Science.gov

Sample records for alkanolamine solvent systems

  1. Heat of Dissolution Measurements for CO2 in Mixed Alkanolamine Solvents

    SciTech Connect

    Vinayak Kabadi

    2007-03-17

    The main objective of this research was to measure heat of dissolution of CO{sub 2} in carefully mixed alkanolamine solvent systems, and provide such directly measured data that might be used for efficient design of CO{sub 2} capture process, and for better understanding of the thermodynamics of CO{sub 2}-Alkanolamine systems. An experimental set-up has been designed using the Isothermal Micro Calorimeter for measuring the solubilities and enthalpies of CO{sub 2} in mixed solvents made of MEA, MDEA, PZ, KF and water. All the measurements were done at temperatures 15, 40, and 75 C by maintaining a constant pressure of 100 psig. A detailed study has been done on the variation of solubilities and enthalpies over a wide range of temperatures, pressures and concentrations, by extracting the information from the literature.

  2. Heat of Dissolution Measurements for CO2 in Mixed Alkanolamine Solvents

    SciTech Connect

    Vinayak N. Kabadi

    2006-09-30

    The main objective of this project is to measure heat of dissolution of CO{sub 2} in carefully selected mixed alkanolamine solvent systems, and provide such directly measured data that might be used for efficient design of CO{sub 2} capture processes, or for better understanding of thermodynamics of CO{sub 2}-alkanolamine systems. Carbon dioxide is one of the major greenhouse gases, and the need for stabilization of its composition in earth's atmosphere is vital for the future of mankind. Although technologies are available for capture and storage of CO{sub 2}, these technologies are far too expensive for economical commercialization. Reduction of cost would require research for refinement of the technology. For more economical CO{sub 2} capture and regeneration, there is a need for development of more efficient solvent systems. In this project we will extend the thermodynamic database by measuring heat of solution data of CO{sub 2} in mixed solvents made of MEA (monoethanolamine), MDEA (methyldiethanolamine), piperazine, and water. Mixed solvents of different compositions will be selected and in each case data will be measured at temperatures 40 and 80C and various partial pressures of CO{sub 2}. At the end of the project, observations, conclusions, and recommendations will be derived for the choice of mixed solvents for efficient CO{sub 2} capture with potential for commercialization.

  3. HEAT OF DISSOLUTION MEASUREMENTS FOR CO2 IN MIXED ALKANOLAMINE SOLVENTS

    SciTech Connect

    Vinayak N. Kabadi

    2005-05-23

    The main objective of this project is to measure heat of dissolution of CO{sub 2} in carefully selected mixed alkanolamine solvent systems, and provide such directly measured data that might be used for efficient design of CO{sub 2} capture processes, or for better understanding of thermodynamics of CO{sub 2}-alkanolamine systems. Carbon dioxide is one of the major greenhouse gases, and the need for stabilization of its composition in earth's atmosphere is vital for the future of mankind. Although technologies are available for capture and storage of CO{sub 2}, these technologies are far too expensive for economical commercialization. Reduction of cost would require research for refinement of the technology. For more economical CO{sub 2} capture and regeneration, there is a need for development of more efficient solvent systems. In this project we will extend the thermodynamic database by measuring heat of solution data of CO{sub 2} in mixed solvents made of MEA (monoethanolamine), MDEA (methyldiethanolamine), piperazine, and water. Mixed solvents of different compositions will be selected and in each case data will be measured at temperatures 40 and 80C and various partial pressures of CO{sub 2}. At the end of the project, observations, conclusions, and recommendations will be derived for the choice of mixed solvents for efficient CO{sub 2} capture with potential for commercialization.

  4. Heat of Dissolution Measurements for CO2 in Mixed Alkanolamine Solvents

    SciTech Connect

    Vinayak N. Kabadi

    2006-05-29

    The main objective of this project is to measure heat of dissolution of CO{sub 2} in carefully selected mixed alkanolamine solvent systems, and provide such directly measured data that might be used for efficient design of CO{sub 2} capture processes, or for better understanding of thermodynamics of CO{sub 2}-alkanolamine systems. Carbon dioxide is one of the major greenhouse gases, and the need for stabilization of its composition in earth's atmosphere is vital for the future of mankind. Although technologies are available for capture and storage of CO{sub 2}, these technologies are far too expensive for economical commercialization. Reduction of cost would require research for refinement of the technology. For more economical CO{sub 2} capture and regeneration, there is a need for development of more efficient solvent systems. In this project we will extend the thermodynamic database by measuring heat of solution data of CO{sub 2} in mixed solvents made of MEA (monoethanolamine), MDEA (methyldiethanolamine), piperazine, and water. Mixed solvents of different compositions will be selected and in each case data will be measured at temperatures 40 and 80C and various partial pressures of CO{sub 2}. At the end of the project, observations, conclusions, and recommendations will be derived for the choice of mixed solvents for efficient CO{sub 2} capture with potential for commercialization.

  5. Heat of Dissolution Measurements for CO2 in Mixed Alkanolamine Solvents

    SciTech Connect

    Vinayak N. Kabadi

    2005-12-01

    The main objective of this project is to measure heat of dissolution of CO{sub 2} in carefully selected mixed alkanolamine solvent systems, and provide such directly measured data that might be used for efficient design of CO{sub 2} capture processes, or for better understanding of thermodynamics of CO{sub 2}- alkanolamine systems. Carbon dioxide is one of the major greenhouse gases, and the need for stabilization of its composition in earth's atmosphere is vital for the future of mankind. Although technologies are available for capture and storage of CO{sub 2}, these technologies are far too expensive for economical commercialization. Reduction of cost would require research for refinement of the technology. For more economical CO{sub 2} capture and regeneration, there is a need for development of more efficient solvent systems. In this project we will extend the thermodynamic database by measuring heat of solution data of CO{sub 2} in mixed solvents made of MEA (monoethanolamine), MDEA (methyldiethanolamine), piperazine, and water. Mixed solvents of different compositions will be selected and in each case data will be measured at temperatures 40 and 80C and various partial pressures of CO{sub 2}. At the end of the project, observations, conclusions, and recommendations will be derived for the choice of mixed solvents for efficient CO{sub 2} capture with potential for commercialization.

  6. HEAT OF DISSOLUTION MEASUREMENTS FOR CO2 IN MIXED ALKANOLAMINE SOLVENTS

    SciTech Connect

    Vinayak N. Kabadi

    2004-11-15

    The main objective of this project is to measure heat of dissolution of CO{sub 2} in carefully selected mixed alkanolamine solvent systems, and provide such directly measured data that might be used for efficient design of CO{sub 2} capture processes, or for better understanding of thermodynamics of CO{sub 2}-alkanolamine systems. Carbon dioxide is one of the major greenhouse gases, and the need for stabilization of its composition in earth's atmosphere is vital for the future of mankind. Although technologies are available for capture and storage of CO{sub 2}, these technologies are far too expensive for economical commercialization. Reduction of cost would require research for refinement of the technology. For more economical CO{sub 2} capture and regeneration, there is a need for development of more efficient solvent systems. In this project we will extend the thermodynamic database by measuring heat of solution data of CO{sub 2} in mixed solvents made of MEA (monoethanolamine), MDEA (methyldiethanolamine), piperazine, and water. Mixed solvents of different compositions will be selected and in each case data will be measured at temperatures 40 and 80 C and various partial pressures of CO{sub 2}. At the end of the project, observations, conclusions, and recommendations will be derived for the choice of mixed solvents for efficient CO{sub 2} capture with potential for commercialization.

  7. Heat of Dissolution Measurements for CO2 in Mixed Alkanolamine Solvents

    SciTech Connect

    Vinayak N. Kabadi

    2007-03-31

    The main objective of this project is to measure heat of dissolution of CO{sub 2} in carefully selected mixed alkanolamine solvent systems, and provide such directly measured data that might be used for efficient design of CO{sub 2} capture processes, or for better understanding of thermodynamics of CO{sub 2}- alkanolamine systems. Carbon dioxide is one of the major greenhouse gases, and the need for stabilization of its composition in earth's atmosphere is vital for the future of mankind. Although technologies are available for capture and storage of CO{sub 2}, these technologies are far too expensive for economical commercialization. Reduction of cost would require research for refinement of the technology. For more economical CO{sub 2} capture and regeneration, there is a need for development of more efficient solvent systems. In this project we will extend the thermodynamic database by measuring heat of solution data of CO{sub 2} in mixed solvents made of MEA (monoethanolamine), MDEA (methyldiethanolamine), piperazine, and water. Mixed solvents of different compositions will be selected and in each case data will be measured at temperatures 40 and 80C and various partial pressures of CO{sub 2}. At the end of the project, observations, conclusions, and recommendations will be derived for the choice of mixed solvents for efficient CO{sub 2} capture with potential for commercialization.

  8. HEAT OF DISSOLUTION MEASUREMENTS FOR CO2 IN MIXED ALKANOLAMINE SOLVENTS

    SciTech Connect

    Vinayak N. Kabadi

    2004-04-27

    The main objective of this project is to measure heat of dissolution of CO{sub 2} in carefully selected mixed alkanolamine solvent systems, and provide such directly measured data that might be used for efficient design of CO{sub 2} capture processes, or for better understanding of thermodynamics of CO{sub 2}-alkanolamine systems. Carbon dioxide is one of the major greenhouse gases, and the need for stabilization of its composition in earth's atmosphere is vital for the future of mankind. Although technologies are available for capture and storage of CO{sub 2}, these technologies are far too expensive for economical commercialization. Reduction of cost would require research for refinement of the technology. For more economical CO{sub 2} capture and regeneration, there is a need for development of more efficient solvent systems. In this project we will extend the thermodynamic database by measuring heat of solution data of CO{sub 2} in mixed solvents made of MEA (monoethanolamine), MDEA (methyldiethanolamine), piperazine, and water. Mixed solvents of different compositions will be selected and in each case data will be measured at temperatures 40 and 80 C and various partial pressures of CO{sub 2}. At the end of the project, observations, conclusions, and recommendations will be derived for the choice of mixed solvents for efficient CO{sub 2} capture with potential for commercialization.

  9. A model of vapor-liquid equilibria for acid gas-alkanolamine-water systems

    SciTech Connect

    Austgen, D.M. Jr.

    1989-01-01

    A physico-chemical model was developed for representing liquid phase chemical equilibria and vapor-liquid (phase) equilibria of H{sub 2}SCO{sub 2}-alkanolamine-water systems. The equilibrium composition of the liquid phase is determined by minimization of the Gibbs free energy. Activity coefficients are represented with the Electrolyte-NRTL equation treating both long-range electrostatic interactions and short-range binary interactions between liquid phase species. Vapor phase fugacity coefficients are calculated using the Redlich-Kwong-Soave Equation of State. Adjustable parameters of the model, binary interaction parameters and carbamate stability constants, were fitted on published binary system alkanolamine-water and ternary system (H{sub 2}S-alkanolamine-water, CO{sub 2}-alkanolamine-water) VLE data. The Data Regression System of ASPEN PLUS, based upon the Maximum Likelihood Principle, was used to estimate adjustable parameters. Ternary system measurements used in parameter estimation ranged in temperature from 25 to 120{degree}C in alkanolamine concentration from 1 to 5 M, in acid gas loading from 0 to 1.5 moles per mole alkanolamine, and in acid gas partial pressure from 0.1 to 1,000 kPa. Maximum likelihood estimates of ternary system H{sub 2} or CO{sub 2} equilibrium partial pressures and liquid phase concentrations were found to be in good agreement with measurements for aqueous solutions of monoethanolamine (MEA), diethanolamine (DEA), diglycolamine (DGA), and methyldiethanolamine (MDEA) indicating that the model successfully represents ternary system data. The model was extended to represent CO{sub 2} solubility in aqueous mixtures of MDEA with MEA or DEA. The solubility was measured at 40 and 80{degree}C over a wide range of CO{sub 2} partial pressures. These measurements were used to estimate additional binary parameters of the mixed solvent systems.

  10. A Comparative Study of the CO2 Absorption in Some Solvent-Free Alkanolamines and in Aqueous Monoethanolamine (MEA).

    PubMed

    Barzagli, Francesco; Mani, Fabrizio; Peruzzini, Maurizio

    2016-07-01

    The neat secondary amines 2-(methylamino)ethanol, 2-(ethylamino)ethanol, 2-(isopropylamino)ethanol, 2-(benzylamino)ethanol and 2-(butylamino)ethanol react with CO2 at 50-60 °C and room pressure yielding liquid carbonated species without their dilution with any additional solvent. These single-component absorbents have the theoretical CO2 capture capacity of 0.50 (mol CO2/mol amine) due to the formation of the corresponding amine carbamates and protonated amines that were identified by the (13)C NMR analysis. These single-component absorbents were used for CO2 capture (15% and 40% v/v in air) in two series of different procedures: (1) batch experiments aimed at investigating the efficiency and the rate of CO2 capture; (2) continuous cycles of absorption-desorption carried out in packed columns with absorption temperatures brought at 50-60 °C and desorption temperatures at 100-120 °C at room pressure. A number of different amines and experimental setups gave CO2 capture efficiency greater than 90%. For comparison purposes, 30 wt % aqueous MEA was used for CO2 capture under the same operational conditions described for the solvent-free amines. The potential advantages of solvent-free alkanolamines over aqueous MEA in the CO2 capture process were discussed. PMID:27294832

  11. Excess molar enthalpies of (water + alkanolamine) systems and some thermodynamic calculations

    SciTech Connect

    Maham, Y.; Mather, A.E.; Hepler, L.G.

    1997-09-01

    Several (water + alkanolamine) systems are used for removal of acidic gases such as carbon dioxide and hydrogen sulfide from gas streams in the natural gas and petroleum industries and are of increasing importance in treating streams in the chemical production industries. The authors have made calorimetric measurements of enthalpies of mixing of (water + monoethanolamine), (water + diethanolamine), and (water + triethanolamine) at T = 298.15 K and of (water + methyldiethanolamine) at T = 298.15 and 313.15 K. Results of these measurements have been used in some thermodynamic calculations to illustrate general principals that are applicable to many systems of mixed liquids.

  12. Collection of VLE data for acid gas-alkanolamine systems using Fourier transform infrared spectroscopy

    SciTech Connect

    Bullin, J.A.; Frazier, R.E.

    1991-09-01

    The industrial standard process for the purification of natural gas is to remove acid gases, mainly hydrogen sulfide and carbon dioxide, by the absorption and reaction of these gases with alkanolamines. Inadequate data for vapor -- liquid equilibrium (VLE) hinder the industry from converting operations to more energy efficient amine mixtures and conserving energy. Some energy reductions have been realized in the past decade by applying such amine systems as hindered'' amines, methyldiethanolamine (MDEA), and MDEA based amine mixtures. However, the lack of reliable and accurate fundamental VLE data impedes the commercial application of these more efficient alkanolamine systems. The first project objective is to improve the accuracy of vapor -- liquid equilibrium measurements at low hydrogen sulfide concentrations. The second project objective is to measure the VLE for amine mixtures. By improving the accuracy of the VLE measurements on MDEA and mixtures with other amines, energy saving can be quickly and confidently implemented in the many existing absorption units already in use. If about 25% of the existing 95.3 billion SCFD gas purification capacity is converted to these new amine systems, the energy savings are estimated to be about 3 {times} 10{sup 14} BTU/yr.

  13. Diffusion coefficients of several aqueous alkanolamine solutions

    SciTech Connect

    Snijder, E.D.; Riele, M.J.M. te; Versteeg, G.F.; Swaaij, W.P.M. van . Dept. of Chemical Engineering)

    1993-07-01

    In absorption processes of acid gases (H[sub 2]S, CO[sub 2], COS) in alkanolamine solutions, diffusion coefficients are used for the calculation of the mass transfer rate. The Taylor dispersion technique was applied for the determination of diffusion coefficients of various systems. Experiments with the system KCl in water showed that the experimental setup provides accurate data. For the alkanolamines monoethanolamine (MEA), diethanolamine (DEA), methyldiethanolamine (MDEA), and di-2-propanolamine (DIPA), correlations for the diffusion coefficient as a function of temperature at different concentrations are given. A single relation for every amine has been derived which correlates the diffusion coefficients as a function of temperature and concentration. The temperature was varied between 298 and 348 K, and the concentration between 0 and 4000-5000 mol/m[sup 3]. Furthermore, a modified Stokes-Einstein relation is presented for the prediction of the diffusion coefficients in the alkanolamines in relation to the viscosity of the solvent and the diffusion coefficient at infinite dilution. The diffusion coefficients at low concentrations are compared with some available relations for the estimation of diffusion coefficients at infinite dilution, and it appears that the agreement is fairly good.

  14. Performance evaluation of carbon dioxide-alkanolamine- water system by equation of state/excess Gibbs energy models

    NASA Astrophysics Data System (ADS)

    Suleman, H.; Maulud, A. S.; Man, Z.

    2016-06-01

    Numerous thermodynamic techniques have been applied to correlate carbon dioxide- alkanolamine-water systems, with varying accuracy and complexity. With advent of high pressure carbon dioxide absorption in industry, the development of high pressure thermodynamic models have became an exigency. Equation of state/excess Gibbs energy models promises a substantial improvement in this field. Many researchers have shown application of these models to high pressure vapour liquid equilibria of said system with good correlation. However, no study shows the range of application of these models in presence of other competitive techniques. Therefore, this study quantitatively describes the range of application of equation of state/excess Gibbs energy models to carbon dioxide-alkanolamine systems. The model uses Linear Combination of Vidal and Michelsen mixing rule for correlation of carbon dioxide absorption in single aqueous monoethanolamine, diethanolamine and methyldiethanolamine mixtures. The results show that correlation of equation of state/excess Gibbs energy models show a transient change at carbon dioxide loadings of 0.8. Therefore, these models are applicable to the above mentioned system for carbon dioxide loadings beyond 0.8 mol/mol and higher. The observations are similar in behaviour for all tested alkanolamines and are therefore generalized for the system.

  15. Why metals volubility may not be a good indicator of corrosion in alkanolamine systems

    SciTech Connect

    Rooney, P.C.; DuPart, M.S.

    1999-11-01

    Although it is generally believed that Fe, Cr and Ni content in alkanolamine gas treating solutions reflects the corrosivity of the solution, the authors have found that this is not necessarily the case. Comparison of metals volubility by inductively coupled plasma (ICP) with carbon steel and stainless steel weight loss coupons of various alkanolamines heated in an autoclave showed that low metals volubility does not necessarily mean low coupon corrosivity. High metals volubility also did not necessarily mean high coupon corrosivity. One plant having very high metals volubility was found to have very low corrosion upon a thorough plant inspection. Another plant had severe localized corrosion that could not have been predicted based upon the low (200ppm) Fe in the alkanolamine compared to the total surface area of carbon steel in this plant.

  16. Ultrasound-assisted low-density solvent dispersive liquid-liquid extraction for the determination of alkanolamines and alkylamines in cosmetics with ion chromatography.

    PubMed

    Zhong, Zhixiong; Li, Gongke; Zhong, Xiuhua; Luo, Zhibin; Zhu, Binghui

    2013-10-15

    A new one-step sample preparation technique termed ultrasound-assisted low-density solvent dispersive liquid-liquid extraction (UA-LDS-DLLE) coupled with ion chromatography (IC) was developed for the determination of three alkanolamines and two alkylamines in complex samples. Sample matrices were rapidly dissolved and dispersed to form cloudy solutions by using two solvents, where target analytes were transferred into acid solutions, while liposoluble substances were dissolved in cyclohexane. The obtained extracts could be used directly for injection analysis without any additional purification because the potential matrix interferences had been effectively eliminated in extraction process. The extraction efficiency could be markedly enhanced and the extraction could be quickly accomplished within 13 min under the synergistic effects of ultrasound radiation, vibration and heating. Various parameters influencing extraction efficiency were evaluated using orthogonal array experimental design. The extraction performance of the approach was demonstrated for the determination of target analytes in 15 commercial cosmetics covering very different matrices. Linearity ranges of 0.3-50 mg L(-1) and limits of detection varying from 0.072 to 0.12 mg L(-1) were achieved. The recoveries ranged from 86.9-108.5% with the relative standard deviations (RSDs) of 1.2-6.2%. The method was proved to be a simple and effective extraction technique that provided an attractive alternative to the analysis of trace amounts of target analytes in large numbers of cosmetics. PMID:24054627

  17. Collection of VLE data for acid gas---alkanolamine systems using fourier transform infrared spectroscopy. [Vapor-liquid equilibrium

    SciTech Connect

    Bullin, J.A.; Frazier, R.E.

    1992-01-01

    The industrial standard process for the purification of natural gas is to remove acid gases, mainly hydrogen sulfide and carbon dioxide, by the absorption and reaction of these gases with alkanolamines. Inadequate data for vapor--liquid equilibrium (VLE) hinder the industry from converting operations to more energy efficient amine mixtures and conserving energy. Some energy reductions have been realized in the past decade by applying such amine systems as hindered'' amines, methyldiethanolamine (MDEA), and MDEA based amine mixtures. However, the lack of reliable and accurate fundamental VLE data impedes the commercial application of these more efficient alkanolamine systems. The first project objective is to improve the accuracy of vapor--liquid equilibrium measurements at low hydrogen sulfide concentrations. The second project objective is to measure the VLE for amine mixtures. By improving the accuracy of the VLE measurements on MDEA and mixtures with other amines, energy saving can be quickly and confidently implemented in the many existing absorption units already in use. If about 25% of the existing 95.3 billion SCFD gas purification capacity is converted to these new amine systems, the energy savings are estimated to be about 3 [times] 10[sup 14] BTU/yr.

  18. Collection of VLE data for acid gas-alkanolamine systems using Fourier transform infrared spectroscopy. Phase 1, September 29, 1990--September 30, 1991

    SciTech Connect

    Bullin, J.A.; Frazier, R.E.

    1991-09-01

    The industrial standard process for the purification of natural gas is to remove acid gases, mainly hydrogen sulfide and carbon dioxide, by the absorption and reaction of these gases with alkanolamines. Inadequate data for vapor -- liquid equilibrium (VLE) hinder the industry from converting operations to more energy efficient amine mixtures and conserving energy. Some energy reductions have been realized in the past decade by applying such amine systems as ``hindered`` amines, methyldiethanolamine (MDEA), and MDEA based amine mixtures. However, the lack of reliable and accurate fundamental VLE data impedes the commercial application of these more efficient alkanolamine systems. The first project objective is to improve the accuracy of vapor -- liquid equilibrium measurements at low hydrogen sulfide concentrations. The second project objective is to measure the VLE for amine mixtures. By improving the accuracy of the VLE measurements on MDEA and mixtures with other amines, energy saving can be quickly and confidently implemented in the many existing absorption units already in use. If about 25% of the existing 95.3 billion SCFD gas purification capacity is converted to these new amine systems, the energy savings are estimated to be about 3 {times} 10{sup 14} BTU/yr.

  19. Collection of VLE data for acid gas---alkanolamine systems using fourier transform infrared spectroscopy. Phase 2, October 1, 1991--September 30, 1992

    SciTech Connect

    Bullin, J.A.; Frazier, R.E.

    1992-12-01

    The industrial standard process for the purification of natural gas is to remove acid gases, mainly hydrogen sulfide and carbon dioxide, by the absorption and reaction of these gases with alkanolamines. Inadequate data for vapor--liquid equilibrium (VLE) hinder the industry from converting operations to more energy efficient amine mixtures and conserving energy. Some energy reductions have been realized in the past decade by applying such amine systems as ``hindered`` amines, methyldiethanolamine (MDEA), and MDEA based amine mixtures. However, the lack of reliable and accurate fundamental VLE data impedes the commercial application of these more efficient alkanolamine systems. The first project objective is to improve the accuracy of vapor--liquid equilibrium measurements at low hydrogen sulfide concentrations. The second project objective is to measure the VLE for amine mixtures. By improving the accuracy of the VLE measurements on MDEA and mixtures with other amines, energy saving can be quickly and confidently implemented in the many existing absorption units already in use. If about 25% of the existing 95.3 billion SCFD gas purification capacity is converted to these new amine systems, the energy savings are estimated to be about 3 {times} 10{sup 14} BTU/yr.

  20. Collection of VLE data for acid gas-alkanolamine systems using Fourier transform infrared spectroscopy. Technical report, October 1, 1994--July 31, 1995

    SciTech Connect

    Bullin, J.A.; Rogers, W.J.

    1995-08-01

    The industrial standard process for the purification of natural gas is to remove acid gases, mainly hydrogen sulfide and carbon dioxide, by the absorption and reaction of these gases with alkanolamines. The natural gas industry requires vapor-liquid equilibrium (VLE) data to develop more energy efficient amine mixtures. Some energy reductions have been realized in the past decade by applying such amine systems as hindered amines, methyldiethanolamine (MDEA), and MDEA based amine mixtures. However, the lack of reliable and accurate VLE data impedes the commercial application of these more efficient alkanolamine systems. The first objective of this project is to improve the accuracy of vapor-liquid equilibrium measurements at low hydrogen sulfide concentrations. The second objective is to make VLE measurements for amine mixtures. By improving the accuracy of the VLE data on MDEA and other amines, energy savings can be implemented in the many existing absorption units already in use. If about 25% of the existing 95.3 billion SCFD gas purification capacity is converted to these new amine systems, the energy saved is estimated to be 3 {times} 10{sup 14} BTU/yr. 14 refs., 31 figs., 12 tabs.

  1. Environmental assessment of the alkanolamines.

    PubMed

    Davis, J W; Carpenter, C L

    1997-01-01

    This review provides a summary of current information available on the environmental fate and aquatic toxicology of the alkanolamines. Because these materials are widely used, there is a need to understand their fate and effects in the environment. This assessment was confined to information regarding selected physical properties of the alkanolamines as well as their potential for degradation in the atmosphere, soil, surface water, and groundwater. In addition, their relevant aquatic toxicological information and bioconcentration potential were evaluated. In general, the alkanolamines have high water solubilities and low to moderate vapor pressures. Some are solids whereas others are liquids at room temperature. Aqueous solutions of the alkanolamines are basic, with the pKas decreasing with increased alkyl substitution. Predictions of the environmental distribution of these compounds, based on a unit world model of Mackay and Paterson, suggested that alkanolamines would partition primarily into the aqueous compartment at equilibrium, with the remainder distributed to the atmosphere. Only a very small fraction of these materials is expected to sorb to soil or sediments. However, adsorption mechanisms other than partitioning into the soil organic layer were not considered in this model. Since polar compounds may sorb to soil by alternate mechanisms, this model may underestimate the true adsorption potential and subsequent environmental distribution of the alkanolamines. Future work with these compounds should focus on other types of adsorption mechanisms that could impact the environmental distribution of the alkanolamines. Although only small amount of the alkanolamines are expected to partition to the atmosphere, they are expected to be removed by reactions with photochemically generated hydroxyl radicals. They may also be removed from the atmosphere by precipitation, due to their high water solubility. Because of the relatively low levels expected to be present in

  2. Collection of VLE data for acid gas - alkanolamine systems using Fourier transform infrared spectroscopy. Final report, September 29, 1990--September 30, 1996

    SciTech Connect

    Bullin, J.A.; Rogers, W.J.

    1996-11-01

    This report describes research from September 29, 1990 through September 30, 1996, involving the development a novel Fourier transform infrared (FTIR) spectroscopic apparatus and method for measuring vapor - liquid equilibrium (VLE) systems of carbon dioxide and hydrogen sulfide with aqueous alkanolamine solutions. The original apparatus was developed and modified as it was used to collect VLE data on acid gas systems. Vapor and liquid calibrations were performed for spectral measurements of hydrogen sulfide and carbon dioxide in the vapor and in solution with aqueous diethanolamine (DEA) and methyldiethanolamine (MDEA). VLE measurements were made of systems of hydrogen sulfide and carbon dioxide in 20 wt % DEA at 50{degrees}C and 40{degrees}C. VLE measurements were made of systems of hydrogen sulfide and carbon dioxide in 50 wt% and 23 wt% MDEA at 40{degrees}C and in 23 wt% MDEA at 50{degrees}C. VLE measurements were made of systems of hydrogen sulfide and carbon dioxide in 35 wt% MDEA + 5 wt% DEA and in 35 wt% MDEA + 10 wt% DEA at 40{degrees}C and 50{degrees}C. Measurements were made of residual amounts of carbon dioxide in each VLE system. The new FTIR spectrometer is now a consistently working and performing apparatus.

  3. Concentration of carbon dioxide by electrodialysis with the use of the alkanolamines as sorbents

    SciTech Connect

    Zabolotskii, V.I., Gnusin, N.P.; Pis'menskii, V.F.; Omel'chenko, Y.N.; Sthrelets, Y.U.; Kovalev, A.S.

    1982-11-10

    The concentration of carbon dioxide by electrodialysis with the use of alkanolamines was studied. Results show the dependence of the solubility of CO/sub 2/ in alkanolamines, and the conductivity of aqueous solutions of monoethanolamine (MEA), diethanolamine (DEA), triethanolamine (TEA), and polyethylene polyamine (PEPA), on the composition of the aqueous-organic mixtures. For comparison, corresponding data for MEA, DEA, TEA, and PEPA not containing CO/sub 2/ is also given. In subsequent experiments on regeneration of the absorbents the compositions of the aqueous-organic solvents were chosen to correspond to the region of maximum conductivities of solutions saturated with CO/sub 2/; the concentrations (%) were: MEA and DEA, 15; TEA, 25; PEPA, 10. A schematic diagram of the apparatus used for investigating electrodialytic regeneration of alkanolamines is shown.

  4. Continuous countercurrent membrane column for the separation of solute/solvent and solvent/solvent systems

    DOEpatents

    Nerad, Bruce A.; Krantz, William B.

    1988-01-01

    A reverse osmosis membrane process or hybrid membrane - complementary separator process for producing enriched product or waste streams from concentrated and dilute feed streams for both solvent/solvent and solute/solvent systems is described.

  5. 40 CFR 721.10384 - Substituted alkanolamine phenol (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Substituted alkanolamine phenol... Specific Chemical Substances § 721.10384 Substituted alkanolamine phenol (generic). (a) Chemical substance... substituted alkanolamine phenol (PMN P-10-332) is subject to reporting under this section for the...

  6. 40 CFR 721.10384 - Substituted alkanolamine phenol (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Substituted alkanolamine phenol... Specific Chemical Substances § 721.10384 Substituted alkanolamine phenol (generic). (a) Chemical substance... substituted alkanolamine phenol (PMN P-10-332) is subject to reporting under this section for the...

  7. 40 CFR 721.10384 - Substituted alkanolamine phenol (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Substituted alkanolamine phenol... Specific Chemical Substances § 721.10384 Substituted alkanolamine phenol (generic). (a) Chemical substance... substituted alkanolamine phenol (PMN P-10-332) is subject to reporting under this section for the...

  8. Heat capacity of alkanolamine aqueous solutions

    SciTech Connect

    Chiu, L.F.; Li, M.H.

    1999-12-01

    Heat capacities of monoethanoloamine, diglycolamine, diethanolamine, di-w propanolamine, triethanolamine, N-methyldiethanolamine, 2-amino-2-methyl-l-propanol, and 2-piperidineethanol aqueous solutions were measured from 30 to 80 C with a differential scanning calorimeter (DSC). The mole fractions of alkanolamines studied are 0.2, 0.4, 0.6, and 0.8. Heat capacities of N-methyldiethanolamine aqueous solutions have been measured to verify the validity of C{sub p} measurements for alkanolamine aqueous solutions. The estimated uncertainty of the measured heat capacities is {plus{underscore}minus}3%, including the effect of up to 5% impurities in a substance. An excess molar heat capacity expression using the Redlich-Kister equation for the composition dependence is used to represent the measured C{sub p} of alkanolamine aqueous solutions. For a total of 374 data points, the calculation results for eight alkanolamine solutions give the overall average absolute deviations of 11.9% and 0.29% for the excess molar heat capacity and the heat capacity, respectively. The heat capacities presented in this study are, in general, of sufficient accuracy for most engineering-design calculations. Solutions of alkanolamines are industrially important mixtures used in the natural gas industry, oil refineries, petroleum chemical plants, and synthetic ammonia plants for the removal of acidic components such as CO{sub 2} and H{sub 2}S from gas streams.

  9. Advanced integrated solvent extraction systems

    SciTech Connect

    Horwitz, E.P.; Dietz, M.L.; Leonard, R.A.

    1997-10-01

    Advanced integrated solvent extraction systems are a series of novel solvent extraction (SX) processes that will remove and recover all of the major radioisotopes from acidic-dissolved sludge or other acidic high-level wastes. The major focus of this effort during the last 2 years has been the development of a combined cesium-strontium extraction/recovery process, the Combined CSEX-SREX Process. The Combined CSEX-SREX Process relies on a mixture of a strontium-selective macrocyclic polyether and a novel cesium-selective extractant based on dibenzo 18-crown-6. The process offers several potential advantages over possible alternatives in a chemical processing scheme for high-level waste treatment. First, if the process is applied as the first step in chemical pretreatment, the radiation level for all subsequent processing steps (e.g., transuranic extraction/recovery, or TRUEX) will be significantly reduced. Thus, less costly shielding would be required. The second advantage of the Combined CSEX-SREX Process is that the recovered Cs-Sr fraction is non-transuranic, and therefore will decay to low-level waste after only a few hundred years. Finally, combining individual processes into a single process will reduce the amount of equipment required to pretreat the waste and therefore reduce the size and cost of the waste processing facility. In an ongoing collaboration with Lockheed Martin Idaho Technology Company (LMITCO), the authors have successfully tested various segments of the Advanced Integrated Solvent Extraction Systems. Eichrom Industries, Inc. (Darien, IL) synthesizes and markets the Sr extractant and can supply the Cs extractant on a limited basis. Plans are under way to perform a test of the Combined CSEX-SREX Process with real waste at LMITCO in the near future.

  10. Solvent recovery system provides timely compliance solution

    SciTech Connect

    1996-11-01

    Hoechst Celanese Corp. (Coventry, Rhode Island) faced the challenge of meeting an Environmental Protection Agency (EPA) deadline for solvent recovery within one year. The company also had to ensure that a new solvent recovery system would satisfy Rhode Island state requirements. An initial search for the required technology was fruitless. Finally, MG Industries (Saint Charles, Missouri), an industrial gas supplier, was chosen for the job. Using CRYOSOLV, as the waste stream cools in the cryogenic condenser (heat exchanger), the solvents condense at temperatures below the dewpoint. The recovered solvent can be recycled into the process, while clean gas is vented to the atmosphere.

  11. Solvent cleaning system and method for removing contaminants from solvent used in resin recycling

    DOEpatents

    Bohnert, George W.; Hand, Thomas E.; DeLaurentiis, Gary M.

    2009-01-06

    A two step solvent and carbon dioxide based system that produces essentially contaminant-free synthetic resin material and which further includes a solvent cleaning system for periodically removing the contaminants from the solvent so that the solvent can be reused and the contaminants can be collected and safely discarded in an environmentally safe manner.

  12. Hazardous Solvent Substitution Data System tutorial

    SciTech Connect

    Twitchell, K.E.; Skinner, N.L.

    1993-07-01

    This manual is the tutorial for the Hazardous Solvent Substitution Data System (HSSDS), an online, comprehensive system of information on alternatives to hazardous solvents and related subjects. The HSSDS data base contains product information, material safety data sheets, toxicity reports, usage reports, biodegradable data, product chemical element lists, and background information on solvents. HSSDS use TOPIC{reg_sign} to search for information based on a query defined by the user. TOPIC provides a full text retrieval of unstructured source documents. In this tutorial, a series of lessons is provided that guides the user through basic steps common to most queries performed with HSSDS. Instructions are provided for both window-based and character-based applications.

  13. Physical solvent for gas sweetening

    SciTech Connect

    Ferrin, C. R.; Manning, W. P.

    1984-11-27

    This invention relates to a novel solvent, N-2-methoxyethyl-2-pyrrolidone, that can be used in two ways. First, in the pure or undiluted form, it absorbs hydrogen sulfide and other sulfurous gases selectively and simultaneously dries the gas. Second, when mixed with an alkanolamine and water, it is a superior absorbent of mercaptans, sulfides, and disulfides, and removes acid gases.

  14. Phase separation phenomena of polysulfone/solvent/organic nonsolvent and polyethersulfone/solvent/organic nonsolvent systems

    SciTech Connect

    Wang, Dongliang; Li, K.; Sourirajan, S.; Teo, W.K. . Dept. of Chemical Engineering)

    1993-12-10

    The precipitation values (PVs) of several organic nonsolvents in polysulfone (PSf)/solvent and polyethersulfone (PESf)/solvent systems were measured in temperatures ranging from 10 to 80 C by the direct titration method and compared with those of water in the same systems. The solvents used were N-methyl-2-pyrrolidone (NMP) and N,N-dimethylacetamide (DMAC); the organic nonsolvents employed were methanol, ethanol, 1-propanol, 1-butanol, 1-pentanol, ethylene glycol, and diethylene glycol as well as acetic acid and propionic acid. The compositions of nonsolvent, polymer, and solvent at the precipitation points for different polymer concentrations up to 10 wt% were also determined at 30 C with respect to both the polymers and six nonsolvents presented. These results were used to obtain the polymer precipitation curves in the polymer-solvent-nonsolvent triangular phase diagrams and to determine the theta composition of solvent-nonsolvent triangular phase diagrams and to determine the theta composition of solvent-nonsolvent for a polymer. The effect of temperature on the precipitation value was observed to be dramatically different for different polymer/solvent/nonsolvent systems. These results were explained on the basis of polar and nonpolar interactions of the polymer, solvent, and nonsolvent system.

  15. Rigorous modeling of the acid gas heat of absorption in alkanolamine solutions

    SciTech Connect

    Emilie Blanchon le Bouhelec; Pascal Mougin; Alain Barreau; Roland Solimando

    2007-08-15

    In this work, we are interested in the estimation of CO{sub 2} and H{sub 2}S heats of absorption in aqueous solutions of alkanolamine: monoethanolamine (MEA), diethanolamine (DEA), and methyldiethanolamine (MDEA). Two methods can be used to calculate the heat release during the absorption phenomenon. The easier which consists of applying the integration of the Gibbs-Helmholtz expression remains inaccurate. The second one, more rigorous, evaluates the heat transfer through an internal energy balance for an open system. The balance expression contains partial molar enthalpies of species in the liquid phase which are calculated from the electrolyte nonrandom-two-liquid (NRTL) excess Gibbs energy model. The calculations carried out in this method can be considered as predictive regarding the NRTL model because its interaction parameters were previously and solely fitted on vapor-liquid equilibrium (VLE) data and not on experimental heat of absorption data. The comparison between both methods and experimental data for the three alkanolamines shows the contribution of this rigorous calculation to better estimate both properties (i.e., solubility and heat) and its usefulness to improve processes. Heats of absorption calculated with the second method can be used in addition to VLE data to fit NRTL parameters. This procedure leads to less-correlated parameters and allows extrapolating the model with more confidence. 63 refs., 10 figs., 6 tabs.

  16. Heat capacity of alkanolamines by differential scanning calorimetry

    SciTech Connect

    Chiu, L.F.; Liu, H.F.; Li, M.H.

    1999-05-01

    Measurements of the heat capacities of the alkanolamines monoethanolamine, diethanolamine, diglycolamine, di-2-propanolamine, triethanolamine, N-methyldiethanolamine, 2-amino-2-methyl-l-propanol, and 2-piperidineethanol were performed from 30 to 80 C with a differential scanning calorimeter (DSC). The heat capacity of liquid water has been measured to verify the validity of the C{sub p} measurements. The measured C{sub p} of each alkanolamine has been expressed as a function of temperature. The estimated uncertainty of the measured heat capacities including the effect of impurities in a substance with a purity of 95% is {+-}3%. The measured heat capacities are, in general, of sufficient accuracy for most engineering-design calculations.

  17. Qualitative and quantitative evaluation of solvent systems for countercurrent separation.

    PubMed

    Friesen, J Brent; Ahmed, Sana; Pauli, Guido F

    2015-01-16

    Rational solvent system selection for countercurrent chromatography and centrifugal partition chromatography technology (collectively known as countercurrent separation) studies continues to be a scientific challenge as the fundamental questions of comparing polarity range and selectivity within a solvent system family and between putative orthogonal solvent systems remain unanswered. The current emphasis on metabolomic investigations and analysis of complex mixtures necessitates the use of successive orthogonal countercurrent separation (CS) steps as part of complex fractionation protocols. Addressing the broad range of metabolite polarities demands development of new CS solvent systems with appropriate composition, polarity (π), selectivity (σ), and suitability. In this study, a mixture of twenty commercially available natural products, called the GUESSmix, was utilized to evaluate both solvent system polarity and selectively characteristics. Comparisons of GUESSmix analyte partition coefficient (K) values give rise to a measure of solvent system polarity range called the GUESSmix polarity index (GUPI). Solvatochromic dye and electrical permittivity measurements were also evaluated in quantitatively assessing solvent system polarity. The relative selectivity of solvent systems were evaluated with the GUESSmix by calculating the pairwise resolution (αip), the number of analytes found in the sweet spot (Nsw), and the pairwise resolution of those sweet spot analytes (αsw). The combination of these parameters allowed for both intra- and inter-family comparison of solvent system selectivity. Finally, 2-dimensional reciprocal shifted symmetry plots (ReSS(2)) were created to visually compare both the polarities and selectivities of solvent system pairs. This study helps to pave the way to the development of new solvent systems that are amenable to successive orthogonal CS protocols employed in metabolomic studies. PMID:25542704

  18. Electrospinning of Grooved Polystyrene Fibers: Effect of Solvent Systems

    NASA Astrophysics Data System (ADS)

    Liu, Wanjun; Huang, Chen; Jin, Xiangyu

    2015-05-01

    Secondary surface texture is of great significance to morphological variety and further expands the application areas of electrospun nanofibers. This paper presents the possibility of directly electrospinning grooved polystyrene (PS) fibers using both single and binary solvent systems. Solvents were classified as low boiling point solvent (LBPS): dichloromethane (DCM), acetone (ACE), and tetrahydrofuran (THF); high boiling point solvent (HBPS): N, N-dimethylformamide (DMF) and cyclohexanone (CYCo); and non-solvent (NS): 1-butanol (BuOH). By the systematic selection and combination of these solvents at given parameters, we found that single solvent systems produced non-grooved fibers. LBPS/DMF solvent systems resulted in fibers with different grooved textures, while LBPS/CYCo led to fibers with double grooved texture. Grooved fibers can also be fabricated from LBPS/LBPS, NS/LBPS, and NS/HBPS systems under specific conditions. The results indicated that the difference of evaporation rate (DER) between the two solvents played a key role in the formation of grooved texture. The formation of this unique texture should be attributed to three separate mechanisms, namely void-based elongation, wrinkle-based elongation, and collapsed jet-based elongation. Our findings can serve as guidelines for the preparation of ultrafine fibers with grooved secondary texture.

  19. Electrospinning of Grooved Polystyrene Fibers: Effect of Solvent Systems.

    PubMed

    Liu, Wanjun; Huang, Chen; Jin, Xiangyu

    2015-12-01

    Secondary surface texture is of great significance to morphological variety and further expands the application areas of electrospun nanofibers. This paper presents the possibility of directly electrospinning grooved polystyrene (PS) fibers using both single and binary solvent systems. Solvents were classified as low boiling point solvent (LBPS): dichloromethane (DCM), acetone (ACE), and tetrahydrofuran (THF); high boiling point solvent (HBPS): N,N-dimethylformamide (DMF) and cyclohexanone (CYCo); and non-solvent (NS): 1-butanol (BuOH). By the systematic selection and combination of these solvents at given parameters, we found that single solvent systems produced non-grooved fibers. LBPS/DMF solvent systems resulted in fibers with different grooved textures, while LBPS/CYCo led to fibers with double grooved texture. Grooved fibers can also be fabricated from LBPS/LBPS, NS/LBPS, and NS/HBPS systems under specific conditions. The results indicated that the difference of evaporation rate (DER) between the two solvents played a key role in the formation of grooved texture. The formation of this unique texture should be attributed to three separate mechanisms, namely void-based elongation, wrinkle-based elongation, and collapsed jet-based elongation. Our findings can serve as guidelines for the preparation of ultrafine fibers with grooved secondary texture. PMID:26055481

  20. New immobilized cell system with protection against toxic solvents

    SciTech Connect

    Tanaka, H.; Harada, S.; Kurosawa, H.; Yajima, M.

    1987-01-01

    A new immobilized cell system providing protection against toxic solvents was investigated so that normal fermentations could be carried out in a medium containing toxic solvents. The system consists of immobilized growing cells in Ca-alginate gel beads to which vegetable oils, which are inexpensive absorbents of solvents, had been added. The ethanol fermentation of Saccharomyces cerevisiae ATCC 26603 was used as a model fermentation to study the protection afforded by the system against solvent toxicities. The fermentation was inhibited by solvents such as 2-octanol, benzene, toluene, and phenol. Ethanol production of one batch was not finished even after 35 h using immobilized growing yeast cells in conventional Ca-alginate gel beads in an ethanol production medium (5% glucose) containing 0.1% 2-octanol, which is used as a solvent for liquid-liquid extraction and is one of the most toxic solvents in our experiments. With the new immobilized growing cell system using vegetable oils, however, four repeated batch fermentations were completed in 35 h. Castor oil provided even more protection than soy bean, olive, and tung oils, and it was possible to complete six repeated batches in 35 h. The immobilized cell system with vegetable oils also provided protection against other toxic solvents such as benzene and toluene. A possible mechanism for the protective function of the new immobilized cell system is discussed.

  1. Evaluation of alkanolamine solutions for carbon dioxide removal in cross-flow rotating packed beds.

    PubMed

    Lin, Chia-Chang; Lin, Yu-Hong; Tan, Chung-Sung

    2010-03-15

    The removal of CO(2) from a 10 vol% CO(2) gas by chemical absorption with 30 wt% alkanolamine solutions containing monoethanolamine (MEA), piperazine (PZ), and 2-amino-2-methyl-1-propanol (AMP) in the cross-flow rotating packed bed (RPB) was investigated. The CO(2) removal efficiency increased with rotor speed, liquid flow rate and inlet liquid temperature. However, the CO(2) removal efficiency decreased with gas flow rate. Also, the CO(2) removal efficiency was independent of inlet gas temperature. The 30 wt% alkanolamine solutions containing PZ with MEA were the appropriate absorbents compared with the single alkanolamine (MEA, AMP) and the mixed alkanolamine solutions containing AMP with MEA. A higher portion of PZ in alkanolamine solutions was more favorable to CO(2) removal. Owing to less contact time in the cross-flow RPB, alkanolamines having high reaction rates with CO(2) are suggested to be used. For the mixed alkanolamine solution containing 12 wt% PZ and 18 wt% MEA, the highest gas flow rate allowed to achieve the CO(2) removal efficiency more than 90% at a liquid flow rate of 0.54 L/min was of 29 L/min. The corresponding height of a transfer unit (HTU) was found to be less than 5.0 cm, lower than that in the conventional packed bed. PMID:19910115

  2. Crystal growth in fused solvent systems

    NASA Technical Reports Server (NTRS)

    Ulrich, D. R.; Noone, M. J.; Spear, K. E.; White, W. B.; Henry, E. C.

    1973-01-01

    Research is reported on the growth of electronic ceramic single crystals from solution for the future growth of crystals in a microgravity environment. Work included growth from fused or glass solvents and aqueous solutions. Topics discussed include: crystal identification and selection; aqueous solution growth of triglycine sulphate (TGS); and characterization of TGS.

  3. Computational polymer physics: Hard-sphere chain in solvent systems

    NASA Astrophysics Data System (ADS)

    Gautam, Avinash; Gavazzi, Daniel; Taylor, Mark

    2009-10-01

    In this work we present results for chain conformation in two simple chain-in-solvent systems constructed from hard-sphere monomers of diameter D. The first system consists of a flexible chain of fused hard spheres (i.e., bond length L=D) in a monomeric hard-sphere solvent. The second system consists of a flexible tangent hard-sphere chain (L=D) in a dimeric hard-sphere solvent with L=D. These systems are studied using Monte Carlo simulations which employ both single-site crankshaft and multi-site pivot moves to sample the configuration space of the chain. We report chain structure, in terms of site-site probability functions, as a function of solvent density. In all cases, increasing solvent density leads to an overall compression of the chain. At high solvent density the chain conformation is closely coupled to the local solvent structure and we speculate that incommensurate structures may lead to interesting conformational transitions.

  4. ENVIRONMENTAL ASSESSMENT REPORT: SOLVENT REFINED COAL (SRC) SYSTEMS

    EPA Science Inventory

    The report is an integrated evaluation of air emissions, water effluents, solid wastes, toxic substances, control/disposal alternatives, environmental regulatory requirements, and environmental effects associated with solvent refined coal (SRC) systems. It considers the SRC-I(sol...

  5. Hazardous Solvent Substitution Data System reference manual. Revision 1

    SciTech Connect

    Branham-Haar, K.A.; Twitchell, K.E.

    1993-07-01

    Concern for the environment, in addition to Federal regulation, mandate the replacement of hazardous solvents with safer cleaning agents. Manufacturers are working to produce these replacement solvents. As these products are developed, potential users need to be informed of their availability. To promote the use of these new products instead of traditional solvents, the Idaho National Engineering Laboratory (INEL) has developed the Hazardous Solvent Substitution Data System (HSSDS). The HSSDS provides a comprehensive system of information on alternatives to hazardous solvents and related subjects, and it makes that information available to solvent users, industrial hygienists, and process engineers. The HSSDS uses TOPIC{reg_sign}, a text retrieval system produced by Verity, Inc., to allow a user to search for information on a particular subject. TOPIC{reg_sign} produces a listing of the retrieved documents and allows the use to examine the documents individually and to use the information contained in them. This reference manual does not replace the comprehensive TOPIC{reg_sign} user documentation (available from Verity, Inc.), or the HSSDS Tutorial (available from the INEL). The purpose of this reference manual is to provide enough instruction on TOPIC{reg_sign} so the user may begin accessing the data contained in the HSSDS.

  6. Evaluation of Solvent Alternatives for Cleaning of Oxygen Systems

    NASA Technical Reports Server (NTRS)

    Beeson, Harold; Biesinger, Paul; Delgado, Rafael; Antin, Neil

    1999-01-01

    The NASA White Sands Test Facility (WSTF) in a joint program with the Naval Sea Systems Command has evaluated a number of solvents as alternatives to the use of chlorofluorocarbons currently utilized for cleaning of oxygen systems. Particular attention has been given to the cleaning of gauges and instrumentation used in oxygen service, since there have been no identified aqueous alternatives. The requirements identified as selection criteria, include toxicity, physical properties consistent with application, flammability, oxygen compatibility, and cleaning ability. This paper provides a summary of results and recommendations for solvents evaluated to date.

  7. Apparatus and method for removing solvent from carbon dioxide in resin recycling system

    DOEpatents

    Bohnert, George W.; Hand, Thomas E.; DeLaurentiis, Gary M.

    2009-01-06

    A two-step resin recycling system and method solvent that produces essentially contaminant-free synthetic resin material. The system and method includes one or more solvent wash vessels to expose resin particles to a solvent, the solvent contacting the resin particles in the one or more solvent wash vessels to substantially remove contaminants on the resin particles. A separator is provided to separate the solvent from the resin particles after removal from the one or more solvent wash vessels. The resin particles are next exposed to carbon dioxide in a closed loop carbon dioxide system. The closed loop system includes a carbon dioxide vessel where the carbon dioxide is exposed to the resin, substantially removing any residual solvent remaining on the resin particles after separation. A separation vessel is also provided to separate the solvent from the solvent laden carbon dioxide. Both the carbon dioxide and the solvent are reused after separation in the separation vessel.

  8. EVALUATION OF SOLVENT LOSS FROM VAPOR DEGREASER SYSTEMS

    EPA Science Inventory

    The U.S. Environmental Protection Agency is evaluating pollution reduction capabilities of vapor degreasers and new developments in vapor degreasing systems and operations. The principal objectives of this project are to develop and implement a program for assessing solvent loss ...

  9. Solvent refined coal reactor quench system

    DOEpatents

    Thorogood, Robert M.

    1983-01-01

    There is described an improved SRC reactor quench system using a condensed product which is recycled to the reactor and provides cooling by evaporation. In the process, the second and subsequent reactors of a series of reactors are cooled by the addition of a light oil fraction which provides cooling by evaporation in the reactor. The vaporized quench liquid is recondensed from the reactor outlet vapor stream.

  10. Solvent refined coal reactor quench system

    DOEpatents

    Thorogood, R.M.

    1983-11-08

    There is described an improved SRC reactor quench system using a condensed product which is recycled to the reactor and provides cooling by evaporation. In the process, the second and subsequent reactors of a series of reactors are cooled by the addition of a light oil fraction which provides cooling by evaporation in the reactor. The vaporized quench liquid is recondensed from the reactor outlet vapor stream. 1 fig.

  11. Novel solvent systems for in situ extraterrestrial sample analysis

    NASA Astrophysics Data System (ADS)

    Court, Richard W.; Baki, Alexander O.; Sims, Mark R.; Cullen, David; Sephton, Mark A.

    2010-09-01

    The life marker chip (LMC) is being designed to test for the chemical signature of life in the soil and rocks of Mars. It will use an antibody array as part of its detection and characterisation system and aims to detect both polar and non-polar molecules at the sub-ppm to tens of ppb level. It is necessary to use a solvent to transfer organic compounds from the Martian samples to the LMC itself, but organic solvents such as dichloromethane or hexane, commonly used to dissolve non-polar molecules, are incompatible with the LMC antibodies. Hence, an aqueous-based solvent capable of dissolving the biomarkers that might exist in the soil or rocks of Mars is required. Solvent extractions of a Martian soil analogue, JSC Mars-1, spiked with a range of standards show that a 20:80 (vol:vol) mixture of methanol and water is incapable of extracting compounds insoluble in water. However, addition of 1.5 mg ml -1 of the surfactant polysorbate 80 produces extraction efficiencies of the aliphatic standards, hexadecane and phytane, equal to 25-30% of those produced by the common organic solvent mixture 93:7 (vol:vol) dichloromethane:methanol. Extraction of squalene and stigmasterol using the polysorbate solution is less efficient but still successful, at 5-10% of the efficiency of 93:7 dichloromethane:methanol. Such aliphatic compounds with occasional functional groups represent the compound classes to which most fossil organic biomarkers belong. The polysorbate solution did not extract the aromatic compounds pyrene and anthracene with great efficiency. A solvent of 20:80 methanol:water with 1.5 mg ml -1 polysorbate 80 is therefore capable of selectively extracting aliphatic biomarkers from Martian samples and transferring them to the antibody sites on the life marker chip.

  12. Dissolution state of cellulose in aqueous systems. 2. Acidic solvents.

    PubMed

    Alves, Luis; Medronho, Bruno; Antunes, Filipe E; Topgaard, Daniel; Lindman, Björn

    2016-10-20

    Cellulose is insoluble in water but can be dissolved in strong acidic or alkaline conditions. How well dissolved cellulose is in solution and how it organizes are key questions often neglected in literature. The typical low pH required for dissolving cellulose in acidic solvents limits the use of typical characterization techniques. In this respect, Polarization Transfer Solid State NMR (PT ssNMR) emerges as a reliable alternative. In this work, combining PT ssNMR, microscopic techniques and X-ray diffraction, a set of different acidic systems (phosphoric acid/water, sulfuric acid/glycerol and zinc chloride/water) is investigated. The studied solvent systems are capable to efficiently dissolve cellulose, although degradation occurs to some extent. PT ssNMR is capable to identify the liquid and solid fractions of cellulose, the degradation products and it is also sensitive to gelation. The materials regenerated from the acidic dopes were found to be highly sensitive to the solvent system and to the presence of amphiphilic additives in solution. PMID:27474617

  13. The use of an organic inhibitor to control corrosion in alkanolamine units processing gas containing CO{sub 2}

    SciTech Connect

    Rodriguez, E.F.; Edwards, M.A.

    1999-11-01

    Alkanolamine plants processing natural gas and gas liquids containing only carbon dioxide as the contaminant acid gas are often troubled by high corrosion rates. Capital constraints sometimes require the plant operator to use carbon steel in the construction of piping and vessels in locations where stainless steel might otherwise be employed. Rich amine acid gas loadings sometimes exceed recommended or design levels, increasing the corrosivity of the system. Typical corrosion inhibitor products and packages are sometime ineffective in controlling corrosion at desired levels when one or both of the above conditions are present. This paper presents a procedure used to test the effectiveness of corrosion inhibitors on-stream and demonstrates the effectiveness of a sulfur-containing inhibitor in controlling CO{sub 2} corrosion in gas/gas and gas/liquid amine plants.

  14. Approximate simulation of CO[sub 2] and H[sub 2]S absorption into aqueous alkanolamines

    SciTech Connect

    Glasscock, D.A.; Rochelle, G.T. . Dept. of Chemical Engineering)

    1993-08-01

    Rigorous and approximate methods are compared for the simulation of CO[sub 2] absorption into aqueous alkanolamine mixtures of methyldiethanolamine and diethanolamine. In addition, data for the mixtures containing monoethanolamine and the simultaneous absorption of CO[sub 2] and H[sub 2]S are presented. For the rigorous approach, the simplified eddy diffusivity theory is used to simulate the liquid-phase hydrodynamic characteristics. The approximation methods examined are the pseudo-first-order approximation, the interpolation approximation of Wellek et al. (1978), the algebraic combined flux (ACFLUX) approximation and the modified combined flux (MCFLUX) approximation. The latter approximation utilizes the reaction zone concept to determine the kinetic preference of the absorbing gas at the gas-liquid interface. Under the range of conditions studied, the MCFLUX approximation predicts very accurately the CO[sub 2] and H[sub 2]S flux rates in mixed amine systems, as compared with the rigorous solution of the differential equations.

  15. A carbohydrate-anion recognition system in aprotic solvents.

    PubMed

    Ren, Bo; Dong, Hai; Ramström, Olof

    2014-05-01

    A carbohydrate-anion recognition system in nonpolar solvents is reported, in which complexes form at the B-faces of β-D-pyranosides with H1-, H3-, and H5-cis patterns similar to carbohydrate-π interactions. The complexation effect was evaluated for a range of carbohydrate structures; it resulted in either 1:1 carbohydrate-anion complexes, or 1:2 complex formation depending on the protection pattern of the carbohydrate. The interaction was also evaluated with different anions and solvents. In both cases it resulted in significant binding differences. The results indicate that complexation originates from van der Waals interactions or weak CH⋅⋅⋅A(-) hydrogen bonds between the binding partners and is related to electron-withdrawing groups of the carbohydrates as well as increased hydrogen-bond-accepting capability of the anions. PMID:24616327

  16. 40 CFR 721.8085 - Reaction product of substituted aromatic diol, formaldehyde and alkanolamine, propoxylated...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Reaction product of substituted... NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.8085 Reaction product of substituted aromatic diol, formaldehyde and alkanolamine, propoxylated (generic)....

  17. 40 CFR 721.8085 - Reaction product of substituted aromatic diol, formaldehyde and alkanolamine, propoxylated...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Reaction product of substituted... NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.8085 Reaction product of substituted aromatic diol, formaldehyde and alkanolamine, propoxylated (generic)....

  18. 40 CFR 721.10464 - Fatty acid, reaction products with alkanolamine (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10464 Fatty acid, reaction products with alkanolamine (generic). (a... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Fatty acid, reaction products...

  19. 40 CFR 721.10251 - Fatty acids, reaction products with alkanolamine (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10251 Fatty acids, reaction products with alkanolamine (generic). (a... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Fatty acids, reaction products...

  20. 40 CFR 721.8085 - Reaction product of substituted aromatic diol, formaldehyde and alkanolamine, propoxylated...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Reaction product of substituted... NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.8085 Reaction product of substituted aromatic diol, formaldehyde and alkanolamine, propoxylated (generic)....

  1. 40 CFR 721.8085 - Reaction product of substituted aromatic diol, formaldehyde and alkanolamine, propoxylated...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Reaction product of substituted... NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.8085 Reaction product of substituted aromatic diol, formaldehyde and alkanolamine, propoxylated (generic)....

  2. 40 CFR 721.8085 - Reaction product of substituted aromatic diol, formaldehyde and alkanolamine, propoxylated...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Reaction product of substituted... NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.8085 Reaction product of substituted aromatic diol, formaldehyde and alkanolamine, propoxylated (generic)....

  3. 40 CFR 721.10251 - Fatty acids, reaction products with alkanolamine (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10251 Fatty acids, reaction products with alkanolamine (generic). (a... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Fatty acids, reaction products...

  4. 40 CFR 721.10464 - Fatty acid, reaction products with alkanolamine (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10464 Fatty acid, reaction products with alkanolamine (generic). (a... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Fatty acid, reaction products...

  5. 40 CFR 721.10251 - Fatty acids, reaction products with alkanolamine (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10251 Fatty acids, reaction products with alkanolamine (generic). (a... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Fatty acids, reaction products...

  6. Regenerating fuel-gas desulfurizing agents by using bipolar membrane electrodialysis (BMED): effect of molecular structure of alkanolamines on the regeneration performance.

    PubMed

    Huang, Chuanhui; Xu, Tongwen; Yang, Xiaofei

    2007-02-01

    Alkanolamine sulfates are the heat-stable salts formed in the fuel-gas desulfurization by using alkanolamines, and they can cause the deterioration of absorption performance and loss of absorbents. In this paper, a method was reported to regenerate three alkanolamines (monoethanolamine, MEA; diethanolamine, DEA; and N,N'-dimethylethanolamine, DMEA) by using BMED. The effects of operation parameters (electrolyte concentration, alkanolamine sulfate concentration, and current density) on regeneration were analyzed on the basis of ion dimensions and intrinsic transport velocities, ion concentration, Donnan dialysis, ion orientation, and the interaction between alkanolamines and membranes. The process cost is estimated to be 0.48, 0.32, and 0.30 dollar/kg for MEA, DEA, and DMEA, respectively. BMED is not only feasible for alkanolamine regeneration but also environmental-friendly and economically attractive, especially as the bipolar membrane cost decreases and pollution control is strengthened. PMID:17328213

  7. Porous fiber formation in polymer-solvent system undergoing solvent evaporation

    NASA Astrophysics Data System (ADS)

    Dayal, Pratyush; Kyu, Thein

    2006-08-01

    Temporal evolution of the fiber morphology during dry spinning has been investigated in the framework of Cahn-Hilliard equation [J. Chem. Phys. 28, 258 (1958)] pertaining to the concentration order parameter or volume fraction given by the Flory-Huggins free energy of mixing [P. J. Flory, Principles of Polymer Chemistry (Cornell University Press, Ithaca, NY, 1953), p. 672] in conjunction with the solvent evaporation rate. To guide the solvent evaporation induced phase separation, equilibrium phase diagram of the starting polymer solution was established on the basis of the Flory-Huggins free energy of mixing. The quasi-steady-state approximation has been adopted to account for the nonconserved nature of the concentration field caused by the solvent loss. The process of solvent evaporation across the fiber skin-air interface was treated in accordance with the classical Fick's law [R. B. Bird et al., Transport Phenomena (J. Wiley, New York, 1960), p. 780]. The simulated morphologies include gradient type, hollow fiber type, bicontinuous type, and host-guest type. The development of these diverse fiber morphologies is explicable in terms of the phase diagram of the polymer solution in a manner dependent on the competition between the phase separation dynamics and rate of solvent evaporation.

  8. Advanced integrated solvent extraction and ion exchange systems

    SciTech Connect

    Horwitz, P.

    1996-10-01

    Advanced integrated solvent extraction (SX) and ion exchange (IX) systems are a series of novel SX and IX processes that extract and recover uranium and transuranics (TRUs) (neptunium, plutonium, americium) and fission products {sup 90}Sr, {sup 99}Tc, and {sup 137}Cs from acidic high-level liquid waste and that sorb and recover {sup 90}Sr, {sup 99}Tc, and {sup 137}Cs from alkaline supernatant high-level waste. Each system is based on the use of new selective liquid extractants or chromatographic materials. The purpose of the integrated SX and IX processes is to minimize the quantity of waste that must be vitrified and buried in a deep geologic repository by producing raffinates (from SX) and effluent streams (from IX) that will meet the specifications of Class A low-level waste.

  9. Systemic sclerosis associated with cutaneous exposure to solvent: case report and review of the literature

    SciTech Connect

    Brasington, R.D. Jr.; Thorpe-Swenson, A.J. )

    1991-05-01

    Sclerodermatous skin changes and systemic sclerosis have been reported to occur as a result of contact with several different organic solvents. We describe a 41-year-old man who developed systemic sclerosis after working for 15 years in a foundry, where he had extensive cutaneous contact with multiple organic solvents (trichloroethane, xylene, trimethylbenzene, and naphthalene). Cutaneous exposure to organic solvents may be a factor in the etiology of some cases of systemic sclerosis.15 references.

  10. ODC-Free Solvent Implementation Issues for Vulcanized Rubber and Bond Systems

    NASA Technical Reports Server (NTRS)

    Hodgson, James R.; McCool, Alex (Technical Monitor)

    2001-01-01

    Thiokol Propulsion has worked extensively to replace 1,1,1-trichloroethane (TCA) with ozone depleting chemicals (ODC)-free solvents for use in the manufacture of the Reusable Solid Rocket Motor (RSRM) for the Space Shuttle Program. As Thiokol has transitioned from sub-scale to full-scale testing and implementation of these new solvents, issues have been discovered which have required special attention. The original intent of Thiokol's solvent replacement strategy was to replace TCA with a single drop-in solvent for all equivalent applications. We have learned that a single candidate does not exist for replacing TCA. Solvent incompatibility with process materials has caused us to seek for niche solvents and/or processing changes that provide an ODC-free solution for special applications. This paper addresses some of the solvent incompatibilities, which have lead to processes changes and possible niche solvent usage. These incompatibilities were discovered during full-scale testing of ODC-free solvents and relate to vulcanized rubber and bond systems in the RSRM. Specifically, the following items are presented: (1) Cure effects of d-limonene based solvents on Silica Filled Ethylene Propylene Diene Monomer (SF-EPDM) rubber. During full-scale test operations, Thiokol discovered that d-limonene (terpene) based solvents inhibit the cure of EPDM rubber. Subsequent testing showed the same issue with Nitrile Butadiene Rubber (NBR). Also discussed are efforts to minimize uncured rubber exposure to solvents; and (2) Cured bond system sensitivity to ODC-free solvents. During full scale testing it was discovered that a natural rubber to steel vulcanized bond could degrade after prolonged exposure to ODC-free solvents. Follow on testing showed that low vapor pressure and residence time seemed to be most likely cause for failure.

  11. Neutron Polarization Analysis for Biphasic Solvent Extraction Systems

    DOE PAGESBeta

    Motokawa, Ryuhei; Endo, Hitoshi; Nagao, Michihiro; Heller, William T.

    2016-06-16

    Here we performed neutron polarization analysis (NPA) of extracted organic phases containing complexes, comprised of Zr(NO3)4 and tri-n-butyl phosphate, which enabled decomposition of the intensity distribution of small-angle neutron scattering (SANS) into the coherent and incoherent scattering components. The coherent scattering intensity, containing structural information, and the incoherent scattering compete over a wide range of magnitude of scattering vector, q, specifically when q is larger than q* ≈ 1/Rg, where Rg is the radius of gyration of scatterer. Therefore, it is important to determine the incoherent scattering intensity exactly to perform an accurate structural analysis from SANS data when Rgmore » is small, such as the aforementioned extracted coordination species. Although NPA is the best method for evaluating the incoherent scattering component for accurately determining the coherent scattering in SANS, this method is not used frequently in SANS data analysis because it is technically challenging. In this study, we successfully demonstrated that experimental determination of the incoherent scattering using NPA is suitable for sample systems containing a small scatterer with a weak coherent scattering intensity, such as extracted complexes in biphasic solvent extraction systems.« less

  12. Crystal growth in fused solvent systems. [in space environment

    NASA Technical Reports Server (NTRS)

    Ulrich, D. R.; Noval, B. A.; White, W. B.; Spear, K. E.; Henry, E. C.

    1974-01-01

    The successful nucleation of bismuth germanate, B12GeO20 on a high quality seed and the growth of regions of single crystals of the same orientation of the seed are reported. Lead germanate, Pb5Ge3O11 was also identified as a ferroelectric crystal with large electrooptic and nonlinear optic constants. Solvent criteria, solvent/development, and crystal growth are discussed, and recommendations for future studies are included.

  13. Separation and detection of ammonia, amines, and alkanolamines with single-column ion chromatography. [Alkylamines, ethanolamine and methyldiethanolamine

    SciTech Connect

    Poulson, R.E.; Borg, H.M.

    1986-03-01

    A single-column ion chromatographic method was developed for separation and detection of aqueous ammonia, C/sub 1/-, C/sub 2/-, and C/sub 3/- alkylamines, ethanolamine, and methyldiethanolamine. A precolumn concentrator was used to take detection of ammonium ion by electrical conductivity to fractional ppB levels and detection of the organic cations to ppB levels. Analysis of ppM ammonia levels in 3 wt % alkanolamine scrubber-type solutions was possible, but resolution of alkylamines was lost. A post-column reaction system for fluorescence detection of primary amine o-phthalaldehyde derivatives with reversed-phase separation allowed amine separation in the presence of large amounts of ammonia. The same system might be used in place of concentration and conductivity for determination of the alkylamine levels. A large variety of oil shale retort by-product waters and one underground coal gasification condensate were screened for alkylamines, but none were detected. 7 refs., 8 figs., 1 tab.

  14. In vitro assessment of solvent evaporation from commercial adhesive systems compared to experimental systems.

    PubMed

    Nihi, Fabio Mitugui; Fabre, Hebert Samuel Carafa; Garcia, Georges; Fernandes, Karen Barros Parron; Ferreira, Flaviana Bombarda de Andrade; Wang, Linda

    2009-01-01

    Solvents should be properly evaporated after application to dental substrates. The aim of this study was to assess the evaporation of commercial, experimental and neat solvents. The tested null hypotheses were that there are no differences in solvent evaporation regardless of its formulation and over time. Evaporation from commercial adhesive systems (Scotchbond Multipurpose Primer, Scotchbond Multipurpose Adhesive, Prime & Bond NT, Multi Bond, Excite, Single Bond 2, Adhese Primer, Adhese Bond, Xeno III A and Xeno III B) and experimental primers (35% HEMA plus 65% acetone or ethanol or water v/v) were compared to neat solvents (acetone, ethanol and water). Samples (10 microL) of these products were dripped into glass containers placed on a digital precision balance. Evaporation was assessed at 0, 5, 10, 15, 30, 60, 120, 300 and 600 s times to calculate mass loss. Data were analyzed statistically by ANOVA and Bonferroni's correction (a=0.05). Acetone-based products exhibited a remarkable capacity to evaporate spontaneously over time. Neat acetone evaporated significantly more than the HEMA-mixtures and the commercial formulations (p<0.05). The incorporation of monomers and other ingredients in the commercial formulations seem to reduce the evaporation capacity. Solvent evaporation was time and material-dependent. PMID:20126908

  15. Mixed solvent systems for recovery of ethanol from dilute aqueous solution by liquid-liquid extraction

    SciTech Connect

    Mitchell, R.J.; Arrowsmith, A.; Ashton, N.

    1987-01-01

    Distribution coefficients and selectivities of a number of mixed solvent systems have been determined in order to assess their suitability in preferentially extracting ethanol from aqueous solution. The measured values of distribution coefficients and selectivities differ substantially from the values estimated by interpolating between the pure solvents. (Refs. 10).

  16. A PC based computer program to aid the preparation of solvent systems for the HPLC.

    PubMed

    Rao, G N

    1991-01-01

    An interactive computer program, SOLCOMP, is developed which calculates the volumes of the components that are to be added to obtain either a fresh solvent mixture or a new solvent system from the old one of required composition. The code is implemented in MicroSoft FORTRAN and GWBASIC which runs on any IBM compatible PC under MSDOS environment. PMID:1914445

  17. Physical solubility of carbon dioxide in aqueous alkanolamines via nitrous oxide analogy

    SciTech Connect

    Browning, G.J.; Weiland, R.H. . Dept. of Chemical Engineering)

    1994-10-01

    In the petrochemical and natural gas industry, the removal of carbon dioxide and hydrogen sulfide from process gas streams is commonly achieved by reacting these impurities with aqueous alkanolamines. Van Krevelen coefficients for protonated monoethanolamine (MEA), diethanolamine (DEA), and methyldiethanolamine (MDEA), the carbamates of MEA and DEA, and the bicarbonate ion have been determined experimentally from measurements of the solubility of N[sub 2]O at 25 C and atmospheric pressure in aqueous solutions of these ions. Measured values different significantly from values recommended by others in the absence of experimental data. By analogy with N[sub 2]O, the solubility of carbon dioxide in the same solutions can be estimated.

  18. Measurement and prediction of aromatic solute distribution coefficients for aqueous-organic solvent systems. Final report

    SciTech Connect

    Campbell, J.R.; Luthy, R.G.

    1984-06-01

    Experimental and modeling activities were performed to assess techniques for measurement and prediction of distribution coefficients for aromatic solutes between water and immiscible organic solvents. Experiments were performed to measure distribution coefficients in both clean water and wastewater systems, and to assess treatment of a wastewater by solvent extraction. The theoretical portions of this investigation were directed towards development of techniques for prediction of solute-solvent/water distribution coefficients. Experiments were performed to assess treatment of a phenolic-laden coal conversion wastewater by solvent extraction. The results showed that solvent extraction for recovery of phenolic material offered several wastewater processing advantages. Distribution coefficients were measured in clean water and wastewater systems for aromatic solutes of varying functionality with different solvent types. It was found that distribution coefficients for these compounds in clean water systems were not statistically different from distribution coefficients determined in a complex coal conversion process wastewater. These and other aromatic solute distribution coefficient data were employed for evaluation of modeling techniques for prediction of solute-solvent/water distribution coefficients. Eight solvents were selected in order to represent various chemical classes: toluene and benzene (aromatics), hexane and heptane (alkanes), n-octanol (alcohols), n-butyl acetate (esters), diisopropyl ether (ethers), and methylisobutyl ketone (ketones). The aromatic solutes included: nonpolar compounds such as benzene, toluene and naphthalene, phenolic compounds such as phenol, cresol and catechol, nitrogenous aromatics such as aniline, pyridine and aminonaphthalene, and other aromatic solutes such as naphthol, quinolinol and halogenated compounds. 100 references, 20 figures, 34 tables.

  19. The Search for Nonflammable Solvent Alternatives for Cleaning Aerospace Oxygen Systems

    NASA Technical Reports Server (NTRS)

    Mitchell, Mark A.; Lowrey, Nikki

    2012-01-01

    To obtain a high degree of cleanliness without risk of corrosion or hazardous reactivity, hydrochlorofluorocarbon (HCFC)-225 is used for cleaning and cleanliness verification of oxygen system components used on NASA fs bipropellant launch vehicles, associated test stands and support equipment. HCFC-225 is a Class II Ozone Depleting Substance (ODS ]II) that was introduced to replace chlorofluorocarbon (CFC)-113, a Class I ODS solvent that is now banned. To meet environmental regulations to eliminate the use of ozone depleting substances, a replacement solvent is required for HCFC ]225 that is effective at removing oils, greases, and particulate from large oxygen system components, is compatible with materials used in the construction of these systems, and is nonflammable and non ]reactive in enriched oxygen environments. A solvent replacement is also required for aviator fs breathing oxygen systems and other related equipment currently cleaned and verified with HCFC ]225 and stockpiled CFC -113. Requirements and challenges in the search for nonflammable replacement solvents are discussed.

  20. GREEN CATALYZED OXIDATION OF HYDROCARBONS IN ALTERNATIVE SOLVENT SYSTEMS GENERATED BY PARIS II

    EPA Science Inventory

    Green Catalyzed Oxidation of Hydrocarbons in Alternative Solvent Systems Generated by PARIS II

    Michael A. Gonzalez*, Thomas M. Becker, and Paul F. Harten; Sustainable Technology Division, Office of Research and Development; United States Environmental Protection Agency, 26...

  1. The effects of pH and mixed solvent systems on the solubility of oxytetracycline.

    PubMed

    Tongaree, S; Flanagan, D R; Poust, R I

    1999-01-01

    The solubility of oxytetracycline (OTC) in aqueous and mixed solvent systems was studied. The effects of pH and cosolvent composition on the solubility and apparent dissociation constants (pKa') of OTC were determined by a solubility method. The pKa' values of OTC in each mixed solvent system were estimated and used to generate expressions for predicting drug solubility in each cosolvent as a function of pH. Cosolvent systems of PEG 400, propylene glycol, glycerin, and 2-pyrrolidone were studied in the pH range of 2.5-9. Solubility results showed increased solubility with increased cosolvent concentration, especially in 2-pyrrolidone solvent systems. These results also showed that cosolvents enhanced drug solubility through either their effects on polarity of the solvent medium or complex formation with OTC. Aqueous and mixed solvent systems at lower pH values resulted in higher OTC solubilization because the drug existed primarily in its cationic form. A mass balance equation including all ionic species of OTC allowed for estimation of the intrinsic solubilities and pKa' values in each solvent system. pKa' values and intrinsic solubility of the OTC zwitterion increased with increasing cosolvent content. These parameters allowed prediction of drug solubility within the pH range and cosolvent concentrations used in this study. PMID:10578512

  2. Probing effect of solvent concentration on glass transition and sub-Tg structural relaxation in polymer solvent mixtures: The case of polystyrene-toluene system

    NASA Astrophysics Data System (ADS)

    Pierleoni, Davide; Scherillo, Giuseppe; Minelli, Matteo; Mensitieri, Giuseppe; Doghieri, Ferruccio

    2016-05-01

    A novel experimental method for the analysis of volume relaxation induced by solvents in glassy polymers is presented. A gravimetric technique is used to evaluate the isothermal solvent mass uptake at controlled increasing/decreasing solvent pressure at constant rate. Fundamental properties of the solvent/polymer system can be obtained directly, and models can be applied, combining both nonequilibrium thermodynamics and mechanics of volume relaxation contribution. The fundamental case of polystyrene and toluene mixtures are thus accounted for, and various experimental conditions have been explored, varying the temperature, and spanning over different pressure increase/decrease rates. The results obtained allowed to evaluate the isothermal second order transition induced by solvent sorption, as well as the determination of the effect of the pressure rate. Therefore, this work proposes a new standard for the characterization and the understanding of the relaxational behavior of glassy polymers.

  3. Evaluating transformational solvent systems for post-combustion CO2 separations

    SciTech Connect

    Heldebrant, David J.; Glezakou, Vassiliki Alexandra; Koech, Phillip K.; Mathias, Paul M.; Cantu Cantu, David; Rousseau, Roger J.; Malhotra, Deepika; Bhakta, Mukund; Bearden, Mark D.; Freeman, Charles J.; Zheng, Feng

    2014-01-06

    Broad research is underway on developing transformational solvents that can capture of CO2 from flue gas with lower energy compared to aqueous amines. Water-lean, or non-aqueous, solvents are being considered as a class of transformational solvents due to the prospect of lower energy duties by not having to heat and condense water. To date, little is known about the real world performance of water-lean solvent systems compared to commercial aqueous amine technologies, and whether or not they can utilize existing or at least similar processing infrastructure. This paper provides the key results from a comprehensive three-year study of the water-lean CO2-Binding Organic Liquids (CO2BOL) solvent platform coupled with Polarity-Swing Assisted Regeneration (PSAR). We present here thermodynamic, kinetic, and bench-scale data, followed by Aspen Plus projections of full-scale process performance for three CO2BOL/PSAR cases. This paper also provides discussions on materials performance and identifies viscosity as a critical property that most greatly limits the viability of water-lean solvent platforms. We provide results from a new effort spanning molecular modeling and synthesis and experimental testing to decipher the critical material properties needed to address this challenge. We conclude with implications for development of other water-lean solvent systems

  4. GREEN CATALYZED OXIDATION OF HYDROCARBONS IN ALTERNATIVE SOLVENT SYSTEMS GENERATED BY PARIS II DECHEMA; GREEN SOLVENTS FOR CATALYSIS - ENVIRONMENTALLY BENIGN REACTION MEDIA

    EPA Science Inventory

    Green catalyzed oxidation of hydrocarbons in alternative solvent systems generated by PARIS II
    Thomas M. Becker, Michael A. Gonzalez, Paul F. Harten; Sustainable Technology Division, Office of Research and Development; United States Environmental Protection Agency, 26 West Mar...

  5. A Fluorous Biphasic Solvent Extraction System for Lanthanides with a Fluorophilic β-Diketone Type Extractant.

    PubMed

    Nakamura, Etsuko; Hiruta, Yuki; Watanabe, Takafumi; Iwasawa, Naoko; Citterio, Daniel; Suzuki, Koji

    2015-01-01

    The properties of a fluorous solvent extraction system for trivalent lanthanide metal ions are reported. A fluorinated extractant, 4,4,5,5,6,6,7,7,8,8,9,9,9-tridecafluoro-1-(2-thienyl)-1,3-nonanedione, and HFE-7200 (C4F9OC2H5) as the extraction solvent were chosen. With this fluorous extractant/solvent combination, higher extraction ratios and separation factors compared to a conventional organic solvent system (thenoyltrifluoroacetone in CHCl3) were achieved for 5 heavy lanthanide ions (Lu, Yb, Tm, Er and Ho). On the other hand, light lanthanide ions (Nd, Pr, Ce and La) are hardly extracted, therefore enabling the mutual separation of light lanthanides from middle or heavy lanthanide ions. PMID:26353959

  6. Automated solvent system screening for the preparative countercurrent chromatography of pharmaceutical discovery compounds.

    PubMed

    Bradow, James; Riley, Frank; Philippe, Laurence; Yan, Qi; Schuff, Brandon; Harris, Guy H

    2015-12-01

    A fully automated countercurrent chromatography system has been constructed to rapidly screen the commonly used heptane/ethyl acetate/methanol/water solvent system series and translate the results to preparative scale separations. The system utilizes "on-demand" preparation of the heptane/ethyl acetate/methanol/water solvent system upper and lower phases. Elution-extrusion countercurrent chromatography was combined with non-dynamic equilibrium injection reducing the screening time for each heptane/ethyl acetate/methanol/water system to 17 min. The result enabled solvent system development to be reduced to under 2 h. The countercurrent chromatography system was interfaced with a mass spectrometer to allow selective detection of target components in crude medicinal chemistry reaction mixtures. Mass-directed preparative countercurrent chromatography purification was demonstrated for the first time using a synthetic tetrazole epoxide derived from a routine medicinal chemistry support workflow. PMID:26428946

  7. Solvent dependence of Stokes shift for organic solute-solvent systems: A comparative study by spectroscopy and reference interaction-site model-self-consistent-field theory

    NASA Astrophysics Data System (ADS)

    Nishiyama, Katsura; Watanabe, Yasuhiro; Yoshida, Norio; Hirata, Fumio

    2013-09-01

    The Stokes shift magnitudes for coumarin 153 (C153) in 13 organic solvents with various polarities have been determined by means of steady-state spectroscopy and reference interaction-site model-self-consistent-field (RISM-SCF) theory. RISM-SCF calculations have reproduced experimental results fairly well, including individual solvent characteristics. It is empirically known that in some solvents, larger Stokes shift magnitudes are detected than anticipated on the basis of the solvent relative permittivity, ɛr. In practice, 1,4-dioxane (ɛr = 2.21) provides almost identical Stokes shift magnitudes to that of tetrahydrofuran (THF, ɛr = 7.58), for C153 and other typical organic solutes. In this work, RISM-SCF theory has been used to estimate the energetics of C153-solvent systems involved in the absorption and fluorescence processes. The Stokes shift magnitudes estimated by RISM-SCF theory are ˜5 kJ mol-1 (400 cm-1) less than those determined by spectroscopy; however, the results obtained are still adequate for dipole moment comparisons, in a qualitative sense. We have also calculated the solute-solvent site-site radial distributions by this theory. It is shown that solvation structures with respect to the C-O-C framework, which is common to dioxane and THF, in the near vicinity (˜0.4 nm) of specific solute sites can largely account for their similar Stokes shift magnitudes. In previous works, such solute-solvent short-range interactions have been explained in terms of the higher-order multipole moments of the solvents. Our present study shows that along with the short-range interactions that contribute most significantly to the energetics, long-range electrostatic interactions are also important. Such long-range interactions are effective up to 2 nm from the solute site, as in the case of a typical polar solvent, acetonitrile.

  8. Density and viscosity of some partially carbonated aqueous alkanolamine solutions and their blends

    SciTech Connect

    Weiland, R.H.; Dingman, J.C.; Cronin, D.B.; Browning, G.J.

    1998-05-01

    Very little information is available concerning the effect of acid gas loading on the physical properties of amine-treating solutions flowing through the absorption and regeneration columns used in gas processing. The densities and viscosities of partially carbonated monoethanolamine (MEA), diethanolamine (DEA), and N-methyldiethanolamine (MDEA) solutions were measured at 298 K. With increasing carbon dioxide loadings, significant increases in both density and viscosity were observed. These results were combined with literature data to produce correlations for alkanolamine solution density and viscosity as a function of amine concentration, carbon dioxide loading, and temperature. The resulting single-amine correlations were used to predict the densities and viscosities of DEA + MDEA and MEA + MDEA blends. Predictions are compared with data measured for these blends.

  9. Solubility of carbon dioxide in aqueous mixtures of alkanolamines

    SciTech Connect

    Dawodu, O.F.; Meisen, A. . Dept. of Chemical Engineering)

    1994-07-01

    The solubility of CO[sub 2] in water + N-methyldiethanolamine + monoethanolamine (MDEA + MEA) and water + N-methyldiethanolamine + diethanolamine (MDEA + DEA) are reported at two compositions of 3.4 M MDEA + 0.8 M MEA or DEA and 2.1 M MDEA + 2.1 M MEA or DEA at temperatures from 70 to 180 C and CO[sub 2] partial pressures from 100 to 3,850 kPa. The solubility of CO[sub 2] in the blends decreased with an increase in temperature but increased with an increase in CO[sub 2] partial pressure. At low partial pressures of CO[sub 2] and the same total amine concentration, the equilibrium CO[sub 2] loadings were in the order MDEA + MEA > MDEA + DEA > MDEA. However, at high CO[sub 2] partial pressures, the equilibrium CO[sub 2] loadings in the MDEA solutions were higher than those of the MDEA + MEA and MDEA + DEA blends of equal molar strengths due to the stoichiometric loading limitations of MEA and DEA. The nonadditivity of the equilibrium loadings for single amine systems highlights the need for independent measurements on amine blends.

  10. New analytical technique for carbon dioxide absorption solvents

    SciTech Connect

    Pouryousefi, F.; Idem, R.O.

    2008-02-15

    The densities and refractive indices of two binary systems (water + MEA and water + MDEA) and three ternary systems (water + MEA + CO{sub 2}, water + MDEA + CO{sub 2}, and water + MEA + MDEA) used for carbon dioxide (CO{sub 2}) capture were measured over the range of compositions of the aqueous alkanolamine(s) used for CO{sub 2} absorption at temperatures from 295 to 338 K. Experimental densities were modeled empirically, while the experimental refractive indices were modeled using well-established models from the known values of their pure-component densities and refractive indices. The density and Gladstone-Dale refractive index models were then used to obtain the compositions of unknown samples of the binary and ternary systems by simultaneous solution of the density and refractive index equations. The results from this technique have been compared with HPLC (high-performance liquid chromatography) results, while a third independent technique (acid-base titration) was used to verify the results. The results show that the systems' compositions obtained from the simple and easy-to-use refractive index/density technique were very comparable to the expensive and laborious HPLC/titration techniques, suggesting that the refractive index/density technique can be used to replace existing methods for analysis of fresh or nondegraded, CO{sub 2}-loaded, single and mixed alkanolamine solutions.

  11. The Search for Nonflammable Solvent Alternatives for Cleaning Aerospace Oxygen Systems

    NASA Technical Reports Server (NTRS)

    Mitchell, Mark; Lowrey, Nikki

    2012-01-01

    Oxygen systems are susceptible to fires caused by particle and nonvolatile residue (NVR) contaminants, therefore cleaning and verification is essential for system safety. . Cleaning solvents used on oxygen system components must be either nonflammable in pure oxygen or complete removal must be assured for system safety. . CFC -113 was the solvent of choice before 1996 because it was effective, least toxic, compatible with most materials of construction, and non ]reactive with oxygen. When CFC -113 was phased out in 1996, HCFC -225 was selected as an interim replacement for cleaning propulsion oxygen systems at NASA. HCFC-225 production phase-out date is 01/01/2015. HCFC ]225 (AK ]225G) is used extensively at Marshall Space Flight Center and Stennis Space Center for cleaning and NVR verification on large propulsion oxygen systems, and propulsion test stands and ground support equipment. . Many components are too large for ultrasonic agitation - necessary for effective aqueous cleaning and NVR sampling. . Test stand equipment must be cleaned prior to installation of test hardware. Many items must be cleaned by wipe or flush in situ where complete removal of a flammable solvent cannot be assured. The search for a replacement solvent for these applications is ongoing.

  12. COMPUTER AIDED SOLVENT DESIGN FOR POLLUTION PREVENTION - PARIS II (SYSTEMS ANALYSIS BRANCH, SUSTAINABLE TECHNOLOGY DIVISION, NRMRL)

    EPA Science Inventory

    This method was designed to facilitate the replacement of environmentally objectionable industrial solvents by using computer aided methods to design benign replacement solvents or solvent mixtures. The method generates a short list of recommended replacement solvents or mixtures...

  13. Effects of organic solvents on the partitioning of enzymes in aqueous two-phase systems.

    PubMed

    Johansson, G; Kopperschläger, G

    1987-02-13

    Organic solvents (ethylene glycol, glycerol, dimethyl sulphoxide, dimethylformamide, dioxane, methanol and propanol-2, as well as sucrose and urea) have been included in aqueous two-phase (liquid-liquid) systems comprised of water, dextran and poly(ethylene glycol). The concentration of the organic solvent was in most cases 20% (w/w). The influence of these solvents on the phase-forming properties, the volume ratio, the freezing point and the partitioning of a polymer-bound ligand, Procion Red HE-3B poly(ethylene glycol), has been studied. The partition coefficients for alkaline phosphatase decrease with ethylene glycol, glycerol, sucrose and urea (factors of 0.25-0.5), but increase with the other substances (factors of 1.2-1.6). The temperature effects on the partitioning of alkaline phosphatase from calf intestine as well as of phosphofructokinase from yeast in systems containing ethylene glycol have been studied and compared with partitioning in standard systems, not containing solvents. The possible uses of the above systems for partitioning studies of enzymes are discussed. PMID:2951391

  14. FURTHER DEVELOPMENT OF RODENT WHOLE EMBRYO CULTURE: SOLVENT TOXICITY AND WATER INSOLUBLE COMPOUND DELIVERY SYSTEM

    EPA Science Inventory

    In order to study the in vitro embryotoxicity and dysmorphogenesis of water insoluble compounds, solvents or chemical delivery systems of low toxicity and teratogenicity to the developing embryo must be found. Therefore, day 10.5 rat embryos were cultured for 2 days in whole rat ...

  15. REMOVAL OF PCBS FROM A CONTAMINATED SOIL USING CF-SYSTEMS SOLVENT EXTRACTION PROCESS

    EPA Science Inventory

    The US EPA's START team in cooperation with EPA's SITE program evaluated a pilot scale solvent extraction process developed by CF-Systems. This process uses liquified propane to extract organic contaminants from soils, sludges, and sediments. A pilot-scale evaluation was conducte...

  16. Evidence for preferential solvation in the cyclohexane/n-butanol binary solvent system.

    PubMed

    Qiu, Chen; Blanchard, G J

    2015-02-01

    We report on the rotational diffusion and vibrational population relaxation dynamics of the polycyclic aromatic hydrocarbon (PAH) perylene in a series of cyclohexane/n-butanol binary solvent systems. The molecular scale heterogeneity of this binary system is seen in both types of data. The rotational diffusion results show that in neat n-butanol and neat cyclohexane perylene reorients as an oblate rotor, but for all binary solvent systems examined this chromophore reorients as a prolate rotor. The perylene ring breathing mode is nearly degenerate with the n-butanol terminal methyl group rocking mode and vibrational population relaxation data for the perylene ring breathing mode reveal a substantial decrease in the relaxation time constant with the addition of small amounts of n-butanol to cyclohexane. This finding, in concert with the rotational diffusion data, indicates that perylene is solvated preferentially by n-butanol in cyclohexane/n-butanol binary solvent systems. The implication of this finding is that the cyclohexane/n-butanol binary solvent mixture is not homogeneous on nanometer length scales. PMID:25569115

  17. Sorptive behavior of sorgoleone in ultisol in two solvent systems and determination of its lipophilicity.

    PubMed

    Trezzi, M M; Vidal, R A; Dick, D P; Peralba, M C R; Kruse, N D

    2006-01-01

    Sorgoleone (SGL) exuded by sorghum roots inhibits the development of some weeds. Due to its high hydrophobicity, it is expected that SGL presents low soil mobility and limited allelopathic activity in the field. This work aims to evaluate the sorptivity of sorgoleone in octanol-water and in soil under two solvent systems. The two solvent systems were methanol:water (60:40) (MeOH:H2O) and pure methanol (MeOH). These two solvent systems promote different conditions for SGL solubility. Treatments were arranged in a 2 x 6 factorial (solvent systems x equilibrium concentrations in the solution (EC)). For each solvent, the sorption was achieved by shaking 500 mg of soil with 10 ml of 0, 5, 10, 15, 25, 40, and 60 mg L-1 of SGL solution, during 24 h. After centrifugation, the supernatant was filtered and the SGL concentration was determined by high performance liquid chromatography (HPLC). Data of sorbed amount of SGL were submitted to variance analysis, using a hierarchic factorial model. The data of sorbed amount (x/m) and equilibrium concentration (C) were fitted to the linear (x/m = a + KdC) and to the Freundlich (x/m = KfC1/n) models. The isotherm obtained for the MeOH:H2O system presented linear shape, whereas for the MeOH system a two subsequent linear isotherm was fitted. Sorgoleone is a highly hydrophobic compound, presenting a log Kow of 6.1. The sorption of sorgoleone to the soil was very high. The organic environment stimulated the sorgoleone sorption to the soil. PMID:16753954

  18. Lignin Peroxidase Oxidation of Aromatic Compounds in Systems Containing Organic Solvents

    PubMed Central

    Vazquez-Duhalt, Rafael; Westlake, Donald W. S.; Fedorak, Phillip M.

    1994-01-01

    Lignin peroxidase from Phanerochaete chrysosporium was used to study the oxidation of aromatic compounds, including polycyclic aromatic hydrocarbons and heterocyclic compounds, that are models of moieties of asphaltene molecules. The oxidations were done in systems containing water-miscible organic solvents, including methanol, isopropanol, N, N-dimethylformamide, acetonitrile, and tetrahydrofuran. Of the 20 aromatic compounds tested, 9 were oxidized by lignin peroxidase in the presence of hydrogen peroxide. These included anthracene, 1-, 2-, and 9-methylanthracenes, acenaphthene, fluoranthene, pyrene, carbazole, and dibenzothiophene. Of the compounds studied, lignin peroxidase was able to oxidize those with ionization potentials of <8 eV (measured by electron impact). The reaction products contain hydroxyl and keto groups. In one case, carbon-carbon bond cleavage, yielding anthraquinone from 9-methylanthracene, was detected. Kinetic constants and stability characteristics of lignin peroxidase were determined by using pyrene as the substrate in systems containing different amounts of organic solvent. Benzyl alkylation of lignin peroxidase improved its activity in a system containing water-miscible organic solvent but did not increase its resistance to inactivation at high solvent concentrations. PMID:16349176

  19. Lignin peroxidase oxidation of aromatic compounds in systems containing organic solvents.

    PubMed

    Vazquez-Duhalt, R; Westlake, D W; Fedorak, P M

    1994-02-01

    Lignin peroxidase from Phanerochaete chrysosporium was used to study the oxidation of aromatic compounds, including polycyclic aromatic hydrocarbons and heterocyclic compounds, that are models of moieties of asphaltene molecules. The oxidations were done in systems containing water-miscible organic solvents, including methanol, isopropanol, N, N-dimethylformamide, acetonitrile, and tetrahydrofuran. Of the 20 aromatic compounds tested, 9 were oxidized by lignin peroxidase in the presence of hydrogen peroxide. These included anthracene, 1-, 2-, and 9-methylanthracenes, acenaphthene, fluoranthene, pyrene, carbazole, and dibenzothiophene. Of the compounds studied, lignin peroxidase was able to oxidize those with ionization potentials of <8 eV (measured by electron impact). The reaction products contain hydroxyl and keto groups. In one case, carbon-carbon bond cleavage, yielding anthraquinone from 9-methylanthracene, was detected. Kinetic constants and stability characteristics of lignin peroxidase were determined by using pyrene as the substrate in systems containing different amounts of organic solvent. Benzyl alkylation of lignin peroxidase improved its activity in a system containing water-miscible organic solvent but did not increase its resistance to inactivation at high solvent concentrations. PMID:16349176

  20. Deep eutectic solvents as efficient solvent system for the extraction of κ-carrageenan from Kappaphycus alvarezii.

    PubMed

    Das, Arun Kumar; Sharma, Mukesh; Mondal, Dibyendu; Prasad, Kamalesh

    2016-01-20

    Three different deep eutectic solvents (DESs) prepared by the complexation of choline chloride with urea, ethylene glycol and glycerol along with their hydrated counterparts were used for the selective extraction of κ-carrageenan from Kappaphycus alvarezii. Upon comparison of the quality of the polysaccharide with the one obtained using water as extraction media as well as the one extracted using widely practiced conventional method, it was found that, the physicochemical as well as rheological properties of κ-carrageenan obtained using DESs as solvents was at par to the one obtained using conventional method and was superior in quality when compared to κ-carrageenan obtained using water as solvent. Considering the tedious nature of the extraction method employed in conventional extraction process, the DESs can be considered as suitable alternative solvents for the facile extraction of the polysaccharide directly from the seaweed. However, among the hydrated and non-hydrated DESs, the hydrated ones were found to be more effective in comparison to their non-hydrated counterparts. PMID:26572431

  1. Vapor-liquid equilibria for copolymer+solvent systems: Effect of intramolecular repulsion

    SciTech Connect

    Gupta, R.B.; Prausnitz, J.M.

    1995-03-01

    Role of intramolecular interactions in blend miscibility is well documented for polymer+copolymer mixtures. Some copolymer+polymer mixtures are miscible although their corresponding homopolymers are not miscible; for example, over a range of acrylonitrile content, styrene/acrylonitrile copolymers are miscible with poly(methyl methacrylate) but neither polystyrene nor polyacrylonitrile is miscible with poly(methyl methacrylate). Similarly, over a composition range, butadiene/acrylonitrile copolymers are miscible with poly(vinyl chloride) while none of the binary combinations of the homopolymers [polybutadiene, polyacrylonitrile, and poly(vinyl chloride)] are miscible. This behavior has been attributed to ``intramolecular repulsion`` between unlike copolymer segments. We have observed similar behavior in vapor-liquid equilibria (VLE) of copolymer+solvent systems. We find that acrylonitrile/butadiene copolymers have higher affinity for acetonitrile solvent than do polyacrylonitrile or polybutadiene. We attribute this non-intuitive behavior to ``intramolecular repulsion`` between unlike segments of the copolymer. This repulsive interaction is weakened when acetonitrile molecules are in the vicinity of unlike copolymer segments, favoring copolymer+solvent miscibility. We find similar behavior when acetonitrile is replaced by methyl ethyl ketone. To best knowledge, this effect has not been reported previously for VLE. We have obtained VLE data for mixtures containing a solvent and a copolymer as a function of copolymer composition. It appears that, at a given solvent partial pressure, there may be copolymer composition that yields maximum absorption of the solvent. This highly non-ideal VLE phase behavior may be useful for optimum design of a membrane for a separation process.

  2. ICPSEF: a user's manual for the computer mathematical model of the ICPP purex solvent extraction system

    SciTech Connect

    Bendixsen, C L

    1982-11-01

    A computer-based mathematical program, ICPSEF, was developed for the first-cycle extraction system at the Idaho Chemical Processing Plant (ICPP). At the ICPP, spent nuclear fuels are processed to recover unfissioned uranium. The uranium is recovered from aqueous solutions in a pulse column, solvent extraction system using tributyl phosphate (TBP) solvent (purex process). A previously developed SEPHIS-MOD4 computer program was added to and modified to provide a model for the ICPP system. Major modifications included addition of: (1) partial theoretical stages to permit more accurate modeling of ICPP columns, (2) modeling ammonium hydroxide neutralization of nitric acid in a scrubbing column, and (3) equilibrium data for 5 to 10 vol % TBP. The model was verified by comparison with actual operating data. Detailed instructions for using the ICPSEF model and sample results of the model are included.

  3. The early indicators of financial failure: a study of bankrupt and solvent health systems.

    PubMed

    Coyne, Joseph S; Singh, Sher G

    2008-01-01

    This article presents a series of pertinent predictors of financial failure based on analysis of solvent and bankrupt health systems to identify which financial measures show the clearest distinction between success and failure. Early warning signals are evident from the longitudinal analysis as early as five years before bankruptcy. The data source includes seven years of annual statements filed with the Securities and Exchange Commission by 13 health systems before they filed bankruptcy. Comparative data were compiled from five solvent health systems for the same seven-year period. Seven financial solvency ratios are included in this study, including four cash liquidity measures, two leverage measures, and one efficiency measure. The results show distinct financial trends between solvent and bankrupt health systems, in particular for the operating-cash-flow-related measures, namely Ratio 1: Operating Cash Flow Percentage Change, from prior to current period; Ratio 2: Operating Cash Flow to Net Revenues; and Ratio 4: Cash Flow to Total Liabilities, indicating sensitivity in the hospital industry to cash flow management. The high dependence on credit from third-party payers is cited as a reason for this; thus, there is a great need for cash to fund operations. Five managerial policy implications are provided to help health system managers avoid financial solvency problems in the future. PMID:18856138

  4. Replacement of HCFC-225 Solvent for Cleaning NASA Propulsion Oxygen Systems

    NASA Technical Reports Server (NTRS)

    Mitchell, Mark A.; Lowrey, Nikki M.

    2015-01-01

    Since the 1990's, when the Class I Ozone Depleting Substance (ODS) chlorofluorocarbon-113 (CFC-113) was banned, NASA's rocket propulsion test facilities at Marshall Space Flight Center (MSFC) and Stennis Space Center (SSC) have relied upon hydrochlorofluorocarbon-225 (HCFC-225) to safely clean and verify the cleanliness of large scale propulsion oxygen systems. Effective January 1, 2015, the production, import, export, and new use of HCFC-225, a Class II ODS, was prohibited by the Clean Air Act. In 2012 through 2014, leveraging resources from both the NASA Rocket Propulsion Test Program and the Defense Logistics Agency - Aviation Hazardous Minimization and Green Products Branch, test labs at MSFC, SSC, and Johnson Space Center's White Sands Test Facility (WSTF) collaborated to seek out, test, and qualify a replacement for HCFC-225 that is both an effective cleaner and safe for use with oxygen systems. Candidate solvents were selected and a test plan was developed following the guidelines of ASTM G127, Standard Guide for the Selection of Cleaning Agents for Oxygen Systems. Solvents were evaluated for materials compatibility, oxygen compatibility, cleaning effectiveness, and suitability for use in cleanliness verification and field cleaning operations. Two solvents were determined to be acceptable for cleaning oxygen systems and one was chosen for implementation at NASA's rocket propulsion test facilities. The test program and results are summarized. This project also demonstrated the benefits of cross-agency collaboration in a time of limited resources.

  5. Effects of solvent evaporation on water sorption/solubility and nanoleakage of adhesive systems

    PubMed Central

    CHIMELI, Talita Baumgratz Cachapuz; D'ALPINO, Paulo Henrique Perlatti; PEREIRA, Patrícia Nóbrega; HILGERT, Leandro Augusto; DI HIPÓLITO, Vinicius; GARCIA, Fernanda Cristina Pimentel

    2014-01-01

    Objective To evaluate the influence of solvent evaporation in the kinetics of water diffusion (water sorption-WS, solubility-SL, and net water uptake) and nanoleakage of adhesive systems. Material and Methods Disk-shaped specimens (5.0 mm in diameter x 0.8 mm in thickness) were produced (N=48) using the adhesives: Clearfil S3 Bond (CS3)/Kuraray, Clearfil SE Bond - control group (CSE)/Kuraray, Optibond Solo Plus (OS)/Kerr and Scotchbond Universal Adhesive (SBU)/3M ESPE. The solvents were either evaporated for 30 s or not evaporated (N=24/per group), and then photoactivated for 80 s (550 mW/cm2). After desiccation, the specimens were weighed and stored in distilled water (N=12) or mineral oil (N=12) to evaluate the water diffusion over a 7-day period. Net water uptake (%) was also calculated as the sum of WS and SL. Data were submitted to 3-way ANOVA/Tukey's test (α=5%). The nanoleakage expression in three additional specimens per group was also evaluated after ammoniacal silver impregnation after 7 days of water storage under SEM. Results Statistical analysis revealed that only the factor "adhesive" was significant (p<0.05). Solvent evaporation had no influence in the WS and SL of the adhesives. CSE (control) presented significantly lower net uptake (5.4%). The nanoleakage was enhanced by the presence of solvent in the adhesives. Conclusions Although the evaporation has no effect in the kinetics of water diffusion, the nanoleakage expression of the adhesives tested increases when the solvents are not evaporated. PMID:25141201

  6. Peptide synthesis of aspartame precursor using organic-solvent-stable PST-01 protease in monophasic aqueous-organic solvent systems.

    PubMed

    Tsuchiyama, Shotaro; Doukyu, Noriyuki; Yasuda, Masahiro; Ishimi, Kosaku; Ogino, Hiroyasu

    2007-01-01

    The PST-01 protease is a metalloprotease that has zinc ion at the active center and is very stable in the presence of water-soluble organic solvents. The reaction rates and the equilibrium yields of the aspartame precursor N-carbobenzoxy-L-aspartyl-L-phenylalanine methyl ester (Cbz-Asp-Phe-OMe) synthesis from N-carbobenzoxy-L-aspartic acid (Cbz-Asp) and L-phenylalanine methyl ester (Phe-OMe) in the presence of water-soluble organic solvents were investigated under various conditions. Higher reaction rate and yield of Cbz-Asp-Phe-OMe were attained by the PST-01 protease when 30 mM Cbz-Asp and 500 mM Phe-OMe were used. The maximum reaction rate was obtained pH 8.0 and 37 degrees C. In the presence of dimethylsulfoxide (DMSO), glycerol, methanol, and ethylene glycol, higher reaction rates were obtained. The equilibrium yield was the highest in the presence of DMSO. The equilibrium yield of Cbz-Asp-Phe-OMe using the PST-01 protease attained 83% in the presence of 50% (v/v) DMSO. PMID:17480054

  7. Surface area generation and droplet size control in solvent extraction systems utilizing high intensity electric fields

    DOEpatents

    Scott, Timothy C.; Wham, Robert M.

    1988-01-01

    A method and system for solvent extraction where droplets are shattered by a high intensity electric field. These shattered droplets form a plurality of smaller droplets which have a greater combined surface area than the original droplet. Dispersion, coalescence and phase separation are accomplished in one vessel through the use of the single pulsing high intensity electric field. Electric field conditions are chosen so that simultaneous dispersion and coalescence are taking place in the emulsion formed in the electric field. The electric field creates a large amount of interfacial surface area for solvent extraction when the droplet is disintegrated and is capable of controlling droplet size and thus droplet stability. These operations take place in the presence of a counter current flow of the continuous phase.

  8. A comprehensive classification of solvent systems used for natural product purifications in countercurrent and centrifugal partition chromatography.

    PubMed

    Skalicka-Woźniak, Krystyna; Garrard, Ian

    2015-11-01

    Using both library paper copies and modern electronic copies, every known, published, English-language journal paper that employs either countercurrent or centrifugal partition chromatography solvent systems for natural product purifications has been studied and the solvent systems classified in a comprehensive database. Papers were studied from the earliest found examples containing natural product separations in 1984 until the end of 2014. In total, 2594 solvent systems have been classified, of which 272 are gradient systems. To observe any trends or patterns in the data, the natural product solutes were divided into 21 classes and the solvent systems into 7 different types. The complete database, sorted according to natural product class, is available for download to assist separation scientists in future liquid-liquid chromatography purifications. PMID:26219437

  9. The Generally Useful Estimate of Solvent Systems (GUESS) method enables the rapid purification of methylpyridoxine regioisomers by countercurrent chromatography.

    PubMed

    Liu, Yang; Friesen, J Brent; Klein, Larry L; McAlpine, James B; Lankin, David C; Pauli, Guido F; Chen, Shao-Nong

    2015-12-24

    The TLC-based Generally Useful Estimate of Solvent Systems (GUESS) method was employed for countercurrent chromatography solvent system selection, in order to separate the three synthetic isomers: 3-O-methylpyridoxine, 4'-O-methylpyridoxine (ginkgotoxin), and 5'-O-methylpyridoxine. The Rf values of the three isomers indicated that ChMWat+2 (chloroform-methanol-water 10:5:5, v/v/v) was appropriate for the countercurrent separation. The isomer separation was highly selective and demonstrated that the TLC-based GUESS method can accelerate solvent system selection for countercurrent separation. Accordingly, the study re-emphasizes the practicality of TLC as a tool to facilitate the rapid development of new countercurrent and centrifugal partition chromatography methods for this solvent system. Purity and structure characterization of all samples was performed by quantitative (1)H NMR. PMID:26680272

  10. Experimental Measurement and Thermodynamic Modeling of the Solubility of Carbon Dioxide in Aqueous Alkanolamine Solutions in the High Gas Loading Region

    NASA Astrophysics Data System (ADS)

    Suleman, Humbul; Maulud, Abdulhalim Shah; Man, Zakaria

    2016-09-01

    The solubility of carbon dioxide in aqueous alkanolamine solutions was investigated in the high gas loading region based on experimental measurements and thermodynamic modeling. An experimental phase equilibrium study was performed to evaluate the absorption of carbon dioxide in aqueous solutions of five representative alkanolamines, including monoethanolamine, diethanolamine, N-methyldiethanolamine, 2-amino-2-methyl-1-propanol and piperazine. The carbon dioxide loadings of these solutions were determined for a wide range of pressures (62.5 kPa to 4150 kPa), temperatures (303.15 K to 343.15 K) and alkanolamine concentrations (2 M to 4 M). The results were found to be largely consistent with those previously reported in the literature. Furthermore, a hybrid Kent-Eisenberg model was developed for the correlation of the experimental data points. This new model incorporated an equation of state/excess Gibbs energy model for determining the solubility of carbon dioxide in the high-pressure-high gas loading region. This approach also used a single correction parameter, which was a function of the alkanolamine concentration. The results of this model were in excellent agreement with our experimental results. Most notably, this model was consistent with other reported values from the literature.

  11. Abiotic systems for the catalytic treatment of solvent-contaminated water

    SciTech Connect

    Betterton, E.A.; Arnold, R.G.; Liu, Zhijie; Hollan, N.

    1996-12-31

    Three abiotic systems are described that catalyze the reductive dehalogenation of heavily halogenated environmental pollutants, including carbon tetrachloride, trichloroethene, and perchloroethene. These systems include (a) an electrolytic reactor in which the potential on the working electrode (cathode) is fixed by using a potentiostat, (b) a light-driven system consisting of a semiconductor and (covalently attached) macrocycle that can accept light transmitted via an optical fiber, and a light-driven, two-solvent (isopropanol/acetone) system that promotes dehalogenation reactions via an unknown mechanism. Each is capable of accelerating reductive dehalogenation reactions to very high rates under laboratory conditions. Typically, millimolar concentrations of aqueous-phase targets can be dehalogenated in minutes to hours. The description of each system includes the elements of reaction mechanism (to the extent known), typical kinetic data, and a discussion of the feasibility of applying this technology for the in situ destruction of hazardous compounds. 14 refs., 11 figs., 2 tabs.

  12. TIGER2 with solvent energy averaging (TIGER2A): An accelerated sampling method for large molecular systems with explicit representation of solvent.

    PubMed

    Li, Xianfeng; Snyder, James A; Stuart, Steven J; Latour, Robert A

    2015-10-14

    The recently developed "temperature intervals with global exchange of replicas" (TIGER2) accelerated sampling method is found to have inaccuracies when applied to systems with explicit solvation. This inaccuracy is due to the energy fluctuations of the solvent, which cause the sampling method to be less sensitive to the energy fluctuations of the solute. In the present work, the problem of the TIGER2 method is addressed in detail and a modification to the sampling method is introduced to correct this problem. The modified method is called "TIGER2 with solvent energy averaging," or TIGER2A. This new method overcomes the sampling problem with the TIGER2 algorithm and is able to closely approximate Boltzmann-weighted sampling of molecular systems with explicit solvation. The difference in performance between the TIGER2 and TIGER2A methods is demonstrated by comparing them against analytical results for simple one-dimensional models, against replica exchange molecular dynamics (REMD) simulations for sampling the conformation of alanine dipeptide and the folding behavior of (AAQAA)3 peptide in aqueous solution, and by comparing their performance in sampling the behavior of hen egg-white lysozyme in aqueous solution. The new TIGER2A method solves the problem caused by solvent energy fluctuations in TIGER2 while maintaining the two important characteristics of TIGER2, i.e., (1) using multiple replicas sampled at different temperature levels to help systems efficiently escape from local potential energy minima and (2) enabling the number of replicas used for a simulation to be independent of the size of the molecular system, thus providing an accelerated sampling method that can be used to efficiently sample systems considered too large for the application of conventional temperature REMD. PMID:26472361

  13. TIGER2 with solvent energy averaging (TIGER2A): An accelerated sampling method for large molecular systems with explicit representation of solvent

    NASA Astrophysics Data System (ADS)

    Li, Xianfeng; Snyder, James A.; Stuart, Steven J.; Latour, Robert A.

    2015-10-01

    The recently developed "temperature intervals with global exchange of replicas" (TIGER2) accelerated sampling method is found to have inaccuracies when applied to systems with explicit solvation. This inaccuracy is due to the energy fluctuations of the solvent, which cause the sampling method to be less sensitive to the energy fluctuations of the solute. In the present work, the problem of the TIGER2 method is addressed in detail and a modification to the sampling method is introduced to correct this problem. The modified method is called "TIGER2 with solvent energy averaging," or TIGER2A. This new method overcomes the sampling problem with the TIGER2 algorithm and is able to closely approximate Boltzmann-weighted sampling of molecular systems with explicit solvation. The difference in performance between the TIGER2 and TIGER2A methods is demonstrated by comparing them against analytical results for simple one-dimensional models, against replica exchange molecular dynamics (REMD) simulations for sampling the conformation of alanine dipeptide and the folding behavior of (AAQAA)3 peptide in aqueous solution, and by comparing their performance in sampling the behavior of hen egg-white lysozyme in aqueous solution. The new TIGER2A method solves the problem caused by solvent energy fluctuations in TIGER2 while maintaining the two important characteristics of TIGER2, i.e., (1) using multiple replicas sampled at different temperature levels to help systems efficiently escape from local potential energy minima and (2) enabling the number of replicas used for a simulation to be independent of the size of the molecular system, thus providing an accelerated sampling method that can be used to efficiently sample systems considered too large for the application of conventional temperature REMD.

  14. The interaction between oxytetracycline and divalent metal ions in aqueous and mixed solvent systems.

    PubMed

    Tongaree, S; Flanagan, D R; Poust, R I

    1999-01-01

    The effects of pH, mixed solvent systems, and divalent metal ions on oxytetracycline (OTC) solubility and the interactions between OTC and metal ions in aqueous and mixed solvent systems were investigated. OTC solubility profiles were obtained for pH 4-9. The cosolvents studied were glycerin, propylene glycol, PEG 400, and 2-pyrrolidone with the following metal ions: magnesium, calcium, and zinc. OTC and its interactions with these metal ions were evaluated by solubility, NMR, circular dichroism (CD), and electron diffraction (ED) methods. At pH 5.6, no complexation occurred with these metal ions, but OTC zwitterion formed aggregates in aqueous solutions as shown by NMR spectra. The hydration of the metal ions was observed to affect OTC aggregation, with Mg+2 causing the greatest OTC aggregation. At pH 7.5, OTC aggregation and metal-OTC complexation were observed in solutions with Ca+2 and Mg+2. Zinc ion was found to decrease OTC solubility because of zincate formation, which caused anionic OTC to precipitate. Electron diffraction revealed a relationship between OTC and metal-OTC complex crystallinity and solubility behavior. The zinc-OTC complex exhibited the highest crystallinity and lowest solubility at pH 8.0. Various cosolvents generally enhanced OTC solubility, with 2-pyrrolidone having the best solubility power. In OTC-metal-2-pyrrolidone and OTC-Zn(+2)-PEG 400 systems, circular dichroism provided evidence for the formation of soluble ternary complexes. PMID:10578513

  15. Run-time Ink Stability in Pneumatic Aerosol Jet Printing Using a Split Stream Solvent Add Back System

    NASA Astrophysics Data System (ADS)

    Wadhwa, Arjun

    Aerosol Jet printing is a non-contact process capable of printing nano-ink patterns on conformal and flexible surfaces. Aqueous or solvent nano-inks are pneumatically atomized by the flow of nitrogen gas. The flow of atomizing gas into and out of the cup leads to evaporation and removal of volatile solvent(s). As the solid loading fraction of the ink increases, the rheological changes eventually lead to instabilities in print output. A potential solution to this problem is to moisten the atomizing ink by running it through a bubbler. In this study, neat co-solvent solutions of ethanol and ethylene glycol at 85: 15 and 30:70 mixing ratios were atomized using nitrogen flow rates ranging from 600 to 1000 ccm. It was observed that ethanol, being the more volatile solvent, was depleted from the neat solution. When using a bubbler solvent add-back system, an excessive amount of ethanol was returned to the neat solution. The rate of solvent loss from an ethanol rich neat solution (80%) was higher compared to an ethylene glycol rich neat solution. A mixture of dry and wet (ethanol moistened) nitrogen gas was used to equalize the rate of ethanol evaporation. Ethanol equilibrium in neat solutions with higher ethylene glycol loading (70%) was achieved with a 40-60% wet nitrogen component while neat solutions with higher ethanol loading (85%) were stable with 85 -90% wet nitrogen gas. The results were validated with copper nano ink with similar co-solvent ratios. The solid content of the ink remained constant over four hours of printing when the optimal dry: wet nitrogen gas ratios were used. Copper ink with 85% ethanol being atomized at 1000 ccm exhibited increase in copper loading (3%) despite the dry: wet solvent add back system.

  16. Enhanced coal liquefaction with ammonia and amines in single and binary solvent systems. Quarterly report, September 20-December 19, 1983

    SciTech Connect

    Chen, W.Y.

    1984-01-12

    The program objective is to evaluate the process potential of coal liquefaction by using supercritical solvent systems. The solvent system will include at least one nitrogen-containing compound: ammonia or aliphatic amines. Recent discovery of the nucleophilic attack capability of nitrogen-containing compounds provides the incentive for this choice of solvent. Kinetics and thermodynamics of the process are examined. A tubing-bomb batch reactor has been designed, assembled and tested. The reactor is designed to allow independent control of temperature, pressure (solvent density) and residence time. Condensed products are separated into oil, asphaltene, preasphaltene, and residue fractions depending on their solubilities in hexane, benzene, and pyridine. A Louisiana lignite was used in the test runs. Results from subcritical ammonia experiments showed 2 to 4% conversion to ammonia soluble materials. Sequential elution of condensed products did not yield significant soluble compounds, but it confirmed a previous report on pore enlargement by ammonia. 29 references, 2 figures, 2 tables.

  17. Photocatalytic CO2 reduction in N,N-dimethylacetamide/water as an alternative solvent system.

    PubMed

    Kuramochi, Yusuke; Kamiya, Masaya; Ishida, Hitoshi

    2014-04-01

    N,N-Dimethylacetamide (DMA) was used for the first time as the reaction solvent in the photocatalytic reduction of CO2. DMA is highly stable against hydrolysis and does not produce formate even if it is hydrolyzed. We report the catalytic activities of [Ru(bpy)2(CO)2](PF6)2 (bpy = 2,2'-bipyridine) in the presence of [Ru(bpy)3](PF6)2 as a photosensitizer and 1-benzyl-1,4-dihydronicotinamide (BNAH) as an electron donor in DMA/water. In the photochemical CO2 reduction, carbon monoxide (CO) and formate are catalytically produced, while dihydrogen (H2) from the reduction of water is scarcely evolved. We verified that BNAH is oxidized to afford BNA dimers during the photocatalyses in DMA/water. The plots of the production for the CO2 reduction versus the water content in DMA/water show that the 10 vol % water content gives the highest amount of the reduction products, whose reaction quantum yields (Φ') are determined to be 11.6% and 3.2% for CO and formate, respectively. The results are compared with those in the N,N-dimethylformamide (DMF)/water system, which has been typically used as the solvent system for the CO2 reduction. PMID:24628681

  18. Applicability evaluation of Deep Eutectic Solvents-Cellulase system for lignocellulose hydrolysis.

    PubMed

    Gunny, Ahmad Anas Nagoor; Arbain, Dachyar; Nashef, Enas Muen; Jamal, Parveen

    2015-04-01

    Deep Eutectic Solvents (DESs) have recently emerged as a new generation of ionic liquids for lignocellulose pretreatment. However, DESs contain salt components which tend to inactivate cellulase in the subsequent saccharification process. To alleviate this problem, it is necessary to evaluate the applicability of the DESs-Cellulase system. This was accomplished in the present study by first studying the stability of cellulase in the presence of selected DESs followed by applicability evaluation based on glucose production, energy consumption and kinetic performance. Results showed that the cellulase was able to retain more than 90% of its original activity in the presence of 10% (v/v) for glycerol based DES (GLY) and ethylene glycol based DES (EG). Furthermore, both DESs system exhibited higher glucose percentage enhancement and lower energy consumption as compared to diluted alkali system. Among the two DESs studied, EG showed comparatively better kinetic performance. PMID:25661309

  19. A green deep eutectic solvent-based aqueous two-phase system for protein extracting.

    PubMed

    Xu, Kaijia; Wang, Yuzhi; Huang, Yanhua; Li, Na; Wen, Qian

    2015-03-15

    As a new type of green solvent, deep eutectic solvent (DES) has been applied for the extraction of proteins with an aqueous two-phase system (ATPS) in this work. Four kinds of choline chloride (ChCl)-based DESs were synthesized to extract bovine serum albumin (BSA), and ChCl-glycerol was selected as the suitable extraction solvent. Single factor experiments have been done to investigate the effects of the extraction process, including the amount of DES, the concentration of salt, the mass of protein, the shaking time, the temperature and PH value. Experimental results show 98.16% of the BSA could be extracted into the DES-rich phase in a single-step extraction under the optimized conditions. A high extraction efficiency of 94.36% was achieved, while the conditions were applied to the extraction of trypsin (Try). Precision, repeatability and stability experiments were studied and the relative standard deviations (RSD) of the extraction efficiency were 0.4246% (n=3), 1.6057% (n=3) and 1.6132% (n=3), respectively. Conformation of BSA was not changed during the extraction process according to the investigation of UV-vis spectra, FT-IR spectra and CD spectra of BSA. The conductivity, dynamic light scattering (DLS) and transmission electron microscopy (TEM) were used to explore the mechanism of the extraction. It turned out that the formation of DES-protein aggregates play a significant role in the separation process. All the results suggest that ChCl-based DES-ATPS are supposed to have the potential to provide new possibilities in the separation of proteins. PMID:25732422

  20. Replacement solvent identification for the laundry and decontamination drycleaning system (LADDs). Final report, October 1991-March 1992

    SciTech Connect

    Goydan, R.; Cheney, J.H.; Massucco, A.A.

    1992-10-01

    A comprehensive industry search was carried out for the U.S. Army Natick Research, Development and Engineering Center (Natick) to identify potential solvent alternatives for use in present prototypes and future versions of Natick Laundry and Decontamination Drycleaning System (LADDS). The present LADDS prototype used 1,1,2-trichloro- 1,2,2-trifluoroethane, a chlorofluorocarbon compound known as CFC-113, as the drycleaning solvent. However, CFC-113 has been identified as a ozone-depleting compound and its production and use are scheduled for phaseout under U.S. and international regulations to protect the stratospheric ozone layer. Consequently, Natick needs to identify alternative solvents available for use in the LADDS as well as to understand the engineering design changes that may be necessary in order to use the types of solvents that will be available for future LADDS.

  1. Optimization of conjugated linoleic acid triglycerides via enzymatic esterification in no-solvent system

    NASA Astrophysics Data System (ADS)

    Yi, Dan; Sun, Xiuqin; Li, Guangyou; Liu, Fayi; Lin, Xuezheng; Shen, Jihong

    2009-09-01

    We compared four esterifiable enzymes. The lipase Novozym 435 possessed the highest activity for the conjugated linoleic acid esterification during the synthesis of triglycerides. The triglycerides were synthesized by esterification of glycerol and conjugated linoleic acid (CLA) in a no-solvent system using lipase catalysis. We investigated the effects of temperature, enzyme concentration, water content, and time on esterification. Enzyme and water concentrations of up to 1% of the total reaction volume and a system temperature of 60°C proved optimal for esterification. Similarly, when the esterification was carried out for 24 h, the reaction ratio improved to 94.11%. The esterification rate of the rotating screen basket remained high (87.28%) when the enzyme was re-used for the 5th time. We evaluated the substrate selectivity of lipase (NOVO 435) and determined that this lipase prefers the 10,12-octadacadienoic acid to the 9,11-octadecadienoic acid.

  2. Kinetic and thermodynamic properties of beef heart mitochondrial ATPase: effect of co-solvent systems.

    PubMed

    Clark, D D; Schuster, S M

    1980-12-01

    The effects of glycerol and methanol upon beef heart mitochondrial ATPase (F1) were studied. Glycerol was found to be a potent reversible inhibitor of the F1-catalyzed hydrolysis of ATP and ITP. The inhibition of ATP hydrolysis was linear with respect to glycerol concentrations, while that of ITP was not. From the temperature dependence of Vmax for F1-catalyzed ATP and ITP hydrolysis in glycerol or methanol solutions, the energy of activation and the enthalpy of activation were calculated. The inhibitory effect of ADP on F1 hydrolytic activity was studied in three solvent systems (totally aqueous, 20% methanol, and 20% glycerol). Compared to the aqueous system, methanol decreased the potency of ADP as an inhibitor, and glycerol enhanced the potency. PMID:6455417

  3. Tracing explosive in solvent using quantum cascade laser with pulsed electric discharge system

    SciTech Connect

    Park, Seong-Wook; Tian, Chao; Martini, Rainer; Chen, Gang; Chen, I-chun Anderson

    2014-11-03

    We demonstrated highly sensitive detection of explosive dissolved in solvent with a portable spectroscopy system (Q-MACS) by tracing the explosive byproduct, N{sub 2}O, in combination with a pulsed electric discharge system for safe explosive decomposition. Using Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), the gas was monitored and analyzed by Q-MACS and the presence of the dissolved explosive clearly detected. While HMX presence could be identified directly in the air above the solutions even without plasma, much better results were achieved under the decomposition. The experiment results give an estimated detection limit of 10 ppb, which corresponds to a 15 pg of HMX.

  4. Enzymatic synthesis of medium chain monoglycerides in a solvent-free system.

    PubMed

    Langone, Marta A P; De Abreu, Melissa E; Rezende, Michelle J C; Sant'Anna, Geraldo L

    2002-01-01

    The synthesis of monocaprin, monolaurin, and monomyristin in a solvent-free system was conducted by mixing a commercial immobilized lipase with the organic reactants (glycerol and fatty acids) in a 20-mL batch reactor with constant stirring. The effects of temperature, fatty acid/glycerol molar ratio, and enzyme concentration on the reaction conversion were determined. The addition of molecular sieves in the assays of monomyristin synthesis was also evaluated. The reactions were carried out for 5 to 6 h and the nonpolar phase was analyzed by gas chromatography. The best results in terms of selectivity and conversion (defined as the percentage of fatty acid consumed) were achieved when the stoichiometric amount of reagents (molar ratio = 1) and 9% (w/w) commercial enzyme were used and the reaction was performed at 60 degrees C. The addition of molecular sieves did not improve the synthesis of monomyristin. Conversions as high as 80%, with monoglycerides being the major products, were attained. After 5 h of reaction, the concentration of monoglyceride was about twice that of diglyceride, and only trace amounts of triglyceride were found. The results illustrate the technical possibility of producing medium chain monoglycerides in a solvent-free medium using a simple batch reactor. PMID:12018319

  5. MODULAR CAUSTIC SIDE SOLVENT EXTRACTION UNIT GAMMA MONITORS SYSTEM FINAL REPORT

    SciTech Connect

    Casella, V

    2007-06-25

    The Department of Energy (DOE) selected Caustic-Side Solvent Extraction (CSSX) as the preferred technology for the removal of radioactive cesium from High-Level Waste (HLW) at the Savannah River Site (SRS). Before the full-scale Salt Waste Processing Facility (SWPF) becomes operational, the liquid Waste Organization (LWO) plans to process a portion of dissolved saltcake waste through a Modular CSSX Unit (MCU). This work was derived from Technical Task Request SP-TTR-2004-00013, ''Gamma Monitor for MCU.'' The deliverables for this task are the hardware and software for the gamma monitors and a report summarizing the testing and acceptance of this equipment for use in the MCU. Revision of this report is a deliverable in Technical Task Report SP-TTR-2006-00010, ''NaI Shield Box Testing.'' Gamma-ray monitors were developed to: {lg_bullet} Measure the Cs-137 concentration in the decontaminated salt solution before entering the DSS (Decontaminated Salt Solution) Hold Tank, {lg_bullet} Measure the Cs-137 concentration in the strip effluent before entering the Strip Effluent Hold Tank, {lg_bullet} Verify proper operation of the solvent extraction system by verifying material balance within the process (The DSS Hold Tank Cs-137 concentration will be very low and the Cs-137 concentration in the Strip Effluent Hold Tank will be approximately fifteen times higher than the Cs-137 concentration in the Feed Tank.)

  6. Chlorophyll-porphyrin heterodimers with orthogonal. pi. systems: Solvent polarity dependent photophysics

    SciTech Connect

    Wasielewski, M.R.; Johnson, D.G.; Niemczyk, M.P.; Gaines, G.L. III; O'Neil, M.P.; Svec, W.A. )

    1990-08-29

    The synthesis and properties of a series of fixed-distance chlorophyll-porphyrin molecules are described. These molecules consist of a methyl pyrochlorophyllide a moiety which is directly bonded at its 2-position to the 5-position of a 2,8,12,18-tetraethyl-3,7,13,17-tetramethyl-15-(p-tolyl)porphyrin. Steric hindrance between adjacent substituents rigidly positions the {pi} systems of both macrocycles perpendicular to one another. The macrocycles were selectively metalated with zinc to give the four possible derivatives, HCHP, ZCHP, HCZP, and ZCZP, where H, Z, C, and P denote free base, Zn derivative, chlorin, and porphyrin, respectively. The lowest excited singlet states of HCHP and ZCHP, which are localized on HC and ZC, respectively, exhibit lifetimes and fluorescence quantum yields that are solvent polarity independent and do not differ significantly from those of chlorophyll itself. ZCZP, however, displays a lowest excited singlet state and lifetime and fluorescence quantum yield that are strongly solvent polarity dependent.

  7. Tailoring the grooved texture of electrospun polystyrene nanofibers by controlling the solvent system and relative humidity.

    PubMed

    Liu, Wanjun; Huang, Chen; Jin, Xiangyu

    2014-01-01

    In this study, we have successfully fabricated electrospun polystyrene (PS) nanofibers having a diameter of 326 ± 50 nm with a parallel grooved texture using a mixed solvent of tetrahydrofuran (THF) and N,N-dimethylformamide (DMF). We discovered that solvent system, solution concentration, and relative humidity were the three key factors to the formation of grooved texture and the diameter of nanofibers. We demonstrated that grooved nanofibers with desired properties (e.g., different numbers of grooves, widths between two adjacent grooves, and depths of grooves) could be electrospun under certain conditions. When THF/DMF ratio was higher than 2:1, the formation mechanism of single grooved texture should be attributed to the formation of voids on the jet surface at the early stage of electrospinning and subsequent elongation and solidification of the voids into a line surface structure. When THF/DMF ratio was 1:1, the formation mechanism of grooved texture should be ascribed to the formation of wrinkled surface on the jet surface at the early stage of electrospinning and subsequent elongation into a grooved texture. Such findings can serve as guidelines for the preparation of grooved nanofibers with desired secondary morphology. PMID:25114643

  8. Tailoring the grooved texture of electrospun polystyrene nanofibers by controlling the solvent system and relative humidity

    PubMed Central

    2014-01-01

    In this study, we have successfully fabricated electrospun polystyrene (PS) nanofibers having a diameter of 326 ± 50 nm with a parallel grooved texture using a mixed solvent of tetrahydrofuran (THF) and N,N-dimethylformamide (DMF). We discovered that solvent system, solution concentration, and relative humidity were the three key factors to the formation of grooved texture and the diameter of nanofibers. We demonstrated that grooved nanofibers with desired properties (e.g., different numbers of grooves, widths between two adjacent grooves, and depths of grooves) could be electrospun under certain conditions. When THF/DMF ratio was higher than 2:1, the formation mechanism of single grooved texture should be attributed to the formation of voids on the jet surface at the early stage of electrospinning and subsequent elongation and solidification of the voids into a line surface structure. When THF/DMF ratio was 1:1, the formation mechanism of grooved texture should be ascribed to the formation of wrinkled surface on the jet surface at the early stage of electrospinning and subsequent elongation into a grooved texture. Such findings can serve as guidelines for the preparation of grooved nanofibers with desired secondary morphology. PMID:25114643

  9. The initial and final states of electron and energy transfer processes: Diabatization as motivated by system-solvent interactions

    SciTech Connect

    Subotnik, Joseph E.; Cave, Robert J.; Steele, Ryan P.; Shenvi, Neil

    2009-06-21

    For a system which undergoes electron or energy transfer in a polar solvent, we define the diabatic states to be the initial and final states of the system, before and after the nonequilibrium transfer process. We consider two models for the system-solvent interactions: A solvent which is linearly polarized in space and a solvent which responds linearly to the system. From these models, we derive two new schemes for obtaining diabatic states from ab initio calculations of the isolated system in the absence of solvent. These algorithms resemble standard approaches for orbital localization, namely, the Boys and Edmiston-Ruedenberg (ER) formalisms. We show that Boys localization is appropriate for describing electron transfer [Subotnik et al., J. Chem. Phys. 129, 244101 (2008)] while ER describes both electron and energy transfer. Neither the Boys nor the ER methods require definitions of donor or acceptor fragments and both are computationally inexpensive. We investigate one chemical example, the case of oligomethylphenyl-3, and we provide attachment/detachment plots whereby the ER diabatic states are seen to have localized electron-hole pairs.

  10. Caustic-Side Solvent-Extraction Modeling for Hanford Interim Pretreatment System

    SciTech Connect

    Moyer, B.A.; Birdwell, J.F.; Delmau, L. H.; McFarlane, J.

    2008-06-01

    The purpose of this work is to examine the applicability of the Caustic-Side Solvent Extraction (CSSX) process for the removal of cesium from Hanford tank-waste supernatant solutions in support of the Hanford Interim Pretreatment System (IPS). The Hanford waste types are more challenging than those at the Savannah River Site (SRS) in that they contain significantly higher levels of potassium, the chief competing ion in the extraction of cesium. It was confirmed by use of the CSSX model that the higher levels of potassium depress the cesium distribution ratio (DCs), as validated by measurement of DCs values for four of eight specified Hanford waste-simulant compositions. The model predictions were good to an apparent standard error of ±11%. It is concluded from batch distribution experiments, physical-property measurements, equilibrium modeling, flowsheet calculations, and contactor sizing that the CSSX process as currently employed for cesium removal from alkaline salt waste at the SRS is capable of treating similar Hanford tank feeds. For the most challenging waste composition, 41 stages would be required to provide a cesium decontamination factor (DF) of 5000 and a concentration factor (CF) of 5. Commercial contacting equipment with rotor diameters of 10 in. for extraction and 5 in. for stripping should have the capacity to meet throughput requirements, but testing will be required to confirm that the needed efficiency and hydraulic performance are actually obtainable. Markedly improved flowsheet performance was calculated for a new solvent formulation employing the more soluble cesium extractant BEHBCalixC6 used with alternative scrub and strip solutions, respectively 0.1 M NaOH and 10 mM boric acid. The improved system can meet minimum requirements (DF = 5000 and CF = 5) with 17 stages or more ambitious goals (DF = 40,000 and CF = 15) with 19 stages. Potential benefits of further research and development are identified that would lead to reduced costs, greater

  11. Determination of alkanolamines in cattails (Typha latifolia) utilizing electrospray ionization with selected reaction monitoring and ion-exchange chromatography.

    PubMed

    Peru, Kerry M; Headley, John V; Doucette, William J

    2004-01-01

    Selected reaction monitoring (SRM) with electrospray ionization was used as a specific detection technique for the analysis of alkanolamines in plant tissue extracts. Ion-exchange chromatography was used as the method of separation. Quantification was based on monitoring the loss of either H2O or 2(H2O) from the protonated molecule [M+H]+. The method provided increased selectivity for all analytes and better detection limits for three of the six analytes investigated compared with an earlier method using selected ion monitoring with liquid chromatography. Instrumental detection limits ranged from 6-300 pg injected for monoethanolamine (MEA), monoisopropanolamine (MIPA), diethanolamine (DEA), methyldiethanolamine (MDEA), diisopropanolamine (DIPA), and triethanolamine (TEA). Method robustness and selectivity were demonstrated by the determination of DIPA and a known transformation product MIPA in over 35 plant extract samples derived from a laboratory study of plant uptake mechanisms. PMID:15282789

  12. Solvent systems combining neutral and acidic extractants for separating trivalent lanthanides from the transuranic elements.

    SciTech Connect

    Lumetta, G. J.; Gelis, A. V.; Vandegrift, G. F.; Chemical Sciences and Engineering Division; PNL

    2010-01-01

    This paper is a review of recent publications that have focused on combined extractant systems for separating trivalent actinides from the lanthanides. These mixed solvent systems combine an acidic extractant with a neutral extractant to achieve the actinide/lanthanide separation. Depending on the neutral extractant used, three categorizations of systems can be considered, including combinations of acidic extractants with 1 diamides, 2 carbamoylmethylphosphine oxides, and 3 polydentate nitrogen-donor ligands. This review of relevant publications indicates that, although there is significant potential for practical exploitation of mixed neutral/acidic extractant systems to achieve a single-step separation of trivalent actinides from acidic high-level waste solutions, the fundamental chemistry underlying these combined systems is not yet well understood. For example, although there is strong evidence suggesting that adducts form between the neutral and acidic extractants, the nature of these adducts generally is not known. Likewise, the structures of the mixed complexes formed between the metal ions and the two different extractants are not fully understood. Research into these basic phenomena likely will provide clues about how to design practical mixed-extractant systems that can be used to efficiently separate the transuranic elements from the lanthanides and other components of irradiated fuel.

  13. Solvent Systems Combining Neutral and Acidic Extractants for Separating Trivalent Lanthanides from the Transuranic Elements

    SciTech Connect

    Lumetta, Gregg J.; Gelis, Artem V.; Vandegrift, George F.

    2010-04-23

    This paper is a review of recent publications that have focused on combined extractant systems for separating trivalent actinides from the lanthanides. These mixed solvent systems combine an acidic extractant with a neutral extractant to achieve the actinide/lanthanide separation. Depending on the neutral extractant used, three categorizations of systems can be considered, including combinations of acidic extractants with 1) diamides, 2) carbamoylmethylphosphine oxides, and 3) polydentate nitrogen-donor ligands. This review of relevant publications indicates that, although there is significant potential for practical exploitation of mixed neutral/acidic extractant systems to achieve a single-step separation of trivalent actinides from acidic high-level waste solutions, the fundamental chemistry underlying these combined systems is not yet well understood. For example, although there is strong evidence suggesting that adducts form between the neutral and acidic extractants, the nature of these adducts generally is not known. Likewise, the structures of the mixed complexes formed between the metal ions and the two different extactants are not fully understood. Research into these basic phenomena likely will provide clues about how to design practical mixed-extractant systems that can be used to efficiently separate the transuranic elements from the lanthanides and other components of irradiated fuel.

  14. Homogeneous bubble nucleation in binary systems of liquid solvent and dissolved gas

    NASA Astrophysics Data System (ADS)

    Němec, Tomáš

    2016-03-01

    A formulation of the classical nucleation theory (CNT) is developed for bubble nucleation in a binary system composed of a liquid solvent and a dissolved gas. The theoretical predictions are compared to the experimental nucleation data of four binary mixtures, i.e. diethylether - nitrogen, propane - carbon dioxide, isobutane - carbon dioxide, and R22 (chlorodifluoromethane) - carbon dioxide. The presented CNT formulation is found to improve the precision of the simpler theoretical method of Ward et al. [J. Basic Eng. 92 (10), 71-80, 1970] based on the weak-solution approximation. By analyzing the available experimental nucleation data, an inconsistency in the data reported by Mori et al. [Int. J. Heat Mass Transfer, 19 (10), 1153-1159, 1976] for propane - carbon dioxide and R22 - carbon dioxide is identified.

  15. Protein separation and enrichment by counter-current chromatography using reverse micelle solvent systems.

    PubMed

    Shen, Ching-Wei; Yu, Tiing

    2007-06-01

    A protein mixture consisting of myoglobin, cytochrome c, and lysozyme was separated by high-speed counter-current chromatography using a two-phase aqueous/reverse micelle-containing organic solvent system. About 50% stationary phase retention ratio was obtained in most chromatographic experiments. Separations were manipulated mainly by pH gradients that controlled the electrostatic interactions between the protein molecules and reverse micelles. Separations were further improved by incorporating an ionic strength gradient along with the pH gradient. Control of ionic strength in the aqueous solution helped fine-tune protein partitioning between the stationary and mobile phases. Although non-specific protein interactions affected baseline resolution, recovery of cytochrome c and lysozyme reached 90% and 82%. Furthermore, concentration or enrichment of these two proteins was achieved from a large-volume sample load. This technique can potentially be employed in the recovery and enrichment of proteins from large-volume aqueous solutions. PMID:17289061

  16. Design of controlled release systems for THEDES-Therapeutic deep eutectic solvents, using supercritical fluid technology.

    PubMed

    Aroso, Ivo M; Craveiro, Rita; Rocha, Ângelo; Dionísio, Madalena; Barreiros, Susana; Reis, Rui L; Paiva, Alexandre; Duarte, Ana Rita C

    2015-08-15

    Deep eutectic solvents (DES) can be formed by bioactive compounds or pharmaceutical ingredients. A therapeutic DES (THEDES) based on ibuprofen, a non-steroidal anti-inflammatory drug (NSAID), and menthol was synthesized and its thermal behavior was analyzed by differential scanning calorimetry (DSC). A controlled drug delivery system was developed by impregnating a starch:poly-ϵ-caprolactone polymeric blend (SPCL 30:70) with the menthol:ibuprofen THEDES in different ratios (10 and 20 wt%), after supercritical fluid sintering at 20 MPa and 50 °C. The morphological characterization of SPCL matrices impregnated with THEDES was performed by scanning electron microscopy (SEM) and micro-computed tomography (micro-CT). Drug release studies were carried out in a phosphate buffered saline. The results obtained provide important clues for the development of carriers for the sustainable delivery of bioactive compounds. PMID:26142248

  17. Characterization of Acid-neutralizing Basic Monomers in Co-solvent Systems by NMR.

    PubMed

    Laurence, Jennifer S; Nelson, Benjamin N; Ye, Qiang; Park, Jonggu; Spencer, Paulette

    2014-01-01

    Metabolic activity of the oral microbiota leads to acidification of the microenvironment and promotes demineralization of tooth structure at the margin of composite restorations. The pathogenic impact of the biofilm at the margin of the composite restoration could be reduced by engineering novel dentin adhesives that neutralize the acidic micro-environment. Integrating basic moieties into methacrylate derivatives has the potential to buffer against acid-induced degradation, and we are investigating basic monomers for this purpose. These monomers must be compatible with existing formulations, which are hydrophobic and marginally miscible with water. As such, cosolvent systems may be required to enable analysis of monomer function and chemical properties. Here we present an approach for examining the neutralizing capacity of basic methacrylate monomers in a water/ethanol co-solvent system using NMR spectroscopy. NMR is an excellent tool for monitoring the impact of co-solvent effects on pKa and buffering capacity of basic monomers because chemical shift is extremely sensitive to small changes that most other methods cannot detect. Because lactic acid (LA) is produced by oral bacteria and is prevalent in this microenvironment, LA was used to analyze the effectiveness of basic monomers to neutralize acid. The (13)C chemical shift of the carbonyl in lactic acid was monitored as a function of ethanol and monomer concentration and each was correlated with pH to determine the functional buffering range. This study shows that the buffering capacity of even very poorly water-soluble monomers can be analyzed using NMR. PMID:25400302

  18. Recovery of solvent in hydrocarbon processing systems. [N-methyl-2pyrrolidone

    SciTech Connect

    Sherman, P.B.

    1983-06-28

    This is a claim for a lubricating oil solvent refining process employing n-methyl-2pyrrolidone as solvent in which solvent is recovered from a solvent-oil mixture in a staged series of vaporization zones at progressively increasing pressure with external heat supplied only to the vaporization stage having the highest pressure. Control of vaporization in the lower pressure stages is effected by passing a minor portion of the vapors from the highest pressure stage to the lowest pressure stage. A high temperature vacuum flash vaporization zone may follow the high pressure vaporization stage with external heat supplied to the vacuum flash vaporization zone.

  19. Separation of polysaccharides from rice husk and wheat bran using solvent system consisting of BMIMOAc and DMI.

    PubMed

    Hou, Qidong; Li, Weizun; Ju, Meiting; Liu, Le; Chen, Yu; Yang, Qian; Wang, Jingyu

    2015-11-20

    A solvent system consisting of 1,3-dimethyl-2-imidazolidinone (DMI), and ionic liquid 1-butyl-3-methylimidazolium acetate (BMIMOAc) was used to separate polysaccharides from rice husk and wheat bran. The effects of the DMI/BMIMOAc ratios, temperature, and time on the dissolution of rice husk and wheat bran were investigated, and the influence of anti-solvents on the regeneration of polysaccharides-rich material was evaluated. We found that the solvent system is more powerful to dissolve rice husk and wheat bran than pure BMIMOAc, and that polysaccharides-rich material can be effectively separated from the biomass solution. The polysaccharides content of regenerated material from wheat bran can reach as high as 94.4% when ethanol was used as anti-solvents. Under optimized conditions, the extraction rate of polysaccharides for wheat bran can reach as high as 71.8% at merely 50°C. The recycled solvent system exhibited constant ability to separate polysaccharides from rice husk and wheat bran. PMID:26344309

  20. Association constants and distribution functions for ion pairs in binary solvent mixtures: Application to a cyanine dye system

    NASA Astrophysics Data System (ADS)

    Odinokov, A. V.; Basilevsky, M. V.; Nikitina, E. A.

    2011-10-01

    The computations of the association constants Kass were performed at the microscopic level for the ion pair Cy+I- composed of the complex cyanine dye cation Cy+ coupled to the negative iodine counterion. The wide array of Kass values is arranged by a variation of the composition of the binary solvent mixtures toluene/dimethylsulfoxide with the accompanying change of the solvent polarity. The potentials of mean force (PMFs) are calculated for a set of interionic separations R in the Cy+I- by a methodology which combines the quantum-chemical techniques for the treatment of the electronic structure of the Cy+I- system with the recent dielectric continuum approach which accounts for the solvation effects. For a given solute/solvent system the probability function P(R), which describes the distribution of interionic separations, is constructed in terms of the PMFs and implemented for the evaluation of the Kass.

  1. MODULAR CAUSTIC SIDE SOLVENT EXTRACTION UNIT (MCU) GAMMA MONITORS SYSTEM FINAL REPORT

    SciTech Connect

    Casella, V

    2005-12-15

    The Department of Energy (DOE) selected Caustic-Side Solvent Extraction (CSSX) as the preferred technology for the removal of radioactive cesium from High-Level Waste (HLW) at the Savannah River Site (SRS). Before the full-scale Salt Waste Processing Facility (SWPF) becomes operational, the Closure Business Unit (CBU) plans to process a portion of dissolved saltcake waste through a Modular CSSX Unit (MCU). This work was derived from Technical Task Request SP-TTR-2004-00013, ''Gamma Monitor for MCU''. The deliverables for this task are the hardware and software for the gamma monitors and a report summarizing the testing and acceptance of this equipment for use in the MCU. Gamma-ray monitors are required to: (1) Measure the Cs-137 concentration in the decontaminated salt solution before entering the DSS (Decontaminated Salt Solution) Hold Tank, (2) Measure the Cs-137 concentration in the strip effluent before entering the Strip Effluent Hold Tank, (3) Verify proper operation of the solvent extraction system by verifying material balance within the process (The DSS Hold Tank Cs-137 concentration will be very low and the Cs-137 concentration in the Strip Effluent Hold Tank will be fifteen times higher than the Cs-137 concentration in the Feed Tank.) Sodium iodide monitors are used to measure the Cs-137 concentration in the piping before the DSS Hold tank, while GM monitors are used for Cs-137 measurements before the Strip Effluent Hold Tank. Tungsten shields were designed using Monte Carlo calculations and fabricated to reduce the process background radiation at the detector positions. These monitors were calibrated with NIST traceable standards that were specially made to be the same as the piping being monitored. Since this gamma ray monitoring system is unique, specially designed software was written and acceptance tested by Savannah River National Laboratory personnel. The software is a LabView-based application that serves as a unified interface for controlling

  2. Solvent viscosity influence on the chemiexcitation efficiency of inter and intramolecular chemiluminescence systems.

    PubMed

    Khalid, Muhammad; Souza, Sergio P; Ciscato, Luiz F M L; Bartoloni, Fernando H; Baader, Wilhelm J

    2015-07-01

    The effects of the medium viscosity on the chemiexcitation quantum yields of the induced decomposition of 1,2-dioxetanes (highly efficient intramolecular CIEEL system) and the catalyzed decomposition of diphenoyl peroxide and a 1,2-dioxetanone derivative (model systems for the intermolecular CIEEL mechanism, despite their low efficiency) are compared in this work. Quantum yields of the rubrene catalyzed decomposition of diphenoyl peroxide and spiro-adamantyl-1,2-dioxetanone as well as the fluoride induced decomposition of a phenoxy-substituted 1,2-dioxetane derivative are shown to depend on the composition of the binary solvent mixture toluene/diphenyl ether, which possess similar polarity parameters but different viscosities. Correlations of the quantum yield data with the medium viscosity using the diffusional and the frictional (free-volume) models indicate that the induced 1,2-dioxetane decomposition indeed occurs by an entirely intramolecular process and the low efficiency of the intermolecular chemiluminescence systems (catalyzed decomposition of diphenoyl peroxide and 1,2-dioxetanone derivative) is not primarily due to the cage escape of radical ion species. PMID:26067192

  3. The Effects of Radiation Chemistry on Solvent Extraction 4. Separation of the Trivalent Actinides and Considerations for Radiation-Resistant Solvent Systems

    SciTech Connect

    Bruce J. Mincher; Giuseppe Modolo; Stephen P. Mezyk

    2010-07-01

    The separation of the minor actinides from dissolved nuclear fuel is one of the more formidable challenges associated with the design of the advanced fuel cycle. The partitioning of americium and its transmutation in fast reactor fuel would reduce high-level-waste long-term storage requirements by as much as two orders of magnitude. However, the lanthanides have very similar chemistry. They also have large neutron capture cross sections and poor metal alloy properties and thus they can not be incorporated into fast reactor fuel. A separation amenable to currently existing aqueous solvent extraction processes is therefore desired, and research is underway in Europe, Asia and the USA toward this end. Current concepts for this final separation rely on the use of soft-donor nitrogen or sulfur-containing ligands that favor complexation with the 5f orbitals of the actinides. In the USA, the most developed process is the TALSPEAK (Trivalent Actinide Lanthanide Separation by Phosphorous reagent Extraction from Aqueous Komplexes) process, based upon the competition between bis(2-ethylhexyl)phosphoric acid (HDEHP) in the organic phase and lactate-buffered diethylenetriamine pentaacetic acid (DTPA) in the aqueous phase. In Europe and Japan, current investigation is focused on the BTP diamide mixtures or dithiophosphinic acids. Any process eventually adopted must be robust under conditions of high-radiation dose-rates and acid hydrolysis. The effects of irradiation on solvent extraction formulations may result in: 1) decreased ligand concentrations resulting in lower metal distribution ratios, 2) decreased selectivity due to the generation of ligand radiolysis products that are complexing agents, 3) decreased selectivity due to the generation of diluent radiolysis products that are complexing agents, and 4) altered solvent performance due to films, precipitates, and increased viscocity. Many of the ligands associated with minor actinide/lanthanide separations are relatively

  4. Production of low-density poly (4-methyl-1-pentene) foam via phase inversion from binary solvent/nonsovent systems

    SciTech Connect

    Simandl, R.F.; Robinson, D.N.; Bolinger, W.L.; Davis, W.E.

    1991-11-01

    Phase inversion from durene/naphthalene, durene/tmpdo, and durene/hexadecanol binary solvent/nonsolvent systems produced well interconnected, radiographically homogeneous, open-celled poly (4- methyl-1-pentene) or pmp foams. These foams ranged in density from 5 to 50 mg/cm{sup 2}. Foam homogeneity and casting efficiency were dependent on casting scheme, durene quality, solvent-to-nonsolvent ratio, and quench temperature. Foam density tracked linearly with dissolved-polymer content. Homogeneous, ultralow-density (5 to 6 mg/cm{sup 3}) foams were produced by using a 49/51 durene/naphthalene solvent eutectic. Foam hardness or firmness tracked somewhat linearly with foam density. Foams with densities above 20 mg/cm{sup 3} were too fragile to handle without damage.

  5. FT-IR study on interactions between medroxyprogesterone acetate and solvent in CHCl3/cyclo-C6H12 and CCl4/cyclo-C6H12 binary solvent systems

    NASA Astrophysics Data System (ADS)

    Shi, Jie-hua; Fan, Chun-hui

    2012-09-01

    The intermolecular interactions between medroxyprogesterone acetate (MPA) and CHCl3 and CCl4 solvent in CHCl3/cyclo-C6H12 and CCl4/cyclo-C6H12 binary solvent systems have been studied by Fourier transform infrared spectroscopy (FT-IR). The experimental results showed that there are hydrogen bonding interactions between oxygen atoms of all carbonyl groups in MPA and hydrogen atom of CHCl3 so as to form 1:3 complex of MPA with CHCl3 and produce three new absorption bands at 1728.9-1736.1, 1712.7-1717.4 and 1661.9-1673.8 cm-1, respectively. And, 1:1 complex of MPA with CCl4 is formed in CCl4/cyclo-C6H12 binary solvent as a result of hydrogen bonding interaction between C3 carbonyl group and empty d-orbital in chlorine atom of CCl4 leading to producing new absorption band at 1673.2-1674.2 cm-1. However, all free carbonyl and associated carbonyl stretching vibrations of MPA in CHCl3/cyclo-C6H12 and CCl4/cyclo-C6H12 binary solvent systems shift to lower wavenumbers with the increasing of volume fraction of CHCl3 and CCl4 in binary solvent systems owing to the dipole-dipole interaction and the dipole-induced dipole interaction between MPA and solvents.

  6. Control of Evaporation Behavior of an Inkjet-Printed Dielectric Layer Using a Mixed-Solvent System

    NASA Astrophysics Data System (ADS)

    Yang, Hak Soon; Kang, Byung Ju; Oh, Je Hoon

    2016-01-01

    In this study, the evaporation behavior and the resulting morphology of inkjet-printed dielectric layers were controlled using a mixed-solvent system to fabricate uniform poly-4-vinylphenol (PVP) dielectric layers without any pinholes. The mixed-solvent system consisted of two different organic solvents: 1-hexanol and ethanol. The effects of inkjet-printing variables such as overlap condition, substrate temperature, and different printing sequences (continuous and interlacing printing methods) on the inkjet-printed dielectric layer were also investigated. Increasing volume fraction of ethanol (VFE) is likely to reduce the evaporation rate gradient and the drying time of the inkjet-printed dielectric layer; this diminishes the coffee stain effect and thereby improves the uniformity of the inkjet-printed dielectric layer. However, the coffee stain effect becomes more severe with an increase in the substrate temperature due to the enhanced outward convective flow. The overlap condition has little effect on the evaporation behavior of the printed dielectric layer. In addition, the interlacing printing method results in either a stronger coffee stain effect or wavy structures of the dielectric layers depending on the VFE of the PVP solution. All-inkjet-printed capacitors without electrical short circuiting can be successfully fabricated using the optimized PVP solution (VFE = 0.6); this indicates that the mixed-solvent system is expected to play an important role in the fabrication of high-quality inkjet-printed dielectric layers in various printed electronics applications.

  7. Effect of sodium chloride on solute-solvent interactions in aqueous polyethylene glycol-sodium sulfate two-phase systems.

    PubMed

    da Silva, Nuno R; Ferreira, Luisa A; Madeira, Pedro P; Teixeira, José A; Uversky, Vladimir N; Zaslavsky, Boris Y

    2015-12-18

    Partition behavior of eight small organic compounds and six proteins was examined in poly(ethylene glycol)-8000-sodium sulfate aqueous two-phase systems containing 0.215M NaCl and 0.5M osmolyte (sorbitol, sucrose, TMAO) and poly(ethylene glycol)-10000-sodium sulfate-0.215M NaCl system, all in 0.01M sodium phosphate buffer, pH 6.8. The differences between the solvent properties of the coexisting phases (solvent dipolarity/polarizability, hydrogen bond donor acidity, and hydrogen bond acceptor basicity) were characterized with solvatochromic dyes using the solvatochromic comparison method. Differences between the electrostatic properties of the phases were determined by analysis of partitioning of sodium salts of dinitrophenylated (DNP-) amino acids with aliphatic alkyl side-chain. The partition coefficients of all compounds examined (including proteins) were described in terms of solute-solvent interactions. The results obtained in the study show that solute-solvent interactions of nonionic organic compounds and proteins in polyethylene glycol-sodium sulfate aqueous two-phase system change in the presence of NaCl additive. PMID:26615710

  8. Solvent effect on the size of platinum nanoparticle synthesized in microemulsion systems

    NASA Astrophysics Data System (ADS)

    Salabat, Alireza; Far, Mina Rahmati

    2012-05-01

    In this research work, the effect of solvent on the size of paltinum nanoparticles synthesized by microemulsion method was investigated. Platinum nanoparticles have been prepared by the reduction of H2PtCl6 with hydrazine in water-in-oil (w/o) microemulsions consisting of sodium bis(2-ethylhexyl) sulfo-succinate (AOT) and solvents n-hexane, cyclohexane and n-nonane. The size of the platinum nanoparticles was measured using transmission electron microscopy (TEM). It was verified that, for reduction of H2PtCl6 by hydrazine in microemulsion with different organic solvents, the solvents are arranged by their influence on nanoparticle sizes as follows: n-nonane > cyclohexane > n-hexane.

  9. Enzymatic synthesis of medium-chain triglycerides in a solvent-free system.

    PubMed

    Langone, M A; Sant'Anna, G L

    1999-01-01

    The synthesis of tricaprylin, tricaprin, trilaurin, and trimyristin in a solvent- free system was conducted by mixing a commercial immobilized lipase (Lipozyme IM 20, Novo Nordisk, Bagsvaerd, Denmark) with the organic reactants (glycerol and fatty acids) in a 20-mL batch reactor with constant stirring. In a first set of experiments, the effect of water concentration (0-6%) on the reaction conversion was shown to be negligible. In a second set of experiments, the effects of temperature (70-90 degrees C), fatty acid/glycerol molar ratio (1-5), and enzyme concentration (1-9% [w/w]) on the reaction conversion were determined by the application of a 3 x 3 experimental design. The reactions were carried out for 26 h and the nonpolar phase was analyzed by gas chromatography (GC). Appreciable levels of medium-chain triglycerides were achieved, except for tricaprylin. For the triglyceride production, higher selectivity was attained under the following conditions: molar ratio of 5, enzyme concentration of 5 or 9% (w/w) and temperatures of 70 degrees C (tricaprin), 80 degrees C (trilaurin), and 90 degrees C (trimyristin). Statistical analysis indicated that the fatty acid/glycerol molar ratio was the most significant variable affecting the synthesis of triglycerides. PMID:15304695

  10. Cellulose esters synthesized using a tetrabutylammonium acetate and dimethylsulfoxide solvent system

    NASA Astrophysics Data System (ADS)

    Yu, Yongqi; Miao, Jiaojiao; Jiang, Zeming; Sun, Haibo; Zhang, Liping

    2016-07-01

    Cellulose acetate (CA) and cellulose acetate propionate (CAP) were homogeneously synthesized in a novel tetrabutylammonium acetate/dimethyl sulfoxide (DMSO) solvent system, without any catalyst, at temperatures below 70 °C. The molecular structures of the cellulose esters (CEs) and distributions of the substituents in the anhydroglucose repeating units were determined using 13C cross-polarization magic angle spinning nuclear magnetic resonance spectroscopy, and the degree of substitution (DS) values were determined using 1H nuclear magnetic resonance spectroscopy. The structures of the CEs, regenerated cellulose (RC), and pulp were determined using Fourier transform infrared spectroscopy. The thermal properties of the products were determined using thermogravimetric analysis. The temperatures of initial decomposition of the CEs were up to 40 °C higher than those of the RC and pulp. All the CEs were highly soluble in DMSO, but were insoluble in acetone. CAs with DS values less than 2.6 swelled or were poorly dissolved in CHCl3, but those with DS values above 2.9 dissolved rapidly. CAPs with DS values above 2.6 had good solubilities in ethyl acetate.

  11. Characterization of sorption of endosulfan isomers and chlorpyrifos on container walls using mixed solvent systems.

    PubMed

    Wasswa, J; Nkedi-Kizza, P; Kiremire, B T

    2010-07-14

    The reliability of sorption data for organic contaminants with low water solubility has generated great concern because of the variability in the literature of the soil-water partition coefficient (K(OC)) values for these compounds. In particular, sorption on container walls in aqueous systems when measuring the sorption coefficient, K(D) (used to calculate K(OC) values), for strongly hydrophobic compounds (SHOCs) is a potential source for discrepancies in the K(OC) values. In this study, we eliminated sorption on container walls when measuring sorption of three halogenated compounds (alpha-endosulfan, beta-endosulfan, and chlorpyrifos) using mixed solvents. Various mixtures of methanol and water were used. Sorption experiments were designed using polytetrafluoroethylene (Teflon)-lined centrifuge tubes and a high-performance liquid chromatography (HPLC) syringe. Solution sample analysis was performed using HPLC equipped with a UV diode array detector and C-18 column at a wavelength of 214 nm, with acetonitrile/water (80:20, v/v) as the mobile phase. The solvophobic model was used to calculate the percent recovery (% R(M)) in water of the test compounds. Our results show that there is considerable sorption on container walls for the three chemicals at volume fractions of methanol (f(c) < 0.4). The data show that, in aqueous systems, percent recoveries for alpha-endosulfan, beta-endosulfan, and chlorpyrifos are 48, 45, and 61, respectively. Thus, to generate reliable sorption data for alpha-endosulfan, beta-endosulfan, and chlorpyrifos and other SHOCs, experiments may be conducted using Teflon-lined centrifuge tubes and HPLC syringes at volume fractions of methanol (f(c) >or= 0.5). PMID:20557097

  12. Use of mixed solvent systems to eliminate sorption of strongly hydrophobic organic chemicals on container walls.

    PubMed

    Muwamba, Augustine; Nkedi-Kizza, Peter; Rhue, Roy Dean; Keaffaber, Jeffrey J

    2009-01-01

    Strongly hydrophobic organic chemicals (SHOCs) can be defined as neutral organic chemicals that have soil organic carbon (OC) normalized sorption coefficient (K(OC)) >10,000. Sorption isotherms of SHOCs are normally measured in aqueous systems to determine K(OC). Since SHOCs can adsorb on container walls leading to overestimation of K(OC), we used mixed solvent systems to characterize this potential error. Sorption coefficient (K(M)) and percent recovery (%R(M)) of anthracene, DDT, and dieldrin during sorption on centrifuge tubes made of polytetrafluoroethylene (PTFE), polycarbonate (PC), polypropylene copolymer (PPCO), and glass high pressure liquid chromatography vials (HPLCV) were measured in volume ratio-varied methanol-water mixtures until 100% recovery of the sorbate was achieved. The data were evaluated using the Solvophobic theory. The K(M) values of the entire test SHOCs decreased exponentially with increasing fraction of methanol (f(c)). For sorption on PTFE, 100% recovery of the three chemicals was at f(c) > 0.45. However, 100% recovery of DDT and anthracene from PC and PPCO was at f(c) > 0.90. The 100% recovery of dieldrin from HPLC vials was at f(c) > 0.70. In water the calculated recoveries of DDT, dieldrin, and anthracene from PTFE were 32, 43, and 48%, respectively. However, the recoveries of dieldrin from HPLC vials and DDT and anthracene from PC and PPCO ranged from 2 to 14%. The data demonstrate that sorption on container walls is a source of error that can reduce the integrity of the analyte and might be one of the causes for the large variability in literature K(OC) values for SHOCs. PMID:19398514

  13. Alternative Solvents as a Basis for Life Supporting Zones in Planetary Systems

    NASA Astrophysics Data System (ADS)

    Leitner, J. J.; Schwarz, R.; Funk, B.; Pilat-Lohinger, E.; Firneis, M. G.; Dvorak, R.; Eybl, V.; Eggl, S.; Aittola, M.

    2008-09-01

    The habitable zone is defined as the region around a star where a planet (or planets) would receive enough radiation from the central star (with the inclusion of a terrestrial-like model atmosphere) to maintain liquid water on its (their) surface [1]. On the terrestrial surface water was common since the very early history of the planet, and is therefore a permanent available solvent for the terrestrial biochemistry. The fact that terrestrial life is mainly based on a C = O metabolism (at least the existing one) results probably from the specific chemical characteristics of water. Nevertheless, also other solvents are able to maintain a metabolism based either C = O or on different Cmetabolisms like C = N, HN = C = NH, C = C, etc. [2]. A very promising solvent will be ammonia. It may act as coolant in water-ammonia composites and enlarges the temperature range of its liquid phase. Another quite good possibility for a solvent could be constituted by formamide. Under standard conditions, formamide will be liquid in a larger temperature range than water, namely from 273 to 495 K (0 °C to 222 °C). Moreover, formamide as solvents are able to maintain a C = O metabolism. Both compounds have already been detected in molecular clouds and seem to be very common in the outer space. The definition of the habitable zone includes water as solvent. In our work we use the concept of a "life supporting zone" to underline the fact of using other solvents than water. In our presentation first results of a life supporting zone around main sequence stars will be shown containing formamide-water and water-ammonia composites as solvents. Atmospheric effects are included by the following assumptions: (1) the planet is a grey body in the visible and a black body in the infrared region and (2) the atmosphere is black in the infrared. These first approximations allow us to simulate a greenhouse-effect. Preliminary results on the basis of water as solvent agree well with earlier

  14. Conversion of glucose into furans in the presence of AlCl3 in an ethanol-water solvent system.

    PubMed

    Yang, Yu; Hu, Changwei; Abu-Omar, Mahdi M

    2012-07-01

    Glucose was converted into furans (5-hydroxymethylfurfural and 5-ethoxymethylfurfural) in the presence of AlCl(3) in an ethanol-water solvent system. The system showed high activity for the conversion of glucose into furans but low activity for the subsequent formation of LAs (levulinic acid and ethyl levulinate). High furans yield of 57% with low LAs yield of 11% can be obtained at 160 °C within 15 min. Glucose-based disaccharides (sucrose, maltose and cellobiose) and polysaccharides (starch but not cellulose) can also be converted to furans effectively under the same condition. AlCl(3) can be used to prepare furans from biomass-derived compounds in ethanol-water, a green solvent system. PMID:22609675

  15. Novel Solvent System for Post Combustion CO{sub 2} Capture

    SciTech Connect

    Brown, Alfred; Brown, Nathan

    2013-09-30

    The purpose of this project was to evaluate the performance of ION’s lead solvent and determine if ION’s solvent candidate could potentially meet DOE’s target of achieving 90% CO{sub 2} Capture from a 550 MWe Pulverized Coal Plant without resulting in an increase in COE greater than 35%. In this project, ION’s lead solvent demonstrated a 65% reduction in regeneration energy and a simultaneous 35% reduction in liquid to gas ratio (L/G) in comparison to aqMEA at 90% CO{sub 2} capture using actual flue gas at 0.2 MWe. Results have clearly demonstrated that the ION technology is in line with DOE performance expectations and has the potential to meet DOE’s performance targets in larger scale testing environments.

  16. Degree of conversion of simplified contemporary adhesive systems as influenced by extended air-activated or passive solvent volatilization modes.

    PubMed

    Borges, Boniek C D; Souza-Junior, Eduardo Jose; Brandt, William C; Loguercio, Alessandro D; Montes, Marcos A J R; Puppin-Rontani, Regina M; Sinhoreti, Mario Alexandre Coelho

    2012-01-01

    This study evaluated the effect of five methods of solvent volatilization on the degree of conversion (DC) of nine one-bottle adhesive systems using Fourier transform infrared/attenuated total reflectance (FTIR/ATR) analysis. Nine adhesives were tested: Adper Single Bond 2 (SB), Adper Easy One (EO), One Up Bond F Plus (OUP), One Coat Bond SL (OC), XP Bond (XP), Ambar (AM), Natural Bond (NB), GO, and Stae. The adhesive systems were applied to a zinc-selenide pellet and 1) cured without solvent volatilization, 2) left undisturbed for 10 seconds before curing, 3) left undisturbed for 60 seconds before curing, 4) air-dried with an air stream for 10 seconds before curing, and 5) air-dried with an air stream for 60 seconds before curing. FTIR/ATR spectra were obtained, and the DC was calculated by comparing the aliphatic bonds/reference peaks before and after light activation for 10 seconds (FlashLite 1401). The DC means of each material were analyzed by one-way analysis of variance and post hoc Tukey test (p<0.05). The DC of GO and Stae adhesive systems was not affected by the five evaporation conditions. Air-drying for 60 seconds before curing yielded the highest DC for SB, EO, and OC. Extended solvent volatilization time (60 seconds) either with or without air-drying before curing provided the highest DC for AM, NB, XP, and OUP. Thus, the monomer conversion of adhesive systems was material dependent. In general, the 60-second passive or active air-drying modes to volatilize solvents before curing enhanced the degree of conversion for the one-bottle simplified adhesive systems. PMID:22313268

  17. Morphology manipulation of α-Fe 2O 3 in the mixed solvent system

    NASA Astrophysics Data System (ADS)

    Yu, Ranbo; Li, Zhenmin; Wang, Dan; Lai, Xiaoyong; Xing, Chaojian; Xing, Xianran

    2009-12-01

    By using simple mixed solvents, the morphologies of hematite (α-Fe 2O 3) particles could be manipulated, and the spherical, mulberry-like, nanospherical and top-like products could be controllably obtained. The as-obtained products were characterized by X-ray diffraction, scanning electron microscopy, and vibrating sample magnetometer. The results indicated that the morphology manipulation could be achieved by systematically adjusting the polarity of the mixed solvent via the ratio control. And the magnetic properties of the products were critically affected by their grain size and assembly morphologies.

  18. Comparison of photoresist shelf life in PGMEA and CA solvent systems

    NASA Astrophysics Data System (ADS)

    Nelson, William C.

    1994-05-01

    Use of safer photoresist solvents such as propylene glycol monomethyl ether acetate (PGMEA, PMA) has been steadily increasing as a positive photoresist casting solvent. This work compares the aging characteristics and shelf life of photoresist prepared with PGMEA versus cellosolve acetate (CA, 2-ethoxyethyl acetate). By comparing samples stored at elevated temperatures with those at room temperature, aging rates are evaluated on photosensitivity, contrast, thickness and absorbance. Using first order reaction kinetic assumptions, these aging rates are compared to product specification limits to estimate shelf life.

  19. Binary Mutual Diffusion Coefficients of Polymer/Solvent Systems Using Compressible Regular Solutions Theory and Free Volume Theory

    NASA Astrophysics Data System (ADS)

    Farajnezhad, Arsalan; Asef Afshar, Orang; Asgarpour Khansary, Milad; Shirazian, Saeed

    2016-07-01

    The free volume theory has found practical application for prediction of diffusional behavior of polymer/solvent systems. In this paper, reviewing free volume theory, binary mutual diffusion coefficients in some polymer/solvent systems have been systematically presented through chemical thermodynamic modeling in terms of both activity coefficients and fugacity coefficients models. Here chemical thermodynamic model of compressible regular solution (CRS) was used for evaluation of diffusion coefficients calculations as the pure component properties would be required only. Four binary polymeric solutions of cyclohexane/polyisobutylene, n-pentane/polyisobutylene, toluene/polyisobutylene and chloroform/polyisobutylene were considered. The agreement between calculated data and the experimentally collected data was desirable and no considerable error propagation in approximating mutual diffusion coefficients has been observed.

  20. Results of the Test Program for Replacement of AK-225G Solvent for Cleaning NASA Propulsion Oxygen Systems

    NASA Technical Reports Server (NTRS)

    Lowrey, Nikki M.; Mitchell, Mark A.

    2016-01-01

    Since the 1990's, when the Class I Ozone Depleting Substance chlorofluorocarbon-113 was banned, NASA's propulsion test facilities at Marshall Space Flight Center and Stennis Space Center have relied upon the solvent Asahiklin AK-225 (hydrochlorofluorocarbon-225ca/cb or HCFC-225ca/cb) and, more recently AK-225G (the single isomer form, HCFC-225cb) to safely clean and verify the cleanliness of large scale propulsion oxygen systems. Effective January 1, 2015, the production, import, export, and new use of Class II Ozone Depleting Substances, including AK-225G, was prohibited in the United States by the Clean Air Act. In 2012 through 2014, NASA test labs at MSFC, SSC, and Johnson Space Center's White Sands Test Facility collaborated to seek out, test, and qualify a solvent replacement for AK-225G that is both an effective cleaner and safe for use with oxygen systems. This paper summarizes the tests performed, results, and lessons learned.

  1. Alternative Green Solvents Project

    NASA Technical Reports Server (NTRS)

    Maloney, Phillip R.

    2012-01-01

    Necessary for safe and proper functioning of equipment. Mainly halogenated solvents. Tetrachloride, Trichloroethylene (TCE), CFC-113. No longer used due to regulatory/safety concerns. Precision Cleaning at KSC: Small % of total parts. Used for liquid oxygen (LOX) systems. Dual solvent process. Vertrel MCA (decafluoropentane (DFP) and trons-dichloroethylene) HFE-7100. DFP has long term environmental concerns. Project Goals: a) Identify potential replacements. b) 22 wet chemical processes. c) 3 alternative processes. d) Develop test procedures. e) Contamination and cleaning. f) Analysis. g) Use results to recommend alternative processes. Conclusions: a) No alternative matched Vertrel in this study. b) No clear second place solvent. c) Hydrocarbons- easy; Fluorinated greases- difficult. d) Fluorinated component may be needed in replacement solvent. e) Process may need to make up for shortcoming of the solvent. f) Plasma and SCC02 warrant further testing.

  2. Efficient and Specific Trypsin Digestion of Microgram to Nanogram Quantities of Proteins in Organic-Aqueous Solvent Systems

    SciTech Connect

    Strader, Michael B; Tabb, Dave L; Hervey, IV, William Judson; Pan, Chongle; Hurst, Gregory {Greg} B

    2006-01-01

    Mass spectrometry-based identification of the components of multiprotein complexes often involves solution-phase proteolytic digestion of the complex. The affinity purification of individual protein complexes often yields nanogram to low-microgram amounts of protein, which poses several challenges for enzymatic digestion and protein identification. We tested different solvent systems to optimize trypsin digestions of samples containing limited amounts of protein for subsequent analysis by LC-MS-MS. Data collected from digestion of 10-, 2-, 1-, and 0.2- g portions of a protein standard mixture indicated that an organicaqueous solvent system containing 80% acetonitrile consistently provided the most complete digestion, producing more peptide identifications than the other solvent systems tested. For example, a 1-h digestion in 80% acetonitrile yielded over 52% more peptides than the overnight digestion of 1 g of a protein mixture in purely aqueous buffer. This trend was also observed for peptides from digested ribosomal proteins isolated from Rhodopseudomonas palustris. In addition to improved digestion efficiency, the shorter digestion times possible with the organic solvent also improved trypsin specificity, resulting in smaller numbers of semitryptic peptides than an overnight digestion protocol using an aqueous solvent. The technique was also demonstrated for an affinityisolated protein complex, GroEL. To our knowledge, this report is the first using mass spectrometry data to show a linkage between digestion solvent and trypsin specificity. Mass spectrometry (MS) has become a widely used method for studying proteins, protein complexes, and whole proteomes because of innovations in soft ionization techniques, bioinformatics, and chromatographic separation techniques.1-7 An example of a high-throughput mass spectrometry strategy commonly used for this purpose is a variation of the "shotgun" approach, involving in-solution digestion of a protein complex followed by

  3. Solvent substitution

    SciTech Connect

    Not Available

    1990-01-01

    The DOE Environmental Restoration and Waste Management Office of Technology Development and the Air Force Engineering and Services Center convened the First Annual International Workshop on Solvent Substitution on December 4--7, 1990. The primary objectives of this joint effort were to share information and ideas among attendees in order to enhance the development and implementation of required new technologies for the elimination of pollutants associated with industrial use of hazardous and toxic solvents; and to aid in accelerating collaborative efforts and technology transfer between government and industry for solvent substitution. There were workshop sessions focusing on Alternative Technologies, Alternative Solvents, Recovery/Recycling, Low VOC Materials and Treatment for Environmentally Safe Disposal. The 35 invited papers presented covered a wide range of solvent substitution activities including: hardware and weapons production and maintenance, paint stripping, coating applications, printed circuit boards, metal cleaning, metal finishing, manufacturing, compliance monitoring and process control monitoring. This publication includes the majority of these presentations. In addition, in order to further facilitate information exchange and technology transfer, the US Air Force and DOE solicited additional papers under a general Call for Papers.'' These papers, which underwent review and final selection by a peer review committee, are also included in this combined Proceedings/Compendium. For those involved in handling, using or managing hazardous and toxic solvents, this document should prove to be a valuable resource, providing the most up-to-date information on current technologies and practices in solvent substitution. Individual papers are abstracted separated.

  4. Acid gas treating by aqueous alkanolamines. Annual report, January-December 1993

    SciTech Connect

    Sandall, O.C.; Rinker, E.B.; Ashour, S.

    1993-12-01

    The objective of the work is to investigate the simultaneous absorption or desorption of CO2 and H2S into and from a mixed aqueous amine solvent consisting of methyldiethanolamine (MDEA) and diethanolamine (DEA). In work completed thus far, density, viscosity, gas diffusivity, gas solubility, surface tension, and amine solution vapor pressure have been measured for aqueous MDEA, DEA, and MDEA/DEA mixtures over the temperature range 20 to 100 deg. C and for concentrations up to 50 weight %. A mathematical model, based on the penetration theory, for the simultaneous absorption (desorption) of CO2 and H2S into (from) aqueous solutions of MDEA and DEA has been developed.

  5. Acid gas treating by aqueous alkanolamines. Annual report, July-December 1992

    SciTech Connect

    Sandall, O.C.; Rinker, E.B.; Tamimi, A.; Davis, R.A.; Oelschlager, D.W.

    1992-12-01

    The objective of the work is to investigate the simultaneous absorption or desorption of CO2 and H2S into and from a mixed aqueous amine solvent consisting of methyldiethanolamine (MDEA) and diethanolamine (DEA). In work completed thus far models have been developed for single gas (either H2S or CO2) absorption into a single amine solution (MDEA or DEA). Density and viscosity measurements have been made for aqueous MDEA, DEA and MDEA/DEA mixtures over the temperature range 20 to 100 C and for concentrations up to 50 weight %.

  6. COMBINED EFFECTS OF SOLVENTS ON THE RAT'S AUDITORY SYSTEM: STYRENE AND TRICHLOROETHYLENE

    EPA Science Inventory

    Because exposures to toxic agents typically involve more than one substance, it is necessary to know if combined exposures pose different risks than those to single agents. any solvents have been implicated in central nervous disorders and some of them are known to produce hearin...

  7. Systematic and practical solvent system selection strategy based on the nonrandom two-liquid segment activity coefficient model for real-life counter-current chromatography separation.

    PubMed

    Ren, Da-Bing; Yi, Lun-Zhao; Qin, Yan-Hua; Yun, Yong-Huan; Deng, Bai-Chuan; Lu, Hong-Mei; Chen, Xiao-Qing; Liang, Yi-Zeng

    2015-05-01

    Solvent system selection is the first step toward a successful counter-current chromatography (CCC) separation. This paper introduces a systematic and practical solvent system selection strategy based on the nonrandom two-liquid segment activity coefficient (NRTL-SAC) model, which is efficient in predicting the solute partition coefficient. Firstly, the application of the NRTL-SAC method was extended to the ethyl acetate/n-butanol/water and chloroform/methanol/water solvent system families. Moreover, the versatility and predictive capability of the NRTL-SAC method were investigated. The results indicate that the solute molecular parameters identified from hexane/ethyl acetate/methanol/water solvent system family are capable of predicting a large number of partition coefficients in several other different solvent system families. The NRTL-SAC strategy was further validated by successfully separating five components from Salvia plebeian R.Br. We therefore propose that NRTL-SAC is a promising high throughput method for rapid solvent system selection and highly adaptable to screen suitable solvent system for real-life CCC separation. PMID:25818557

  8. Ethyl acetate-n-butanol gradient solvent system for high-speed countercurrent chromatography to screen bioactive substances in okra.

    PubMed

    Ying, Hao; Jiang, Heyuan; Liu, Huan; Chen, Fangjuan; Du, Qizhen

    2014-09-12

    High-speed countercurrent chromatographic separation (HSCCC) possesses the property of zero-loss of sample, which is very useful for the screening of bioactive components. In the present study, the ethyl acetate-n-butanol gradient HSCCC solvent system composed of n-hexane-ethyl acetate-n-butanol-water was investigated for the screening of bioactive substances. To screen the antiproliferative compounds in okra extract, we used the stationary phase ethyl acetate-n-butanol-water (1:1:10) as the stationary phase, and eluted the antiproliferative components by 6-steps of gradient using mobile phases n-hexane-ethyl acetate (1:2), n-hexane-ethyl acetate (1:4), n-hexane-ethyl acetate (0:4), n-butanol-ethyl acetate (1:4) n-butanol-ethyl acetate (1:2), n-butanol-ethyl acetate (2:2), and n-butanol-ethyl acetate (2:1). The fractions collected from HSCCC separation with the gradient solvent system were assayed for antiproliferative activity against cancer cells. Bioactive components were identified: a major anti-cancer compound, 4'-hydroxy phenethyl trans-ferulate, with middle activity, and a minor anti-cancer compound, carolignan, with strong activity. The result shows that the gradient solvent system is potential for the screening of bioactive compounds from natural products. PMID:25069743

  9. Improvement of extraction capability of magnetic molecularly imprinted polymer beads in aqueous media via dual-phase solvent system.

    PubMed

    Hu, Yuling; Liu, Ruijin; Zhang, Yi; Li, Gongke

    2009-08-15

    In this study, a novel and simple dual-phase solvent system for the improvement of extraction capability of magnetic molecularly imprinted polymer (MIP) beads in aqueous sample was proposed. The method integrated MIP extraction and micro-liquid-liquid extraction (micro-LLE) into only one step. A magnetic MIP beads using atrazine as template was synthesized, and was applied to aqueous media by adding micro-volume of n-hexane to form a co-extraction system. The magnetic MIP beads preferred to suspend in the organic phase, which shielded them from the disturbance of water molecule. The target analytes in the water sample was extracted into the organic phase by micro-LLE and then further bound to the solid-phase of magnetic MIP beads. The beads specificity was significantly improved with the imprinting efficiency of template increasing from 0.5 to 4.4, as compared with that in pure aqueous media. The extraction capacity, equilibration process and cross-selectivity of the MIP dual-phase solvent extraction system were investigated. The proposed method coupled with high-performance liquid chromatography was applied to the analysis of atrazine, simazine, propazine, simetryn, prometryne, ametryn and terbutryn in complicated sample such as tomato, strawberry juice and milk. The method is selective, sensitive and low organic solvent-consuming, and has potential to broaden the range of MIP application in biological and environmental sample. PMID:19576415

  10. An Improved Approach for Analyzing the Oxygen Compatibility of Solvents and other Oxygen-Flammable Materials for Use in Oxygen Systems

    NASA Technical Reports Server (NTRS)

    Harper, Susan A.; Juarez, Alfredo; Peralta, Stephen F.; Stoltzfus, Joel; Arpin, Christina Pina; Beeson, Harold D.

    2016-01-01

    Solvents used to clean oxygen system components must be assessed for oxygen compatibility, as incompatible residue or fluid inadvertently left behind within an oxygen system can pose a flammability risk. The most recent approach focused on solvent ignition susceptibility to assess the flammability risk associated with these materials. Previous evaluations included Ambient Pressure Liquid Oxygen (LOX) Mechanical Impact Testing (ASTM G86) and Autogenous Ignition Temperature (AIT) Testing (ASTM G72). The goal in this approach was to identify a solvent material that was not flammable in oxygen. As environmental policies restrict the available options of acceptable solvents, it has proven difficult to identify one that is not flammable in oxygen. A more rigorous oxygen compatibility approach is needed in an effort to select a new solvent for NASA applications. NASA White Sands Test Facility proposed an approach that acknowledges oxygen flammability, yet selects solvent materials based on their relative oxygen compatibility ranking, similar to that described in ASTM G63-99. Solvents are selected based on their ranking with respect to minimal ignition susceptibility, damage and propagation potential, as well as their relative ranking when compared with other solvent materials that are successfully used in oxygen systems. Test methods used in this approach included ASTM G86 (Ambient Pressure LOX Mechanical Impact Testing and Pressurized Gaseous Oxygen (GOX) Mechanical Impact Testing), ASTM G72 (AIT Testing), and ASTM D240 (Heat of Combustion (HOC) Testing). Only four solvents were tested through the full battery of tests for evaluation of oxygen compatibility: AK-225G as a baseline comparison, Solstice PF, L-14780, and Vertrel MCA. Baseline solvent AK-225G exhibited the lowest HOC and highest AIT of solvents tested. Nonetheless, Solstice PF, L-14780, and Vertrel MCA HOCs all fell well within the range of properties that are associated with proven oxygen system materials

  11. Morphological evolution of Cu2O based on a solvent effect in a microwave-assisted system

    NASA Astrophysics Data System (ADS)

    Luo, Xiao-Lin; Wang, Min-Juan; Chen, Yashao

    2015-12-01

    Evolution of Cu2O morphology, from a cubic aggregate to a mono-dispersed cube, then to a {100} planes etched cube, with respect to solvent composition is presented in the microwave-assisted system. The solvent composition has a great impact on crystallization kinetics and oxidation etching. A series of contrast experiments were designed to reveal the critical parameters in the etching process according to the oxidation reaction equation of Cu2O. {100} planes etched Cu2O cubes exhibit preferable absorbability on methyl orange in the dark, whereas Cu2O polycrystals show better photo-catalytic activity because of the highly active apexes and edges exposed on the surface.

  12. Evaluation of solvent system for the enzymatic synthesis of ethanol-based biodiesel from sludge palm oil (SPO).

    PubMed

    Nasaruddin, Ricca Rahman; Alam, Md Zahangir; Jami, Mohammed Saedi

    2014-02-01

    A green technology of biodiesel production focuses on the use of enzymes as the catalyst. In enzymatic biodiesel synthesis, suitable solvent system is very essential to reduce the inhibition effects of the solvent to the enzymes. This study produced ethanol-based biodiesel from a low-cost sludge palm oil (SPO) using locally-produced Candida cylindracea lipase from fermentation of palm oil mill effluent (POME) based medium. The optimum levels of ethanol-to-SPO molar ratio and enzyme loading were found to be 4:1 and 10 U/25 g of SPO respectively with 54.4% w/w SPO yield of biodiesel and 21.7% conversion of free fatty acid (FFA) into biodiesel. Addition of tert-butanol at 2:1 tert-butanol-to-SPO molar ratio into the ethanol-solvent system increased the yield of biodiesel to 71.6% w/w SPO and conversion of FFA into biodiesel to 28.8%. The SPO and ethanol have promising potential for the production of renewable biodiesel using enzymatic-catalyzed esterification and transesterification. PMID:24384322

  13. Determination of molybdenum in steel by adsorptive stripping voltammetry in a homogeneous ternary solvent system.

    PubMed

    de Andrade, J C; de Almeida, A M; Coscione, A R; Aleixo, L M

    2001-06-01

    A new alternative approach for the determination of molybdenum in steel is proposed, using adsorptive stripping voltammetry (AdSV). The determinations are performed in a homogeneous ternary solvent system (HTSS) composed of N,N-dimethylformamide, ethanol and water, with alpha-benzoinoxime (alpha BO) as the complexing agent and a sodium acetate-acetic acid buffer as the support electrolyte. The HTSS composition was optimized by mixture design modelling. The AdSV measurements were performed in the differential pulse mode using an accumulation potential of -1050 mV. Under these optimized experimental conditions, the Mo(VI)-alpha BO reduction current peak potential is observed at potentials near -1250 mV, much lower than those usually reported, and the calibration plot follows the polynomial equation I = 0.359 + 0.265 [CMo(VI)] - 0.015 [CMo(IV)]2 (r2 = 0.997), for Mo concentrations up to 10.0 micrograms L-1. There is a linear range in this calibration plot for Mo(VI) concentrations up to 0.20 microgram L-1, defined by the equation I = 0.353 + 0.385 [CMo(VI)] (r2 = 0.980). In both cases, I is the absolute value for the current in microA and CMo(VI) is the concentration of Mo in microgram L-1. The detection limit for this linear concentration range was estimated as 20 pg L-1. A RSD of 0.43% is associated with the signals at a Mo(VI) level of 0.72 microgram L-1. From the common method-interfering species tested, only iron at Fe/Mo(VI) ratios above 500 and vanadium and tungsten at M/Mo(VI) ratios above 100 appear to affect the analytical response significantly. Phosphorous may also reduce the analytical signal at P/Mo(VI) ratios above 100, due to the formation of the competitive P-Mo complex. The suggested routine procedure was tested by analyzing four stainless steel samples and the results compared well with the ICP-AES measurements. The higher sensitivity of this method permits direct determination of Mo(VI) in steels, eliminating the need of analyte concentration or

  14. Fast synthesis of 1,3-DAG by Lecitase® Ultra-catalyzed esterification in solvent-free system.

    PubMed

    Liu, Ning; Wang, Yong; Zhao, Qiangzhong; Zhang, Qingli; Zhao, Mouming

    2011-08-01

    Lecitase® Ultra, a phospholipase, was explored as an effective biocatalyst for direct esterification of glycerol with oleic acid to produce 1,3-DAG. Experiments were carried out in batch mode, and optimal reaction conditions were evaluated. In comparison with several organic solvent mediums, the solvent-free system was found to be more beneficial for this esterification reaction, which was further studied to investigate the reaction conditions including oleic acid/glycerol mole ratio, temperature, initial water content, enzyme load, and operating time. The results showed that Lecitase® Ultra catalyzed a fast synthesis of 1,3-DAG by direct esterification in a solvent-free medium. Under the optimal reaction conditions, a short reaction time 1.5 h was found to achieve the fatty acid esterification efficiency of 80.3 ± 1.2% and 1,3-DAG content of 54.8 ± 1.6 wt% (lipid layer of reaction mixture mass). The reusability of Lecitase® Ultra was evaluated via recycling the excess glycerol layer in the reaction system. DAG in the upper lipid layer of reaction mixture was purified by molecular distillation and the 1,3-DAG-enriched oil with a purity of about 75 wt% was obtained.Practical applications: The new Lecitase® Ultra catalyzed process for production of 1,3-DAG from glycerol and oleic acid described in this study provides several advantages over conventional methods including short reaction time, the absence of a solvents and a high product yield. PMID:21966255

  15. Fast synthesis of 1,3-DAG by Lecitase® Ultra-catalyzed esterification in solvent-free system

    PubMed Central

    Liu, Ning; Wang, Yong; Zhao, Qiangzhong; Zhang, Qingli; Zhao, Mouming

    2011-01-01

    Lecitase® Ultra, a phospholipase, was explored as an effective biocatalyst for direct esterification of glycerol with oleic acid to produce 1,3-DAG. Experiments were carried out in batch mode, and optimal reaction conditions were evaluated. In comparison with several organic solvent mediums, the solvent-free system was found to be more beneficial for this esterification reaction, which was further studied to investigate the reaction conditions including oleic acid/glycerol mole ratio, temperature, initial water content, enzyme load, and operating time. The results showed that Lecitase® Ultra catalyzed a fast synthesis of 1,3-DAG by direct esterification in a solvent-free medium. Under the optimal reaction conditions, a short reaction time 1.5 h was found to achieve the fatty acid esterification efficiency of 80.3 ± 1.2% and 1,3-DAG content of 54.8 ± 1.6 wt% (lipid layer of reaction mixture mass). The reusability of Lecitase® Ultra was evaluated via recycling the excess glycerol layer in the reaction system. DAG in the upper lipid layer of reaction mixture was purified by molecular distillation and the 1,3-DAG-enriched oil with a purity of about 75 wt% was obtained. Practical applications: The new Lecitase® Ultra catalyzed process for production of 1,3-DAG from glycerol and oleic acid described in this study provides several advantages over conventional methods including short reaction time, the absence of a solvents and a high product yield. PMID:21966255

  16. Acid gas treating by aqueous alkanolamines. Annual report, January-December 1994

    SciTech Connect

    Sandall, O.C.; Rinker, E.B.; Ashour, S.

    1994-12-01

    The objective of this work is to investigate the simulateneous absorption or desorption of CO2 and H2S into and from a mixed aqueous amine solvent consisting of methyldiethanolamine (MDEA) and diethanolamine (DEA). In work completed this year the authors have measured the density, viscosity and surface tension of pure MDEA and DEA over a range in temperatures. The diffusivity of N2O was measured in aqueous blends of MDEA and DEA at 50 wt% total amine for various ratios of DEA to MDEA over the temperature range 20 to 80 deg. C. A theoretically-based model has been developed for the correlation of the physical solubility of N2O in aqueous amine solutions. A penetration theory type model which was developed to describe acid gas absorption in aqueous amine solutions was used to carry out a sensitivity analysis for the various parameters affecting the rate of absorption of CO2 in MDEA solutions.

  17. Analysis of the Cybotactic Region of Two Renewable Lactone-Water Mixed-Solvent Systems that Exhibit Synergistic Kamlet-Taft Basicity.

    PubMed

    Duereh, Alif; Sato, Yoshiyuki; Smith, Richard Lee; Inomata, Hiroshi

    2016-05-19

    Kamlet-Taft solvatochromic parameters (polarity, basicity, acidity) of hydrogen bond donor (HBD)/acceptor (HBA) mixed-solvent systems, water (H2O)-γ-valerolactone (GVL), methanol (MeOH)-GVL, ethanol (EtOH)-GVL, H2O-γ-butyrolactone (GBL), MeOH-GBL, and EtOH-GBL, were measured over their entire composition region at 25 °C using UV-vis spectroscopy. Basicity of H2O-GVL and H2O-GBL systems exhibited positive deviation from ideality and synergism in the Kamlet-Taft basicity values. The cybotactic region around each indicator in the mixed-solvent systems was analyzed with the preferential solvation model. Both H2O-GVL and H2O-GBL mixed-solvent systems were found to be completely saturated with mutual complex molecules and to have higher basicity than pure water because water prefers to interact with GVL or GBL molecules rather than with itself. Formation of H2O-GVL and H2O-GBL complex molecules via specific hydrogen bond donor-acceptor interactions were confirmed by infrared spectroscopy. In MeOH-GVL or MeOH-GBL mixed-solvent systems, MeOH molecules prefer self-interaction over that with GVL or GBL so that synergistic basicity was not observed. Synergistic basicity and basicity increase for various functional groups of ten mixed-solvent (water-HBA solvent) systems can be quantitatively explained by considering electrostatic basicity and a ratio of the partial excess HBA solvent basicity with the HBA solvent molar volume that correlate linearly with the preferential solvation model complex molecular parameter (f12/1). Analysis of the cybotactic region of indicators in aqueous mixtures with the preferential solvation model allows one to estimate the trends of mixed-solvent basicity. PMID:27111727

  18. Optimizing surface finishing processes through the use of novel solvents and systems

    NASA Astrophysics Data System (ADS)

    Quillen, M.; Holbrook, P.; Moore, J.

    2007-03-01

    As the semiconductor industry continues to implement the ITRS (International Technology Roadmap for Semiconductors) node targets that go beyond 45nm [1], the need for improved cleanliness between repeated process steps continues to grow. Wafer cleaning challenges cover many applications such as Cu/low-K integration, where trade-offs must be made between dielectric damage and residue by plasma etching and CMP or moisture uptake by aqueous cleaning products. [2-5] Some surface sensitive processes use the Marangoni tool design [6] where a conventional solvent such as IPA (isopropanol), combines with water to provide improved physical properties such as reduced contact angle and surface tension. This paper introduces the use of alternative solvents and their mixtures compared to pure IPA in removing ionics, moisture, and particles using immersion bench-chemistry models of various processes. A novel Eastman proprietary solvent, Eastman methyl acetate is observed to provide improvement in ionic, moisture capture, and particle removal, as compared to conventional IPA. [7] These benefits may be improved relative to pure IPA, simply by the addition of various additives. Some physical properties of the mixtures were found to be relatively unchanged even as measured performance improved. This report presents our attempts to cite and optimize these benefits through the use of laboratory models.

  19. A SAXS study of aggregation in the synergistic TBP-HDBP solvent extraction system.

    PubMed

    Ellis, Ross J; Anderson, Timothy L; Antonio, Mark R; Braatz, Alex; Nilsson, Mikael

    2013-05-16

    The macroscopic phase behaviors of a solvent system containing two extractants, tri-n-butyl phosphate (TBP) and di-n-butyl phosphoric acid (HDBP) in n-dodecane, were investigated through use of liquid-liquid extraction and small-angle X-ray scattering (SAXS) experiments. Five organic solutions, each containing a total extractant concentration (TBP + HDBP) of 1 M in varying molar ratios (0, 0.25, 0.5, 0.75, and 1.0 [TBP]:[TBP + HDBP]), were contacted with 0.2 M HNO3 aqueous solutions without and with dysprosium(III) at a concentration of 10(-4) M. An enhancement of the extraction of Dy(3+)--due to effects of synergism arising from the binary combination of extractants--was observed. SAXS data were collected for all solution compositions from 0 to 1 mol-fraction end ratios of TBP after contact with the acidic aqueous solutions both in the absence and presence of Dy as well as for the organic phases before aqueous contact. In the precontacted solutions, no notable changes in the SAXS data were observed upon combining the extractants so that the scattering intensity (I) measured at zero angle (Q = 0 Å(-1))--parameter I(0)--the experimental radius of gyration (R(g)), and the maximum linear extent (MLE) of the extractant aggregates were arithmetic averages of the two end members, 1 M HDBP, on the one hand, and 1 M TBP, on the other. In contrast, after contact with the aqueous phases with and without Dy(3+), a significant reorganization occurs with larger aggregates apparent in the extractant mixtures and smaller in the two end member solutions. In particular, the maximum values of the metrical parameters (I(0), R(g), and MLE) correlate with the apparent optimal synergistic extraction mole ratio of 0.25. The SAXS data were further analyzed using the recently developed generalized indirect Fourier transformation (GIFT) method to provide pair-distance distribution functions with real-space information on aggregate morphology. Before aqueous contact, the organic phases show

  20. Solvent substitution for electronic products

    SciTech Connect

    Benkovich, M.K.

    1992-01-01

    Allied-Signal Inc., Kansas City Division (KCD), manufactures the electrical, electrochemical, mechanical, and plastic components for nuclear weapons. The KCD has made a commitment to eliminate the use of chlorohydrocarbon (CHC) and chlorofluorocarbon (CFC) solvents to the greatest technical extent possible consistent with nuclear safety and stockpile reliability requirements. Current cleaning processes in the production departments use trichloroethylene, 1,1,1-trichloroethane, and various CFC-113 based solvents. Several non-halogenated solvents (Solvent A - an aqueous solvent based on N,N-dimethylacetamide, Solvent B - an aqueous mixture of ethanol amines, Solvent C - a hydrocarbon solvent based on octadecyl acetate, Solvent D - a terpene (d-limonene) hydrocarbon solvent combined with emulsifiers, Solvent E - a terpene (d-limonene) hydrocarbon solvent combined with a separation agent, d-limonene, and isopropyl alcohol) were evaluated to determine the most effective, non-chlorinated, non-fluorinated, alternate solvent cleaning system. All of these solvents were evaluated using current manual spray cleaning processes. The solvents were evaluated for their effectiveness in removing a rosin based RMA solder flux, a particular silicone mold release, and oils, greases, mold releases, resins, etc. The Meseran Surface Analyzer was used to measure organic contamination on the samples before and after cleaning. An Omega Meter Model 600 was also used to detect solder flux residues. Solvents C, D, E and d-limonene the best alternatives to trichloroethylene for removing all of the contaminants tested. For this particular electronic assembly, d-limonene was chosen as the alternate because of material compatibility and long-term reliability concerns.

  1. A Mass Spectrometric Study for Comparative Analysis and Evaluation of Metabolite Recovery from Plasma by Various Solvent Systems

    PubMed Central

    Dutta, Anwesha; Shetty, Premalatha; Bhat, Smitha; Ramachandra, Yeshaswini; Hegde, Shrinidhi

    2012-01-01

    A solvent system that extracts a maximum number of metabolites belonging to diverse chemical classes from complex biofluids, such as plasma, may offer useful inputs to understand the metabolic and physiological state of an individual. The present study compared seven solvent systems for extraction of metabolites from plasma. The extracts were analyzed by mass spectrometry (MS) and MS/MS (MS2) using a quadrupole time-of-flight liquid chromatography/MS system in positive and negative modes of ionization. Metabolites with molecular mass below 400 were identified using Human Metabolome Database MS2 and MS search interfaces. The acetone/isopropanol (2:1) system yielded promising results in positive ionization mode, as the maximum number of MS and MS2 features was detected in the extract. It was found to be superior in extraction of various classes of metabolites, especially organic acids, nucleosides and nucleoside derivatives, and heterocyclic molecules. Glycerophosphocholines in the mass range of 400–700 were found to be efficiently extracted by the methanol/chloroform/water (8:1:1) system. In negative mode as well, the maximum number of MS2 features was detected in methanol/chloroform/water and acetone/isopropanol extracts. The fingerprints of molecular features obtained in the negative and positive modes differed from each other to a significant extent. PMID:23204928

  2. Molecular Aspects of the Interaction of Iminium and Alkanolamine Forms of the Anticancer Alkaloid Chelerythrine with Plasma Protein Bovine Serum Albumin.

    PubMed

    Bhuiya, Sutanwi; Pradhan, Ankur Bikash; Haque, Lucy; Das, Suman

    2016-01-14

    The interaction between a quaternary benzophenanthridine alkaloid chelerythrine (herein after, CHL) and bovine serum albumin (herein after, BSA) was probed by employing various spectroscopic tools and isothermal titration calorimetry (ITC). Fluorescence studies revealed that the binding affinity of the alkanolamine form of the CHL is higher compared to the iminium counterpart. This was further established by fluorescence polarization anisotropy measurement and ITC. Fluorescence quenching study along with time-resolved fluorescence measurements establish that both forms of CHL quenched the fluorescence intensity of BSA through the mechanism of static quenching. Site selective binding and molecular modeling studies revealed that the alkaloid binds predominantly in the BSA subdomain IIA by electrostatic and hydrophobic forces. From Forster resonance energy transfer (FRET) studies, the average distances between the protein donor and the alkaloid acceptor were found to be 2.71 and 2.30 nm between tryptophan (Trp) 212 (donor) and iminium and alkanolamine forms (acceptor), respectively. Circular dichroism (CD) study demonstrated that the α-helical organization of the protein is reduced due to binding with CHL along with an increase in the coiled structure. This is indicative of a small but definitive partial unfolding of the protein. Thermodynamic parameters obtained from ITC experiments revealed that the interaction is favored by negative enthalpy change and positive entropy change. PMID:26653994

  3. CO2 Absorption in an Alcoholic Solution of Heavily Hindered Alkanolamine: Reaction Mechanism of 2-(tert-Butylamino)ethanol with CO2 Revisited.

    PubMed

    Xie, Hong-Bin; Wei, Xiaoxuan; Wang, Pan; He, Ning; Chen, Jingwen

    2015-06-18

    To advance the optimal design of amines for postcombustion CO2 capture, a sound mechanistic understanding of the chemical process of amines with good CO2 capture performance is advantageous. A sterically hindered alkanolamine, 2-(tert-butylamino)ethanol (TBAE), in ethylene glycol (EG) solution was recently reported to have better CO2 capture performance and unusual reactivity toward CO2, in comparison with those of the prototypical alkanolamines. However, the reaction mechanism of TBAE with CO2 in EG solution is unclear. Here, various quantum chemistry methods were employed to probe the reaction mechanism of TBAE with CO2 in EG and aqueous solution. Six reaction pathways involving three kinds of possible reactive centers of TBAE solution were considered. The results indicated that the formation of anionic hydroxyethyl carbonate by the attack of -OH of EG on CO2 is the most favorable, which is confirmed by complementary high-resolution mass spectrum experiments. This clarified that the speculated zwitterionic carbonate species is not the main product in EG solution. The reaction process of TBAE in aqueous solution is similar to that in EG solution, leading to bicarbonate, which agrees with experimental observations. On the basis of the unveiled reaction mechanisms of TBAE + CO2, the role of the key tert-butyl functional group of TBAE was revealed. PMID:25993508

  4. Solvent Production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This article describes production of butanol [acetone-butanol-ethanol, (also called AB or ABE or solvent)] by fermentation using both traditional and current technologies. AB production from agricultural commodities such as corn and molasses was an important historical fermentation. Unfortunately,...

  5. Influence of Solvent Polarity and DNA-Binding on Spectral Properties of Quaternary Benzo[c]phenanthridine Alkaloids

    PubMed Central

    Rájecký, Michal; Šebrlová, Kristýna; Mravec, Filip; Táborský, Petr

    2015-01-01

    Quaternary benzo[c]phenanthridine alkaloids are secondary metabolites of the plant families Papaveraceae, Rutaceae, and Ranunculaceae with anti-inflammatory, antifungal, antimicrobial and anticancer activities. Their spectral changes induced by the environment could be used to understand their interaction with biomolecules as well as for analytical purposes. Spectral shifts, quantum yield and changes in lifetime are presented for the free form of alkaloids in solvents of different polarity and for alkaloids bound to DNA. Quantum yields range from 0.098 to 0.345 for the alkanolamine form and are below 0.033 for the iminium form. Rise of fluorescence lifetimes (from 2–5 ns to 3–10 ns) and fluorescence intensity are observed after binding of the iminium form to the DNA for most studied alkaloids. The alkanolamine form does not bind to DNA. Acid-base equilibrium constant of macarpine is determined to be 8.2–8.3. Macarpine is found to have the highest increase of fluorescence upon DNA binding, even under unfavourable pH conditions. This is probably a result of its unique methoxy substitution at C12 a characteristic not shared with other studied alkaloids. Association constant for macarpine-DNA interaction is 700000 M-1. PMID:26091027

  6. Recent Progress on Nazarov Cyclizations: The Use of Iron Salts as Catalysts in Ionic Liquid Solvent Systems.

    PubMed

    Itoh, Toshiyuki; Nokami, Toshiki; Kawatsura, Motoi

    2016-06-01

    Nazarov cyclization is an important and versatile method for the synthesis of five-membered carbocycles, and extensive studies have been conducted to optimize the reaction. Among recent studies, several trends are recognized. One is the combination of different reactions with Nazarov cyclization in a one-pot reaction system which enables the preparation of unique cyclization products. The second is the use of a transition-metal catalyst, though Lewis or Brønsted acids have generally been used for the reaction. The third is the realization of the asymmetric Nazarov cyclization. The fourth is the base-catalyzed Nazarov cyclization. Furthermore, several useful protocols for realizing Nazarov cyclization have also been developed. The recent progress on Nazarov cyclizations is summarized in Section 2. Section 3 is our chronicle in this field. We focused on the use of iron as the catalyst in Nazarov cyclizations and ionic liquids as solvents: Nazarov cyclization of thiophene derivatives using FeCl3 as the catalyst was accomplished and we succeeded in demonstrating the first example of an iron-catalyzed asymmetric Nazarov reaction. We next established Nazarov cyclization of pyrrole or indole derivatives using Fe(ClO4 )3 ·Al2 O3 as the catalyst with high trans selectivities in excellent yields. Since the cyclized product was reacted with a vinyl ketone in the presence of the same iron salt, the system allowed realization of the sequential type of Nazarov/Michael reaction of pyrrole derivatives. Furthermore, we demonstrated the recyclable use of the iron catalyst and obtained the desired Nazarov/Michael reaction products in good yields for five repetitions of the reactions without any addition of the catalyst using an ionic liquid, [bmim][NTf2 ], as the solvent. We expect that the iron-catalyzed Nazarov cyclization, in particular, in an ionic liquid solvent might become a useful method to synthesize functional molecules that include cycloalkene moieties. PMID:27219324

  7. LLNL solvent substitution

    SciTech Connect

    Benkovitch, M.G.

    1992-12-01

    Allied-Signal Inc., Kansas City Division (KCD), manufactures the electrical, electromechanical, mechanical, and plastic components for nuclear weapons. The KCD has made a commitment to eliminate the use of chlorohydrocarbon (CHC) and chlorofluorocarbon (CFC) solvents to the greatest technical extent possible consistent with nuclear safety and stockpile reliability requirements by July 1993. Several non-halogenated solvents (Exxate 1000, Bioact EC-7, Bioact EC-7R, d-limonene, ACT-100, Kester 5769, and isopropyl alcohol) were evaluated to determine the most effective, non-chlorinated non-fluorinated, alternate solvent cleaning system for a particular electronic assembly in lieu of the current trichloroethylenefisopropyl alcohol baseline cleaning process. All of these solvents were evaluated using current manual spray cleaning processes. The solvents were evaluated for their effectiveness in removing a rosin based RMA solder flux, a particular silicone mold release, and a wide variety of general contaminants (oils, greases, mold releases, resins, etc.) normally found in production departments. A DI water/isopropyl alcohol spray cleaning process was also evaluated for removing two organic acid fluxes. Test samples were contaminated, spray cleaned with the appropriate solvent, and then analyzed for cleanliness. The Meseran Surface Analyzer was used to measure,, organic contamination on the samples before and after cleaning. An Omega Meter Model 600 was also used to detect solder flux residues.

  8. Synthetic Catalysts for CO2 Storage: Catalytic Improvement of Solvent Capture Systems

    SciTech Connect

    2010-08-15

    IMPACCT Project: LLNL is designing a process to pull CO2 out of the exhaust gas of coal-fired power plants so it can be transported, stored, or utilized elsewhere. Human lungs rely on an enzyme known as carbonic anhydrase to help separate CO2 from our blood and tissue as part of the normal breathing process. LLNL is designing a synthetic catalyst with the same function as this enzyme. The catalyst can be used to quickly capture CO2 from coal exhaust, just as the natural enzyme does in our lungs. LLNL is also developing a method of encapsulating chemical solvents in permeable microspheres that will greatly increase the speed of binding of CO2. The goal of the project is an industry-ready chemical vehicle that can withstand the harsh environments found in exhaust gas and enable new, simple process designs requiring less capital investment.

  9. Mesoscopic simulation of phase behaviors and structures in an amphiphile-solvent system

    NASA Astrophysics Data System (ADS)

    Yamada, Kohtaro; Yasuno, Emiko; Kawabata, Youhei; Okuzono, Tohru; Kato, Tadashi

    2014-06-01

    We have performed a three-dimensional simulation of mesoscopic structures in a mixture of AB amphiphilic molecule and C solvent by employing the density-functional theory under the conditions that (i) the size of the AB is much larger than C and (ii) the affinity between A and B is much larger than the affinity between B and C. First, we have calculated the free energy of five periodic structures, i.e., the lamellar phase, hexagonally packed cylinders, body-centered-cubic spheres, face-centered-cubic spheres, and gyroid phase for different sets of the concentration of AB (ϕ¯AB) and the χ parameter (χAC). By comparing the free energies for these structures, the χAC-ϕ ¯AB phase diagram has been obtained. In addition to these periodic structures, it has been shown that nonperiodic structures such as spherical and rodlike micelles can be obtained although they might be metastable phase.

  10. Tacky COC: a solvent bonding technique for fabrication of microfluidic systems

    NASA Astrophysics Data System (ADS)

    Keller, Nico; Nargang, Tobias M.; Helmer, Dorothea; Rapp, Bastian E.

    2016-03-01

    The academic community knows cyclic olefin copolymer (COC) as a well suited material for microfluidic applications because COC has numerous interesting properties such as high transmittance, good chemical resistance and good biocompatibility. Here we present a fast and cost-effective method for bonding of two COC substrates: exposure to appropriate solvents gives a tacky COC surface which when brought in contact with untreated COC forms a strong and optical clear bond. The bonding process is carried out at room temperature and takes less than three minutes which makes it significantly faster than currently described methods: This method does not require special lab equipment such as hot plates or hydraulic presses. The mild conditions of the bond process also allow for such "tacky COC" lids to be used for sealing of microfluidic chips containing immobilized protein patterns which is of high interest for immunodiagnostic testing inside microfluidic chips.

  11. Homogeneous liquid-liquid solvent extraction. [Propylene carbonate-water system

    SciTech Connect

    Ting, C.S.; Williams, E.T.; Finston, H.L.

    1980-01-01

    This investigation was undertaken to extend the technique of homogeneous liquid-liquid solvent extraction into propylene carbonate. The mutual solubilities of propylene carbonate in water and vice-versa are shown in the phase diagram. The extraction of a variety of monodentate and bidentate ligand complexes with Fe(III) as a function of ligand concentration and pH were investigated. The monodentate ligands studied include, thiocyanate, chloride, bromide, benzoate, and bathophenanthrolines. The bidentate ligands studied include the various ..beta..-diketones, 8-quinolinol, and also cupferron which was studied under normal conditions, i.e., not under conditions of homogeneous extraction. The homogeneous extraction proved effective for a variety of chelate complexes and ion association complexes of iron giving, in all cases, very rapid extraction as compared with the slow rate of conventional extraction methods.

  12. Results of the Test Program for Replacement of AK-225G Solvent for Cleaning NASA Propulsion Oxygen Systems

    NASA Technical Reports Server (NTRS)

    Lowrey, Nikki M.; Mitchell, Mark A.

    2016-01-01

    Since the 1990's, when the Class I Ozone Depleting Substance (ODS) chlorofluorocarbon-113 (CFC-113) was banned, NASA's propulsion test facilities at Marshall Space Flight Center (MSFC) and Stennis Space Center (SSC) have relied upon the solvent AsahiKlin AK-225 (hydrochlorofluorocarbon-225ca/cb or HCFC-225ca/cb) and, more recently AK-225G (the single isomer form, HCFC-225cb) to safely clean and verify the cleanliness of large scale propulsion oxygen systems. Effective January 1, 2015, the production, import, export, and new use of Class II Ozone Depleting Substances, including AK-225G, was prohibited in the United States by the Clean Air Act. In 2012 through 2014, NASA test labs at MSFC, SSC, and Johnson Space Center's White Sands Test Facility (WSTF) collaborated to seek out, test, and qualify a solvent replacement for AK-225G that is both an effective cleaner and safe for use with oxygen systems. This paper summarizes the tests performed, results, and lessons learned.

  13. Whole-cell based solvent-free system for one-pot production of biodiesel from waste grease.

    PubMed

    Li, Aitao; Ngo, Thao P N; Yan, Jinyong; Tian, Kaiyuan; Li, Zhi

    2012-06-01

    A whole-cell based solvent-free system was developed for efficient conversion of waste grease to biodiesel via one-pot esterification and transesterification. By isolation and screening of lipase-producing strains from soil, Serratia marcescens YXJ-1002 was discovered for the biotransformation of grease to biodiesel. The lipase (SML) from this strain was cloned and expressed in Escherichia coli as an intracellular enzyme, showing 6 times higher whole-cell based hydrolysis activity than that of wild type strain. The recombinant cells were used for biodiesel production from waste grease in one-pot reactions containing no solvent with the addition of methanol in several small portions, and 97% yield of biodiesel (FAME) was achieved under optimized conditions. In addition, the whole-cell biocatalysts showed excellent reusability, retaining 74% productivity after 4 cycles. The developed system, biocatalyst, and process enable the efficient, low-cost, and green production of biodiesel from waste grease, providing with a potential industrial application. PMID:22483351

  14. Replacement of Hydrochlorofluorocarbon (HCFC) -225 Solvent for Cleaning and Verification Sampling of NASA Propulsion Oxygen Systems Hardware, Ground Support Equipment, and Associated Test Systems

    NASA Technical Reports Server (NTRS)

    Mitchell, Mark A.; Lowrey, Nikki M.

    2015-01-01

    Since the 1990's, when the Class I Ozone Depleting Substance (ODS) chlorofluorocarbon-113 (CFC-113) was banned, NASA's rocket propulsion test facilities at Marshall Space Flight Center (MSFC) and Stennis Space Center (SSC) have relied upon hydrochlorofluorocarbon-225 (HCFC-225) to safely clean and verify the cleanliness of large scale propulsion oxygen systems. Effective January 1, 2015, the production, import, export, and new use of HCFC-225, a Class II ODS, was prohibited by the Clean Air Act. In 2012 through 2014, leveraging resources from both the NASA Rocket Propulsion Test Program and the Defense Logistics Agency - Aviation Hazardous Minimization and Green Products Branch, test labs at MSFC, SSC, and Johnson Space Center's White Sands Test Facility (WSTF) collaborated to seek out, test, and qualify a replacement for HCFC-225 that is both an effective cleaner and safe for use with oxygen systems. Candidate solvents were selected and a test plan was developed following the guidelines of ASTM G127, Standard Guide for the Selection of Cleaning Agents for Oxygen Systems. Solvents were evaluated for materials compatibility, oxygen compatibility, cleaning effectiveness, and suitability for use in cleanliness verification and field cleaning operations. Two solvents were determined to be acceptable for cleaning oxygen systems and one was chosen for implementation at NASA's rocket propulsion test facilities. The test program and results are summarized. This project also demonstrated the benefits of cross-agency collaboration in a time of limited resources.

  15. Substitution of carcinogenic solvent dichloromethane for the extraction of volatile compounds in a fat-free model food system.

    PubMed

    Cayot, Nathalie; Lafarge, Céline; Bou-Maroun, Elias; Cayot, Philippe

    2016-07-22

    Dichloromethane is known as a very efficient solvent, but, as other halogenated solvents, is recognized as a hazardous product (CMR substance). The objective of the present work is to propose substitution solvent for the extraction of volatile compounds. The most important physico-chemical parameters in the choice of an appropriate extraction solvent of volatile compounds are reviewed. Various solvents are selected on this basis and on their hazard characteristics. The selected solvents, safer than dichloromethane, are compared using the extraction efficiency of volatile compounds from a model food product able to interact with volatile compounds. Volatile compounds with different hydrophobicity are used. High extraction yields were positively correlated with high boiling points and high Log Kow values of volatile compounds. Mixtures of solvents such as azeotrope propan-2-one/cyclopentane, azeotrope ethyl acetate/ethanol, and mixture ethyl acetate/ethanol (3:1, v/v) gave higher extraction yields than those obtained with dichloromethane. PMID:27320380

  16. Development of green betaine-based deep eutectic solvent aqueous two-phase system for the extraction of protein.

    PubMed

    Li, Na; Wang, Yuzhi; Xu, Kaijia; Huang, Yanhua; Wen, Qian; Ding, Xueqin

    2016-05-15

    Six kinds of new type of green betaine-based deep eutectic solvents (DESs) have been synthesized. Deep eutectic solvent aqueous two-phase systems (DES-ATPS) were established and successfully applied in the extraction of protein. Betaine-urea (Be-U) was selected as the suitable extractant. Single factor experiments were carried out to determine the optimum conditions of the extraction process, such as the salt concentration, the mass of DES, the separation time, the amount of protein, the temperature and the pH value. The extraction efficiency could achieve to 99.82% under the optimum conditions. Mixed sample and practical sample analysis were discussed. The back extraction experiment was implemented and the back extraction efficiency could reach to 32.66%. The precision experiment, repeatability experiment and stability experiment were investigated. UV-vis, FT-IR and circular dichroism (CD) spectra confirmed that the conformation of protein was not changed during the process of extraction. The mechanisms of extraction were researched by dynamic light scattering (DLS), the measurement of the conductivity and transmission electron microscopy (TEM). DES-protein aggregates and embraces phenomenon play considerable roles in the separation process. All of these results indicated that betaine-based DES-ATPS may provide a potential substitute new method for the separation of proteins. PMID:26992491

  17. A Systematic Approach to Solvent Selection Based on Cohesive Energy Densities in a Molecular Bulk Heterojunction System

    SciTech Connect

    Walker, Bright; Tamayo, Arnold; Duong, Duc T.; Dang, Xuan-Dung; Kim, Chunki; Granstrom, Jimmy; Nguyen, Thuc-Quyen

    2011-02-15

    The solubilities of 3,6-bis(5-(benzofuran-2-yl)thiophen-2-yl)-2,5-bis(2-ethylhexyl)pyrrolo[3,4-c]pyrrole-1,4-dione (DPP(TBFu)₂) and [6,6]-phenyl-C₇₁-butyric acid methyl ester (PC₇₁BM) in a series of solvents are measured, and this data is used to calculate the Hansen solubility parameters of the two materials. The dispersion, polar, and H-bonding parameters of DPP(TBFu)₂ and PC₇₁BM were found to be (19.3, 4.8, 6.3) and (20.2, 5.4, 4.5) MPa{sup 1/2}, respectively, with an error of ± 0.8 MPa{sup 1/2}. Based on the solubility properties of the two materials, three new solvents (thiophene, trichloroethylene and carbon disulfide) were utilized for the DPP(TBFu)₂:PC₇₁BM system which, after device optimization, led to power conversion efficiencies up to 4.3%.

  18. Synthesis of silicon-germanium axial nanowire heterostructures in a solvent vapor growth system using indium and tin catalysts.

    PubMed

    Mullane, E; Geaney, H; Ryan, K M

    2015-03-14

    Here we describe a relatively facile synthetic protocol for the formation of Si-Ge and Si-Ge-Si1-xGex axial nanowire heterostructures. The wires are grown directly on substrates with an evaporated catalytic layer placed in the vapour zone of a high boiling point solvent with the silicon and germanium precursors injected as liquids sequentially. We show that these heterostructures can be formed using either indium or tin as the catalyst seeds which form in situ during the thermal anneal. There is a direct correlation between growth time and segment length allowing good control over the wire composition. The formation of axial heterostructures of Si-Ge-Si1-xGex nanowires using a triple injection is further discussed with the alloyed Si1-xGex third component formed due to residual Ge precursor and its greater reactivity in comparison to silicon. It was found that the degree of tapering at each hetero-interface varied with both the catalyst type and composition of the NW. The report shows the versatility of the solvent vapour growth system for the formation of complex Si-Ge NW heterostructures. PMID:25676188

  19. Enzyme-catalyzed production of biodiesel by ultrasound-assisted ethanolysis of soybean oil in solvent-free system.

    PubMed

    Trentin, Claudia M; Popiolki, Ariana S; Batistella, Luciane; Rosa, Clarissa Dalla; Treichel, Helen; de Oliveira, Débora; Oliveira, J Vladimir

    2015-03-01

    This work reports the transesterification of soybean oil with ethanol using a commercial immobilized lipase, Novozym 435, under the influence of ultrasound irradiation, in a solvent-free s. The experiments were performed in an ultrasonic water bath, following a sequence of experimental designs to evaluate the effects of temperature, enzyme and water concentrations, oil to ethanol molar ratio and output irradiation power on the reaction yield. Besides, a kinetic study varying the substrates molar ratio and enzyme concentration was also carried out. Results show that ultrasound-assisted lipase-catalyzed transesterification of soybean oil with ethanol in solvent-free system might be a potential alternative route to conventional alkali-catalyzed and/or traditional enzymatic methods, as high reaction yields (~78 wt%) were obtained at mild irradiation power supply (~132 W), and temperature (63 °C) in a relatively short reaction time, 1 h. Additionally, a study regarding the enzyme reuse was carried out at the experimental condition that afforded the best reaction yield. PMID:25362889

  20. Mesoscopic simulation of phase behaviors and structures in an amphiphile-solvent system.

    PubMed

    Yamada, Kohtaro; Yasuno, Emiko; Kawabata, Youhei; Okuzono, Tohru; Kato, Tadashi

    2014-06-01

    We have performed a three-dimensional simulation of mesoscopic structures in a mixture of AB amphiphilic molecule and C solvent by employing the density-functional theory under the conditions that (i) the size of the AB is much larger than C and (ii) the affinity between A and B is much larger than the affinity between B and C. First, we have calculated the free energy of five periodic structures, i.e., the lamellar phase, hexagonally packed cylinders, body-centered-cubic spheres, face-centered-cubic spheres, and gyroid phase for different sets of the concentration of AB (ϕ[over ¯]_{AB}) and the χ parameter (χ_{AC}). By comparing the free energies for these structures, the χ_{AC}-ϕ[over ¯]_{AB} phase diagram has been obtained. In addition to these periodic structures, it has been shown that nonperiodic structures such as spherical and rodlike micelles can be obtained although they might be metastable phase. PMID:25019779

  1. Organic high ionic strength aqueous two-phase solvent system series for separation of ultra-polar compounds by spiral high-speed counter-current chromatography

    PubMed Central

    Zeng, Yun; Liu, Gang; Ma, Ying; Chen, Xiaoyuan; Ito, Yoichiro

    2011-01-01

    Existing two-phase solvent systems for high-speed countercurrent chromatography cover the separation of hydrophobic to moderately polar compounds, but often fail to provide suitable partition coefficient values for highly polar compounds such as sulfonic acids, catecholamines and zwitter ions. The present paper introduces a new solvent series which can be applied for the separation of these polar compounds. It is composed of 1-butanol, ethanol, saturated ammonium sulfate and water at various volume ratios and consists of a series of 10 steps which are arranged according to the polarity of the solvent system so that the two-phase solvent system with suitable K values for the target compound(s) can be found in a few steps. Each solvent system gives proper volume ratio and high density difference between the two phases to provide a satisfactory level of retention of the stationary phase in the spiral column assembly. The method is validated by partition coefficient measurement of four typical polar compounds including methyl green (basic dye), tartrazine (sulfonic acid), tyrosine (zwitter ion) and epinephrine (a catecholamine), all of which show low partition coefficient values in the polar 1-butanol-water system. The capability of the method is demonstrated by separation of three catecholamines. PMID:22033108

  2. Solvent extraction study of the thorium nitrate, nitric acid, and tributyl phosphate-dodecane system: density and acidity relationships

    SciTech Connect

    Weinberger, A.J.; Marley, J.L.; Costanzo, D.A.

    1980-05-01

    A solvent extraction study to determine equilibrium conditions of thorium nitrate-nitric acid with 30% tributyl phosphate in normal dodecane has been completed. Experimental conditions studied were 30 to 60{sup 0}C, 0.05 to 1.5 M Th(NO{sub 3}){sub 4}, and 0.0 to 3.0 M HNO{sub 3}. The extractant concentration was constant at 30% tributyl phosphate. The equilibrium experiments have produced data which demonstrate that thorium nitrate concentration, free acid, and density are related in equilibrium behavior between the aqueous and organic phases from 30 to 60{sup 0}C in the 30% tributyl phosphate-dodecane solvent extraction system. The concentration interactions apply to both the two- and three-phase regions. A linear correlation was observed for the density (D) of the aqueous or organic phase and the concentration of thorium and free acid. The general form of the equation is D = a(C/sub Th/ + bC/sub H/) + c, where a is the slope, b is the constant, c is the intercept, and C/sub Th/ and C/sub H/ are the molar concentrations of thorium and free acid respectively. The relationship of temperature, thorium nitrate, and free acid makes possible the definitions of the boundaries between the two- and three-phase regions. This dependence, in turn, permits operational control or simulation studies of the system within the two-phase region. The data demonstrate the interactions of the components of the Thorex system and can be used to improve the mathematical description of equilibrium in the SEPHIS-Thorex computer program.

  3. Use of dilute hydrofluoric acid and deep eutectic solvent systems for back end of line cleaning in integrated circuit fabrication

    NASA Astrophysics Data System (ADS)

    Padmanabhan Ramalekshmi Thanu, Dinesh

    Fabrication of current generation integrated circuits involves the creation of multilevel copper/low-k dielectric structures during the back end of line processing. This is done by plasma etching of low-k dielectric layers to form vias and trenches, and this process typically leaves behind polymer-like post etch residues (PER) containing copper oxides, copper fluorides and fluoro carbons, on underlying copper and sidewalls of low-k dielectrics. Effective removal of PER is crucial for achieving good adhesion and low contact resistance in the interconnect structure, and this is accomplished using wet cleaning and rinsing steps. Currently, the removal of PER is carried out using semi-aqueous fluoride based formulations. To reduce the environmental burden and meet the semiconductor industry's environmental health and safety requirements, there is a desire to completely eliminate solvents in the cleaning formulations and explore the use of organic solvent-free formulations. The main objective of this work is to investigate the selective removal of PER over copper and low-k (Coral and Black DiamondRTM) dielectrics using all-aqueous dilute HF (DHF) solutions and choline chloride (CC) -- urea (U) based deep eutectic solvent (DES) system. Initial investigations were performed on plasma oxidized copper films. Copper oxide and copper fluoride based PER films representative of etch products were prepared by ashing g-line and deep UV photoresist films coated on copper in CF4/O2 plasma. PER removal process was characterized using scanning electron microscopy and X-ray photoelectron spectroscopy and verified using electrochemical impedance spectroscopy measurements. A PER removal rate of ~60 A/min was obtained using a 0.2 vol% HF (pH 2.8). Deaeration of DHF solutions improved the selectivity of PER over Cu mainly due to reduced Cu removal rate. A PER/Cu selectivity of ~20:1 was observed in a 0.05 vol% deaerated HF (pH 3). DES systems containing 2:1 U/CC removed PER at a rate of

  4. Insight into the Local Solvent Environment of Biologically Relevant Iron-nitroysl Systems through Two-Dimensional Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Brookes, Jennifer Faith

    Iron-nitrosyl systems, particularly in the form of heme proteins, with their iron metal active sites play an important role in biological systems. Heme proteins act as storage, transporters, and receptors for nitric oxide (NO), a signaling molecule that is important in immune, nervous, and cardiovascular systems of mammals. By better understanding the local environment of the active site of NO binding heme proteins we can gain insight into disease in which the NO pathways have been implicated. This is an important step to being able to develop pharmaceuticals targeting NO pathways in humans. Sodium nitroprusside ((SNP, Na2[Fe(CN)5is NO]·2H 2O) investigated as a model system for the active site of nitric oxide binding heme proteins. Using two-dimensional infrared spectroscopy (2D IR) to obtain dephasing dynamics of the nitrosyl stretch (nuNO) in a series of solvents we are able to better understand the local environment of the more complicated metalloproteins. Rigorous line shape analysis is performed by using nonlinear response theory to simulate 2D IR spectra which are then fit to experimental data in an iterative process to extract frequency-frequency correlation functions (FFCFs). The time scales obtained are then correlated to empirical solvent polarity parameters. The analysis of the 2D IR lineshapes reveal that the spectral diffusion timescale of the nuNO in SNP varies from 0.8 -- 4 ps and is negatively correlated with the empirical solvent polarity scales. We continue to investigate NO binding of metalloproteins through 2D IR experiments on nitrophorin 4 (NP4). NP4 is a pH-sensitive NO transporter protein present in the salivary gland of the blood sucking insect Rhodius prolixus which undergoes a pH sensitive structural change between a closed and open conformation allowing for the storage and delivery of NO. The two structures are observed spectroscopically as two distinct pH-dependent nu NO frequencies at ~1904 and ~1917 cm-1. We obtain FFCFs by globally

  5. Automated solvent concentrator

    NASA Technical Reports Server (NTRS)

    Griffith, J. S.; Stuart, J. L.

    1976-01-01

    Designed for automated drug identification system (AUDRI), device increases concentration by 100. Sample is first filtered, removing particulate contaminants and reducing water content of sample. Sample is extracted from filtered residue by specific solvent. Concentrator provides input material to analysis subsystem.

  6. Counter-current chromatography for the separation of terpenoids: a comprehensive review with respect to the solvent systems employed.

    PubMed

    Skalicka-Woźniak, Krystyna; Garrard, Ian

    2014-01-01

    Natural products extracts are commonly highly complex mixtures of active compounds and consequently their purification becomes a particularly challenging task. The development of a purification protocol to extract a single active component from the many hundreds that are often present in the mixture is something that can take months or even years to achieve, thus it is important for the natural product chemist to have, at their disposal, a broad range of diverse purification techniques. Counter-current chromatography (CCC) is one such separation technique utilising two immiscible phases, one as the stationary phase (retained in a spinning coil by centrifugal forces) and the second as the mobile phase. The method benefits from a number of advantages when compared with the more traditional liquid-solid separation methods, such as no irreversible adsorption, total recovery of the injected sample, minimal tailing of peaks, low risk of sample denaturation, the ability to accept particulates, and a low solvent consumption. The selection of an appropriate two-phase solvent system is critical to the running of CCC since this is both the mobile and the stationary phase of the system. However, this is also by far the most time consuming aspect of the technique and the one that most inhibits its general take-up. In recent years, numerous natural product purifications have been published using CCC from almost every country across the globe. Many of these papers are devoted to terpenoids-one of the most diverse groups. Naturally occurring terpenoids provide opportunities to discover new drugs but many of them are available at very low levels in nature and a huge number of them still remain unexplored. The collective knowledge on performing successful CCC separations of terpenoids has been gathered and reviewed by the authors, in order to create a comprehensive document that will be of great assistance in performing future purifications. PMID:24899873

  7. Lipase-Catalyzed Glycerolysis of Soybean and Canola Oils in a Free Organic Solvent System Assisted by Ultrasound.

    PubMed

    Remonatto, Daniela; Santin, Claudia M Trentin; Valério, Alexsandra; Lerin, Lindomar; Batistella, Luciane; Ninow, Jorge Luiz; de Oliveira, J Vladimir; de Oliveira, Débora

    2015-06-01

    This work shows new and promising experimental data of soybean oil and canola oil glycerolysis using Novozym 435 enzyme as catalyst in a solvent-free system using ultrasound bath for the emulsifier, monoglyceride (MAG), and diacylglycerol (DAG) production. The experiments were conducted in batch mode to study the influence of process variables as temperature (40 to 70 °C), immobilized enzyme content (2.5 to 10 wt%, relative to substrates), molar ratio glycerol/oil (0.8:1 to 3:1), agitation (0 to 1200 rpm) and ultrasound intensity (0 to 132 W cm(-2)). Highest yields of DAG+MAG (75 wt%) were obtained with molar ratio glycerol/canola oil 0.8:1, 70 °C, 900 rpm, 120 min of reaction time, 10 wt% of enzyme concentration, and 52.8 W cm(-2) of ultrasound intensity. When soybean oil was used, the best results in terms of DAG+MAGs (65 wt%) were using molar ratio of glycerol/soybean oil 0.8:1, 70 °C, 900 rpm, 90 min of reaction time, 10 wt% of enzyme content, and 40 % of ultrasound intensity (52.8 W cm(-2)). The results showed that the lipase-catalyzed glycerolysis in a solvent-free system with ultrasound bath can be a potential route for high content production of DAGs and MAGs. PMID:25875788

  8. Diffusion coefficients and heats of mixing in aqueous alkanolamines. Annual report, January-December 1992

    SciTech Connect

    Rowley, R.L.; Oscarson, J.L.

    1993-01-01

    The objective of the work is to provide accurate data on diffusion coefficients and heats of absorption of acid gases in aqueous amine solutions to assist in the design of economical new amine treating systems and to improve the efficiency of existing plants. Specifically covered in the report are measurements of the mutual diffusion coefficient of methyldiethanolamine(MDEA) and diethanolamine in water. Measurements have been made at 25, 50 and 75C and at 0, 20, 35 and 50 wt% amine. Heats of absorption of CO2 into aqueous mixtures of MDEA have also been measured calorimetrically. Results are reported at temperatures of 120 and 260F and pressures of 500 and 1000 psia at total MDEA concentrations of 20, 35 and 50%.

  9. Picosecond time-resolved emission studies. I. Real-time measurements of solvent-solute interactions. II. Kinetics of energy flow in a photosynthetic antenna system. [4-aminophthalimide

    SciTech Connect

    Yeh, S.W.

    1985-11-01

    Using a picosecond fluorimeter, the dynamics of solvation of electronically excited 4-aminophthalimide in a variety of solvents is measured. The solvation process is manifested by a time-dependent red shift in the emission spectrum in certain solvents. This red shift is time-resolved using a streak camera system. The time constant of the relaxation is found to correlate strongly with the longitudinal dielectric relaxation rate of the solvent. The correlation holds for changes in solvent, for isotopic substitution of a solvent, and for changes in temperature. Never before have direct measurements of excited-state solvation dynamics been shown to correlate with dielectric relaxation over such a wide range of experimental conditions. Emission from certain photosynthetic antenna complexes, phycobilisomes, and from the building blocks of phycobilisomes, phycobiliproteins, has also been studied using the streak camera system. Both the rising and filling portions of the time-resolved emission profiles of the fluorescing chromophores in these structures are studied. The rates of energy transfer between structural domains of the antenna complex and within the isolated biliprotein complexes are deduced from these studies. Comparison of emission profiles from a series of structurally distinct phycobilisomes isolated from three related strains of cyanobacteria have provided new insights into the correlation of the energy transfer function and macromolecular structure in these light-harvesting antenna systems. 133 refs., 58 figs., 14 tabs.

  10. Comparison of rapid solvent extraction systems for the GC–MS/MS characterization of polycyclic aromatic hydrocarbons in aged, contaminated soil

    PubMed Central

    Haleyur, Nagalakshmi; Shahsavari, Esmaeil; Mansur, Abdulatif A.; Koshlaf, Eman; Morrison, Paul D.; Osborn, A. Mark; Ball, Andrew S.

    2016-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are a major class of organic hydrocarbons with high molecular weight that originate from both natural and anthropogenic sources. Sixteen PAHs are included in the U.S Environmental Protection agency list of priority pollutants due to their mutagenic, carcinogenic, toxic and teratogenic properties. In this study, the development and optimization of a simplified and rapid solvent extraction for the characterisation of 16 USEPA priority poly aromatic hydrocarbons (PAHs) in aged contaminated soils was established with subsequent analysis by GC–MS/MS. • Five different extraction solvent systems: dichloromethane: acetone, chloroform: methanol, dichloromethane, acetone: hexane and hexane were assessed in terms of their ability to extract PAHs from aged PAH-contaminated soils. • Highest PAH concentrations were extracted using acetone: hexane and chloroform: methanol. Given the greater toxicity associated with chloroform: methanol, acetone: hexane appears the best choice of solvent extraction system. • This protocol enables efficient extraction of PAHs from aged weathered soils. PMID:27200269

  11. Injectable in situ forming depot systems: PEG-DAE as novel solvent for improved PLGA storage stability.

    PubMed

    Schoenhammer, K; Petersen, H; Guethlein, F; Goepferich, A

    2009-04-17

    Injectable in situ forming depots (ISFD) that contain a peptide or a protein within a polymeric solution comprise an attractive, but challenging application system. Beyond chemical compatibility, local tolerability and acute toxicity, an important factor for an ISFD is its storage stability as a liquid. In this study, poly(D,L-lactide-co-glycolide) (PLGA) degradation in the presence of poly(ethyleneglycol) (PEG) as biocompatible solvent was investigated as a function of storage temperature and water content. The PLGA molecular weight (Mw) was determined by gel permeation chromatography (GPC), and monitored by NMR during degradation. Rapid PLGA degradation of 75% at 25 degrees C storage temperature was shown to be the result of a transesterification using conventional PEG as solvent. A significant improvement with only 3% Mw loss was obtained by capping the PEG hydroxy- with an alkyl- endgroup to have poly(ethyleneglycol) dialkylether (PEG-DAE). The formation of PEG-PLGA block co-polymers was confirmed by NMR, only for PEG300. Reaction rate constants were used to compare PLGA degradation dissolved in conventional and alkylated PEGs. The degradation kinetics in PEG-DAE were almost completely insensitive to 1% additional water in the solution. The transesterification of the hydroxy endgroups of PEG with PLGA was the major degradation mechanism, even under hydrous conditions. The use of PEG-DAE for injectable polymeric solutions, showed PLGA stability under the chosen conditions for at least 2 months. Based on the results obtained here, PEG-DAE appears to be a promising excipient for PLGA-based, parenteral ISFD. PMID:19135512

  12. Organic Solvent Effects in Biomass Conversion Reactions.

    PubMed

    Shuai, Li; Luterbacher, Jeremy

    2016-01-01

    Transforming lignocellulosic biomass into fuels and chemicals has been intensely studied in recent years. A large amount of work has been dedicated to finding suitable solvent systems, which can improve the transformation of biomass into value-added chemicals. These efforts have been undertaken based on numerous research results that have shown that organic solvents can improve both conversion and selectivity of biomass to platform molecules. We present an overview of these organic solvent effects, which are harnessed in biomass conversion processes, including conversion of biomass to sugars, conversion of sugars to furanic compounds, and production of lignin monomers. A special emphasis is placed on comparing the solvent effects on conversion and product selectivity in water with those in organic solvents while discussing the origins of the differences that arise. We have categorized results as benefiting from two major types of effects: solvent effects on solubility of biomass components including cellulose and lignin and solvent effects on chemical thermodynamics including those affecting reactants, intermediates, products, and/or catalysts. Finally, the challenges of using organic solvents in industrial processes are discussed from the perspective of solvent cost, solvent stability, and solvent safety. We suggest that a holistic view of solvent effects, the mechanistic elucidation of these effects, and the careful consideration of the challenges associated with solvent use could assist researchers in choosing and designing improved solvent systems for targeted biomass conversion processes. PMID:26676907

  13. Crystal growth of hexagonal boron nitride (hBN) from Mg-B-N solvent system under high pressure

    NASA Astrophysics Data System (ADS)

    Zhigadlo, N. D.

    2014-09-01

    Transparent and colorless hexagonal boron nitride (hBN) single crystals were grown from the Mg-B-N system using high-pressure-high-temperature cubic anvil technique. By varying the synthesis conditions we could determine the sequence of phase transformations occurring in the Mg-B-N system, construct the pressure-temperature (P-T) phase diagram and discuss the possible growth mechanism. The largest plate-like-shaped hBN crystals with sizes up to 2.5 mm in length and up to 10 μm in thickness were grown at 30 kbar and 1900-2100 °C. The hBN crystals exhibited strong, narrow diffraction peaks typical of well-ordered stacking crystal planes, with the c-axis perpendicular to the crystal face. A characteristic Raman peak observed at 1367 cm-1 with a full width at half maximum of 8 cm-1 corresponds to the E2g vibration mode and indicates the high purity and order of hBN crystals grown by this method. From the practical point of view this work can stimulate further explorations of the Mg-B-N solvent system to obtain isotopically-enriched h10BN crystals, which can act as a key element in solid-state neutron detector devices.

  14. Critical behavior of interacting two-polymer system in a fractal solvent: an exact renormalization group approach

    NASA Astrophysics Data System (ADS)

    Živić, I.; Elezović-Hadžić, S.; Milošević, S.

    2008-04-01

    We study the polymer system consisting of two polymer chains situated in a fractal container that belongs to the three-dimensional Sierpinski gasket (3D SG) family of fractals. Each 3D SG fractal has four fractal impenetrable 2D surfaces, which are, in fact, 2D SG fractals. The two-polymer system is modeled by two interacting self-avoiding walks (SAW), one of them representing a 3D floating polymer, while the other corresponds to a chain confined to one of the four 2D SG boundaries (with no monomer in the bulk). We assume that the studied system is immersed in a poor solvent inducing the intra-chain interactions. For the inter-chain interactions we propose two models: in the first model (ASAW) the SAW chains are mutually avoiding, whereas in the second model (CSAW) chains can cross each other. By applying an exact renormalization group (RG) method, we establish the relevant phase diagrams for b = 2,3 and 4 members of the 3D SG fractal family for the model with avoiding SAWs, and for b = 2 and 3 fractals for the model with crossing SAWs. Also, at the appropriate transition fixed points we calculate the contact critical exponents, associated with the number of contacts between monomers of different chains. Throughout this paper we compare results obtained for the two models and discuss the impact of the topology of the underlying lattices on emerging phase diagrams.

  15. Comparison of Fluor Solvent and Selexol processes

    SciTech Connect

    Bucklin, R.W.; Schendel, R.L.

    1984-09-01

    Physical solvent processes can be useful for acid gas removal applications. The necessity for screening physical solvent characteristics to eliminate those solvents that are unsuitable or noncompetitive for a particular application is discussed. The Fluor Solvent and Selexol processes are compared. Selexol has an advantage over other solvents in oil applications involving H/sub 2/S and CO/sub 2/ removal in hydrocarbon systems. Fluor Solvent and Selexol have an experience advantage over other processes in applications for CO/sub 2/ removal only.

  16. A detailed study of cholinium chloride and levulinic acid deep eutectic solvent system for CO2 capture via experimental and molecular simulation approaches.

    PubMed

    Ullah, Ruh; Atilhan, Mert; Anaya, Baraa; Khraisheh, Majeda; García, Gregorio; ElKhattat, Ahmed; Tariq, Mohammad; Aparicio, Santiago

    2015-08-28

    Choline chloride + levulinic acid deep eutectic solvent is studied as a suitable material for CO2 capturing purposes. The most relevant physicochemical properties of this solvent are reported together with the CO2 solubility as a function of temperature. The corrosivity of this solvent is studied showing better performance than amine-based solvents. A theoretical study using both density functional theory and molecular dynamics approaches is carried out to analyze the properties of this fluid from the nanoscopic viewpoint, and their relationship with the macroscopic behavior of the system and its ability for CO2 capturing. The behavior of the liquid-gas interface is also studied and its role on the CO2 absorption mechanism is analyzed. The reported combined experimental and theoretical approach leads to a complete picture of the behavior of this new sorbent with regard to CO2, which together with its low cost, and the suitable environmental and toxicological properties of this solvent, lead to a promising candidate for CO2 capturing technological applications. PMID:26214080

  17. SAGE SOLVENT ALTERNATIVES GUIDE: SYSTEM IMPROVEMENTS FOR SELECTING INDUSTRIAL SURFACE CLEANING ALTERNATIVES

    EPA Science Inventory

    The paper describes computer software, called SAGE, that can provide not only cleaning recommendations but also general information on various surface cleaning options. In short, it is an advisory system which can provide users with vital information on the cleaning process optio...

  18. PREDICTION OF SUGAR-SNAP COOKIE DIAMETER USING SUCROSE SOLVENT RETENTION CAPACITY, KERNEL TEXTURE, AND PROTEIN CONTENT FOR FLOURS PRODUCED USING THREE LABORATORY MILLING SYSTEMS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wheat kernel texture determined during milling, sucrose solvent retention capacity, and protein content for soft wheat flours best predicted sugar-snap cookie diameter. A total of 507 wheats were milled using three laboratory milling systems (short, medium and long mill flow). Prediction equations...

  19. Organic solvent topical report

    SciTech Connect

    COWLEY, W.L.

    1999-05-13

    This report provides the basis for closing the organic solvent safety issue. Sufficient information is presented to conclude that risk posed by an organic solvent fire is within risk evaluation guidelines. This report updates information contained in Analysis of Consequences of Postulated Solvent Fires in Hanford Site Waste Tanks. WHC-SD-WM-CN-032. Rev. 0A (Cowley et al. 1996). However, this document will not replace Cowley et al (1996) as the primary reference for the Basis for Interim Operation (BIO) until the recently submitted BIO amendment (Hanson 1999) is approved by the US Department of Energy. This conclusion depends on the use of controls for preventing vehicle fuel fires and for limiting the use of flame cutting in areas where hot metal can fall on the waste surface.The required controls are given in the Tank Waste Remediation System Technical Safety Requirements (Noorani 1997b). This is a significant change from the conclusions presented in Revision 0 of this report. Revision 0 of this calcnote concluded that some organic solvent fire scenarios exceeded risk evaluation guidelines, even with controls imposed.

  20. Replacement of HCFC-225 Solvent for Cleaning NASA Propulsion Oxygen Systems

    NASA Technical Reports Server (NTRS)

    Lowrey, Nikki M.; Mitchell, Mark A.

    2015-01-01

    Since the 1990's, when the Class I Ozone Depleting Substance (ODS) chlorofluorocarbon-113 (CFC-113) was banned, NASA's propulsion test facilities at Marshall Space Flight Center (MSFC) and Stennis Space Center (SSC) have relied upon hydrochlorofluorocarbon-225 (HCFC-225) to safely clean and verify the cleanliness of large scale propulsion oxygen systems. Effective January 1, 2015, the production, import, export, and new use of HCFC-225, a Class II ODS, was prohibited by the Clean Air Act. In 2012 through 2014, leveraging resources from both NASA and the Defense Logistics Agency - Aviation Hazardous Minimization and Green Products Branch, test labs at MSFC, SSC, and Johnson Space Center's White Sands Test Facility (WSTF) collaborated to seek out, test, and qualify a replacement for HCFC-225 that is both an effective cleaner and safe for use with oxygen systems. This presentation summarizes the tests performed, results, and lessons learned. It also demonstrates the benefits of cross-agency collaboration in a time of limited resources.

  1. Factors influencing phase disengagement rates in solvent extraction systems employing tertiary amine extractants

    SciTech Connect

    Moyer, B.A.; McDowell, W.J.

    1981-01-01

    A key structural factor affecting organic continuous phase disengagement was found to be the backbone chain length (longest chain in each alkyl group) since the OC phase disengagement measurements could be correlated vs backbone chain length on a single curve regardless of whether the amine was branched or linear. Aqueous continuous (AC) phase disengagement rate was rapid for the acid sulfate solution but decreased greatly with decreasing n when colloidal silica was added or when leach solution was used. With both leach and colloidal silica solutions, AC phase disengagement was correlated with wetting behavior of the amine systems on a glass (silicate) surface. A model based on silica attachment to the liquid/liquid interface was suggested to explain the stabilization of AC dispersions by silica and the related problem of interfacial crud formation. In addition faster AC phase disengagement and less emulsion (crud) stabilization, the larger molecular weight amines (n greater than or equal to 10) were found to have higher uranium extraction coefficients and lower tendencies to form third phases. Presumably, solubility losses to the aqueous phase are also lower. The results suggest that the performance of some Amex systems may be improved by using branched chain tertiary amine extractants of higher molecular weight than are now normally used. 10 figures, 3 tables.

  2. SUPERFUND TREATABILITY CLEARINGHOUSE: FINAL REPORT: DEVELOPMENT OF OPTIMUM TREATMENT SYSTEM FOR WASTEWATER LAGOONS PHASE II - SOLVENT EXTRACTION LABORATORY TESTING

    EPA Science Inventory

    The U.S. Army surveyed innovative treatment techniques for restoration of hazardous waste lagoons and selected solvent extraction as cost-effective restoration for further study. This treatability study focuses on treatment of organic (explosive) contaminated lagoon sediments w...

  3. Factors influencing phase-disengagement rates in solvent-extraction systems employing tertiary amine extractants

    SciTech Connect

    Moyer, B.A.; McDowell, W.J.

    1981-01-01

    The primary purpose of the present investigation was to examine the effects of amine size and structure on phase disengagement. Nine commercial tertiary amines were tested together with four laboratory-quality amines for uranium extraction and both organic-continuous (OC) and aqueous-continuous (AC) phase disengagement under Amex-type conditions. Synthetic acid sulfate solutions with and without added colloidal silica and actual ore leach solutions were used as the aqueous phases. Phase disengagement results were correlated with amine size and branching and solution wetting behavior on a silicate (glass) surface. The results suggest that the performance of some Amex systems may be improved by using branched chain tertiary amine extractants of higher molecular weight than are now normally used.

  4. Monoglycerides and Diglycerides Synthesis in a Solvent-Free System by Lipase-Catalyzed Glycerolysis

    NASA Astrophysics Data System (ADS)

    Fregolente, Patricia Bogalhos Lucente; Fregolente, Leonardo Vasconcelos; Pinto, Gláucia Maria F.; Batistella, Benedito César; Wolf-Maciel, Maria Regina; Filho, Rubens Maciel

    Five lipases were screened (Thermomyces lanuginosus free and immobilized forms, Candida antarctica B, Candida rugosa, Aspergillus niger, and Rhizomucor miehei) to study their ability to produce monoglycerides (MG) and diglycerides (DG) through enzymatic glycerolysis of soybean oil. Lipase from C. antarctica was further studied to verify the enzyme load (wt% of oil mass), the molar ratio glycerol/oil, and the water content (wt% of glycerol) on the glycerolysis reaction. The best DG and MG productions were in the range 45-48% and 28-30% (w/w, based on the total oil), respectively. Using immobilized lipases, the amount of free fatty acids (FFA) produced was about 5%. However, the amount of FFA produced when using free lipases, with 3.5% extra water in the system, is equivalent to the MG yield, about 23%. The extra water content provides a competition between hydrolysis and glycerolysis reactions, increasing the FFA production.

  5. Strategies to improve MEA CO/sub 2/-removal detailed at Louisiana ammonia plant

    SciTech Connect

    Gagliardi, C.R.; Smith, D.D.; Wang, S.I.

    1989-03-06

    Alkanolamines are chemically reactive solvents widely used for removal of CO/sub 2/ and H/sub 2/S from sour-gas streams. Monoethanolamine (MEA) is the most popular of the alkanolamines. Improving efficiencies and increasing capacities in existing MEA CO/sub 2/-removal systems may be constrained by several limitations. Air Products and Chemicals Inc. (APCI), Allentown, Pa., has experience resolving these limitations as shown in a CO/sub 2/-removal system project at a Louisiana ammonia plant.

  6. Photophysics of Diphenylbutadiynes in Water, Acetonitrile-Water, and Acetonitrile Solvent Systems: Application to Single Component White Light Emission.

    PubMed

    Pati, Avik Kumar; Jana, Rounak; Gharpure, Santosh J; Mishra, Ashok K

    2016-07-28

    Diacetylenes have been the subject of current research because of their interesting optoelectronic properties. Herein, we report that substituted diphenylbutadiynes exhibit locally excited (LE) and excimer emissions in water and multiple emissions from the LE, excimer, and intramolecular charge transfer (ICT) states in acetonitrile-water solvent systems. The LE, excimer, and ICT emissions are clearly distinguishable for a diphenylbutadiynyl derivative with push (-NMe2)-pull (-CN) substituents and those are closely overlapped for non-push-pull analogues. In neat acetonitrile, the excimer emission disappears and the LE and ICT emissions predominate. In the case of the push (-NMe2)-pull (-CN) diphenylbutadiyne, the intensity of the ICT emission increases with increasing the fluorophore concentration. This suggests that the ICT emission accompanies with intermolecular CT emission which is of exciplex type. As the LE and exciplex emissions of the push-pull diphenylbutadiyne together cover the visible region (400-700 nm) in acetonitrile, a control of the fluorophore concentration makes the relative intensities of the LE and exciplex emissions such that pure white light emission is achieved. The white light emission is not observed in those diphenylbutadiynyl analogues in which the peripheral substituents of the phenyl rings do not possess strong push-pull character. PMID:27379734

  7. Process development for production of medium chain triglycerides using immobilized lipase in a solvent-free system.

    PubMed

    Langone, Marta A P; Sant'Anna, Geraldo L

    2002-01-01

    The synthesis of tricaprylin, tricaprin, trilaurin, and trimyristin in a solvent-free system was conducted by mixing a commercial immobilized lipase with the organic reagents (glycerol and fatty acid) in a 20-mL batch reactor with constant stirring. The effects of temperature, fatty acid/glycerol molar ratio, and enzyme concentration on the reaction conversion were determined. The reactions were carried out for 26 h and the nonpolar phase was analyzed by gas chromatography. Appreciable levels of medium chain triglycerides were achieved, except for tricaprylin. The higher selectivity values for the production of triglycerides were attained under the following conditions: a fatty acid/glycerol molar ratio of 5; enzyme concentration of 5 or 9% (w/w); and temperatures of 70 degrees C (tricaprin), 80 degrees C (trilaurin), and 90 degrees C (trimyristin). After completion of the esterification reaction under these conditions, the recovery of the triglyceride and fatty acids, and the reusability of the enzyme were studied. The unreacted fatty acid and the produced triglyceride were satisfactorily recovered. The commercial immobilized lipase was used in 10 consecutive batch reactions at 80 degrees C, with 100% selectivity in the trilaurin and trimyristin synthesis. The possibility of enzyme reuse and the recovery of residual fatty acid are relevant results that contribute to increasing the viability of the process. PMID:12018320

  8. Characterization and Monitoring of Natural Attenuation of Chlorinated Solvents in Ground Water: A Systems Approach

    NASA Astrophysics Data System (ADS)

    Cutshall, N. H.; Gilmore, T.; Looney, B. B.; Vangelas, K. M.; Adams, K. M.; Sink, C. H.

    2006-05-01

    the attenuation capacity. The mass balance approach is controlled by a combination of boundary conditions (e.g., water inputs and outputs), flow dynamics, and contaminant concentrations. As a result, long term monitoring might be improved while reducing costs by measuring fewer point concentrations and simultaneously adding large-scale measurements of boundary conditions, using weather data, remote sensing of evapotranspiration, stream-flow monitoring, etc. Because there are no specific regulatory drivers for performance-monitoring, regulators are not accustomed to participating in monitoring system design. A partnership with the Interstate Technology Regulatory Council (ITRC) has been formed to promote communication and develop advanced guidance for MNA. Early and continued communication among technology developers, end users, regulators and the public has been essential to this progress.

  9. Outlook on the phase equilibria of the innovative system of "protected glycerol": 1,4-dioxaspiro[4.5]decane-2-methanol and alternative solvents.

    PubMed

    Melo, Catarina I; Rodrigues, Ana I; Bogel-Łukasik, Rafał; Bogel-Łukasik, Ewa

    2012-02-23

    Fundamental data on 1,4-dioxaspiro[4.5]decane-2-methanol are scarce. This work presents the foremost systematic data on the solubility of 1,4-dioxaspiro[4.5]decane-2-methanol in sustainable solvents such as water and ionic liquids accompanied by the interpretation of interactions occurring in such binary systems. 1,4-Dioxaspiro[4.5]decane-2-methanol, here called protected glycerol, has been synthesized in order to protect the two hydroxyl groups of glycerol, thus avoiding the formation of side products in a specific process. A series of imidazolium salts accompanied by pyridinium, phosphonium, and ammonium ones with various types of counterions were used in this study. The liquid-liquid and solid-liquid equilibrium measurements in binary systems were carried out by using a dynamic method at atmospheric pressure over the temperature range from 273.00 to 378.30 K or below the boiling point of the solvent. Among all tested sustainable solvents, protected glycerol exhibited limited solubility, with only a few of them in the temperature range studied. The majority of the examined ionic liquids, either hydrophilic or hydrophobic, showed complete miscibility with this monohydroxyol. The Fourier-transform infrared (FTIR) spectroscopy studies of solute and solvents showing a miscibility gap and of their mixtures were performed to obtain insight into major inter- and intramolecular interactions in the investigated systems. Furthermore, the differential scanning calorimetry was used for the first time to determine the melting point, the enthalpy of melting, and the temperature and enthalpy of the solid-solid phase transition of 1-allyl-3-methylimidazolium chloride [Amim][Cl]. The results for the solubility of protected glycerol in sustainable solvents can be used to design future alternative reactions, such as telomerization with protected glycerol in ionic liquids for more specific building blocks and extraction/or separation that involves these mixtures. PMID:22236350

  10. Dipolar correlations in structured solvents under nanoconfinement.

    PubMed

    Buyukdagli, Sahin; Blossey, Ralf

    2014-06-21

    We study electrostatic correlations in structured solvents confined to nanoscale systems. We derive variational equations of Netz-Orland type for a model liquid composed of finite size dipoles. These equations are solved for both dilute solvents and solvents at physiological concentrations in a slit nanopore geometry. Correlation effects are of major importance for the dielectric reduction and anisotropy of the solvent resulting from dipole image interactions and also lead to a reduction of van der Waals attractions between low dielectric bodies. Finally, by comparison with other recently developed self-consistent theories and experiments, we scrutinize the effect of solvent-membrane interactions on the differential capacitance of the charged liquid in contact with low dielectric substrates. The interfacial solvent depletion driven by solvent-image interactions plays the major role in the observed low values of the experimental capacitance data, while non-locality associated with the extended charge structure of solvent molecules only brings a minor contribution. PMID:24952564

  11. Combined effects of raw materials and solvent systems on the preparation and properties of regenerated cellulose fibers.

    PubMed

    Chen, Jinghuan; Guan, Ying; Wang, Kun; Zhang, Xueming; Xu, Feng; Sun, Runcang

    2015-09-01

    To investigate the combined effects of materials and solvents on the preparation, structural and mechanical properties of regenerated cellulose fibers, four cellulosic materials (microcrystalline cellulose, cotton linter pulp, bamboo pulp and bleached softwood sulfite dissolving pulp) and six non-derivative solvents (NaOH/urea aqueous solution, N,N-dimethylacetamide/lithium chloride, N-methyl-morpholine-N-oxide, 1-butyl-3-methylimidazolium chloride, 1-allyl-3-methylimidazolium chloride and 1-ethyl-3-methylimidazolium acetate) were used to prepare fibers with wet spinning method. The results showed that the dissolvability of solvent was the determining factor in cellulose dissolution, and the dissolving time was influenced by the raw materials' properties, such as molecular weight, exposed area and hemicellulose content. The crystallinity and elongation at break of the fibers were almost fixed and not affected by the materials and solvents. However, the tensile strength of the fibers was directly proportional to the molecular weight of the raw materials, and varied with the type of solvents through cellulose degradation. PMID:26005150

  12. Application of a magnesium/co-solvent system for the degradation of polycyclic aromatic hydrocarbons and their oxygenated derivatives in a spiked soil.

    PubMed

    Elie, Marc R; Williamson, Robert E; Clausen, Christian A; Yestrebsky, Cherie L

    2014-12-01

    This study evaluates the capability, efficacy and practicality of a combined approach based on solvent extraction and chemical reduction to simultaneously degrade polycyclic aromatic hydrocarbons (PAHs) and their oxygenated derivatives (OPAHs) in spiked soil. The spiked soil was washed using a composite organic solvent consisting of ethanol and ethyl lactate (1:1, v/v) and then degradation of the extracted contaminants using zero-valent magnesium. The extraction conditions were optimized at 25 °C with solvent-soil ratio of 2:1 (v/w) and the ensuing degradation efficiency ranged from 79% to 88% for the OPAHs, and 66% to 87% for the PAHs after 24 h of reaction at pH of 6.1. The reductive degradation of the spiked contaminants followed pseudo-first-order kinetics; however, comparing the kinetic results of this study to soil-free studies, the degradation rates are significantly reduced. It can be inferred that extracted organic or inorganic components from the soil medium hinder the degradation process, possibly by reducing the reactivity of the activated metal. Furthermore, to our understanding, this study is the first report on the simultaneous degradation of these priority pollutants and their oxygenated derivatives. The experimental results encourage the application of this magnesium/co-solvent system for future pilot-scale remediation studies. PMID:25461950

  13. Computer-aided control of water activity for lipase-catalyzed esterification in solvent-free systems.

    PubMed

    Won, K; Lee, S B

    2001-01-01

    A computer system for on-line monitoring and control of the water activity (a(w)) in solvent-free media has been developed. The performance of this system was investigated by carrying out the lipase-catalyzed esterification of n-capric acid with n-decyl alcohol. A humidity sensor measured the relative humidity in the reactor headspace, which was then transmitted electrically to a digital computer that was used as a feedback controller. The water activity control was achieved by sparging either humidified air or dried air through the reaction medium at a flow rate determined by the digital feedback controller. The use of humid air and dry air for a(w) control made it possible to induce a larger a(w) gradient and thereby higher water transfer rate. As a result, the water activity quickly reached the desired a(w) values. We tested whether water activity in the reaction medium can be monitored by measuring relative humidity in the headspace. When the water activity in the liquid phase was determined from measurements of water content in the medium and compared to that measured directly with the humidity sensor, the a(w) in the reaction medium did not differ significantly from that in the headspace. This indicates that there is a near-equilibrium between the liquid medium and the exit air stream. Water activity was also successfully maintained close to the set point despite the massive production of water during the esterification process. Thus, the control system developed in this study is particularly useful for systems where large amounts of water are produced and where conventional methods make it difficult to control water activity as a result of a low water transfer rate. The effects that computer control of the water activity had on the reaction rate and yield were also examined. The reaction yield was significantly improved with water activity control. The conversions obtained at 28 h without and those with water activity control were 70% and 96%, respectively

  14. Characterization of dimethylsulfoxide/glycerol mixtures: a binary solvent system for the study of "friction-dependent" chemical reactivity.

    PubMed

    Angulo, Gonzalo; Brucka, Marta; Gerecke, Mario; Grampp, Günter; Jeannerat, Damien; Milkiewicz, Jadwiga; Mitrev, Yavor; Radzewicz, Czesław; Rosspeintner, Arnulf; Vauthey, Eric; Wnuk, Paweł

    2016-07-21

    The properties of binary mixtures of dimethylsulfoxide and glycerol, measured using several techniques, are reported. Special attention is given to those properties contributing or affecting chemical reactions. In this respect the investigated mixture behaves as a relatively simple solvent and it is especially well suited for studies on the influence of viscosity on chemical reactivity. This is due to the relative invariance of the dielectric properties of the mixture. However, special caution must be taken with specific solvation, as the hydrogen-bonding properties of the solvent change with the molar fraction of glycerol. PMID:27339434

  15. Solvent wash solution

    DOEpatents

    Neace, J.C.

    1984-03-13

    A process is claimed for removing diluent degradation products from a solvent extraction solution, which has been used to recover uranium and plutonium from spent nuclear fuel. A wash solution and the solvent extraction solution are combined. The wash solution contains (a) water and (b) up to about, and including, 50 vol % of at least one-polar water-miscible organic solvent based on the total volume of the water and the highly-polar organic solvent. The wash solution also preferably contains at least one inorganic salt. The diluent degradation products dissolve in the highly-polar organic solvent and the organic solvent extraction solvent do not dissolve in the highly-polar organic solvent. The highly-polar organic solvent and the extraction solvent are separated.

  16. Solvent wash solution

    DOEpatents

    Neace, James C.

    1986-01-01

    Process for removing diluent degradation products from a solvent extraction solution, which has been used to recover uranium and plutonium from spent nuclear fuel. A wash solution and the solvent extraction solution are combined. The wash solution contains (a) water and (b) up to about, and including, 50 volume percent of at least one-polar water-miscible organic solvent based on the total volume of the water and the highly-polar organic solvent. The wash solution also preferably contains at least one inorganic salt. The diluent degradation products dissolve in the highly-polar organic solvent and the organic solvent extraction solvent do not dissolve in the highly-polar organic solvent. The highly-polar organic solvent and the extraction solvent are separated.

  17. Role of Solvent on Protein-Matrix Coupling in MbCO Embedded in Water-Saccharide Systems: A Fourier Transform Infrared Spectroscopy Study

    PubMed Central

    Giuffrida, Sergio; Cottone, Grazia; Cordone, Lorenzo

    2006-01-01

    Embedding protein in sugar systems of low water content enables one to investigate the protein dynamic-structure function in matrixes whose rigidity is modulated by varying the content of residual water. Accordingly, studying the dynamics and structure thermal evolution of a protein in sugar systems of different hydration constitutes a tool for disentangling solvent rigidity from temperature effects. Furthermore, studies performed using different sugars may give information on how the detailed composition of the surrounding solvent affects the internal protein dynamics and structural evolution. In this work, we compare Fourier transform infrared spectroscopy measurements (300–20 K) on MbCO embedded in trehalose, sucrose, maltose, raffinose, and glucose matrixes of different water content. At all the water contents investigated, the protein-solvent coupling was tighter in trehalose than in the other sugars, thus suggesting a molecular basis for the trehalose peculiarity. These results are in line with the observation that protein-matrix phase separation takes place in lysozyme-lactose, whereas it is absent in lysozyme-trehalose systems; indeed, these behaviors may respectively be due to the lack or presence of suitable water-mediated hydrogen-bond networks, which match the protein surface to the surroundings. The above processes might be at the basis of pattern recognition in crowded living systems; indeed, hydration shells structural and dynamic matching is first needed for successful come together of interacting biomolecules. PMID:16714349

  18. Replacement of Hydrochlorofluorocarbon (HCFC) -225 Solvent for Cleaning and Verification Sampling of NASA Propulsion Oxygen Systems Hardware, Ground Support Equipment, and Associated Test Systems

    NASA Technical Reports Server (NTRS)

    Burns, H. D.; Mitchell, M. A.; McMillian, J. H.; Farner, B. R.; Harper, S. A.; Peralta, S. F.; Lowrey, N. M.; Ross, H. R.; Juarez, A.

    2015-01-01

    Since the 1990's, NASA's rocket propulsion test facilities at Marshall Space Flight Center (MSFC) and Stennis Space Center (SSC) have used hydrochlorofluorocarbon-225 (HCFC-225), a Class II ozone-depleting substance, to safety clean and verify the cleanliness of large scale propulsion oxygen systems and associated test facilities. In 2012 through 2014, test laboratories at MSFC, SSC, and Johnson Space Center-White Sands Test Facility collaborated to seek out, test, and qualify an environmentally preferred replacement for HCFC-225. Candidate solvents were selected, a test plan was developed, and the products were tested for materials compatibility, oxygen compatibility, cleaning effectiveness, and suitability for use in cleanliness verification and field cleaning operations. Honewell Soltice (TradeMark) Performance Fluid (trans-1-chloro-3,3, 3-trifluoropropene) was selected to replace HCFC-225 at NASA's MSFC and SSC rocket propulsion test facilities.

  19. Evaluation of fasted and fed state simulated and human intestinal fluids as solvent system in the Ussing chambers model to explore food effects on intestinal permeability.

    PubMed

    Wuyts, Benjamin; Riethorst, Danny; Brouwers, Joachim; Tack, Jan; Annaert, Pieter; Augustijns, Patrick

    2015-01-30

    The Ussing chambers model is almost exclusively used in the presence of plain aqueous phosphate buffers as solvent system. In an attempt to further elucidate the effect of luminal ingredients and postprandial conditions on intestinal permeability, pooled fasted and fed state human intestinal fluids (FaHIFpool, FeHIFpool) were used. In addition, simulated intestinal fluids of both nutritional states (FaSSIF, FeSSIF) were evaluated as possible surrogate media for HIF. The use of FaHIFpool generated a broad range of Papp values for a series of 16 model drugs, ranging from 0.03×10(-6)cm/s (carvedilol) to 33.8×10(-6)cm/s (naproxen). A linear correlation was observed between Papp values using FaSSIF and FaHIFpool as solvent system (R=0.990), justifying the use of FaSSIF as surrogate medium for FaHIF in the Ussing chambers. In exclusion of the outlier carvedilol, a strong sigmoidal relationship was found between Papp and fahuman of 15 model drugs, illustrated by correlation coefficients of 0.961 and 0.936 for FaHIFpool and FaSSIF, respectively. When addressing food effects on intestinal permeability, the use of FeHIFpool resulted in a significantly lower Papp value for nine out of sixteen compounds compared to fasting conditions. FeSSIF as solvent system significantly overestimated Papp values in FeHIFpool. To conclude, the optimized Ussing chambers model using biorelevant media as apical solvent system holds great potential to investigate food effects in a more integrative approach, taking into account drug solubilisation, supersaturation and formulation effects. PMID:25510602

  20. Zebrafish as a Model for Systems Medicine R&D: Rethinking the Metabolic Effects of Carrier Solvents and Culture Buffers Determined by (1)H NMR Metabolomics.

    PubMed

    Akhtar, Muhammad T; Mushtaq, Mian Y; Verpoorte, Robert; Richardson, Michael K; Choi, Young H

    2016-01-01

    Zebrafish is a frequently employed model organism in systems medicine and biomarker discovery. A crosscutting fundamental question, and one that has been overlooked in the field, is the "system-wide" (omics) effects induced in zebrafish by metabolic solvents and culture buffers. Indeed, any bioactivity or toxicity test requires that the target compounds are dissolved in an appropriate nonpolar solvent or aqueous media. It is important to know whether the solvent or the buffer itself has an effect on the zebrafish model organism. We evaluated the effects of two organic carrier solvents used in research with zebrafish, as well as in drug screening: dimethyl sulfoxide (DMSO) and ethanol, and two commonly used aqueous buffers (egg water and Hank's balanced salt solution). The effects of three concentrations (0.01, 0.1, and 1%) of DMSO and ethanol were tested in the 5-day-old zebrafish embryo using proton nuclear magnetic resonance ((1)H NMR) based metabolomics. DMSO (1% and 0.1%, but not 0.01%) exposure significantly decreased the levels of adenosine triphosphate (ATP), betaine, alanine, histidine, lactate, acetate, and creatine (p < 0.05). By contrast, ethanol exposure did not alter the embryos' metabolome at any concentration tested. The two different aqueous media noted above impacted the zebrafish embryo metabolome as evidenced by changes in valine, alanine, lactate, acetate, betaine, glycine, glutamate, adenosine triphosphate, and histidine. These results show that DMSO has greater effects on the embryo metabolome than ethanol, and thus is used with caution as a carrier solvent in zebrafish biomarker research and oral medicine. Moreover, the DMSO concentration should not be higher than 0.01%. Careful attention is also warranted for the use of the buffers egg water and Hank's balanced salt solution in zebrafish. In conclusion, as zebrafish is widely used as a model organism in life sciences, metabolome changes induced by solvents and culture buffers warrant further

  1. INFLUENCE OF SOLVENT AND SORBENT CHARACTERISTICS ON DISTRIBUTION OF PENTACHLOROPHENOL IN OCTANOL-WATER AND SOIL-WATER SYSTEMS

    EPA Science Inventory

    Sorbent and solvent characteristics influencing sorption of pentachlorophenol (PCP) were investigated. Analysis of aqueous sorption data for several sorbents over a broad pH range suggested hydrophobic sorption of neutral PCP predominates at pH 7. At pH > 7, sorption of the penta...

  2. INFLUENCE OF SOLVENT AND SORBENT CHARACTERISTICS ON DISTRIBUTION OF PENTACHLOROPHENOL IN OCTANOL-WATER AND SOIL-WATER SYSTEMS

    EPA Science Inventory

    Sorbent and solvent characteristics influencing sorption of pentachlorophenol (PCP) were investigated. nalysis of aqueous sorption data for several sorbents over a broad pH range suggested hydrophobic sorption of neutral PCP predominates at pH<7. t pH>7, sorption of the pentachlo...

  3. ACE applied to the quantitative characterization of benzo-18-crown-6-ether binding with alkali metal ions in a methanol-water solvent system.

    PubMed

    Ehala, Sille; Makrlík, Emanuel; Toman, Petr; Kasicka, Václav

    2010-01-01

    ACE was applied to the quantitative evaluation of noncovalent binding interactions between benzo-18-crown-6-ether (B18C6) and several alkali metal ions, Li(+), Na(+), K(+), Rb(+) and Cs(+), in a mixed binary solvent system, methanol-water (50/50 v/v). The apparent binding (stability) constants (K(b)) of B18C6-alkali metal ion complexes in the hydro-organic medium above were determined from the dependence of the effective electrophoretic mobility of B18C6 on the concentration of alkali metal ions in the BGE using a nonlinear regression analysis. Before regression analysis, the mobilities measured by ACE at ambient temperature and variable ionic strength of the BGE were corrected by a new procedure to the reference temperature, 25 degrees C, and the constant ionic strength, 10 mM. In the 50% v/v methanol-water solvent system, like in pure methanol, B18C6 formed the strongest complex with potassium ion (log K(b)=2.89+/-0.17), the weakest complex with cesium ion (log K(b)=2.04+/-0.20), and no complexation was observed between B18C6 and the lithium ion. In the mixed methanol-water solvent system, the binding constants of the complexes above were found to be about two orders lower than in methanol and about one order higher than in water. PMID:20108263

  4. Isolation of β-carotene, α-carotene and lutein from carrots by countercurrent chromatography with the solvent system modifier benzotrifluoride.

    PubMed

    Englert, Michael; Hammann, Simon; Vetter, Walter

    2015-04-01

    A carotenoid purification method with dual-mode countercurrent chromatography (CCC) for β-carotene, α-carotene and lutein from a fresh carrot extract was developed. The fluorinated liquid benzotrifluoride (IUPAC name: (trifluoromethyl)benzene) was used as a novel modifier in the non-aqueous ternary solvent system n-hexane/benzotrifluoride/acetonitrile. The ternary phase diagram of the type I solvent system was used to select two-phase solvent mixtures which enabled an efficient preparative separation of α-carotene, β-carotene and lutein from concomitant pigments in crude carrot extract. By means of the modifier, high separation factors (α ≥ 1.2) were obtained, allowing baseline resolution between α-carotene and β-carotene due to specific chemical interactions such as π-π molecular interactions. After optimizing the injection step with a pseudo-ternary phase diagram, 51 mg of β-carotene, 32 mg of α-carotene and 4 mg of lutein could be isolated from 100.2mg crude carrot extract in a short time and with high purities of 95% and 99% by using dual-mode CCC, respectively. Temperatures > 22°C had a negative impact on the separation of α-carotene and β-carotene. PMID:25728658

  5. Solvent systems for countercurrent chromatography: an aqueous two phase liquid system based on a room temperature ionic liquid.

    PubMed

    Ruiz-Angel, Maria Jose; Pino, Veronica; Carda-Broch, Samuel; Berthod, Alain

    2007-06-01

    A new aqueous two phase liquid system (ATPS) based on the ionic liquid 1-butyl-3-methyl imidazolium chloride (BMIM Cl), potassium dibasic phosphate (K(2)HPO(4)) and water was recently proposed in the literature. The full phase diagram of this ATPS was prepared and some tie lines were fully determined. It was compared to classical ATPSs based on polyethylene glycol with an average molecular mass of 1000 (PEG 1000) and 10,000 (PEG 10000) and K(2)HPO(4). Two countercurrent chromatography (CCC) columns, a hydrostatic Sanki and a J type hydrodynamic CCC columns were used to test the liquid phase retention of these ATPSs in all possible configurations. It was found that the BMIM Cl ATPS liquid phases were much easier to retain in the two CCC columns than the PEG 1000 ATPS phases. Using protein and alcohol solutes, it was established that the BMIM Cl ATPS has a polarity completely different from that of the PEG 1000 ATPS. For example, ovalbumin partitions equally between the two phases of the PEG 1000 ATPS (K(D)=1.4) when it is completely located in the BMIM Cl upper phase of the ionic liquid ATPS (K(D)=180). The discrimination factor of the ionic liquid system and its intrinsic hydrophobicity were respectively found three times higher and ten times lower than the respective values of the PEG 1000 ATPS. PMID:17166506

  6. FULL-SCALE TESTING OF A CAUSTIC SIDE SOLVENT EXTRACTION SYSTEM TO REMOVE CESIUM FROM SAVANNAH RIVER SITE RADIOACTIVE WASTE

    SciTech Connect

    Poirier, M; Thomas Peters, T; Earl Brass, E; Stanley Brown, S; Mark Geeting, M; Lcurtis Johnson, L; Charles02 Coleman, C; S Crump, S; Mark Barnes, M; Samuel Fink, S

    2007-10-15

    Savannah River Site (SRS) personnel have completed construction and assembly of the Modular Caustic Side Solvent Extraction Unit (MCU) facility. Following assembly, they conducted testing to evaluate the ability of the process to remove non-radioactive cesium and to separate the aqueous and organic phases. They conducted tests at salt solution flow rates of 3.5, 6.0, and 8.5 gpm. During testing, the MCU Facility collected samples and submitted them to Savannah River National Laboratory (SRNL) personnel for analysis of cesium, Isopar{reg_sign} L, and Modifier [1-(2,2,3,3-tetrafluoropropoxy)-3-(4-sec-butylphenoxy)-2-propanol]. SRNL personnel analyzed the aqueous samples for cesium by Inductively-Coupled Plasma Mass Spectroscopy (ICP-MS) and the solvent samples for cesium using a Parr Bomb Digestion followed by ICP-MS. They analyzed aqueous samples for Isopar{reg_sign} L and Modifier by gas chromatography (GC).

  7. Impact of Ternary Solvent System in Stability-Indicating Assay Method of Bambuterol: Design of Experiments Approach.

    PubMed

    Abiramasundari, A; Joshi, Amita; Joshi, Rahul; Pandya, Dhaivat; Sharma, Jayesh; Sudarsanam, V; Vasu, Kamala K

    2016-02-01

    High-performance liquid chromatography method for anti-asthmatic β2-agonist drug bambuterol, its process-related impurities and its major degradation products was developed and validated using quality by design concept. A 3(3) full factorial design was employed to study the effect of three independent factors, namely, ratio of organic modifiers in mobile phase, pH of the buffer and flow rate of the mobile phase. The responses considered were retention time of the last peak and resolution of poorly separated peaks (drug and PR-4 and drug and DP-3). The optimum conditions for separation were determined with the aid of design of experiments. The optimized ternary solvent composition was a mixture of 10 mM ammonium acetate buffer (pH 6.0), methanol and acetonitrile in the ratio of 90:5: 5 (v/v/v) in solvent reservoir A and 10:45:45 (v/v/v) in solvent reservoir B. The separation of the analytes was achieved by using a gradient method. The predictability criteria of the optimized method demonstrated good correlation between observed and predicted response. The method was validated for specificity, linearity, accuracy, precision and robustness in compliance with the International Conference on Harmonization guidelines Q2R1. PMID:26362115

  8. C[sub 60] in model biological systems. A visible-UV absorption study of solvent-dependent parameters and solute aggregation

    SciTech Connect

    Bensasson, R.V.; Dellinger, M. ); Bienvenue, E.; Seta, P. ); Leach, S. Observatoire de Paris-Meudon, Meudon )

    1994-03-31

    A study was made of the solubilization of C[sub 60] in various solvents and systems of biological interest, i.e., octanols, micelles, and liposomes, using visible-UV absorption spectroscopy as a diagnostic tool. The state of incorporation of C[sub 60] molecules in micellar and colloidal liposome solutions was monitored using a number of spectroscopic criteria of solute-solvent and solute-solute interactions based on comparison with spectra obtained in alkane and octanol solvents and from thin films of C[sub 60]. Spectral red shifts and intensity modifications of C[sub 60] absorption and C[sub 60] aggregation are discussed in terms of environment-dependent physical parameters. The results indicate that C[sub 60] can be dispersed in micellar solutions of Triton X-100 and Triton X-100 R-S, the fullerene molecules being localized in the inner hydrophobic part of the micelles. C[sub 60] was shown to be incorporated, mainly as aggregates, into phosphatidylcholine liposome colloidal solutions. It is concluded that micellar and liposome solutions can be prepared which could be used to transfer individual C[sub 60] molecules, or groups of molecules, to biological cells. 38 refs., 9 figs., 2 tabs.

  9. Use of plant toxicity assays to evaluate a mobile solvent extraction system for remediation of soil from a hazardous waste site

    SciTech Connect

    Meier, J.R.; Chang, L.; Meckes, M.

    1995-11-01

    Soil from a site heavily contaminated with polychlorinated biphenyls and several other organic and inorganic compounds was treated with a full-scale, mobile solvent extraction system, which is being evaluated by the USEPA`s Superfund Innovative Technology Evaluation (SITE) program. The present study employed several plant bioassays to examine the genotoxicity and acute toxicity of the soil before and after the treatment. The toxicity endpoints were mitotic alterations in root tip cells of Allium cepa (common onion), micronuclei in pollen mother cells of Tradescantia, and seed germination and root elongation in oats and lettuce. Bulbs or inflorescences of Allium and Tradescantia, respectively, were exposed to aqueous extracts (20% w/v) of the soils at three concentrations (undiluted, 1/2, or 1/4). Oat and lettuce seeds were exposed to the soils mixed with sand at concentrations from 25 to 100% (w/w). The results were as follows: (1) no evidence of genotoxicity for either the untreated or treated soils in Tradescantia; (2) dose-related increases in chromosomal aberrations for both soils in Allium; (3) inhibition of seed germination for lettuce but not oats for both soils; (4) inhibition of root elongation for both lettuce and oats for the treated soil. The toxicity and genotoxicity remaining after treatment appears to be due to residual solvent introduced during the solvent extraction treatment process, or to inorganic contaminants not removed by the treatment.

  10. Rational solvent selection for cooling crystallizations

    SciTech Connect

    Nass, K.K. . Chemicals Development Div.)

    1994-06-01

    The development of a successful crystallization process for purification and isolation of an organic compound requires the selection of a suitable solvent or solvent mixture; to date, no logical method has been established for determining the best solvent combination. The process chemist or engineer often employs a trial-and-error procedure to identify an appropriate solvent system, the success of which is dependent on experience and intuition. This paper describes a strategy for choosing crystallization solvents based upon equilibrium limits. The approach utilizes a group-contribution method (UNIFAC) to predict a value for the activity coefficient of the solute in a given solvent system at the saturation point. This value is then used to calculate the solubility of the solute at a high'' temperature and a low'' temperature. The resulting solubility values determine the maximum theoretical yield for the process. Both quantities are used to rank order solvents and/or their mixtures relative to one another according to their solvent power and potential process yield. Several examples illustrating the successful application of this method are described, and potential improvements to the algorithm are discussed. Implementation of this strategy will reduce product cycle time, minimize solvent usage, and allow identification of cheaper solvent alternatives.

  11. NEPTUNIUM SOLVENT EXTRACTION PROCESS

    DOEpatents

    Dawson, L.R.; Fields, P.R.

    1959-10-01

    The separation of neptunium from an aqueous solution by solvent extraction and the extraction of neptunium from the solvent solution are described. Neptunium is separated from an aqueous solution containing tetravalent or hexavalent neptunium nitrate, nitric acid, and a nitrate salting out agent, such as sodium nitrate, by contacting the solution with an organic solvent such as diethyl ether. Subsequently, the neptunium nitrate is extracted from the organic solvent extract phase with water.

  12. Solvent refining process

    SciTech Connect

    Mead, T.C.; Sequeira, A.J.; Smith, B.F.

    1981-10-13

    An improved process is described for solvent refining lubricating oil base stocks from petroleum fractions containing both aromatic and nonaromatic constituents. The process utilizes n-methyl-2-pyrrolidone as a selective solvent for aromatic hydrocarbons wherein the refined oil fraction and the extract fraction are freed of final traces of solvent by stripping with gaseous ammonia. The process has several advantages over conventional processes including a savings in energy required for the solvent refining process, and reduced corrosion of the process equipment.

  13. Computational comparison of oxidation stability: Solvent/salt monomers vs solvent-solvent/salt pairs

    NASA Astrophysics Data System (ADS)

    Kim, Dong Young; Park, Min Sik; Lim, Younhee; Kang, Yoon-Sok; Park, Jin-Hwan; Doo, Seok-Gwang

    2015-08-01

    A fundamental understanding of the anodic stabilities of electrolytes is important for the development of advanced high-voltage electrolytes. In this study, we calculated and systematically compared the oxidation stabilities of monomeric solvents and anions, and bimolecular solvent-solvent and anion-solvent systems that are considered to be high-voltage electrolyte components, using ab initio calculations. Oxidation stabilities of solvent or anion monomers without considering specific solvation molecules cannot represent experimental oxidation stabilities. The oxidation of electrolytes usually forms neutral or cationic radicals, which immediately undergo further reactions stabilizing the products. Oxidatively driven intermolecular reactions are the main reason for the lower oxidation stabilities of electrolytes compared with those of monomeric compounds. Electrolyte components such as tetramethylene sulfone (TMS), ethyl methyl sulfone (EMS), bis(oxalate)borate (BOB-), and bis(trifluoromethane)sulfonamide (TFSI-) that minimize such intermolecular chemical reactions on oxidation can maintain the oxidation stabilities of monomers. In predictions of the theoretical oxidation stabilities of electrolytes, simple comparisons of highest occupied molecular orbital energies can be misleading, even if microsolvation or bulk clusters are considered. Instead, bimolecular solvent complexes with a salt anion should be at least considered in oxidation calculations. This study provides important information on fundamental and applied aspects of the development of electrolytes.

  14. Improved Supercritical-Solvent Extraction of Coal

    NASA Technical Reports Server (NTRS)

    Compton, L.

    1982-01-01

    Raw coal upgraded by supercritical-solvent extraction system that uses two materials instead of one. System achieved extraction yields of 20 to 49 weight percent. Single-solvent yields are about 25 weight percent. Experimental results show extraction yields may be timedependent. Observed decreases in weight of coal agreed well with increases in ash content of residue.

  15. CO2-Binding Organic Liquids Gas Capture with Polarity-Swing-Assisted Regeneration Full Technology Feasibility Study B1 - Solvent-based Systems

    SciTech Connect

    Heldebrant, David J

    2014-08-31

    PNNL, Fluor Corporation and Queens University (Kingston, ON) successfully completed a three year comprehensive study of the CO2BOL water-lean solvent platform with Polarity Swing Assisted Regeneration (PSAR). This study encompassed solvent synthesis, characterization, environmental toxicology, physical, thermodynamic and kinetic property measurements, Aspen Plus™ modeling and bench-scale testing of a candidate CO2BOL solvent molecule. Key Program Findings The key program findings are summarized as follows: • PSAR favorably reduced stripper duties and reboiler temperatures with little/no impact to absorption column • >90% CO2 capture was achievable at reasonable liquid-gas ratios in the absorber • High rich solvent viscosities (up to 600 cP) were successfully demonstrated in the bench-scale system. However, the projected impacts of high viscosity to capital cost and operational limits compromised the other levelized cost of electricity benefits. • Low thermal conductivity of organics significantly increased the required cross exchanger surface area, and potentially other heat exchange surfaces. • CO2BOL had low evaporative losses during bench-scale testing • There was no evidence of foaming during bench scale testing • Current CO2BOL formulation costs project to be $35/kg • Ecotoxicity (Water Daphnia) was comparable between CO2BOL and MEA (169.47 versus 103.63 mg/L) • Full dehydration of the flue gas was determined to not be economically feasible. However, modest refrigeration (13 MW for the 550 MW reference system) was determined to be potentially economically feasible, and still produce a water-lean condition for the CO2BOLs (5 wt% steady-state water loading). • CO2BOLs testing with 5 wt% water loading did not compromise anhydrous performance behavior, and showed actual enhancement of CO2 capture performance. • Mass transfer of CO2BOLs was not greatly impeded by viscosity • Facile separation of antisolvent from lean CO2BOL was

  16. Femtosecond dynamics in hydrogen-bonded solvents

    SciTech Connect

    Castner, E.W. Jr.; Chang, Y.J.

    1993-09-01

    We present results on the ultrafast dynamics of pure hydrogen-bonding solvents, obtained using femtosecond Fourier-transform optical-heterodyne-detected, Raman-induced Kerr effect spectroscopy. Solvent systems we have studied include the formamides, water, ethylene glycol, and acetic acid. Inertial and diffusive motions are clearly resolved. We comment on the effect that such ultrafast solvent motions have on chemical reactions in solution.

  17. Solvent sensitive polymer composite structures

    NASA Astrophysics Data System (ADS)

    Chiappini, A.; Armellini, C.; Carpentiero, A.; Minati, L.; Righini, G. C.; Ferrari, M.

    2013-11-01

    In this paper we describe a composite system based on polystyrene colloidal nanoparticles assembled and embedded in an elastomeric matrix (polymer colloidal crystal, PCC), in the specific we have designed a PCC structure which displays an iridescent green color that can be attributed to the photonic crystal effect. This effect has been exploited to create a chemical sensor, in fact optical measurements have evidenced that the composite structure presents a different optical response as a function of the solvent applied on the surface. In particular we have demonstrated that the PCC possess, for specific solvents: (i) high sensitivity, (ii) fast response (less than 1s), and (iii) reversibility of the signal change. Finally preliminary results on the PCC have shown that this system can be also used as optical writing substrate using a specific solvent as ink, moreover an erasing procedure is also reported and discussed.

  18. Predicting the Solubility of Pharmaceutical Cocrystals in Solvent/Anti-Solvent Mixtures.

    PubMed

    Lange, Linda; Heisel, Stefan; Sadowski, Gabriele

    2016-01-01

    In this work, the solubilities of pharmaceutical cocrystals in solvent/anti-solvent systems were predicted using PC-SAFT in order to increase the efficiency of cocrystal formation processes. Modeling results and experimental data were compared for the cocrystal system nicotinamide/succinic acid (2:1) in the solvent/anti-solvent mixtures ethanol/water, ethanol/acetonitrile and ethanol/ethyl acetate at 298.15 K and in the ethanol/ethyl acetate mixture also at 310.15 K. The solubility of the investigated cocrystal slightly increased when adding small amounts of anti-solvent to the solvent, but drastically decreased for high anti-solvent amounts. Furthermore, the solubilities of nicotinamide, succinic acid and the cocrystal in the considered solvent/anti-solvent mixtures showed strong deviations from ideal-solution behavior. However, by accounting for the thermodynamic non-ideality of the components, PC-SAFT is able to predict the solubilities in all above-mentioned solvent/anti-solvent systems in good agreement with the experimental data. PMID:27164075

  19. The Development of Methodologies and Solvent Systems to Replace CFC-113 in the Validation of Large-Scale Spacecraft Hardware

    NASA Technical Reports Server (NTRS)

    Clausen, Christian A., III

    1996-01-01

    Liquid oxygen is used as the oxidizer for the liquid fueled main engines during the launch of the space shuttle. Any hardware that comes into contact with pure oxygen either during servicing of the shuttle or in the operation of the shuttle must be validated as being free of nonvolatile residue (NVR). This is a safety requirement to prevent spontaneous combustion of carbonaceous NVR if it was to come into contact with pure oxygen. Previous NVR validation testing of space hardware used Freon (CFC-113) as the test solvent. Because CFC-113 no longer can be used, a program was conducted to develop a NVR test procedure that uses a safe environmentally friendly solvent. The solvent that has been used in the new NVR test procedure is water. Work that has been conducted over the past three years has served to demonstrate that when small parts are subjected to ultrasound in a water bath and NVR is present a sufficient quantity is dispersed into the water to analyze for its concentration by the TOC method. The work that is described in this report extends the water wash NVR validation test to large-scale parts; that is, parts too large to be subjected to ultrasound. The method consists of concentrating the NVR in the water wash onto a bed of silica gel. The total adsorbent bed is then analyzed for TOC content by using a solid sample probe. Work that has been completed thus far has demonstrated that hydrocarbon based NVR's can be detected at levels of less than 0.1 mg per square foot of part's surface area by using a simple water wash.

  20. Solvents and sustainable chemistry

    PubMed Central

    Welton, Tom

    2015-01-01

    Solvents are widely recognized to be of great environmental concern. The reduction of their use is one of the most important aims of green chemistry. In addition to this, the appropriate selection of solvent for a process can greatly improve the sustainability of a chemical production process. There has also been extensive research into the application of so-called green solvents, such as ionic liquids and supercritical fluids. However, most examples of solvent technologies that give improved sustainability come from the application of well-established solvents. It is also apparent that the successful implementation of environmentally sustainable processes must be accompanied by improvements in commercial performance. PMID:26730217

  1. Solvent recycle/recovery

    SciTech Connect

    Paffhausen, M.W.; Smith, D.L.; Ugaki, S.N.

    1990-09-01

    This report describes Phase I of the Solvent Recycle/Recovery Task of the DOE Chlorinated Solvent Substitution Program for the US Air Force by the Idaho National Engineering Laboratory, EG G Idaho, Inc., through the US Department of Energy, Idaho Operations Office. The purpose of the task is to identify and test recovery and recycling technologies for proposed substitution solvents identified by the Biodegradable Solvent Substitution Program and the Alternative Solvents/Technologies for Paint Stripping Program with the overall objective of minimizing hazardous wastes. A literature search to identify recycle/recovery technologies and initial distillation studies has been conducted. 4 refs.

  2. Dual solvent refining process

    SciTech Connect

    Woodle, R.A.

    1982-04-20

    A dual solvent refining process is claimed for solvent refining petroleum based lubricating oil stocks with n-methyl-2-pyrrolidone as selective solvent for aromatic oils wherein a highly paraffinic oil having a narrow boiling range approximating the boiling point of n-methyl-2-pyrrolidone is employed as a backwash solvent. The process of the invention results in an increased yield of refined lubricating oil stock of a predetermined quality and simplifies separation of the solvents from the extract and raffinate oil fractions.

  3. Supramolecular aggregates of oligosaccharides with co-solvents in ternary systems for the solubilizing approach of triamcinolone.

    PubMed

    de Medeiros, Arthur S A; Zoppi, Ariana; Barbosa, Euzébio G; Oliveira, Jonas I N; Fernandes-Pedrosa, Matheus F; Longhi, Marcela R; da Silva-Júnior, Arnóbio A

    2016-10-20

    A second compound is generally associated with oligosaccharides as a strategy to maximize the solubilizing effect for nonpolar compounds. This study elucidated the role and the mechanism whereby liquid compounds interact in these supramolecular aggregates in the solubilization of triamcinolone. Three different oligosaccharides (beta-cyclodextrin, 2-hydroxipropil-beta-cyclodextrin, and randomly methylated beta-cyclodextrin) and two potent co-solvents (triethanolamine and N-methyl pyrrolidone) were carefully evaluated by using three distinct experimental approaches. Incredibly stable complexes were formed with cyclodextrins (CDs). The structure of the complexes was elucidated by magnetic resonance spectra 2D-ROESY. The interactions of the protons of ring "A" of the drug with H(3) and H(5) protons of the CD cavity observed in the binary complexes remained in both ternary complexes. Unlike the observed ternary associations with triethanolamine, N-methyl pyrrolidone competed with the triamcinolone CD cavity and considerably decreased the stability of the complex and the solubility of the drug. The molecular dynamics (MD) and quantum mechanics:molecular mechanics (QM:MM) calculations supported that triethanolamine stabilized the drug-CD interactions for the conformer identified in the 2D-ROESY experiments, improving the quality and uniformity of the formed complex. The role played by the co-solvent in the ternary complexes depends on its specific ability to interact with the CD cavity in the presence of the drug, which can be predicted in theoretical studies to select the best candidate. PMID:27474653

  4. Theoretical Insights into the Role of Water in the Dissolution of Cellulose Using IL/Water Mixed Solvent Systems.

    PubMed

    Parthasarathi, Ramakrishnan; Balamurugan, Kanagasabai; Shi, Jian; Subramanian, Venkatesan; Simmons, Blake A; Singh, Seema

    2015-11-12

    The use of certain ionic liquids (ILs) as pretreatment solvents for lignocellulosic biomass has gained great interest in recent years due to the IL's capacity for efficient cellulose dissolution in aqueous solution as compared to other common pretreatment techniques. A fundamental understanding on how these ILs in aqueous environments act on cellulose, particularly at lower IL concentrations with water as a cosolvent, is essential for optimizing pretreatment efficiency, lowering pretreatment cost, and improving IL recyclability. The IL 1-ethyl-3-methylimidazolium acetate ([C2C1Im][OAc]) is one of the most efficient cellulose solvents known, greatly altering cellulose structure for improved enzymatic saccharification. To understand the role of water as a cosolvent with [C2C1Im][OAc], we investigated the dissolution mechanism of microcrystalline cellulose, type Iβ, in different [C2C1Im][OAc]:water ratios at room (300 K) and pretreatment (433 K) temperatures using all atom molecular dynamics (MD) simulations. These simulations show that 80:20 ratios of [C2C1Im][OAc]:water should be considered as "the tipping point" above which [C2C1Im][OAc]:water mixtures are equally effective on decrystallization of cellulose by disrupting the interchain hydrogen bonding interactions. Simulations also reveal that the resulting decrystallized cellulose from 100% [C2C1Im][OAc] begins to repack in the presence of water but into a less crystalline, or more amorphous, form. PMID:26407132

  5. Purification of α-glucosidase from mouse intestine by countercurrent chromatography coupled with a reverse micelle solvent system.

    PubMed

    He, Kai; Zou, Zongyao; Hu, Yinran; Yang, Yong; Xiao, Yubo; Gao, Pincao; Li, Xuegang; Ye, Xiaoli

    2016-02-01

    Countercurrent chromatography coupled with a reverse micelle solvent was applied to separate α-glucosidase, which is stable at pH 6.0-8.8, 15-50°C. The separation conditions are as follows: stationary phase: pH 4.0 Tris-HCl buffer phase containing 50 mM Tris-HCl and 50 mM KCl; mobile phase A: isooctane containing 50 mM anionic surfactant sodium di(2-ethylhexyl)sulfosuccinate; mobile phase B: 50 mM Tris-HCl buffer containing 500 mM KCl (pH 8.0); In total, 25 mL (23.9 mg) crude enzyme was injected through the injection valve, the enzymatic reaction and sodium dodecylsulfate polyacrylamide gel electrophoresis results imply that the activity of purified α-glucosidase is 6.63-fold higher than that of the crude enzyme. Therefore, countercurrent chromatography coupled with a reverse micelle solvent is capable for protein separation and enrichment. PMID:26663433

  6. DOE solvent handbook information sheet

    SciTech Connect

    Chavez, A.A.

    1992-01-01

    Solvents and cleaners are used in the Department of Defense (DOD) and the Department of Energy-Defense Program (DOE-DP) maintenance facilities for removing wax, grease, oil, carbon, machining fluids, solder fluxes, mold releases, and other contaminants before repairing or electroplating parts. Private industry also uses cleaners and degreasers for surface preparation of various metals. Growing environmental and worker safety concerns have brought attention to these solvents and cleaners, most of which are classified as toxic. Tightening government regulations have already excluded the use of some chemicals, and restrict the use of various halogenated hydrocarbons because of their atmospheric-ozone depleting effects, as well as their cancer-related risks. As a result, a program was established to develop an efficient, easily accessible, electronic solvent utilization handbook. This is being accomplished by: (1) identifying solvents (alternatives) that are not currently restricted by government regulations for use DOE-DP facilities, and private industry, (2) evaluating their cleaning performance, (3) evaluating their corrosivity, (4) evaluating their air emissions, (5) evaluating the possibility of recycling or recovering all or portions of the alternative degreasers, (6) testing substitute solvents compatibility with non-metallic materials, (7) inputting all of the data gathered (including previous biodegradability information) into a database, and (8) developing a methodology for efficient, widespread access to the data base information system.

  7. DOE solvent handbook information sheet

    SciTech Connect

    Chavez, A.A.

    1992-05-01

    Solvents and cleaners are used in the Department of Defense (DOD) and the Department of Energy-Defense Program (DOE-DP) maintenance facilities for removing wax, grease, oil, carbon, machining fluids, solder fluxes, mold releases, and other contaminants before repairing or electroplating parts. Private industry also uses cleaners and degreasers for surface preparation of various metals. Growing environmental and worker safety concerns have brought attention to these solvents and cleaners, most of which are classified as toxic. Tightening government regulations have already excluded the use of some chemicals, and restrict the use of various halogenated hydrocarbons because of their atmospheric-ozone depleting effects, as well as their cancer-related risks. As a result, a program was established to develop an efficient, easily accessible, electronic solvent utilization handbook. This is being accomplished by: (1) identifying solvents (alternatives) that are not currently restricted by government regulations for use DOE-DP facilities, and private industry, (2) evaluating their cleaning performance, (3) evaluating their corrosivity, (4) evaluating their air emissions, (5) evaluating the possibility of recycling or recovering all or portions of the alternative degreasers, (6) testing substitute solvents compatibility with non-metallic materials, (7) inputting all of the data gathered (including previous biodegradability information) into a database, and (8) developing a methodology for efficient, widespread access to the data base information system.

  8. Analytical validation applied to simultaneous determination of solvents dichloromethane (DCM), methyl isobutyl ketone (MIBK), tetrahydrofuran (THF) and toluene (TOL) in urine by headspace extraction and injection on chromatographic system with a flame ionization detector

    NASA Astrophysics Data System (ADS)

    Muna, E. D. M.; Pereira, R. P.

    2016-07-01

    The determination of the volatile organic solvents dichloromethane (DCM), methyl isobutyl ketone (MIBK), tetrahydrofuran (THF) and toluene (TOL) is applied on toxicological monitoring of employees in various industrial activities. The gas chromatography technique with flame ionization detector and headspace injection system has been applied. The analytical procedure developed allows the simultaneous determination of the above-mentioned solvents and the accuracy of the method was tested following the INMETRO guidelines through the DOQ-CGRE 008 Rev.04-July/2011.

  9. Lube solvents no threat to waste treatment

    SciTech Connect

    Rowe, E.H.; Tullos, L.F.

    1980-10-01

    Biological treatment of reasonable loads of lubricating oil extraction solvents should pose no problems for a diversified refinery treatment system. Activated sludge, aerated lagoons, or oxidation ponds are the most frequently employed biological processes for treating such wastes. Rates of solvent degradation are reported for phenol and furfural.

  10. The use of solvent extractions and solubility theory to discern hydrocarbon associations in coal, with application to the coal-supercritical CO2 system

    USGS Publications Warehouse

    Kolak, Jonathan J.; Burruss, Robert A.

    2014-01-01

    Samples of three high volatile bituminous coals were subjected to parallel sets of extractions involving solvents dichloromethane (DCM), carbon disulfide (CS2), and supercritical carbon dioxide (CO2) (40 °C, 100 bar) to study processes affecting coal–solvent interactions. Recoveries of perdeuterated surrogate compounds, n-hexadecane-d34 and four polycyclic aromatic hydrocarbons (PAHs), added as a spike prior to extraction, provided further insight into these processes. Soxhlet-DCM and Soxhlet-CS2 extractions yielded similar amounts of extractable organic matter (EOM) and distributions of individual hydrocarbons. Supercritical CO2 extractions (40 °C, 100 bar) yielded approximately an order of magnitude less EOM. Hydrocarbon distributions in supercritical CO2 extracts generally mimicked distributions from the other solvent extracts, albeit at lower concentrations. This disparity increased with increasing molecular weight of target hydrocarbons. Five- and six-ring ring PAHs generally were not detected and no asphaltenes were recovered in supercritical CO2 extractions conducted at 40 °C and 100 bar. Supercritical CO2 extraction at elevated temperature (115 °C) enhanced recovery of four-ring and five-ring PAHs, dibenzothiophene (DBT), and perdeuterated PAH surrogate compounds. These results are only partially explained through comparison with previous measurements of hydrocarbon solubility in supercritical CO2. Similarly, an evaluation of extraction results in conjunction with solubility theory (Hildebrand and Hansen solubility parameters) does not fully account for the hydrocarbon distributions observed among the solvent extracts. Coal composition (maceral content) did not appear to affect surrogate recovery during CS2 and DCM extractions but might affect supercritical CO2 extractions, which revealed substantive uptake (partitioning) of PAH surrogates into the coal samples. This uptake was greatest in the sample (IN-1) with the highest vitrinite content. These

  11. Three-phase solvent systems for the comprehensive separation of a wide variety of compounds from Dicranostigma leptopodum by high-speed counter-current chromatography.

    PubMed

    Liu, Yanjuan; Chen, Xiaofen; Liu, JunXi; Di, Duolong

    2015-06-01

    A three-phase solvent system was efficiently applied for high-speed counter-current chromatography to separate secondary metabolites with a wide range of hydrophobicity in Dicranostigma leptopodum. The three-phase solvent system of n-hexane/methyl tert-butyl ether/acetonitrile/0.5% triethylamine (2:2:3:2, v/v/v/v) was selected for high-speed counter-current chromatography separation. The separation was initiated by filling the column with a mixture of intermediate phase and lower phase as a stationary phase followed by elution with upper phase to separate the hydrophobic compounds. Then the mobile phase was switched to the intermediate phase to elute the moderately hydrophobic compounds, and finally the polar compounds still retained in the column were fractionated by eluting the column with the lower phase. In this research, 12 peaks were eluted out in one-step operation within 110 min, among them, eight compounds with acceptable purity were obtained and identified. The purities of β-sitosterol, protopine, allocryptopine, isocorydione, isocorydine, coptisine, berberrubine, and berberine were 94.7, 96.5, 97.9, 86.6, 98.9, 97.6, 95.7, and 92.8%, respectively. PMID:25864484

  12. Nuclear magnetic resonance study of an ethyl cellulose sustained-release delivery system. I: Effect of casting solvent on hydration properties.

    PubMed

    Azoury, R; Elkayam, R; Friedman, M

    1988-05-01

    This study was conducted in order to explore the proton relaxation time and the structural features of films that are cast from different solvents and to be used as sustained-release delivery systems. Protons magnetic resonance measurements were performed on ethyl cellulose (EC) films cast from ethanol or chloroform solutions in the presence of polyethyleneglycol (PEG). Spin-lattice relaxation time (T1) was measured with a Bruker PC-20 Multispec, at 20 MHz and at 37 degrees C, on the dry films and thereafter during gradual, controlled hydration. The prolongation of the rate of relaxation time for the films cast from ethanol and chloroform solutions was found to be drastically different. Water compartmentalization was then calculated according to the Free Induction Decay model. After the addition of similar amounts of water, markedly different hydration fraction (HF) values were derived for the films cast from the different solutions as a function of the amount of embedded PEG. Scanning electron micrographs confirmed that the two types of systems have different film structures that are dictated by the casting solvent and the amount of embedded PEG. From these results it can be concluded that in the presence of PEG, EC films cast from ethanol have more water binding sites and a thicker water multilayer around them than films cast from chloroform. These properties might influence the release rate of an active agent from the sustained-release device. PMID:3411466

  13. Lipase-catalyzed synthesis of structured phenolic lipids in solvent-free system using flaxseed oil and selected phenolic acids as substrates.

    PubMed

    Sorour, Noha; Karboune, Salwa; Saint-Louis, Richard; Kermasha, Selim

    2012-04-15

    Structured phenolic lipids (PLs) were obtained by lipase-catalyzed transesterification of flaxseed oil, in a solvent-free system (SFS), with selected phenolic acids, including hydroxylated and/or methoxylated derivatives of cinnamic, phenyl acetic and benzoic acids. A bioconversion yield of 65% was obtained for the transesterification of flaxseed oil with 3,4-dihydroxyphenyl acetic acid (DHPA). However, the effect of the chemical structure of phenolic acids on the transesterification of flaxseed oil in SFS was of less magnitude as compared to that in organic solvent system (OSS). Using DHPA, the APCI-MS analysis confirmed the synthesis of monolinolenyl, dilinolenyl, linoleyl linolenyl and oleyl linolenyl dihydroxyphenyl acetates as phenolic lipids. A significant increase in the enzymatic activity from 200 to 270 nmol of PLs/g solid enzyme/min was obtained upon the addition of the non-ionic surfactant Span 65. However, upon the addition of the anionic surfactant, sodium bis-2-ethylhexyl sulfosuccinate (AOT), and the cationic one, hexadecyltrimethylammonium bromide (CTAB), the enzymatic activity was decreased slightly from 200 to 192 and 190 nmol of PLs/g solid enzyme/min, respectively. The results also showed that the increase in DHPA concentration from 20 to 60 mM resulted in a significant increase in the volumetric productivity (P(V)) from 1.61 to 4.74 mg PLs per mL reaction mixture per day. PMID:22329891

  14. Solvent extraction of diatomite

    SciTech Connect

    Williams, W.

    1984-07-24

    There is provided a method of extracting hydrocarbons from a diatomite ore. The particle size of the ore is first reduced to form a processed ore. The processed ore is then mixed with a substantially irregular granular material to form an unstratified ore mixture having increased permeability to an extracting solvent. The unstratified ore mixture is then permeated with an extracting solvent to obtain a hydrocarbon-solvent stream from which hydrocarbons are subsequently separated. The irregular granular material may be sand.

  15. Enhancement of Palmarumycin C12 and C13 Production by the Endophytic Fungus Berkleasmium sp. Dzf12 in an Aqueous-Organic Solvent System.

    PubMed

    Mou, Yan; Xu, Dan; Mao, Ziling; Dong, Xuejiao; Lin, Fengke; Wang, Ali; Lai, Daowan; Zhou, Ligang; Xie, Bingyan

    2015-01-01

    The endophytic fungus Berkleasmium sp. Dzf12, isolated from Dioscorea zingiberensis, was found to produce palmarumycins C12 and C13 which possess a great variety of biological activities. Seven biocompatible water-immiscible organic solvents including n-dodecane, n-hexadecane, 1-hexadecene, liquid paraffin, dibutyl phthalate, butyl oleate and oleic acid were evaluated to improve palmarumycins C12 and C13 production in suspension culture of Berkleasmium sp. Dzf12. Among the chosen solvents both butyl oleate and liquid paraffin were the most effective to improve palmarumycins C12 and C13 production. The addition of dibutyl phthalate, butyl oleate and oleic acid to the cultures of Berkleasmium sp. Dzf12 significantly enhanced palmarumycin C12 production by adsorbing palmarumycin C12 into the organic phase. When butyl oleate was fed at 5% (v/v) in medium at the beginning of fermentation (day 0), the highest palmarumycin C12 yield (191.6 mg/L) was achieved, about a 34.87-fold increase in comparison with the control (5.3 mg/L). n-Dodecane, 1-hexadecene and liquid paraffin had a great influence on the production of palmarumycin C13. When liquid paraffin was added at 10% (v/v) in medium on day 3 of fermentation, the palmarumycin C13 yield reached a maximum value (134.1 mg/L), which was 4.35-fold that of the control (30.8 mg/L). Application of the aqueous-organic solvent system should be a simple and efficient process strategy for enhancing palmarumycin C12 and C13 production in liquid cultures of the endophytic fungus Berkleasmium sp. Dzf12. PMID:26569213

  16. The Ideal Solvent for Paper Chromatography of Food Dyes.

    ERIC Educational Resources Information Center

    Markow, Peter G.

    1988-01-01

    Uses paper chromatography with food dyes to provide a simple and inexpensive basis for teaching chromatography. Provides experimental methodology and tabled results. Includes a solvent system comparison (Rf) for seven dyes and twenty-two solvents. (MVL)

  17. Solvent extraction process

    SciTech Connect

    Woodle, R.A.

    1982-01-19

    A solvent refining process is disclosed utilizing n-methyl-2-pyrrolidone as solvent in which primary extract from the extraction zone is cooled to form a secondary raffinate and secondary extract and the secondary and primary raffinates are blended to produce an increased yield of product of desired quality. In a preferred embodiment of the process, the lubricating oil feedstock to the process is first contacted with a stripping medium previously used in the process for the recovery of solvent from at least one of the product streams whereby solvent contained in said stripping medium is recovered therefrom.

  18. Stabilization of Underground Solvent Storage Tanks

    SciTech Connect

    Smail, T.R.

    2003-08-15

    The Old Solvent Tanks (OST), located at the Savannah River Site (SRS) are comprised of 22 underground storage tanks that were used to store spent radioactive solvent and aqueous wastes generated from the plutonium-uranium extraction (PUREX) process. The OSTs were installed at various dates between 1955 and 1968 and used to store the spent solvents until 1974. The spent solvents stored in the OSTs were transferred out from 1976 through 1981 leaving only residual liquids and sludges that could not be pumped out.Final remediation goals include an overlying infiltration control system. If the tanks were to structurally fail, they would collapse causing potential for onsite worker exposure and release of tank contents to the environment. Therefore, as an interim action, methods for stabilizing the tanks were evaluated. This paper will discuss the systems designed to perform and monitor the grouting operation, the grouting process, and the radiological controls and wastes associated with grouting the Old Solvent Tanks.

  19. Enzymatically catalyzed synthesis of anti-blooming agent 1,3-dibehenoyl-2-oleoyl glycerol in a solvent-free system: optimization by response surface methodology.

    PubMed

    Meng, Zong; Geng, Wen-Xin; Li, Jin-Wei; Yang, Zhao-Qi; Jiang, Jiang; Wang, Xing-Guo; Liu, Yuan-Fa

    2013-11-13

    Products rich in 1,3-dibehenoyl-2-oleoyl glycerol (BOB) triglyceride (TAG) were produced by enzymatic interesterification of high oleic acid sunflower oil (HOSO) and behenic acid methyl ester (BME) by 1,3-regiospecific lipase Lipozyme RM IM in a solvent-free system. The impact factors of enzyme load, substrate molar ratio of BME to HOSO (BME/HOSO), reaction time, reaction temperature, and pre-equilibration water activity of the enzyme on BOB content and BME conversions were investigated by single-factor experiments and then optimized using the response surface methodology (RSM). The optimum conditions were as follows: reaction temperature, 72 °C; reaction time, 7.99 h; substrate molar ratio, 2.5:1; enzyme load, 10%; and pre-equilibration water activities of the enzyme, 0.28. The results from the experiments conducted according to the predicted optimal conditions were as follows: the content of BOB was 32.76%, and the conversion of BME was 65.16%. The experimental values agreed with the predicted values, which verified the sufficiency of the quadratic regression models. After purification under the optimal short-range molecular distillation and two-step solvent fractionation, the content of BOB in the target product can reach 77.14%, indicating the great potential for industrial production of the anti-blooming agent. PMID:24147905

  20. Design and synthesis of two luminescent Zn(II)-based coordination polymers with different structures regulated by different solvent system

    NASA Astrophysics Data System (ADS)

    Wu, Wei-Ping; Wen, Gui-Lin; Liao, Yi; Wang, Jun; Lu, Lu; Wu, Yu; Xie, Bin

    2016-08-01

    Two new coordination polymers (CPs) [Zn(HL)(H2O)]n (1) and [Zn3(L)2(H2O)2]n·(H2O)n (2), based on a multifunctional ligand combined carboxylate groups and a nitrogen donor group 5-(6-carboxypyridin-2-yl)isophthalic acid (H3L), have been synthesized under different solvent media and fully characterized by powder X-ray diffraction (PXRD), infrared (IR) spectra, elemental analyses (EA) and thermogravimetric analyses (TGA). Single-crystal X-ray diffraction analysis reveals that 1 shows 1D dimeric chain structure, while 2 gives a 3D dense packing framework. Topology analysis illustrates that 2 can be simplified as a 3-nodal net (4, 5, 6-connected net) with the point symbol of {44·62}{46·64}2{48·66·8}. In addition, solid state luminescent properties of two complexes have also been studied in detail, which may act as the potential optical materials.

  1. SOLVENT EXTRACTION OF NEPTUNIUM

    DOEpatents

    Butler, J.P.

    1958-08-12

    A process is described for the recovery of neptuniunn from dissolver solutions by solvent extraction. The neptunium containing solution should be about 5N, in nitric acid.and about 0.1 M in ferrous ion. The organic extracting agent is tributyl phosphate, and the neptuniunn is recovered from the organic solvent phase by washing with water.

  2. ONSITE SOLVENT RECOVERY

    EPA Science Inventory

    This study evaluated the product quality, waste reduction/pollution prevention, and economic aspects of three technologies for onsite solvent recovery: atmospheric batch distillation, vacuum heat-pump distillation, and a low-emission vapor degreaser with closed solvent, liquid an...

  3. Solvent-free synthesis

    EPA Science Inventory

    This chapter gives a brief introduction about solvent-free reactions whose importance can be gauged by the increasing number of publications every year during the last decade. The mechanistic aspects of the reactions under solvent-free conditions have been highlighted. Our observ...

  4. Remediating pesticide contaminated soils using solvent extraction

    SciTech Connect

    Sahle-Demessie, E.; Meckes, M.C.; Richardson, T.L.

    1996-12-31

    Bench-scale solvent extraction studies were performed on soil samples obtained from a Superfund site contaminated with high levels of p,p{prime}-DDT, p,p{prime}-DDE and toxaphene. The effectiveness of the solvent extraction process was assessed using methanol and 2-propanol as solvents over a wide range of operating conditions. It was demonstrated that a six-stage methanol extraction using a solvent-to-soil ratio of 1.6 can decrease pesticide levels in the soil by more than 99% and reduce the volume of material requiring further treatment by 25 times or more. The high solubility of the pesticides in methanol resulted in rapid extraction rates, with the system reaching quasi-equilibrium state in 30 minutes. The extraction efficiency was influenced by the number of extraction stages, the solvent-to-soil ratio, and the soil moisture content. Various methods were investigated to regenerate and recycle the solvent. Evaporation and solvent stripping are low cost and reliable methods for removing high pesticide concentrations from the solvent. For low concentrations, GAC adsorption may be used. Precipitating and filtering pesticides by adding water to the methanol/pesticide solution was not successful when tested with soil extracts. 26 refs., 10 figs., 6 tabs.

  5. Dinuclear dysprosium SMMs bridged by a neutral bipyrimidine ligand: two crystal systems that depend on different lattice solvents lead to a distinct slow relaxation behaviour.

    PubMed

    Sun, Wen-Bin; Yan, Bing; Jia, Li-Hui; Wang, Bing-Wu; Yang, Qian; Cheng, Xin; Li, Hong-Feng; Chen, Peng; Wang, Zhe-Ming; Gao, Song

    2016-06-01

    Two dinuclear dysprosium complexes with the Dy(iii) ions bridged by the neutral bipyrimidine (BPYM) ligand were synthesized and magnetically characterized. They crystallized in a monoclinic and triclinic crystal system, respectively, with almost the same structural core, only differing in the lattice solvent molecules. Alternating current (ac) susceptibility measurements revealed that they exhibit significant slow relaxation of magnetization until 25 K in the absence of a dc field. The single and double relaxation processes were assigned to one and two types of Dy(iii) environments in the two dimmers, respectively, with barriers of 266 and 345 K under zero field conditions. The magnetic hysteresis loops of 1 and 2 were both observed up to 2.5 K. PMID:27143486

  6. SOLVENT EXTRACTION OF ORGANIC WATER POLLUTANTS

    EPA Science Inventory

    Based on experiments with model systems of known organic water pollutants and environmental samples, conclusions are reached concerning the best general solvent for extraction and the most appropriate methods for related manipulations. Chloroform, methylene chloride-ether mixture...

  7. SOLVENT EXTRACTION PROCESS

    DOEpatents

    Jonke, A.A.

    1957-10-01

    In improved solvent extraction process is described for the extraction of metal values from highly dilute aqueous solutions. The process comprises contacting an aqueous solution with an organic substantially water-immiscible solvent, whereby metal values are taken up by a solvent extract phase; scrubbing the solvent extract phase with an aqueous scrubbing solution; separating an aqueous solution from the scrubbed solvent extract phase; and contacting the scrubbed solvent phase with an aqueous medium whereby the extracted metal values are removed from the solvent phase and taken up by said medium to form a strip solution containing said metal values, the aqueous scrubbing solution being a mixture of strip solution and an aqueous solution which contains mineral acids anions and is free of the metal values. The process is particularly effective for purifying uranium, where one starts with impure aqueous uranyl nitrate, extracts with tributyl phosphate dissolved in carbon tetrachloride, scrubs with aqueous nitric acid and employs water to strip the uranium from the scrubbed organic phase.

  8. Solvent alternatives guide

    SciTech Connect

    Elion, J.M.; Monroe, K.R.; Hill, E.A.

    1996-06-01

    It is no longer legal to manufacture or import chlorofluorocarbon 113 or methyl chloroform solvents, and companies that currently clean their parts with either material are now required to implement environmentally safe substitutes. To help find alternative methods, Research Triangle Institute`s Surface Cleaning Technology Program has designed a Solvent Alternatives Guide (SAGE), an online tool that enables access to practical information and recommendations for acceptable solvents. Developed in partnership with the US Environmental Protection Agency, SAGE is available free of charge on the Internet`s World Wide Web.

  9. Vanadium Oxide Electrochemical Capacitors: An Investigation into Aqueous Capacitive Degradation, Alternate Electrolyte-Solvent Systems, Whole Cell Performance and Graphene Oxide Composite Electrodes

    NASA Astrophysics Data System (ADS)

    Engstrom, Allison Michelle

    Vanadium oxide has emerged as a potential electrochemical capacitor material due to its attractive pseudocapacitive performance; however, it is known to suffer from capacitive degradation upon sustained cycling. In this work, the electrochemical cycling behavior of anodically electrodeposited vanadium oxide films with various surface treatments in aqueous solutions is investigated at different pH. Quantitative compositional analysis and morphological studies provide additional insight into the mechanism responsible for capacitive degradation. Furthermore, the capacitance and impedance behavior of vanadium oxide electrochemical capacitor electrodes is compared for both aqueous and nonaqueous electrolyte-solvent systems. Alkali metal chloride and bromide electrolytes were studied in aqueous systems, and nonaqueous systems containing alkali metal bromides were studied in polar aprotic propylene carbonate (PC) or dimethyl sulfoxide (DMSO) solvents. The preferred aqueous and nonaqueous systems identified in the half-cell studies were utilized in symmetric vanadium oxide whole-cells. An aqueous system utilizing a 3.0 M NaCl electrolyte at pH 3.0 exhibited an excellent 96% capacitance retention over 3000 cycles at 10 mV s-1. An equivalent system tested at 500 mV s-1 displayed an increase in capacitance over the first several thousands of cycles, and eventually stabilized over 50,000 cycles. Electrodes cycled in nonaqueous 1.0 M LiBr in PC exhibited mostly non-capacitive charge-storage, and electrodes cycled in LiBr-DMSO exhibited a gradual capacitive decay over 10,000 cycles at 500 mV s-1. Morphological and compositional analyses, as well as electrochemical impedance modeling, provide additional insight into the cause of the cycing behavior. Lastly, reduced graphene oxide and vanadium oxide nanowire composites have been successfully synthesized using electrophoretic deposition for electrochemical capacitor electrodes. The composite material was found to perform with a

  10. CHLORINATED SOLVENT PLUME CONTROL

    EPA Science Inventory

    This lecture will cover recent success in controlling and assessing the treatment of shallow ground water plumes of chlorinated solvents, other halogenated organic compounds, and methyl tert-butyl ether (MTBE).

  11. Diffusion in mixed solvents - On the viscosity question

    NASA Technical Reports Server (NTRS)

    Carapellucci, P. A.

    1975-01-01

    Linear plots of reaction rate vs reciprocal of solvent viscosity are generally used as the classifying criteria for diffusion controlled reactions in fluid solutions and to determine reaction mechanisms in mixed hydroxylic solvents like glycerol and water. This paper presents data which shows that the above-mentioned criteria are insufficient in many cases where nonideal mixed solvent systems are used to increase solvent viscosity. Data correlations suggest that the excess functions determine the variation in reaction rate constants. Kinetic parameters are presented for sucrose-water and methanol-water solvent systems for a reaction involving Fe(CN)6 and zinc uroporphyrin.

  12. Supercritical solvent coal extraction

    NASA Technical Reports Server (NTRS)

    Compton, L. E. (Inventor)

    1984-01-01

    Yields of soluble organic extract are increased up to about 50% by the supercritical extraction of particulate coal at a temperature below the polymerization temperature for coal extract fragments (450 C.) and a pressure from 500 psig to 5,000 psig by the conjoint use of a solvent mixture containing a low volatility, high critical temperature coal dissolution catalyst such as phenanthrene and a high volatility, low critical temperature solvent such as toluene.

  13. SOLVENT EXTRACTION OF RUTHENIUM

    DOEpatents

    Hyman, H.H.; Leader, G.R.

    1959-07-14

    The separation of rathenium from aqueous solutions by solvent extraction is described. According to the invention, a nitrite selected from the group consisting of alkali nitrite and alkaline earth nitrite in an equimolecular quantity with regard to the quantity of rathenium present is added to an aqueous solution containing ruthenium tetrantrate to form a ruthenium complex. Adding an organic solvent such as ethyl ether to the resulting mixture selectively extracts the rathenium complex.

  14. Development of a microfluidic-chip system for liquid-phase microextraction based on two immiscible organic solvents for the extraction and preconcentration of some hormonal drugs.

    PubMed

    Asl, Yousef Abdossalami; Yamini, Yadollah; Seidi, Shahram

    2016-11-01

    In the present study, for the first time, an on-chip liquid phase microextraction (LPME) coupled with high performance liquid chromatography was introduced for the analysis of levonorgestrel (Levo), dydrogesterone (Dydo) and medroxyprogesterone (Medo) as the model analytes in biological samples. The chip-based LPME set-up was composed of two polymethyl methacrylate (PMMA) plates with microfabricated channels and a microporous membrane sandwiched between them to separate the sample solution and acceptor phase. These channels were used as a flow path for the sample solution and a thin compartment for the acceptor phase, respectively. In this system, two immiscible organic solvents were used as supported liquid membrane (SLM) and acceptor phase, respectively. During extraction, the model analytes in the sample solution were transported through the SLM (n-dodecane) into the acceptor organic solvent (methanol). The new set-up provided effective and reproducible extractions using low volumes of the sample solution. The effective parameters on the extraction efficiency of the model analytes were optimized using one variable at a time method. Under the optimized conditions, the new set-up provided good linearity in the range of 5.0-500µgL(-1) for the model analytes with the coefficients of determination (r(2)) higher than 0.9909. The relative standard deviations (RSDs%) and limits of detection (LODs) values were less than 6.5% (n=5) and 5.0µgL(-1), respectively. The preconcentration factors (PFs) were obtained using 1.0mL of the sample solution and 20.0µL of the acceptor solution higher than 19.9-fold. Finally, the proposed method was successfully applied for the extraction and determination of the model analytes in urine samples. PMID:27591655

  15. DEVELOP ECONOMIC ANALYSIS CAPABILITY OF THE SOLVENT ALTERNATIVES GUIDE (SAGE)(SYSTEMS ANALYSIS BRANCH, SUSTAINABLE TECHNOLOGY DIVISION, NRMRL)

    EPA Science Inventory

    This task will upgrade and enhance the SAGE software system by developing cost algorithms that will give it a cost projection capability. This capability will complement the process selection capability of the existing system by giving the user a complete picture including the co...

  16. Cleaning without chlorinated solvents

    SciTech Connect

    Thompson, L.M.; Simandl, R.F.

    1994-12-31

    Because of health and environmental concerns, many regulations have been passed in recent years regarding the use of chlorinated solvents. The Oak Ridge Y-12 Plant has had an active program to find alternatives for these solvents used in cleaning applications for the past 7 years. During this time frame, the quantity of solvents purchased has been reduced by 92%. The program has been a twofold effort. Vapor degreasers used in batch cleaning-operations have been replaced by ultrasonic cleaning with aqueous detergent, and other organic solvents have been identified for use in hand-wiping or specialty operations. In order to qualify these alternatives for use, experimentation was conducted on cleaning ability as well as effects on subsequent operations such as welding, painting and bonding. Cleaning ability was determined using techniques such as X-ray photoelectron spectroscopy (XPS) and Fourier Transform Infrared Spectroscopy (FTIR) which are capable of examining monolayer levels of contamination on a surface. Solvents have been identified for removal of rust preventative oils, lapping oils, machining coolants, lubricants, greases, and mold releases. Solvents have also been evaluated for cleaning urethane foam spray guns, swelling of urethanes and swelling of epoxies.

  17. Cleaning without chlorinated solvents

    NASA Technical Reports Server (NTRS)

    Thompson, L. M.; Simandl, R. F.

    1995-01-01

    Because of health and environmental concerns, many regulations have been passed in recent years regarding the use of chlorinated solvents. The Oak Ridge Y-12 Plant has had an active program to find alternatives for these solvents used in cleaning applications for the past 7 years. During this time frame, the quantity of solvents purchased has been reduced by 92 percent. The program has been a twofold effort. Vapor degreasers used in batch cleaning operations have been replaced by ultrasonic cleaning with aqueous detergent, and other organic solvents have been identified for use in hand-wiping or specialty operations. In order to qualify these alternatives for use, experimentation was conducted on cleaning ability as well as effects on subsequent operations such as welding, painting, and bonding. Cleaning ability was determined using techniques such as x-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) which are capable of examining monolayer levels of contamination on a surface. Solvents have been identified for removal of rust preventative oils, lapping oils, machining coolants, lubricants, greases, and mold releases. Solvents have also been evaluated for cleaning urethane foam spray guns, swelling of urethanes, and swelling of epoxies.

  18. Partition of synaptic membranes in aqueous two-phase systems at subzero temperatures by using anti-freeze solvent.

    PubMed

    Johansson, G; Joelsson, M; Olde, B

    1990-11-16

    The freezing point of aqueous two-phase (liquid-liquid) systems containing water, dextran and poly(ethylene glycol) has been lowered by including glycerol. Biological membranes, obtained by fragmentation of a crude synaptosomal preparation from calf brain cortex, have been included in the two-phase systems. The effects of temperature and the concentration of glycerol on the partition of the membranes within the systems have been investigated. Considerable stabilisation of the membranes was noticed when they were partitioned at -10 degrees C compared with 0 degrees C. The influences of glycerol, ethylene glycol, N,N-dimethylformamide and tetrahydrofuran on the phase-forming properties of the systems and on enzyme activities are also presented. Possible use of the above systems for studies and separation of biological membranes are discussed. PMID:2245213

  19. Organic Solvent Tolerant Lipases and Applications

    PubMed Central

    Kanwar, Shamsher S.

    2014-01-01

    Lipases are a group of enzymes naturally endowed with the property of performing reactions in aqueous as well as organic solvents. The esterification reactions using lipase(s) could be performed in water-restricted organic media as organic solvent(s) not only improve(s) the solubility of substrate and reactant in reaction mixture but also permit(s) the reaction in the reverse direction, and often it is easy to recover the product in organic phase in two-phase equilibrium systems. The use of organic solvent tolerant lipase in organic media has exhibited many advantages: increased activity and stability, regiospecificity and stereoselectivity, higher solubility of substrate, ease of products recovery, and ability to shift the reaction equilibrium toward synthetic direction. Therefore the search for organic solvent tolerant enzymes has been an extensive area of research. A variety of fatty acid esters are now being produced commercially using immobilized lipase in nonaqueous solvents. This review describes the organic tolerance and industrial application of lipases. The main emphasis is to study the nature of organic solvent tolerant lipases. Also, the potential industrial applications that make lipases the biocatalysts of choice for the present and future have been presented. PMID:24672342

  20. Water as a Solvent for Life

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew; Pratt, Lawrence R.

    2015-01-01

    "Follow the water" is our basic strategy in searching for life in the universe. The universality of water as the solvent for living systems is usually justified by arguing that water supports the rich organic chemistry that seeds life, but alternative chemistries are possible in other organic solvents. Here, other, essential criteria for life that have not been sufficiently considered so far, will be discussed.

  1. Competitive lipase-catalyzed ester hydrolysis and ammoniolysis in organic solvents; equilibrium model of a solid-liquid-vapor system.

    PubMed

    Litjens, M J; Sha, M; Straathof, A J; Jongejan, J A; Heijnen, J J

    1999-11-01

    Enzymatic ester hydrolysis and ammoniolysis were performed as competitive reactions in methyl isobutyl ketone without a separate aqueous phase. The reaction system contained solid ammonium bicarbonate, which dissolved as water, ammonia, and carbon dioxide. During the reaction an organic liquid phase, a vapor phase, and at least one solid phase are present. The overall equilibrium composition of this multiphase system is a complex function of the reaction equilibria and several phase equilibria. To gain a quantitative understanding of this system a mathematical model was developed and evaluated. The model is based on the mass balances for a closed batch system and straightforward relations for the reaction equilibria and the solubility equilibria of ammonium bicarbonate, the fatty acid ammonium salt, water, ammonia, and carbon dioxide. For butyl butyrate as a model ester and Candida antarctica lipase B as the biocatalyst this equilibrium model describes the experiments satisfactorily. The model predicts that high equilibrium yields of butyric acid can be achieved only in the absence of ammoniolysis or in the presence of a separate water phase. However, high yields of butyramide should be possible if the water concentration is fixed at a low level and a more suited source of ammonia is applied. PMID:10486134

  2. DEVELOPMENT OF SOFTWARE SYSTEMS TO ENHANCE THE SELECTION OF LOW POLLUTING SURFACE CLEANING OPTIONS, SOLVENT ALTERNATIVES GUIDE (SAGE)

    EPA Science Inventory

    FY03 Task Description: This is not a new task; only a newly assigned number to split SAGE from the other tools task. SAGE is interactive PC-based expert software system that recommend low polluting surface cleaning options and process costs. SAGE is used by Federal, State, and ...

  3. Interaction of organic solvents with the green alga Chlorella pyrenoidosa

    SciTech Connect

    Stratton, G.W.; Smith, T.M. )

    1988-06-01

    Solvents are often a component of bioassay systems when water-insoluble toxicants are being tested. These solvents must also be considered as xenobiotics and therefore, as potential toxicants in the bioassay. However, the effects of solvents on the organisms being tested and their possible interaction with the test compound are often overlooked by researchers. The purpose of the present study was to compare the inhibitory effects of six solvents commonly used in pesticide bioassays towards growth of the common green alga Chlorella pyrenoidosa, and to examine the occurrence of solvent-pesticide interactions with this organism.

  4. TGF-β3 encapsulated PLCL scaffold by a supercritical CO2-HFIP co-solvent system for cartilage tissue engineering.

    PubMed

    Kim, Su Hee; Kim, Soo Hyun; Jung, Youngmee

    2015-05-28

    Mimicking the native tissue microenvironment is critical for effective tissue regeneration. Mechanical cues and sustained biological cues are important factors, particularly in load-bearing tissues such as articular cartilage or bone. Carriers including hydrogels and nanoparticles have been investigated to achieve sustained release of protein drugs. However, it is difficult to apply such carriers alone as scaffolds for cartilage regeneration because of their weak mechanical properties, and they must be combined with other biomaterials that have adequate mechanical strength. In this study, we developed the multifunctional scaffold which has similar mechanical properties to those of native cartilage and encapsulates TGF-β3 for chondrogenesis. In our previous work, we confirmed that poly(lactide-co-caprolacton) (PLCL) did not foam when exposed to supercritical CO2 below 45°C. Here, we used a supercritical carbon dioxide (scCO2)-1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) co-solvent system to facilitate processing under mild conditions because high temperature causes protein denaturation and decreases bioactivity of the protein. This processing made it possible to fabricate a TGF-β3 encapsulated elastic porous PLCL scaffold at 37°C. We investigated the tissue regeneration efficiency of the TGF-β3 encapsulated PLCL scaffold using human adipose-derived stem cells (ADSCs) in vitro and in vivo (Groups; i. PLCL scaffold+Fibrin gel+TGF-β3, ii. TGF-β3 encapsulated PLCL scaffold+Fibrin gel, iii. TGF-β3 encapsulated PLCL scaffold). We evaluated the chondrogenic abilities of the scaffolds at 4, 8, and 12weeks after subcutaneous implantation of the constructs in immune-deficient mice. Based on TGF-β3 release studies, we confirmed that TGF-β3 molecules were released by 8weeks and remained in the PLCL matrix. Explants of TGF-β3 encapsulated scaffolds by a co-solvent system exhibited distinct improvement in the compressive E-modulus and deposition of extracellular matrix

  5. Separation by solvent extraction

    DOEpatents

    Holt, Jr., Charles H.

    1976-04-06

    17. A process for separating fission product values from uranium and plutonium values contained in an aqueous solution, comprising adding an oxidizing agent to said solution to secure uranium and plutonium in their hexavalent state; contacting said aqueous solution with a substantially water-immiscible organic solvent while agitating and maintaining the temperature at from -1.degree. to -2.degree. C. until the major part of the water present is frozen; continuously separating a solid ice phase as it is formed; separating a remaining aqueous liquid phase containing fission product values and a solvent phase containing plutonium and uranium values from each other; melting at least the last obtained part of said ice phase and adding it to said separated liquid phase; and treating the resulting liquid with a new supply of solvent whereby it is practically depleted of uranium and plutonium.

  6. Halogenated solvent remediation

    DOEpatents

    Sorenson, Kent S.

    2004-08-31

    Methods for enhancing bioremediation of ground water contaminated with nonaqueous halogenated solvents are disclosed. A preferred method includes adding a composition to the ground water wherein the composition is an electron donor for microbe-mediated reductive dehalogenation of the halogenated solvents and enhances mass transfer of the halogenated solvents from residual source areas into the aqueous phase of the ground water. Illustrative compositions effective in these methods include surfactants such as C.sub.2 -C.sub.4 carboxylic acids and hydroxy acids, salts thereof, esters of C.sub.2 -C.sub.4 carboxylic acids and hydroxy acids, and mixtures thereof. Especially preferred compositions for use in these methods include lactic acid, salts of lactic acid, such as sodium lactate, lactate esters, and mixtures thereof. The microbes are either indigenous to the ground water, or such microbes can be added to the ground water in addition to the composition.

  7. Halogenated solvent remediation

    DOEpatents

    Sorenson, Jr., Kent S.

    2008-11-11

    Methods for enhancing bioremediation of ground water contaminated with nonaqueous halogenated solvents are disclosed. An illustrative method includes adding an electron donor for microbe-mediated anaerobic reductive dehalogenation of the halogenated solvents, which electron donor enhances mass transfer of the halogenated solvents from residual source areas into the aqueous phase of the ground water. Illustrative electron donors include C.sub.2-C.sub.4 carboxylic acids and hydroxy acids, salts thereof, esters of C.sub.2-C.sub.4 carboxylic acids and hydroxy acids, and mixtures thereof, of which lactic acid, salts of lactic acid--such as sodium lactate, lactate esters, and mixtures thereof are particularly illustrative. The microbes are either indigenous to the ground water, or such microbes can be added to the ground water in addition to the electron donor.

  8. Breathing with chlorinated solvents

    SciTech Connect

    McCarty, P.L.

    1997-06-06

    Chlorinated solvents are effective cleaners and in the past dirted solvents were dumped into landfills, stored in tanks that often leaked, or spilled. As a result the most common contaminants of organic groundwater at hazardous waste sites are the two major chlorinated solvents - tetrachloroethylene (PCE) and trichloroethylene (TCE). Both are suspected carcinogens and both are highly resistant to biodegradation. Now however, there is a report of a bacterium that can remove all of the chlorine atoms from both by halorespiration to form ethene, an innocuous end product. This article goes on to discuss the background of biodegradation of chlorinated compounds, why it is so difficult, and what the future is in this area. 9 refs., 1 fig.

  9. Solvent resistant copolyimide

    NASA Technical Reports Server (NTRS)

    Chang, Alice C. (Inventor); St. Clair, Terry L. (Inventor)

    1995-01-01

    A solvent resistant copolyimide was prepared by reacting 4,4'-oxydiphthalic anhydride with a diaimine blend comprising, based on the total amount of the diamine blend, about 75 to 90 mole percent of 3,4'-oxydianiline and about 10 to 25 mole percent p-phenylene diamine. The solvent resistant copolyimide had a higher glass transition temperature when cured at 350.degree. , 371.degree. and 400.degree. C. than LaRC.TM.-IA. The composite prepared from the copolyimide had similar mechanical properties to LaRC.TM.-IA. Films prepared from the copolyimide were resistant to immediate breakage when exposed to solvents such as dimethylacetamide and chloroform. The adhesive properties of the copolyimide were maintained even after testing at 23.degree., 150.degree., 177.degree. and 204.degree. C.

  10. Safe battery solvents

    DOEpatents

    Harrup, Mason K.; Delmastro, Joseph R.; Stewart, Frederick F.; Luther, Thomas A.

    2007-10-23

    An ion transporting solvent maintains very low vapor pressure, contains flame retarding elements, and is nontoxic. The solvent in combination with common battery electrolyte salts can be used to replace the current carbonate electrolyte solution, creating a safer battery. It can also be used in combination with polymer gels or solid polymer electrolytes to produce polymer batteries with enhanced conductivity characteristics. The solvents may comprise a class of cyclic and acyclic low molecular weight phosphazenes compounds, comprising repeating phosphorus and nitrogen units forming a core backbone and ion-carrying pendent groups bound to the phosphorus. In preferred embodiments, the cyclic phosphazene comprises at least 3 phosphorus and nitrogen units, and the pendent groups are polyethers, polythioethers, polyether/polythioethers or any combination thereof, and/or other groups preferably comprising other atoms from Group 6B of the periodic table of elements.

  11. Effects on gelation transition by tuning the interaction of solvent-solute molecules in a bridging system

    NASA Astrophysics Data System (ADS)

    Yuan, Guangcui; Luo, Junhua; Han, Charles C.; Liu, Yun

    A mixed suspension of large hard spheres and small soft microgels with well-defined bridging interaction is used to construct a new short-range attractive system. Soft poly (N-isopropylacrylamide) microgels (R = 80 nm) are absorbable to the surface of hard polystyrene spheres (R = 960 nm) in aqueous solution. For a constant volume fraction of hard spheres (ΦMS) , gradually increasing amount of microgels (ΦMG) leads to a liquid-gel-liquid transitions through bridging and steric stabilized mechanisms. Rheological measurements were performed on suspensions with ΦMS ranging up to 0.35 to carefully identify the transition boundaries between liquid-like and solid-like behaviors triggered by ΦMG . Meanwhile, neutron scattering technique with Baxter's sticky hard-sphere potential fit was used to investigate the effective interparticle potential at and around the gelation boundaries. By exhibiting a set of experimental results from this explicit model system and comparing with the theoretical data, we try to clarify a debate issue about the relative position of the gel line and the liquid-gas coexistence line in the potential U - Φ plane. This work is supported by the Chinese National Science Foundation (Project 21474121).

  12. Solvent dewatering coal

    SciTech Connect

    Hardesty, D.E.; Buchholz, H.F.

    1984-07-17

    Drying of wet coal is facilitated by the addition of a nonaqueous solvent, such as acetone, to the coal followed by application of heat to remove both solvent and water from the coal. The coal may be further upgraded by briquetting or pelletizing fine coal particles with waxes and resins extracted from the coal, or the waxes and resins may be left on the coal to reduce the tendency of the coal to reabsorb water. In addition, minerals such as sodium and potassium salts may be removed from the coal to reduce slagging and fouling behavior of the coal.

  13. Preparation of CdS microtrumpets from a solvent extraction system by a two-phase approach

    SciTech Connect

    Geng, Aifang; Liu, Yubing; Liao, Wuping

    2011-10-15

    Highlights: {yields} CdS microtrumpets were prepared from an extraction system by a two-phase approach. {yields} Triethanolamine plays a crucial role in the formation of the trumpets. {yields} Some micro-lotus seedpods can also be obtained with trihydroxymethyl aminomethane. -- Abstract: CdS microtrumpets with the length being of about 4 {mu}m and the bell wall being of 100 nm have been prepared using a cadmium di-(2-ethylhexyl) phosphoric acid chelate as the precursor by a two-phase thermal approach. The products were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and UV-vis spectroscopy. The effects of temperature, reaction time, and co-surfactant on the morphology were also examined. It was found that the co-surfactant triethanolamine plays a crucial role in the formation of the cubic phase trumpet-like CdS microstructures.

  14. Water Amount Dependence on Morphologies and Properties of ZnO nanostructures in Double-solvent System

    PubMed Central

    Yin, Jinzhou; Gao, Feng; Wei, Chengzhen; Lu, Qingyi

    2014-01-01

    ZnO materials with a range of different morphologies have been successfully synthesized via a simple double-solvothermal method in the presence of glycine. The morphologies of the products can be controlled from superstructures to microrods by adjusting the amount of water in the EtOH/H2O system. Photoluminescence (PL) studies reveal that the more amount of water was used, the stronger PL relative intensity of the green emission is, but the weaker ultraviolet emission. This might be attributed to the more defects of the products when the more water was used. The catalytic studies show that all the samples have good abilities to decrease decomposition temperature around 300°C and the decomposition temperature lowers with the increase of the relative intensity of ZnO green emission. PMID:24435133

  15. [Shoe factory workers, solvents and health].

    PubMed

    Foà, Vito; Martinotti, Irene

    2012-01-01

    Exposure to organic solvents in footwear manufacturing industry came from the glues used adhering the shoe parts to each other. Benzene was the first solvent used in shoe factories until the evidence of its capacity to cause leukaemia. Then, the demonstration that exposure to n-hexane was related to distal polyneuropathy limited the use of this substance. After that, results of neurotoxicological studies conducted on workers exposed to different mixtures of organic solvents make necessary prevention measure directed to a progressive reduction of air dispersion of these chemicals. Today exposure to solvents in workplaces is regulated by health based exposure limit values that should warranty absence of central nervous system effects. One of the most important rules of occupational medicine is verify that these exposure levels are really health protective also for workers with increased susceptibility. PMID:22697025

  16. Biological monitoring of chlorinated hydrocarbon solvents

    SciTech Connect

    Monster, A.C.

    1986-08-01

    The possibility of biological monitoring of exposure to some volatile, halogenated hydrocarbons will be discussed. Most of these agents are widely used as solvents. All agents act on the nervous system as narcotics and differ widely in toxicity. Most of the solvents undergo biotransformation to metabolites. This allows biological assessment of exposure by measurement of the solvent and/or metabolites in exhaled air, blood, and/or urine. However, the same metabolites may occur with exposure to different chlorinated hydrocarbons, eg, trichloroethanol and trichloroacetic acid from exposure to trichloroethene, tetrachloroethene, and 1,1,1-trichloroethane. On the other hand, these agents differ widely in the percentage that is metabolized. There are large gaps in our knowledge, however, and much research will have to be carried out before even tentative data can be established for most of the solvents.

  17. United States Air Force Wipe Solvent Testing

    NASA Technical Reports Server (NTRS)

    Hornung, Steven D.; Beeson, Harold D.

    2000-01-01

    The Wright-Patterson Air Force Base (WPAFB), as part of the Air Force Material Command, requested that NASA Johnson Space Center (JSC) White Sands Test Facility (WSTF) conduct testing and analyses in support of the United States Air Force Wipe Solvent Development Project. The purpose of the wipe solvent project is to develop an alternative to be used by Air Force flight line and maintenance personnel for the wipe cleaning of oxygen equipment. This report provides material compatibility, liquid oxygen (LOX) mechanical impact, autogenous ignition temperature (AIT), and gauge cleaning test data for some of the currently available solvents that may be used to replace CFC-113 and methyl chloroform. It provides data from previous WSTF test programs sponsored by the Naval Sea Systems Command, the Kennedy Space Center, and other NASA programs for the purpose of assisting WP AFB in identifying the best alternative solvents for validation testing.

  18. Solvent permits solid curing agents to be used at room temperatures

    NASA Technical Reports Server (NTRS)

    St. Cyr, M. C.

    1967-01-01

    Solvent system dissolves the solid curing agents used with polyurethane resins in adhesive systems. The system developed yields bond strengths comparable to 100 percent solid formulations. The optimum solvent chosen was a 55.5 percent solution in anhydrous tetrahydrofuran.

  19. Interfacial chemistry in solvent extraction systems. Final report for the period June 1, 1994 - May 31, 1998

    SciTech Connect

    Neuman, Ronald D.

    2000-03-01

    The interfacial chemistry that occurs in the liquid/liquid extraction of metals ions still remains very incompletely understood at the molecular level. The objective of this comprehensive research program has been to further the fundamental understanding of this complex chemistry by systematically investigating the interfacial behavior of extraction reagents and their interactions with metal ions at both macroscopic (liquid/liquid) and microscopic (reversed micelles) interfaces. Although the importance of the macroscopic interface is well recognized, it is less appreciated that microscopic interfaces, i.e., association microstructure such as reversed micelles, are often present under practical conditions and play a key role in liquid/liquid extraction. An improved knowledge of the interfacial behavior of extractant molecules is of the utmost importance as it relates to the efficacy (extent, selectivity and rate) of the extraction process. During the recent grant period the authors have more intensively investigated the physicochemical nature of metal-extractant aggregates (or microscopic interfaces) in the organic phase of acidic organophosphorus extraction systems from the perspective of colloid and surface science. Since industrial extraction systems are very complex, the authors emphasized the study of the aggregation behavior in model extraction systems of pure metal salts of bis(2-ethylhexyl)phosphoric acid (HDEHP) (e.g., NaDEHP, Ni(DEHP){sub 2} CO(DEHP){sub 2}) or bis(2-ethylhexyl) sulfosuccinate, whose sodium salt (AOT) is the classical surfactant used often in studies of the structure and properties of reversed micelles, to eliminate any possible uncertainty in the metal-extractant complex composition. This approach evolved into a new initiative that utilized molecular modeling in order to clarify the molecular structure of metal-extractant micellar aggregates for which information is very difficult to obtain from direct experimental measurements

  20. Dual response surface-optimized synthesis of L-menthyl conjugated linoleate in solvent-free system by Candida rugosa lipase.

    PubMed

    Li, Zhen; Wang, Yulun; Li, Jia; Wang, Ping; Wei, Wei; Gao, Yang; Fu, Chenyin; Dong, Wenqi

    2010-02-01

    Lipase-catalyzed synthesis of L-menthyl conjugated linoleate in solvent-free system was studied in this paper. Duel response surface methodology was employed to explore the factors which would influence the reaction conversion by a range of independent experiments. The conditions of reaction temperature, reaction time, enzyme amount, substrate molar ratio and water content were symmetrically investigated. When the substrates were 1 mmol CLA and 1 mmol L-menthol, the maximum conversion (79.1+/-0.8%) was obtained at 30 degrees C, Candida rugosa lipase of 33.7% (w/w by weight of L-menthol), water content of 32% (w/w by weight of L-menthol), reaction time of 43 h. The product isomers (9Z,11E-/10E,12Z-=63/37) were analyzed by GC/MS. The similarity between the oleic acid and 9Z,11E-CLA conformations which were obtained by molecular modeling could account for the specific catalyzed by C. rugosa lipase. PMID:19833506

  1. Production of Diacylglycerol-enriched Oil by Glycerolysis of Soybean Oil using a Bubble Column Reactor in a Solvent-free System.

    PubMed

    Zhang, Ning; Yang, Xue; Fu, Junning; Chen, Qiong; Song, Ziliang; Wang, Yong

    2016-03-01

    In this study, diacylglycerol-enriched soybean oil (DESO) was synthesized through Lipozyme 435-catalyzed glycerolysis of soybean oil (SO) in a solvent-free system using a modified bubble column reactor. The effects of enzyme load, mole ratio of glycerol to soybean oil, reaction temperature, gas flow and reaction time on DAG production were investigated. The selected conditions were established as being enzyme load of 4 wt% (mass of substrates), glycerol/soybean oil mole ratio of 20:1, reaction temperature of 80°C, gas flow of 10.6 cm/min, and a reaction time of 2.5 h, obtaining the DAG content of 49.4±0.5 wt%. The reusability of Lipozyme 435 was evaluated by monitoring the contents of DAG, monoacylglycerol (MAG) and triacylglycerol (TAG) in 10 consecutive runs. After purified by one-step molecular distillation, the DAG content of 63.5±0.3 wt% was achieved in DESO. The mole ratio of 1, 3-DAG to 1, 2-DAG was 2:1 and the fatty acid composition had no significant difference from that of soybean oil. However, the thermal properties of DESO and SO had considerable differences. Polymorphic form of DESO were mainly the β form and minor amounts of the β' form. Granular aggregation and round-shaped crystals were detected in DESO. PMID:26876674

  2. Molecular dynamics simulations of the free and inhibitor-bound cruzain systems in aqueous solvent: insights on the inhibition mechanism in acidic pH.

    PubMed

    Hoelz, L V B; Leal, V F; Rodrigues, C R; Pascutti, P G; Albuquerque, M G; Muri, E M F; Dias, L R S

    2016-09-01

    The major cysteine protease of Trypanosoma cruzi, cruzain (CRZ), has been described as a therapeutic target for Chagas' disease, which affects millions of people worldwide. Thus, a series of CRZ inhibitors has been studied, including a new competitive inhibitor, Nequimed176 (NEQ176). Nevertheless, the structural and dynamic basis for CRZ inhibition remains unclear. Hoping to contribute to this ever-growing understanding of timescale dynamics in the CRZ inhibition mechanism, we have performed the first study using 100 ns of molecular dynamics (MD) simulations of two CRZ systems in an aqueous solvent under pH 5.5: CRZ in the apo form (ligand free) and CRZ complexed to NEQ176. According to the MD simulations, the enzyme adopts an open conformation in the apo form and a closed conformation in the NEQ176-CRZ complex. We also suggest that this closed conformation is related to the hydrogen-bonding interactions between NEQ176 and CRZ, which occurs through key residues, mainly Gly66, Met68, Asn69, and Leu160. In addition, the cross-correlation analysis shows evidence of the correlated motions among Ala110-Asp140, Leu160-Gly189, and Glu190-Gly215 subdomains, as well as, the movements related to Ala1-Thr59 and Asp60-Pro90 regions seem to be crucial for CRZ activity. PMID:26414241

  3. The use of novel ionic liquid-in-water microemulsion without the addition of organic solvents in a capillary electrophoretic system.

    PubMed

    Cao, Jun; Qu, Haibin; Cheng, Yiyu

    2010-10-01

    In this work, a new ionic liquid-in-water (IL/W) microemulsion without requiring toxic organic solvents was investigated as a pseudostationary phase (PSP) in CE. As observed during the IL/W microemulsion system, a fast and an efficient separation of eight phenolic acids was achieved using 1-butyl-3-methylimidazolivmhexa fluorophosphate (bmimPF(6)) as oil drops, Tween 20 as the surfactant, and borate as the BGE. The effects of oil phase, surfactant, buffer and pH on the separation were explored in detail to evaluate the novel PSP. In contrast, the detection efficiency of these same analytes was markedly decreased using oil-in-water (O/W) MEEKC. We have also validated the practicality of the IL/W microemulsion method by quantitative determination of acidic compounds in pharmaceutical injection. The results obtained indicated that an additional association between the IL cations and analytes tested seemed to play a prominent role in the separation mechanism exhibited by this novel PSP compared with the conventional O/W MEEKC. PMID:20922759

  4. Diffusion in mixed solvents. II - The heat of mixing parameter

    NASA Technical Reports Server (NTRS)

    Carapellucci, P. A.

    1975-01-01

    Correlation of second-order rate constants for many reactions involving electron transfer between organic molecules, solvated electron reactions, iodine diffusion coefficients, and triplet state electron transfer reactions has been made with the heat of mixing parameter (HMP) for the aqueous binary solvent systems. The aqueous binary solvents studied are those containing methanol or ethanol (type I solvent); 1-propanol or tert-butyl alcohol (type II solvent); or sucrose or glycerol (type III solvent). A plot of the HMP vs. the diffusion parameter for each reaction yields superimposable curves for these reactions in a particular solvent mixture over the entire solvent mixture range, irrespective of the value of the reaction's rate constant or diffusion coefficient in water.

  5. 40 CFR 447.10 - Applicability; description of the oil-base solvent wash ink subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-base solvent wash ink subcategory. 447.10 Section 447.10 Protection of Environment ENVIRONMENTAL...-Base Solvent Wash Ink Subcategory § 447.10 Applicability; description of the oil-base solvent wash ink...-base ink where the tank washing system uses solvents. When a plant is subject to effluent...

  6. ENGINEERING BULLETIN: SOLVENT EXTRACTION

    EPA Science Inventory

    Solvent extraction does not destroy hazardous contaminants, but is a means of separating those contaminants from soils, sludges, and sediments, thereby reducing the volume of the hazardous material that must be treated. enerally it is used as one in a series of unit operations an...

  7. SOLVENT EXTRACTION TREATMENT

    EPA Science Inventory

    Solvent extraction does not destroy wastes, but is a means of separating hazardous contaminants from soils, sludges, and sediments, thereby reducing the volume of the hazardous waste that must be treated. enerally it is used as one ina series of unit operations, and can reduce th...

  8. Organic solvent topical report

    SciTech Connect

    Cowley, W.L.

    1998-04-30

    This report is the technical basis for the accident and consequence analyses used in the Hanford Tank Farms Basis for Interim Operation. The report also contains the scientific and engineering information and reference material needed to understand the organic solvent safety issue. This report includes comments received from the Chemical Reactions Subcommittee of the Tank Advisory Panel.

  9. ONSITE SOLVENT RECOVERY

    EPA Science Inventory

    This study evaluated the product quality, waste reduction/pollution prevention, and economic aspects of three technologies for onsite solvent recovery. The technologies were (1) atmospheric batch distillation, (2) vacuum heat-pump distillation, and (3) low-emission vapor degreas...

  10. DESIGNING GREENER SOLVENTS

    EPA Science Inventory

    Computer-aided design of chemicals and chemical mixtures provides a powerful tool to help engineers identify cleaner process designs and more-benign alternatives to toxic industrial solvents. Three software programs are discussed: (1) PARIS II (Program for Assisting the Replaceme...

  11. Solvent vapor collector

    DOEpatents

    Ellison, Kenneth; Whike, Alan S.

    1979-01-30

    A solvent vapor collector is mounted on the upstream inlet end of an oven having a gas-circulating means and intended for curing a coating applied to a strip sheet metal at a coating station. The strip sheet metal may be hot and solvent vapors are evaporated at the coating station and from the strip as it passes from the coating station to the oven. Upper and lower plenums within a housing of the collector are supplied with oven gases or air from the gas-circulating means and such gases or air are discharged within the collector obliquely in a downstream direction against the strip passing through that collector to establish downstream gas flows along the top and under surfaces of the strip so as, in turn, to induct solvent vapors into the collector at the coating station. A telescopic multi-piece shroud is usefully provided on the housing for movement between an extended position in which it overlies the coating station to collect solvent vapors released thereat and a retracted position permitting ready cleaning and adjustment of that coating station.

  12. Solvent-Ion Interactions in Salt Water: A Simple Experiment.

    ERIC Educational Resources Information Center

    Willey, Joan D.

    1984-01-01

    Describes a procedurally quick, simple, and inexpensive experiment which illustrates the magnitude and some effects of solvent-ion interactions in aqueous solutions. Theoretical information, procedures, and examples of temperature, volume and hydration number calculations are provided. (JN)

  13. A systems biology approach to investigate the effect of pH-induced gene regulation on solvent production by Clostridium acetobutylicum in continuous culture

    PubMed Central

    2011-01-01

    Background Clostridium acetobutylicum is an anaerobic bacterium which is known for its solvent-producing capabilities, namely regarding the bulk chemicals acetone and butanol, the latter being a highly efficient biofuel. For butanol production by C. acetobutylicum to be optimized and exploited on an industrial scale, the effect of pH-induced gene regulation on solvent production by C. acetobutylicum in continuous culture must be understood as fully as possible. Results We present an ordinary differential equation model combining the metabolic network governing solvent production with regulation at the genetic level of the enzymes required for this process. Parameterizing the model with experimental data from continuous culture, we demonstrate the influence of pH upon fermentation products: at high pH (pH 5.7) acids are the dominant product while at low pH (pH 4.5) this switches to solvents. Through steady-state analyses of the model we focus our investigations on how alteration in gene expression of C. acetobutylicum could be exploited to increase butanol yield in a continuous culture fermentation. Conclusions Incorporating gene regulation into the model of solvent production by C. acetobutylicum enables an accurate representation of the pH-induced switch to solvent production to be obtained and theoretical investigations of possible synthetic-biology approaches to be pursued. Steady-state analyses suggest that, to increase butanol yield, alterations in the expression of single solvent-associated genes are insufficient; a more complex approach targeting two or more genes is required. PMID:21247470

  14. The impact of low-temperature seasonal aquifer thermal energy storage (SATES) systems on chlorinated solvent contaminated groundwater: Modeling of spreading and degradation

    NASA Astrophysics Data System (ADS)

    Zuurbier, Koen G.; Hartog, Niels; Valstar, Johan; Post, Vincent E. A.; van Breukelen, Boris M.

    2013-04-01

    Groundwater systems are increasingly used for seasonal aquifer thermal energy storage (SATES) for periodic heating and cooling of buildings. Its use is hampered in contaminated aquifers because of the potential environmental risks associated with the spreading of contaminated groundwater, but positive side effects, such as enhanced contaminant remediation, might also occur. A first reactive transport study is presented to assess the effect of SATES on the fate of chlorinated solvents by means of scenario modeling, with emphasis on the effects of transient SATES pumping and applicable kinetic degradation regime. Temperature effects on physical, chemical, and biological reactions were excluded as calculations and initial simulations showed that the small temperature range commonly involved (ΔT < 15 °C) only caused minor effects. The results show that a significant decrease of the contaminant mass and (eventually) plume volume occurs when degradation is described as sediment-limited with a constant rate in space and time, provided that dense non-aqueous phase liquid (DNAPL) is absent. However, in the presence of DNAPL dissolution, particularly when the dissolved contaminant reaches SATES wells, a considerably larger contaminant plume is created, depending on the balance between DNAPL dissolution and mass removal by degradation. Under conditions where degradation is contaminant-limited and degradation rates depend on contaminant concentrations in the aquifer, a SATES system does not result in enhanced remediation of a contaminant plume. Although field data are lacking and existing regulatory constraints do not yet permit the application of SATES in contaminated aquifers, reactive transport modeling provides a means of assessing the risks of SATES application in contaminated aquifers. The results from this study are considered to be a first step in identifying the subsurface conditions under which SATES can be applied in a safe or even beneficial manner.

  15. Solvent dewaxing of lubricating oils

    SciTech Connect

    Sequeira, A. Jr.

    1991-04-09

    This paper describes improvement in a process for producing a dewaxed lubricating oil from a wax-bearing mineral oil by the steps comprising; mixing the oil with a dewaxing solvent thereby forming an oil-solvent mixture, chilling the oil-solvent mixture to a dewaxing temperature thereby crystallizing the wax and forming an oil-solvent crystalline wax mixture, separating the oil-solvent-crystalline wax mixture to form a dewaxed oil-solvent mixture and crystalline wax, steam stripping the dewaxed oil-solvent mixture at a temperature of 300{degrees}F to 600{degrees}F and pressure of 1 atm to 3 atm, to yield a solvent free dewaxed oil.

  16. DESIGNING ENVIRONMENTALLY BENIGN SOLVENT SUBSTITUTES

    EPA Science Inventory

    Since the signing of 1987 Montreal Protocol, reducing and eliminating the use of harmful solvents has become an internationally imminent environmental protection mission. Solvent substitution is an effective way to achieve this goal. The Program for Assisting the Replacement of...

  17. Glove permeation by organic solvents

    SciTech Connect

    Nelson, G.O.; Lum, B.Y.; Carlson, G.J.; Wong, C.M.; Johnson, J.S.

    1981-03-01

    The vapor penetration of 29 common laboratory solvents on 28 protective gloves has been tested and measured using gas-phase, infrared spectrophotometric techniques to determine the permeation characteristics. Five different types of permeation behavior were identified. No one glove offered complete protection against all the solvents tested. The permeation rate of the solvent was found to be inversely proportional to glove thickness for a given manufacturer's material. Of two solvent mixtures tested, one exhibited a large, positive, synergistic rate.

  18. Improved solvent extraction recovery of shale oil. [DOE patent application

    SciTech Connect

    McKay, J.F.; Chong, S.L.

    1981-07-20

    An improved process for solvent extraction of organic matter from shale by two extraction steps in sequence. The extraction steps are: (1) treating a kerogen-containing shale with a solvent system comprising a combination of water and an alcohol at a temperature of about 375 to 425/sup 0/C; and (2) treating the product of (1) with a solvent system comprising a combination of an alcohol and another organic solvent at an elevated temperature, but not above about 425/sup 0/C. The organic matter is recovered by separating the liquid which results from step (2) from the shale solids.

  19. Theoretical and experimental study of mixed solvent electrolytes

    SciTech Connect

    Cummings, P.T.; O'Connell, J.P.

    1990-01-01

    In the original proposal to study mixed solvent electrolyte solutions, four major goals were formulated: fundamental modeling of mixed solvent electrolytes using numerically solved integral equation approximation theories; evaluation of intermolecular pair potential models by computer simulation of selected systems for comparison with experiment and the numerical integral equation studies; development of fundamentally based correlations for the thermodynamic properties of mixed solvent electrolyte solutions using analytically solvable statistical mechanical models; and extension of experimental database on mixed solvent electrolytes by performing vapor-liquid equilibrium measurements on selected systems. This paper discusses the progress on these goals.

  20. PARIS II: DESIGNING GREENER SOLVENTS

    EPA Science Inventory

    PARIS II (the program for assisting the replacement of industrial solvents, version II), developed at the USEPA, is a unique software tool that can be used for customizing the design of replacement solvents and for the formulation of new solvents. This program helps users avoid ...

  1. Optimisation and Characterisation of Lipase-Catalysed Synthesis of a Kojic Monooleate Ester in a Solvent-Free System by Response Surface Methodology.

    PubMed

    Jumbri, Khairulazhar; Al-Haniff Rozy, Mohd Fahruddin; Ashari, Siti Efliza; Mohamad, Rosfarizan; Basri, Mahiran; Fard Masoumi, Hamid Reza

    2015-01-01

    Kojic acid is widely used to inhibit the browning effect of tyrosinase in cosmetic and food industries. In this work, synthesis of kojic monooleate ester (KMO) was carried out using lipase-catalysed esterification of kojic acid and oleic acid in a solvent-free system. Response Surface Methodology (RSM) based on central composite rotatable design (CCRD) was used to optimise the main important reaction variables, such as enzyme amount, reaction temperature, substrate molar ratio, and reaction time along with immobilised lipase from Candida Antarctica (Novozym 435) as a biocatalyst. The RSM data indicated that the reaction temperature was less significant in comparison to other factors for the production of a KMO ester. By using this statistical analysis, a quadratic model was developed in order to correlate the preparation variable to the response (reaction yield). The optimum conditions for the enzymatic synthesis of KMO were as follows: an enzyme amount of 2.0 wt%, reaction temperature of 83.69°C, substrate molar ratio of 1:2.37 (mmole kojic acid:oleic acid) and a reaction time of 300.0 min. Under these conditions, the actual yield percentage obtained was 42.09%, which is comparably well with the maximum predicted value of 44.46%. Under the optimal conditions, Novozym 435 could be reused for 5 cycles for KMO production percentage yield of at least 40%. The results demonstrated that statistical analysis using RSM can be used efficiently to optimise the production of a KMO ester. Moreover, the optimum conditions obtained can be applied to scale-up the process and minimise the cost. PMID:26657030

  2. Optimisation and Characterisation of Lipase-Catalysed Synthesis of a Kojic Monooleate Ester in a Solvent-Free System by Response Surface Methodology

    PubMed Central

    Jumbri, Khairulazhar; Al-Haniff Rozy, Mohd Fahruddin; Ashari, Siti Efliza; Mohamad, Rosfarizan; Basri, Mahiran; Fard Masoumi, Hamid Reza

    2015-01-01

    Kojic acid is widely used to inhibit the browning effect of tyrosinase in cosmetic and food industries. In this work, synthesis of kojic monooleate ester (KMO) was carried out using lipase-catalysed esterification of kojic acid and oleic acid in a solvent-free system. Response Surface Methodology (RSM) based on central composite rotatable design (CCRD) was used to optimise the main important reaction variables, such as enzyme amount, reaction temperature, substrate molar ratio, and reaction time along with immobilised lipase from Candida Antarctica (Novozym 435) as a biocatalyst. The RSM data indicated that the reaction temperature was less significant in comparison to other factors for the production of a KMO ester. By using this statistical analysis, a quadratic model was developed in order to correlate the preparation variable to the response (reaction yield). The optimum conditions for the enzymatic synthesis of KMO were as follows: an enzyme amount of 2.0 wt%, reaction temperature of 83.69°C, substrate molar ratio of 1:2.37 (mmole kojic acid:oleic acid) and a reaction time of 300.0 min. Under these conditions, the actual yield percentage obtained was 42.09%, which is comparably well with the maximum predicted value of 44.46%. Under the optimal conditions, Novozym 435 could be reused for 5 cycles for KMO production percentage yield of at least 40%. The results demonstrated that statistical analysis using RSM can be used efficiently to optimise the production of a KMO ester. Moreover, the optimum conditions obtained can be applied to scale-up the process and minimise the cost. PMID:26657030

  3. Application of high-speed counter-current chromatography coupled with a reverse micelle solvent system to separate three proteins from Momordica charantia.

    PubMed

    Li, Yingnan; Yin, Lianhong; Zheng, Lingli; Xu, Lina; Xu, Youwei; Zhao, Yanyan; Qi, Yan; Yao, Jihong; Han, Xu; Liu, Kexin; Peng, Jinyong

    2012-05-01

    High-speed counter-current chromatography (HSCCC) coupled with a reverse micelle solvent system was successfully developed to separate three proteins from Momordica charantia. Suitable HSCCC conditions were carefully optimized as follows: the stationary phase was a reverse micellar phase composed of isooctane and 50mM bis-(2-ethylhexyl)-1-sulfosuccinate sodium (AOT). The mobile phase contained mobile phase A (50mM Tris-HCl buffer containing 50mM KCl at pH 7.0) for forward-extraction and mobile phase B (50mM Tris-HCl buffer containing 0.5M KCl at pH 10.0) for back-extraction. The flow rate, detection wavelength and column temperature were set at 1.5 ml/min, 280 nm and 4 °C, respectively. Under these conditions, three fractions (I, II and III) were separated, which showed high purity when analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The structures of these proteins were then identified by MALDI-TOF/TOF-MS/MS and compared with the NCBInr database. Fractions I and III were identified as resistance-like protein P-B and pentatricopeptide repeat-containing protein, respectively, which were found in M. charantia for the first time. However, fraction II, which is thought to be a new protein, was not identified, and further investigations on this fraction are required. The anticancer activities of these three proteins on the human gastric cancer cell line SGC-7901 were evaluated in vitro. The results indicated that fraction II has excellent anticancer activity (IC(50)=0.116 mg/ml for 48 h treatment). This is the first report on the use of HSCCC to isolate proteins from M. charantia. PMID:22465200

  4. Automated spray cleaning using flammable solvents in a glovebox

    SciTech Connect

    Garcia, P.; Meirans, L.

    1998-05-01

    The phase-out of the ozone-depleting solvents has forced industry to look to solvents such as alcohol, terpenes and other flammable solvents to perform the critical cleaning processes. These solvents are not as efficient as the ozone-depleting solvents in terms of soil loading, cleaning time and drying when used in standard cleaning processes such as manual sprays or ultrasonic baths. They also require special equipment designs to meet part cleaning specifications and operator safety requirements. This paper describes a cleaning system that incorporates the automated spraying of flammable solvents to effectively perform precision cleaning processes. Key to the project`s success was the development of software that controls the robotic system and automatically generates robotic cleaning paths from three dimensional CAD models of the items to be cleaned.

  5. Aryl(trifluoroethyl)iodonium Triflimide and Nitrile Solvent Systems: A Combination for the Stereoselective Synthesis of Armed 1,2-trans-β-Glycosides at Noncryogenic Temperatures.

    PubMed

    Chu, An-Hsiang Adam; Minciunescu, Andrei; Bennett, Clay S

    2015-12-18

    Armed thioglycosides can be activated with aryl(trifluoroethyl)iodonium triflimide in 2:1 CH2Cl2/pivalonitrile or a solvent combination of CH2Cl2, acetonitrile, isobutyronitrile, and pivalonitrile (6:1:1:1) at 0 °C for glycosylation reactions that proceed in good yield and moderate to excellent selectivity (up to 25:1 β/α). Comparison to other common glycosylation promoters reveals that both the mixed solvent and the iodonium salt promoter are required for stereoselectivity. PMID:26634960

  6. A simple, efficient and environmentally benign synthetic protocol for the synthesis of spirooxindoles using choline chloride-oxalic acid eutectic mixture as catalyst/solvent system.

    PubMed

    Khandelwal, Sarita; Rajawat, Anshu; Tailor, Yogesh Kumar; Kumar, Mahendra

    2014-01-01

    An efficient and environmentally benign domino protocol has been presented for the synthesis of structurally diverse spirooxindoles spiroannulated with pyranopyridopyrimidines, indenopyridopyrimidines, and chromenopyridopyrimidines involving three-component reaction of aminouracils, isatins and cyclic carbonyl compounds in deep eutectic solvent (choline chloride-oxalic acid: 1:1) which acts as efficient catalyst and environmentally benign reaction medium. The present protocol offers several advantages such as operational simplicity with easy workup, shorter reaction times excellent yields with superior atom economy and environmentally benign reaction conditions with the use of cost-effective, recyclable, non-toxic and bio-degradable DES as catalyst/solvent. PMID:25329839

  7. SAGE 2.0 - SOLVENT ALTERNATIVES GUIDES - USER'S GUIDE

    EPA Science Inventory

    The guide provides instruction for using the SAGE (Solvent Alternatives Guide) software system, version 2.O. It assumes that the user is familiar with the fundamentals of operating a personal computer under the Microsoft disk operating system (MS-DOS). AGE recommends solvent repl...

  8. SAGE 2.1 - SOLVENT ALTERNATIVES GUIDE - USER'S GUIDE

    EPA Science Inventory

    The guide provides instruction for using the SAGE (Solvent Alternatives GuidE) software system, version 2.1. AGE recommends solvent replacements in cleaning and degreasing operations. t leads the user through a question- and- answer session. he user's responses allow the system t...

  9. SAGE 2.1: SOLVENT ALTERNATIVES GUIDE: USER'S GUIDE

    EPA Science Inventory

    The guide provides instruction for using the SAGE (Solvent Alternatives GuidE) software system, version 2.1. SAGE recommends solvent replacements in cleaning and degreasing operations. It leads the user through a question-and-answer session. The user's responses allow the system ...

  10. SAGE 2.0 SOLVENT ALTERNATIVES GUIDE - USER'S GUIDE

    EPA Science Inventory

    The guide provides instruction for using the SAGE (Solvent Alternatives Guide) software system, version 2.O. It assumes that the user is familiar with the fundamentals of operating a personal computer under the Microsoft disk operating system (MS-DOS). AGE recommends solvent repl...

  11. Hazardous solvent substitution

    SciTech Connect

    Twitchell, K.E.

    1995-11-01

    Eliminating hazardous solvents is good for the environment, worker safety, and the bottom line. However, even though we are motivated to find replacements, the big question is `What can we use as replacements for hazardous solvents?`You, too, can find replacements for your hazardous solvents. All you have to do is search for them. Search through the vendor literature of hundreds of companies with thousands of products. Ponder the associated material safety data sheets, assuming of course that you can obtain them and, having obtained them, that you can read them. You will want to search the trade magazines and other sources for product reviews. You will want to talk to users about how well the product actually works. You may also want to check US Environmental Protection Agency (EPA) and other government reports for toxicity and other safety information. And, of course, you will want to compare the product`s constituent chemicals with the many hazardous constituency lists to ensure the safe and legal use of the product in your workplace.

  12. Solvent Reaction Field Potential inside an Uncharged Globular Protein: A Bridge between Implicit and Explicit Solvent Models?

    PubMed Central

    Baker, Nathan A.; McCammon, J. Andrew

    2008-01-01

    The solvent reaction field potential of an uncharged protein immersed in Simple Point Charge/Extended (SPC/E) explicit solvent was computed over a series of molecular dynamics trajectories, intotal 1560 ns of simulation time. A finite, positive potential of 13 to 24 kbTec−1 (where T = 300K), dependent on the geometry of the solvent-accessible surface, was observed inside the biomolecule. The primary contribution to this potential arose from a layer of positive charge density 1.0 Å from the solute surface, on average 0.008 ec/Å3, which we found to be the product of a highly ordered first solvation shell. Significant second solvation shell effects, including additional layers of charge density and a slight decrease in the short-range solvent-solvent interaction strength, were also observed. The impact of these findings on implicit solvent models was assessed by running similar explicit-solvent simulations on the fully charged protein system. When the energy due to the solvent reaction field in the uncharged system is accounted for, correlation between per-atom electrostatic energies for the explicit solvent model and a simple implicit (Poisson) calculation is 0.97, and correlation between per-atom energies for the explicit solvent model and a previously published, optimized Poisson model is 0.99. PMID:17949217

  13. Solvent cavitation under solvophobic confinement.

    PubMed

    Ashbaugh, Henry S

    2013-08-14

    The stability of liquids under solvophobic confinement can tip in favor of the vapor phase, nucleating a liquid-to-vapor phase transition that induces attractive forces between confining surfaces. In the case of water adjacent to hydrophobic surfaces, experimental and theoretical evidence support confinement-mediated evaporation stabilization of biomolecular and colloidal assemblies. The macroscopic thermodynamic theory of cavitation under confinement establishes the connection between the size of the confining surfaces, interfacial free energies, and bulk solvent pressure with the critical evaporation separation and interfacial forces. While molecular simulations have confirmed the broad theoretical trends, a quantitative comparison based on independent measurements of the interfacial free energies and liquid-vapor coexistence properties has, to the best of our knowledge, not yet been performed. To overcome the challenges of simulating a large number of systems to validate scaling predictions for a three-dimensional fluid, we simulate both the forces and liquid-vapor coexistence properties of a two-dimensional Lennard-Jones fluid confined between solvophobic plates over a range of plate sizes and reservoir pressures. Our simulations quantitatively agree with theoretical predictions for solvent-mediated forces and critical evaporation separations once the length dependence of the solvation free energy of an individual confining plate is taken into account. The effective solid-liquid line tension length dependence results from molecular scale correlations for solvating microscopic plates and asymptotically decays to the macroscopic value for plates longer than 150 solvent diameters. The success of the macroscopic thermodynamic theory at describing two-dimensional liquids suggests application to surfactant monolayers to experimentally confirm confinement-mediated cavitation. PMID:23947875

  14. Solvent replacement for green processing.

    PubMed Central

    Sherman, J; Chin, B; Huibers, P D; Garcia-Valls, R; Hatton, T A

    1998-01-01

    The implementation of the Montreal Protocol, the Clean Air Act, and the Pollution Prevention Act of 1990 has resulted in increased awareness of organic solvent use in chemical processing. The advances made in the search to find "green" replacements for traditional solvents are reviewed, with reference to solvent alternatives for cleaning, coatings, and chemical reaction and separation processes. The development of solvent databases and computational methods that aid in the selection and/or design of feasible or optimal environmentally benign solvent alternatives for specific applications is also discussed. Images Figure 2 Figure 3 PMID:9539018

  15. SOLVENT FIRE BY-PRODUCTS

    SciTech Connect

    Walker, D; Samuel Fink, S

    2006-05-22

    Southwest Research Institute (SwRI) conducted a burn test of the Caustic-Side Solvent Extraction (CSSX) solvent to determine the combustion products. The testing showed hydrogen fluoride gas is not a combustion product from a solvent fire when up to 70% of the solvent is consumed. The absence of HF in the combustion gases may reflect concentration of the modifier containing the fluoride groups in the unburned portion. SwRI reported results for other gases (CO, HCN, NOx, formaldehyde, and hydrocarbons). The results, with other supporting information, can be used for evaluating the consequences of a facility fire involving the CSSX solvent inventory.

  16. Using a Simulated Industrial Setting for the Development of an Improved Solvent System for the Recrystallization of Benzoic Acid: A Student-Centered Project

    ERIC Educational Resources Information Center

    Hightower, Timothy R.; Heeren, Jay D.

    2006-01-01

    Recrystallization of benzoic acid is an excellent way to remove insoluble impurities. In a traditional organic laboratory experiment, insoluble impurities are removed through the recrystallization of benzoic acid utilizing water as the recrystallization solvent. It was our goal to develop a peer-led, problem-solving organic laboratory exercise…

  17. Nonflammable, Nonaqueous, Low Atmospheric Impact, High Performance Cleaning Solvents

    NASA Technical Reports Server (NTRS)

    Dhooge, P. M.; Glass, S. M.; Nimitz, J. S.

    2001-01-01

    For many years, chlorofluorocarbon (CFC) and chlorocarbon solvents have played an important part in aerospace operations. These solvents found extensive use as cleaning and analysis (EPA) solvents in precision and critical cleaning. However, CFCs and chlorocarbon solvents have deleterious effects on the ozone layer, are relatively strong greenhouse gases, and some are suspect or known carcinogens. Because of their ozone-depletion potential (ODP), the Montreal Protocol and its amendments, as well as other environmental regulations, have resulted in the phaseout of CFC-113 and 1,1,1-trichloroethane (TCA). Although alternatives have been recommended, they do not perform as well as the original solvents. In addition, some analyses, such as the infrared analysis of extracted hydrocarbons, cannot be performed with the substitute solvents that contain C-H bonds. CFC-113 solvent has been used for many critical aerospace applications. CFC-113, also known as Freon (registered) TF, has been used extensively in NASA's cleaning facilities for precision and critical cleaning, in particular the final rinsing in Class 100 areas, with gas chromatography analysis of rinse residue. While some cleaning can be accomplished by other processes, there are certain critical applications where CFC-113 or a similar solvent is highly cost-effective and ensures safety. Oxygen system components are one example where a solvent compatible with oxygen and capable of removing fluorocarbon grease is needed. Electronic components and precision mechanical components can also be damaged by aggressive cleaning solvents.

  18. Degradation of chlorinated organic solvents in aqueous percarbonate system using zeolite supported nano zero valent iron (Z-nZVI) composite.

    PubMed

    Danish, Muhammad; Gu, Xiaogang; Lu, Shuguang; Naqvi, Muhammad

    2016-07-01

    Chlorinated organic solvents (COSs) are extensively detected in contaminated soil and groundwater that pose long-term threats to human life and environment. In order to degrade COSs effectively, a novel catalytic composite of natural zeolite-supported nano zero valent iron (Z-nZVI) was synthesized in this study. The performance of Z-nZVI-catalyzed sodium percarbonate (SPC) in a heterogeneous Fenton-like system was investigated for the degradation of COSs such as 1,1,1-trichloroethane (1,1,1-TCA) and trichloroethylene (TCE). The surface characteristics and morphology of the Z-nZVI composite were tested using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Total pore volume, specific surface area, and pore size of the natural zeolite and the Z-nZVI composite were measured using Brunauer-Emmett-Teller (BET) method. SEM and TEM analysis showed significant elimination of aggregation and well dispersion of iron nano particles on the framework of natural zeolite. The BET N2 measurement analysis indicated that the surface area of the Z-nZVI composite was 72.3 m(2)/g, much larger than that of the natural zeolite (0.61 m(2)/g). For the contaminant analysis, the samples were extracted with n-hexane and analyzed through gas chromatograph. The degradation of 1,1,1-TCA and TCE in the Z-nZVI-catalyzed percarbonate system were 48 and 39 % respectively, while strong augmentation was observed up to 83 and 99 %, respectively, by adding the reducing agent (RA), hydroxyl amine (NH2OH•HCl). Probe tests validated the presence of OH(●) and O2 (●-) which were responsible for 1,1,1-TCA and TCE degradation, whereas both free radicals were strengthened with the addition of RA. In conclusion, the Z-nZVI/SPC oxidation with reducing agent shows potential technique for degradation of groundwater contaminated by 1,1,1-TCA and TCE. PMID:27023817

  19. Occupational solvent exposure and cognition

    PubMed Central

    Sabbath, E.L.; Glymour, M.M.; Berr, C.; Singh-Manoux, A.; Zins, M.; Goldberg, M.

    2012-01-01

    Objective: Chronic occupational solvent exposure is associated with long-term cognitive deficits. Cognitive reserve may protect solvent-exposed workers from cognitive impairment. We tested whether the association between chronic solvent exposure and cognition varied by educational attainment, a proxy for cognitive reserve. Methods: Data were drawn from a prospective cohort of French national gas and electricity (GAZEL) employees (n = 4,134). Lifetime exposure to 4 solvent types (chlorinated solvents, petroleum solvents, benzene, and nonbenzene aromatic solvents) was assessed using a validated job-exposure matrix. Education was dichotomized at less than secondary school or below. Cognitive impairment was defined as scoring below the 25th percentile on the Digit Symbol Substitution Test at mean age 59 (SD 2.8; 88% of participants were retired at testing). Log-binomial regression was used to model risk ratios (RRs) for poor cognition as predicted by solvent exposure, stratified by education and adjusted for sociodemographic and behavioral factors. Results: Solvent exposure rates were higher among less-educated patients. Within this group, there was a dose-response relationship between lifetime exposure to each solvent type and RR for poor cognition (e.g., for high exposure to benzene, RR = 1.24, 95% confidence interval 1.09–1.41), with significant linear trends (p < 0.05) in 3 out of 4 solvent types. Recency of solvent exposure also predicted worse cognition among less-educated patients. Among those with secondary education or higher, there was no significant or near-significant relationship between any quantification of solvent exposure and cognition. Conclusions: Solvent exposure is associated with poor cognition only among less-educated individuals. Higher cognitive reserve in the more-educated group may explain this finding. PMID:22641403

  20. UV-Vis spectroscopic study and DFT calculation on the solvent effect of trimethoprim in neat solvents and aqueous mixtures

    NASA Astrophysics Data System (ADS)

    Almandoz, M. C.; Sancho, M. I.; Duchowicz, P. R.; Blanco, S. E.

    2014-08-01

    The solvatochromic behavior of trimethoprim (TMP) was analyzed using UV-Vis spectroscopy and DFT methods in neat and binary aqueous solvent mixtures. The effects of solvent dipolarity/polarizability and solvent-solute hydrogen bonding interactions on the absorption maxima were evaluated by means of the linear solvation energy relationship concept of Kamlet and Taft. This analysis indicated that both interactions play an important role in the position of the absorption maxima in neat solvents. The simulated absorption spectra of TMP and TMP:(solvent)n complexes in ACN and H2O using TD-DFT methods were in agreement with the experimental ones. Binary aqueous mixtures containing as co-solvents DMSO, ACN and EtOH were studied. Preferential solvation was detected as a nonideal behavior of the wavenumber curve respective to the analytical mole fraction of co-solvent in all binary systems. TMP molecules were preferentially solvated by the organic solvent over the whole composition range. Index of preferential solvation, as well as the influence of solvent parameters were calculated as a function of solvent composition.

  1. Method for destroying halocarbon compositions using a critical solvent

    DOEpatents

    Ginosar, Daniel M.; Fox, Robert V.; Janikowski, Stuart K.

    2006-01-10

    A method for destroying halocarbons. Halocarbon materials are reacted in a dehalogenation process wherein they are combined with a solvent in the presence of a catalyst. A hydrogen-containing solvent is preferred which functions as both a solvating agent and hydrogen donor. To augment the hydrogen donation capacity of the solvent if needed (or when non-hydrogen-containing solvents are used), a supplemental hydrogen donor composition may be employed. In operation, at least one of the temperature and pressure of the solvent is maintained near, at, or above a critical level. For example, the solvent may be in (1) a supercritical state; (2) a state where one of the temperature or pressure thereof is at or above critical; or (3) a state where at least one of the temperature and pressure thereof is near-critical. This system provides numerous benefits including improved reaction rates, efficiency, and versatility.

  2. Solvent Fractionation of Lignin

    SciTech Connect

    Chatterjee, Sabornie; Saito, Tomonori

    2014-01-01

    Lignin is a highly abundant source of renewable carbon that can be considered as a valuable sustainable source of biobased materials. The major issues for the commercial production of value added high performance lignin products are lignin s physical and chemical heterogenities. To overcome these problems, a variety of procedures have been developed to produce pure lignin suitable for high performace applications such as lignin-derived carbon materials. However, most of the isolation procedures affect lignin s properties and structure. In this chapter, a short review of the effect of solvent fractionation on lignin s properties and structure is presented.

  3. A permeable rotating-wheel solvent extractor

    NASA Technical Reports Server (NTRS)

    Kahn, D. R.; Nady, L. A.

    1972-01-01

    Column-type device reported employs circular permeable structures of wire mesh screen for extracting solvents from systems with low density differences and low interfacial tensions. Rotating screen wheels of structure fasten to shaft; stationary screen structures are supported by circular bands connected by radial metal arms.

  4. In situ bioremediation of chlorinated solvent with natural gas

    SciTech Connect

    Rabold, D.E.

    1996-12-31

    A bioremediation system for the removal of chlorinated solvents from ground water and sediments is described. The system involves the the in-situ injection of natural gas (as a microbial nutrient) through an innovative configuration of horizontal wells.

  5. New pyridinium-based ionic liquid as an excellent solvent-catalyst system for the one-pot three-component synthesis of 2,3-disubstituted quinolines.

    PubMed

    Anvar, Salma; Mohammadpoor-Baltork, Iraj; Tangestaninejad, Shahram; Moghadam, Majid; Mirkhani, Valiollah; Khosropour, Ahmad Reza; Landarani Isfahani, Amir; Kia, Reza

    2014-03-10

    The synthesis of a variety of 2,3-disubstituted quinolines has been achieved successfully via a one-pot three-component reaction of arylamines, arylaldehydes and aliphatic aldehydes in the presence of butylpyridinium tetrachloroindate(III), [bpy][InCl4], ionic liquid as a green catalyst and solvent. Mild conditions with excellent conversions, and simple product isolation procedure are noteworthy advantages of this method. The recyclability of the ionic liquid makes this protocol environmentally benign. PMID:24521525

  6. Negative corona discharge-ion mobility spectrometry as a detection system for low density extraction solvent-based dispersive liquid-liquid microextraction.

    PubMed

    Ebrahimi, Amir; Jafari, Mohammad T

    2015-03-01

    This paper deals with a method based on negative corona discharge ionization ion mobility spectrometry (NCD-IMS) for the analysis of ethion (as an organophosphorus pesticide). The negative ions such as O2(-) and NO(x)(-) were eliminated from the background spectrum to increase the instrument sensitivity. The method was used to specify the sample extracted via dispersive liquid-liquid microextraction (DLLME) based on low density extraction solvent. The ion mobility spectrum of ethion in the negative mode and the reduced mobility value for its ion peak are firstly reported and compared with those of the positive mode. In order to combine the low density solvent DLLME directly with NCD-IMS, cyclohexane was selected as the extraction solvent, helping us to have a direct injection up to 20 µL solution, without any signal interference. The method was exhaustively validated in terms of sensitivity, enrichment factor, relative recovery, and repeatability. The linear dynamic range of 0.2-100.0 µg L(-1), detection limit of 0.075 µg L(-1), and the relative standard deviation (RSD) of about 5% were obtained for the analysis of ethion through this method. The average recoveries were calculated about 68% and 92% for the grape juice and underground water, respectively. Finally, some real samples were analyzed and the feasibility of the proposed method was successfully verified by the efficient extraction of the analyte using DLLME before the analysis by NCD-IMS. PMID:25618728

  7. Multi-response optimisation of the extraction solvent system for phenolics and antioxidant activities from fermented soy flour using a simplex-centroid design.

    PubMed

    Handa, Cíntia Ladeira; de Lima, Fernando Sanches; Guelfi, Marcela Fernanda Geton; Georgetti, Sandra Regina; Ida, Elza Iouko

    2016-04-15

    A simplex-centroid design comprising three solvents (water, ethanol and methanol) was used to optimise the extraction mixture for phenolics and antioxidant activities from defatted soy flour fermented with Monascus purpureus or Aspergillus oryzae. Total phenolics were more efficiently extracted using only water for both samples. The highest antioxidant activities by the DPPH and ABTS methods were obtained using extraction mixtures containing at least 75 wt% water. Specific water:ethanol:methanol ratios promoted the joint optimisation of the total phenolic and isoflavone contents as well as antioxidant activities: 0.5:0.375:0.125 (wt/wt/wt) and 0.5:0.3:0.2 (wt/wt/wt) from defatted soy flour fermented with M. purpureus or A. oryzae, respectively. However, a water:ethanol ratio of 0.5:0.5 (wt/wt) was deemed optimal because it is comprised of green solvents and yielded results that were greater than 90% of the multi-response maximum values. Both the solvents and the sample matrix strongly influenced the extractability of total phenolics and isoflavones. PMID:26616938

  8. Quantitative analysis of polydisperse systems via solvent-free matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    PubMed

    Kulkarni, Sourabh U; Thies, Mark C

    2012-02-15

    Quantitative analysis of partially soluble and insoluble polydisperse materials is challenging due to the lack of both appropriate standards and reliable analytical techniques. To this end, matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) incorporating a solvent-free sample preparation technique was investigated for the quantitative analysis of partially soluble, polydisperse, polycyclic aromatic hydrocarbon (PAH) oligomers. Molecular weight standards consisting of narrow molecular weight dimer and trimer oligomers of the starting M-50 petroleum pitch were produced using both dense-gas/supercritical extraction (DGE/SCE) and preparative-scale, gel permeation chromatography (GPC). The validity of a MALDI-based, quantitative analysis technique using solvent-free sample preparation was first demonstrated by applying the method of standard addition to a pitch of known composition. The standard addition method was then applied to the quantitative analysis of two insoluble petroleum pitch fractions of unknown oligomeric compositions, with both the dimer and trimer compositions of these fractions being accurately determined. To our knowledge, this study represents the first successful MALDI application of solvent-free quantitative analysis to insoluble, polydisperse materials. PMID:22223328

  9. Hot-solvent miscible displacement

    SciTech Connect

    Awang, M.; Farouq Ali, S.M.

    1980-01-01

    This work describes an experimental and theoretical investigation of miscible displacement under nonisothermal conditions. The hot miscible floods were performed in an adiabatic glass bead pack, displacing one hydrocarbon by a more viscous hydrocarbon, the latter being at an elevated temperature. As a result, dispersion of both mass and heat took place, and was determined by temperature and concentration measurements. The system was simulated by coupled convective-diffusion and thermal conduction-convection equations. The results of the numerical as well as an approximate analytical solution were compared with the experimentally observed behavior. The numerical and experimental results point to the factors which should be considered in the choice of a solvent for a thermal-miscible type oil recovery process.

  10. Solvent Blending Strategy to Upgrade MCU CSSX Solvent to Equivalent Next-Generation CSSX Solvent

    SciTech Connect

    Delmau, Laetitia Helene; Moyer, Bruce A

    2012-12-01

    The results of the present study have validated an equal-volume blending strategy for upgrading freshly prepared CSSX solvent to a blended solvent functionally equivalent to NG-CSSX solvent. It is shown that blending fresh CSSX solvent as currently used in MCU with an equal volume of an NG-CSSX solvent concentrate of appropriate composition yields a blended solvent composition (46.5 mM of MaxCalix, 3.5 mM of BOBCalixC6, 0.5 M of Cs-7SB, 3 mM of guanidine suppressor, and 1.5 mM of TOA in Isopar L) that exhibits equivalent batch ESS performance to that of the NG-CSSX solvent containing 50 mM of MaxCalix, 0.5 M of Cs-7SB, and 3 mM of guanidine suppressor in Isopar L. The solvent blend composition is robust to third-phase formation. Results also show that a blend containing up to 60% v/v of CSSX solvent could be accommodated with minimal risk. Extraction and density data for the effect of solvent concentration mimicking diluent evaporation or over-dilution of the equal-volume blended solvent are also given, providing input for setting operational limits. Given that the experiments employed all pristine chemicals, the results do not qualify a blended solvent starting with actual used MCU solvent, which can be expected to have undergone some degree of degradation. Consequently, further work should be considered to evaluate this risk and implement appropriate remediation if needed.

  11. Solvent recovery combines with catalytic incineration to effectively control fumes

    SciTech Connect

    Goodstein, S.; Flachmeyer, T.; Wickersham, C.P.

    1985-11-01

    The engineering staff at Key Pharmaceuticals Inc. was charged with the challenge to design, construct and troubleshoot a new facility which would manufacture pharmaceutical products used to combat bronchial asthma. An Environmental Assessment was required which would outline the proposed procedures to remove or destroy the solvents used in production, thereby preventing their release to the atmosphere. Since the solvents required in the manufacturing process represented two different classes of materials, chlorinated and non-chlorinated solvents, the treatment decision became complicated. Single system treatment options were not viable. A solvent recovery system and a catalytic incinerator were installed in a parallel arrangement to treat chlorinated and non-chlorinated solvents, respectively. This arrangement was possible because the two types of solvents are mutually exclusive in their manufacturing uses. Solvent-laden air is forced into the carbon adsorption unit by a blower. Cylindrically wound carbon filter elements remove the chlorinated solvents, and clean air exits through a top outlet. For non-chlorinated solvents, catalytic incineration via a platinum metal catalyst on a ceramic honeycomb substrate is controlled by regulating inlet and outlet temperatures. The catalyst increases the chemical oxidation rate to permit the reaction to proceed at a lower energy level than would be experienced with a thermal incinerator. The catalytic incinerator has treated process exhausts with normal solvent concentrations of 1000-1200 ppm and as high as 2000 ppm - with a conversion rate of 97%, well above regulatory compliance requirements. The management at Key Pharmaceutical feels that the reliability and performance levels exhibited by both the catalytic incinerator and the carbon adsorption solvent recovery system warranted the high initial capital expense.

  12. EVALUATION OF SOLVENT LOSS FROM VAPOR DEGREASER SYSTEMS. PHASES 2 AND 3: EFFECT OF CROSSCURRENT AIR VELOCITY ON CONTROL SYSTEM PERFORMANCE

    EPA Science Inventory

    The U.S. Environmental Protection Agency evaluated available pollution reduction capabilities of vapor degreasers fitted with add-on control systems and supplied by greaser manufacturers. The principal objectives of this project were to develop and implement an experimental progr...

  13. Green Solvents for Precision Cleaning

    NASA Technical Reports Server (NTRS)

    Grandelli, Heather; Maloney, Phillip; DeVor, Robert; Surma, Jan; Hintze, Paul

    2013-01-01

    Aerospace machinery used in liquid oxygen (LOX) fuel systems must be precision cleaned to achieve a very low level of non-volatile residue (< 1 mg0.1 m2), especially flammable residue. Traditionally chlorofluorocarbons (CFCs) have been used in the precision cleaning of LOX systems, specifically CFC 113 (C2Cl3F3). CFCs have been known to cause the depletion of ozone and in 1987, were banned by the Montreal Protocol due to health, safety and environmental concerns. This has now led to the development of new processes in the precision cleaning of aerospace components. An ideal solvent-replacement is non-flammable, environmentally benign, non-corrosive, inexpensive, effective and evaporates completely, leaving no residue. Highlighted is a green precision cleaning process, which is contaminant removal using supercritical carbon dioxide as the environmentally benign solvent. In this process, the contaminant is dissolved in carbon dioxide, and the parts are recovered at the end of the cleaning process completely dry and ready for use. Typical contaminants of aerospace components include hydrocarbon greases, hydraulic fluids, silicone fluids and greases, fluorocarbon fluids and greases and fingerprint oil. Metallic aerospace components range from small nuts and bolts to much larger parts, such as butterfly valves 18 in diameter. A fluorinated grease, Krytox, is investigated as a model contaminant in these preliminary studies, and aluminum coupons are employed as a model aerospace component. Preliminary studies are presented in which the experimental parameters are optimized for removal of Krytox from aluminum coupons in a stirred-batch process. The experimental conditions investigated are temperature, pressure, exposure time and impeller speed. Temperatures of 308 - 423 K, pressures in the range of 8.3 - 41.4 MPa, exposure times between 5 - 60 min and impeller speeds of 0 - 1000 rpm were investigated. Preliminary results showed up to 86 cleaning efficiency with the

  14. A solvent extraction route for CaF2 hollow spheres.

    PubMed

    Guo, Fuqiang; Zhang, Zhifeng; Li, Hongfei; Meng, Shulan; Li, Deqian

    2010-11-21

    A solvent extraction route is proposed to synthesize CaF(2) hollow spheres, which are formed by reversed micelles in a solvent extraction system templating the self-assembly of CaF(2) nanoparticles. PMID:20877846

  15. Computational Analysis of Solvent Effects in NMR Spectroscopy.

    PubMed

    Dračínský, Martin; Bouř, Petr

    2010-01-12

    Solvent modeling became a standard part of first principles computations of molecular properties. However, a universal solvent approach is particularly difficult for the nuclear magnetic resonance (NMR) shielding and spin-spin coupling constants that in part result from collective delocalized properties of the solute and the environment. In this work, bulk and specific solvent effects are discussed on experimental and theoretical model systems comprising solvated alanine zwitterion and chloroform molecules. Density functional theory computations performed on larger clusters indicate that standard dielectric continuum solvent models may not be sufficiently accurate. In some cases, more reasonable NMR parameters were obtained by approximation of the solvent with partial atomic charges. Combined cluster/continuum models yielded the most reasonable values of the spectroscopic parameters, provided that they are dynamically averaged. The roles of solvent polarizability, solvent shell structure, and bulk permeability were investigated. NMR shielding values caused by the macroscopic solvent magnetizability exhibited the slowest convergence with respect to the cluster size. For practical computations, however, inclusion of the first solvation sphere provided satisfactory corrections of the vacuum values. The simulations of chloroform chemical shifts and CH J-coupling constants were found to be very sensitive to the molecular dynamics model used to generate the cluster geometries. The results show that computationally efficient solvent modeling is possible and can reveal fine details of molecular structure, solvation, and dynamics. PMID:26614339

  16. Solvents level dipole moments.

    PubMed

    Liang, Wenkel; Li, Xiaosong; Dalton, Larry R; Robinson, Bruce H; Eichinger, Bruce E

    2011-11-01

    The dipole moments of highly polar molecules measured in solution are usually smaller than the molecular dipole moments that are calculated with reaction field methods, whereas vacuum values are routinely calculated in good agreement with available vapor phase data. Whether from Onsager's theory (or variations thereof) or from quantum mechanical methods, the calculated molecular dipoles in solution are found to be larger than those measured. The reason, of course, is that experiments measure the net dipole moment of solute together with the polarized (perturbed) solvent "cloud" surrounding it. Here we show that the reaction field charges that are generated in the quantum mechanical self-consistent reaction field (SCRF) method give a good estimate of the net dipole moment of the solute molecule together with the moment arising from the reaction field charges. This net dipole is a better description of experimental data than the vacuum dipole moment and certainly better than the bare dipole moment of the polarized solute molecule. PMID:21923185

  17. Opportunities for Bio-Based Solvents Created as Petrochemical and Fuel Products Transition towards Renewable Resources.

    PubMed

    Clark, James H; Farmer, Thomas J; Hunt, Andrew J; Sherwood, James

    2015-01-01

    The global bio-based chemical market is growing in size and importance. Bio-based solvents such as glycerol and 2-methyltetrahydrofuran are often discussed as important introductions to the conventional repertoire of solvents. However adoption of new innovations by industry is typically slow. Therefore it might be anticipated that neoteric solvent systems (e.g., ionic liquids) will remain niche, while renewable routes to historically established solvents will continue to grow in importance. This review discusses bio-based solvents from the perspective of their production, identifying suitable feedstocks, platform molecules, and relevant product streams for the sustainable manufacturing of conventional solvents. PMID:26225963

  18. Opportunities for Bio-Based Solvents Created as Petrochemical and Fuel Products Transition towards Renewable Resources

    PubMed Central

    Clark, James H.; Farmer, Thomas J.; Hunt, Andrew J.; Sherwood, James

    2015-01-01

    The global bio-based chemical market is growing in size and importance. Bio-based solvents such as glycerol and 2-methyltetrahydrofuran are often discussed as important introductions to the conventional repertoire of solvents. However adoption of new innovations by industry is typically slow. Therefore it might be anticipated that neoteric solvent systems (e.g., ionic liquids) will remain niche, while renewable routes to historically established solvents will continue to grow in importance. This review discusses bio-based solvents from the perspective of their production, identifying suitable feedstocks, platform molecules, and relevant product streams for the sustainable manufacturing of conventional solvents. PMID:26225963

  19. Regioselective, Solvent- and Metal-Free Chalcogenation of Imidazo[1,2-a]pyridines by Employing I2 /DMSO as the Catalytic Oxidation System.

    PubMed

    Rafique, Jamal; Saba, Sumbal; Rosário, Alisson R; Braga, Antonio L

    2016-08-01

    Highly efficient molecular-iodine-catalyzed chalcogenations (S and Se) of imidazo[1,2-a]pyridines were achieved by using diorganoyl dichalcogenides under solvent-free conditions. This approach afforded the desired products that had been chalcogenated regioselectively at the C3 position in up to 96 % yield by using DMSO as an oxidant, in the absence of a metal catalyst, and under an inert atmosphere. This mild, green approach allowed the preparation of different types of chalcogenated imidazo[1,2-a]pyridines with structural diversity. Furthermore, the current protocol was also extended to other N-heterocyclic cores. PMID:27388454

  20. Supercritical multicomponent solvent coal extraction

    NASA Technical Reports Server (NTRS)

    Corcoran, W. H.; Fong, W. S.; Pichaichanarong, P.; Chan, P. C. F.; Lawson, D. D. (Inventor)

    1983-01-01

    The yield of organic extract from the supercritical extraction of coal with larger diameter organic solvents such as toluene is increased by use of a minor amount of from 0.1 to 10% by weight of a second solvent such as methanol having a molecular diameter significantly smaller than the average pore diameter of the coal.

  1. Toxicological profile for Stoddard solvent

    SciTech Connect

    1995-06-01

    This statement was prepared to give you information about Stoddard solvent and to emphasize the human health effects that may result from exposure to it. The Environmental Protection Agency (EPA) has identified 1,397 sites on its `National Priorities List` (NPL). Stoddard solvent has been found in at least seven of these sites.

  2. SOLVENT EXTRACTION OF URANIUM VALUES

    DOEpatents

    Feder, H.M.; Ader, M.; Ross, L.E.

    1959-02-01

    A process is presented for extracting uranium salt from aqueous acidic solutions by organic solvent extraction. It consists in contacting the uranium bearing solution with a water immiscible dialkylacetamide having at least 8 carbon atoms in the molecule. Mentioned as a preferred extractant is dibutylacetamide. The organic solvent is usually used with a diluent such as kerosene or CCl/sub 4/.

  3. Solvent degradation products in nuclear fuel processing solvents

    SciTech Connect

    Shook, H.E. Jr.

    1988-06-01

    The Savannah River Plant uses a modified Purex process to recover enriched uranium and separate fission products. This process uses 7.5% tri-n-butyl phosphate (TBP) dissolved in normal paraffin hydrocarbons for the solvent extraction of a nitric acid solution containing the materials to be separated. Periodic problems in product decontamination result from solvent degradation. A study to improve process efficiency has identified certain solvent degradation products and suggested mitigation measures. Undecanoic acid, lauric acid, and tridecanoic acid were tentatively identified as diluent degradation products in recycle solvent. These long-chain organic acids affect phase separation and lead to low decontamination factors. Solid phase extraction (SPE) was used to concentrate the organic acids in solvent prior to analysis by high performance liquid chromatography (HPLC). SPE and HPLC methods were optimized in this work for analysis of decanoic acid, undecanoic acid, and lauric acid in solvent. Accelerated solvent degradation studies with 7.5% TBP in normal paraffin hydrocarbons showed that long-chain organic acids and long-chain alkyl butyl phosphoric acids are formed by reactions with nitric acid. Degradation of both tributyl phosphate and hydrocarbon can be minimized with purified normal paraffin replacing the standard grade presently used. 12 refs., 1 fig., 3 tabs.

  4. WASH SOLVENT REUSE IN PAINT PRODUCTION

    EPA Science Inventory

    This project evaluated solvent used to clean paint manufacture equipment for its utility in production of subsequent batches of solvent-borne paint. eusing wash solvent would reduce the amount of solvent disposed of as waste. he evaluation of this wash-solvent recovery technology...

  5. COMPUTER AIDED SOLVENT DESIGN FOR THE ENVIRONMENT

    EPA Science Inventory

    Solvent substitution is an effective and useful means of eliminating the use of harmful solvents, but finding substitute solvents which are less harmful and as effective as currently used solvents presents significant difficulties. Solvent substitution is a form of reverse engin...

  6. Radical Cage Effects: Comparison of Solvent Bulk Viscosity and Microviscosity in Predicting the Recombination Efficiencies of Radical Cage Pairs.

    PubMed

    Barry, Justin T; Berg, Daniel J; Tyler, David R

    2016-08-01

    This study reports the results of experiments that probed how solvents affect the recombination efficiency (FcP) of geminate radical cage pairs. The macroviscosity of solvents has traditionally been used to make quantitative predictions about FcP, but experiments reported here show that FcP varies dramatically for solvent systems with identical macroviscosities. Experiments show that FcP correlates with the solvent microviscosity: five different solvent systems (consisting of a solvent and a structurally similar viscogen) were examined, and FcP was the same for all five solvent systems at any particular microviscosity. The translational diffusion coefficient of the radicals (measured by DOSY) in the solvent system was used to define the microviscosity of the solvent system. PMID:27430611

  7. Cesium Concentration in MCU Solvent

    SciTech Connect

    Walker, D

    2006-01-18

    During Modular Caustic-Side Solvent Extraction (CSSX) Unit (MCU) operations, Cs-137 concentrations in product streams will vary depending on the location in the process and on the recent process conditions. Calculations of cesium concentrations under a variety of operating conditions reveal the following: (1) Under nominal operations with salt solution feed containing 1.1 Ci Cs-137 per gallon, the maximum Cs-137 concentration in the process will occur in the strip effluent (SE) and equal 15-16.5 Ci/gal. (2) Under these conditions, the majority of the solvent will contain 0.005 to 0.01 Ci/gal, with a limited portion of the solvent in the contactor stages containing {approx}4 Ci/gal. (3) When operating conditions yield product near 0.1 Ci Cs-137/gal in the decontaminated salt solution (DSS), the SE cesium concentration will be the same or lower than in nominal operations, but majority of the stripped solvent will increase to {approx}2-3 Ci/gal. (4) Deviations in strip and waste stream flow rates cause the largest variations in cesium content: (a) If strip flow rates deviate by -30% of nominal, the SE will contain {approx}23 Ci/gal, although the cesium content of the solvent will increase to only 0.03 Ci/gal; (b) If strip flow rate deviates by -77% (i.e., 23% of nominal), the SE will contain 54 Ci/gal and solvent will contain 1.65 Ci/gal. At this point, the product DSS will just reach the limit of 0.1 Ci/gal, causing the DSS gamma monitors to alarm; and (c) Moderate (+10 to +30%) deviations in waste flow rate cause approximately proportional increases in the SE and solvent cesium concentrations. Recovery from a process failure due to poor cesium stripping can achieve any low cesium concentration required. Passing the solvent back through the contactors while recycling DSS product will produce a {approx}70% reduction during one pass through the contactors (assuming the stripping D value is no worse than 0.36). If the solvent is returned to the solvent hold tank

  8. Nonadiabatic dynamics of photoinduced proton-coupled electron transfer: comparison of explicit and implicit solvent simulations.

    PubMed

    Auer, Benjamin; Soudackov, Alexander V; Hammes-Schiffer, Sharon

    2012-07-01

    Theoretical approaches for simulating the ultrafast dynamics of photoinduced proton-coupled electron transfer (PCET) reactions in solution are developed and applied to a series of model systems. These processes are simulated by propagating nonadiabatic surface hopping trajectories on electron-proton vibronic surfaces that depend on the solute and solvent nuclear coordinates. The PCET system is represented by a four-state empirical valence bond model, and the solvent is treated either as explicit solvent molecules or as a dielectric continuum, in which case the solvent dynamics is described in terms of two collective solvent coordinates corresponding to the energy gaps associated with electron and proton transfer. The explicit solvent simulations reveal two distinct solvent relaxation time scales, where the faster time scale relaxation corresponds to librational motions of solvent molecules in the first solvation shell, and the slower time scale relaxation corresponds to the bulk solvent dielectric response. The charge transfer dynamics is strongly coupled to both the fast and slow time scale solvent dynamics. The dynamical multistate continuum theory is extended to include the effects of two solvent relaxation time scales, and the resulting coupled generalized Langevin equations depend on parameters that can be extracted from equilibrium molecular dynamics simulations. The implicit and explicit solvent approaches lead to qualitatively similar charge transfer and solvent dynamics for model PCET systems, suggesting that the implicit solvent treatment captures the essential elements of the nonequilibrium solvent dynamics for many systems. A combination of implicit and explicit solvent approaches will enable the investigation of photoinduced PCET processes in a variety of condensed phase systems. PMID:22651684

  9. Theoretical and experimental study of mixed solvent electrolytes

    SciTech Connect

    Cummings, P.T.; O'Connell, J.P.

    1991-07-01

    The goals of the research program have evolved into the following: Molecular simulation of phase equilibria in aqueous and mixed solvent electrolyte solutions; molecular simulation of solvation and structure in supercritical aqueous systems; extension of experimental database on mixed solvent electrolytes; analysis of the thermodynamic properties of mixed solvent electrolyte solutions and mixed electrolyte solutions using fluctuation solution theory; development of analytic expressions for thermodynamic properties of mixed solvent electrolyte solutions using analytically solved integral equation approximations; and fundamental modeling of mixed solvent electrolytes using numerically solved integral equation approximation theories. We report and evaluate our progress during the period of the grant in light of these six goals in detail in this paper.

  10. Behaviour of a solvent trapped in a physical molecular gel

    NASA Astrophysics Data System (ADS)

    Morfin, I.; Spagnoli, S.; Rambaud, C.; Longeville, S.; Plazanet, M.

    2016-03-01

    Physical gels formed by amphiphilic molecules, namely in this study Methyl-4,6-O-benzylidene-? -D-mannopyranoside, can be form either in polar and protic liquid-like water or in organic apolar solvent such as toluene. The solvent, that influences the supramolecular organization of the gelators, plays an important role in the stability and formation of the gel phase. Gelator-solvent interactions govern not only the assembly but also the solvent diffusion in the material. We present here measurements of neutron scattering (Time of Flight and Neutron Spin Echo) characterizing this microscopic behaviour. In addition, we show that transient grating spectroscopy provides valuable information through the characterization of the longitudinal acoustic wave propagating in the system. Opposite effects on the speed of sound in the gels are observed for the two solvents investigated, being relevant of the interactions between the gelators and the surrounding liquid.

  11. Neurotoxic effects of solvent exposure on sewage treatment workers

    SciTech Connect

    Kraut, A.; Lilis, R.; Marcus, M.; Valciukas, J.A.; Wolff, M.S.; Landrigan, P.J.

    1988-07-01

    Nineteen Sewage Treatment Workers (STWs) exposed to industrial sewage that contained benzene, toluene, and other organic solvents at a primary sewage treatment plant in New York City (Plant A) were examined for evidence of solvent toxicity. Fourteen (74%) complained of central nervous system (CNS) symptoms consistent with solvent exposure, including lightheadedness, fatigue, increased sleep requirement, and headache. The majority of these symptoms resolved with transfer from the plant. Men working less than 1 yr at Plant A were more likely to complain of two or more CNS symptoms than men who were working there longer than 1 yr (p = .055). Objective abnormalities in neurobehavioral testing were found in all 4 men working longer than 9 yr at this plant, but in only 5 of 15 employed there for a shorter period (p = .03). These results are consistent with the known effects of solvent exposure. Occupational health personnel must be aware that STWs can be exposed to solvents and other industrial wastes.

  12. The solvent absorption-extractive distillation (SAED) process for ethanol recovery from gas/vapor streams

    SciTech Connect

    Dale, M.C.

    1993-12-31

    A low energy system for ethanol recovery and dehydration has been developed. This system utilizes a solvent for (1) absorption of ethanol vapors, and then the same solvent for (2) extractive distillation. The ideal solvent for this process would have a high affinity for ethanol, and no affinity for water. Heavy alcohols such as dodecanol, and tridecanol, some phosphorals, and some fatty acids have been determined to meet the desired specifications. These solvents have the effect of making water more volatile than ethanol. Thus, a water stream is taken off initially in the dehydration column, and a near anhydrous ethanol stream is recovered from the ethanol/solvent stripper column. Thus the solvent serves dual uses (1) absorption media, and (2) dehydration media. The SAED process as conceptualized would use a solvent similar to solvents used for direct extractive separation of ethanol from aqueous ethanol solutions.

  13. Solubility of acid gases in a mixed solvent

    SciTech Connect

    MacGregor, R.J.; Mather, A.E.

    1987-01-01

    The solubility of hydrogen sulphide and carbon dioxide and their mixtures has been measured at 40/sup 0/ and 100/sup 0/C in a mixed solvent consisting of 20.9 wt% (2.0 M) MDEA (methyldiethanolamine), 30.5 wt% sulfolane, and 48.6 wt% water. The results have been compared with those for aqueous 2.0 M MDEA and an analogous mixed solvent, containing AMP (2-amino-2-methyl-1-propanol), which are available in the literature. At solution loadings less than 1 mol acid gas/mol MDEA, the solubility of the acid gas was lower in the mixed solvent that in the corresponding aqueous MDEA solvent; at solution loadings greater than 1 mol acid gas/mol MDEA, the reverse was true. At all loadings and at both temperatures studied, the mixed MDEA solvent absorbed equal or lesser quantities of acid gas than the comparable mixed AMP solvent. However, the shapes of the solubility curves show that the mixed MDEA solvent would be a better choice for certain industrial applications. These data were used to modify the solubility model of Deshmukh and Mather to account for the mixed solvent effects on the system thermodynamics. Results show that the model is useful as a first approximation in predicting acid gas solubilities; agreement with experiment was generally found to be within +-15%.

  14. NOVEL POLYMERIC MEMBRANE FOR DEHYDRATION OF ORGANIC SOLVENTS

    EPA Science Inventory

    Pervaporation has emerged as an economically viable alternative technology for dehydration of organic solvents, removal of organic compounds and organic/organic separations. Development of a membrane system with suitable flux and selectivity characteristics plays a critical role...

  15. HOMOGENEOUS CATALYTIC OXIDATION OF HYDROCARBONS IN ALTERNATIVE SOLVENTS

    EPA Science Inventory

    Homogeneous Catalytic Oxidations of Hydrocarbons in Alternative Solvent Systems

    Michael A. Gonzalez* and Thomas M. Becker, Sustainable Technology Division, Office of Research and Development; United States Environmental Protection Agency, 26 West Martin Luther King Drive, ...

  16. EVALUATION OF ALTERNATIVES TO CHLORINATED SOLVENTS FOR METAL CLEANING

    EPA Science Inventory

    This project report details results of investigations into alternatives to chlorinated solvents used for metal degreasing. Three companies participated in this project. The results reported for one company document a situation where the conversion to an aqueous cleaning system ha...

  17. Swelling of lignites in organic solvents

    SciTech Connect

    R.G. Makitra; D.V. Bryk

    2008-10-15

    Data on the swelling of Turkish lignites can be summarized using linear multiparameter equations that take into account various properties of solvents. Factors responsible for the amounts of absorbed solvents are the basicity and cohesion energy density of the solvents.

  18. EXPERIENCES IN DESIGNING SOLVENTS FOR THE ENVIRONMENT

    EPA Science Inventory

    To meet the great need of replacing many harmful solvents commonly used by industry and the public with environmentally benign substitute solvents, the PARIS II solvent design software has been developed. Although the difficulty of successfully finding replacements increases with...

  19. Chromatographic NMR in NMR solvents

    NASA Astrophysics Data System (ADS)

    Carrara, Caroline; Viel, Stéphane; Delaurent, Corinne; Ziarelli, Fabio; Excoffier, Grégory; Caldarelli, Stefano

    2008-10-01

    Recently, it was demonstrated that pseudo-chromatographic NMR experiments could be performed using typical chromatographic solids and solvents. This first setup yielded improved separation of the spectral components of the NMR spectra of mixtures using PFG self-diffusion measurements. The method (dubbed Chromatographic NMR) was successively shown to possess, in favorable cases, superior resolving power on non-functionalized silica, compared to its LC counterpart. To further investigate the applicability of the method, we studied here the feasibility of Chromatographic NMR in common deuterated solvents. Two examples are provided, using deuterated chloroform and water, for homologous compounds soluble in these solvents, namely aromatic molecules and alcohols, respectively.

  20. Caustic-Side Solvent Extraction Solvent-Composition Recommendation

    SciTech Connect

    Klatt, L.N.

    2002-05-09

    The U.S. Department of Energy has selected caustic-side solvent extraction as the preferred cesium removal technology for the treatment of high-level waste stored at the Savannah River Site. Data for the solubility of the extractant, calix[4]arene-bis(tert-octyl benzo-crown-6), acquired and reported for the Salt Processing Program down-select decision, showed the original solvent composition to be supersaturated with respect to the extractant. Although solvent samples have been observed for approximately 1 year without any solids formation, work was completed to define a new solvent composition that was thermodynamically stable with respect to solids formation and to expand the operating temperature with respect to third-phase formation. Chemical and physical data as a function of solvent component concentrations were collected. The data included calix[4]arene-bis(tert-octyl benzo-crown-6) solubility; cesium distribution ratio under extraction, scrub, and strip conditions; flow sheet robustness; temperature range of third-phase formation; dispersion numbers for the solvent against waste simulant, scrub and strip acids, and sodium hydroxide wash solutions; solvent density; viscosity; and surface and interfacial tension. These data were mapped against a set of predefined performance criteria. The composition of 0.007 M calix[4]arene-bis(tert-octyl benzo-crown-6), 0.75 M 1-(2,2,3,3-tetrafluoropropoxy)-3-(4-sec-butylphenoxy)-2-propanol, and 0.003 M tri-n-octylamine in the diluent Isopar{reg_sign} L provided the best match between the measured properties and the performance criteria. Therefore, it is recommended as the new baseline solvent composition.

  1. ACTIVE EFFLUX OF ORGANIC SOLVENTS BY PSEUDOMONAS PUTIDA S12 IS INDUCED BY SOLVENTS

    EPA Science Inventory

    Induction of the membrane-associated organic solvent efflux system SrpABC of Pseudomonas putida S12 was examined by cloning a 312-bp DNA fragment, containing the srp promoter, in the broad-host-range reporter vector pKRZ-1. Compounds that are capable of inducing expression of the...

  2. A novel aqueous two phase system composed of a thermo-separating polymer and an organic solvent for purification of thermo-acidic amylase enzyme from red pitaya (Hylocereus polyrhizus) peel.

    PubMed

    Amid, Mehrnoush; Manap, Yazid; Zohdi, Nor Khanani

    2014-01-01

    The purification of thermo-acidic amylase enzyme from red pitaya (Hylocereus polyrhizus) peel for the first time was investigated using a novel aqueous two-phase system (ATPS) consisting of a thermo-separating copolymer and an organic solvent. The effectiveness of different parameters such as molecular weight of the thermo-separating ethylene oxide-propylene oxide (EOPO) copolymer and type and concentration of organic solvent on the partitioning behavior of amylase was investigated. In addition, the effects of phase components, volume ratio (VR), pH and crude load of purification factor and yield of amylase were evaluated to achieve the optimum partition conditions of the enzyme. In the novel ATPS method, the enzyme was satisfactorily partitioned into the polymer-rich top phase in the system composed of 30% (w/w) EOPO 2500 and 15% (w/w) 2-propanol, at a volume ratio of 1.94 and with a crude load scale of 25% (w/w) at pH 5.0. Recovery and recycling of components was also measured in each successive step of the ATPS process. The enzyme was successfully recovered by the method with a high purification factor of 14.3 and yield of 96.6% and copolymer was also recovered and recycled at a rate above 97%, making the method was more economical than the traditional ATPS method. PMID:24858097

  3. SAGE--SOLVENT ALTERNATIVES GUIDE

    EPA Science Inventory

    SAGE is a comprehensive guide designed to provide pollution prevention information on solvent and process alternatives for parts cleaning and degreasing. SAGE does not recommend any ozone depleting chemicals. SAGE was developed by the Surface Cleaning Program at Research Triang...

  4. SOLV-DB: Solvents Data

    DOE Data Explorer

    SOLV-DB provides a specialized mix of information on commercially available solvents. The development of the database was funded under the Strategic Environmental Research and Development Program (SERDP) with funds from EPA and DOE's Office of Industrial Technologies in EE. The information includes: • Health and safety considerations involved in choosing and using solvents • Chemical and physical data affecting the suitability of a particular solvent for a wide range of potential applications • Regulatory responsibilities, including exposure and effluent limits, hazard classification status with respect to several key statutes, and selected reporting requirements • Environmental fate data, to indicate whether a solvent is likely to break down or persist in air or water, and what types of waste treatment techniques may apply to it • CAS numbers (from Chemical Abstracts Service) and Sax Numbers (from Sax, et.al., Dangerous Properties of Industrial Materials) Supplier Information See help information at http://solvdb.ncms.org/welcome.htm (Specialized Interface)

  5. ON-SITE SOLVENT RECOVERY

    EPA Science Inventory

    This study evaluated the product quality, waste reduction/pollution prevention, and economic aspects of three technologies for onsite solvent recovery: atmospheric batch distillation, vacuum heat-pump distillation, and low-emission vapor degreasing. The atmospheric and vacuum ...

  6. Experimental investigation of the phase equilibria in the carbon dioxide-propane-3 M MDEA system

    SciTech Connect

    Jou, F.Y.; Mather, A.E.; Otto, F.D.; Carroll, J.J.

    1995-07-01

    The treating of liquefied petroleum gas (LPG) to remove carbon dioxide and hydrogen sulfide using aqueous alkanolamine solutions is an important aspect of gas processing. One of the amines used in the natural gas industry is methyldiethanolamine (MDEA). Measurements of the phase equilibria in the carbon dioxide-propane-3 M MDEA system have been made at 25 and 40 C at pressures up to 15.5 MPa. Vapor-liquid, liquid-liquid, and vapor-liquid-liquid equilibria were determined. The vapor-liquid equilibrium data were compared with the model of Deshmukh and Mather.

  7. Solvents and supporting electrolytes for vanadium acetylacetonate flow batteries

    NASA Astrophysics Data System (ADS)

    Shinkle, Aaron A.; Pomaville, Timothy J.; Sleightholme, Alice E. S.; Thompson, Levi T.; Monroe, Charles W.

    2014-02-01

    Properties of supporting electrolytes and solvents were examined for use with vanadium acetylacetonate - a member of the class of metal(β-diketonate) active species - in non-aqueous redox flow batteries. Twenty supporting-electrolyte/solvent combinations were screened for ionic conductivity and supporting-electrolyte solubility. Hexane, tetrahydrofuran, and dimethylcarbonate solvents did not meet minimal conductivity and solubility criteria for any of the electrolytes used, which included tetraethylammonium tetrafluoroborate, tetrabutylammonium tetrafluoroborate, tetrabutylammonium hexafluorophosphate, and (1-butyl, 3-methyl)imidazolium bis(trifluoromethanesulfonyl)imide. Ionic conductivities and solubilities for solutions of these electrolytes passed screening criteria in acetonitrile and dimethylformamide solvents, in which maximum supporting-electrolyte and active-species solubilities were determined. Active-species electrochemistry was found to be reversible in several solvent/support systems; for some systems the voltammetric signatures of unwanted side reactions were suppressed. Correlations between supporting-solution properties and performance metrics suggest that an optimal solvent for a vanadium acetylacetonate RFB should have a low solvent molar volume for active-species solubility, and a high Hansen polarity for conductivity.

  8. Review of glycol ether and glycol ether ester solvents used in the coating industry.

    PubMed Central

    Smith, R L

    1984-01-01

    Ethylene oxide-based glycol ether and glycol ether ester solvents have been used in the coatings industry for the past fifty years. Because of their excellent performance properties (evaporation rate, blush resistance, flow-out and leveling properties, solubility for coating resins, solvent activity, mild odor, good coupling ability, good solvent release) a complete line of ethylene oxide-based solvents of various molecular weights has been developed. These glycol ether and glycol ether ester solvents have better solvent activity for coating resin than ester or ketone solvents in their evaporation rate range. The gloss, flow and leveling, and general performance properties of many coating systems are dependent on the use of these products in the coating formula. Because of the concern about the toxicity of certain ethylene oxide-based solvents, other products are being evaluated as replacements in coating formulas. PMID:6499793

  9. Charge stabilization in nonpolar solvents.

    PubMed

    Hsu, M F; Dufresne, E R; Weitz, D A

    2005-05-24

    While the important role of electrostatic interactions in aqueous colloidal suspensions is widely known and reasonably well-understood, their relevance to nonpolar suspensions remains mysterious. We measure the interaction potentials of colloidal particles in a nonpolar solvent with reverse micelles. We find surprisingly strong electrostatic interactions characterized by surface potentials, |ezeta|, from 2.0 to 4.4 k(B)T and screening lengths, kappa(-1), from 0.2 to 1.4 microm. Interactions depend on the concentration of reverse micelles and the degree of confinement. Furthermore, when the particles are weakly confined, the values of |ezeta| and kappa extracted from interaction measurements are consistent with bulk measurements of conductivity and electrophoretic mobility. A simple thermodynamic model, relating the structure of the micelles to the equilibrium ionic strength, is in good agreement with both conductivity and interaction measurements. Since dissociated ions are solubilized by reverse micelles, the entropic incentive to charge a particle surface is qualitatively changed from aqueous systems, and surface entropy plays an important role. PMID:15896027

  10. Solvent vapors controlled by pre-concentration, incineration

    SciTech Connect

    Sundberg, R.E.

    1996-01-01

    Concentration of solvent vapors in ventilation air exhausted from the workplace often is too dilute for efficient destruction or recovery. Several techniques are being developed to pre-concentrate the vapors before treating them in a catalytic incinerator. Molnbacka Industri AB (Forshaga, Sweden) has developed a system to control volatile organic compound emissions by using activated carbon adsorbers to pre-concentrate the solvent vapors. The technology uses carbon adsorption and desorption to concentrate dilute solvent vapors to a much smaller air stream for efficient destruction in a catalytic incinerator.

  11. Analytical applications of partitioning in aqueous two-phase systems: Exploring protein structural changes and protein-partner interactions in vitro and in vivo by solvent interaction analysis method.

    PubMed

    Zaslavsky, Boris Y; Uversky, Vladimir N; Chait, Arnon

    2016-05-01

    This review covers the fundamentals of protein partitioning in aqueous two-phase systems (ATPS). Included is a review of advancements in the analytical application of solute partitioning in ATPS over the last two decades, with multiple examples of experimental data providing evidence that phase-forming polymers do not interact with solutes partitioned in ATPS. The partitioning of solutes is governed by the differences in solute interactions with aqueous media in the two phases. Solvent properties of the aqueous media in these two phases may be characterized and manipulated. The solvent interaction analysis (SIA) method, based on the solute partitioning in ATPS, may be used for characterization and analysis of individual proteins and their interactions with different partners. The current state of clinical proteomics regarding the discovery and monitoring of new protein biomarkers is discussed, and it is argued that the protein expression level in a biological fluid may be not the optimal focus of clinical proteomic research. Multiple examples of application of the SIA method for discovery of changes in protein structure and protein-partner interactions in biological fluids are described. The SIA method reveals new opportunities for discovery and monitoring structure-based protein biomarkers. PMID:26923390

  12. Gamma Ray Radiolysis of the FPEX Solvent

    SciTech Connect

    B. J. Mincher; S. P. Mezyk; D. R. Peterman

    2006-09-01

    Slide presentation. FPEX contains a calixarene for Cs extraction, a crown ether for Sr extraction, Cs7SB modifier, and TOA to aid in stripping, in Isopar L diluent. The radiation stability FPEX must be evaluated prior to process use. Radiolytic degradation of species in solution are due to reaction with the direct radiolysis products of the diluent. In Isopar L, the reactive species produced include e-, •H and alkane radicals, resulting in a reducing environment. However, in nitric acid, oxidizing hydroxyl (•OH) and nitro (•NO2) radicals dominate system chemistry. Thus, the nature of diluent and the presence of radical scavengers affect the results of irradiation. We report the preliminary results of a new program to investigate the radiolysis of FPEX using the 60Co irradiation of FPEX neat solvent, acid pre-equilibrated solvent and mixed aerated phases. The Cs and Sr distribution ratios were used as metrics.

  13. Solvent/Non-Solvent Sintering To Make Microsphere Scaffolds

    NASA Technical Reports Server (NTRS)

    Laurencin, Cato T.; Brown, Justin L.; Nair, Lakshmi

    2011-01-01

    A solvent/non-solvent sintering technique has been devised for joining polymeric microspheres to make porous matrices for use as drug-delivery devices or scaffolds that could be seeded with cells for growing tissues. Unlike traditional sintering at elevated temperature and pressure, this technique is practiced at room temperature and pressure and, therefore, does not cause thermal degradation of any drug, protein, or other biochemical with which the microspheres might be loaded to impart properties desired in a specific application. Also, properties of scaffolds made by this technique are more reproducible than are properties of comparable scaffolds made by traditional sintering. The technique involves the use of two miscible organic liquids: one that is and one that is not a solvent for the affected polymer. The polymeric microspheres are placed in a mold having the size and shape of the desired scaffold, then the solvent/non-solvent mixture is poured into the mold to fill the void volume between the microspheres, then the liquid mixture is allowed to evaporate. Some of the properties of the resulting scaffold can be tailored through choice of the proportions of the liquids and the diameter of the microspheres.

  14. Effect of Solvent System on Extractability of Lipidic Components of Scenedesmus obliquus (M2-1) and Gloeothece sp. on Antioxidant Scavenging Capacity Thereof

    PubMed Central

    Amaro, Helena M.; Fernandes, Fátima; Valentão, Patrícia; Andrade, Paula B.; Sousa-Pinto, I.; Malcata, F. Xavier; Guedes, A. Catarina

    2015-01-01

    Microalgae are well known for their biotechnological potential, namely with regard to bioactive lipidic components—especially carotenoids and polyunsaturated fatty acids (PUFA), well-known for therapeutic applications based on their antioxidant capacity. The aim of this work was to evaluate the influence of four distinct food-grade solvents upon extractability of specific lipidic components, and on the antioxidant capacity exhibited against both synthetic (2,2-diphenyl-1-picrylhydrazyl (DPPH•) and 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS+•)) and biological reactive species (O2•− and •NO−). A eukaryotic microalga (Scenedesmus obliquus (M2-1)) and a prokaryotic one (Gloeothece sp.) were used as case studies. Concerning total antioxidant capacity, the hexane:isopropanol (3:2) and acetone extracts of Sc. obliquus (M2-1) were the most effective against DPPH• and ABTS+•, respectively. Gloeothece sp. ethanol extracts were the most interesting scavengers of O2•−, probably due the high content of linolenic acid. On the other hand, acetone and hexane:isopropanol (3:2) extracts were the most interesting ones in •NO− assay. Acetone extract exhibited the best results for the ABTS assay, likely associated to its content of carotenoids, in both microalgae. Otherwise, ethanol stood out in PUFA extraction. Therefore, profiles of lipidic components extracted are critical for evaluating the antioxidant performance—which appears to hinge, in particular, on the balance between carotenoids and PUFAs. PMID:26492257

  15. Effect of Solvent System on Extractability of Lipidic Components of Scenedesmus obliquus (M2-1) and Gloeothece sp. on Antioxidant Scavenging Capacity Thereof.

    PubMed

    Amaro, Helena M; Fernandes, Fátima; Valentão, Patrícia; Andrade, Paula B; Sousa-Pinto, I; Malcata, F Xavier; Guedes, A Catarina

    2015-10-01

    Microalgae are well known for their biotechnological potential, namely with regard to bioactive lipidic components-especially carotenoids and polyunsaturated fatty acids (PUFA), well-known for therapeutic applications based on their antioxidant capacity. The aim of this work was to evaluate the influence of four distinct food-grade solvents upon extractability of specific lipidic components, and on the antioxidant capacity exhibited against both synthetic (2,2-diphenyl-1-picrylhydrazyl (DPPH(•)) and 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS(+•))) and biological reactive species (O₂(•)⁻ and (•)NO⁻). A eukaryotic microalga (Scenedesmus obliquus (M2-1)) and a prokaryotic one (Gloeothece sp.) were used as case studies. Concerning total antioxidant capacity, the hexane:isopropanol (3:2) and acetone extracts of Sc. obliquus (M2-1) were the most effective against DPPH(•) and ABTS(+•), respectively. Gloeothece sp. ethanol extracts were the most interesting scavengers of O₂(•)⁻, probably due the high content of linolenic acid. On the other hand, acetone and hexane:isopropanol (3:2) extracts were the most interesting ones in (•)NO⁻ assay. Acetone extract exhibited the best results for the ABTS assay, likely associated to its content of carotenoids, in both microalgae. Otherwise, ethanol stood out in PUFA extraction. Therefore, profiles of lipidic components extracted are critical for evaluating the antioxidant performance-which appears to hinge, in particular, on the balance between carotenoids and PUFAs. PMID:26492257

  16. Solvent mediated assembly of nanoparticles confined in mesoporous alumina

    NASA Astrophysics Data System (ADS)

    Alvine, Kyle J.; Pontoni, Diego; Shpyrko, Oleg G.; Pershan, Peter S.; Cookson, David J.; Shin, Kyusoon; Russell, Thomas P.; Brunnbauer, Markus; Stellacci, Francesco; Gang, Oleg

    2006-03-01

    The controlled self-assembly of thiol stabilized gold nanocrystals in a mediating solvent and confined within mesoporous alumina was probed in situ with small angle x-ray scattering. The evolution of the self-assembly process was controlled reversibly via regulated changes in the amount of solvent condensed from an undersaturated vapor. Analysis indicated that the nanoparticles self-assembled into cylindrical monolayers within the porous template. Nanoparticle nearest-neighbor separation within the monolayer increased and the ordering decreased with the controlled addition of solvent. The process was reversible with the removal of solvent. Isotropic clusters of nanoparticles were also observed to form temporarily during desorption of the liquid solvent and disappeared upon complete removal of liquid. Measurements of the absorption and desorption of the solvent showed strong hysteresis upon thermal cycling. In addition, the capillary filling transition for the solvent in the nanoparticle-doped pores was shifted to larger chemical potential, relative to the liquid/vapor coexistence, by a factor of 4 as compared to the expected value for the same system without nanoparticles.

  17. Solvent mediated assembly of Nanoparticles confined in Mesoporous Alumina

    NASA Astrophysics Data System (ADS)

    Alvine, Kyle; Pontoni, Diego; Pershan, Peter; Shpyrko, Oleg; Cookson, David; Shin, Kyusoon; Russell, Thomas; Stellacci, Francesco; Gang, Oleg

    2006-03-01

    In-situ small angle x-ray scattering measurements of the solvent mediated assembly of 2 nm diameter Au-core colloidal nanoparticles inside mesoporous alumina are presented. The evolution of the self-assembly process was controlled reversibly via solvent condensed from vapor. Measurements of the absorption & desorption of solvent showed strong hysteresis upon thermal cycling. In addition, the capillary transition for the solvent in the nanoparticle-doped pores was shifted to greater under-saturation by a factor of four relative to the expected value for the same system sans nanoparticles. Analysis indicated that a cylindrical shell super-structure of the nanoparticles is maintained throughout the addition and removal of liquid solvent. Nanoparticle nearest-neighbor separation increased and the in-shell order decreased with the addition of solvent. The process was reversible with the removal of liquid. Isotropic clusters of nanoparticles were also observed to form temporarily during desorption of the liquid solvent and disappear upon complete removal of liquid.

  18. Improved Detection Technique for Solvent Rinse Cleanliness Verification

    NASA Technical Reports Server (NTRS)

    Hornung, S. D.; Beeson, H. D.

    2001-01-01

    The NASA White Sands Test Facility (WSTF) has an ongoing effort to reduce or eliminate usage of cleaning solvents such as CFC-113 and its replacements. These solvents are used in the final clean and cleanliness verification processes for flight and ground support hardware, especially for oxygen systems where organic contaminants can pose an ignition hazard. For the final cleanliness verification in the standard process, the equivalent of one square foot of surface area of parts is rinsed with the solvent, and the final 100 mL of the rinse is captured. The amount of nonvolatile residue (NVR) in the solvent is determined by weight after the evaporation of the solvent. An improved process of sampling this rinse, developed at WSTF, requires evaporation of less than 2 mL of the solvent to make the cleanliness verification. Small amounts of the solvent are evaporated in a clean stainless steel cup, and the cleanliness of the stainless steel cup is measured using a commercially available surface quality monitor. The effectiveness of this new cleanliness verification technique was compared to the accepted NVR sampling procedures. Testing with known contaminants in solution, such as hydraulic fluid, fluorinated lubricants, and cutting and lubricating oils, was performed to establish a correlation between amount in solution and the process response. This report presents the approach and results and discusses the issues in establishing the surface quality monitor-based cleanliness verification.

  19. Solvent mediated assembly of nanoparticles confined in mesoporous alumina.

    SciTech Connect

    Alvine, K. J.; Pontoni, D.; Shpyrko, O. G.; Pershan, P. S.; Cookson, D. J.; Shin, K.; Russell, T. P.; Brunnbauer, M.; Stellacci, F.; Gang, O.; BNL; Massachusetts Inst. of Tech.; Univ. of Massachusetts; Harvard Univ.; Univ. Massachusetts

    2006-01-01

    The controlled self-assembly of thiol stabilized gold nanocrystals in a mediating solvent and confined within mesoporous alumina was probed in situ with small angle x-ray scattering. The evolution of the self-assembly process was controlled reversibly via regulated changes in the amount of solvent condensed from an undersaturated vapor. Analysis indicated that the nanoparticles self-assembled into cylindrical monolayers within the porous template. Nanoparticle nearest-neighbor separation within the monolayer increased and the ordering decreased with the controlled addition of solvent. The process was reversible with the removal of solvent. Isotropic clusters of nanoparticles were also observed to form temporarily during desorption of the liquid solvent and disappeared upon complete removal of liquid. Measurements of the absorption and desorption of the solvent showed strong hysteresis upon thermal cycling. In addition, the capillary filling transition for the solvent in the nanoparticle-doped pores was shifted to larger chemical potential, relative to the liquid/vapor coexistence, by a factor of 4 as compared to the expected value for the same system without nanoparticles.

  20. Coal liquefaction process with enhanced process solvent

    DOEpatents

    Givens, Edwin N.; Kang, Dohee

    1984-01-01

    In an improved coal liquefaction process, including a critical solvent deashing stage, high value product recovery is improved and enhanced process-derived solvent is provided by recycling second separator underflow in the critical solvent deashing stage to the coal slurry mix, for inclusion in the process solvent pool.

  1. Alternative Solvents and Technologies for Precision Cleaning of Aerospace Components

    NASA Technical Reports Server (NTRS)

    Grandelli, Heather; Maloney, Phillip; DeVor, Robert; Hintze, Paul

    2014-01-01

    Precision cleaning solvents for aerospace components and oxygen fuel systems, including currently used Vertrel-MCA, have a negative environmental legacy, high global warming potential, and have polluted cleaning sites. Thus, alternative solvents and technologies are being investigated with the aim of achieving precision contamination levels of less than 1 mg/sq ft. The technologies being evaluated are ultrasonic bath cleaning, plasma cleaning and supercritical carbon dioxide cleaning.

  2. Stochastic level-set variational implicit-solvent approach to solute-solvent interfacial fluctuations.

    PubMed

    Zhou, Shenggao; Sun, Hui; Cheng, Li-Tien; Dzubiella, Joachim; Li, Bo; McCammon, J Andrew

    2016-08-01

    Recent years have seen the initial success of a variational implicit-solvent model (VISM), implemented with a robust level-set method, in capturing efficiently different hydration states and providing quantitatively good estimation of solvation free energies of biomolecules. The level-set minimization of the VISM solvation free-energy functional of all possible solute-solvent interfaces or dielectric boundaries predicts an equilibrium biomolecular conformation that is often close to an initial guess. In this work, we develop a theory in the form of Langevin geometrical flow to incorporate solute-solvent interfacial fluctuations into the VISM. Such fluctuations are crucial to biomolecular conformational changes and binding process. We also develop a stochastic level-set method to numerically implement such a theory. We describe the interfacial fluctuation through the "normal velocity" that is the solute-solvent interfacial force, derive the corresponding stochastic level-set equation in the sense of Stratonovich so that the surface representation is independent of the choice of implicit function, and develop numerical techniques for solving such an equation and processing the numerical data. We apply our computational method to study the dewetting transition in the system of two hydrophobic plates and a hydrophobic cavity of a synthetic host molecule cucurbit[7]uril. Numerical simulations demonstrate that our approach can describe an underlying system jumping out of a local minimum of the free-energy functional and can capture dewetting transitions of hydrophobic systems. In the case of two hydrophobic plates, we find that the wavelength of interfacial fluctuations has a strong influence to the dewetting transition. In addition, we find that the estimated energy barrier of the dewetting transition scales quadratically with the inter-plate distance, agreeing well with existing studies of molecular dynamics simulations. Our work is a first step toward the inclusion of

  3. Stochastic level-set variational implicit-solvent approach to solute-solvent interfacial fluctuations

    NASA Astrophysics Data System (ADS)

    Zhou, Shenggao; Sun, Hui; Cheng, Li-Tien; Dzubiella, Joachim; Li, Bo; McCammon, J. Andrew

    2016-08-01

    Recent years have seen the initial success of a variational implicit-solvent model (VISM), implemented with a robust level-set method, in capturing efficiently different hydration states and providing quantitatively good estimation of solvation free energies of biomolecules. The level-set minimization of the VISM solvation free-energy functional of all possible solute-solvent interfaces or dielectric boundaries predicts an equilibrium biomolecular conformation that is often close to an initial guess. In this work, we develop a theory in the form of Langevin geometrical flow to incorporate solute-solvent interfacial fluctuations into the VISM. Such fluctuations are crucial to biomolecular conformational changes and binding process. We also develop a stochastic level-set method to numerically implement such a theory. We describe the interfacial fluctuation through the "normal velocity" that is the solute-solvent interfacial force, derive the corresponding stochastic level-set equation in the sense of Stratonovich so that the surface representation is independent of the choice of implicit function, and develop numerical techniques for solving such an equation and processing the numerical data. We apply our computational method to study the dewetting transition in the system of two hydrophobic plates and a hydrophobic cavity of a synthetic host molecule cucurbit[7]uril. Numerical simulations demonstrate that our approach can describe an underlying system jumping out of a local minimum of the free-energy functional and can capture dewetting transitions of hydrophobic systems. In the case of two hydrophobic plates, we find that the wavelength of interfacial fluctuations has a strong influence to the dewetting transition. In addition, we find that the estimated energy barrier of the dewetting transition scales quadratically with the inter-plate distance, agreeing well with existing studies of molecular dynamics simulations. Our work is a first step toward the inclusion of

  4. Method of treating radioactively contaminated solvent waste

    SciTech Connect

    Jablonski, W.; Mallek, H.; Plum, W.

    1981-07-07

    A method of and apparatus for treating radioactively contaminated solvent waste are claimed. The solvent waste is supplied to material such as peat, vermiculite, diaton, etc. This material effects the distribution or dispersion of the solvent and absorbs the foreign substances found in the solvent waste. Air or an inert gas flows through the material in order to pick up the solvent portions which are volatile as a consequence of their vapor pressure. The thus formed gas mixture, which includes air or inert gas and solvent portions, is purified in a known manner by thermal, electrical, or catalytic combustion of the solvent portions.

  5. Molecular microenvironments: Solvent interactions with nucleic acid bases and ions

    NASA Technical Reports Server (NTRS)

    Macelroy, R. D.; Pohorille, A.

    1986-01-01

    The possibility of reconstructing plausible sequences of events in prebiotic molecular evolution is limited by the lack of fossil remains. However, with hindsight, one goal of molecular evolution was obvious: the development of molecular systems that became constituents of living systems. By understanding the interactions among molecules that are likely to have been present in the prebiotic environment, and that could have served as components in protobiotic molecular systems, plausible evolutionary sequences can be suggested. When stable aggregations of molecules form, a net decrease in free energy is observed in the system. Such changes occur when solvent molecules interact among themselves, as well as when they interact with organic species. A significant decrease in free energy, in systems of solvent and organic molecules, is due to entropy changes in the solvent. Entropy-driven interactioins played a major role in the organization of prebiotic systems, and understanding the energetics of them is essential to understanding molecular evolution.

  6. Magnetic resonance imaging of solvent transport in polymer networks

    SciTech Connect

    Botto, R.E.; Cody, G.D.

    1995-02-01

    The spectroscopic technique of magnetic resonance imaging (MRI) has recently provided a new window into transport of solvents in polymer networks. Diffusion of solvent as a rate-controlling phenomenon is paramount to understanding transport in many important industrial and biological processes, such as upgrading fossil fuels, film casting and coating, development of photoresists, design of drug-delivery systems, development of solvent resistant polymers, etc. By MRI mapping the migration of solvent molecules through various polymer specimens, researchers Robert Botto and George Cody of Argonne National Laboratory, with support from the Division of Chemical Sciences at DOE, were able to characterize and distinguish between different modes of transport behavior associated with fundamentally different types of polymer systems. The method was applied to rubbers, glassy polymers, and coals. In polymers shown to undergo a glass transition from a rigid to rubbery state, a sharply defined solvent front was observed that propagated through specimens in the manner of a constant velocity shock wave. This behavior was contrasted with a smooth solvent concentration gradient found in polymer systems where no glass transition was observed. The results of this analysis have formed the basis of a new model of anomalous transport in polymeric solids and are helping to ascertain fundamental information on the molecular architectures of these materials.

  7. Wafer-scale synthesis of thickness-controllable MoS2 films via solution-processing using a dimethylformamide/n-butylamine/2-aminoethanol solvent system

    NASA Astrophysics Data System (ADS)

    Yang, Jaehyun; Gu, Yeahyun; Lee, Eunha; Lee, Hyangsook; Park, Sang Han; Cho, Mann-Ho; Kim, Yong Ho; Kim, Yong-Hoon; Kim, Hyoungsub

    2015-05-01

    The wafer-scale synthesis of two-dimensional molybdenum disulfide (MoS2) films, with high layer-controllability and uniformity, remains a significant challenge in the fields of nano and optoelectronics. Here, we report the highly thickness controllable growth of uniform MoS2 thin films on the wafer-scale via a spin-coating route. Formulation of a dimethylformamide-based MoS2 precursor solution mixed with additional amine- and amino alcohol-based solvents (n-butylamine and 2-aminoethanol) allowed for the formation of a uniform coating of MoS2 thin films over a 2 inch wafer-scale SiO2/Si substrate. In addition, facile control of the average number of stacking layers is demonstrated by simply manipulating the concentration of the precursor solution. Various characterization results reveal that the synthesized MoS2 film has wafer-scale homogeneity with excellent crystalline quality and a stoichiometric chemical composition. To further demonstrate possible device applications, a mostly penta-layered MoS2 thin film was integrated into a top-gated field-effect transistor as the channel layer and we also successfully transferred our films onto transparent/flexible substrates.The wafer-scale synthesis of two-dimensional molybdenum disulfide (MoS2) films, with high layer-controllability and uniformity, remains a significant challenge in the fields of nano and optoelectronics. Here, we report the highly thickness controllable growth of uniform MoS2 thin films on the wafer-scale via a spin-coating route. Formulation of a dimethylformamide-based MoS2 precursor solution mixed with additional amine- and amino alcohol-based solvents (n-butylamine and 2-aminoethanol) allowed for the formation of a uniform coating of MoS2 thin films over a 2 inch wafer-scale SiO2/Si substrate. In addition, facile control of the average number of stacking layers is demonstrated by simply manipulating the concentration of the precursor solution. Various characterization results reveal that the

  8. Effects of Solvent Composition on the Assembly and Relaxation of Triblock Copolymer-Based Polyelectrolyte Gels

    SciTech Connect

    Henderson, Kevin J.; Shull, Kenneth R.

    2012-03-26

    The role of solvent selectivity has been explored extensively with regard to its role in the phase behavior of block copolymer assemblies. Traditionally, thermally induced phase separation is employed for generating micelles upon cooling a block copolymer dissolved in a selective solvent. However few amphiphilic, polyelectrolyte-containing block copolymers demonstrate a thermally accessible route of micellization, and solvent exchange routes are frequently employed instead. Here, we describe the use of mixed solvents for obtaining thermoreversible gelation behavior of poly(methyl methacrylate)-poly(methacrylic acid)-poly(methyl methacrylate) (PMMA-PMAA-PMMA) triblock copolymers. One solvent component (dimethyl sulfoxide) is a good solvent for both blocks, and the second solvent component (water) is a selective solvent for the polymer midblock. Rheological frequency sweeps at variable solvent compositions and temperatures demonstrate an adherence to time-temperature-composition superposition, so that changes in the solvent composition are analogous to changes in the Flory-Huggins interaction parameter between end block and solvent. Shift factors used for this superposition are related to the effective activation energy describing the viscosity and stress relaxation response of the triblock copolymer gels. The effectiveness of solvent exchange processes for producing hydrogels with this system is shown to originate from the ability of a small amount of added water to greatly increase the relaxation times of the self-assembled polymer gels that are formed by this process.

  9. NMR measurements of solvent self-diffusion coefficients in polymer solutions

    NASA Astrophysics Data System (ADS)

    Blum, Frank D.; Pickup, Stephen; Waggoner, R. Allen

    1989-11-01

    The transport of solvents and other small molecules in polymer solutions is important in many areas such as reaction rates, drying of coatings, plasticizer loss, curing of resins, elimination of residual monomer, and controlled drug release. Some of the work done in our laboratory on the diffusion of small molecules in polymer solutions and dispersions is reviewed. The diffusion data was used to test the Vrentas and Duda's free-volume theory for self-diffusion coefficients; test the independence of the normalized solvent self-diffusion for several polymer-solvent systems; and predict the solvent loss curves for drying of coatings based on solvent self-diffusion coefficients.

  10. Helpful hints for physical solvent absorption

    SciTech Connect

    Wolfer, W.

    1982-11-01

    Review of experience with natural gas treatment using physical solvents points to design and operating suggestions. Experiences with three plants using either Selexol or Sepasolv MPE solvent shows that both solvents perform well. The solvents offer economical and problem-free purification of natural gas. The Sepasolv MPE and Selexol solvents are very similar in chemical structure and physical properties. Thus, their application range is almost similar. An exchange is possible in most plants without equipment modification and/or process data.

  11. Solubility of C60 in solvent mixtures.

    PubMed

    Kulkarni, Pradnya P; Jafvert, Chad T

    2008-02-01

    The potential large-scale production of fullerene C60 and its widespread use in consumer products may translate into occupational and public exposure and in long-term environmental exposure. To assess the risk and fate of C60 in the environment, it is important to understand its solvate formation in common industrial solvents as the solvates may affect various properties of C60 including reactivity and toxicity, particularly when solvates occur in C60 clusters. In this study, the solubility measurements in mixed solvent system can provide useful information about solvate formation. The solubility of C60 was measured in pure toluene, tetrahydrofuran, ethanol, and acetonitrile to be 3000, 11, 1.4, and 0.04 mg/L, respectively. Additionally, the solubility of C60 was measured in mixtures of toluene-acetonitrile, toluene-ethanol, toluene-tetrahydrofuran, and acetonitrile-tetrahydrofuran. The solubility data were modeled with some accuracy using Wohl's equation. The estimated crystal energy term for C60 in tetrahydrofuran was different than that in the other solvents, indicating that the C60 solid phase in equilibrium with tetrahydrofuran solution may be a solvated crystal. PMID:18323111

  12. In-situ transesterification of seeds of invasive Chinese tallow trees (Triadica sebifera L.) in a microwave batch system (GREEN(3)) using hexane as co-solvent: Biodiesel production and process optimization.

    PubMed

    Barekati-Goudarzi, Mohamad; Boldor, Dorin; Nde, Divine B

    2016-02-01

    In-situ transesterification (simultaneous extraction and transesterification) of Chinese tallow tree seeds into methyl esters using a batch microwave system was investigated in this study. A high degree of oil extraction and efficient conversion of oil to biodiesel were found in the proposed range. The process was further optimized in terms of product yields and conversion rates using Doehlert optimization methodology. Based on the experimental results and statistical analysis, the optimal production yield conditions for this process were determined as: catalyst concentration of 1.74wt.%, solvent ratio about 3 (v/w), reaction time of 20min and temperature of 58.1°C. H(+)NMR was used to calculate reaction conversion. All methyl esters produced using this method met ASTM biodiesel quality specifications. PMID:26638139

  13. Uranium extraction selectivities of dibutyl carbitol and tributyl phosphate in the system UO{sub 2}(NO{sub 3}){sub 2}-HNO{sub 3}-H{sub 2}O-Al(NO{sub 3}){sub 3}-solvent

    SciTech Connect

    Birdwell, J.F.

    1999-04-01

    Historically, both the BUTEX (dibutyl carbitol-based) and PUREX (tributyl phosphate-based) processes have been used for uranium recovery and purification. Currently, BUTEX- and PUREX-type extraction processes are being used in series for recovery of isotopically enriched uranium at the Oak Ridge Y-12 Plant. The use of two solvents is predicated on the differing selectivities of each with regard to the contaminant elements present in the uranium source stream. As part of efforts to streamline plant operations in response to decreasing throughput requirements, the Y-12 Development Division is evaluating options for converting the existing two-solvent operation to a single-solvent process. At the request of the Y-12 Development Division, the Robotics and Process Division at the Oak Ridge National Laboratory has undertaken evaluation of solvents for use in a single-solvent recovery process. Initial efforts have been directed toward development of a single-solvent, dibutyl carbitol- or tributyl phosphate-based process that produces a product with purity equal to or exceeding what is currently obtained in the two-cycle, two-solvent operation. The test effort has involved both laboratory equilibrium determinations and engineering-scale process demonstrations in multistage flowsheets using centrifugal solvent extraction contactors. Excellent uranium recovery results have been obtained from both dibutyl carbitol- and tributyl phosphate-based solvent extraction flowsheets. Contaminant rejection performance by the two solvents is similar for many of the elements considered. Extraction of some contaminant elements by tributyl phosphate is significant enough to conclude that the solvent is not as selective for uranium as is dibutyl carbitol. This determination does not necessarily eliminate tributyl phosphate from consideration for use in a single-solvent process but does indicate a need for effective scrubbing of contaminants from uranium-loaded tributyl phosphate, possibly by

  14. DEMONSTRATION OF THE NEXT-GENERATION CAUSTIC-SIDE SOLVENT EXTRACTION SOLVENT WITH 2-CM CENTRIGUGAL CONTRACTORS USING TANK 49H WASTE AND WASTE SIMULANT

    SciTech Connect

    Pierce, R.; Peters, T.; Crowder, M.; Pak, D.; Fink, S.; Blessing, R.; Washington, A.; Caldwell, T.

    2011-11-29

    Researchers successfully demonstrated the chemistry and process equipment of the Caustic-Side Solvent Extraction (CSSX) flowsheet using MaxCalix for the decontamination of high level waste (HLW). The demonstration was completed using a 12-stage, 2-cm centrifugal contactor apparatus at the Savannah River National Laboratory (SRNL). This represents the first CSSX process demonstration of the MaxCalix solvent system with Savannah River Site (SRS) HLW. Two tests lasting 24 and 27 hours processed non-radioactive simulated Tank 49H waste and actual Tank 49H HLW, respectively. A solvent extraction system for removal of cesium from alkaline solutions was developed utilizing a novel solvent invented at the Oak Ridge National Laboratory (ORNL). This solvent consists of a calix[4]arene-crown-6 extractant dissolved in an inert hydrocarbon matrix. A modifier is added to the solvent to enhance the extraction power of the calixarene and to prevent the formation of a third phase. An additional additive is used to improve stripping performance and to mitigate the effects of any surfactants present in the feed stream. The process that deploys this solvent system is known as Caustic Side Solvent Extraction (CSSX). The solvent system has been deployed at the Savannah River Site (SRS) in the Modular CSSX Unit (MCU) since 2008.

  15. Solvent reorganization of electron transitions in viscous solvents

    SciTech Connect

    Ghorai, Pradip K.; Matyushov, Dmitry V.

    2006-04-14

    We develop a model of electron transfer reactions at conditions of nonergodicity when the time of solvent relaxation crosses the observation time window set up by the reaction rate. Solvent reorganization energy of intramolecular electron transfer in a charge-transfer molecule dissolved in water and acetonitrile is studied by molecular dynamics simulations at varying temperatures. We observe a sharp decrease of the reorganization energy at a temperature identified as the temperature of structural arrest due to cage effect, as discussed by the mode-coupling theory. This temperature also marks the onset of the enhancement of translational diffusion relative to rotational relaxation signaling the breakdown of the Stokes-Einstein relation. The change in the reorganization energy at the transition temperature reflects the dynamical arrest of the slow, collective relaxation of the solvent related to the relaxation of the solvent dipolar polarization. An analytical theory proposed to describe this effect agrees well with both the simulations and experimental Stokes shift data. The theory is applied to the analysis of charge-transfer kinetics in a low-temperature glass former. We show that the reorganization energy is substantially lower than its equilibrium value for the low-temperature portion of the data. The theory predicts the possibility of discontinuous changes in the dependence of the electron transfer rate on the free energy gap when the reaction switches between ergodic and nonergodic regimes.

  16. Solvent diffusion into fluoropolymer membranes

    SciTech Connect

    Aminabhavi, T.M.; Munnolli, R.S.

    1993-12-31

    Solvent diffusion in polymers is important to the physical properties of the material from processing to end-use and shelf-life. Many aspects of diffusion in polymers have been studied using indirect and direct methods. Du Pont`s fluoropolymers are known for their excellent resistance to a variety of organic solvents. This paper describes the measurement of diffusion coefficients and the derived thermodynamic quantities on four different fluoropolymer membranes with several esters. This information is interpreted in terms of the molecular organization and phase structure. Diffusion coefficients are sensitive to structural changes as well as binding and association phenomena.

  17. Polymeric nanoparticle formation by non-solvent introduction

    NASA Astrophysics Data System (ADS)

    Foster, Dona; Yang, Zhengnan; Dhinojwala, Ali

    2014-03-01

    Polymeric nanoparticles have found use in applications as diverse as coatings, microelectronics and drug delivery. Formation of a consistent particle with narrow tolerances offers even greater possibilities and diversity of application. This work focuses on a better understanding of the multiphase nanoparticle formation process. Physical interactions among polymer, solvent and non-solvent influence size, shape, distribution, and ease of nanoparticle formation and separation. The initial concentration of polymer in solvent is shown to correlate to the size and size distribution of particles. Adopting a continuous flow system broadens the array of design parameters to include temperature, solvent combination and flow conditions. Design parameters are correlated to nanostructure in order to control and optimize particle formation based on the specific physical properties desired.

  18. Mobility of organic solvents in water-saturated soil materials

    USGS Publications Warehouse

    Roy, W.R.; Griffin, R.A.

    1985-01-01

    This investigation presents an analysis of the mobility of 37 organic solvents in saturated soil-water systems, focusing on adsorption phenomena at the solid-liquid interface This analysis was made, in part, by applying predictive expressions that estimate the potential magnitude of adsorption by soil materials Of the 37 solvents considered, 19 were classified as either "very highly mobile" or "highly mobile" and, thus, would have little tendency to be retained by soils to a significant extent, 12 were considered to have medium mobility and 6 low mobility None of these solvents were in the immobile class The limited information available indicates that these predictive expressions yield satisfactory first approximations of the magnitude of adsorption of these solvents by soil materials ?? 1985 Springer-Verlag New York Inc.

  19. Protonation of diethylaminoethyl methacrylate by acids in various solvents

    SciTech Connect

    Zhuravleva, I.L.; Bune, E.V.; Bogachev, Yu.S.; Sheinker, A.P.; Teleshov, E.N.

    1988-04-10

    It was established by /sup 1/H and /sup 13/C NMR that diethylaminoethyl methacrylate exists in the unprotonated form in solvents which are not acids. In the presence of an equimolar amount of hydrochloric or trifluoroacetic acids the amino ester is fully protonated, irrespective of the solvent. The diethylaminoethyl methacrylate-acetic acid system exists in the form of a molecular complex with a hydrogen bond and in the protonated form; the proportions of the protonated form were estimated in various solvents. The change in the reactivity of diethylaminoethyl methacrylate and its salts in polymerization was explained by a change in the electronic state of CH/sub 2/ = group of the monomer as a result of its protonation and of the formation of a hydrogen bond between the C = O group of the monomer and the solvent.

  20. Deep eutectic solvents in countercurrent and centrifugal partition chromatography.

    PubMed

    Roehrer, Simon; Bezold, Franziska; García, Eva Marra; Minceva, Mirjana

    2016-02-19

    Deep eutectic solvents (DESs) were evaluated as solvents in centrifugal partition chromatography, a liquid-liquid chromatography separation technology. To this end, the partition coefficients of ten natural compounds of different hydrophobicity were determined in non-aqueous biphasic systems containing DES. The influence of the composition of DESs and the presence of water in the biphasic system on the partition coefficient were also examined. In addition, several process relevant physical properties of the biphasic system, such as the density and viscosity of the phases, were measured. A mixture of three to four hydrophobic compounds was successfully separated in a centrifugal partition extractor using a heptane/ethanol/DES biphasic system. PMID:26810802

  1. Automated spray cleaning using flammable solvents in a glovebox environment

    SciTech Connect

    McKee, R.; Meirans, L.; Watterberg, P.; Drotning, W.

    1997-04-01

    The Clean Air Act Amendments that have phased out the use of ozone depleting solvents (ODS) have given the precision cleaning industry a challenge that they must respond to if they are to continuously and economically improve quality of service. The phase out of the ozone depleting solvents has forced industry to look to solvents such as alcohol, terpenes and other flammable solvents to perform the critical cleaning processes. These solvents are not as efficient as their ODS counterparts in terms of soil loading, cleaning time and drying when used in standard cleaning processes such as manual sprays or ultrasonic baths. They also require special equipment designs to meet part cleaning specifications and operator safety requirements. This paper describes a cleaning system that incorporates the automated spraying of flammable solvents to effectively perform precision cleaning processes. The prototype workcell under development uses a robot that sprays Isopropyl Alcohol (IPA) and terpene at pressures ranging to 600 psi in a glovebox environment. Key to the projects success was the development of software that controls the robotic system and automatically generates robotic cleaning paths from three dimensional CAD models of the items to be cleaned. Also key to the success of this prototype development is FM approval of the process and associated hardware which translates directly into operator and facilities safety.

  2. Control of Chemical Equilibrium by Solvent: A Basis for Teaching Physical Chemistry of Solutions

    ERIC Educational Resources Information Center

    Prezhdo, Oleg V.; Craig, Colleen F.; Fialkov, Yuriy; Prezhdo, Victor V.

    2007-01-01

    The study demonstrates that the solvent present in a system can highly alter and control the chemical equilibrium of a system. The results show that the dipole moment and polarizibility of a system can be highly altered by using different mixed solvents.

  3. Solubility of gold nanoparticles as a function of ligand shell and alkane solvent.

    PubMed

    Lohman, Brandon C; Powell, Jeffrey A; Cingarapu, Sreeram; Aakeroy, Christer B; Chakrabarti, Amit; Klabunde, Kenneth J; Law, Bruce M; Sorensen, Christopher M

    2012-05-14

    The solubility of ca. 5.0 nm gold nanoparticles was studied systematically as a function of ligand shell and solvent. The ligands were octane-, decane-, dodecane- and hexadecanethiols; the solvents were the n-alkanes from hexane to hexadecane and toluene. Supernatant concentrations in equilibrium with precipitated superclusters of nanoparticles were measured at room temperature (23 °C) with UV-Vis spectrophotometry. The solubility of nanoparticles ligated with decane- and dodecanethiol was greatest in n-decane and n-dodecane, respectively. In contrast, the solubility of nanoparticles ligated with octane- and hexadecanethiol showed decreasing solubility with increasing solvent chain length. In addition the solubility of the octanethiol ligated system showed a nonmonotonic solvent carbon number functionality with even numbered solvents being better solvents than neighboring odd numbered solvents. PMID:22456604

  4. NATURAL ATTENUATION OF CHLORINATED SOLVENTS

    EPA Science Inventory

    The protocol will simply describe in detail, with references and illustrations, the approach currently used by staff of the SPRD to evaluate natural attenuation of chlorinated solvents in ground water. Staff of SPRD, and staff of the Air Force Center for environmental excellence...

  5. Nanopapers for organic solvent nanofiltration.

    PubMed

    Mautner, A; Lee, K-Y; Lahtinen, P; Hakalahti, M; Tammelin, T; Li, K; Bismarck, A

    2014-06-01

    Would it not be nice to have an organic solvent nanofiltration membrane made from renewable resources that can be manufactured as simply as producing paper? Here the production of nanofiltration membranes made from nanocellulose by applying a papermaking process is demonstrated. Manufacture of the nanopapers was enabled by inducing flocculation of nanofibrils upon addition of trivalent ions. PMID:24752201

  6. Improved Purex solvent scrubbing methods

    SciTech Connect

    Mailen, J.C.; Tallent, O.K.

    1984-01-01

    Studies of hydrazine and hydroxylamine salts as solvent scrubbing agents that can be decomposed into gases are summarized. Results from testing of countercurrent scrubbers and solid sorber columns that produce lesser amounts of permanent salts are reported. The status of studies of the acid-degradation of paraffin diluent and the options for removal of long-chain organic acids is given.

  7. Replacement solvents for use in chemical synthesis

    DOEpatents

    Molnar, Linda K.; Hatton, T. Alan; Buchwald, Stephen L.

    2001-05-15

    Replacement solvents for use in chemical synthesis include polymer-immobilized solvents having a flexible polymer backbone and a plurality of pendant groups attached onto the polymer backbone, the pendant groups comprising a flexible linking unit bound to the polymer backbone and to a terminal solvating moiety. The polymer-immobilized solvent may be dissolved in a benign medium. Replacement solvents for chemical reactions for which tetrahydrofuran or diethyl may be a solvent include substituted tetrahydrofurfuryl ethers and substituted tetrahydro-3-furan ethers. The replacement solvents may be readily recovered from the reaction train using conventional methods.

  8. STABILITY OF A CYLINDRICAL SOLUTE-SOLVENT INTERFACE: EFFECT OF GEOMETRY, ELECTROSTATICS, AND HYDRODYNAMICS*

    PubMed Central

    LI, BO; SUN, HUI; ZHOU, SHENGGAO

    2015-01-01

    The solute-solvent interface that separates biological molecules from their surrounding aqueous solvent characterizes the conformation and dynamics of such molecules. In this work, we construct a solvent fluid dielectric boundary model for the solvation of charged molecules and apply it to study the stability of a model cylindrical solute-solvent interface. The motion of the solute-solvent interface is defined to be the same as that of solvent fluid at the interface. The solvent fluid is assumed to be incompressible and is described by the Stokes equation. The solute is modeled simply by the ideal-gas law. All the viscous force, hydrostatic pressure, solute-solvent van der Waals interaction, surface tension, and electrostatic force are balanced at the solute-solvent interface. We model the electrostatics by Poisson’s equation in which the solute-solvent interface is treated as a dielectric boundary that separates the low-dielectric solute from the high-dielectric solvent. For a cylindrical geometry, we find multiple cylindrically shaped equilibrium interfaces that describe polymodal (e.g., dry and wet) states of hydration of an underlying molecular system. These steady-state solutions exhibit bifurcation behavior with respect to the charge density. For their linearized systems, we use the projection method to solve the fluid equation and find the dispersion relation. Our asymptotic analysis shows that, for large wavenumbers, the decay rate is proportional to wavenumber with the proportionality half of the ratio of surface tension to solvent viscosity, indicating that the solvent viscosity does affect the stability of a solute-solvent interface. Consequences of our analysis in the context of biomolecular interactions are discussed. PMID:26877555

  9. Solvent resistance pumps of Pseudomonas putida S12: Applications in 1-naphthol production and biocatalyst engineering.

    PubMed

    Janardhan Garikipati, S V B; Peeples, Tonya L

    2015-09-20

    The solvent resistance capacity of Pseudomonas putida S12 was applied by using the organism as a host for biocatalysis and through cloning and expressing solvent resistant pump genes into Escherichia coli. P. putida S12 expressing toluene ortho mononooxygenase (TOM-Green) was used for 1-naphthol production in a water-organic solvent biphasic system. Application of P. putida S12 improved 1-naphthol production per gram cell dry weight by approximately 42% compared to E. coli. Moreover, P. putida S12 enabled the use of a less expensive solvent, decanol, for 1-naphthol production. The solvent resistant pump (srpABC) genes of P. putida S12 were cloned into a solvent sensitive E. coli strain to transfer solvent tolerance. Recombinant strains bearing srpABC genes in either a low-copy number or a high-copy number plasmid grew in the presence of saturated concentration of toluene. Both of the recombinant strains were more tolerant to 1% v/v of toxic solvents, decanol and hexane, reaching similar cell density as the no-solvent control. Reverse-transcriptase analysis revealed that the srpABC genes were transcribed in engineered strains. The results demonstrate successful transfer of the proton-dependent solvent resistance mechanism and suggest that the engineered strain could serve as more robust biocatalysts in media with organic solvents. PMID:26143210

  10. Genetic and biochemical analysis of solvent formation in Clostridium acetobutylicum

    SciTech Connect

    Bennett, G.N.; Rudolph, F.B.

    1998-05-01

    The anaerobic organism Clostridium acetobutylicum has been used for commercial production of important organic solvents due to its ability to convert a wide variety of crude substrates to acids and alcohols. Current knowledge concerning the molecular genetics, cell regulation and metabolic engineering of this organism is still rather limited. The objectives are to improve the knowledge of the molecular genetics and enzymology of Clostridia in order to make genetic alterations which will more effectively channel cell metabolism toward production of desired products. Two factors that limit butanol production in continuous cultures are: (1) The degeneration of the culture, with an increase in the proportion of cells which are incapable of solvent production. Currently isolated degenerate strains are being evaluated to analyze the molecular mechanism of degeneration to determine if it is due to a genetic loss of solvent related genes, loss of a regulatory element, or an increase in general mutagenesis. Recent studies show two general types of degenerates, one which seems to have lost essential solvent pathway genes and another which has not completely lost all solvent production capability and retains the DNA bearing solvent pathway genes. (2) The production of hydrogen which uses up reducing equivalents in the cell. If the reducing power were more fully directed to the reduction reactions involved in butanol production, the process would be more efficient. The authors have studied oxidation reduction systems related to this process. These studies focus on ferredoxin and rubredoxin and their oxidoreductases.

  11. Solvent containing processes and work practices: environmental observations

    SciTech Connect

    Kalliokoski, P.

    1986-01-01

    Even though there has been a shift toward water-based or fully solid systems, organic solvents still comprise a significant occupational health hazard. Fortunately, exposure levels can nowadays be effectively controlled by proper enclosures and ventilation in most remaining applications of organic solvents, and, generally taken, the development of occupational health conditions has been favorable on the workplaces using organic solvents. When as many as 24.2% of the 2639 solvent measurements carried out by the Institute of Occupational Health in Finland exceeded the occupational health standards between 1971 and 1976, such non-compliance levels were detected only in 3.0% of the 2823 samples taken between 1977 and 1980. The persons dealing with occupational health problems in workplaces should also be aware of the possible existence of solvent misuse. This may not develop into the level of solvent sniffing, but into a milder addiction. The workers adopt working habits that cause unnecessary exposure. Repeatedly found exceptionally high concentration levels in biological exposure tests are an indication of a possible abuse. 25 references.

  12. Impact of injection solvents on supercritical fluid chromatography.

    PubMed

    Abrahamsson, Victor; Sandahl, Margareta

    2013-09-01

    Even though there has been a rapid development in instrumentation and applications of supercritical fluid chromatography (SFC), relatively little is known about retention mechanisms compared to high-performance liquid chromatography (HPLC). Much effort has been made to characterize the influence of injection solvents on chromatographic efficiency in HPLC, however has been left rather uninvestigated in the domain of SFC. In this study properties of different injection solvents have been studied and correlated with properties of seven various analytes on three different columns, a C18, a 2-ethylpyridine and a bare-silica column. Aided by calculations of correlation coefficients and principal component analysis (PCA), the physical properties of injection solvents and the interactions between injection solvent, solute and stationary phase were investigated. The findings of this work shows that interactions capable of masking accessible silanol groups on a C18 column are of importance in order to maximize the plate number. While solvents with dipolar and hydrogen bond interaction properties are associated negatively with chromatographic efficiency using polar columns. Properties such as molar density, vapor pressure and boiling point were related to sharper peaks, mostly likely because of solubility issues of the injection solvent into the methanol-modified carbon dioxide. However, no additional solubility due to hydrogen interactions between the injection solvent and the carbon dioxide in SFC was observed. Surface tension and viscosity was not particularly associated with a decrease in plate numbers. By increasing the injection volume a stronger correlation between solubility related properties and plate numbers were obtained. Additional experiments showed that the resistance in solubility became an issue when performing partial-loop injection where additional washing solvent entered the system, thus providing broadened peaks. PMID:23899383

  13. Ultrasonic cleaning as a replacement for chlorinated solvents

    SciTech Connect

    Thompson, L.M.; Eichholtz, R.L.

    1993-04-12

    Chlorinated solvents have long been used in industry for cleaning purposes. These solvents were non-flammable, thought to be relatively of low toxicity, and worked. However, these solvents are now thought to cause environmental and health problems. Methyl chloroform (1,1,1-trichloroethane or TCA) and trichlorotrifluoroethane (CFC-113) are considered ozone depleting substances and are being regulated as such. The United States is a signatory to the Montreal Protocol and its amendments which call for a phase-out of the production of CFC-113 by the year 2000 and TCA by the year 2005. There is a move afoot to change these phase-out dates to December 31, 1995, although at this time there has been no official action taken. Other chlorinated solvents such as methylene chloride and perchloroethylene (perk) have been labeled as suspect carcinogens. Due to these health concerns, the Occupational Health and Safety Administration (OSHA) has issued proposals to lower the permissible exposure levels of these substances. All of these solvents are also considered Resource Conservation and Recovery Act (RCRA) wastes. Thus, the wastes must be handled under strict guidelines. Due to all of these concerns, finding alternatives for these solvents has become attractive. Personnel at the Martin Marietta Energy Systems Y-12 Plant in Oak Ridge, Tennessee, conducted numerous studies which investigated the use of ultrasonic cleaning with aqueous detergent as a substitute for vapor degreasing with chlorinated solvents. The first ultrasonic cleaner was installed in the plant in 1984 and numerous other cleaners have followed. Because of the success of this substitution program, personnel at the United States Army Environmental Center have funded a project to investigate the use of ultrasonics with aqueous detergent as a substitute for chlorinated solvents used in cleaning operations at the Army depots.

  14. Non-Ideal Behavior in Solvent Extraction

    SciTech Connect

    Peter Zalupski

    2011-09-01

    This report presents a summary of the work performed to meet FCR&D level 3 milestone M31SW050801, 'Complete the year-end report summarizing FY11 experimental and modeling activities.' This work was carried out under the auspices of the Non-Ideality in Solvent Extraction Systems FCR&D work package. The report summarizes our initial considerations of potential influences that non-ideal chemistry may impose on computational prediction of outcomes in solvent extraction systems. The report is packaged into three separate test cases where a robustness of the prediction by SXFIT program is under scrutiny. The computational exercises presented here emphasize the importance of accurate representation of both an aqueous and organic mixtures when modeling liquid-liquid distribution systems. Case No.1 demonstrates that non-ideal behavior of HDEHP in aliphatic diluents, such as n-dodecane, interferes with the computation. Cases No.2 and No.3 focus on the chemical complexity of aqueous electrolyte mixtures. Both exercises stress the need for an improved thermodynamic model of an aqueous environment present in the europium distribution experiments. Our efforts for year 2 of this project will focus on the improvements of aqueous and non-aqueous solution models using fundamental physical properties of mixtures acquired experimentally in our laboratories.

  15. Carbon dioxide-based supercritical fluids as IC manufacturing solvents

    SciTech Connect

    Rubin, J.B.; Davenhall, L.B.; Taylor, C.M.V.; Sivils, L.D.; Pierce, T.; Tiefert, K.

    1999-05-11

    The production of integrated circuits (IC's) involves a number of discrete steps which utilize hazardous or regulated solvents and generate large waste streams. ES&H considerations associated with these chemicals have prompted a search for alternative, more environmentally benign solvent systems. An emerging technology for conventional solvent replacement is the use of supercritical fluids based on carbon dioxide (CO{sub 2}). Research work, conducted at Los Alamos in conjunction with the Hewlett-Packard Company, has lead to the development of a CO{sub 2}-based supercritical fluid treatment system for the stripping of hard-baked photoresists. This treatment system, known as Supercritical CO{sub 2} Resist Remover, or CORR, uses a two-component solvent composed of a nonhazardous, non-regulated compound, dissolved in supercritical CO{sub 2}. The solvent/treatment system has been successfully tested on metallized Si wafers coated with negative and positive photoresist, the latter both before and after ion-implantation. A description of the experimental data will be presented. Based on the initial laboratory results, the project has progressed to the design and construction of prototype, single-wafer photoresist-stripping equipment. The integrated system involves a closed-loop, recirculating cycle which continuously cleans and regenerates the CO{sub 2}, recycles the dissolved solvent, and separates and concentrates the spent resist. The status of the current design and implementation strategy of a treatment system to existing IC fabrication facilities will be discussed. Additional remarks will be made on the use of a SCORR-type system for the cleaning of wafers prior to processing.

  16. Wash solvent reuse in paint production

    SciTech Connect

    Parsons, A.B.; Heater, K.J.; Olfenbuttel, R.F.

    1994-04-01

    The project evaluated solvent used to clean paint manufacture equipment for its utility in production of subsequent batches of solvent-borne paint. Reusing wash solvent would reduce the amount of solvent disposed of as waste. The evaluation of this wash-solvent recovery technology was conducted by Battelle Memorial Institute for the Pollution Prevention Research Branch of the U.S. Environmental Protection Agency. The evaluation was conducted with the cooperation and assistance of Vanex Color, Inc. The product quality, waste reduction/pollution prevention, and economic impacts of this technology change, as it has been implemented by Vanex, were examined. Two batches of a solvent-borne alkyd house paint were prepared at Vanex--one batch made with 100%-new solvent and the other with 30%-wash solvent--and sampled for laboratory analysis at Battelle.

  17. Initial field trials of the site characterization and analysis penetrometer system (SCAPS). Reconnaissance of Jacksonville Naval Air Station waste oil and solvents disposal site. Final report

    SciTech Connect

    Cooper, S.S.; Douglas, D.H.; Sharp, M.K.; Olsen, R.A.; Comes, G.D.

    1993-12-01

    At the request of the Naval Facilities Engineering Command (NAVFAC), Southern Division, Charleston, SC, the U.S. Army Engineer Waterways Experiment Station (WES) conducted the initial field trial of the Site Characterization and Analysis Penetrometer System (SCAPS) at Jacksonville Naval Air Station (NAS), Jacksonville FL. This work was carried out by a field crew consisting of personnel from WES and the Naval Ocean Systems Center during the period of 16 July 1990 to 14 August 1990. The SCAPS investigation at the Jacksonville NAS has two primary objectives: (a) to provide data that could be useful in formulating remediation plans for the facility and (b) to provide for the initial field trial of the SCAPS currently under development by WES for the U.S. Army Toxic and Hazardous Materials Agency (USATHAMA), now the U.S. Army Environmental Center. The original concepts for the SCAPS was to develop an integrated site screening characterization system whose capabilities would include (a) surface mapping, (b) geophysical surveys using magnetic, induced electromagnetic, and radar instruments, (c) measurements of soil strength, soil electrical resistivity, and laser-induced soil fluorometry Cone penetrometer, Site Characterization and Analysis Laser Induced Fluorescence(LIF), Penetrometer System(SCAPS) POL Contamination, using screening instrumentation mounted in a soil penetrometer, (d) soil and fluid samplers, and (e) computerized data acquisition, interpretation, and visualization. The goal of the SCAPS program is to provide detailed, rapid, and cost-effective surface and subsurface data for input to site assessment/remediation efforts.

  18. Solvent pretreatment of feed coal for briquetting

    SciTech Connect

    Martin, D.M.; Miller, M.R.

    1980-11-25

    Solvent pretreating of coal fines prior to briquetting results in coal briquettes which have no added binder and which will withstand weathering conditions better than binder containing briquettes. The solvents are generally described as organic Lewis base solvents which are capable of electron donor action, and include among others, acetone, methyl ethyl ketone, and ethylene diamine.

  19. Firing of pulverized solvent refined coal

    DOEpatents

    Derbidge, T. Craig; Mulholland, James A.; Foster, Edward P.

    1986-01-01

    An air-purged burner for the firing of pulverized solvent refined coal is constructed and operated such that the solvent refined coal can be fired without the coking thereof on the burner components. The air-purged burner is designed for the firing of pulverized solvent refined coal in a tangentially fired boiler.

  20. Solvent Extraction of Furfural From Biomass

    NASA Technical Reports Server (NTRS)

    Humphrey, M. F.

    1984-01-01

    Solvent-extraction method reduces energy required to remove furfural produced during acid hydrolysis of biomass. Acid hydrolysis performed in vessel containing both solvents and reacting ingredients. With intimate contact between solvents and aqueous hydrolyis liqour, furfural removed form liquor almost as fast as it forms.

  1. The hype with ionic liquids as solvents

    NASA Astrophysics Data System (ADS)

    Kunz, Werner; Häckl, Katharina

    2016-09-01

    In this mini review, we give our personal opinion about the present state of the art concerning Ionic Liquids, proposed as alternative solvents. In particular, we consider their different drawbacks and disadvantages and discuss the critical aspects of the research of Ionic Liquids as solvents. Finally, we point out some aspects on potentially promising Ionic Liquid solvents.

  2. Computer-controlled incinerator handles load/flow fluctuations to destroy eight solvent types

    SciTech Connect

    Not Available

    1986-05-01

    Fumes generated by up to eight different hydrocarbon solvents had to be controlled at the Polaroid Corporation's Waltham, MA facility. The solvents are used in five photographic film coating lines within the plant. There was concern that a solution might be difficult because of the quantity and variety of solvents handled. Polaroid selected a single 75,000 scfm incineration system to handle all of its process lines. Regenerative heat recovery of the incinerated solvents was determined to be most economical, reliable, and fuel efficient; the system has a 90% energy reuse efficiency. It can operate on pilot light only with solvent concentrations as low as 6% LFL (lower flammable limit). The heat energy released from the burning solvents provides all the fuel energy needed to operate the equipment and purify the fumes.

  3. A strategy for the separation of diterpenoid isomers from the root of Aralia continentalis by countercurrent chromatography: The distribution ratio as a substitute for the partition coefficient and a three-phase solvent system.

    PubMed

    Lee, Kyoung Jin; Song, Kwang Ho; Choi, Wonmin; Kim, Yeong Shik

    2015-08-01

    Aralia continentalis (Araliaceae) is widely used as a medicinal plant in East Asia. Previous studies have indicated that diterpenoid isomers (kaurenoic acid, continentalic acid, and ent-continentalic acid) are the major bioactive compounds of this plant. A new strategy was developed to alleviate difficulties in the separation of these isomers from this plant. A three-phase solvent system was applied to separate the isomers, and furthermore, the distribution ratio (Kc) was introduced as a substitute for the partition coefficient (KD). For compounds exhibiting a single equilibrium, their distributions in two immiscible phases were only affected by the partition coefficient of each solute. However, compounds that have a dissociating functional group (e.g., -COOH) are involved in two types of equilibrium in the two-phase system. In this case, the partitioning behaviors of the solutes are greatly affected by the pH of the solution. A mathematical prediction was applied for adjusting the solutions to the proper pH values. To prevent non-used phase (medium phase) waste, both the stationary phase (upper phase) and mobile phase (lower phase) were prepared on-demand without pre-saturation with the application of (1)H NMR. Each fraction obtained was collected and dried, yielding the following diterpenoid isomers from the 50mg injected sample: kaurenoic acid (19.7mg, yield: 39%) and ent-continentalic acid (21.3mg, yield: 42%). PMID:26138601

  4. Introducing deep eutectic solvents as biorenewable media for Au(I)-catalysed cycloisomerisation of γ-alkynoic acids: an unprecedented catalytic system.

    PubMed

    Rodríguez-Álvarez, María J; Vidal, Cristian; Díez, Josefina; García-Álvarez, Joaquín

    2014-11-01

    Cycloisomerisation of γ-alkynoic acids into cyclic enol-lactones was conveniently performed, for the first time, in the eutectic mixture 1ChCl/2Urea under standard bench experimental conditions (at room temperature, under air and in the absence of co-catalysts) by using a new iminophosphorane-Au(I) complex as the catalyst. Furthermore, the catalytic system could be recycled up to four runs. PMID:25215857

  5. Solvent viscosity dependence for enzymatic reactions

    NASA Astrophysics Data System (ADS)

    Sitnitsky, A. E.

    2008-09-01

    A mechanism for relationship of solvent viscosity with reaction rate constant at enzyme action is suggested. It is based on fluctuations of electric field in enzyme active site produced by thermally equilibrium rocking (crankshaft motion) of the rigid plane (in which the dipole moment ≈3.6 D lies) of a favourably located and oriented peptide group (or may be a few of them). Thus the rocking of the plane leads to fluctuations of the electric field of the dipole moment. These fluctuations can interact with the reaction coordinate because the latter in its turn has transition dipole moment due to separation of charges at movement of the reacting system along it. The rocking of the plane of the peptide group is sensitive to the microviscosity of its environment in protein interior and the latter is a function of the solvent viscosity. Thus we obtain an additional factor of interrelationship for these characteristics with the reaction rate constant. We argue that due to the properties of the crankshaft motion the frequency spectrum of the electric field fluctuations has a sharp resonance peak at some frequency and the corresponding Fourier mode can be approximated as oscillations. We employ a known result from the theory of thermally activated escape with periodic driving to obtain the reaction rate constant and argue that it yields reliable description of the pre-exponent where the dependence on solvent viscosity manifests itself. The suggested mechanism is shown to grasp the main feature of this dependence known from the experiment and satisfactorily yields the upper limit of the fractional index of a power in it.

  6. Skin barrier modification with organic solvents.

    PubMed

    Barba, Clara; Alonso, Cristina; Martí, Meritxell; Manich, Albert; Coderch, Luisa

    2016-08-01

    The primary barrier to body water loss and influx of exogenous substances resides in the stratum corneum (SC). The barrier function of the SC is provided by patterned lipid lamellae localized to the extracellular spaces between corneocytes. SC lipids are intimately involved in maintaining the barrier function. It is generally accepted that solvents induce cutaneous barrier disruption. The main aim of this work is the evaluation of the different capability of two solvent systems on inducing changes in the SC barrier function. SC lipid modifications will be evaluated by lipid analysis, water sorption/desorption experiments, confocal-Raman visualization and FSTEM images. The amount of SC lipids extracted by chloroform/methanol was significantly higher than those extracted by acetone. DSC results indicate that acetone extract has lower temperature phase transitions than chloroform/methanol extract. The evaluation of the kinetics of the moisture uptake and loss demonstrated that when SC is treated with chloroform/methanol the resultant sample reach equilibrium in shorter times indicating a deterioration of the SC tissue with higher permeability. Instead, acetone treatment led to a SC sample with a decreased permeability thus with an improved SC barrier function. Confocal-Raman and FSTEM images demonstrated the absence of the lipids on SC previously treated with chloroform/methanol. However, they were still present when the SC was treated with acetone. Results obtained with all the different techniques used were consistent. The results obtained increases the knowledge of the interaction lipid-solvent, being this useful for understanding the mechanism of reparation of damaged skin. PMID:27184268

  7. Obtaining Perpendicular Block Copolymer Morphologies with Solvent Annealing

    NASA Astrophysics Data System (ADS)

    Gotrik, Kevin; Son, Jeong Gon; Hannon, Adam; Ross, Caroline

    2012-02-01

    Being able to control block copolymer (BCP) thin film morphology and orientation is of interest for lithographic applications where creation of feature sizes ranging from 10-100nm is desirable. Perpendicular oriented cylinders and lamellae are especially valuable due to their high aspect ratios but are difficult to achieve in BCP systems with a large Flory-Huggins interaction parameter (χ). We explore the morphological phase behavior that films (30-200nm) of poly(styrene-b-dimethylsiloxane) (PS-PDMS, 45kg/mol, χ=0.26) exhibit under different solvent conditions with focus on conditions that produce perpendicular microdomains. The microdomains are revealed by selectively etching the PS with an oxygen plasma (50W CF4). Variation in the solvent vapor conditions results in selective swelling of the different blocks of the copolymer depending on the relative Hildebrand solubility parameters (e.g. PS- 18.5, toluene-18.3 MPâ(1/2)), affecting the microdomain morphologies, and the solvent evaporation and deswelling process influences the orientation of the microdomains. Two different strategies are presented involving solvent vapor annealing that result in perpendicular morphologies in films of PS-PDMS and the results are compared with self-consistent field theory modeling of solvent-polymer systems.

  8. Acute toxicity of organic solvents on Artemia salina

    SciTech Connect

    Barahona-Gomariz, M.V.; Sanz-Barrera, F.; Sanchez-Fortun, S. )

    1994-05-01

    Organic solvents can make their way into the environment as industrial wastes and components of pesticide formulation. In laboratory bioassays, the use of organic formulations. In laboratory bioassays, the use of organic solvents is often unavoidable, since many pesticides and organic pollutants have low water solubility and must be dissolved in organic solvents prior to addition into experimental systems. In the toxicant bioassays, invertebrates with special reference to aquatic arthropod species are of recent interest as test models due to the need for developing nonmammalian test systems. Toxic effects of organic solvents have been tested with a few aquatic species, but information on the comparative toxicity of solvents towards Artemia salina is not available. Artemia salina have, within recent years, gained popularity as test organisms for short-term toxicity testing. Because Artemia salina exhibit rapid development and growth within 48 hr after hatch, their potential as a model organism for toxicology screening has been considered. To do this, synchronous populations of Artemia salina at different development intervals must be available.

  9. Oil recovery from petroleum sludge through ultrasonic assisted solvent extraction.

    PubMed

    Hu, Guangji; Li, Jianbing; Huang, Shuhui; Li, Yubao

    2016-09-18

    The effect of ultrasonic assisted extraction (UAE) process on oil recovery from refinery oily sludge was examined in this study. Two types of UAE treatment including UAE probe (UAEP) system and UAE bath (UAEB) system were investigated. Their oil recovery efficiencies were compared to that of mechanical shaking extraction (MSE). Three solvents including cyclohexane (CHX), ethyl acetate (EA), and methyl ethyl ketone (MEK) were examined as the extraction solvents. The influence of experimental factors on oil and solvent recovery was investigated using an orthogonal experimental design. Results indicated that solvent type, solvent-to-sludge (S/S) ratio, and treatment duration could have significant effects on oil recovery in UAE treatment. Under the optimum conditions, UAEP treatment can obtain an oil recovery of 68.8% within 20 s, which was higher than that (i.e., 62.0%) by MSE treatment after 60 min' extraction. UAEB treatment can also obtain a promising oil recovery within shorter extraction duration (i.e., 15 min) than MSE. UAE was thus illustrated as an effective and improved approach for oily sludge recycling. PMID:27294566

  10. Insecticide solvents: interference with insecticidal action.

    PubMed

    Brattsten, L B; Wilkinson, C F

    1977-06-10

    Several commercial solvent mixtures commonly used as insecticide carriers in spray formulations increase by more than threefold the microsomal N-demethylation of p-chloro N-methylaniline in midgut preparations of southern army-worm (Spodoptera eridania) larvae exposed orally to the test solvents. Under laboratory conditions, the same solvent mixtures exhibit a protective action against the in vivo toxicity of the insecticide carbaryl to the larvae. The data are discussed with respect to possible solvent-insecticide interactions occurring under field conditions and, more broadly, to potential toxicological hazards of these solvents to humans. PMID:860135

  11. Batch extracting process using magneticparticle held solvents

    DOEpatents

    Nunez, Luis; Vandergrift, George F.

    1995-01-01

    A process for selectively removing metal values which may include catalytic values from a mixture containing same, wherein a magnetic particle is contacted with a liquid solvent which selectively dissolves the metal values to absorb the liquid solvent onto the magnetic particle. Thereafter the solvent-containing magnetic particles are contacted with a mixture containing the heavy metal values to transfer metal values into the solvent carried by the magnetic particles, and then magnetically separating the magnetic particles. Ion exchange resins may be used for selective solvents.

  12. Water as a solvent for life

    NASA Astrophysics Data System (ADS)

    Pohorille, Andrew

    2015-08-01

    “Follow the water” is our basic strategy in searching for life in the universe. The universality of water as the solvent for living systems is usually justified by arguing that water supports the rich organic chemistry that seeds life, but alternative chemistries are possible in other organic solvents. Here, other, essential criteria for life that have not been sufficiently considered so far, will be discussed.Life is based on non-covalent interactions. They might be either specific (enzyme-substrate interactions, selective ion transport) or nonspecific (lipid-lipid or lipid-protein interactions). Their strength needs to be properly tuned, and this is mediated by the solvent. If interactions are too weak, there might be undesired response to natural fluctuations of physical and chemical parameters. If they are too strong it could impede kinetics and energetics of cellular processes. Thus, the solvent must allow for balancing these interactions, which provides strong constraints for life.Water exhibits a remarkable trait that it promotes both solvophobic and solvophilic interactions. Solvophobic (hydrophobic in the case of water) interactions are necessary for self-organization of matter. They are responsible, among others, for the formation of membranes and protein folding. The diversity of structures supported by hydrophobic interactions is the hallmark of terrestrial life responsible for its diversity, evolution and the ability to survive environmental changes. Solvophilic interactions, in turn, are needed to ensure solubility of polar species. Water offers a large temperature domain of stable liquid and the characteristic hydrophobic effects are a consequence of the temperature insensitivity of essential properties of its liquid state. Water, however, might not be the only liquid with these properties. Properties of water and other pure liquids or their mixtures that have a high dielectric constant and simultaneously support self-organization will be

  13. Effect of solvents on obligately anaerobic bacteria.

    PubMed

    Rodriguez Martinez, Maria Fernanda; Kelessidou, Niki; Law, Zoe; Gardiner, John; Stephens, Gill

    2008-02-01

    Growth of Acetobacterium woodii and Clostridium sporogenes was studied in the presence of water-immiscible solvents. Nitrogen purging, vacuum distillation or distillation under nitrogen were all suitable as methods to remove oxygen from the solvents, since growth rates and yields of A. woodii were unaffected in the presence of tetradecane which had been degassed by these methods. Varying the solvent volume from 20% to 80% of the culture volume had little effect on growth rate of A. woodii. A.woodii was relatively sensitive to organic solvents since growth was inhibited by alkanes with logP(octanol/water) values below 7.1. C. sporogenes was less solvent sensitive, since it grew without inhibition when the logP of the solvent was > or = 6.6. Nevertheless, both A. woodii and C. sporogenes were more sensitive to solvent polarity than aerobic bacteria. PMID:18083050

  14. Characterization of the toxicological hazards of hydrocarbon solvents.

    PubMed

    Mckee, Richard H; Adenuga, M David; Carrillo, Juan-Carlos

    2015-04-01

    Hydrocarbon solvents are liquid hydrocarbon fractions derived from petroleum processing streams, containing only carbon and hydrogen atoms, with carbon numbers ranging from approximately C5-C20 and boiling between approximately 35-370°C. Many of the hydrocarbon solvents have complex and variable compositions with constituents of 4 types, alkanes (normal paraffins, isoparaffins, and cycloparaffins) and aromatics (primarily alkylated one- and two-ring species). Because of the compositional complexity, hydrocarbon solvents are now identified by a nomenclature ("the naming convention") that describes them in terms of physical/chemical properties and compositional elements. Despite the compositional complexity, most hydrocarbon solvent constituents have similar toxicological properties, and the overall toxicological hazards can be characterized in generic terms. To facilitate hazard characterization, the solvents were divided into 9 groups (categories) of substances with similar physical and chemical properties. Hydrocarbon solvents can cause chemical pneumonitis if aspirated into the lung, and those that are volatile can cause acute CNS effects and/or ocular and respiratory irritation at exposure levels exceeding occupational recommendations. Otherwise, there are few toxicologically important effects. The exceptions, n-hexane and naphthalene, have unique toxicological properties, and those solvents containing constituents for which classification is required under the Globally Harmonized System (GHS) are differentiated by the substance names. Toxicological information from studies of representative substances was used to fulfill REACH registration requirements and to satisfy the needs of the OECD High Production Volume (HPV) initiative. As shown in the examples provided, the hazard characterization data can be used for hazard classification and for occupational exposure limit recommendations. PMID:25868376

  15. Statistical mechanical treatment of reactive solvent extraction

    NASA Astrophysics Data System (ADS)

    Lukhezo, M.; Dunne, L. J.; Reuben, B. G.; Verrall, M. S.

    1997-07-01

    A statistical mechanical lattice model of a reactive solvent extraction process involving two phase liquid-liquid ion exchange is presented. It is applied to literature data on the extraction of alipathic carboxylic acids by quaternary ammonium salts. The Helmholtz free energy of the system is constructed and minimised subject to the constraints of mass balance and electroneutrality. The equations defining the equilibrium conditions have been solved numerically for a range of interaction parameters and hence the equilibrium concentrations of the various partitioned species are obtained. These interaction parameters are compared with experiment. The intuitive notion that the extent of partition is dominated by electrostatic solute-extractant interactions is shown to neglect various other interactions that may, in some systems, be important.

  16. Proton solvation in protic and aprotic solvents.

    PubMed

    Rossini, Emanuele; Knapp, Ernst-Walter

    2016-05-01

    Protonation pattern strongly affects the properties of molecular systems. To determine protonation equilibria, proton solvation free energy, which is a central quantity in solution chemistry, needs to be known. In this study, proton affinities (PAs), electrostatic energies of solvation, and pKA values were computed in protic and aprotic solvents. The proton solvation energy in acetonitrile (MeCN), methanol (MeOH), water, and dimethyl sulfoxide (DMSO) was determined from computed and measured pKA values for a specially selected set of organic compounds. pKA values were computed with high accuracy using a combination of quantum chemical and electrostatic approaches. Quantum chemical density functional theory computations were performed evaluating PA in the gas-phase. The electrostatic contributions of solvation were computed solving the Poisson equation. The computations yield proton solvation free energies with high accuracy, which are in MeCN, MeOH, water, and DMSO -255.1, -265.9, -266.3, and -266.4 kcal/mol, respectively, where the value for water is close to the consensus value of -265.9 kcal/mol. The pKA values of MeCN, MeOH, and DMSO in water correlates well with the corresponding proton solvation energies in these liquids, indicating that the solvated proton was attached to a single solvent molecule. © 2016 Wiley Periodicals, Inc. PMID:26786747

  17. Solvent vapor sensor & bolus detector for radiosynthesis

    SciTech Connect

    Ducret, A.; Veyre, L.; Landais, P.; Le Bars, D.

    1994-12-31

    One of the key points in the Hamacher method of [{sup 18}F]FDG synthesis, in common with many other chemical reactions, is the need for an anhydrous state of the {sup 18}F/Kryptofix complex before addition of the mannose triflate. This is usually done by ensuring enough time elapses after the additions of acetonitrile for azeotropic distillation of the carbonate/K 2.2.2 solution, with the resulting possibility of overheating the dry kryptofix adduct. In this system, the entire [{sup 18}F]FDG synthesis is controlled by a Siemens Simatic S100 PLC; the fluorination takes place in an open Sigradur{reg_sign} vessel. The authors choose to automate this evaporation step with the control of this little vapor sensor, used otherwise to detect explosive atmospheres. The sensor is based on a miniature flammable gas sensor designed for detection of propane, butane, natural and {open_quotes}town{close_quotes} gas, using the platinum wire (pellistor) principle. Acetonitrile and organic flammable solvents are easily detected, the difference ({approximately} 30 mV) between the platinum sensing filament and compensating filament is measured and drives a K relay interfacing the Simatic PLC. Response time is within 3 seconds after complete disappearance of the solvent.

  18. Toxic effects of organic solvents on the growth of chlorella vulgaris and Selenastrum capicornutum

    SciTech Connect

    El Jay, A.

    1996-10-01

    Organic solvents can make their way into the environment as industrial wastes and components of pesticide formulations. In laboratory bioassays, the use of organic solvents is unavoidable since many pesticides and organic pollutants have low water solubilities and need to be dissolved in organic solvents prior to addition into experimental systems. So, one area of concern with laboratory bioassays is the stress imposed on test organisms by organic solvents. Most reports on the comparative toxicity of solvents towards test organisms deals with the effects of solvents on fish and aquatic invertebrates with some data available for blue-green algae and green algae. The US Environmental Protection Agency recommends maximum allowable limits of 0.05% solvent for acute tests and 0.01% for chronic tests but, in the literature, the nature of the solvent and the final concentration used vary among the different authors and are often higher than EPA limits due to problems associated with the use of small test volumes and toxicant solubility. Organic solvents can cause toxic effects on their own, but it has been also reported that they can interact with pesticides to alter toxicity. The first step in choosing a solvent for use in bioassays should be a detailed screening to identify solvents with inherently low toxicity to the test organism, followed by an interaction study (pesticide and solvent interactions) to choose the best concentration to use. The purpose of this study is to compare the inhibitory effects of our solvents used in pesticide bioassays towards the growth of two green algae. 18 refs., 4 figs., 1 tabs.

  19. Isolation and characterization of solvent-tolerant Pseudomonas putida strain T-57, and its application to biotransformation of toluene to cresol in a two-phase (organic-aqueous) system.

    PubMed

    Faizal, Irvan; Dozen, Kana; Hong, Chang Soo; Kuroda, Akio; Takiguchi, Noboru; Ohtake, Hisao; Takeda, Koji; Tsunekawa, Hiroshi; Kato, Junichi

    2005-12-01

    Pseudomonas putida T-57 was isolated from an activated sludge sample after enrichment on mineral salts basal medium with toluene as a sole source of carbon. P. putida T-57 utilizes n-butanol, toluene, styrene, m-xylene, ethylbenzene, n-hexane, and propylbenzene as growth substrates. The strain was able to grow on toluene when liquid toluene was added to mineral salts basal medium at 10-90% (v/v), and was tolerant to organic solvents whose log P(ow) (1-octanol/water partition coefficient) was higher than 2.5. Enzymatic and genetic analysis revealed that P. putida T-57 used the toluene dioxygenase pathway to catabolize toluene. A cis-toluene dihydrodiol dehydrogenase gene (todD) mutant of T-57 was constructed using a gene replacement technique. The todD mutant accumulated o-cresol (maximum 1.7 g/L in the aqueous phase) when cultivated in minimal salts basal medium supplemented with 3% (v/v) toluene and 7% (v/v) 1-octanol. Thus, T-57 is thought to be a good candidate host strain for bioconversion of hydrophobic substrates in two-phase (organic-aqueous) systems. PMID:15947959

  20. Conformation of a flexible chain in explicit solvent: exact solvation potentials for short Lennard-Jones chains.

    PubMed

    Taylor, Mark P; Adhikari, Shishir R

    2011-07-28

    The average conformation of a flexible chain molecule in solution is coupled to the local solvent structure. In a dense solvent, local chain structure often mirrors the pure solvent structure, whereas, in a dilute solvent, the chain can strongly perturb the solvent structure which, in turn, can lead to either chain expansion or compression. Here we use Monte Carlo (MC) simulation to study such solvent effects for a short Lennard-Lones (LJ) chain in monomeric LJ solvent. For an n-site chain molecule in solution these many-body solvent effects can be formally mapped to an n-body solvation potential. We have previously shown that for hard-sphere and square-well chain-in-solvent systems this n-body potential can be decomposed into a set of two-body potentials. Here, we show that this decomposition is also valid for the LJ system. Starting from high precision MC results for the n = 5 LJ chain-in-solvent system, we use a Boltzmann inversion technique to compute numerically exact sets of two-body solvation potentials which map the many-body chain-in-solvent problem to a few-body single-chain problem. We have carried out this mapping across the full solvent phase diagram including the dilute vapor, dense liquid, and supercritical regions and find that these sets of solvation potentials are able to encode the complete range of solvent effects found in the LJ chain-in-solvent system. We also show that these two-site solvation potentials can be used to obtain accurate multi-site intramolecular distribution functions and we discuss the application of these exact short chain potentials to the study of longer chains in solvent. PMID:21806157

  1. Solvent mediated self-assembly of solids

    SciTech Connect

    De Yoreo, J.; Wilson, W.D.; Palmore, T.

    1997-12-12

    Solvent-mediated crystallization represents a robust approach to self-assembly of nanostructures and microstructures. In organic systems, the relative ease with which the structure of hydrogen- bonded molecules can be manipulated allows for generation of a wide variety of nanoscale crystal structures. In living organisms, control over the micron-to-millimeter form of inorganic crystals is achieved through introduction of bio-organic molecules. The purpose of this proposal is to understand the interplay between solution chemistry, molecular structure, surface chemistry, and the processes of nucleation and crystal growth in solvent-mediated systems, with the goal of developing the atomic and molecular basis of a solvent-mediated self-assembly technology. We will achieve this purpose by: (1) utilizing an atomic force microscopy (AFM) approach that provides in situ, real time imaging during growth from solutions, (2) by modifying kinetic Monte Carlo (KMC) models to include solution-surface kinetics, (3) by introducing quantum chemistry (QC) calculations of the potentials of the relevant chemical species and the near-surface structure of the solution, and (4) by utilizing molecular dynamics (MD) simulations to identify the minimum energy pathways to the solid state. Our work will focus on two systems chosen to address both the manometer and micron-to-millimeter length scales of assembly, the family of 2,5- diketopiperazines (X-DKPs) and the system of CaCO{sub 3} with amino acids. Using AFM, we will record the evolution of surface morphology, critical lengths, step speeds, and step-step interactions as a function of supersaturation and temperature. In the case of the X-DKPs, these measurements will be repeated as the molecular structure of the growth unit is varied. In the case of CaCO{sub 3}, they will be performed as a function of solution chemistry including pH, ionic strength, and amino acid content. In addition, we will measure nucleation rates and orientations of

  2. Neurobehavioral and health-related deficits in solvent-exposed painters.

    PubMed

    Grosch, J W; Neale, A V; Demers, R Y

    1996-11-01

    The health status of 133 solvent-exposed painters was evaluated using the Neurobehavioral Evaluation System (NES) and blood test results from a physical exam. The comparison group consisted of 51 sheetmetal workers, minimally exposed to solvents. Degree of solvent exposure was calculated using three different indices derived from questionnaire responses. Multivariate analyses, adjusted for age, alcohol consumption, and smoking, indicated that painters performed less well on the symbol digit learning and vocabulary tasks. Evidence was also found for a dose-effect relationship, particularly when several features of the work environment were considered in estimating exposure. Degree of solvent exposure predicted levels of serum lead, BUN, and SGOT. These findings indicate that questionnaire-based measures of solvent exposure can be useful predictors of neurobehavioral and health-related deficits. Verbal ability, often used by researchers as a measure of premorbid functioning, may be adversely affected by solvent exposure. PMID:8909612

  3. Nonequilibrium solvent effects in Born-Oppenheimer molecular dynamics for ground and excited electronic states

    NASA Astrophysics Data System (ADS)

    Bjorgaard, J. A.; Velizhanin, K. A.; Tretiak, S.

    2016-04-01

    The effects of solvent on molecular processes such as excited state relaxation and photochemical reaction often occurs in a nonequilibrium regime. Dynamic processes such as these can be simulated using excited state molecular dynamics. In this work, we describe methods of simulating nonequilibrium solvent effects in excited state molecular dynamics using linear-response time-dependent density functional theory and apparent surface charge methods. These developments include a propagation method for solvent degrees of freedom and analytical energy gradients for the calculation of forces. Molecular dynamics of acetaldehyde in water or acetonitrile are demonstrated where the solute-solvent system is out of equilibrium due to photoexcitation and emission.

  4. Nonequilibrium solvent effects in Born-Oppenheimer molecular dynamics for ground and excited electronic states.

    PubMed

    Bjorgaard, J A; Velizhanin, K A; Tretiak, S

    2016-04-21

    The effects of solvent on molecular processes such as excited state relaxation and photochemical reaction often occurs in a nonequilibrium regime. Dynamic processes such as these can be simulated using excited statemolecular dynamics. In this work, we describe methods of simulating nonequilibrium solvent effects in excited statemolecular dynamics using linear-response time-dependent density functional theory and apparent surface charge methods. These developments include a propagation method for solvent degrees of freedom and analytical energy gradients for the calculation of forces. Molecular dynamics of acetaldehyde in water or acetonitrile are demonstrated where the solute-solvent system is out of equilibrium due to photoexcitation and emission. PMID:27389206

  5. SOLVENT EXTRACTION PROCESS FOR PLUTONIUM

    DOEpatents

    Seaborg, G.T.

    1959-04-14

    The separation of plutonium from aqueous inorganic acid solutions by the use of a water immiscible organic extractant liquid is described. The plutonium must be in the oxidized state, and the solvents covered by the patent include nitromethane, nitroethane, nitropropane, and nitrobenzene. The use of a salting out agents such as ammonium nitrate in the case of an aqueous nitric acid solution is advantageous. After contacting the aqueous solution with the organic extractant, the resulting extract and raffinate phases are separated. The plutonium may be recovered by any suitable method.

  6. Solvent refined coal (SRC) process

    SciTech Connect

    Not Available

    1980-12-01

    This report summarizes the progress of the Solvent Refined Coal (SRC) project by The Pittsburg and Midway Coal Mining Co. at the SRC Pilot Plant in Fort Lewis, Washington and the Gulf Science and Technology Company Process Development Unit (P-99) in Harmarville, Pennsylvania, for the Department of Energy during the month of October, 1980. The Fort Lewis Pilot Plant was shut down the entire month of October, 1980 for inspection and maintenance. PDU P-99 completed two runs during October investigating potential start-up modes for the Demonstration Plant.

  7. Solvent and media effects on the photophysics of naphthoxazole derivatives.

    PubMed

    Curitol, Manuel; Ragas, Xavier; Nonell, Santi; Pizarro, Nancy; Encinas, María V; Rojas, Pedro; Zanocco, Renzo P; Lemp, Else; Günther, Germán; Zanocco, Antonio L

    2013-01-01

    The photophysical properties of 2-phenyl-naphtho[1,2-d][1,3]oxazole, 2(4-N,N-dimethylaminophenyl)naphtho[1,2-d][1,3]oxazole and 2(4-N,N-diphenylaminophenyl) naphtho[1,2-d][1,3]oxazole were studied in a series of solvents. UV-Vis absorption spectra are insensitive to solvent polarity whereas the fluorescence spectra in the same solvent set show an important solvatochromic effect leading to large Stokes shifts. Linear solvation energy relationships were employed to correlate the position of fluorescence spectra maxima with microscopic empirical solvent parameters. This study indicates that important intramolecular charge transfer takes place during the excitation process. In addition, an analysis of the solvatochromic behavior of the UV-Vis absorption and fluorescence spectra in terms of the Lippert-Mataga equation shows a large increase in the excited-state dipole moment, which is also compatible with the formation of an intramolecular charge-transfer excited state. We propose both naphthoxazole derivatives as suitable fluorescent probes to determine physicochemical microproperties in several systems and as dyes in dye lasers; consequence of their high fluorescence quantum yields in most solvents, their large molar absorption coefficients, with fluorescence lifetimes in the range 1-3 ns as well as their high photostability. PMID:23834078

  8. Neurotoxicity of industrial solvents: a review of the literature

    SciTech Connect

    Baker, E.L. Jr.; Smith, T.J.; Landrigan, P.J.

    1985-01-01

    Organic solvents, particularly stryrene, are used widely in boatbuilding. They may be absorbed by workers either through the respiratory tract or the skin. Uptake is influenced by level and duration of exposure, work load, and specific physiochemical features of each solvent, as well as by work practices and use of protective equipment. Kinetics of metabolism and excretion kinetics are highly variable among compounds. Metabolites can be measured in blood, urine, or exhaled breath and may serve as indirect indices of absorption. Acute high-dose exposure to organic solvents can produce a transient narcotic effect on the central nervous system. This effect occurs in proportion to brain dose, which in turn is determined by intensity and duration of exposure. Additionally, chronic exposures to organic solvents have been reported to produce an increased frequency of neurologic signs and symptoms. These findings include peripheral neuropathies and toxic encephalopathies. The latter are characterized by alterations in affect, memory loss, and impaired cognition. Concern exists that prolonged excessive exposure to organic solvents may lead to premature and persistent dementia in certain workers. 65 references.

  9. SXLSQA. For the Interpretation of Solvent Extraction Data

    SciTech Connect

    Baes, C.F. Jr; Moyer, B.A.

    1992-01-01

    SXLSQA models solvent extraction systems involving an acidic and/or a neutral reagent in an organic solvent that can extract from an aqueous solution one or two cations in addition to H plus and one or two anions in addition to OH minus. In modelling data, any number of product species can be assumed to form in either phase. Activity coefficients of species in the aqueous phase can be calculated by the Pitzer treatment and in the organic phase by Hildebrand-Scott treatment.

  10. The solvent component of macromolecular crystals

    PubMed Central

    Weichenberger, Christian X.; Afonine, Pavel V.; Kantardjieff, Katherine; Rupp, Bernhard

    2015-01-01

    The mother liquor from which a biomolecular crystal is grown will contain water, buffer molecules, native ligands and cofactors, crystallization precipitants and additives, various metal ions, and often small-molecule ligands or inhibitors. On average, about half the volume of a biomolecular crystal consists of this mother liquor, whose components form the disordered bulk solvent. Its scattering contributions can be exploited in initial phasing and must be included in crystal structure refinement as a bulk-solvent model. Concomitantly, distinct electron density originating from ordered solvent components must be correctly identified and represented as part of the atomic crystal structure model. Herein, are reviewed (i) probabilistic bulk-solvent content estimates, (ii) the use of bulk-solvent density modification in phase improvement, (iii) bulk-solvent models and refinement of bulk-solvent contributions and (iv) modelling and validation of ordered solvent constituents. A brief summary is provided of current tools for bulk-solvent analysis and refinement, as well as of modelling, refinement and analysis of ordered solvent components, including small-molecule ligands. PMID:25945568

  11. The solvent component of macromolecular crystals.

    PubMed

    Weichenberger, Christian X; Afonine, Pavel V; Kantardjieff, Katherine; Rupp, Bernhard

    2015-05-01

    The mother liquor from which a biomolecular crystal is grown will contain water, buffer molecules, native ligands and cofactors, crystallization precipitants and additives, various metal ions, and often small-molecule ligands or inhibitors. On average, about half the volume of a biomolecular crystal consists of this mother liquor, whose components form the disordered bulk solvent. Its scattering contributions can be exploited in initial phasing and must be included in crystal structure refinement as a bulk-solvent model. Concomitantly, distinct electron density originating from ordered solvent components must be correctly identified and represented as part of the atomic crystal structure model. Herein, are reviewed (i) probabilistic bulk-solvent content estimates, (ii) the use of bulk-solvent density modification in phase improvement, (iii) bulk-solvent models and refinement of bulk-solvent contributions and (iv) modelling and validation of ordered solvent constituents. A brief summary is provided of current tools for bulk-solvent analysis and refinement, as well as of modelling, refinement and analysis of ordered solvent components, including small-molecule ligands. PMID:25945568

  12. Solvent type influence on thymidine UV-sensitivity

    NASA Astrophysics Data System (ADS)

    Nikolaev, A. I.; Paston, S. V.

    2015-12-01

    Thymine is the most sensitive DNA nucleobase to UV-irradiation. In the thymidine solution the photoreactions probability is in dependence on the solvent properties which determine stacking-mediated thymidine association and lifetime of excited states. In this work we investigated the degree of UV-irradiation induced thymidine damages in water, salt (NaCl) and ethanol solvents using UV absorption and circular dichroism (CD) spectrometry, and MS ESI method. In the explored systems thymidine association degree rose in the following solvent order: 1 M NaCl, water, ethanol. UV-absorbance and CD intensity fell in the greater extent in the ethanol and water-salt solutions than in water. So the experiment showed that the association degree of thymidine in the solution does not play a main role in its photosensitivity.

  13. Single polymer gating of channels under a solvent gradient

    NASA Astrophysics Data System (ADS)

    Nath, S.; Foster, D. P.; Giri, D.; Kumar, S.

    2013-11-01

    We study the effect of a gradient of solvent quality on the coil-globule transition for a polymer in a narrow pore. A simple self-attracting, self-avoiding walk model of a polymer in solution shows that the variation in the strength of the interaction across the pore leads the system to go from one regime (good solvent) to the other (poor solvent) across the channel. This may be thought to be analogous to thermophoresis, where the polymer goes from the hot region to the cold region under the temperature gradient. The behavior of short chains is studied using exact enumeration while the behavior of long chains is studied using transfer matrix techniques. The distribution of the monomer density across the layer suggests that a gatelike effect can be created, with potential applications as a sensor.

  14. Solvent Effects on Rates and Equilibria: A Practical Approach.

    ERIC Educational Resources Information Center

    Buncel, Erwin; Wilson, Harold

    1980-01-01

    Described is the transfer function approach which can be applied to a system by measuring the appropriate activation parameters. This approach is conceptually simple and has many mechanistic applications, among which are solvent and structural effects on rates and equilibrium. (Author/DS)

  15. Acidic solvent extraction of gossypol from cottonseed meal

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In order to expand the use of cottonseed meal in animal feeding, extraction of the meal gossypol was studied with acetic acetone- and ethanol-based solutions. Phosphoric acid was added to hydrolyze and release gossypol bound within the meal. Both solvent systems were effective at reducing gossypo...

  16. SITE TECHNOLOGY CAPSULE: TERRA-KLEEN SOLVENT EXTRACTION TECHNOLOGY

    EPA Science Inventory

    Remediation of PCBs in soils has been difficult to implement on a full-scale, cost-effective basis. The Terra-Kleen solvent extraction system has overcome many of the soil handling, contaminant removal, and regulatory restrictions that have made it difficult to implement a cost-e...

  17. Interaction between Mo132 nanocluster polyoxometalate and solvents

    NASA Astrophysics Data System (ADS)

    Ostroushko, A. A.; Safronov, A. P.; Tonkushina, M. O.; Korotaev, V. Yu.; Barkov, A. Yu.

    2014-12-01

    The interaction between solid Mo132 nanocluster polyoxometalate with the structure of a keplerate and solvents of different natures (e.g., water, alcohols, hexane, and tetrachloromethane) is studied thermochemically. NMR spectroscopy is used to analyze interactions in solid polyoxometalate-organic compound systems in a gaseous medium. Data are collected on sorption interactions between a Mo132 nanocluster and camphor.

  18. Predicting solvent effects in organosolv treatment of Southern yellow pine

    SciTech Connect

    Hansen, S.M.; April, G.C.

    1981-01-01

    The bulk delignification of Southern Yellow Pine using various organic solvent systems has been found to occur in two distinct phases which can be described by first order kinetics. These results are consistent with the findings in the literature. In determining the effect of temperature on the apparent rate constants in several solvent systems (aqueous solutions of ethanol, n-butanol, phenol and butyl cellosolve), the delignification data were analyzed using transition state theory. This analysis showed that an isokinetic relationship exists for both the residual pulp and lignin in the delignification reactions. The existence of an isokinetic relationship is strong evidence that changing the solvent system does not change the mechanisms involved in the removal of total wood or lignin. The isokinetic temperature for the residual pulp remaining in Southern Yellow Pine delignification was found to be 597.3 plus or minus 30.4 degrees K. For the residual the isokinetic temperature was found to be 545.6 plus or minus 25.6 degrees K. Using the isokinetic relationship obtained from the set of baseline data, and a single experimentally determined rate constant from a new solvent system (THFA/water), the apparent rate constants at other temperatures in the range of interest were predicted within one percent of the experimentally determined values.

  19. Electrochemistry in deep eutectic solvents.

    PubMed

    Nkuku, Chiemela A; LeSuer, Robert J

    2007-11-22

    We report the cyclic voltammetry, chronoamperometry, and scanning electrochemical microscopy of ferrocene dissolved in deep eutectic solvents (DES), consisting of choline chloride (ChCl) and either trifluoroacetamide (TFA) or malonic acid as the hydrogen-bond donor. Despite the use of ultramicroelectrodes, which were required due to the modest conductivities of the DES employed, linear diffusion behavior was observed in cyclic voltammetric experiments. The high viscosity of 1:2 ChCl/TFA relative to non-aqueous electrochemical solvents leads to a low diffusion coefficient, 2.7 x 10(-8) cm2 s(-1) for ferrocene in this medium. Because of the difficulties in achieving steady-state conditions, SECM approach curves were tip velocity dependent. Under certain conditions, SECM approach curves to an insulating substrate displayed a positive-feedback response. Satisfactory simulation of this unexpected behavior was obtained by including convection terms into the mass transport equations typically used for SECM theory. The observance of positive-feedback behavior at an insulating substrate can be described in terms of a dimensionless parameter, the Peclet number, which is the ratio of the convective and diffusive timescales. Fitting insulator approach curves of ferrocene in 1:2 ChCl/TFA shows an apparent increase in the diffusion coefficient with increasing tip velocity, which can be explained by DES behaving as a shear thinning non-Newtonian fluid. PMID:17973421

  20. Is Water a Universal Solvent for Life?

    NASA Technical Reports Server (NTRS)

    Pohorill, Andrew

    2012-01-01

    There are strong reasons to believe that the laws, principles and constraints of physics and chemistry are universal. It is much less clear how this universality translates into our understanding of the origins of life. Conventionally, discussions of this topic focus on chemistry that must be sufficiently rich to seed life. Although this is clearly a prerequisite for the emergence of living systems, I propose to focus instead on self-organization of matter into functional structures capable of reproduction, evolution and responding to environmental changes. In biology, most essential functions are largely mediated by noncovalent interactions (interactions that do not involve making or breaking chemical bonds). Forming chemical bonds is only a small part of what living systems do. There are specific implications of this point of view for universality. I will concentrate on one of these implications. Strength of non-covalent interactions must be properly tuned. If they were too weak, the system would exhibit undesired, uncontrolled response to natural fluctuations of physical and chemical parameters. If they were too strong kinetics of biological processes would be slow and energetics costly. This balance, however, is not a natural property of complex chemical systems. Instead, it has to be achieved with the aid of an appropriate solvent for life. In particular, potential solvents for life must be characterized by a high dielectric constant to ensure solubility of polar species and sufficient flexibility of biological structures stabilized by electrostatic interactions. Among these solvents, water exhibits a remarkable trait that it also promotes solvophobic (hydrophobic) interactions between non-polar species, typically manifested by a tendency of these species to aggregate and minimize their contacts with the aqueous solvent. Hydrophobic interactions are responsible, at least in part, for many self-organization phenomena in biological systems, such as the formation