smalley, Rachelle; Newberg, J. T.; Lea, Alan S.; Hemminger, J. C.; Finlayson-Pitts, Barbara J.

    2006-05-18

    Alkylsiloxane self-assembled monolayers (SAMs) are used in the semi-conductor industry, and more recently as proxies for organics adsorbed on airborne mineral dust and on buildings and construction materials. A number of methods have been used for removing the SAM from the substrate after reaction or use, particularly plasmas or piranha (H2SO4:H2O2) solution. However, the impact of these cleaning methods on the chemistry of subsequently formed SAMs on the surface is not known. We report here AFM, XPS, Auger and FTIR studies of changes in the silicon substrate on repetitive deposition and removal of SAMs by these two methods. It is shown that a layer of silicon oxide is formed, and the surface becomes very irregular and roughened, particularly for the piranha treatment. This layer of silica impacts the structure of SAMs attached to it and can serve as a reservoir for trace gases that adsorb on it, potentially contributing to the subsequent reactions of the SAM. The implications for the use of such surfaces as a proxy for reactions of organics on airborne dust particles and on structures in the boundary layer are discussed.

  15. A novel nanoglue and whole wafer self-alignment based upon self-assembled monolayers

    NASA Astrophysics Data System (ADS)

    Emanuel, Ako; Walker, Ernest; Hallen, Hans

    2008-10-01

    New methodologies for fabrication of multilevel packaging, particularly for RF signal analysis, are investigated. A new method for ``gluing'' silicon wafers together with a Self Assembled Monolayers (SAMs) based nanoglue are discussed, as are methods to enable its use with nonconforming wafers. Results of bond strength measurements as a function of temperature and process will be presented. Surface area bonded is characterized by infrared (IR) imaging. We will also present a method of inducing self-alignment between whole silicon wafers with micrometer precision. This represents a qualitative departure from alignment of millimeter-sized object as has been previously demonstrated. Self-alignment is induced by creating hydrophilic and hydrophobic regions on the wafers and using capillary forces of water in these regions to force the wafers to align with little to no outside influence. Results are characterized by IR imaging. Physical ideas that enable the whole-wafer alignment such as flow channels, elimination of secondary minima, large central capture areas and small edge features are discussed. The possibility of aligning with the nanoglue materials as the alignment drivers is discussed.

  16. Chemical stability of nonwetting, low adhesion self-assembled monolayer films formed by perfluoroalkylsilanization of copper

    SciTech Connect

    Hoque, E.; DeRose, J. A.; Hoffmann, P.; Bhushan, B.; Mathieu, H. J.

    2007-03-21

    A self-assembled monolayer (SAM) has been produced by reaction of 1H,1H,2H,2H-perfluorodecyldimethylchlorosilane (PFMS) with an oxidized copper (Cu) substrate and investigated by x-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), friction force microscopy (FFM), a derivative of AFM, and contact angle measurement. FFM showed a significant reduction in the adhesive force and friction coefficient of PFMS modified Cu (PFMS/Cu) compared to unmodified Cu. The perfluoroalkyl SAM on Cu is found to be extremely hydrophobic, yielding sessile drop static contact angles of more than 130 degree sign for pure water and a 'surface energy' (which is proportional to the Zisman critical surface tension for a Cu surface with 0 rms roughness) of 14.5 mJ/m{sup 2}(nM/m). Treatment by exposure to harsh conditions showed that PFMS/Cu SAM can withstand boiling nitric acid (pH=1.8), boiling water, and warm sodium hydroxide (pH=12, 60 degree sign C) solutions for at least 30 min. Furthermore, no SAM degradation was observed when PFMS/Cu was exposed to warm nitric acid solution for up to 70 min at 60 degree sign C or 50 min at 80 degree sign C. Extremely hydrophobic (low surface energy) and stable PFMS/Cu SAMs could be useful as corrosion inhibitors in micro/nanoelectronic devices and/or as promoters for antiwetting, low adhesion surfaces or dropwise condensation on heat exchange surfaces.

  17. Self-Assembled Monolayers of Oligophenylenecarboxylic Acids on Silver Formed at the Liquid-Solid Interface.

    PubMed

    Aitchison, Hannah; Lu, Hao; Hogan, Simon W L; Früchtl, Herbert; Cebula, Izabela; Zharnikov, Michael; Buck, Manfred

    2016-09-20

    A series of para-oligophenylene mono- and dicarboxylic acids (R-(C6H4)nCOOH, n = 1-3, R = H,COOH) was studied. Adsorbed on Au(111)/mica modified by an underpotential deposited bilayer of Ag, the self-assembled monolayers (SAMs) were analyzed by near-edge X-ray absorption fine structure spectroscopy, X-ray photoelectron spectroscopy, and scanning tunneling microscopy. In all cases SAMs are formed with molecules adopting an upright orientation and anchored to the substrate by a carboxylate. Except benzoic acid, all SAMs could be imaged at molecular resolution, which revealed highly crystalline layers with a dense molecular packing. The structures of the SAMs are described by a rectangular (5 × √3) unit cell for the prevailing phase of the monocarboxylic acids and an oblique ([Formula: see text]) unit cell for the dicarboxylic acids, thus evidencing a pronounced influence of the second COOH moiety on the SAM structure. Density functional theory calculations suggest that hydrogen bonding between the SAM-terminating COOH moieties accounts for the difference. Contrasting other classes of SAMs, the systems studied here are determined by intermolecular interactions whereas molecule-substrate interactions play a secondary role. Thus, eliminating problems arising from the mismatch between the molecular and the substrate lattices, coordinatively bonded carboxylic acids on silver should provide considerable flexibility in the design of SAM structures. PMID:27588836

  18. A self-assembled monolayer-based micropatterned array for controlling cell adhesion and protein adsorption.

    PubMed

    Kim, Dong Jin; Lee, Jong Min; Park, Jin-Goo; Chung, Bong Geun

    2011-05-01

    We developed a surface micropatterning technique to control the cell adhesion and protein adsorption. This micropatterned array system was fabricated by a photolithography technique and self-assembled monolayer (SAM) deposition. It was hypothesized that the wettability and functional terminal group would regulate cell adhesion and protein adsorption. To demonstrate this hypothesis, glass-based micropatterned arrays with various functional terminal groups, such as amine (NH(2)) group (3-aminopropyl-triethoxysilane, APT), methyl (CH(3)) group (trichlorovinylsilane, TVS), and fluorocarbon (CF(3)) group (trichloro(1H, 1H, 2H, 2H-perfluorooctyl)silane, FOTS), were used. The contact angle was measured to determine the hydrophilic and hydrophobic properties of materials, demonstrating that TVS and FOTS were hydrophobic, whereas APTs were relatively hydrophilic. The cell adhesion was significantly affected by the wettability, showing that the cells were not adhered to hydrophobic surfaces, such as TVS and FOTS. Thus, the cells were selectively adhered to glass substrates within TVS- and FOTS-based micropatterned arrays. However, the cells were randomly adhered to APTs-based micropatterned arrays due to hydrophilic property of APTs. Furthermore, the protein adsorption of the SAM-based micropatterned array was analyzed, showing that the protein was more absorbed to the TVS surface. The surface functional terminal group enabled the control of protein adsorption. Therefore, this SAM-based micropatterned array system enabled the control of cell adhesion and protein adsorption and could be a potentially powerful tool for regulating the cell-cell interactions in a well-defined microenvironment.

  19. Calculation of Electrochemical Reorganization Energies for Redox Molecules at Self-Assembled Monolayer Modified Electrodes

    SciTech Connect

    Ghosh, Soumya; Hammes-Schiffer, Sharon

    2015-01-02

    Electrochemical electron transfer reactions play an important role in energy conversion processes with many technological applications. Electrodes modified by self-assembled monolayers (SAMs) are useful because the double layer effects are reduced. An important quantity for calculating the electron transfer rate constant is the reorganization energy, which is associated with changes in solute geometry and solvent configuration. In this Letter, an approach for calculating the electrochemical solvent reorganization energy for a redox molecule attached to or near a SAM modified electrode is presented. This integral equations formalism polarizable continuum model (IEF-PCM) approach accounts for the detailed electronic structure of the molecule, as well as the contributions from the electrode, SAM, and electronic and inertial solvent responses. The calculated total reorganization energies are in good agreement with experimental data for a series of metal complex in aqueous solution. This approach will be useful for calculating electron transfer rate constants for molecular electrocatalysts. This work was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences.

  20. Enhancing the Thermal Conductance of Polymer and Sapphire Interface via Self-Assembled Monolayer.

    PubMed

    Zheng, Kun; Sun, Fangyuan; Zhu, Jie; Ma, Yongmei; Li, Xiaobo; Tang, Dawei; Wang, Fosong; Wang, Xiaojia

    2016-08-23

    Interfacial thermal conductance (ITC) receives enormous consideration because of its significance in determining thermal performance of hybrid materials, such as polymer based nanocomposites. In this study, the ITC between sapphire and polystyrene (PS) was systematically investigated by time domain thermoreflectance (TDTR) method. Silane based self-assembled monolayers (SAMs) with varying end groups, -NH2, -Cl, -SH and -H, were introduced into sapphire/PS interface, and their effects on ITC were investigated. The ITC was found to be enhanced up by a factor of 7 through functionalizing the sapphire surface with SAM, which ends with a chloride group (-Cl). The results show that the enhancement of the thermal transport across the SAM-functionalized interface comes from both strong covalent bonding between sapphire and silane-based SAM, and the high compatibility between the SAM and PS. Among the SAMs studied in this work, we found that the ITC almost linearly depends on solubility parameters, which could be the dominant factor influencing on the ITC compared with wettability and adhesion. The SAMs serve as an intermediate layer that bridges the sapphire and PS. Such a feature can be applied to ceramic-polymer immiscible interfaces by functionalizing the ceramic surface with molecules that are miscible with the polymer materials. This research provides guidance on the design of critical-heat transfer materials such as composites and nanofluids for thermal management. PMID:27501117

  1. Ultra stable self-assembled monolayers of N-heterocyclic carbenes on gold

    NASA Astrophysics Data System (ADS)

    Crudden, Cathleen M.; Horton, J. Hugh; Ebralidze, Iraklii I.; Zenkina, Olena V.; McLean, Alastair B.; Drevniok, Benedict; She, Zhe; Kraatz, Heinz-Bernhard; Mosey, Nicholas J.; Seki, Tomohiro; Keske, Eric C.; Leake, Joanna D.; Rousina-Webb, Alexander; Wu, Gang

    2014-05-01

    Since the first report of thiol-based self-assembled monolayers (SAMs) 30 years ago, these structures have been examined in a huge variety of applications. The oxidative and thermal instabilities of these systems are widely known, however, and are an impediment to their widespread commercial use. Here, we describe the generation of N-heterocyclic carbene (NHC)-based SAMs on gold that demonstrate considerably greater resistance to heat and chemical reagents than the thiol-based counterparts. This increased stability is related to the increased strength of the gold-carbon bond relative to that of a gold-sulfur bond, and to a different mode of bonding in the case of the carbene ligand. Once bound to gold, NHCs are not displaced by thiols or thioethers, and are stable to high temperatures, boiling water, organic solvents, pH extremes, electrochemical cycling above 0 V and 1% hydrogen peroxide. In particular, benzimidazole-derived carbenes provide films with the highest stabilities and evidence of short-range molecular ordering. Chemical derivatization can be employed to adjust the surface properties of NHC-based SAMs.

  2. Self-assembled monolayers and titanium dioxide: From surface patterning to potential applications.

    PubMed

    Paz, Yaron

    2011-01-01

    The ability to control the properties of self-assembled monolayers (SAMs) attached to solid surfaces and the rare photocatalytic properties of titanium dioxide provide a rationale for the study of systems comprising both. Such systems can be realized in the form of SAMs grown on TiO(2) or, in a complementary manner, as TiO(2) grown on SAMs. Accordingly, the current status of knowledge regarding SAMs on TiO(2) is described. Photocatalytic phenomena that are of specific relevance to SAMs, such as remote degradation, and cases where SAMs were used to study photocatalytic phenomena, are discussed as well. Mastering of micro-patterning is a key issue en route to a successful assimilation of a variety of titanium dioxide based devices. Accordingly, particular attention is given to the description of a variety of methods and techniques aimed at utilizing the photocatalytic properties of titanium dioxide for patterning. Reports on a variety of applications are discussed. These examples, representing the areas of photovoltaics, microelectronics, microelectromechanics, photocatalysis, corrosion prevention and even biomedicine should be regarded as appetizers paving the way for further studies to be performed.

  3. Temperature-responsive self-assembled monolayers of oligo(ethylene glycol): control of biomolecular recognition.

    PubMed

    Zareie, Hadi M; Boyer, Cyrille; Bulmus, Volga; Nateghi, Ebrahim; Davis, Thomas P

    2008-04-01

    Self-assembled monolayers (SAMs) of oligo(ethylene glycol) (OEG)-tethered molecules on gold are important for various biorelevant applications ranging from biomaterials to bioanalytical devices, where surface resistance to nonspecific protein adsorption is needed. Incorporation of a stimuli-responsive character to the OEG SAMs enables the creation of nonfouling surfaces with switchable functionality. Here we present an OEG-derived structure that is highly responsive to temperature changes in the vicinity of the physiological temperature, 37 degrees C. The temperature-responsive solution behavior of this new compound was demonstrated by UV-vis and nuclear magnetic resonance spectroscopy. Its chemisorption onto gold(111), and the retention of responsive behavior after chemisorption have been demonstrated by surface plasmon resonance (SPR), X-ray photoelectron spectroscopy (XPS), and atomic force and scanning tunneling microscopy. The OEG-derived SAMs have been shown to reversibly switch the wettability of the surface, as determined by contact angle measurements. More importantly, SPR and AFM studies showed that the OEG SAMs can be utilized to control the affinity binding of streptavidin to the biotin-tethered surface in a temperature-dependent manner while still offering the nonspecific protein-resistance to the surface.

  4. Molecular simulations of mixed self-assembled monolayer coated gold nanoparticles in water.

    PubMed

    J, Meena Devi

    2015-06-01

    Molecular dynamics simulations have been employed to study the hydration of a series of nanoparticles, each of which was coated with a mixed self-assembled monolayer (SAM) comprising methyl- and hydroxy-terminated alkane thiol chains. The mixing ratio of those chains are different for each nanoparticle. The simulations focused on the wetting behavior of the SAM-coated gold nanoparticles and the distribution and structure of their interfacial water molecules. The interactions of the mixed SAM-coated gold nanoparticles with water were analyzed by evaluating the radial distribution function, hydrogen bonds, the dipole orientations of the water molecules, and the water residence time in the interfacial region. The wettability of the mixed SAM-coated gold nanoparticles improved as the concentration of terminal hydroxy moieties was increased. The distribution and dynamics of the interfacial water molecules were found to be influenced by the mixing ratio of the terminal moieties of the SAM chains. The results of our simulations suggest that the surface interactions of the mixed SAM-coated gold nanoparticles with the aqueous medium can be modulated by systematically altering the mixing ratio of the terminal methyl and hydroxy moieties. This work may lead to new biological and technological applications and inspire the development of novel biomimetic materials. Graphical Abstract Mixed SAM-coated gold nanoparticles.

  5. Self-assembled monolayers based spintronics: from ferromagnetic surface functionalization to spin-dependent transport.

    PubMed

    Tatay, Sergio; Galbiati, Marta; Delprat, Sophie; Barraud, Clément; Bouzehouane, Karim; Collin, Sophie; Deranlot, Cyrile; Jacquet, Eric; Seneor, Pierre; Mattana, Richard; Petroff, Frédéric

    2016-03-01

    Chemically functionalized surfaces are studied for a wide range of applications going from medicine to electronics. Whereas non-magnetic surfaces have been widely studied, functionalization of magnetic surfaces is much less common and has almost never been used for spintronics applications. In this article we present the functionalization of La2/3Sr1/3MnO3, a ferromagnetic oxide, with self-assembled monolayers for spintronics. La2/3Sr1/3MnO3 is the prototypical half-metallic manganite used in spintronics studies. First, we show that La2/3Sr1/3MnO3 can be functionalized by alkylphosphonic acid molecules. We then emphasize the use of these functionalized surfaces in spintronics devices such as magnetic tunnel junctions fabricated using a nano-indentation based lithography technique. The observed exponential increase of tunnel resistance as a function of alkyl chain length is a direct proof of the successful connection of molecules to ferromagnetic electrodes. For all alkyl chains studied we obtain stable and robust tunnel magnetoresistance, with effects ranging from a few tens to 10 000%. These results show that functionalized electrodes can be integrated in spintronics devices and open the door to a molecular engineering of spintronics.

  6. Surface plasmon excitation of porphyrin self-assembly monolayers on an Au surface

    NASA Astrophysics Data System (ADS)

    Ishida, Akito; Majima, Tetsuro

    1999-09-01

    Surface plasmon (SP) enhanced fluorescence spectroscopy has been employed to elucidate the molecular orientation, molecular exchange process, and photoelectrochemical properties of photofunctional self-assembly monolayers (SAMs) for the first time. A 48 nm Au film on a BK-7 right-angle prism was treated with a porphyrin disulfide ((-S(CH2)10CONH-Por)2, Por = p-(tris(p-tolyl)porphyrinyl)phenyl) (1) giving a porphyrin SAM (2). SP excitation of 2 using p-polarized 425 nm light at an incident angle of 55° gave a strongly p-polarized fluorescence of the porphyrin. This indicates selective excitation of the porphyrins having transition moments effectively overlap with the SP field vectors and the suppressed molecular motions in 2. The Q bands in the fluorescence excitation spectrum were considerably enhanced attributable to the field enhancement of SP. The molecular exchange process of a decanethiol SAM with 1 has been elucidated based on changes in the fluorescence properties. The photoelectrochemical measurement using 632.8 nm light gave a much more intense photocurrent (18.6 µA cm-2) than that provided by conventional direct photoexcitation (2.7 µA cm-2). Moreover, the photocurrent was observed using near-IR light while the energy is considerably lower than the lowest singlet excited state of the porphyrin.

  7. AFM Observation of Self-Assembled Monolayer Films on GaAs (110)

    NASA Astrophysics Data System (ADS)

    Ohno, Hirotaka; Motomatsu, Makoto; Mizutani, Wataru; Tokumoto, Hiroshi

    1995-02-01

    We have confirmed that a self-assembled monolayer (SAM) film of octadecanethiol (ODT), CH3(CH2)17SH, can be formed on a cleaved GaAs (110) surface, by using an atomic force microscope (AFM) and X-ray photoelectron spectroscopy (XPS). Circular depressions were observed on the surface after film formation. The area of the circular depressions increased with immersion time, indicating that the solution oxidized the interface between ODT molecules and the GaAs surface, resulting in removal of ODT molecules. The oxidation was considerably faster in pure ethanol solution than that in ODT solution, demonstrating that the SAM film protects the GaAs surface from oxidation. High-resolution lateral force microscope (LFM) images revealed a periodic structure that had two types of lines: periodic lines 0.57 nm apart and lines rotated 55° with respect to them. A structural model of the SAM successfully explained both the features in high-resolution LFM images and the depression depth observed in AFM images.

  8. Self-assembled monolayer based impedimetric platform for food borne mycotoxin detection

    NASA Astrophysics Data System (ADS)

    Solanki, Pratima Rathee; Kaushik, Ajeet; Manaka, T.; Pandey, Manoj Kumar; Iwamoto, M.; Agrawal, Ved Varun; Malhotra, Bansi Dhar

    2010-12-01

    A self-assembled monolayer (SAM) of 11-amino-1-undecanethiol (AUT) has been fabricated onto a gold (Au) substrate to co-immobilize anti-ochratoxin-A antibodies (AO-IgGs) and bovine serum albumin (BSA) to detect food borne mycotoxin [i.e., ochratoxin-A (OTA)]. AUT/Auelectrode, AO-IgGs/AUT/Au immunoelectrode and BSA/IgGs/AUT/Au immunoelectrode have been characterized using scanning electron microscopy (SEM) and electrochemical studies such as cyclic voltammetry (CV), differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS). Electrochemical studies reveal that the AUT-SAM with NH2groups provide favorable conditions to immobilize AO-IgGs with better orientation, resulting in enhanced electron transport to obtain improved sensing characteristics. The EIS response studies of the BSA/AO-IgGs/AUT/Au immunoelectrode obtained as a function of OTA concentration reveal that the value of the charge transfer resistance (RCT) increases with increased OTA concentration. The BSA/AO-IgGs/AUT/Au immunoelectrode exhibits linearity over 0.5-6.0 ng/dl, detection limit of 0.08 ng/dl using 3σb/m criteria, response time of 30 s and sensitivity of ~36.83 Ω/ng dl-1 cm-2 with a regression coefficient of 0.999. Attempts have been made to monitor the change in RCT of BSA/AO-IgGs/AUT/Au immunoelectrode on addition of coffee samples.

  9. Comparative study of decyl thiocyanate and decanethiol self-assembled monolayers on gold substrates

    NASA Astrophysics Data System (ADS)

    Dreesen, L.; Volcke, C.; Sartenaer, Y.; Peremans, A.; Thiry, P. A.; Humbert, C.; Grugier, J.; Marchand-Brynaert, J.

    2006-09-01

    In a recent paper Ciszek et al. [J.W. Ciszek, M.P. Stewart, J.M. Tour, J. Am. Chem. Soc. 126 (2004) 13172] showed that organic thiocyanates may be an interesting alternative to the use of thiols for thiolate assemblies. We use scanning tunnelling microscopy (STM), infrared reflection absorption and sum-frequency generation spectroscopies (IRRAS and SFG) in order to study the adsorption properties of decyl thiocyanates (DTCN) and compare them to the decanethiol (DT) ones. Firstly, IRRAS measurements show that DTCN molecules form self-assembled monolayers (SAMs) on gold via a thiolate link with the metallic substrate. Secondly, the DTCN SAM on gold is less ordered than the DT one as highlighted by SFG spectroscopy. Indeed, the intensities of the methyl vibration modes vanish while the methylene ones increase when DTCN molecules are adsorbed on the substrate instead of DT. We explain the differences in SAMs quality on the basis of STM measurements which reveal differences in molecular order and packing.

  10. Self-assembled monolayers and titanium dioxide: From surface patterning to potential applications

    PubMed Central

    2011-01-01

    Summary The ability to control the properties of self-assembled monolayers (SAMs) attached to solid surfaces and the rare photocatalytic properties of titanium dioxide provide a rationale for the study of systems comprising both. Such systems can be realized in the form of SAMs grown on TiO2 or, in a complementary manner, as TiO2 grown on SAMs. Accordingly, the current status of knowledge regarding SAMs on TiO2 is described. Photocatalytic phenomena that are of specific relevance to SAMs, such as remote degradation, and cases where SAMs were used to study photocatalytic phenomena, are discussed as well. Mastering of micro-patterning is a key issue en route to a successful assimilation of a variety of titanium dioxide based devices. Accordingly, particular attention is given to the description of a variety of methods and techniques aimed at utilizing the photocatalytic properties of titanium dioxide for patterning. Reports on a variety of applications are discussed. These examples, representing the areas of photovoltaics, microelectronics, microelectromechanics, photocatalysis, corrosion prevention and even biomedicine should be regarded as appetizers paving the way for further studies to be performed. PMID:22259769

  11. Effects of surface chemistry prepared by self-assembled monolayers on osteoblast behavior.

    PubMed

    Nakaoka, Ryusuke; Yamakoshi, Yoko; Isama, Kazuo; Tsuchiya, Toshie

    2010-08-01

    A surface of biomaterials is known to affect the behavior of cells after their adhesion on the surface, indicating that surface characteristics of biomaterials play an important role in cell adhesion, proliferation, and differentiation. To assess the effects of functional groups on biomaterial surface, normal human osteoblasts (NHOsts) were cultured on surfaces coated with self-assembled monolayers (SAMs) containing various functional groups, and the adhesion, proliferation, differentiation, and gap junctional intercellular communication (GJIC) of the NHOsts were investigated. In the case of SAM with terminal methyl groups (hydrophobic surface), NHOst adhesion and proliferation was less prevalent. In contrast, NHOsts were adhered well on SAMs with hydroxyl, carboxyl, amino, phosphate, and sulfate group, which are relatively hydrophilic, their proliferation and differentiation level were dependent on the type of functional groups. Especially, when they were cultured on either SAMs with phosphate or sulfate group, both their alkaline phosphate activity and the calcium deposition by them were enhanced more than those cultured on a collagen-coated dish. More interestingly, GJIC of NHOsts, which has been reported to play a role in cell differentiation as well as homeostasis of cells, were not significantly different among the SAM surfaces tested. These suggest that a specific functional group on a material surface can regulate NHOst adhesion, proliferation, and differentiation via cell-functional group interaction without influencing their homeostasis. PMID:20186768

  12. Comparing Surfaces and Engineered Interfaces using Self-Assembled Monolayers (SAMs) and Injected SAMs Silanes

    SciTech Connect

    Morris, Mark J.; Simmons, Kevin L.

    2003-11-01

    The objective of this study was to show a comparison between property changes by formation of a self-assembled monolayer on the surface of PPG synthetic precipitated silica, which is a technique developed at PNNL, and by adding the SAMs silane chemical directly into the mixing bowl. These coatings have the potential to greatly increase the bond strength and enhance other properties between the particle and the rubber matrix of a rubber compound. Tensile testing measured peak stress and elongation at break. The increase in tensile strength shows how well the polymer-filler interfacial adhesion is doing. The study used five different SAM systems with a sulfur cured styrene butadiene rubber (SBR) tire rubber formulation. The three propylsilanes were propyl triethoxysilane, allyl triethoxysilane and 3-mercaptopropyl triethoxysilane. Five combinations of silanes were used in this study. The application of the silanes were 100% propyl triethoxy silane (100% Alkyl); a 10/90 mixture of allyl and propyl triethoxy silanes (10% vinyl/90% alkyl); a 50/50 mixture of the allyl and propyl (50% vinyl/50% alkyl); a 10/90mixture of 3-mercaptopropyl trimethoxysilane and propyl trimethoxysilane (10% mercaptan/90% alkyl) and lastly a 50/50 3-mercaptopropyl and propylsilanes (50% mercaptan/alkyl). The data not only shows improvement with SAMs, the peak stress data (ultimate strength) shows that the by changing the amount of silane content can change the physical properties

  13. Asphaltene Adsorption onto Self-Assembled Monolayers of Alkyltrichlorosilanes of Varying Chain Length

    SciTech Connect

    Turgman-Cohen, S.; Fischer, D; Kilpatrick, P; Genzer, J

    2009-01-01

    The adsorption of asphaltenes onto flat silica surfaces modified with self-assembled monolayers (SAMs) of alkyltrichlorosilanes of varying thickness due to a variable number of carbon atoms (N{sub C}) has been studied by means of contact angle measurements, spectroscopic ellipsometry, and near-edge X-ray absorption fine structure spectroscopy. The extent of asphaltene adsorption was found to depend primarily on the ability of the SAM layer to shield the underlying silicon substrate from interacting with the asphaltenes present in solution. Specifically, asphaltene adsorption decreased with an increase in NC and/or an increase in SAM grafting density, {sigma}{sub SAM}, (i.e., number of SAM molecules per unit area). The effect of the solvent quality on the extent of asphaltene adsorption was gauged by adsorbing asphaltenes from toluene, 1-methylnaphthalene, tetralin, decalin, and toluene-heptanes mixtures. The extent of asphaltene adsorption was found to increase proportionally with a decrease in the Hildebrand solubility parameter of the solvent.

  14. Self-Assembled Monolayers Get Their Final Finish via a Quasi-Langmuir-Blodgett Transfer.

    PubMed

    Meltzer, Christian; Dietrich, Hanno; Zahn, Dirk; Peukert, Wolfgang; Braunschweig, Björn

    2015-04-28

    The growth of self-assembled monolayers (SAMs) of octadecylphosphonic acid (ODPA) molecules on α-Al2O3(0001) and subsequent dewetting of the SAMs were studied with a combination of in situ sum-frequency generation (SFG) and molecular dynamics (MD) simulations. Although SAM growth after deposition times >8 h reduces to nearly negligible values, the resultant ODPA SAMs in solution are still not in a well-ordered state with the alkyl chains in all-trans configurations. In fact, in situ SFG spectroscopy revealed a comparatively high concentration of gauche defects of the SAM in the ODPA 2-propanol solution even after a growth time of 16 h. Here, results of the MD simulations strongly suggest that defects can be caused by ODPA molecules which are not attached to the substrate but are incorporated into the SAM layer with the polar headgroup oriented into the 2-propanol solvent. This inverted adsorption geometry of additional ODPA molecules blocks adsorption sites and thus stabilizes the SAM without improving ordering to an extent that all molecules are in the all-trans configuration. While persistent in solution, the observed defects can be healed out when the SAMs are transferred from the solvent to a gas phase. During this process, a quasi-Langmuir-Blodgett transfer of molecules takes place which drives the SAM into a higher conformational state and significantly improves its quality.

  15. Self-Assembled Peptide Monolayers as a Toxin Sensing Mechanism within Arrayed Microchannels

    PubMed Central

    Frisk, Megan L.; Tepp, William H.; Johnson, Eric A.; Beebe, David J.

    2009-01-01

    A sensor for the lethal bacterial enzyme, botulinum neurotoxin type A (BoNT/A), was developed using self-assembled monolayers (SAMs). SAMs consisting of an immobilized synthetic peptide that mimicked the toxin’s in vivo SNAP-25 protein substrate were formed on Au and interfaced with arrayed microfluidic channels. Efforts to optimize SAM composition and assay conditions for greatest reaction efficiency and sensitivity are described in detail. Channel design provided facile fluid manipulation, sample incubation, analyte concentration, and fluorescence detection all within a single microfluidic channel, thus avoiding sample transfer and loss. Peptide SAMs were exposed to varying concentrations of BoNT/A or its catalytic light chain (ALC), resulting in enzymatic cleavage of the peptide substrate from the surface. Fluorescence detection was achieved down to 20 pg/mL ALC and 3 pg/ mL BoNT/A in 3 h. Toxin sensing was also accomplished in vegetable soup, demonstrating practicality of the method. The modular design of this microfluidic SAM platform allows for extension to sensing other toxins that operate via enzymatic cleavage, such as the remaining BoNT serotypes B–G, anthrax, and tetanus toxin. PMID:19253949

  16. Self-assembled monolayers based spintronics: from ferromagnetic surface functionalization to spin-dependent transport

    NASA Astrophysics Data System (ADS)

    Tatay, Sergio; Galbiati, Marta; Delprat, Sophie; Barraud, Clément; Bouzehouane, Karim; Collin, Sophie; Deranlot, Cyrile; Jacquet, Eric; Seneor, Pierre; Mattana, Richard; Petroff, Frédéric

    2016-03-01

    Chemically functionalized surfaces are studied for a wide range of applications going from medicine to electronics. Whereas non-magnetic surfaces have been widely studied, functionalization of magnetic surfaces is much less common and has almost never been used for spintronics applications. In this article we present the functionalization of La2/3Sr1/3MnO3, a ferromagnetic oxide, with self-assembled monolayers for spintronics. La2/3Sr1/3MnO3 is the prototypical half-metallic manganite used in spintronics studies. First, we show that La2/3Sr1/3MnO3 can be functionalized by alkylphosphonic acid molecules. We then emphasize the use of these functionalized surfaces in spintronics devices such as magnetic tunnel junctions fabricated using a nano-indentation based lithography technique. The observed exponential increase of tunnel resistance as a function of alkyl chain length is a direct proof of the successful connection of molecules to ferromagnetic electrodes. For all alkyl chains studied we obtain stable and robust tunnel magnetoresistance, with effects ranging from a few tens to 10 000%. These results show that functionalized electrodes can be integrated in spintronics devices and open the door to a molecular engineering of spintronics.

  17. Click functionalization of phenyl-capped bithiophene on azide-terminated self-assembled monolayers

    NASA Astrophysics Data System (ADS)

    Zheng, Yijun; Cui, Jiaxi; Ikeda, Taichi

    2015-11-01

    We immobilized tetra(ethylene glycol)-substituted phenyl-capped bithiophene with alkyne terminals (Ph2TPh-alkyne) on azide-terminated self-assembled monolayers (N3-SAMs) by Cu-catalyzed azide-alkyne cycloaddition reaction. Ph2TPh-functionalized SAMs on a gold substrate showed reversible electrochemical response. The surface densities of the azide groups in N3-SAMs and Ph2TPh units in Ph2TPh-functionalized SAMs were estimated to be 7.3 ± 0.3 × 10-10 mol cm-2 and 4.6 ± 0.3 × 10-10 mol cm-2, respectively, by quartz crystal microbalance (QCM). Most of Ph2TPh-alkynes are considered to be anchored on N3-SAMs via both terminal groups. Ph2TPh-functionalized SAMs exhibited reversible redox peaks in cyclic voltammetry (CV). In redox reaction, reversible capture and release of the counter anion could be monitored by electrochemical QCM (E-QCM).

  18. Self-assembly of tetraalkoxydinaphthophenazines in monolayers on HOPG by scanning tunneling microscopy

    NASA Astrophysics Data System (ADS)

    Jaroch, Tomasz; Maranda-Niedbala, Agnieszka; Kotwica, Kamil; Wamil, Damian; Bujak, Piotr; Pron, Adam; Nowakowski, Robert

    2015-11-01

    2D supramolecular organization in monolayers of tetraalkoxydinaphthophenazines, a new group of solution processable organic semiconductors obtained by simple functionalization of indanthrone (6,15-dihydrodinaphtho[2,3-a:2‧,3‧-h]phenazine-5,9,14,18-tetraone), an old intractable dye, was investigated by scanning tunneling microscopy (STM). Five derivatives with increasing substituent length from butoxy (P-C4) to dodecyloxy (P-C12) were tested. All derivatives show a strong tendency to form ordered monolayers on HOPG graphite via self-assembly which constitute of rows of molecules oriented in one direction. However, local arrangement in this 2D supramolecular organization is strongly dependent on the substituent length. Two tendencies in the structural evolution are observed. For butoxy (P-C4), hexyloxy (P-C6) and octyloxy (P-C8) derivatives increasing substituent length results in the transformation of the structure governed by the conjugated core interactions to the one in which mutual interactions of the alkoxy groups dominate. As a consequence, for P-C8 a very stable 2D structure is obtained with a nearly rectangular 2D unit cell, as a consequence of the alkoxy group interdigitation in two perpendicular directions. With further increase of the substituent length to decyloxy (P-C10) and dodecyloxy (P-C12) a different effect is observed-a directional expansion of the unit cell along the longitudinal axis of the molecules. This is a consequence of structural nonequivalence of the alkoxy groups attached to the same aromatic ring.

  19. Nanoscale dynamics and protein adhesivity of alkylamine self-assembled monolayers on graphene.

    PubMed

    O'Mahony, S; O'Dwyer, C; Nijhuis, C A; Greer, J C; Quinn, A J; Thompson, D

    2013-06-18

    Atomic-scale molecular dynamics computer simulations are used to probe the structure, dynamics, and energetics of alkylamine self-assembled monolayer (SAM) films on graphene and to model the formation of molecular bilayers and protein complexes on the films. Routes toward the development and exploitation of functionalized graphene structures are detailed here, and we show that the SAM architecture can be tailored for use in emerging applications (e.g., electrically stimulated nerve fiber growth via the targeted binding of specific cell surface peptide sequences on the functionalized graphene scaffold). The simulations quantify the changes in film physisorption on graphene and the alkyl chain packing efficiency as the film surface is made more polar by changing the terminal groups from methyl (-CH3) to amine (-NH2) to hydroxyl (-OH). The mode of molecule packing dictates the orientation and spacing between terminal groups on the surface of the SAM, which determines the way in which successive layers build up on the surface, whether via the formation of bilayers of the molecule or the immobilization of other (macro)molecules (e.g., proteins) on the SAM. The simulations show the formation of ordered, stable assemblies of monolayers and bilayers of decylamine-based molecules on graphene. These films can serve as protein adsorption platforms, with a hydrophobin protein showing strong and selective adsorption by binding via its hydrophobic patch to methyl-terminated films and binding to amine-terminated films using its more hydrophilic surface regions. Design rules obtained from modeling the atomic-scale structure of the films and interfaces may provide input into experiments for the rational design of assemblies in which the electronic, physicochemical, and mechanical properties of the substrate, film, and protein layer can be tuned to provide the desired functionality.

  20. Water adsorption on hydrophilic and hydrophobic self-assembled monolayers as proxies for atmospheric surfaces. A grand canonical Monte Carlo simulation study.

    PubMed

    Szori, Milán; Jedlovszky, Pál; Roeselová, Martina

    2010-05-14

    Grand canonical Monte Carlo simulations are used to determine water adsorption on prototypical organic surfaces as a function of relative humidity at 300 K. Three model surfaces formed by well-ordered self-assembled monolayers (SAMs) of alkanethiolate chains on gold are investigated: (i) a smooth hydrophobic surface of methyl-terminated C(7)-CH(3) SAM; (ii) a rough hydrophobic surface of randomly mixed two-component SAM, composed of equal fractions of C(5)-CH(3) and C(7)-CH(3) chains (C(5)/C(7)-CH(3) SAM); and (iii) a smooth hydrophilic surface of carboxyl-terminated C(7)-COOH SAM. The all atom CHARMM22 force field is used for the SAM chains together with the SPC/E model for water. No noticeable water adsorption is observed on the smooth hydrophobic surface up to saturation. The mild surface roughness introduced by the uneven chain length of the two components constituting the C(5)/C(7)-CH(3) SAM has no significant effect on the surface hydrophobicity, and the rough hydrophobic surface also remains dry up to the point when water condensation occurs. In contrast, water readily adsorbs onto the hydrophilic surface by forming hydrogen bonds with the COOH groups of the substrate. In addition, hydrogen bonding with pre-adsorbed water molecules contributes to the mechanism of water uptake. Under low humidity conditions, water is present on the hydrophilic surface as individual molecules or small water clusters and, with increasing relative humidity, the surface coverage grows continuously beyond a monolayer formation. The adsorbed water film is observed to be rather inhomogeneous with patches of bare surface exposed. The amount of water constituting a stable adsorption layer prior to condensation is estimated to consist of about 2-5 molecular layers. Detailed analysis of the simulation results is used to obtain important insights into the structure and energetics of water adsorbed on highly oxidized organic surfaces exposed to ambient air of increasing relative humidity.

  1. Water adsorption on hydrophilic and hydrophobic self-assembled monolayers as proxies for atmospheric surfaces. A grand canonical Monte Carlo simulation study.

    PubMed

    Szori, Milán; Jedlovszky, Pál; Roeselová, Martina

    2010-05-14

    Grand canonical Monte Carlo simulations are used to determine water adsorption on prototypical organic surfaces as a function of relative humidity at 300 K. Three model surfaces formed by well-ordered self-assembled monolayers (SAMs) of alkanethiolate chains on gold are investigated: (i) a smooth hydrophobic surface of methyl-terminated C(7)-CH(3) SAM; (ii) a rough hydrophobic surface of randomly mixed two-component SAM, composed of equal fractions of C(5)-CH(3) and C(7)-CH(3) chains (C(5)/C(7)-CH(3) SAM); and (iii) a smooth hydrophilic surface of carboxyl-terminated C(7)-COOH SAM. The all atom CHARMM22 force field is used for the SAM chains together with the SPC/E model for water. No noticeable water adsorption is observed on the smooth hydrophobic surface up to saturation. The mild surface roughness introduced by the uneven chain length of the two components constituting the C(5)/C(7)-CH(3) SAM has no significant effect on the surface hydrophobicity, and the rough hydrophobic surface also remains dry up to the point when water condensation occurs. In contrast, water readily adsorbs onto the hydrophilic surface by forming hydrogen bonds with the COOH groups of the substrate. In addition, hydrogen bonding with pre-adsorbed water molecules contributes to the mechanism of water uptake. Under low humidity conditions, water is present on the hydrophilic surface as individual molecules or small water clusters and, with increasing relative humidity, the surface coverage grows continuously beyond a monolayer formation. The adsorbed water film is observed to be rather inhomogeneous with patches of bare surface exposed. The amount of water constituting a stable adsorption layer prior to condensation is estimated to consist of about 2-5 molecular layers. Detailed analysis of the simulation results is used to obtain important insights into the structure and energetics of water adsorbed on highly oxidized organic surfaces exposed to ambient air of increasing relative humidity

  2. Bias-stress effects in organic field-effect transistors based on self-assembled monolayer nanodielectrics.

    PubMed

    Colléaux, Florian; Ball, James M; Wöbkenberg, Paul H; Hotchkiss, Peter J; Marder, Seth R; Anthopoulos, Thomas D

    2011-08-28

    The electrical stability of low-voltage organic transistors based on phosphonic acid self-assembled monolayer (SAM) dielectrics is investigated using four different semiconductors. The threshold voltage shift in these devices shows a stretched-exponential time dependence under continuous gate bias with a relaxation time in the range of 10(3)-10(5) s, at room temperature. Differences in the bias instability of transistors based on different self-assembled monolayers and organic semiconductors suggest that charge trapping into localized states in the semiconductor is not the only mechanism responsible for the observed instability. By applying 1-5 s long programming voltage pulses of 2-3 V in amplitude, a large reversible threshold voltage shift can be produced. The retention time of the programmed state was measured to be on the order of 30 h. The combination of low voltage operation and relatively long retention times makes these devices interesting for ultra-low power memory applications.

  3. Understanding Chemical versus Electrostatic Shifts in X-ray Photoelectron Spectra of Organic Self-Assembled Monolayers

    PubMed Central

    2016-01-01

    The focus of the present article is on understanding the insight that X-ray photoelectron spectroscopy (XPS) measurements can provide when studying self-assembled monolayers. Comparing density functional theory calculations to experimental data on deliberately chosen model systems, we show that both the chemical environment and electrostatic effects arising from a superposition of molecular dipoles influence the measured core-level binding energies to a significant degree. The crucial role of the often overlooked electrostatic effects in polar self-assembled monolayers (SAMs) is unambiguously demonstrated by changing the dipole density through varying the SAM coverage. As a consequence of this effect, care has to be taken when extracting chemical information from the XP spectra of ordered organic adsorbate layers. Our results, furthermore, imply that XPS is a powerful tool for probing local variations in the electrostatic energy in nanoscopic systems, especially in SAMs. PMID:26937264

  4. Electrical transport and mechanical properties of alkylsilane self-assembled monolayers on silicon surfaces probed by atomic force microscopy

    SciTech Connect

    Park, Jeong Young; Qi, Yabing; Ashby, Paul D.; Hendriksen, Bas L.M.; Salmeron, Miquel

    2009-02-06

    The correlation between molecular conductivity and mechanical properties (molecular deformation and frictional responses) of hexadecylsilane self-assembled monolayers was studied with conductive probe atomic force microscopy/friction force microscopy in ultrahigh vacuum. Current and friction were measured as a function of applied pressure, simultaneously, while imaging the topography of self-assembled monolayer molecule islands and silicon surfaces covered with a thin oxide layer. Friction images reveal lower friction over the molecules forming islands than over the bare silicon surface, indicating the lubricating functionality of alkylsilane molecules. By measuring the tunneling current change due to changing of the height of the molecular islands by tilting the molecules under pressure from the tip, we obtained an effective conductance decay constant ({beta}) of 0.52/{angstrom}.

  5. Large work function shift of gold induced by a novel perfluorinated azobenzene-based self-assembled monolayer.

    PubMed

    Crivillers, Núria; Osella, Silvio; Van Dyck, Colin; Lazzerini, Giovanni M; Cornil, David; Liscio, Andrea; Di Stasio, Francesco; Mian, Shabbir; Fenwick, Oliver; Reinders, Federica; Neuburger, Markus; Treossi, Emanuele; Mayor, Marcel; Palermo, Vincenzo; Cacialli, Franco; Cornil, Jérôme; Samorì, Paolo

    2013-01-18

    Tune it with light! Self-assembled monolayers on gold based on a chemisorbed novel azobenzene derivative with a perfluorinated terminal phenyl ring are prepared. The modified substrate shows a significant work function increase compared to the bare metal. The photo-conversion between trans and cis isomers chemisorbed on the surface shows great perspectives for being an accessible route to tune the gold properties by means of light.

  6. Enzyme-free Detection of Hydrogen Peroxide from Cerium Oxide Nanoparticles Immobilized on Poly(4-vinylpyridine) Self-Assembled Monolayers

    SciTech Connect

    Gaynor, James D.; Karakoti, Ajay S.; Inerbaev, Talgat; Sanghavi, Shail P.; Nachimuthu, Ponnusamy; Shutthanandan, V.; Seal, Sudipta; Thevuthasan, Suntharampillai

    2013-05-02

    A single layer of oxygen-deficient cerium oxide nanoparticles (CNPs) are immobilized on microscopic glass slide using poly(4-vinylpyridine) (PVP) self-assembled monolayers (SAMs). A specific colorimetric property of CNPs when reacted with hydrogen peroxide allows for the direct, single-step peroxide detection which can be used in medical diagnosis and explosives detection. Multiple PVP-CNP immobilized layers improve sensitivity of detection and the sensor can be regenerated for reuse.

  7. Spin-Cast and Patterned Organophosphonate Self-Assembled Monolayer Dielectrics on Metal-Oxide-Activated Si

    SciTech Connect

    O Acton; D Hutchins; L Arnadottir; T Weidner; N Cernetic; G Ting; T Kim; D Castner; H Ma; A Jen

    2011-12-31

    An efficient process is developed for modifying Si with self-assembled monolayers (SAMs) through in situ metal oxide surface activation and microcontact printing or spin-coating of phosphonic-acid-based molecules. The utility of this process is demonstrated by fabricating self-organized and solution-processed low-voltage organic thin-film transistors enabled by patterned and spin-cast phosphonate SAM/metal oxide hybrid dielectrics.

  8. Spatially Modulating Interfacial Properties of Transparent Conductive Oxides: Patterning Work Function with Phosphonic Acid Self-Assembled Monolayers

    SciTech Connect

    Knesting, Kristina M.; Hotchkiss, Peter J.; MacLeod, Bradley A.; Marder, Seth R.; Ginger, David S.

    2011-09-29

    The interface between an organic semiconductor and a transparent conducting oxide is crucial to the performance of organic optoelectronics. We use microcontact printing to pattern pentafluorobenzyl phosphonic acid self-assembled monolayers (SAMs) on indium tin oxide (ITO). We obtain high-fidelity patterns with sharply defined edges and with large work function contrast (comparable to that obtained from phosphonic acid SAMs deposited from solution).

  9. Site-selective biofunctionalization of aluminum nitride surfaces using patterned organosilane self-assembled monolayers.

    PubMed

    Chiu, Chi-Shun; Lee, Hong-Mao; Gwo, Shangjr

    2010-02-16

    Surface biochemical functionalization of group-III nitride semiconductors has recently attracted much interest because of their biocompatibility, nontoxicity, and long-term chemical stability under demanding physiochemical conditions for chemical and biological sensing. Among III-nitrides, aluminum nitride (AlN) and aluminum gallium nitride (AlGaN) are particularly important because they are often used as the sensing surfaces for sensors based on field-effect transistor or surface acoustic wave (SAW) sensor structures. To demonstrate the possibility of site-selective biofunctionalization on AlN surfaces, we have fabricated two-dimensional antibody micropatterns on AlN surfaces by using patterned self-assembled monolayer (SAM) templates. Patterned SAM templates are composed of two types of organosilane molecules terminated with different functional groups (amino and methyl), which were fabricated on AlN/sapphire substrates by combining photolithography, lift-off process, and self-assembly technique. Because the patterned SAM templates have different surface properties on the same surface, clear imaging contrast of SAM micropatterns can be observed by field-emission scanning electron microscopy (FE-SEM) operating at a low accelerating voltage in the range of 0.5-1.5 kV. Furthermore, the contrast in surface potential of the binary SAM microstructures was confirmed by selective adsorption of negatively charged colloidal gold nanoparticles (AuNPs). The immobilization of AuNPs was limited on the positively charged amino-terminated regions, while they were scarcely found on the surface regions terminated by methyl groups. In this work, selective immobilization of green fluorescent protein (GFP) antibodies was demonstrated by the specific protein binding of enhanced GFP (EGFP) labeling. The observed strong fluorescent signal from antibody functionalized regions on the SAM-patterned AlN surface indicates the retained biological activity of specific molecular recognition

  10. Infrared spectroelectrochemical characterization of ferrocene-terminated alkanethiolate monolayers at gold

    SciTech Connect

    Popenoe, D.D.; Deinhammer, R.S.; Porter, M.D. Iowa State Univ., Ames, IA )

    1992-10-01

    Cyclic voltammetry and in situ infrared reflection-absorption spectroscopy with electrochemical modulation were applied to the study of monolayers self-assembled from 11-mercaptoundecyl ferrocene-carboxylate (FcCOOC[sub 11]SH) at gold. Voltammetry was used to assess both the reactivity and stability of the surface film in various aqueous electrolytes. The results of these studies indicated that the ferrocenyl monolayers are relatively unstable at pH > 2, except when perchlorate is the dominant anion present. A large change in double-layer capacitance observed upon oxidation of the ferrocenyl end group was attributed to the creation of cationic sites in the diffuse layer. Compositional and structural correlations between the monolayer and the redox chemistry of the ferrocenyl end group were probed using the in situ spectroscopic technique. The features observed in the differential spectra of the oxidized form of the film were ascribed to changes in the bond strengths of the adsorbate as a result of generation of a ferricinium ion. No detectable changes in orientation of the polymethylene chains as a function of applied voltage were observed. The spectral data also suggest that the redox chemistry leads to a reorientation of the water molecules in the region near the ferrocenyl end group. Vibrational mode assignments for FcCOOC[sub 11]SH, based on studies of several analogs with different alkoxy groups, are presented along with infrared spectra and band assignments for several isotopically labeled ferrocenyl esters (i.e., ethyl ferrocenecarboxylate, ethyl-d[sub 5] ferrocenecarboxylate, and 2-(dimethylamino)ethyl ferrocenecarboxylate). 55 refs., 7 figs., 2 tabs.

  11. Packing density of HS(CH2)(n)COOH self-assembled monolayers.

    PubMed

    Snow, A W; Jernigan, G G; Ancona, M G

    2011-12-01

    Self-assembled monolayers (SAMs) of HS(CH(2))(n)COOH, n = 5, 10, 15 deposited from ethanol solution onto gold are prepared by five approaches, and their packing densities are evaluated by X-ray photoelectron spectroscopy (XPS) measurements. The five approaches are: (1) direct deposition; (2) acetic-acid-assisted deposition; (3) butyl-amine-assisted deposition; (4) displacement of a preformed HS(CH(2))(n)CH(3) (n = 5, 10, 15) SAMs; and (5) co-deposition with HS(CH(2))(n)CH(3) (n = 5, 10, 15). Packing density metrics are calculated from measurements of SAM and substrate photoemission intensities and their attenuations by two methods. In one case the attenuated photoemissions are expressed as a ratio relative to comparable measurements on an experimental HS(CH(2))(n)CH(3) model system. In the other case a new method is introduced where a calculated attenuation based on theoretical random coil and extended chain models is used as the reference to determine a packing density fraction. Packing densities are also correlated with the S2p(Au-bonded):Au4f peak area ratios and with shifts in the C1s binding energies. SAMs prepared by the direct deposition are a partial multilayer where a second molecular layer is physisorbed onto the SAM and not removable by solvent washing. The addition of acetic acid to the deposition solution disrupts dimer associations of HS(CH(2))(n)COOH in solution and at the surface of the monolayer and yields the most ordered monolayer with the highest density of -COOH groups. The addition of butyl amine results in a labile ammonium carbonate ion pair formation but results in a lower packing density in the SAM. The displacement of the preformed HS(CH(2))(n)CH(3) SAM and the co-deposition of HS(CH(2))(n)CH(3) with HS(CH(2))(n)COOH result in SAMs with little incorporation of the -COOH component.

  12. n-Octadecanethiol self-assembled monolayer coating with microscopic roughness for dropwise condensation of steam

    NASA Astrophysics Data System (ADS)

    Chen, Liang; Liang, Shiqiang; Yan, Runsheng; Cheng, Yanjun; Huai, Xiulan; Chen, Shuling

    2009-06-01

    Here we presented a novel technology to achieve a Super-hydrophobic coating with microscopic roughness on copper surface. First, make a layer of verdigris grow on the fresh pure copper surface. Gain it by exposing the copper to air and the mist of acetic acid solution. The green coating is a mixture of basic copper(II) carbonate and copper(II) acetate. Second heat the coating and make it decompose to CuO. Lastly, form an n-octadecanethiol self-assembled monolayers coating on the outermost surface. Contact angle test, scanning electron microscope analysis and electrochemical testing were carried out to characterize the surface, and a heat transfer experiment for dropwise condensation of steam was performed also. Results show that the modified surface bears a few Super-hydrophobic features, the static contact angle is higher than that in literatures, reaching 153.1±1.7°. The microscopic roughness can be seen in SEM images, differing much from H2O2 etched surface and bare copper surface. The condensation of steam on the surface is a typical form of dropwise condensation, in the measured range of temperature difference, under 0.1 MPa, the average convection heat transfer coefficients of the vertical surface are 1.7˜2.1 times for those of film condensation. At the same time, the inhibition efficiency of surface is improved to some extent comparing with the same kind of SAMs, which suggests that the lifetime of maintenance dropwise condensation would have the possibility to surpass the existing record.

  13. Carbon nanomembranes from self-assembled monolayers: Functional surfaces without bulk

    NASA Astrophysics Data System (ADS)

    Turchanin, Andrey; Gölzhäuser, Armin

    2012-05-01

    In this topical review we describe the fabrication, characterization and applications of 1 nm thick, mechanically stable carbon nanomembranes (CNMs). They represent a new type of functional two-dimensional (2D) materials, which can be concisely described as “surfaces without bulk”. Because CNMs are made by electron-induced crosslinking of aromatic self-assembled monolayers (SAMs), we start with an overview of SAMs with a special emphasis on aromatic SAMs. We describe the chemical modification of SAMs by electron, ion and photon irradiation, introduce the concepts of irradiation-induced crosslinking and chemical nanolithography of aromatic SAMs and discuss the underlying physical and chemical mechanisms. We present examples for applications of these phenomena in the engineering of complex surface architectures, e.g., nanopatterns of proteins, fluorescent dyes or polymer brushes. Then we introduce a transfer procedure to release cross-linked aromatic SAMs from their original substrates and to form free-standing CNMs. We discuss mechanical and electrical properties of CNMs and demonstrate that they can be converted into graphene upon annealing. This transformation opens an original and flexible molecular route towards the large-scale synthesis of graphene sheets with tunable properties. Finally, we demonstrate the lithographic and chemical tailoring of CNMs to fabricate novel functional 2D carbon materials: supports for high resolution transmission electron microscopy (HRTEM) and nanolithography, nanosieves, Janus nanomembranes, polymer carpets, complex layered structures. Prospects of combining different types of nanomembranes made of SAMs (CNMs, graphene, nanosieves, Janus nanomembranes) towards the engineering of novel functional nanomaterials for a variety of electronic, optical, lab-on-a-chip and micro-/nanomechanical (MEMS/NEMS) devices are discussed.

  14. Self-assembled monolayer cleaning methods: Towards fabrication of clean high-temperature superconductor nanostructures

    SciTech Connect

    Kim, Sungwook; Chang, In Soon; McDevitt, John T.

    2005-04-11

    Although extensive amounts of research have been carried out on superconductor-normal metal-superconductor (SNS) electronic devices, the fabrication of superconductor SNS devices still remains difficult. Surface modification of high-temperature superconductors could be a way to control the interface of SNS electronic device fabrication. Here, we developed a cleaning method for thin films of high-temperature superconductor surface based on self-assembled monolayers. High-quality c-axis orientated YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} (i.e., YBCO) and Y{sub 0.6}Ca{sub 0.4}Ba{sub 1.6}La{sub 0.4}Cu{sub 3}O{sub 7-{delta}} (i.e., TX-YBCO) thin films were deposited by standard laser ablation methods. YBCO/Au/YBCO and TX-YBCO/Au/TX-YBCO planar type junctions were fabricated by photolithography, focused-ion-beam milling, and ex situ sputter depositions. A 40-50 nm nanotrench was ion milled on the thin film by FIB, and a thin gold layer was deposited by an ex situ method on the nanotrench to connect the two separated high-temperature superconductor electrodes. SEM, AFM, and R vs T resistivity measurements were used to compare the corrosion layer formed in the interface of the SNS junctions with the SAM cleaned SNS junction. Evidence here suggests that the SAM cleaning method can be used to remove the degradation layer on the surface of cuprate superconductors. The obtained contact resistivity value (10{sup -8} {omega} cm{sup 2}) for a SNS junction with SAM treatment is comparable with that of SNS junctions fabricated by the in situ methods.

  15. Interactions of Na+, K+, Mg2+, and Ca2+ with benzene self-assembled monolayers.

    PubMed

    Rimmen, M; Matthiesen, J; Bovet, N; Hassenkam, T; Pedersen, C S; Stipp, S L S

    2014-08-01

    Interactions between cations and organic molecules are found throughout nature, from the functionality and structure of proteins in humans and animals to the exchange of ions in minerals in soil and oil reservoirs with the fluid phases. We have explored the behavior of the s-block elements that are most common in the natural world, namely, Na(+), K(+), Mg(2+), and Ca(2+). Specifically, we investigated how these ions affect the interactions between surfaces covered by self-assembled monolayers (SAMs) terminated with benzene molecules. We used a flat oxidized silicon substrate and an atomic force microscopy (AFM) tip that were both functionalized with 11-phenoxyundecane-1-thiol and measured the adhesion force between them in solutions of each of the four chloride salts. We observed that the adhesion increased in the order of the Hofmeister series: K(+) < Na(+) ≈ Mg(2+) < Ca(2+). Supplementary evidence from X-ray photoelectron spectroscopy (XPS) allowed us to conclude that K(+) binds in the benzene layers, creating a positive surface charge on the benzene-covered surfaces, thus leading to lower adhesion in KCl solutions than in pure water. Evidence suggested that Ca(2+) does not bind to the surfaces but forms bridges between the layers, leading to higher adhesion than in pure water. In Na(+) and Mg(2+) solutions, adhesion is quite similar to that in pure water, indicating a lack of interaction between these two ions and the surfaces, or at least that the interaction is too weak to be detected by our measurements. The results of our studies clearly show that even a nonpolar, hydrophobic molecule, such as benzene, has a role to play in the behavior of aqueous solutions and that it interacts differently depending on which ions are present. Even ions from the same column in the periodic table behave differently. PMID:25003588

  16. Ultrafast shock compression of self-assembled monolayers: a molecular picture.

    PubMed

    Patterson, James E; Dlott, Dana D

    2005-03-24

    Simulations of self-assembled monolayers (SAMs) are performed to interpret experimental measurements of ultrafast approximately 1 GPa (volume compression deltaV approximately 0.1) planar shock compression dynamics probed by vibrational sum-frequency generation (SFG) spectroscopy (Lagutchev, A. S.; Patterson, J. E.; Huang, W.; Dlott, D. D. J. Phys. Chem. B 2005, 109, XXXX). The SAMs investigated are octadecanethiol (ODT) and pentadecanethiol (PDT) on Au(111) and Ag(111) substrates, and benzyl mercaptan (BMT) on Au(111). In the alkane SAMs, SFG is sensitive to the instantaneous orientation of the terminal methyl; in BMT it is sensitive to the phenyl orientation. Computed structures of alkane SAMs are in good agreement with experiment. In alkanes, the energies of gauche defects increase with increasing number and depth below the methyl plane, with the exception of ODT/Au where both single and double gauche defects at the two uppermost dihedrals have similar energies. Simulations of isothermal uniaxial compression of SAM lattices show that chain and methyl tilting is predominant in PDT/Au, ODT/Ag and PDT/Ag, whereas single and double gauche defect formation is predominant in ODT/Au. Time-resolved shock data showing transient SFG signal loss of ODT/Au and PDT/Au are fit by calculations of the terminal group orientations as a function of deltaV and their contributions to the SFG hyperpolarizability. The highly elastic response of PDT/Au results from shock-generated methyl and chain tilting. The viscoelastic response of ODT/Au results from shock generation of single and double gauche defects. Isothermal compression simulations help explain and fit the time dependence of shock spectra but generally underestimate the magnitude of SFG signal loss because they do not include effects of high-strain-rate dynamics and shock front and surface irregularities. PMID:16863164

  17. Properties of the gold-sulphur interface: from self-assembled monolayers to clusters

    NASA Astrophysics Data System (ADS)

    Bürgi, Thomas

    2015-09-01

    The gold-sulphur interface of self-assembled monolayers (SAMs) was extensively studied some time ago. More recently tremendous progress has been made in the preparation and characterization of thiolate-protected gold clusters. In this feature article we address different properties of the two systems such as their structure, the mobility of the thiolates on the surface and other dynamical aspects, the chirality of the structures and characteristics related to it and their vibrational properties. SAMs and clusters are in the focus of different communities that typically use different experimental approaches to study the respective systems. However, it seems that the nature of the Au-S interfaces in the two cases is quite similar. Recent single crystal X-ray structures of thiolate-protected gold clusters reveal staple motifs characterized by gold ad-atoms sandwiched between two sulphur atoms. This finding contradicts older work on SAMs. However, newer studies on SAMs also reveal ad-atoms. Whether this finding can be generalized remains to be shown. In any case, more and more studies highlight the dynamic nature of the Au-S interface, both on flat surfaces and in clusters. At temperatures slightly above ambient thiolates migrate on the gold surface and on clusters. Evidence for desorption of thiolates at room temperature, at least under certain conditions, has been demonstrated for both systems. The adsorbed thiolate can lead to chirality at different lengths scales, which has been shown both on surfaces and for clusters. Chirality emerges from the organization of the thiolates as well as locally at the molecular level. Chirality can also be transferred from a chiral surface to an adsorbate, as evidenced by vibrational spectroscopy.

  18. Charge retention of soft-landed phosphotungstate Keggin anions on self-assembled monolayers.

    PubMed

    Gunaratne, K Don D; Prabhakaran, Venkateshkumar; Andersen, Amity; Johnson, Grant E; Laskin, Julia

    2016-04-01

    Soft landing of mass-selected ions onto surfaces often results in partial loss of charge that may affect the structure and reactivity of deposited species. In this study, Keggin phosphotungstate anions in two selected charge states, PW12O40(3-) (WPOM(3-)) and PW12O40(2-) (WPOM(2-)), were soft-landed onto different self-assembled monolayer (SAM) surfaces and examined using in situ infrared reflection absorption spectroscopy (IRRAS) and density functional theory (DFT) calculations. Partial retention of the 3- charge was observed when WPOM(3-) was soft-landed onto the fluorinated SAM (FSAM), while the charge state distribution was dominated by the 2- charge after both WPOM(3-) and WPOM(2-) were deposited onto a hydrophilic alkylthiol SAM terminated with cationic NH3(+) functional groups (NH3(+)SAM). We found that during the course of the soft landing of WPOM(3-), the relative abundance of WPOM(3-) on FSAM decreased while that of WPOM(2-) increased. We propose that the higher stability of immobilized WPOM(2-) in comparison with WPOM(3-) makes it the preferred charge state of WPOM on both the FSAM and NH3(+)SAM. We also observe weaker binding of WPOM anions to SAMs in comparison with phosphomolybdate ions (MoPOM) reported previously (J. Phys. Chem. C, 2014, 118, 27611-27622). The weaker binding of WPOM to SAMs is attributed to the lower reactivity of WPOM reported in the literature. This study demonstrates that both the charge retention and the reactivity of deposited anionic POM clusters on surfaces are determined by the type of addenda metal atoms in the cluster. PMID:26966731

  19. Nanomechanics of the formation of DNA self-assembled monolayers and hybridization on microcantilevers.

    PubMed

    Alvarez, M; Carrascosa, L G; Moreno, M; Calle, A; Zaballos, A; Lechuga, L M; Martínez-A, C; Tamayo, J

    2004-10-26

    Biomolecular interactions over the surface of a microcantilever can produce its bending motion via changes of the surface stress, which is referred to nanomechanical response. Here, we have studied the interaction forces responsible for the bending motion during the formation of a self-assembled monolayer of thiolated 27-mer single-stranded DNA on the gold-coated side of a microcantilever and during the subsequent hybridization with the complementary nucleic acid. The immobilization of the single-stranded DNA probe gives a mean surface stress of 25 mN/m and a mean bending of 23 nm for microcantilevers with a length and thickness of about 200 microm and 0.8 microm, respectively. The hybridization with the complementary sequence could not be inferred from the nanomechanical response. The nanomechanical response was compared with data from well-established techniques such as surface plasmon resonance and radiolabeling, to determine the surface coverage and study the intermolecular forces between neighboring DNA molecules anchored to the microcantilever surface. From both techniques, an immobilization surface density of 3 x 10(12) molecules/cm(2) and a hybridization efficiency of 40% were determined. More importantly, label-free hybridization was clearly detected in the same conditions with a conventional sensor based on surface plasmon resonance. The results imply that the nanomechanical signal during the immobilization process arises mainly from the covalent attachment to the gold surface, and the interchain interactions between neighboring DNA molecules are weak, producing an undetectable surface stress. We conclude that detection of nucleic acid hybridization with nanomechanical sensors requires reference cantilevers to remove nonspecific signals, more sensitive microcantilever geometries, and immobilization chemistries specially addressed to enhance the surface stress variations.

  20. Self-assembled monolayers on mosoporous supports (SAMMS) for RCRA metal removal

    SciTech Connect

    Feng, Xiangdong; Liu, Jun; Fryxell, G.

    1997-10-01

    The Mixed Waste Focus Area has declared mercury removal and stabilization as the first and fourth priorities among 30 prioritized deficiencies. Resource Conservation and Recovery Act (RCRA) metal and mercury removal has also been identified as a high priority at DOE sites such as Albuquerque, Idaho Falls, Oak Ridge, Hanford, Rocky Flats, and Savannah River. Under this task, a proprietary new technology, Self-Assembled Monolayers on Mesoporous Supports (SAMMS), for RCRA metal ion removal from aqueous wastewater and mercury removal from organic wastes such as vacuum pump oils is being developed at Pacific Northwest National Laboratory (PNNL). The six key features of the SAMMS technology are (1) large surface area (>900 m{sup 2}/g) of the mesoporous oxides (SiO{sub 2}, ZrO{sub 2}, TiO{sub 2}) ensures high capacity for metal loading (more than 1 g Hg/g SAMMS); (2) molecular recognition of the interfacial functional groups ensures the high affinity and selectivity for heavy metals without interference from other abundant cations (such as calcium and iron) in wastewater; (3) suitability for removal of mercury from both aqueous wastes and organic wastes; (4) the Hg-laden SAMMS not only pass TCLP tests, but also have good long-term durability as a waste form because the covalent binding between mercury and SAMMS has good resistance to ion exchange, oxidation, and hydrolysis; (5) the uniform and small pore size (2 to 40 nm) of the mesoporous silica prevents bacteria (>2000 nm) from solubilizing the bound mercury; and (6) SAMMS can also be used for RCRA metal removal from gaseous mercury waste, sludge, sediment, and soil.

  1. Phase behaviour of self-assembled monolayers controlled by tuning physisorbed and chemisorbed states: A lattice-model view

    NASA Astrophysics Data System (ADS)

    Fortuna, Sara; Cheung, David L.; Johnston, Karen

    2016-04-01

    The self-assembly of molecules on surfaces into 2D structures is important for the bottom-up fabrication of functional nanomaterials, and the self-assembled structure depends on the interplay between molecule-molecule interactions and molecule-surface interactions. Halogenated benzene derivatives on platinum have been shown to have two distinct adsorption states: a physisorbed state and a chemisorbed state, and the interplay between the two can be expected to have a profound effect on the self-assembly and phase behaviour of these systems. We developed a lattice model that explicitly includes both adsorption states, with representative interactions parameterised using density functional theory calculations. This model was used in Monte Carlo simulations to investigate pattern formation of hexahalogenated benzene molecules on the platinum surface. Molecules that prefer the physisorbed state were found to self-assemble with ease, depending on the interactions between physisorbed molecules. In contrast, molecules that preferentially chemisorb tend to get arrested in disordered phases. However, changing the interactions between chemisorbed and physisorbed molecules affects the phase behaviour. We propose functionalising molecules in order to tune their adsorption states, as an innovative way to control monolayer structure, leading to a promising avenue for directed assembly of novel 2D structures.

  2. Thermodynamic investigations using molecular dynamics simulations with potential of mean force calculations for cardiotoxin protein adsorption on mixed self-assembled monolayers.

    PubMed

    Hung, Shih-Wei; Hsiao, Pai-Yi; Lu, Ming-Chang; Chieng, Ching-Chang

    2012-10-25

    Understanding protein adsorption onto solid surfaces is of critical importance in the field of bioengineering, especially for applications such as medical implants, diagnostic biosensors, drug delivery systems, and tissue engineering. This study proposed the use of molecular dynamics simulations with potential of mean force (PMF) calculations to identify and characterize the mechanisms of adsorption of a protein molecule on a designed surface. A set of model systems consisting of a cardiotoxin (CTX) protein and mixed self-assembled monolayer (SAM) surfaces were used as examples. The set of mixed SAM surfaces with varying topographies were created by mixing alkanethiol chains of different lengths. The results revealed that CTX proteins underwent similar conformal changes upon adsorption onto the various mixed SAMs but showed distinctive characteristics in free energy profiles. Enhancement of the adsorption affinity, i.e., the change in free energy of adsorption, for mixed SAMs was demonstrated by using atomic force microscopic measurements. A component analysis conducted to quantify the physical mechanisms that promoted CTX adsorption revealed contributions from both SAMs and the solvent. Further component analyses of thermodynamic properties, such as the free energy, enthalpy, and entropy, indicated that the contribution from SAMs was driven by enthalpy, and the contribution from the solvent was driven by entropy. The results indicated that CTX adsorption was an entropy-driven process, and the entropic component from the solvent, i.e., the hydrophobic interaction, was the major driving force for CTX adsorption onto SAMs. The study also concluded that the surfaces composed of mixtures of SAMs with different chain lengths promoted the adsorption of CTX protein.

  3. Steering the Self-Assembly of Octadecylamine Monolayers on Mica by Controlled Mechanical Energy Transfer from the AFM Tip

    SciTech Connect

    Benitez, J.J.; Heredia-Guerrero, J.A.; Salmeron, M.

    2010-06-24

    We have studied the effect of mechanical energy transfer from the tip of an Atomic Force Microscope on the dynamics of self-assembly of monolayer films of octadecylamine on mica. The formation of the self-assembled film proceeds in two successive stages, the first being a fast adsorption from solution that follows a Langmuir isotherm. The second is a slower process of island growth by aggregation of the molecules dispersed on the surface. We found that the dynamics of aggregation can be altered substantially by the addition of mechanical energy into the system through controlled tip-surface interactions. This leads to either the creation of pinholes in existing islands as a consequence of vacancy concentration, and to the assembly of residual molecules into more compact islands.

  4. Charge Retention by Organometallic Dications on Self-Assembled Monolayer Surfaces

    SciTech Connect

    Laskin, Julia; Wang, Peng

    2014-05-15

    Charge retention by mass-selected ruthenium trisbipyridine dications, or Ru(bpy)32+, soft-landed onto self-assembled monolayer (SAM) surfaces of 1H, 1H, 2H, 2H-perfluorodecane-1-thiol (FSAM), 11-mercaptoundecanoic acid (COOH-SAM), and 11-amino-1-undecanethiol (HSAM) on gold was examined using in situ time-resolved secondary ion mass spectrometry in a Fourier transform ion cyclotron resonance apparatus (FT-ICR SIMS). FT-ICR SIMS analysis was performed during ion soft-landing and for 8–15 hours after the ion beam was switched off. Our results demonstrate efficient retention of the doubly charged precursor ion on the FSAM and COOH-SAM surfaces manifested by the abundant Ru(bpy)32+ ions in the SIMS spectra. In contrast, only the singly charged Ru(bpy)3+ and Ru(bpy)2+ ions were observed on HSAM, indicating rapid loss of at least one charge by the deposited dications. The signal of Ru(bpy)32+ on COOH-SAM remained almost constant for more than 8 hours after the end of ion soft-landing, while a relatively fast decay followed by a plateau region was observed on the FSAM surface. However, we found that SIMS analysis of Ru(bpy)32+ ions soft-landed onto FSAM is complicated by facile ion-molecule reactivity occurring either on the surface or in the SIMS plume, making it difficult to accurately measure the charge reduction kinetics. Efficient retention of the doubly charged Ru(bpy)32+ ions on COOH-SAM is remarkably different from facile neutralization of protonated peptides deposited onto this surface reported in previous studies. Our results indicate different mechanisms of charge reduction of protonated molecules and permanent ions, such as Ru(bpy)32+, on SAM surfaces. Thus, we propose that proton loss is the major charge reduction channel for the protonated species, while electron transfer through the insulating SAM is responsible for the charge loss by permanent ions. Fundamental understanding of charge reduction phenomena is essential for controlled preparation of

  5. Decaborane thiols as building blocks for self-assembled monolayers on metal surfaces.

    PubMed

    Bould, Jonathan; Macháček, Jan; Londesborough, Michael G S; Macías, Ramón; Kennedy, John D; Bastl, Zdeněk; Rupper, Patrick; Baše, Tomáš

    2012-02-01

    Three nido-decaborane thiol cluster compounds, [1-(HS)-nido-B(10)H(13)] 1, [2-(HS)-nido-B(10)H(13)] 2, and [1,2-(HS)(2)-nido-B(10)H(12)] 3 have been characterized using NMR spectroscopy, single-crystal X-ray diffraction analysis, and quantum-chemical calculations. In the solid state, 1, 2, and 3 feature weak intermolecular hydrogen bonding between the sulfur atom and the relatively positive bridging hydrogen atoms on the open face of an adjacent cluster. Density functional theory (DFT) calculations show that the value of the interaction energy is approximately proportional to the number of hydrogen atoms involved in the interaction and that these values are consistent with a related bridging-hydrogen atom interaction calculated for a B(18)H(22)·C(6)H(6) solvate. Self-assembled monolayers (SAMs) of 1, 2, and 3 on gold and silver surfaces have been prepared and characterized using X-ray photoelectron spectroscopy. The variations in the measured sulfur binding energies, as thiolates on the surface, correlate with the (CC2) calculated atomic charge for the relevant boron vertices and for the associated sulfur substituents for the parent B(10)H(13)(SH) compounds. The calculated charges also correlate with the measured and DFT-calculated thiol (1)H chemical shifts. Wetting-angle measurements indicate that the hydrophilic open face of the cluster is directed upward from the substrate surface, allowing the bridging hydrogen atoms to exhibit a similar reactivity to that of the bulk compound. Thus, [PtMe(2)(PMe(2)Ph)(2)] reacts with the exposed and acidic B-H-B bridging hydrogen atoms of a SAM of 1 on a gold substrate, affording the addition of the metal moiety to the cluster. The XPS-derived stoichiometry is very similar to that for a SAM produced directly from the adsorption of [1-(HS)-7,7-(PMe(2)Ph)(2)-nido-7-PtB(10)H(11)] 4. The use of reactive boron hydride SAMs as templates on which further chemistry may be carried out is unprecedented, and the principle may be

  6. Limits to the Effect of Substrate Roughness or Smoothness on the Odd-Even Effect in Wetting Properties of n-Alkanethiolate Monolayers.

    PubMed

    Chen, Jiahao; Wang, Zhengjia; Oyola-Reynoso, Stephanie; Gathiaka, Symon M; Thuo, Martin

    2015-06-30

    This study investigates the effect of roughness on interfacial properties of an n-alkanethiolate self-assembled monolayer (SAM) and uses hydrophobicity to demonstrate the existence of upper and lower limits. This article also sheds light on the origin of the previously unexplained gradual increase in contact angles with increases in the size of the molecule making the SAM. We prepared Au surfaces with a root-mean-square (RMS) roughness of ∼0.2-0.5 nm and compared the wetting properties of n-alkanethiolate (C10-C16) SAMs fabricated on these surfaces. Static contact angles, θ(s), formed between the SAM and water, diethylene glycol, and hexadecane showed an odd-even effect irrespective of the solvent properties. The average differences in subsequent SAM(E) and SAM(O) are Δθ(s|n  – (n+1)|) ≈ 1.7° (n = even) and Δθ(s|n – (n+1)|) ≈ 3.1° (n = odd). A gradual increase in θ(s) with increasing length of the molecule was observed, with values ranging from water 104.7-110.7° (overall Δθ(s) = 6.0° while for the evens Δθ(s)(E) = 4.4° and odds Δθ(s)(O) = 3.5°) to diethylene glycol 72.9-80.4° (overall Δθ(s) = 7.5° while for the evens Δθ(s)(E) = 2.9° and odds Δθ(s)(O) = 2.4°) and hexadecane 40.4–49.4° (overall Δθ(s) = 9.0° while for the evens Δθ(s)(E) = 3.7° and odds Δθ(s)(O) = 2.1°). This article establishes that the gradual increase in θ(s) with increasing molecular size in SAMs is due to asymmetry in the zigzag oscillation in the odd-even effect. Comparison of the magnitude and proportion differences in this asymmetry allows us to establish the reduction in interfacial dispersive forces, due to increasing SAM crystallinity with increasing molecular size, as the origin of this asymmetry. By comparing the dependence of θ(s) on surface roughness we infer that (i) RMS roughness ≈ 1 nm is a theoretical limit beyond which the odd-even effect cannot be observed and (ii) on a hypothetically flat surface the maximum difference

  7. Self-Spreading of Lipid Bilayer on a Hydrophobic Surface Made by Self-Assembled Monolayer with Short Alkyl Chain.

    PubMed

    Omori, Yuya; Sakaue, Hiroyuki; Takahagi, Takayuki; Suzuki, Hitoshi

    2016-04-01

    Behaviors of self-spreading of lipid bilayer membrane on a glass surface modified with self-assembled monolayer (SAM) with short alkyl chain were observed with fluorescence microscopy. Hydrophobic surface made by SAM was found to hamper the self-spreading phenomenon but the lipid bilayer spread on a hydrophilic one where SAM was decomposed by oxidation. On a binary surface having a hydrophobic region and a hydrophilic one, the lipid bilayer spread on the hydrophilic region but it stopped at the boundary of the hydrophobic region.

  8. Continuous ultrathin silver films deposited on SiO2 and SiNx using a self-assembled monolayer

    NASA Astrophysics Data System (ADS)

    Hafezian, Soroush; Maloney, Kate; Lefebvre, Josianne; Martinu, Ludvik; Kéna-Cohen, Stéphane

    2016-09-01

    In this letter, we study the deposition of ultrathin silver films on silicon oxide and nitride surfaces functionalized with self-assembled monolayers of (3-mercaptopropyl)-trimethoxysilane. First, we compare both solution and vapour-phase functionalization techniques and find the greatest improvement in electrical and optical properties using deposition from solution. Using X-ray photoelectron spectroscopy, we demonstrate that the formation of silver-sulfur covalent bonds is at the root of the improved wetting confirmed by ellipsometry, sheet resistance measurement, and atomic force microscopy. Second, we show that this technique can be extended to functionalize silicon nitride. Finally, we demonstrate a simple, but efficient, low-emissivity optical filter.

  9. In-situ guidance of individual neuronal processes by wet femtosecond-laser processing of self-assembled monolayers

    NASA Astrophysics Data System (ADS)

    Yamamoto, Hideaki; Okano, Kazunori; Demura, Takanori; Hosokawa, Yoichiroh; Masuhara, Hiroshi; Tanii, Takashi; Nakamura, Shun

    2011-10-01

    In-situ guidance of neuronal processes (neurites) is demonstrated by applying wet femtosecond-laser processing to an organosilane self-assembled monolayer (SAM) template. By scanning focused laser beam between cell adhesion sites, on which primary neurons adhered and extended their neurites, we succeeded in guiding the neurites along the laser-scanning line. This guidance was accomplished by multiphoton laser ablation of cytophobic SAM layer and subsequent adsorption of cell adhesion molecule, laminin, onto the ablated region. This technique allows us to arbitrarily design neuronal networks in vitro.

  10. Photoreactive self-assembled monolayer for the stabilization of tilt orientation of a director in vertically aligned nematic liquid crystals.

    PubMed

    Oh, Su Yeon; Kang, Shin-Woong

    2013-12-16

    Photo-reactive self-assembled monolayer (PR-SAM) is employed to mediate alignment of liquid crystals (LC) and stabilize the tilt orientation of a nematic director for a vertically aligned liquid crystal. Bifunctional PR-SAM formed by silane coupling reaction to oxide surfaces efficiently induces a homeotropic alignment and stabilizes LC director by the photo-polymerization under applied electric field. As a result, the substantial enhancement of electro-optic performance has been achieved after the PR-SAM assisted stabilization of tilt orientation of director. This approach for pretilt stabilization has multifarious advantages over the conventional PSVA. PMID:24514711

  11. Confirmation of heavy metal ions in used lubricating oil from a passenger car using chelating self-assembled monolayer.

    PubMed

    Ko, Young Gun; Kim, Choong Hyun

    2006-09-01

    In order to prevent engine failure, the oil must be changed before it loses its protective properties. It is necessary to monitor the actual physical and chemical condition of the oil to reliably determine the optimum oil-change interval. Our study focuses on the condition of the lubricating oil in an operated car engine. Shear stress curves and viscosity curves as a function of the shear rate for fresh and used lubricating oil were examined. Metal nitrate was detected in the lubricating oil from the operated car engine through the use of a chelating self-assembled monolayer.

  12. Kinetics of mediated electron transfer between viologen groups in a self-assembled monolayer and metal complexes in solution

    NASA Astrophysics Data System (ADS)

    Schneider, Thomas; Hiley, Shauna; Buttry, Daniel A.

    1993-05-01

    Self-assembled monolayers are used in an experimental configuration which allows the extraction of the cross reaction electron exchange rate constant for the electron transfer between a viologen group embedded within the SAM and a metal complex in solution. This cross reaction rate constant is compared with predictions from the Marcus theory using the cross reaction relation and the known self-exchange rate constants for the two reagents. The results reveal that the intrinsic barrier to the electron transfer is relatively unchanged in the SAM, while the rate constant is somewhat depressed due to the long distance over which the electron must transfer.

  13. In-situ guidance of individual neuronal processes by wet femtosecond-laser processing of self-assembled monolayers

    PubMed Central

    Yamamoto, Hideaki; Okano, Kazunori; Demura, Takanori; Hosokawa, Yoichiroh; Masuhara, Hiroshi; Tanii, Takashi; Nakamura, Shun

    2011-01-01

    In-situ guidance of neuronal processes (neurites) is demonstrated by applying wet femtosecond-laser processing to an organosilane self-assembled monolayer (SAM) template. By scanning focused laser beam between cell adhesion sites, on which primary neurons adhered and extended their neurites, we succeeded in guiding the neurites along the laser-scanning line. This guidance was accomplished by multiphoton laser ablation of cytophobic SAM layer and subsequent adsorption of cell adhesion molecule, laminin, onto the ablated region. This technique allows us to arbitrarily design neuronal networks in vitro. PMID:27703280

  14. Preparation of a hole transport layer tethered to ITO surface via a self-assembled monolayer with reactive terminal group

    NASA Astrophysics Data System (ADS)

    Hagihara, Yuya; Kim, Seong-Ho; Tanaka, Kuniaki; Advincula, Rigoberto C.; Usui, Hiroaki

    2014-01-01

    Characteristics of a junction between a polymer thin film and an indium-tin oxide (ITO) substrate was controlled by forming covalent chemical bonds at the interface through self-assembled monolayers (SAMs) with reactive terminal groups. For this purpose, SAMs with vinyl, epoxide, and benzophenone terminal groups were formed on ITO substrates, on which a vinyl derivative of a hole transport molecule was vapor-deposited, and then annealed in vacuum. This procedure produced a polymer layer strongly attached to the substrate surface. It was also found that the charge injection from the ITO electrode to the polymer layer can be improved by chemically tethering the interface via the SAMs.

  15. In-plane Van der Waals interactions of molecular self-assembly monolayer

    NASA Astrophysics Data System (ADS)

    Gao, Hong-Ying; Wagner, Hendrik; Held, Philipp Alexander; Du, Shixuan; Gao, Hong-Jun; Studer, Armido; Fuchs, Harald

    2015-02-01

    We demonstrate that the Van der Waals interactions in plane are important to control molecular self-assembly structure as well their phase transition. Using precise chemical modification to mediate such in-plane cohesive interactions, we observed the spontaneous formations of 2D order or disorder molecular self-assembly structures, as well their order-disorder phase transitions by annealing. Interestingly, we identified that the side alkyl chains stand up at surfaces and form the `locked' pairs/windmill structures. Moreover, we realized the covalent coupling based on ethynyl functionality before molecular desorption from metal surfaces, by enhancing the in-plane interactions.

  16. Self-Assembly of Hydrofluorinated Janus Graphene Monolayer: A Versatile Route for Designing Novel Janus Nanoscrolls

    PubMed Central

    Jin, Yakang; Xue, Qingzhong; Zhu, Lei; Li, Xiaofang; Pan, Xinglong; Zhang, Jianqiang; Xing, Wei; Wu, Tiantian; Liu, Zilong

    2016-01-01

    With remarkably interesting surface activities, two-dimensional Janus materials arouse intensive interests recently in many fields. We demonstrate by molecular dynamic simulations that hydrofluorinated Janus graphene (J-GN) can self-assemble into Janus nanoscroll (J-NS) at room temperature. The van der Waals (vdW) interaction and the coupling of C-H/π/C-F interaction and π/π interaction are proven to offer the continuous driving force of self-assembly of J-GN. The results show that J-GN can self-assemble into various J-NSs structures, including arcs, multi-wall J-NS and arm-chair-like J-NS by manipulating its original geometry (size and aspect ratio). Moreover, we also investigated self-assembly of hydrofluorinated J-GN and Fe nanowires (NWs), suggesting that Fe NW is a good alternative to activate J-GN to form J-NS. Differently, the strong vdW interaction between J-GN and Fe NW provides the main driving force of the self-assembly. Finally, we studied the hydrogen sorption over the formed J-NS with a considerable interlayer spacing, which reaches the US DOE target, indicating that J-NS is a promising candidate for hydrogen storage by controlling the temperature of system. Our theoretical results firstly provide a versatile route for designing novel J-NS from 2D Janus nanomaterials, which has a great potential application in the realm of hydrogen storage/separation. PMID:27243752

  17. Self-Assembly of Hydrofluorinated Janus Graphene Monolayer: A Versatile Route for Designing Novel Janus Nanoscrolls

    NASA Astrophysics Data System (ADS)

    Jin, Yakang; Xue, Qingzhong; Zhu, Lei; Li, Xiaofang; Pan, Xinglong; Zhang, Jianqiang; Xing, Wei; Wu, Tiantian; Liu, Zilong

    2016-05-01

    With remarkably interesting surface activities, two-dimensional Janus materials arouse intensive interests recently in many fields. We demonstrate by molecular dynamic simulations that hydrofluorinated Janus graphene (J-GN) can self-assemble into Janus nanoscroll (J-NS) at room temperature. The van der Waals (vdW) interaction and the coupling of C-H/π/C-F interaction and π/π interaction are proven to offer the continuous driving force of self-assembly of J-GN. The results show that J-GN can self-assemble into various J-NSs structures, including arcs, multi-wall J-NS and arm-chair-like J-NS by manipulating its original geometry (size and aspect ratio). Moreover, we also investigated self-assembly of hydrofluorinated J-GN and Fe nanowires (NWs), suggesting that Fe NW is a good alternative to activate J-GN to form J-NS. Differently, the strong vdW interaction between J-GN and Fe NW provides the main driving force of the self-assembly. Finally, we studied the hydrogen sorption over the formed J-NS with a considerable interlayer spacing, which reaches the US DOE target, indicating that J-NS is a promising candidate for hydrogen storage by controlling the temperature of system. Our theoretical results firstly provide a versatile route for designing novel J-NS from 2D Janus nanomaterials, which has a great potential application in the realm of hydrogen storage/separation.

  18. Reflection and extinction of light by self-assembled monolayers of a quinque-thiophene derivative: A coherent scattering approach.

    PubMed

    Gholamrezaie, Fatemeh; de Leeuw, Dago M; Meskers, Stefan C J

    2016-06-01

    Scattering matrix theory is used to describe resonant optical properties of molecular monolayers. Three types of coupling are included: exciton-exciton, exciton-photon, and exciton-phonon coupling. We use the K-matrix formalism, developed originally to describe neutron scattering spectra in nuclear physics to compute the scattering of polaritons by phonons. This perturbation approach takes into account the three couplings and allows one to go beyond molecular exciton theory without the need of introducing additional boundary conditions for the polariton. We demonstrate that reflection, absorption, and extinction of light by 2D self-assembled monolayers of molecules containing quinque-thiophene chromophoric groups can be calculated. The extracted coherence length of the Frenkel exciton is discussed. PMID:27276952

  19. Reflection and extinction of light by self-assembled monolayers of a quinque-thiophene derivative: A coherent scattering approach

    NASA Astrophysics Data System (ADS)

    Gholamrezaie, Fatemeh; de Leeuw, Dago M.; Meskers, Stefan C. J.

    2016-06-01

    Scattering matrix theory is used to describe resonant optical properties of molecular monolayers. Three types of coupling are included: exciton-exciton, exciton-photon, and exciton-phonon coupling. We use the K-matrix formalism, developed originally to describe neutron scattering spectra in nuclear physics to compute the scattering of polaritons by phonons. This perturbation approach takes into account the three couplings and allows one to go beyond molecular exciton theory without the need of introducing additional boundary conditions for the polariton. We demonstrate that reflection, absorption, and extinction of light by 2D self-assembled monolayers of molecules containing quinque-thiophene chromophoric groups can be calculated. The extracted coherence length of the Frenkel exciton is discussed.

  20. Application of a gold electrode, modified by a self-assembled monolayer of 2-mercaptodecylhydroquinone, to the electroanalysis of hemoglobin.

    PubMed

    Zhang, Jingdong; Seo, Kyoungja; Jeon, Il Cheol

    2003-02-01

    A gold electrode modified by a self-assembled monolayer of 2-mercaptodecylhydroquinone (H(2)Q(CH(2))(10)SH) was applied to investigate the electrochemical response of hemoglobin in aerated buffer solutions. Compared with a bare gold electrode, the monolayer of H(2)Q(CH(2))(10)SH could suppress the reduction wave of dissolved oxygen in the buffer while effectively promoting the rate of electron transfer between hemoglobin and the electrode. Thus, a convenient way for electroanalysis of hemoglobin in air was achieved at the H(2)Q(CH(2))(10)SH/Au electrode. A linear relationship existed between peak current and concentration of hemoglobin in the range 1 x 10(-7)-1 x 10(-6) mol L(-1).

  1. Employing X-ray Photoelectron Spectroscopy for Determining Layer Homogeneity in Mixed Polar Self-Assembled Monolayers

    PubMed Central

    2016-01-01

    Self-assembled monolayers (SAMs) containing embedded dipolar groups offer the particular advantage of changing the electronic properties of a surface without affecting the SAM–ambient interface. Here we show that such systems can also be used for continuously tuning metal work functions by growing mixed monolayers consisting of molecules with different orientations of the embedded dipolar groups. To avoid injection hot-spots when using the SAM-modified electrodes in devices, a homogeneous mixing of the two components is crucial. We show that a combination of high-resolution X-ray photoelectron spectroscopy with state-of-the-art simulations is an ideal tool for probing the electrostatic homogeneity of the layers and thus for determining phase separation processes in polar adsorbate assemblies down to inhomogeneities at the molecular level. PMID:27429041

  2. Detection of Volatile Organic Compounds by Self-assembled Monolayer Coated Sensor Array with Concentration-independent Fingerprints

    NASA Astrophysics Data System (ADS)

    Chang, Ye; Tang, Ning; Qu, Hemi; Liu, Jing; Zhang, Daihua; Zhang, Hao; Pang, Wei; Duan, Xuexin

    2016-04-01

    In this paper, we have modeled and analyzed affinities and kinetics of volatile organic compounds (VOCs) adsorption (and desorption) on various surface chemical groups using multiple self-assembled monolayers (SAMs) functionalized film bulk acoustic resonator (FBAR) array. The high-frequency and micro-scale resonator provides improved sensitivity in the detections of VOCs at trace levels. With the study of affinities and kinetics, three concentration-independent intrinsic parameters (monolayer adsorption capacity, adsorption energy constant and desorption rate) of gas-surface interactions are obtained to contribute to a multi-parameter fingerprint library of VOC analytes. Effects of functional group’s properties on gas-surface interactions are also discussed. The proposed sensor array with concentration-independent fingerprint library shows potential as a portable electronic nose (e-nose) system for VOCs discrimination and gas-sensitive materials selections.

  3. A DNA self-assembled monolayer for the specific attachment of unmodified double- or single-stranded DNA.

    PubMed Central

    Bamdad, C

    1998-01-01

    A novel method for DNA surface immobilization and a paradigm for the attachment of unmodified DNA of any length or sequence are described herein. The development of a DNA self-assembled monolayer (DNA-SAM) that incorporates a DNA-thiol into a monolayer of inert alkane thiolates is reported. This DNA-SAM specifically hybridized complementary oligonucleotides while resisting the nonspecific adsorption of noncomplementary DNA and irrelevant proteins. Duplex DNA, having a single-stranded "capture tail," specifically bound to the DNA-SAM if the sequence of the "tail" was complementary to DNA presented in the SAM. The sense strand of the hybridized duplex DNA could be covalently attached to the surface by an enzymatic ligation reaction (leaving the anti-sense strand dissociable). DNA-binding proteins specifically bound to these surfaces only if their cognate sites were present in the duplex DNA. PMID:9746541

  4. Employing X-ray Photoelectron Spectroscopy for Determining Layer Homogeneity in Mixed Polar Self-Assembled Monolayers.

    PubMed

    Hehn, Iris; Schuster, Swen; Wächter, Tobias; Abu-Husein, Tarek; Terfort, Andreas; Zharnikov, Michael; Zojer, Egbert

    2016-08-01

    Self-assembled monolayers (SAMs) containing embedded dipolar groups offer the particular advantage of changing the electronic properties of a surface without affecting the SAM-ambient interface. Here we show that such systems can also be used for continuously tuning metal work functions by growing mixed monolayers consisting of molecules with different orientations of the embedded dipolar groups. To avoid injection hot-spots when using the SAM-modified electrodes in devices, a homogeneous mixing of the two components is crucial. We show that a combination of high-resolution X-ray photoelectron spectroscopy with state-of-the-art simulations is an ideal tool for probing the electrostatic homogeneity of the layers and thus for determining phase separation processes in polar adsorbate assemblies down to inhomogeneities at the molecular level. PMID:27429041

  5. Detection of Volatile Organic Compounds by Self-assembled Monolayer Coated Sensor Array with Concentration-independent Fingerprints

    PubMed Central

    Chang, Ye; Tang, Ning; Qu, Hemi; Liu, Jing; Zhang, Daihua; Zhang, Hao; Pang, Wei; Duan, Xuexin

    2016-01-01

    In this paper, we have modeled and analyzed affinities and kinetics of volatile organic compounds (VOCs) adsorption (and desorption) on various surface chemical groups using multiple self-assembled monolayers (SAMs) functionalized film bulk acoustic resonator (FBAR) array. The high-frequency and micro-scale resonator provides improved sensitivity in the detections of VOCs at trace levels. With the study of affinities and kinetics, three concentration-independent intrinsic parameters (monolayer adsorption capacity, adsorption energy constant and desorption rate) of gas-surface interactions are obtained to contribute to a multi-parameter fingerprint library of VOC analytes. Effects of functional group’s properties on gas-surface interactions are also discussed. The proposed sensor array with concentration-independent fingerprint library shows potential as a portable electronic nose (e-nose) system for VOCs discrimination and gas-sensitive materials selections. PMID:27045012

  6. Interface electronic structures of reversible double-docking self-assembled monolayers on an Au(111) surface.

    PubMed

    Zhang, Tian; Ma, Zhongyun; Wang, Linjun; Xi, Jinyang; Shuai, Zhigang

    2014-04-13

    Double-docking self-assembled monolayers (DDSAMs), namely self-assembled monolayers (SAMs) formed by molecules possessing two docking groups, provide great flexibility to tune the work function of metal electrodes and the tunnelling barrier between metal electrodes and the SAMs, and thus offer promising applications in both organic and molecular electronics. Based on the dispersion-corrected density functional theory (DFT) in comparison with conventional DFT, we carry out a systematic investigation on the dual configurations of a series of DDSAMs on an Au(111) surface. Through analysing the interface electronic structures, we obtain the relationship between single molecular properties and the SAM-induced work-function modification as well as the level alignment between the metal Fermi level and molecular frontier states. The two possible conformations of one type of DDSAM on a metal surface reveal a strong difference in the work-function modification and the electron/hole tunnelling barriers. Fermi-level pinning is found to be a key factor to understand the interface electronic properties.

  7. Manipulation of the ultimate pattern of polypyrrole film on self-assembled monolayer patterned substrate by negative or positive electrodeposition

    NASA Astrophysics Data System (ADS)

    Zhou, Feng; Liu, Zhilu; Yu, Bo; Chen, Miao; Hao, Jingcheng; Liu, Weimin; Xue, Qunji

    2004-07-01

    Micro printed self-assembled monolayer may lead to different ultimate patterns of polypyrrole (PPy) by way of positive or negative deposition in guiding the electrodeposition of pyrrole. This article gives a detailed investigation of the effects of experimental conditions on the ultimate patterns of the PPy films on self-assembled monolayer (SAM)-patterned silicon and gold substrates. The effects of the substrate surface electric properties and the nature of the solvent and supporting electrolyte on the selective deposition and the PPy film morphology are also discussed. As the results, negative deposition occurs on the octadecyltrichlorosilane (OTS)-covered area of semiconductor Si surface in non-aqueous acetonitrile solution and results in positive patterns, while positive deposition occurs in aqueous solution and gives birth to negative patterns. This is attributed to the accessibility of the monomer solution to the substrate surface. The electrodeposition preferentially occurs on the exposed area of a gold substrate, though the deposition on the octadecanthiol (ODT)-covered area is unavoidable due to the hydrophobic-hydrophobic interaction. The lypophilic properties of the deposited PPy can be modified by selecting different salts as the supporting electrolytes and doping different anions during the electrodeposition. Subsequently, the morphology of the electro-deposited PPy layer can be tailored making use of the interaction between the PPy oligomer and the surfaces of different chemical functionalities.

  8. Concentration-Controlled Reversible Phase Transitions in Self-Assembled Monolayers on HOPG Surfaces.

    PubMed

    Shen, Xueli; Wei, Xiaodong; Tan, Pengli; Yu, Yingguo; Yang, Biao; Gong, Zhongmiao; Zhang, Haiming; Lin, Haiping; Li, Youyong; Li, Qing; Xie, Yongshu; Chi, Lifeng

    2015-05-20

    Rational control of molecular ordering on surfaces and interfaces is vital in supramolecular chemistry and nanoscience. Here, a systematic scanning tunneling microscopy (STM) study for controlling the self-assembly behavior of alkoxylated benzene (B-OC(n)) molecules on a HOPG surface is presented. Three different phases have been observed and, of great importance, they can transform to each other by modifying the solute concentration. Further studies, particularly in situ diluting and concentrating experiments, demonstrate that the transitions among the three phases are highly controllable and reversible, and are driven thermodynamically. In addition, it is found that concentration-controlled reversible phase transitions are general for different chain lengths of B-OC(n) molecules. Such controllable and reversible phase transitions may have potential applications in the building of desirable functional organic thin films and provide a new understanding in thermodynamically driven self-assembly of organic molecules on surfaces and interfaces.

  9. Experimental setup for the coating of chlorosilane based self assembling monolayers to reduce stiction in MEMS devices

    NASA Astrophysics Data System (ADS)

    Steiner, H.; Sachse, M.; Schalko, J.; Hortschitz, W.; Kohl, F.; Jachimowicz, A.

    2011-06-01

    An often reported problem during production and operation of silicon MEMS is stiction. It describes the sticking of movable MEMS parts to surrounding structures. The probability of the occurrence of stiction is linked to the surface energy of the MEMS. Self assembling monolayers can be used to reduce the surface energy and therefore the probability of stiction. These monolayers have to resist high temperatures up to 400°C to be compatible with various micro-production processes, e.g., eutectic bonding. Several groups tried to coat such monolayers with different success and results. One problem is the instability of the coating method due to water contaminations of the coating solution. To circumvent this error source, an experimental setup was designed and built up to minimize the water content of the monolayer solvent and ensures reproducible conditions during the coating process. The required set of liquids is piped through a system of valves and tubes to rinse a trench with a silicon die. To avoid contamination of the liquids with water, the setup is partly placed in a box flushed with nitrogen. With this experimental setup, the surface energy γs of the MEMS structures had been reduced from 18.1 mJ/m2 to 33.1 μJ/m2 and 36.6 μJ/m2 for FDTS and DDMS, respectively.

  10. Structure and dynamics of water near the interface with oligo(ethylene oxide) self-assembled monolayers

    NASA Astrophysics Data System (ADS)

    Ismail, Ahmed E.; Grest, Gary S.; Stevens, Mark J.

    2007-03-01

    Oligo(ethylene oxide) self-assembled monolayers (OEO SAM's) deposited on Au are the prototypical materials used to study protein resistance. Recently, protein resistance has been shown to vary as a function of surface coverage and to be maximal at about two-thirds coverage, not complete coverage. We use molecular dynamics simulations to study the nature of the interface between water and the OEO SAM for a range of SAM coverages. As SAM coverage decreases, the amount of water within the OEO monolayer increases monotonically; however, the penetration depth of the water shows a maximum near the experimentally-found maximal coverage. As the water content increases, the SAM-water mixture becomes harder to distinguish from bulk water. Since the oxygen atoms of OEO are hydrogen bond acceptors, a hydrogen bond network forms within the SAM-water mixture. The water molecules diffuse freely within the monolayer and exchange with the bulk water. Because the monolayer becomes increasingly like bulk water as the coverage decreases, proteins stay in their bulk soluble conformation and do not adsorb. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract No. DE-AC04-94AL85000.

  11. Directly Grafting Alkanethiol on Bare Si (111) by UV-assisted Photochemical Reaction

    NASA Astrophysics Data System (ADS)

    Chang, Lo-Yueh; Shiu, Hung-Wei; Gwo, Shangjr; Chen, Chia-Hao

    2014-03-01

    Self-assembled monolayers (SAMs) are organic molecules that self-assembled and closely packed on substrate surface. The surface physic and chemical properties are dependent on the controllable tail of SAMs. Therefore, SAMs is attracting a lot of attention in bio-sensing, nano-manipulating, and microfluidic field. The alkanethiol on noble metal surface, such as gold and silver, is a well-known SAM system to understand the fundamental properties. However, alkanethiols grown on semiconductor surfaces was less systematically studied, especially on bare silicon surface, despite their prospective applications. To have in-depth understanding of such system, we tried to grow alkanethiol SAMs on hydrogen-terminated Si surface by UV-assisted photochemical reaction. The resulting monolayer was studied by means of water contact angle measurement, synchrotron radiation based X-ray photoemission spectroscopy, and polarization dependent near-edge X-ray absorption fine structure. The combined characterization probes revealed a hydrophobic ambient surface, and the n-alkanethiols were directly attached on Si through Si-S bond that formed a highly order monolayer to prevent the air oxidation and contamination.

  12. Polymer-assisted self-assembly of gold nanoparticle monolayers and their dynamical switching.

    PubMed

    Ding, Tao; Rudrum, Adam W; Herrmann, Lars O; Turek, Vladimir; Baumberg, Jeremy J

    2016-09-21

    Dynamic switching of plasmonic monolayers built of gold nanoparticles (AuNPs) is achieved using nano-coatings of poly(isopropyl acrylamide) (PNIPAM). The distance between AuNPs can be dynamically tuned through the repeatable expansion and contraction of the PNIPAM shells at different temperatures, which results in rapid switching of the optical properties of the AuNP monolayer. PMID:27546585

  13. Structure and dynamics of self-assembling colloidal monolayers in oscillating magnetic fields.

    PubMed

    Koser, Alison E; Keim, Nathan C; Arratia, Paulo E

    2013-12-01

    Many fascinating phenomena such as large-scale collective flows, enhanced fluid mixing, and pattern formation have been observed in so-called active fluids, which are composed of particles that can absorb energy and dissipate it into the fluid medium. For active particles immersed in liquids, fluid-mediated viscous stresses can play an important role on the emergence of collective behavior. Here, we experimentally investigate their role in the dynamics of self-assembling magnetically driven colloidal particles which can rapidly form organized hexagonal structures. We find that viscous stresses reduce hexagonal ordering, generate smaller clusters, and significantly decrease the rate of cluster formation, all while holding the system at constant number density. Furthermore, we show that time and length scales of cluster formation depend on the Mason number (Mn), or ratio of viscous to magnetic forces, scaling as t∝Mn and L∝Mn(-1/2). Our results suggest that viscous stresses hinder collective behavior in a self-assembling colloidal system.

  14. Atomic-level elucidation of the initial stages of self-assembled monolayer metallization and nanoparticle formation.

    PubMed

    Keith, John A; Jacob, Timo

    2010-11-01

    The development of high-performance molecular electronics and nanotech applications requires deep understanding of atomic level structural, electronic, and magnetic properties of electrode/molecular interfaces. Recent electrochemical experiments on self-assembled monolayers (SAMs) have identified highly practical means to generate nanoparticles and metal monolayers suspended above substrate surfaces through SAM metallizations. A rational basis why this process is even possible is not yet well-understood. To clarify the initial stages of interface formation during SAM metallization, we used first-principles spin-polarized density functional theory (DFT) calculations to study Pd diffusion on top of 4-mercaptopyridine (4MP) SAMs on Au(111). After distinguishing potential-energy surfaces (PESs) for different spin configurations for transition metal atoms on the SAM, we find adatom diffusion is not possible over the clean 4MP-SAM surface. Pre-adsorption of transition-metal atoms, however, facilitates atomic diffusion that appears to explain multiple reports on experimentally observed island and monolayer formation on top of SAMs. Furthermore, these diffusions most likely occur by moving across low-lying and intersecting PESs of different spin states, opening the possibility of magnetic control over these systems. Vertical diffusion processes were also investigated, and the electrolyte was found to play a key role in preventing metal permeation through the SAM to the substrate.

  15. Nanoparticle assemblies as probes for self-assembled monolayer characterization: correlation between surface functionalization and agglomeration behavior.

    PubMed

    Feichtenschlager, Bernhard; Pabisch, Silvia; Peterlik, Herwig; Kickelbick, Guido

    2012-01-10

    The ordering of dodecyl chains has been investigated in mixed monolayers of phosphonic acid capping agents on the surface of hydrothermally prepared zirconia nanocrystals. Methyl-, phenyl-, pyryl-, and tert-butylphosphonic acids have been used to investigate series with different mixing ratios with dodecylphosphonic acid as the cocapping agent for the mixed monolayer formation. Fourier transform infrared (FTIR) studies revealed that an increasing amount (different for each type) of coadsorbed capping agent reduces the ordering of the dodecyl chains significantly. Small-angle X-ray scattering (SAXS) verified that with increasing amount of cocapping agent the agglomeration of the particles decreases. The strong correlation of the agglomeration behavior with the ordering of the surface-bound alkyl chains leads to the conclusion that interparticle bilayers, formed via long alkyl chain packing, are responsible and can be controlled on a molecular level by coadsorbing various molecules. On the basis of this correlation, nanoparticles can be used as probes for self-assembled monolayer investigation by an indirect structural method (SAXS) and correlated with the routine spectroscopical method for the chemical analysis of surface groups (FTIR).

  16. Electrochemical modeling of electron and proton transfer to ubiquinone-10 in a self-assembled phospholipid monolayer.

    PubMed Central

    Moncelli, M R; Becucci, L; Nelson, A; Guidelli, R

    1996-01-01

    Ubiquinone-10 (UQ) was incorporated at concentrations ranging from 0.5 to 2 mol% in a self-assembled monolayer of dioleoylphosphatidylcholine (DOPC) deposited on a mercury drop electrode, and its electroreduction to ubiquinol (UQH2) was investigated in phosphate and borate buffers over the pH range from 7 to 9.5 by a computerized chronocoulometric technique. The dependence of the applied potential for a constant value of the faradaic charge due to UQ reduction upon the electrolysis time t at constant pH and upon pH at constant t was examined on the basis of a general kinetion approach. This permitted us to conclude that the reduction of UQ to UQH2 in DOPC monolayers takes place via the reversible uptake of one electron with the formation of the semiubiquinone radical anion UQ.-, followed by the rate-determining protonation of this anion with UQH. formation; this neutral radical is more easily reduced than UQ, yielding the ubiquinol UQH2. In spite of the very low concentration of hydrogen ions as compared with that of the acidic component of the buffer, the only effective proton donor is the proton itself; this strongly suggests that the protonation step takes place inside the polar head region of the DOPC monolayer, which is only accessible to protons. PMID:8744309

  17. Effect of Reactive Self-Assembled Monolayer at the Anode Interface of Organic Light-Emitting Diode.

    PubMed

    Ono, Sotaro; Usui, Satoshi; Kim, Seong-Ho; Tanaka, Kuniaki; Advincula, Rigoberto C; Usuil, Hiroaki

    2016-04-01

    Organic light-emitting diodes (OLEDs) were prepared on-indium-tin oxide (ITO) substrates that were modified with various self-assembled monolayers (SAMs) including those which have reactive terminal units. The OLED performance was analyzed in terms of molecular length, dipole moment and HOMO level of SAM molecules estimated by the density functional theory calculation. It was suggested that the current efficiency of OLED is partly improved by controlling the carrier balance, interfacial dipole moment, and electron energy level by SAM modification. More importantly, remarkable improvement in OLED efficiency was achieved by chemically tethering the inorganic/organic interface via benzophenone-terminated SAM. The reactive SAM having benzophenone terminal group can be a promising tool to control the inorganic/organic interface for organic devices. PMID:27451642

  18. Colloidal silicon quantum dots: from preparation to the modification of self-assembled monolayers (SAMs) for bio-applications.

    PubMed

    Cheng, Xiaoyu; Lowe, Stuart B; Reece, Peter J; Gooding, J Justin

    2014-04-21

    Concerns over possible toxicities of conventional metal-containing quantum dots have inspired growing research interests in colloidal silicon nanocrystals (SiNCs), or silicon quantum dots (SiQDs). This is related to their potential applications in a number of fields such as solar cells, optoelectronic devices and fluorescent bio-labelling agents. The past decade has seen significant progress in the understanding of fundamental physics and surface properties of silicon nanocrystals. Such understanding is based on the advances in the preparation and characterization of surface passivated colloidal silicon nanocrystals. In this critical review, we summarize recent advances in the methods of preparing high quality silicon nanocrystals and strategies for forming self-assembled monolayers (SAMs), with a focus on their bio-applications. We highlight some of the major challenges that remain, as well as lessons learnt when working with silicon nanocrystals (239 references).

  19. Intermixed adatom and surface-bound adsorbates in regular self-assembled monolayers of racemic 2-butanethiol on Au(111).

    PubMed

    Ouyang, Runhai; Yan, Jiawei; Jensen, Palle S; Ascic, Erhad; Gan, Shiyu; Tanner, David; Mao, Bingwei; Niu, Li; Zhang, Jingdong; Tang, Chunguang; Hush, Noel S; Reimers, Jeffrey R; Ulstrup, Jens

    2015-04-01

    In situ scanning tunneling microscopy combined with density functional theory molecular dynamics simulations reveal a complex structure for the self-assembled monolayer (SAM) of racemic 2-butanethiol on Au(111) in aqueous solution. Six adsorbate molecules occupy a (10×√3)R30° cell organized as two RSAuSR adatom-bound motifs plus two RS species bound directly to face-centered-cubic and hexagonally close-packed sites. This is the first time that these competing head-group arrangements have been observed in the same ordered SAM. Such unusual packing is favored as it facilitates SAMs with anomalously high coverage (30%), much larger than that for enantiomerically resolved 2-butanethiol or secondary-branched butanethiol (25%) and near that for linear-chain 1-butanethiol (33%).

  20. A General Method for Solvent Exchange of Plasmonic Nanoparticles and Self-Assembly into SERS-Active Monolayers

    PubMed Central

    2015-01-01

    We present a general route for the transfer of Au and Ag nanoparticles of different shapes and sizes, from water into various organic solvents. The experimental conditions for each type of nanoparticles were optimized by using a combination of thiolated poly(ethylene glycol) and a hydrophobic capping agent, such as dodecanethiol. The functionalized nanoparticles were readily transferred into organic dispersions with long-term stability (months). Such organic dispersions efficiently spread out on water, leading to self-assembly at the air/liquid interface into extended nanoparticle arrays which could in turn be transferred onto solid substrates. The dense close packing in the obtained nanoparticle monolayers results in extensive plasmon coupling, rendering them efficient substrates for surface-enhanced Raman scattering spectroscopy. PMID:26258732

  1. Morse potential-based model for contacting composite rough surfaces: Application to self-assembled monolayer junctions

    NASA Astrophysics Data System (ADS)

    Sierra-Suarez, Jonatan A.; Majumdar, Shubhaditya; McGaughey, Alan J. H.; Malen, Jonathan A.; Higgs, C. Fred

    2016-04-01

    This work formulates a rough surface contact model that accounts for adhesion through a Morse potential and plasticity through the Kogut-Etsion finite element-based approximation. Compared to the commonly used Lennard-Jones (LJ) potential, the Morse potential provides a more accurate and generalized description for modeling covalent materials and surface interactions. An extension of this contact model to describe composite layered surfaces is presented and implemented to study a self-assembled monolayer (SAM) grown on a gold substrate placed in contact with a second gold substrate. Based on a comparison with prior experimental measurements of the thermal conductance of this SAM junction [Majumdar et al., Nano Lett. 15, 2985-2991 (2015)], the more general Morse potential-based contact model provides a better prediction of the percentage contact area than an equivalent LJ potential-based model.

  2. Enhancement of fill factor in air-processed inverted organic solar cells using self-assembled monolayer of fullerene catechol

    NASA Astrophysics Data System (ADS)

    Jeon, Il; Ogumi, Keisuke; Nakagawa, Takafumi; Matsuo, Yutaka

    2016-08-01

    [60]Fullerene catechol self-assembled monolayers were prepared and applied to inverted organic solar cells by an immersion method, and their energy conversion properties were measured. By introducing fullerenes at the surface, we improved the hole-blocking capability of electron-transporting metal oxide, as shown by the fill factor enhancement. The fullerene catechol-treated TiO x -containing device gave a power conversion efficiency (PCE) of 2.81% with a fill factor of 0.56 while the non treated device gave a PCE of 2.46% with a fill factor of 0.49. The solar cell efficiency improved by 13% compared with the non treated reference device.

  3. How nanoscience translates into technology: the case of self-assembled monolayers, electron-beam writing, and carbon nanomembranes.

    PubMed

    Palmer, R E; Robinson, A P G; Guo, Q

    2013-08-27

    One of the great quests in nanotechnology is to translate nanoprecision materials science into practical manufacturing processes. The paper by Angelova et al. in this issue of ACS Nano, which discusses the production of functional carbon-based membranes with a thickness of 0.5 to 3 nm, provides instructive insight into how researchers are pulling together complementary strands from a quarter century of nanoscience research to develop novel, hybrid processing schemes. In this Perspective, we reflect on the progress that is taking place in the two principal component technologies combined in this scheme, namely, (i) control of self-assembled monolayers, including their detailed atomic structures, and (ii) electron-induced manipulation and processing of molecular layers, as well as considering (iii) remaining challenges for thin membrane production in the future.

  4. A Rationally Designed Thymidine-Based Self-Assembled Monolayer on a Gold Electrode for Electroanalytical Applications.

    PubMed

    Datta, Dhrubajyoti; Bera, Raj Kumar; Jana, Saibal; Manna, Bhaskar; Roy, Debayan; Anoop, Anakuthil; Raj, C Retna; Pathak, Tanmaya

    2015-07-01

    A self-assembled monolayer (SAM) of 1-(3,5-epidithio-2,3,5-trideoxy-β-D-threo-pentofuranosyl)thymine (EFT) on a gold electrode was prepared and characterized by Raman spectral and electrochemical measurements. Voltammetric and electrochemical impedance measurements show that the SAM of EFT on a Au electrode impedes the electron-transfer reaction. The SAM of EFT was successfully used for the voltammetric sensing of urate in neutral solution. The coexisting ascorbate anion does not interfere and therefore the EFT-based electrode was able to quantify urate at the micromolar level in the presence of a large excess amount of ascorbate. To demonstrate the practical applications, the amount of urate in two different human serum samples was quantified by using the EFT-based electrode; the results are in good agreement with those determined by the clinical method. DFT calculations show that both ascorbate and urate have noncovalent interactions including hydrogen-bonding interactions with EFT.

  5. Variation in anisotropic dispersion relations of self-assembled monolayer on Cu(001) induced by modulation of molecular structures

    NASA Astrophysics Data System (ADS)

    Kanazawa, Ken; Nakamura, Miki; Huang, Hui; Taninaka, Atsushi; Shigekawa, Hidemi

    2015-02-01

    The two-dimensional electron gas (2DEG) states formed by self-assembled monolayers (SAM) of β-alanine molecules on a Cu(001) surface showed anisotropic dispersion relations different from those formed by glycine SAM. β-Alanine has a structure with an additional methylene group compared with glycine, and enantiomeric isomers were formed through adsorption, similarly to glycine. The anisotropic ratio of the effective masses was changed from 10 for glycine to 3.6 for β-alanine, suggesting the possibility of manipulating electronic structures by modification of the molecular structures. Although the growth modes were different for β-alanine and glycine, 2DEG states with standing waves were observed only for the p(2 × 4) phase in both cases, suggesting a key role of the interactions in the arrangement of this phase, together with the importance of the enantiomeric isomers formed through adsorption, which is also a characteristic of both molecules.

  6. Novel self-assembled phosphonic acids monolayers applied in N-channel perylene diimide (PDI) organic field effect transistors

    NASA Astrophysics Data System (ADS)

    Cheng, Heng; Huai, Jinyue; Cao, Li; Li, Zhefeng

    2016-08-01

    Phosphoric acid (PA) self-assembled monolayers (SAMs) have been developed for applications in organic field-effect transistors (OFETs). This efficient interface modification is helpful for semiconductor layer to form crystal thin film during vapor deposition. Results show that the PDI-i8C based OFETs with PA SAMs exhibit field-effect mobilities up to 0.014 cm2 V-1 s-1 (with ODPA as SAMs), which is over 500 times higher than the device without SAMs. Also, transistors with Naph6PA as SAMs show up to 1.5 × 10-3 cm2 V-1 s-1. By studying the morphology of semiconductor layer and SAMs surface, it is found that ODPA bilayer structure plays a key role in inducing PDI-i8C to form orderly crystal thin film.

  7. Self-assembled monolayer of designed and synthesized triazinedithiolsilane molecule as interfacial adhesion enhancer for integrated circuit.

    PubMed

    Wang, Fang; Li, Yanni; Wang, Yabin; Cao, Zhuo

    2011-08-03

    Self-assembled monolayer (SAM) with tunable surface chemistry and smooth surface provides an approach to adhesion improvement and suppressing deleterious chemical interactions. Here, we demonstrate the SAM comprising of designed and synthesized 6-(3-triethoxysilylpropyl)amino-1,3,5-triazine-2,4-dithiol molecule, which can enhance interfacial adhesion to inhibit copper diffusion used in device metallization. The formation of the triazinedithiolsilane SAM is confirmed by X-ray photoelectron spectroscopy. The adhesion strength between SAM-coated substrate and electroless deposition copper film was up to 13.8 MPa. The design strategy of triazinedithiolsilane molecule is expected to open up the possibilities for replacing traditional organosilane to be applied in microelectronic industry.

  8. Self-assembled monolayer of designed and synthesized triazinedithiolsilane molecule as interfacial adhesion enhancer for integrated circuit

    PubMed Central

    2011-01-01

    Self-assembled monolayer (SAM) with tunable surface chemistry and smooth surface provides an approach to adhesion improvement and suppressing deleterious chemical interactions. Here, we demonstrate the SAM comprising of designed and synthesized 6-(3-triethoxysilylpropyl)amino-1,3,5-triazine-2,4-dithiol molecule, which can enhance interfacial adhesion to inhibit copper diffusion used in device metallization. The formation of the triazinedithiolsilane SAM is confirmed by X-ray photoelectron spectroscopy. The adhesion strength between SAM-coated substrate and electroless deposition copper film was up to 13.8 MPa. The design strategy of triazinedithiolsilane molecule is expected to open up the possibilities for replacing traditional organosilane to be applied in microelectronic industry. PMID:21812994

  9. Dithienylcyclopentene-functionalised subphthalocyaninatoboron complexes: photochromism, fluorescence modulation and formation of self-assembled monolayers on gold

    PubMed Central

    Weidner, Tobias; Baio, Joe E.; Seibel, Johannes

    2012-01-01

    Subphthalocyaninatoboron (SubPc) complexes bearing six peripheral n-dodecylthio substituents and an apical photochromic dithienylperfluorocyclopentene unit were prepared. The photoinduced isomerisation of the apical substitutent from the open to the ring-closed form significantly influences the photoluminescence of the covalently attached SubPc unit, which is more efficiently quenched by the ring-closed form. Films on gold were fabricated from these multifunctional conjugates and characterised by near-edge X-ray absorption fine structure (NEXAFS) and X-ray photoelectron spectroscopy (XPS). The results are in accord with the formation of self-assembled monolayers based on dome-shaped SubPc-based anchor groups. Their chemisorption is primarily due to the peripheral n-dodecylthio substituents, giving rise to covalently attached thiolate as well as coordinatively bound thioether units, whose alkyl chains are in an almost parallel orientation to the surface. PMID:22138955

  10. Role of self-assembled monolayer passivation in electrical transport properties and flicker noise of nanowire transistors.

    PubMed

    Kim, Seongmin; Carpenter, Patrick D; Jean, Rand K; Chen, Haitian; Zhou, Chongwu; Ju, Sanghyun; Janes, David B

    2012-08-28

    Semiconductor nanowires have achieved great attention for integration in next-generation electronics. However, for nanowires with diameters comparable to the Debye length, which would generally be required for one-dimensional operation, surface states degrade the device performance and increase the low-frequency noise. In this study, single In(2)O(3) nanowire transistors were fabricated and characterized before and after surface passivation with a self-assembled monolayer of 1-octadecanethiol (ODT). Electrical characterization of the transistors shows that device performance can be enhanced upon ODT passivation, exhibiting steep subthreshold slope (~64 mV/dec), near zero threshold voltage (~0.6 V), high mobility (~624 cm(2)/V·s), and high on-currents (~40 μA). X-ray photoelectron spectroscopy studies of the ODT-passivated nanowires indicate that the molecules are bound to In(2)O(3) nanowires through the thiol linkages. Device simulations using a rectangular geometry to represent the nanowire indicate that the improvement in subthreshold slope and positive shift in threshold voltage can be explained in terms of reduced interface trap density and changes in fixed charge density. Flicker (low-frequency, 1/f) noise measurements show that the noise amplitude is reduced following passivation. The interface trap density before and after ODT passivation is profiled throughout the band gap energy using the subthreshold current-voltage characteristics and is compared to the values extracted from the low-frequency noise measurements. The results indicate that self-assembled monolayer passivation is a promising optimization technology for the realization of low-power, low-noise, and fast-switching applications such as logic, memory, and display circuitry. PMID:22775468

  11. Seeding Atomic Layer Deposition of High-k Dielectrics on Epitaxial Graphene with Organic Self-assembled Monolayers

    SciTech Connect

    Alaboson, Justice M. P.; Wang, Qing Hua; Emery, Jonathan D.; Lipson, Albert L.; Bedzyk, Michael J.; Elam, Jeffrey W.; Pellin, Michael J.; Hersam, Mark C.

    2011-06-28

    The development of high-performance graphene-based nanoelectronics requires the integration of ultrathin and pinhole-free high-k dielectric films with graphene at the wafer scale. Here, we demonstrate that self-assembled monolayers of perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA) act as effective organic seeding layers for atomic layer deposition (ALD) of HfO₂ and Al₂O₃ on epitaxial graphene on SiC(0001). The PTCDA is deposited via sublimation in ultrahigh vacuum and shown to be highly ordered with low defect density by molecular-resolution scanning tunneling microscopy. Whereas identical ALD conditions lead to incomplete and rough dielectric deposition on bare graphene, the chemical functionality provided by the PTCDA seeding layer yields highly uniform and conformal films. The morphology and chemistry of the dielectric films are characterized by atomic force microscopy, ellipsometry, cross-sectional scanning electron microscopy, and X-ray photoelectron spectroscopy, while high-resolution X-ray reflectivity measurements indicate that the underlying graphene remains intact following ALD. Using the PTCDA seeding layer, metal-oxide-graphene capacitors fabricated with a 3 nm Al₂O₃ and 10 nm HfO₂ dielectric stack show high capacitance values of ~700 nF/cm² and low leakage currents of ~5 × 10{sup –9} A/cm² at 1 V applied bias. These results demonstrate the viability of sublimated organic self-assembled monolayers as seeding layers for high-k dielectric films in graphene-based nanoelectronics.

  12. Quantifying Thiol Ligand Density of Self-Assembled Monolayers on Gold Nanoparticles by Inductively Coupled Plasma–Mass Spectrometry

    PubMed Central

    2013-01-01

    Gold nanoparticles (GNPs) are often used as colloidal carriers in numerous applications owing to their low-cost and size-controlled preparation as well as their straightforward surface functionalization with thiol containing molecules forming self-assembling monolayers (SAM). The quantification of the ligand density of such modified GNPs is technically challenging, yet of utmost importance for quality control in many applications. In this contribution, a new method for the determination of the surface coverage of GNPs with thiol containing ligands is proposed. It makes use of the measurement of the gold-to-sulfur (Au/S) ratio by inductively coupled plasma mass spectrometry (ICP–MS) and its dependence on the nanoparticle diameter. The simultaneous ICP–MS measurement of gold and sulfur was carefully validated and found to be a robust method with a relative standard uncertainty of lower than 10%. A major advantage of this method is the independence from sample preparation; for example, sample loss during the washing steps is not affecting the results. To demonstrate the utility of the straightforward method, GNPs of different diameters were synthesized and derivatized on the surface with bifunctional (lipophilic) ω-mercapto-alkanoic acids and (hydrophilic) mercapto-poly(ethylene glycol) (PEG)n-carboxylic acids, respectively, by self-assembling monolayer (SAM) formation. Thereby, a size-independent but ligand-chain length-dependent ligand density was found. The surface coverage increases from 4.3 to 6.3 molecules nm–2 with a decrease of ligand chain length from 3.52 to 0.68 nm. Furthermore, no significant difference between the surface coverage of hydrophilic and lipophilic ligands with approximately the same ligand length was found, indicating that sterical hindrance is of more importance than, for example, intermolecular strand interactions of Van der Waals forces as claimed in other studies. PMID:23331002

  13. IMPACT OF POLYCYCLIC AROMATIC HYDROCARBONS OF THE ELECTROCHEMICAL RESPONSES OF A FERRICYNIDE PROBE AT TEMPLATE-MODIFIED SELF ASSEMBLED MONOLAYERS ON GOLD ELECTRODES

    EPA Science Inventory

    The impact of pyrene on the electrochemical response of the ferricyanide probe using Self Assembled Monolayer (SAM)-modified gold electrodes was investigated using Cyclic Voltammetry (CV) and Square Wave Voltammetry (SWV). These results suggest the feasibility of using SAMs, par...

  14. Building a Low-Cost, Six-Electrode Instrument to Measure Electrical Properties of Self-Assembled Monolayers of Gold Nanoparticles

    ERIC Educational Resources Information Center

    Gerber, Ralph W.; Oliver-Hoyo, Maria

    2007-01-01

    The development of a new low-cost, six-electrode instrument for measuring the electrical properties of the self-assembled monolayers of gold particles is being described. The system can also be used to measure conductive liquids, except for those that contain aqua region.

  15. Comparison of a Fluorinated Aryl Thiol Self-Assembled Monolayer with Its Hydrogenated Counterpart on Polycrystalline Ag Substrates

    SciTech Connect

    Schalnat, Matthew C.; Pemberton, Jeanne E.

    2010-07-20

    The effects of perfluorination of aryl thiols on surface coverage, surface electronic properties, and molecular orientation of self-assembled monolayers of thiophenol (TP) and pentafluorothiophenol (F5TP) on polycrystalline Ag were evaluated using linear sweep voltammetry, ultraviolet photoelectron spectroscopy (UPS), and surface Raman spectroscopy, respectively. Electrochemical reductive desorption by linear sweep voltammetry indicates a surface coverage for the TP monolayer of (5.07 ± 1.29) × 10-10 mol/cm2, equating to a molecular area of 32.8 ± 8.3 Å2, and a surface coverage for the F5TP monolayer of (1.95 ± 0.59) × 10-10 mol/cm2, equating to an area of 85.2 ± 25.8 Å2/molecule. TP-modified Ag exhibits a change in work function (ΔΦ) of -0.64 eV relative to bare Ag, whereas F5TP-modified Ag exhibits a ΔΦ of +0.54 eV relative to bare Ag. Quantitative analysis of the UPS and reductive desorption results yields molecular pictures of the proposed interfaces with TP molecules tilted <20° from the surface normal in a herringbone pattern spaced 6.4 Å apart and F5TP molecules in a more disordered arrangement tilted 67° from the surface normal with an intermolecular distance of 10.4 Å. Qualitative surface Raman spectroscopic analysis of in-plane and out-of-plane modes for these systems confirms that TP molecules are oriented more vertical than F5TP molecules in these monolayers.

  16. Optical modulation of nano-gap tunnelling junctions comprising self-assembled monolayers of hemicyanine dyes.

    PubMed

    Pourhossein, Parisa; Vijayaraghavan, Ratheesh K; Meskers, Stefan C J; Chiechi, Ryan C

    2016-01-01

    Light-driven conductance switching in molecular tunnelling junctions that relies on photoisomerization is constrained by the limitations of kinetic traps and either by the sterics of rearranging atoms in a densely packed monolayer or the small absorbance of individual molecules. Here we demonstrate light-driven conductance gating; devices comprising monolayers of hemicyanine dyes trapped between two metallic nanowires exhibit higher conductance under irradiation than in the dark. The modulation of the tunnelling current occurs faster than the timescale of the measurement (∼1 min). We propose a mechanism in which a fraction of molecules enters an excited state that brings the conjugated portion of the monolayer into resonance with the electrodes. This mechanism is supported by calculations showing the delocalization of molecular orbitals near the Fermi energy in the excited and cationic states, but not the ground state and a reasonable change in conductance with respect to the effective barrier width. PMID:27272394

  17. ALD resist formed by vapor-deposited self-assembled monolayers.

    PubMed

    Hong, Junsic; Porter, David W; Sreenivasan, Raghavasimhan; McIntyre, Paul C; Bent, Stacey F

    2007-01-30

    A new process of applying molecular resists to block HfO2 and Pt atomic layer deposition has been investigated. Monolayer films are formed from octadecyltrichlorosilane (ODTS) or tridecafluoro-1,1,2,2-tetrahydrooctyltrichlorosilane (FOTS) and water vapor on native silicon oxide surfaces and from 1-octadecene on hydrogen-passivated silicon surfaces through a low-pressure chemical vapor deposition process. X-ray photoelectron spectroscopy data indicates that surfaces blocked by these monolayer resists can prevent atomic layer deposition of both HfO2 and Pt successfully. Time-dependent studies show that the ODTS monolayers continue to improve in blocking ability for as long as 48 h of formation time, and infrared spectroscopy measurements confirm an evolution of packing order over these time scales.

  18. Optical modulation of nano-gap tunnelling junctions comprising self-assembled monolayers of hemicyanine dyes

    PubMed Central

    Pourhossein, Parisa; Vijayaraghavan, Ratheesh K.; Meskers, Stefan C. J.; Chiechi, Ryan C.

    2016-01-01

    Light-driven conductance switching in molecular tunnelling junctions that relies on photoisomerization is constrained by the limitations of kinetic traps and either by the sterics of rearranging atoms in a densely packed monolayer or the small absorbance of individual molecules. Here we demonstrate light-driven conductance gating; devices comprising monolayers of hemicyanine dyes trapped between two metallic nanowires exhibit higher conductance under irradiation than in the dark. The modulation of the tunnelling current occurs faster than the timescale of the measurement (∼1 min). We propose a mechanism in which a fraction of molecules enters an excited state that brings the conjugated portion of the monolayer into resonance with the electrodes. This mechanism is supported by calculations showing the delocalization of molecular orbitals near the Fermi energy in the excited and cationic states, but not the ground state and a reasonable change in conductance with respect to the effective barrier width. PMID:27272394

  19. Effect of molecular structure and packing density of an azo self-assembled monolayer on liquid crystal alignment.

    PubMed

    Vengatesan, M R; Lee, Seung-Ho; Son, Jong-Ho; Lim, Jeong-Ku; Song, Jang Kun

    2013-10-01

    We studied the alignment of liquid crystals (LCs) on a photo-switchable azo-containing self-assembled monolayer (azo-SAM) with different packing densities and molecular structures. The packing density of the azo-SAM substrates was varied by changing the dipping time of the substrate in azosilane monomers solution (2mM in toluene). The thickness of the monolayer on the silicon substrate increased as the dipping time was increased. The relative surface packing density on the glass substrates was estimated from the surface energies of the azo-SAM. The photo-induced dynamics of liquid crystal alignment on the azo-SAM significantly varied according to the packing density of the azo-SAM and the structure of the azo-SAM molecules. The azo-SAM from long octyloxy chain-terminated azosilane (azo-S1) possessed stable homeotropic alignment even after photobuffing, while the azo-SAM from short methyl group-terminated azosilane monomer (azo-S2) showed photo-switchable homeotropic and planar alignments. However, when the packing density was increased to an excessive degree, even the azo-SAM from azo-S2 exhibited stable homeotropic alignment regardless of photobuffing.

  20. Self-assembled monolayer and multilayer formation using redox-active Ru complex with phosphonic acids on silicon oxide surface

    NASA Astrophysics Data System (ADS)

    Ishida, Takao; Terada, Kei-ichi; Hasegawa, Kiichi; Kuwahata, Hironao; Kusama, Kazunori; Sato, Ryo; Nakano, Miki; Naitoh, Yasuhisa; Haga, Masa-aki

    2009-08-01

    The formation of self-assembled monolayer and multilayer using redox-active Ru complex molecules with phosphonic acids on SiO 2 surface has been examined using X-ray photoelectron spectroscopy (XPS), ellipsometry, and time of flight secondary mass-ion spectroscopy (TOF-SIMS). We found that an introduction of a Zr adlayer leads to higher surface molecular density of Ru complex SAMs on the SiO 2 surface, compared to that of obtained from the direct adsorption of Ru complex monolayer on the SiO 2 surface. We further tried to fabricate a multilayer film using this molecule with Zr(IV) ion acting as a chemical glue by a successive immersion process. The XPS data revealed that the molecular densities of the multilayers were also higher for the immobilization with Zr adlayer between Ru complex and SiO 2 surface than those without the Zr adlayer, suggesting that Zr adlayer is effective in forming highly packed molecular layer of phosphonic acids on SiO 2 surface. We found the film growth reached a saturation point after 6 layers on the SiO 2 surface. The film growth saturation can be explained by a molecular domain boundary effect encountered due to the large tilt angle of the molecular layer.

  1. Tribological properties of self-assembled monolayers of catecholic imidazolium and the spin-coated films of ionic liquids.

    PubMed

    Liu, Jianxi; Li, Jinlong; Yu, Bo; Ma, Baodong; Zhu, Yangwen; Song, Xinwang; Cao, Xulong; Yang, Wu; Zhou, Feng

    2011-09-20

    A novel compound of an imidazolium type of ionic liquid (IL) containing a biomimetic catecholic functional group normally seen in mussel adhesive proteins was synthesized. The IL can be immobilized on a silicon surface and a variety of other engineering material surfaces via the catecholic anchor, allowing the tribological protection of these substrates for engineering applications. The surface wetting and adhesive properties and the tribological property of the synthesized self-assembled monolayers (SAMs) are successfully modulated by altering the counteranions. The chemical composition and wettability of the IL SAMs were characterized by means of X-ray photoelectron spectroscopy (XPS) and contact angle (CA) measurements. The adhesive and friction forces were measured with an atomic force microscope (AFM) on the nanometer scale. IL composite films were prepared by spin coating thin IL films on top of the SAMs. The macrotribological properties of these IL composite films were investigated with a pin-on-disk tribometer. The results indicate that the presence of IL SAMs on a surface can improve the wettability of spin-coated ionic liquids and thus the film quality and the tribological properties. These films registered a reduced friction coefficient and a significantly enhanced durability and load-carrying capacity. The tribological properties of the composite films are better than those of pure IL films because the presence of the monolayers improves the adhesion and compatibility of spin-coated IL films with substrates.

  2. Formation and dissolution processes of the 6-thioguanine (6TG) self-assembled monolayer. A kinetic study.

    PubMed

    Madueño, Rafael; Pineda, Teresa; Sevilla, José Manuel; Blázquez, Manuel

    2005-02-01

    This is a report on the kinetics of the destruction and formation processes of the 6-thioguanine self-assembled monolayer (6TG SAM) on a mercury electrode from acid solutions by chronoamperometry. The destruction of the 6TG SAM that has been previously formed under open circuit potential conditions is carried out by stepping the potential from an initial value where the chemisorbed layer is stable up to potentials where the molecules are no longer chemisorbed. The destruction of the SAM has been described by a model that involves three types of contributions: (i) a Langmuir-type adsorption process, (ii) a 2D nucleation mechanism followed by a growth controlled by surface diffusion, and (iii) a 2D nucleation mechanism followed by a growth at a constant rate. The nonlinear fit of the experimental transients by using this procedure allows the quantitative determination of the individual contributions to the overall process. The kinetics of the formation process is studied under electrochemical conditions. The chronoamperometric experiment allows us to monitor the early stages of 6TG SAM formation. The implications of the physisorbed state at low potentials in the type of monolayer formation and destruction processes as well as the influence of temperature are also discussed. PMID:16851120

  3. Effect of molecular structure and packing density of an azo self-assembled monolayer on liquid crystal alignment.

    PubMed

    Vengatesan, M R; Lee, Seung-Ho; Son, Jong-Ho; Lim, Jeong-Ku; Song, Jang Kun

    2013-10-01

    We studied the alignment of liquid crystals (LCs) on a photo-switchable azo-containing self-assembled monolayer (azo-SAM) with different packing densities and molecular structures. The packing density of the azo-SAM substrates was varied by changing the dipping time of the substrate in azosilane monomers solution (2mM in toluene). The thickness of the monolayer on the silicon substrate increased as the dipping time was increased. The relative surface packing density on the glass substrates was estimated from the surface energies of the azo-SAM. The photo-induced dynamics of liquid crystal alignment on the azo-SAM significantly varied according to the packing density of the azo-SAM and the structure of the azo-SAM molecules. The azo-SAM from long octyloxy chain-terminated azosilane (azo-S1) possessed stable homeotropic alignment even after photobuffing, while the azo-SAM from short methyl group-terminated azosilane monomer (azo-S2) showed photo-switchable homeotropic and planar alignments. However, when the packing density was increased to an excessive degree, even the azo-SAM from azo-S2 exhibited stable homeotropic alignment regardless of photobuffing. PMID:23871311

  4. Formation and dissolution processes of the 6-thioguanine (6TG) self-assembled monolayer. A kinetic study.

    PubMed

    Madueño, Rafael; Pineda, Teresa; Sevilla, José Manuel; Blázquez, Manuel

    2005-02-01

    This is a report on the kinetics of the destruction and formation processes of the 6-thioguanine self-assembled monolayer (6TG SAM) on a mercury electrode from acid solutions by chronoamperometry. The destruction of the 6TG SAM that has been previously formed under open circuit potential conditions is carried out by stepping the potential from an initial value where the chemisorbed layer is stable up to potentials where the molecules are no longer chemisorbed. The destruction of the SAM has been described by a model that involves three types of contributions: (i) a Langmuir-type adsorption process, (ii) a 2D nucleation mechanism followed by a growth controlled by surface diffusion, and (iii) a 2D nucleation mechanism followed by a growth at a constant rate. The nonlinear fit of the experimental transients by using this procedure allows the quantitative determination of the individual contributions to the overall process. The kinetics of the formation process is studied under electrochemical conditions. The chronoamperometric experiment allows us to monitor the early stages of 6TG SAM formation. The implications of the physisorbed state at low potentials in the type of monolayer formation and destruction processes as well as the influence of temperature are also discussed.

  5. Formation of highly stable self-assembled alkyl phosphonic acid monolayers for the functionalization of titanium surfaces and protein patterning.

    PubMed

    Han, Xuemingyue; Sun, Xiangyu; He, Tao; Sun, Shuqing

    2015-01-01

    A protocol for the preparation of improved phosphonate monolayers on a titanium (Ti) substrate is presented. Zirconium ions were used to enhance the bonding between the phosphonate headgroup and the pretreated Ti surface. Contact angle and X-ray photoelectron spectroscopy were used to characterize self-assembled monolayers (SAMs) of alkylphosphonic acid that formed spontaneously on Zr-mediated Ti (Zr/Ti) surfaces. The surfaces that were treated with an aqueous solution of zirconium oxychloride showed significantly enhanced stability in buffer compared with those formed directly on the native oxidized Ti. A bifunctional molecule, 10-mercaptodecanyl phosphonic acid (MDPA), was also used to form SAMs on Zr/Ti surfaces using an identical method, which enabled us to regulate the surface functionality through the terminal functional group. Protein patterning on the surface was carried out using UV irradiation through a mask to selectively degrade regions of the MDPA molecules. The surface was then backfilled with a protein-resistant molecule in the exposed regions followed by selective immobilization of proteins to the unexposed areas using a heterobifunctional linker molecule. The presented strategy significantly improved the stability of the phosphonate SAMs on oxidized Ti surfaces, which provided an ideal approach foundation for biomolecular immobilization and patterning onto the Ti surfaces. Thus, this method provided a versatile platform to activate the surfaces of biomedical Ti implants.

  6. Stability of phosphonic self assembled monolayers (SAMs) on cobalt chromium (Co-Cr) alloy under oxidative conditions

    NASA Astrophysics Data System (ADS)

    Bhure, Rahul; Abdel-Fattah, Tarek M.; Bonner, Carl; Hall, Felicia; Mahapatro, Anil

    2011-04-01

    Cobalt chromium (Co-Cr) alloys have been widely used in the biomedical arena for cardiovascular, orthopedic and dental applications. Surface modification of the alloy allows us to tailor the interfacial properties to address critical challenges of Co-Cr alloy in medical applications. Self assembled monolayers (SAMs) of Octadecylphosphonic acid (ODPA) have been used to form thin films on the oxide layer of the Co-Cr alloy surface by solution deposition technique. The SAMs formed were investigated for their stability to oxidative conditions of ambient laboratory environment over periods of 1, 3, 7 and 14 days. The samples were then characterized for their stability using X-ray Photoelectron Spectroscopy (XPS), Atomic Force Microscopy (AFM) and contact angle measurements. Detailed high energy XPS elemental scans confirmed the presence of the phosphonic monolayer after oxidative exposure which suggested that the SAMs were firmly attached to the oxide layer of Co-Cr alloy. AFM images gave topographical data of the surface and showed islands of SAMs on Co-Cr alloy surface, before and after SAM formation and also over the duration of the oxidative exposure. Contact angle measurements confirmed the hydrophobicity of the surface over 14 days. Thus the SAMs were found to be stable for the duration of the study. These SAMs could be subsequently tailored by modifying the terminal functional groups and could be used for various potential biomedical applications such as drug delivery, biocompatibility and tissue integration.

  7. Selective surface activation of a functional monolayer for the fabrication of nanometer scale thiol patterns and directed self-assembly of gold nanoparticles.

    PubMed

    Fresco, Zachary M; Fréchet, Jean M J

    2005-06-15

    Application of a voltage bias between the tip of an atomic force microscope (AFM) and a silicon substrate causes the localized modification of a specially designed self-assembled monolayer (SAM), transforming a surface-bound thiocarbonate into a surface-bound thiol. The resulting surface-bound thiols are used to direct the patternwise self-assembly of gold nanoparticles (AuNPs). This methodology is applied to deposit individual AuNPs onto a surface with nanometer precision and to produce 10 nm lines of closely spaced AuNPs that are a single nanoparticle in width.

  8. A nanoscale view of supramolecular stereochemistry in self-assembled monolayers of enantiomers and racemates.

    PubMed

    Mamdouh, Wael; Uji-I, Hiroshi; Gesquière, André; De Feyter, Steven; Amabilino, David B; Abdel-Mottaleb, Mohamed M S; Veciana, Jaume; De Schryver, Frans C

    2004-10-26

    The effect that molecular chirality has on the formation of monolayer structures by pure enantiomers and their racemates at the liquid/solid interface has been investigated for two chiral compounds (1 and 2) which differ from each other by the presence or absence of an ester function in their respective molecular structures. 1 shows pseudoracemate formation when the achiral graphite support is exposed to a solution containing a racemate while 2 shows racemic conglomerate formation. This difference is rationalized in terms of the orientation of the pure enantiomers with respect to the graphite substrate and highlights the importance of molecular structure and its influence on balancing the interplay between molecular conformation and molecular packing on the surface. For 1, nonstoichiometric mixtures of both enantiomers have been investigated, and the results are discussed in the framework of the sergeant and soldiers principle. These results are important for the understanding and prediction of spontaneous resolution in monolayer systems.

  9. Adhesion, Deformation and Friction for Self-Assembled Monolayers on Au and Si Surfaces

    SciTech Connect

    Houston, J.E.; Hsung, R.P.; Kiely, J.D.; Mulder, J.A.; Zhu, X.Y.

    1999-07-07

    Using Interracial Force Microscopy (IFM), we investigated the tribological behavior of hexadecanethiol monolayer on Au and films of octadecyltrichlorosilane (ODTS), perfluorodecyltrichlorosilane (PFTS) and dodecane on Si. We observe a strong correlation between hysteresis in a compression cycle (measured via nanoindentation) and friction. Additionally, we suggest that the amount of hysteresis and friction in each film is related to its detailed molecular structure, especially the degree of molecular packing.

  10. Self-assembly of organic monolayers as protective and conductive bridges for nanometric surface-mount applications.

    PubMed

    Platzman, Ilia; Haick, Hossam; Tannenbaum, Rina

    2010-09-01

    In this work, we present a novel surface-mount placement process that could potentially overcome the inadequacies of the currently used stencil-printing technology, when applied to devices in which either their lateral and/or their horizontal dimensions approach the nanometric scale. Our novel process is based on the "bottom-up" design of an adhesive layer, operative in the molecular/nanoscale level, through the use of self-assembled monolayers (SAMs) that could form protective and conductive bridges between pads and components. On the basis of previous results, 1,4-phenylene diisocyanide (PDI) and terephthalic acid (TPA) were chosen to serve as the best candidates for the achievement of this goal. The quality and stability of these SAMs on annealed Cu surfaces (Rrms=0.15-1.1 nm) were examined in detail. Measurements showed that the SAMs of TPA and PDI molecules formed on top of Cu substrates created thermally stable organic monolayers with high surface coverage (∼90%), in which the molecules were closely packed and well-ordered. Moreover, the molecules assumed a standing-up phase conformation, in which the molecules bonded to the Cu substrate through one terminal functional group, with the other terminal group residing away from the substrate. To examine the ability of these monolayers to serve as "molecular wires," i.e., the capability to provide electrical conductivity, we developed a novel fabrication method of a parallel plate junction (PPJ) in order to create symmetric Cu-SAM-Cu electrical junctions. The current-bias measurements of these junctions indicated high tunneling efficiency. These achievements imply that the SAMs used in this study can serve as conductive molecular bridges that can potentially bind circuital pads/components. PMID:20804143

  11. The Effect of Ring Substitution Position on the Structural Conformation of Mercaptobenzoic Acid Self-Assembled Monolayers on Au(111)

    SciTech Connect

    Lee, J; Willey, T; Nilsson, J; Terminello, L; De Yoreo, J; van Buuren, T

    2006-04-12

    Near edge X-ray absorption fine structure (NEX-AFS) spectroscopy, photoemission spectroscopy (PES) and contact angle measurements have been used to examine the structure and bonding of self-assembled monolayers (SAMs) prepared on Au(111) from the positional isomers of mercaptobenzoic acid (MBA). The isomer of MBA and solvent chosen in SAM preparation has considerable bearing upon film morphology. Carbon K-edge NEXAFS measurements indicate that the monomers of 2-, 3- and 4-MBA have well-defined orientations within their respective SAMs. Monomers of 3- and 4-MBA assume an upright orientation on the Au substrates in monolayers prepared using an acetic acid in ethanol solvent. The aryl ring and carboxyl group of these molecules are tilted from the surface normal by a colatitudal angle of {approx} 30{sup o}. Preparation of 4-MBA SAMs using pure ethanol solvent, a more traditional means of synthesis, had no appreciable effect upon the monomer orientation. Nonetheless, S(2p) PES measurements illustrate that it results in extensive bilayer formation via carboxyl group hydrogen-bonding between 4-MBA monomers. In 2-MBA monolayers prepared using acetic acid/ethanol solvent, the monomers adopt a more prostrate orientation on the Au substrates, in which the aryl ring and carboxyl group of the molecules are tilted {approx} 50{sup o} from the surface normal. This configuration is consistent with an interaction between both the mercaptan sulfur and carboxyl group of 2-MBA with the underlying substrate. S(2p) and C(1s) PES experiments provide supporting evidence for a bidentate interaction between 2-MBA and Au(111).

  12. Reduced graphene oxide directed self-assembly of phospholipid monolayers in liquid and gel phases.

    PubMed

    Rui, Longfei; Liu, Jiaojiao; Li, Jingliang; Weng, Yuyan; Dou, Yujiang; Yuan, Bing; Yang, Kai; Ma, Yuqiang

    2015-05-01

    The response of cell membranes to the local physical environment significantly determines many biological processes and the practical applications of biomaterials. A better understanding of the dynamic assembly and environmental response of lipid membranes can help understand these processes and design novel nanomaterials for biomedical applications. The present work demonstrates the directed assembly of lipid monolayers, in both liquid and gel phases, on the surface of a monolayered reduced graphene oxide (rGO). The results from atomic force microscopy indicate that the hydrophobic aromatic plane and the defect holes due to reduction of GO sheets, along with the phase state and planar surface pressure of lipids, corporately determine the morphology and lateral structure of the assembled lipid monolayers. The DOPC molecules, in liquid phase, probably spread over the rGO surface with their tails associating closely with the hydrophobic aromatic plane, and accumulate to form circles of high area surrounding the defect holes on rGO sheets. However, the DPPC molecules, in gel phase, prefer to form a layer of continuous membrane covering the whole rGO sheet including defect holes. The strong association between rGO sheets and lipid tails further influences the melting behavior of lipids. This work reveals a dramatic effect of the local structure and surface property of rGO sheets on the substrate-directed assembly and subsequent phase behavior of the supported lipid membranes. PMID:25724816

  13. Voltammetry of 6,6'-dithiodinicotinic acid on a self-assembled phospholipid monolayer prive

    NASA Astrophysics Data System (ADS)

    Herrero, R.; Vilariño, T.; Barriada, J. L.; Sastre de Vicente, M. E.; López-Fonseca, J. M.; Moncelli, M. R.

    1999-04-01

    This paper reports a voltammetric study of 6,6'-dithiodinicotinic acid (CPDS) across a biomimetic membrane system consisting of a monolayer of dioleoylphosphatidylcholine, deposited on mercury. Because of the low solubility of this compound and its potential decomposition in alkaline media, estimation of pK values for the carboxyl and amino groups of the pyridine ring of the CPDS entailed using the Hammett equation. UV spectra seem to confirm the presence of the dianionic form of CPDS above pH=3-4. Differential capacity and cyclic voltammetry measurements were made in order to characterize the voltammetric behavior directly on mercury and through a monolayer of dioleoylphosphatidylcholine. Estimation of the CPDS hydrophobicity degree from the partition coefficient in octanol/ water suggests no penetration of the dianion into the monolayer and supports the fact that the named dianion undergoes protonation at the phospholipid/solution interface to give a neutral specie which penetration into the phospholipid region, favored by its higher hydrophobicity, is followed by electrochemical reduction at the mercury surface. Nous avons étudié par voltampérométrie le comportement de l'acide 6,6'-dithiodinicotinique (CPDS) sur l'électrode de mercure couverte par une monocouche de dioleoyl-phosphatidylcholine. La caractérisation électrochimique a été effectuée par des mesures de la capacité différentielle et par voltamétrie cyclique au dessus d'un pH 3-4. Le spectre UV paraît confirmer la présence de la forme dianionique du CPDS. Cependant les données expérimentales associées à une estimation de l'hydrophobicité de la forme dianionique suggèrent que seule la forme neutre du CPDS peut être réduite sur la surface de l'électrode.

  14. Droplet evaporation-induced ferritin self-assembled monolayer as a template for nanocrystal flash memory

    NASA Astrophysics Data System (ADS)

    Kwon, Moonjae; Choi, Hyejung; Chang, Man; Jo, Minseok; Jung, Seung-Jae; Hwang, Hyunsang

    2007-05-01

    A nonvolatile nanocrystal (NC) memory containing a ferritin core was fabricated. A ferritin monolayer was formed through a droplet evaporation technique. High-pressure hydrogen (HP-H2) annealing effectively reduced iron oxide (Fe2O3) to form conductive iron NC. In addition, HP-H2 annealing also improved memory characteristics by passivation of the interface states at Si /HfO2. The authors observed good memory characteristics, including fast program/erase (P/E) operation, a memory window of 1.75V under ±6V, and a stable memory window up to 104s at 85°C.

  15. Characterization of self-assembled monolayers (SAMs) on silicon substrate comparative with polymer substrate for Escherichia coli O157:H7 detection

    NASA Astrophysics Data System (ADS)

    Moldovan, Carmen; Mihailescu, Carmen; Stan, Dana; Ruta, Lavinia; Iosub, Rodica; Gavrila, Raluca; Purica, Munizer; Vasilica, Schiopu

    2009-08-01

    This article presents the characterization of two substrates, silicon and polymer coated with gold, that are functionalized by mixed self-assembled monolayers (SAMs) in order to efficiently immobilize the anti- Escherichia coli O157:H7 polyclonal purified antibody. A biosurface functionalized by SAMs (self-assembled monolayers) technique has been developed. Immobilization of goat anti- E. coli O157:H7 antibody was performed by covalently bonding of thiolate mixed self-assembled monolayers (SAMs) realized on two substrates: polymer coated with gold and silicon coated with gold. The F(ab') 2 fragments of the antibodies have been used for eliminating nonspecific bindings between the Fc portions of antibodies and the Fc receptor on cells. The properties of the monolayers and the biofilm formatted with attached antibody molecules were analyzed at each step using infrared spectroscopy (FTIR-ATR), atomic force microscopy (AFM), scanning electron microscopy (SEM) and cyclic voltammetry (CV). In our study the gold-coated silicon substrates approach yielded the best results. These experimental results revealed the necessity to investigate each stage of the immobilization process taking into account in the same time the factors that influence the chemistry of the surface and the further interactions as well and also provide a solid basis for further studies aiming at elaborating sensitive and specific immunosensor or a microarray for the detection of E. coli O157:H7.

  16. Diffusion and self-assembly of C60 molecules on monolayer graphyne sheets

    PubMed Central

    Ozmaian, Masoumeh; Fathizadeh, Arman; Jalalvand, Morteza; Ejtehadi, Mohammad Reza; Allaei, S. Mehdi Vaez

    2016-01-01

    The motion of a fullerene (C60) on 5 different types of graphyne is studied by all-atom molecular dynamics simulations and compared with former studies on the motion of C60 on graphene. The motion shows a diffusive behavior which consists of either a continuous motion or discrete movements between trapping sites depending on the type of the graphyne sheet. For graphyne-4 and graphyne-5, fullerenes could detach from the surface of the graphyne sheet at room temperature which was not reported for similar cases on graphene sheets. Collective motion of a group of fullerenes interacting with a graphyne studied and it is shown that fullerenes exhibit stable assemblies. Depending on the type of graphyne, these assemblies can have either single or double layers. The mobility of the assembled structures is also dependent on the type of the graphyne sheet. The observed properties of the motion suggests novel applications for the complexes of fullerene and monolayer graphynes. PMID:26912386

  17. Optical absorption signature of a self-assembled dye monolayer on graphene

    PubMed Central

    Sghaier, Tessnim; Le Liepvre, Sylvain; Fiorini, Céline; Douillard, Ludovic

    2016-01-01

    Summary A well-organized monolayer of alkylated perylene-3,4,9,10-tetracarboxylic-3,4,9,10-diimide (PTCDI) has been formed onto CVD graphene transferred on a transparent substrate. Its structure has been probed by scanning tunnelling microscopy and its optical properties by polarized transmission spectroscopy at varying incidence. The results show that the transition dipoles of adsorbed PTCDI are all oriented parallel to the substrate. The maximum absorption is consistent with the measured surface density of molecules and their absorption cross section. The spectrum presents mainly a large red-shift of the absorption line compared with the free molecules dispersed in solution, whereas the relative strengths of the vibronic structures are preserved. These changes are attributed to non-resonant interactions with the graphene layer and the neighbouring molecules. PMID:27547603

  18. Optical absorption signature of a self-assembled dye monolayer on graphene.

    PubMed

    Sghaier, Tessnim; Le Liepvre, Sylvain; Fiorini, Céline; Douillard, Ludovic; Charra, Fabrice

    2016-01-01

    A well-organized monolayer of alkylated perylene-3,4,9,10-tetracarboxylic-3,4,9,10-diimide (PTCDI) has been formed onto CVD graphene transferred on a transparent substrate. Its structure has been probed by scanning tunnelling microscopy and its optical properties by polarized transmission spectroscopy at varying incidence. The results show that the transition dipoles of adsorbed PTCDI are all oriented parallel to the substrate. The maximum absorption is consistent with the measured surface density of molecules and their absorption cross section. The spectrum presents mainly a large red-shift of the absorption line compared with the free molecules dispersed in solution, whereas the relative strengths of the vibronic structures are preserved. These changes are attributed to non-resonant interactions with the graphene layer and the neighbouring molecules. PMID:27547603

  19. Modification of alkanethiolate monolayers by O(3P) atomic oxygen: effect of chain length and surface temperature.

    PubMed

    Yuan, Hanqiu; Gibson, K D; Li, Wenxin; Sibener, S J

    2013-04-25

    We have conducted a comprehensive study of ground-state O((3)P) atomic oxygen reactions with 1-hexadecanethiolate (CH3(CH2)15SH) and 1-undecanethiolate (CH3(CH2)10SH) self-assembled monolayers adsorbed onto Au/mica substrates, using X-ray photoelectron spectroscopy, infrared reflection absorption spectroscopy, ellipsometry, and contact angle measurements. In general, the reactions are not limited to the terminal methyl groups. Apparently, the incident O((3)P) (translational energy per atom of 0.11 kJ mol(-1)) can penetrate below the surface of the monolayer. The ability of the atoms to penetrate, and thus the reaction rate of the backbone -CH2-, is dependent upon both the temperature and the chain length, with the longer chain having a large difference between the rate at room temperature and 150 K. In particular, the long-chain SAM exhibits clearly reduced reactivity with respect to the incident beam of atomic oxygen when the film is cooled to 150 K as compared to room temperature. This is a notable finding and demonstrates the crucial importance that structural order and dynamical fluctuations, both of which depend on chain length and substrate temperature, have in determining the surface passivation and protection characteristics of SAM overlayers with respect to attack by energetic reagents.

  20. Electron Processing at 50 eV of Terphenylthiol Self-Assembled Monolayers: Contributions of Primary and Secondary Electrons.

    PubMed

    Houplin, Justine; Dablemont, Céline; Sala, Leo; Lafosse, Anne; Amiaud, Lionel

    2015-12-22

    Aromatic self-assembled monolayers (SAMs) can serve as platforms for development of supramolecular assemblies driven by surface templates. For many applications, electron processing is used to locally reinforce the layer. To achieve better control of the irradiation step, chemical transformations induced by electron impact at 50 eV of terphenylthiol SAMs are studied, with these SAMs serving as model aromatic SAMs. High-resolution electron energy loss spectroscopy (HREELS) and electron-stimulated desorption (ESD) of neutral fragment measurements are combined to investigate electron-induced chemical transformation of the layer. The decrease of the CH stretching HREELS signature is mainly attributed to dehydrogenation, without a noticeable hybridization change of the hydrogenated carbon centers. Its evolution as a function of the irradiation dose gives an estimate of the effective hydrogen content loss cross-section, σ = 2.7-4.7 × 10(-17) cm(2). Electron impact ionization is the major primary mechanism involved, with the impact electronic excitation contributing only marginally. Therefore, special attention is given to the contribution of the low-energy secondary electrons to the induced chemistry. The effective cross-section related to dissociative secondary electron attachment at 6 eV is estimated to be 1 order of magnitude smaller. The 1 eV electrons do not induce significant chemical modification for a 2.5 mC cm(-2) dose, excluding their contribution.

  1. Molecular dynamics simulations of water confined between matched pairs of hydrophobic and hydrophilic self-assembled monolayers.

    SciTech Connect

    Chandross, Michael Evan; Grest, Gary Stephen; Lane, J. Matthew D.; Lorenz, Christian Douglas; Stevens, Mark Jackson

    2008-12-01

    We have conducted a molecular dynamics (MD) simulation study of water confined between methyl-terminated and carboxyl-terminated alkylsilane self-assembled monolayers (SAMs) on amorphous silica substrates. In doing so, we have investigated the dynamic and structural behavior of the water molecules when compressed to loads ranging from 20 to 950 MPa for two different amounts of water (27 and 58 water molecules/nm{sup 2}). Within the studied range of loads, we observe that no water molecules penetrate the hydrophobic region of the carboxyl-terminated SAMs. However, we observe that at loads larger than 150 MPa water molecules penetrate the methyl-terminated SAMs and form hydrogen-bonded chains that connect to the bulk water. The diffusion coefficient of the water molecules decreases as the water film becomes thinner and pressure increases. When compared to bulk diffusion coefficients of water molecules at the various loads, we found that the diffusion coefficients for the systems with 27 water molecules/nm{sup 2} are reduced by a factor of 20 at low loads and by a factor of 40 at high loads, while the diffusion coefficients for the systems with 58 water molecules/nm{sup 2} are reduced by a factor of 25 at all loads.

  2. Fast kinetics of thiolic self-assembled monolayer adsorption on gold: modeling and confirmation by protein binding.

    PubMed

    Asiaei, Sasan; Nieva, Patricia; Vijayan, Mathilakath M

    2014-11-26

    This study presents an improved kinetics for the formation of self-assembled monolayers (SAMs) of thiols on gold substrates. Based on predictions of a computational model developed to study the SAM growth kinetics, SAMs of 11-mercaptoinic acid and 1-octanethiol were successfully formed for the first time within 15 min by incubation of planar gold chips in a 10 mM solution of thiols in pure ethanol. The performance of this new rapid SAM formation protocol is compared to the conventional 24 h incubation protocol by evaluating the binding capacity of a fluorescent-labeled antibody to the SAM samples prepared using both protocols. Tetramethylrhodamine conjugated polyclonal goat γ-globulin (IgG) was bound to all SAMs previously modified with 1-ethyl-3-(3-(dimethylamino)propyl)carbodiimide (EDC) to improve antibody immobilization. Resulting binding density of the fast SAM was evaluated using epifluorescence and atomic force microscopy (AFM) and found to be comparable with reported values in the literature using conventional 24 h protocols.

  3. Preparation and photolithography of self-assembled monolayers of 10-mercaptodecanylphosphonic acid on glass mediated by zirconium for protein patterning.

    PubMed

    Han, Xuemingyue; Sun, Shuqing; He, Tao

    2013-08-01

    Self-assembled monolayers (SAMs) formed by adsorption of octadecylphosphonic acid (ODPA) on zirconium mediated glass substrates were prepared. In this sandwich structure, Zr(4+) was used as a bi-linker to bind phosphonic acid head group in ODPA to glass substrates. The contact angle of the as-prepared SAMs was measured to be around 104°. X-ray photoelectron spectroscopy (XPS) characterization indicated the modification of Zr(4+) on glass substrates was critical for the formation of reasonably dense, well-ordered SAMs similar in quality to those typically formed on other metal oxide surfaces. Bifunctional molecule, 10-mercaptodecanylphosphonic acid (MDPA), bearing thiol terminal groups for various chemical reactions, was synthesized and formed SAMs on glass using the same approach, which allowed us to control the surface chemistry and functionality through photooxidation of the thiol terminal group. Photopatterning of proteins was performed first by exposing the SAMs to UV light through a mask, followed by protein immobilization to the masked regions through a heterobifunctional linker, while the exposed areas prohibit nonspecific protein absorption. The present strategy, which combined the SAMs assembly and photolithography, offered a facile approach for the fabrication of biomolecule patterning and could be applied to construction of biochips and other applications.

  4. Full membrane spanning self-assembled monolayers as model systems for UHV-based studies of cell-penetrating peptides

    SciTech Connect

    Franz, Johannes; Graham, Daniel J.; Baio, Joe E.; Lelle, Marco; Peneva, Kalina; Müllen, Klaus; Castner, David G.; Weidner, Tobias

    2015-03-01

    Biophysical studies of the interaction of peptides with model membranes provide a simple yet effective approach to understand the transport of peptides and peptide based drug carriers across the cell membrane. Therein, the authors discuss the use of self-assembled monolayers fabricated from the full membrane-spanning thiol (FMST) 3-((14-((4'-((5-methyl-1-phenyl-35-(phytanyl)oxy-6,9,12,15,18,21,24,27,30,33,37-undecaoxa-2,3-dithiahenpentacontan-51-yl)oxy)-[1,1'-biphenyl]-4-yl)oxy)tetradecyl)oxy)-2-(phytanyl)oxy glycerol for ultrahigh vacuum (UHV) based experiments. UHV-based methods such as electron spectroscopy and mass spectrometry can provide important information about how peptides bind and interact with membranes, especially with the hydrophobic core of a lipid bilayer. Moreover, near-edge x-ray absorption fine structure spectra and x-ray photoelectron spectroscopy (XPS) data showed that FMST forms UHV-stable and ordered films on gold. XPS and time of flight secondary ion mass spectrometry depth profiles indicated that a proline-rich amphipathic cell-penetrating peptide, known as sweet arrow peptide is located at the outer perimeter of the model membrane.

  5. A priori calculations of the free energy of formation from solution of polymorphic self-assembled monolayers.

    PubMed

    Reimers, Jeffrey R; Panduwinata, Dwi; Visser, Johan; Chin, Yiing; Tang, Chunguang; Goerigk, Lars; Ford, Michael J; Sintic, Maxine; Sum, Tze-Jing; Coenen, Michiel J J; Hendriksen, Bas L M; Elemans, Johannes A A W; Hush, Noel S; Crossley, Maxwell J

    2015-11-10

    Modern quantum chemical electronic structure methods typically applied to localized chemical bonding are developed to predict atomic structures and free energies for meso-tetraalkylporphyrin self-assembled monolayer (SAM) polymorph formation from organic solution on highly ordered pyrolytic graphite surfaces. Large polymorph-dependent dispersion-induced substrate-molecule interactions (e.g., -100 kcal mol(-1) to -150 kcal mol(-1) for tetratrisdecylporphyrin) are found to drive SAM formation, opposed nearly completely by large polymorph-dependent dispersion-induced solvent interactions (70-110 kcal mol(-1)) and entropy effects (25-40 kcal mol(-1) at 298 K) favoring dissolution. Dielectric continuum models of the solvent are used, facilitating consideration of many possible SAM polymorphs, along with quantum mechanical/molecular mechanical and dispersion-corrected density functional theory calculations. These predict and interpret newly measured and existing high-resolution scanning tunnelling microscopy images of SAM structure, rationalizing polymorph formation conditions. A wide range of molecular condensed matter properties at room temperature now appear suitable for prediction and analysis using electronic structure calculations.

  6. A priori calculations of the free energy of formation from solution of polymorphic self-assembled monolayers

    PubMed Central

    Reimers, Jeffrey R.; Panduwinata, Dwi; Visser, Johan; Chin, Yiing; Tang, Chunguang; Goerigk, Lars; Ford, Michael J.; Sintic, Maxine; Sum, Tze-Jing; Coenen, Michiel J. J.; Hendriksen, Bas L. M.; Elemans, Johannes A. A. W.; Hush, Noel S.; Crossley, Maxwell J.

    2015-01-01

    Modern quantum chemical electronic structure methods typically applied to localized chemical bonding are developed to predict atomic structures and free energies for meso-tetraalkylporphyrin self-assembled monolayer (SAM) polymorph formation from organic solution on highly ordered pyrolytic graphite surfaces. Large polymorph-dependent dispersion-induced substrate−molecule interactions (e.g., −100 kcal mol−1 to −150 kcal mol−1 for tetratrisdecylporphyrin) are found to drive SAM formation, opposed nearly completely by large polymorph-dependent dispersion-induced solvent interactions (70–110 kcal mol−1) and entropy effects (25–40 kcal mol−1 at 298 K) favoring dissolution. Dielectric continuum models of the solvent are used, facilitating consideration of many possible SAM polymorphs, along with quantum mechanical/molecular mechanical and dispersion-corrected density functional theory calculations. These predict and interpret newly measured and existing high-resolution scanning tunnelling microscopy images of SAM structure, rationalizing polymorph formation conditions. A wide range of molecular condensed matter properties at room temperature now appear suitable for prediction and analysis using electronic structure calculations. PMID:26512115

  7. Electron Processing at 50 eV of Terphenylthiol Self-Assembled Monolayers: Contributions of Primary and Secondary Electrons.

    PubMed

    Houplin, Justine; Dablemont, Céline; Sala, Leo; Lafosse, Anne; Amiaud, Lionel

    2015-12-22

    Aromatic self-assembled monolayers (SAMs) can serve as platforms for development of supramolecular assemblies driven by surface templates. For many applications, electron processing is used to locally reinforce the layer. To achieve better control of the irradiation step, chemical transformations induced by electron impact at 50 eV of terphenylthiol SAMs are studied, with these SAMs serving as model aromatic SAMs. High-resolution electron energy loss spectroscopy (HREELS) and electron-stimulated desorption (ESD) of neutral fragment measurements are combined to investigate electron-induced chemical transformation of the layer. The decrease of the CH stretching HREELS signature is mainly attributed to dehydrogenation, without a noticeable hybridization change of the hydrogenated carbon centers. Its evolution as a function of the irradiation dose gives an estimate of the effective hydrogen content loss cross-section, σ = 2.7-4.7 × 10(-17) cm(2). Electron impact ionization is the major primary mechanism involved, with the impact electronic excitation contributing only marginally. Therefore, special attention is given to the contribution of the low-energy secondary electrons to the induced chemistry. The effective cross-section related to dissociative secondary electron attachment at 6 eV is estimated to be 1 order of magnitude smaller. The 1 eV electrons do not induce significant chemical modification for a 2.5 mC cm(-2) dose, excluding their contribution. PMID:26606369

  8. Self-assembled monolayers of 1-alkenes on oxidized platinum surfaces as platforms for immobilized enzymes for biosensing

    NASA Astrophysics Data System (ADS)

    Alonso, Jose Maria; Bielen, Abraham A. M.; Olthuis, Wouter; Kengen, Servé W. M.; Zuilhof, Han; Franssen, Maurice C. R.

    2016-10-01

    Alkene-based self-assembled monolayers grafted on oxidized Pt surfaces were used as a scaffold to covalently immobilize oxidase enzymes, with the aim to develop an amperometric biosensor platform. NH2-terminated organic layers were functionalized with either aldehyde (CHO) or N-hydroxysuccinimide (NHS) ester-derived groups, to provide anchoring points for enzyme immobilization. The functionalized Pt surfaces were characterized by X-ray photoelectron spectroscopy (XPS), static water contact angle (CA), infrared reflection absorption spectroscopy (IRRAS) and atomic force microscopy (AFM). Glucose oxidase (GOX) was covalently attached to the functionalized Pt electrodes, either with or without additional glutaraldehyde crosslinking. The responses of the acquired sensors to glucose concentrations ranging from 0.5 to 100 mM were monitored by chronoamperometry. Furthermore, lactate oxidase (LOX) and human hydroxyacid oxidase (HAOX) were successfully immobilized onto the PtOx surface platform. The performance of the resulting lactate sensors was investigated for lactate concentrations ranging from 0.05 to 20 mM. The successful attachment of active enzymes (GOX, LOX and HAOX) on Pt electrodes demonstrates that covalently functionalized PtOx surfaces provide a universal platform for the development of oxidase enzyme-based sensors.

  9. Self-assembled monolayers of alendronate on Ti6Al4V alloy surfaces enhance osteogenesis in mesenchymal stem cells

    NASA Astrophysics Data System (ADS)

    Rojo, Luis; Gharibi, Borzo; McLister, Robert; Meenan, Brian J.; Deb, Sanjukta

    2016-07-01

    Phosphonates have emerged as an alternative for functionalization of titanium surfaces by the formation of homogeneous self-assembled monolayers (SAMs) via Ti-O-P linkages. This study presents results from an investigation of the modification of Ti6Al4V alloy by chemisorption of osseoinductive alendronate using a simple, effective and clean methodology. The modified surfaces showed a tailored topography and surface chemistry as determined by SEM microscopy and RAMAN spectroscopy. X-ray photoelectron spectroscopy revealed that an effective mode of bonding is created between the metal oxide surface and the phosphate residue of alendronate, leading to formation of homogenous drug distribution along the surface. In-vitro studies showed that alendronate SAMs induce differentiation of hMSC to a bone cell phenotype and promote bone formation on modified surfaces. Here we show that this novel method for the preparation of functional coatings on titanium-based medical devices provides osseoinductive bioactive molecules to promote enhanced integration at the site of implantation.

  10. Self-assembled monolayers of alpha,omega-diphosphonic acids on Ti enable complete or spatially controlled surface derivatization.

    PubMed

    Danahy, Michael P; Avaltroni, Michael J; Midwood, Kim S; Schwarzbauer, Jean E; Schwartz, Jeffrey

    2004-06-22

    Alpha,omega-diphosphonic acids self-assemble on the native oxide surfaces of Ti or Ti-6Al-4V. Heating gives strongly bonded phosphonate monolayers. Infrared and X-ray spectroscopic and water contact angle data show that the films are bonded to the surface by one phosphonate unit; the other remains a phosphonic acid. Surface loadings were measured by quartz crystal microbalance procedures. Mechanical shear strengths for the films were also measured; these do not correlate simply with surface loadings. Films formed from 1,12-diphosphonododecane were treated with zirconium tetra(tert-butoxide) to give surface Zr complex species; derivatives of these surface complexes are stable to hydrolysis under physiological conditions and are mechanically strong. The complexation reaction can be accomplished over the entire surface; alternatively, dropwise application of the alkoxide to the surface enables spatial control of deposition. The cell attractive peptide derivative RGDC can be bound to these surface Zr alkoxide complexes through (maleimido)-alkylcarboxylate intermediates. Surfaces modified with RGDC were shown to be effective for osteoblast binding and proliferation. PMID:15986670

  11. Self-assembled monolayers of alendronate on Ti6Al4V alloy surfaces enhance osteogenesis in mesenchymal stem cells

    PubMed Central

    Rojo, Luis; Gharibi, Borzo; McLister, Robert; Meenan, Brian J.; Deb, Sanjukta

    2016-01-01

    Phosphonates have emerged as an alternative for functionalization of titanium surfaces by the formation of homogeneous self-assembled monolayers (SAMs) via Ti-O-P linkages. This study presents results from an investigation of the modification of Ti6Al4V alloy by chemisorption of osseoinductive alendronate using a simple, effective and clean methodology. The modified surfaces showed a tailored topography and surface chemistry as determined by SEM microscopy and RAMAN spectroscopy. X-ray photoelectron spectroscopy revealed that an effective mode of bonding is created between the metal oxide surface and the phosphate residue of alendronate, leading to formation of homogenous drug distribution along the surface. In-vitro studies showed that alendronate SAMs induce differentiation of hMSC to a bone cell phenotype and promote bone formation on modified surfaces. Here we show that this novel method for the preparation of functional coatings on titanium-based medical devices provides osseoinductive bioactive molecules to promote enhanced integration at the site of implantation. PMID:27468811

  12. Self-assembled monolayers of alendronate on Ti6Al4V alloy surfaces enhance osteogenesis in mesenchymal stem cells.

    PubMed

    Rojo, Luis; Gharibi, Borzo; McLister, Robert; Meenan, Brian J; Deb, Sanjukta

    2016-01-01

    Phosphonates have emerged as an alternative for functionalization of titanium surfaces by the formation of homogeneous self-assembled monolayers (SAMs) via Ti-O-P linkages. This study presents results from an investigation of the modification of Ti6Al4V alloy by chemisorption of osseoinductive alendronate using a simple, effective and clean methodology. The modified surfaces showed a tailored topography and surface chemistry as determined by SEM microscopy and RAMAN spectroscopy. X-ray photoelectron spectroscopy revealed that an effective mode of bonding is created between the metal oxide surface and the phosphate residue of alendronate, leading to formation of homogenous drug distribution along the surface. In-vitro studies showed that alendronate SAMs induce differentiation of hMSC to a bone cell phenotype and promote bone formation on modified surfaces. Here we show that this novel method for the preparation of functional coatings on titanium-based medical devices provides osseoinductive bioactive molecules to promote enhanced integration at the site of implantation. PMID:27468811

  13. A yeast glycolipid biosurfactant, mannosylerythritol lipid, shows high binding affinity towards lectins on a self-assembled monolayer system.

    PubMed

    Konishi, Masaaki; Imura, Tomohiro; Fukuoka, Tokuma; Morita, Tomotake; Kitamoto, Dai

    2007-03-01

    Mannosylerythritol lipids (MEL), which are glycolipid biosurfactants secreted by the Pseudozyma yeasts, show not only excellent surface-active properties but also versatile biochemical actions including antitumor and cell-differentiation activities. In order to address the biochemical actions, interactions between MEL-A, the major component of MEL, and different lectins were investigated using the surface plasmon resonance spectroscopy. The monolayer of MEL-A showed high binding affinity to concanavalin A (ConA) and Maackia amurensis lectin-I (MAL-I). The observed affinity constants for ConA and MAL-I were estimated to be 9.48 +/- 1.31 x 10(6) and 3.13 +/- 0.274 x 10(6) M(-1), respectively; the value was comparable to that of Manalpha1-6(Manalpha1-3)Man, which is one of the most specific probe to ConA. Significantly, alpha-methyl-D-mannopyranoside (1 mM) exhibited no binding inhibition between MEL-A and ConA. MEL-A is thus likely to self-assemble to give a high affinity surface, where ConA binds to the hydrophilic headgroup in a different manner from that generally observed in lectin-saccharide interactions. The binding manner should be related with the biochemical actions of MEL toward mammalian cells via protein-carbohydrate interactions. PMID:17205206

  14. Electrochemistry of the self-assembled monolayers of dyads consisting of tripod-shaped trithiol and bithiophene on gold.

    PubMed

    Kitagawa, Toshikazu; Matsubara, Hiroaki; Okazaki, Takao; Komatsu, Koichi

    2014-01-01

    Self-assembled monolayers (SAMs) of tripod-shaped trithiols, consisting of an adamantane core with three CH2SH legs and a bithiophene group, were prepared on a Au(111) surface. Adsorption in a tripod-like fashion was supported by polarization modulation-infrared reflection absorption spectroscopy (PM-IRRAS) of the SAMs, which indicated the absence of free SH groups. Cyclic voltammetry showed an irreversible cathodic wave due to reductive desorption. The SAM also showed an anodic wave due to the single-electron oxidation of the bithiophene moiety without concomitant desorption of the molecules. Although oxidation was irreversible in the absence of a protecting group, it became reversible with the introduction of a terminal phenyl group. The charge of the oxidation was one-third that of the reductive desorption, confirming a three-point adsorption. The surface coverage was ca. 50% of that expected for the anti bithiophene conformation, which suggested that an increase in the surface area per molecule had been caused by the presence of an energetically high-lying syn conformer. In accordance with this, the line shape of the oxidation wave suggested an electrostatic repulsive interaction between neighboring molecules.

  15. Preparation and photolithography of self-assembled monolayers of 10-mercaptodecanylphosphonic acid on glass mediated by zirconium for protein patterning.

    PubMed

    Han, Xuemingyue; Sun, Shuqing; He, Tao

    2013-08-01

    Self-assembled monolayers (SAMs) formed by adsorption of octadecylphosphonic acid (ODPA) on zirconium mediated glass substrates were prepared. In this sandwich structure, Zr(4+) was used as a bi-linker to bind phosphonic acid head group in ODPA to glass substrates. The contact angle of the as-prepared SAMs was measured to be around 104°. X-ray photoelectron spectroscopy (XPS) characterization indicated the modification of Zr(4+) on glass substrates was critical for the formation of reasonably dense, well-ordered SAMs similar in quality to those typically formed on other metal oxide surfaces. Bifunctional molecule, 10-mercaptodecanylphosphonic acid (MDPA), bearing thiol terminal groups for various chemical reactions, was synthesized and formed SAMs on glass using the same approach, which allowed us to control the surface chemistry and functionality through photooxidation of the thiol terminal group. Photopatterning of proteins was performed first by exposing the SAMs to UV light through a mask, followed by protein immobilization to the masked regions through a heterobifunctional linker, while the exposed areas prohibit nonspecific protein absorption. The present strategy, which combined the SAMs assembly and photolithography, offered a facile approach for the fabrication of biomolecule patterning and could be applied to construction of biochips and other applications. PMID:23524079

  16. Critical role of wettability in assembly of zirconia nanoparticles on a self-assembled monolayer-patterned substrate

    NASA Astrophysics Data System (ADS)

    Yang, Mi-Sun; Lee, Seung-Hoon; Moon, Byung Kee; Yoo, Seung Ryul; Hwang, Seongpil; Jang, Jae-Won

    2016-08-01

    This study investigated which factors decisively influence colloidal nanoparticle (NP) assembly on a self-assembled monolayer (SAM)-patterned substrate. Zirconia (ZrO2) NP assembly on a poly(dimethylsiloxane) (PDMS)-stamped SAM-patterned Au substrate was carried out while the size and surface charge state of the NPs and the substrate wettability were altered. ZrO2 particles with diameters of 350 nm, 560 nm, and 1100 nm were employed to examine the effect of NP size on the assembly. Bare ZrO2 NPs with a negatively charged surface and ZrO2 NPs with a positively charged surface through 3-aminopropyltriethoxysilane encapsulation were prepared for the NP assembly. Moreover, the substrate wettability effect on the NP assembly was evaluated by comparing the assembly on substrates with the PDMS-patterned SAMs of thiols with polar and non-polar functional groups. From the characterization of the number of NPs in a pattern and the effective area of assembled NPs (Aeff), positively charged ZrO2 NP assembly on negatively charged patterns showed the highest number density of particles in a pattern compared with the other combinations in both 350-nm and 560-nm ZrO2 NPs. This observation can be attributed to negatively charged 16-mercaptohexadecanoic acid SAMs having greater polarity (more polar groups) than positively charged 11-amino-1-undecanethiol SAMs within the condition of the colloidal ZrO2 NP assembly.

  17. Square Wave Voltammetry of TNT at Gold Electrodes Modified with Self-Assembled Monolayers Containing Aromatic Structures

    PubMed Central

    Trammell, Scott A.; Zabetakis, Dan; Moore, Martin; Verbarg, Jasenka; Stenger, David A.

    2014-01-01

    Square wave voltammetry for the reduction of 2,4,6-trinitrotoluene (TNT) was measured in 100 mM potassium phosphate buffer (pH 8) at gold electrodes modified with self-assembled monolayers (SAMs) containing either an alkane thiol or aromatic ring thiol structures. At 15 Hz, the electrochemical sensitivity (µA/ppm) was similar for all SAMs tested. However, at 60 Hz, the SAMs containing aromatic structures had a greater sensitivity than the alkane thiol SAM. In fact, the alkane thiol SAM had a decrease in sensitivity at the higher frequency. When comparing the electrochemical response between simulations and experimental data, a general trend was observed in which most of the SAMs had similar heterogeneous rate constants within experimental error for the reduction of TNT. This most likely describes a rate limiting step for the reduction of TNT. However, in the case of the alkane SAM at higher frequency, the decrease in sensitivity suggests that the rate limiting step in this case may be electron tunneling through the SAM. Our results show that SAMs containing aromatic rings increased the sensitivity for the reduction of TNT when higher frequencies were employed and at the same time suppressed the electrochemical reduction of dissolved oxygen. PMID:25549081

  18. Site-selective assembly of quantum dots on patterned self-assembled monolayers fabricated by laser direct-writing.

    PubMed

    Wu, Chong; Wang, Yongsheng; Han, Xuemingyue; Hu, Xinming; Cheng, Qianyi; Han, Baohang; Liu, Qian; Ren, Tianling; He, Yonghong; Sun, Shuqing; Ma, Hui

    2012-06-15

    A simple and efficient route for quantum dot (QDs) patterning using self-assembled monolayers (SAMs) as templates is described. By means of a laser direct-writing (LDW) technique, SAMs of octadecylphosphonic acid formed by adsorption on native oxide layer of titanium film were patterned through laser-induced ablation of the SAM molecules. This technique allows the creation of chemical-specific patterns accompanied by slight change in the topography. Using atomic force microscopy and friction force microscopy, the dependence of feature size and characteristics on the irradiation dose was demonstrated. Upon immersion of a substrate with patterned SAMs bearing thiol as the terminal group into a dispersion of QDs resulted in the assembly of QDs on the specific thiol-terminated areas. Patterns of QDs with different photoluminescent wavelength were generated. The LDW technique, which is convenient and flexible due to its path-directed and maskless fabrication process, provided a new powerful approach for patterning materials on surfaces for various applications. PMID:22595703

  19. Application of Self-Assembled Monolayers to the Electroless Metallization of High Aspect Ratio Vias for Microelectronics

    NASA Astrophysics Data System (ADS)

    Bernasconi, R.; Molazemhosseini, A.; Cervati, M.; Armini, S.; Magagnin, L.

    2016-10-01

    All-wet electroless metallization of through-silicon vias (TSVs) with a width of 5 μm and a 1:10 aspect ratio was carried out. Immersion in a n-(2-aminoethyl) 3-aminopropyl-trimethoxysilane (AEAPTMS) self-assembled monolayer (SAM) was used to enhance the adhesion between the metal film and substrate. Contact angle variation and atomic force microscopy were used to verify the formation of a SAM layer. A PdCl2 solution was later used to activate the silanized substrates, exploiting the affinity of the -NH3 functional group of AEAPTMS to palladium. A nickel-phosphorus-boron electroless bath was employed to deposit the first barrier layer onto silicon. The NiPB growth rate was evaluated on flat silicon wafers, while the structure of the coating obtained was investigated via glow discharge optical emission spectroscopy. Cross-sectional scanning electron microscope observations were carried out on metallized TSVs to characterize the NiPB seed, the Cu seed layer deposited with a second electroless step, and the Cu superfilling obtained with a commercial solution. Complete filling of TSV was achieved.

  20. Immobilisation of a thrombopoietin peptidic mimic by self-assembled monolayers for culture of CD34+ cells.

    PubMed

    Lee, Eun-Ju; Be, Cheang Ly; Vinson, Andrew R; Riches, Andrew G; Fehr, Friederike; Gardiner, James; Gengenbach, Thomas R; Winkler, David A; Haylock, David

    2015-01-01

    Compared to soluble cytokines, surface-tethered ligands can deliver biological signalling with precise control of spatial positioning and concentration. A strategy that immobilises ligand molecules on a surface in a uniform orientation using non-cleavable linkages under physiological conditions would enhance the specific and systemic delivery of signalling in the local environment. We used mixed self-assembled monolayers (SAMs) of oxyamine- and oligo(ethylene glycol)-terminated thiols on gold to covalently install aldehyde- or ketone-functionalised ligands via oxime conjugation. Characterisation by electrochemistry and X-ray photoelectron spectroscopy showed quantitative immobilisation of the ligands on SAM surfaces. The thrombopoietin mimetic peptide, RILL, was immobilised on SAMs and the bioactivity of the substrate was demonstrated by culturing factor-dependent cells. We also optimised the immobilisation and wash conditions so that the peptide was not released into the culture medium and the immobilised RILL could be re-used for consecutive cell cultures. The surface also supported the growth of haematopoietic CD34+ cells comparable to the standard thrombopoietin-supplemented culture. Furthermore, the RILL-immobilised SAM surface was as effective in expanding uncommitted CD34+ cells as standard culture. The stimulatory effect of surface-tethered ligands in haematopoietic stem cell expansion supports the use of ligand immobilisation strategies to replicate the haematopoietic stem cell niche.

  1. Near-field photochemical and radiation-induced chemical fabrication of nanopatterns of a self-assembled silane monolayer.

    PubMed

    Fischer, Ulrich Christian; Hentschel, Carsten; Fontein, Florian; Stegemann, Linda; Hoeppener, Christiane; Fuchs, Harald; Hoeppener, Stefanie

    2014-01-01

    A general concept for parallel near-field photochemical and radiation-induced chemical processes for the fabrication of nanopatterns of a self-assembled monolayer (SAM) of (3-aminopropyl)triethoxysilane (APTES) is explored with three different processes: 1) a near-field photochemical process by photochemical bleaching of a monomolecular layer of dye molecules chemically bound to an APTES SAM, 2) a chemical process induced by oxygen plasma etching as well as 3) a combined near-field UV-photochemical and ozone-induced chemical process, which is applied directly to an APTES SAM. All approaches employ a sandwich configuration of the surface-supported SAM, and a lithographic mask in form of gold nanostructures fabricated through colloidal sphere lithography (CL), which is either exposed to visible light, oxygen plasma or an UV-ozone atmosphere. The gold mask has the function to inhibit the photochemical reactions by highly localized near-field interactions between metal mask and SAM and to inhibit the radiation-induced chemical reactions by casting a highly localized shadow. The removal of the gold mask reveals the SAM nanopattern.

  2. Striped Phase of 3-Hexylthiophene Self-Assembled Monolayers on Au(1 11) Formed by Vapor Phase Deposition.

    PubMed

    Kim, Youngwoo; Kang, Hungu; Tsunoi, Azuho; Hayashi, Tomohiro; Hara, Masahiko; Noh, Jaegeun

    2016-03-01

    The formation and surface structure of 3-hexylthiophene (HTP) self-assembled monolayers (SAMs) on Au(111) prepared by solution and ambient-pressure vapor deposition at room temperature (RT) for 24 h were examined by means of scanning tunneling microscopy (STM) and cyclic voltammetry (CV). STM imaging revealed that HTP SAMs formed by solution deposition have a disordered phase, whereas those formed by vapor deposition exhibit a striped phase with a unidirectional orientation. The distance between the rows in the striped phase was measured to be 1.3 ± 0.1 nm, and the hexyl molecular backbones of HTP in the SAMs on Au(111) are oriented parallel to the Au(111) surface with the head-to-head orientation. From this STM observation, we suggest that the formation of this striped phase in HTP SAMs prepared by vapor deposition were mainly driven by the optimization of van der Waals interactions between the hexyl chains on the surface. CV measurements also demonstrated that HTP SAMs show a high blocking efficiency for electron transfer reactions between electrolytes and the gold electrode, suggesting the formation of SAMs on Au(111) from the vapor phase. Our results obtained here will be very useful for understanding the formation and structure of HTP SAMs on Au(111) surfaces and how they are influenced by deposition method. PMID:27455710

  3. Application of Self-Assembled Monolayers to the Electroless Metallization of High Aspect Ratio Vias for Microelectronics

    NASA Astrophysics Data System (ADS)

    Bernasconi, R.; Molazemhosseini, A.; Cervati, M.; Armini, S.; Magagnin, L.

    2016-07-01

    All-wet electroless metallization of through-silicon vias (TSVs) with a width of 5 μm and a 1:10 aspect ratio was carried out. Immersion in a n-(2-aminoethyl) 3-aminopropyl-trimethoxysilane (AEAPTMS) self-assembled monolayer (SAM) was used to enhance the adhesion between the metal film and substrate. Contact angle variation and atomic force microscopy were used to verify the formation of a SAM layer. A PdCl2 solution was later used to activate the silanized substrates, exploiting the affinity of the -NH3 functional group of AEAPTMS to palladium. A nickel-phosphorus-boron electroless bath was employed to deposit the first barrier layer onto silicon. The NiPB growth rate was evaluated on flat silicon wafers, while the structure of the coating obtained was investigated via glow discharge optical emission spectroscopy. Cross-sectional scanning electron microscope observations were carried out on metallized TSVs to characterize the NiPB seed, the Cu seed layer deposited with a second electroless step, and the Cu superfilling obtained with a commercial solution. Complete filling of TSV was achieved.

  4. Electrokinetic Stringency Control in Self-Assembled Monolayer-based Biosensors for Multiplex Urinary Tract Infection Diagnosis

    PubMed Central

    Liu, Tingting; Sin, Mandy L. Y.; Pyne, Jeff D.; Gau, Vincent; Liao, Joseph C.; Wong, Pak Kin

    2013-01-01

    Rapid detection of bacterial pathogens is critical toward judicious management of infectious diseases. Herein, we demonstrate an in situ electrokinetic stringency control approach for a self-assembled monolayer-based electrochemical biosensor toward urinary tract infection diagnosis. The in situ electrokinetic stringency control technique generates Joule heating induced temperature rise and electrothermal fluid motion directly on the sensor to improve its performance for detecting bacterial 16S rRNA, a phylogenetic biomarker. The dependence of the hybridization efficiency reveals that in situ electrokinetic stringency control is capable of discriminating single-base mismatches. With electrokinetic stringency control, the background noise due to the matrix effects of clinical urine samples can be reduced by 60%. The applicability of the system is demonstrated by multiplex detection of three uropathogenic clinical isolates with similar 16S rRNA sequences. The results demonstrate that electrokinetic stringency control can significantly improve the signal-to-noise ratio of the biosensor for multiplex urinary tract infection diagnosis. PMID:23891989

  5. Contact angles of surface nanobubbles on mixed self-assembled monolayers with systematically varied macroscopic wettability by atomic force microscopy.

    PubMed

    Song, Bo; Walczyk, Wiktoria; Schönherr, Holger

    2011-07-01

    The dependence of the properties of so-called "surface nanobubbles" at the interface of binary self-assembled monolayers (SAMs) of octadecanethiol (ODT) and 16-mercaptohexadecanoic acid (MHDA) on ultraflat template-stripped gold and water on the surface composition was studied systematically by in situ atomic force microscopy (AFM). The macroscopic water contact angle (θ(macro)) of the SAMs spanned the range between 107° ± 1° and 15° ± 3°. Surface nanobubbles were observed on all SAMs by intermittent contact-mode AFM; their size and contact angle were found to depend on the composition of the SAM. In particular, nanoscopic contact angles θ(nano) < 86° were observed for the first time for hydrophilic surfaces. From fits of the top of the bubble profile to a spherical cap in three dimensions, quantitative estimates of nanobubble height, width, and radius of curvature were obtained. Values of θ(nano) calculated from these data were found to change from 167° ± 3° to 33° ± 58°, when θ(macro) decreased from 107° ± 1° to 37° ± 3°. While the values for θ(nano) significantly exceeded those of θ(macro) for hydrophobic SAMs, which is fully in line with previous reports, this discrepancy became less pronounced and finally vanished for more hydrophilic surfaces.

  6. Site-selective assembly of quantum dots on patterned self-assembled monolayers fabricated by laser direct-writing

    NASA Astrophysics Data System (ADS)

    Wu, Chong; Wang, Yongsheng; Han, Xuemingyue; Hu, Xinming; Cheng, Qianyi; Han, Baohang; Liu, Qian; Ren, Tianling; He, Yonghong; Sun, Shuqing; Ma, Hui

    2012-06-01

    A simple and efficient route for quantum dot (QDs) patterning using self-assembled monolayers (SAMs) as templates is described. By means of a laser direct-writing (LDW) technique, SAMs of octadecylphosphonic acid formed by adsorption on native oxide layer of titanium film were patterned through laser-induced ablation of the SAM molecules. This technique allows the creation of chemical-specific patterns accompanied by slight change in the topography. Using atomic force microscopy and friction force microscopy, the dependence of feature size and characteristics on the irradiation dose was demonstrated. Upon immersion of a substrate with patterned SAMs bearing thiol as the terminal group into a dispersion of QDs resulted in the assembly of QDs on the specific thiol-terminated areas. Patterns of QDs with different photoluminescent wavelength were generated. The LDW technique, which is convenient and flexible due to its path-directed and maskless fabrication process, provided a new powerful approach for patterning materials on surfaces for various applications.

  7. Site-selective assembly of quantum dots on patterned self-assembled monolayers fabricated by laser direct-writing.

    PubMed

    Wu, Chong; Wang, Yongsheng; Han, Xuemingyue; Hu, Xinming; Cheng, Qianyi; Han, Baohang; Liu, Qian; Ren, Tianling; He, Yonghong; Sun, Shuqing; Ma, Hui

    2012-06-15

    A simple and efficient route for quantum dot (QDs) patterning using self-assembled monolayers (SAMs) as templates is described. By means of a laser direct-writing (LDW) technique, SAMs of octadecylphosphonic acid formed by adsorption on native oxide layer of titanium film were patterned through laser-induced ablation of the SAM molecules. This technique allows the creation of chemical-specific patterns accompanied by slight change in the topography. Using atomic force microscopy and friction force microscopy, the dependence of feature size and characteristics on the irradiation dose was demonstrated. Upon immersion of a substrate with patterned SAMs bearing thiol as the terminal group into a dispersion of QDs resulted in the assembly of QDs on the specific thiol-terminated areas. Patterns of QDs with different photoluminescent wavelength were generated. The LDW technique, which is convenient and flexible due to its path-directed and maskless fabrication process, provided a new powerful approach for patterning materials on surfaces for various applications.

  8. The protonation state of thiols in self-assembled monolayers on roughened Ag/Au surfaces and nanoparticles.

    PubMed

    Bandyopadhyay, Sabyasachi; Chattopadhyay, Samir; Dey, Abhishek

    2015-10-14

    The protonation state of thiols in self-assembled monolayers (SAMs) on Ag and Au surfaces and nanoparticles (NPs) has been an issue of contestation. It has been recently demonstrated that deuterating the thiol proton produces ostentatious changes in the Raman spectra of thiols and can be used to detect the presence of the thiol functional group. Surface enhanced Raman spectroscopy (SERS) of H/D substituted aliphatic thiols on Ag surfaces clearly shows the presence of S-H vibration between 2150-2200 cm(-1) which shifts by 400 cm(-1) upon deuteration and a simultaneous >20 cm(-1) shift in the C-S vibration of thiol deuteration. Large shifts (>15 cm(-1)) in the C-S vibration are also observed for alkyl thiol SAMs on Au surfaces. Alternatively, neither the S-H vibration nor the H/D isotope effect on the C-S vibration is observed for alkyl thiol SAMs on Ag/Au NPs. XPS data on Ag/Au surfaces bearing aliphatic thiol SAMs show the presence of both protonated and deprotonated thiols while on Ag/Au NPs only deprotonated thiols are detected. These data suggest that aliphatic thiol SAMs on Au/Ag surfaces are partially protonated whereas they are totally deprotonated on Au/Ag NPs. Aromatic PhSH SAMs on Ag/Au surfaces and Ag/Au NPs do not show these vibrations or H/D shifts as well indicating that the thiols are deprotonated at these interfaces.

  9. First Observation of Charge Reduction and Desorption Kinetics of Multiply Protonated Peptides Soft Landed onto Self-Assembled Monolayer Surfaces

    SciTech Connect

    Hadjar, Omar; Futrell, Jean H.; Laskin, Julia

    2007-12-13

    The kinetics of charge reduction and desorption of different species produced by soft-landing of mass-selected ions was studied using in situ secondary ion mass spectrometry (SIMS) in a Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS). The improved SIMS capability described in this work utilizes an in-line 8 keV Cs+ ion gun and allows us to interrogate the surface both during the ion deposition and after the deposition is terminated. As a model system doubly protonated ions of Gramicidin S were deposited onto a fluorinated self-assembled monolayer (FSAM) surface. Our results demonstrate for the first time that various peptide-related peaks in FT-ICR SIMS spectra follow very different kinetics. We obtained unique kinetics signatures for doubly protonated, singly protonated and neutral peptides retained on the surface and followed their evolution as a function of time. The experimental results are in excellent agreement with a kinetic model that takes into account charge reduction and thermal desorption of different species from the surface.

  10. Study on the formation of self-assembled monolayers on sol-gel processed hafnium oxide as dielectric layers.

    PubMed

    Ting, Guy G; Acton, Orb; Ma, Hong; Ka, Jae Won; Jen, Alex K-Y

    2009-02-17

    High dielectric constant (k) metal oxides such as hafnium oxide (HfO2) have gained significant interest due to their applications in microelectronics. In order to study and control the surface properties of hafnium oxide, self-assembled monolayers (SAMs) of four different long aliphatic molecules with binding groups of phosphonic acid, carboxylic acid, and catechol were formed and characterized. Surface modification was performed to improve the interface between metal oxide and top deposited materials as well as to create suitable dielectric properties, that is, leakage current and capacitance densities, which are important in organic thin film transistors. Attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, contact angle goniometry, atomic force microscopy (AFM), and simple metal-HfO2-SAM-metal devices were used to characterize the surfaces before and after SAM modification on sol-gel processed hafnium oxide. The alkylphosphonic acid provided the best monolayer formation on sol-gel processed hafnium oxide to generate a well-packed, ultrathin dielectric exhibiting a low leakage current density of 2x10(-8) A/cm2 at an applied voltage of -2.0 V and high capacitance density of 0.55 microF/cm2 at 10 kHz. Dialkylcatechol showed similar characteristics and the potential for using the catechol SAMs to modify HfO2 surfaces. In addition, the integration of this alkylphosphonic acid SAM/hafnium oxide hybrid dielectric into pentacene-based thin film transistors yields low-voltage operation within 1.5 V and improved performance over bare hafnium oxide.

  11. Impact of chain length, temperature, and humidity on the growth of long alkyltrichlorosilane self-assembled monolayers.

    PubMed

    Desbief, Simon; Patrone, Lionel; Goguenheim, Didier; Guérin, David; Vuillaume, Dominique

    2011-02-21

    In this work, we have studied the growth of self-assembled monolayers (SAMs) on silicon dioxide (SiO(2)) made of various long alkyltrichlorosilane chains (16, 18, 20, 24, and 30 carbon atoms in the alkyl chain), at several values of temperature (11 and 20 °C in most cases) and relative humidity (18 and 45% RH). Using atomic force microscopy analysis, thickness measurements by ellipsometry, and contact angle measurements, we have built a model of growth behaviour of SAMs of those molecules according to the deposition conditions and the chain length. Particularly, this work brings not only a better knowledge of the less studied growth of triacontyltrichlorosilane (C(30)H(61)SiCl(3)) SAMs but also new results on SAMs of tetracosyltrichlorosilane (C(24)H(49)SiCl(3)) that have not already been studied to our knowledge. We have shown that the SAM growth behaviour of triacontyltrichlorosilane at 20 °C and 45% RH is similar to that obtained at 11 °C and 45% RH for shorter molecules of hexadecyltrichlorosilane (C(16)H(33)SiCl(3)), octadecyltrichlorosilane (C(18)H(37)SiCl(3)), eicosyltrichlorosilane (C(20)H(41)SiCl(3)) and tetracosyltrichlorosilane (C(24)H(49)SiCl(3)). We have also observed that the monolayers grow faster at 45% than at 18% RH, and surprisingly slower at 20 °C than at 11 °C. Another important result is that the growth time constant decreases with the number of carbon atoms in the alkyl chain except for C(24)H(49)SiCl(3) at 11 °C and 18% RH, and for C(30)H(61)SiCl(3). To our knowledge, such a chain length dependence of the growth time constant has never been reported. The latter and all the other results are interpreted by adapting a diffusion limited aggregation growth model. PMID:21161113

  12. Solid-State Densification of Spun-Cast Self-Assembled Monolayers for Use in Ultra-Thin Hybrid Dielectrics

    PubMed Central

    Hutchins, Daniel O.; Acton, Orb; Weidner, Tobias; Cernetic, Nathan; Baio, Joe E.; Castner, David G.; Ma, Hong; Jen, Alex K.-Y.

    2013-01-01

    Ultra-thin self-assembled monolayer (SAM)-oxide hybrid dielectrics have gained significant interest for their application in low-voltage organic thin film transistors (OTFTs). A [8-(11-phenoxy-undecyloxy)-octyl]phosphonic acid (PhO-19-PA) SAM on ultrathin AlOx (2.5 nm) has been developed to significantly enhance the dielectric performance of inorganic oxides through reduction of leakage current while maintaining similar capacitance to the underlying oxide structure. Rapid processing of this SAM in ambient conditions is achieved by spin coating, however, as-cast monolayer density is not sufficient for dielectric applications. Thermal annealing of a bulk spun-cast PhO-19-PA molecular film is explored as a mechanism for SAM densification. SAM density, or surface coverage, and order are examined as a function of annealing temperature. These SAM characteristics are probed through atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and near edge X-ray absorption fine structure spectroscopy (NEXAFS). It is found that at temperatures sufficient to melt the as-cast bulk molecular film, SAM densification is achieved; leading to a rapid processing technique for high performance SAM-oxide hybrid dielectric systems utilizing a single wet processing step. To demonstrate low-voltage devices based on this hybrid dielectric (with leakage current density of 7.7×10−8 A cm−2 and capacitance density of 0.62 µF cm−2 at 3 V), pentacene thin-film transistors (OTFTs) are fabricated and yield sub 2 V operation and charge carrier mobilites of up to 1.1 cm2 V−1 s−1. PMID:24288423

  13. X-ray studies of self-assembled organic monolayers grown on hydrogen-terminated Si(111).

    PubMed

    Jin, Hua; Kinser, C Reagan; Bertin, Paul A; Kramer, Donald E; Libera, Joseph A; Hersam, Mark C; Nguyen, Sonbinh T; Bedzyk, Michael J

    2004-07-20

    The structure of self-assembled monolayers (SAMs) of undecylenic acid methyl ester (SAM-1) and undec-10-enoic acid 2-bromo-ethyl ester (SAM-2) grown on hydrogen-passivated Si(111) were studied by X-ray reflectivity (XRR), X-ray standing waves (XSW), X-ray fluorescence (XRF), atomic force microscopy, and X-ray photoelectron spectroscopy (XPS). The two different SAMs were grown by immersion of H-Si(111) substrates into the two different concentrated esters. UV irradiation during immersion was used to create Si dangling bond sites that act as initiators of the surface free-radical addition process that leads to film growth. The XRR structural analysis reveals that the molecules of SAM-1 and SAM-2 respectively have area densities corresponding to 50% and 57% of the density of Si(111) surface dangling bonds and produce films with less than 4 angstroms root-mean-square roughness that have layer thicknesses of 12.2 and 13.2 angstroms. Considering the molecular lengths, these thicknesses correspond to a 38 degrees and 23 degrees tilt angle for the respective molecules. For SAM-2/Si(111) samples, XRF analysis reveals a 0.58 monolayer (ML) Br total coverage. Single-crystal Bragg diffraction XSW analysis reveals (unexpectedly) that 0.48 ML of these Br atoms are at a Si(111) lattice position height that is identical to the T1 site that was previously found by XSW analysis for Br adsorbed onto Si(111) from a methanol solution and from ultrahigh vacuum. From the combined XPS, XRR, XRF, and XSW evidence, it is concluded that Br abstraction by reactive surface dangling bonds competes with olefin addition to the surface.

  14. Facile Peeling Method as a Post-Remedy Strategy for Producing an Ultrasmooth Self-Assembled Monolayer for High-Performance Organic Transistors.

    PubMed

    Chen, Xiaosong; Xu, Zeyang; Wu, Kunjie; Zhang, Suna; Li, Hongwei; Meng, Yancheng; Wang, Zhongwu; Li, Liqiang; Ma, Xueming

    2016-09-20

    The modification of dielectric surface with a self-assembled monolayer (SAM) such as octadecyltrichlorosilane (OTS) is a widely used method to tune the electrical property of diverse electronic devices based on organic semiconductors, graphene, transition metal dichalcogenides (TMDs), and so forth. The surface roughness of self-assembled OTS monolayer is a key factor in determining its effect on device performance, but the preparation of an ultrasmooth OTS monolayer is a technologically challenging task. In this work, an ultrasmooth OTS monolayer is prepared via a facile peeling method, which may serve as a postremedy strategy to remove the protuberant aggregates. Such a method has not been reported before. With organic semiconductors as a testing model, ultrasmooth OTS may significantly improve the charge mobility of organic field-effect transistors (OFETs). P-type dinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophene (DNTT) OFET with an ultrasmooth OTS monolayer yields good reproducibility and unprecendented maximum mobility of 8.16 cm(2) V(-1) s(-1), which is remarkably superior to that of the OFET with a pristine OTS monolayer. This work develops a simple method to resolve the common and significant problem of the quality of OTS modification, which would be highly promising for electronic applications as well as other fields such as surface and interface engineering.

  15. Facile Peeling Method as a Post-Remedy Strategy for Producing an Ultrasmooth Self-Assembled Monolayer for High-Performance Organic Transistors.

    PubMed

    Chen, Xiaosong; Xu, Zeyang; Wu, Kunjie; Zhang, Suna; Li, Hongwei; Meng, Yancheng; Wang, Zhongwu; Li, Liqiang; Ma, Xueming

    2016-09-20

    The modification of dielectric surface with a self-assembled monolayer (SAM) such as octadecyltrichlorosilane (OTS) is a widely used method to tune the electrical property of diverse electronic devices based on organic semiconductors, graphene, transition metal dichalcogenides (TMDs), and so forth. The surface roughness of self-assembled OTS monolayer is a key factor in determining its effect on device performance, but the preparation of an ultrasmooth OTS monolayer is a technologically challenging task. In this work, an ultrasmooth OTS monolayer is prepared via a facile peeling method, which may serve as a postremedy strategy to remove the protuberant aggregates. Such a method has not been reported before. With organic semiconductors as a testing model, ultrasmooth OTS may significantly improve the charge mobility of organic field-effect transistors (OFETs). P-type dinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophene (DNTT) OFET with an ultrasmooth OTS monolayer yields good reproducibility and unprecendented maximum mobility of 8.16 cm(2) V(-1) s(-1), which is remarkably superior to that of the OFET with a pristine OTS monolayer. This work develops a simple method to resolve the common and significant problem of the quality of OTS modification, which would be highly promising for electronic applications as well as other fields such as surface and interface engineering. PMID:27557089

  16. Efficient biosensor interfaces based on space-controlled self-assembled monolayers.

    PubMed

    Tokuhisa, Hideo; Liu, Jun'an; Omori, Kazuhiro; Kanesato, Masatoshi; Hiratani, Kazuhisa; Baker, Lane A

    2009-02-01

    In this paper we demonstrate control over the spacing of surface-modifying probe molecules through the use of labile dendron spacers. During this process, anchor molecules are first adsorbed to a surface, with dendron modifiers attached. Steric interactions of the bulky dendrons control the density of anchor molecules bound to the surface. The dendron branches are subsequently detached from the anchor molecules, and the anchors are chemically modified with probe molecules, resulting in a surface with controlled spacing between probe molecules. Control over this spacing is important when the probe size is small in comparison with the target molecule. This importance is demonstrated for the binding of protein (streptavidin) targets to the probe (biotin) surface. The effect of probe space control on the efficiency of target capture is evaluated by examining the binding of streptavidin to thiolated biotin for a series of mixed monolayers. Surface modification is monitored by Fourier transform infrared reflection absorption spectroscopy (FTIR-RAS). The relative concentration of probe molecules at the surface is measured using X-ray photoelectron spectroscopy (XPS) measurements. Thiolated-biotin surfaces with optimized spacing show an increased capture efficiency for streptavidin relative to surfaces with nonoptimal or no control over probe spacing, as measured by surface plasmon resonance (SPR) spectroscopy. These results are of potential significance for the optimization and fabrication of micro- and nanoarrays used in chemical and biochemical measurements.

  17. Solid phase synthesis of functionalised SAM-forming alkanethiol-oligoethyleneglycols.

    PubMed

    Murray, James; Nowak, Dominika; Pukenas, Laurynas; Azhar, Rizuan; Guillorit, Mathieu; Wälti, Christoph; Critchley, Kevin; Johnson, Steven; Bon, Robin S

    2014-06-28

    We present an efficient solid phase synthesis methodology that provides easy access to a range of functionalised long-chain alkanethiol-oligoethyleneglycols that form well-defined self-assembled monolayers on gold and are compatible with pre- or post-assembly conjugation of (bio)molecules. We demonstrate the versatility of our synthetic route by synthesising LCAT-OEGs with a range of functional moieties, including peptides, electro-active redox groups, chemical handles for post-assembly conjugation of (bio)molecules, and demonstrate the application of our LCAT-OEG monolayers in immunosensing, where they show good biocompatibility with minimal biofouling. PMID:25400934

  18. Self-assembled thiol monolayers with carboxylic acid functionality: Measuring pH-dependent phase transitions with the quartz crystal microbalance

    SciTech Connect

    Wang, J.; Frostman, L.M.; Ward, M.D. |

    1992-06-25

    The resonant frequency of the quartz crystal microbalance (QCM) coated with self-assembled thiol monolayers with carboxylic acid functionality is measured while the pH of the aqueous solvent is changed in this paper. Increased tensile stress with increasing pH activity partially contributed to the QCM response, but the major contribution was due to changes in the viscoelastic properties of the hydrodynamic layer in contact with the QCM. 28 refs., 3 figs.

  19. Surface Decoration on Polymeric Gate Dielectrics for Flexible Organic Field-Effect Transistors via Hydroxylation and Subsequent Monolayer Self-Assembly.

    PubMed

    Yan, Yan; Huang, Long-Biao; Zhou, Ye; Han, Su-Ting; Zhou, Li; Sun, Qijun; Zhuang, Jiaqing; Peng, Haiyan; Yan, He; Roy, V A L

    2015-10-28

    A simple photochemical reaction based on confined photocatalytic oxidation (CPO) treatment and hydrolysis was employed to efficiently convert C-H bonds into C-OH groups on polymeric material surfaces, followed by investigation of monolayer self-assembly decoration on polymeric dielectrics via chemical bonding for the organic field-effect transistors (OFETs) applications. This method is a low temperature process and has negligible etching effect on polymeric dielectric layers. Various types of self-assembled monolayers have been tested and successfully attached onto the hydroxylated polymeric dielectric surfaces through chemical bonding, ensuring the stability of decorated functional films during the subsequent device fabrication consisting of solution processing of the polymer active layer. With the surface decoration of functional groups, both n-type and p-type polymers exhibit enhanced carrier mobilities in the unipolar OFETs. In addition, enhanced and balanced mobilities are obtained in the ambipolar OFETs with the blend of polymer semiconductors. The anchored self-assembled monolayers on the dielectric surfaces dramatically preclude the solvent effect, thus enabling an improvement of carrier mobility up to 2 orders of magnitude. Our study opens a way of targeted modifications of polymeric surfaces and related applications in organic electronics. PMID:26439239

  20. Patterning of self-assembled monolayers by phase-shifting mask and its applications in large-scale assembly of nanowires

    SciTech Connect

    Gao, Fan; Zhang, Dakuan; Wang, Jianyu; Sheng, Yun; Wang, Xinran; Chen, Kunji; Zhou, Minmin; Yan, Shancheng; Shen, Jiancang; Pan, Lijia; Shi, Yi

    2015-01-26

    A nonselective micropatterning method of self-assembled monolayers (SAMs) based on laser and phase-shifting mask (PSM) is demonstrated. Laser beam is spatially modulated by a PSM, and periodic SAM patterns are generated sequentially through thermal desorption. Patterned wettability is achieved with alternating hydrophilic/hydrophobic stripes on octadecyltrichlorosilane monolayers. The substrate is then used to assemble CdS semiconductor nanowires (NWs) from a solution, obtaining well-aligned NWs in one step. Our results show valuably the application potential of this technique in engineering SAMs for integration of functional devices.

  1. Dynamics of Energy Transfer and Soft-Landing in Collisions of Protonated Dialanine with Perfluorinated Self-Assembled Monolayer Surfaces

    SciTech Connect

    Pratihar, Subha; Kohale, Swapnil C.; Bhakta, Dhruv G.; Laskin, Julia; Hase, William L.

    2014-11-21

    Chemical dynamics simulations are reported which provide atomistic details of collisions of protonated dialanine, ala2-H+, with a perfluorinateted octanethiolate self-assembled monolayer (F-SAM ) surface. The simulations are performed at collisions energy Ei of 5.0, 13.5, 22.5, 30.00, and 70 eV, and incident angles 0o 0 (normal) and grazing 45o. Excellent agreement with experiment (J. Am. Chem. Soc. 2000, 122, 9703-9714) is found for both the average fraction and distribution of the collision energy transferred to the ala2-H+ internal degrees of freedom. The dominant pathway for this energy transfer is to ala2-H+ vibration, but for Ei = 5.0 eV ~20% of the energy transfer is to ala2-H+ rotation. Energy transfer to ala2-H+ rotation decreases with increase in Ei and becomes negligible at high Ei. Three types of collisions are observed in the simulations: i.e. those for which ala2-H+ (1) directly scatters off the F-SAM surface; (2) sticks/physisorbs on//in the surface, but desorbs within the 10 ps numerical integration of the simulations; and (3) remains trapped (i.e. soft-landed) on/in the surface when the simulations are terminated. Penetration of the F-SAM by ala2-H+ is important for the latter two types of events. The trapped trajectories are expected to have relatively long residence times on the surface, since a previous molecular dynamics simulation (J. Phys. Chem. B 2014, 118, 5577-5588) shows that thermally accommodated ala2-H+ ions have an binding energy with the F-SAM surface of at least ~15 kcal/mol.

  2. Templating gold surfaces with function: a self-assembled dendritic monolayer methodology based on monodisperse polyester scaffolds.

    PubMed

    Öberg, Kim; Ropponen, Jarmo; Kelly, Jonathan; Löwenhielm, Peter; Berglin, Mattias; Malkoch, Michael

    2013-01-01

    The antibiotic resistance developed among several pathogenic bacterial strains has spurred interest in understanding bacterial adhesion down to a molecular level. Consequently, analytical methods that rely on bioactive and multivalent sensor surfaces are sought to detect and suppress infections. To deliver functional sensor surfaces with an optimized degree of molecular packaging, we explore a library of compact and monodisperse dendritic scaffolds based on the nontoxic 2,2-bis(methylol)propionic acid (bis-MPA). A self-assembled dendritic monolayer (SADM) methodology to gold surfaces capitalizes on the design of aqueous soluble dendritic structures that bear sulfur-containing core functionalities. The nature of sulfur (either disulfide or thiol), the size of the dendritic framework (generation 1-3), the distance between the sulfur and the dendritic wedge (4 or 14 Å), and the type of functional end group (hydroxyl or mannose) were key structural elements that were identified to affect the packaging densities assembled on the surfaces. Both surface plasmon resonance (SPR) and resonance-enhanced surface impedance (RESI) experiments revealed rapid formation of homogenously covered SADMs on gold surfaces. The array of dendritic structures enabled the fabrication of functional gold surfaces displaying molecular covering densities of 0.33-2.2 molecules·nm(-2) and functional availability of 0.95-5.5 groups·nm(-2). The cell scavenging ability of these sensor surfaces for Escherichia coli MS7fim+ bacteria revealed 2.5 times enhanced recognition for G3-mannosylated surfaces when compared to G3-hydroxylated SADM surfaces. This promising methodology delivers functional gold sensor surfaces and represents a facile route for probing surface interactions between multivalently presented motifs and cells in a controlled surface setting.

  3. Immobilization of alkaline phosphatase on solid surface through self-assembled monolayer and by active-site protection.

    PubMed

    Gao, En-Feng; Kang, Kyung Lhi; Kim, Jeong Hee

    2014-06-01

    Retaining biological activity of a protein after immobilization is an important issue and many studies reported to enhance the activity of proteins after immobilization. We recently developed a new immobilization method of enzyme using active-site protection and minimization of the cross-links between enzyme and surface with a DNA polymerase as a model system. In this study, we extended the new method to an enzyme with a small mono-substrate using alkaline phosphatase (AP) as another model system. A condition to apply the new method is that masking agents, in this case its own substrate needs to stay at the active-site of the enzyme to be immobilized in order to protect the active-site during the harsh immobilization process. This could be achieved by removal of essential divalent ion, Zn2+ that is required for full enzyme activity of AP from the masking solution while active-site of AP was protected with p-nitrophenyl phosphate (pNPP). Approximately 40% of the solution-phase activity was acquired with active-site protected immobilized AP. In addition to protection active-site of AP, the number of immobilization links was kinetically controlled. When the mole fraction of the activated carboxyl group of the linker molecule in self-assembled monolayer (SAM) of 12-mercaptododecanoic acid and 6-mercapto-1-ethanol was varied, 10% of 12-mercaptododecanoic acid gave the maximum enzyme activity. Approximately 51% increase in enzyme activity of the active-site protected AP was observed compared to that of the unprotected group. It was shown that the concept of active-site protection and kinetic control of the number of covalent immobilization bonds can be extended to enzymes with small mono-substrates. It opens the possibility of further extension of the new methods of active-site protection and kinetic control of immobilization bond to important enzymes used in research and industrial fields. PMID:24738440

  4. Simulation and modeling of self-assembled monolayers of carboxylic acid thiols on flat and nanoparticle gold surfaces.

    PubMed

    Techane, Sirnegeda; Baer, Donald R; Castner, David G

    2011-09-01

    Quantitative analysis of the 16-mercaptohexadecanoic acid self-assembled monolayer (C16 COOH-SAM) layer thickness on gold nanoparticles (AuNPs) was performed using simulation of electron spectra for surface analysis (SESSA) software and X-ray photoelectron spectroscopy (XPS) experimental measurements. XPS measurements of C16 COOH-SAMs on flat gold surfaces were made at nine different photoelectron emission angles (5-85° in 10° increments), corrected using geometric weighting factors and then summed together to approximate spherical AuNPs. The SAM thickness and relative surface roughness (RSA) in SESSA were optimized to determine the best agreement between simulated and experimental surface composition. On the basis of the glancing-angle results, it was found that inclusion of a hydrocarbon-contamination layer on top the C16 COOH-SAM was necessary to improve the agreement between the SESSA and XPS results. For the 16 COOH-SAMs on flat Au surfaces, using a SAM thickness of 1.1 Å/CH(2) group, an RSA of 1.05, and a 1.5 Å CH(2)-contamination overlayer (total film thickness = 21.5 Å) for the SESSA calculations provided the best agreement with the experimental XPS data. After applying the appropriate geometric corrections and summing the SESSA flat-surface compositions, the best fit results for the 16 COOH-SAM thickness and surface roughness on the AuNPs indicated a slightly thinner overlayer with parameters of 0.9 Å/CH(2) group in the SAM, an RSA of 1.06 RSA, and a 1.5 Å CH(2)-contamination overlayer (total film thickness = 18.5 Å). The 3 Å difference in SAM thickness between the flat Au and AuNP surfaces suggests that the alkyl chains of the SAM are slightly more tilted or disordered on the AuNP surfaces.

  5. PM-IRRAS Determination of Molecular Orientation of Phosphonic Acid Self-Assembled Monolayers on Indium Zinc Oxide.

    PubMed

    Sang, Lingzi; Mudalige, Anoma; Sigdel, Ajaya K; Giordano, Anthony J; Marder, Seth R; Berry, Joseph J; Pemberton, Jeanne E

    2015-05-26

    Self-assembled monolayers (SAMs) of phosphonic acids (PAs) on transparent conductive oxide (TCO) surfaces can facilitate improvement in TCO/organic semiconductor interface properties. When ordered PA SAMs are formed on oxide substrates, interface dipole and electronic structure are affected by the functional group properties, orientation, and binding modes of the modifiers. Choosing octylphosphonic acid (OPA), F13-octylphosphonic acid (F13OPA), pentafluorophenyl phosphonic acid (F5PPA), benzyl phosphonic acid (BnPA), and pentafluorobenzyl phosphonic acid (F5BnPA) as a representative group of modifiers, we report polarization modulation-infrared reflection-absorption spectroscopy (PM-IRRAS) of binding and molecular orientation on indium-doped zinc oxide (IZO) substrates. Considerable variability in molecular orientation and binding type is observed with changes in PA functional group. OPA exhibits partially disordered alkyl chains but on average the chain axis is tilted ∼57° from the surface normal. F13OPA tilts 26° with mostly tridentate binding. The F5PPA ring is tilted 23° from the surface normal with a mixture of bidentate and tridentate binding; the BnPA ring tilts 31° from normal with a mixture of bidentate and tridentate binding, and the F5BnPA ring tilts 58° from normal with a majority of bidentate with some tridenate binding. These trends are consistent with what has been observed previously for the effects of fluorination on orientation of phosphonic acid modifiers. These results from PM-IRRAS are correlated with recent results on similar systems from near-edge X-ray absorption fine structure (NEXAFS) and density functional theory (DFT) calculations. Overall, these results indicate that both surface binding geometry and intermolecular interactions play important roles in dictating the orientation of PA modifiers on TCO surfaces. This work also establishes PM-IRRAS as a routine method for SAM orientation determination on complex oxide substrates

  6. Investigating organic multilayers by spectroscopic ellipsometry: specific and non-specific interactions of polyhistidine with NTA self-assembled monolayers

    PubMed Central

    Solano, Ilaria; Parisse, Pietro; Gramazio, Federico; Casalis, Loredana; Canepa, Maurizio

    2016-01-01

    Summary Background: A versatile strategy for protein–surface coupling in biochips exploits the affinity for polyhistidine of the nitrilotriacetic acid (NTA) group loaded with Ni(II). Methods based on optical reflectivity measurements such as spectroscopic ellipsometry (SE) allow for label-free, non-invasive monitoring of molecule adsorption/desorption at surfaces. Results: This paper describes a SE study about the interaction of hexahistidine (His6) on gold substrates functionalized with a thiolate self-assembled monolayer bearing the NTA end group. By systematically applying the difference spectra method, which emphasizes the small changes of the ellipsometry spectral response upon the nanoscale thickening/thinning of the molecular film, we characterized different steps of the process such as the NTA-functionalization of Au, the adsorption of the His6 layer and its eventual displacement after reaction with competitive ligands. The films were investigated in liquid, and ex situ in ambient air. The SE investigation has been complemented by AFM measurements based on nanolithography methods (nanografting mode). Conclusion: Our approach to the SE data, exploiting the full spectroscopic potential of the method and basic optical models, was able to provide a picture of the variation of the film thickness along the process. The combination of δΔi +1 ,i(λ), δΨi +1 ,i(λ) (layer-addition mode) and δΔ† i ', i +1(λ), δΨ† i ', i +1(λ) (layer-removal mode) difference spectra allowed us to clearly disentangle the adsorption of His6 on the Ni-free NTA layer, due to non specific interactions, from the formation of a neatly thicker His6 film induced by the Ni(II)-loading of the NTA SAM. PMID:27335745

  7. Formation of self-assembled monolayers with homogeneously mixed, loosely packed alkyl groups using unsymmetrical dialkyldithiophosphinic acids.

    PubMed

    San Juan, Ronan R; Carmichael, Tricia Breen

    2012-12-21

    We report the formation and characterization of self-assembled monolayers (SAMs) formed from unsymmetrical dialkyldithiophosphinic acid (R(1)R(2)DTPA) adsorbates [CH(3)(CH(2))(n)][CH(3)(CH(2))(15)]P(S)SH (n = 5, 9) on gold substrates. These SAMs were characterized using X-ray photoelectron spectroscopy, reflection-absorption infrared spectroscopy, contact angle goniometry, electrochemical impedance spectroscopy, and atomic force microscopy. Unsymmetrical R(1)R(2)DTPA SAMs contain mixtures of bidentate and monodentate adsorbates, similar to SAMs formed from analogous symmetrical R(2)DTPAs. In unsymmetrical R(1)R(2)DTPA SAMs, however, the short alkyl substituent of the R(1)R(2)DTPA adsorbates enforces spacing between the long hexadecyl substituents, which disrupts van der Waals interactions and causes the hexadecyl groups to be loosely packed and disordered. The structure of the SAM depends on the length of the short alkyl substituent: The hexyl chains in the C(6)C(16)DTPA SAM are not long enough to stabilize the alkyl zone close to the substrate, leading to highly disordered SAMs with a low molecular packing density in which the hexadecyl chains lie down to fill the gaps between adjacent adsorbates. In contrast, the additional van der Waals interactions provided by the decyl chains of the C(10)C(16)DTPA SAM enable dense molecular packing in the alkyl zone close to the substrate. The structure of the SAM consists of a zone close to the substrate composed of a packed alkyl layer, with hexadecyl chains protruding above to form a loosely packed, disordered alkyl layer. Regardless of the structural differences between the C(6)C(16)DTPA and C(10)C(16)DTPA SAMs, both SAMs exhibit homogeneous mixing of the alkyl chains within the SAM, demonstrating that binding two different chains to a single headgroup is an effective method to prevent phase segregation.

  8. Fragmentation and reactivity in collisions of protonated diglycine with chemically modified perfluorinated alkylthiolate-self-assembled monolayer surfaces

    SciTech Connect

    Barnes, George L.; Yang Li; Hase, William L.; Young, Kelsey

    2011-03-07

    Direct dynamics simulations are reported for quantum mechanical (QM)/molecular mechanical (MM) trajectories of N-protonated diglycine (gly{sub 2}-H{sup +}) colliding with chemically modified perfluorinated octanethiolate self-assembled monolayer (SAM) surfaces. The RM1 semiempirical theory is used for the QM component of the trajectories. RM1 activation and reaction energies were compared with those determined from higher-level ab initio theories. Two chemical modifications are considered in which a head group (-COCl or -CHO) is substituted on the terminal carbon of a single chain of the SAM. These surfaces are designated as the COCl-SAM and CHO-SAM, respectively. Fragmentation, peptide reaction with the SAM, and covalent linkage of the peptide or its fragments with the SAM surface are observed. Peptide fragmentation via concerted CH{sub 2}-CO bond breakage is the dominant pathway for both surfaces. HCl formation is the dominant species produced by reaction with the COCl-SAM, while for the CHO-SAM a concerted H-atom transfer from the CHO-SAM to the peptide combined with either a H-atom or radical transfer from the peptide to the surface to form singlet reaction products is the dominant pathway. A strong collision energy dependence is found for the probability of peptide fragmentation, its reactivity, and linkage with the SAM. Surface deposition, i.e., covalent linkage between the surface and the peptide, is compared to recent experimental observations of such bonding by Laskin and co-workers [Phys. Chem. Chem. Phys. 10, 1512 (2008)]. Qualitative differences in reactivity are seen between the COCl-SAM and CHO-SAM showing that chemical identity is important for surface reactivity. The probability of reactive surface deposition, which is most closely analogous to experimental observables, peaks at a value of around 20% for a collision energy of 50 eV.

  9. Self-assembly, characterization, and chemical stability of isocyanide-bound molecular wire monolayers on gold and palladium surfaces.

    PubMed

    Stapleton, Joshua J; Daniel, Thomas A; Uppili, Sundarajan; Cabarcos, Orlando M; Naciri, Jawad; Shashidhar, Ranganathan; Allara, David L

    2005-11-22

    Self-assembled monolayers (SAMs) of the isocyano derivative of 4,4'-di(phenylene-ethynylene)benzene (1), a member of the "OPE" family of "molecular wires" of current interest in molecular electronics, have been prepared on smooth, {111} textured films of Au and Pd. For assembly in oxygen-free environments with freshly deposited metal surfaces, infrared reflection spectroscopy (IRS) indicates the molecules assume a tilted structure with average tilt angles of 18-24 degrees from the surface normal. The combination of IRS, X-ray photoelectron spectroscopy, and density functional theory calculations all support a single sigma-type bond of the -NC group to the Au surface and a sigma/pi-type of bond to the Pd surface. Both SAMs show significant chemical instability when exposed to typical ambient conditions. In the case of the Au SAM, even a few hours storage in air results in significant oxidation of the -NC moieties to -NCO (isocyanate) with an accompanying decrease in surface chemical bonding, as evidenced by a significant increase in instability toward dissolution in solvent. In the case of the Pd SAM, similar air exposure does not result in incorporation of oxygen or loss of solvent resistance but rather results in a chemically altered interface which is attributed to polymerization of the -NC moieties to quasi-2D poly(imine) structures. Conductance probe atomic force microscope measurements show the conductance of the degraded Pd SAMs can diminish by approximately 2 orders of magnitude, an indication that the SAM-Pd electrical contact has severely degraded. These results underscore the importance of careful control of the assembly procedures for aromatic isocyanide SAMs, particularly for applications in molecular electronics where the molecule-electrode junction is critical to the operational characteristics of the device.

  10. Near infrared (NIR) lanthanide emissive Langmuir-Blodgett monolayers formed using Nd(III) directed self-assembly synthesis of chiral amphiphilic ligands.

    PubMed

    Barry, Dawn E; Kitchen, Jonathan A; Albrecht, Martin; Faulkner, Stephen; Gunnlaugsson, Thorfinnur

    2013-09-10

    The incorporation of chiral amphiphilic lanthanide-directed self-assembled Nd(III) complexes (Nd.13 and Nd.23) into stable Langmuir monolayers, and the subsequent Langmuir-Blodgett film formation of these, is described. The photophysical properties of the enantiomeric pair of ligands 1 and 2 in the presence of Nd(CF3SO3)3 were also investigated in CH3CN solutions using UV-vis, fluorescence, and lanthanide luminescence spectroscopies. Analysis of the resulting self-assembly processes revealed that two main species were formed in solution,1:1 and 1:3 Nd:L self-assembly complexes, with the latter being the dominant species upon the addition of 0.33 equivalents of Nd(III). Excited state lifetime measurements of Nd.13 and Nd.23 in CH3OH and CD3OD and CH3CN were also evaluated. The formation of the self-assembly in solution was also monitored by observing the changes in the circular dichroism (CD) spectra; and large differences were observed between the 1:3 and other stoichiometries in the spectra, allowing for correlation to be made with that seen in the emission studies of these systems. Surface pressure-area and surface pressure-time isotherms evidenced the formation of stable Langmuir monolayers of Nd.13 and Nd.23 at an air-water interface, and the deposition of these monolayers onto a quartz solid substrate (Langmuir-Blodgett films) gave rise to immobilized chiral monomolecular films which exhibited Nd(III) NIR luminescence upon excitation of the ligand chromophore, demonstrating efficient energy transfer to the Nd(III) excided state (sensitized) with concomitant emission centered at 800 and 1334 nm.

  11. Gradients of Rectification: Tuning Molecular Electronic Devices by the Controlled Use of Different-Sized Diluents in Heterogeneous Self-Assembled Monolayers.

    PubMed

    Kong, Gyu Don; Kim, Miso; Cho, Soo Jin; Yoon, Hyo Jae

    2016-08-22

    Molecular electronics has received significant attention in the last decades. To hone performance of devices, eliminating structural defects in molecular components inside devices is usually needed. We herein demonstrate this problem can be turned into a strength for modulating the performance of devices. We show the systematic dilution of a monolayer of an organic rectifier (2,2'-bipyridine-terminated n-undecanethiolate) with electronically inactive diluents (n-alkanethiolates of different lengths), gives remarkable gradients of rectification. Rectification is finely tunable in a range of approximately two orders of magnitude, retaining its polarity. Trends of rectification against the length of the diluent indicate the gradient of rectification is extremely sensitive to the molecular structure of the diluent. Further studies reveal that noncovalent intermolecular interactions within monolayers likely leads to gradients of structural defect and rectification.

  12. Gradients of Rectification: Tuning Molecular Electronic Devices by the Controlled Use of Different-Sized Diluents in Heterogeneous Self-Assembled Monolayers.

    PubMed

    Kong, Gyu Don; Kim, Miso; Cho, Soo Jin; Yoon, Hyo Jae

    2016-08-22

    Molecular electronics has received significant attention in the last decades. To hone performance of devices, eliminating structural defects in molecular components inside devices is usually needed. We herein demonstrate this problem can be turned into a strength for modulating the performance of devices. We show the systematic dilution of a monolayer of an organic rectifier (2,2'-bipyridine-terminated n-undecanethiolate) with electronically inactive diluents (n-alkanethiolates of different lengths), gives remarkable gradients of rectification. Rectification is finely tunable in a range of approximately two orders of magnitude, retaining its polarity. Trends of rectification against the length of the diluent indicate the gradient of rectification is extremely sensitive to the molecular structure of the diluent. Further studies reveal that noncovalent intermolecular interactions within monolayers likely leads to gradients of structural defect and rectification. PMID:27443577

  13. Phase diagram, design of monolayer binary colloidal crystals, and their fabrication based on ethanol-assisted self-assembly at the air/water interface.

    PubMed

    Dai, Zhengfei; Li, Yue; Duan, Guotao; Jia, Lichao; Cai, Weiping

    2012-08-28

    Flexible structural design and accurate controlled fabrication with structural tunability according to need for binary or multicomponent colloidal crystals have been expected. However, it is still a challenge. In this work, the phase diagram of monolayer binary colloidal crystals (bCCs) is established on the assumption that both large and small polystyrene (PS) colloidal spheres can stay at the air/water interface, and the range diagram for the size ratio and number ratio of small to large colloidal spheres is presented. From this phase diagram, combining the range diagram, we can design and relatively accurately control fabrication of the bCCs with specific structures (or patterns) according to need, including single or mixed patterns with the given relative content. Further, a simple and facile approach is presented to fabricate large-area (more than 10 cm(2)) monolayer bCCs without any surfactants, using differently sized PS spheres, based on ethanol-assisted self-assembly at the air/water interface. bCCs with different patterns and stoichiometries are thus designed from the established phase diagram and then successfully fabricated based on the volume ratios (V(S/L)) of the small to large PS suspensions using the presented colloidal self-assembling method. Interestingly, these monolayer bCCs can be transferred to any desired substrates using water as the medium. This study allows us to design desired patterns of monolayer bCCs and to more accurately control their structures with the used V(S/L).

  14. Electrochemical and surface plasmon resonance characterization of β-cyclodextrin-based self-assembled monolayers and evaluation of their inclusion complexes with glucocorticoids

    NASA Astrophysics Data System (ADS)

    Frasconi, Marco; Mazzei, Franco

    2009-07-01

    This paper describes the characterization of a self-assembled β-cyclodextrin (β-CD)-derivative monolayer (β-CD-SAM) on a gold surface and the study of their inclusion complexes with glucocorticoids. To this aim the arrangement of a self-assembled β-cyclodextrin-derivative monolayer on a gold surface was monitored in situ by means of surface plasmon resonance (SPR) spectroscopy and double-layer capacitance measurements. Film thickness and dielectric constant were evaluated for a monolayer of β-CD using one-color-approach SPR. The selectivity of the β-CD host surface was verified by using electroactive species permeable and impermeable in the β-CD cavity. The redox probe was selected according to its capacity to permeate the β-CD monolayer and its electrochemical behavior. In order to evaluate the feasibility of an inclusion complex between β-CD-SAM with some steroids such as cortisol and cortisone, voltammetric experiments in the presence of the redox probes as molecules competitive with the steroids have been performed. The formation constant of the surface host-guest by β-CD-SAM and the steroids under study was calculated.

  15. Interaction of self-assembling beta-sheet peptides with phospholipid monolayers: the role of aggregation state, polarity, charge and applied field.

    PubMed

    Protopapa, Elisabeth; Maude, Steven; Aggeli, Amalia; Nelson, Andrew

    2009-03-01

    Studies of beta-sheet peptide/phospholipid interactions are important for an understanding of the folding of beta-sheet-rich membrane proteins and the action of antimicrobial and toxic peptides. Further, self-assembling peptides have numerous applications in medicine and therefore an insight is required into the relation between peptide molecular structure and biomembrane activity. We previously developed one of the simplest known model peptide systems which, above a critical concentration (c*) in solution, undergoes nucleated one-dimensional self-assembly from a monomeric random coil into a hierarchy of well defined beta-sheet structures. Here we examine the effects of peptide aggregation, polarity, charge, and applied field on peptide interactions with dioleoyl phosphatidylcholine (DOPC) monolayers using electrochemical techniques. The interactions of six systematically altered 11 residue beta-sheet tape-forming peptides were investigated. The following findings with respect to 11 residue beta-sheet peptide-DOPC interaction arose from the study: (i) The solution monomer peptide species is the monolayer active moeity. (ii) Amphiphilic peptides are more monolayer active than polar peptides in the absence of applied electric field. (iii) Positive charge on amphiphilic peptides facilitates monolayer interaction in the absence of applied electric field. (iv) Negative applied electric field facilitates monolayer interaction with positively charged amphiphilic and polar peptides. (v) Neutral amphiphilic peptides permeabilize DOPC layers to ions to the greatest extent. (vi) The beta-sheet tape forming peptides are shown to be significantly less monolayer disruptive than antimicrobial peptides. These conclusions will greatly contribute to the rational design of new peptide-based biomaterials and biosensors.

  16. Poly(ethylene glycol) and hydroxy functionalized alkane phosphate mixed self-assembled monolayers to control nonspecific adsorption of proteins on titanium oxide surfaces.

    PubMed

    Bozzini, Sabrina; Petrini, Paola; Tanzi, Maria Cristina; Zürcher, Stefan; Tosatti, Samuele

    2010-05-01

    The spontaneous formation of alkane phosphate self-assembled monolayers (SAMs) on titanium oxide was chosen as a tool to tailor the surface physicochemical properties in terms of nonspecific adsorption of proteins. For this aim, poly(ethylene glycol)-modified (PEG) alkane phosphate was codeposited with OH-terminated alkane phosphates. X-ray photoelectron spectroscopy and ellipsometry of the resulting mixed SAMs indicate that the PEG density can be controlled by varying the mole fraction of PEG-terminated phosphates in the solutions used during the deposition process, leading to surfaces with different degrees of protein resistance.

  17. Beam Damage of HS (CH2)15 COOH Terminated Self Assembled Monolayer (SAM) as Observed by X-Ray Photoelectron Spectroscopy

    SciTech Connect

    Engelhard, Mark H.; Tarasevich, Barbara J.; Baer, Donald R.

    2011-10-25

    XPS spectra of HS(CH{sub 2}){sub 15} COOH terminated a self assembled monolayer (SAM)sample was collected over a period of 242 minutes to determine specimen damage during long exposures to monochromatic Al Ka x-rays. For this COOH terminated SAM we measured the loss of oxygen as a function of time by rastering a focused 100 W, 100 um diameter x-ray beam over a 1.4 mm x 0.2 mm area of the sample.

  18. Nonlinear optical property of hemicyanine self-assembled monolayers on gold and its adsorption kinetics probed by optical second-harmonic generation and surface plasmon resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Naraoka, Ryo; Kaise, Go; Kajikawa, Kotaro; Okawa, Haruki; Ikezawa, Hiroki; Hashimoto, Kazuhiko

    2002-08-01

    We have prepared the organosulfur self-assembled monolayer (SAM) containing hemicyanine on gold. It shows a large second-order nonlinear optical susceptibility χzzz=58 pm/V. The adsorption kinetics of the SAM on gold was also probed by the in situ real time measurements of second-harmonic generation (SHG) and surface plasmon resonance (SPR) spectroscopy. While the SHG kinetics was saturated immediately after the immersion of the gold substrate in the solution, the SPR kinetics showed additional slow adsorption for more than 20 000 s. This means that rapid formation of the well-ordered hemicyanine SAM is followed by gradual physisorption where the molecules are disordered.

  19. Self-assembly of organic films on a liquid metal

    NASA Astrophysics Data System (ADS)

    Magnussen, Olaf M.; Ocko, Benjamin M.; Deutsch, Moshe; Regan, Michael J.; Pershan, Peter S.; Abernathy, Douglas; Grübel, Gerhard; Legrand, Jean-François

    1996-11-01

    THE structure and phase behaviour of organic thin films result from the subtle interplay of intermolecular Van der Waals interactions, which promote self-assembly and long-ranged order, and the more complex interactions between the end groups of the organic chains and the substrate. The structure of molecular films of amphiphiles has been extensively studied on subphases of dielectric liquids, notably water (Langmuir mono-layers) and on solid surfaces (self-assembled monolayers, SAMs)1-4. Here we report structural studies, by synchrotron X-ray scattering, of an intermediate case: densely packed alka-nethiol films on the surface of liquid mercury. While, like SAMs, these films form strong chemical bonds to the subphase, this subphase is smooth and unstructured, as in the case of Langmuir monolayers. But unlike either of these1,2,5-7, our films have no in-plane long-range order. We suggest that the strong interaction of the thiol group with the underlying disordered liquid dominates here over the order-promoting interactions of the alkyl chains.

  20. Preparation and optimization of a bienzymic biosensor based on self-assembled monolayer modified gold electrode for alcohol and glucose detection.

    PubMed

    Asav, Engin; Akyilmaz, Erol

    2010-01-15

    The aim of this project was to develop a bienzymic biosensor, which was based on co-immobilization of alcohol oxidase and glucose oxidase on the same electrode by formation of self-assembled monolayer (SAM) for selective determination of ethanol and glucose. In the biosensor construction the enzymes and the mediator, tetrathiafulvalene (TTF), were immobilized with cross-linking agents glutaraldehyde and cysteamine by forming a self-assembled monolayer (SAM) on a gold disc electrode. Amounts of ethanol and glucose were amperometrically detected by monitoring current values at reduction potential of TTF(+), 0.1V. Decreases in biosensor responses were linearly related to glucose concentrations between 0.1 and 1.0 mM and ethanol concentrations between 1.0 and 10 mM. Limits of detection of the biosensor for ethanol and glucose were calculated to be 0.75 and 0.03 mM, respectively. In the optimization studies of the biosensor some parameters such as optimum pH, optimum temperature, enzyme amount, effect of TTF concentration and duration of SAM formation were investigated. PMID:19819124

  1. Lubrication of Individual Microcontacts by a Self-Assembled Alkyl Phosphonic Acid Monolayer on α-Al2O3(0001).

    PubMed

    Paul, Jonas; Meltzer, Christian; Braunschweig, Björn; Peukert, Wolfgang

    2016-08-23

    We report on the tribological behavior of a self-assembled alkyl phosphonic acid monolayer on the microscale using the colloidal probe technique. Friction-load data and adhesion forces were measured with borosilicate glass particles on uncoated and octadecylphosphonic acid (ODPA) coated α-Al2O3(0001) surfaces. A significant decrease in friction force was observed after surface coating, while the adhesion force was only moderately reduced. We assume the lubrication effect of the ODPA self-assembled monolayer (SAM) to be close to the maximum obtainable of alkyl phosphonic acids in the studied system due to the high molecular order which was confirmed by vibrational sum-frequency generation. At small loads, a nonlinear dependence of friction force to load was maintained after surface coating. However, a shift from a contact behavior well described by the DMT model toward the JKR model occurred that is possibly related to the altered elastic properties of the coated surface. With increasing load, a linear friction-load behavior was observed on the coated samples. Molecular plowing and adhesive interactions were identified as responsible mechanisms. In all friction experiments, we could not detect any wear neither of the colloidal probes nor at the surfaces of uncoated and coated samples. This proves the high wear resistivity of the studied ODPA SAM. PMID:27478898

  2. Lubrication of Individual Microcontacts by a Self-Assembled Alkyl Phosphonic Acid Monolayer on α-Al2O3(0001).

    PubMed

    Paul, Jonas; Meltzer, Christian; Braunschweig, Björn; Peukert, Wolfgang

    2016-08-23

    We report on the tribological behavior of a self-assembled alkyl phosphonic acid monolayer on the microscale using the colloidal probe technique. Friction-load data and adhesion forces were measured with borosilicate glass particles on uncoated and octadecylphosphonic acid (ODPA) coated α-Al2O3(0001) surfaces. A significant decrease in friction force was observed after surface coating, while the adhesion force was only moderately reduced. We assume the lubrication effect of the ODPA self-assembled monolayer (SAM) to be close to the maximum obtainable of alkyl phosphonic acids in the studied system due to the high molecular order which was confirmed by vibrational sum-frequency generation. At small loads, a nonlinear dependence of friction force to load was maintained after surface coating. However, a shift from a contact behavior well described by the DMT model toward the JKR model occurred that is possibly related to the altered elastic properties of the coated surface. With increasing load, a linear friction-load behavior was observed on the coated samples. Molecular plowing and adhesive interactions were identified as responsible mechanisms. In all friction experiments, we could not detect any wear neither of the colloidal probes nor at the surfaces of uncoated and coated samples. This proves the high wear resistivity of the studied ODPA SAM.

  3. Moiré pattern induced by the electronic coupling between 1-octanol self-assembled monolayers and graphite surface.

    PubMed

    Silly, Fabien

    2012-06-01

    Two-dimensional self-assembly of 1-octanol molecules on a graphite surface is investigated using scanning tunneling microscopy (STM) at the solid/liquid interface. STM images reveal that this molecule self-assembles into a compact hydrogen-bonded herringbone nanoarchitecture. Molecules are preferentially arranged in a head-to-head and tail-to-tail fashion. A Moiré pattern appears in the STM images when the 1-octanol layer is covering the graphite surface. The large Moiré stripes are perpendicular to the 1-octanol lamellae. Interpretation of the STM images suggests that the Moiré periodicity is governed by the electronic properties of the graphite surface and the 1-octanol layer periodicity. PMID:22572595

  4. DNA self-assembly-driven positioning of molecular components on nanopatterned surfaces.

    PubMed

    Szymonik, M; Davies, A G; Wälti, C

    2016-09-30

    We present a method for the specific, spatially targeted attachment of DNA molecules to lithographically patterned gold surfaces-demonstrated by bridging DNA strands across nanogap electrode structures. An alkanethiol self-assembled monolayer was employed as a molecular resist, which could be selectively removed via electrochemical desorption, allowing the binding of thiolated DNA anchoring oligonucleotides to each electrode. After introducing a bridging DNA molecule with single-stranded ends complementary to the electrode-tethered anchoring oligonucleotides, the positioning of the DNA molecule across the electrode gap, driven by self-assembly, occurred autonomously. This demonstrates control of molecule positioning with resolution limited only by the underlying patterned structure, does not require any alignment, is carried out entirely under biologically compatible conditions, and is scalable.

  5. DNA self-assembly-driven positioning of molecular components on nanopatterned surfaces

    NASA Astrophysics Data System (ADS)

    Szymonik, M.; Davies, A. G.; Wälti, C.

    2016-09-01

    We present a method for the specific, spatially targeted attachment of DNA molecules to lithographically patterned gold surfaces—demonstrated by bridging DNA strands across nanogap electrode structures. An alkanethiol self-assembled monolayer was employed as a molecular resist, which could be selectively removed via electrochemical desorption, allowing the binding of thiolated DNA anchoring oligonucleotides to each electrode. After introducing a bridging DNA molecule with single-stranded ends complementary to the electrode-tethered anchoring oligonucleotides, the positioning of the DNA molecule across the electrode gap, driven by self-assembly, occurred autonomously. This demonstrates control of molecule positioning with resolution limited only by the underlying patterned structure, does not require any alignment, is carried out entirely under biologically compatible conditions, and is scalable.

  6. DNA self-assembly-driven positioning of molecular components on nanopatterned surfaces.

    PubMed

    Szymonik, M; Davies, A G; Wälti, C

    2016-09-30

    We present a method for the specific, spatially targeted attachment of DNA molecules to lithographically patterned gold surfaces-demonstrated by bridging DNA strands across nanogap electrode structures. An alkanethiol self-assembled monolayer was employed as a molecular resist, which could be selectively removed via electrochemical desorption, allowing the binding of thiolated DNA anchoring oligonucleotides to each electrode. After introducing a bridging DNA molecule with single-stranded ends complementary to the electrode-tethered anchoring oligonucleotides, the positioning of the DNA molecule across the electrode gap, driven by self-assembly, occurred autonomously. This demonstrates control of molecule positioning with resolution limited only by the underlying patterned structure, does not require any alignment, is carried out entirely under biologically compatible conditions, and is scalable. PMID:27559837

  7. A surface enhanced Raman spectroscopy study of aminothiophenol and aminothiophenol-C60 self-assembled monolayers: Evolution of Raman modes with experimental parameters

    NASA Astrophysics Data System (ADS)

    Delafosse, G.; Merlen, A.; Clair, S.; Patrone, L.

    2012-05-01

    P-aminothiophenol (PATP) is a well-known molecule for the preparation of self-assembled monolayers on gold via its thiol functional group. After adsorption, it has been demonstrated that this molecule is anchored to gold through its thiol group, and standing nearly upright at the surface with the amino functional group on top. This molecule has been extensively studied by surface enhanced Raman spectroscopy but its exact SERS spectrum remains unclear. Here, we demonstrate that it can be strongly affected by at least two experimental parameters: laser power and layer density. Those features are discussed in terms of a dimerization of the PATP molecules. The free amino group affords the adsorption of other molecules such as C60. In this case, a complex multilayer system is formed and the question of its precise characterisation remains a key point. In this article, we demonstrate that surface enhanced Raman spectroscopy combined with x ray photoelectron spectroscopy can bring very important information about the organization of such a self-assembled multilayer on gold. In our study, the strong evolution of Raman modes after C60 adsorption suggests a change in the organization of aminothiophenol molecules during C60 adsorption. These changes, also observed when the aminothiophenol layer is annealed in toluene, do not prevent the adsorption of C60 molecules.

  8. Surface sealing using self-assembled monolayers and its effect on metal diffusion in porous low-k dielectrics studied using monoenergetic positron beams

    NASA Astrophysics Data System (ADS)

    Uedono, Akira; Armini, Silvia; Zhang, Yu; Kakizaki, Takeaki; Krause-Rehberg, Reinhard; Anwand, Wolfgang; Wagner, Andreas

    2016-04-01

    Surface sealing effects on the diffusion of metal atoms in porous organosilicate glass (OSG) films were studied by monoenergetic positron beams. For a Cu(5 nm)/MnN(3 nm)/OSG(130 nm) sample fabricated with pore stuffing, C4F8 plasma etch, unstuffing, and a self-assembled monolayer (SAM) sealing process, it was found that pores with cubic pore side lengths of 1.1 and 3.1 nm coexisted in the OSG film. For the sample without the SAM sealing process, metal (Cu and Mn) atoms diffused from the top Cu/MnN layer into the OSG film and were trapped by the pores. As a result, almost all pore interiors were covered with those metals. For the sample damaged by an Ar/C4F8 plasma etch treatment before the SAM sealing process, SAMs diffused into the OSG film, and they were preferentially trapped by larger pores. The cubic pore side length in these pores containing self-assembled molecules was estimated to be 0.7 nm. Through this work, we have demonstrated that monoenergetic positron beams are a powerful tool for characterizing capped porous films and the trapping of atoms and molecules by pores.

  9. Direct monitoring of opto-mechanical switching of self-assembled monolayer films containing the azobenzene group

    PubMed Central

    Tirosh, Einat; Benassi, Enrico; Pipolo, Silvio; Mayor, Marcel; Valášek, Michal; Frydman, Veronica

    2011-01-01

    Summary The potential for manipulation and control inherent in molecule-based motors holds great scientific and technological promise. Molecules containing the azobenzene group have been heavily studied in this context. While the effects of the cis–trans isomerization of the azo group in such molecules have been examined macroscopically by a number of techniques, modulations of the elastic modulus upon isomerization in self-assembled films were not yet measured directly. Here, we examine the mechanical response upon optical switching of bis[(1,1'-biphenyl)-4-yl]diazene organized in a self-assembled film on Au islands, using atomic force microscopy. Analysis of higher harmonics by means of a torsional harmonic cantilever allowed real-time extraction of mechanical data. Quantitative analysis of elastic modulus maps obtained simultaneously with topographic images show that the modulus of the cis-form is approximately twice that of the trans-isomer. Quantum mechanical and molecular dynamics studies show good agreement with this experimental result, and indicate that the stiffer response in the cis-form comprises contributions both from the individual molecular bonds and from intermolecular interactions in the film. These results demonstrate the power and insights gained from cutting-edge AFM technologies, and advanced computational methods. PMID:22259768

  10. Preparation and tribological behaviors of an amide-containing stratified self-assembled monolayers on silicon surface.

    PubMed

    Song, Shiyong; Zhou, Jinfang; Qu, Mengnan; Yang, Shengrong; Zhang, Junyan

    2008-01-01

    An amide-containing stratified self-assembled film is grafted on a silicon surface by a simple two-step method. First, N-[3-(trimethoxylsilyl)propyl]ethylenediamine (DA) molecules are self-assembled on silicon surfaces followed by deriving with stearoyl chloride (STC) through a surface coupling reaction. The films are characterized by means of contact angle measurement, ellipsometry, and attenuated total reflectance Fourier transformed infrared (ATR-FTIR) spectra. STC forms an ordered and hydrophobic film over the DA layer with a water contact angle of nearly 110 degrees. A microtribological study of the films is carried out on an atomic force microscope (AFM), and the wear-resistant property is tested on a ball-on-plate tribometer. Compared to the films in our previous study, the friction-reducing and load-affording abilities of the film are greatly improved. We contribute the improvements to the existence of two layers of hydrogen bonds, which can enhance the stability of the film by double in-plane cross-linking.

  11. Affinity binding via zinc(II) for controlled orientation and electrochemistry of histidine-tagged nitrate reductase in self-assembled monolayers.

    PubMed

    Campbell, Wilbur H; Henig, Jörg; Plumeré, Nicolas

    2013-10-01

    Monolayers of Cu(II)-complexes on electrode surfaces are frequently applied for the immobilization and controlled orientation of His-tagged redox proteins. However, affinity binding is limited to applications that require potentials less negative than the reduction potential of the metal complexes. In order to overcome this limitation, we used Zn(2+) cations on nitrilotriacetic acid (NTA) modified carbon electrodes for the coordination of His-tagged nitrate reductase (NaR). The NTA modified electrodes were prepared upon diazotation and electrochemical reduction of an aniline functionalized NTA ligand. After coordination of Zn(2+) to the bound NTA ligand, self-assembly of NaR is achieved via coordination of the imidazole groups from the His-tag to the NTA-Zn(II) complex. The electrochemical investigations of the NaR monolayer on NTA-Zn(II) films demonstrate the catalytic activity for reduction of nitrate to nitrite in the presence of methyl viologen. The catalytic current density correlates with the one expected for a fully active enzyme monolayer. Moreover, the reduction of Zn(2+) is not observed at the potential necessary for the reduction of methyl viologen. Therefore, affinity binding based on Zn(2+) may be used for the immobilization and electrochemical applications of His-tagged NaR.

  12. Water-COOH Composite Structure with Enhanced Hydrophobicity Formed by Water Molecules Embedded into Carboxyl-Terminated Self-Assembled Monolayers

    NASA Astrophysics Data System (ADS)

    Guo, Pan; Tu, Yusong; Yang, Jinrong; Wang, Chunlei; Sheng, Nan; Fang, Haiping

    2015-10-01

    By combining molecular dynamics simulations and quantum mechanics calculations, we show the formation of a composite structure composed of embedded water molecules and the COOH matrix on carboxyl-terminated self-assembled monolayers (COOH SAMs) with appropriate packing densities. This composite structure with an integrated hydrogen bond network inside reduces the hydrogen bonds with the water above. This explains the seeming contradiction on the stability of the surface water on COOH SAMs observed in experiments. The existence of the composite structure at appropriate packing densities results in the two-step distribution of contact angles of water droplets on COOH SAMs, around 0° and 35°, which compares favorably to the experimental measurements of contact angles collected from forty research articles over the past 25 years. These findings provide a molecular-level understanding of water on surfaces (including surfaces on biomolecules) with hydrophilic functional groups.

  13. Formation of a 1,8-octanedithiol self-assembled monolayer on Au(111) prepared in a lyotropic liquid-crystalline medium.

    PubMed

    García Raya, Daniel; Madueño, Rafael; Blázquez, Manuel; Pineda, Teresa

    2010-07-20

    A characterization of the 1,8-octanedithiol (ODT) self-assembled monolayer (SAM) formed from a Triton X-100 lyotropic medium has been conducted by electrochemical techniques. It is found that an ODT layer of standing-up molecules is obtained at short modification time without removing oxygen from the medium. The electrochemical study shows that the ODT layer formed after 15 min of modification time has similar electron-transfer blocking properties to the layers formed from organic solvents at much longer modification times. On the basis of XPS data, it is demonstrated that the inability to bind gold nanoparticles (AuNPs) is due to the presence of extra ODT molecules either interdigited or on top of the layer. Treatment consisting of an acid washing step following the formation of the ODT-Au(111) SAM produces a layer that is able to attach AuNPs as demonstrated by electrochemical techniques and atomic force microscopy (AFM) images.

  14. Sub-2 nm Thick Fluoroalkylsilane Self-Assembled Monolayer-Coated High Voltage Spinel Crystals as Promising Cathode Materials for Lithium Ion Batteries.

    PubMed

    Zettsu, Nobuyuki; Kida, Satoru; Uchida, Shuhei; Teshima, Katsuya

    2016-01-01

    We demonstrate herein that an ultra-thin fluoroalkylsilane self-assembled monolayer coating can be used as a modifying agent at LiNi0.5Mn1.5O4-δcathode/electrolyte interfaces in 5V-class lithium-ion batteries. Bare LiNi0.5Mn1.5O4-δ cathode showed substantial capacity fading, with capacity dropping to 79% of the original capacity after 100 cycles at a rate of 1C, which was entirely due to dissolution of Mn(3+) from the spinel lattice via oxidative decomposition of the organic electrolyte. Capacity retention was improved to 97% on coating ultra-thin FAS17-SAM onto the LiNi0.5Mn1.5O4 cathode surface. Such surface protection with highly ordered fluoroalkyl chains insulated the cathode from direct contact with the organic electrolyte and led to increased tolerance to HF. PMID:27553901

  15. Electrical conduction behavior of organic light-emitting diodes using fluorinated self-assembled monolayer with molybdenum oxide-doped hole transporting layer.

    PubMed

    Park, Sang-Geon; Mori, Tatsuo

    2015-06-01

    The electrical conductivity behavior of a fluorinated self-assembled monolayer (FSAM) of a molybdenum oxide (MoOx)-doped α-naphthyl diamine derivative (α-NPD) in organic light-emitting diodes (OLEDs) was investigated. The current density of the MoOx-doped α-NPD/FSAM device was proportional to its voltage owing to smooth carrier injection through the FSAM and the high carrier density of its bulk. The temperature-dependent characteristics of this device were investigated. The current density-voltage characteristics at different temperatures were almost the same owing to its very low activation energy. The activation energy of the device was estimated to be 1.056 × 10(-2) [eV] and was very low due to the inelastic electron tunneling of FSAM molecules.

  16. Direct patterning of negative nanostructures on self-assembled monolayers of 16-mercaptohexadecanoic acid on Au(111) substrate via dip-pen nanolithography

    NASA Astrophysics Data System (ADS)

    Zheng, Zhikun; Yang, Menglong; Liu, Yaqing; Zhang, Bailin

    2006-11-01

    Both bare and self-assembled monolayer (SAM) protected gold substrate could be etched by allyl bromide according to atomic force microscopy (AFM), x-ray photoelectron spectroscopy (XPS) and inductively coupled plasma mass spectrometric (ICPMS) analysis results. With this allyl bromide ink material, negative nanopatterns could be fabricated directly by dip-pen nanolithography (DPN) on SAMs of 16-mercaptohexadecanoic acid (MHA) on Au(111) substrate. A tip-promoted etching mechanism was proposed where the gold-reactive ink could penetrate the MHA resist film through tip-induced defects resulting in local corrosive removal of the gold substrate. The fabrication mechanism was also confirmed by electrochemical characterization, energy dispersive spectroscopy (EDS) analysis and fabrication of positive nanopatterns via a used DPN tip.

  17. Fabrication of microstructured copper on an indium-tin-oxide surface using a micropatterned self-assembled monolayer as a template

    NASA Astrophysics Data System (ADS)

    Asakura, Shuuichi; Hirota, Mitsuhito; Fuwa, Akio

    2003-07-01

    The difference in chemical reactivity between indium-tin-oxide (ITO) and self-assembled monolayer (SAM) surfaces was used to fabricate copper (Cu) microstructures. ITO substrates coated with octadecyltrimethoxysilane (ODS)-SAM were photolithographically micropatterned using vacuum ultraviolet (VUV) light. Each of the micropatterned samples was subsequently immersed in an electrodeposition bath in order to deposit Cu on its surface. As confirmed by atomic force microscopy, Cu electrodeposition proceeded selectively on the VUV-irradiated areas of the ITO surface while the ODS-SAM surface served effectively as a mask to block Cu deposition. Cu microstructures with 7.5 × 7.5 μm2 features were successfully fabricated on the ITO surface.

  18. Water-COOH Composite Structure with Enhanced Hydrophobicity Formed by Water Molecules Embedded into Carboxyl-Terminated Self-Assembled Monolayers.

    PubMed

    Guo, Pan; Tu, Yusong; Yang, Jinrong; Wang, Chunlei; Sheng, Nan; Fang, Haiping

    2015-10-30

    By combining molecular dynamics simulations and quantum mechanics calculations, we show the formation of a composite structure composed of embedded water molecules and the COOH matrix on carboxyl-terminated self-assembled monolayers (COOH SAMs) with appropriate packing densities. This composite structure with an integrated hydrogen bond network inside reduces the hydrogen bonds with the water above. This explains the seeming contradiction on the stability of the surface water on COOH SAMs observed in experiments. The existence of the composite structure at appropriate packing densities results in the two-step distribution of contact angles of water droplets on COOH SAMs, around 0° and 35°, which compares favorably to the experimental measurements of contact angles collected from forty research articles over the past 25 years. These findings provide a molecular-level understanding of water on surfaces (including surfaces on biomolecules) with hydrophilic functional groups.

  19. Sub-2 nm Thick Fluoroalkylsilane Self-Assembled Monolayer-Coated High Voltage Spinel Crystals as Promising Cathode Materials for Lithium Ion Batteries

    NASA Astrophysics Data System (ADS)

    Zettsu, Nobuyuki; Kida, Satoru; Uchida, Shuhei; Teshima, Katsuya

    2016-08-01

    We demonstrate herein that an ultra-thin fluoroalkylsilane self-assembled monolayer coating can be used as a modifying agent at LiNi0.5Mn1.5O4‑δcathode/electrolyte interfaces in 5V-class lithium-ion batteries. Bare LiNi0.5Mn1.5O4‑δ cathode showed substantial capacity fading, with capacity dropping to 79% of the original capacity after 100 cycles at a rate of 1C, which was entirely due to dissolution of Mn3+ from the spinel lattice via oxidative decomposition of the organic electrolyte. Capacity retention was improved to 97% on coating ultra-thin FAS17-SAM onto the LiNi0.5Mn1.5O4 cathode surface. Such surface protection with highly ordered fluoroalkyl chains insulated the cathode from direct contact with the organic electrolyte and led to increased tolerance to HF.

  20. Detection of hydrogen peroxide produced during the oxygen reduction reaction at self-assembled thiol-porphyrin monolayers on gold using SECM and nanoelectrodes.

    PubMed

    Mezour, Mohamed A; Cornut, Renaud; Hussien, Emad Mohamed; Morin, Mario; Mauzeroll, Janine

    2010-08-01

    Porphyrin molecules were immobilized on polycrystalline gold and glassy carbon by coordinating cobalt(II) 5,10,15,20-tetraphenyl-21H,23H-porphine to a 4-aminothiophenol self-assembled monolayer. The resulting electrocatalytic activity of the metalloporphyrin-modified substrates with regard to the oxygen reduction reaction was characterized by means of cyclic voltammetry and scanning electrochemical microscopy (SECM) using nanoelectrodes of well-defined geometry. From substrate generation tip collection (SG-TC) mode SECM measurements performed under steady-state conditions and at different applied substrate potentials, it is possible to extract kinetic information relevant to electrocatalyst substrates such as metalloporphyrin-modified gold and glassy-carbon electrodes. Such an approach allows for the isolation of the unique contribution of the electrocatalyst to the oxygen reduction reaction and peroxide formation.

  1. Formation of a 1,8-octanedithiol self-assembled monolayer on Au(111) prepared in a lyotropic liquid-crystalline medium.

    PubMed

    García Raya, Daniel; Madueño, Rafael; Blázquez, Manuel; Pineda, Teresa

    2010-07-20

    A characterization of the 1,8-octanedithiol (ODT) self-assembled monolayer (SAM) formed from a Triton X-100 lyotropic medium has been conducted by electrochemical techniques. It is found that an ODT layer of standing-up molecules is obtained at short modification time without removing oxygen from the medium. The electrochemical study shows that the ODT layer formed after 15 min of modification time has similar electron-transfer blocking properties to the layers formed from organic solvents at much longer modification times. On the basis of XPS data, it is demonstrated that the inability to bind gold nanoparticles (AuNPs) is due to the presence of extra ODT molecules either interdigited or on top of the layer. Treatment consisting of an acid washing step following the formation of the ODT-Au(111) SAM produces a layer that is able to attach AuNPs as demonstrated by electrochemical techniques and atomic force microscopy (AFM) images. PMID:20578682

  2. Direct silica encapsulation of self-assembled-monolayer-based surface-enhanced Raman scattering labels with complete surface coverage of Raman reporters by noncovalently bound silane precursors.

    PubMed

    Schütz, Max; Salehi, Mohammad; Schlücker, Sebastian

    2014-08-01

    Silica-coated surface-enhanced Raman scattering (SERS) labels with a self-assembled monolayer (SAM) on the entire surface of the metal colloid combine high chemical and mechanical stability with bright and reproducible Raman signals due to the complete surface coverage and uniform molecular orientation within the SAM. Currently available chemical syntheses are either based on the direct encapsulation of covalently bound silane precursors or comprise several steps, such as the sequential addition of noncovalently bound polyelectrolytes to render the surface vitreophilic. Here, a generic approach for the direct and fast silica encapsulation of commercially available Raman reporter molecules with polar head groups by noncovalently bound silane precursors is reported. The formation of highly SERS-active silica-coated clusters during silica encapsulation is determined by several parameters, in particular the type of Raman reporter molecule, the solvent, and the type and amount of the silane precursor.

  3. Sub-2 nm Thick Fluoroalkylsilane Self-Assembled Monolayer-Coated High Voltage Spinel Crystals as Promising Cathode Materials for Lithium Ion Batteries.

    PubMed

    Zettsu, Nobuyuki; Kida, Satoru; Uchida, Shuhei; Teshima, Katsuya

    2016-01-01

    We demonstrate herein that an ultra-thin fluoroalkylsilane self-assembled monolayer coating can be used as a modifying agent at LiNi0.5Mn1.5O4-δcathode/electrolyte interfaces in 5V-class lithium-ion batteries. Bare LiNi0.5Mn1.5O4-δ cathode showed substantial capacity fading, with capacity dropping to 79% of the original capacity after 100 cycles at a rate of 1C, which was entirely due to dissolution of Mn(3+) from the spinel lattice via oxidative decomposition of the organic electrolyte. Capacity retention was improved to 97% on coating ultra-thin FAS17-SAM onto the LiNi0.5Mn1.5O4 cathode surface. Such surface protection with highly ordered fluoroalkyl chains insulated the cathode from direct contact with the organic electrolyte and led to increased tolerance to HF.

  4. Estimated phase transition and melting temperature of APTES self-assembled monolayer using surface-enhanced anti-stokes and stokes Raman scattering

    NASA Astrophysics Data System (ADS)

    Sun, Yingying; Yanagisawa, Masahiro; Kunimoto, Masahiro; Nakamura, Masatoshi; Homma, Takayuki

    2016-02-01

    A structure's temperature can be determined from the Raman spectrum using the frequency and the ratio of the intensities of the anti-Stokes and Stokes signals (the Ias/Is ratio). In this study, we apply this approach and an equation relating the temperature, Raman frequency, and Ias/Is ratio to in-situ estimation of the phase change point of a (3-aminopropyl)triethoxysilane self-assembled monolayer (APTES SAM). Ag nanoparticles were deposited on APTES to enhance the Raman signals. A time-resolved measurement mode was used to monitor the variation in the Raman spectra in situ. Moreover, the structural change in APTES SAM (from ordered to disordered structure) under heating was discussed in detail, and the phase change point (around 118 °C) was calculated.

  5. Improved microstructure and performance of PbS thin films via in-situ thermal decomposition of lead xanthate precursors using self-assembling monolayer

    NASA Astrophysics Data System (ADS)

    Wang, Jingni; Yao, Kai; Jia, Zhenrong; Wang, Xiaofeng; Li, Fan

    2016-09-01

    Microstructure control is critical to achieve thin film-based devices with high performance. The surface properties of the substrates on which thin films grow are expected to greatly influence the morphology and the resulting performance. Generally, homogeneous, dense and highly crystalline films are required. However, "island" like structures are usually obtained mainly due to the non-uniform nucleation. In this article, the self-assembling monolayer (SAM) strategy was applied to efficiently realize the uniform nucleation and modulate the microstructure of lead sulfide (PbS) thin films, which were fabricated on the modified ZnO-coated substrates with 3-mercaptopropionic acid (MPA) SAM via in-situ thermal decomposition of lead xanthate precursors. The results showed that PbS thin films with reduced pin-holes and uniform crystalline grains were fabricated with the incorporation of MPA SAM. More importantly, PbS thin films modulated by MPA showed better photoelectric response.

  6. Electrochemically Directed Self-Assembly and Conjugated Polymer Semiconductors for Organic Electronic Applications

    NASA Astrophysics Data System (ADS)

    Pillai, Rajesh Gopalakrishna

    2011-07-01

    The research work presented in this thesis investigates the mechanistic details of conventional as well as electrochemically directed self-assembly of alkylthiosulfates and explores the use of conjugated semiconducting polymers for organic electronic applications. Here, the significance of the use of conjugated polymers is twofold; first, to explore their applications in nanoelectronics and second, the possibility of using them as a top contact on the self-assembled monolayers (SAMs) for molecular electronic applications. Throughout this work, deposition of the organic materials was performed on prefabricated device structures that required no further lithographic or metal deposition steps after modification of the electrodes with the organic molecules. Self-assembly of alkylthiosulfates on gold are reported to form monolayers identical to those formed from the corresponding alkanethiols. However, these self-assembly processes follow more complex mechanisms of monolayer formation than originally recognized. Studies on the mechanism of alkylthiosulfate chemisorption on gold shows that the self-assembly process is influenced by electrolyte and solvent. Plausible mechanisms have been proposed for the role of trace water in the solvent on conventional as well as electrochemically assisted self-assembly of alkylthiosulfates on gold. Electroanalytical and spectroscopic techniques have been used to explore the mechanistic details of electrochemically directed self-assembly of alkylthiosulfates on gold. It has been found that the self-assembly process is dynamic under electrochemical conditions and the heterogeneous electron transfer process between the organosulfur compound and gold is mediated through gold surface oxide and accompanied by corrosion. Conducting polymers are serious candidates for organic electronic applications since their properties can be controlled by the manipulation of molecular architecture. Unique electronic properties of conjugated polypyrrole

  7. Electrochemical fabrication of surface chemical gradients in thiol self-assembled monolayers with tailored work-functions.

    PubMed

    Fioravanti, Giulia; Lugli, Francesca; Gentili, Denis; Mucciante, Vittoria; Leonardi, Francesca; Pasquali, Luca; Liscio, Andrea; Murgia, Mauro; Zerbetto, Francesco; Cavallini, Massimiliano

    2014-10-01

    The studies on surface chemical gradients are constantly gaining interest both for fundamental studies and for technological implications in materials science, nanofluidics, dewetting, and biological systems. Here we report on a new approach that is very simple and very efficient, to fabricate surface chemical gradients of alkanethiols, which combines electrochemical desorption/partial readsorption, with the withdrawal of the surface from the solution. The gradient is then stabilized by adding a complementary thiol terminated with a hydroxyl group with a chain length comparable to desorbed thiols. This procedure allows us to fabricate a chemical gradient of the wetting properties and the substrate work-function along a few centimeters with a gradient slope higher than 5°/cm. Samples were characterized by cyclic voltammetry during desorption, static contact angle, XPS analysis, and Kelvin probe. Computer simulations based on the Dissipative Particle Dynamics methods were carried out considering a water droplet on a mixed SAM surface. The results help to rationalize the composition of the chemical gradient at different position on the Au surface.

  8. Single-molecule conductance measurement of self-assembled organic monolayers using scanning tunneling spectroscopy in combination with statistics analysis

    NASA Astrophysics Data System (ADS)

    Zhang, Yumei; Dou, Chengfu; Wang, Yin

    2011-05-01

    Based on ambient atmosphere scanning tunneling microscope (STM) technique, scanning tunneling spectroscopy (STS) combined with statistics analysis was developed to investigate the single-molecule conductance of various kinds of molecules which were self-assembled on the Au (1 1 1). Conductance histograms obtained from current-voltage curves revealed well-defined peaks at integer multiples of a fundamental conductance and were used to identify the conductance of a single molecule. The conductances of saturated molecules like 1,8-octanedithol and hexanethiocyanate were found to be 0.072 × 10 -4G 0 and 0.06 × 10 -4G 0 respectively and 0.23 × 10 -4G 0 and 0.13 × 10 -4G 0 for unsaturated molecules like 5,5'-dithiol- 2,2',5',2″-terthiophene and 4,4'-dithio-tert(phenylene ethylene).

  9. Highly Sensitive Aluminium(III) Ion Sensor Based on a Self-assembled Monolayer on a Gold Nanoparticles Modified Screen-printed Carbon Electrode.

    PubMed

    See, Wong Pooi; Heng, Lee Yook; Nathan, Sheila

    2015-01-01

    A new approach for the development of a highly sensitive aluminium(III) ion sensor via the preconcentration of aluminium(III) ion with a self-assembled monolayer on a gold nanoparticles modified screen-printed carbon electrode and current mediation by potassium ferricyanide redox behavior during aluminium(III) ion binding has been attempted. A monolayer of mercaptosuccinic acid served as an effective complexation ligand for the preconcentration of trace aluminium; this led to an enhancement of aluminium(III) ion capture and thus improved the sensitivity of the sensor with a detection limit of down to the ppb level. Under the optimum experimental conditions, the sensor exhibited a wide linear dynamic range from 0.041 to 12.4 μM. The lower detection limit of the developed sensor was 0.037 μM (8.90 ppb) using a 10 min preconcentration time. The sensor showed excellent selectivity towards aluminium(III) ion over other interference ions.

  10. Use of self assembled monolayers at variable coverage to control interface bonding in a model study of interfacial fracture: Pure shear loading

    SciTech Connect

    KENT,MICHAEL S.; YIM,HYUN; MATHESON,AARON J.; COGDILL,C.; NELSON,GERALD C.; REEDY JR.,EARL DAVID

    2000-05-16

    The relationships between fundamental interfacial interactions, energy dissipation mechanisms, and fracture stress or fracture toughness in a glassy thermoset/inorganic solid joint are not well understood. This subject is addressed with a model system involving an epoxy adhesive on a polished silicon wafer containing its native oxide. The proportions of physical and chemical interactions at the interface, and the in-plane distribution, are varied using self-assembling monolayers of octadecyltrichlorosilane (ODTS). The epoxy interacts strongly with the bare silicon oxide surface, but forms only a very weak interface with the methylated tails of the ODTS monolayer. The fracture stress is examined as a function of ODTS coverage in the napkin-ring (pure shear) loading geometry. The relationship between fracture stress and ODTS coverage is catastrophic, with a large change in fracture stress occurring over a narrow range of ODTS coverage. This transition in fracture stress does not correspond to a wetting transition of the epoxy. Rather, the transition in fracture stress corresponds to the onset of deformation in the epoxy, or the transition from brittle to ductile fracture. The authors postulate that the transition in fracture stress occurs when the local stress that the interface can support becomes comparable to the yield stress of the epoxy. The fracture results are independent of whether the ODTS deposition occurs by island growth (T{sub dep} = 10 C) or by homogeneous growth (T{sub dep} = 24 C).

  11. Self assembling monolayers of dialkynyl bridged Pd(II) thiols obtained by thermally induced multilayer desorption: Thermal and chemical stability investigated by SR-XPS

    NASA Astrophysics Data System (ADS)

    Battocchio, C.; Fratoddi, I.; Bondino, F.; Malvestuto, M.; Russo, M. V.; Polzonetti, G.

    2012-02-01

    Self assembling monolayers (SAMs) of organometallic thiols trans-[HS-Pd(PBu3)2-SH], trans-[HS-Pd(PBu3)2(-Ctbnd C-C6H5)] and trans,trans-[HS-Pd(PBu3)2(-Ctbnd C-C6H4-C6H4-Ctbnd C-Pd(PBu3)2-SH] on gold were obtained from the corresponding multilayers through thermally induced desorption. Temperature-dependent synchrotron radiation-induced X-ray photoelectron spectroscopy (SR-XPS) measurements were carried out on the heated multilayers during the annealing process, in order to investigate the thermal and chemical stability of the systems. SAMs of the same organometallic thiols were also obtained by rinsing the thick films with appropriate solvents. SR-XPS was used to ascertain that the molecular and electronic structure of the two series of SAMs are not influenced by the rinsing or thermal desorption process, i.e. both strategies allow for obtaining well ordered monolayers of organometallic thiols.

  12. Interactions between self-assembled monolayers and an organophosphonate: A detailed study using surface acoustic wave-based mass analysis, polarization modulation-FTIR spectroscopy, and ellipsometry

    SciTech Connect

    Crooks, R.M.; Yang, H.C.; McEllistrem, L.J.

    1997-06-24

    Self-assembled monolayers (SAMs) having surfaces terminated in the following functional groups: -CH{sub 3}, -OH, -COOH, and (COO{sup -}){sub 2}Cu{sup 2+} (MUA-Cu{sup 2+}) have been prepared and examined as potential chemically sensitive interfaces. Mass measurements made using surface acoustic wave (SAW) devices indicate that these surfaces display different degrees of selectivity and sensitivity to a range of analytes. The response of the MUA-Cu{sup 2+} SAM to the nerve-agent simulant diisopropyl methylphosphonate (DIMP) is particularly intriguing. Exposure of this surface to 50%-of-saturation DIMP yields a surface concentration equivalent to about 20 DIMP monolayers. Such a high surface concentration in equilibrium with a much lower-than-saturation vapor pressure has not previously been observed. Newly developed analytical tools have made it possible to measure the infrared spectrum of the chemically receptive surface during analyte dosing. Coupled with in-situ SAW/ellipsometry measurements, which permit simultaneous measurement of mass and thickness with nanogram and Angstrom resolution, respectively, it has been possibly to develop a model for the surface chemistry leading to the unusual behavior of this system. The results indicate that DIMP interacts strongly with surface-confined Cu{sup 2+} adduct that nucleates growth of semi-ordered crystallites having substantially lower vapor pressure than the liquid.

  13. Monolayers of Poly(styrene/α-tert-butoxy-ω-vinylbenzyl-polyglycidol) Microparticles Formed by Controlled Self-Assembly with Potential Application as Protein-Repelling Substrates.

    PubMed

    Wasilewska, Monika; Adamczyk, Zbigniew; Basinska, Teresa; Gosecka, Monika; Lupa, Dawid

    2016-09-20

    The kinetics of the self-assembly of poly(styrene/α-tert-butoxy-ω-vinylbenzyl-polyglycidol) microparticles on poly(allylamine hydrochloride)-derivatized silicon/silica substrate was determined by direct AFM imaging and streaming potential (SP) measurements. The kinetic runs acquired under diffusion-controlled transport were quantitatively interpreted in terms of the extended random sequential adsorption (RSA) model. This allowed confirmation of a core/shell morphology of the microparticles. The polyglycidol-rich shell of thickness equal to 25 nm exhibited a fuzzy structure that enabled penetration of particles into each other resulting in high coverage inaccessible for ordinary microparticles. The SP measurements interpreted by using the 3D electrokinetic model confirmed this microparticle structure. Additionally, the acid-base characteristics of the microparticle monolayers were determined for a broad pH range. By using the streaming potential measurements, human serum albumin (HSA) adsorption on the microparticle monolayers was investigated under in situ conditions. It was confirmed that the protein adsorption was considerably lower than for the reference case of bare silicon/silica substrate under the same physicochemical conditions. This effect was attributed to the presence of the shell diminishing the protein/microparticle physical interactions.

  14. Influence of molecular ordering on electrical and friction properties of omega-(trans-4-stilbene)alkylthiol self-assembled monolayers on Au (111)

    SciTech Connect

    Qi, Yabing; Liu, Xiaosong; Hendriksen, B.L.M.; Navarro, V.; Park, Jeong Y.; Ratera, Imma; Klopp, J.M.; Edder, C.; Himpsel, Franz J.; Frechet, J.M.J.; Haller, Eugene E.; Salmeron, Miquel

    2010-04-21

    The electrical and friction properties of omega-(trans-4-stilbene)alkylthiol self-assembled monolayers (SAMs) on Au(111) were investigated using atomic force microscopy (AFM) and near edge x-ray absorption fine structure spectroscopy (NEXAFS). The sample surface was uniformly covered with a molecular film consisting of very small grains. Well-ordered and flat monolayer islands were formed after the sample was heated in nitrogen at 120 oC for 1 h. While lattice resolved AFM images revealed a crystalline phase in the islands, the area between islands showed no order. The islands exhibit substantial reduction (50percent) in friction, supporting the existence of good ordering. NEXAFS measurements revealed an average upright molecular orientation in the film, both before and after heating, with a narrower tilt-angle distribution for the heated fim. Conductance-AFM measurements revealed a two orders of magnitude higher conductivity on the ordered islands than on the disordered phase. We propose that the conductance enhancement is a result of a better pi-pi stacking between the trans-stilbene molecular units as a result of improved ordering in islands.

  15. Etching of Crystalline ZnO Surfaces upon Phosphonic Acid Adsorption: Guidelines for the Realization of Well-Engineered Functional Self-Assembled Monolayers.

    PubMed

    Ostapenko, Alexandra; Klöffel, Tobias; Eußner, Jens; Harms, Klaus; Dehnen, Stefanie; Meyer, Bernd; Witte, Gregor

    2016-06-01

    Functionalization of metal oxides by means of covalently bound self-assembled monolayers (SAMs) offers a tailoring of surface electronic properties such as their work function and, in combination with its large charge carrier mobility, renders ZnO a promising conductive oxide for use as transparent electrode material in optoelectronic devices. In this study, we show that the formation of phosphonic acid-anchored SAMs on ZnO competes with an unwanted chemical side reaction, leading to the formation of surface precipitates and severe surface damage at prolonged immersion times of several days. Combining atomic force microscopy (AFM), X-ray diffraction (XRD), and thermal desorption spectroscopy (TDS), the stability and structure of the aggregates formed upon immersion of ZnO single crystal surfaces of different orientations [(0001̅), (0001), and (101̅0)] in phenylphosphonic acid (PPA) solution were studied. By intentionally increasing the immersion time to more than 1 week, large crystalline precipitates are formed, which are identified as zinc phosphonate. Moreover, the energetics and the reaction pathway of this transformation have been evaluated using density functional theory (DFT), showing that zinc phosphonate is thermodynamically more favorable than phosphonic acid SAMs on ZnO. Precipitation is also found for phosphonic acids with fluorinated aromatic backbones, while less precipitation occurs upon formation of SAMs with phenylphosphinic anchoring units. By contrast, no precipitates are formed when PPA monolayer films are prepared by sublimation under vacuum conditions, yielding smooth surfaces without noticeable etching. PMID:27159837

  16. Kinetic studies of attachment and re-orientation of octyltriethoxysilane for formation of self-assembled monolayer on a silica substrate.

    PubMed

    Hasan, Abshar; Pandey, Lalit M

    2016-11-01

    The present study deals with kinetic studies of the chemical modification for synthesizing a hydrophobic silica surface. Surface silanization (modification) via formation of Self-Assembled Monolayer (SAM) using a short chain triethoxyoctylsilane (TEOS) was carried out under inert atmosphere at room temperature. Fourier transmission infrared (FTIR) spectroscopy, water contact angle (WCA) and atomic force microscopy (AFM) were employed to investigate surface modification. FTIR analysis in the range from 900-1200cm(-1) and 2850-3000cm(-1) confirmed surface modification and re-orientation of the attached molecules. Kinetic studies of TEOS SAM formation were fitted by Exponential Association function. Kinetic fitting of FTIR data in the range from 900-1200cm(-1) revealed a very fast attachment of TEOS molecules resulting in total surface coverage within 16min whereas re-orientation rate was slow and continued till 512min. Further, change in orientation from lying-down to standing-up state was supported by contact angle analysis. AFM images initially showed small islands of ~20nm, which in-fill with time indicating formation of a smooth monolayer. Our findings indicate that formation of octyl SAM is fast process and completes within 8.5h in contrary to reported 24h in conventional SAM formation protocols. The kinetic fitting data can be explored to design a nanopatterned surface for a specific application.

  17. Monolayers of Poly(styrene/α-tert-butoxy-ω-vinylbenzyl-polyglycidol) Microparticles Formed by Controlled Self-Assembly with Potential Application as Protein-Repelling Substrates.

    PubMed

    Wasilewska, Monika; Adamczyk, Zbigniew; Basinska, Teresa; Gosecka, Monika; Lupa, Dawid

    2016-09-20

    The kinetics of the self-assembly of poly(styrene/α-tert-butoxy-ω-vinylbenzyl-polyglycidol) microparticles on poly(allylamine hydrochloride)-derivatized silicon/silica substrate was determined by direct AFM imaging and streaming potential (SP) measurements. The kinetic runs acquired under diffusion-controlled transport were quantitatively interpreted in terms of the extended random sequential adsorption (RSA) model. This allowed confirmation of a core/shell morphology of the microparticles. The polyglycidol-rich shell of thickness equal to 25 nm exhibited a fuzzy structure that enabled penetration of particles into each other resulting in high coverage inaccessible for ordinary microparticles. The SP measurements interpreted by using the 3D electrokinetic model confirmed this microparticle structure. Additionally, the acid-base characteristics of the microparticle monolayers were determined for a broad pH range. By using the streaming potential measurements, human serum albumin (HSA) adsorption on the microparticle monolayers was investigated under in situ conditions. It was confirmed that the protein adsorption was considerably lower than for the reference case of bare silicon/silica substrate under the same physicochemical conditions. This effect was attributed to the presence of the shell diminishing the protein/microparticle physical interactions. PMID:27552337

  18. Selective anion sensing by a tris-amide CTV derivative: 1H NMR titration, self-assembled monolayers, and impedance spectroscopy.

    PubMed

    Zhang, Sheng; Echegoyen, Luis

    2005-02-16

    A hydrogen-bond forming tris(amide) receptor based on cyclotriveratrylene (CTV) was prepared. Self-assembled monolayers (SAMs) of the receptor were formed on gold surfaces. Desorption experiments show a surface coverage of 2.26 x 10(-10) mol/cm(2). (1)H NMR and UV measurements confirm that the receptor exhibits the highest affinity for acetate ions among the anions studied. Electrochemical impedance was used to investigate anion sensing by the SAMs and proved to be an efficient and convenient technique for detecting anions in aqueous solutions. Upon binding acetate anions, the monolayer-modified gold electrodes show a drastic increase of the R(ct) values when Fe(CN)(6)(3-/4-) is used as the redox probe. When the probe was changed to a positively charged one, Ru(NH3)(6)(3+/2+), the R(ct) values decreased monotonically as the acetate concentration was increased, thus confirming the accumulation of negative surface charge upon anion binding. H(2)PO(4-) shows some interference when sensing AcO-. Other monovalent anions such as Cl-, Br-, NO3(-) and HSO4(-) do not bind to the CTV receptor either in solution or on the surfaces. PMID:15701037

  19. Axial Ligand Effects on the Structures of Self-Assembled Gallium-Porphyrin Monolayers on Highly Oriented Pyrolytic Graphite.

    PubMed

    Kamm, Judith M; Iverson, Cameron P; Lau, Wing-Yeung; Hopkins, Michael D

    2016-01-19

    Monolayers of five-coordinate gallium octaethylporphyrin complexes (Ga(OEP)X; X = Cl, Br, I, O3SCF3, CCPh) on highly oriented pyrolytic graphite were studied at the solid-liquid (1-phenyloctane) interface using scanning tunneling microscopy (STM) to probe the dependence of their properties on the nature of the axial X ligand. Density functional theory calculations of the gas-phase structures of the free molecules reveal that the gallium atom is positioned above the plane of the porphyrin macrocycle, with this pyramidal distortion increasing in magnitude according to X = O3SCF3 (displacement = 0.35 Å) < Cl, Br, I (∼0.47 Å) < CCPh (0.54 Å). All compounds exhibit pseudohexagonal close-packed structures in which the porphyrin is oriented coplanar with the surface and the axial ligand is oriented perpendicular to it, and with unit-cell parameters that are within experimental error of each other (a, b = 1.34 (3)-1.39 (2) nm, Γ = 66 (2)-68 (1)°). In contrast to these close similarities, the stabilities of the monolayers are sensitive to the nature of the axial ligand: the monolayers of Ga(OEP)(O3SCF3) and Ga(OEP)(CCPh) exhibit damage during the STM experiment upon repeated scanning and upon toggling the sign of the bias potential, but monolayers of Ga(OEP)Cl, Ga(OEP)Br, and Ga(OEP)I do not. A second important ligand-influenced property is that Ga(OEP)I forms bilayer structures, whereas the other Ga(OEP)X compounds form monolayers exclusively under identical conditions. The top layer of the Ga(OEP)I bilayer is oriented with the iodo ligand directed away from the surface, like the bottom layer, but the molecules pack in a square, lower-density geometry. The comparatively large polarizability of the iodo ligand is suggested to be important in stabilizing the bilayer structure.

  20. Self-assembly of amphiphilic janus particles into monolayer capsules for enhanced enzyme catalysis in organic media.

    PubMed

    Cao, Wei; Huang, Renliang; Qi, Wei; Su, Rongxin; He, Zhimin

    2015-01-14

    Encapsulation of enzymes during the creation of an emulsion is a simple and efficient route for enhancing enzyme catalysis in organic media. Herein, we report a capsule with a shell comprising a monolayer of silica Janus particles (JPs) (referred to as a monolayer capsule) and a Pickering emulsion for the encapsulation of enzyme molecules for catalysis purposes in organic media using amphiphilic silica JPs as building blocks. We demonstrate that the JP capsules had a monolayer shell consisting of closely packed silica JPs (270 nm). The capsules were on average 5-50 μm in diameter. The stability of the JP capsules (Pickering emulsion) was investigated with the use of homogeneous silica nanoparticles as a control. The results show that the emulsion stabilized via amphiphilic silica JPs presented no obvious changes in physical appearance after 15 days, indicating the high stability of the emulsions and JP capsules. Furthermore, the lipase from Candida sp. was chosen as a model enzyme for encapsulation within the JP capsules during their formation. The catalytic performance of lipase was evaluated according to the esterification of 1-hexanol with hexanoic acid. It was found that the specific activity of the encapsulated enzymes (28.7 U mL(-1)) was more than 5.6 times higher than that of free enzymes in a biphasic system (5.1 U mL(-1)). The enzyme activity was further increased by varying the volume ratio of water to oil and the JPs loadings. The enzyme-loaded capsule also exhibited high stability during the reaction process and good recyclability. In particular, the jellification of agarose in the JP capsules further enhanced their operating stability. We believe that the monolayer structure of the JP capsules, together with their high stability, rendered the capsules to be ideal enzyme carriers and microreactors for enzyme catalysis in organic media because they created a large interfacial area and had low mass transfer resistance through the monolayer shell.

  1. Direct Patterning of Organic Self-Assembled Monolayer (SAM) on GaAs Surfaces via Dip-Pen Nanolithography (DPN)

    NASA Astrophysics Data System (ADS)

    Xiong, Peng; Keiper, Timothy; Wang, Xiaolei; Zhao, Jianhua

    2015-03-01

    Hybrid structures of functional molecules and solid-state (SS) materials have attracted extensive interest in surface nanoscience and molecular electronics. The formation and micro/nano patterning of organic SAMs on SS surfaces are a key step in fabricating such devices. Here we report realization of high quality MHA SAMs on GaAs and direct formation of micro/nanoscale patterns of MHA SAM on the surface by micro-contact printing (μ CP) and DPN. The process begins with the preparation of an oxide-free surface of GaAs, for which we employed treatment by an ammonium polysulfide ((NH4)2 Sx) solution. The treatment strips native oxides from GaAs creating an atomic layer of sulfur covalently bonded to the fresh surface. Formation of high-quality SAMs of thiol molecules on GaAs then proceeds through exchange of the sulfur and the thiol terminal of the molecules. The effects of the sulfur-passivation and formation of MHA SAM on the treated surface were confirmed by XPS, HRTEM, and DPN. To the best of our knowledge, this is a first realization of direct DPN of nanoscale organic SAM on a semiconductor free of surface oxide. We further evidence the utility of the hybrid platform by demonstrating directed self-assembly of Au nanoparticles onto MHA/ODT SAM templates on GaAs.

  2. Alkanethiol capping-induced changes in the magnetoresistance of Co

    NASA Astrophysics Data System (ADS)

    Knaus, Brad; Garzon, Samir; Crawford, Thomas M.

    2008-03-01

    We demonstrate that chemisorption of a ˜ 1 nm thick dodecanethiol (C12H25SH) self-assembled monolayer on the surface of an Au film alters the magnetotransport of an underlying Co film. Giant paramagnetism has been previously detected in Au thin films and nanoparticles capped with alkanethiols via SQUID magnetometry. By observing the impact of Au-thiol magnetism on a ferromagnetic thin film we avoid background subtraction and the influence of impurities. After thiolation, significant changes are observed in the anisotropic magnetoresistance (AMR) and planar Hall effect (PHE) from Co/Au bilayers (30 nm/5-60 nm) patterned into 1 x 5 mm^2 bars. Driven with nearly perpendicular external fields, we observed domain nucleation shifts of ˜0.65 T and changes in the FWHM of the AMR. We have also measured differences in the MR as a function of ambient exposure time presumably due to oxidation effects known to occur in alkanethiols. Effects of surface scattering were eliminated with the introduction of a 12nm Al2O3 insulation barrier between Co and Au. We have calculated that the effects of magnetostriction are too small by more than two orders of magnitude to explain our observations. We therefore hypothesize that Au-thiol magnetization acts as a source of magnetic field which biases the underlying Co film.

  3. Superhydrophobic alkanethiol-coated microsubmarines for effective removal of oil.

    PubMed

    Guix, Maria; Orozco, Jahir; García, Miguel; Gao, Wei; Sattayasamitsathit, Sirilak; Merkoçi, Arben; Escarpa, Alberto; Wang, Joseph

    2012-05-22

    We demonstrate the use of artificial nanomachines for effective interaction, capture, transport, and removal of oil droplets. The simple nanomachine-enabled oil collection method is based on modifying microtube engines with a superhydrophobic layer able to adsorb oil by means of its strong adhesion to a long chain of self-assembled monolayers (SAMs) of alkanethiols created on the rough gold outer surface of the device. The resultant SAM-coated Au/Ni/PEDOT/Pt microsubmarine displays continuous interaction with large oil droplets and is capable of loading and transporting multiple small oil droplets. The influence of the alkanethiol chain length, polarity, and head functional group and hence of the surface hydrophobicity upon the oil-nanomotor interaction and the propulsion is examined. No such oil-motor interactions were observed in control experiments involving both unmodified microengines and microengines coated with SAM layers containing a polar terminal group. These results demonstrate that such SAM-Au/Ni/PEDOT/Pt micromachines can be useful for a facile, rapid, and efficient collection of oils in water samples, which can be potentially exploited for other water-oil separation systems. The integration of oil-sorption properties into self-propelled microengines holds great promise for the remediation of oil-contaminated water samples and for the isolation of other hydrophobic targets, such as drugs.

  4. "Click" Patterning of Self-Assembled Monolayers on Hydrogen-Terminated Silicon Surfaces and Their Characterization Using Light-Addressable Potentiometric Sensors.

    PubMed

    Wang, Jian; Wu, Fan; Watkinson, Michael; Zhu, Jingyuan; Krause, Steffi

    2015-09-01

    Two potential strategies for chemically patterning alkyne-terminated self-assembled monolayers (SAMs) on oxide-free silicon or silicon-on-sapphire (SOS) substrates were investigated and compared. The patterned surfaces were validated using a light-addressable potentiometric sensor (LAPS) for the first time. The first strategy involved an integration of photolithography with "click" chemistry. Detailed surface characterization (i.e. water contact angle, ellipsometry, AFM, and XPS) and LAPS measurements showed that photoresist processing not only decreases the coverage of organic monolayers but also introduces chemically bonded contaminants on the surfaces, thus significantly reducing the quality of the SAMs and the utility of "click" surface modification. The formation of chemical contaminants in photolithography was also observed on carboxylic acid- and alkyl-terminated monolayers using LAPS. In contrast, a second approach combined microcontact printing (μCP) with "click" chemistry; that is azide (azido-oligo(ethylene glycol) (OEG)-NH2) inks were printed on alkyne-terminated SAMs on silicon or SOS through PDMS stamps. The surface characterization results for the sample printed with a flat featureless PDMS stamp demonstrated a nondestructive and efficient method of μCP to perform "click" reactions on alkyne-terminated, oxide-free silicon surfaces for the first time. For the sample printed with a featured PDMS stamp, LAPS imaging showed a good agreement with the pattern of the PDMS stamp, indicating the successful chemical patterning on non-oxidized silicon and SOS substrates and the capability of LAPS to image the molecular patterns with high sensitivity.

  5. Hydration of Sulphobetaine (SB) and Tetra(ethylene glycol) (EG4)-Terminated Self-Assembled Monolayers Studied by Sum Frequency Generation (SFG) Vibrational Spectroscopy

    PubMed Central

    Stein, M. Jeanette; Weidner, Tobias; McCrea, Keith; Castner, David G.; Ratner, Buddy D.

    2010-01-01

    Sum frequency generation (SFG) vibrational spectroscopy is used to study the surface and the underlying substrate of both homogeneous and mixed self-assembled monolayers (SAMs) of 11-mercaptoundecyl-1-sulphobetainethiol (HS(CH2)11N+(CH3)2(CH2)3SO3−, SB) and 1-mercapto-11-undecyl tetra(ethylene glycol) (HS(CH2)11O(CH2CH2O)4OH, EG4) with an 11-mercapto-1-undecanol (HS(CH2)11OH, MCU) diluent. SFG results on the C–H region of the dry and hydrated SAMs gave an in situ look into the molecular orientation and suggested an approach to maximize signal-to-noise ratio on these difficult to analyze hydrophilic SAMs. Vibrational fingerprint studies in the 3000–3600 cm−1 spectral range for the SAMs exposed serially to air, water, and deuterated water revealed that a layer of tightly-bound structured water was associated with the surface of a non-fouling monolayer but was not present on a hydrophobic N-undecylmercaptan (HS(CH2)10CH3, UnD) control. The percentage of water retained upon submersion in D2O correlated well with the relative amount of protein that was previously shown to absorb onto the monolayers. These results provide evidence supporting the current theory regarding the role of a tightly-bound vicinal water layer in the protein resistance of a non-fouling group. PMID:19639981

  6. Influence of the solution pH in the 6-mercaptopurine self-assembled monolayer (6MP-SAM) on a Au(111) single-crystal electrode.

    PubMed

    Madueño, Rafael; García-Raya, Daniel; Viudez, Alfonso J; Sevilla, José M; Pineda, Teresa; Blázquez, Manuel

    2007-10-23

    Self-assembled monolayers (SAMs) of 6-mercaptopurine (6MP) have been prepared on a Au(111) single-crystal electrode by immersion of the metal surface in a 100 microM 6MP and 0.01 M HClO4 solution. The 6MP-SAM Au(111) single-crystal electrodes were transferred to the cell and allowed to equilibrate with the different aqueous working solutions before the electrochemical experiments. The influence of the solution pH was studied by cyclic voltammetry, double layer capacitance curves, and electrochemical impedance spectroscopy. The electrochemical behavior of the 6MP-SAM in acetic acid at pH 4 presents important differences in comparison to that obtained in 0.1 M KOH solutions. Cyclic voltammograms for the reductive desorption process in acid medium are broad and show some features that can be explained by a phase transition between a chemisorbed and a physisorbed state of the 6MP molecules. The low solubility of these molecules in acid medium could explain this phenomenon and the readsorption of the complete monolayer when the potential is scanned in the positive direction. The variation of the double-layer capacitance values in the potential range of monolayer stability with the pH suggests that the acid-base chemistry of the 6MP molecules is playing a role. This fact has been studied by following the variations of the electron-transfer rate constant of the highly charged redox probes as are Fe(CN)(6)-3/-4 and Ru(NH3)(6)+3/+2 as a function of solution pH. The apparent surface pKa value for the 6MP-SAM (pKa approximately 8) is explained by the total conversion of the different 6MP tautomers that exist in solution to the thiol species in the adsorbed state. PMID:17902711

  7. Influence of the solution pH in the 6-mercaptopurine self-assembled monolayer (6MP-SAM) on a Au(111) single-crystal electrode.

    PubMed

    Madueño, Rafael; García-Raya, Daniel; Viudez, Alfonso J; Sevilla, José M; Pineda, Teresa; Blázquez, Manuel

    2007-10-23

    Self-assembled monolayers (SAMs) of 6-mercaptopurine (6MP) have been prepared on a Au(111) single-crystal electrode by immersion of the metal surface in a 100 microM 6MP and 0.01 M HClO4 solution. The 6MP-SAM Au(111) single-crystal electrodes were transferred to the cell and allowed to equilibrate with the different aqueous working solutions before the electrochemical experiments. The influence of the solution pH was studied by cyclic voltammetry, double layer capacitance curves, and electrochemical impedance spectroscopy. The electrochemical behavior of the 6MP-SAM in acetic acid at pH 4 presents important differences in comparison to that obtained in 0.1 M KOH solutions. Cyclic voltammograms for the reductive desorption process in acid medium are broad and show some features that can be explained by a phase transition between a chemisorbed and a physisorbed state of the 6MP molecules. The low solubility of these molecules in acid medium could explain this phenomenon and the readsorption of the complete monolayer when the potential is scanned in the positive direction. The variation of the double-layer capacitance values in the potential range of monolayer stability with the pH suggests that the acid-base chemistry of the 6MP molecules is playing a role. This fact has been studied by following the variations of the electron-transfer rate constant of the highly charged redox probes as are Fe(CN)(6)-3/-4 and Ru(NH3)(6)+3/+2 as a function of solution pH. The apparent surface pKa value for the 6MP-SAM (pKa approximately 8) is explained by the total conversion of the different 6MP tautomers that exist in solution to the thiol species in the adsorbed state.

  8. Free-Standing, Patternable Nanoparticle/Polymer Monolayer Arrays Formed by Evaporation Induced Self-Assembly at a Fluid Interface

    SciTech Connect

    Pang, Jiebin; Xiong, Shisheng; Jaeckel, Felix; Sun, Zaicheng; Dunphy, Darren; Brinker, C.Jeffrey

    2008-12-03

    We report a general and facile method to prepare free-standing, patternable nanoparticle/polymer monolayer arrays by interfacial NP assembly within a polymeric photoresist. The ultrathin monolayer nanoparticle/polymer arrays are sufficiently robust that they can be transferred to arbitrary substrates and suspended as free-standing membranes over cm-sized holes -- even with free edges. More importantly, the polymethylmethacrylate (PMMA) in the system serves as a photoresist enabling two modes of electron beam (e-beam) patterning. Lower e-beam doses direct differential nanoparticle solubility and result in nanoparticle patterns with somewhat diffuse interfaces. At higher e-beam doses the PMMA serves as a negative resist resulting in submicrometer patterns with edge roughness comparable to that of the nanoparticle diameter. These ultrathin films of monolayer nanoparticle arrays are of fundamental interest as 2D artificial solids for electronic, magnetic, and optical properties and are also of technological interest for a diverse range of applications in micro- and macroscale devices including photovoltaics, sensors, catalysis, and magnetic storage.

  9. Reactions of BBr(n)(+) (n = 0--2) at fluorinated and hydrocarbon self-assembled monolayer surfaces: observations of chemical selectivity in ion--surface scattering.

    PubMed

    Wade, N; Shen, J; Koskinen, J; Cooks, R G

    2001-07-01

    Ion-surface reactions involving BBr(n)(+) (n = 0--2) with a fluorinated self-assembled monolayer (F-SAM) surface were investigated using a multi-sector scattering mass spectrometer. Collisions of the B(+) ion yield BF(2)(+) at threshold energy with the simpler product ion BF(+)* appearing at higher collision energies and remaining of lower abundance than BF(2)(+) at all energies examined. In addition, the reactively sputtered ion CF(+) accompanies the formation of BF(2)(+) at low collision energies. These results stand in contrast with previous data on the ion-surface reactions of atomic ions with the F-SAM surface in that the threshold and most abundant reaction products in those cases involved the abstraction of a single fluorine atom. Gas-phase enthalpy data are consistent with BF(2)(+) being the thermodynamically favored product. The fact that the abundance of BF(2)(+) is relatively low and relatively insensitive to changes in collision energy suggests that this reaction proceeds through an entropically demanding intermediate at the vacuum--surface interface, one which involves interaction of the B(+) ion simultaneously with two fluorine atoms. By contrast with the reaction of B(+), the odd-electron species BBr(+)* reacts with the F-SAM surface to yield an abundant single-fluorine abstraction product, BBrF(+). Corresponding gas-phase ion--molecule experiments involving B(+) and BBr(+)* with C(6)F(14) also yield the products BF(+)* and BF(2)(+), but only in extremely low abundances and with no preference for double fluorine abstraction. Ion--surface reactions were also investigated for BBr(n)(+) (n = 0-2) with a hydrocarbon self-assembled monolayer (H-SAM) surface. Reaction of the B(+) ion and dissociative reactions of BBr(+)* result in the formation of BH(2)(+), while the thermodynamically less favorable product BH(+)* is not observed. Collisions of BBr(2)(+) with the H-SAM surface yield the dissociative ion-surface reaction products, BBrH(+) and BBrCH(3

  10. Monitoring the interfacial capacitance at self-assembled phosphate monolayers on gold electrodes upon interaction with calcium and magnesium.

    PubMed

    Ekeroth, Johan; Konradsson, Peter; Björefors, Fredrik; Lundström, Ingemar; Liedberg, Bo

    2002-05-01

    Electrochemical impedance spectroscopy has been used to evaluate the change in interfacial capacitance upon calcium and magnesium coordination to a phosphate-modified electrode. The phosphate electrode was prepared via immobilization of phosphorylated, thiol-containing, serine analogues onto gold. Upon subjection to calcium and magnesium, a substantial drop in capacitance was observed. Magnesium displayed the largest influence on the capacitance: a 27% capacitance drop was observed upon introduction of a 1 mM solution of magnesium ions. The lowered capacitance is a result of a change in the potential and charge distribution at the film/electrolyte interface as the cations coordinate to the phosphate groups. Moreover, the relationship between electrode potential and capacitance has been investigated and reveals a significant difference between monovalent and divalent cations. As complementary information, infrared reflection absorption spectra of the phosphorylated monolayer having different counterions are presented. The results reported in this paper indicate that the phosphorylated amino acid analogue monolayers could be used in investigations of the biochemically important coordination of calcium and magnesium to phosphates and phosphorylated amino acids.

  11. Tailoring the electrical properties of MoS2 field effect transistors by depositing Au nanoparticles and alkanethiol molecules.

    PubMed

    Cho, Kyungjune; Jeong, Hyunhak; Kim, Tae-Young; Pak, Jinsu; Kim, Jae-Keun; Choi, Barbara Yuri; Lee, Takhee

    2016-05-11

    We fabricated and characterized MoS2 field effect transistors. First, we measured the electrical properties of MoS2 field effect transistors (FETs) that were made with mechanically exfoliated MoS2 flakes. Then, we deposited Au nanoparticles on the MoS2 channel and measured the electrical properties. We observed whether the source-drain current increased or decreased after the Au particles were deposited. The deposited Au particles either formed an extra current path and increased the current or behaved as charge-withdrawing sites and decreased the current. Next, we deposited alkanethiol molecules on the Au particles to reduce the work function of the Au. Alkanethiol molecules are known to form a self-assembled monolayer on the Au surface, and the electric dipole moment of the molecules causes the work function of the Au to decrease. Au particles can capture electrons from the MoS2 channel due to their high work function. However, the decreased work function of the Au particles subjected to alkanethiol treatment could cause captured electrons to be released from the Au particles to MoS2. Therefore, the current increased after alkanethiol treatment. This study may provide useful methods to utilize surface treatments with particles and molecules to tailor the electrical properties of MoS2-based FETs.

  12. Kinetics and Thermodynamics of Au Colloid Monolayer Self-Assembly: Undergraduate Experiments in Surface and Nanomaterials Chemistry

    NASA Astrophysics Data System (ADS)

    Keating, Christine D.; Musick, Michael D.; Keefe, Melinda H.; Natan, Michael J.

    1999-07-01

    This paper describes three closely related experiments utilizing colloidal Au nanoparticles to teach basic concepts in physical chemistry. This is done in the context of surface chemistry and nanomaterials synthesis, areas of intense current research interest in both academics and industry. First, students investigate the optical properties and stability of aqueous Au colloidal suspensions, determining the amount of a protein (protein A) necessary to prevent salt-induced flocculation of colloidal Au. Then, the kinetics of Au nanoparticle surface immobilization on silanized glass slides is followed by visible spectrophotometry. Data are fit to a (time)1/2 curve that describes particle diffusion and adsorption from an unstirred solution onto a planar substrate. Finally, the adsorption isotherm data are fit to a Frumkin isotherm, demonstrating the effects of interparticle repulsions upon the thermodynamics of Au particle monolayer formation. Each experiment benefits from the intense visible absorption of colloidal Au particles, allowing all aspects of surface assembly to be monitored using only a spectrophotometer.

  13. Characterization of functionalized self-assembled monolayers and surface-attached interlocking molecules using near-edge X-ray absorption fine structure spectroscopy

    NASA Astrophysics Data System (ADS)

    Willey, Trevor Michael

    Quantitative knowledge of the fundamental structure and substrate binding, as well as the direct measurement of conformational changes, are essential to the development of self-assembled monolayers (SAMs) and surface-attached interlocking molecules, catenanes and rotaxanes. These monolayers are vital to development of nano-mechanical, molecular electronic, and biological/chemical sensor applications. This dissertation investigates properties of functionalized SAMs in sulfur-gold based adsorbed molecular monolayers using quantitative spectroscopic techniques including near-edge x-ray absorption fine structure spectroscopy (NEXAFS) and x-ray photoelectron spectroscopy (XPS). The stability of the gold-thiolate interface is addressed. A simple model SAM consisting of dodecanethiol adsorbed on Au(111) degrades significantly in less than 24 hours under ambient laboratory air. S 2p and O 1s XPS show the gold-bound thiolates oxidize to sulfinates and sulfonates. A reduction of organic material on the surface and a decrease in order are observed as the layer degrades. The effect of the carboxyl vs. carboxylate functionalization on SAM structure is investigated. Carboxyl-terminated layers consisting of long alkyl-chain thiols vs. thioctic acid with short, sterically separated, alkyl groups are compared and contrasted. NEXAFS shows a conformational change, or chemical switchability, with carboxyl groups tilted over and carboxylate endgroups more upright. Surface-attached loops and simple surface-attached rotaxanes are quantitatively characterized, and preparation conditions that lead to desired films are outlined. A dithiol is often insufficient to form a molecular species bound at each end to the substrate, while a structurally related disulfide-containing polymer yields surface-attached loops. Similarly, spectroscopic techniques show the successful production of a simple, surface-attached rotaxane that requires a "molecular riveting" step to hold the mechanically attached

  14. Characterization of Functionalized Self-Assembled Monolayers and Surface-Attached Interlocking Molecules Using Near-Edge X-ray Absorption Fine Structure Spectroscopy

    SciTech Connect

    Willey, Trevor M.

    2004-04-01

    Quantitative knowledge of the fundamental structure and substrate binding, as well as the direct measurement of conformational changes, are essential to the development of self-assembled monolayers (SAMs) and surface-attached interlocking molecules, catenanes and rotaxanes. These monolayers are vital to development of nano-mechanical, molecular electronic, and biological/chemical sensor applications. This dissertation investigates properties of functionalized SAMs in sulfur-gold based adsorbed molecular monolayers using quantitative spectroscopic techniques including near-edge x-ray absorption fine structure spectroscopy (NEXAFS) and x-ray photoelectron spectroscopy (XPS). The stability of the gold-thiolate interface is addressed. A simple model SAM consisting of dodecanethiol adsorbed on Au(111) degrades significantly in less than 24 hours under ambient laboratory air. S 2p and O 1s XPS show the gold-bound thiolates oxidize to sulfinates and sulfonates. A reduction of organic material on the surface and a decrease in order are observed as the layer degrades. The effect of the carboxyl vs. carboxylate functionalization on SAM structure is investigated. Carboxyl-terminated layers consisting of long alkyl-chain thiols vs. thioctic acid with short, sterically separated, alkyl groups are compared and contrasted. NEXAFS shows a conformational change, or chemical switchability, with carboxyl groups tilted over and carboxylate endgroups more upright. Surface-attached loops and simple surface-attached rotaxanes are quantitatively characterized, and preparation conditions that lead to desired films are outlined. A dithiol is often insufficient to form a molecular species bound at each end to the substrate, while a structurally related disulfide-containing polymer yields surface-attached loops. Similarly, spectroscopic techniques show the successful production of a simple, surface-attached rotaxane that requires a ''molecular riveting'' step to hold the mechanically attached

  15. Nanostructured materials based on the integration of ferrocenyl-tethered dendrimer and redox proteins on self-assembled monolayers: an efficient biosensor interface

    NASA Astrophysics Data System (ADS)

    Frasconi, Marco; Deriu, Daniela; D'Annibale, Andrea; Mazzei, Franco

    2009-12-01

    In this paper we report the use of ferrocenyl-tethered dendrimer (Fc-D) as an electrode modifier supported by a self-assembled monolayer coated gold surface. The pretreatment of electrodes with Fc-D allows the covalent immobilization of glucose oxidase. The resulting integrated hybrid system provides electrical contact between the redox center of the enzyme and the electrode, and improves the overall bioelectrocatalyzed oxidation of glucose. Cyclic voltammetry combined with surface plasmon resonance (SPR) is used to investigate the redox-induced orientation changes of ferrocene-tethered dendrimers and the optimal electrical wiring of the enzyme, depending on the length of the alkyl chain of the ferrocene-tethered groups. The amount of substrate controls the steady-state concentration ratio of Fc/Fc+ in the film composition. Therefore, the SPR spectrum of the film is controlled by the reversible change in the refractive index of the enzyme-integrated redox film. The proposed method demonstrates a new procedure for developing a stable amperometric redox enzyme-based sensor by designing a new nanostructured material that control the biosensing performance.

  16. A Single-Level Tunnel Model to Account for Electrical Transport through Single Molecule- and Self-Assembled Monolayer-based Junctions

    PubMed Central

    Garrigues, Alvar R.; Yuan, Li; Wang, Lejia; Mucciolo, Eduardo R.; Thompon, Damien; del Barco, Enrique; Nijhuis, Christian A.

    2016-01-01

    We present a theoretical analysis aimed at understanding electrical conduction in molecular tunnel junctions. We focus on discussing the validity of coherent versus incoherent theoretical formulations for single-level tunneling to explain experimental results obtained under a wide range of experimental conditions, including measurements in individual molecules connecting the leads of electromigrated single-electron transistors and junctions of self-assembled monolayers (SAM) of molecules sandwiched between two macroscopic contacts. We show that the restriction of transport through a single level in solid state junctions (no solvent) makes coherent and incoherent tunneling formalisms indistinguishable when only one level participates in transport. Similar to Marcus relaxation processes in wet electrochemistry, the thermal broadening of the Fermi distribution describing the electronic occupation energies in the electrodes accounts for the exponential dependence of the tunneling current on temperature. We demonstrate that a single-level tunnel model satisfactorily explains experimental results obtained in three different molecular junctions (both single-molecule and SAM-based) formed by ferrocene-based molecules. Among other things, we use the model to map the electrostatic potential profile in EGaIn-based SAM junctions in which the ferrocene unit is placed at different positions within the molecule, and we find that electrical screening gives rise to a strongly non-linear profile across the junction. PMID:27216489

  17. A Single-Level Tunnel Model to Account for Electrical Transport through Single Molecule- and Self-Assembled Monolayer-based Junctions

    NASA Astrophysics Data System (ADS)

    Garrigues, Alvar R.; Yuan, Li; Wang, Lejia; Mucciolo, Eduardo R.; Thompon, Damien; Del Barco, Enrique; Nijhuis, Christian A.

    2016-05-01

    We present a theoretical analysis aimed at understanding electrical conduction in molecular tunnel junctions. We focus on discussing the validity of coherent versus incoherent theoretical formulations for single-level tunneling to explain experimental results obtained under a wide range of experimental conditions, including measurements in individual molecules connecting the leads of electromigrated single-electron transistors and junctions of self-assembled monolayers (SAM) of molecules sandwiched between two macroscopic contacts. We show that the restriction of transport through a single level in solid state junctions (no solvent) makes coherent and incoherent tunneling formalisms indistinguishable when only one level participates in transport. Similar to Marcus relaxation processes in wet electrochemistry, the thermal broadening of the Fermi distribution describing the electronic occupation energies in the electrodes accounts for the exponential dependence of the tunneling current on temperature. We demonstrate that a single-level tunnel model satisfactorily explains experimental results obtained in three different molecular junctions (both single-molecule and SAM-based) formed by ferrocene-based molecules. Among other things, we use the model to map the electrostatic potential profile in EGaIn-based SAM junctions in which the ferrocene unit is placed at different positions within the molecule, and we find that electrical screening gives rise to a strongly non-linear profile across the junction.

  18. Binding of fullerene C60 to gold surface functionalized by self-assembled monolayers of 8-amino-1-octane thiol: a structure elucidation.

    PubMed

    Sahoo, Rashmi R; Patnaik, Archita

    2003-12-01

    The formation of self-assembled chemisorbed monolayers (SAM) of 8-amino-1-undecane thiol functionalized with fullerene C(60) on gold, has been studied by contact angle measurements, Fourier transform infrared-attenuated total reflection (FTIR-ATR) spectroscopy, and X-ray photoelectron spectroscopy (XPS). A two-step procedure was followed consisting of the chemisorption of amine-terminated organosulfur compounds, followed by their reaction with fullerenes at the solid-liquid interface. Covalent binding of fullerenes to these attachment layers was accessed by FTIR-ATR and XPS. ATR showed several major features in the C(60) skeleton ring vibration region along with all the characteristic features of the aminothiol. With increase in carbon to sulfur ratio, appearance of a C1s shake-up satellite peak due to the characteristic pi-pi(*) transition of the C(60) backbone and a low binding energy N1s feature confirmed the z.sbnd;NH(2) binding at the 6,6 double bond of the C(60) cage. Possible explanations for these experimental findings are discussed.

  19. Measuring Drug Metabolism Kinetics and Drug-Drug Interactions Using Self-Assembled Monolayers for Matrix-Assisted Laser Desorption-Ionization Mass Spectrometry.

    PubMed

    Anderson, Lyndsey L; Berns, Eric J; Bugga, Pradeep; George, Alfred L; Mrksich, Milan

    2016-09-01

    The competition of two drugs for the same metabolizing enzyme is a common mechanism for drug-drug interactions that can lead to altered kinetics in drug metabolism and altered elimination rates in vivo. With the prevalence of multidrug therapy, there is great potential for serious drug-drug interactions and adverse drug reactions. In an effort to prevent adverse drug reactions, the FDA mandates the evaluation of the potential for metabolic inhibition by every new chemical entity. Conventional methods for assaying drug metabolism (e.g., those based on HPLC) have been established for measuring drug-drug interactions; however, they are low-throughput. Here we describe an approach to measure the catalytic activity of CYP2C9 using the high-throughput technique self-assembled monolayers for matrix-assisted laser desorption-ionization (SAMDI) mass spectrometry. We measured the kinetics of CYP450 metabolism of the substrate, screened a set of drugs for inhibition of CYP2C9 and determined the Ki values for inhibitors. The throughput of this platform may enable drug metabolism and drug-drug interactions to be interrogated at a scale that cannot be achieved with current methods. PMID:27467208

  20. Surface modification of surface sol-gel derived titanium oxide films by self-assembled monolayers (SAMs) and non-specific protein adsorption studies.

    PubMed

    Advincula, Maria; Fan, Xiaowu; Lemons, Jack; Advincula, Rigoberto

    2005-04-25

    Biological events occurring at the implant-host interface, including protein adsorption are mainly influenced by surface properties of the implant. Titanium alloys, one of the most widely used implants, has shown good biocompatibility primarily through its surface oxide. In this study, a surface sol-gel process based on the surface reaction of metal alkoxides with a hydroxylated surface was used to prepare ultrathin titanium oxide (TiOx) coatings on silicon wafers. The oxide deposited on the surface was then modified by self-assembled monolayers (SAMs) of silanes with different functional groups. Interesting surface morphology trends and protein adhesion properties of the modified titanium oxide surfaces were observed as studied by non-specific protein binding of serum albumin. The surface properties were investigated systematically using water contact angle, ellipsometry, X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM) measurements. Results showed that the surface sol-gel process predominantly formed homogeneous, but rough and porous titanium oxide layers. The protein adsorption was dependent primarily on the silane chemistry, packing of the alkyl chains (extent of van der Waals interaction), morphology (porosity and roughness), and wettability of the sol-gel oxide. Comparison was made with a thermally evaporated TiOx-Ti/Si-wafer substrate (control). This method further extends the functionalization of surface sol-gel derived TiOx layers for possible titanium alloy bioimplant surface modification.

  1. On the relationship between the structure of self-assembled carboxylic acid monolayers on alumina and the organization and electrical properties of a pentacene thin film

    NASA Astrophysics Data System (ADS)

    Lang, Philippe; Mottaghi, Daniel; Lacaze, Pierre-Camille

    2016-03-01

    The modification of insulating surfaces by self-assembled monolayers (SAMs) is an elegant way of tailoring the gate dielectric of organic field effect transistors (OFET) to pentacene and is commonly used to improve electrical performance. A SAM based on an alkylcarboxylic acid deposited on a thin layer of alumina, serving as the gate dielectric is considered. The relationship between carrier mobility and (i) the length of the carboxylic acid (CH3(CH2)nCOOH; n = 9, 14, 18), (ii) substrate preparation and (iii) the SAM and pentacene thin film structures is considered. The size and boundaries of pentacene grains are not limiting factors for carrier mobility, and the most relevant parameter, which depends on whether there is a SAM or not, is the organization of the first pentacene layers in contact with the gate dielectric. The variation of the interplanar distance d(0 0 1) of the pentacene layers close to the alumina surface is much greater without SAM than with, and this could explain the lower carrier mobility observed in the case of a bare alumina dielectric. The relationship between the disorder associated with this variation and mobility is discussed.

  2. Self-assembled monolayers of C60-triphenylamine dyads as photo-switched interfacial layers for potential application in photovoltaic cells.

    PubMed

    Hosseini, Mahsa; Rivera-Nazario, Danisha M; Echegoyen, Luis A

    2014-03-12

    C60-Triphenylamine dyads were synthesized for incorporation as photoswitched interfacial layers in organic photovoltaic (OPV) cells. Self-assembled monolayers (SAMs) of these dyads on gold (through S-Au and C60-Au interactions) were prepared through one or two adsorption processes, and their packing densities were fully characterized. Analysis using quartz crystal microbalance (QCM) and electrochemical impedance spectroscopy (EIS) measurements indicated that all SAMs exhibit dense coverage on the gold surfaces. Electrochemical desorption in KOH confirmed that the cis-1 dyad is anchored to the gold surface through its thiol group. Impedance measurements in the absence and presence of UV irradiation were performed to observe the photoswitched properties of these surface confined dyads. Upon UV light exposure of the SAMs, the charge-transfer resistance decreased when Fe(CN)6(3-/4-) was used as the probe redox couple and increased with Ru(NH3)6(3+/2+), confirming the generation of positive charges on the surface upon UV irradiation.

  3. A Single-Level Tunnel Model to Account for Electrical Transport through Single Molecule- and Self-Assembled Monolayer-based Junctions.

    PubMed

    Garrigues, Alvar R; Yuan, Li; Wang, Lejia; Mucciolo, Eduardo R; Thompon, Damien; Del Barco, Enrique; Nijhuis, Christian A

    2016-01-01

    We present a theoretical analysis aimed at understanding electrical conduction in molecular tunnel junctions. We focus on discussing the validity of coherent versus incoherent theoretical formulations for single-level tunneling to explain experimental results obtained under a wide range of experimental conditions, including measurements in individual molecules connecting the leads of electromigrated single-electron transistors and junctions of self-assembled monolayers (SAM) of molecules sandwiched between two macroscopic contacts. We show that the restriction of transport through a single level in solid state junctions (no solvent) makes coherent and incoherent tunneling formalisms indistinguishable when only one level participates in transport. Similar to Marcus relaxation processes in wet electrochemistry, the thermal broadening of the Fermi distribution describing the electronic occupation energies in the electrodes accounts for the exponential dependence of the tunneling current on temperature. We demonstrate that a single-level tunnel model satisfactorily explains experimental results obtained in three different molecular junctions (both single-molecule and SAM-based) formed by ferrocene-based molecules. Among other things, we use the model to map the electrostatic potential profile in EGaIn-based SAM junctions in which the ferrocene unit is placed at different positions within the molecule, and we find that electrical screening gives rise to a strongly non-linear profile across the junction. PMID:27216489

  4. Effect of fluorocarbon self-assembled monolayer films on sidewall adhesion and friction of surface micromachines with impacting and sliding contact interfaces

    NASA Astrophysics Data System (ADS)

    Xiang, H.; Komvopoulos, K.

    2013-06-01

    A self-assembled monolayer film consisting of fluoro-octyltrichlorosilane (FOTS) was vapor-phase deposited on Si(100) substrates and polycrystalline silicon (polysilicon) surface micromachines. The hydrophobic behavior and structural composition of the FOTS film deposited on Si(100) were investigated by goniometry and X-ray photoelectron spectroscopy, respectively. The effects of contact pressure, relative humidity, temperature, and impact/sliding cycles on the adhesive and friction behavior of uncoated and FOTS-coated polysilicon micromachines (referred to as the Si and FOTS/Si micromachines, respectively) were investigated under controlled loading and environmental conditions. FOTS/Si micromachines demonstrated much lower and stable adhesion than Si micromachines due to the highly hydrophobic and conformal FOTS film. Contrary to Si micromachines, sidewall adhesion of FOTS/Si micromachines demonstrated a weak dependence on relative humidity, temperature, and impact cycles. In addition, FOTS/Si micromachines showed low and stable adhesion and low static friction for significantly more sliding cycles than Si micromachines. The adhesive and static friction characteristics of Si and FOTS/Si micromachines are interpreted in the context of physicochemical surface changes, resulting in the increase of the real area of contact and a hydrophobic-to-hydrophilic transition of the surface chemical characteristics caused by nanoscale surface smoothening and the removal of the organic residue (Si micromachines) or the FOTS film (FOTS/Si micromachines) during repetitive impact and oscillatory sliding of the sidewall surfaces.

  5. Threshold-Voltage Shifts in Organic Transistors Due to Self-Assembled Monolayers at the Dielectric: Evidence for Electronic Coupling and Dipolar Effects.

    PubMed

    Aghamohammadi, Mahdieh; Rödel, Reinhold; Zschieschang, Ute; Ocal, Carmen; Boschker, Hans; Weitz, R Thomas; Barrena, Esther; Klauk, Hagen

    2015-10-21

    The mechanisms behind the threshold-voltage shift in organic transistors due to functionalizing of the gate dielectric with self-assembled monolayers (SAMs) are still under debate. We address the mechanisms by which SAMs determine the threshold voltage, by analyzing whether the threshold voltage depends on the gate-dielectric capacitance. We have investigated transistors based on five oxide thicknesses and two SAMs with rather diverse chemical properties, using the benchmark organic semiconductor dinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophene. Unlike several previous studies, we have found that the dependence of the threshold voltage on the gate-dielectric capacitance is completely different for the two SAMs. In transistors with an alkyl SAM, the threshold voltage does not depend on the gate-dielectric capacitance and is determined mainly by the dipolar character of the SAM, whereas in transistors with a fluoroalkyl SAM the threshold voltages exhibit a linear dependence on the inverse of the gate-dielectric capacitance. Kelvin probe force microscopy measurements indicate this behavior is attributed to an electronic coupling between the fluoroalkyl SAM and the organic semiconductor.

  6. Self-assembled monolayers of Aβ peptides on Au electrodes: an artificial platform for probing the reactivity of redox active metals and cofactors relevant to Alzheimer's disease.

    PubMed

    Pramanik, Debajyoti; Sengupta, Kushal; Mukherjee, Soumya; Dey, Somdatta Ghosh; Dey, Abhishek

    2012-07-25

    The water-soluble hydrophilic part of human Aβ peptide has been extended to include a C-terminal cysteine residue. Utilizing the thiol functionality of this cysteine residue, self-assembled monolayers (SAM) of these peptides are formed on Au electrodes. Atomic force microscopy imaging confirms formation of small Aβ aggregates on the surface of the electrode. These aggregates bind redox active metals like Cu and cofactors like heme, both of which are proposed to generate toxic partially reduced oxygen species (PROS) and play a vital role in Alzheimer's disease. The spectroscopic and electrochemical properties of these Cu and heme bound Aβ SAM are similar to those reported for the soluble Cu and heme bound Aβ peptide. Experiments performed on these Aβ-SAM electrodes clearly demonstrate that (1) heme bound Aβ is kinetically more competent in reducing O(2) than Cu bound Aβ, (2) under physiological conditions the reduced Cu site produces twice as much PROS (measured in situ) than the reduced heme site, and (3) chelators like clioquinol remove Cu from these aggregates, while drugs like methylene blue inhibit O(2) reactivity of the heme cofactor. This artificial construct provides a very easy platform for investigating potential drugs affecting aggregation of human Aβ peptides and PROS generation by its complexes with redox active metals and cofactors.

  7. Sub-2 nm Thick Fluoroalkylsilane Self-Assembled Monolayer-Coated High Voltage Spinel Crystals as Promising Cathode Materials for Lithium Ion Batteries

    PubMed Central

    Zettsu, Nobuyuki; Kida, Satoru; Uchida, Shuhei; Teshima, Katsuya

    2016-01-01

    We demonstrate herein that an ultra-thin fluoroalkylsilane self-assembled monolayer coating can be used as a modifying agent at LiNi0.5Mn1.5O4−δcathode/electrolyte interfaces in 5V-class lithium-ion batteries. Bare LiNi0.5Mn1.5O4−δ cathode showed substantial capacity fading, with capacity dropping to 79% of the original capacity after 100 cycles at a rate of 1C, which was entirely due to dissolution of Mn3+ from the spinel lattice via oxidative decomposition of the organic electrolyte. Capacity retention was improved to 97% on coating ultra-thin FAS17-SAM onto the LiNi0.5Mn1.5O4 cathode surface. Such surface protection with highly ordered fluoroalkyl chains insulated the cathode from direct contact with the organic electrolyte and led to increased tolerance to HF. PMID:27553901

  8. Effect of Self-Assembled Monolayer Modification on Indium-Tin Oxide Surface for Surface-Initiated Vapor Deposition Polymerization of Carbazole Thin Films

    NASA Astrophysics Data System (ADS)

    Yuya Umemoto,; Seong-Ho Kim,; Rigoberto C. Advincula,; Kuniaki Tanaka,; Hiroaki Usui,

    2010-04-01

    With the aim of controlling the interface between an inorganic electrode and an organic layer, a surface-initiated vapor deposition polymerization method was employed to prepare carbazole polymer thin films that are chemically bound to an indium-tin oxide (ITO) surface. A self-assembled monolayer (SAM) that has an azo initiator as a terminal group was prepared on an ITO surface, on which carbazole acrylate monomers were evaporated under ultraviolet (UV) irradiation. The surface morphological characteristics of the films prepared with/without UV irradiation and with/without the SAM were compared. It was found that the UV irradiation leads to the polymerization of carbazole monomers irrespective of the type of substrate used. On the other hand, the surface morphological characteristics were largely dependent on the existence of the SAM. Uniform and smooth polymer thin films were obtained only when the monomers were evaporated on the SAM-modified surface under UV irradiation. A comparison of film growth characteristics on a UV-ozone-treated ITO surface suggested that the formation of uniform films was made possible not by the modification of surface energy but by the growth of the polymers chemically bound to the substrate surface.

  9. Polar and azimuthal alignment of a nematic liquid crystal by alkylsilane self-assembled monolayers: effects of chain-length and mechanical rubbing.

    PubMed

    Malone, Stephanie M; Schwartz, Daniel K

    2008-09-01

    Alkylsilane self-assembled monolayers (SAMs) on oxide substrates are commonly used as liquid crystal (LC) alignment layers. We have studied the effects of alkyl chain length, photolytic degradation, and mechanical rubbing on polar and azimuthal LC anchoring. Both gradient surfaces (fabricated using photolytic degradation of C18 SAMs) and unirradiated SAMs composed of short alkyl chains show abrupt transitions from homeotropic to tilted alignment as a function of degradation or chain length. In both cases, the transition from homeotropic to tilted anchoring corresponds to increasing wettability of the SAM surfaces. However, there is an offset in the critical contact angle for the transition on gradient vs unirradiated SAMs, suggesting that layer thickness is more relevant than wettability for LC alignment. Mechanical rubbing can induce azimuthal alignment along the rubbing direction for alignment layers sufficiently near the homeotropic-to-planar transition. Notably, mechanical rubbing causes a small but significant shift in the homeotropic-to-tilted transition, e.g., unrubbed C5 SAMs induce homeotropic anchoring, but the same surface after rubbing induces LC pretilt. PMID:18686979

  10. Effect of fluorocarbon self-assembled monolayer films on sidewall adhesion and friction of surface micromachines with impacting and sliding contact interfaces

    SciTech Connect

    Xiang, H.; Komvopoulos, K.

    2013-06-14

    A self-assembled monolayer film consisting of fluoro-octyltrichlorosilane (FOTS) was vapor-phase deposited on Si(100) substrates and polycrystalline silicon (polysilicon) surface micromachines. The hydrophobic behavior and structural composition of the FOTS film deposited on Si(100) were investigated by goniometry and X-ray photoelectron spectroscopy, respectively. The effects of contact pressure, relative humidity, temperature, and impact/sliding cycles on the adhesive and friction behavior of uncoated and FOTS-coated polysilicon micromachines (referred to as the Si and FOTS/Si micromachines, respectively) were investigated under controlled loading and environmental conditions. FOTS/Si micromachines demonstrated much lower and stable adhesion than Si micromachines due to the highly hydrophobic and conformal FOTS film. Contrary to Si micromachines, sidewall adhesion of FOTS/Si micromachines demonstrated a weak dependence on relative humidity, temperature, and impact cycles. In addition, FOTS/Si micromachines showed low and stable adhesion and low static friction for significantly more sliding cycles than Si micromachines. The adhesive and static friction characteristics of Si and FOTS/Si micromachines are interpreted in the context of physicochemical surface changes, resulting in the increase of the real area of contact and a hydrophobic-to-hydrophilic transition of the surface chemical characteristics caused by nanoscale surface smoothening and the removal of the organic residue (Si micromachines) or the FOTS film (FOTS/Si micromachines) during repetitive impact and oscillatory sliding of the sidewall surfaces.

  11. Tethered bilayer lipid membranes on mixed self-assembled monolayers of a novel anchoring thiol: impact of the anchoring thiol density on bilayer formation.

    PubMed

    Basit, Hajra; Van der Heyden, Angéline; Gondran, Chantal; Nysten, Bernard; Dumy, Pascal; Labbé, Pierre

    2011-12-01

    Tethered bilayer lipid membranes (tBLMs) are designed on mixed self-assembled monolayers (SAMs) of a novel synthetic anchoring thiol, 2,3-di-o-palmitoylglycerol-1-tetraethylene glycol mercaptopropanoic acid ester (TEG-DP), and a new short dilution thiol molecule, tetraethylene glycol mercaptopropanoic acid ester (TEG). tBLM formation was accomplished by self-directed fusion of small unilamellar vesicles of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine. The influence of the dilution of the anchoring thiol molecule in the SAM on the vesicle fusion process and on the properties of the resulting tBLMs is studied. It is observed by quartz crystal microbalance that vesicle fusion is a one-step process for a pure TEG-DP SAM as well as for mixed SAMs containing a high concentration of the anchoring thiol. However, upon dilution of the anchoring thiol to moderate concentrations, this process is decelerated and possibly follows a pathway different from that observed on a pure TEG-DP SAM. Electrochemical impedance spectroscopy is used to qualitatively correlate the composition of the SAM to the electrical properties of the tBLM. In this paper we also delineate the necessity of a critical concentration of this anchoring TEG-DP thiol as a requisite for inducing the fusion of vesicles to form a tBLM.

  12. Laterally Mobile, Functionalized Self-Assembled Monolayers at the Fluorous−Aqueous Interface in a Plug-Based Microfluidic System: Characterization and Testing with Membrane Protein Crystallization

    SciTech Connect

    Kreutz, Jason E.; Li, Liang; Roach, L. Spencer; Hatakeyama, Takuji; Ismagilov, Rustem F.

    2009-11-04

    This paper describes a method to generate functionalizable, mobile self-assembled monolayers (SAMs) in plug-based microfluidics. Control of interfaces is advancing studies of biological interfaces, heterogeneous reactions, and nanotechnology. SAMs have been useful for such studies, but they are not laterally mobile. Lipid-based methods, though mobile, are not easily amenable to setting up the hundreds of experiments necessary for crystallization screening. Here we demonstrate a method, complementary to current SAM and lipid methods, for rapidly generating mobile, functionalized SAMs. This method relies on plugs, droplets surrounded by a fluorous carrier fluid, to rapidly explore chemical space. Specifically, we implemented his-tag binding chemistry to design a new fluorinated amphiphile, RfNTA, using an improved one-step synthesis of RfOEG under Mitsunobu conditions. RfNTA introduces specific binding of protein at the fluorous-aqueous interface, which concentrates and orients proteins at the interface, even in the presence of other surfactants. We then applied this approach to the crystallization of a his-tagged membrane protein, Reaction Center from Rhodobacter sphaeroides, performed 2400 crystallization trials, and showed that this approach can increase the range of crystal-producing conditions, the success rate at a given condition, the rate of nucleation, and the quality of the crystal formed.

  13. Investigation of Bovine Serum Albumin (BSA) Attachment onto Self-Assembled Monolayers (SAMs) Using Combinatorial Quartz Crystal Microbalance with Dissipation (QCM-D) and Spectroscopic Ellipsometry (SE)

    PubMed Central

    Phan, Hanh T. M.; Bartelt-Hunt, Shannon; Rodenhausen, Keith B.; Schubert, Mathias; Bartz, Jason C.

    2015-01-01

    Understanding protein adsorption kinetics to surfaces is of importance for various environmental and biomedical applications. Adsorption of bovine serum albumin to various self-assembled monolayer surfaces including neutral and charged hydrophilic and hydrophobic surfaces was investigated using in-situ combinatorial quartz crystal microbalance with dissipation and spectroscopic ellipsometry. Adsorption of bovine serum albumin varied as a function of surface properties, bovine serum albumin concentration and pH value. Charged surfaces exhibited a greater quantity of bovine serum albumin adsorption, a larger bovine serum albumin layer thickness, and increased density of bovine serum albumin protein compared to neutral surfaces at neutral pH value. The quantity of adsorbed bovine serum albumin protein increased with increasing bovine serum albumin concentration. After equilibrium sorption was reached at pH 7.0, desorption of bovine serum albumin occurred when pH was lowered to 2.0, which is below the isoelectric point of bovine serum albumin. Our data provide further evidence that combinatorial quartz crystal microbalance with dissipation and spectroscopic ellipsometry is a sensitive analytical tool to evaluate attachment and detachment of adsorbed proteins in systems with environmental implications. PMID:26505481

  14. A molecular simulation study of methylated and hydroxyl sugar-based self-assembled monolayers: Surface hydration and resistance to protein adsorption

    NASA Astrophysics Data System (ADS)

    Hower, Jason C.; He, Yi; Jiang, Shaoyi

    2008-12-01

    In this work molecular simulations are performed to investigate protein interactions with hydroxylated and methylated mannitol and sorbitol terminated self-assembled monolayer (SAM) surfaces in the presence of explicit water molecules. The role of surface hydrogen bond donor versus acceptor groups is evaluated by comparing the hydration layer structure and resulting forces generated by the two classes of sugar SAM surfaces. Both hydroxyl and methyl-terminated sugar SAM surfaces interact with hydrating water molecules. Regardless of hydrogen bond donor or acceptor groups, both classes of sugar SAM surface groups interact strongly with hydrating water molecules to induce significant repulsive forces and resistance to protein adsorption. Our results indicate that the repulsive force generated on the probe protein is related to the ability of the surface to orient the hydration layer water. The repulsive force is also proportional to the number of hydrating water molecules interacting with the protein. The repulsive force and subsequent resistance to protein adsorption are dependent on the surface hydration, not the origin of that hydration.

  15. Investigation of the deposition and thermal behavior of striped phases of unsymmetric disulfide self-assembled monolayers on Au(111): The case of 11-hydroxyundecyl decyl disulfide

    SciTech Connect

    Albayrak, Erol; Karabuga, Semistan; Bracco, Gianangelo; Danışman, M. Fatih

    2015-01-07

    Self-assembled monolayers (SAMs) of unsymmetric disulfides on Au(111) are used to form mixed SAMs that can be utilized in many applications. Here, we have studied 11-hydroxyundecyl decyl disulfide (CH{sub 3}–(CH{sub 2}){sub 9}–S–S–(CH{sub 2}){sub 11}–OH, HDD) SAMs produced by supersonic molecular beam deposition and characterized by He diffraction. The film growth was monitored at different temperatures up to a coverage which corresponds to a full lying down phase and the diffraction analysis shows that below 250 K the phase is different from the phase measured above 300 K. During the annealing of the film, two phase transitions were observed, at 250 K and 350 K. The overall data suggest that the former is related to an irreversible phase separation of HDD above 250 K to decanethiolate (–S–(CH{sub 2}){sub 9}–CH{sub 3}, DTT) and hydroxyundecylthiolate (–S–(CH{sub 2}){sub 11}–OH, MUDT), while the latter to a reversible melting of the film. Above 450 K, the specular intensity shows an increase related to film desorption and different chemisorbed states were observed with energies in the same range as observed for decanethiol (H–S–(CH{sub 2}){sub 9}–CH{sub 3}, DT) and mercaptoundecanol (H–S–(CH{sub 2}){sub 11}–OH, MUD) SAMs.

  16. Self-assembled monolayer of o-aminothiophenol on Fe(1 1 0) surface: a combined study by electrochemistry, in situ STM, and molecular simulations

    NASA Astrophysics Data System (ADS)

    Kong, De-Sheng; Yuan, Shi-Ling; Sun, Yu-Xi; Yu, Zhang-Yu

    2004-12-01

    Electrochemical measurements, in situ scanning tunneling microscopy (STM) observation, and molecular mechanics (MM) simulations were performed to study the physiochemical properties such as the corrosion-inhibition effect and the optimal packing structure of o-aminothiophenol (OATP) self-assembled monolayer (SAM) formed on Fe(1 1 0) surface in 0.1 M NaClO 4 solution. The formation of OATP SAMs drastically depressed the Faradaic processes at the Fe(1 1 0) surface and reduced the electrical double-layer capacitance at the electrode/electrolyte interface, revealing the anticorrosion property and the blocking behavior of OATP adlayers. Two-dimensional ordered molecular arrays of OATP on Fe(1 1 0) surface with a p(2 × 2) commensurate structure were observed by STM measurements. MM calculations showed that the p(2 × 2) packing pattern is indeed the preferable structure for OATP molecules adsorbed on Fe(1 1 0), in accordance with STM experiments. The OATP SAM on Fe(1 1 0) is ≈0.50 nm in thickness and with a dielectric constant of ˜7.0.

  17. Formation of Merocyanine Self-Assembled Monolayer and Its Nonlinear Optical Properties Probed by Second-Harmonic Generation and Surface Plasmon Resonance

    NASA Astrophysics Data System (ADS)

    Tsuboi, Kazuma; Seki, Kazuhiko; Ouchi, Yukio; Fujita, Katsuhiko; Kajikawa, Kotaro

    2003-02-01

    Nonlinear optical responses of a self-assembled monolayer (SAM) containing merocyanine chromophore, 1-alkyl-4-(4-hydroxystyryl) pyridinium bromide (HSP), on gold in water and in ethanol were studied by second-harmonic generation (SHG). The pH dependence of the SHG response clearly showed a solvatochromic characteristic of the merocyanine from a protonated form to a zwitterionic form. A large second-order susceptibility χzzz=5.0× 10-7 esu (2.1× 102 pm/V) was found in a basic solution of ethanol where the merocyanine is in the zwitterionic form. Combination of the SHG and surface plasmon resonance (SPR) spectroscopy measurements also provides us with details of the formation process of the merocyanine SAMs in the ethanol solution of the HSP-terminated-alkyldisulfide, ω,ω\\prime-dithiodi[1-undecyl-4-(4-hydroxystyryl)pyridinium bromide](HSPC11SS). A considerable difference was found in the kinetics between SPR and SHG, because SHG probes the molecules in a noncentrosymmetric fashion on the gold surface while SPR probes the optical thickness of the film. The difference enabled us to separate the chemisorption from the physisorption in the adsorption process. Interestingly, both probes showed slower kinetics in the solution of higher concentration, suggesting association of the disulfide molecules in the solution of high concentration.

  18. Electrochemical reduction of p-nitrothiophenol-self-assembled monolayer films on Au( 1 1 1 ) surface and coadsorption of anions and water molecules

    NASA Astrophysics Data System (ADS)

    Futamata, M.; Nishihara, C.; Goutev, N.

    2002-08-01

    Electrochemical reduction of p-nitrothiophenol (PNTP)-self-assembled monolayer (SAM) films on Au(1 1 1) surface was studied using attenuated total reflection-IR spectroscopy. The reduction potential was evaluated from the spectral changes, which depended on pH in electrolyte solutions, e.g. +0.05 V (pH 0.45), -0.55 V (pH 5.5) or -0.55 V (pH 13) (vs. Ag/AgCl) in accordance with voltammetric results. We found that the IR absorption bands of anions and water increases upon reduction in acidic solution at pH

  19. Probing Specific Interaction Forces Between Human IgG and Rat Anti-Human IgG by Self-Assembled Monolayer and Atomic Force Microscopy

    PubMed Central

    2010-01-01

    Interaction forces between biological molecules such as antigen and antibody play important roles in many biological processes, but probing these forces remains technically challenging. Here, we investigated the specific interaction and unbinding forces between human IgG and rat anti-human IgG using self assembled monolayer (SAM) method for sample preparation and atomic force microscopy (AFM) for interaction force measurement. The specific interaction force between human IgG and rat anti-human IgG was found to be 0.6–1.0 nN, and the force required for unbinding a single pair of human IgG and rat anti-human IgG was calculated to be 144 ± 11 pN. The results are consistent with those reported in the literatures. Therefore, SAM for sample preparation combined with AFM for interaction measurement is a relatively simple, sensitive and reliable technique to probe specific interactions between biological molecules such as antigen and antibody. PMID:20671785

  20. Surface Modification of TiO2 Photoanodes with Fluorinated Self-Assembled Monolayers for Highly Efficient Dye-Sensitized Solar Cells.

    PubMed

    Wooh, Sanghyuk; Kim, Tea-Yon; Song, Donghoon; Lee, Yong-Gun; Lee, Tae Kyung; Bergmann, Victor W; Weber, Stefan A L; Bisquert, Juan; Kang, Yong Soo; Char, Kookheon

    2015-11-25

    Dye aggregation and electron recombination in TiO2 photoanodes are the two major phenomena lowering the energy conversion efficiency of dye-sensitized solar cells (DSCs). Herein, we introduce a novel surface modification strategy of TiO2 photoanodes by the fluorinated self-assembled monolayer (F-SAM) formation with 1H,1H,2H,2H-perfluorooctyltriethoxysilane (PFTS), blocking the vacant sites of the TiO2 surface after dye adsorption. The F-SAM helps to efficiently lower the surface tension, resulting in efficient repelling ions, e.g., I3(-), in the electrolyte to decrease the electron recombination rate, and the role of F-SAM is characterized in detail by impedance spectroscopy using a diffusion-recombination model. In addition, the dye aggregates on the TiO2 surface are relaxed by the F-SAM with large conformational perturbation (i.e., helix structure) seemingly because of steric hindrance developed during the SAM formation. Such multifunctional effects suppress the electron recombination as well as the intermolecular interactions of dye aggregates without the loss of adsorbed dyes, enhancing both the photocurrent density (11.9 → 13.5 mA cm(-2)) and open-circuit voltage (0.67 → 0.72 V). Moreover, the combined surface modification with the F-SAM and the classical coadsorbent further improves the photovoltaic performance in DSCs. PMID:26506252

  1. Spectroscopic ellipsometry meets AFM nanolithography: about hydration of bio-inert oligo(ethylene glycol)-terminated self assembled monolayers on gold.

    PubMed

    Solano, Ilaria; Parisse, Pietro; Gramazio, Federico; Cavalleri, Ornella; Bracco, Gianangelo; Castronovo, Matteo; Casalis, Loredana; Canepa, Maurizio

    2015-11-21

    For the first time, to our knowledge, spectroscopic ellipsometry (SE) has been combined with state-of-the-art AFM differential height measurements conducted after shaving nano-lithography of ultrathin, soft-matter films for thickness determination. We investigated self-assembled monolayers of SH-(CH2)11-EGn-OH molecules on gold, where EG is ethylene glycol units and n = 3 and 6, a prototypical non-fouling system. We performed SE measurements (245-1200 nm) focusing on the changes induced by the formation of the film (difference spectra). SE measurements, analysed by simple models, confirm the formation of the S-Au interface, transparency of the SAMs and provide a sharp picture of the ability of the EG functionality to protect the surface from unspecific adsorption of proteins. A quantitative assessment of the film thickness by SE was carried out ex situ, thanks to the optical contrast between the film and the ambient, and by AFM in liquid. The cross-check between SE and AFM height measurements combined with the comparison between in-liquid and ex situ SE measurements allowed obtaining non-perturbative information about the vertical density profile of the SAM. The in-liquid SE measurements indicate a refractive index matching between the aqueous medium and the outer part of the SAM, consistent with a disordered configuration of OEG and/or the penetration of water amid the OEG strands. A critical discussion provides a detailed insight into the subtle issues and pitfalls related to the thickness determination of soft-matter films to the monolayer limit. PMID:26445913

  2. Molecular self-assembly for biological investigations and nanoscale lithography

    NASA Astrophysics Data System (ADS)

    Cheunkar, Sarawut

    Small, diffusible molecules when recognized by their binding partners, such as proteins and antibodies, trigger enzymatic activity, cell communication, and immune response. Progress in analytical methods enabling detection, characterization, and visualization of biological dynamics at the molecular level will advance our exploration of complex biological systems. In this dissertation, analytical platforms were fabricated to capture membrane-associated receptors, which are essential proteins in cell signaling pathways. The neurotransmitter serotonin and its biological precursor were immobilized on gold substrates coated with self-assembled monolayers (SAMs) of oligo(ethylene glycol)alkanethiols and their reactive derivatives. The SAM-coated substrates present the biologically selective affinity of immobilized molecules to target native membrane-associated receptors. These substrates were also tested for biospecificity using antibodies. In addition, small-molecule-functionalized platforms, expressing neurotransmitter pharmacophores, were employed to examine kinetic interactions between G-protein-coupled receptors and their associated neurotransmitters. The binding interactions were monitored using a quartz crystal microbalance equipped with liquid-flow injection. The interaction kinetics of G-protein-coupled serotonin 1A receptor and 5-hydroxytyptophan-functionalized surfaces were studied in a real-time, label-free environment. Key binding parameters, such as equilibrium dissociation constants, binding rate constants, and dissociative half-life, were extracted. These parameters are critical for understanding and comparing biomolecular interactions in modern biomedical research. By integrating self-assembly, surface functionalization, and nanofabrication, small-molecule microarrays were created for high-throughput screening. A hybrid soft-lithography, called microcontact insertion printing, was used to pattern small molecules at the dilute scales necessary for highly

  3. Metal dependent motif transition in a self-assembled monolayer of bipyridine derivatives via coordination: An STM study

    NASA Astrophysics Data System (ADS)

    Wang, Yi; Yuan, Qunhui; Xu, Hongbo; Zhu, Xuefeng; Gan, Wei

    2016-07-01

    Low-dimensional molecular motifs with diversity developed via the on-surface chemistry are attracting growing interest for their potential in advanced nanofabrication. In this work, scanning tunneling microscopy was employed to investigate the in situ and ex situ metal coordinations between 4,4'-ditetradecyl-2,2'-bipyridine (bpy) and Zn(ii) or Cu(ii) ions at a highly oriented pyrolytic graphite (HOPG)/1-phenyloctane interface under ambient conditions. The results demonstrate that the bpy adopts a flat-lying orientation with its substituted alkyl chains in a tail-to-tail arrangement in a bpy monolayer. For the in situ coordination, the bpy/Zn(ii) and bpy/Cu(ii) complexes are aligned in edge-on fashions, wherein the bpy stands vertically on the HOPG surface and interdigitates at the alkyl chains. In the two-dimensional arrays of ex situ coordinated complexes, metal dependent motifs have been observed with Zn(ii) and Cu(ii), wherein the bipyridine moieties are parallel to the graphite surface. These results suggest that the desired on-surface coordination architectures may be achieved by the intentional selection of the metal centers.

  4. Ultrasonic-assisted self-assembly of monolayer graphene oxide for rapid detection of Escherichia coli bacteria

    NASA Astrophysics Data System (ADS)

    Chang, Jingbo; Mao, Shun; Zhang, Yang; Cui, Shumao; Zhou, Guihua; Wu, Xiaogang; Yang, Ching-Hong; Chen, Junhong

    2013-04-01

    Due to potential risks to the environment and human health arising from pathogens/chemical contaminants, novel devices are being developed for rapid and precise detection of those contaminants. Here, we demonstrate highly sensitive and selective field-effect transistor (FET) sensor devices for detection of Escherichia coli (E. coli) bacteria using thermally reduced monolayer graphene oxide (TRMGO) sheets as semiconducting channels. The graphene oxide (GO) sheets are assembled on the aminoethanethiol (AET)-functionalized gold (Au) electrodes through electrostatic interactions with ultrasonic assistance. Anti-Escherichia coli (anti-E. coli) antibodies are used as receptors for selective detection of E. coli cells and integrated on the FET device through covalent bonding with Au nanoparticles on the GO surface. The TRMGO FET device shows great electronic stability and high sensitivity to E. coli cells with a concentration as low as 10 colony-forming units (cfu) per mL. The biosensing platform reported here is promising for large-scale, sensitive, selective, low-cost, and real-time detection of E. coli bacteria.

  5. Ultrasonic-assisted self-assembly of monolayer graphene oxide for rapid detection of Escherichia coli bacteria.

    PubMed

    Chang, Jingbo; Mao, Shun; Zhang, Yang; Cui, Shumao; Zhou, Guihua; Wu, Xiaogang; Yang, Ching-Hong; Chen, Junhong

    2013-05-01

    Due to potential risks to the environment and human health arising from pathogens/chemical contaminants, novel devices are being developed for rapid and precise detection of those contaminants. Here, we demonstrate highly sensitive and selective field-effect transistor (FET) sensor devices for detection of Escherichia coli (E. coli) bacteria using thermally reduced monolayer graphene oxide (TRMGO) sheets as semiconducting channels. The graphene oxide (GO) sheets are assembled on the aminoethanethiol (AET)-functionalized gold (Au) electrodes through electrostatic interactions with ultrasonic assistance. Anti-Escherichia coli (anti-E. coli) antibodies are used as receptors for selective detection of E. coli cells and integrated on the FET device through covalent bonding with Au nanoparticles on the GO surface. The TRMGO FET device shows great electronic stability and high sensitivity to E. coli cells with a concentration as low as 10 colony-forming units (cfu) per mL. The biosensing platform reported here is promising for large-scale, sensitive, selective, low-cost, and real-time detection of E. coli bacteria. PMID:23519240

  6. Triblock polyphiles through click chemistry: self-assembled thermotropic cubic phases formed by micellar and monolayer vesicular aggregates.

    PubMed

    Tan, Xiaoping; Kong, Leiyang; Dai, Heng; Cheng, Xiaohong; Liu, Feng; Tschierske, Carsten

    2013-11-25

    Three series of triblock polyphiles consisting of a rigid 4-phenyl-1,2,3-triazole or 1,4-diphenyl-1,2,3-triazole core with three lipophilic and flexible alkoxyl chains at one end and a polar glycerol group at the opposite end were synthesized by copper-catalyzed azide-alkyne click reactions. Their mesophase behavior was studied by polarizing optical microscopy, differential scanning calorimetry, and XRD. Depending on alkyl chain length and core length, a transition from hexagonal columnar to Pm3n-type cubic phases was observed. In the cubic phases, the molecules are organized as spherical objects. Remarkably, compounds with a longer core unit have a higher tendency to form these cubic phases, and their stability is strongly enhanced over those of the compounds with a shorter core, despite longer cores having a smaller cone angle and therefore being expected to disfavor the formation of spherical objects. There is a large difference in the number of molecules involved in the spherical aggregates formed by compounds with long and short cores. Whereas the aggregates in the cubic phases of the compounds with short rod units are small and could be regarded as micellar, the long-core compounds form much larger aggregates which are regarded as a kind of monolayer vesicular aggregate.

  7. Experimental Investigation of Microbially Induced Corrosion of Test Samples and Effect of Self-Assembled Hydrophobic Monolayers. Exposure of Test Samples to Continuous Microbial Cultures, Chemical Analysis, and Biochemical Studies

    SciTech Connect

    Laurinavichius, K.S.

    1998-09-30

    The study of biocorrosion of aluminum and beryllium samples were performed under conditions of continuous fermentation of thermophilic anaerobic microorganisms of different groups. This allowed us to examine the effect of various types of metabolic reactions of reduction-oxidation proceeding at different pH and temperatures under highly reduced conditions on aluminum and beryllium corrosion and effect of self-assembled hydrophobic monolayers.

  8. Enhanced sensitivity of self-assembled-monolayer-based SPR immunosensor for detection of benzaldehyde using a single-step multi-sandwich immunoassay.

    PubMed

    Gobi, K Vengatajalabathy; Matsumoto, Kiyoshi; Toko, Kiyoshi; Ikezaki, Hidekazu; Miura, Norio

    2007-04-01

    This paper describes the fabrication and sensing characteristics of a self-assembled monolayer (SAM)-based surface plasmon resonance (SPR) immunosensor for detection of benzaldehyde (BZ). The functional sensing surface was fabricated by the immobilization of a benzaldehyde-ovalbumin conjugate (BZ-OVA) on Au-thiolate SAMs containing carboxyl end groups. Covalent binding of BZ-OVA on SAM was found to be dependent on the composition of the base SAM, and it is improved very much with the use of a mixed monolayer strategy. Based on SPR angle measurements, the functional sensor surface is established as a compact monolayer of BZ-OVA bound on the mixed SAM. The BZ-OVA-bound sensor surface undergoes immunoaffinity binding with anti-benzaldehyde antibody (BZ-Ab) selectively. An indirect inhibition immunoassay principle has been applied, in which analyte benzaldehyde solution was incubated with an optimal concentration of BZ-Ab for 5 min and injected over the sensor chip. Analyte benzaldehyde undergoes immunoreaction with BZ-Ab and makes it inactive for binding to BZ-OVA on the sensor chip. As a result, the SPR angle response decreases with an increase in the concentration of benzaldehyde. The fabricated immunosensor demonstrates a low detection limit (LDL) of 50 ppt (pg mL(-1)) with a response time of 5 min. Antibodies bound to the sensor chip during an immunoassay could be detached by a brief exposure to acidic pepsin. With this surface regeneration, reusability of the same sensor chip for as many as 30 determination cycles has been established. Sensitivity has been enhanced further with the application of an additional single-step multi-sandwich immunoassay step, in which the BZ-Ab bound to the sensor chip was treated with a mixture of biotin-labeled secondary antibody, streptavidin and biotin-bovine serum albumin (Bio-BSA) conjugate. With this approach, the SPR sensor signal increased by ca. 12 times and the low detection limit improved to 5 ppt with a total response

  9. Redox actuation of a microcantilever driven by a self-assembled ferrocenylundecanethiolate monolayer: an investigation of the origin of the micromechanical motion and surface stress.

    PubMed

    Norman, Lana L; Badia, Antonella

    2009-02-18

    The electrochemically induced motion of free-standing microcantilevers is attracting interest as micro/nanoactuators and robotic devices. The development and implementation of these cantilever-based actuating technologies requires a molecular-level understanding of the origin of the surface stress that causes the cantilever to bend. Here, we report a detailed study of the electroactuation dynamics of gold-coated microcantilevers modified with a model, redox-active ferrocenylundecanethiolate self-assembled monolayer (FcC(11)SAu SAM). The microcantilever transducer enabled the observation of the redox transformation of the surface-confined ferrocene. Oxidation of the FcC(11)SAu SAM in perchlorate electrolyte generated a compressive surface stress change of -0.20 +/- 0.04 N m(-1), and cantilever deflections ranging from approximately 0.8 microm to approximately 60 nm for spring constants between approximately 0.01 and approximately 0.8 N m(-1). A comparison of the charge-normalized surface stress of the FcC(11)SAu cantilever with values published for the electrochemical oxidation of polyaniline- and polypyrrole-coated cantilevers reveals a striking 10- to 100-fold greater stress for the monomolecular FcC(11)SAu system compared to the conducting polymer multilayers used for electroactuation. The larger stress change observed for the FcC(11)SAu microcantilever is attributable to steric constraints in the close-packed FcC(11)SAu SAM and an efficient coupling between the chemisorbed FcC(11)S- monolayer and the Au-coated microcantilever transducer (vs physisorbed conducting polymers). The microcantilever deflection vs quantity of electrogenerated ferrocenium obtained in cyclic voltammetry and potential step/hold experiments, as well as the surface stress changes obtained for mixed FcC(11)S-/C(11)SAu SAMs containing different populations of clustered vs isolated ferrocenes, have permitted us to establish the molecular basis of stress generation. Our results strongly suggest

  10. Citrate-reduced silver hydrosol modified with omega-mercaptoalkanoic acids self-assembled monolayers as a substrate for surface-enhanced resonance Raman scattering. A study with cytochrome c.

    PubMed

    Bonifacio, Alois; van der Sneppen, Lineke; Gooijer, Cees; van der Zwan, Gert

    2004-07-01

    A new citrate-reduced silver hydrosol coated with omega-mercaptoalkanoic acids (mercaptopropionic and mercaptoundecanoic acids) self-assembled monolayers was prepared and characterized with surface-enhanced Raman spectroscopy. The structure and the quality of the coating monolayers are discussed and compared to similar coated and uncoated silver hydrosols previously developed. As an application, the new hydrosol was used as a biocompatible and efficient metal substrate for a surface-enhanced resonance Raman scattering (SERRS) study of cytochrome c. The high-quality SERRS spectra reported of cytochrome c (obtained using only 1 microL of a micromolar cytochrome solution) are discussed and compared with data available from literature studies.

  11. Detection of Tetrodotoxins in Puffer Fish by a Self-Assembled Monolayer-Based Immunoassay and Comparison with Surface Plasmon Resonance, LC-MS/MS, and Mouse Bioassay.

    PubMed

    Reverté, Laia; de la Iglesia, Pablo; del Río, Vanessa; Campbell, Katrina; Elliott, Christopher T; Kawatsu, Kentaro; Katikou, Panagiota; Diogène, Jorge; Campàs, Mònica

    2015-11-01

    The increasing occurrence of puffer fish containing tetrodotoxin (TTX) in the Mediterranean could represent a major food safety risk for European consumers and threaten the fishing industry. The work presented herein describes the development of a new enzyme linked immunosorbent assay (mELISA) based on the immobilization of TTX through dithiol monolayers self-assembled on maleimide plates, which provides an ordered and oriented antigen immobilization and favors the antigen-antibody affinity interaction. The mELISA was found to have a limit of detection (LOD) of TTX of 0.23 mg/kg of puffer fish matrix. The mELISA and a surface plasmon resonance (SPR) immunosensor previously developed were employed to establish the cross-reactivity factors (CRFs) of 5,6,11-trideoxy-TTX, 5,11-deoxy-TTX, 11-nor-TTX-6-ol, and 5,6,11-trideoxy-4-anhydro-TTX, as well as to determine TTX equivalent contents in puffer fish samples. Results obtained by both immunochemical tools were correlated (R(2) = 0.977). The puffer fish samples were also analyzed using liquid chromatography-tandem mass spectrometry (LC-MS/MS), and the corresponding CRFs were applied to the individual TTX contents. Results provided by the immunochemical tools, when compared with those obtained by LC-MS/MS, showed a good degree of correlation (R(2) = 0.991 and 0.979 for mELISA and SPR, respectively). The mouse bioassay (MBA) slightly overestimated the CRF adjusted TTX content of samples when compared with the data obtained from the other techniques. The mELISA has been demonstrated to be fit for the purpose for screening samples in monitoring programs and in research activities. PMID:26424329

  12. Detection of Tetrodotoxins in Puffer Fish by a Self-Assembled Monolayer-Based Immunoassay and Comparison with Surface Plasmon Resonance, LC-MS/MS, and Mouse Bioassay.

    PubMed

    Reverté, Laia; de la Iglesia, Pablo; del Río, Vanessa; Campbell, Katrina; Elliott, Christopher T; Kawatsu, Kentaro; Katikou, Panagiota; Diogène, Jorge; Campàs, Mònica

    2015-11-01

    The increasing occurrence of puffer fish containing tetrodotoxin (TTX) in the Mediterranean could represent a major food safety risk for European consumers and threaten the fishing industry. The work presented herein describes the development of a new enzyme linked immunosorbent assay (mELISA) based on the immobilization of TTX through dithiol monolayers self-assembled on maleimide plates, which provides an ordered and oriented antigen immobilization and favors the antigen-antibody affinity interaction. The mELISA was found to have a limit of detection (LOD) of TTX of 0.23 mg/kg of puffer fish matrix. The mELISA and a surface plasmon resonance (SPR) immunosensor previously developed were employed to establish the cross-reactivity factors (CRFs) of 5,6,11-trideoxy-TTX, 5,11-deoxy-TTX, 11-nor-TTX-6-ol, and 5,6,11-trideoxy-4-anhydro-TTX, as well as to determine TTX equivalent contents in puffer fish samples. Results obtained by both immunochemical tools were correlated (R(2) = 0.977). The puffer fish samples were also analyzed using liquid chromatography-tandem mass spectrometry (LC-MS/MS), and the corresponding CRFs were applied to the individual TTX contents. Results provided by the immunochemical tools, when compared with those obtained by LC-MS/MS, showed a good degree of correlation (R(2) = 0.991 and 0.979 for mELISA and SPR, respectively). The mouse bioassay (MBA) slightly overestimated the CRF adjusted TTX content of samples when compared with the data obtained from the other techniques. The mELISA has been demonstrated to be fit for the purpose for screening samples in monitoring programs and in research activities.

  13. Multiple step growth of single crystalline rutile nanorods with the assistance of self-assembled monolayer for dye sensitized solar cells.

    PubMed

    Yang, Mengjin; Neupane, Suman; Wang, Xuewen; He, Jin; Li, Wenzhi; Pala, Nezih

    2013-10-01

    A novel multiple step growth (MSG) process has been developed to synthesize rutile nanorods (NRs) on fluorine-doped tin oxide (FTO) glass with the assistance of a self-assembled monolayer (SAM) aiming to increase the internal surface area of the 1D materials for dye sensitized solar cell (DSSC) applications. The experimental result reveals that the SAM layer can be selectively decomposed at the tip of the nanorod, namely the rutile (001) surface, due to the anisotropic photocatalytic property of the rutile. The remaining SAM layer on the side-wall of the NRs remains intact and serves as water repellent which prevents the radial growth of the NRs during the next step hydrothermal synthesis; therefore, the spacing between the NRs and the porosity of the NR array can be retained after additional growth cycles. On the other hand, introduction of a middle layer formed via TiCl4 solution treatment before the next growth cycle is found to be an effective way to control the diameters of the newly grown NRs. The performance of DSSC made from the rutile NRs grown using the MSG technique has been examined, and it is significantly affected by the internal surfaces of the NRs. Furthermore, the MSG combined with NR etching treatment by acid at low temperature (150 °C) leads to a significant enhancement in the solar cell performance. The gigantic wettability difference of the NRs before and after the SAM treatment as well as the MSG method could be adapted to prepare superhydrophobic and superhydrophilic nanostructured patterns for other applications.

  14. Amperometric cholesterol biosensors based on the electropolymerization of pyrrole and the electrocatalytic effect of Prussian-Blue layers helped with self-assembled monolayers.

    PubMed

    Vidal, Juan-C; Espuelas, Javier; Garcia-Ruiz, Esperanza; Castillo, Juan-R

    2004-10-20

    Three cholesterol biosensor configurations based on the formation of a layer of Prussian-Blue (PB) on a Pt electrode for the electrocatalytic detection of the H(2)O(2) generated during the enzymatic reaction of cholesterol with cholesterol oxidase (ChOx) were constructed. The enzyme was entrapped within a polypyrrole (PPy) layer electropolymerized onto the PB film. The influence of the formation of self-assembled monolayers (SAMs) on the Pt surface on the adherence and stability of the PB layer and the formation of an outer layer of nafion (Nf) as a means of improving selectivity were both studied. A comparative study was made of the analytical properties of the biosensors corresponding to the three configurations named: Pt/PB/PPy-ChOx, Pt/SAM/PB/PPy-ChOx and Pt/SAM/PB/PPy-ChOx/Nf. The sensitivity (from 600 to 8500nAmM(-1)cm(-2)) and selectivity of the developed biosensors permitted the determination of the cholesterol content in reference and synthetic serum samples. The detection limit for the Pt/SAM/PB/PPy-ChOx/Nf biosensor was 8muM. Formation of the SAM on the electrode surface and covering with a Nf film considerably improved the stability and lifetime of the biosensor based on the catalytic effect of the PB layer (as the PB layer was retained longer on the electrode), and the Nf layer protects the enzyme from the external flowing solutions. Lifetime is up to 25 days of use. The formation of the SAM also has an effect on the charge transfer and the formation of the PB layer.

  15. Effect of surface chemical composition on the surface potential and iso-electric point of silicon substrates modified with self-assembled monolayers.

    PubMed

    Kuo, Che-Hung; Chang, Hsun-Yun; Liu, Chi-Ping; Lee, Szu-Hsian; You, Yun-Wen; Shyue, Jing-Jong

    2011-03-01

    Self-assembled monolayer (SAM)-modified nano-materials are a new technology to deliver drug molecules. While the majority of these depend on covalently immobilizing molecules on the surface, it is proposed that electrostatic interactions may be used to deliver drugs. By tuning the surface potential of solid substrates with SAMs, drug molecules could be either absorbed on or desorbed from substrates through the difference in electrostatic interactions around the selected iso-electric point (IEP). In this work, the surface of silicon substrates was tailored with various ratios of 3-aminopropyltrimethoxysilane (APTMS) and 3-mercaptopropyltrimethoxysilane (MPTMS), which form amine- and thiol-bearing SAMs, respectively. The ratio of the functional groups on the silicon surface was quantified by X-ray photoelectron spectrometry (XPS); in general, the deposition kinetics of APTMS were found to be faster than those of MPTMS. Furthermore, for solutions with high MPTMS concentrations, the relative deposition rate of APTMS increased dramatically due to the acid-base reaction in the solution and subsequent electrostatic interactions between the molecules and the substrate. The zeta potential in aqueous electrolytes was determined with an electro-kinetic analyzer. By depositing SAMs of binary functional groups in varied ratios, the surface potential and IEP of silicon substrates could be fine-tuned. For <50% amine concentration in SAMs, the IEP changed linearly with the chemical composition from <2 to 7.18. For higher amine concentrations, the IEP slowly increased with concentration to 7.94 because the formation of hydrogen-bonding suppressed the subsequent protonation of amines.

  16. Study of Fused Thiophene Based Organic Semiconductors and Interfacial Self-Assembled Monolayer (SAM) for Thin-Film Transistor (TFT) Application

    NASA Astrophysics Data System (ADS)

    Youn, Jangdae

    In this thesis, the molecular packing motifs of our newly designed fused thiophenes, benzo[d,d]thieno[3,2-b;4,5-b]dithiophene (BTDT) derivatives, were studied by utilizing grazing incidence wide angle X-ray scattering (GIWAXS). Considering the potential of fused thiophene molecules as an environmentally stable, high performance semiconductor building block, it must be an important groundwork to investigate their thin film structures in relation to molecular structures, single crystal structures, and organic thin-film transistors (OTFT) performances. OTFT device performance is not only determined by semiconductor materials, but also influenced by the interfacial properties. Since there are three major components in TFT structures---electrodes, semiconductors, and dielectrics, two types of major interfaces exist. One is the semiconductor-electrode interface, and the other is the semiconductor-dielectric interface. Both of these interfaces have critical roles for TFT operation. For example, the semiconductor-electrode interface determines the charge injection barrier. Before charge carriers go through the electrode (source)-semiconductor-electrode (drain) pathways, the energy gaps between the work function of the electrodes and the HOMO energy of the semiconductor materials must be overcome for hole injection, or the energy gap between the metal work function of the electrodes and the LUMO energy of the semiconductor materials must be overcome for electron injection. These charge injection barriers are largely determined by the energetic structure of the semiconductor material and work function of the electrode. However, the size of energy gap can be modified by introducing an organic self-assembled monolayer (SAM) on the surface of metal electrode. In addition, the structure of semiconductor films, especially within several monolayers right above the electrode, is greatly influenced by the SAM, and it changes charge injection property of OTFT devices. In this thesis

  17. Nanoparticle induced self-assembly.

    PubMed

    Helgesen, G; Svåsand, E; Skjeltorp, A T

    2008-05-21

    Self-assembly has for the large part focused on the assembly of molecules without guidance or management from an outside source. However, self-assembly is in principle by no means limited to molecules or the nanoscale. A particularly interesting method to the self-assembly of micro- to millimetre sized components is the use of the 'magnetic hole' effect. In this method, nonmagnetic particles can be manipulated by external magnetic fields by immersing them in a dispersion of colloidal, magnetic nanoparticles, denoted ferrofluids. Nonmagnetic particles in magnetized ferrofluids are in many ways ideal model systems to test various forms of particle self-assembly and dynamics. When microspheres are confined to a monolayer between two parallel plates and subjected to static or oscillating magnetic fields they show a variety of dynamical behaviours and assemblages, depending on the frequency and direction of the external fields. A single pair of magnetic holes oscillating in a ferrofluid layer may be used to measure the viscosity of tiny volumes of the fluid. We have also observed ordering of dilute dispersions of macromolecules and nanoparticles in magnetized ferrofluids. The self-assembly at this length scale results from structural correlations between these nanostructures and ferrofluid particles rather than from the macroscopic magnetostatic effect for the magnetic holes.

  18. Probing the Orientation and Conformation of alpha-Helix and beta-Strand Model Peptides on Self-Assembled Monolayers Using Sum Frequency Generation and NEXAFS Spectroscopy

    SciTech Connect

    Weidner, T.; Apte, J; Gamble, L; Castner, D

    2010-01-01

    The structure and orientation of amphiphilic {alpha}-helix and {beta}-strand model peptide films on self-assembled monolayers (SAMs) have been studied with sum frequency generation (SFG) vibrational spectroscopy and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. The {alpha}-helix peptide is a 14-mer, and the {beta}-strand is a 15-mer of hydrophilic lysine and hydrophobic leucine residues with hydrophobic periodicities of 3.5 and 2, respectively. These periodicities result in the leucine side chains located on one side of the peptides and the lysine side chains on the other side. The SAMs were prepared from the assembly of either carboxylic acid- or methyl-terminated alkyl thiols onto gold surfaces. For SFG studies, the deuterated analog of the methyl SAM was used. SFG vibrational spectra in the C-H region of air-dried peptides films on both SAMs exhibit strong peaks near 2965, 2940, and 2875 cm{sup -1} related to ordered leucine side chains. The orientation of the leucine side chains was determined from the phase of these features relative to the nonresonant gold background. The relative phase for both the {alpha}-helix and {beta}-strand peptides showed that the leucine side chains were oriented away from the carboxylic acid SAM surface and oriented toward the methyl SAM surface. Amide I peaks observed near 1656 cm{sup -1} for the {alpha}-helix peptide confirm that the secondary structure is preserved on both SAMs. Strong linear dichroism related to the amide {pi}* orbital at 400.8 eV was observed in the nitrogen K-edge NEXAFS spectra for the adsorbed {beta}-strand peptides, suggesting that the peptide backbones are oriented parallel to the SAM surface with the side chains pointing toward or away from the interface. For the {alpha}-helix the dichroism of the amide {pi}* is significantly weaker, probably because of the broad distribution of amide bond orientations in the {alpha}-helix secondary structure.

  19. Comparison of the influence of humidity and D-mannitol on the organization of tetraethylene glycol-terminated self-assembled monolayers and immobilized antimicrobial peptides.

    PubMed

    Goel, Mohit; Marsh, E Neil G; Chen, Zhan; Abbott, Nicholas L

    2014-06-24

    We report the use of polarization-modulation infrared reflection-absorption spectroscopy (PM-IRRAS) to characterize the effects of relative humidity (RH) and d-mannitol on the conformations of tetraethylene glycol (EG4)-terminated self-assembled monolayers (SAMs) and immobilized antimicrobial peptides (Cecropin P1 and a hybrid of Cecropin A (1-8) and Melittin (1-18)). These results are used to assess the extent to which d-mannitol can substitute for water in promoting conformational states of the SAMs and oligopeptides similar to those induced by hydration. Our measurements reveal a red shift of the COC asymmetric stretching vibration of the EG4-terminated SAMs with increasing humidity, consistent with a transition from a mixed all-trans/helical (7/2 helix) conformation at 0% RH to a predominantly helical conformation at 90% RH. Significantly, under dry conditions, a thin (2 nm in thickness) overlayer of d-mannitol generated the COC spectroscopic signature of the EG4-terminated SAM measured at high humidity. Comparisons of the effects of humidity and d-mannitol on the secondary structure of the two oligopeptides also revealed both to cause the amide I peak positions, which were measured in dry air (and without d-mannitol) to correspond to α-helical conformations, to undergo red-shifts. The magnitudes of the red-shifts, however, were more pronounced for dry d-mannitol than for high RH, with Cecropin P1 and the hybrid peptide exhibiting amide I peak positions under d-mannitol consistent with bulk aqueous solution secondary structures (random and β-sheet, respectively). These results are discussed in the context of prior reports of the tendency of d-mannitol to form glassy states in the absence of water. Overall, the results presented in this paper support the hypothesis that d-mannitol can substitute, in at least some ways, for the influence of water on the conformational states of biologically relevant molecules at interfaces. The results provide guidance for the

  20. Atomic force measurements of 16-mercaptohexadecanoic acid and its salt with CH 3, OH, and CONHCH 3 functionalized self-assembled monolayers

    NASA Astrophysics Data System (ADS)

    Morales-Cruz, Angel L.; Tremont, Rolando; Martínez, Ramón; Romañach, Rodolfo; Cabrera, Carlos R.

    2005-03-01

    Chemical and mechanical properties of different compounds can be elucidated by measuring fundamental forces such as adhesion, attraction and repulsion, between modified surfaces by means of atomic force microscopy (AFM) in force mode calibration. This work presents a combination of AFM, self-assembled monolayers (SAMs), and crystallization techniques to study the forces of interaction between excipients and active ingredients used in pharmaceutical formulations. SAMs of 16-mercaptohexadecanoate, which represent magnesium stereate, were used to modify the probe tip, whereas CH3-, OH- and CONHCH3-functional SAMs were formed on a gold-coated mica substrate, and used as examples of the surfaces of lactose and theophylline. The crystals of lactose and theophylline were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The modification of gold surfaces with 16-mercaptohexadecanoate, 10-mercapto-1-decanol (OH-functional SAM), 1-decanethiol (CH3-functional) and N-methyl-11-mercaptoundecanamide (CONHCH3-functional SAM) was studied by X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES) and Fourier transform-infrared spectroscopy (FT-IR) in specular reflectance mode. XPS and AES results of the modified surfaces showed the presence of sulfur binding, and kinetic energies that correspond to the presence of 10-mercapto-1-decanol, 1-decanethiol, N-methyl-11-mercaptoundecanamide and the salt of 16-mercaptohexadecanoic acid. The absorption bands in the IR spectra further confirm the modification of the gold-coated substrates with these compounds. Force versus distance measurements were performed between the modified tip and the modified gold-coated mica substrates. The mean adhesion forces between the COO-Ca2+ functionalized tip and the CH3-, OH-, and CONHCH3-modified substrates were determined to be 4.5, 8.9 and 6.3 nN, respectively. The magnitude of the adhesion force (ion-dipole) interaction between the modified tip and