Bravo, Ana Luisa; Sigala, Juan Carlos; Le Borgne, Sylvie; Morales, Marcia
2015-04-01
Pseudomonas citronellolis UAM-Ps1 co-metabolically transforms methyl tert-butyl ether (MTBE) to tert-butyl alcohol with n-pentane (2.6 mM), n-octane (1.5 mM) or dicyclopropylketone (DCPK) (4.4 mM), a gratuitous inducer of alkane hydroxylase (AlkB) activity. The reverse transcription quantitative real-time PCR was used to quantify the alkane monooxygenase (alkB) gene expression. The alkB gene was expressed in the presence of n-alkanes and DCPK and MTBE oxidation occurred only in cultures when alkB was transcribed. A correlation between the number of alkB transcripts and MTBE consumption was found (ΜΤΒΕ consumption in μmol = 1.44e(-13) x DNA copies, R(2) = 0.99) when MTBE (0.84 mM) was added. Furthermore, alkB was cloned and expressed into Escherichia coli and the recombinant AlkB had a molecular weight of 42 kDa. This is the first report where the expression of alkB is related to the co-metabolic oxidation of MTBE.
Luo, Qun; He, Ying; Hou, Deng-Yong; Zhang, Jian-Guo; Shen, Xian-Rong
2015-01-01
To facilitate the biodegradation of diesel oil, an oil biodegradation bacterial consortium was constructed. The alkane hydroxylase (alkB) gene of Pseudomonas putida GPo1 was constructed in a pCom8 expression vector, and the pCom8-GPo1 alkB plasmid was transformed into Escherichia coli DH5α. The AlkB protein was expressed by diesel oil induction and detected through SDS-polyacrylamide gel electrophoresis. The culture of the recombinant (pCom8-GPo1 alkB/E. coli DH5α) with the oil biodegradation bacterial consortium increased the degradation ratio of diesel oil at 24 h from 31% to 50%, and the facilitation rates were increased as the proportion of pCom8-GPo1 alkB/E. coli DH5α to the consortium increased. The results suggested that the expression of the GPo1 gene in E. coli DH5α could enhance the function of diesel oil degradation by the bacterial consortium.
GPo1 alkB gene expression for improvement of the degradation of diesel oil by a bacterial consortium
Luo, Qun; He, Ying; Hou, Deng-Yong; Zhang, Jian-Guo; Shen, Xian-Rong
2015-01-01
To facilitate the biodegradation of diesel oil, an oil biodegradation bacterial consortium was constructed. The alkane hydroxylase (alkB) gene of Pseudomonas putida GPo1 was constructed in a pCom8 expression vector, and the pCom8-GPo1 alkB plasmid was transformed into Escherichia coli DH5α. The AlkB protein was expressed by diesel oil induction and detected through SDS-polyacrylamide gel electrophoresis. The culture of the recombinant (pCom8-GPo1 alkB/E. coli DH5α) with the oil biodegradation bacterial consortium increased the degradation ratio of diesel oil at 24 h from 31% to 50%, and the facilitation rates were increased as the proportion of pCom8-GPo1 alkB/E. coli DH5α to the consortium increased. The results suggested that the expression of the GPo1 gene in E. coli DH5α could enhance the function of diesel oil degradation by the bacterial consortium. PMID:26413044
Mielecki, Damian; Saumaa, Signe; Wrzesiński, Michał; Maciejewska, Agnieszka M.; Żuchniewicz, Karolina; Sikora, Anna; Piwowarski, Jan; Nieminuszczy, Jadwiga; Kivisaar, Maia; Grzesiuk, Elżbieta
2013-01-01
Alkylating agents introduce cytotoxic and/or mutagenic lesions to DNA bases leading to induction of adaptive (Ada) response, a mechanism protecting cells against deleterious effects of environmental chemicals. In Escherichia coli, the Ada response involves expression of four genes: ada, alkA, alkB, and aidB. In Pseudomonas putida, the organization of Ada regulon is different, raising questions regarding regulation of Ada gene expression. The aim of the presented studies was to analyze the role of AlkA glycosylase and AlkB dioxygenase in protecting P. putida cells against damage to DNA caused by alkylating agents. The results of bioinformatic analysis, of survival and mutagenesis of methyl methanesulfonate (MMS) or N-methyl-N’-nitro-N-nitrosoguanidine (MNNG) treated P. putida mutants in ada, alkA and alkB genes as well as assay of promoter activity revealed diverse roles of Ada, AlkA and AlkB proteins in protecting cellular DNA against alkylating agents. We found AlkA protein crucial to abolish the cytotoxic but not the mutagenic effects of alkylans since: (i) the mutation in the alkA gene was the most deleterious for MMS/MNNG treated P. putida cells, (ii) the activity of the alkA promoter was Ada-dependent and the highest among the tested genes. P. putida AlkB (PpAlkB), characterized by optimal conditions for in vitro repair of specific substrates, complementation assay, and M13/MS2 survival test, allowed to establish conservation of enzymatic function of P. putida and E. coli AlkB protein. We found that the organization of P. putida Ada regulon differs from that of E. coli. AlkA protein induced within the Ada response is crucial for protecting P. putida against cytotoxicity, whereas Ada prevents the mutagenic action of alkylating agents. In contrast to E. coli AlkB (EcAlkB), PpAlkB remains beyond the Ada regulon and is expressed constitutively. It probably creates a backup system that protects P. putida strains defective in other DNA repair systems against alkylating agents of exo- and endogenous origin. PMID:24098441
Viggor, Signe; Juhanson, Jaanis; Jõesaar, Merike; Mitt, Mario; Truu, Jaak; Vedler, Eve; Heinaru, Ain
2013-08-25
The coastal waters of the Baltic Sea are constantly threatened by oil spills, due to the extensive transportation of oil products across the sea. To characterise the hydrocarbon-degrading bacterial community of this marine area, microcosm experiments on diesel fuel, crude oil and shale oil were performed. Analysis of these microcosms, using alkane monooxygenase (alkB) and 16S rRNA marker genes in PCR-DGGE experiments, demonstrated that substrate type and concentration strongly influence species composition and the occurrence of alkB genes in respective oil degrading bacterial communities. Gammaproteobacteria (particularly the genus Pseudomonas) and Alphaproteobacteria were dominant in all microcosms treated with oils. All alkB genes carried by bacterial isolates (40 strains), and 8 of the 11 major DGGE bands from the microcosms, had more than 95% sequence identity with the alkB genes of Pseudomonas fluorescens. However, the closest relatives of the majority of sequences (54 sequences from 79) of the alkB gene library from initially collected seawater DNA were Actinobacteria. alkB gene expression, induced by hexadecane, was recorded in isolated bacterial strains. Thus, complementary culture dependent and independent methods provided a more accurate picture about the complex seawater microbial communities of the Baltic Sea. Copyright © 2013 Elsevier GmbH. All rights reserved.
Viggor, Signe; Jõesaar, Merike; Vedler, Eve; Kiiker, Riinu; Pärnpuu, Liis; Heinaru, Ain
2015-12-30
Formation of specific oil degrading bacterial communities in diesel fuel, crude oil, heptane and hexadecane supplemented microcosms of the Baltic Sea surface water samples was revealed. The 475 sequences from constructed alkane hydroxylase alkB gene clone libraries were grouped into 30 OPFs. The two largest groups were most similar to Pedobacter sp. (245 from 475) and Limnobacter sp. (112 from 475) alkB gene sequences. From 56 alkane-degrading bacterial strains 41 belonged to the Pseudomonas spp. and 8 to the Rhodococcus spp. having redundant alkB genes. Together 68 alkB gene sequences were identified. These genes grouped into 20 OPFs, half of them being specific only to the isolated strains. Altogether 543 diverse alkB genes were characterized in the brackish Baltic Sea water; some of them representing novel lineages having very low sequence identities with corresponding genes of the reference strains. Copyright © 2015 Elsevier Ltd. All rights reserved.
Táncsics, András; Benedek, Tibor; Szoboszlay, Sándor; Veres, Péter G; Farkas, Milán; Máthé, István; Márialigeti, Károly; Kukolya, József; Lányi, Szabolcs; Kriszt, Balázs
2015-02-01
Naturally occurring and anthropogenic petroleum hydrocarbons are potential carbon sources for many bacteria. The AlkB-related alkane hydroxylases, which are integral membrane non-heme iron enzymes, play a key role in the microbial degradation of many of these hydrocarbons. Several members of the genus Rhodococcus are well-known alkane degraders and are known to harbor multiple alkB genes encoding for different alkane 1-monooxygenases. In the present study, 48 Rhodococcus strains, representing 35 species of the genus, were investigated to find out whether there was a dominant type of alkB gene widespread among species of the genus that could be used as a phylogenetic marker. Phylogenetic analysis of rhodococcal alkB gene sequences indicated that a certain type of alkB gene was present in almost every member of the genus Rhodococcus. These alkB genes were common in a unique nucleotide sequence stretch absent from other types of rhodococcal alkB genes that encoded a conserved amino acid motif: WLG(I/V/L)D(G/D)GL. The sequence identity of the targeted alkB gene in Rhodococcus ranged from 78.5 to 99.2% and showed higher nucleotide sequence variation at the inter-species level compared to the 16S rRNA gene (93.9-99.8%). The results indicated that the alkB gene type investigated might be applicable for: (i) differentiating closely related Rhodococcus species, (ii) properly assigning environmental isolates to existing Rhodococcus species, and finally (iii) assessing whether a new Rhodococcus isolate represents a novel species of the genus. Copyright © 2014 Elsevier GmbH. All rights reserved.
Wallisch, Stefanie; Gril, Tjasa; Dong, Xia; Welzl, Gerd; Bruns, Christian; Heath, Ester; Engel, Marion; Suhadolc, Marjetka; Schloter, Michael
2014-01-01
Alkane degrading microorganisms play an important role for the bioremediation of petrogenic contaminated environments. In this study, we investigated the effects of compost addition on the abundance and diversity of bacteria harboring the alkane monooxygenase gene (alkB) in an oil-contaminated soil originated from an industrial zone in Celje, Slovenia (Technosol). Soil without any amendments (control soil) and soil amended with two composts differing in their maturation stage and nutrient availability, were incubated under controlled conditions in a microcosm experiment and sampled after 0, 6, 12, and 36 weeks of incubation. As expected the addition of compost stimulated the degradation of alkanes in the investigated soil shortly after the addition. By using quantitative real-time PCR higher number of alkB genes were detected in soil samples amended with compost compared to the control soils. To get an insight into the composition of alkB harboring microbial communities, we performed next generation sequencing of amplicons of alkB gene fragment. Richness and diversity of alkB gene harboring prokaryotes was higher in soil mixed with compost compared to control soils with stronger effects of the less maturated, nutrient poor compost. The phylogenetic analysis of communities suggested that the addition of compost stimulated the abundance of alkB harboring Actinobacteria during the experiment independent from the maturation stage of the compost. AlkB harboring γ-proteobacteria like Shewanella or Hydrocarboniphaga as well as α-proteobacteria of the genus Agrobacterium responded also positively to the addition of compost to soil. The amendment of the less maturated, nutrient poor compost resulted in addition in a large increase of alkB harboring bacteria of the Cytophaga group (Microscilla) mainly at the early sampling time points. Our data indicates that compost amendments significantly change abundance and diversity pattern of alkB harboring microbes in Technosol and might be a useful agent to stimulate bioremediation of hydrocarbons in contaminated soils. PMID:24659987
Wallisch, Stefanie; Gril, Tjasa; Dong, Xia; Welzl, Gerd; Bruns, Christian; Heath, Ester; Engel, Marion; Suhadolc, Marjetka; Schloter, Michael
2014-01-01
Alkane degrading microorganisms play an important role for the bioremediation of petrogenic contaminated environments. In this study, we investigated the effects of compost addition on the abundance and diversity of bacteria harboring the alkane monooxygenase gene (alkB) in an oil-contaminated soil originated from an industrial zone in Celje, Slovenia (Technosol). Soil without any amendments (control soil) and soil amended with two composts differing in their maturation stage and nutrient availability, were incubated under controlled conditions in a microcosm experiment and sampled after 0, 6, 12, and 36 weeks of incubation. As expected the addition of compost stimulated the degradation of alkanes in the investigated soil shortly after the addition. By using quantitative real-time PCR higher number of alkB genes were detected in soil samples amended with compost compared to the control soils. To get an insight into the composition of alkB harboring microbial communities, we performed next generation sequencing of amplicons of alkB gene fragment. Richness and diversity of alkB gene harboring prokaryotes was higher in soil mixed with compost compared to control soils with stronger effects of the less maturated, nutrient poor compost. The phylogenetic analysis of communities suggested that the addition of compost stimulated the abundance of alkB harboring Actinobacteria during the experiment independent from the maturation stage of the compost. AlkB harboring γ-proteobacteria like Shewanella or Hydrocarboniphaga as well as α-proteobacteria of the genus Agrobacterium responded also positively to the addition of compost to soil. The amendment of the less maturated, nutrient poor compost resulted in addition in a large increase of alkB harboring bacteria of the Cytophaga group (Microscilla) mainly at the early sampling time points. Our data indicates that compost amendments significantly change abundance and diversity pattern of alkB harboring microbes in Technosol and might be a useful agent to stimulate bioremediation of hydrocarbons in contaminated soils.
Ada response – a strategy for repair of alkylated DNA in bacteria
Mielecki, Damian; Grzesiuk, Elżbieta
2014-01-01
Alkylating agents are widespread in the environment and also occur endogenously. They can be cytotoxic or mutagenic to the cells introducing alkylated bases to DNA or RNA. All organisms have evolved multiple DNA repair mechanisms to counteract the effects of DNA alkylation: the most cytotoxic lesion, N3-methyladenine (3meA), is excised by AlkA glycosylase initiating base excision repair (BER); toxic N1-methyladenine (1meA) and N3-methylcytosine (3meC), induced in DNA and RNA, are removed by AlkB dioxygenase; and mutagenic and cytotoxic O6-methylguanine (O6meG) is repaired by Ada methyltransferase. In Escherichia coli, Ada response involves the expression of four genes, ada, alkA, alkB, and aidB, encoding respective proteins Ada, AlkA, AlkB, and AidB. The Ada response is conserved among many bacterial species; however, it can be organized differently, with diverse substrate specificity of the particular proteins. Here, an overview of the organization of the Ada regulon and function of individual proteins is presented. We put special effort into the characterization of AlkB dioxygenases, their substrate specificity, and function in the repair of alkylation lesions in DNA/RNA. PMID:24810496
Ada response - a strategy for repair of alkylated DNA in bacteria.
Mielecki, Damian; Grzesiuk, Elżbieta
2014-06-01
Alkylating agents are widespread in the environment and also occur endogenously. They can be cytotoxic or mutagenic to the cells introducing alkylated bases to DNA or RNA. All organisms have evolved multiple DNA repair mechanisms to counteract the effects of DNA alkylation: the most cytotoxic lesion, N(3)-methyladenine (3meA), is excised by AlkA glycosylase initiating base excision repair (BER); toxic N(1)-methyladenine (1meA) and N(3)-methylcytosine (3meC), induced in DNA and RNA, are removed by AlkB dioxygenase; and mutagenic and cytotoxic O(6)-methylguanine (O(6) meG) is repaired by Ada methyltransferase. In Escherichia coli, Ada response involves the expression of four genes, ada, alkA, alkB, and aidB, encoding respective proteins Ada, AlkA, AlkB, and AidB. The Ada response is conserved among many bacterial species; however, it can be organized differently, with diverse substrate specificity of the particular proteins. Here, an overview of the organization of the Ada regulon and function of individual proteins is presented. We put special effort into the characterization of AlkB dioxygenases, their substrate specificity, and function in the repair of alkylation lesions in DNA/RNA. © 2014 The Authors. FEMS Microbiology Letters published by John Wiley & Sons Ltd on behalf of Federation of European Microbiological Societies.
NASA Astrophysics Data System (ADS)
Pérez-de-Mora, Alfredo; Schulz, Stephan; Schloter, Michael
Hydrocarbons are major contaminants of soil ecosystems as a result of uncontrolled oil spills and wastes disposal into the environment. Ecological risk assessment and remediation of affected sites is often constrained due to lack of suitable prognostic and diagnostic tools that provide information of abiotic-biotic interactions occurring between contaminants and biological targets. Therefore, the identification and quantification of genes involved in the degradation of hydrocarbons may play a crucial role for evaluating the natural attenuation potential of contaminated sites and the development of successful bioremediation strategies. Besides other gene clusters, the alk operon has been identified as a major player for alkane degradation in different soils. An oxygenase gene (alkB) codes for the initial step of the degradation of aliphatic alkanes under aerobic conditions. In this work, we present an MPN- and a real-time PCR method for the quantification of the bacterial gene alkB (coding for rubredoxin-dependent alkane monooxygenase) in environmental samples. Both approaches enable a rapid culture-independent screening of the alkB gene in the environment, which can be used to assess the intrinsic natural attenuation potential of a site or to follow up the on-going progress of bioremediation assays.
Chen, Q; Janssen, D B; Witholt, B
1995-01-01
Growth of Pseudomonas oleovorans GPo1, which contains the OCT plasmid, on octane results in changes in the membrane phospholipid fatty acid composition. These changes were not found for GPo12, an OCT-plasmid-cured variant of GPo1, during growth in the presence or absence of octane, implying the involvement of OCT-plasmid-encoded functions. When recombinant strain GPo12(pGEc47) carrying the alk genes from the OCT plasmid was grown on octane, the cells showed the same changes in fatty acid composition as those found for GPo1, indicating that such changes result from induction and expression of the alk genes. This finding was corroborated by inducing GPo12(pGEc47) with dicyclopropylketone (DCPK), a gratuitous inducer of the alk genes. Further experiments showed that the increase of the mean acyl chain length of fatty acids is related to the expression of alkB, which encodes a major integral membrane protein, while the formation of trans unsaturated fatty acids mainly results from the effects of 1-octanol, an octane oxidation product. PMID:7592483
Films of Bacteria at Interfaces (FBI): Remodeling of Fluid Interfaces by Pseudomonas aeruginosa.
Niepa, Tagbo H R; Vaccari, Liana; Leheny, Robert L; Goulian, Mark; Lee, Daeyeon; Stebe, Kathleen J
2017-12-19
Bacteria at fluid interfaces endure physical and chemical stresses unique to these highly asymmetric environments. The responses of Pseudomonas aeruginosa PAO1 and PA14 to a hexadecane-water interface are compared. PAO1 cells form elastic films of bacteria, excreted polysaccharides and proteins, whereas PA14 cells move actively without forming an elastic film. Studies of PAO1 mutants show that, unlike solid-supported biofilms, elastic interfacial film formation occurs in the absence of flagella, pili, or certain polysaccharides. Highly induced genes identified in transcriptional profiling include those for putative enzymes and a carbohydrate metabolism enzyme, alkB2; this latter gene is not upregulated in PA14 cells. Notably, PAO1 mutants lacking the alkB2 gene fail to form an elastic layer. Rather, they form an active film like that formed by PA14. These findings demonstrate that genetic expression is altered by interfacial confinement, and suggest that the ability to metabolize alkanes may play a role in elastic film formation at oil-water interfaces.
Guibert, Lilian M; Loviso, Claudia L; Marcos, Magalí S; Commendatore, Marta G; Dionisi, Hebe M; Lozada, Mariana
2012-10-01
Although sediments are the natural hydrocarbon sink in the marine environment, the ecology of hydrocarbon-degrading bacteria in sediments is poorly understood, especially in cold regions. We studied the diversity of alkane-degrading bacterial populations and their response to oil exposure in sediments of a chronically polluted Subantarctic coastal environment, by analyzing alkane monooxygenase (alkB) gene libraries. Sequences from the sediment clone libraries were affiliated with genes described in Proteobacteria and Actinobacteria, with 67 % amino acid identity in average to sequences from isolated microorganisms. The majority of the sequences were most closely related to uncultured microorganisms from cold marine sediments or soils from high latitude regions, highlighting the role of temperature in the structuring of this bacterial guild. The distribution of alkB sequences among samples of different sites and years, and selection after experimental oil exposure allowed us to identify ecologically relevant alkB genes in Subantarctic sediments, which could be used as biomarkers for alkane biodegradation in this environment. 16 S rRNA amplicon pyrosequencing indicated the abundance of several genera for which no alkB genes have yet been described (Oleispira, Thalassospira) or that have not been previously associated with oil biodegradation (Spongiibacter-formerly Melitea-, Maribius, Robiginitomaculum, Bizionia and Gillisia). These genera constitute candidates for future work involving identification of hydrocarbon biodegradation pathway genes.
Shahi, Aiyoub; Aydin, Sevcan; Ince, Bahar; Ince, Orhan
2016-03-01
This study investigated the abundance and diversity of soil n-alkane and polycyclic aromatic hydrocarbon (PAH)-degrading bacterial communities. It also investigated the quantity of the functional genes, the occurrence of horizontal gene transfer (HGT) in the identified bacterial communities and the effect that such HGT can have on biostimulation process. Illumina sequencing was used to detect the microbial diversity of petroleum-polluted soil prior to the biostimulation process, and quantitative real-time PCR was used to determine changes in the bacterial community and functional genes (alkB, phnAc and nah) expressions throughout the biostimulation of petroleum-contaminated soil. The illumine results revealed that γ-proteobacteria, Chloroflexi, Firmicutes, and δ-proteobacteria were the most dominant bacterial phyla in the contaminated site, and that most of the strains were Gram-negative. The results of the gene expression results revealed that gram-negative bacteria and alkB are critical to successful bioremediation. Failure to maintain the stability of hydrocarbon-degrading bacteria and functional gene will reduce the extend to which alkanes and PAHs are degraded. According to the results of the study, the application of a C:N:P ratio of was 100:15:1 in the biodegradation experiment resulted in the highest rate at which petroleum hydrocarbons were biodegraded. The diversity of pollutant-degrading bacteria and the effective transfer of degrading genes among resident microorganisms are essential factors for the successful biostimulation of petroleum hydrocarbons. As such, screening these factors throughout the biostimulation process represents an effective monitoring approach by which the success of the biostimulation can be assessed. Copyright © 2015 Elsevier Inc. All rights reserved.
Identity and mechanisms of alkane-oxidizing metalloenzymes from deep-sea hydrothermal vents
Bertrand, Erin M.; Keddis, Ramaydalis; Groves, John T.; Vetriani, Costantino; Austin, Rachel Narehood
2013-01-01
Six aerobic alkanotrophs (organism that can metabolize alkanes as their sole carbon source) isolated from deep-sea hydrothermal vents were characterized using the radical clock substrate norcarane to determine the metalloenzyme and reaction mechanism used to oxidize alkanes. The organisms studied were Alcanivorax sp. strains EPR7 and MAR14, Marinobacter sp. strain EPR21, Nocardioides sp. strains EPR26w, EPR28w, and Parvibaculum hydrocarbonoclasticum strain EPR92. Each organism was able to grow on n-alkanes as the sole carbon source and therefore must express genes encoding an alkane-oxidizing enzyme. Results from the oxidation of the radical-clock diagnostic substrate norcarane demonstrated that five of the six organisms (EPR7, MAR14, EPR21, EPR26w, and EPR28w) used an alkane hydroxylase functionally similar to AlkB to catalyze the oxidation of medium-chain alkanes, while the sixth organism (EPR92) used an alkane-oxidizing cytochrome P450 (CYP)-like protein to catalyze the oxidation. DNA sequencing indicated that EPR7 and EPR21 possess genes encoding AlkB proteins, while sequencing results from EPR92 confirmed the presence of a gene encoding CYP-like alkane hydroxylase, consistent with the results from the norcarane experiments. PMID:23825470
Inducible repair of alkylated DNA in microorganisms.
Mielecki, Damian; Wrzesiński, Michał; Grzesiuk, Elżbieta
2015-01-01
Alkylating agents, which are widespread in the environment, also occur endogenously as primary and secondary metabolites. Such compounds have intrinsically extremely cytotoxic and frequently mutagenic effects, to which organisms have developed resistance by evolving multiple repair mechanisms to protect cellular DNA. One such defense against alkylation lesions is an inducible Adaptive (Ada) response. In Escherichia coli, the Ada response enhances cell resistance by the biosynthesis of four proteins: Ada, AlkA, AlkB, and AidB. The glycosidic bonds of the most cytotoxic lesion, N3-methyladenine (3meA), together with N3-methylguanine (3meG), O(2)-methylthymine (O(2)-meT), and O(2)-methylcytosine (O(2)-meC), are cleaved by AlkA DNA glycosylase. Lesions such as N1-methyladenine (1meA) and N3-methylcytosine (3meC) are removed from DNA and RNA by AlkB dioxygenase. Cytotoxic and mutagenic O(6)-methylguanine (O(6)meG) is repaired by Ada DNA methyltransferase, which transfers the methyl group onto its own cysteine residue from the methylated oxygen. We review (i) the individual Ada proteins Ada, AlkA, AlkB, AidB, and COG3826, with emphasis on the ubiquitous and versatile AlkB and its prokaryotic and eukaryotic homologs; (ii) the organization of the Ada regulon in several bacterial species; (iii) the mechanisms underlying activation of Ada transcription. In vivo and in silico analysis of various microorganisms shows the widespread existence and versatile organization of Ada regulon genes, including not only ada, alkA, alkB, and aidB but also COG3826, alkD, and other genes whose roles in repair of alkylated DNA remain to be elucidated. This review explores the comparative organization of Ada response and protein functions among bacterial species beyond the classical E. coli model. Copyright © 2014 Elsevier B.V. All rights reserved.
Structure Biology of Membrane Bound Enzymes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fu, Dax
The overall goal of the proposed research is to understand the membrane-associated active processes catalyzed by an alkanemore » $$\\square$$-hydroxylase (AlkB) from eubacterium Pseudomonase oleovorans. AlkB performs oxygenation of unactivated hydrocarbons found in crude oils. The enzymatic reaction involves energy-demanding steps in the membrane with the uses of structurally unknown metal active sites featuring a diiron [FeFe] center. At present, a critical barrier to understanding the membrane-associated reaction mechanism is the lack of structural information. The structural biology efforts have been challenged by technical difficulties commonly encountered in crystallization and structural determination of membrane proteins. The specific aims of the current budget cycle are to crystalize AlkB and initiate X-ray analysis to set the stage for structural determination. The long-term goals of our structural biology efforts are to provide an atomic description of AlkB structure, and to uncover the mechanisms of selective modification of hydrocarbons. The structural information will help elucidating how the unactivated C-H bonds of saturated hydrocarbons are oxidized to initiate biodegradation and biotransformation processes. The knowledge gained will be fundamental to biotechnological applications to biofuel transformation of non-edible oil feedstock. Renewable biodiesel is a promising energy carry that can be used to reduce fossil fuel dependency. The proposed research capitalizes on prior BES-supported efforts on over-expression and purification of AlkB to explore the inner workings of a bioenergy-relevant membrane-bound enzyme.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guibert, Lilian M.; Loviso, Claudia L.; Borglin, Sharon
We aimed to gain insight into the alkane degradation potential of microbial communities from chronically polluted sediments of a subantarctic coastal environment using a combination of metagenomic approaches. A total of 6178 sequences annotated as alkane-1-monooxygenases (EC 1.14.15.3) were retrieved from a shotgun metagenomic dataset that included two sites analyzed in triplicate. The majority of the sequences binned with AlkB described in Bacteroidetes (32 ± 13 %) or Proteobacteria (29 ± 7 %), although a large proportion remained unclassified at the phylum level. Operational taxonomic unit (OTU)-based analyses showed small differences in AlkB distribution among samples that could be correlatedmore » with alkane concentrations, as well as with site-specific variations in pH and salinity. A number of low-abundance OTUs, mostly affiliated with Actinobacterial sequences, were found to be only present in the most contaminated samples. On the other hand, the molecular screening of a large-insert metagenomic library of intertidal sediments from one of the sampling sites identified two genomic fragments containing novel alkB gene sequences, as well as various contiguous genes related to lipid metabolism. Both genomic fragments were affiliated with the phylum Planctomycetes, and one could be further assigned to the genus Rhodopirellula due to the presence of a partial sequence of the 23S ribosomal RNA (rRNA) gene. This work highlights the diversity of bacterial groups contributing to the alkane degradation potential and reveals patterns of functional diversity in relation with environmental stressors in a chronically polluted, high-latitude coastal environment. In addition, alkane biodegradation genes are described for the first time in members of Planctomycetes.« less
Fatima, Kaneez; Imran, Asma; Amin, Imran; Khan, Qaiser M; Afzal, Muhammad
2018-06-07
Phytoremediation is a promising approach for the cleanup of soil contaminated with petroleum hydrocarbons. This study aimed to develop plant-bacterial synergism for the successful remediation of crude oil-contaminated soil. A consortia of three endophytic bacteria was augmented to two grasses, Leptochloa fusca and Brachiaria mutica, grown in oil-contaminated soil (46.8 g oil kg -1 soil) in the vicinity of an oil exploration and production company. Endophytes augmentation improved plant growth, crude oil degradation, and soil health. Maximum oil degradation (80%) was achieved with B. mutica plants augmented with the endophytes and it was significantly (P < 0.05) higher than the use of plants or bacteria individually. Moreover, endophytes showed more persistence, the abundance and expression of alkB gene in the rhizosphere as well as in the endosphere of the tested plants than in unvegetated soil. A positive relationship (r = 0.70) observed between gene expression and crude oil reduction indicates that catabolic gene expression is important for hydrocarbon mineralization. This investigation showed that the use of endophytes with appropriate plant is an effective strategy for the cleanup of oil-contaminated soil under field conditions.
Tsai, Yi-Fang; Luo, Wen-I; Chang, Jen-Lin; Chang, Chun-Wei; Chuang, Huai-Chun; Ramu, Ravirala; Wei, Guor-Tzo; Zen, Jyh-Myng; Yu, Steve S-F
2017-08-21
An unprecedented method for the efficient conversion of C 3 -C 12 linear alkanes to their corresponding primary alcohols mediated by the membrane-bound alkane hydroxylase (AlkB) from Pseudomonas putida GPo1 is demonstrated. The X-ray absorption spectroscopy (XAS) studies support that electrons can be transferred from the reduced AlkG (rubredoxin-2, the redox partner of AlkB) to AlkB in a two-phase manner. Based on this observation, an approach for the electrocatalytic conversion from alkanes to alcohols mediated by AlkB using an AlkG immobilized screen-printed carbon electrode (SPCE) is developed. The framework distortion of AlkB-AlkG adduct on SPCE surface might create promiscuity toward gaseous substrates. Hence, small alkanes including propane and n-butane can be accommodated in the hydrophobic pocket of AlkB for C-H bond activation. The proof of concept herein advances the development of artificial C-H bond activation catalysts.
Lopes Ferreira, Nicolas; Mathis, Hugues; Labbé, Diane; Monot, Frédéric; Greer, Charles W; Fayolle-Guichard, Françoise
2007-06-01
Mycobacterium austroafricanum IFP 2012, which grows on methyl tert-butyl ether (MTBE) and on tert-butyl alcohol (TBA), the main intermediate of MTBE degradation, also grows on a broad range of n-alkanes (C2 to C16). A single alkB gene copy, encoding a non-heme alkane monooxygenase, was partially amplified from the genome of this bacterium. Its expression was induced after growth on n-propane, n-hexane, n-hexadecane and on TBA but not after growth on LB. The capacity of other fast-growing mycobacteria to grow on n-alkanes (C1 to C16) and to degrade TBA after growth on n-alkanes was compared to that of M. austroafricanum IFP 2012. We studied M. austroafricanum IFP 2012 and IFP 2015 able to grow on MTBE, M. austroafricanum IFP 2173 able to grow on isooctane, Mycobacterium sp. IFP 2009 able to grow on ethyl tert-butyl ether (ETBE), M. vaccae JOB5 (M. austroaafricanum ATCC 29678) able to degrade MTBE and TBA and M. smegmatis mc2 155 with no known degradation capacity towards fuel oxygenates. The M. austroafricanum strains grew on a broad range of n-alkanes and three were able to degrade TBA after growth on propane, hexane and hexadecane. An alkB gene was partially amplified from the genome of all mycobacteria and a sequence comparison demonstrated a close relationship among the M. austroafricanum strains. This is the first report suggesting the involvement of an alkane hydroxylase in TBA oxidation, a key step during MTBE metabolism.
Alonso, Hernan; Roujeinikova, Anna
2012-11-01
The alkane hydroxylase system of Pseudomonas putida GPo1 allows it to use alkanes as the sole source of carbon and energy. Bacterial alkane hydroxylases have tremendous potential as biocatalysts for the stereo- and regioselective transformation of a wide range of chemically inert unreactive alkanes into valuable reactive chemical precursors. We have produced and characterized the first 2-dimensional crystals of the integral membrane component of the P. putida alkane hydroxylase system, the nonheme di-iron alkane monooxygenase AlkB. Our analysis reveals for the first time that AlkB reconstituted into a lipid bilayer forms trimers. Addition of detergents that do not disrupt the AlkB oligomeric state (decyl maltose neopentyl glycol [DMNG], lauryl maltose neopentyl glycol [LMNG], and octaethylene glycol monododecyl ether [C(12)E(8)]) preserved its activity at a level close to that of the detergent-free control sample. In contrast, the monomeric form of AlkB produced by purification in n-decyl-β-D-maltopyranoside (DM), n-dodecyl-β-D-maltopyranoside (DDM), octyl glucose neopentyl glycol (OGNG), and n-dodecyl-N,N-dimethylamine-N-oxide (LDAO) was largely inactive. This is the first indication that the physiologically active form of membrane-embedded AlkB may be a multimer. We present for the first time experimental evidence that 1-octyne acts as a mechanism-based inhibitor of AlkB. Therefore, despite the lack of any significant full-length sequence similarity with members of other monooxygenase classes that catalyze the terminal oxidation of alkanes, AlkB is likely to share a similar catalytic mechanism.
Understanding Plant-Microbe Interactions for Phytoremediation of Petroleum-Polluted Soil
Nie, Ming; Wang, Yijing; Yu, Jiayi; Xiao, Ming; Jiang, Lifen; Yang, Ji; Fang, Changming; Chen, Jiakuan; Li, Bo
2011-01-01
Plant-microbe interactions are considered to be important processes determining the efficiency of phytoremediation of petroleum pollution, however relatively little is known about how these interactions are influenced by petroleum pollution. In this experimental study using a microcosm approach, we examined how plant ecophysiological traits, soil nutrients and microbial activities were influenced by petroleum pollution in Phragmites australis, a phytoremediating species. Generally, petroleum pollution reduced plant performance, especially at early stages of plant growth. Petroleum had negative effects on the net accumulation of inorganic nitrogen from its organic forms (net nitrogen mineralization (NNM)) most likely by decreasing the inorganic nitrogen available to the plants in petroleum-polluted soils. However, abundant dissolved organic nitrogen (DON) was found in petroleum-polluted soil. In order to overcome initial deficiency of inorganic nitrogen, plants by dint of high colonization of arbuscular mycorrhizal fungi might absorb some DON for their growth in petroleum-polluted soils. In addition, through using a real-time polymerase chain reaction method, we quantified hydrocarbon-degrading bacterial traits based on their catabolic genes (i.e. alkB (alkane monooxygenase), nah (naphthalene dioxygenase) and tol (xylene monooxygenase) genes). This enumeration of target genes suggests that different hydrocarbon-degrading bacteria experienced different dynamic changes during phytoremediation and a greater abundance of alkB was detected during vegetative growth stages. Because phytoremediation of different components of petroleum is performed by different hydrocarbon-degrading bacteria, plants’ ability of phytoremediating different components might therefore vary during the plant life cycle. Phytoremediation might be most effective during the vegetative growth stages as greater abundances of hydrocarbon-degrading bacteria containing alkB and tol genes were observed at these stages. The information provided by this study enhances our understanding of the effects of petroleum pollution on plant-microbe interactions and the roles of these interactions in the phytoremediation of petroleum-polluted soil. PMID:21437257
Alonso, Hernan
2012-01-01
The alkane hydroxylase system of Pseudomonas putida GPo1 allows it to use alkanes as the sole source of carbon and energy. Bacterial alkane hydroxylases have tremendous potential as biocatalysts for the stereo- and regioselective transformation of a wide range of chemically inert unreactive alkanes into valuable reactive chemical precursors. We have produced and characterized the first 2-dimensional crystals of the integral membrane component of the P. putida alkane hydroxylase system, the nonheme di-iron alkane monooxygenase AlkB. Our analysis reveals for the first time that AlkB reconstituted into a lipid bilayer forms trimers. Addition of detergents that do not disrupt the AlkB oligomeric state (decyl maltose neopentyl glycol [DMNG], lauryl maltose neopentyl glycol [LMNG], and octaethylene glycol monododecyl ether [C12E8]) preserved its activity at a level close to that of the detergent-free control sample. In contrast, the monomeric form of AlkB produced by purification in n-decyl-β-d-maltopyranoside (DM), n-dodecyl-β-d-maltopyranoside (DDM), octyl glucose neopentyl glycol (OGNG), and n-dodecyl-N,N-dimethylamine-N-oxide (LDAO) was largely inactive. This is the first indication that the physiologically active form of membrane-embedded AlkB may be a multimer. We present for the first time experimental evidence that 1-octyne acts as a mechanism-based inhibitor of AlkB. Therefore, despite the lack of any significant full-length sequence similarity with members of other monooxygenase classes that catalyze the terminal oxidation of alkanes, AlkB is likely to share a similar catalytic mechanism. PMID:22941083
Kang, Tina Manzhu; Yuan, Jessica; Nguyen, Angelyn; Becket, Elinne; Yang, Hanjing; Miller, Jeffrey H
2012-06-01
The distribution of mutants in the Keio collection of Escherichia coli gene knockout mutants that display increased sensitivity to the aminoglycosides kanamycin and neomycin indicates that damaged bases resulting from antibiotic action can lead to cell death. Strains lacking one of a number of glycosylases (e.g., AlkA, YzaB, Ogt, KsgA) or other specific repair proteins (AlkB, PhrB, SmbC) are more sensitive to these antibiotics. Mutants lacking AlkB display the strongest sensitivity among the glycosylase- or direct lesion removal-deficient strains. This perhaps suggests the involvement of ethenoadenine adducts, resulting from reactive oxygen species and lipid peroxidation, since AlkB removes this lesion. Other sensitivities displayed by mutants lacking UvrA, polymerase V (Pol V), or components of double-strand break repair indicate that kanamycin results in damaged base pairs that need to be removed or replicated past in order to avoid double-strand breaks that saturate the cellular repair capacity. Caffeine enhances the sensitivities of these repair-deficient strains to kanamycin and neomycin. The gene knockout mutants that display increased sensitivity to caffeine (dnaQ, holC, holD, and priA knockout mutants) indicate that caffeine blocks DNA replication, ultimately leading to double-strand breaks that require recombinational repair by functions encoded by recA, recB, and recC, among others. Additionally, caffeine partially protects cells of both Escherichia coli and Bacillus anthracis from killing by the widely used fluoroquinolone antibiotic ciprofloxacin.
Liu, Qinglong; Tang, Jingchun; Bai, Zhihui; Hecker, Markus; Giesy, John P.
2015-01-01
Genes that encode for enzymes that can degrade petroleum hydrocarbons (PHs) are critical for the ability of microorganisms to bioremediate soils contaminated with PHs. Distributions of two petroleum-degrading genes AlkB and Nah in soils collected from three zones of the Dagang Oilfield, Tianjin, China were investigated. Numbers of copies of AlkB ranged between 9.1 × 105 and 1.9 × 107 copies/g dry mass (dm) soil, and were positively correlated with total concentrations of PHs (TPH) (R2 = 0.573, p = 0.032) and alkanes (C33 ~ C40) (R2 = 0.914, p < 0.01). The Nah gene was distributed relatively evenly among sampling zones, ranging between 1.9 × 107 and 1.1 × 108 copies/g dm soil, and was negatively correlated with concentrations of total aromatic hydrocarbons (TAH) (R2 = −0.567, p = 0.035) and ∑16 PAHs (R2 = −0.599, p = 0.023). Results of a factor analysis showed that individual samples of soils were not ordinated as a function of the zones. PMID:26086670
Mostafa, Yasser M.; Shoreit, Ahmed
2014-01-01
Polycyclic aromatic hydrocarbons (PAHs) are serious pollutants and health hazards. In this study, 15 PAHs-degrading bacteria were isolated from Egyptian oily soil. Among them, one Gram-negative strain (ASU-06) was selected and biodegradation ability and initial catabolic genes of petroleum compounds were investigated. Comparison of 16S rRNA gene sequence of strain ASU-06 to published sequences in GenBank database as well as phylogenetic analysis identified ASU-06 as Sphingomonas koreensis. Strain ASU-06 degraded 100, 99, 98, and 92.7% of 100 mg/L naphthalene, phenanthrene, anthracene, and pyrene within 15 days, respectively. When these PAHs present in a mixed form, the enhancement phenomenon appeared, particularly in the degradation of pyrene, whereas the degradation rate was 98.6% within the period. This is the first report showing the degradation of different PAHs by this species. PCR experiments with specific primers for catabolic genes alkB, alkB1, nahAc, C12O, and C23O suggested that ASU-06 might possess genes for aliphatic and PAHs degradation, while PAH-RHDαGP gene was not detected. Production of biosurfactants and increasing cell-surface hydrophobicity were investigated. GC/MS analysis of intermediate metabolites of studied PAHs concluded that this strain utilized these compounds via two main pathways, and phthalate was the major constant product that appeared in each day of the degradation period. PMID:25177681
Liu, Q; Tang, J; Liu, X; Song, B; Zhen, M; Ashbolt, N J
2017-10-01
Study the response of microbial communities and selected petroleum hydrocarbon (PH)-degrading genes on simulated PH spills in soils/sediments from different geographic locations. A microcosm experiment was conducted by spiking mixtures of petroleum hydrocarbons (PHs) to soils/sediments collected from four different regions of China, including the Dagang Oilfield (DG), Sand of Bohai Sea (SS), Northeast China (NE) and Xiamen (XM). Changes in bacterial community and the abundance of PH-degrading genes (alkB, nah and phe) were analysed by denaturing gradient electrophoresis (DGGE) and qPCR, respectively. Degradation of alkanes and PAHs in SS and NE materials were greater (P < 0·05) than those in DG and XM. Clay content was negatively correlated with the degradation of total alkanes by 112 days and PAHs by 56 days, while total organic carbon content was negatively correlated with initial degradation of total alkanes as well as PAHs. Abundances of alkB, nah and phe genes increased 10- to 100-fold and varied by soil type over the incubation period. DGGE fingerprints identified the dominance of α-, β- and γ-Proteobacteria (Gram -ve) and Actinobacteria (Gram +ve) bacteria associated with degradation of PHs in the materials studied. The geographic divergence resulting from the heterogeneity of physicochemical properties of soils/sediments appeared to influence the abundance of metabolic genes and community structure of microbes capable of degrading PHs. When developing practical in-situ bioremediation approaches for PHs contamination of soils/sediment, appropriate microbial community structures and the abundance of PH-degrading genes appear to be influenced by geographic location. © 2017 The Society for Applied Microbiology.
AlkB Dioxygenase Preferentially Repairs Protonated Substrates
Maciejewska, Agnieszka M.; Poznański, Jarosław; Kaczmarska, Zuzanna; Krowisz, Beata; Nieminuszczy, Jadwiga; Polkowska-Nowakowska, Agnieszka; Grzesiuk, Elżbieta; Kuśmierek, Jarosław T.
2013-01-01
Efficient repair by Escherichia coli AlkB dioxygenase of exocyclic DNA adducts 3,N4-ethenocytosine, 1,N6-ethenoadenine, 3,N4-α-hydroxyethanocytosine, and reported here for the first time 3,N4-α-hydroxypropanocytosine requires higher Fe(II) concentration than the reference 3-methylcytosine. The pH optimum for the repair follows the order of pKa values for protonation of the adduct, suggesting that positively charged substrates favorably interact with the negatively charged carboxylic group of Asp-135 side chain in the enzyme active center. This interaction is supported by molecular modeling, indicating that 1,N6-ethenoadenine and 3,N4-ethenocytosine are bound to AlkB more favorably in their protonated cationic forms. An analysis of the pattern of intermolecular interactions that stabilize the location of the ligand points to a role of Asp-135 in recognition of the adduct in its protonated form. Moreover, ab initio calculations also underline the role of substrate protonation in lowering the free energy barrier of the transition state of epoxidation of the etheno adducts studied. The observed time courses of repair of mixtures of stereoisomers of 3,N4-α-hydroxyethanocytosine or 3,N4-α-hydroxypropanocytosine are unequivocally two-exponential curves, indicating that the respective isomers are repaired by AlkB with different efficiencies. Molecular modeling of these adducts bound by AlkB allowed evaluation of the participation of their possible conformational states in the enzymatic reaction. PMID:23148216
Sutton, Nora B; Langenhoff, Alette A M; Lasso, Daniel Hidalgo; van der Zaan, Bas; van Gaans, Pauline; Maphosa, Farai; Smidt, Hauke; Grotenhuis, Tim; Rijnaarts, Huub H M
2014-03-01
To improve the coupling of in situ chemical oxidation and in situ bioremediation, a systematic analysis was performed of the effect of chemical oxidation with Fenton's reagent, modified Fenton's reagent, permanganate, or persulfate, on microbial diversity and activity during 8 weeks of incubation in two diesel-contaminated soils (peat and fill). Chemical oxidant and soil type affected the microbial community diversity and biodegradation activity; however, this was only observed following treatment with Fenton's reagent and modified Fenton's reagent, and in the biotic control without oxidation. Differences in the highest overall removal efficiencies of 69 % for peat (biotic control) and 59 % for fill (Fenton's reagent) were partially explained by changes in contaminant soil properties upon oxidation. Molecular analysis of 16S rRNA and alkane monooxygenase (alkB) gene abundances indicated that oxidation with Fenton's reagent and modified Fenton's reagent negatively affected microbial abundance. However, regeneration occurred, and final relative alkB abundances were 1-2 orders of magnitude higher in chemically treated microcosms than in the biotic control. 16S rRNA gene fragment fingerprinting with DGGE and prominent band sequencing illuminated microbial community composition and diversity differences between treatments and identified a variety of phylotypes within Alpha-, Beta-, and Gammaproteobacteria. Understanding microbial community dynamics during coupled chemical oxidation and bioremediation is integral to improved biphasic field application.
Baek, Kyung-Hwa; Yoon, Byung-Dae; Cho, Dae-Hyun; Kim, Byung-Hyuk; Oh, Hee-Mock; Kim, Hee-Sik
2009-04-01
We evaluated the activity and abundance of the crude oil- degrading bacterium Nocardia sp. H17-1 during bioremediation of oil-contaminated soil, using real-time PCR. The total petroleum hydrocarbon (TPH) degradation rate constants (k) of the soils treated with and without H17-1 were 0.103 d-1 and 0.028 d-1, respectively. The degradation rate constant was 3.6 times higher in the soil with H17-1 than in the soil without H17-1. In order to detect and quantify the Nocardia sp. H17-1 in soil samples, we quantified the genes encoding 16S ribosomal RNA (16S rRNA), alkane monooxygenase (alkB4), and catechol 2,3-dioxygenase (23CAT) with real-time PCR using SYBR green. The amounts of H17-1 16S rRNA and alkB4 detected increased rapidly up to 1,000-folds for the first 10 days, and then continued to increase only slightly or leveled off. However, the abundance of the 23CAT gene detected in H17-1-treated soil, where H17-1 had neither the 23CAT gene for the degradation of aromatic hydrocarbons nor the catechol 2,3-dioxygenase activity, did not differ significantly from that of the untreated soil (alpha=0.05, p>0.22). These results indicated that H17-1 is a potential candidate for the bioaugmentation of alkane-contaminated soil. Overall, we evaluated the abundance and metabolic activity of the bioremediation strain H17-1 using real-time PCR, independent of cultivation.
A non-heme iron-mediated chemical demethylation in DNA and RNA.
Yi, Chengqi; Yang, Cai-Guang; He, Chuan
2009-04-21
DNA methylation is arguably one of the most important chemical signals in biology. However, aberrant DNA methylation can lead to cytotoxic or mutagenic consequences. A DNA repair protein in Escherichia coli, AlkB, corrects some of the unwanted methylations of DNA bases by a unique oxidative demethylation in which the methyl carbon is liberated as formaldehyde. The enzyme also repairs exocyclic DNA lesions--that is, derivatives in which the base is augmented with an additional heterocyclic subunit--by a similar mechanism. Two proteins in humans that are homologous to AlkB, ABH2 and ABH3, repair the same spectrum of lesions; another human homologue of AlkB, FTO, is linked to obesity. In this Account, we describe our studies of AlkB, ABH2, and ABH3, including our development of a general strategy to trap homogeneous protein-DNA complexes through active-site disulfide cross-linking. AlkB uses a non-heme mononuclear iron(II) and the cofactors 2-ketoglutarate (2KG) and dioxygen to effect oxidative demethylation of the DNA base lesions 1-methyladenine (1-meA), 3-methylcytosine (3-meC), 1-methylguanine (1-meG), and 3-methylthymine (3-meT). ABH3, like AlkB, works better on single-stranded DNA (ssDNA) and is capable of repairing damaged bases in RNA. Conversely, ABH2 primarily repairs lesions in double-stranded DNA (dsDNA); it is the main housekeeping enzyme that protects the mammalian genome from 1-meA base damage. The AlkB-family proteins have moderate affinities for their substrates and bind DNA in a non-sequence-specific manner. Knowing that these proteins flip the damaged base out from the duplex DNA and insert it into the active site for further processing, we first engineered a disulfide cross-link in the active site to stabilize the Michaelis complex. Based on the detailed structural information afforded by the active-site cross-linked structures, we can readily install a cross-link away from the active site to obtain the native-like structures of these complexes. The crystal structures show a distinct base-flipping feature in AlkB and establish ABH2 as a dsDNA repair protein. They also provide a molecular framework for understanding the demethylation reaction catalyzed by these proteins and help to explain their substrate preferences. The chemical cross-linking method demonstrated here can be applied to trap other labile protein-DNA interactions and can serve as a general strategy for exploring the structural and functional aspects of base-flipping proteins.
Gunasekera, Thusitha S.; Bowen, Loryn L.; Zhou, Carol E.; Howard-Byerly, Susan C.; Foley, William S.; Striebich, Richard C.; Dugan, Larry C.
2017-01-01
ABSTRACT Pseudomonas aeruginosa can utilize hydrocarbons, but different strains have various degrees of adaptation despite their highly conserved genome. P. aeruginosa ATCC 33988 is highly adapted to hydrocarbons, while P. aeruginosa strain PAO1, a human pathogen, is less adapted and degrades jet fuel at a lower rate than does ATCC 33988. We investigated fuel-specific transcriptomic differences between these strains in order to ascertain the underlying mechanisms utilized by the adapted strain to proliferate in fuel. During growth in fuel, the genes related to alkane degradation, heat shock response, membrane proteins, efflux pumps, and several novel genes were upregulated in ATCC 33988. Overexpression of alk genes in PAO1 provided some improvement in growth, but it was not as robust as that of ATCC 33988, suggesting the role of other genes in adaptation. Expression of the function unknown gene PA5359 from ATCC 33988 in PAO1 increased the growth in fuel. Bioinformatic analysis revealed that PA5359 is a predicted lipoprotein with a conserved Yx(FWY)xxD motif, which is shared among bacterial adhesins. Overexpression of the putative resistance-nodulation-division (RND) efflux pump PA3521 to PA3523 increased the growth of the ATCC 33988 strain, suggesting a possible role in fuel tolerance. Interestingly, the PAO1 strain cannot utilize n-C8 and n-C10. The expression of green fluorescent protein (GFP) under the control of alkB promoters confirmed that alk gene promoter polymorphism affects the expression of alk genes. Promoter fusion assays further confirmed that the regulation of alk genes was different in the two strains. Protein sequence analysis showed low amino acid differences for many of the upregulated genes, further supporting transcriptional control as the main mechanism for enhanced adaptation. IMPORTANCE These results support that specific signal transduction, gene regulation, and coordination of multiple biological responses are required to improve the survival, growth, and metabolism of fuel in adapted strains. This study provides new insight into the mechanistic differences between strains and helpful information that may be applied in the improvement of bacterial strains for resistance to biotic and abiotic factors encountered during bioremediation and industrial biotechnological processes. PMID:28314727
Wang, Guoqiang; He, Qingzhong; Feng, Chong; Liu, Yang; Deng, Zengqin; Qi, Xiaoxuan; Wu, Wei; Mei, Pinchao; Chen, Zhongzhou
2014-10-03
ALKBH7 is the mitochondrial AlkB family member that is required for alkylation- and oxidation-induced programmed necrosis. In contrast to the protective role of other AlkB family members after suffering alkylation-induced DNA damage, ALKBH7 triggers the collapse of mitochondrial membrane potential and promotes cell death. Moreover, genetic ablation of mouse Alkbh7 dramatically increases body weight and fat mass. Here, we present crystal structures of human ALKBH7 in complex with Mn(II) and α-ketoglutarate at 1.35 Å or N-oxalylglycine at 2.0 Å resolution. ALKBH7 possesses the conserved double-stranded β-helix fold that coordinates a catalytically active iron by a conserved HX(D/E) … Xn … H motif. Self-hydroxylation of Leu-110 was observed, indicating that ALKBH7 has the potential to catalyze hydroxylation of its substrate. Unlike other AlkB family members whose substrates are DNA or RNA, ALKBH7 is devoid of the "nucleotide recognition lid" which is essential for binding nucleobases, and thus exhibits a solvent-exposed active site; two loops between β-strands β6 and β7 and between β9 and β10 create a special outer wall of the minor β-sheet of the double-stranded β-helix and form a negatively charged groove. These distinct features suggest that ALKBH7 may act on protein substrate rather than nucleic acids. Taken together, our findings provide a structural basis for understanding the distinct function of ALKBH7 in the AlkB family and offer a foundation for drug design in treating cell death-related diseases and metabolic diseases. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Fukuhara, Yuki; Horii, Sachie; Matsuno, Toshihide; Matsumiya, Yoshiki; Mukai, Masaki; Kubo, Motoki
2013-05-01
A real-time PCR quantification method for indigenous hydrocarbon-degrading bacteria (HDB) carrying the alkB gene in the soil environment was developed to investigate their distribution in soil. The detection limit of indigenous HDB by the method was 1 × 10(6) cells/g-soil. The indigenous HDB were widely distributed throughout the soil environment and ranged from 3.7 × 10(7) to 5.0 × 10(8) cells/g-soil, and the ratio to total bacteria was 0.1-4.3 %. The dynamics of total bacteria, indigenous HDB, and Rhodococcus erythropolis NDKK6 (carrying alkB R2) during bioremediation were analyzed. During bioremediation with an inorganic nutrient treatment, the numbers of these bacteria were slightly increased. The numbers of HDB (both indigenous bacteria and strain NDKK6) were gradually decreased from the middle stage of bioremediation. Meanwhile, the numbers of these bacteria were highly increased and were maintained during bioremediation with an organic nutrient. The organic treatment led to activation of not only the soil bacteria but also the HDB, so an efficient bioremediation was carried out.
Akbari, Ali; Ghoshal, Subhasis
2015-12-01
Contaminated soils are subject to diurnal and seasonal temperature variations during on-site ex-situ bioremediation processes. We assessed how diurnal temperature variations similar to that in summer at the site from which petroleum hydrocarbon-contaminated soil was collected affect the soil microbial community and the extent of biodegradation of petroleum hydrocarbons compared with constant temperature regimes. Microbial community analyses for 16S rRNA and alkB genes by pyrosequencing indicated that the microbial community for soils incubated under diurnal temperature variation from 5°C to 15°C (VART5-15) evolved similarly to that for soils incubated at constant temperature of 15°C (CST15). In contrast, under a constant temperature of 5°C (CST5), the community evolved significantly different. The extent of biodegradation of C10-C16 hydrocarbons in the VART5-15 systems was 48%, comparable with the 41% biodegradation in CST15 systems, but significantly higher than CST5 systems at 11%. The enrichment of Gammaproteobacteria was observed in the alkB gene-harbouring communities in VART5-15 and CST15 but not in CST5 systems. However, the Actinobacteria was abundant at all temperature regimes. The results suggest that changes in microbial community composition as a result of diurnal temperature variations can significantly influence petroleum hydrocarbon bioremediation performance in cold regions. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.
Gunasekera, Thusitha S; Bowen, Loryn L; Zhou, Carol E; Howard-Byerly, Susan C; Foley, William S; Striebich, Richard C; Dugan, Larry C; Ruiz, Oscar N
2017-05-15
Pseudomonas aeruginosa can utilize hydrocarbons, but different strains have various degrees of adaptation despite their highly conserved genome. P. aeruginosa ATCC 33988 is highly adapted to hydrocarbons, while P. aeruginosa strain PAO1, a human pathogen, is less adapted and degrades jet fuel at a lower rate than does ATCC 33988. We investigated fuel-specific transcriptomic differences between these strains in order to ascertain the underlying mechanisms utilized by the adapted strain to proliferate in fuel. During growth in fuel, the genes related to alkane degradation, heat shock response, membrane proteins, efflux pumps, and several novel genes were upregulated in ATCC 33988. Overexpression of alk genes in PAO1 provided some improvement in growth, but it was not as robust as that of ATCC 33988, suggesting the role of other genes in adaptation. Expression of the function unknown gene PA5359 from ATCC 33988 in PAO1 increased the growth in fuel. Bioinformatic analysis revealed that PA5359 is a predicted lipoprotein with a conserved Yx(FWY)xxD motif, which is shared among bacterial adhesins. Overexpression of the putative resistance-nodulation-division (RND) efflux pump PA3521 to PA3523 increased the growth of the ATCC 33988 strain, suggesting a possible role in fuel tolerance. Interestingly, the PAO1 strain cannot utilize n -C 8 and n -C 10 The expression of green fluorescent protein (GFP) under the control of alkB promoters confirmed that alk gene promoter polymorphism affects the expression of alk genes. Promoter fusion assays further confirmed that the regulation of alk genes was different in the two strains. Protein sequence analysis showed low amino acid differences for many of the upregulated genes, further supporting transcriptional control as the main mechanism for enhanced adaptation. IMPORTANCE These results support that specific signal transduction, gene regulation, and coordination of multiple biological responses are required to improve the survival, growth, and metabolism of fuel in adapted strains. This study provides new insight into the mechanistic differences between strains and helpful information that may be applied in the improvement of bacterial strains for resistance to biotic and abiotic factors encountered during bioremediation and industrial biotechnological processes. Copyright © 2017 American Society for Microbiology.
Comparative Genomics of DNA Recombination and Repair in Cyanobacteria: Biotechnological Implications
Cassier-Chauvat, Corinne; Veaudor, Théo; Chauvat, Franck
2016-01-01
Cyanobacteria are fascinating photosynthetic prokaryotes that are regarded as the ancestors of the plant chloroplast; the purveyors of oxygen and biomass for the food chain; and promising cell factories for an environmentally friendly production of chemicals. In colonizing most waters and soils of our planet, cyanobacteria are inevitably challenged by environmental stresses that generate DNA damages. Furthermore, many strains engineered for biotechnological purposes can use DNA recombination to stop synthesizing the biotechnological product. Hence, it is important to study DNA recombination and repair in cyanobacteria for both basic and applied research. This review reports what is known in a few widely studied model cyanobacteria and what can be inferred by mining the sequenced genomes of morphologically and physiologically diverse strains. We show that cyanobacteria possess many E. coli-like DNA recombination and repair genes, and possibly other genes not yet identified. E. coli-homolog genes are unevenly distributed in cyanobacteria, in agreement with their wide genome diversity. Many genes are extremely well conserved in cyanobacteria (mutMS, radA, recA, recFO, recG, recN, ruvABC, ssb, and uvrABCD), even in small genomes, suggesting that they encode the core DNA repair process. In addition to these core genes, the marine Prochlorococcus and Synechococcus strains harbor recBCD (DNA recombination), umuCD (mutational DNA replication), as well as the key SOS genes lexA (regulation of the SOS system) and sulA (postponing of cell division until completion of DNA reparation). Hence, these strains could possess an E. coli-type SOS system. In contrast, several cyanobacteria endowed with larger genomes lack typical SOS genes. For examples, the two studied Gloeobacter strains lack alkB, lexA, and sulA; and Synechococcus PCC7942 has neither lexA nor recCD. Furthermore, the Synechocystis PCC6803 lexA product does not regulate DNA repair genes. Collectively, these findings indicate that not all cyanobacteria have an E. coli-type SOS system. Also interestingly, several cyanobacteria possess multiple copies of E. coli-like DNA repair genes, such as Acaryochloris marina MBIC11017 (2 alkB, 3 ogt, 7 recA, 3 recD, 2 ssb, 3 umuC, 4 umuD, and 8 xerC), Cyanothece ATCC51142 (2 lexA and 4 ruvC), and Nostoc PCC7120 (2 ssb and 3 xerC). PMID:27881980
Gunasekera, Thusitha S; Striebich, Richard C; Mueller, Susan S; Strobel, Ellen M; Ruiz, Oscar N
2013-01-01
Fuel is a harsh environment for microbial growth. However, some bacteria can grow well due to their adaptive mechanisms. Our goal was to characterize the adaptations required for Pseudomonas aeruginosa proliferation in fuel. We have used DNA-microarrays and RT-PCR to characterize the transcriptional response of P. aeruginosa to fuel. Transcriptomics revealed that genes essential for medium- and long-chain n-alkane degradation including alkB1 and alkB2 were transcriptionally induced. Gas chromatography confirmed that P. aeruginosa possesses pathways to degrade different length n-alkanes, favoring the use of n-C11-18. Furthermore, a gamut of synergistic metabolic pathways, including porins, efflux pumps, biofilm formation, and iron transport, were transcriptionally regulated. Bioassays confirmed that efflux pumps and biofilm formation were required for growth in jet fuel. Furthermore, cell homeostasis appeared to be carefully maintained by the regulation of porins and efflux pumps. The Mex RND efflux pumps were required for fuel tolerance; blockage of these pumps precluded growth in fuel. This study provides a global understanding of the multiple metabolic adaptations required by bacteria for survival and proliferation in fuel-containing environments. This information can be applied to improve the fuel bioremediation properties of bacteria.
Regioselective alkane hydroxylation with a mutant AlkB enzyme
Koch, Daniel J.; Arnold, Frances H.
2012-11-13
AlkB from Pseudomonas putida was engineered using in-vivo directed evolution to hydroxylate small chain alkanes. Mutant AlkB-BMO1 hydroxylates propane and butane at the terminal carbon at a rate greater than the wild-type to form 1-propanol and 1-butanol, respectively. Mutant AlkB-BMO2 similarly hydroxylates propane and butane at the terminal carbon at a rate greater than the wild-type to form 1-propanol and 1-butanol, respectively. These biocatalysts are highly active for small chain alkane substrates and their regioselectivity is retained in whole-cell biotransformations.
Inaba, Tomohiro; Tokumoto, Yuta; Miyazaki, Yusuke; Inoue, Naoyuki; Maseda, Hideaki; Nakajima-Kambe, Toshiaki; Uchiyama, Hiroo
2013-01-01
Succinoyl trehalose lipids (STLs) are promising glycolipid biosurfactants produced from n-alkanes that are secreted by Rhodococcus species bacteria. These compounds not only exhibit unique interfacial properties but also demonstrate versatile biochemical actions. In this study, three novel types of genes involved in the biosynthesis of STLs, including a putative acyl coenzyme A (acyl-CoA) transferase (tlsA), fructose-bisphosphate aldolase (fda), and alkane monooxygenase (alkB), were identified. The predicted functions of these genes indicate that alkane metabolism, sugar synthesis, and the addition of acyl groups are important for the biosynthesis of STLs. Based on these results, we propose a biosynthesis pathway for STLs from alkanes in Rhodococcus sp. strain SD-74. By overexpressing tlsA, we achieved a 2-fold increase in the production of STLs. This study advances our understanding of bacterial glycolipid production in Rhodococcus species. PMID:24038682
NASA Astrophysics Data System (ADS)
Huang, Tung-Yi; Hsu, Bing-Mu; Chao, Wei-Chun; Fan, Cheng-Wei
2018-03-01
n-Alkane and alkane-degrading bacteria have long been used as crucial biological indicators of paleoecology, petroleum pollution, and oil and gas prospecting. However, the relationship between n-alkane and alkane-degrading bacteria in natural forests is still poorly understood. In this study, long-chain n-alkane (C14-C35) concentrations in litterfall, litter layer, and topsoil as well as the diversity and abundance of n-alkane-degrading bacterial communities in litter layers were investigated in three habitats across a lowland subtropical rainforest in southern Taiwan: ravine, windward, and leeward habitats in Nanjenshan. Our results demonstrate that the litterfall yield and productivity of long-chain n-alkane were highest in the ravine habitats. However, long-chain n-alkane concentrations in all habitats were decreased drastically to a similar low level from the litterfall to the bulk soil, suggesting a higher rate of long-chain n-alkane degradation in the ravine habitat. Operational taxonomic unit (OTU) analysis using next-generation sequencing data revealed that the relative abundances of microbial communities in the windward and leeward habitats were similar and different from that in the ravine habitat. Data mining of community amplicon sequencing using the NCBI database revealed that alkB-gene-associated bacteria (95 % DNA sequence similarity to alkB-containing bacteria) were most abundant in the ravine habitat. Empirical testing of litter layer samples using semi-quantitative polymerase chain reaction for determining alkB gene levels confirmed that the ravine habitat had higher alkB gene levels than the windward and leeward habitats. Heat map analysis revealed parallels in pattern color between the plant and microbial species compositions of the habitats, suggesting a causal relationship between the plant n-alkane production and microbial community diversity. This finding indicates that the diversity and relative abundance of microbial communities in the litter layer are affected by n-alkane plant composition in the litterfall.
Chemical dispersants enhance the activity of oil- and gas condensate-degrading marine bacteria.
Tremblay, Julien; Yergeau, Etienne; Fortin, Nathalie; Cobanli, Susan; Elias, Miria; King, Thomas L; Lee, Kenneth; Greer, Charles W
2017-12-01
Application of chemical dispersants to oil spills in the marine environment is a common practice to disperse oil into the water column and stimulate oil biodegradation by increasing its bioavailability to indigenous bacteria capable of naturally metabolizing hydrocarbons. In the context of a spill event, the biodegradation of crude oil and gas condensate off eastern Canada is an essential component of a response strategy. In laboratory experiments, we simulated conditions similar to an oil spill with and without the addition of chemical dispersant under both winter and summer conditions and evaluated the natural attenuation potential for hydrocarbons in near-surface sea water from the vicinity of crude oil and natural gas production facilities off eastern Canada. Chemical analyses were performed to determine hydrocarbon degradation rates, and metagenome binning combined with metatranscriptomics was used to reconstruct abundant bacterial genomes and estimate their oil degradation gene abundance and activity. Our results show important and rapid structural shifts in microbial populations in all three different oil production sites examined following exposure to oil, oil with dispersant and dispersant alone. We found that the addition of dispersant to crude oil enhanced oil degradation rates and favored the abundance and expression of oil-degrading genes from a Thalassolituus sp. (that is, metagenome bin) that harbors multiple alkane hydroxylase (alkB) gene copies. We propose that this member of the Oceanospirillales group would be an important oil degrader when oil spills are treated with dispersant.
m6A RNA Methylation Controls Neural Development and Is Involved in Human Diseases.
Du, Kunzhao; Zhang, Longbin; Lee, Trevor; Sun, Tao
2018-06-16
RNA modifications are involved in many aspects of biological functions. N6-methyladenosine (m 6 A) is one of the most important forms of RNA methylation and plays a vital role in regulating gene expression, protein translation, cell behaviors, and physiological conditions in many species, including humans. The dynamic and reversible modification of m 6 A is conducted by three elements: methyltransferases ("writers"), such as methyltransferase-like protein 3 (METTL3) and METTL14; m 6 A-binding proteins ("readers"), such as the YTH domain family proteins (YTHDFs) and YTH domain-containing protein 1 (YTHDC1); and demethylases ("erasers"), such as fat mass and obesity-associated protein (FTO) and AlkB homolog 5 (ALKBH5). In this review, we summarize the current knowledge on mapping mRNA positions of m 6 A modification and revealing molecular processes of m 6 A. We further highlight the biological significance of m 6 A modification in neural cells during development of the nervous system and its association with human diseases. m 6 A RNA methylation is becoming a new frontier in neuroscience and should help us better understand neural development and neurological diseases from a novel point of view.
Hydrocarbon Degradation Pathways used by Coastal Sediment Microbial Communities exposed to Crude Oil
NASA Astrophysics Data System (ADS)
Spaulding-Astudillo, F.; Sharrar, A.; Orcutt, B.
2016-02-01
The site-specific microbial community response to crude oil exposure in marine environments is not well described. Moreover, the abundance of genes implicated in long-chain alkane (LCA) and polycyclic aromatic hydrocarbon (PAH) degradation are not well understood. Coastal sediments from the Beaufort Sea, Gulf of Alaska, and Portland Harbor were treated with crude oil and incubated aerobically. Deep-sea sediments from the Gulf of Mexico were treated with the same crude oil and anaerobically incubated in situ for five months before recovery. Cycloclasticus, a known hydrocarbon-degrader, was abundant in all oiled, aerobic samples regardless of temperature, demonstrating a generalist oil-response strategy. Other hydrocarbon degrading bacteria showed differential response to either site or temperature. Primers for alkB, assA, bssA, and ncr, catabolic gene markers for aerobic LCA degradation, anaerobic LCA degradation, anaerobic LCA & PAH degradation, and anaerobic PAH degradation, respectively, were found in literature and tested on DNA extracts in a QPCR-based assay. Gene abundance was site and condition variable.
Horizontal gene transfer versus biostimulation: A strategy for bioremediation in Goa.
Pasumarthi, Rajesh; Mutnuri, Srikanth
2016-12-15
Bioaugmentation, Biostimulation and Horizontal gene transfer (HGT) of catabolic genes have been proven for their role in bioremediation of hydrocarbons. It also has been proved that selection of either biostimulation or bioremediation varies for every contaminated site. The reliability of HGT compared to biostimulation and bioremediation was not tested. The present study focuses on reliability of biostimulatiion, bioaugmentation and HGT during biodegradation of Diesel oil and Non aqueous phase liquids (NAPL). Pseudomonas aeruginosa (AEBBITS1) having alkB and NDO genes was used for bioaugmentation and the experiment was conducted using seawater as medium. Based on Gas chromatography results diesel was found to be degraded to 100% in both presence and absence of AEBBITS1. Denturing gradient gel electrophoresis result showed same pattern in presence and absence of AEBBITS1 indicating no HGT. NAPL degradation was found to be more by Biostimulated Bioaugmentation compared to biostimulation and bioaugmentation alone. This proves that biostimulated bioaugmentation is better strategy for oil contamination (tarabll) in Velsao beach, Goa. Copyright © 2016 Elsevier Ltd. All rights reserved.
Quesne, Matthew G; Latifi, Reza; Gonzalez-Ovalle, Luis E; Kumar, Devesh; de Visser, Sam P
2014-01-01
AlkB repair enzymes are important nonheme iron enzymes that catalyse the demethylation of alkylated DNA bases in humans, which is a vital reaction in the body that heals externally damaged DNA bases. Its mechanism is currently controversial and in order to resolve the catalytic mechanism of these enzymes, a quantum mechanics/molecular mechanics (QM/MM) study was performed on the demethylation of the N1-methyladenine fragment by AlkB repair enzymes. Firstly, the initial modelling identified the oxygen binding site of the enzyme. Secondly, the oxygen activation mechanism was investigated and a novel pathway was found, whereby the catalytically active iron(IV)–oxo intermediate in the catalytic cycle undergoes an initial isomerisation assisted by an Arg residue in the substrate binding pocket, which then brings the oxo group in close contact with the methyl group of the alkylated DNA base. This enables a subsequent rate-determining hydrogen-atom abstraction on competitive σ-and π-pathways on a quintet spin-state surface. These findings give evidence of different locations of the oxygen and substrate binding channels in the enzyme and the origin of the separation of the oxygen-bound intermediates in the catalytic cycle from substrate. Our studies are compared with small model complexes and the effect of protein and environment on the kinetics and mechanism is explained. PMID:24339041
Crystal structures of catalytic complexes of the oxidative DNA/RNA repair enzyme AlkB
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu,B.; Edstrom, W.; Benach, J.
2006-01-01
Nucleic acid damage by environmental and endogenous alkylation reagents creates lesions that are both mutagenic and cytotoxic, with the latter effect accounting for their widespread use in clinical cancer chemotherapy. Escherichia coliAlkB and the homologous human proteins ABH2 and ABH3 (refs 5, 7) promiscuously repair DNA and RNA bases damaged by SN2 alkylation reagents, which attach hydrocarbons to endocyclic ring nitrogen atoms (N1 of adenine and guanine and N3 of thymine and cytosine). Although the role of AlkB in DNA repair has long been established based on phenotypic studies, its exact biochemical activity was only elucidated recently after sequence profilemore » analysis revealed it to be a member of the Fe-oxoglutarate-dependent dioxygenase superfamily. These enzymes use an Fe(ii) cofactor and 2-oxoglutarate co-substrate to oxidize organic substrates. AlkB hydroxylates an alkylated nucleotide base to produce an unstable product that releases an aldehyde to regenerate the unmodified base. Here we have determined crystal structures of substrate and product complexes of E. coli AlkB at resolutions from 1.8 to 2.3 Angstroms. Whereas the Fe-2-oxoglutarate dioxygenase core matches that in other superfamily members, a unique subdomain holds a methylated trinucleotide substrate into the active site through contacts to the polynucleotide backbone. Amide hydrogen exchange studies and crystallographic analyses suggest that this substrate-binding 'lid' is conformationally flexible, which may enable docking of diverse alkylated nucleotide substrates in optimal catalytic geometry. Different crystal structures show open and closed states of a tunnel putatively gating O2 diffusion into the active site. Exposing crystals of the anaerobic Michaelis complex to air yields slow but substantial oxidation of 2-oxoglutarate that is inefficiently coupled to nucleotide oxidation. These observations suggest that protein dynamics modulate redox chemistry and that a hypothesized migration of the reactive oxy-ferryl ligand on the catalytic Fe ion may be impeded when the protein is constrained in the crystal lattice.« less
Aptamer facilitated purification of functional proteins.
Beloborodov, Stanislav S; Bao, Jiayin; Krylova, Svetlana M; Shala-Lawrence, Agnesa; Johnson, Philip E; Krylov, Sergey N
2018-01-15
DNA aptamers are attractive capture probes for affinity chromatography since, in contrast to antibodies, they can be chemically synthesized and, in contrast to tag-specific capture probes (such as Nickel-NTA or Glutathione), they can be used for purification of proteins free of genetic modifications (such as His or GST tags). Despite these attractive features of aptamers as capture probes, there are only a few reports on aptamer-based protein purification and none of them includes a test of the purified protein's activity, thus, leaving discouraging doubts about method's ability to purify proteins in their active state. The goal of this work was to prove that aptamers could facilitate isolation of active proteins. We refined a complete aptamer-based affinity purification procedure, which takes 4 h to complete. We further applied this procedure to purify two recombinant proteins, MutS and AlkB, from bacterial cell culture: 0.21 mg of 85%-pure AlkB from 4 mL of culture and 0.24 mg of 82%-pure MutS from 0.5 mL of culture. Finally, we proved protein activity by two capillary electrophoresis based assays: an enzymatic assay for AlkB and a DNA-binding assay for MutS. We suggest that in combination with aptamer selection for non-purified protein targets in crude cell lysate, aptamer-based purification provides a means of fast isolation of tag-free recombinant proteins in their native state without the use of antibodies. Copyright © 2017 Elsevier B.V. All rights reserved.
de Sousa, B G; Oliveira, J I N; Albuquerque, E L; Fulco, U L; Amaro, V E; Blaha, C A G
2017-10-01
Many species of bacteria involved in degradation of n-alkanes have an important constitutional metabolic enzyme, the alkane hydroxylase called AlkB, specialized in the conversion of hydrocarbons molecules that can be used as carbon and/or energy source. This enzyme plays an important role in the microbial degradation of oil, chlorinated hydrocarbons, fuel additives, and many other compounds. A number of these enzymes has been biochemically characterized in detail because the potential of alkane hydroxylases to catalyse high added-value reactions is widely recognized. Nevertheless, the industrial and process bioremediation application of them is restricted, owing to their complex biochemistry, challenging process requirements, and the limited number of their three-dimensional structures. Furthermore, AlkB has great potential as biocatalysts for selective transformation of a wide range of chemically inert unreactive alkanes into reactive chemical precursors that can be used as tools for bioremediation and bioprocesses. Aiming to understand the possible ways the AlkB enzyme Pseudomonas putida P1 interacts with octane, octanol and 1-octyne, we consider its suitable biochemical structure taking into account a 3-D homology modelling. Besides, by using a quantum chemistry computational model based on the density functional theory (DFT), we determine possible protein-substrate interaction regions measured by means of its binding energy simulated throughout the Molecular Fractionation with Conjugated Caps (MFCC) approach. Copyright © 2017 Elsevier Inc. All rights reserved.
Bourguignon, Natalia; Bargiela, Rafael; Rojo, David; Chernikova, Tatyana N; de Rodas, Sara A López; García-Cantalejo, Jesús; Näther, Daniela J; Golyshin, Peter N; Barbas, Coral; Ferrero, Marcela; Ferrer, Manuel
2016-12-01
The analysis of catabolic capacities of microorganisms is currently often achieved by cultivation approaches and by the analysis of genomic or metagenomic datasets. Recently, a microarray system designed from curated key aromatic catabolic gene families and key alkane degradation genes was designed. The collection of genes in the microarray can be exploited to indicate whether a given microbe or microbial community is likely to be functionally connected with certain degradative phenotypes, without previous knowledge of genome data. Herein, this microarray was applied to capture new insights into the catabolic capacities of copper-resistant actinomycete Amycolatopsis tucumanensis DSM 45259. The array data support the presumptive ability of the DSM 45259 strain to utilize single alkanes (n-decane and n-tetradecane) and aromatics such as benzoate, phthalate and phenol as sole carbon sources, which was experimentally validated by cultivation and mass spectrometry. Interestingly, while in strain DSM 45259 alkB gene encoding an alkane hydroxylase is most likely highly similar to that found in other actinomycetes, the genes encoding benzoate 1,2-dioxygenase, phthalate 4,5-dioxygenase and phenol hydroxylase were homologous to proteobacterial genes. This suggests that strain DSM 45259 contains catabolic genes distantly related to those found in other actinomycetes. Together, this study not only provided new insight into the catabolic abilities of strain DSM 45259, but also suggests that this strain contains genes uncommon within actinomycetes.
Sutton, Nora B; Kalisz, Mariusz; Krupanek, Janusz; Marek, Jan; Grotenhuis, Tim; Smidt, Hauke; de Weert, Jasperien; Rijnaarts, Huub H M; van Gaans, Pauline; Keijzer, Thomas
2014-02-18
While in situ chemical oxidation with persulfate has seen wide commercial application, investigations into the impacts on groundwater characteristics, microbial communities and soil structure are limited. To better understand the interactions of persulfate with the subsurface and to determine the compatibility with further bioremediation, a pilot scale treatment at a diesel-contaminated location was performed consisting of two persulfate injection events followed by a single nutrient amendment. Groundwater parameters measured throughout the 225 day experiment showed a significant decrease in pH and an increase in dissolved diesel and organic carbon within the treatment area. Molecular analysis of the microbial community size (16S rRNA gene) and alkane degradation capacity (alkB gene) by qPCR indicated a significant, yet temporary impact; while gene copy numbers initially decreased 1-2 orders of magnitude, they returned to baseline levels within 3 months of the first injection for both targets. Analysis of soil samples with sequential extraction showed irreversible oxidation of metal sulfides, thereby changing subsurface mineralogy and potentially mobilizing Fe, Cu, Pb, and Zn. Together, these results give insight into persulfate application in terms of risks and effective coupling with bioremediation.
Wang, Zhao; Yang, Yuyin; Sun, Weimin; Dai, Yu; Xie, Shuguang
2015-02-01
Nonylphenol (NP) can accumulate in river sediment. Bioaugmentation is an attractive option to dissipate heavy NP pollution in river sediment. In this study, two NP degraders were isolated from crude oil-polluted soil and river sediment. Microcosms were constructed to test their ability to degrade NP in river sediment. The shift in the proportion of NP-degrading genes and bacterial community structure in sediment microcosms were characterized using quantitative PCR assay and terminal restriction fragment length polymorphism analysis, respectively. Phylogenetic analysis indicated that the soil isolate belonged to genus Stenotrophomonas, while the sediment isolate was a Sphingobium species. Both of them could almost completely clean up a high level of NP in river sediment (150 mg/kg NP) in 10 or 14 days after inoculation. An increase in the proportion of alkB and sMO genes was observed in sediment microcosms inoculated with Stenotrophomonas strain Y1 and Sphingobium strain Y2, respectively. Moreover, bioaugmentation using Sphingobium strain Y2 could have a strong impact on sediment bacterial community structure, while inoculation of Stenotrophomonas strain Y1 illustrated a weak impact. This study can provide some new insights towards NP biodegradation and bioremediation.
Response Mechanisms in Serratia marcescens IBBPo15 During Organic Solvents Exposure.
Stancu, Mihaela Marilena
2016-12-01
Serratia marcescens strain IBB Po15 (KT315653) which possesses serratiopeptidase (ser) gene (KT894207) exhibited good solvent tolerance. During the exposure of S. marcescens IBB Po15 cells to 5 % organic solvents, n-decane was less toxic for this bacterium, compared with n-hexane, cyclohexane, ethylbenzene, toluene, and styrene. The exposure of the S. marcescens IBB Po15 cells to n-hexane, cyclohexane, ethylbenzene, toluene, and styrene induced the formation of large clusters, while in control and n-decane-exposed cells, only organization into small clusters was observed. The data obtained suggested that S. marcescens IBB Po15 cells produced some secondary metabolites (i.e., surfactant serrawettin, red pigment prodigiosin) which are well known as valuable molecules due to their large applications. The exposure of the bacterial cells to organic solvents induced secondary metabolites profile modifications. However, S. marcescens IBB Po15 possesses only alkB1, todM, rhlAB, pswP, mpr, and ser genes, the unspecific amplification of other fragments being acquired also when the primers for alkM1, xylM, ndoM, and C23DO genes were used. Modifications of DNA patterns were not depicted in S. marcescens IBB Po15 cells exposed to organic solvents.
Mukherjee, Ashis K; Bhagowati, Pabitra; Biswa, Bhim Bahadur; Chanda, Abhishek; Kalita, Bhargab
2017-09-07
Pseudomonas aeruginosa strain ASP-53, isolated from a petroleum oil-contaminated soil sample, was found to be an efficient degrader of pyrene. PCR amplification of selected hydrocarbon catabolic genes (alkB gene, which encodes for monooxygenase, and the C12O, C23O, and PAH-RHDα genes encoding for the dioxygenase enzyme) from the genomic DNA of P. aeruginosa strain ASP-53 suggested its hydrocarbon degradation potential. The GC-MS analysis demonstrated 30.1% pyrene degradation by P. aeruginosa strain ASP-53 after 144h of incubation at pH6.5, 37°C. Expressions of 115 and 196 intracellular proteins were unambiguously identified and quantitated by shotgun proteomics analysis when the isolate was grown in medium containing pyrene and glucose, respectively. The pyrene-induced uniquely expressed and up-regulated proteins in P. aeruginosa strain ASP-53 in addition to substrate (pyrene) metabolism are also likely to be associated with different cellular functions for example-related to protein folding (molecular chaperone), stress response, metabolism of carbohydrate, proteins and amino acids, and fatty acids; transport of metabolites, energy generation such as ATP synthesis, electron transport and nitrate assimilation, and other oxidation-reduction reactions. Proteomic analyses identified some important enzymes involved in pyrene degradation by P. aeruginosa ASP-53 which shows that this bacterium follows the salicylate pathway of pyrene degradation. This study is the first report on proteomic analysis of pyrene biodegradation pathway by Pseudomonas aeruginosa, isolated from a petroleum-oil contaminated soil sample. The pathway displays partial similarity with deduced pyrene degradation mechanisms of Mycobacterium vanbaalenii PYR-1. The GC-MS analysis as well as PCR amplification of hydrocarbon catabolic genes substantiated the potency of the bacterium under study to effectively degrade high molecular weight, toxic PAH such as pyrene for its filed scale bioremediation experiments. The proteomics approach (LC-MS/MS analysis) identified the differentially regulated intracellular proteins of the isolate P. aeruginosa ASP-53 when grown in pyrene medium. This study identified some important pyrene biodegradation enzymes in Pseudomonas aeruginosa ASP-53 and highlights that the bacterium follows salicylate pathway for pyrene degradation. Copyright © 2017 Elsevier B.V. All rights reserved.
Quesne, Matthew G; Latifi, Reza; Gonzalez-Ovalle, Luis E; Kumar, Devesh; de Visser, Sam P
2014-01-07
AlkB repair enzymes are important nonheme iron enzymes that catalyse the demethylation of alkylated DNA bases in humans, which is a vital reaction in the body that heals externally damaged DNA bases. Its mechanism is currently controversial and in order to resolve the catalytic mechanism of these enzymes, a quantum mechanics/molecular mechanics (QM/MM) study was performed on the demethylation of the N(1) -methyladenine fragment by AlkB repair enzymes. Firstly, the initial modelling identified the oxygen binding site of the enzyme. Secondly, the oxygen activation mechanism was investigated and a novel pathway was found, whereby the catalytically active iron(IV)-oxo intermediate in the catalytic cycle undergoes an initial isomerisation assisted by an Arg residue in the substrate binding pocket, which then brings the oxo group in close contact with the methyl group of the alkylated DNA base. This enables a subsequent rate-determining hydrogen-atom abstraction on competitive σ- and π-pathways on a quintet spin-state surface. These findings give evidence of different locations of the oxygen and substrate binding channels in the enzyme and the origin of the separation of the oxygen-bound intermediates in the catalytic cycle from substrate. Our studies are compared with small model complexes and the effect of protein and environment on the kinetics and mechanism is explained. © 2013 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Omrani, Rahma; Spini, Giulia; Puglisi, Edoardo; Saidane, Dalila
2018-04-01
Environmental microbial communities are key players in the bioremediation of hydrocarbon pollutants. Here we assessed changes in bacterial abundance and diversity during the degradation of Tunisian Zarzatine oil by four indigenous bacterial consortia enriched from a petroleum station soil, a refinery reservoir soil, a harbor sediment and seawater. The four consortia were found to efficiently degrade up to 92.0% of total petroleum hydrocarbons after 2 months of incubation. Illumina 16S rRNA gene sequencing revealed that the consortia enriched from soil and sediments were dominated by species belonging to Pseudomonas and Acinetobacter genera, while in the seawater-derived consortia Dietzia, Fusobacterium and Mycoplana emerged as dominant genera. We identified a number of species whose relative abundances bloomed from small to high percentages: Dietzia daqingensis in the seawater microcosms, and three OTUs classified as Acinetobacter venetianus in all two soils and sediment derived microcosms. Functional analyses on degrading genes were conducted by comparing PCR results of the degrading genes alkB, ndoB, cat23, xylA and nidA1 with inferences obtained by PICRUSt analysis of 16S amplicon data: the two data sets were partly in agreement and suggest a relationship between the catabolic genes detected and the rate of biodegradation obtained. The work provides detailed insights about the modulation of bacterial communities involved in petroleum biodegradation and can provide useful information for in situ bioremediation of oil-related pollution.
Wang, Zhao; Yang, Yuyin; He, Tao; Xie, Shuguang
2015-04-01
Biodegradation by autochthonous microbial community is an important way to clean up nonylphenol (NP) from contaminated river sediment. Knowledge of sediment microbial community can aid in our understanding of biological processes related to NP degradation. However, the change in sediment microbial community associated with NP biodegradation remains unclear. The present study investigated the shift in bacterial community structure and NP-degrading gene abundance in response to NP attenuation in river sediment. Sediment microcosms with different levels of 4-NP (0, 100, or 300 μg/g) were constructed. A nearly complete attenuation of NP occurred in the microcosm with 100 μg/g NP after 9 days' incubation, while a residual NP rate of 8.1 % was observed in the microcosm with 300 μg/g NP after 22 days' incubation. Illumina MiSeq sequencing analysis indicated that Gammaproteobacteria, Alphaproteobacteria, and Bacteroidetes predominated in NP-degrading river sediment. Sediment bacterial community structure varied significantly during NP biodegradation and subsequent incubation, which was affected by the level of added NP. The n-alkane biodegradation (alkB) gene abundance showed a significant variation in each NP-amended microcosm (100 or 300 μg/g), while a significant increase in the single component monooxygenase (sMO) gene abundance only occurred in the microcosm spiked with 300 μg/g NP. This study can provide some new insights toward NP-degrading microbial ecology in the environment.
Pawlik, Małgorzata; Piotrowska-Seget, Zofia
2015-01-01
The aim of this study was to assess the potential of 18 crude-oil-degrading endophytic bacteria for removal of hydrocarbons and promotion of plant growth. Strains were isolated from Hieracium piloselloides (tall hawkweed), which grows in soil heavily polluted with petroleum hydrocarbons. Bacteria from the genus Pseudomonas were abundant among the isolates. The potential for hydrocarbon degradation was evaluated by polymerase chain reaction (PCR) analyses of the genes alkB, alkH, C23O, P450, and pah. It was found that 88.89% of the endophytic bacteria contained gene-encoding polycyclic aromatic hydrocarbon (PAH) initial dioxygenase, 61% possessed the 2,3-catechol dioxygenase gene, and 39% of strains that were tested had the cytochrome P-450 hydroxylase gene. All isolates were capable of producing indole-3-acetic acid (1.8-76.4 μg/ml). Only 17% of them were able to produce siderophores, excrete cellulase, and solubilize phosphate. Hydrogen cyanide synthesis occurred in 33% of endophytic bacteria. The 1-aminocyclopropane-1-carboxylate deaminase activity in isolates that were screened was in the range of 2.6 to 74.1 μmol α-ketobutyrate/mg/h. This feature of the bacteria indicated that isolates may enhance the phytoremediation process. Data suggest that crude-oil-degrading endophytic bacteria possess potential to be promising candidates for enhancement of phytoremediation of hydrocarbon-contaminated soil. Further evaluation of these bacteria is needed in order to assess the role played in the degradation of petroleum hydrocarbons.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Newby, Deborah Trishelle; Hadfield, Ted; Roberto, Francisco Figueroa
Real-time PCR provides a means of detecting and quantifying DNA targets by monitoring PCR product accumulation during cycling as indicated by increased fluorescence. A number of different approaches can be used to generate the fluorescence signal. Three approaches—SYBR Green I (a double-stranded DNA intercalating dye), 5'-exonuclease (enzymatically released fluors), and hybridization probes (fluorescence resonance energy transfer)—were evaluated for use in a real-time PCR assay to detect Brucella abortus. The three assays utilized the same amplification primers to produce an identical amplicon. This amplicon spans a region of the B. abortus genome that includes portions of the alkB gene and themore » IS711 insertion element. All three assays were of comparable sensitivity, providing a linear assay over 7 orders of magnitude (from 7.5 ng down to 7.5 fg). However, the greatest specificity was achieved with the hybridization probe assay.« less
Sarkar, Poulomi; Roy, Ajoy; Pal, Siddhartha; Mohapatra, Balaram; Kazy, Sufia K; Maiti, Mrinal K; Sar, Pinaki
2017-10-01
Intrinsic biodegradation potential of bacteria from petroleum refinery waste was investigated through isolation of cultivable strains and their characterization. Pseudomonas and Bacillus spp. populated the normal cultivable taxa while prolonged enrichment with hydrocarbons and crude oil yielded hydrocarbonoclastic bacteria of genera Burkholderia, Enterobacter, Kocuria, Pandoraea, etc. Strains isolated through enrichment showed assemblages of superior metabolic properties: utilization of aliphatic (C6-C22) and polyaromatic compounds, anaerobic growth with multiple terminal electron acceptors and higher biosurfactant production. Biodegradation of dodecane was studied thoroughly by GC-MS along with detection of gene encoding alkane hydroxylase (alkB). Microcosms bioaugmented with Enterobacter, Pandoraea and Burkholderia strains showed efficient biodegradation (98% TPH removal) well fitted in first order kinetic model with low rate constants and decreased half-life. This study proves that catabolically efficient bacteria resides naturally in complex petroleum refinery wastes and those can be useful for bioaugmentation based bioremediation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Alkane hydroxylase genes in psychrophile genomes and the potential for cold active catalysis.
Bowman, Jeff S; Deming, Jody W
2014-12-16
Psychrophiles are presumed to play a large role in the catabolism of alkanes and other components of crude oil in natural low temperature environments. In this study we analyzed the functional diversity of genes for alkane hydroxylases, the enzymes responsible for converting alkanes to more labile alcohols, as found in the genomes of nineteen psychrophiles for which alkane degradation has not been reported. To identify possible mechanisms of low temperature optimization we compared putative alkane hydroxylases from these psychrophiles with homologues from nineteen taxonomically related mesophilic strains. Seven of the analyzed psychrophile genomes contained a total of 27 candidate alkane hydroxylase genes, only two of which are currently annotated as alkane hydroxylase. These candidates were mostly related to the AlkB and cytochrome p450 alkane hydroxylases, but several homologues of the LadA and AlmA enzymes, significant for their ability to degrade long-chain alkanes, were also detected. These putative alkane hydroxylases showed significant differences in primary structure from their mesophile homologues, with preferences for specific amino acids and increased flexibility on loops, bends, and α-helices. A focused analysis on psychrophile genomes led to discovery of numerous candidate alkane hydroxylase genes not currently annotated as alkane hydroxylase. Gene products show signs of optimization to low temperature, including regions of increased flexibility and amino acid preferences typical of psychrophilic proteins. These findings are consistent with observations of microbial degradation of crude oil in cold environments and identify proteins that can be targeted in rate studies and in the design of molecular tools for low temperature bioremediation.
Toshchakov, Stepan V; Korzhenkov, Alexei A; Chernikova, Tatyana N; Ferrer, Manuel; Golyshina, Olga V; Yakimov, Michail M; Golyshin, Peter N
2017-12-01
Marine bacterium Oleiphilus messinensis ME102 (DSM 13489 T ) isolated from the sediments of the harbor of Messina (Italy) is a member of the order Oceanospirillales, class Gammaproteobacteria, representing the physiological group of marine obligate hydrocarbonoclastic bacteria (OHCB) alongside the members of the genera Alcanivorax, Oleispira, Thalassolituus, Cycloclasticus and Neptunomonas. These organisms play a crucial role in the natural environmental cleanup in marine systems. Despite having the largest genome (6.379.281bp) among OHCB, O. messinensis exhibits a very narrow substrate profile. The alkane metabolism is pre-determined by three loci encoding for two P450 family monooxygenases, one of which formed a cassette with ferredoxin and alcohol dehydrogenase encoding genes and alkane monoxygenase (AlkB) gene clustered with two genes for rubredoxins and NAD + -dependent rubredoxin reductase. Its genome contains the largest numbers of genomic islands (15) and mobile genetic elements (140), as compared with more streamlined genomes of its OHCB counterparts. Among hydrocarbon-degrading Oceanospirillales, O. messinensis encodes the largest array of proteins involved in the signal transduction for sensing and responding to the environmental stimuli (345 vs 170 in Oleispira antarctica, the bacterium with the second highest number). This must be an important trait to adapt to the conditions in marine sediments with a high physico-chemical patchiness and heterogeneity as compared to those in the water column. Copyright © 2017. Published by Elsevier B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Espínola, Fernando; Dionisi, Hebe M.; Borglin, Sharon
In this work, we analyzed the community structure and metabolic potential of sediment microbial communities in high-latitude coastal environments subjected to low to moderate levels of chronic pollution. Subtidal sediments from four low-energy inlets located in polar and subpolar regions from both Hemispheres were analyzed using large-scale 16S rRNA gene and metagenomic sequencing. Communities showed high diversity (Shannon’s index 6.8 to 10.2), with distinct phylogenetic structures (<40% shared taxa at the Phylum level among regions) but similar metabolic potential in terms of sequences assigned to KOs. Environmental factors (mainly salinity, temperature, and in less extent organic pollution) were drivers ofmore » both phylogenetic and functional traits. Bacterial taxa correlating with hydrocarbon pollution included families of anaerobic or facultative anaerobic lifestyle, such as Desulfuromonadaceae, Geobacteraceae, and Rhodocyclaceae. In accordance, biomarker genes for anaerobic hydrocarbon degradation (bamA, ebdA, bcrA, and bssA) were prevalent, only outnumbered by alkB, and their sequences were taxonomically binned to the same bacterial groups. BssA-assigned metagenomic sequences showed an extremely wide diversity distributed all along the phylogeny known for this gene, including bssA sensu stricto, nmsA, assA, and other clusters from poorly or not yet described variants. This work increases our understanding of microbial community patterns in cold coastal sediments, and highlights the relevance of anaerobic hydrocarbon degradation processes in subtidal environments.« less
Fatima, K; Imran, A; Amin, I; Khan, Q M; Afzal, M
2016-04-01
Plants coupled with endophytic bacteria hold great potential for the remediation of polluted environment. The colonization patterns and activity of inoculated endophytes in rhizosphere and endosphere of host plant are among the primary factors that may influence the phytoremediation process. However, these colonization patterns and metabolic activity of the inoculated endophytes are in turn controlled by none other than the host plant itself. The present study aims to determine such an interaction specifically for plant-endophyte systems remediating crude oil-contaminated soil. A consortium (AP) of two oil-degrading endophytic bacteria (Acinetobacter sp. strain BRSI56 and Pseudomonas aeruginosa strain BRRI54) was inoculated to two grasses, Brachiaria mutica and Leptochloa fusca, vegetated in crude oil-contaminated soil. Colonization patterns and metabolic activity of the endophytes were monitored in the rhizosphere and endosphere of the plants. Bacterial augmentation enhanced plant growth and crude oil degradation. Maximum crude oil degradation (78%) was achieved with B. mutica plants inoculated with AP consortium. This degradation was significantly higher than those treatments, where plants and bacteria were used individually or L. fusca and endophytes were used in combination. Moreover, colonization and metabolic activity of the endophytes were higher in the rhizosphere and endosphere of B. mutica than L. fusca. The plant species affected not only colonization pattern and biofilm formation of the inoculated bacteria in the rhizosphere and endosphere of the host plant but also affected the expression of alkane hydroxylase gene, alkB. Hence, the investigation revealed that plant species can affect colonization patterns and metabolic activity of inoculated endophytic bacteria and ultimately the phytoremediation process.
Brakstad, Odd G; Daling, Per S; Faksness, Liv-G; Almås, Inger K; Vang, Siv-H; Syslak, Line; Leirvik, Frode
2014-07-15
Physically and chemically (Corexit 9500) generated Macondo 252 oil dispersions, or emulsions (no Corexit), were prepared in an oil-on-seawater mesocosm flume basin at 30-32 °C, and studies of oil compound depletion performed for up to 15 days. The use of Corexit 9500 resulted in smaller median droplet size than in a physically generated dispersion. Rapid evaporation of low boiling point oil compounds (C⩽15) appeared in all the experiments. Biodegradation appeared to be an important depletion process for compounds with higher boiling points in the dispersions, but was negligible in the surface emulsions. While n-alkane biodegradation was faster in chemically than in physically dispersed oil no such differences were determined for 3- and 4-ring PAH compounds. In the oil dispersions prepared by Corexit 9500, increased cell concentrations, reduction in bacterial diversity, and a temporary abundance of bacteria containing an alkB gene were associated with oil biodegradation. Copyright © 2014 Elsevier Ltd. All rights reserved.
Blain, Natalie P; Helgason, Bobbi L; Germida, James J
2017-06-01
The Bitumount Provincial Historic site is the location of 2 of the world's first oil-extracting and -refining operations. Despite hydrocarbon levels ranging from 330 to 24 700 mg·(kg soil) -1 , plants have been able to recolonize the site through means of natural revegetation. This study was designed to achieve a better understanding of the plant-root-associated bacterial partnerships occurring within naturally revegetated hydrocarbon-contaminated soils. Root endophytic bacterial communities were characterized from representative plant species throughout the site by both high-throughput sequencing and culturing techniques. Population abundance of rhizosphere and root endosphere bacteria was significantly influenced (p < 0.05) by plant species and sampling location. In general, members of the Actinomycetales, Rhizobiales, Pseudomonadales, Burkholderiales, and Sphingomonadales orders were the most commonly identified orders. Community structure of root-associated bacteria was influenced by both plant species and sampling location. Quantitative real-time polymerase chain reaction was used to determine the potential functional diversity of the root endophytic bacteria. The gene copy numbers of 16S rRNA and 2 hydrocarbon-degrading genes (CYP153 and alkB) were significantly affected (p < 0.05) by the interaction of plant species and sampling location. Our findings suggest that some of the bacterial communities detected are known to exhibit plant growth promotion characteristics.
Hamamura, Natsuko; Olson, Sarah H.; Ward, David M.; Inskeep, William P.
2005-01-01
In this paper we describe the bacterial communities associated with natural hydrocarbon seeps in nonthermal soils at Rainbow Springs, Yellowstone National Park. Soil chemical analysis revealed high sulfate concentrations and low pH values (pH 2.8 to 3.8), which are characteristic of acid-sulfate geothermal activity. The hydrocarbon composition of the seep soils consisted almost entirely of saturated, acyclic alkanes (e.g., n-alkanes with chain lengths of C15 to C30, as well as branched alkanes, predominately pristane and phytane). Bacterial populations present in the seep soils were phylogenetically characterized by 16S rRNA gene clone library analysis. The majority of the sequences recovered (>75%) were related to sequences of heterotrophic acidophilic bacteria, including Acidisphaera spp. and Acidiphilium spp. of the α-Proteobacteria. Clones related to the iron- and sulfur-oxidizing chemolithotroph Acidithiobacillus spp. were also recovered from one of the seep soils. Hydrocarbon-amended soil-sand mixtures were established to examine [14C]hexadecane mineralization and corresponding changes in the bacterial populations using denaturing gradient gel electrophoresis (DGGE) of 16S rRNA gene fragments. Approximately 50% of the [14C]hexadecane added was recovered as 14CO2 during an 80-day incubation, and this was accompanied by detection of heterotrophic acidophile-related sequences as dominant DGGE bands. An alkane-degrading isolate was cultivated, whose 16S rRNA gene sequence was identical to the sequence of a dominant DGGE band in the soil-sand mixture, as well as the clone sequence recovered most frequently from the original soil. This and the presence of an alkB gene homolog in this isolate confirmed the alkane degradation capability of one population indigenous to acidic hydrocarbon seep soils. PMID:16204508
Hamamura, Natsuko; Olson, Sarah H; Ward, David M; Inskeep, William P
2005-10-01
In this paper we describe the bacterial communities associated with natural hydrocarbon seeps in nonthermal soils at Rainbow Springs, Yellowstone National Park. Soil chemical analysis revealed high sulfate concentrations and low pH values (pH 2.8 to 3.8), which are characteristic of acid-sulfate geothermal activity. The hydrocarbon composition of the seep soils consisted almost entirely of saturated, acyclic alkanes (e.g., n-alkanes with chain lengths of C15 to C30, as well as branched alkanes, predominately pristane and phytane). Bacterial populations present in the seep soils were phylogenetically characterized by 16S rRNA gene clone library analysis. The majority of the sequences recovered (>75%) were related to sequences of heterotrophic acidophilic bacteria, including Acidisphaera spp. and Acidiphilium spp. of the alpha-Proteobacteria. Clones related to the iron- and sulfur-oxidizing chemolithotroph Acidithiobacillus spp. were also recovered from one of the seep soils. Hydrocarbon-amended soil-sand mixtures were established to examine [14C]hexadecane mineralization and corresponding changes in the bacterial populations using denaturing gradient gel electrophoresis (DGGE) of 16S rRNA gene fragments. Approximately 50% of the [14C]hexadecane added was recovered as 14CO2 during an 80-day incubation, and this was accompanied by detection of heterotrophic acidophile-related sequences as dominant DGGE bands. An alkane-degrading isolate was cultivated, whose 16S rRNA gene sequence was identical to the sequence of a dominant DGGE band in the soil-sand mixture, as well as the clone sequence recovered most frequently from the original soil. This and the presence of an alkB gene homolog in this isolate confirmed the alkane degradation capability of one population indigenous to acidic hydrocarbon seep soils.
Sutton, Nora B; van Gaans, Pauline; Langenhoff, Alette A M; Maphosa, Farai; Smidt, Hauke; Grotenhuis, Tim; Rijnaarts, Huub H M
2013-07-01
While bioremediation of total petroleum hydrocarbons (TPH) is in general a robust technique, heterogeneity in terms of contaminant and environmental characteristics can impact the extent of biodegradation. The current study investigates the implications of different soil matrix types (anthropogenic fill layer, peat, clay, and sand) and bioavailability on bioremediation of an aged diesel contamination from a heterogeneous site. In addition to an uncontaminated sample for each soil type, samples representing two levels of contamination (high and low) were also used; initial TPH concentrations varied between 1.6 and 26.6 g TPH/kg and bioavailability between 36 and 100 %. While significant biodegradation occurred during 100 days of incubation under biostimulating conditions (64.4-100 % remediation efficiency), low bioavailability restricted full biodegradation, yielding a residual TPH concentration. Respiration levels, as well as the abundance of alkB, encoding mono-oxygenases pivotal for hydrocarbon metabolism, were positively correlated with TPH degradation, demonstrating their usefulness as a proxy for hydrocarbon biodegradation. However, absolute respiration and alkB presence were dependent on soil matrix type, indicating the sensitivity of results to initial environmental conditions. Through investigating biodegradation potential across a heterogeneous site, this research illuminates the interplay between soil matrix type, bioavailability, and bioremediation and the implications of these parameters for the effectiveness of an in situ treatment.
Enhanced crude oil biodegradation in soil via biostimulation.
Al-Saleh, Esmaeil; Hassan, Ali
2016-08-02
Research on feasible methods for the enhancement of bioremediation in soil contaminated by crude oil is vital in oil-exporting countries such as Kuwait, where crude oil is a major pollutant and the environment is hostile to biodegradation. This study investigated the possibility of enhancing crude oil bioremediation by supplementing soil with cost-effective organic materials derived from two widespread locally grown trees, Conocarpus and Tamarix. Amendments in soils increased the counts of soil microbiota by up to 98% and enhanced their activity by up to 95.5%. The increase in the biodegradation of crude oil (75%) and high levels of alkB expression substantiated the efficiency of the proposed amendment technology for the bioremediation of hydrocarbon-contaminated sites. The identification of crude-oil-degrading bacteria revealed the dominance of the genus Microbacterium (39.6%), Sphingopyxis soli (19.3%), and Bordetella petrii (19.6%) in unamended, Conocarpus-amended, and Tamarix-amended contaminated soils, respectively. Although soil amendments favored the growth of Gram-negative bacteria and reduced bacterial diversity, the structures of bacterial communities were not significantly altered.
Wang, Pu; Wu, Jing; Ma, Shenghong; Zhang, Lei; Yao, Jun; Hoadley, Katherine A; Wilkerson, Matthew D; Perou, Charles M; Guan, Kun-Liang; Ye, Dan; Xiong, Yue
2015-12-22
Chemotherapy of a combination of DNA alkylating agents, procarbazine and lomustine (CCNU), and a microtubule poison, vincristine, offers a significant benefit to a subset of glioma patients. The benefit of this regimen, known as PCV, was recently linked to IDH mutation that occurs frequently in glioma and produces D-2-hydroxyglutarate (D-2-HG), a competitive inhibitor of α-ketoglutarate (α-KG). We report here that D-2-HG inhibits the α-KG-dependent alkB homolog (ALKBH) DNA repair enzymes. Cells expressing mutant IDH display reduced repair kinetics, accumulate more DNA damages, and are sensitized to alkylating agents. The observed sensitization to alkylating agents requires the catalytic activity of mutant IDH to produce D-2-HG and can be reversed by the deletion of mutant IDH allele or overexpression of ALKBH2 or AKLBH3. Our results suggest that impairment of DNA repair may contribute to tumorigenesis driven by IDH mutations and that alkylating agents may merit exploration for treating IDH-mutated cancer patients. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Richardson, Elizabeth L; King, Catherine K; Powell, Shane M
2015-04-01
Terrestrial fuel spills in Antarctica commonly occur on ice-free land around research stations as the result of human activities. Successful spill clean-ups require appropriate targets that confirm contaminated sites are no longer likely to pose environmental risk following remediation. These targets are based on knowledge of the impacts of contaminants on the soil ecosystem and on the response of native biota to contamination. Our work examined the response of soil microbial communities to fuel contamination by measuring the abundance of genes involved in critical soil processes, and assessed the use of this approach as an indicator of soil health in the presence of weathered and fresh fuels. Uncontaminated and contaminated soils were collected from the site of remediation treatment of an aged diesel spill at Casey Station, East Antarctica in December 2012. Uncontaminated soil was spiked with fresh Special Antarctic Blend (SAB) diesel to determine the response of the genes to fresh fuel. Partly remediated soil containing weathered SAB diesel was diluted with uncontaminated soil to simulate a range of concentrations of weathered fuel and used to determine the response of the genes to aged fuel. Quantitative PCR (qPCR) was used to measure the abundance of rpoB, alkB, cat23, and nosZ in soils containing SAB diesel. Differences were observed between the abundance of genes in control soils versus soils containing weathered and fresh fuels. Typical dose-response curves were generated for genes in response to the presence of fresh fuel. In contrast, the response of these genes to the range of weathered fuel appeared to be due to dilution, rather than to the effect of the fuel on the microbial community. Changes in microbial genes in response to fresh contamination have potential as a sensitive measure of soil health and for assessments of the effect of fuel spills in polar soils. This will contribute to the development of remediation guidelines to assist in management decisions on when the impact of a fuel spill warrants remediation. © 2014 SETAC.
Diversity of Metabolically Active Bacteria in Water-Flooded High-Temperature Heavy Oil Reservoir
Nazina, Tamara N.; Shestakova, Natalya M.; Semenova, Ekaterina M.; Korshunova, Alena V.; Kostrukova, Nadezda K.; Tourova, Tatiana P.; Min, Liu; Feng, Qingxian; Poltaraus, Andrey B.
2017-01-01
The goal of this work was to study the overall genomic diversity of microorganisms of the Dagang high-temperature oilfield (PRC) and to characterize the metabolically active fraction of these populations. At this water-flooded oilfield, the microbial community of formation water from the near-bottom zone of an injection well where the most active microbial processes of oil degradation occur was investigated using molecular, cultural, radiotracer, and physicochemical techniques. The samples of microbial DNA and RNA from back-flushed water were used to obtain the clone libraries for the 16S rRNA gene and cDNA of 16S rRNA, respectively. The DNA-derived clone libraries were found to contain bacterial and archaeal 16S rRNA genes and the alkB genes encoding alkane monooxygenases similar to those encoded by alkB-geo1 and alkB-geo6 of geobacilli. The 16S rRNA genes of methanogens (Methanomethylovorans, Methanoculleus, Methanolinea, Methanothrix, and Methanocalculus) were predominant in the DNA-derived library of Archaea cloned sequences; among the bacterial sequences, the 16S rRNA genes of members of the genus Geobacillus were the most numerous. The RNA-derived library contained only bacterial cDNA of the 16S rRNA sequences belonging to metabolically active aerobic organotrophic bacteria (Tepidimonas, Pseudomonas, Acinetobacter), as well as of denitrifying (Azoarcus, Tepidiphilus, Calditerrivibrio), fermenting (Bellilinea), iron-reducing (Geobacter), and sulfate- and sulfur-reducing bacteria (Desulfomicrobium, Desulfuromonas). The presence of the microorganisms of the main functional groups revealed by molecular techniques was confirmed by the results of cultural, radioisotope, and geochemical research. Functioning of the mesophilic and thermophilic branches was shown for the microbial food chain of the near-bottom zone of the injection well, which included the microorganisms of the carbon, sulfur, iron, and nitrogen cycles. PMID:28487680
NASA Astrophysics Data System (ADS)
Sohail, Y.; Andria, V.; Reichenauer, T. G.; Sessitsch, A.
2009-04-01
Hydrocarbon-degrading strains were isolated from the rhizosphere, root and shoot interior of Italian ryegrass (Lolium multiflorum var. Taurus), Birdsfoot trefoil (Lotus corniculatus var. Leo) grown in a soil contaminated with petroleum oil. Strains were tested regarding their phylogeny and their degradation efficiency. The most efficient strains were tested regarding their suitability to be applied for phytoremediation of diesel oils. Sterilized and non-sterilized agricultural soil, with and with out compost, were spiked with diesel and used for planting Italian ryegrass and birdsfoot trefoil. Four selected strains with high degradation activities, derived from the rhizosphere and plant interior, were selected for individual inoculation. Plants were harvested at flowering stage and plant biomass and hydrocarbon degradation was determined. Furthermore, it was investigated to which extent the inoculant strains were able to survive and colonize plants. Microbial community structures were analysed by 16S rRNA and alkB gene analysis. Results showed efficient colonization by the inoculant strains and improved degradation by the application of compost combined with inoculation as well as on microbial community structures will be presented.
Steinbach, Annelie; Schulz, Stefanie; Giebler, Julia; Schulz, Stephan; Pronk, Geertje J; Kögel-Knabner, Ingrid; Harms, Hauke; Wick, Lukas Y; Schloter, Michael
2015-07-01
Clay minerals, charcoal and metal oxides are essential parts of the soil matrix and strongly influence the formation of biogeochemical interfaces in soil. We investigated the role of these parental materials for the development of functional microbial guilds using the example of alkane-degrading bacteria harbouring the alkane monooxygenase gene (alkB) in artificial mixtures composed of different minerals and charcoal, sterile manure and a microbial inoculum extracted from an agricultural soil. We followed changes in abundance and community structure of alkane-degrading microbial communities after 3 and 12 months of soil maturation and in response to a subsequent 2-week plant litter addition. During maturation we observed an overall increasing divergence in community composition. The impact of metal oxides on alkane-degrading community structure increased during soil maturation, whereas the charcoal impact decreased from 3 to 12 months. Among the clay minerals illite influenced the community structure of alkB-harbouring bacteria significantly, but not montmorillonite. The litter application induced strong community shifts in soils, maturated for 12 months, towards functional guilds typical for younger maturation stages pointing to a resilience of the alkane-degradation function potentially fostered by an extant 'seed bank'.
Steinbach, Annelie; Schulz, Stefanie; Giebler, Julia; Schulz, Stephan; Pronk, Geertje J; Kögel-Knabner, Ingrid; Harms, Hauke; Wick, Lukas Y; Schloter, Michael
2015-01-01
Clay minerals, charcoal and metal oxides are essential parts of the soil matrix and strongly influence the formation of biogeochemical interfaces in soil. We investigated the role of these parental materials for the development of functional microbial guilds using the example of alkane-degrading bacteria harbouring the alkane monooxygenase gene (alkB) in artificial mixtures composed of different minerals and charcoal, sterile manure and a microbial inoculum extracted from an agricultural soil. We followed changes in abundance and community structure of alkane-degrading microbial communities after 3 and 12 months of soil maturation and in response to a subsequent 2-week plant litter addition. During maturation we observed an overall increasing divergence in community composition. The impact of metal oxides on alkane-degrading community structure increased during soil maturation, whereas the charcoal impact decreased from 3 to 12 months. Among the clay minerals illite influenced the community structure of alkB-harbouring bacteria significantly, but not montmorillonite. The litter application induced strong community shifts in soils, maturated for 12 months, towards functional guilds typical for younger maturation stages pointing to a resilience of the alkane-degradation function potentially fostered by an extant ‘seed bank'. PMID:25535940
Genome Sequencing Reveals the Potential of Achromobacter sp. HZ01 for Bioremediation
Hong, Yue-Hui; Ye, Cong-Cong; Zhou, Qian-Zhi; Wu, Xiao-Ying; Yuan, Jian-Ping; Peng, Juan; Deng, Hailin; Wang, Jiang-Hai
2017-01-01
Petroleum pollution is a severe environmental issue. Comprehensively revealing the genetic backgrounds of hydrocarbon-degrading microorganisms contributes to developing effective methods for bioremediation of crude oil-polluted environments. Marine bacterium Achromobacter sp. HZ01 is capable of degrading hydrocarbons and producing biosurfactants. In this study, the draft genome (5.5 Mbp) of strain HZ01 has been obtained by Illumina sequencing, containing 5,162 predicted genes. Genome annotation shows that “amino acid metabolism” is the most abundant metabolic pathway. Strain HZ01 is not capable of using some common carbohydrates as the sole carbon sources, which is due to that it contains few genes associated with carbohydrate transport and lacks some important enzymes related to glycometabolism. It contains abundant proteins directly related to petroleum hydrocarbon degradation. AlkB hydroxylase and its homologs were not identified. It harbors a complete enzyme system of terminal oxidation pathway for n-alkane degradation, which may be initiated by cytochrome P450. The enzymes involved in the catechol pathway are relatively complete for the degradation of aromatic compounds. This bacterium lacks several essential enzymes for methane oxidation, and Baeyer-Villiger monooxygenase involved in the subterminal oxidation pathway and cycloalkane degradation was not identified. These results suggest that strain HZ01 degrades n-alkanes via the terminal oxidation pathway, degrades aromatic compounds primarily via the catechol pathway and cannot perform methane oxidation or cycloalkane degradation. Additionally, strain HZ01 possesses abundant genes related to the metabolism of secondary metabolites, including some genes involved in biosurfactant (such as glycolipids and lipopeptides) synthesis. The genome analysis also reveals its genetic basis for nitrogen metabolism, antibiotic resistance, regulatory responses to environmental changes, cell motility, and material transport. The obtained genome data provide us with a better understanding of hydrocarbon-degrading bacteria, which may contribute to the future design of rational strategies for bioremediation of petroleum-polluted marine environments. PMID:28848520
Evaluation of soil bioremediation techniques in an aged diesel spill at the Antarctic Peninsula.
de Jesus, Hugo E; Peixoto, Raquel S; Cury, Juliano C; van Elsas, Jan D; Rosado, Alexandre S
2015-12-01
Many areas on the Antarctic continent already suffer from the direct and indirect influences of human activities. The main cause of contamination is petroleum hydrocarbons because this compound is used as a source of energy at the many research stations around the continent. Thus, the current study aims to evaluate treatments for bioremediation (biostimulation, bioaugmentation, and bioaugmentation + biostimulation) using soils from around the Brazilian Antarctic Station "Comandante Ferraz" (EACF), King George Island, Antarctic Peninsula. The experiment lasted for 45 days, and at the end of this period, chemical and molecular analyses were performed. Those analyses included the quantification of carbon and nitrogen, denaturing gradient gel electrophoresis (DGGE) analysis (with gradient denaturation), real-time PCR, and quantification of total hydrocarbons and polyaromatics. Molecular tests evaluated changes in the profile and quantity of the rrs genes of archaea and bacteria and also the alkB gene. The influence of the treatments tested was directly related to the type of soil used. The work confirmed that despite the extreme conditions found in Antarctic soils, the bacterial strains degraded hydrocarbons and bioremediation treatments directly influenced the microbial communities present in these soils even in short periods. Although the majority of the previous studies demonstrate that the addition of fertilizer seems to be most effective at promoting bioremediation, our results show that for some conditions, autochthonous bioaugmentation (ABA) treatment is indicated. This work highlights the importance of understanding the processes of recovery of contaminated environments in polar regions because time is crucial to the soil recovery and to choosing the appropriate treatment.
Dynamic Response of Mycobacterium vanbaalenii PYR-1 to BP Deepwater Horizon Crude Oil
Kim, Seong-Jae; Kweon, Ohgew; Sutherland, John B.; Kim, Hyun-Lee; Jones, Richard C.; Burback, Brian L.; Graves, Steven W.; Psurny, Edward
2015-01-01
We investigated the response of the hydrocarbon-degrading Mycobacterium vanbaalenii PYR-1 to crude oil from the BP Deepwater Horizon (DWH) spill, using substrate depletion, genomic, and proteome analyses. M. vanbaalenii PYR-1 cultures were incubated with BP DWH crude oil, and proteomes and degradation of alkanes and polycyclic aromatic hydrocarbons (PAHs) were analyzed at four time points over 30 days. Gas chromatography-mass spectrometry (GC-MS) analysis showed a chain length-dependent pattern of alkane degradation, with C12 and C13 being degraded at the highest rate, although alkanes up to C28 were degraded. Whereas phenanthrene and pyrene were completely degraded, a significantly smaller amount of fluoranthene was degraded. Proteome analysis identified 3,948 proteins, with 876 and 1,859 proteins up- and downregulated, respectively. We observed dynamic changes in protein expression during BP crude oil incubation, including transcriptional factors and transporters potentially involved in adaptation to crude oil. The proteome also provided a molecular basis for the metabolism of the aliphatic and aromatic hydrocarbon components in the BP DWH crude oil, which included upregulation of AlkB alkane hydroxylase and an expression pattern of PAH-metabolizing enzymes different from those in previous proteome expression studies of strain PYR-1 incubated with pure or mixed PAHs, particularly the ring-hydroxylating oxygenase (RHO) responsible for the initial oxidation of aromatic hydrocarbons. Based on these results, a comprehensive cellular response of M. vanbaalenii PYR-1 to BP crude oil was proposed. This study increases our fundamental understanding of the impact of crude oil on the cellular response of bacteria and provides data needed for development of practical bioremediation applications. PMID:25888169
A new smoothing function to introduce long-range electrostatic effects in QM/MM calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fang, Dong; Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706; Duke, Robert E.
2015-07-28
A new method to account for long range electrostatic contributions is proposed and implemented for quantum mechanics/molecular mechanics long range electrostatic correction (QM/MM-LREC) calculations. This method involves the use of the minimum image convention under periodic boundary conditions and a new smoothing function for energies and forces at the cutoff boundary for the Coulomb interactions. Compared to conventional QM/MM calculations without long-range electrostatic corrections, the new method effectively includes effects on the MM environment in the primary image from its replicas in the neighborhood. QM/MM-LREC offers three useful features including the avoidance of calculations in reciprocal space (k-space), with themore » concomitant avoidance of having to reproduce (analytically or approximately) the QM charge density in k-space, and the straightforward availability of analytical Hessians. The new method is tested and compared with results from smooth particle mesh Ewald (PME) for three systems including a box of neat water, a double proton transfer reaction, and the geometry optimization of the critical point structures for the rate limiting step of the DNA dealkylase AlkB. As with other smoothing or shifting functions, relatively large cutoffs are necessary to achieve comparable accuracy with PME. For the double-proton transfer reaction, the use of a 22 Å cutoff shows a close reaction energy profile and geometries of stationary structures with QM/MM-LREC compared to conventional QM/MM with no truncation. Geometry optimization of stationary structures for the hydrogen abstraction step by AlkB shows some differences between QM/MM-LREC and the conventional QM/MM. These differences underscore the necessity of the inclusion of the long-range electrostatic contribution.« less
Leite, Giuseppe G F; Figueirôa, Juciane V; Almeida, Thiago C M; Valões, Jaqueline L; Marques, Walber F; Duarte, Maria D D C; Gorlach-Lira, Krystyna
2016-03-01
Biosurfactants are microbial secondary metabolites. The most studied are rhamnolipids, which decrease the surface tension and have emulsifying capacity. In this study, the production of biosurfactants, with emphasis on rhamnolipids, and diesel oil degradation by 18 strains of bacteria isolated from waste landfill soil contaminated by petroleum was analyzed. Among the studied bacteria, gram-positive endospore forming rods (39%), gram positive rods without endospores (17%), and gram-negative rods (44%) were found. The following methods were used to test for biosurfactant production: oil spreading, emulsification, and hemolytic activity. All strains showed the ability to disperse the diesel oil, while 77% and 44% of the strains showed hemolysis and emulsification of diesel oil, respectively. Rhamnolipids production was observed in four strains that were classified on the basis of the 16S rRNA sequences as Pseudomonas aeruginosa. Only those strains showed the rhlAB gene involved in rhamnolipids synthesis, and antibacterial activity against Escherichia coli, P. aeruginosa, Staphylococcus aureus, Bacillus cereus, Erwinia carotovora, and Ralstonia solanacearum. The highest production of rhamnolipids was 565.7 mg/L observed in mineral medium containing olive oil (pH 8). With regard to the capacity to degrade diesel oil, it was observed that 7 strains were positive in reduction of the dye 2,6-dichlorophenolindophenol (2,6-DCPIP) while 16 had the gene alkane mono-oxygenase (alkB), and the producers of rhamnolipids were positive in both tests. Several bacterial strains have shown high potential to be explored further for bioremediation purposes due to their simultaneous ability to emulsify, disperse, and degrade diesel oil. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 32:262-270, 2016. © 2015 American Institute of Chemical Engineers.
Venkidusamy, Krishnaveni; Megharaj, Mallavarapu
2016-01-01
Electrode respiring bacteria (ERB) possess a great potential for many biotechnological applications such as microbial electrochemical remediation systems (MERS) because of their exoelectrogenic capabilities to degrade xenobiotic pollutants. Very few ERB have been isolated from MERS, those exhibited a bioremediation potential toward organic contaminants. Here we report once such bacterial strain, Stenotrophomonas maltophilia MK2, a facultative anaerobic bacterium isolated from a hydrocarbon fed MERS, showed a potent hydrocarbonoclastic behavior under aerobic and anaerobic environments. Distinct properties of the strain MK2 were anaerobic fermentation of the amino acids, electrode respiration, anaerobic nitrate reduction and the ability to metabolize n-alkane components (C8–C36) of petroleum hydrocarbons (PH) including the biomarkers, pristine and phytane. The characteristic of diazoic dye decolorization was used as a criterion for pre-screening the possible electrochemically active microbial candidates. Bioelectricity generation with concomitant dye decolorization in MERS showed that the strain is electrochemically active. In acetate fed microbial fuel cells (MFCs), maximum current density of 273 ± 8 mA/m2 (1000 Ω) was produced (power density 113 ± 7 mW/m2) by strain MK2 with a coulombic efficiency of 34.8%. Further, the presence of possible alkane hydroxylase genes (alkB and rubA) in the strain MK2 indicated that the genes involved in hydrocarbon degradation are of diverse origin. Such observations demonstrated the potential of facultative hydrocarbon degradation in contaminated environments. Identification of such a novel petrochemical hydrocarbon degrading ERB is likely to offer a new route to the sustainable bioremedial process of source zone contamination with simultaneous energy generation through MERS. PMID:28018304
Biostimulation of Indigenous Microbial Community for Bioremediation of Petroleum Refinery Sludge
Sarkar, Jayeeta; Kazy, Sufia K.; Gupta, Abhishek; Dutta, Avishek; Mohapatra, Balaram; Roy, Ajoy; Bera, Paramita; Mitra, Adinpunya; Sar, Pinaki
2016-01-01
Nutrient deficiency severely impairs the catabolic activity of indigenous microorganisms in hydrocarbon rich environments (HREs) and limits the rate of intrinsic bioremediation. The present study aimed to characterize the microbial community in refinery waste and evaluate the scope for biostimulation based in situ bioremediation. Samples recovered from the wastewater lagoon of Guwahati refinery revealed a hydrocarbon enriched [high total petroleum hydrocarbon (TPH)], oxygen-, moisture-limited, reducing environment. Intrinsic biodegradation ability of the indigenous microorganisms was enhanced significantly (>80% reduction in TPH by 90 days) with nitrate amendment. Preferred utilization of both higher- (>C30) and middle- chain (C20-30) length hydrocarbons were evident from GC-MS analysis. Denaturing gradient gel electrophoresis and community level physiological profiling analyses indicated distinct shift in community’s composition and metabolic abilities following nitrogen (N) amendment. High throughput deep sequencing of 16S rRNA gene showed that the native community was mainly composed of hydrocarbon degrading, syntrophic, methanogenic, nitrate/iron/sulfur reducing facultative anaerobic bacteria and archaebacteria, affiliated to γ- and δ-Proteobacteria and Euryarchaeota respectively. Genes for aerobic and anaerobic alkane metabolism (alkB and bssA), methanogenesis (mcrA), denitrification (nirS and narG) and N2 fixation (nifH) were detected. Concomitant to hydrocarbon degradation, lowering of dissolve O2 and increase in oxidation-reduction potential (ORP) marked with an enrichment of N2 fixing, nitrate reducing aerobic/facultative anaerobic members [e.g., Azovibrio, Pseudoxanthomonas and Comamonadaceae members] was evident in N amended microcosm. This study highlighted that indigenous community of refinery sludge was intrinsically diverse, yet appreciable rate of in situ bioremediation could be achieved by supplying adequate N sources. PMID:27708623
GEM-TREND: a web tool for gene expression data mining toward relevant network discovery
Feng, Chunlai; Araki, Michihiro; Kunimoto, Ryo; Tamon, Akiko; Makiguchi, Hiroki; Niijima, Satoshi; Tsujimoto, Gozoh; Okuno, Yasushi
2009-01-01
Background DNA microarray technology provides us with a first step toward the goal of uncovering gene functions on a genomic scale. In recent years, vast amounts of gene expression data have been collected, much of which are available in public databases, such as the Gene Expression Omnibus (GEO). To date, most researchers have been manually retrieving data from databases through web browsers using accession numbers (IDs) or keywords, but gene-expression patterns are not considered when retrieving such data. The Connectivity Map was recently introduced to compare gene expression data by introducing gene-expression signatures (represented by a set of genes with up- or down-regulated labels according to their biological states) and is available as a web tool for detecting similar gene-expression signatures from a limited data set (approximately 7,000 expression profiles representing 1,309 compounds). In order to support researchers to utilize the public gene expression data more effectively, we developed a web tool for finding similar gene expression data and generating its co-expression networks from a publicly available database. Results GEM-TREND, a web tool for searching gene expression data, allows users to search data from GEO using gene-expression signatures or gene expression ratio data as a query and retrieve gene expression data by comparing gene-expression pattern between the query and GEO gene expression data. The comparison methods are based on the nonparametric, rank-based pattern matching approach of Lamb et al. (Science 2006) with the additional calculation of statistical significance. The web tool was tested using gene expression ratio data randomly extracted from the GEO and with in-house microarray data, respectively. The results validated the ability of GEM-TREND to retrieve gene expression entries biologically related to a query from GEO. For further analysis, a network visualization interface is also provided, whereby genes and gene annotations are dynamically linked to external data repositories. Conclusion GEM-TREND was developed to retrieve gene expression data by comparing query gene-expression pattern with those of GEO gene expression data. It could be a very useful resource for finding similar gene expression profiles and constructing its gene co-expression networks from a publicly available database. GEM-TREND was designed to be user-friendly and is expected to support knowledge discovery. GEM-TREND is freely available at . PMID:19728865
GEM-TREND: a web tool for gene expression data mining toward relevant network discovery.
Feng, Chunlai; Araki, Michihiro; Kunimoto, Ryo; Tamon, Akiko; Makiguchi, Hiroki; Niijima, Satoshi; Tsujimoto, Gozoh; Okuno, Yasushi
2009-09-03
DNA microarray technology provides us with a first step toward the goal of uncovering gene functions on a genomic scale. In recent years, vast amounts of gene expression data have been collected, much of which are available in public databases, such as the Gene Expression Omnibus (GEO). To date, most researchers have been manually retrieving data from databases through web browsers using accession numbers (IDs) or keywords, but gene-expression patterns are not considered when retrieving such data. The Connectivity Map was recently introduced to compare gene expression data by introducing gene-expression signatures (represented by a set of genes with up- or down-regulated labels according to their biological states) and is available as a web tool for detecting similar gene-expression signatures from a limited data set (approximately 7,000 expression profiles representing 1,309 compounds). In order to support researchers to utilize the public gene expression data more effectively, we developed a web tool for finding similar gene expression data and generating its co-expression networks from a publicly available database. GEM-TREND, a web tool for searching gene expression data, allows users to search data from GEO using gene-expression signatures or gene expression ratio data as a query and retrieve gene expression data by comparing gene-expression pattern between the query and GEO gene expression data. The comparison methods are based on the nonparametric, rank-based pattern matching approach of Lamb et al. (Science 2006) with the additional calculation of statistical significance. The web tool was tested using gene expression ratio data randomly extracted from the GEO and with in-house microarray data, respectively. The results validated the ability of GEM-TREND to retrieve gene expression entries biologically related to a query from GEO. For further analysis, a network visualization interface is also provided, whereby genes and gene annotations are dynamically linked to external data repositories. GEM-TREND was developed to retrieve gene expression data by comparing query gene-expression pattern with those of GEO gene expression data. It could be a very useful resource for finding similar gene expression profiles and constructing its gene co-expression networks from a publicly available database. GEM-TREND was designed to be user-friendly and is expected to support knowledge discovery. GEM-TREND is freely available at http://cgs.pharm.kyoto-u.ac.jp/services/network.
Neighboring Genes Show Correlated Evolution in Gene Expression
Ghanbarian, Avazeh T.; Hurst, Laurence D.
2015-01-01
When considering the evolution of a gene’s expression profile, we commonly assume that this is unaffected by its genomic neighborhood. This is, however, in contrast to what we know about the lack of autonomy between neighboring genes in gene expression profiles in extant taxa. Indeed, in all eukaryotic genomes genes of similar expression-profile tend to cluster, reflecting chromatin level dynamics. Does it follow that if a gene increases expression in a particular lineage then the genomic neighbors will also increase in their expression or is gene expression evolution autonomous? To address this here we consider evolution of human gene expression since the human-chimp common ancestor, allowing for both variation in estimation of current expression level and error in Bayesian estimation of the ancestral state. We find that in all tissues and both sexes, the change in gene expression of a focal gene on average predicts the change in gene expression of neighbors. The effect is highly pronounced in the immediate vicinity (<100 kb) but extends much further. Sex-specific expression change is also genomically clustered. As genes increasing their expression in humans tend to avoid nuclear lamina domains and be enriched for the gene activator 5-hydroxymethylcytosine, we conclude that, most probably owing to chromatin level control of gene expression, a change in gene expression of one gene likely affects the expression evolution of neighbors, what we term expression piggybacking, an analog of hitchhiking. PMID:25743543
Zhang, Zhang; Liu, Jingxing; Wu, Jiayan; Yu, Jun
2013-01-01
The regulation of gene expression is essential for eukaryotes, as it drives the processes of cellular differentiation and morphogenesis, leading to the creation of different cell types in multicellular organisms. RNA-Sequencing (RNA-Seq) provides researchers with a powerful toolbox for characterization and quantification of transcriptome. Many different human tissue/cell transcriptome datasets coming from RNA-Seq technology are available on public data resource. The fundamental issue here is how to develop an effective analysis method to estimate expression pattern similarities between different tumor tissues and their corresponding normal tissues. We define the gene expression pattern from three directions: 1) expression breadth, which reflects gene expression on/off status, and mainly concerns ubiquitously expressed genes; 2) low/high or constant/variable expression genes, based on gene expression level and variation; and 3) the regulation of gene expression at the gene structure level. The cluster analysis indicates that gene expression pattern is higher related to physiological condition rather than tissue spatial distance. Two sets of human housekeeping (HK) genes are defined according to cell/tissue types, respectively. To characterize the gene expression pattern in gene expression level and variation, we firstly apply improved K-means algorithm and a gene expression variance model. We find that cancer-associated HK genes (a HK gene is specific in cancer group, while not in normal group) are expressed higher and more variable in cancer condition than in normal condition. Cancer-associated HK genes prefer to AT-rich genes, and they are enriched in cell cycle regulation related functions and constitute some cancer signatures. The expression of large genes is also avoided in cancer group. These studies will help us understand which cell type-specific patterns of gene expression differ among different cell types, and particularly for cancer. PMID:23382867
Neighboring Genes Show Correlated Evolution in Gene Expression.
Ghanbarian, Avazeh T; Hurst, Laurence D
2015-07-01
When considering the evolution of a gene's expression profile, we commonly assume that this is unaffected by its genomic neighborhood. This is, however, in contrast to what we know about the lack of autonomy between neighboring genes in gene expression profiles in extant taxa. Indeed, in all eukaryotic genomes genes of similar expression-profile tend to cluster, reflecting chromatin level dynamics. Does it follow that if a gene increases expression in a particular lineage then the genomic neighbors will also increase in their expression or is gene expression evolution autonomous? To address this here we consider evolution of human gene expression since the human-chimp common ancestor, allowing for both variation in estimation of current expression level and error in Bayesian estimation of the ancestral state. We find that in all tissues and both sexes, the change in gene expression of a focal gene on average predicts the change in gene expression of neighbors. The effect is highly pronounced in the immediate vicinity (<100 kb) but extends much further. Sex-specific expression change is also genomically clustered. As genes increasing their expression in humans tend to avoid nuclear lamina domains and be enriched for the gene activator 5-hydroxymethylcytosine, we conclude that, most probably owing to chromatin level control of gene expression, a change in gene expression of one gene likely affects the expression evolution of neighbors, what we term expression piggybacking, an analog of hitchhiking. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Chang, Dan; Duda, Thomas F
2014-06-05
Predatory marine gastropods of the genus Conus exhibit substantial variation in venom composition both within and among species. Apart from mechanisms associated with extensive turnover of gene families and rapid evolution of genes that encode venom components ('conotoxins'), the evolution of distinct conotoxin expression patterns is an additional source of variation that may drive interspecific differences in the utilization of species' 'venom gene space'. To determine the evolution of expression patterns of venom genes of Conus species, we evaluated the expression of A-superfamily conotoxin genes of a set of closely related Conus species by comparing recovered transcripts of A-superfamily genes that were previously identified from the genomes of these species. We modified community phylogenetics approaches to incorporate phylogenetic history and disparity of genes and their expression profiles to determine patterns of venom gene space utilization. Less than half of the A-superfamily gene repertoire of these species is expressed, and only a few orthologous genes are coexpressed among species. Species exhibit substantially distinct expression strategies, with some expressing sets of closely related loci ('under-dispersed' expression of available genes) while others express sets of more disparate genes ('over-dispersed' expression). In addition, expressed genes show higher dN/dS values than either unexpressed or ancestral genes; this implies that expression exposes genes to selection and facilitates rapid evolution of these genes. Few recent lineage-specific gene duplicates are expressed simultaneously, suggesting that expression divergence among redundant gene copies may be established shortly after gene duplication. Our study demonstrates that venom gene space is explored differentially by Conus species, a process that effectively permits the independent and rapid evolution of venoms in these species.
Manijak, Mieszko P; Nielsen, Henrik B
2011-06-11
Although, systematic analysis of gene annotation is a powerful tool for interpreting gene expression data, it sometimes is blurred by incomplete gene annotation, missing expression response of key genes and secondary gene expression responses. These shortcomings may be partially circumvented by instead matching gene expression signatures to signatures of other experiments. To facilitate this we present the Functional Association Response by Overlap (FARO) server, that match input signatures to a compendium of 242 gene expression signatures, extracted from more than 1700 Arabidopsis microarray experiments. Hereby we present a publicly available tool for robust characterization of Arabidopsis gene expression experiments which can point to similar experimental factors in other experiments. The server is available at http://www.cbs.dtu.dk/services/faro/.
Koo, Hyunmin; Mojib, Nazia; Huang, Jonathan P; Donahoe, Rona J; Bej, Asim K
2015-08-01
In this study, we examined the responses by the indigenous bacterial communities in salt-marsh sediment microcosms in vitro following treatment with Mississippi Canyon Block 252 oil (MC252). Microcosms were constructed of sediment and seawater collected from Bayou La Batre located in coastal Alabama on the Gulf of Mexico. We used an amplicon pyrosequencing approach on microcosm sediment metagenome targeting the V3-V5 region of the 16S rRNA gene. Overall, we identified a shift in the bacterial community in three distinct groups. The first group was the early responders (orders Pseudomonadales and Oceanospirillales within class Gammaproteobacteria), which increased their relative abundance within 2 weeks and were maintained 3 weeks after oil treatment. The second group was identified as early, but transient responders (order Rhodobacterales within class Alphaproteobacteria; class Epsilonproteobacteria), which increased their population by 2 weeks, but returned to the basal level 3 weeks after oil treatment. The third group was the late responders (order Clostridiales within phylum Firmicutes; order Methylococcales within class Gammaproteobacteria; and phylum Tenericutes), which only increased 3 weeks after oil treatment. Furthermore, we identified oil-sensitive bacterial taxa (order Chromatiales within class Gammaproteobacteria; order Syntrophobacterales within class Deltaproteobacteria), which decreased in their population after 2 weeks of oil treatment. Detection of alkane (alkB), catechol (C2,3DO) and biphenyl (bph) biodegradation genes by PCR, particularly in oil-treated sediment metacommunity DNA, delineates proliferation of the hydrocarbon degrading bacterial community. Overall, the indigenous bacterial communities in our salt-marsh sediment in vitro microcosm study responded rapidly and shifted towards members of the taxonomic groups that are capable of surviving in an MC252 oil-contaminated environment.
Digital gene expression analysis of the zebra finch genome
2010-01-01
Background In order to understand patterns of adaptation and molecular evolution it is important to quantify both variation in gene expression and nucleotide sequence divergence. Gene expression profiling in non-model organisms has recently been facilitated by the advent of massively parallel sequencing technology. Here we investigate tissue specific gene expression patterns in the zebra finch (Taeniopygia guttata) with special emphasis on the genes of the major histocompatibility complex (MHC). Results Almost 2 million 454-sequencing reads from cDNA of six different tissues were assembled and analysed. A total of 11,793 zebra finch transcripts were represented in this EST data, indicating a transcriptome coverage of about 65%. There was a positive correlation between the tissue specificity of gene expression and non-synonymous to synonymous nucleotide substitution ratio of genes, suggesting that genes with a specialised function are evolving at a higher rate (or with less constraint) than genes with a more general function. In line with this, there was also a negative correlation between overall expression levels and expression specificity of contigs. We found evidence for expression of 10 different genes related to the MHC. MHC genes showed relatively tissue specific expression levels and were in general primarily expressed in spleen. Several MHC genes, including MHC class I also showed expression in brain. Furthermore, for all genes with highest levels of expression in spleen there was an overrepresentation of several gene ontology terms related to immune function. Conclusions Our study highlights the usefulness of next-generation sequence data for quantifying gene expression in the genome as a whole as well as in specific candidate genes. Overall, the data show predicted patterns of gene expression profiles and molecular evolution in the zebra finch genome. Expression of MHC genes in particular, corresponds well with expression patterns in other vertebrates. PMID:20359325
Bikel, Shirley; Jacobo-Albavera, Leonor; Sánchez-Muñoz, Fausto; Cornejo-Granados, Fernanda; Canizales-Quinteros, Samuel; Soberón, Xavier; Sotelo-Mundo, Rogerio R; Del Río-Navarro, Blanca E; Mendoza-Vargas, Alfredo; Sánchez, Filiberto; Ochoa-Leyva, Adrian
2017-01-01
In spite of the emergence of RNA sequencing (RNA-seq), microarrays remain in widespread use for gene expression analysis in the clinic. There are over 767,000 RNA microarrays from human samples in public repositories, which are an invaluable resource for biomedical research and personalized medicine. The absolute gene expression analysis allows the transcriptome profiling of all expressed genes under a specific biological condition without the need of a reference sample. However, the background fluorescence represents a challenge to determine the absolute gene expression in microarrays. Given that the Y chromosome is absent in female subjects, we used it as a new approach for absolute gene expression analysis in which the fluorescence of the Y chromosome genes of female subjects was used as the background fluorescence for all the probes in the microarray. This fluorescence was used to establish an absolute gene expression threshold, allowing the differentiation between expressed and non-expressed genes in microarrays. We extracted the RNA from 16 children leukocyte samples (nine males and seven females, ages 6-10 years). An Affymetrix Gene Chip Human Gene 1.0 ST Array was carried out for each sample and the fluorescence of 124 genes of the Y chromosome was used to calculate the absolute gene expression threshold. After that, several expressed and non-expressed genes according to our absolute gene expression threshold were compared against the expression obtained using real-time quantitative polymerase chain reaction (RT-qPCR). From the 124 genes of the Y chromosome, three genes (DDX3Y, TXLNG2P and EIF1AY) that displayed significant differences between sexes were used to calculate the absolute gene expression threshold. Using this threshold, we selected 13 expressed and non-expressed genes and confirmed their expression level by RT-qPCR. Then, we selected the top 5% most expressed genes and found that several KEGG pathways were significantly enriched. Interestingly, these pathways were related to the typical functions of leukocytes cells, such as antigen processing and presentation and natural killer cell mediated cytotoxicity. We also applied this method to obtain the absolute gene expression threshold in already published microarray data of liver cells, where the top 5% expressed genes showed an enrichment of typical KEGG pathways for liver cells. Our results suggest that the three selected genes of the Y chromosome can be used to calculate an absolute gene expression threshold, allowing a transcriptome profiling of microarray data without the need of an additional reference experiment. Our approach based on the establishment of a threshold for absolute gene expression analysis will allow a new way to analyze thousands of microarrays from public databases. This allows the study of different human diseases without the need of having additional samples for relative expression experiments.
Wang, Anping; Zhang, Guibin
2017-11-01
The differentially expressed genes between glioblastoma (GBM) cells and normal human brain cells were investigated to performed pathway analysis and protein interaction network analysis for the differentially expressed genes. GSE12657 and GSE42656 gene chips, which contain gene expression profile of GBM were obtained from Gene Expression Omniub (GEO) database of National Center for Biotechnology Information (NCBI). The 'limma' data packet in 'R' software was used to analyze the differentially expressed genes in the two gene chips, and gene integration was performed using 'RobustRankAggreg' package. Finally, pheatmap software was used for heatmap analysis and Cytoscape, DAVID, STRING and KOBAS were used for protein-protein interaction, Gene Ontology (GO) and KEGG analyses. As results: i) 702 differentially expressed genes were identified in GSE12657, among those genes, 548 were significantly upregulated and 154 were significantly downregulated (p<0.01, fold-change >1), and 1,854 differentially expressed genes were identified in GSE42656, among the genes, 1,068 were significantly upregulated and 786 were significantly downregulated (p<0.01, fold-change >1). A total of 167 differentially expressed genes including 100 upregulated genes and 67 downregulated genes were identified after gene integration, and the genes showed significantly different expression levels in GBM compared with normal human brain cells (p<0.05). ii) Interactions between the protein products of 101 differentially expressed genes were identified using STRING and expression network was established. A key gene, called CALM3, was identified by Cytoscape software. iii) GO enrichment analysis showed that differentially expressed genes were mainly enriched in 'neurotransmitter:sodium symporter activity' and 'neurotransmitter transporter activity', which can affect the activity of neurotransmitter transportation. KEGG pathway analysis showed that the differentially expressed genes were mainly enriched in 'protein processing in endoplasmic reticulum', which can affect protein processing in endoplasmic reticulum. The results showed that: i) 167 differentially expressed genes were identified from two gene chips after integration; and ii) protein interaction network was established, and GO and KEGG pathway analyses were successfully performed to identify and annotate the key gene, which provide new insights for the studies on GBN at gene level.
Discovery and validation of a glioblastoma co-expressed gene module
Dunwoodie, Leland J.; Poehlman, William L.; Ficklin, Stephen P.; Feltus, Frank Alexander
2018-01-01
Tumors exhibit complex patterns of aberrant gene expression. Using a knowledge-independent, noise-reducing gene co-expression network construction software called KINC, we created multiple RNAseq-based gene co-expression networks relevant to brain and glioblastoma biology. In this report, we describe the discovery and validation of a glioblastoma-specific gene module that contains 22 co-expressed genes. The genes are upregulated in glioblastoma relative to normal brain and lower grade glioma samples; they are also hypo-methylated in glioblastoma relative to lower grade glioma tumors. Among the proneural, neural, mesenchymal, and classical glioblastoma subtypes, these genes are most-highly expressed in the mesenchymal subtype. Furthermore, high expression of these genes is associated with decreased survival across each glioblastoma subtype. These genes are of interest to glioblastoma biology and our gene interaction discovery and validation workflow can be used to discover and validate co-expressed gene modules derived from any co-expression network. PMID:29541392
Discovery and validation of a glioblastoma co-expressed gene module.
Dunwoodie, Leland J; Poehlman, William L; Ficklin, Stephen P; Feltus, Frank Alexander
2018-02-16
Tumors exhibit complex patterns of aberrant gene expression. Using a knowledge-independent, noise-reducing gene co-expression network construction software called KINC, we created multiple RNAseq-based gene co-expression networks relevant to brain and glioblastoma biology. In this report, we describe the discovery and validation of a glioblastoma-specific gene module that contains 22 co-expressed genes. The genes are upregulated in glioblastoma relative to normal brain and lower grade glioma samples; they are also hypo-methylated in glioblastoma relative to lower grade glioma tumors. Among the proneural, neural, mesenchymal, and classical glioblastoma subtypes, these genes are most-highly expressed in the mesenchymal subtype. Furthermore, high expression of these genes is associated with decreased survival across each glioblastoma subtype. These genes are of interest to glioblastoma biology and our gene interaction discovery and validation workflow can be used to discover and validate co-expressed gene modules derived from any co-expression network.
Gender-Specific Gene Expression in Post-Mortem Human Brain: Localization to Sex Chromosomes
Vawter, Marquis P; Evans, Simon; Choudary, Prabhakara; Tomita, Hiroaki; Meador-Woodruff, Jim; Molnar, Margherita; Li, Jun; Lopez, Juan F; Myers, Rick; Cox, David; Watson, Stanley J; Akil, Huda; Jones, Edward G; Bunney, William E
2011-01-01
Gender differences in brain development and in the prevalence of neuropsychiatric disorders such as depression have been reported. Gender differences in human brain might be related to patterns of gene expression. Microarray technology is one useful method for investigation of gene expression in brain. We investigated gene expression, cell types, and regional expression patterns of differentially expressed sex chromosome genes in brain. We profiled gene expression in male and female dorsolateral prefrontal cortex, anterior cingulate cortex, and cerebellum using the Affymetrix oligonucleotide microarray platform. Differentially expressed genes between males and females on the Y chromosome (DBY, SMCY, UTY, RPS4Y, and USP9Y) and X chromosome (XIST) were confirmed using real-time PCR measurements. In situ hybridization confirmed the differential expression of gender-specific genes and neuronal expression of XIST, RPS4Y, SMCY, and UTY in three brain regions examined. The XIST gene, which silences gene expression on regions of the X chromosome, is expressed in a subset of neurons. Since a subset of neurons express gender-specific genes, neural subpopulations may exhibit a subtle sexual dimorphism at the level of differences in gene regulation and function. The distinctive pattern of neuronal expression of XIST, RPS4Y, SMCY, and UTY and other sex chromosome genes in neuronal subpopulations may possibly contribute to gender differences in prevalence noted for some neuropsychiatric disorders. Studies of the protein expression of these sex- chromosome-linked genes in brain tissue are required to address the functional consequences of the observed gene expression differences. PMID:14583743
Gene expression variability in human hepatic drug metabolizing enzymes and transporters.
Yang, Lun; Price, Elvin T; Chang, Ching-Wei; Li, Yan; Huang, Ying; Guo, Li-Wu; Guo, Yongli; Kaput, Jim; Shi, Leming; Ning, Baitang
2013-01-01
Interindividual variability in the expression of drug-metabolizing enzymes and transporters (DMETs) in human liver may contribute to interindividual differences in drug efficacy and adverse reactions. Published studies that analyzed variability in the expression of DMET genes were limited by sample sizes and the number of genes profiled. We systematically analyzed the expression of 374 DMETs from a microarray data set consisting of gene expression profiles derived from 427 human liver samples. The standard deviation of interindividual expression for DMET genes was much higher than that for non-DMET genes. The 20 DMET genes with the largest variability in the expression provided examples of the interindividual variation. Gene expression data were also analyzed using network analysis methods, which delineates the similarities of biological functionalities and regulation mechanisms for these highly variable DMET genes. Expression variability of human hepatic DMET genes may affect drug-gene interactions and disease susceptibility, with concomitant clinical implications.
Bikel, Shirley; Jacobo-Albavera, Leonor; Sánchez-Muñoz, Fausto; Cornejo-Granados, Fernanda; Canizales-Quinteros, Samuel; Soberón, Xavier; Sotelo-Mundo, Rogerio R.; del Río-Navarro, Blanca E.; Mendoza-Vargas, Alfredo; Sánchez, Filiberto
2017-01-01
Background In spite of the emergence of RNA sequencing (RNA-seq), microarrays remain in widespread use for gene expression analysis in the clinic. There are over 767,000 RNA microarrays from human samples in public repositories, which are an invaluable resource for biomedical research and personalized medicine. The absolute gene expression analysis allows the transcriptome profiling of all expressed genes under a specific biological condition without the need of a reference sample. However, the background fluorescence represents a challenge to determine the absolute gene expression in microarrays. Given that the Y chromosome is absent in female subjects, we used it as a new approach for absolute gene expression analysis in which the fluorescence of the Y chromosome genes of female subjects was used as the background fluorescence for all the probes in the microarray. This fluorescence was used to establish an absolute gene expression threshold, allowing the differentiation between expressed and non-expressed genes in microarrays. Methods We extracted the RNA from 16 children leukocyte samples (nine males and seven females, ages 6–10 years). An Affymetrix Gene Chip Human Gene 1.0 ST Array was carried out for each sample and the fluorescence of 124 genes of the Y chromosome was used to calculate the absolute gene expression threshold. After that, several expressed and non-expressed genes according to our absolute gene expression threshold were compared against the expression obtained using real-time quantitative polymerase chain reaction (RT-qPCR). Results From the 124 genes of the Y chromosome, three genes (DDX3Y, TXLNG2P and EIF1AY) that displayed significant differences between sexes were used to calculate the absolute gene expression threshold. Using this threshold, we selected 13 expressed and non-expressed genes and confirmed their expression level by RT-qPCR. Then, we selected the top 5% most expressed genes and found that several KEGG pathways were significantly enriched. Interestingly, these pathways were related to the typical functions of leukocytes cells, such as antigen processing and presentation and natural killer cell mediated cytotoxicity. We also applied this method to obtain the absolute gene expression threshold in already published microarray data of liver cells, where the top 5% expressed genes showed an enrichment of typical KEGG pathways for liver cells. Our results suggest that the three selected genes of the Y chromosome can be used to calculate an absolute gene expression threshold, allowing a transcriptome profiling of microarray data without the need of an additional reference experiment. Discussion Our approach based on the establishment of a threshold for absolute gene expression analysis will allow a new way to analyze thousands of microarrays from public databases. This allows the study of different human diseases without the need of having additional samples for relative expression experiments. PMID:29230367
Schrader, Lukas; Helanterä, Heikki; Oettler, Jan
2017-03-01
Plastic gene expression underlies phenotypic plasticity and plastically expressed genes evolve under different selection regimes compared with ubiquitously expressed genes. Social insects are well-suited models to elucidate the evolutionary dynamics of plastic genes for their genetically and environmentally induced discrete polymorphisms. Here, we study the evolution of plastically expressed genes in the ant Cardiocondyla obscurior-a species that produces two discrete male morphs in addition to the typical female polymorphism of workers and queens. Based on individual-level gene expression data from 28 early third instar larvae, we test whether the same evolutionary dynamics that pertain to plastically expressed genes in adults also pertain to genes with plastic expression during development. In order to quantify plasticity of gene expression over multiple contrasts, we develop a novel geometric measure. For genes expressed during development, we show that plasticity of expression is positively correlated with evolutionary rates. We furthermore find a strong correlation between expression plasticity and expression variation within morphs, suggesting a close link between active and passive plasticity of gene expression. Our results support the notion of relaxed selection and neutral processes as important drivers in the evolution of adaptive plasticity. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Analysis of multiplex gene expression maps obtained by voxelation.
An, Li; Xie, Hongbo; Chin, Mark H; Obradovic, Zoran; Smith, Desmond J; Megalooikonomou, Vasileios
2009-04-29
Gene expression signatures in the mammalian brain hold the key to understanding neural development and neurological disease. Researchers have previously used voxelation in combination with microarrays for acquisition of genome-wide atlases of expression patterns in the mouse brain. On the other hand, some work has been performed on studying gene functions, without taking into account the location information of a gene's expression in a mouse brain. In this paper, we present an approach for identifying the relation between gene expression maps obtained by voxelation and gene functions. To analyze the dataset, we chose typical genes as queries and aimed at discovering similar gene groups. Gene similarity was determined by using the wavelet features extracted from the left and right hemispheres averaged gene expression maps, and by the Euclidean distance between each pair of feature vectors. We also performed a multiple clustering approach on the gene expression maps, combined with hierarchical clustering. Among each group of similar genes and clusters, the gene function similarity was measured by calculating the average gene function distances in the gene ontology structure. By applying our methodology to find similar genes to certain target genes we were able to improve our understanding of gene expression patterns and gene functions. By applying the clustering analysis method, we obtained significant clusters, which have both very similar gene expression maps and very similar gene functions respectively to their corresponding gene ontologies. The cellular component ontology resulted in prominent clusters expressed in cortex and corpus callosum. The molecular function ontology gave prominent clusters in cortex, corpus callosum and hypothalamus. The biological process ontology resulted in clusters in cortex, hypothalamus and choroid plexus. Clusters from all three ontologies combined were most prominently expressed in cortex and corpus callosum. The experimental results confirm the hypothesis that genes with similar gene expression maps might have similar gene functions. The voxelation data takes into account the location information of gene expression level in mouse brain, which is novel in related research. The proposed approach can potentially be used to predict gene functions and provide helpful suggestions to biologists.
Co-expression network analysis of duplicate genes in maize (Zea mays L.) reveals no subgenome bias.
Li, Lin; Briskine, Roman; Schaefer, Robert; Schnable, Patrick S; Myers, Chad L; Flagel, Lex E; Springer, Nathan M; Muehlbauer, Gary J
2016-11-04
Gene duplication is prevalent in many species and can result in coding and regulatory divergence. Gene duplications can be classified as whole genome duplication (WGD), tandem and inserted (non-syntenic). In maize, WGD resulted in the subgenomes maize1 and maize2, of which maize1 is considered the dominant subgenome. However, the landscape of co-expression network divergence of duplicate genes in maize is still largely uncharacterized. To address the consequence of gene duplication on co-expression network divergence, we developed a gene co-expression network from RNA-seq data derived from 64 different tissues/stages of the maize reference inbred-B73. WGD, tandem and inserted gene duplications exhibited distinct regulatory divergence. Inserted duplicate genes were more likely to be singletons in the co-expression networks, while WGD duplicate genes were likely to be co-expressed with other genes. Tandem duplicate genes were enriched in the co-expression pattern where co-expressed genes were nearly identical for the duplicates in the network. Older gene duplications exhibit more extensive co-expression variation than younger duplications. Overall, non-syntenic genes primarily from inserted duplications show more co-expression divergence. Also, such enlarged co-expression divergence is significantly related to duplication age. Moreover, subgenome dominance was not observed in the co-expression networks - maize1 and maize2 exhibit similar levels of intra subgenome correlations. Intriguingly, the level of inter subgenome co-expression was similar to the level of intra subgenome correlations, and genes from specific subgenomes were not likely to be the enriched in co-expression network modules and the hub genes were not predominantly from any specific subgenomes in maize. Our work provides a comprehensive analysis of maize co-expression network divergence for three different types of gene duplications and identifies potential relationships between duplication types, duplication ages and co-expression consequences.
Tissue Non-Specific Genes and Pathways Associated with Diabetes: An Expression Meta-Analysis.
Mei, Hao; Li, Lianna; Liu, Shijian; Jiang, Fan; Griswold, Michael; Mosley, Thomas
2017-01-21
We performed expression studies to identify tissue non-specific genes and pathways of diabetes by meta-analysis. We searched curated datasets of the Gene Expression Omnibus (GEO) database and identified 13 and five expression studies of diabetes and insulin responses at various tissues, respectively. We tested differential gene expression by empirical Bayes-based linear method and investigated gene set expression association by knowledge-based enrichment analysis. Meta-analysis by different methods was applied to identify tissue non-specific genes and gene sets. We also proposed pathway mapping analysis to infer functions of the identified gene sets, and correlation and independent analysis to evaluate expression association profile of genes and gene sets between studies and tissues. Our analysis showed that PGRMC1 and HADH genes were significant over diabetes studies, while IRS1 and MPST genes were significant over insulin response studies, and joint analysis showed that HADH and MPST genes were significant over all combined data sets. The pathway analysis identified six significant gene sets over all studies. The KEGG pathway mapping indicated that the significant gene sets are related to diabetes pathogenesis. The results also presented that 12.8% and 59.0% pairwise studies had significantly correlated expression association for genes and gene sets, respectively; moreover, 12.8% pairwise studies had independent expression association for genes, but no studies were observed significantly different for expression association of gene sets. Our analysis indicated that there are both tissue specific and non-specific genes and pathways associated with diabetes pathogenesis. Compared to the gene expression, pathway association tends to be tissue non-specific, and a common pathway influencing diabetes development is activated through different genes at different tissues.
Hurst, Laurence D; Ghanbarian, Avazeh T; Forrest, Alistair R R; Huminiecki, Lukasz
2015-12-01
X chromosomes are unusual in many regards, not least of which is their nonrandom gene content. The causes of this bias are commonly discussed in the context of sexual antagonism and the avoidance of activity in the male germline. Here, we examine the notion that, at least in some taxa, functionally biased gene content may more profoundly be shaped by limits imposed on gene expression owing to haploid expression of the X chromosome. Notably, if the X, as in primates, is transcribed at rates comparable to the ancestral rate (per promoter) prior to the X chromosome formation, then the X is not a tolerable environment for genes with very high maximal net levels of expression, owing to transcriptional traffic jams. We test this hypothesis using The Encyclopedia of DNA Elements (ENCODE) and data from the Functional Annotation of the Mammalian Genome (FANTOM5) project. As predicted, the maximal expression of human X-linked genes is much lower than that of genes on autosomes: on average, maximal expression is three times lower on the X chromosome than on autosomes. Similarly, autosome-to-X retroposition events are associated with lower maximal expression of retrogenes on the X than seen for X-to-autosome retrogenes on autosomes. Also as expected, X-linked genes have a lesser degree of increase in gene expression than autosomal ones (compared to the human/Chimpanzee common ancestor) if highly expressed, but not if lowly expressed. The traffic jam model also explains the known lower breadth of expression for genes on the X (and the Z of birds), as genes with broad expression are, on average, those with high maximal expression. As then further predicted, highly expressed tissue-specific genes are also rare on the X and broadly expressed genes on the X tend to be lowly expressed, both indicating that the trend is shaped by the maximal expression level not the breadth of expression per se. Importantly, a limit to the maximal expression level explains biased tissue of expression profiles of X-linked genes. Tissues whose tissue-specific genes are very highly expressed (e.g., secretory tissues, tissues abundant in structural proteins) are also tissues in which gene expression is relatively rare on the X chromosome. These trends cannot be fully accounted for in terms of alternative models of biased expression. In conclusion, the notion that it is hard for genes on the Therian X to be highly expressed, owing to transcriptional traffic jams, provides a simple yet robustly supported rationale of many peculiar features of X's gene content, gene expression, and evolution.
Hurst, Laurence D.; Ghanbarian, Avazeh T.; Forrest, Alistair R. R.; Huminiecki, Lukasz
2015-01-01
X chromosomes are unusual in many regards, not least of which is their nonrandom gene content. The causes of this bias are commonly discussed in the context of sexual antagonism and the avoidance of activity in the male germline. Here, we examine the notion that, at least in some taxa, functionally biased gene content may more profoundly be shaped by limits imposed on gene expression owing to haploid expression of the X chromosome. Notably, if the X, as in primates, is transcribed at rates comparable to the ancestral rate (per promoter) prior to the X chromosome formation, then the X is not a tolerable environment for genes with very high maximal net levels of expression, owing to transcriptional traffic jams. We test this hypothesis using The Encyclopedia of DNA Elements (ENCODE) and data from the Functional Annotation of the Mammalian Genome (FANTOM5) project. As predicted, the maximal expression of human X-linked genes is much lower than that of genes on autosomes: on average, maximal expression is three times lower on the X chromosome than on autosomes. Similarly, autosome-to-X retroposition events are associated with lower maximal expression of retrogenes on the X than seen for X-to-autosome retrogenes on autosomes. Also as expected, X-linked genes have a lesser degree of increase in gene expression than autosomal ones (compared to the human/Chimpanzee common ancestor) if highly expressed, but not if lowly expressed. The traffic jam model also explains the known lower breadth of expression for genes on the X (and the Z of birds), as genes with broad expression are, on average, those with high maximal expression. As then further predicted, highly expressed tissue-specific genes are also rare on the X and broadly expressed genes on the X tend to be lowly expressed, both indicating that the trend is shaped by the maximal expression level not the breadth of expression per se. Importantly, a limit to the maximal expression level explains biased tissue of expression profiles of X-linked genes. Tissues whose tissue-specific genes are very highly expressed (e.g., secretory tissues, tissues abundant in structural proteins) are also tissues in which gene expression is relatively rare on the X chromosome. These trends cannot be fully accounted for in terms of alternative models of biased expression. In conclusion, the notion that it is hard for genes on the Therian X to be highly expressed, owing to transcriptional traffic jams, provides a simple yet robustly supported rationale of many peculiar features of X’s gene content, gene expression, and evolution. PMID:26685068
Validating internal controls for quantitative plant gene expression studies.
Brunner, Amy M; Yakovlev, Igor A; Strauss, Steven H
2004-08-18
Real-time reverse transcription PCR (RT-PCR) has greatly improved the ease and sensitivity of quantitative gene expression studies. However, accurate measurement of gene expression with this method relies on the choice of a valid reference for data normalization. Studies rarely verify that gene expression levels for reference genes are adequately consistent among the samples used, nor compare alternative genes to assess which are most reliable for the experimental conditions analyzed. Using real-time RT-PCR to study the expression of 10 poplar (genus Populus) housekeeping genes, we demonstrate a simple method for determining the degree of stability of gene expression over a set of experimental conditions. Based on a traditional method for analyzing the stability of varieties in plant breeding, it defines measures of gene expression stability from analysis of variance (ANOVA) and linear regression. We found that the potential internal control genes differed widely in their expression stability over the different tissues, developmental stages and environmental conditions studied. Our results support that quantitative comparisons of candidate reference genes are an important part of real-time RT-PCR studies that seek to precisely evaluate variation in gene expression. The method we demonstrated facilitates statistical and graphical evaluation of gene expression stability. Selection of the best reference gene for a given set of experimental conditions should enable detection of biologically significant changes in gene expression that are too small to be revealed by less precise methods, or when highly variable reference genes are unknowingly used in real-time RT-PCR experiments.
General statistics of stochastic process of gene expression in eukaryotic cells.
Kuznetsov, V A; Knott, G D; Bonner, R F
2002-01-01
Thousands of genes are expressed at such very low levels (< or =1 copy per cell) that global gene expression analysis of rarer transcripts remains problematic. Ambiguity in identification of rarer transcripts creates considerable uncertainty in fundamental questions such as the total number of genes expressed in an organism and the biological significance of rarer transcripts. Knowing the distribution of the true number of genes expressed at each level and the corresponding gene expression level probability function (GELPF) could help resolve these uncertainties. We found that all observed large-scale gene expression data sets in yeast, mouse, and human cells follow a Pareto-like distribution model skewed by many low-abundance transcripts. A novel stochastic model of the gene expression process predicts the universality of the GELPF both across different cell types within a multicellular organism and across different organisms. This model allows us to predict the frequency distribution of all gene expression levels within a single cell and to estimate the number of expressed genes in a single cell and in a population of cells. A random "basal" transcription mechanism for protein-coding genes in all or almost all eukaryotic cell types is predicted. This fundamental mechanism might enhance the expression of rarely expressed genes and, thus, provide a basic level of phenotypic diversity, adaptability, and random monoallelic expression in cell populations. PMID:12136033
Wang, Ping; Li, Yong; Nie, Huiqiong; Zhang, Xiaoyan; Shao, Qiongyan; Hou, Xiuli; Xu, Wen; Hong, Weisong; Xu, Aie
2016-10-01
Vitiligo is a common acquired depigmentation skin disease characterized by loss or dysfunction of melanocytes within the skin lesion, but its pathologenesis is far from lucid. The gene expression profiling of segmental vitiligo (SV) and generalized vitiligo (GV) need further investigation. To better understanding the common and distinct factors, especially in the view of gene expression profile, which were involved in the diseases development and maintenance of segmental vitiligo (SV) and generalized vitiligo (GV). Peripheral bloods were collected from SV, GV and healthy individual (HI), followed by leukocytes separation and total RNA extraction. The high-throughput whole genome expression microarrays were used to assay the gene expression profiles between HI, SV and GV. Bioinformatics tools were employed to annotated the biological function of differently expressed genes. Quantitative PCR assay was used to validate the gene expression of array. Compared to HI, 239 over-expressed genes and 175 down-expressed genes detected in SV, 688 over-expressed genes and 560 down-expressed genes were found in GV, following the criteria of log2 (fold change)≥0.585 and P value<0.05. In these differently expressed genes, 60 over-expressed genes and 60 down-expressed genes had similar tendency in SV and GV. Compared to SV, 223 genes were up regulated and 129 genes were down regulated in GV. In the SV with HI as control, the differently expressed genes were mainly involved in the adaptive immune response, cytokine-cytokine receptor interaction, chemokine signaling, focal adhesion and sphingolipid metabolism. The differently expressed genes between GV and HI were mainly involved in the innate immune, autophagy, apoptosis, melanocyte biology, ubiquitin mediated proteolysis and tyrosine metabolism, which was different from SV. While the differently expressed genes between SV and GV were mainly involved in the metabolism pathway of purine, pyrimidine, glycolysis and sphingolipid. Above results suggested that they not only shared part bio-process and signal pathway, but more important, they utilized different biological mechanism in their pathogenesis and maintenance. Our results provide a comprehensive view on the gene expression profiling change between SV and GV especially in the side of leukocytes, and may facilitate the future study on their molecular mechanism and theraputic targets. Copyright © 2016 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.
Thiel, Cora S; Hauschild, Swantje; Tauber, Svantje; Paulsen, Katrin; Raig, Christiane; Raem, Arnold; Biskup, Josefine; Gutewort, Annett; Hürlimann, Eva; Unverdorben, Felix; Buttron, Isabell; Lauber, Beatrice; Philpot, Claudia; Lier, Hartwin; Engelmann, Frank; Layer, Liliana E; Ullrich, Oliver
2015-01-01
Gene expression studies are indispensable for investigation and elucidation of molecular mechanisms. For the process of normalization, reference genes ("housekeeping genes") are essential to verify gene expression analysis. Thus, it is assumed that these reference genes demonstrate similar expression levels over all experimental conditions. However, common recommendations about reference genes were established during 1 g conditions and therefore their applicability in studies with altered gravity has not been demonstrated yet. The microarray technology is frequently used to generate expression profiles under defined conditions and to determine the relative difference in expression levels between two or more different states. In our study, we searched for potential reference genes with stable expression during different gravitational conditions (microgravity, normogravity, and hypergravity) which are additionally not altered in different hardware systems. We were able to identify eight genes (ALB, B4GALT6, GAPDH, HMBS, YWHAZ, ABCA5, ABCA9, and ABCC1) which demonstrated no altered gene expression levels in all tested conditions and therefore represent good candidates for the standardization of gene expression studies in altered gravity.
Højland, Dorte H.; Jensen, Karl-Martin Vagn; Kristensen, Michael
2014-01-01
Background The housefly, Musca domestica, has developed resistance to most insecticides applied for its control. Expression of genes coding for detoxification enzymes play a role in the response of the housefly when encountered by a xenobiotic. The highest level of constitutive gene expression of nine P450 genes was previously found in a newly-collected susceptible field population in comparison to three insecticide-resistant laboratory strains and a laboratory reference strain. Results We compared gene expression of five P450s by qPCR as well as global gene expression by RNAseq in the newly-acquired field population (845b) in generation F1, F13 and F29 to test how gene expression changes following laboratory adaption. Four (CYP6A1, CYP6A36, CYP6D3, CYP6G4) of five investigated P450 genes adapted to breeding by decreasing expression. CYP6D1 showed higher female expression in F29 than in F1. For males, about half of the genes accessed in the global gene expression were up-regulated in F13 and F29 in comparison with the F1 population. In females, 60% of the genes were up-regulated in F13 in comparison with F1, while 33% were up-regulated in F29. Forty potential P450 genes were identified. In most cases, P450 gene expression was decreased in F13 flies in comparison with F1. Gene expression then increased from F13 to F29 in males and decreased further in females. Conclusion The global gene expression changes massively during adaptation to laboratory breeding. In general, global expression decreased as a result of laboratory adaption in males, while female expression was not unidirectional. Expression of P450 genes was in general down-regulated as a result of laboratory adaption. Expression of hexamerin, coding for a storage protein was increased, while gene expression of genes coding for amylases decreased. This suggests a major impact of the surrounding environment on gene response to xenobiotics and genetic composition of housefly strains. PMID:24489682
Alvarez, Vanessa Marques; Santos, Silvia Cristina Cunha Dos Santos; Casella, Renata da Costa; Vital, Ronalt Leite; Sebastin, Gina Vasquez; Seldin, Lucy
2008-12-01
A typical tropical soil from the northeast of Brazil, where an important terrestrial oil field is located, was accidentally contaminated with a mixture of oil and saline production water. To study the bioremediation potential in this area, molecular methods based on PCR-DGGE were used to determine the diversity of the bacterial communities in bulk and in contaminated soils. Bacterial fingerprints revealed that the bacterial communities were affected by the presence of the mixture of oil and production water, and different profiles were observed when the contaminated soils were compared with the control. Halotolerant strains capable of degrading crude oil were also isolated from enrichment cultures obtained from the contaminated soil samples. Twenty-two strains showing these features were characterized genetically by amplified ribosomal DNA restriction analysis (ARDRA) and phenotypically by their colonial morphology and tolerance to high NaCl concentrations. Fifteen ARDRA groups were formed. Selected strains were analyzed by 16S rDNA sequencing, and Actinobacteria was identified as the main group found. Strains were also tested for their growth capability in the presence of different oil derivatives (hexane, dodecane, hexadecane, diesel, gasoline, toluene, naphthalene, o-xylene, and p-xylene) and different degradation profiles were observed. PCR products were obtained from 12 of the 15 ARDRA representatives when they were screened for the presence of the alkane hydroxylase gene (alkB). Members of the genera Rhodococcus and Gordonia were identified as predominant in the soil studied. These genera are usually implicated in oil degradation processes and, as such, the potential for bioremediation in this area can be considered as feasible.
Petroleum hydrocarbon remediation in frozen soil using a meat and bonemeal biochar plus fertilizer.
Karppinen, Erin M; Stewart, Katherine J; Farrell, Richard E; Siciliano, Steven D
2017-04-01
Petroleum hydrocarbon (PHC) degradation slows significantly during the winter which substantially increases the time it takes to remediate soil in Arctic landfarms. The aim of this laboratory trial was to assess the potential of a meat and bonemeal (MBM) biochar to stimulate PHC degradation in contaminated soil collected from Iqaluit, Canada. Over 90 days, 3% (w/w) MBM biochar significantly increased F3- (equivalent nC 16 -C 34 ) PHC degradation rate constants (k) in frozen soils when compared to the fertilizer (urea and monoammonium phosphate) control. Taking into consideration extensive variability within treatments and negative k values, this difference may not reflect significant remediation. Decreasing C 17 /Pr and C 18 /Ph ratios in the frozen soil suggest that this reduction is a result of microbial degradation rather than volatilization. Amendment type and application rate affected the immediate abiotic losses of F2 and F3-PHC in sterile soils, with the greatest losses occurring in compost-amended treatments in the first 24 h. In frozen soils, MBM biochar was found to increase liquid water content (θ liquid ) but not nutrient supply rates. Under frozen but not thawed conditions, genes for aromatic (C2,3O and nahAc) but not aliphatic (alkB) PHC degradation increased over time in both biochar-amended and control treatments but total viable PHC-degrading populations only increased in biochar-amended soils. Based on these results, it is possible that PHC degradation in biochar-amended soils is active and even enhanced under frozen conditions, but further investigation is required. Copyright © 2017 Elsevier Ltd. All rights reserved.
An RNA-Seq based gene expression atlas of the common bean.
O'Rourke, Jamie A; Iniguez, Luis P; Fu, Fengli; Bucciarelli, Bruna; Miller, Susan S; Jackson, Scott A; McClean, Philip E; Li, Jun; Dai, Xinbin; Zhao, Patrick X; Hernandez, Georgina; Vance, Carroll P
2014-10-06
Common bean (Phaseolus vulgaris) is grown throughout the world and comprises roughly 50% of the grain legumes consumed worldwide. Despite this, genetic resources for common beans have been lacking. Next generation sequencing, has facilitated our investigation of the gene expression profiles associated with biologically important traits in common bean. An increased understanding of gene expression in common bean will improve our understanding of gene expression patterns in other legume species. Combining recently developed genomic resources for Phaseolus vulgaris, including predicted gene calls, with RNA-Seq technology, we measured the gene expression patterns from 24 samples collected from seven tissues at developmentally important stages and from three nitrogen treatments. Gene expression patterns throughout the plant were analyzed to better understand changes due to nodulation, seed development, and nitrogen utilization. We have identified 11,010 genes differentially expressed with a fold change ≥ 2 and a P-value < 0.05 between different tissues at the same time point, 15,752 genes differentially expressed within a tissue due to changes in development, and 2,315 genes expressed only in a single tissue. These analyses identified 2,970 genes with expression patterns that appear to be directly dependent on the source of available nitrogen. Finally, we have assembled this data in a publicly available database, The Phaseolus vulgaris Gene Expression Atlas (Pv GEA), http://plantgrn.noble.org/PvGEA/ . Using the website, researchers can query gene expression profiles of their gene of interest, search for genes expressed in different tissues, or download the dataset in a tabular form. These data provide the basis for a gene expression atlas, which will facilitate functional genomic studies in common bean. Analysis of this dataset has identified genes important in regulating seed composition and has increased our understanding of nodulation and impact of the nitrogen source on assimilation and distribution throughout the plant.
Analysis of bHLH coding genes using gene co-expression network approach.
Srivastava, Swati; Sanchita; Singh, Garima; Singh, Noopur; Srivastava, Gaurava; Sharma, Ashok
2016-07-01
Network analysis provides a powerful framework for the interpretation of data. It uses novel reference network-based metrices for module evolution. These could be used to identify module of highly connected genes showing variation in co-expression network. In this study, a co-expression network-based approach was used for analyzing the genes from microarray data. Our approach consists of a simple but robust rank-based network construction. The publicly available gene expression data of Solanum tuberosum under cold and heat stresses were considered to create and analyze a gene co-expression network. The analysis provide highly co-expressed module of bHLH coding genes based on correlation values. Our approach was to analyze the variation of genes expression, according to the time period of stress through co-expression network approach. As the result, the seed genes were identified showing multiple connections with other genes in the same cluster. Seed genes were found to be vary in different time periods of stress. These analyzed seed genes may be utilized further as marker genes for developing the stress tolerant plant species.
Validating internal controls for quantitative plant gene expression studies
Brunner, Amy M; Yakovlev, Igor A; Strauss, Steven H
2004-01-01
Background Real-time reverse transcription PCR (RT-PCR) has greatly improved the ease and sensitivity of quantitative gene expression studies. However, accurate measurement of gene expression with this method relies on the choice of a valid reference for data normalization. Studies rarely verify that gene expression levels for reference genes are adequately consistent among the samples used, nor compare alternative genes to assess which are most reliable for the experimental conditions analyzed. Results Using real-time RT-PCR to study the expression of 10 poplar (genus Populus) housekeeping genes, we demonstrate a simple method for determining the degree of stability of gene expression over a set of experimental conditions. Based on a traditional method for analyzing the stability of varieties in plant breeding, it defines measures of gene expression stability from analysis of variance (ANOVA) and linear regression. We found that the potential internal control genes differed widely in their expression stability over the different tissues, developmental stages and environmental conditions studied. Conclusion Our results support that quantitative comparisons of candidate reference genes are an important part of real-time RT-PCR studies that seek to precisely evaluate variation in gene expression. The method we demonstrated facilitates statistical and graphical evaluation of gene expression stability. Selection of the best reference gene for a given set of experimental conditions should enable detection of biologically significant changes in gene expression that are too small to be revealed by less precise methods, or when highly variable reference genes are unknowingly used in real-time RT-PCR experiments. PMID:15317655
Lu, Yuan; Reyes, Jose; Walter, Sean; Gonzalez, Trevor; Medrano, Geraldo; Boswell, Mikki; Boswell, William; Savage, Markita; Walter, Ronald
2018-06-01
Evolutionarily conserved diurnal circadian mechanisms maintain oscillating patterns of gene expression based on the day-night cycle. Xiphophorus fish have been used to evaluate transcriptional responses after exposure to various light sources and it was determined that each source incites distinct genetic responses in skin tissue. However, basal expression levels of genes that show oscillating expression patterns in day-night cycle, may affect the outcomes of such experiments, since basal gene expression levels at each point in the circadian path may influence the profile of identified light responsive genes. Lack of knowledge regarding diurnal fluctuations in basal gene expression patterns may confound the understanding of genetic responses to external stimuli (e.g., light) since the dynamic nature of gene expression implies animals subjected to stimuli at different times may be at very different stages within the continuum of genetic homeostasis. We assessed basal gene expression changes over a 24-hour period in 200 select Xiphophorus gene targets known to transcriptionally respond to various types of light exposure. We identified 22 genes in skin, 36 genes in brain and 28 genes in liver that exhibit basal oscillation of expression patterns. These genes, including known circadian regulators, produced the expected expression patterns over a 24-hour cycle when compared to circadian regulatory genes identified in other species, especially human and other vertebrate animal models. Our results suggest the regulatory network governing diurnal oscillating gene expression is similar between Xiphophorus and other vertebrates for the three Xiphophorus organs tested. In addition, we were able to categorize light responsive gene sets in Xiphophorus that do, and do not, exhibit circadian based oscillating expression patterns. Copyright © 2017 Elsevier Inc. All rights reserved.
Thiel, Cora S.; Hauschild, Swantje; Tauber, Svantje; Paulsen, Katrin; Raig, Christiane; Raem, Arnold; Biskup, Josefine; Gutewort, Annett; Hürlimann, Eva; Philpot, Claudia; Lier, Hartwin; Engelmann, Frank; Layer, Liliana E.
2015-01-01
Gene expression studies are indispensable for investigation and elucidation of molecular mechanisms. For the process of normalization, reference genes (“housekeeping genes”) are essential to verify gene expression analysis. Thus, it is assumed that these reference genes demonstrate similar expression levels over all experimental conditions. However, common recommendations about reference genes were established during 1 g conditions and therefore their applicability in studies with altered gravity has not been demonstrated yet. The microarray technology is frequently used to generate expression profiles under defined conditions and to determine the relative difference in expression levels between two or more different states. In our study, we searched for potential reference genes with stable expression during different gravitational conditions (microgravity, normogravity, and hypergravity) which are additionally not altered in different hardware systems. We were able to identify eight genes (ALB, B4GALT6, GAPDH, HMBS, YWHAZ, ABCA5, ABCA9, and ABCC1) which demonstrated no altered gene expression levels in all tested conditions and therefore represent good candidates for the standardization of gene expression studies in altered gravity. PMID:25654098
Life-cycle and growth-phase-dependent regulation of the ubiquitin genes of Trypanosoma cruzi.
Manning-Cela, Rebeca; Jaishankar, Sobha; Swindle, John
2006-07-01
Trypanosoma cruzi, the causative agent of Chagas disease, exhibits a complex life cycle that is accompanied by the stage-specific gene expression. At the molecular level, very little is known about gene regulation in trypanosomes. Complex gene organizations coupled with polycistronic transcription units make the analysis of regulated gene expression difficult in trypanosomes. The ubiquitin genes of T. cruzi are a good example of this complexity. They are organized as a single cluster containing five ubiquitin fusion (FUS) and five polyubiquitin (PUB) genes that are polycistronically transcribed but expressed differently in response to developmental and environmental changes. Gene replacements were used to study FUS and PUB gene expression at different stages of growth and at different points in the life cycle of T. cruzi. Based on the levels of reporter gene expression, it was determined that FUS1 expression was downregulated as the parasites approached stationary phase, whereas PUB12.5 polyubiquitin gene expression increased. Conversely, FUS1 expression increases when epimastigotes and amastigotes differentiate into trypomastigotes, whereas the expression of PUB12.5 decreases when epimastigotes differentiate into amastigotes and trypomastigotes. Although the level of CAT activity in logarithmic growing epimastigotes is six- to seven-fold higher when the gene was expressed from the FUS1 locus than when expressed from the PUB12.5 locus, the rate of transcription from the two loci was the same implying that post-transcriptional mechanisms play a dominant role in the regulation of gene expression.
Gene expression changes with age in skin, adipose tissue, blood and brain.
Glass, Daniel; Viñuela, Ana; Davies, Matthew N; Ramasamy, Adaikalavan; Parts, Leopold; Knowles, David; Brown, Andrew A; Hedman, Asa K; Small, Kerrin S; Buil, Alfonso; Grundberg, Elin; Nica, Alexandra C; Di Meglio, Paola; Nestle, Frank O; Ryten, Mina; Durbin, Richard; McCarthy, Mark I; Deloukas, Panagiotis; Dermitzakis, Emmanouil T; Weale, Michael E; Bataille, Veronique; Spector, Tim D
2013-07-26
Previous studies have demonstrated that gene expression levels change with age. These changes are hypothesized to influence the aging rate of an individual. We analyzed gene expression changes with age in abdominal skin, subcutaneous adipose tissue and lymphoblastoid cell lines in 856 female twins in the age range of 39-85 years. Additionally, we investigated genotypic variants involved in genotype-by-age interactions to understand how the genomic regulation of gene expression alters with age. Using a linear mixed model, differential expression with age was identified in 1,672 genes in skin and 188 genes in adipose tissue. Only two genes expressed in lymphoblastoid cell lines showed significant changes with age. Genes significantly regulated by age were compared with expression profiles in 10 brain regions from 100 postmortem brains aged 16 to 83 years. We identified only one age-related gene common to the three tissues. There were 12 genes that showed differential expression with age in both skin and brain tissue and three common to adipose and brain tissues. Skin showed the most age-related gene expression changes of all the tissues investigated, with many of the genes being previously implicated in fatty acid metabolism, mitochondrial activity, cancer and splicing. A significant proportion of age-related changes in gene expression appear to be tissue-specific with only a few genes sharing an age effect in expression across tissues. More research is needed to improve our understanding of the genetic influences on aging and the relationship with age-related diseases.
Li, Changning; Nong, Qian; Solanki, Manoj Kumar; Liang, Qiang; Xie, Jinlan; Liu, Xiaoyan; Li, Yijie; Wang, Weizan; Yang, Litao; Li, Yangrui
2016-01-01
Water stress causes considerable yield losses in sugarcane. To investigate differentially expressed genes under water stress, a pot experiment was performed with the sugarcane variety GT21 at three water-deficit levels (mild, moderate, and severe) during the elongation stage and gene expression was analyzed using microarray technology. Physiological parameters of sugarcane showed significant alterations in response to drought stress. Based on the expression profile of 15,593 sugarcane genes, 1,501 (9.6%) genes were differentially expressed under different water-level treatments; 821 genes were upregulated and 680 genes were downregulated. A gene similarity analysis showed that approximately 62.6% of the differentially expressed genes shared homology with functional proteins. In a Gene Ontology (GO) analysis, 901 differentially expressed genes were assigned to 36 GO categories. Moreover, 325 differentially expressed genes were classified into 101 pathway categories involved in various processes, such as the biosynthesis of secondary metabolites, ribosomes, carbon metabolism, etc. In addition, some unannotated genes were detected; these may provide a basis for studies of water-deficit tolerance. The reliability of the observed expression patterns was confirmed by RT-PCR. The results of this study may help identify useful genes for improving drought tolerance in sugarcane. PMID:27170459
Kim, Hyunjin; Choi, Sang-Min; Park, Sanghyun
2018-01-01
When a gene shows varying levels of expression among normal people but similar levels in disease patients or shows similar levels of expression among normal people but different levels in disease patients, we can assume that the gene is associated with the disease. By utilizing this gene expression heterogeneity, we can obtain additional information that abets discovery of disease-associated genes. In this study, we used collaborative filtering to calculate the degree of gene expression heterogeneity between classes and then scored the genes on the basis of the degree of gene expression heterogeneity to find "differentially predicted" genes. Through the proposed method, we discovered more prostate cancer-associated genes than 10 comparable methods. The genes prioritized by the proposed method are potentially significant to biological processes of a disease and can provide insight into them.
Circular RNA and gene expression profiles in gastric cancer based on microarray chip technology.
Sui, Weiguo; Shi, Zhoufang; Xue, Wen; Ou, Minglin; Zhu, Ying; Chen, Jiejing; Lin, Hua; Liu, Fuhua; Dai, Yong
2017-03-01
The aim of the present study was to screen gastric cancer (GC) tissue and adjacent tissue for differences in mRNA and circular (circRNA) expression, to analyze the differences in circRNA and mRNA expression, and to investigate the circRNA expression in gastric carcinoma and its mechanism. circRNA and mRNA differential expression profiles generated using Agilent microarray technology were analyzed in the GC tissues and adjacent tissues. qRT-PCR was used to verify the differential expression of circRNAs and mRNAs according to the interactions between circRNAs and miRNAs as well as the possible existence of miRNA and mRNA interactions. We found that: i) the circRNA expression profile revealed 1,285 significant differences in circRNA expression, with circRNA expression downregulated in 594 samples and upregulated in 691 samples via interactions with miRNAs. The qRT-PCR validation experiments showed that hsa_circRNA_400071, hsa_circRNA_000543 and hsa_circRNA_001959 expression was consistent with the microarray analysis results. ii) 29,112 genes were found in the GC tissues and adjacent tissues, including 5,460 differentially expressed genes. Among them, 2,390 differentially expressed genes were upregulated and 3,070 genes were downregulated. Gene Ontology (GO) analysis of the differentially expressed genes revealed these genes involved in biological process classification, cellular component classification and molecular function classification. Pathway analysis of the differentially expressed genes identified 83 significantly enriched genes, including 28 upregulated genes and 55 downregulated genes. iii) 69 differentially expressed circRNAs were found that might adsorb specific miRNAs to regulate the expression of their target gene mRNAs. The conclusions are: i) differentially expressed circRNAs had corresponding miRNA binding sites. These circRNAs regulated the expression of target genes through interactions with miRNAs and might become new molecular biomarkers for GC in the future. ii) Differentially expressed genes may be involved in the occurrence of GC via a variety of mechanisms. iii) CD44, CXXC5, MYH9, MALAT1 and other genes may have important implications for the occurrence and development of GC through the regulation, interaction, and mutual influence of circRNA-miRNA-mRNA via different mechanisms.
A P-Norm Robust Feature Extraction Method for Identifying Differentially Expressed Genes
Liu, Jian; Liu, Jin-Xing; Gao, Ying-Lian; Kong, Xiang-Zhen; Wang, Xue-Song; Wang, Dong
2015-01-01
In current molecular biology, it becomes more and more important to identify differentially expressed genes closely correlated with a key biological process from gene expression data. In this paper, based on the Schatten p-norm and Lp-norm, a novel p-norm robust feature extraction method is proposed to identify the differentially expressed genes. In our method, the Schatten p-norm is used as the regularization function to obtain a low-rank matrix and the Lp-norm is taken as the error function to improve the robustness to outliers in the gene expression data. The results on simulation data show that our method can obtain higher identification accuracies than the competitive methods. Numerous experiments on real gene expression data sets demonstrate that our method can identify more differentially expressed genes than the others. Moreover, we confirmed that the identified genes are closely correlated with the corresponding gene expression data. PMID:26201006
A P-Norm Robust Feature Extraction Method for Identifying Differentially Expressed Genes.
Liu, Jian; Liu, Jin-Xing; Gao, Ying-Lian; Kong, Xiang-Zhen; Wang, Xue-Song; Wang, Dong
2015-01-01
In current molecular biology, it becomes more and more important to identify differentially expressed genes closely correlated with a key biological process from gene expression data. In this paper, based on the Schatten p-norm and Lp-norm, a novel p-norm robust feature extraction method is proposed to identify the differentially expressed genes. In our method, the Schatten p-norm is used as the regularization function to obtain a low-rank matrix and the Lp-norm is taken as the error function to improve the robustness to outliers in the gene expression data. The results on simulation data show that our method can obtain higher identification accuracies than the competitive methods. Numerous experiments on real gene expression data sets demonstrate that our method can identify more differentially expressed genes than the others. Moreover, we confirmed that the identified genes are closely correlated with the corresponding gene expression data.
Wang, Xu; Werren, John H.; Clark, Andrew G.
2015-01-01
There is extraordinary diversity in sexual dimorphism (SD) among animals, but little is known about its epigenetic basis. To study the epigenetic architecture of SD in a haplodiploid system, we performed RNA-seq and whole-genome bisulfite sequencing of adult females and males from two closely related parasitoid wasps, Nasonia vitripennis and Nasonia giraulti. More than 75% of expressed genes displayed significantly sex-biased expression. As a consequence, expression profiles are more similar between species within each sex than between sexes within each species. Furthermore, extremely male- and female-biased genes are enriched for totally different functional categories: male-biased genes for key enzymes in sex-pheromone synthesis and female-biased genes for genes involved in epigenetic regulation of gene expression. Remarkably, just 70 highly expressed, extremely male-biased genes account for 10% of all transcripts in adult males. Unlike expression profiles, DNA methylomes are highly similar between sexes within species, with no consistent sex differences in methylation found. Therefore, methylation changes cannot explain the extensive level of sex-biased gene expression observed. Female-biased genes have smaller sequence divergence between species, higher conservation to other hymenopterans, and a broader expression range across development. Overall, female-biased genes have been recruited from genes with more conserved and broadly expressing “house-keeping” functions, whereas male-biased genes are more recently evolved and are predominately testis specific. In summary, Nasonia accomplish a striking degree of sex-biased expression without sex chromosomes or epigenetic differences in methylation. We propose that methylation provides a general signal for constitutive gene expression, whereas other sex-specific signals cause sex-biased gene expression. PMID:26100871
Van Gelder, R N; Bae, H; Palazzolo, M J; Krasnow, M A
1995-12-01
Although mRNAs expressed with a circadian rhythm have been isolated from many species, the extent and character of circadianly regulated gene expression is unknown for any animal. In Drosophila melanogaster, only the period (per) gene, an essential component of the circadian pacemaker, is known to show rhythmic mRNA expression. Recent work suggests that the encoded Per protein controls its own transcription by an autoregulatory feedback loop. Per might also control the rhythmic expression of other genes to generate circadian behavior and physiology. The goals of this work were to evaluate the extent and character of circadian control of gene expression in Drosophila, and to identify genes dependent on per for circadian expression. A large collection of anonymous, independent cDNA clones was used to screen for transcripts that are rhythmically expressed in the fly head. 20 of the 261 clones tested detected mRNAs with a greater than two-fold daily change in abundance. Three mRNAs were maximally expressed in the morning, whereas 17 mRNAs were most abundant in the evening--when per mRNA is also maximally expressed (but when the flies are inactive). Further analysis of the three 'morning' cDNAs showed that each has a unique dependence on the presence of a light-dark cycle, on timed feeding, and on the function of the per gene for its oscillation. These dependencies were different from those determined for per and for a novel 'evening' gene. Sequence analysis indicated that all but one of the 20 cDNAs identified previously uncloned genes. Diurnal control of gene expression is a significant but limited phenomenon in the fly head, which involves many uncharacterized genes. Diurnal control is mediated by multiple endogenous and exogenous mechanisms, even at the level of individual genes. A subset of circadianly expressed genes are predominantly or exclusively dependent on per for their rhythmic expression. The per gene can therefore influence the expression of genes other than itself, but for many rhythmically expressed genes, per functions in conjunction with external inputs to control their daily expression patterns.
Polycistronic gene expression in Aspergillus niger.
Schuetze, Tabea; Meyer, Vera
2017-09-25
Genome mining approaches predict dozens of biosynthetic gene clusters in each of the filamentous fungal genomes sequenced so far. However, the majority of these gene clusters still remain cryptic because they are not expressed in their natural host. Simultaneous expression of all genes belonging to a biosynthetic pathway in a heterologous host is one approach to activate biosynthetic gene clusters and to screen the metabolites produced for bioactivities. Polycistronic expression of all pathway genes under control of a single and tunable promoter would be the method of choice, as this does not only simplify cloning procedures, but also offers control on timing and strength of expression. However, polycistronic gene expression is a feature not commonly found in eukaryotic host systems, such as Aspergillus niger. In this study, we tested the suitability of the viral P2A peptide for co-expression of three genes in A. niger. Two genes descend from Fusarium oxysporum and are essential to produce the secondary metabolite enniatin (esyn1, ekivR). The third gene (luc) encodes the reporter luciferase which was included to study position effects. Expression of the polycistronic gene cassette was put under control of the Tet-On system to ensure tunable gene expression in A. niger. In total, three polycistronic expression cassettes which differed in the position of luc were constructed and targeted to the pyrG locus in A. niger. This allowed direct comparison of the luciferase activity based on the position of the luciferase gene. Doxycycline-mediated induction of the Tet-On expression cassettes resulted in the production of one long polycistronic mRNA as proven by Northern analyses, and ensured comparable production of enniatin in all three strains. Notably, gene position within the polycistronic expression cassette matters, as, luciferase activity was lowest at position one and had a comparable activity at positions two and three. The P2A peptide can be used to express at least three genes polycistronically in A. niger. This approach can now be applied to heterologously express entire secondary metabolite gene clusters polycistronically or to co-express any genes of interest in equimolar amounts.
Lin, Changpo; Tang, Xiao; Xu, Lirong; Qian, Ruizhe; Shi, Zhenyu; Wang, Lixin; Cai, Tingting; Yan, Dong; Fu, Weiguo; Guo, Daqiao
2017-07-10
The clock genes are involved in regulating cardiovascular functions, and their expression disorders would lead to circadian rhythm disruptions of clock-controlled genes (CCGs), resulting in atherosclerotic plaque formation and rupture. Our previous study revealed the rhythmic expression of clock genes were attenuated in human plaque-derived vascular smooth muscle cells (PVSMCs), but failed to detect the downstream CCGs expressions and the underlying molecular mechanism. In this study, we examined the difference of CCGs rhythmic expression between human normal carotid VSMCs (NVSMCs) and PVSMCs. Furthermore, we compared the cholesterol and triglycerides levels between two groups and the link to clock genes and CCGs expressions. Seven health donors' normal carotids and 19 carotid plaques yielded viable cultured NVSMCs and PVSMCs. The expression levels of target genes were measured by quantitative real-time PCR and Western-blot. The intracellular cholesterol and triglycerides levels were measured by kits. The circadian expressions of apoptosis-related genes and fibrinolytic-related genes were disordered. Besides, the cholesterol levels were significant higher in PVSMCs. After treated with cholesterol or oxidized low density lipoprotein (ox-LDL), the expressions of clock genes were inhibited; and the rhythmic expressions of clock genes, apoptosis-related genes and fibrinolytic-related genes were disturbed in NVSMCs, which were similar to PVSMCs. The results suggested that intracellular high cholesterol content of PVSMCs would lead to the disorders of clock genes and CCGs rhythmic expressions. And further studies should be conducted to demonstrate the specific molecular mechanisms involved.
Ckurshumova, Wenzislava; Scarpella, Enrico; Goldstein, Rochelle S; Berleth, Thomas
2011-08-01
Genes expressed in vascular tissues have been identified by several strategies, usually with a focus on mature vascular cells. In this study, we explored the possibility of using two opposite types of altered tissue compositions in combination with a double-filter selection to identify genes with a high probability of vascular expression in early organ primordia. Specifically, we generated full-transcriptome microarray profiles of plants with (a) genetically strongly reduced and (b) pharmacologically vastly increased vascular tissues and identified a reproducible cohort of 158 transcripts that fulfilled the dual requirement of being underrepresented in (a) and overrepresented in (b). In order to assess the predictive value of our identification scheme for vascular gene expression, we determined the expression patterns of genes in two unbiased subsamples. First, we assessed the expression patterns of all twenty annotated transcription factor genes from the cohort of 158 genes and found that seventeen of the twenty genes were preferentially expressed in leaf vascular cells. Remarkably, fifteen of these seventeen vascular genes were clearly expressed already very early in leaf vein development. Twelve genes with published leaf expression patterns served as a second subsample to monitor the representation of vascular genes in our cohort. Of those twelve genes, eleven were preferentially expressed in leaf vascular tissues. Based on these results we propose that our compendium of 158 genes represents a sample that is highly enriched for genes expressed in vascular tissues and that our approach is particularly suited to detect genes expressed in vascular cell lineages at early stages of their inception. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Han, Rongfei; Huang, Guanqun; Wang, Yejun; Xu, Yafei; Hu, Yueming; Jiang, Wenqi; Wang, Tianfu; Xiao, Tian; Zheng, Duo
2016-11-01
Gene expression in metazoans is delicately organized. As genetic information transmits from DNA to RNA and protein, expression noise is inevitably generated. Recent studies begin to unveil the mechanisms of gene expression noise control, but the changes of gene expression precision in pathologic conditions like cancers are unknown. Here we analyzed the transcriptomic data of human breast, liver, lung and colon cancers, and found that the expression noise of more than 74.9% genes was increased in cancer tissues as compared to adjacent normal tissues. This suggested that gene expression precision controlling collapsed during cancer development. A set of 269 genes with noise increased more than 2-fold were identified across different cancer types. These genes were involved in cell adhesion, catalytic and metabolic functions, implying the vulnerability of deregulation of these processes in cancers. We also observed a tendency of increased expression noise in patients with low p53 and immune activity in breast, liver and lung caners but not in colon cancers, which indicated the contributions of p53 signaling and host immune surveillance to gene expression noise in cancers. Moreover, more than 53.7% genes had increased noise in patients with late stage than early stage cancers, suggesting that gene expression precision was associated with cancer outcome. Together, these results provided genomic scale explorations of gene expression noise control in human cancers.
[Differential expression genes of bone tissues surrounding implants in diabetic rats by gene chip].
Wang, Xin-xin; Ma, Yue; Li, Qing; Jiang, Bao-qi; Lan, Jing
2012-10-01
To compare mRNA expression profiles of bone tissues surrounding implants between normal rats and rats with diabetes using microarray technology. Six Wistar rats were randomly selected and divided into normal model group and diabetic group. Diabetic model condition was established by injecting Streptozotocin into peritoneal space. Titanium implants were implanted into the epiphyseal end of the rats' tibia. Bone tissues surrounding implant were harvested and sampled after 3 months to perform comprehensive RNA gene expression profiling, including 17983 for genome-wide association study.GO analysis was used to compare different gene expression and real-time PCR was used to confirm the results on core samples. The results indicated that there were 1084 differential gene expression. In the diabetic model, there were 352 enhanced expression genes, 732 suppressed expression genes. GO analysis involved 1154 different functional type. Osteoblast related gene expressions in bone tissue samples of diabetic rats were decreased, and lipid metabolism pathway related gene expression was increased.
Gene Architectures that Minimize Cost of Gene Expression.
Frumkin, Idan; Schirman, Dvir; Rotman, Aviv; Li, Fangfei; Zahavi, Liron; Mordret, Ernest; Asraf, Omer; Wu, Song; Levy, Sasha F; Pilpel, Yitzhak
2017-01-05
Gene expression burdens cells by consuming resources and energy. While numerous studies have investigated regulation of expression level, little is known about gene design elements that govern expression costs. Here, we ask how cells minimize production costs while maintaining a given protein expression level and whether there are gene architectures that optimize this process. We measured fitness of ∼14,000 E. coli strains, each expressing a reporter gene with a unique 5' architecture. By comparing cost-effective and ineffective architectures, we found that cost per protein molecule could be minimized by lowering transcription levels, regulating translation speeds, and utilizing amino acids that are cheap to synthesize and that are less hydrophobic. We then examined natural E. coli genes and found that highly expressed genes have evolved more forcefully to minimize costs associated with their expression. Our study thus elucidates gene design elements that improve the economy of protein expression in natural and heterologous systems. Copyright © 2017 Elsevier Inc. All rights reserved.
2012-01-01
Background Water stress limits plant survival and production in many parts of the world. Identification of genes and alleles responding to water stress conditions is important in breeding plants better adapted to drought. Currently there are no studies examining the transcriptome wide gene and allelic expression patterns under water stress conditions. We used RNA sequencing (RNA-seq) to identify the candidate genes and alleles and to explore the evolutionary signatures of selection. Results We studied the effect of water stress on gene expression in Eucalyptus camaldulensis seedlings derived from three natural populations. We used reference-guided transcriptome mapping to study gene expression. Several genes showed differential expression between control and stress conditions. Gene ontology (GO) enrichment tests revealed up-regulation of 140 stress-related gene categories and down-regulation of 35 metabolic and cell wall organisation gene categories. More than 190,000 single nucleotide polymorphisms (SNPs) were detected and 2737 of these showed differential allelic expression. Allelic expression of 52% of these variants was correlated with differential gene expression. Signatures of selection patterns were studied by estimating the proportion of nonsynonymous to synonymous substitution rates (Ka/Ks). The average Ka/Ks ratio among the 13,719 genes was 0.39 indicating that most of the genes are under purifying selection. Among the positively selected genes (Ka/Ks > 1.5) apoptosis and cell death categories were enriched. Of the 287 positively selected genes, ninety genes showed differential expression and 27 SNPs from 17 positively selected genes showed differential allelic expression between treatments. Conclusions Correlation of allelic expression of several SNPs with total gene expression indicates that these variants may be the cis-acting variants or in linkage disequilibrium with such variants. Enrichment of apoptosis and cell death gene categories among the positively selected genes reveals the past selection pressures experienced by the populations used in this study. PMID:22853646
Functional clustering of time series gene expression data by Granger causality
2012-01-01
Background A common approach for time series gene expression data analysis includes the clustering of genes with similar expression patterns throughout time. Clustered gene expression profiles point to the joint contribution of groups of genes to a particular cellular process. However, since genes belong to intricate networks, other features, besides comparable expression patterns, should provide additional information for the identification of functionally similar genes. Results In this study we perform gene clustering through the identification of Granger causality between and within sets of time series gene expression data. Granger causality is based on the idea that the cause of an event cannot come after its consequence. Conclusions This kind of analysis can be used as a complementary approach for functional clustering, wherein genes would be clustered not solely based on their expression similarity but on their topological proximity built according to the intensity of Granger causality among them. PMID:23107425
Richter, Karin; Wirta, Valtteri; Dahl, Lina; Bruce, Sara; Lundeberg, Joakim; Carlsson, Leif; Williams, Cecilia
2006-01-01
Background Expression of the LIM-homeobox gene Lhx2 in murine hematopoietic cells allows for the generation of hematopoietic stem cell (HSC)-like cell lines. To address the molecular basis of Lhx2 function, we generated HSC-like cell lines where Lhx2 expression is regulated by a tet-on system and hence dependent on the presence of doxycyclin (dox). These cell lines efficiently down-regulate Lhx2 expression upon dox withdrawal leading to a rapid differentiation into various myeloid cell types. Results Global gene expression of these cell lines cultured in dox was compared to different time points after dox withdrawal using microarray technology. We identified 267 differentially expressed genes. The majority of the genes overlapping with HSC-specific databases were those down-regulated after turning off Lhx2 expression and a majority of the genes overlapping with those defined as late progenitor-specific genes were the up-regulated genes, suggesting that these cell lines represent a relevant model system for normal HSCs also at the level of global gene expression. Moreover, in situ hybridisations of several genes down-regulated after dox withdrawal showed overlapping expression patterns with Lhx2 in various tissues during embryonic development. Conclusion Global gene expression analysis of HSC-like cell lines with inducible Lhx2 expression has identified genes putatively linked to self-renewal / differentiation of HSCs, and function of Lhx2 in organ development and stem / progenitor cells of non-hematopoietic origin. PMID:16600034
Li, Zibo; Heng, Jianfu; Yan, Jinhua; Guo, Xinwu; Tang, Lili; Chen, Ming; Peng, Limin; Wu, Yepeng; Wang, Shouman; Xiao, Zhi; Deng, Zhongping; Dai, Lizhong; Wang, Jun
2016-11-01
Gene-specific methylation and expression have shown biological and clinical importance for breast cancer diagnosis and prognosis. Integrated analysis of gene methylation and gene expression may identify genes associated with biology mechanism and clinical outcome of breast cancer and aid in clinical management. Using high-throughput microfluidic quantitative PCR, we analyzed the expression profiles of 48 candidate genes in 96 Chinese breast cancer patients and investigated their correlation with gene methylation and associations with breast cancer clinical parameters. Breast cancer-specific gene expression alternation was found in 25 genes with significant expression difference between paired tumor and normal tissues. A total of 9 genes (CCND2, EGFR, GSTP1, PGR, PTGS2, RECK, SOX17, TNFRSF10D, and WIF1) showed significant negative correlation between methylation and gene expression, which were validated in the TCGA database. Total 23 genes (ACADL, APC, BRCA2, CADM1, CAV1, CCND2, CST6, EGFR, ESR2, GSTP1, ICAM5, NPY, PGR, PTGS2, RECK, RUNX3, SFRP1, SOX17, SYK, TGFBR2, TNFRSF10D, WIF1, and WRN) annotated with potential TFBSs in the promoter regions showed negative correlation between methylation and expression. In logistics regression analysis, 31 of the 48 genes showed improved performance in disease prediction with combination of methylation and expression coefficient. Our results demonstrated the complex correlation and the possible regulatory mechanisms between DNA methylation and gene expression. Integration analysis of methylation and expression of candidate genes could improve performance in breast cancer prediction. These findings would contribute to molecular characterization and identification of biomarkers for potential clinical applications.
2013-01-01
Background METH is an illicit drug of abuse that influences gene expression in the rat striatum. Histone modifications regulate gene transcription. Methods We therefore used microarray analysis and genome-scale approaches to examine potential relationships between the effects of METH on gene expression and on DNA binding of histone H4 acetylated at lysine 4 (H4K5Ac) in the rat dorsal striatum of METH-naïve and METH-pretreated rats. Results Acute and chronic METH administration caused differential changes in striatal gene expression. METH also increased H4K5Ac binding around the transcriptional start sites (TSSs) of genes in the rat striatum. In order to relate gene expression to histone acetylation, we binned genes of similar expression into groups of 100 genes and proceeded to relate gene expression to H4K5Ac binding. We found a positive correlation between gene expression and H4K5Ac binding in the striatum of control rats. Similar correlations were observed in METH-treated rats. Genes that showed acute METH-induced increased expression in saline-pretreated rats also showed METH-induced increased H4K5Ac binding. The acute METH injection caused similar increases in H4K5Ac binding in METH-pretreated rats, without affecting gene expression to the same degree. Finally, genes that showed METH-induced decreased expression exhibited either decreases or no changes in H4K5Ac binding. Conclusion Acute METH injections caused increased gene expression of genes that showed increased H4K5Ac binding near their transcription start sites. PMID:23937714
Cadet, Jean Lud; Jayanthi, Subramaniam; McCoy, Michael T; Ladenheim, Bruce; Saint-Preux, Fabienne; Lehrmann, Elin; De, Supriyo; Becker, Kevin G; Brannock, Christie
2013-08-12
METH is an illicit drug of abuse that influences gene expression in the rat striatum. Histone modifications regulate gene transcription. We therefore used microarray analysis and genome-scale approaches to examine potential relationships between the effects of METH on gene expression and on DNA binding of histone H4 acetylated at lysine 4 (H4K5Ac) in the rat dorsal striatum of METH-naïve and METH-pretreated rats. Acute and chronic METH administration caused differential changes in striatal gene expression. METH also increased H4K5Ac binding around the transcriptional start sites (TSSs) of genes in the rat striatum. In order to relate gene expression to histone acetylation, we binned genes of similar expression into groups of 100 genes and proceeded to relate gene expression to H4K5Ac binding. We found a positive correlation between gene expression and H4K5Ac binding in the striatum of control rats. Similar correlations were observed in METH-treated rats. Genes that showed acute METH-induced increased expression in saline-pretreated rats also showed METH-induced increased H4K5Ac binding. The acute METH injection caused similar increases in H4K5Ac binding in METH-pretreated rats, without affecting gene expression to the same degree. Finally, genes that showed METH-induced decreased expression exhibited either decreases or no changes in H4K5Ac binding. Acute METH injections caused increased gene expression of genes that showed increased H4K5Ac binding near their transcription start sites.
Evaluating the consistency of gene sets used in the analysis of bacterial gene expression data.
Tintle, Nathan L; Sitarik, Alexandra; Boerema, Benjamin; Young, Kylie; Best, Aaron A; Dejongh, Matthew
2012-08-08
Statistical analyses of whole genome expression data require functional information about genes in order to yield meaningful biological conclusions. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) are common sources of functionally grouped gene sets. For bacteria, the SEED and MicrobesOnline provide alternative, complementary sources of gene sets. To date, no comprehensive evaluation of the data obtained from these resources has been performed. We define a series of gene set consistency metrics directly related to the most common classes of statistical analyses for gene expression data, and then perform a comprehensive analysis of 3581 Affymetrix® gene expression arrays across 17 diverse bacteria. We find that gene sets obtained from GO and KEGG demonstrate lower consistency than those obtained from the SEED and MicrobesOnline, regardless of gene set size. Despite the widespread use of GO and KEGG gene sets in bacterial gene expression data analysis, the SEED and MicrobesOnline provide more consistent sets for a wide variety of statistical analyses. Increased use of the SEED and MicrobesOnline gene sets in the analysis of bacterial gene expression data may improve statistical power and utility of expression data.
Marcial-Quino, Jaime; Fierro, Francisco; De la Mora-De la Mora, Ignacio; Enríquez-Flores, Sergio; Gómez-Manzo, Saúl; Vanoye-Carlo, America; Garcia-Torres, Itzhel; Sierra-Palacios, Edgar; Reyes-Vivas, Horacio
2016-04-25
The analysis of transcript levels of specific genes is important for understanding transcriptional regulation and for the characterization of gene function. Real-time quantitative reverse transcriptase PCR (RT-qPCR) has become a powerful tool to quantify gene expression. The objective of this study was to identify reliable housekeeping genes in Giardia lamblia. Twelve genes were selected for this purpose, and their expression was analyzed in the wild type WB strain and in two strains with resistance to nitazoxanide (NTZ) and metronidazole (MTZ), respectively. RefFinder software analysis showed that the expression of the genes is different in the three strains. The integrated data from the four analyses showed that the NADH oxidase (NADH) and aldolase (ALD) genes were the most steadily expressed genes, whereas the glyceraldehyde-3-phosphate dehydrogenase gene was the most unstable. Additionally, the relative expression of seven genes were quantified in the NTZ- and MTZ-resistant strains by RT-qPCR, using the aldolase gene as the internal control, and the results showed a consistent differential pattern of expression in both strains. The housekeeping genes found in this work will facilitate the analysis of mRNA expression levels of other genes of interest in G. lamblia. Copyright © 2016 Elsevier B.V. All rights reserved.
Su, Zhao-Zhong; Sarkar, Devanand; Emdad, Luni; Duigou, Gregory J; Young, Charles S H; Ware, Joy; Randolph, Aaron; Valerie, Kristoffer; Fisher, Paul B
2005-01-25
One impediment to effective cancer-specific gene therapy is the rarity of regulatory sequences targeting gene expression selectively in tumor cells. Although many tissue-specific promoters are recognized, few cancer-selective gene promoters are available. Progression-elevated gene-3 (PEG-3) is a rodent gene identified by subtraction hybridization that displays elevated expression as a function of transformation by diversely acting oncogenes, DNA damage, and cancer cell progression. The promoter of PEG-3, PEG-Prom, displays robust expression in a broad spectrum of human cancer cell lines with marginal expression in normal cellular counterparts. Whereas GFP expression, when under the control of a CMV promoter, is detected in both normal and cancer cells, when GFP is expressed under the control of the PEG-Prom, cancer-selective expression is evident. Mutational analysis identifies the AP-1 and PEA-3 transcription factors as primary mediators of selective, cancer-specific expression of the PEG-Prom. Synthesis of apoptosis-inducing genes, under the control of the CMV promoter, inhibits the growth of both normal and cancer cells, whereas PEG-Prom-mediated expression of these genes kills only cancer cells and spares normal cells. The efficacy of the PEG-Prom as part of a cancer gene therapeutic regimen is further documented by in vivo experiments in which PEG-Prom-controlled expression of an apoptosis-inducing gene completely inhibited prostate cancer xenograft growth in nude mice. These compelling observations indicate that the PEG-Prom, with its cancer-specific expression, provides a means of selectively delivering genes to cancer cells, thereby providing a crucial component in developing effective cancer gene therapies.
Evaluation of Allelic Expression of Imprinted Genes in Adult Human Blood
Frost, Jennifer M.; Monk, Dave; Stojilkovic-Mikic, Taita; Woodfine, Kathryn; Chitty, Lyn S.; Murrell, Adele; Stanier, Philip; Moore, Gudrun E.
2010-01-01
Background Imprinted genes are expressed from only one allele in a parent-of-origin dependent manner. Loss of imprinted (LOI) expression can result in a variety of human disorders and is frequently reported in cancer. Biallelic expression of imprinted genes in adult blood has been suggested as a useful biomarker and is currently being investigated in colorectal cancer. In general, the expression profiles of imprinted genes are well characterised during human and mouse fetal development, but not in human adults. Methodology/Principal Findings We investigated quantitative expression of 36 imprinted genes in adult human peripheral blood leukocytes obtained from healthy individuals. Allelic expression was also investigated in B and T lymphocytes and myeloid cells. We found that 21 genes were essentially undetectable in adult blood. Only six genes were demonstrably monoallelic, and most importantly, we found that nine genes were either biallelic or showed variable expression in different individuals. Separated leukocyte populations showed the same expression patterns as whole blood. Differential methylation at each of the imprinting control loci analysed was maintained, including regions that contained biallelically expressed genes. This suggests in some cases methylation has become uncoupled from its role in regulating gene expression. Conclusions/Significance We conclude that only a limited set of imprinted genes, including IGF2 and SNRPN, may be useful for LOI cancer biomarker studies. In addition, blood is not a good tissue to use for the discovery of new imprinted genes. Finally, lymphocyte DNA methylation status in the adult may not always be a reliable indicator of monoallelic gene expression. PMID:21042416
Wang, Min; Wang, Qinglian; Zhang, Baohong
2013-11-01
Reference genes are critical for normalization of the gene expression level of target genes. The widely used housekeeping genes may change their expression levels at different tissue under different treatment or stress conditions. Therefore, systematical evaluation on the housekeeping genes is required for gene expression analysis. Up to date, no work was performed to evaluate the housekeeping genes in cotton under stress treatment. In this study, we chose 10 housekeeping genes to systematically assess their expression levels at two different tissues (leaves and roots) under two different abiotic stresses (salt and drought) with three different concentrations. Our results show that there is no best reference gene for all tissues at all stress conditions. The reliable reference gene should be selected based on a specific condition. For example, under salt stress, UBQ7, GAPDH and EF1A8 are better reference genes in leaves; TUA10, UBQ7, CYP1, GAPDH and EF1A8 were better in roots. Under drought stress, UBQ7, EF1A8, TUA10, and GAPDH showed less variety of expression level in leaves and roots. Thus, it is better to identify reliable reference genes first before performing any gene expression analysis. However, using a combination of housekeeping genes as reference gene may provide a new strategy for normalization of gene expression. In this study, we found that combination of four housekeeping genes worked well as reference genes under all the stress conditions. © 2013.
Gautier, Aude; Le Gac, Florence; Lareyre, Jean-Jacques
2011-02-01
The gonadal soma-derived factor (GSDF) belongs to the transforming growth factor-β superfamily and is conserved in teleostean fish species. Gsdf is specifically expressed in the gonads, and gene expression is restricted to the granulosa and Sertoli cells in trout and medaka. The gsdf gene expression is correlated to early testis differentiation in medaka and was shown to stimulate primordial germ cell and spermatogonia proliferation in trout. In the present study, we show that the gsdf gene localizes to a syntenic chromosomal fragment conserved among vertebrates although no gsdf-related gene is detected on the corresponding genomic region in tetrapods. We demonstrate using quantitative RT-PCR that most of the genes localized in the synteny are specifically expressed in medaka gonads. Gsdf is the only gene of the synteny with a much higher expression in the testis compared to the ovary. In contrast, gene expression pattern analysis of the gsdf surrounding genes (nup54, aff1, klhl8, sdad1, and ptpn13) indicates that these genes are preferentially expressed in the female gonads. The tissue distribution of these genes is highly similar in medaka and zebrafish, two teleostean species that have diverged more than 110 million years ago. The cellular localization of these genes was determined in medaka gonads using the whole-mount in situ hybridization technique. We confirm that gsdf gene expression is restricted to Sertoli and granulosa cells in contact with the premeiotic and meiotic cells. The nup54 gene is expressed in spermatocytes and previtellogenic oocytes. Transcripts corresponding to the ovary-specific genes (aff1, klhl8, and sdad1) are detected only in previtellogenic oocytes. No expression was detected in the gonocytes in 10 dpf embryos. In conclusion, we show that the gsdf gene localizes to a syntenic chromosomal fragment harboring evolutionary conserved genes in vertebrates. These genes are preferentially expressed in previtelloogenic oocytes, and thus, they display a different cellular localization compared to that of the gsdf gene indicating that the later gene is not co-regulated. Interestingly, our study identifies new clustered genes that are specifically expressed in previtellogenic oocytes (nup54, aff1, klhl8, sdad1). Copyright © 2010 Elsevier B.V. All rights reserved.
Chen, Tzu-Han; Shiau, Hsin-Chieh
2018-01-01
Single cell transcriptome (SCT) analysis provides superior resolution to illustrate tumor cell heterogeneity for clinical implications. We characterized four SCTs of MCF-7 using 143 housekeeping genes (HKGs) as control, of which lactate dehydrogenase B (LDHB) expression is silenced. These SCT libraries mapped to 11,423, 11,486, 10,380, and 11,306 RefSeq genes (UCSC), respectively. High consistency in HKG expression levels across all four SCTs, along with transcriptional silencing of LDHB, was observed, suggesting a high sensitivity and reproducibility of the SCT analysis. Cross-library comparison on expression levels by scatter plotting revealed a linear correlation and an 83–94% overlap in transcript isoforms and expressed genes were also observed. To gain insight of transcriptional diversity among the SCTs, expressed genes were split into consistently expressed (CE) (expressed in all SCTs) and inconsistently expressed (IE) (expressed in some but not all SCTs) genes for further characterization, along with the 142 expressed HKGs as a reference. Distinct transcriptional strengths were found among these groups, with averages of 1,612.0, 88.0 and 1.2 FPKM for HKGs, CE and IE, respectively. Comparison between CE and IE groups further indicated that expressions of CE genes vary more significantly than that of IE genes. Gene Ontology analysis indicated that proteins encoded by CE genes are mainly involved in fundamental intracellular activities, while proteins encoded by IE genes are mainly for extracellular activities, especially acting as receptors or ion channels. The diversified gene expressions, especially for those encoded by IE genes, may contribute to cancer drug resistance. PMID:29920548
Kudo, Toru; Sasaki, Yohei; Terashima, Shin; Matsuda-Imai, Noriko; Takano, Tomoyuki; Saito, Misa; Kanno, Maasa; Ozaki, Soichi; Suwabe, Keita; Suzuki, Go; Watanabe, Masao; Matsuoka, Makoto; Takayama, Seiji; Yano, Kentaro
2016-10-13
In quantitative gene expression analysis, normalization using a reference gene as an internal control is frequently performed for appropriate interpretation of the results. Efforts have been devoted to exploring superior novel reference genes using microarray transcriptomic data and to evaluating commonly used reference genes by targeting analysis. However, because the number of specifically detectable genes is totally dependent on probe design in the microarray analysis, exploration using microarray data may miss some of the best choices for the reference genes. Recently emerging RNA sequencing (RNA-seq) provides an ideal resource for comprehensive exploration of reference genes since this method is capable of detecting all expressed genes, in principle including even unknown genes. We report the results of a comprehensive exploration of reference genes using public RNA-seq data from plants such as Arabidopsis thaliana (Arabidopsis), Glycine max (soybean), Solanum lycopersicum (tomato) and Oryza sativa (rice). To select reference genes suitable for the broadest experimental conditions possible, candidates were surveyed by the following four steps: (1) evaluation of the basal expression level of each gene in each experiment; (2) evaluation of the expression stability of each gene in each experiment; (3) evaluation of the expression stability of each gene across the experiments; and (4) selection of top-ranked genes, after ranking according to the number of experiments in which the gene was expressed stably. Employing this procedure, 13, 10, 12 and 21 top candidates for reference genes were proposed in Arabidopsis, soybean, tomato and rice, respectively. Microarray expression data confirmed that the expression of the proposed reference genes under broad experimental conditions was more stable than that of commonly used reference genes. These novel reference genes will be useful for analyzing gene expression profiles across experiments carried out under various experimental conditions.
Hinchliffe, Doug J; Meredith, William R; Yeater, Kathleen M; Kim, Hee Jin; Woodward, Andrew W; Chen, Z Jeffrey; Triplett, Barbara A
2010-05-01
Gene expression profiles of developing cotton (Gossypium hirsutum L.) fibers from two near-isogenic lines (NILs) that differ in fiber-bundle strength, short-fiber content, and in fewer than two genetic loci were compared using an oligonucleotide microarray. Fiber gene expression was compared at five time points spanning fiber elongation and secondary cell wall (SCW) biosynthesis. Fiber samples were collected from field plots in a randomized, complete block design, with three spatially distinct biological replications for each NIL at each time point. Microarray hybridizations were performed in a loop experimental design that allowed comparisons of fiber gene expression profiles as a function of time between the two NILs. Overall, developmental expression patterns revealed by the microarray experiment agreed with previously reported cotton fiber gene expression patterns for specific genes. Additionally, genes expressed coordinately with the onset of SCW biosynthesis in cotton fiber correlated with gene expression patterns of other SCW-producing plant tissues. Functional classification and enrichment analysis of differentially expressed genes between the two NILs revealed that genes associated with SCW biosynthesis were significantly up-regulated in fibers of the high-fiber quality line at the transition stage of cotton fiber development. For independent corroboration of the microarray results, 15 genes were selected for quantitative reverse transcription PCR analysis of fiber gene expression. These analyses, conducted over multiple field years, confirmed the temporal difference in fiber gene expression between the two NILs. We hypothesize that the loci conferring temporal differences in fiber gene expression between the NILs are important regulatory sequences that offer the potential for more targeted manipulation of cotton fiber quality.
Evolutionary conservation of vertebrate notochord genes in the ascidian Ciona intestinalis.
Kugler, Jamie E; Passamaneck, Yale J; Feldman, Taya G; Beh, Jeni; Regnier, Todd W; Di Gregorio, Anna
2008-11-01
To reconstruct a minimum complement of notochord genes evolutionarily conserved across chordates, we scanned the Ciona intestinalis genome using the sequences of 182 genes reported to be expressed in the notochord of different vertebrates and identified 139 candidate notochord genes. For 66 of these Ciona genes expression data were already available, hence we analyzed the expression of the remaining 73 genes and found notochord expression for 20. The predicted products of the newly identified notochord genes range from the transcription factors Ci-XBPa and Ci-miER1 to extracellular matrix proteins. We examined the expression of the newly identified notochord genes in embryos ectopically expressing Ciona Brachyury (Ci-Bra) and in embryos expressing a repressor form of this transcription factor in the notochord, and we found that while a subset of the genes examined are clearly responsive to Ci-Bra, other genes are not affected by alterations in its levels. We provide a first description of notochord genes that are not evidently influenced by the ectopic expression of Ci-Bra and we propose alternative regulatory mechanisms that might control their transcription. Copyright 2008 Wiley-Liss, Inc.
Versluis, Dennis; D'Andrea, Marco Maria; Ramiro Garcia, Javier; Leimena, Milkha M; Hugenholtz, Floor; Zhang, Jing; Öztürk, Başak; Nylund, Lotta; Sipkema, Detmer; van Schaik, Willem; de Vos, Willem M; Kleerebezem, Michiel; Smidt, Hauke; van Passel, Mark W J
2015-07-08
Antibiotic resistance genes are found in a broad range of ecological niches associated with complex microbiota. Here we investigated if resistance genes are not only present, but also transcribed under natural conditions. Furthermore, we examined the potential for antibiotic production by assessing the expression of associated secondary metabolite biosynthesis gene clusters. Metatranscriptome datasets from intestinal microbiota of four human adults, one human infant, 15 mice and six pigs, of which only the latter have received antibiotics prior to the study, as well as from sea bacterioplankton, a marine sponge, forest soil and sub-seafloor sediment, were investigated. We found that resistance genes are expressed in all studied ecological niches, albeit with niche-specific differences in relative expression levels and diversity of transcripts. For example, in mice and human infant microbiota predominantly tetracycline resistance genes were expressed while in human adult microbiota the spectrum of expressed genes was more diverse, and also included β-lactam, aminoglycoside and macrolide resistance genes. Resistance gene expression could result from the presence of natural antibiotics in the environment, although we could not link it to expression of corresponding secondary metabolites biosynthesis clusters. Alternatively, resistance gene expression could be constitutive, or these genes serve alternative roles besides antibiotic resistance.
Clustering cancer gene expression data by projective clustering ensemble
Yu, Xianxue; Yu, Guoxian
2017-01-01
Gene expression data analysis has paramount implications for gene treatments, cancer diagnosis and other domains. Clustering is an important and promising tool to analyze gene expression data. Gene expression data is often characterized by a large amount of genes but with limited samples, thus various projective clustering techniques and ensemble techniques have been suggested to combat with these challenges. However, it is rather challenging to synergy these two kinds of techniques together to avoid the curse of dimensionality problem and to boost the performance of gene expression data clustering. In this paper, we employ a projective clustering ensemble (PCE) to integrate the advantages of projective clustering and ensemble clustering, and to avoid the dilemma of combining multiple projective clusterings. Our experimental results on publicly available cancer gene expression data show PCE can improve the quality of clustering gene expression data by at least 4.5% (on average) than other related techniques, including dimensionality reduction based single clustering and ensemble approaches. The empirical study demonstrates that, to further boost the performance of clustering cancer gene expression data, it is necessary and promising to synergy projective clustering with ensemble clustering. PCE can serve as an effective alternative technique for clustering gene expression data. PMID:28234920
NASA Astrophysics Data System (ADS)
Versluis, Dennis; D'Andrea, Marco Maria; Ramiro Garcia, Javier; Leimena, Milkha M.; Hugenholtz, Floor; Zhang, Jing; Öztürk, Başak; Nylund, Lotta; Sipkema, Detmer; Schaik, Willem Van; de Vos, Willem M.; Kleerebezem, Michiel; Smidt, Hauke; Passel, Mark W. J. Van
2015-07-01
Antibiotic resistance genes are found in a broad range of ecological niches associated with complex microbiota. Here we investigated if resistance genes are not only present, but also transcribed under natural conditions. Furthermore, we examined the potential for antibiotic production by assessing the expression of associated secondary metabolite biosynthesis gene clusters. Metatranscriptome datasets from intestinal microbiota of four human adults, one human infant, 15 mice and six pigs, of which only the latter have received antibiotics prior to the study, as well as from sea bacterioplankton, a marine sponge, forest soil and sub-seafloor sediment, were investigated. We found that resistance genes are expressed in all studied ecological niches, albeit with niche-specific differences in relative expression levels and diversity of transcripts. For example, in mice and human infant microbiota predominantly tetracycline resistance genes were expressed while in human adult microbiota the spectrum of expressed genes was more diverse, and also included β-lactam, aminoglycoside and macrolide resistance genes. Resistance gene expression could result from the presence of natural antibiotics in the environment, although we could not link it to expression of corresponding secondary metabolites biosynthesis clusters. Alternatively, resistance gene expression could be constitutive, or these genes serve alternative roles besides antibiotic resistance.
Tsuchiya, Takafumi; Endo, Ayano; Tsujikado, Kyoko; Inukai, Toshihiko
2017-10-01
Resveratrol, a kind of polyphenol, has the potential to activate the longevity gene in several cells, in the same manner as calorie restriction. We investigated the effect of resveratrol and ω-3-line polyunsaturated fatty acid on surtuin 1 (SIRT1) gene expression in human monocytes (THP1) cells. We examined the gene expression of THP1 cells using real-time polymerase chain reaction and Western blotting analysis. Resveratol, eicosapentaenoic acid (EPA) and docosahexaeanoic acid (DHA) as n-3 polyunsaturated fatty acid were added on THP1 cells. We observed the changes in the SIRT1 gene expression in those cells, under various doses of agents and in time courses. Then, we examined the interaction of glucose and mannitol on those agents׳ effect of the gene expression. The concentration range of glucose and mannitol was from 5-20mM, respectively. The SIRT1 gene expression could be defined in 24 and 48 hours both in real-time polymerase chain reaction analysis and in Western blotting. Resveratrol showed SIRT1 gene expression in a dose-dependent manner in the range of 0-20μM in both analyses. Although EPA at 10μM showed marked increase in SIRT1 gene expression compared to control condition in Western blotting, this phenomenon was not in dose-dependent manner. DHA did not exhibit any augmentation of SIRT1 gene expression in a dose-dependent manner in the range of 0-20μM in both analyses. We refined the dose-dependent inhibition of the SIRT1 gene expression within 20mM glucose medium. Although 20mM did not exhibit any inhibition, 10μM resveratrol induced the gene expression compared to control medium. Both 5 and 15mM mannitol medium did not significantly alter basic gene expression and 10μM resveratrol-induced gene expression. The present results suggest that resveratrol and EPA, but not DHA, markedly activated the SIRT1 gene expression in THP1 cells, and that high glucose medium could inhibit the basic gene expression, but not powerful resveratrol-induced gene expression, in those cells. Copyright © 2017 Southern Society for Clinical Investigation. Published by Elsevier Inc. All rights reserved.
Rogero, Marcelo M.; Hesketh, John
2017-01-01
Selenium (Se) is an essential micronutrient for human health. Its beneficial effects are exerted by selenoproteins, which can be quantified in blood and used as molecular biomarkers of Se status. We hypothesize that the presence of genetic polymorphisms in selenoprotein genes may: (1) influence the gene expression of specific selenoproteins and (2) influence the pattern of global gene expression after Brazil nut supplementation. The study was conducted with 130 healthy volunteers in Sao Paulo, Brazil, who consumed one Brazil nut (300 μg/Se) a day for eight weeks. Gene expression of GPX1 and SELENOP and genotyping were measured by real-time PCR using TaqMan Assays. Global gene expression was assessed by microarray using Illumina HumanHT-12 v4 BeadChips. Brazil nut supplementation significantly increased GPX1 mRNA expression only in subjects with CC genotype at rs1050450 (p < 0.05). SELENOP mRNA expression was significantly higher in A-carriers at rs7579 either before or after supplementation (p < 0.05). Genotype for rs713041 in GPX4 affected the pattern of blood cell global gene expression. Genetic variations in selenoprotein genes modulated both GPX1 and SELENOP selenoprotein gene expression and global gene expression in response to Brazil nut supplementation. PMID:28696394
Yu, Yao; Tu, Kang; Zheng, Siyuan; Li, Yun; Ding, Guohui; Ping, Jie; Hao, Pei; Li, Yixue
2009-08-25
In the post-genomic era, the development of high-throughput gene expression detection technology provides huge amounts of experimental data, which challenges the traditional pipelines for data processing and analyzing in scientific researches. In our work, we integrated gene expression information from Gene Expression Omnibus (GEO), biomedical ontology from Medical Subject Headings (MeSH) and signaling pathway knowledge from sigPathway entries to develop a context mining tool for gene expression analysis - GEOGLE. GEOGLE offers a rapid and convenient way for searching relevant experimental datasets, pathways and biological terms according to multiple types of queries: including biomedical vocabularies, GDS IDs, gene IDs, pathway names and signature list. Moreover, GEOGLE summarizes the signature genes from a subset of GDSes and estimates the correlation between gene expression and the phenotypic distinction with an integrated p value. This approach performing global searching of expression data may expand the traditional way of collecting heterogeneous gene expression experiment data. GEOGLE is a novel tool that provides researchers a quantitative way to understand the correlation between gene expression and phenotypic distinction through meta-analysis of gene expression datasets from different experiments, as well as the biological meaning behind. The web site and user guide of GEOGLE are available at: http://omics.biosino.org:14000/kweb/workflow.jsp?id=00020.
2010-01-01
Background Perennial ryegrass (Lolium perenne L.) is an important pasture and turf crop. Biotechniques such as gene expression studies are being employed to improve traits in this temperate grass. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) is among the best methods available for determining changes in gene expression. Before analysis of target gene expression, it is essential to select an appropriate normalisation strategy to control for non-specific variation between samples. Reference genes that have stable expression at different biological and physiological states can be effectively used for normalisation; however, their expression stability must be validated before use. Results Existing Serial Analysis of Gene Expression data were queried to identify six moderately expressed genes that had relatively stable gene expression throughout the year. These six candidate reference genes (eukaryotic elongation factor 1 alpha, eEF1A; TAT-binding protein homolog 1, TBP-1; eukaryotic translation initiation factor 4 alpha, eIF4A; YT521-B-like protein family protein, YT521-B; histone 3, H3; ubiquitin-conjugating enzyme, E2) were validated for qRT-PCR normalisation in 442 diverse perennial ryegrass (Lolium perenne L.) samples sourced from field- and laboratory-grown plants under a wide range of experimental conditions. Eukaryotic EF1A is encoded by members of a multigene family exhibiting differential expression and necessitated the expression analysis of different eEF1A encoding genes; a highly expressed eEF1A (h), a moderately, but stably expressed eEF1A (s), and combined expression of multigene eEF1A (m). NormFinder identified eEF1A (s) and YT521-B as the best combination of two genes for normalisation of gene expression data in perennial ryegrass following different defoliation management in the field. Conclusions This study is unique in the magnitude of samples tested with the inclusion of numerous field-grown samples, helping pave the way to conduct gene expression studies in perennial biomass crops under field-conditions. From our study several stably expressed reference genes have been validated. This provides useful candidates for reference gene selection in perennial ryegrass under conditions other than those tested here. PMID:20089196
Peralta-Arrieta, Irlanda; Hernández-Sotelo, Daniel; Castro-Coronel, Yaneth; Leyva-Vázquez, Marco Antonio; Illades-Aguiar, Berenice
2017-01-01
Altered promoter DNA methylation is one of the most important epigenetic abnormalities in human cancer. DNMT3B, de novo methyltransferase, is clearly related to abnormal methylation of tumour suppressor genes, DNA repair genes and its overexpression contributes to oncogenic processes and tumorigenesis in vivo. The purpose of this study was to assess the effect of the overexpression of DNMT3B in HaCaT cells on global gene expression and on the methylation of selected genes to the identification of genes that can be target of DNMT3B. We found that the overexpression of DNMT3B in HaCaT cells, modulate the expression of genes related to cancer, downregulated the expression of 151 genes with CpG islands and downregulated the expression of the VAV3 gene via methylation of its promoter. These results highlight the importance of DNMT3B in gene expression and human cancer. PMID:28123849
Peralta-Arrieta, Irlanda; Hernández-Sotelo, Daniel; Castro-Coronel, Yaneth; Leyva-Vázquez, Marco Antonio; Illades-Aguiar, Berenice
2017-01-01
Altered promoter DNA methylation is one of the most important epigenetic abnormalities in human cancer. DNMT3B, de novo methyltransferase, is clearly related to abnormal methylation of tumour suppressor genes, DNA repair genes and its overexpression contributes to oncogenic processes and tumorigenesis in vivo . The purpose of this study was to assess the effect of the overexpression of DNMT3B in HaCaT cells on global gene expression and on the methylation of selected genes to the identification of genes that can be target of DNMT3B. We found that the overexpression of DNMT3B in HaCaT cells, modulate the expression of genes related to cancer, downregulated the expression of 151 genes with CpG islands and downregulated the expression of the VAV3 gene via methylation of its promoter. These results highlight the importance of DNMT3B in gene expression and human cancer.
Biophysical Constraints Arising from Compositional Context in Synthetic Gene Networks.
Yeung, Enoch; Dy, Aaron J; Martin, Kyle B; Ng, Andrew H; Del Vecchio, Domitilla; Beck, James L; Collins, James J; Murray, Richard M
2017-07-26
Synthetic gene expression is highly sensitive to intragenic compositional context (promoter structure, spacing regions between promoter and coding sequences, and ribosome binding sites). However, much less is known about the effects of intergenic compositional context (spatial arrangement and orientation of entire genes on DNA) on expression levels in synthetic gene networks. We compare expression of induced genes arranged in convergent, divergent, or tandem orientations. Induction of convergent genes yielded up to 400% higher expression, greater ultrasensitivity, and dynamic range than divergent- or tandem-oriented genes. Orientation affects gene expression whether one or both genes are induced. We postulate that transcriptional interference in divergent and tandem genes, mediated by supercoiling, can explain differences in expression and validate this hypothesis through modeling and in vitro supercoiling relaxation experiments. Treatment with gyrase abrogated intergenic context effects, bringing expression levels within 30% of each other. We rebuilt the toggle switch with convergent genes, taking advantage of supercoiling effects to improve threshold detection and switch stability. Copyright © 2017 Elsevier Inc. All rights reserved.
Differential gene expression in queen–worker caste determination in bumble-bees
Pereboom, Jeffrey J. M; Jordan, William C; Sumner, Seirian; Hammond, Robert L; Bourke, Andrew F. G
2005-01-01
Investigating how differential gene expression underlies caste determination in the social Hymenoptera is central to understanding how variation in gene expression underlies adaptive phenotypic diversity. We investigated for the first time the association between differential gene expression and queen–worker caste determination in the bumble-bee Bombus terrestris. Using suppression subtractive hybridization we isolated 12 genes that were differentially expressed in queen- and worker-destined larvae. We found that the sets of genes underlying caste differences in larvae and adults failed to overlap greatly. We also found that B. terrestris shares some of the genes whose differential expression is associated with caste determination in the honeybee, Apis mellifera, but their expression patterns were not identical. Instead, we found B. terrestris to exhibit a novel pattern, whereby most genes upregulated (i.e. showing relatively higher levels of expression) in queen-destined larvae early in development were upregulated in worker-destined larvae late in development. Overall, our results suggest that caste determination in B. terrestris involves a difference not so much in the identity of genes expressed by queen- and worker-destined larvae, but primarily in the relative timing of their expression. This conclusion is of potential importance in the further study of phenotypic diversification via differential gene expression. PMID:16024376
Regulatory systems for hypoxia-inducible gene expression in ischemic heart disease gene therapy.
Kim, Hyun Ah; Rhim, Taiyoun; Lee, Minhyung
2011-07-18
Ischemic heart diseases are caused by narrowed coronary arteries that decrease the blood supply to the myocardium. In the ischemic myocardium, hypoxia-responsive genes are up-regulated by hypoxia-inducible factor-1 (HIF-1). Gene therapy for ischemic heart diseases uses genes encoding angiogenic growth factors and anti-apoptotic proteins as therapeutic genes. These genes increase blood supply into the myocardium by angiogenesis and protect cardiomyocytes from cell death. However, non-specific expression of these genes in normal tissues may be harmful, since growth factors and anti-apoptotic proteins may induce tumor growth. Therefore, tight gene regulation is required to limit gene expression to ischemic tissues, to avoid unwanted side effects. For this purpose, various gene expression strategies have been developed for ischemic-specific gene expression. Transcriptional, post-transcriptional, and post-translational regulatory strategies have been developed and evaluated in ischemic heart disease animal models. The regulatory systems can limit therapeutic gene expression to ischemic tissues and increase the efficiency of gene therapy. In this review, recent progresses in ischemic-specific gene expression systems are presented, and their applications to ischemic heart diseases are discussed. Copyright © 2011 Elsevier B.V. All rights reserved.
Wang, Shengji; Wang, Jiying; Yao, Wenjing; Zhou, Boru; Li, Renhua; Jiang, Tingbo
2014-10-01
Spatio-temporal expression patterns of 13 out of 119 poplar WRKY genes indicated dynamic and tissue-specific roles of WRKY family proteins in salinity stress tolerance. To understand the expression patterns of poplar WRKY genes under salinity stress, 51 of the 119 WRKY genes were selected from di-haploid Populus simonii × P. nigra by quantitative real-time PCR (qRT-PCR). We used qRT-PCR to profile the expression of the top 13 genes under salinity stress across seven time points, and employed RNA-Seq platforms to cross-validate it. Results demonstrated that all the 13 WRKY genes were expressed in root, stem, and leaf tissues, but their expression levels and overall patterns varied notably in these tissues. Regarding overall gene expression in roots, the 13 genes were significantly highly expressed at all six time points after the treatment, reaching the plateau of expression at hour 9. In leaves, the 13 genes were similarly up-regulated from 3 to 12 h in response to NaCl treatment. In stems, however, expression levels of the 13 genes did not show significant changes after the NaCl treatment. Regarding individual gene expression across the time points and the three tissues, the 13 genes can be classified into three clusters: the lowly expressed Cluster 1 containing PthWRKY28, 45 and 105; intermediately expressed Clusters 2 including PthWRKY56, 88 and 116; and highly expressed Cluster 3 consisting of PthWRKY41, 44, 51, 61, 62, 75 and 106. In general, genes in Cluster 2 and 3 displayed a dynamic pattern of "induced amplification-recovering", suggesting that these WRKY genes and corresponding pathways may play a critical role in mediating salt response and tolerance in a dynamic and tissue-specific manner.
Hox gene expression during postlarval development of the polychaete Alitta virens.
Bakalenko, Nadezhda I; Novikova, Elena L; Nesterenko, Alexander Y; Kulakova, Milana A
2013-05-01
Hox genes are the family of transcription factors that play a key role in the patterning of the anterior-posterior axis of all bilaterian animals. These genes display clustered organization and colinear expression. Expression boundaries of individual Hox genes usually correspond with morphological boundaries of the body. Previously, we studied Hox gene expression during larval development of the polychaete Alitta virens (formerly Nereis virens) and discovered that Hox genes are expressed in nereid larva according to the spatial colinearity principle. Adult Alitta virens consist of multiple morphologically similar segments, which are formed sequentially in the growth zone. Since the worm grows for most of its life, postlarval segments constantly change their position along the anterior-posterior axis. We studied the expression dynamics of the Hox cluster during postlarval development of the nereid Alitta virens and found that 8 out of 11 Hox genes are transcribed as wide gene-specific gradients in the ventral nerve cord, ectoderm, and mesoderm. The expression domains constantly shift in accordance with the changing proportions of the growing worm, so expression domains of most Hox genes do not have stable anterior or/and posterior boundaries.In the course of our study, we revealed long antisense RNA (asRNA) for some Hox genes. Expression patterns of two of these genes were analyzed using whole-mount in-situ hybridization. This is the first discovery of antisense RNA for Hox genes in Lophotrochozoa. Hox gene expression in juvenile A. virens differs significantly from Hox gene expression patterns both in A. virens larva and in other Bilateria.We suppose that the postlarval function of the Hox genes in this polychaete is to establish and maintain positional coordinates in a constantly growing body, as opposed to creating morphological difference between segments.
Genomic DNA-based absolute quantification of gene expression in Vitis
USDA-ARS?s Scientific Manuscript database
Many studies in which gene expression is quantified by polymerase chain reaction represent the expression of a gene of interest (GOI) relative to that of a reference gene (RG). Relative expression is founded on the assumptions that RG expression is stable across samples, treatments, organs, etc., an...
Knowlton, K U; Baracchini, E; Ross, R S; Harris, A N; Henderson, S A; Evans, S M; Glembotski, C C; Chien, K R
1991-04-25
To study the mechanisms which mediate the transcriptional activation of cardiac genes during alpha adrenergic stimulation, the present study examined the regulated expression of three cardiac genes, a ventricular embryonic gene (atrial natriuretic factor, ANF), a constitutively expressed contractile protein gene (cardiac MLC-2), and a cardiac sodium channel gene. alpha 1-Adrenergic stimulation activates the expression and release of ANF from neonatal ventricular cells. As assessed by RNase protection analyses, treatment with alpha-adrenergic agonists increases the steady-state levels of ANF mRNA by greater than 15-fold. However, a rat cardiac sodium channel gene mRNA is not induced, indicating that alpha-adrenergic stimulation does not lead to an increase in the expression of all cardiac genes. Studies employing a series of rat ANF luciferase and rat MLC-2 luciferase fusion genes identify 315- and 92-base pair cis regulatory sequences within an embryonic gene (ANF) and a constitutively expressed contractile protein gene (MLC-2), respectively, which mediate alpha-adrenergic-inducible gene expression. Transfection of various ANF luciferase reporters into neonatal rat ventricular cells demonstrated that upstream sequences which mediate tissue-specific expression (-3003 to -638) can be segregated from those responsible for inducibility. The lack of inducibility of a cardiac Na+ channel gene, and the segregation of ANF gene sequences which mediate cardiac specific from those which mediate inducible expression, provides further insight into the relationship between muscle-specific and inducible expression during cardiac myocyte hypertrophy. Based on these results, a testable model is proposed for the induction of embryonic cardiac genes and constitutively expressed contractile protein genes and the noninducibility of a subset of cardiac genes during alpha-adrenergic stimulation of neonatal rat ventricular cells.
de Arruda, Henrique Ferraz; Comin, Cesar Henrique; Miazaki, Mauro; Viana, Matheus Palhares; Costa, Luciano da Fontoura
2015-04-30
A key point in developmental biology is to understand how gene expression influences the morphological and dynamical patterns that are observed in living beings. In this work we propose a methodology capable of addressing this problem that is based on estimating the mutual information and Pearson correlation between the intensity of gene expression and measurements of several morphological properties of the cells. A similar approach is applied in order to identify effects of gene expression over the system dynamics. Neuronal networks were artificially grown over a lattice by considering a reference model used to generate artificial neurons. The input parameters of the artificial neurons were determined according to two distinct patterns of gene expression and the dynamical response was assessed by considering the integrate-and-fire model. As far as single gene dependence is concerned, we found that the interaction between the gene expression and the network topology, as well as between the former and the dynamics response, is strongly affected by the gene expression pattern. In addition, we observed a high correlation between the gene expression and some topological measurements of the neuronal network for particular patterns of gene expression. To our best understanding, there are no similar analyses to compare with. A proper understanding of gene expression influence requires jointly studying the morphology, topology, and dynamics of neurons. The proposed framework represents a first step towards predicting gene expression patterns from morphology and connectivity. Copyright © 2015. Published by Elsevier B.V.
Starkova, Julia; Zamostna, Blanka; Mejstrikova, Ester; Krejci, Roman; Drabkin, Harry A; Trka, Jan
2010-12-01
HOX genes play an important role in both normal lymphopoiesis and leukemogenesis. However, HOX expression patterns in leukemia cells compared to normal lymphoid progenitors have not been systematically studied in acute lymphoblastic leukemia (ALL) subtypes. The RNA expression levels of HOXA, HOXB, and CDX1/2 genes were analyzed by qRT-PCR in a cohort of 61 diagnostic pediatric ALL samples and FACS-sorted subpopulations of normal lymphoid progenitors. The RNA expression of HOXA7-10, HOXA13, and HOXB2-4 genes was exclusively detected in leukemic cells and immature progenitors. The RNA expression of HOXB6 and CDX2 genes was exclusively detected in leukemic cells but not in B-lineage cells at any of the studied developmental stages. HOXA3-4, HOXA7, and HOXB3-4 genes were differentially expressed between BCP-ALL and T-ALL subgroups, and among genotypically defined MLL/AF4, TEL/AML1, BCR/ABL, hyperdiploid and normal karyotype subgroups. However, this differential expression did not define specific clusters in hierarchical cluster analysis. HOXA7 gene was low expressed at the RNA level in patients with hyperdiploid leukemia, whereas HOXB7 and CDX2 genes were low expressed in TEL/AML1-positive and BCR/ABL-positive cases, respectively. In contrast to previous findings in acute myeloid leukemia, high HOXA RNA expression was associated with an excellent prognosis in Cox's regression model (P = 0.03). In MLL/AF4-positive ALL, lower HOXA RNA expression correlated with the methylation status of their promoters. HOX gene RNA expression cannot discriminate leukemia subgroups or relative maturity of leukemic cells. However, HOXA RNA expression correlates with prognosis, and particular HOX genes are expressed in specific genotypically characterized subgroups.
Reinheimer, Renata; Kellogg, Elizabeth A.
2009-01-01
AGAMOUS-like6 (AGL6) genes encode MIKC-type MADS box transcription factors and are closely related to SEPALLATA and AP1/FUL-like genes. Here, we focus on the molecular evolution and expression of the AGL6-like genes in grasses. We have found that AGL6-like genes are expressed in ovules, lodicules (second whorl floral organs), paleas (putative first whorl floral organs), and floral meristems. Each of these expression domains was acquired at a different time in evolution, indicating that each represents a distinct function of the gene product and that the AGL6-like genes are pleiotropic. Expression in the inner integument of the ovule appears to be an ancient expression pattern corresponding to the expression of the gene in the megasporangium and integument in gymnosperms. Expression in floral meristems appears to have been acquired in the angiosperms and expression in second whorl organs in monocots. Early in grass evolution, AGL6-like orthologs acquired a new expression domain in the palea. Stamen expression is variable. Most grasses have a single AGL6-like gene (orthologous to the rice [Oryza sativa] gene MADS6). However, rice and other species of Oryza have a second copy (orthologous to rice MADS17) that appears to be the result of an ancient duplication. PMID:19749151
Kramer, Maxwell; Rao, Prashant; Ercan, Sevinc
2016-01-01
Dosage compensation mechanisms equalize the level of X chromosome expression between sexes. Yet the X chromosome is often enriched for genes exhibiting sex-biased, i.e., imbalanced expression. The relationship between X chromosome dosage compensation and sex-biased gene expression remains largely unexplored. Most studies determine sex-biased gene expression without distinguishing between contributions from X chromosome copy number (dose) and the animal’s sex. Here, we uncoupled X chromosome dose from sex-specific gene regulation in Caenorhabditis elegans to determine the effect of each on X expression. In early embryogenesis, when dosage compensation is not yet fully active, X chromosome dose drives the hermaphrodite-biased expression of many X-linked genes, including several genes that were shown to be responsible for hermaphrodite fate. A similar effect is seen in the C. elegans germline, where X chromosome dose contributes to higher hermaphrodite X expression, suggesting that lack of dosage compensation in the germline may have a role in supporting higher expression of X chromosomal genes with female-biased functions in the gonad. In the soma, dosage compensation effectively balances X expression between the sexes. As a result, somatic sex-biased expression is almost entirely due to sex-specific gene regulation. These results suggest that lack of dosage compensation in different tissues and developmental stages allow X chromosome copy number to contribute to sex-biased gene expression and function. PMID:27356611
Gálvez, José Héctor; Tai, Helen H; Lagüe, Martin; Zebarth, Bernie J; Strömvik, Martina V
2016-05-19
Nitrogen (N) is the most important nutrient for the growth of potato (Solanum tuberosum L.). Foliar gene expression in potato plants with and without N supplementation at 180 kg N ha(-1) was compared at mid-season. Genes with consistent differences in foliar expression due to N supplementation over three cultivars and two developmental time points were examined. In total, thirty genes were found to be over-expressed and nine genes were found to be under-expressed with supplemented N. Functional relationships between over-expressed genes were found. The main metabolic pathway represented among differentially expressed genes was amino acid metabolism. The 1000 bp upstream flanking regions of the differentially expressed genes were analysed and nine overrepresented motifs were found using three motif discovery algorithms (Seeder, Weeder and MEME). These results point to coordinated gene regulation at the transcriptional level controlling steady state potato responses to N sufficiency.
Gálvez, José Héctor; Tai, Helen H.; Lagüe, Martin; Zebarth, Bernie J.; Strömvik, Martina V.
2016-01-01
Nitrogen (N) is the most important nutrient for the growth of potato (Solanum tuberosum L.). Foliar gene expression in potato plants with and without N supplementation at 180 kg N ha−1 was compared at mid-season. Genes with consistent differences in foliar expression due to N supplementation over three cultivars and two developmental time points were examined. In total, thirty genes were found to be over-expressed and nine genes were found to be under-expressed with supplemented N. Functional relationships between over-expressed genes were found. The main metabolic pathway represented among differentially expressed genes was amino acid metabolism. The 1000 bp upstream flanking regions of the differentially expressed genes were analysed and nine overrepresented motifs were found using three motif discovery algorithms (Seeder, Weeder and MEME). These results point to coordinated gene regulation at the transcriptional level controlling steady state potato responses to N sufficiency. PMID:27193058
Utility and Limitations of Using Gene Expression Data to Identify Functional Associations
Peng, Cheng; Shiu, Shin-Han
2016-01-01
Gene co-expression has been widely used to hypothesize gene function through guilt-by association. However, it is not clear to what degree co-expression is informative, whether it can be applied to genes involved in different biological processes, and how the type of dataset impacts inferences about gene functions. Here our goal is to assess the utility and limitations of using co-expression as a criterion to recover functional associations between genes. By determining the percentage of gene pairs in a metabolic pathway with significant expression correlation, we found that many genes in the same pathway do not have similar transcript profiles and the choice of dataset, annotation quality, gene function, expression similarity measure, and clustering approach significantly impacts the ability to recover functional associations between genes using Arabidopsis thaliana as an example. Some datasets are more informative in capturing coordinated expression profiles and larger data sets are not always better. In addition, to recover the maximum number of known pathways and identify candidate genes with similar functions, it is important to explore rather exhaustively multiple dataset combinations, similarity measures, clustering algorithms and parameters. Finally, we validated the biological relevance of co-expression cluster memberships with an independent phenomics dataset and found that genes that consistently cluster with leucine degradation genes tend to have similar leucine levels in mutants. This study provides a framework for obtaining gene functional associations by maximizing the information that can be obtained from gene expression datasets. PMID:27935950
Skin transcriptome profiles associated with coat color in sheep
2013-01-01
Background Previous molecular genetic studies of physiology and pigmentation of sheep skin have focused primarily on a limited number of genes and proteins. To identify additional genes that may play important roles in coat color regulation, Illumina sequencing technology was used to catalog global gene expression profiles in skin of sheep with white versus black coat color. Results There were 90,006 and 74,533 unigenes assembled from the reads obtained from white and black sheep skin, respectively. Genes encoding for the ribosomal proteins and keratin associated proteins were most highly expressed. A total of 2,235 known genes were differentially expressed in black versus white sheep skin, with 479 genes up-regulated and 1,756 genes down-regulated. A total of 845 novel genes were differentially expressed in black versus white sheep skin, consisting of 107 genes which were up-regulated (including 2 highly expressed genes exclusively expressed in black sheep skin) and 738 genes that were down-regulated. There was also a total of 49 known coat color genes expressed in sheep skin, from which 13 genes showed higher expression in black sheep skin. Many of these up-regulated genes, such as DCT, MATP, TYR and TYRP1, are members of the components of melanosomes and their precursor ontology category. Conclusion The white and black sheep skin transcriptome profiles obtained provide a valuable resource for future research to understand the network of gene expression controlling skin physiology and melanogenesis in sheep. PMID:23758853
GEsture: an online hand-drawing tool for gene expression pattern search.
Wang, Chunyan; Xu, Yiqing; Wang, Xuelin; Zhang, Li; Wei, Suyun; Ye, Qiaolin; Zhu, Youxiang; Yin, Hengfu; Nainwal, Manoj; Tanon-Reyes, Luis; Cheng, Feng; Yin, Tongming; Ye, Ning
2018-01-01
Gene expression profiling data provide useful information for the investigation of biological function and process. However, identifying a specific expression pattern from extensive time series gene expression data is not an easy task. Clustering, a popular method, is often used to classify similar expression genes, however, genes with a 'desirable' or 'user-defined' pattern cannot be efficiently detected by clustering methods. To address these limitations, we developed an online tool called GEsture. Users can draw, or graph a curve using a mouse instead of inputting abstract parameters of clustering methods. GEsture explores genes showing similar, opposite and time-delay expression patterns with a gene expression curve as input from time series datasets. We presented three examples that illustrate the capacity of GEsture in gene hunting while following users' requirements. GEsture also provides visualization tools (such as expression pattern figure, heat map and correlation network) to display the searching results. The result outputs may provide useful information for researchers to understand the targets, function and biological processes of the involved genes.
Tamilzhalagan, Sembulingam; Muthuswami, Muthulakshmi; Ganesan, Kumaresan
2017-04-01
Genomic Copy Number Variations (CNV) and the associated gene signatures are useful for cancer prognosis, diagnosis, and targeted therapeutics. Earlier, 7q21-22 region was reported for frequent amplification in gastric cancer and potential candidate genes were identified. An analysis of the expression pattern of the 159 genes located in this amplicon revealed the consistent elevated expression of 21 genes in gastric tumors. These genes are closely arranged within the 20 Mb region, and they showed a bimodal expression pattern. SHFM1 and 14 other genes are expressed in intestinal type gastric tumors. COL1A2 and PCOLCE genes of this region are expressed in diffuse type gastric tumors. Similarly, genome-wide expression neighbors of SHFM1 and COL1A2 also showed mutually exclusive expression pattern, and stratify intestinal and diffuse type gastric tumors. The expression of COL1A2 gene-set is associated with poor prognosis, whereas the SHFM1 gene-set is associated with better prognosis among the gastric cancer patients. Despite being physical neighbors, the SHFM1 and COL1A2 genes express differentially in the two major clinical sub-types of gastric cancer in a mutually exclusive manner. The tight gene regulations operating between these juxtaposed genes deserve investigation to understand the molecular regulatory switch defining the determinants of the gastric cancer sub-types. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Yi, Y; Zhang, M; Liu, C
2001-06-01
To set up an efficient expressing system for recombinant hepatitis B virus surface antigen (HBsAg) in dhfr gene negative CHO cell line. HBsAg gene expressing plasmid pCI-dhfr-S was constructed by integrating HBsAg gene into plasmid pCI which carries dhfr gene. The HBsAg expressing cell line was set up by transfection of plasmid pCI-dhfr-S into dhfr gene negative CHO cell line in the way of lipofectin. Under the selective pressure of MTX, 18 of 28 clonized cell lines expressed HBsAg, 4 of them reached a high titer of 1:32 and protein content 1-3 micrograms/ml. In this study, the high level expression of HBsAg demonstrated that the dhfr negative mammalian cell line when recombined with plasmid harboring the corresponding deleted gene can efficiently express the foreign gene. The further steps toward building optimum conditions of the expressing system and the increase of expressed product are under study.
Gene expression inference with deep learning.
Chen, Yifei; Li, Yi; Narayan, Rajiv; Subramanian, Aravind; Xie, Xiaohui
2016-06-15
Large-scale gene expression profiling has been widely used to characterize cellular states in response to various disease conditions, genetic perturbations, etc. Although the cost of whole-genome expression profiles has been dropping steadily, generating a compendium of expression profiling over thousands of samples is still very expensive. Recognizing that gene expressions are often highly correlated, researchers from the NIH LINCS program have developed a cost-effective strategy of profiling only ∼1000 carefully selected landmark genes and relying on computational methods to infer the expression of remaining target genes. However, the computational approach adopted by the LINCS program is currently based on linear regression (LR), limiting its accuracy since it does not capture complex nonlinear relationship between expressions of genes. We present a deep learning method (abbreviated as D-GEX) to infer the expression of target genes from the expression of landmark genes. We used the microarray-based Gene Expression Omnibus dataset, consisting of 111K expression profiles, to train our model and compare its performance to those from other methods. In terms of mean absolute error averaged across all genes, deep learning significantly outperforms LR with 15.33% relative improvement. A gene-wise comparative analysis shows that deep learning achieves lower error than LR in 99.97% of the target genes. We also tested the performance of our learned model on an independent RNA-Seq-based GTEx dataset, which consists of 2921 expression profiles. Deep learning still outperforms LR with 6.57% relative improvement, and achieves lower error in 81.31% of the target genes. D-GEX is available at https://github.com/uci-cbcl/D-GEX CONTACT: xhx@ics.uci.edu Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Gene expression inference with deep learning
Chen, Yifei; Li, Yi; Narayan, Rajiv; Subramanian, Aravind; Xie, Xiaohui
2016-01-01
Motivation: Large-scale gene expression profiling has been widely used to characterize cellular states in response to various disease conditions, genetic perturbations, etc. Although the cost of whole-genome expression profiles has been dropping steadily, generating a compendium of expression profiling over thousands of samples is still very expensive. Recognizing that gene expressions are often highly correlated, researchers from the NIH LINCS program have developed a cost-effective strategy of profiling only ∼1000 carefully selected landmark genes and relying on computational methods to infer the expression of remaining target genes. However, the computational approach adopted by the LINCS program is currently based on linear regression (LR), limiting its accuracy since it does not capture complex nonlinear relationship between expressions of genes. Results: We present a deep learning method (abbreviated as D-GEX) to infer the expression of target genes from the expression of landmark genes. We used the microarray-based Gene Expression Omnibus dataset, consisting of 111K expression profiles, to train our model and compare its performance to those from other methods. In terms of mean absolute error averaged across all genes, deep learning significantly outperforms LR with 15.33% relative improvement. A gene-wise comparative analysis shows that deep learning achieves lower error than LR in 99.97% of the target genes. We also tested the performance of our learned model on an independent RNA-Seq-based GTEx dataset, which consists of 2921 expression profiles. Deep learning still outperforms LR with 6.57% relative improvement, and achieves lower error in 81.31% of the target genes. Availability and implementation: D-GEX is available at https://github.com/uci-cbcl/D-GEX. Contact: xhx@ics.uci.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:26873929
An atlas of gene expression and gene co-regulation in the human retina.
Pinelli, Michele; Carissimo, Annamaria; Cutillo, Luisa; Lai, Ching-Hung; Mutarelli, Margherita; Moretti, Maria Nicoletta; Singh, Marwah Veer; Karali, Marianthi; Carrella, Diego; Pizzo, Mariateresa; Russo, Francesco; Ferrari, Stefano; Ponzin, Diego; Angelini, Claudia; Banfi, Sandro; di Bernardo, Diego
2016-07-08
The human retina is a specialized tissue involved in light stimulus transduction. Despite its unique biology, an accurate reference transcriptome is still missing. Here, we performed gene expression analysis (RNA-seq) of 50 retinal samples from non-visually impaired post-mortem donors. We identified novel transcripts with high confidence (Observed Transcriptome (ObsT)) and quantified the expression level of known transcripts (Reference Transcriptome (RefT)). The ObsT included 77 623 transcripts (23 960 genes) covering 137 Mb (35 Mb new transcribed genome). Most of the transcripts (92%) were multi-exonic: 81% with known isoforms, 16% with new isoforms and 3% belonging to new genes. The RefT included 13 792 genes across 94 521 known transcripts. Mitochondrial genes were among the most highly expressed, accounting for about 10% of the reads. Of all the protein-coding genes in Gencode, 65% are expressed in the retina. We exploited inter-individual variability in gene expression to infer a gene co-expression network and to identify genes specifically expressed in photoreceptor cells. We experimentally validated the photoreceptors localization of three genes in human retina that had not been previously reported. RNA-seq data and the gene co-expression network are available online (http://retina.tigem.it). © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
2013-01-01
Background Apomixis is a naturally occurring asexual mode of seed reproduction resulting in offspring genetically identical to the maternal plant. Identifying differential gene expression patterns between apomictic and sexual plants is valuable to help deconstruct the trait. Quantitative RT-PCR (qRT-PCR) is a popular method for analyzing gene expression. Normalizing gene expression data using proper reference genes which show stable expression under investigated conditions is critical in qRT-PCR analysis. We used qRT-PCR to validate expression and stability of six potential reference genes (EF1alpha, EIF4A, UBCE, GAPDH, ACT2 and TUBA) in vegetative and reproductive tissues of B-2S and B-12-9 accessions of C. ciliaris. Findings Among tissue types evaluated, EF1alpha showed the highest level of expression while TUBA showed the lowest. When all tissue types were evaluated and compared between genotypes, EIF4A was the most stable reference gene. Gene expression stability for specific ovary stages of B-2S and B-12-9 was also determined. Except for TUBA, all other tested reference genes could be used for any stage-specific ovary tissue normalization, irrespective of the mode of reproduction. Conclusion Our gene expression stability assay using six reference genes, in sexual and apomictic accessions of C. ciliaris, suggests that EIF4A is the most stable gene across all tissue types analyzed. All other tested reference genes, with the exception of TUBA, could be used for gene expression comparison studies between sexual and apomictic ovaries over multiple developmental stages. This reference gene validation data in C. ciliaris will serve as an important base for future apomixis-related transcriptome data validation. PMID:24083672
Poplawski, Shane G; Schoch, Hannah; Wimmer, Mathieu; Hawk, Joshua D; Walsh, Jennifer L; Giese, Karl P; Abel, Ted
2014-12-01
Hippocampus-dependent learning is known to induce changes in gene expression, but information on gene expression differences between different learning paradigms that require the hippocampus is limited. The bulk of studies investigating RNA expression after learning use the contextual fear conditioning task, which couples a novel environment with a footshock. Although contextual fear conditioning has been useful in discovering gene targets, gene expression after spatial memory tasks has received less attention. In this study, we used the object-location memory task and studied gene expression at two time points after learning in a high-throughput manner using a microfluidic qPCR approach. We found that expression of the classic immediate-early genes changes after object-location training in a fashion similar to that observed after contextual fear conditioning. However, the temporal dynamics of gene expression are different between the two tasks, with object-location memory producing gene expression changes that last at least 2 hours. Our findings indicate that different training paradigms may give rise to distinct temporal dynamics of gene expression after learning. Copyright © 2014 Elsevier Inc. All rights reserved.
Wimmer, Mathieu; Hawk, Joshua D.; Walsh, Jennifer L.; Giese, Karl P.; Abel, Ted
2014-01-01
Hippocampus-dependent learning is known to induce changes in gene expression, but information on gene expression differences between different learning paradigms that require the hippocampus is limited. The bulk of studies investigating RNA expression after learning use the contextual fear conditioning task, which couples a novel environment with a footshock. Although contextual fear conditioning has been useful in discovering gene targets, gene expression after spatial memory tasks has received less attention. In this study, we used the object-location memory task and studied gene expression at two time points after learning in a high-throughput manner using a microfluidic qPCR approach. We found that expression of the classic immediate-early genes changes after object-location training in a fashion similar to that observed after contextual fear conditioning. However, the temporal dynamics of gene expression are different between the two tasks, with object-location memory producing gene expression changes that last at least 2 hours. Our findings indicate that different training paradigms may give rise to distinct temporal dynamics of gene expression after learning. PMID:25242102
Using RNA-seq data to select reference genes for normalizing gene expression in apple roots.
Zhou, Zhe; Cong, Peihua; Tian, Yi; Zhu, Yanmin
2017-01-01
Gene expression in apple roots in response to various stress conditions is a less-explored research subject. Reliable reference genes for normalizing quantitative gene expression data have not been carefully investigated. In this study, the suitability of a set of 15 apple genes were evaluated for their potential use as reliable reference genes. These genes were selected based on their low variance of gene expression in apple root tissues from a recent RNA-seq data set, and a few previously reported apple reference genes for other tissue types. Four methods, Delta Ct, geNorm, NormFinder and BestKeeper, were used to evaluate their stability in apple root tissues of various genotypes and under different experimental conditions. A small panel of stably expressed genes, MDP0000095375, MDP0000147424, MDP0000233640, MDP0000326399 and MDP0000173025 were recommended for normalizing quantitative gene expression data in apple roots under various abiotic or biotic stresses. When the most stable and least stable reference genes were used for data normalization, significant differences were observed on the expression patterns of two target genes, MdLecRLK5 (MDP0000228426, a gene encoding a lectin receptor like kinase) and MdMAPK3 (MDP0000187103, a gene encoding a mitogen-activated protein kinase). Our data also indicated that for those carefully validated reference genes, a single reference gene is sufficient for reliable normalization of the quantitative gene expression. Depending on the experimental conditions, the most suitable reference genes can be specific to the sample of interest for more reliable RT-qPCR data normalization.
Using RNA-seq data to select reference genes for normalizing gene expression in apple roots
Zhou, Zhe; Cong, Peihua; Tian, Yi
2017-01-01
Gene expression in apple roots in response to various stress conditions is a less-explored research subject. Reliable reference genes for normalizing quantitative gene expression data have not been carefully investigated. In this study, the suitability of a set of 15 apple genes were evaluated for their potential use as reliable reference genes. These genes were selected based on their low variance of gene expression in apple root tissues from a recent RNA-seq data set, and a few previously reported apple reference genes for other tissue types. Four methods, Delta Ct, geNorm, NormFinder and BestKeeper, were used to evaluate their stability in apple root tissues of various genotypes and under different experimental conditions. A small panel of stably expressed genes, MDP0000095375, MDP0000147424, MDP0000233640, MDP0000326399 and MDP0000173025 were recommended for normalizing quantitative gene expression data in apple roots under various abiotic or biotic stresses. When the most stable and least stable reference genes were used for data normalization, significant differences were observed on the expression patterns of two target genes, MdLecRLK5 (MDP0000228426, a gene encoding a lectin receptor like kinase) and MdMAPK3 (MDP0000187103, a gene encoding a mitogen-activated protein kinase). Our data also indicated that for those carefully validated reference genes, a single reference gene is sufficient for reliable normalization of the quantitative gene expression. Depending on the experimental conditions, the most suitable reference genes can be specific to the sample of interest for more reliable RT-qPCR data normalization. PMID:28934340
Zhong, Jinshun; Kellogg, Elizabeth A
2015-08-01
• CYCLOIDEA2 (CYC2)-like and RADIALIS (RAD)-like genes are needed for the normal development of corolla bilateral symmetry in Antirrhinum majus L. (snapdragon, Plantaginaceae, Lamiales). However, if and how changes in expression of CYC2-like and RAD-like genes correlate with the origin of corolla bilateral symmetry early in Lamiales remains largely unknown. The asymmetrical expression of CYC2-like and/or RAD-like genes during floral meristem development could be ancestral or derived in Plantaginaceae.• We used in situ RNA localization to examine the expression of CYC2-like and RAD-like genes in two early-diverging Lamiales.• CYC2-like and RAD-like genes are expressed broadly in the floral meristems in early-diverging Lamiales with radially symmetrical corollas, in contrast to their restricted expression in adaxial/lateral regions in core Lamiales. The expression pattern of CYC2-like genes has evolved in stepwise fashion, in that CYC2-like genes are likely expressed briefly in the floral meristem during flower development in sampled Oleaceae; prolonged expression of CYC2-like genes in petals originated in the common ancestor of Tetrachondraceae and core Lamiales, and asymmetrical expression in adaxial/lateral petals appeared later, in the common ancestor of the core Lamiales. Likewise, expression of RAD-like genes in petals appeared in early-diverging Lamiales or earlier; asymmetrical expression in adaxial/lateral petals then appeared in core Lamiales.• These data plus published reports of CYC2-like and RAD-like genes show that asymmetrical expression of these two genes is likely derived and correlates with the origins of corolla bilateral symmetry. © 2015 Botanical Society of America, Inc.
Transient, Inducible, Placenta-Specific Gene Expression in Mice
Fan, Xiujun; Petitt, Matthew; Gamboa, Matthew; Huang, Mei; Dhal, Sabita; Druzin, Maurice L.; Wu, Joseph C.
2012-01-01
Molecular understanding of placental functions and pregnancy disorders is limited by the absence of methods for placenta-specific gene manipulation. Although persistent placenta-specific gene expression has been achieved by lentivirus-based gene delivery methods, developmentally and physiologically important placental genes have highly stage-specific functions, requiring controllable, transient expression systems for functional analysis. Here, we describe an inducible, placenta-specific gene expression system that enables high-level, transient transgene expression and monitoring of gene expression by live bioluminescence imaging in mouse placenta at different stages of pregnancy. We used the third generation tetracycline-responsive tranactivator protein Tet-On 3G, with 10- to 100-fold increased sensitivity to doxycycline (Dox) compared with previous versions, enabling unusually sensitive on-off control of gene expression in vivo. Transgenic mice expressing Tet-On 3G were created using a new integrase-based, site-specific approach, yielding high-level transgene expression driven by a ubiquitous promoter. Blastocysts from these mice were transduced with the Tet-On 3G-response element promoter-driving firefly luciferase using lentivirus-mediated placenta-specific gene delivery and transferred into wild-type pseudopregnant recipients for placenta-specific, Dox-inducible gene expression. Systemic Dox administration at various time points during pregnancy led to transient, placenta-specific firefly luciferase expression as early as d 5 of pregnancy in a Dox dose-dependent manner. This system enables, for the first time, reliable pregnancy stage-specific induction of gene expression in the placenta and live monitoring of gene expression during pregnancy. It will be widely applicable to studies of both placental development and pregnancy, and the site-specific Tet-On G3 mouse will be valuable for studies in a broad range of tissues. PMID:23011919
Analyzing gene expression time-courses based on multi-resolution shape mixture model.
Li, Ying; He, Ye; Zhang, Yu
2016-11-01
Biological processes actually are a dynamic molecular process over time. Time course gene expression experiments provide opportunities to explore patterns of gene expression change over a time and understand the dynamic behavior of gene expression, which is crucial for study on development and progression of biology and disease. Analysis of the gene expression time-course profiles has not been fully exploited so far. It is still a challenge problem. We propose a novel shape-based mixture model clustering method for gene expression time-course profiles to explore the significant gene groups. Based on multi-resolution fractal features and mixture clustering model, we proposed a multi-resolution shape mixture model algorithm. Multi-resolution fractal features is computed by wavelet decomposition, which explore patterns of change over time of gene expression at different resolution. Our proposed multi-resolution shape mixture model algorithm is a probabilistic framework which offers a more natural and robust way of clustering time-course gene expression. We assessed the performance of our proposed algorithm using yeast time-course gene expression profiles compared with several popular clustering methods for gene expression profiles. The grouped genes identified by different methods are evaluated by enrichment analysis of biological pathways and known protein-protein interactions from experiment evidence. The grouped genes identified by our proposed algorithm have more strong biological significance. A novel multi-resolution shape mixture model algorithm based on multi-resolution fractal features is proposed. Our proposed model provides a novel horizons and an alternative tool for visualization and analysis of time-course gene expression profiles. The R and Matlab program is available upon the request. Copyright © 2016 Elsevier Inc. All rights reserved.
Moretti, Stefano; van Leeuwen, Danitsja; Gmuender, Hans; Bonassi, Stefano; van Delft, Joost; Kleinjans, Jos; Patrone, Fioravante; Merlo, Domenico Franco
2008-01-01
Background In gene expression analysis, statistical tests for differential gene expression provide lists of candidate genes having, individually, a sufficiently low p-value. However, the interpretation of each single p-value within complex systems involving several interacting genes is problematic. In parallel, in the last sixty years, game theory has been applied to political and social problems to assess the power of interacting agents in forcing a decision and, more recently, to represent the relevance of genes in response to certain conditions. Results In this paper we introduce a Bootstrap procedure to test the null hypothesis that each gene has the same relevance between two conditions, where the relevance is represented by the Shapley value of a particular coalitional game defined on a microarray data-set. This method, which is called Comparative Analysis of Shapley value (shortly, CASh), is applied to data concerning the gene expression in children differentially exposed to air pollution. The results provided by CASh are compared with the results from a parametric statistical test for testing differential gene expression. Both lists of genes provided by CASh and t-test are informative enough to discriminate exposed subjects on the basis of their gene expression profiles. While many genes are selected in common by CASh and the parametric test, it turns out that the biological interpretation of the differences between these two selections is more interesting, suggesting a different interpretation of the main biological pathways in gene expression regulation for exposed individuals. A simulation study suggests that CASh offers more power than t-test for the detection of differential gene expression variability. Conclusion CASh is successfully applied to gene expression analysis of a data-set where the joint expression behavior of genes may be critical to characterize the expression response to air pollution. We demonstrate a synergistic effect between coalitional games and statistics that resulted in a selection of genes with a potential impact in the regulation of complex pathways. PMID:18764936
Variation-preserving normalization unveils blind spots in gene expression profiling
Roca, Carlos P.; Gomes, Susana I. L.; Amorim, Mónica J. B.; Scott-Fordsmand, Janeck J.
2017-01-01
RNA-Seq and gene expression microarrays provide comprehensive profiles of gene activity, but lack of reproducibility has hindered their application. A key challenge in the data analysis is the normalization of gene expression levels, which is currently performed following the implicit assumption that most genes are not differentially expressed. Here, we present a mathematical approach to normalization that makes no assumption of this sort. We have found that variation in gene expression is much larger than currently believed, and that it can be measured with available assays. Our results also explain, at least partially, the reproducibility problems encountered in transcriptomics studies. We expect that this improvement in detection will help efforts to realize the full potential of gene expression profiling, especially in analyses of cellular processes involving complex modulations of gene expression. PMID:28276435
Wheat differential gene expression induced by different races of Puccinia triticina.
Neugebauer, Kerri A; Bruce, Myron; Todd, Tim; Trick, Harold N; Fellers, John P
2018-01-01
Puccinia triticina, the causal agent of wheat leaf rust, causes significant losses in wheat yield and quality each year worldwide. During leaf rust infection, the host plant recognizes numerous molecules, some of which trigger host defenses. Although P. triticina reproduces clonally, there is still variation within the population due to a high mutation frequency, host specificity, and environmental adaptation. This study explores how wheat responds on a gene expression level to different P. triticina races. Six P. triticina races were inoculated onto a susceptible wheat variety and samples were taken at six days post inoculation, just prior to pustule eruption. RNA sequence data identified 63 wheat genes differentially expressed between the six races. A time course, conducted over the first seven days post inoculation, was used to examine the expression pattern of 63 genes during infection. Forty-seven wheat genes were verified to have differential expression. Three common expression patterns were identified. In addition, two genes were associated with race specific gene expression. Differential expression of an ER molecular chaperone gene was associated with races from two different P. triticina lineages. Also, differential expression in an alanine glyoxylate aminotransferase gene was associated with races with virulence shifts for leaf rust resistance genes.
Tang, Xin; Liu, Huawei; Chen, Quanmei; Wang, Xin; Xiong, Ying; Zhao, Ping
2016-01-01
The solute carrier 6 (SLC6) gene family, initially known as the neurotransmitter transporters, plays vital roles in the regulation of neurotransmitter signaling, nutrient absorption and motor behavior. In this study, a total of 16 candidate genes were identified as SLC6 family gene homologs in the silkworm (Bombyx mori) genome. Spatio-temporal expression patterns of silkworm SLC6 gene transcripts indicated that these genes were highly and specifically expressed in midgut, brain and gonads; moreover, these genes were expressed primarily at the feeding stage or adult stage. Levels of expression for most midgut-specific and midgut-enriched gene transcripts were down-regulated after starvation but up-regulated after re-feeding. In addition, we observed that expression levels of these genes except for BmSLC6-15 and BmGT1 were markedly up-regulated by a juvenile hormone analog. Moreover, brain-enriched genes showed differential expression patterns during wandering and mating processes, suggesting that these genes may be involved in modulating wandering and mating behaviors. Our results improve our understanding of the expression patterns and potential physiological functions of the SLC6 gene family, and provide valuable information for the comprehensive functional analysis of the SLC6 gene family. PMID:27706106
Identification of Reference Genes for Normalizing Quantitative Real-Time PCR in Urechis unicinctus
NASA Astrophysics Data System (ADS)
Bai, Yajiao; Zhou, Di; Wei, Maokai; Xie, Yueyang; Gao, Beibei; Qin, Zhenkui; Zhang, Zhifeng
2018-06-01
The reverse transcription quantitative real-time PCR (RT-qPCR) has become one of the most important techniques of studying gene expression. A set of valid reference genes are essential for the accurate normalization of data. In this study, five candidate genes were analyzed with geNorm, NormFinder, BestKeeper and ΔCt methods to identify the genes stably expressed in echiuran Urechis unicinctus, an important commercial marine benthic worm, under abiotic (sulfide stress) and normal (adult tissues, embryos and larvae at different development stages) conditions. The comprehensive results indicated that the expression of TBP was the most stable at sulfide stress and in developmental process, while the expression of EF- 1- α was the most stable at sulfide stress and in various tissues. TBP and EF- 1- α were recommended as a suitable reference gene combination to accurately normalize the expression of target genes at sulfide stress; and EF- 1- α, TBP and TUB were considered as a potential reference gene combination for normalizing the expression of target genes in different tissues. No suitable gene combination was obtained among these five candidate genes for normalizing the expression of target genes for developmental process of U. unicinctus. Our results provided a valuable support for quantifying gene expression using RT-qPCR in U. unicinctus.
Xu, Yuantao; Wu, Guizhi; Hao, Baohai; Chen, Lingling; Deng, Xiuxin; Xu, Qiang
2015-11-23
With the availability of rapidly increasing number of genome and transcriptome sequences, lineage-specific genes (LSGs) can be identified and characterized. Like other conserved functional genes, LSGs play important roles in biological evolution and functions. Two set of citrus LSGs, 296 citrus-specific genes (CSGs) and 1039 orphan genes specific to sweet orange, were identified by comparative analysis between the sweet orange genome sequences and 41 genomes and 273 transcriptomes. With the two sets of genes, gene structure and gene expression pattern were investigated. On average, both the CSGs and orphan genes have fewer exons, shorter gene length and higher GC content when compared with those evolutionarily conserved genes (ECs). Expression profiling indicated that most of the LSGs expressed in various tissues of sweet orange and some of them exhibited distinct temporal and spatial expression patterns. Particularly, the orphan genes were preferentially expressed in callus, which is an important pluripotent tissue of citrus. Besides, part of the CSGs and orphan genes expressed responsive to abiotic stress, indicating their potential functions during interaction with environment. This study identified and characterized two sets of LSGs in citrus, dissected their sequence features and expression patterns, and provided valuable clues for future functional analysis of the LSGs in sweet orange.
Tang, Xin; Liu, Huawei; Chen, Quanmei; Wang, Xin; Xiong, Ying; Zhao, Ping
2016-10-03
The solute carrier 6 (SLC6) gene family, initially known as the neurotransmitter transporters, plays vital roles in the regulation of neurotransmitter signaling, nutrient absorption and motor behavior. In this study, a total of 16 candidate genes were identified as SLC6 family gene homologs in the silkworm (Bombyx mori) genome. Spatio-temporal expression patterns of silkworm SLC6 gene transcripts indicated that these genes were highly and specifically expressed in midgut, brain and gonads; moreover, these genes were expressed primarily at the feeding stage or adult stage. Levels of expression for most midgut-specific and midgut-enriched gene transcripts were down-regulated after starvation but up-regulated after re-feeding. In addition, we observed that expression levels of these genes except for BmSLC6-15 and BmGT1 were markedly up-regulated by a juvenile hormone analog. Moreover, brain-enriched genes showed differential expression patterns during wandering and mating processes, suggesting that these genes may be involved in modulating wandering and mating behaviors. Our results improve our understanding of the expression patterns and potential physiological functions of the SLC6 gene family, and provide valuable information for the comprehensive functional analysis of the SLC6 gene family.
Expression profiles of urbilaterian genes uniquely shared between honey bee and vertebrates
Matsui, Toshiaki; Yamamoto, Toshiyuki; Wyder, Stefan; Zdobnov, Evgeny M; Kadowaki, Tatsuhiko
2009-01-01
Background Large-scale comparison of metazoan genomes has revealed that a significant fraction of genes of the last common ancestor of Bilateria (Urbilateria) is lost in each animal lineage. This event could be one of the underlying mechanisms involved in generating metazoan diversity. However, the present functions of these ancient genes have not been addressed extensively. To understand the functions and evolutionary mechanisms of such ancient Urbilaterian genes, we carried out comprehensive expression profile analysis of genes shared between vertebrates and honey bees but not with the other sequenced ecdysozoan genomes (honey bee-vertebrate specific, HVS genes) as a model. Results We identified 30 honey bee and 55 mouse HVS genes. Many HVS genes exhibited tissue-selective expression patterns; intriguingly, the expression of 60% of honey bee HVS genes was found to be brain enriched, and 24% of mouse HVS genes were highly expressed in either or both the brain and testis. Moreover, a minimum of 38% of mouse HVS genes demonstrated neuron-enriched expression patterns, and 62% of them exhibited expression in selective brain areas, particularly the forebrain and cerebellum. Furthermore, gene ontology (GO) analysis of HVS genes predicted that 35% of genes are associated with DNA transcription and RNA processing. Conclusion These results suggest that HVS genes include genes that are biased towards expression in the brain and gonads. They also demonstrate that at least some of Urbilaterian genes retained in the specific animal lineage may be selectively maintained to support the species-specific phenotypes. PMID:19138430
Expression profiles of urbilaterian genes uniquely shared between honey bee and vertebrates.
Matsui, Toshiaki; Yamamoto, Toshiyuki; Wyder, Stefan; Zdobnov, Evgeny M; Kadowaki, Tatsuhiko
2009-01-12
Large-scale comparison of metazoan genomes has revealed that a significant fraction of genes of the last common ancestor of Bilateria (Urbilateria) is lost in each animal lineage. This event could be one of the underlying mechanisms involved in generating metazoan diversity. However, the present functions of these ancient genes have not been addressed extensively. To understand the functions and evolutionary mechanisms of such ancient Urbilaterian genes, we carried out comprehensive expression profile analysis of genes shared between vertebrates and honey bees but not with the other sequenced ecdysozoan genomes (honey bee-vertebrate specific, HVS genes) as a model. We identified 30 honey bee and 55 mouse HVS genes. Many HVS genes exhibited tissue-selective expression patterns; intriguingly, the expression of 60% of honey bee HVS genes was found to be brain enriched, and 24% of mouse HVS genes were highly expressed in either or both the brain and testis. Moreover, a minimum of 38% of mouse HVS genes demonstrated neuron-enriched expression patterns, and 62% of them exhibited expression in selective brain areas, particularly the forebrain and cerebellum. Furthermore, gene ontology (GO) analysis of HVS genes predicted that 35% of genes are associated with DNA transcription and RNA processing. These results suggest that HVS genes include genes that are biased towards expression in the brain and gonads. They also demonstrate that at least some of Urbilaterian genes retained in the specific animal lineage may be selectively maintained to support the species-specific phenotypes.
Huang, Ruili; Wallqvist, Anders; Covell, David G
2006-03-01
We have analyzed the level of gene coregulation, using gene expression patterns measured across the National Cancer Institute's 60 tumor cell panels (NCI(60)), in the context of predefined pathways or functional categories annotated by KEGG (Kyoto Encyclopedia of Genes and Genomes), BioCarta, and GO (Gene Ontology). Statistical methods were used to evaluate the level of gene expression coherence (coordinated expression) by comparing intra- and interpathway gene-gene correlations. Our results show that gene expression in pathways, or groups of functionally related genes, has a significantly higher level of coherence than that of a randomly selected set of genes. Transcriptional-level gene regulation appears to be on a "need to be" basis, such that pathways comprising genes encoding closely interacting proteins and pathways responsible for vital cellular processes or processes that are related to growth or proliferation, specifically in cancer cells, such as those engaged in genetic information processing, cell cycle, energy metabolism, and nucleotide metabolism, tend to be more modular (lower degree of gene sharing) and to have genes significantly more coherently expressed than most signaling and regular metabolic pathways. Hierarchical clustering of pathways based on their differential gene expression in the NCI(60) further revealed interesting interpathway communications or interactions indicative of a higher level of pathway regulation. The knowledge of the nature of gene expression regulation and biological pathways can be applied to understanding the mechanism by which small drug molecules interfere with biological systems.
Taka, Hitomi; Asano, Shin-ichiro; Matsuura, Yoshiharu; Bando, Hisanori
2015-01-01
To infect their hosts, DNA viruses must successfully initiate the expression of viral genes that control subsequent viral gene expression and manipulate the host environment. Viral genes that are immediately expressed upon infection play critical roles in the early infection process. In this study, we investigated the expression and regulation of five canonical regulatory immediate-early (IE) genes of Autographa californica multicapsid nucleopolyhedrovirus: ie0, ie1, ie2, me53, and pe38. A systematic transient gene-expression analysis revealed that these IE genes are generally transactivators, suggesting the existence of a highly interactive regulatory network. A genetic analysis using gene knockout viruses demonstrated that the expression of these IE genes was tolerant to the single deletions of activator IE genes in the early stage of infection. A network graph analysis on the regulatory relationships observed in the transient expression analysis suggested that the robustness of IE gene expression is due to the organization of the IE gene regulatory network and how each IE gene is activated. However, some regulatory relationships detected by the genetic analysis were contradictory to those observed in the transient expression analysis, especially for IE0-mediated regulation. Statistical modeling, combined with genetic analysis using knockout alleles for ie0 and ie1, showed that the repressor function of ie0 was due to the interaction between ie0 and ie1, not ie0 itself. Taken together, these systematic approaches provided insight into the topology and nature of the IE gene regulatory network. PMID:25816136
Kosinová, Lucie; Cahová, Monika; Fábryová, Eva; Týcová, Irena; Koblas, Tomáš; Leontovyč, Ivan; Saudek, František; Kříž, Jan
2016-01-01
The use of RT-qPCR provides a powerful tool for gene expression studies; however, the proper interpretation of the obtained data is crucially dependent on accurate normalization based on stable reference genes. Recently, strong evidence has been shown indicating that the expression of many commonly used reference genes may vary significantly due to diverse experimental conditions. The isolation of pancreatic islets is a complicated procedure which creates severe mechanical and metabolic stress leading possibly to cellular damage and alteration of gene expression. Despite of this, freshly isolated islets frequently serve as a control in various gene expression and intervention studies. The aim of our study was to determine expression of 16 candidate reference genes and one gene of interest (F3) in isolated rat pancreatic islets during short-term cultivation in order to find a suitable endogenous control for gene expression studies. We compared the expression stability of the most commonly used reference genes and evaluated the reliability of relative and absolute quantification using RT-qPCR during 0-120 hrs after isolation. In freshly isolated islets, the expression of all tested genes was markedly depressed and it increased several times throughout the first 48 hrs of cultivation. We observed significant variability among samples at 0 and 24 hrs but substantial stabilization from 48 hrs onwards. During the first 48 hrs, relative quantification failed to reflect the real changes in respective mRNA concentrations while in the interval 48-120 hrs, the relative expression generally paralleled the results determined by absolute quantification. Thus, our data call into question the suitability of relative quantification for gene expression analysis in pancreatic islets during the first 48 hrs of cultivation, as the results may be significantly affected by unstable expression of reference genes. However, this method could provide reliable information from 48 hrs onwards.
Zhang, X; Zhu, J; Zhang, K; Liu, T; Zhang, Z
2016-12-30
This study was aimed at investigating the expression of brain-derived neurotrophic factor (BDNF) in mesenchymal stem cells (MSCs) modified with recombinant lentivirus bearing BDNF gene. Lentivirus vectors bearing BDNF gene were constructed. MSCs were isolated from rats and cultured. The lentiviral vectors containing BDNF gene were transfected into the MSCs, and BDNF gene and protein expressions were monitored with enhanced green fluorescent protein (EGFP). RT-PCR and Western blot were used to measure gene and protein expressions, respectibvely in MSCs, MSCs-EGFP and MSCs-EGFP-BDNF groups. Green fluorescence assay confirmed successful transfection of BDNF gene recombinant lentivirus into MSCs. RT-PCR and Western blot revealed that BDNF gene and protein expressions in the MSCs-EGFP-BDNF group were significantly higher than that in MSCs group and MSCs-EGFP group. There were no statistically significant differences in gene expression between MSCs and MSCs-EGFP groups. MSCs can over-express BDNF when transfected with recombinant lentivirus bearing BDNF gene.
Accelerated recruitment of new brain development genes into the human genome.
Zhang, Yong E; Landback, Patrick; Vibranovski, Maria D; Long, Manyuan
2011-10-01
How the human brain evolved has attracted tremendous interests for decades. Motivated by case studies of primate-specific genes implicated in brain function, we examined whether or not the young genes, those emerging genome-wide in the lineages specific to the primates or rodents, showed distinct spatial and temporal patterns of transcription compared to old genes, which had existed before primate and rodent split. We found consistent patterns across different sources of expression data: there is a significantly larger proportion of young genes expressed in the fetal or infant brain of humans than in mouse, and more young genes in humans have expression biased toward early developing brains than old genes. Most of these young genes are expressed in the evolutionarily newest part of human brain, the neocortex. Remarkably, we also identified a number of human-specific genes which are expressed in the prefrontal cortex, which is implicated in complex cognitive behaviors. The young genes upregulated in the early developing human brain play diverse functional roles, with a significant enrichment of transcription factors. Genes originating from different mechanisms show a similar expression bias in the developing brain. Moreover, we found that the young genes upregulated in early brain development showed rapid protein evolution compared to old genes also expressed in the fetal brain. Strikingly, genes expressed in the neocortex arose soon after its morphological origin. These four lines of evidence suggest that positive selection for brain function may have contributed to the origination of young genes expressed in the developing brain. These data demonstrate a striking recruitment of new genes into the early development of the human brain.
Zhu, Wuzheng; Lin, Yaqiu; Liao, Honghai; Wang, Yong
2015-01-01
The identification of suitable reference genes is critical for obtaining reliable results from gene expression studies using quantitative real-time PCR (qPCR) because the expression of reference genes may vary considerably under different experimental conditions. In most cases, however, commonly used reference genes are employed in data normalization without proper validation, which may lead to incorrect data interpretation. Here, we aim to select a set of optimal reference genes for the accurate normalization of gene expression associated with intramuscular fat (IMF) deposition during development. In the present study, eight reference genes (PPIB, HMBS, RPLP0, B2M, YWHAZ, 18S, GAPDH and ACTB) were evaluated by three different algorithms (geNorm, NormFinder and BestKeeper) in two types of muscle tissues (longissimus dorsi muscle and biceps femoris muscle) across different developmental stages. All three algorithms gave similar results. PPIB and HMBS were identified as the most stable reference genes, while the commonly used reference genes 18S and GAPDH were the most variably expressed, with expression varying dramatically across different developmental stages. Furthermore, to reveal the crucial role of appropriate reference genes in obtaining a reliable result, analysis of PPARG expression was performed by normalization to the most and the least stable reference genes. The relative expression levels of PPARG normalized to the most stable reference genes greatly differed from those normalized to the least stable one. Therefore, evaluation of reference genes must be performed for a given experimental condition before the reference genes are used. PPIB and HMBS are the optimal reference genes for analysis of gene expression associated with IMF deposition in skeletal muscle during development.
Cheaib, Miriam; Dehghani Amirabad, Azim; Nordström, Karl J. V.; Schulz, Marcel H.; Simon, Martin
2015-01-01
Phenotypic variation of a single genotype is achieved by alterations in gene expression patterns. Regulation of such alterations depends on their time scale, where short-time adaptations differ from permanently established gene expression patterns maintained by epigenetic mechanisms. In the ciliate Paramecium, serotypes were described for an epigenetically controlled gene expression pattern of an individual multigene family. Paradoxically, individual serotypes can be triggered in Paramecium by alternating environments but are then stabilized by epigenetic mechanisms, thus raising the question to which extend their expression follows environmental stimuli. To characterize environmental adaptation in the context of epigenetically controlled serotype expression, we used RNA-seq to characterize transcriptomes of serotype pure cultures. The resulting vegetative transcriptome resource is first analysed for genes involved in the adaptive response to the altered environment. Secondly, we identified groups of genes that do not follow the adaptive response but show co-regulation with the epigenetically controlled serotype system, suggesting that their gene expression pattern becomes manifested by similar mechanisms. In our experimental set-up, serotype expression and the entire group of co-regulated genes were stable among environmental changes and only heat-shock genes altered expression of these gene groups. The data suggest that the maintenance of these gene expression patterns in a lineage represents epigenetically controlled robustness counteracting short-time adaptation processes. PMID:26231545
Bastarrachea, Raúl A.; Gallegos-Cabriales, Esther C.; Nava-González, Edna J.; Haack, Karin; Voruganti, V. Saroja; Charlesworth, Jac; Laviada-Molina, Hugo A.; Veloz-Garza, Rosa A.; Cardenas-Villarreal, Velia Margarita; Valdovinos-Chavez, Salvador B.; Gomez-Aguilar, Patricia; Meléndez, Guillermo; López-Alvarenga, Juan Carlos; Göring, Harald H. H.; Cole, Shelley A.; Blangero, John; Comuzzie, Anthony G.; Kent, Jack W.
2012-01-01
Whole-transcriptome expression profiling provides novel phenotypes for analysis of complex traits. Gene expression measurements reflect quantitative variation in transcript-specific messenger RNA levels and represent phenotypes lying close to the action of genes. Understanding the genetic basis of gene expression will provide insight into the processes that connect genotype to clinically significant traits representing a central tenet of system biology. Synchronous in vivo expression profiles of lymphocytes, muscle, and subcutaneous fat were obtained from healthy Mexican men. Most genes were expressed at detectable levels in multiple tissues, and RNA levels were correlated between tissue types. A subset of transcripts with high reliability of expression across tissues (estimated by intraclass correlation coefficients) was enriched for cis-regulated genes, suggesting that proximal sequence variants may influence expression similarly in different cellular environments. This integrative global gene expression profiling approach is proving extremely useful for identifying genes and pathways that contribute to complex clinical traits. Clearly, the coincidence of clinical trait quantitative trait loci and expression quantitative trait loci can help in the prioritization of positional candidate genes. Such data will be crucial for the formal integration of positional and transcriptomic information characterized as genetical genomics. PMID:22797999
Das, Shibsankar; Roymondal, Uttam; Sahoo, Satyabrata
2009-08-15
Based on the hypothesis that highly expressed genes are often characterized by strong compositional bias in terms of codon usage, there are a number of measures currently in use that quantify codon usage bias in genes, and hence provide numerical indices to predict the expression levels of genes. With the recent advent of expression measure from the score of the relative codon usage bias (RCBS), we have explicitly tested the performance of this numerical measure to predict the gene expression level and illustrate this with an analysis of Yeast genomes. In contradiction with previous other studies, we observe a weak correlations between GC content and RCBS, but a selective pressure on the codon preferences in highly expressed genes. The assertion that the expression of a given gene depends on the score of relative codon usage bias (RCBS) is supported by the data. We further observe a strong correlation between RCBS and protein length indicating natural selection in favour of shorter genes to be expressed at higher level. We also attempt a statistical analysis to assess the strength of relative codon bias in genes as a guide to their likely expression level, suggesting a decrease of the informational entropy in the highly expressed genes.
Geib, Elena; Brock, Matthias
2017-01-01
Fungi are treasure chests for yet unexplored natural products. However, exploitation of their real potential remains difficult as a significant proportion of biosynthetic gene clusters appears silent under standard laboratory conditions. Therefore, elucidation of novel products requires gene activation or heterologous expression. For heterologous gene expression, we previously developed an expression platform in Aspergillus niger that is based on the transcriptional regulator TerR and its target promoter P terA . In this study, we extended this system by regulating expression of terR by the doxycycline inducible Tet-on system. Reporter genes cloned under the control of the target promoter P terA remained silent in the absence of doxycycline, but were strongly expressed when doxycycline was added. Reporter quantification revealed that the coupled system results in about five times higher expression rates compared to gene expression under direct control of the Tet-on system. As production of secondary metabolites generally requires the expression of several biosynthetic genes, the suitability of the self-cleaving viral peptide sequence P2A was tested in this optimised expression system. P2A allowed polycistronic expression of genes required for Asp-melanin formation in combination with the gene coding for the red fluorescent protein tdTomato. Gene expression and Asp-melanin formation was prevented in the absence of doxycycline and strongly induced by addition of doxycycline. Fluorescence studies confirmed the correct subcellular localisation of the respective enzymes. This tightly regulated but strongly inducible expression system enables high level production of secondary metabolites most likely even those with toxic potential. Furthermore, this system is compatible with polycistronic gene expression and, thus, suitable for the discovery of novel natural products.
Faster-X Evolution of Gene Expression in Drosophila
Meisel, Richard P.; Malone, John H.; Clark, Andrew G.
2012-01-01
DNA sequences on X chromosomes often have a faster rate of evolution when compared to similar loci on the autosomes, and well articulated models provide reasons why the X-linked mode of inheritance may be responsible for the faster evolution of X-linked genes. We analyzed microarray and RNA–seq data collected from females and males of six Drosophila species and found that the expression levels of X-linked genes also diverge faster than autosomal gene expression, similar to the “faster-X” effect often observed in DNA sequence evolution. Faster-X evolution of gene expression was recently described in mammals, but it was limited to the evolutionary lineages shortly following the creation of the therian X chromosome. In contrast, we detect a faster-X effect along both deep lineages and those on the tips of the Drosophila phylogeny. In Drosophila males, the dosage compensation complex (DCC) binds the X chromosome, creating a unique chromatin environment that promotes the hyper-expression of X-linked genes. We find that DCC binding, chromatin environment, and breadth of expression are all predictive of the rate of gene expression evolution. In addition, estimates of the intraspecific genetic polymorphism underlying gene expression variation suggest that X-linked expression levels are not under relaxed selective constraints. We therefore hypothesize that the faster-X evolution of gene expression is the result of the adaptive fixation of beneficial mutations at X-linked loci that change expression level in cis. This adaptive faster-X evolution of gene expression is limited to genes that are narrowly expressed in a single tissue, suggesting that relaxed pleiotropic constraints permit a faster response to selection. Finally, we present a conceptional framework to explain faster-X expression evolution, and we use this framework to examine differences in the faster-X effect between Drosophila and mammals. PMID:23071459
Huang, Jianyan; Zhao, Xiaobo; Weng, Xiaoyu; Wang, Lei; Xie, Weibo
2012-01-01
Background The B-box (BBX) -containing proteins are a class of zinc finger proteins that contain one or two B-box domains and play important roles in plant growth and development. The Arabidopsis BBX gene family has recently been re-identified and renamed. However, there has not been a genome-wide survey of the rice BBX (OsBBX) gene family until now. Methodology/Principal Findings In this study, we identified 30 rice BBX genes through a comprehensive bioinformatics analysis. Each gene was assigned a uniform nomenclature. We described the chromosome localizations, gene structures, protein domains, phylogenetic relationship, whole life-cycle expression profile and diurnal expression patterns of the OsBBX family members. Based on the phylogeny and domain constitution, the OsBBX gene family was classified into five subfamilies. The gene duplication analysis revealed that only chromosomal segmental duplication contributed to the expansion of the OsBBX gene family. The expression profile of the OsBBX genes was analyzed by Affymetrix GeneChip microarrays throughout the entire life-cycle of rice cultivar Zhenshan 97 (ZS97). In addition, microarray analysis was performed to obtain the expression patterns of these genes under light/dark conditions and after three phytohormone treatments. This analysis revealed that the expression patterns of the OsBBX genes could be classified into eight groups. Eight genes were regulated under the light/dark treatments, and eleven genes showed differential expression under at least one phytohormone treatment. Moreover, we verified the diurnal expression of the OsBBX genes using the data obtained from the Diurnal Project and qPCR analysis, and the results indicated that many of these genes had a diurnal expression pattern. Conclusions/Significance The combination of the genome-wide identification and the expression and diurnal analysis of the OsBBX gene family should facilitate additional functional studies of the OsBBX genes. PMID:23118960
Khani, Afsaneh; Popp, Nicole; Kreikemeyer, Bernd; Patenge, Nadja
2018-01-01
Regulatory RNAs play important roles in the control of bacterial gene expression. In this study, we investigated gene expression regulation by a putative glycine riboswitch located in the 5'-untranslated region of a sodium:alanine symporter family (SAF) protein gene in the group A Streptococcus pyogenes serotype M49 strain 591. Glycine-dependent gene expression mediated by riboswitch activity was studied using a luciferase reporter gene system. Maximal reporter gene expression was observed in the absence of glycine and in the presence of low glycine concentrations. Differences in glycine-dependent gene expression were not based on differential promoter activity. Expression of the SAF protein gene and the downstream putative cation efflux protein gene was investigated in wild-type bacteria by RT-qPCR transcript analyses. During growth in the presence of glycine (≥1 mM), expression of the genes were downregulated. Northern blot analyses revealed premature transcription termination in the presence of high glycine concentrations. Growth in the presence of 0.1 mM glycine led to the production of a full-length transcript. Furthermore, stability of the SAF protein gene transcript was drastically reduced in the presence of glycine. We conclude that the putative glycine riboswitch in S. pyogenes serotype M49 strain 591 represses expression of the SAF protein gene and the downstream putative cation efflux protein gene in the presence of high glycine concentrations. Sequence and secondary structure comparisons indicated that the streptococcal riboswitch belongs to the class of tandem aptamer glycine riboswitches.
Tsai, Pei-Chien; Breen, Matthew
2012-09-01
To identify suitable reference genes for normalization of real-time quantitative PCR (RT-qPCR) assay data for common tumors of dogs. Malignant lymph node (n = 8), appendicular osteosarcoma (9), and histiocytic sarcoma (12) samples and control samples of various nonneoplastic canine tissues. Array-based comparative genomic hybridization (aCGH) data were used to guide selection of 9 candidate reference genes. Expression stability of candidate reference genes and 4 commonly used reference genes was determined for tumor samples with RT-qPCR assays and 3 software programs. LOC611555 was the candidate reference gene with the highest expression stability among the 3 tumor types. Of the commonly used reference genes, expression stability of HPRT was high in histiocytic sarcoma samples, and expression stability of Ubi and RPL32 was high in osteosarcoma samples. Some of the candidate reference genes had higher expression stability than did the commonly used reference genes. Data for constitutively expressed genes with high expression stability are required for normalization of RT-qPCR assay results. Without such data, accurate quantification of gene expression in tumor tissue samples is difficult. Results of the present study indicated LOC611555 may be a useful RT-qPCR assay reference gene for multiple tissue types. Some commonly used reference genes may be suitable for normalization of gene expression data for tumors of dogs, such as lymphomas, osteosarcomas, or histiocytic sarcomas.
Daytime soybean transcriptome fluctuations during water deficit stress.
Rodrigues, Fabiana Aparecida; Fuganti-Pagliarini, Renata; Marcolino-Gomes, Juliana; Nakayama, Thiago Jonas; Molinari, Hugo Bruno Correa; Lobo, Francisco Pereira; Harmon, Frank G; Nepomuceno, Alexandre Lima
2015-07-07
Since drought can seriously affect plant growth and development and little is known about how the oscillations of gene expression during the drought stress-acclimation response in soybean is affected, we applied Illumina technology to sequence 36 cDNA libraries synthesized from control and drought-stressed soybean plants to verify the dynamic changes in gene expression during a 24-h time course. Cycling variables were measured from the expression data to determine the putative circadian rhythm regulation of gene expression. We identified 4866 genes differentially expressed in soybean plants in response to water deficit. Of these genes, 3715 were differentially expressed during the light period, from which approximately 9.55% were observed in both light and darkness. We found 887 genes that were either up- or down-regulated in different periods of the day. Of 54,175 predicted soybean genes, 35.52% exhibited expression oscillations in a 24 h period. This number increased to 39.23% when plants were submitted to water deficit. Major differences in gene expression were observed in the control plants from late day (ZT16) until predawn (ZT20) periods, indicating that gene expression oscillates during the course of 24 h in normal development. Under water deficit, dissimilarity increased in all time-periods, indicating that the applied stress influenced gene expression. Such differences in plants under stress were primarily observed in ZT0 (early morning) to ZT8 (late day) and also from ZT4 to ZT12. Stress-related pathways were triggered in response to water deficit primarily during midday, when more genes were up-regulated compared to early morning. Additionally, genes known to be involved in secondary metabolism and hormone signaling were also expressed in the dark period. Gene expression networks can be dynamically shaped to acclimate plant metabolism under environmental stressful conditions. We have identified putative cycling genes that are expressed in soybean leaves under normal developmental conditions and genes whose expression oscillates under conditions of water deficit. These results suggest that time of day, as well as light and temperature oscillations that occur considerably affect the regulation of water deficit stress response in soybean plants.
Versluis, Dennis; D’Andrea, Marco Maria; Ramiro Garcia, Javier; Leimena, Milkha M.; Hugenholtz, Floor; Zhang, Jing; Öztürk, Başak; Nylund, Lotta; Sipkema, Detmer; Schaik, Willem van; de Vos, Willem M.; Kleerebezem, Michiel; Smidt, Hauke; Passel, Mark W.J. van
2015-01-01
Antibiotic resistance genes are found in a broad range of ecological niches associated with complex microbiota. Here we investigated if resistance genes are not only present, but also transcribed under natural conditions. Furthermore, we examined the potential for antibiotic production by assessing the expression of associated secondary metabolite biosynthesis gene clusters. Metatranscriptome datasets from intestinal microbiota of four human adults, one human infant, 15 mice and six pigs, of which only the latter have received antibiotics prior to the study, as well as from sea bacterioplankton, a marine sponge, forest soil and sub-seafloor sediment, were investigated. We found that resistance genes are expressed in all studied ecological niches, albeit with niche-specific differences in relative expression levels and diversity of transcripts. For example, in mice and human infant microbiota predominantly tetracycline resistance genes were expressed while in human adult microbiota the spectrum of expressed genes was more diverse, and also included β-lactam, aminoglycoside and macrolide resistance genes. Resistance gene expression could result from the presence of natural antibiotics in the environment, although we could not link it to expression of corresponding secondary metabolites biosynthesis clusters. Alternatively, resistance gene expression could be constitutive, or these genes serve alternative roles besides antibiotic resistance. PMID:26153129
Lyu, Yuping; Wu, Xiaoqing; Ren, He; Zhou, Fangyuan; Zhou, Hongzi; Zhang, Xinjian; Yang, Hetong
2017-10-01
An appropriate reference gene is required to get reliable results from gene expression analysis by quantitative real-time reverse transcription PCR (qRT-PCR). In order to identify stable and reliable reference genes in Trichoderma afroharzianum under oxalic acid (OA) stress, six commonly used housekeeping genes, i.e., elongation factor 1, ubiquitin, ubiquitin-conjugating enzyme, glyceraldehyde-3-phosphate dehydrogenase, α-tubulin, actin, from the effective biocontrol isolate T. afroharzianum strain LTR-2 were tested for their expression during growth in liquid culture amended with OA. Four in silico programs (comparative ΔCt, NormFinder, geNorm and BestKeeper) were used to evaluate the expression stabilities of six candidate reference genes. The elongation factor 1 gene EF-1 was identified as the most stably expressed reference gene, and was used as the normalizer to quantify the expression level of the oxalate decarboxylase coding gene OXDC in T. afroharzianum strain LTR-2 under OA stress. The result showed that the expression of OXDC was significantly up-regulated as expected. This study provides an effective method to quantify expression changes of target genes in T. afroharzianum under OA stress. Copyright © 2017 Elsevier B.V. All rights reserved.
Adaptation of video game UVW mapping to 3D visualization of gene expression patterns
NASA Astrophysics Data System (ADS)
Vize, Peter D.; Gerth, Victor E.
2007-01-01
Analysis of gene expression patterns within an organism plays a critical role in associating genes with biological processes in both health and disease. During embryonic development the analysis and comparison of different gene expression patterns allows biologists to identify candidate genes that may regulate the formation of normal tissues and organs and to search for genes associated with congenital diseases. No two individual embryos, or organs, are exactly the same shape or size so comparing spatial gene expression in one embryo to that in another is difficult. We will present our efforts in comparing gene expression data collected using both volumetric and projection approaches. Volumetric data is highly accurate but difficult to process and compare. Projection methods use UV mapping to align texture maps to standardized spatial frameworks. This approach is less accurate but is very rapid and requires very little processing. We have built a database of over 180 3D models depicting gene expression patterns mapped onto the surface of spline based embryo models. Gene expression data in different models can easily be compared to determine common regions of activity. Visualization software, both Java and OpenGL optimized for viewing 3D gene expression data will also be demonstrated.
Mazzarelli, Joan M; Brestelli, John; Gorski, Regina K; Liu, Junmin; Manduchi, Elisabetta; Pinney, Deborah F; Schug, Jonathan; White, Peter; Kaestner, Klaus H; Stoeckert, Christian J
2007-01-01
EPConDB (http://www.cbil.upenn.edu/EPConDB) is a public web site that supports research in diabetes, pancreatic development and beta-cell function by providing information about genes expressed in cells of the pancreas. EPConDB displays expression profiles for individual genes and information about transcripts, promoter elements and transcription factor binding sites. Gene expression results are obtained from studies examining tissue expression, pancreatic development and growth, differentiation of insulin-producing cells, islet or beta-cell injury, and genetic models of impaired beta-cell function. The expression datasets are derived using different microarray platforms, including the BCBC PancChips and Affymetrix gene expression arrays. Other datasets include semi-quantitative RT-PCR and MPSS expression studies. For selected microarray studies, lists of differentially expressed genes, derived from PaGE analysis, are displayed on the site. EPConDB provides database queries and tools to examine the relationship between a gene, its transcriptional regulation, protein function and expression in pancreatic tissues.
Skorodumova, L O; Muraev, A A; Zakharova, E S; Shepelev, M V; Korobko, I V; Zaderenko, I A; Ivanov, S Iu; Gnuchev, N V; Georgiev, G P; Larin, S S
2012-01-01
Cancer-testis (CT) antigens are normally expressed mostly in human germ cells, there is also an aberrant expression in some tumor cells. This expression profile makes them potential tumor growth biomarkers and a promising target for tumor immunotherapy. Specificity of CT genes expression in oral malignant and potentially malignant diseases, e.g. oral leukoplakia, is not yet studied. Data on CT genes expression profile in leukoplakia would allow developing new diagnostic methods with potential value for immunotherapy and prophylaxis of leukoplakia malignization. In our study we compared CT genes expression in normal oral mucosa, oral leukoplakia and oral squamous cell carcinoma. We are the first to describe CT genes expression in oral leukoplakia without dysplasia. This findings make impossible differential diagnosis of oral leukoplakia and squamous cell carcinoma on the basis of CT genes expression. The prognostic value of CT genes expression is still unclear, therefore the longitudinal studies are necessary.
Identification and resolution of artifacts in the interpretation of imprinted gene expression.
Proudhon, Charlotte; Bourc'his, Déborah
2010-12-01
Genomic imprinting refers to genes that are epigenetically programmed in the germline to express exclusively or preferentially one allele in a parent-of-origin manner. Expression-based genome-wide screening for the identification of imprinted genes has failed to uncover a significant number of new imprinted genes, probably because of the high tissue- and developmental-stage specificity of imprinted gene expression. A very large number of technical and biological artifacts can also lead to the erroneous evidence of imprinted gene expression. In this article, we focus on three common sources of potential confounding effects: (i) random monoallelic expression in monoclonal cell populations, (ii) genetically determined monoallelic expression and (iii) contamination or infiltration of embryonic tissues with maternal material. This last situation specifically applies to genes that occur as maternally expressed in the placenta. Beside the use of reciprocal crosses that are instrumental to confirm the parental specificity of expression, we provide additional methods for the detection and elimination of these situations that can be misinterpreted as cases of imprinted expression.
Quinn, Michael C J; Wilson, Daniel J; Young, Fiona; Dempsey, Adam A; Arcand, Suzanna L; Birch, Ashley H; Wojnarowicz, Paulina M; Provencher, Diane; Mes-Masson, Anne-Marie; Englert, David; Tonin, Patricia N
2009-07-06
As gene expression signatures may serve as biomarkers, there is a need to develop technologies based on mRNA expression patterns that are adaptable for translational research. Xceed Molecular has recently developed a Ziplex technology, that can assay for gene expression of a discrete number of genes as a focused array. The present study has evaluated the reproducibility of the Ziplex system as applied to ovarian cancer research of genes shown to exhibit distinct expression profiles initially assessed by Affymetrix GeneChip analyses. The new chemiluminescence-based Ziplex gene expression array technology was evaluated for the expression of 93 genes selected based on their Affymetrix GeneChip profiles as applied to ovarian cancer research. Probe design was based on the Affymetrix target sequence that favors the 3' UTR of transcripts in order to maximize reproducibility across platforms. Gene expression analysis was performed using the Ziplex Automated Workstation. Statistical analyses were performed to evaluate reproducibility of both the magnitude of expression and differences between normal and tumor samples by correlation analyses, fold change differences and statistical significance testing. Expressions of 82 of 93 (88.2%) genes were highly correlated (p < 0.01) in a comparison of the two platforms. Overall, 75 of 93 (80.6%) genes exhibited consistent results in normal versus tumor tissue comparisons for both platforms (p < 0.001). The fold change differences were concordant for 87 of 93 (94%) genes, where there was agreement between the platforms regarding statistical significance for 71 (76%) of 87 genes. There was a strong agreement between the two platforms as shown by comparisons of log2 fold differences of gene expression between tumor versus normal samples (R = 0.93) and by Bland-Altman analysis, where greater than 90% of expression values fell within the 95% limits of agreement. Overall concordance of gene expression patterns based on correlations, statistical significance between tumor and normal ovary data, and fold changes was consistent between the Ziplex and Affymetrix platforms. The reproducibility and ease-of-use of the technology suggests that the Ziplex array is a suitable platform for translational research.
Fann, Monchou; Godlove, Jason M.; Catalfamo, Marta; Wood, William H.; Chrest, Francis J.; Chun, Nicholas; Granger, Larry; Wersto, Robert; Madara, Karen; Becker, Kevin; Henkart, Pierre A.; Weng, Nan-ping
2006-01-01
To understand the molecular basis for the rapid and robust memory T-cell responses, we examined gene expression and chromatin modification by histone H3 lysine 9 (H3K9) acetylation in resting and activated human naive and memory CD8+ T cells. We found that, although overall gene expression patterns were similar, a number of genes are differentially expressed in either memory or naive cells in their resting and activated states. To further elucidate the basis for differential gene expression, we assessed the role of histone H3K9 acetylation in differential gene expression. Strikingly, higher H3K9 acetylation levels were detected in resting memory cells, prior to their activation, for those genes that were differentially expressed following activation, indicating that hyperacetylation of histone H3K9 may play a role in selective and rapid gene expression of memory CD8+ T cells. Consistent with this model, we showed that inducing high levels of H3K9 acetylation resulted in an increased expression in naive cells of those genes that are normally expressed differentially in memory cells. Together, these findings suggest that differential gene expression mediated at least in part by histone H3K9 hyperacetylation may be responsible for the rapid and robust memory CD8+ T-cell response. PMID:16868257
Sabeh, Michael; Duceppe, Marc-Olivier; St-Arnaud, Marc; Mimee, Benjamin
2018-01-01
Relative gene expression analyses by qRT-PCR (quantitative reverse transcription PCR) require an internal control to normalize the expression data of genes of interest and eliminate the unwanted variation introduced by sample preparation. A perfect reference gene should have a constant expression level under all the experimental conditions. However, the same few housekeeping genes selected from the literature or successfully used in previous unrelated experiments are often routinely used in new conditions without proper validation of their stability across treatments. The advent of RNA-Seq and the availability of public datasets for numerous organisms are opening the way to finding better reference genes for expression studies. Globodera rostochiensis is a plant-parasitic nematode that is particularly yield-limiting for potato. The aim of our study was to identify a reliable set of reference genes to study G. rostochiensis gene expression. Gene expression levels from an RNA-Seq database were used to identify putative reference genes and were validated with qRT-PCR analysis. Three genes, GR, PMP-3, and aaRS, were found to be very stable within the experimental conditions of this study and are proposed as reference genes for future work.
Reynier, Frédéric; Petit, Fabien; Paye, Malick; Turrel-Davin, Fanny; Imbert, Pierre-Emmanuel; Hot, Arnaud; Mougin, Bruno; Miossec, Pierre
2011-01-01
The analysis of gene expression data shows that many genes display similarity in their expression profiles suggesting some co-regulation. Here, we investigated the co-expression patterns in gene expression data and proposed a correlation-based research method to stratify individuals. Using blood from rheumatoid arthritis (RA) patients, we investigated the gene expression profiles from whole blood using Affymetrix microarray technology. Co-expressed genes were analyzed by a biclustering method, followed by gene ontology analysis of the relevant biclusters. Taking the type I interferon (IFN) pathway as an example, a classification algorithm was developed from the 102 RA patients and extended to 10 systemic lupus erythematosus (SLE) patients and 100 healthy volunteers to further characterize individuals. We developed a correlation-based algorithm referred to as Classification Algorithm Based on a Biological Signature (CABS), an alternative to other approaches focused specifically on the expression levels. This algorithm applied to the expression of 35 IFN-related genes showed that the IFN signature presented a heterogeneous expression between RA, SLE and healthy controls which could reflect the level of global IFN signature activation. Moreover, the monitoring of the IFN-related genes during the anti-TNF treatment identified changes in type I IFN gene activity induced in RA patients. In conclusion, we have proposed an original method to analyze genes sharing an expression pattern and a biological function showing that the activation levels of a biological signature could be characterized by its overall state of correlation.
Higa, M; Ando, H; Urano, A
2001-06-01
Fushi tarazu factor-1 (FTZ-F1) and Pit-1 are major pituitary transcription factors, controlling expression of genes coding for gonadotropin (GTH) subunits and growth hormone/prolactin/somatolactin family hormone, respectively. As a first step to investigate physiological factors regulating gene expression of these transcription factors, we determined their mRNA levels in the pituitaries of chum salmon (Oncorhynchus keta) at different stages of sexual maturation. FTZ-F1 gene expression was increased in males at the stage before spermiation, where the levels of GTH alpha and IIbeta subunit mRNAs were elevated. Pit-1 mRNA showed maximum levels at the final stage of sexual maturation in both sexes, when expression of somatolactin gene peaked. To clarify whether gonadotropin-releasing hormone (GnRH) is involved in these increases in FTZ-F1 and Pit-1 gene expression, we examined effects of GnRH analog (GnRHa) administration on their gene expression in maturing sockeye salmon (Oncorhynchus nerka). GnRHa stimulated Pit-1 gene expression in females only, but failed to stimulate FTZ-F1 gene expression in both sexes. The up-regulated expression of FTZ-F1 and Pit-1 genes at the pre-spawning stages suggest that the two transcription factors have roles in sexual maturation of salmonids. Physiological factors regulating gene expression of FTZ-F1 and Pit-1 are discussed in this review.
Identifying potential maternal genes of Bombyx mori using digital gene expression profiling
Xu, Pingzhen
2018-01-01
Maternal genes present in mature oocytes play a crucial role in the early development of silkworm. Although maternal genes have been widely studied in many other species, there has been limited research in Bombyx mori. High-throughput next generation sequencing provides a practical method for gene discovery on a genome-wide level. Herein, a transcriptome study was used to identify maternal-related genes from silkworm eggs. Unfertilized eggs from five different stages of early development were used to detect the changing situation of gene expression. The expressed genes showed different patterns over time. Seventy-six maternal genes were annotated according to homology analysis with Drosophila melanogaster. More than half of the differentially expressed maternal genes fell into four expression patterns, while the expression patterns showed a downward trend over time. The functional annotation of these material genes was mainly related to transcription factor activity, growth factor activity, nucleic acid binding, RNA binding, ATP binding, and ion binding. Additionally, twenty-two gene clusters including maternal genes were identified from 18 scaffolds. Altogether, we plotted a profile for the maternal genes of Bombyx mori using a digital gene expression profiling method. This will provide the basis for maternal-specific signature research and improve the understanding of the early development of silkworm. PMID:29462160
Nichols, Charles D; Garcia, Efrain E; Sanders-Bush, Elaine
2003-03-17
Lysergic acid diethylamide (LSD) is a psychoactive drug that transiently alters human perception, behavior, and mood at extremely low doses. Certain aspects of the behavior elicited by acute doses of LSD closely resemble symptoms of mental disorders such as schizophrenia. Characterizing gene expression profiles after LSD will be important for understanding how it alters behavior, and will lead to novel insights into disorders, such as schizophrenia, whose behavioral symptoms resemble the temporary effects of hallucinogenic drugs. We previously identified a small collection of genes within the rat prefrontal cortex that respond to LSD. Many of the products of these genes are involved in the process of synaptic plasticity. In the current report, we present a detailed analysis of the expression of these genes within the brain using RNase protection analysis. We find that the gene response to LSD is quite dynamic. The expression of some genes increases rapidly and decreases rapidly, while other genes change more gradually. Dose-response studies show two classes of expression; gene expression maximally stimulated at lower doses, versus gene expression that continues to rise at the higher doses. The role of the 5-HT(1A) and 5-HT(2A) receptor in mediating the increases in gene expression was examined in a series of experiments using receptor specific antagonists. Most expression increases were due to activation of the 5-HT(2A) receptor, however expression of two genes had neither a 5-HT(1A) nor a 5-HT(2A) receptor component.
Guo, Chun Yu; Yin, Hui Jun; Jiang, Yue Rong; Xue, Mei; Zhang, Lu; Shi, Da Zhuo
2008-06-18
To construct the differential genes expressed profile in the ischemic myocardium tissue reduced from acute myocardial infarction(AMI), and determine the biological functions of target genes. AMI model was generated by ligation of the left anterior descending coronary artery in Wistar rats. Total RNA was extracted from the normal and the ischemic heart tissues under the ligation point 7 days after the operation. Differential gene expression profiles of the two samples were constructed using Long Serial Analysis of Gene Expression(LongSAGE). Real time fluorescence quantitative PCR was used to verify gene expression profile and to identify the expression of 2 functional genes. The activities of enzymes from functional genes were determined by histochemistry. A total of 15,966 tags were screened from the normal and the ischemic LongSAGE maps. The similarities of the sequences were compared using the BLAST algebra in NCBI and 7,665 novel tags were found. In the ischemic tissue 142 genes were significantly changed compared with those in the normal tissue (P<0.05). These differentially expressed genes represented the proteins which might play important roles in the pathways of oxidation and phosphorylation, ATP synthesis and glycolysis. The partial genes identified by LongSAGE were confirmed using real time fluorescence quantitative PCR. Two genes related to energy metabolism, COX5a and ATP5e, were screened and quantified. Expression of two functional genes down-regulated at their mRNA levels and the activities of correlative functional enzymes decreased compared with those in the normal tissue. AMI causes a series of changes in gene expression, in which the abnormal expression of genes related to energy metabolism could be one of the molecular mechanisms of AMI. The intervention of the expressions of COX5a and ATP5e may be a new target for AMI therapy.
Demidenko, Natalia V.; Logacheva, Maria D.; Penin, Aleksey A.
2011-01-01
Quantitative reverse transcription PCR (qRT-PCR) is one of the most precise and widely used methods of gene expression analysis. A necessary prerequisite of exact and reliable data is the accurate choice of reference genes. We studied the expression stability of potential reference genes in common buckwheat (Fagopyrum esculentum) in order to find the optimal reference for gene expression analysis in this economically important crop. Recently sequenced buckwheat floral transcriptome was used as source of sequence information. Expression stability of eight candidate reference genes was assessed in different plant structures (leaves and inflorescences at two stages of development and fruits). These genes are the orthologs of Arabidopsis genes identified as stable in a genome-wide survey gene of expression stability and a traditionally used housekeeping gene GAPDH. Three software applications – geNorm, NormFinder and BestKeeper - were used to estimate expression stability and provided congruent results. The orthologs of AT4G33380 (expressed protein of unknown function, Expressed1), AT2G28390 (SAND family protein, SAND) and AT5G46630 (clathrin adapter complex subunit family protein, CACS) are revealed as the most stable. We recommend using the combination of Expressed1, SAND and CACS for the normalization of gene expression data in studies on buckwheat using qRT-PCR. These genes are listed among five the most stably expressed in Arabidopsis that emphasizes utility of the studies on model plants as a framework for other species. PMID:21589908
A comparison of honeybee (Apis mellifera) queen, worker and drone larvae by RNA-Seq.
He, Xu-Jiang; Jiang, Wu-Jun; Zhou, Mi; Barron, Andrew B; Zeng, Zhi-Jiang
2017-11-06
Honeybees (Apis mellifera) have haplodiploid sex determination: males develop from unfertilized eggs and females develop from fertilized ones. The differences in larval food also determine the development of females. Here we compared the total somatic gene expression profiles of 2-day and 4-day-old drone, queen and worker larvae by RNA-Seq. The results from a co-expression network analysis on all expressed genes showed that 2-day-old drone and worker larvae were closer in gene expression profiles than 2-day-old queen larvae. This indicated that for young larvae (2-day-old) environmental factors such as larval diet have a greater effect on gene expression profiles than ploidy or sex determination. Drones had the most distinct gene expression profiles at the 4-day larval stage, suggesting that haploidy, or sex dramatically affects the gene expression of honeybee larvae. Drone larvae showed fewer differences in gene expression profiles at the 2-day and 4-day time points than the worker and queen larval comparisons (598 against 1190 and 1181), suggesting a different pattern of gene expression regulation during the larval development of haploid males compared to diploid females. This study indicates that early in development the queen caste has the most distinct gene expression profile, perhaps reflecting the very rapid growth and morphological specialization of this caste compared to workers and drones. Later in development the haploid male drones have the most distinct gene expression profile, perhaps reflecting the influence of ploidy or sex determination on gene expression. © 2017 Institute of Zoology, Chinese Academy of Sciences.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hermsen, Sanne A.B., E-mail: Sanne.Hermsen@rivm.nl; Department of Toxicogenomics, Maastricht University, P.O. Box 616, 6200 MD, Maastricht; Institute for Risk Assessment Sciences
2013-10-01
The zebrafish embryotoxicity test is a promising alternative assay for developmental toxicity. Classically, morphological assessment of the embryos is applied to evaluate the effects of compound exposure. However, by applying differential gene expression analysis the sensitivity and predictability of the test may be increased. For defining gene expression signatures of developmental toxicity, we explored the possibility of using gene expression signatures of compound exposures based on commonly expressed individual genes as well as based on regulated gene pathways. Four developmental toxic compounds were tested in concentration-response design, caffeine, carbamazepine, retinoic acid and valproic acid, and two non-embryotoxic compounds, D-mannitol andmore » saccharin, were included. With transcriptomic analyses we were able to identify commonly expressed genes, which were mostly development related, after exposure to the embryotoxicants. We also identified gene pathways regulated by the embryotoxicants, suggestive of their modes of action. Furthermore, whereas pathways may be regulated by all compounds, individual gene expression within these pathways can differ for each compound. Overall, the present study suggests that the use of individual gene expression signatures as well as pathway regulation may be useful starting points for defining gene biomarkers for predicting embryotoxicity. - Highlights: • The zebrafish embryotoxicity test in combination with transcriptomics was used. • We explored two approaches of defining gene biomarkers for developmental toxicity. • Four compounds in concentration-response design were tested. • We identified commonly expressed individual genes as well as regulated gene pathways. • Both approaches seem suitable starting points for defining gene biomarkers.« less
Liu, Na; Enkemann, Steven A; Liang, Ping; Hersmus, Remko; Zanazzi, Claudia; Huang, Junjiu; Wu, Chao; Chen, Zhisheng; Looijenga, Leendert H J; Keefe, David L; Liu, Lin
2010-12-01
Mammalian parthenogenesis could not survive but aborted during mid-gestation, presumably because of lack of paternal gene expression. To understand the molecular mechanisms underlying the failure of parthenogenesis at early stages of development, we performed global gene expression profiling and functional analysis of parthenogenetic blastocysts in comparison with those of blastocysts from normally fertilized embryos. Parthenogenetic blastocysts exhibited changes in the expression of 749 genes, of which 214 had lower expression and 535 showed higher expressions than fertilized embryos using a minimal 1.8-fold change as a cutoff. Genes important for placenta development were decreased in their expression in parthenote blastocysts. Some maternally expressed genes were up-regulated and paternal-related genes were down-regulated. Moreover, aberrantly increased Wnt signaling and reduced mitogen-activated protein kinase (MAPK) signaling were associated with early parthenogenesis. The protein level of extracellular signal-regulated kinase 2 (ERK2) was low in parthenogenetic blastocysts compared with that of fertilized blastocysts 120 h after fertilization. 6-Bromoindirubin-3'-oxime, a specific glycogen synthase kinase-3 (GSK-3) inhibitor, significantly decreased embryo hatching. The expression of several imprinted genes was altered in parthenote blastocysts. Gene expression also linked reduced expression of Xist to activation of X chromosome. Our findings suggest that failed X inactivation, aberrant imprinting, decreased ERK/MAPK signaling and possibly elevated Wnt signaling, and reduced expression of genes for placental development collectively may contribute to abnormal placenta formation and failed fetal development in parthenogenetic embryos.
Chamber Specific Gene Expression Landscape of the Zebrafish Heart
Singh, Angom Ramcharan; Sivadas, Ambily; Sabharwal, Ankit; Vellarikal, Shamsudheen Karuthedath; Jayarajan, Rijith; Verma, Ankit; Kapoor, Shruti; Joshi, Adita; Scaria, Vinod; Sivasubbu, Sridhar
2016-01-01
The organization of structure and function of cardiac chambers in vertebrates is defined by chamber-specific distinct gene expression. This peculiarity and uniqueness of the genetic signatures demonstrates functional resolution attributed to the different chambers of the heart. Altered expression of the cardiac chamber genes can lead to individual chamber related dysfunctions and disease patho-physiologies. Information on transcriptional repertoire of cardiac compartments is important to understand the spectrum of chamber specific anomalies. We have carried out a genome wide transcriptome profiling study of the three cardiac chambers in the zebrafish heart using RNA sequencing. We have captured the gene expression patterns of 13,396 protein coding genes in the three cardiac chambers—atrium, ventricle and bulbus arteriosus. Of these, 7,260 known protein coding genes are highly expressed (≥10 FPKM) in the zebrafish heart. Thus, this study represents nearly an all-inclusive information on the zebrafish cardiac transcriptome. In this study, a total of 96 differentially expressed genes across the three cardiac chambers in zebrafish were identified. The atrium, ventricle and bulbus arteriosus displayed 20, 32 and 44 uniquely expressing genes respectively. We validated the expression of predicted chamber-restricted genes using independent semi-quantitative and qualitative experimental techniques. In addition, we identified 23 putative novel protein coding genes that are specifically restricted to the ventricle and not in the atrium or bulbus arteriosus. In our knowledge, these 23 novel genes have either not been investigated in detail or are sparsely studied. The transcriptome identified in this study includes 68 differentially expressing zebrafish cardiac chamber genes that have a human ortholog. We also carried out spatiotemporal gene expression profiling of the 96 differentially expressed genes throughout the three cardiac chambers in 11 developmental stages and 6 tissue types of zebrafish. We hypothesize that clustering the differentially expressed genes with both known and unknown functions will deliver detailed insights on fundamental gene networks that are important for the development and specification of the cardiac chambers. It is also postulated that this transcriptome atlas will help utilize zebrafish in a better way as a model for studying cardiac development and to explore functional role of gene networks in cardiac disease pathogenesis. PMID:26815362
VH gene expression and regulation in the mutant Alicia rabbit. Rescue of VHa2 allotype expression.
Chen, H T; Alexander, C B; Young-Cooper, G O; Mage, R G
1993-04-01
Rabbits of the Alicia strain, derived from rabbits expressing the VHa2 allotype, have a mutation in the H chain locus that has a cis effect upon the expression of VHa2 and VHa- genes. A small deletion at the most J-proximal (3') end of the VH locus leads to low expression of all the genes on the entire chromosome in heterozygous ali mutants and altered relative expression of VH genes in homozygotes. To study VH gene expression and regulation, we used the polymerase chain reaction to amplify the VH genes expressed in spleens of young and adult wild-type and mutant Alicia rabbits. The cDNA from reverse transcription of splenic mRNA was amplified and polymerase chain reaction libraries were constructed and screened with oligonucleotides from framework regions 1 and 3, as well as JH. Thirty-three VH-positive clones were sequenced and analyzed. We found that in mutant Alicia rabbits, products of the first functional VH gene (VH4a2), (or VH4a2-like genes) were expressed in 2- to 8-wk-olds. Expression of both the VHx and VHy types of VHa- genes was also elevated but the relative proportions of VHx and VHy, especially VHx, decreased whereas the relative levels of expression of VH4a2 or VH4a2-like genes increased with age. Our results suggest that the appearance of sequences resembling that of the VH1a2, which is deleted in the mutant ali rabbits, could be caused by alterations of the sequences of the rearranged VH4a2 genes by gene conversions and/or rearrangement of upstream VH1a2-like genes later in development.
Shi, Rui; Wang, Jack P; Lin, Ying-Chung; Li, Quanzi; Sun, Ying-Hsuan; Chen, Hao; Sederoff, Ronald R; Chiang, Vincent L
2017-05-01
Co-expression networks based on transcriptomes of Populus trichocarpa major tissues and specific cell types suggest redundant control of cell wall component biosynthetic genes by transcription factors in wood formation. We analyzed the transcriptomes of five tissues (xylem, phloem, shoot, leaf, and root) and two wood forming cell types (fiber and vessel) of Populus trichocarpa to assemble gene co-expression subnetworks associated with wood formation. We identified 165 transcription factors (TFs) that showed xylem-, fiber-, and vessel-specific expression. Of these 165 TFs, 101 co-expressed (correlation coefficient, r > 0.7) with the 45 secondary cell wall cellulose, hemicellulose, and lignin biosynthetic genes. Each cell wall component gene co-expressed on average with 34 TFs, suggesting redundant control of the cell wall component gene expression. Co-expression analysis showed that the 101 TFs and the 45 cell wall component genes each has two distinct groups (groups 1 and 2), based on their co-expression patterns. The group 1 TFs (44 members) are predominantly xylem and fiber specific, and are all highly positively co-expressed with the group 1 cell wall component genes (30 members), suggesting their roles as major wood formation regulators. Group 1 TFs include a lateral organ boundary domain gene (LBD) that has the highest number of positively correlated cell wall component genes (36) and TFs (47). The group 2 TFs have 57 members, including 14 vessel-specific TFs, and are generally less correlated with the cell wall component genes. An exception is a vessel-specific basic helix-loop-helix (bHLH) gene that negatively correlates with 20 cell wall component genes, and may function as a key transcriptional suppressor. The co-expression networks revealed here suggest a well-structured transcriptional homeostasis for cell wall component biosynthesis during wood formation.
NASA Astrophysics Data System (ADS)
Meng, Xianhong; Shi, Xiaoli; Kong, Jie; Luan, Sheng; Luo, Kun; Cao, Baoxiang; Liu, Ning; Lu, Xia; Li, Xupeng; Deng, Kangyu; Cao, Jiawang; Zhang, Yingxue; Zhang, Hengheng
2017-10-01
To elucidate the molecular response of shrimp hepatopancreas to white spot syndrome virus (WSSV) infection, microarray was applied to investigate the differentially expressed genes in the hepatopancreas of `Huanghai No. 2' ( Fenneropenaeus chinensis). A total of 59137 unigenes were designed onto a custom-made 60K Agilent chip. After infection, the gene expression profiles in the hepatopancreas of the shrimp with a lower viral load at early (48-96 h), peak (168-192 h) and late (264-288 h) infection phases were analyzed. Of 18704 differentially expressed genes, 6412 were annotated. In total, 5453 differentially expressed genes (1916 annotated) expressed at all three phases, and most of the annotated were either up- or down-regulated continuously. These genes function diversely in, for example, immune response, cytoskeletal system, signal transduction, stress resistance, protein synthesis and processing, metabolism among others. Some of the immune-related genes, including antilipopolysaccharide factor, Kazal-type proteinase inhibitor, C-type lectin and serine protease encoding genes, were up-regulated after WSSV infection. These genes have been reported to be involved in the anti-WSSV responses. The expression of genes related to the cytoskeletal system, including β-actin and myosin but without tubulin genes, were down-regulated after WSSV infection. Astakine was found for the first time in the WSSV-infected F. chinensis. To further confirm the expression of differentially expressed genes, quantitative real-time PCR was performed to test the expression of eight randomly selected genes and verified the reliability and accuracy of the microarray expression analysis. The data will provide valuable information to understanding the immune mechanism of shrimp's response to WSSV.
Kia, Azadeh; Yata, Teerapong; Hajji, Nabil; Hajitou, Amin
2013-10-22
Bacteriophage (phage), viruses that infect bacteria only, have become promising vectors for targeted systemic delivery of genes to cancer, although, with poor efficiency. We previously designed an improved phage vector by incorporating cis genetic elements of adeno-associated virus (AAV). This novel AAV/phage hybrid (AAVP) specifically targeted systemic delivery of therapeutic genes into tumors. To advance the AAVP vector, we recently introduced the stress-inducible Grp78 tumor specific promoter and found that this dual tumor-targeted AAVP provides persistent gene expression, over time, in cancer cells compared to silenced gene expression from the CMV promoter in the parental AAVP. Herein, we investigated the effect of histone deacetylation and DNA methylation on AAVP-mediated gene expression in cancer cells and explored the effect of cell confluence state on AAVP gene expression efficacy. Using a combination of AAVP expressing the GFP reporter gene, flow cytometry, inhibitors of histone deacetylation, and DNA methylation, we have demonstrated that histone deacetylation and DNA methylation are associated with silencing of gene expression from the CMV promoter in the parental AAVP. Importantly, inhibitors of histone deacetylases boost gene expression in cancer cells from the Grp78 promoter in the dual tumor-targeted AAVP. However, cell confluence had no effect on AAVP-guided gene expression. Our findings prove that combination of histone deacetylase inhibitor drugs with the Grp78 promoter is an effective approach to improve AAVP-mediated gene expression in cancer cells and should be considered for AAVP-based clinical cancer gene therapy.
Minchenko, O H; Tsymbal, D O; Minchenko, D O; Riabovol, O O; Ratushna, O O; Karbovskyi, L L
2016-01-01
We have studied the effect of inhibition of IRE1 (inositol requiring enzyme 1), which is a central mediator of endoplasmic reticulum stress and a controller of cell proliferation and tumor growth, on hypoxic regulation of the expression of different proliferation related genes in U87 glioma cells. It was shown that hypoxia leads to up-regulation of the expression of IL13RA2, CD24, ING1, ING2, ENDOG, and POLG genes and to down-regulation – of KRT18, TRAPPC3, TSFM, and MTIF2 genes at the mRNA level in control glioma cells. Changes for ING1 and CD24 genes were more significant. At the same time, inhibition of IRE1 modifies the effect of hypoxia on the expression of all studied genes. In particular, it increases sensitivity to hypoxia of the expression of IL13RA2, TRAPPC3, ENDOG, and PLOG genes and suppresses the effect of hypoxia on the expression of ING1 gene. Additionally, it eliminates hypoxic regulation of KRT18, CD24, ING2, TSFM, and MTIF2 genes expressions and introduces sensitivity to hypoxia of the expression of BET1 gene in glioma cells. The present study demonstrates that hypoxia, which often contributes to tumor growth, affects the expression of almost all studied genes. Additionally, inhibition of IRE1 can both enhance and suppress the hypoxic regulation of these gene expressions in a gene specific manner and thus possibly contributes to slower glioma growth, but several aspects of this regulation must be further clarified.
Yao, Yuan-Qing; Lee, Kai-Fai; Xu, Jia-Seng; Ho, Pak-Chung; Yeung, Shu-Biu
2007-09-01
To investigate the effect of embryotrophic factors (ETF) from human oviductal cells on gene expression of mouse early developmental embryos and discuss the role of fallopian tube in early development of embryos. ETF was isolated from conditioned medium of human oviductal cell line by sequential liquid chromatographic systems. Mouse embryos were treated by ETF in vitro. Using differential display RT-PCR, the gene expression of embryos treated by ETF was compared with embryos without ETF treatment. The differentially expressed genes were separated, re-amplified, cloned and sequenced. Gene expression profiles of embryos with ETF treatment was different from embryos without this treatment. Eight differentially expressed genes were cloned and sequenced. These genes functioned in RNA degradation, synthesis, splicing, protein trafficking, cellular differentiation and embryo development. Embryotrophic factors from human oviductal cells affect gene expression of early developmental embryos. The human oviductal cells play wide roles in early developmental stages of embryos.
Gao, Mengmeng; Liu, Yaping; Ma, Xiao; Shuai, Qin; Gai, Junyi; Li, Yan
2017-01-01
Quantitative reverse transcription polymerase chain reaction (qRT-PCR) is widely used to analyze the relative gene expression level, however, the accuracy of qRT-PCR is greatly affected by the stability of reference genes, which is tissue- and environment- dependent. Therefore, choosing the most stable reference gene in a specific tissue and environment is critical to interpret gene expression patterns. Aluminum (Al), cadmium (Cd), and heat stresses are three important abiotic factors limiting soybean (Glycine max) production in southern China. To identify the suitable reference genes for normalizing the expression levels of target genes by qRT-PCR in soybean response to Al, Cd and heat stresses, we studied the expression stability of ten commonly used housekeeping genes in soybean roots and leaves under these three abiotic stresses, using five approaches, BestKeeper, Delta Ct, geNorm, NormFinder and RefFinder. We found TUA4 is the most stable reference gene in soybean root tips under Al stress. Under Cd stress, Fbox and UKN2 are the most stable reference genes in roots and leaves, respectively, while 60S is the most suitable reference gene when analyzing both roots and leaves together. For heat stress, TUA4 and UKN2 are the most stable housekeeping genes in roots and leaves, respectively, and UKN2 is the best reference gene for analysis of roots and leaves together. To validate the reference genes, we quantified the relative expression levels of six target genes that were involved in soybean response to Al, Cd or heat stresses, respectively. The expression patterns of these target genes differed between using the most and least stable reference genes, suggesting the selection of a suitable reference gene is critical for gene expression studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silva Meirelles, Lindolfo da, E-mail: lindolfomeirelles@gmail.com; Laboratory for Stem Cells and Tissue Engineering, PPGBioSaúde, Lutheran University of Brazil, Av. Farroupilha 8001, 92425-900 Canoas, RS; Deus Wagatsuma, Virgínia Mara de
Pericytes (PCs) are a subset of perivascular cells that can give rise to mesenchymal stromal cells (MSCs) when culture-expanded, and are postulated to give rise to MSC-like cells during tissue repair in vivo. PCs have been suggested to behave as stem cells (SCs) in situ in animal models, although evidence for this role in humans is lacking. Here, we analyzed the transcriptomes of highly purified, non-cultured adipose tissue (AT)-derived PCs (ATPCs) to detect gene expression changes that occur as they acquire MSC characteristics in vitro, and evaluated the hypothesis that human ATPCs exhibit a gene expression profile compatible with anmore » AT SC phenotype. The results showed ATPCs are non-proliferative and express genes characteristic not only of PCs, but also of AT stem/progenitor cells. Additional analyses defined a gene expression signature for ATPCs, and revealed putative novel ATPC markers. Almost all AT stem/progenitor cell genes differentially expressed by ATPCs were not expressed by ATMSCs or culture-expanded ATPCs. Genes expressed by ATMSCs but not by ATPCs were also identified. These findings strengthen the hypothesis that PCs are SCs in vascularized tissues, highlight gene expression changes they undergo as they assume an MSC phenotype, and provide new insights into PC biology. - Highlights: • Non-cultured adipose tissue-derived human pericytes (ncATPCs) exhibit a distinctive gene expression signature. • ncATPCs express key adipose tissue stem cell genes previously described in vivo in mice. • ncATPCs express message for anti-proliferative and antiangiogenic molecules. • Most ncATPC-specific transcripts are absent in culture-expanded pericytes or ATMSCs • Gene expression changes ncATPCs undergo as they acquire a cultured ATMSC phenotype are pointed out.« less
[Construction of rAAV2-GPIIb/IIIa vector and test of its expression and function in vitro].
Wang, Kai; Peng, Jian-Qiang; Chen, Fang-Ping; Wu, Xiao-Bin
2006-04-01
This study was aimed to explore the possibility of rAAV2 vector-mediating gene therapy for Glanzmann' s thrombasthenia. The rAAV2-GPIIb/IIIa vector was constructed. The GPIIb/IIIa gene expression in mammal cell were examined by different methods, such as: detection of mRNA expression in BHK-21 cells after 24 hours of infection (MOI = 1 x 10(5) v.g/cell) was performed by RT-PCR; the relation between MOI and quantity of GPII6/IIIa gene expression was detected by FACS after 48 hours of infection; GPIIb/IIIa protein expression in BHK-21 cells after 48 hours of infection (MOI = 10(5) v x g/cell) was assayed by Western blot, GPIIb/IIIa protein expression on cell surface was detected by immunofluorescence, and the biological function of expressing product was determined by PAC-1 conjunct experiments. The results showed that GPIIb/IIIa gene expression in mRNA level could be detected in BHK-21 cells after 24 hours of infection at MOI = 1 x 10(5) v x g/cell and the GPIIb/IIIa gene expression in protein level could be detected in BHK-21 cells after 48 hours of infection at MOI = 1 x 10(5) v x g/cell. In certain range, quantity of GPIIb/IIIa gene expression increased with MOI, but overdose of MOI decreased quantity of GPIIb/IIIa gene expression. Activated product of GPIIb/IIIa gene expression could combined with PAC-I, and possesed normal biological function. In conclusion, rAAV2 vactor can effectively mediate GPIIb and GPIIIa gene expressing in mammal cells, and the products of these genes exhibit biological function. This result may provide a basis for application of rAAV2 vector in Glanzmann's thrombasthenia gene therapy in furture.
Positive Selection Underlies Faster-Z Evolution of Gene Expression in Birds
Dean, Rebecca; Harrison, Peter W.; Wright, Alison E.; Zimmer, Fabian; Mank, Judith E.
2015-01-01
The elevated rate of evolution for genes on sex chromosomes compared with autosomes (Fast-X or Fast-Z evolution) can result either from positive selection in the heterogametic sex or from nonadaptive consequences of reduced relative effective population size. Recent work in birds suggests that Fast-Z of coding sequence is primarily due to relaxed purifying selection resulting from reduced relative effective population size. However, gene sequence and gene expression are often subject to distinct evolutionary pressures; therefore, we tested for Fast-Z in gene expression using next-generation RNA-sequencing data from multiple avian species. Similar to studies of Fast-Z in coding sequence, we recover clear signatures of Fast-Z in gene expression; however, in contrast to coding sequence, our data indicate that Fast-Z in expression is due to positive selection acting primarily in females. In the soma, where gene expression is highly correlated between the sexes, we detected Fast-Z in both sexes, although at a higher rate in females, suggesting that many positively selected expression changes in females are also expressed in males. In the gonad, where intersexual correlations in expression are much lower, we detected Fast-Z for female gene expression, but crucially, not males. This suggests that a large amount of expression variation is sex-specific in its effects within the gonad. Taken together, our results indicate that Fast-Z evolution of gene expression is the product of positive selection acting on recessive beneficial alleles in the heterogametic sex. More broadly, our analysis suggests that the adaptive potential of Z chromosome gene expression may be much greater than that of gene sequence, results which have important implications for the role of sex chromosomes in speciation and sexual selection. PMID:26067773
Sex-Biased Gene Expression and Sexual Conflict throughout Development
Ingleby, Fiona C.; Flis, Ilona; Morrow, Edward H.
2015-01-01
Sex-biased gene expression is likely to account for most sexually dimorphic traits because males and females share much of their genome. When fitness optima differ between sexes for a shared trait, sexual dimorphism can allow each sex to express their optimum trait phenotype, and in this way, the evolution of sex-biased gene expression is one mechanism that could help to resolve intralocus sexual conflict. Genome-wide patterns of sex-biased gene expression have been identified in a number of studies, which we review here. However, very little is known about how sex-biased gene expression relates to sex-specific fitness and about how sex-biased gene expression and conflict vary throughout development or across different genotypes, populations, and environments. We discuss the importance of these neglected areas of research and use data from a small-scale experiment on sex-specific expression of genes throughout development to highlight potentially interesting avenues for future research. PMID:25376837
Caracausi, Maria; Piovesan, Allison; Antonaros, Francesca; Strippoli, Pierluigi; Vitale, Lorenza; Pelleri, Maria Chiara
2017-09-01
The ideal reference, or control, gene for the study of gene expression in a given organism should be expressed at a medium‑high level for easy detection, should be expressed at a constant/stable level throughout different cell types and within the same cell type undergoing different treatments, and should maintain these features through as many different tissues of the organism. From a biological point of view, these theoretical requirements of an ideal reference gene appear to be best suited to housekeeping (HK) genes. Recent advancements in the quality and completeness of human expression microarray data and in their statistical analysis may provide new clues toward the quantitative standardization of human gene expression studies in biology and medicine, both cross‑ and within‑tissue. The systematic approach used by the present study is based on the Transcriptome Mapper tool and exploits the automated reassignment of probes to corresponding genes, intra‑ and inter‑sample normalization, elaboration and representation of gene expression values in linear form within an indexed and searchable database with a graphical interface recording quantitative levels of expression, expression variability and cross‑tissue width of expression for more than 31,000 transcripts. The present study conducted a meta‑analysis of a pool of 646 expression profile data sets from 54 different human tissues and identified actin γ 1 as the HK gene that best fits the combination of all the traditional criteria to be used as a reference gene for general use; two ribosomal protein genes, RPS18 and RPS27, and one aquaporin gene, POM121 transmembrane nucleporin C, were also identified. The present study provided a list of tissue‑ and organ‑specific genes that may be most suited for the following individual tissues/organs: Adipose tissue, bone marrow, brain, heart, kidney, liver, lung, ovary, skeletal muscle and testis; and also provides in these cases a representative, quantitative portrait of the relative, typical gene‑expression profile in the form of searchable database tables.
Automated Discovery of Functional Generality of Human Gene Expression Programs
Gerber, Georg K; Dowell, Robin D; Jaakkola, Tommi S; Gifford, David K
2007-01-01
An important research problem in computational biology is the identification of expression programs, sets of co-expressed genes orchestrating normal or pathological processes, and the characterization of the functional breadth of these programs. The use of human expression data compendia for discovery of such programs presents several challenges including cellular inhomogeneity within samples, genetic and environmental variation across samples, uncertainty in the numbers of programs and sample populations, and temporal behavior. We developed GeneProgram, a new unsupervised computational framework based on Hierarchical Dirichlet Processes that addresses each of the above challenges. GeneProgram uses expression data to simultaneously organize tissues into groups and genes into overlapping programs with consistent temporal behavior, to produce maps of expression programs, which are sorted by generality scores that exploit the automatically learned groupings. Using synthetic and real gene expression data, we showed that GeneProgram outperformed several popular expression analysis methods. We applied GeneProgram to a compendium of 62 short time-series gene expression datasets exploring the responses of human cells to infectious agents and immune-modulating molecules. GeneProgram produced a map of 104 expression programs, a substantial number of which were significantly enriched for genes involved in key signaling pathways and/or bound by NF-κB transcription factors in genome-wide experiments. Further, GeneProgram discovered expression programs that appear to implicate surprising signaling pathways or receptor types in the response to infection, including Wnt signaling and neurotransmitter receptors. We believe the discovered map of expression programs involved in the response to infection will be useful for guiding future biological experiments; genes from programs with low generality scores might serve as new drug targets that exhibit minimal “cross-talk,” and genes from high generality programs may maintain common physiological responses that go awry in disease states. Further, our method is multipurpose, and can be applied readily to novel compendia of biological data. PMID:17696603
Identification of genes expressed in the hermaphrodite germ line of C. elegans using SAGE
Wang, Xin; Zhao, Yongjun; Wong, Kim; Ehlers, Peter; Kohara, Yuji; Jones, Steven J; Marra, Marco A; Holt, Robert A; Moerman, Donald G; Hansen, Dave
2009-01-01
Background Germ cells must progress through elaborate developmental stages from an undifferentiated germ cell to a fully differentiated gamete. Some of these stages include exiting mitosis and entering meiosis, progressing through the various stages of meiotic prophase, adopting either a male (sperm) or female (oocyte) fate, and completing meiosis. Additionally, many of the factors needed to drive embryogenesis are synthesized in the germ line. To increase our understanding of the genes that might be necessary for the formation and function of the germ line, we have constructed a SAGE library from hand dissected C. elegans hermaphrodite gonads. Results We found that 4699 genes, roughly 21% of all known C. elegans genes, are expressed in the adult hermaphrodite germ line. Ribosomal genes are highly expressed in the germ line; roughly four fold above their expression levels in the soma. We further found that 1063 of the germline-expressed genes have enriched expression in the germ line as compared to the soma. A comparison of these 1063 germline-enriched genes with a similar list of genes prepared using microarrays revealed an overlap of 460 genes, mutually reinforcing the two lists. Additionally, we identified 603 germline-enriched genes, supported by in situ expression data, which were not previously identified. We also found >4 fold enrichment for RNA binding proteins in the germ line as compared to the soma. Conclusion Using multiple technological platforms provides a more complete picture of global gene expression patterns. Genes involved in RNA metabolism are expressed at a significantly higher level in the germ line than the soma, suggesting a stronger reliance on RNA metabolism for control of the expression of genes in the germ line. Additionally, the number and expression level of germ line expressed genes on the X chromosome is lower than expected based on a random distribution. PMID:19426519
Wang, Tao; Huang, Dongya; Chen, Baoyu; Mao, Nini; Qiao, Yushan; Ji, Muxiang
2018-03-01
Polyploidization always induces a series of changes in genome, transcriptome and epigenetics, of which changes in gene expression are the immediate causes of genotype alterations of polyploid plants. In our previous study on strawberry polyploidization, genes related to photosynthesis were found to undergo changes in gene expression and DNA methylation. Therefore, we chose 11 genes that were closely related to plant photosynthesis and analysed their expression during strawberry hybridization and chromosome doubling. Most genes of pentaploids showed expression levels between parents and were more similar to F. × ananassa. Gene expression levels of decaploids were higher than those of pentaploids and F. × ananassa. Different types of photosynthesis-related genes responded differently to hybridization and chromosome doubling. Chloroplast genes and regulatory genes showed complex responses. Structural genes of the photosynthetic system were expressed at a constant level and displayed a clear dosage effect. The methylation levels of one CG site on SIGE, which regulates expression of chloroplast genes, were negatively correlated with gene expression. In pentaploids and decaploids, more transcripts were from F. × ananassa than from F. viridis. The ratio of transcripts from from F. × ananassa to those from F. viridis was close to the ratio (4:1) of the genome of F. × ananassa to that of F. viridis in pentaploids and decaploids, but there were also some exceptions with obvious deviation.
Wang, Ming-Le; Li, Qing-Hui; Xin, Hua-Hong; Chen, Xuan; Zhu, Xu-Jun; Li, Xing-Hui
2017-01-01
Tea plants [Camellia sinensis (L.) O. Kuntze] are an important leaf-type crop that are widely used for the production of non-alcoholic beverages in the world. Exposure to excessive amounts of heavy metals adversely affects the quality and yield of tea leaves. To analyze the molecular responses of tea plants to heavy metals, a reliable quantification of gene expression is important and of major importance herein is the normalization of the measured expression levels for the target genes. Ideally, stably expressed reference genes should be evaluated in all experimental systems. In this study, 12 candidate reference genes (i.e., 18S rRNA, Actin, CYP, EF-1α, eIF-4α, GAPDH, MON1, PP2AA3, TBP, TIP41, TUA, and UBC) were cloned from tea plants, and the stability of their expression was examined systematically in 60 samples exposed to diverse heavy metals (i.e., manganese, aluminum, copper, iron, and zinc). Three Excel-based algorithms (geNorm, NormFinder, and BestKeeper) were used to evaluate the expression stability of these genes. PP2AA3 and 18S rRNA were the most stably expressed genes, even though their expression profiles exhibited some variability. Moreover, commonly used reference genes (i.e., GAPDH and TBP) were the least appropriate reference genes for most samples. To further validate the suitability of the analyzed reference genes, the expression level of a phytochelatin synthase gene (i.e., CsPCS1) was determined using the putative reference genes for data normalizations. Our results may be beneficial for future studies involving the quantification of relative gene expression levels in tea plants.
Moncrieffe, Halima; Hinks, Anne; Ursu, Simona; Kassoumeri, Laura; Etheridge, Angela; Hubank, Mike; Martin, Paul; Weiler, Tracey; Glass, David N; Thompson, Susan D.; Thomson, Wendy; Wedderburn, Lucy R
2010-01-01
Objectives Little is known about mechanisms of efficacy of methotrexate (MTX) in childhood arthritis, or genetic influences upon response to MTX. The aims of this study were to use gene expression profiling to identify novel pathways/genes altered by MTX and then investigate these genes for genotype associations with response to MTX treatment. Methods Gene expression profiling before and after MTX treatment was performed on 11 children with juvenile idiopathic arthritis (JIA) treated with MTX, in whom response at 6 months of treatment was defined. Genes showing the most differential gene expression after treatment were selected for SNP genotyping. Genotype frequencies were compared between non-responders and responders (ACR-Ped70). An independent cohort was available for validation. Results Gene expression profiling before and after MTX treatment revealed 1222 differentially expressed probes sets (fold change >1.7, p< 0.05) and 1065 when restricted to full responder cases only. Six highly differentially expressed genes were analysed for genetic association to response to MTX. Three SNPs in the SLC16A7 gene showed significant association with MTX response. One SNP showed validated association in an independent cohort. Conclusions This study is the first, to our knowledge, to evaluate gene expression profiles in children with JIA before and after MTX, and to analyse genetic variation in differentially expressed genes. We have identified a gene which may contribute to genetic variability in MTX response in JIA, and established as proof of principle that genes which are differentially expressed at mRNA level after drug administration may also be good candidates for genetic analysis. PMID:20827233
Aberrant Gene Expression in Humans
Yang, Ence; Ji, Guoli; Brinkmeyer-Langford, Candice L.; Cai, James J.
2015-01-01
Gene expression as an intermediate molecular phenotype has been a focus of research interest. In particular, studies of expression quantitative trait loci (eQTL) have offered promise for understanding gene regulation through the discovery of genetic variants that explain variation in gene expression levels. Existing eQTL methods are designed for assessing the effects of common variants, but not rare variants. Here, we address the problem by establishing a novel analytical framework for evaluating the effects of rare or private variants on gene expression. Our method starts from the identification of outlier individuals that show markedly different gene expression from the majority of a population, and then reveals the contributions of private SNPs to the aberrant gene expression in these outliers. Using population-scale mRNA sequencing data, we identify outlier individuals using a multivariate approach. We find that outlier individuals are more readily detected with respect to gene sets that include genes involved in cellular regulation and signal transduction, and less likely to be detected with respect to the gene sets with genes involved in metabolic pathways and other fundamental molecular functions. Analysis of polymorphic data suggests that private SNPs of outlier individuals are enriched in the enhancer and promoter regions of corresponding aberrantly-expressed genes, suggesting a specific regulatory role of private SNPs, while the commonly-occurring regulatory genetic variants (i.e., eQTL SNPs) show little evidence of involvement. Additional data suggest that non-genetic factors may also underlie aberrant gene expression. Taken together, our findings advance a novel viewpoint relevant to situations wherein common eQTLs fail to predict gene expression when heritable, rare inter-individual variation exists. The analytical framework we describe, taking into consideration the reality of differential phenotypic robustness, may be valuable for investigating complex traits and conditions. PMID:25617623
Wang, Ming-Le; Li, Qing-Hui; Xin, Hua-Hong; Chen, Xuan; Zhu, Xu-Jun
2017-01-01
Tea plants [Camellia sinensis (L.) O. Kuntze] are an important leaf-type crop that are widely used for the production of non-alcoholic beverages in the world. Exposure to excessive amounts of heavy metals adversely affects the quality and yield of tea leaves. To analyze the molecular responses of tea plants to heavy metals, a reliable quantification of gene expression is important and of major importance herein is the normalization of the measured expression levels for the target genes. Ideally, stably expressed reference genes should be evaluated in all experimental systems. In this study, 12 candidate reference genes (i.e., 18S rRNA, Actin, CYP, EF-1α, eIF-4α, GAPDH, MON1, PP2AA3, TBP, TIP41, TUA, and UBC) were cloned from tea plants, and the stability of their expression was examined systematically in 60 samples exposed to diverse heavy metals (i.e., manganese, aluminum, copper, iron, and zinc). Three Excel-based algorithms (geNorm, NormFinder, and BestKeeper) were used to evaluate the expression stability of these genes. PP2AA3 and 18S rRNA were the most stably expressed genes, even though their expression profiles exhibited some variability. Moreover, commonly used reference genes (i.e., GAPDH and TBP) were the least appropriate reference genes for most samples. To further validate the suitability of the analyzed reference genes, the expression level of a phytochelatin synthase gene (i.e., CsPCS1) was determined using the putative reference genes for data normalizations. Our results may be beneficial for future studies involving the quantification of relative gene expression levels in tea plants. PMID:28453515
Comprehensive Evaluation of the Contribution of X Chromosome Genes to Platinum Sensitivity
Gamazon, Eric R.; Im, Hae Kyung; O’Donnell, Peter H.; Ziliak, Dana; Stark, Amy L.; Cox, Nancy J.; Dolan, M. Eileen; Huang, Rong Stephanie
2011-01-01
Utilizing a genome-wide gene expression dataset generated from Affymetrix GeneChip® Human Exon 1.0ST array, we comprehensively surveyed the role of 322 X chromosome gene expression traits on cellular sensitivity to cisplatin and carboplatin. We identified 31 and 17 X chromosome genes whose expression levels are significantly correlated (after multiple testing correction) with sensitivity to carboplatin and cisplatin, respectively, in the combined HapMap CEU and YRI populations (false discovery rate, FDR<0.05). Of those, 14 overlap for both cisplatin and carboplatin. Employing an independent gene expression quantification method, the Illumina Sentrix Human-6 Expression BeadChip, measured on the same HapMap cell lines, we found that 4 and 2 of these genes are significantly associated with carboplatin and cisplatin sensitivity respectively in both analyses. Two genes, CTPS2 and DLG3, were identified by both genome-wide gene expression analyses as correlated with cellular sensitivity to both platinating agents. The expression of DLG3 gene was also found to correlate with cellular sensitivity to platinating agents in NCI60 cancer cell lines. In addition, we evaluated the role of X chromosome gene expression to the observed differences in sensitivity to the platinums between CEU and YRI derived cell lines. Of the 34 distinct genes significantly correlated with either carboplatin or cisplatin sensitivity, 14 are differentially expressed (defined as p<0.05) between CEU and YRI. Thus, sex chromosome genes play a role in cellular sensitivity to platinating agents and differences in the expression level of these genes are an important source of variation that should be included in comprehensive pharmacogenomic studies. PMID:21252287
Menke, Andreas; Arloth, Janine; Pütz, Benno; Weber, Peter; Klengel, Torsten; Mehta, Divya; Gonik, Mariya; Rex-Haffner, Monika; Rubel, Jennifer; Uhr, Manfred; Lucae, Susanne; Deussing, Jan M; Müller-Myhsok, Bertram; Holsboer, Florian; Binder, Elisabeth B
2012-01-01
Although gene expression profiles in peripheral blood in major depression are not likely to identify genes directly involved in the pathomechanism of affective disorders, they may serve as biomarkers for this disorder. As previous studies using baseline gene expression profiles have provided mixed results, our approach was to use an in vivo dexamethasone challenge test and to compare glucocorticoid receptor (GR)-mediated changes in gene expression between depressed patients and healthy controls. Whole genome gene expression data (baseline and following GR-stimulation with 1.5 mg dexamethasone p.o.) from two independent cohorts were analyzed to identify gene expression pattern that would predict case and control status using a training (N=18 cases/18 controls) and a test cohort (N=11/13). Dexamethasone led to reproducible regulation of 2670 genes in controls and 1151 transcripts in cases. Several genes, including FKBP5 and DUSP1, previously associated with the pathophysiology of major depression, were found to be reliable markers of GR-activation. Using random forest analyses for classification, GR-stimulated gene expression outperformed baseline gene expression as a classifier for case and control status with a correct classification of 79.1 vs 41.6% in the test cohort. GR-stimulated gene expression performed best in dexamethasone non-suppressor patients (88.7% correctly classified with 100% sensitivity), but also correctly classified 77.3% of the suppressor patients (76.7% sensitivity), when using a refined set of 19 genes. Our study suggests that in vivo stimulated gene expression in peripheral blood cells could be a promising molecular marker of altered GR-functioning, an important component of the underlying pathology, in patients suffering from depressive episodes. PMID:22237309
Csatlós, Éva; Máté, Szabolcs; Laky, Marcella; Rigó, János; Joó, József Gábor
2015-07-01
To describe gene expression patterns of the apoptotic regulatory genes Bcl and Bax in human uterine leiomyoma tissue. To investigate the relationship between alterations of gene expression patterns and several relevant clinical parameters. We obtained samples from 101 cases undergoing surgery for uterine leiomyoma for gene expression analysis of the Bcl-2 and Bax genes. Gene expression was quantified using RT-PCR technique. In the leiomyoma group, the Bcl-2 gene was significantly overexpressed compared with the control group although there was no such difference in the gene expression of Bax. Gene activity of Bcl-2 positively correlated with the tumor number in individual uterine leiomyoma cases. Although there was no significant correlation between the length of the cumulative lactation period before the development of uterine leiomyoma and Bcl-2 gene expression in the leiomyoma tissue, we observed a trend for a shorter cumulative lactation period to be associated with overexpression of the Bcl-2 gene. Overexpression of the antiapoptotic Bcl-2 gene appeared to be a factor in the development of uterine leiomyoma, whereas gene activity of the proapoptotic Bax gene did not seem to play a role in the process.
Clarke, Luka A; Botelho, Hugo M; Sousa, Lisete; Falcao, Andre O; Amaral, Margarida D
2015-11-01
A meta-analysis of 13 independent microarray data sets was performed and gene expression profiles from cystic fibrosis (CF), similar disorders (COPD: chronic obstructive pulmonary disease, IPF: idiopathic pulmonary fibrosis, asthma), environmental conditions (smoking, epithelial injury), related cellular processes (epithelial differentiation/regeneration), and non-respiratory "control" conditions (schizophrenia, dieting), were compared. Similarity among differentially expressed (DE) gene lists was assessed using a permutation test, and a clustergram was constructed, identifying common gene markers. Global gene expression values were standardized using a novel approach, revealing that similarities between independent data sets run deeper than shared DE genes. Correlation of gene expression values identified putative gene regulators of the CF transmembrane conductance regulator (CFTR) gene, of potential therapeutic significance. Our study provides a novel perspective on CF epithelial gene expression in the context of other lung disorders and conditions, and highlights the contribution of differentiation/EMT and injury to gene signatures of respiratory disease. Copyright © 2015 Elsevier Inc. All rights reserved.
[Construction and expression of the targeting super-antigen EGF-SEA fusion gene].
Xie, Yang; Peng, Shaoping; Liao, Zhiying; Liu, Jiafeng; Liu, Xuemei; Chen, Weifeng
2014-05-01
To construct expression vector for the SEA-EGF fusion gene. Clone the SEA gene and the EGF gene segment with PCR and RT-PCR independently, and connect this two genes by the bridge PCR. Insert the fusion gene EGF-SEA into the expression vector PET-44. Induced the secretion of the fusion protein SEA-EGF by the antileptic. The gene fragment encoding EGF and SEA mature peptide was successfully cloned. The fusion gene EGF-SEA was successfully constructed and was inserted into expression vector. The new recombinant expression vector for fusion gene EGF-SEA is specific for head and neck cancer, laid the foundation for the further study of fusion protein SEA-EGF targeting immune therapy in head and neck tumors.
Extraordinary diversity of visual opsin genes in dragonflies
Futahashi, Ryo; Kawahara-Miki, Ryouka; Kinoshita, Michiyo; Yoshitake, Kazutoshi; Yajima, Shunsuke; Arikawa, Kentaro; Fukatsu, Takema
2015-01-01
Dragonflies are colorful and large-eyed animals strongly dependent on color vision. Here we report an extraordinary large number of opsin genes in dragonflies and their characteristic spatiotemporal expression patterns. Exhaustive transcriptomic and genomic surveys of three dragonflies of the family Libellulidae consistently identified 20 opsin genes, consisting of 4 nonvisual opsin genes and 16 visual opsin genes of 1 UV, 5 short-wavelength (SW), and 10 long-wavelength (LW) type. Comprehensive transcriptomic survey of the other dragonflies representing an additional 10 families also identified as many as 15–33 opsin genes. Molecular phylogenetic analysis revealed dynamic multiplications and losses of the opsin genes in the course of evolution. In contrast to many SW and LW genes expressed in adults, only one SW gene and several LW genes were expressed in larvae, reflecting less visual dependence and LW-skewed light conditions for their lifestyle under water. In this context, notably, the sand-burrowing or pit-dwelling species tended to lack SW gene expression in larvae. In adult visual organs: (i) many SW genes and a few LW genes were expressed in the dorsal region of compound eyes, presumably for processing SW-skewed light from the sky; (ii) a few SW genes and many LW genes were expressed in the ventral region of compound eyes, probably for perceiving terrestrial objects; and (iii) expression of a specific LW gene was associated with ocelli. Our findings suggest that the stage- and region-specific expressions of the diverse opsin genes underlie the behavior, ecology, and adaptation of dragonflies. PMID:25713365
Regional and temporal differences in gene expression of LH(BETA)T(AG) retinoblastoma tumors.
Houston, Samuel K; Pina, Yolanda; Clarke, Jennifer; Koru-Sengul, Tulay; Scott, William K; Nathanson, Lubov; Schefler, Amy C; Murray, Timothy G
2011-07-23
The purpose of this study was to evaluate by microarray the hypothesis that LH(BETA)T(AG) retinoblastoma tumors exhibit regional and temporal variations in gene expression. LH(BETA)T(AG) mice aged 12, 16, and 20 weeks were euthanatized (n = 9). Specimens were taken from five tumor areas (apex, anterior lateral, center, base, and posterior lateral). Samples were hybridized to gene microarrays. The data were preprocessed and analyzed, and genes with a P < 0.01, according to the ANOVA models, and a log(2)-fold change >2.5 were considered to be differentially expressed. Differentially expressed genes were analyzed for overlap with known networks by using pathway analysis tools. There were significant temporal (P < 10(-8)) and regional differences in gene expression for LH(BETA)T(AG) retinoblastoma tumors. At P < 0.01 and log(2)-fold change >2.5, there were significant changes in gene expression of 190 genes apically, 84 genes anterolaterally, 126 genes posteriorly, 56 genes centrally, and 134 genes at the base. Differentially expressed genes overlapped with known networks, with significant involvement in regulation of cellular proliferation and growth, response to oxygen levels and hypoxia, regulation of cellular processes, cellular signaling cascades, and angiogenesis. There are significant temporal and regional variations in the LH(BETA)T(AG) retinoblastoma model. Differentially expressed genes overlap with key pathways that may play pivotal roles in murine retinoblastoma development. These findings suggest the mechanisms involved in tumor growth and progression in murine retinoblastoma tumors and identify pathways for analysis at a functional level, to determine significance in human retinoblastoma. Microarray analysis of LH(BETA)T(AG) retinal tumors showed significant regional and temporal variations in gene expression, including dysregulation of genes involved in hypoxic responses and angiogenesis.
Gene Expression Profiling of Gastric Cancer
Marimuthu, Arivusudar; Jacob, Harrys K.C.; Jakharia, Aniruddha; Subbannayya, Yashwanth; Keerthikumar, Shivakumar; Kashyap, Manoj Kumar; Goel, Renu; Balakrishnan, Lavanya; Dwivedi, Sutopa; Pathare, Swapnali; Dikshit, Jyoti Bajpai; Maharudraiah, Jagadeesha; Singh, Sujay; Sameer Kumar, Ghantasala S; Vijayakumar, M.; Veerendra Kumar, Kariyanakatte Veeraiah; Premalatha, Chennagiri Shrinivasamurthy; Tata, Pramila; Hariharan, Ramesh; Roa, Juan Carlos; Prasad, T.S.K; Chaerkady, Raghothama; Kumar, Rekha Vijay; Pandey, Akhilesh
2015-01-01
Gastric cancer is the second leading cause of cancer death worldwide, both in men and women. A genomewide gene expression analysis was carried out to identify differentially expressed genes in gastric adenocarcinoma tissues as compared to adjacent normal tissues. We used Agilent’s whole human genome oligonucleotide microarray platform representing ~41,000 genes to carry out gene expression analysis. Two-color microarray analysis was employed to directly compare the expression of genes between tumor and normal tissues. Through this approach, we identified several previously known candidate genes along with a number of novel candidate genes in gastric cancer. Testican-1 (SPOCK1) was one of the novel molecules that was 10-fold upregulated in tumors. Using tissue microarrays, we validated the expression of testican-1 by immunohistochemical staining. It was overexpressed in 56% (160/282) of the cases tested. Pathway analysis led to the identification of several networks in which SPOCK1 was among the topmost networks of interacting genes. By gene enrichment analysis, we identified several genes involved in cell adhesion and cell proliferation to be significantly upregulated while those corresponding to metabolic pathways were significantly downregulated. The differentially expressed genes identified in this study are candidate biomarkers for gastric adenoacarcinoma. PMID:27030788
Sinha, Pallavi; Singh, Vikas K.; Suryanarayana, V.; Krishnamurthy, L.; Saxena, Rachit K.; Varshney, Rajeev K.
2015-01-01
Gene expression analysis using quantitative real-time PCR (qRT-PCR) is a very sensitive technique and its sensitivity depends on the stable performance of reference gene(s) used in the study. A number of housekeeping genes have been used in various expression studies in many crops however, their expression were found to be inconsistent under different stress conditions. As a result, species specific housekeeping genes have been recommended for different expression studies in several crop species. However, such specific housekeeping genes have not been reported in the case of pigeonpea (Cajanus cajan) despite the fact that genome sequence has become available for the crop. To identify the stable housekeeping genes in pigeonpea for expression analysis under drought stress conditions, the relative expression variations of 10 commonly used housekeeping genes (EF1α, UBQ10, GAPDH, 18SrRNA, 25SrRNA, TUB6, ACT1, IF4α, UBC and HSP90) were studied on root, stem and leaves tissues of Asha (ICPL 87119). Three statistical algorithms geNorm, NormFinder and BestKeeper were used to define the stability of candidate genes. geNorm analysis identified IF4α and TUB6 as the most stable housekeeping genes however, NormFinder analysis determined IF4α and HSP90 as the most stable housekeeping genes under drought stress conditions. Subsequently validation of the identified candidate genes was undertaken in qRT-PCR based gene expression analysis of uspA gene which plays an important role for drought stress conditions in pigeonpea. The relative quantification of the uspA gene varied according to the internal controls (stable and least stable genes), thus highlighting the importance of the choice of as well as validation of internal controls in such experiments. The identified stable and validated housekeeping genes will facilitate gene expression studies in pigeonpea especially under drought stress conditions. PMID:25849964
Sinha, Pallavi; Singh, Vikas K; Suryanarayana, V; Krishnamurthy, L; Saxena, Rachit K; Varshney, Rajeev K
2015-01-01
Gene expression analysis using quantitative real-time PCR (qRT-PCR) is a very sensitive technique and its sensitivity depends on the stable performance of reference gene(s) used in the study. A number of housekeeping genes have been used in various expression studies in many crops however, their expression were found to be inconsistent under different stress conditions. As a result, species specific housekeeping genes have been recommended for different expression studies in several crop species. However, such specific housekeeping genes have not been reported in the case of pigeonpea (Cajanus cajan) despite the fact that genome sequence has become available for the crop. To identify the stable housekeeping genes in pigeonpea for expression analysis under drought stress conditions, the relative expression variations of 10 commonly used housekeeping genes (EF1α, UBQ10, GAPDH, 18SrRNA, 25SrRNA, TUB6, ACT1, IF4α, UBC and HSP90) were studied on root, stem and leaves tissues of Asha (ICPL 87119). Three statistical algorithms geNorm, NormFinder and BestKeeper were used to define the stability of candidate genes. geNorm analysis identified IF4α and TUB6 as the most stable housekeeping genes however, NormFinder analysis determined IF4α and HSP90 as the most stable housekeeping genes under drought stress conditions. Subsequently validation of the identified candidate genes was undertaken in qRT-PCR based gene expression analysis of uspA gene which plays an important role for drought stress conditions in pigeonpea. The relative quantification of the uspA gene varied according to the internal controls (stable and least stable genes), thus highlighting the importance of the choice of as well as validation of internal controls in such experiments. The identified stable and validated housekeeping genes will facilitate gene expression studies in pigeonpea especially under drought stress conditions.
He, Li; Frost, Michael R; Siegwart, John T; Norton, Thomas T
2018-03-01
Hyperopic refractive error is detected by retinal neurons, which generate GO signals through a direct emmetropization signaling cascade: retinal pigment epithelium (RPE) into choroid and then into sclera, thereby increasing axial elongation. To examine signaling early in this cascade, we measured gene expression in the retina and RPE after short exposure to hyperopia produced by minus-lens wear. Gene expression in each tissue was compared with gene expression in combined retina + RPE. Starting 24 days after normal eye opening, three groups of juvenile tree shrews (n = 7 each) wore a monocular -5 D lens. The untreated fellow eye served as a control. The "6h" group wore the lens for 6 h; the "24h" group wore the lens for 24 h; each group provided separate retina and RPE tissues. Group "24hC" wore the lens for 24 h and provided combined retina + RPE tissue. Quantitative PCR was used to measure the relative differences (treated eye vs. control eye) in mRNA levels for 66 candidate genes. In the retina after 6 h, mRNA levels for seven genes were significantly regulated: EGR1 and FOS (early intermediate genes) were down-regulated in the treated eyes. Genes with secreted protein products, BMP2 and CTGF, were down-regulated, whilst FGF10, IL18, and SST were up-regulated. After 24 h the pattern changed; only one of the seven genes still showed differential expression; BMP2 was still down-regulated. Two new genes with secreted protein products, IGF2 and VIP, were up-regulated. In the RPE, consistent with its role in receiving, processing, and transmitting GO signaling, differential expression was found for genes whose protein products are at the cell surface, intracellular, in the nucleus, and are secreted. After 6 h, mRNA levels for 17 genes were down-regulated in the treated eyes, whilst four genes (GJA1, IGF2R, LRP2, and IL18) were up-regulated. After 24 h the pattern was similar; mRNA levels for 14 of the same genes were still down-regulated; only LRP2 remained up-regulated. mRNA levels for six genes no longer showed differential expression, whilst nine genes, not differentially expressed at 6 h, now showed differential expression. In the combined retina + RPE after 24 h, mRNA levels for only seven genes were differentially regulated despite the differential expression of many genes in the RPE. Four genes showed the same expression in combined tissue as in retina alone, including up-regulation of VIP despite significant VIP down-regulation in RPE. Thus, hyperopia-induced GO signaling, as measured by differential gene expression, differs in the retina and the RPE. Retinal gene expression changed between 6 h and 24 h of treatment, suggesting evolution of the retinal response. Gene expression in the RPE was similar at both time points, suggesting sustained signaling. The combined retina + RPE does not accurately represent gene expression in either retina or, especially, RPE. When gene expression signatures were compared with those in choroid and sclera, GO signaling, as encoded by differential gene expression, differs in each compartment of the direct emmetropization signaling cascade. Copyright © 2018 Elsevier Ltd. All rights reserved.
Gene Expression by Mouse Inner Ear Hair Cells during Development
Scheffer, Déborah I.; Shen, Jun
2015-01-01
Hair cells of the inner ear are essential for hearing and balance. As a consequence, pathogenic variants in genes specifically expressed in hair cells often cause hereditary deafness. Hair cells are few in number and not easily isolated from the adjacent supporting cells, so the biochemistry and molecular biology of hair cells can be difficult to study. To study gene expression in hair cells, we developed a protocol for hair cell isolation by FACS. With nearly pure hair cells and surrounding cells, from cochlea and utricle and from E16 to P7, we performed a comprehensive cell type-specific RNA-Seq study of gene expression during mouse inner ear development. Expression profiling revealed new hair cell genes with distinct expression patterns: some are specific for vestibular hair cells, others for cochlear hair cells, and some are expressed just before or after maturation of mechanosensitivity. We found that many of the known hereditary deafness genes are much more highly expressed in hair cells than surrounding cells, suggesting that genes preferentially expressed in hair cells are good candidates for unknown deafness genes. PMID:25904789
Hayashi, Takashi; Murakami, Kazuo
2009-07-31
This report mainly summarizes the results of our study in which the physiological effects of laughter--as a positive emotional expression--were analyzed with respect to gene expression changes to demonstrate the hypothesis that the mind and genes mutually influence each other. We observed that laughter suppressed 2-h postprandial blood glucose level increase in patients with type 2 diabetes and analyzed gene expression changes. Some genes showed specific changes in their expression. In addition, we revealed that laughter decreased the levels of prorenin in blood; prorenin is involved in the onset of diabetic complications. Further, laughter normalized the expression of the prorenin receptor gene on peripheral blood leukocytes, which had been reduced in diabetic patients; this demonstrated that the inhibitory effects of laughter on the onset/deterioration of diabetic complications at the gene-expression level. In a subsequent study, we demonstrated the effects of laughter by discriminating 14 genes, related to natural killer (NK) cell activity, to exhibit continuous increases in expression as a result of laughter. Our results supported NK cell-mediated improvement in glucose tolerance at the gene-expression level. In this report, we also review other previous studies on laughter.
Correct Hox gene expression established independently of position in Caenorhabditis elegans.
Cowing, D; Kenyon, C
1996-07-25
The Hox genes are expressed in a conserved sequence of spatial domains along the anteroposterior (A/P) body axes of many organisms. In Drosophila, position-specific signals located along the A/P axis establish the pattern of Hox gene expression. In the nematode Caenorhabditis elegans, it is not known how the pattern of Hox gene expression is established. C. elegans uses lineal control mechanisms and local cell interactions to specify early blastomere identities. However, many cells expressing the same Hox gene are unrelated by lineage, suggesting that, as in Drosophila, domains of Hox gene expression may be defined by cell-extrinsic A/P positional signals. To test this, we have investigated whether posterior mesodermal and ectodermal cells will express their normal posterior Hox gene when they are mispositioned in the anterior. Surprisingly, we find that correct Hox gene expression does not depend on cell position, but is highly correlated with cell lineage. Thus, although the most striking feature of Hox gene expression is its positional specificity, in C. elegans the pattern is achieved, at least in part, by a lineage-specific control system that operates without regard to A/P position.
Differential gene expression patterns between smokers and non‐smokers: cause or consequence?
Jansen, Rick; Brooks, Andy; Willemsen, Gonneke; van Grootheest, Gerard; de Geus, Eco; Smit, Jan H.; Penninx, Brenda W.; Boomsma, Dorret I.
2015-01-01
Abstract The molecular mechanisms causing smoking‐induced health decline are largely unknown. To elucidate the molecular pathways involved in cause and consequences of smoking behavior, we conducted a genome‐wide gene expression study in peripheral blood samples targeting 18 238 genes. Data of 743 smokers, 1686 never smokers and 890 ex‐smokers were available from two population‐based cohorts from the Netherlands. In addition, data of 56 monozygotic twin pairs discordant for ever smoking were used. One hundred thirty‐two genes were differentially expressed between current smokers and never smokers (P < 1.2 × 10−6, Bonferroni correction). The most significant genes were G protein‐coupled receptor 15 (P < 1 × 10−150) and leucine‐rich repeat neuronal 3 (P < 1 × 10−44). The smoking‐related genes were enriched for immune system, blood coagulation, natural killer cell and cancer pathways. By taking the data of ex‐smokers into account, expression of these 132 genes was classified into reversible (94 genes), slowly reversible (31 genes), irreversible (6 genes) or inconclusive (1 gene). Expression of 6 of the 132 genes (three reversible and three slowly reversible) was confirmed to be reactive to smoking as they were differentially expressed in monozygotic pairs discordant for smoking. Cis‐expression quantitative trait loci for GPR56 and RARRES3 (downregulated in smokers) were associated with increased number of cigarettes smoked per day in a large genome‐wide association meta‐analysis, suggesting a causative effect of GPR56 and RARRES3 expression on smoking behavior. In conclusion, differential gene expression patterns in smokers are extensive and cluster in several underlying disease pathways. Gene expression differences seem mainly direct consequences of smoking, and largely reversible after smoking cessation. However, we also identified DNA variants that may influence smoking behavior via the mediating gene expression. PMID:26594007
Annotation of gene function in citrus using gene expression information and co-expression networks
2014-01-01
Background The genus Citrus encompasses major cultivated plants such as sweet orange, mandarin, lemon and grapefruit, among the world’s most economically important fruit crops. With increasing volumes of transcriptomics data available for these species, Gene Co-expression Network (GCN) analysis is a viable option for predicting gene function at a genome-wide scale. GCN analysis is based on a “guilt-by-association” principle whereby genes encoding proteins involved in similar and/or related biological processes may exhibit similar expression patterns across diverse sets of experimental conditions. While bioinformatics resources such as GCN analysis are widely available for efficient gene function prediction in model plant species including Arabidopsis, soybean and rice, in citrus these tools are not yet developed. Results We have constructed a comprehensive GCN for citrus inferred from 297 publicly available Affymetrix Genechip Citrus Genome microarray datasets, providing gene co-expression relationships at a genome-wide scale (33,000 transcripts). The comprehensive citrus GCN consists of a global GCN (condition-independent) and four condition-dependent GCNs that survey the sweet orange species only, all citrus fruit tissues, all citrus leaf tissues, or stress-exposed plants. All of these GCNs are clustered using genome-wide, gene-centric (guide) and graph clustering algorithms for flexibility of gene function prediction. For each putative cluster, gene ontology (GO) enrichment and gene expression specificity analyses were performed to enhance gene function, expression and regulation pattern prediction. The guide-gene approach was used to infer novel roles of genes involved in disease susceptibility and vitamin C metabolism, and graph-clustering approaches were used to investigate isoprenoid/phenylpropanoid metabolism in citrus peel, and citric acid catabolism via the GABA shunt in citrus fruit. Conclusions Integration of citrus gene co-expression networks, functional enrichment analysis and gene expression information provide opportunities to infer gene function in citrus. We present a publicly accessible tool, Network Inference for Citrus Co-Expression (NICCE, http://citrus.adelaide.edu.au/nicce/home.aspx), for the gene co-expression analysis in citrus. PMID:25023870
Cao, Yi-zhan; Hao, Chun-qiu; Feng, Zhi-hua; Zhou, Yong-xing; Li, Jin-ge; Jia, Zhan-sheng; Wang, Ping-zhong
2003-02-01
To construct three recombinant shuttle plasmids of adenovirus expression vector which can express hepatitis C virus(HCV) different structure genes(C, C+E1, C+E1+E2) in order to pack adenovirus expression vectors which can express HCV different structure gene effectively. The different HCV structure genes derived from the plasmid pBRTM/HCV1-3011 by using polymerase chain reaction (PCR) were inserted into the backward position of cytomegalovirus(CMV) immediate early promotor element of shuttle plasmid(pAd.CMV-Link.1) of adenovirus expression vector respectively, then the three recombinant plasmids (pAd.HCV-C, pAd.HCV-CE1, pAd.HCV-S) were obtained. The recombinant plasmids were identified by endonuclease, PCR and sequencing. HCV structure genes were expressed transiently with Lipofectamine 2000 coated in HepG2 cells which were confirmed by immunofluorescence and Western-Blot. Insert DNAs of the three recombinant plasmids' were confirmed to be HCV different structure genes by endonuclease, PCR and sequencing. The three recombinant plasmids can express HCV structure gene (C, C+E1, C+E1+E2) transiently in HepG2 cells which were confirmed by immunofluorescence and Western-Blot. The three recombinant shuttle plasmids of adenovirus expression vector can express HCV structure gene(C, C+E1, C+E1+E2) transiently. This should be useful to pack adenovirus expression vector which can express HCV structure genes.
Yan, Bo; Neilson, Karen M.; Ranganathan, Ramya; Maynard, Thomas; Streit, Andrea; Moody, Sally A.
2014-01-01
Background Six1 plays an important role in the development of several vertebrate organs, including cranial sensory placodes, somites and kidney. Although Six1 mutations cause one form of Branchio-Otic Syndrome (BOS), the responsible gene in many patients has not been identified; genes that act downstream of Six1 are potential BOS candidates. Results We sought to identify novel genes expressed during placode, somite and kidney development by comparing gene expression between control and Six1-expressing ectodermal explants. The expression patterns of 19 of the significantly up-regulated and 11 of the significantly down-regulated genes were assayed from cleavage to larval stages. 28/30 genes are expressed in the otocyst, a structure that is functionally disrupted in BOS, and 26/30 genes are expressed in the nephric mesoderm, a structure that is functionally disrupted in the related Branchio-Otic-Renal (BOR) syndrome. We also identified the chick homologues of 5 genes and show that they have conserved expression patterns. Conclusions Of the 30 genes selected for expression analyses, all are expressed at many of the developmental times and appropriate tissues to be regulated by Six1. Many have the potential to play a role in the disruption of hearing and kidney function seen in BOS/BOR patients. PMID:25403746
Daminato, Margherita; Guzzo, Flavia; Casadoro, Giorgio
2013-09-01
Strawberries (Fragaria×ananassa) are false fruits the ripening of which follows the non-climacteric pathway. The role played by a C-type MADS-box gene [SHATTERPROOF-like (FaSHP)] in the ripening of strawberries has been studied by transiently modifying gene expression through either over-expression or RNA-interference-mediated down-regulation. The altered expression of the FaSHP gene caused a change in the time taken by the over-expressing and the down- regulated fruits to attain the pink stage, which was slightly shorter and much longer, respectively, compared to controls. In parallel with the modified ripening times, the metabolome components and the expression of ripening-related genes also appeared different in the transiently modified fruits. Differences in the response time of the analysed genes suggest that FaSHP can control the expression of ripening genes either directly or indirectly through other transcription factor-encoding genes. Because fleshy strawberries are false fruits these results indicate that C-type MADS-box genes like SHATTERPROOF may act as modulators of ripening in fleshy fruit-like structures independently of their anatomical origin. Treatment of strawberries with either auxin or abscisic acid had antagonistic impacts on both the expression of FaSHP and the expression of ripening-related genes and metabolome components.
Roymondal, Uttam; Das, Shibsankar; Sahoo, Satyabrata
2009-01-01
We present an expression measure of a gene, devised to predict the level of gene expression from relative codon bias (RCB). There are a number of measures currently in use that quantify codon usage in genes. Based on the hypothesis that gene expressivity and codon composition is strongly correlated, RCB has been defined to provide an intuitively meaningful measure of an extent of the codon preference in a gene. We outline a simple approach to assess the strength of RCB (RCBS) in genes as a guide to their likely expression levels and illustrate this with an analysis of Escherichia coli (E. coli) genome. Our efforts to quantitatively predict gene expression levels in E. coli met with a high level of success. Surprisingly, we observe a strong correlation between RCBS and protein length indicating natural selection in favour of the shorter genes to be expressed at higher level. The agreement of our result with high protein abundances, microarray data and radioactive data demonstrates that the genomic expression profile available in our method can be applied in a meaningful way to the study of cell physiology and also for more detailed studies of particular genes of interest. PMID:19131380
Okamura-Oho, Yuko; Shimokawa, Kazuro; Nishimura, Masaomi; Takemoto, Satoko; Sato, Akira; Furuichi, Teiichi; Yokota, Hideo
2014-01-01
Using a recently invented technique for gene expression mapping in the whole-anatomy context, termed transcriptome tomography, we have generated a dataset of 36,000 maps of overall gene expression in the adult-mouse brain. Here, using an informatics approach, we identified a broad co-expression network that follows an inverse power law and is rich in functional interaction and gene-ontology terms. Our framework for the integrated analysis of expression maps and graphs of co-expression networks revealed that groups of combinatorially expressed genes, which regulate cell differentiation during development, were present in the adult brain and each of these groups was associated with a discrete cell types. These groups included non-coding genes of unknown function. We found that these genes specifically linked developmentally conserved groups in the network. A previously unrecognized robust expression pattern covering the whole brain was related to the molecular anatomy of key biological processes occurring in particular areas. PMID:25382412
Gong, Bin-Sheng; Zhang, Qing-Pu; Zhang, Guang-Mei; Zhang, Shao-Jun; Zhang, Wei; Lv, Hong-Chao; Zhang, Fan; Lv, Sa-Li; Li, Chuan-Xing; Rao, Shao-Qi; Li, Xia
2007-01-01
Gene expression profiles and single-nucleotide polymorphism (SNP) profiles are modern data for genetic analysis. It is possible to use the two types of information to analyze the relationships among genes by some genetical genomics approaches. In this study, gene expression profiles were used as expression traits. And relationships among the genes, which were co-linked to a common SNP(s), were identified by integrating the two types of information. Further research on the co-expressions among the co-linked genes was carried out after the gene-SNP relationships were established using the Haseman-Elston sib-pair regression. The results showed that the co-expressions among the co-linked genes were significantly higher if the number of connections between the genes and a SNP(s) was more than six. Then, the genes were interconnected via one or more SNP co-linkers to construct a gene-SNP intermixed network. The genes sharing more SNPs tended to have a stronger correlation. Finally, a gene-gene network was constructed with their intensities of relationships (the number of SNP co-linkers shared) as the weights for the edges. PMID:18466544
Cheaib, Miriam; Dehghani Amirabad, Azim; Nordström, Karl J V; Schulz, Marcel H; Simon, Martin
2015-08-01
Phenotypic variation of a single genotype is achieved by alterations in gene expression patterns. Regulation of such alterations depends on their time scale, where short-time adaptations differ from permanently established gene expression patterns maintained by epigenetic mechanisms. In the ciliate Paramecium, serotypes were described for an epigenetically controlled gene expression pattern of an individual multigene family. Paradoxically, individual serotypes can be triggered in Paramecium by alternating environments but are then stabilized by epigenetic mechanisms, thus raising the question to which extend their expression follows environmental stimuli. To characterize environmental adaptation in the context of epigenetically controlled serotype expression, we used RNA-seq to characterize transcriptomes of serotype pure cultures. The resulting vegetative transcriptome resource is first analysed for genes involved in the adaptive response to the altered environment. Secondly, we identified groups of genes that do not follow the adaptive response but show co-regulation with the epigenetically controlled serotype system, suggesting that their gene expression pattern becomes manifested by similar mechanisms. In our experimental set-up, serotype expression and the entire group of co-regulated genes were stable among environmental changes and only heat-shock genes altered expression of these gene groups. The data suggest that the maintenance of these gene expression patterns in a lineage represents epigenetically controlled robustness counteracting short-time adaptation processes. © The Author 2015. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.
Yang, Haowen; Jiang, Qinyang; Wu, Dan; Lan, Ganqiu; Fan, Jing; Guo, Yafen; Chen, Baojian; Yang, Xiurong; Jiang, Hesheng
2015-02-01
Animal growth and development are complex and sophisticated biological metabolic processes, in which genes plays an important role. In this paper, we employed real-time quantitative PCR (RT-qPCR) to analyze the expression levels of hepatic GHR, JAK2 and IGF-I genes in 1, 30, 180 day of Bama minipig and Landrace with attempt to verify the correlation between the expression of these growth-associated genes and the dwarfism phenotype of Bama minipig. The results showed that the expression levels of these 3 genes in Bama minipigs were down-regulated expressed from 1 day to 30 day, and which was up-regulated expressed in Landrace. The expression levels of the 3 genes on 1, 30, 180 day were prominently higher in Landrace than in Bama minipigs. The significant differences of the 3 genes expression levels on 1 day between this two breeds indicate that different expressions of these genes might occur before birth. It is speculated that the down-regulated expression of the 3 genes may have a close correlation with the dwarfism phenotype of Bama minipig. More investigations in depth of this study is under progress with the help of biochip nanotechnology.
Oakley, Todd H; Gu, Zhenglong; Abouheif, Ehab; Patel, Nipam H; Li, Wen-Hsiung
2005-01-01
Understanding the evolution of gene function is a primary challenge of modern evolutionary biology. Despite an expanding database from genomic and developmental studies, we are lacking quantitative methods for analyzing the evolution of some important measures of gene function, such as gene-expression patterns. Here, we introduce phylogenetic comparative methods to compare different models of gene-expression evolution in a maximum-likelihood framework. We find that expression of duplicated genes has evolved according to a nonphylogenetic model, where closely related genes are no more likely than more distantly related genes to share common expression patterns. These results are consistent with previous studies that found rapid evolution of gene expression during the history of yeast. The comparative methods presented here are general enough to test a wide range of evolutionary hypotheses using genomic-scale data from any organism.
Codon usage and amino acid usage influence genes expression level.
Paul, Prosenjit; Malakar, Arup Kumar; Chakraborty, Supriyo
2018-02-01
Highly expressed genes in any species differ in the usage frequency of synonymous codons. The relative recurrence of an event of the favored codon pair (amino acid pairs) varies between gene and genomes due to varying gene expression and different base composition. Here we propose a new measure for predicting the gene expression level, i.e., codon plus amino bias index (CABI). Our approach is based on the relative bias of the favored codon pair inclination among the genes, illustrated by analyzing the CABI score of the Medicago truncatula genes. CABI showed strong correlation with all other widely used measures (CAI, RCBS, SCUO) for gene expression analysis. Surprisingly, CABI outperforms all other measures by showing better correlation with the wet-lab data. This emphasizes the importance of the neighboring codons of the favored codon in a synonymous group while estimating the expression level of a gene.
Vojvodic, Svjetlana; Johnson, Brian R; Harpur, Brock A; Kent, Clement F; Zayed, Amro; Anderson, Kirk E; Linksvayer, Timothy A
2015-11-01
The caste fate of developing female honey bee larvae is strictly socially regulated by adult nurse workers. As a result of this social regulation, nurse-expressed genes as well as larval-expressed genes may affect caste expression and evolution. We used a novel transcriptomic approach to identify genes with putative direct and indirect effects on honey bee caste development, and we subsequently studied the relative rates of molecular evolution at these caste-associated genes. We experimentally induced the production of new queens by removing the current colony queen, and we used RNA sequencing to study the gene expression profiles of both developing larvae and their caregiving nurses before and after queen removal. By comparing the gene expression profiles of queen-destined versus worker-destined larvae as well as nurses observed feeding these two types of larvae, we identified larval and nurse genes associated with caste development. Of 950 differentially expressed genes associated with caste, 82% were expressed in larvae with putative direct effects on larval caste, and 18% were expressed in nurses with putative indirect effects on caste. Estimated selection coefficients suggest that both nurse and larval genes putatively associated with caste are rapidly evolving, especially those genes associated with worker development. Altogether, our results suggest that indirect effect genes play important roles in both the expression and evolution of socially influenced traits such as caste.
Dąbrowska, Aleksandra; Lech, Gustaw; Słodkowski, Maciej; Słotwińska, Sylwia M.
2014-01-01
The study was carried out to investigate changes in gene expression of innate antibacterial signaling pathways in patients with pancreatic cancer. Expression of the following genes was measured in peripheral blood leukocytes of 55 patients with pancreatic adenocarcinoma using real-time polymerase chain reaction (RT-PCR): TLR4, NOD1, MyD88, TRAF6 and HMGB1. The levels of expression of TLR4, NOD1 and TRAF6 genes were significantly elevated (p = 0.007; p = 0.001 and p = 0.01, respectively), while MyD88 expression was markedly reduced (p = 0.0002), as compared to controls. Expression of TLR4 and NOD1 exceeded the normal level more than 3.5-fold and there was a significant correlation found between the expression of these genes (r = 0.558, p < 0.001). TLR4, NOD1 and MyD88 genes were expressed at a similar level both before and after surgery. No significant changes in the expression of HMGB1 gene were observed. The results of the study clearly indicate abnormal expression of genes belonging to innate antibacterial signaling pathways in peripheral blood leukocytes of patients with pancreatic cancer, which may lead to leukocyte dysfunction. Overexpression of TLR4, NOD1 and TRAF6 genes, and decreased MyD88 gene expression may contribute to chronic inflammation and tumor progression by up-regulation of the innate antibacterial response. The parameters tested are useful for monitoring innate immunity gene disorders and pancreatic cancer progression. PMID:26155170
Fila-Danilow, Anna; Borkowska, Paulina; Paul-Samojedny, Monika; Kowalczyk, Malgorzata; Kowalski, Jan
2017-03-27
Epigenetic mechanisms regulate the transcription of genes, which can affect the differentiation of MSCs. The aim of the current work is to determine how the histone deacetylase inhibitors TSA and VPA affect the expression of neuronal lineage genes in a culture of rat MSCs (rMSCs). We analyzed the expression of early neuron marker gene (Tubb3), mature neuron markers genes (Vacht, Th, Htr2a) and the oligodendrocyte progenitor marker gene (GalC). Moreover, changes in the gene expression after three different periods of exposure to TSA and VPA were investigated for the first time. After six days of exposition to TSA and VPA, the expression of Tubb3 and GalC decreased, while the expression of Th increased. The highest increase of VAChT expression was observed after three days of TSA and VPA treatment. A decrease in Htr2a gene expression was observed after TSA treatment and an increase was observed after VPA treatment. We also observed that TSA and VPA inhibited cell proliferation and the formation of neurospheres in the rMSCs culture. The central findings of our study are that TSA and VPA affect the expression of neuronal lineage genes in an rMSCs culture. After exposure to TSA or VPA, the expression of early neuronal gene decreases but equally the expression of mature neuron genes increases. After TSA and VPA treatment ER of the oligodendrocyte progenitor marker decreased. TSA and VPA inhibit cell proliferation and the formation of neurospheres in rMSCs culture.
Durrenberger, Pascal F; Fernando, Francisca S; Magliozzi, Roberta; Kashefi, Samira N; Bonnert, Timothy P; Ferrer, Isidro; Seilhean, Danielle; Nait-Oumesmar, Brahim; Schmitt, Andrea; Gebicke-Haerter, Peter J; Falkai, Peter; Grünblatt, Edna; Palkovits, Miklos; Parchi, Piero; Capellari, Sabina; Arzberger, Thomas; Kretzschmar, Hans; Roncaroli, Federico; Dexter, David T; Reynolds, Richard
2012-12-01
The use of an appropriate reference gene to ensure accurate normalisation is crucial for the correct quantification of gene expression using qPCR assays and RNA arrays. The main criterion for a gene to qualify as a reference gene is a stable expression across various cell types and experimental settings. Several reference genes are commonly in use but more and more evidence reveals variations in their expression due to the presence of on-going neuropathological disease processes, raising doubts concerning their use. We conducted an analysis of genome-wide changes of gene expression in the human central nervous system (CNS) covering several neurological disorders and regions, including the spinal cord, and were able to identify a number of novel stable reference genes. We tested the stability of expression of eight novel (ATP5E, AARS, GAPVD1, CSNK2B, XPNPEP1, OSBP, NAT5 and DCTN2) and four more commonly used (BECN1, GAPDH, QARS and TUBB) reference genes in a smaller cohort using RT-qPCR. The most stable genes out of the 12 reference genes were tested as normaliser to validate increased levels of a target gene in CNS disease. We found that in human post-mortem tissue the novel reference genes, XPNPEP1 and AARS, were efficient in replicating microarray target gene expression levels and that XPNPEP1 was more efficient as a normaliser than BECN1, which has been shown to change in expression as a consequence of neuronal cell loss. We provide herein one more suitable novel reference gene, XPNPEP1, with no current neuroinflammatory or neurodegenerative associations that can be used for gene quantitative gene expression studies with human CNS post-mortem tissue and also suggest a list of potential other candidates. These data also emphasise the importance of organ/tissue-specific stably expressed genes as reference genes for RNA studies.
Chen, Geng; Yin, Kangping; Shi, Leming; Fang, Yuanzhang; Qi, Ya; Li, Peng; Luo, Jian; He, Bing; Liu, Mingyao; Shi, Tieliu
2011-01-01
In their expression process, different genes can generate diverse functional products, including various protein-coding or noncoding RNAs. Here, we investigated the protein-coding capacities and the expression levels of their isoforms for human known genes, the conservation and disease association of long noncoding RNAs (ncRNAs) with two transcriptome sequencing datasets from human brain tissues and 10 mixed cell lines. Comparative analysis revealed that about two-thirds of the genes expressed between brain and cell lines are the same, but less than one-third of their isoforms are identical. Besides those genes specially expressed in brain and cell lines, about 66% of genes expressed in common encoded different isoforms. Moreover, most genes dominantly expressed one isoform and some genes only generated protein-coding (or noncoding) RNAs in one sample but not in another. We found 282 human genes could encode both protein-coding and noncoding RNAs through alternative splicing in the two samples. We also identified more than 1,000 long ncRNAs, and most of those long ncRNAs contain conserved elements across either 46 vertebrates or 33 placental mammals or 10 primates. Further analysis showed that some long ncRNAs differentially expressed in human breast cancer or lung cancer, several of those differentially expressed long ncRNAs were validated by RT-PCR. In addition, those validated differentially expressed long ncRNAs were found significantly correlated with certain breast cancer or lung cancer related genes, indicating the important biological relevance between long ncRNAs and human cancers. Our findings reveal that the differences of gene expression profile between samples mainly result from the expressed gene isoforms, and highlight the importance of studying genes at the isoform level for completely illustrating the intricate transcriptome.
Guo, Yuan; Qiu, Caisheng; Long, Songhua; Chen, Ping; Hao, Dongmei; Preisner, Marta; Wang, Hui; Wang, Yufu
2017-08-30
To better understand the molecular mechanisms and gene expression characteristics associated with development of bast fiber cell within flax stem phloem, the gene expression profiling of flax stem peels and leaves were screened, using Illumina's Digital Gene Expression (DGE) analysis. Four DGE libraries (2 for stem peel and 2 for leaf), ranging from 6.7 to 9.2 million clean reads were obtained, which produced 7.0 million and 6.8 million mapped reads for flax stem peel and leave, respectively. By differential gene expression analysis, a total of 975 genes, of which 708 (73%) genes have protein-coding annotation, were identified as phloem enriched genes putatively involved in the processes of polysaccharide and cell wall metabolism. Differential expression genes (DEGs) was validated using quantitative RT-PCR, the expression pattern of all nine genes determined by qRT-PCR fitted in well with that obtained by sequencing analysis. Cluster and Gene Ontology (GO) analysis revealed that a large number of genes related to metabolic process, catalytic activity and binding category were expressed predominantly in the stem peels. The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of the phloem enriched genes suggested approximately 111 biological pathways. The large number of genes and pathways produced from DGE sequencing will expand our understanding of the complex molecular and cellular events in flax bast fiber development and provide a foundation for future studies on fiber development in other bast fiber crops. Copyright © 2017 Elsevier B.V. All rights reserved.
Wang, Zhanwei; Katsaros, Dionyssios; Shen, Yi; Fu, Yuanyuan; Canuto, Emilie Marion; Benedetto, Chiara; Lu, Lingeng; Chu, Wen-Ming; Risch, Harvey A.; Yu, Herbert
2015-01-01
To investigate the biologic relevance and clinical implication of genes involved in multiple gene expression signatures for breast cancer prognosis, we identified 16 published gene expression signatures, and selected two genes, MAD2L1 and BUB1. These genes appeared in 5 signatures and were involved in cell-cycle regulation. We analyzed the expression of these genes in relation to tumor features and disease outcomes. In vitro experiments were also performed in two breast cancer cell lines, MDA-MB-231 and MDA-MB-468, to assess cell proliferation, migration and invasion after knocking down the expression of these genes. High expression of these genes was found to be associated with aggressive tumors and poor disease-free survival of 203 breast cancer patients in our study, and the association with survival was confirmed in an online database consisting of 914 patients. In vitro experiments demonstrated that lowering the expression of these genes by siRNAs reduced tumor cell growth and inhibited cell migration and invasion. Our investigation suggests that MAD2L1 and BUB1 may play important roles in breast cancer progression, and measuring the expression of these genes may assist the prediction of breast cancer prognosis. PMID:26287798
Caste- and development-associated gene expression in a lower termite
Scharf, Michael E; Wu-Scharf, Dancia; Pittendrigh, Barry R; Bennett, Gary W
2003-01-01
Background Social insects such as termites express dramatic polyphenism (the occurrence of multiple forms in a species on the basis of differential gene expression) both in association with caste differentiation and between castes after differentiation. We have used cDNA macroarrays to compare gene expression between polyphenic castes and intermediary developmental stages of the termite Reticulitermes flavipes. Results We identified differentially expressed genes from nine ontogenic categories. Quantitative PCR was used to quantify precise differences in gene expression between castes and between intermediary developmental stages. We found worker and nymph-biased expression of transcripts encoding termite and endosymbiont cellulases; presoldier-biased expression of transcripts encoding the storage/hormone-binding protein vitellogenin; and soldier-biased expression of gene transcripts encoding two transcription/translation factors, two signal transduction factors and four cytoskeletal/muscle proteins. The two transcription/translation factors showed significant homology to the bicaudal and bric-a-brac developmental genes of Drosophila. Conclusions Our results show differential expression of regulatory, structural and enzyme-coding genes in association with termite castes and their developmental precursor stages. They also provide the first glimpse into how insect endosymbiont cellulase gene expression can vary in association with the caste of a host. These findings shed light on molecular processes associated with termite biology, polyphenism, caste differentiation and development and highlight potentially interesting variations in developmental themes between termites, other insects, and higher animals. PMID:14519197
21 CFR 862.1163 - Cardiac allograft gene expression profiling test system.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Cardiac allograft gene expression profiling test... Chemistry Test Systems § 862.1163 Cardiac allograft gene expression profiling test system. (a) Identification. A cardiac allograft gene expression profiling test system is a device that measures the...
Melendez, Roberto I.; McGinty, Jacqueline F.; Kalivas, Peter W.; Becker, Howard C.
2014-01-01
Neuroadaptations that participate in the ontogeny of alcohol dependence are likely a result of altered gene expression in various brain regions. The present study investigated brain region-specific changes in the pattern and magnitude of gene expression immediately following chronic intermittent ethanol (CIE) exposure and 8 hours following final ethanol exposure [i.e. early withdrawal (EWD)]. High-density oligonucleotide microarrays (Affymetrix 430A 2.0, Affymetrix, Santa Clara, CA, USA) and bioinformatics analysis were used to characterize gene expression and function in the prefrontal cortex (PFC), hippocampus (HPC) and nucleus accumbens (NAc) of C57BL/6J mice (Jackson Laboratories, Bar Harbor, ME, USA). Gene expression levels were determined using gene chip robust multi-array average followed by statistical analysis of microarrays and validated by quantitative real-time reverse transcription polymerase chain reaction and Western blot analysis. Results indicated that immediately following CIE exposure, changes in gene expression were strikingly greater in the PFC (284 genes) compared with the HPC (16 genes) and NAc (32 genes). Bioinformatics analysis revealed that most of the transcriptionally responsive genes in the PFC were involved in Ras/MAPK signaling, notch signaling or ubiquitination. In contrast, during EWD, changes in gene expression were greatest in the HPC (139 genes) compared with the PFC (four genes) and NAc (eight genes). The most transcriptionally responsive genes in the HPC were involved in mRNA processing or actin dynamics. Of the few genes detected in the NAc, the most representatives were involved in circadian rhythms. Overall, these findings indicate that brain region-specific and time-dependent neuroadaptive alterations in gene expression play an integral role in the development of alcohol dependence and withdrawal. PMID:21812870
2011-01-01
Background Internal control genes with highly uniform expression throughout the experimental conditions are required for accurate gene expression analysis as no universal reference genes exists. In this study, the expression stability of 24 candidate genes from Triticum aestivum cv. Cubus flag leaves grown under organic and conventional farming systems was evaluated in two locations in order to select suitable genes that can be used for normalization of real-time quantitative reverse-transcription PCR (RT-qPCR) reactions. The genes were selected among the most common used reference genes as well as genes encoding proteins involved in several metabolic pathways. Findings Individual genes displayed different expression rates across all samples assayed. Applying geNorm, a set of three potential reference genes were suitable for normalization of RT-qPCR reactions in winter wheat flag leaves cv. Cubus: TaFNRII (ferredoxin-NADP(H) oxidoreductase; AJ457980.1), ACT2 (actin 2; TC234027), and rrn26 (a putative homologue to RNA 26S gene; AL827977.1). In addition of these three genes that were also top-ranked by NormFinder, two extra genes: CYP18-2 (Cyclophilin A, AY456122.1) and TaWIN1 (14-3-3 like protein, AB042193) were most consistently stably expressed. Furthermore, we showed that TaFNRII, ACT2, and CYP18-2 are suitable for gene expression normalization in other two winter wheat varieties (Tommi and Centenaire) grown under three treatments (organic, conventional and no nitrogen) and a different environment than the one tested with cv. Cubus. Conclusions This study provides a new set of reference genes which should improve the accuracy of gene expression analyses when using wheat flag leaves as those related to the improvement of nitrogen use efficiency for cereal production. PMID:21951810
DNA methylation of amino acid transporter genes in the human placenta.
Simner, C; Novakovic, B; Lillycrop, K A; Bell, C G; Harvey, N C; Cooper, C; Saffery, R; Lewis, R M; Cleal, J K
2017-12-01
Placental transfer of amino acids via amino acid transporters is essential for fetal growth. Little is known about the epigenetic regulation of amino acid transporters in placenta. This study investigates the DNA methylation status of amino acid transporters and their expression across gestation in human placenta. BeWo cells were treated with 5-aza-2'-deoxycytidine to inhibit methylation and assess the effects on amino acid transporter gene expression. The DNA methylation levels of amino acid transporter genes in human placenta were determined across gestation using DNA methylation array data. Placental amino acid transporter gene expression across gestation was also analysed using data from publically available Gene Expression Omnibus data sets. The expression levels of these transporters at term were established using RNA sequencing data. Inhibition of DNA methylation in BeWo cells demonstrated that expression of specific amino acid transporters can be inversely associated with DNA methylation. Amino acid transporters expressed in term placenta generally showed low levels of promoter DNA methylation. Transporters with little or no expression in term placenta tended to be more highly methylated at gene promoter regions. The transporter genes SLC1A2, SLC1A3, SLC1A4, SLC7A5, SLC7A11 and SLC7A10 had significant changes in enhancer DNA methylation across gestation, as well as gene expression changes across gestation. This study implicates DNA methylation in the regulation of amino acid transporter gene expression. However, in human placenta, DNA methylation of these genes remains low across gestation and does not always play an obvious role in regulating gene expression, despite clear evidence for differential expression as gestation proceeds. Copyright © 2017. Published by Elsevier Ltd.
Wan, Qiao; Chen, Shuilian; Shan, Zhihui; Yang, Zhonglu; Chen, Limiao; Zhang, Chanjuan; Yuan, Songli; Hao, Qinnan; Zhang, Xiaojuan; Qiu, Dezhen; Chen, Haifeng; Zhou, Xinan
2017-01-01
Real-time quantitative reverse transcription PCR is a sensitive and widely used technique to quantify gene expression. To achieve a reliable result, appropriate reference genes are highly required for normalization of transcripts in different samples. In this study, 9 previously published reference genes (60S, Fbox, ELF1A, ELF1B, ACT11, TUA5, UBC4, G6PD, CYP2) of soybean [Glycine max (L.) Merr.] were selected. The expression stability of the 9 genes was evaluated under conditions of biotic stress caused by infection with soybean mosaic virus, nitrogen stress, across different cultivars and developmental stages. ΔCt and geNorm algorithms were used to evaluate and rank the expression stability of the 9 reference genes. Results obtained from two algorithms showed high consistency. Moreover, results of pairwise variation showed that two reference genes were sufficient to normalize the expression levels of target genes under each experimental setting. For virus infection, ELF1A and ELF1B were the most stable reference genes for accurate normalization. For different developmental stages, Fbox and G6PD had the highest expression stability between two soybean cultivars (Tanlong No. 1 and Tanlong No. 2). ELF1B and ACT11 were identified as the most stably expressed reference genes both under nitrogen stress and among different cultivars. The results showed that none of the candidate reference genes were uniformly expressed at different conditions, and selecting appropriate reference genes was pivotal for gene expression studies with particular condition and tissue. The most stable combination of genes identified in this study will help to achieve more accurate and reliable results in a wide variety of samples in soybean.
Carlson, Kimberly A.; Gardner, Kylee; Pashaj, Anjeza; Carlson, Darby J.; Yu, Fang; Eudy, James D.; Zhang, Chi; Harshman, Lawrence G.
2015-01-01
Aging is a complex process characterized by a steady decline in an organism's ability to perform life-sustaining tasks. In the present study, two cages of approximately 12,000 mated Drosophila melanogaster females were used as a source of RNA from individuals sampled frequently as a function of age. A linear model for microarray data method was used for the microarray analysis to adjust for the box effect; it identified 1,581 candidate aging genes. Cluster analyses using a self-organizing map algorithm on the 1,581 significant genes identified gene expression patterns across different ages. Genes involved in immune system function and regulation, chorion assembly and function, and metabolism were all significantly differentially expressed as a function of age. The temporal pattern of data indicated that gene expression related to aging is affected relatively early in life span. In addition, the temporal variance in gene expression in immune function genes was compared to a random set of genes. There was an increase in the variance of gene expression within each cohort, which was not observed in the set of random genes. This observation is compatible with the hypothesis that D. melanogaster immune function genes lose control of gene expression as flies age. PMID:26090231
Czechowski, Tomasz; Stitt, Mark; Altmann, Thomas; Udvardi, Michael K.; Scheible, Wolf-Rüdiger
2005-01-01
Gene transcripts with invariant abundance during development and in the face of environmental stimuli are essential reference points for accurate gene expression analyses, such as RNA gel-blot analysis or quantitative reverse transcription-polymerase chain reaction (PCR). An exceptionally large set of data from Affymetrix ATH1 whole-genome GeneChip studies provided the means to identify a new generation of reference genes with very stable expression levels in the model plant species Arabidopsis (Arabidopsis thaliana). Hundreds of Arabidopsis genes were found that outperform traditional reference genes in terms of expression stability throughout development and under a range of environmental conditions. Most of these were expressed at much lower levels than traditional reference genes, making them very suitable for normalization of gene expression over a wide range of transcript levels. Specific and efficient primers were developed for 22 genes and tested on a diverse set of 20 cDNA samples. Quantitative reverse transcription-PCR confirmed superior expression stability and lower absolute expression levels for many of these genes, including genes encoding a protein phosphatase 2A subunit, a coatomer subunit, and an ubiquitin-conjugating enzyme. The developed PCR primers or hybridization probes for the novel reference genes will enable better normalization and quantification of transcript levels in Arabidopsis in the future. PMID:16166256
Gene expression profiling in the hippocampus of learned helpless and nonhelpless rats.
Kohen, R; Kirov, S; Navaja, G P; Happe, H Kevin; Hamblin, M W; Snoddy, J R; Neumaier, J F; Petty, F
2005-01-01
In the learned helplessness (LH) animal model of depression, failure to attempt escape from avoidable environmental stress, LH, indicates behavioral despair, whereas nonhelpless (NH) behavior reflects behavioral resilience to the effects of environmental stress. Comparing hippocampal gene expression with large-scale oligonucleotide microarrays, we found that stress-resilient (NH) rats, although behaviorally indistinguishable from controls, showed a distinct gene expression profile compared to LH, sham stressed, and naïve control animals. Genes that were confirmed as differentially expressed in the NH group by quantitative PCR strongly correlated in their levels of expression across all four animal groups. Differential expression could not be confirmed at the protein level. We identified several shared degenerate sequence motifs in the 3' untranslated region (3'UTR) of differentially expressed genes that could be a factor in this tight correlation of expression levels among differentially expressed genes.
Evolution under monogamy feminizes gene expression in Drosophila melanogaster.
Hollis, Brian; Houle, David; Yan, Zheng; Kawecki, Tadeusz J; Keller, Laurent
2014-03-18
Many genes have evolved sexually dimorphic expression as a consequence of divergent selection on males and females. However, because the sexes share a genome, the extent to which evolution can shape gene expression independently in each sex is controversial. Here, we use experimental evolution to reveal suboptimal sex-specific expression for much of the genome. By enforcing a monogamous mating system in populations of Drosophila melanogaster for over 100 generations, we eliminated major components of selection on males: female choice and male-male competition. If gene expression is subject to sexually antagonistic selection, relaxed selection on males should cause evolution towards female optima. Monogamous males and females show this pattern of feminization in both the whole-body and head transcriptomes. Genes with male-biased expression patterns evolved decreased expression under monogamy, while genes with female-biased expression evolved increased expression, relative to polygamous populations. Our results demonstrate persistent and widespread evolutionary tension between male and female adaptation.
A microarray analysis of potential genes underlying the neurosensitivity of mice to propofol.
Lowes, Damon A; Galley, Helen F; Lowe, Peter R; Rikke, Brad A; Johnson, Thomas E; Webster, Nigel R
2005-09-01
Establishing the mechanism of action of general anesthetics at the molecular level is difficult because of the multiple targets with which these drugs are associated. Inbred short sleep (ISS) and long sleep (ILS) mice are differentially sensitive in response to ethanol and other sedative hypnotics and contain a single quantitative trait locus (Lorp1) that accounts for the genetic variance of loss-of-righting reflex in response to propofol (LORP). In this study, we used high-density oligonucleotide microarrays to identify global gene expression and candidate genes differentially expressed within the Lorp1 region that may give insight into the molecular mechanism underlying LORP. Microarray analysis was performed using Affymetrix MG-U74Av2 Genechips and a selection of differentially expressed genes was confirmed by semiquantitative reverse transcription-polymerase chain reaction. Global expression in the brains of ILS and ISS mice revealed 3423 genes that were significantly expressed, of which 139 (4%) were differentially expressed. Analysis of genes located within the Lorp1 region showed that 26 genes were significantly expressed and that just 2 genes (7%) were differentially expressed. These genes encoded for the proteins AWP1 (associated with protein kinase 1) and "BTB (POZ) domain containing 1," whose functions are largely uncharacterized. Genes differentially expressed outside Lorp1 included seven genes with previously characterized neuronal functions and thus stand out as additional candidate genes that may be involved in mediating the neurosensitivity differences between ISS and ILS.
Wang, Lishi; Huang, Yue; Jiao, Yan; Chen, Hong; Cao, Yanhong; Bennett, Beth; Wang, Yongjun; Gu, Weikuan
2013-01-01
The purpose of this study is to investigate whether expression profiles of alcoholism-relevant genes in different parts of the brain are correlated differently with those in the liver. Four experiments were conducted. First, we used gene expression profiles from five parts of the brain (striatum, prefrontal cortex, nucleus accumbens, hippocampus, and cerebellum) and from liver in a population of recombinant inbred mouse strains to examine the expression association of 10 alcoholism-relevant genes. Second, we conducted the same association analysis between brain structures and the lung. Third, using five randomly selected, nonalcoholism-relevant genes, we conducted the association analysis between brain and liver. Finally, we compared the expression of 10 alcoholism-relevant genes in hippocampus and cerebellum between an alcohol preference strain and a wild-type control. We observed a difference in correlation patterns in expression levels of 10 alcoholism-relevant genes between different parts of the brain with those of liver. We then examined the association of gene expression between alcohol dehydrogenases (Adh1, Adh2, Adh5, and Adh7) and different parts of the brain. The results were similar to those of the 10 genes. Then, we found that the association of those genes between brain structures and lung was different from that of liver. Next, we found that the association patterns of five alcoholism-nonrelevant genes were different from those of 10 alcoholism-relevant genes. Finally, we found that the expression level of 10 alcohol-relevant genes is influenced more in hippocampus than in cerebellum in the alcohol preference strain. Our results show that the expression of alcoholism-relevant genes in liver is differently associated with the expression of genes in different parts of the brain. Because different structural changes in different parts of the brain in alcoholism have been reported, it is important to investigate whether those structural differences in the brains of those with alcoholism are due to the difference in the associations of gene expression between genes in liver and in different parts of the brain.
Jani, Saurin D; Argraves, Gary L; Barth, Jeremy L; Argraves, W Scott
2010-04-01
An important objective of DNA microarray-based gene expression experimentation is determining inter-relationships that exist between differentially expressed genes and biological processes, molecular functions, cellular components, signaling pathways, physiologic processes and diseases. Here we describe GeneMesh, a web-based program that facilitates analysis of DNA microarray gene expression data. GeneMesh relates genes in a query set to categories available in the Medical Subject Headings (MeSH) hierarchical index. The interface enables hypothesis driven relational analysis to a specific MeSH subcategory (e.g., Cardiovascular System, Genetic Processes, Immune System Diseases etc.) or unbiased relational analysis to broader MeSH categories (e.g., Anatomy, Biological Sciences, Disease etc.). Genes found associated with a given MeSH category are dynamically linked to facilitate tabular and graphical depiction of Entrez Gene information, Gene Ontology information, KEGG metabolic pathway diagrams and intermolecular interaction information. Expression intensity values of groups of genes that cluster in relation to a given MeSH category, gene ontology or pathway can be displayed as heat maps of Z score-normalized values. GeneMesh operates on gene expression data derived from a number of commercial microarray platforms including Affymetrix, Agilent and Illumina. GeneMesh is a versatile web-based tool for testing and developing new hypotheses through relating genes in a query set (e.g., differentially expressed genes from a DNA microarray experiment) to descriptors making up the hierarchical structure of the National Library of Medicine controlled vocabulary thesaurus, MeSH. The system further enhances the discovery process by providing links between sets of genes associated with a given MeSH category to a rich set of html linked tabular and graphic information including Entrez Gene summaries, gene ontologies, intermolecular interactions, overlays of genes onto KEGG pathway diagrams and heatmaps of expression intensity values. GeneMesh is freely available online at http://proteogenomics.musc.edu/genemesh/.
G-NEST: A gene neighborhood scoring tool to identify co-conserved, co-expressed genes
USDA-ARS?s Scientific Manuscript database
In previous studies, gene neighborhoods--spatial clusters of co-expressed genes in the genome--have been defined using arbitrary rules such as requiring adjacency, a minimum number of genes, a fixed window size, or a minimum expression level. In the current study, we developed a Gene Neighborhood Sc...
Using RNA-Seq data to select refence genes for normalizing gene expression in apple roots
USDA-ARS?s Scientific Manuscript database
Gene expression in apple roots in response to various stress conditions is a less-explored research subject. Reliable reference genes for normalizing quantitative gene expression data have not been carefully investigated. In this study, the suitability of a set of 15 apple genes were evaluated for t...
Liu, Gang; Huan, Pin; Liu, Baozhong
2017-06-01
Among the potential larval shell formation genes in mollusks, most are expressed in cells surrounding the shell field during the early phase of shell formation. The only exception (cgi-tyr1) is expressed in the whole larval mantle and thus represents a novel type of expression pattern. This study reports another gene with such an expression pattern. The gene encoded a SoxC homolog of the Pacific oyster Crassostrea gigas and was named cgi-soxc. Whole-mount in situ hybridization revealed that the gene was highly expressed in the whole larval mantle of early larvae. Based on its spatiotemporal expression, cgi-soxc is hypothesized to be involved in periostracum biogenesis, biomineralization, and regulation of cell proliferation. Furthermore, we investigated the interrelationship between cgi-soxc expression and two additional potential shell formation genes, cgi-tyr1 and cgi-gata2/3. The results confirmed co-expression of the three genes in the larval mantle of early D-veliger. Nevertheless, cgi-gata2/3 was only expressed in the mantle edge, and the other two genes were expressed in all mantle cells. Based on the spatial expression patterns of the three genes, two cell groups were identified from the larval mantle (tyr1 + /soxc + /gata2/3 + cells and tyr1 + /soxc + /gata2/3 - cells) and are important to study the differentiation and function of this tissue. The results of this study enrich our knowledge on the structure and function of larval mantle and provide important information to understand the molecular mechanisms of larval shell formation.
Regulatory Divergence between Parental Alleles Determines Gene Expression Patterns in Hybrids
Combes, Marie-Christine; Hueber, Yann; Dereeper, Alexis; Rialle, Stéphanie; Herrera, Juan-Carlos; Lashermes, Philippe
2015-01-01
Both hybridization and allopolyploidization generate novel phenotypes by conciliating divergent genomes and regulatory networks in the same cellular context. To understand the rewiring of gene expression in hybrids, the total expression of 21,025 genes and the allele-specific expression of over 11,000 genes were quantified in interspecific hybrids and their parental species, Coffea canephora and Coffea eugenioides using RNA-seq technology. Between parental species, cis- and trans-regulatory divergences affected around 32% and 35% of analyzed genes, respectively, with nearly 17% of them showing both. The relative importance of trans-regulatory divergences between both species could be related to their low genetic divergence and perennial habit. In hybrids, among divergently expressed genes between parental species and hybrids, 77% was expressed like one parent (expression level dominance), including 65% like C. eugenioides. Gene expression was shown to result from the expression of both alleles affected by intertwined parental trans-regulatory factors. A strong impact of C. eugenioides trans-regulatory factors on the upregulation of C. canephora alleles was revealed. The gene expression patterns appeared determined by complex combinations of cis- and trans-regulatory divergences. In particular, the observed biased expression level dominance seemed to be derived from the asymmetric effects of trans-regulatory parental factors on regulation of alleles. More generally, this study illustrates the effects of divergent trans-regulatory parental factors on the gene expression pattern in hybrids. The characteristics of the transcriptional response to hybridization appear to be determined by the compatibility of gene regulatory networks and therefore depend on genetic divergences between the parental species and their evolutionary history. PMID:25819221
Gene Expression Noise, Fitness Landscapes, and Evolution
NASA Astrophysics Data System (ADS)
Charlebois, Daniel
The stochastic (or noisy) process of gene expression can have fitness consequences for living organisms. For example, gene expression noise facilitates the development of drug resistance by increasing the time scale at which beneficial phenotypic states can be maintained. The present work investigates the relationship between gene expression noise and the fitness landscape. By incorporating the costs and benefits of gene expression, we track how the fluctuation magnitude and timescale of expression noise evolve in simulations of cell populations under stress. We find that properties of expression noise evolve to maximize fitness on the fitness landscape, and that low levels of expression noise emerge when the fitness benefits of gene expression exceed the fitness costs (and that high levels of noise emerge when the costs of expression exceed the benefits). The findings from our theoretical/computational work offer new hypotheses on the development of drug resistance, some of which are now being investigated in evolution experiments in our laboratory using well-characterized synthetic gene regulatory networks in budding yeast. Nserc Postdoctoral Fellowship (Grant No. PDF-453977-2014).
Identification and resolution of artifacts in the interpretation of imprinted gene expression
Proudhon, Charlotte
2010-01-01
Genomic imprinting refers to genes that are epigenetically programmed in the germline to express exclusively or preferentially one allele in a parent-of-origin manner. Expression-based genome-wide screening for the identification of imprinted genes has failed to uncover a significant number of new imprinted genes, probably because of the high tissue- and developmental-stage specificity of imprinted gene expression. A very large number of technical and biological artifacts can also lead to the erroneous evidence of imprinted gene expression. In this article, we focus on three common sources of potential confounding effects: (i) random monoallelic expression in monoclonal cell populations, (ii) genetically determined monoallelic expression and (iii) contamination or infiltration of embryonic tissues with maternal material. This last situation specifically applies to genes that occur as maternally expressed in the placenta. Beside the use of reciprocal crosses that are instrumental to confirm the parental specificity of expression, we provide additional methods for the detection and elimination of these situations that can be misinterpreted as cases of imprinted expression. PMID:20829207
A whole-blood transcriptome meta-analysis identifies gene expression signatures of cigarette smoking
Huan, Tianxiao; Joehanes, Roby; Schurmann, Claudia; Schramm, Katharina; Pilling, Luke C.; Peters, Marjolein J.; Mägi, Reedik; DeMeo, Dawn; O'Connor, George T.; Ferrucci, Luigi; Teumer, Alexander; Homuth, Georg; Biffar, Reiner; Völker, Uwe; Herder, Christian; Waldenberger, Melanie; Peters, Annette; Zeilinger, Sonja; Metspalu, Andres; Hofman, Albert; Uitterlinden, André G.; Hernandez, Dena G.; Singleton, Andrew B.; Bandinelli, Stefania; Munson, Peter J.; Lin, Honghuang; Benjamin, Emelia J.; Esko, Tõnu; Grabe, Hans J.; Prokisch, Holger; van Meurs, Joyce B.J.; Melzer, David; Levy, Daniel
2016-01-01
Abstract Cigarette smoking is a leading modifiable cause of death worldwide. We hypothesized that cigarette smoking induces extensive transcriptomic changes that lead to target-organ damage and smoking-related diseases. We performed a meta-analysis of transcriptome-wide gene expression using whole blood-derived RNA from 10,233 participants of European ancestry in six cohorts (including 1421 current and 3955 former smokers) to identify associations between smoking and altered gene expression levels. At a false discovery rate (FDR) <0.1, we identified 1270 differentially expressed genes in current vs. never smokers, and 39 genes in former vs. never smokers. Expression levels of 12 genes remained elevated up to 30 years after smoking cessation, suggesting that the molecular consequence of smoking may persist for decades. Gene ontology analysis revealed enrichment of smoking-related genes for activation of platelets and lymphocytes, immune response, and apoptosis. Many of the top smoking-related differentially expressed genes, including LRRN3 and GPR15, have DNA methylation loci in promoter regions that were recently reported to be hypomethylated among smokers. By linking differential gene expression with smoking-related disease phenotypes, we demonstrated that stroke and pulmonary function show enrichment for smoking-related gene expression signatures. Mediation analysis revealed the expression of several genes (e.g. ALAS2) to be putative mediators of the associations between smoking and inflammatory biomarkers (IL6 and C-reactive protein levels). Our transcriptomic study provides potential insights into the effects of cigarette smoking on gene expression in whole blood and their relations to smoking-related diseases. The results of such analyses may highlight attractive targets for treating or preventing smoking-related health effects. PMID:28158590
Drews, Anna; Strandh, Maria; Råberg, Lars; Westerdahl, Helena
2017-06-26
The Major Histocompatibility Complex (MHC) plays a central role in immunity and has been given considerable attention by evolutionary ecologists due to its associations with fitness-related traits. Songbirds have unusually high numbers of MHC class I (MHC-I) genes, but it is not known whether all are expressed and equally important for immune function. Classical MHC-I genes are highly expressed, polymorphic and present peptides to T-cells whereas non-classical MHC-I genes have lower expression, are more monomorphic and do not present peptides to T-cells. To get a better understanding of the highly duplicated MHC genes in songbirds, we studied gene expression in a phylogenetic framework in three species of sparrows (house sparrow, tree sparrow and Spanish sparrow), using high-throughput sequencing. We hypothesize that sparrows could have classical and non-classical genes, as previously indicated though never tested using gene expression. The phylogenetic analyses reveal two distinct types of MHC-I alleles among the three sparrow species, one with high and one with low level of polymorphism, thus resembling classical and non-classical genes, respectively. All individuals had both types of alleles, but there was copy number variation both within and among the sparrow species. However, the number of highly polymorphic alleles that were expressed did not vary between species, suggesting that the structural genomic variation is counterbalanced by conserved gene expression. Overall, 50% of the MHC-I alleles were expressed in sparrows. Expression of the highly polymorphic alleles was very variable, whereas the alleles with low polymorphism had uniformly low expression. Interestingly, within an individual only one or two alleles from the polymorphic genes were highly expressed, indicating that only a single copy of these is highly expressed. Taken together, the phylogenetic reconstruction and the analyses of expression suggest that sparrows have both classical and non-classical MHC-I genes, and that the evolutionary origin of these genes predate the split of the three investigated sparrow species 7 million years ago. Because only the classical MHC-I genes are involved in antigen presentation, the function of different MHC-I genes should be considered in future ecological and evolutionary studies of MHC-I in sparrows and other songbirds.
2012-01-01
Background Alteration in gene expression resulting from allopolyploidization is a prominent feature in plants, but its spectrum and extent are not fully known. Common wheat (Triticum aestivum) was formed via allohexaploidization about 10,000 years ago, and became the most important crop plant. To gain further insights into the genome-wide transcriptional dynamics associated with the onset of common wheat formation, we conducted microarray-based genome-wide gene expression analysis on two newly synthesized allohexaploid wheat lines with chromosomal stability and a genome constitution analogous to that of the present-day common wheat. Results Multi-color GISH (genomic in situ hybridization) was used to identify individual plants from two nascent allohexaploid wheat lines between Triticum turgidum (2n = 4x = 28; genome BBAA) and Aegilops tauschii (2n = 2x = 14; genome DD), which had a stable chromosomal constitution analogous to that of common wheat (2n = 6x = 42; genome BBAADD). Genome-wide analysis of gene expression was performed for these allohexaploid lines along with their parental plants from T. turgidum and Ae. tauschii, using the Affymetrix Gene Chip Wheat Genome-Array. Comparison with the parental plants coupled with inclusion of empirical mid-parent values (MPVs) revealed that whereas the great majority of genes showed the expected parental additivity, two major patterns of alteration in gene expression in the allohexaploid lines were identified: parental dominance expression and non-additive expression. Genes involved in each of the two altered expression patterns could be classified into three distinct groups, stochastic, heritable and persistent, based on their transgenerational heritability and inter-line conservation. Strikingly, whereas both altered patterns of gene expression showed a propensity of inheritance, identity of the involved genes was highly stochastic, consistent with the involvement of diverse Gene Ontology (GO) terms. Nonetheless, those genes showing non-additive expression exhibited a significant enrichment for vesicle-function. Conclusions Our results show that two patterns of global alteration in gene expression are conditioned by allohexaploidization in wheat, that is, parental dominance expression and non-additive expression. Both altered patterns of gene expression but not the identity of the genes involved are likely to play functional roles in stabilization and establishment of the newly formed allohexaploid plants, and hence, relevant to speciation and evolution of T. aestivum. PMID:22277161
Gene expression in the rectus abdominus muscle of patients with and without pelvic organ prolapse.
Hundley, Andrew F; Yuan, Lingwen; Visco, Anthony G
2008-02-01
The objective of the study was to compare gene expression in a group of actin and myosin-related proteins in the rectus muscle of 15 patients with pelvic organ prolapse and 13 controls. Six genes previously identified by microarray GeneChip analysis were examined using real-time quantitative reverse transcriptase-polymerase chain reaction analysis, including 2 genes showing differential expression in pubococcygeus muscle. Samples and controls were run in triplicate in multiplexed wells, and levels of gene expression were analyzed using the comparative critical threshold method. One gene, MYH3, was 3.2 times overexpressed in patients with prolapse (P = .032), but no significant differences in expression were seen for the other genes examined. An age-matched subset of 9 patients and controls showed that MYH3 gene expression was no longer significantly different (P = .058). Differential messenger ribonucleic acid levels of actin and myosin-related genes in patients with pelvic organ prolapse and controls may be limited to skeletal muscle from the pelvic floor.
RefEx, a reference gene expression dataset as a web tool for the functional analysis of genes.
Ono, Hiromasa; Ogasawara, Osamu; Okubo, Kosaku; Bono, Hidemasa
2017-08-29
Gene expression data are exponentially accumulating; thus, the functional annotation of such sequence data from metadata is urgently required. However, life scientists have difficulty utilizing the available data due to its sheer magnitude and complicated access. We have developed a web tool for browsing reference gene expression pattern of mammalian tissues and cell lines measured using different methods, which should facilitate the reuse of the precious data archived in several public databases. The web tool is called Reference Expression dataset (RefEx), and RefEx allows users to search by the gene name, various types of IDs, chromosomal regions in genetic maps, gene family based on InterPro, gene expression patterns, or biological categories based on Gene Ontology. RefEx also provides information about genes with tissue-specific expression, and the relative gene expression values are shown as choropleth maps on 3D human body images from BodyParts3D. Combined with the newly incorporated Functional Annotation of Mammals (FANTOM) dataset, RefEx provides insight regarding the functional interpretation of unfamiliar genes. RefEx is publicly available at http://refex.dbcls.jp/.
RefEx, a reference gene expression dataset as a web tool for the functional analysis of genes
Ono, Hiromasa; Ogasawara, Osamu; Okubo, Kosaku; Bono, Hidemasa
2017-01-01
Gene expression data are exponentially accumulating; thus, the functional annotation of such sequence data from metadata is urgently required. However, life scientists have difficulty utilizing the available data due to its sheer magnitude and complicated access. We have developed a web tool for browsing reference gene expression pattern of mammalian tissues and cell lines measured using different methods, which should facilitate the reuse of the precious data archived in several public databases. The web tool is called Reference Expression dataset (RefEx), and RefEx allows users to search by the gene name, various types of IDs, chromosomal regions in genetic maps, gene family based on InterPro, gene expression patterns, or biological categories based on Gene Ontology. RefEx also provides information about genes with tissue-specific expression, and the relative gene expression values are shown as choropleth maps on 3D human body images from BodyParts3D. Combined with the newly incorporated Functional Annotation of Mammals (FANTOM) dataset, RefEx provides insight regarding the functional interpretation of unfamiliar genes. RefEx is publicly available at http://refex.dbcls.jp/. PMID:28850115
Li, Shuyu; Li, Yiqun Helen; Wei, Tao; Su, Eric Wen; Duffin, Kevin; Liao, Birong
2006-10-25
The tissue expression pattern of a gene often provides an important clue to its potential role in a biological process. A vast amount of gene expression data have been and are being accumulated in public repository through different technology platforms. However, exploitations of these rich data sources remain limited in part due to issues of technology standardization. Our objective is to test the data comparability between SAGE and microarray technologies, through examining the expression pattern of genes under normal physiological states across variety of tissues. There are 42-54% of genes showing significant correlations in tissue expression patterns between SAGE and GeneChip, with 30-40% of genes whose expression patterns are positively correlated and 10-15% of genes whose expression patterns are negatively correlated at a statistically significant level (p = 0.05). Our analysis suggests that the discrepancy on the expression patterns derived from technology platforms is not likely from the heterogeneity of tissues used in these technologies, or other spurious correlations resulting from microarray probe design, abundance of genes, or gene function. The discrepancy can be partially explained by errors in the original assignment of SAGE tags to genes due to the evolution of sequence databases. In addition, sequence analysis has indicated that many SAGE tags and Affymetrix array probe sets are mapped to different splice variants or different sequence regions although they represent the same gene, which also contributes to the observed discrepancies between SAGE and array expression data. To our knowledge, this is the first report attempting to mine gene expression patterns across tissues using public data from different technology platforms. Unlike previous similar studies that only demonstrated the discrepancies between the two gene expression platforms, we carried out in-depth analysis to further investigate the cause for such discrepancies. Our study shows that the exploitation of rich public expression resource requires extensive knowledge about the technologies, and experiment. Informatic methodologies for better interoperability among platforms still remain a gap. One of the areas that can be improved practically is the accurate sequence mapping of SAGE tags and array probes to full-length genes.
RUAN, XIYUN; LI, HONGYUN; LIU, BO; CHEN, JIE; ZHANG, SHIBAO; SUN, ZEQIANG; LIU, SHUANGQING; SUN, FAHAI; LIU, QINGYONG
2015-01-01
The aim of the present study was to develop a novel method for identifying pathways associated with renal cell carcinoma (RCC) based on a gene co-expression network. A framework was established where a co-expression network was derived from the database as well as various co-expression approaches. First, the backbone of the network based on differentially expressed (DE) genes between RCC patients and normal controls was constructed by the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database. The differentially co-expressed links were detected by Pearson’s correlation, the empirical Bayesian (EB) approach and Weighted Gene Co-expression Network Analysis (WGCNA). The co-expressed gene pairs were merged by a rank-based algorithm. We obtained 842; 371; 2,883 and 1,595 co-expressed gene pairs from the co-expression networks of the STRING database, Pearson’s correlation EB method and WGCNA, respectively. Two hundred and eighty-one differentially co-expressed (DC) gene pairs were obtained from the merged network using this novel method. Pathway enrichment analysis based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) database and the network enrichment analysis (NEA) method were performed to verify feasibility of the merged method. Results of the KEGG and NEA pathway analyses showed that the network was associated with RCC. The suggested method was computationally efficient to identify pathways associated with RCC and has been identified as a useful complement to traditional co-expression analysis. PMID:26058425
Proof of Concept Study to Assess Fetal Gene Expression in Amniotic Fluid by NanoArray PCR
Massingham, Lauren J.; Johnson, Kirby L.; Bianchi, Diana W.; Pei, Shermin; Peter, Inga; Cowan, Janet M.; Tantravahi, Umadevi; Morrison, Tom B.
2011-01-01
Microarray analysis of cell-free RNA in amniotic fluid (AF) supernatant has revealed differential fetal gene expression as a function of gestational age and karyotype. Once informative genes are identified, research moves to a more focused platform such as quantitative reverse transcriptase-PCR. Standardized NanoArray PCR (SNAP) is a recently developed gene profiling technology that enables the measurement of transcripts from samples containing reduced quantities or degraded nucleic acids. We used a previously developed SNAP gene panel as proof of concept to determine whether fetal functional gene expression could be ascertained from AF supernatant. RNA was extracted and converted to cDNA from 19 AF supernatant samples of euploid fetuses between 15 to 20 weeks of gestation, and transcript abundance of 21 genes was measured. Statistically significant differences in expression, as a function of advancing gestational age, were observed for 5 of 21 genes. ANXA5, GUSB, and PPIA showed decreasing gene expression over time, whereas CASC3 and ZNF264 showed increasing gene expression over time. Statistically significantly increased expression of MTOR and STAT2 was seen in female compared with male fetuses. This study demonstrates the feasibility of focused fetal gene expression analysis using SNAP technology. In the future, this technique could be optimized to examine specific genes instrumental in fetal organ system function, which could be a useful addition to prenatal care. PMID:21827969
2013-01-01
Background Differential gene expression (DGE) analysis is commonly used to reveal the deregulated molecular mechanisms of complex diseases. However, traditional DGE analysis (e.g., the t test or the rank sum test) tests each gene independently without considering interactions between them. Top-ranked differentially regulated genes prioritized by the analysis may not directly relate to the coherent molecular changes underlying complex diseases. Joint analyses of co-expression and DGE have been applied to reveal the deregulated molecular modules underlying complex diseases. Most of these methods consist of separate steps: first to identify gene-gene relationships under the studied phenotype then to integrate them with gene expression changes for prioritizing signature genes, or vice versa. It is warrant a method that can simultaneously consider gene-gene co-expression strength and corresponding expression level changes so that both types of information can be leveraged optimally. Results In this paper, we develop a gene module based method for differential gene expression analysis, named network-based differential gene expression (nDGE) analysis, a one-step integrative process for prioritizing deregulated genes and grouping them into gene modules. We demonstrate that nDGE outperforms existing methods in prioritizing deregulated genes and discovering deregulated gene modules using simulated data sets. When tested on a series of smoker and non-smoker lung adenocarcinoma data sets, we show that top differentially regulated genes identified by the rank sum test in different sets are not consistent while top ranked genes defined by nDGE in different data sets significantly overlap. nDGE results suggest that a differentially regulated gene module, which is enriched for cell cycle related genes and E2F1 targeted genes, plays a role in the molecular differences between smoker and non-smoker lung adenocarcinoma. Conclusions In this paper, we develop nDGE to prioritize deregulated genes and group them into gene modules by simultaneously considering gene expression level changes and gene-gene co-regulations. When applied to both simulated and empirical data, nDGE outperforms the traditional DGE method. More specifically, when applied to smoker and non-smoker lung cancer sets, nDGE results illustrate the molecular differences between smoker and non-smoker lung cancer. PMID:24341432
NASA Astrophysics Data System (ADS)
Tsyganov, M. M.; Ibragimova, M. K.; Karabut, I. V.; Freydin, M. B.; Choinzonov, E. L.; Litvyakov, N. V.
2015-11-01
Our previous research establishes that changes of expression of the ATP-binding cassette genes family is connected with the neoadjuvant chemotherapy effect. However, the mechanism of regulation of resistance gene expression remains unclear. As many researchers believe, single nucleotide polymorphisms can be involved in this process. Thereupon, microarray analysis is used to study polymorphisms in ATP-binding cassette genes. It is thus found that MDR gene expression is connected with 5 polymorphisms, i.e. rs241432, rs241429, rs241430, rs3784867, rs59409230, which participate in the regulation of expression of own genes.
Wotton, Karl R; Shimeld, Sebastian M
2011-12-01
In the human genome, members of the FoxC, FoxF, FoxL1, and FoxQ1 gene families are found in two paralagous clusters. One cluster contains the genes FOXQ1, FOXF2, FOXC1 and the second consists of FOXF1, FOXC2, and FOXL1. In jawed vertebrates these genes are known to be expressed in different pharyngeal tissues and all, except FoxQ1, are involved in patterning the early embryonic mesoderm. We have previously traced the evolution of this cluster in the bony vertebrates, and the gene content is identical in the dogfish, a member of the most basally branching lineage of the jawed vertebrates. Here we extend these analyses to jawless vertebrates. Using genomic searches and molecular approaches we have identified homologues of these genes from lampreys. We identify two FoxC genes, two FoxF genes, two FoxQ1 genes and single FoxL1 gene. We examine the embryonic expression of one predominantly mesodermally expressed gene family, FoxC, and the endodermally expressed member of the cluster, FoxQ1. We identified FoxQ1 transcripts in the pharyngeal endoderm, while the two FoxC genes are differentially expressed in the pharyngeal mesenchyme and ectoderm. Furthermore we identify conserved expression of lamprey FoxC genes in the paraxial and intermediate mesoderms. We interpret our results through a chordate-wide comparison of expression patterns and discuss gene content in the context of theories on the evolution of the vertebrate genome. 2011 Elsevier B.V. All rights reserved.
Distal regulatory regions restrict the expression of cis-linked genes to the tapetal cells.
Franco, Luciana O; de O Manes, Carmem Lara; Hamdi, Said; Sachetto-Martins, Gilberto; de Oliveira, Dulce E
2002-04-24
The oleosin glycine-rich protein genes Atgrp-6, Atgrp-7, and Atgrp-8 occur in clusters in the Arabidopsis genome and are expressed specifically in the tapetum cells. The cis-regulatory regions involved in the tissue-specific gene expression were investigated by fusing different segments of the gene cluster to the uidA reporter gene. Common distal regulatory regions were identified that coordinate expression of the sequential genes. At least two of these genes were regulated spatially by proximal and distal sequences. The cis-acting elements (122 bp upstream of the transcriptional start point) drive the uidA expression to floral tissues, whereas distal 5' upstream regions restrict the gene activity to tapetal cells.
Fox, Rebecca M; Vaishnavi, Aria; Maruyama, Rika; Andrew, Deborah J
2013-05-01
FoxA transcription factors play major roles in organ-specific gene expression, regulating, for example, glucagon expression in the pancreas, GLUT2 expression in the liver, and tyrosine hydroxylase expression in dopaminergic neurons. Organ-specific gene regulation by FoxA proteins is achieved through cooperative regulation with a broad array of transcription factors with more limited expression domains. Fork head (Fkh), the sole Drosophila FoxA family member, is required for the development of multiple distinct organs, yet little is known regarding how Fkh regulates tissue-specific gene expression. Here, we characterize Sage, a bHLH transcription factor expressed exclusively in the Drosophila salivary gland (SG). We show that Sage is required for late SG survival and normal tube morphology. We find that many Sage targets, identified by microarray analysis, encode SG-specific secreted cargo, transmembrane proteins, and the enzymes that modify these proteins. We show that both Sage and Fkh are required for the expression of Sage target genes, and that co-expression of Sage and Fkh is sufficient to drive target gene expression in multiple cell types. Sage and Fkh drive expression of the bZip transcription factor Senseless (Sens), which boosts expression of Sage-Fkh targets, and Sage, Fkh and Sens colocalize on SG chromosomes. Importantly, expression of Sage-Fkh target genes appears to simply add to the tissue-specific gene expression programs already established in other cell types, and Sage and Fkh cannot alter the fate of most embryonic cell types even when expressed early and continuously.
Organ-specific gene expression: the bHLH protein Sage provides tissue specificity to Drosophila FoxA
Fox, Rebecca M.; Vaishnavi, Aria; Maruyama, Rika; Andrew, Deborah J.
2013-01-01
FoxA transcription factors play major roles in organ-specific gene expression, regulating, for example, glucagon expression in the pancreas, GLUT2 expression in the liver, and tyrosine hydroxylase expression in dopaminergic neurons. Organ-specific gene regulation by FoxA proteins is achieved through cooperative regulation with a broad array of transcription factors with more limited expression domains. Fork head (Fkh), the sole Drosophila FoxA family member, is required for the development of multiple distinct organs, yet little is known regarding how Fkh regulates tissue-specific gene expression. Here, we characterize Sage, a bHLH transcription factor expressed exclusively in the Drosophila salivary gland (SG). We show that Sage is required for late SG survival and normal tube morphology. We find that many Sage targets, identified by microarray analysis, encode SG-specific secreted cargo, transmembrane proteins, and the enzymes that modify these proteins. We show that both Sage and Fkh are required for the expression of Sage target genes, and that co-expression of Sage and Fkh is sufficient to drive target gene expression in multiple cell types. Sage and Fkh drive expression of the bZip transcription factor Senseless (Sens), which boosts expression of Sage-Fkh targets, and Sage, Fkh and Sens colocalize on SG chromosomes. Importantly, expression of Sage-Fkh target genes appears to simply add to the tissue-specific gene expression programs already established in other cell types, and Sage and Fkh cannot alter the fate of most embryonic cell types even when expressed early and continuously. PMID:23578928
Delimiting regulatory sequences of the Drosophila melanogaster Ddc gene.
Hirsh, J; Morgan, B A; Scholnick, S B
1986-01-01
We delimited sequences necessary for in vivo expression of the Drosophila melanogaster dopa decarboxylase gene Ddc. The expression of in vitro-altered genes was assayed following germ line integration via P-element vectors. Sequences between -209 and -24 were necessary for normally regulated expression, although genes lacking these sequences could be expressed at 10 to 50% of wild-type levels at specific developmental times. These genes showed components of normal developmental expression, which suggests that they retain some regulatory elements. All Ddc genes lacking the normal immediate 5'-flanking sequences were grossly deficient in larval central nervous system expression. Thus, this upstream region must contain at least one element necessary for this expression. A mutated Ddc gene without a normal TATA boxlike sequence used the normal RNA start points, indicating that this sequences is not required for start point specificity. Images PMID:3099170
Computational gene expression profiling under salt stress reveals patterns of co-expression
Sanchita; Sharma, Ashok
2016-01-01
Plants respond differently to environmental conditions. Among various abiotic stresses, salt stress is a condition where excess salt in soil causes inhibition of plant growth. To understand the response of plants to the stress conditions, identification of the responsible genes is required. Clustering is a data mining technique used to group the genes with similar expression. The genes of a cluster show similar expression and function. We applied clustering algorithms on gene expression data of Solanum tuberosum showing differential expression in Capsicum annuum under salt stress. The clusters, which were common in multiple algorithms were taken further for analysis. Principal component analysis (PCA) further validated the findings of other cluster algorithms by visualizing their clusters in three-dimensional space. Functional annotation results revealed that most of the genes were involved in stress related responses. Our findings suggest that these algorithms may be helpful in the prediction of the function of co-expressed genes. PMID:26981411
Minchenko, O H; Kharkova, A P; Minchenko, D O; Karbovskyi, L L
2015-01-01
We have studied hypoxic regulation of the expression of different insulin-like growth factor binding protein genes in U87 glioma cells in relation to inhibition of IRE1 (inositol requiring enzyme-1), a central mediator of endoplasmic reticulum stress, which controls cell proliferation and tumor growth. We have demonstrated that hypoxia leads to up-regulation of the expression of IGFBP6, IGFBP7, IGFBP10/CYR61, WISP1, and WISP2 genes and down-regulation--of IGFBP9/NOV gene at the mRNA level in control glioma cells, being more signifcant changes for IGFBP10/CYR61 and WISP2 genes. At the same time, inhibition of IRE1 modifies the effect of hypoxia on the expression of all studied genes: eliminates sensitivity to hypoxia the expression of IGFBP7 and IGFBP9/NOV genes, suppresses effect of hypoxia on IGFBP6, IGFBP10/CYR61, and WISP2 genes, and slightly enhances hypoxic regulation of WISP1 gene expression in glioma cells. We have also demonstrated that the expression of all studied genes in glioma cells is regulated by IRE1 signaling enzyme upon normoxic condition, because inhibition of IRE1 significantly up-regulates IGFBP7, IGFBP10/CYR61, WISP1, and WISP2 genes and down-regulates IGFBP6 and IGFBP9/NOV genes as compared to control glioma cells. The present study demonstrates that hypoxia, which contributes to tumor growth, affects all studied IGFBP and WISP gene expressions and that inhibition of IRE1 preferentially abolishes or suppresses the hypoxic regulation of these gene expressions and thus possibly contributes to slower glioma growth. Moreover, inhibition of IRE1, which correlates with suppression of cell proliferation and glioma growth, is down-regulated expression of pro-proliferative IGFBP genes, attesting to the fact that endoplasmic reticulum stress is a necessary component of malignant tumor growth.
Faës, Pascal; Deleu, Carole; Aïnouche, Abdelkader; Le Cahérec, Françoise; Montes, Emilie; Clouet, Vanessa; Gouraud, Anne-Marie; Albert, Benjamin; Orsel, Mathilde; Lassalle, Gilles; Leport, Laurent; Bouchereau, Alain; Niogret, Marie-Françoise
2015-02-01
Six BnaProDH1 and two BnaProDH2 genes were identified in Brassica napus genome. The BnaProDH1 genes are mainly expressed in pollen and roots' organs while BnaProDH2 gene expression is associated with leaf vascular tissues at senescence. Proline dehydrogenase (ProDH) catalyzes the first step in the catabolism of proline. The ProDH gene family in oilseed rape (Brassica napus) was characterized and compared to other Brassicaceae ProDH sequences to establish the phylogenetic relationships between genes. Six BnaProDH1 genes and two BnaProDH2 genes were identified in the B. napus genome. Expression of the three paralogous pairs of BnaProDH1 genes and the two homoeologous BnaProDH2 genes was measured by real-time quantitative RT-PCR in plants at vegetative and reproductive stages. The BnaProDH2 genes are specifically expressed in vasculature in an age-dependent manner, while BnaProDH1 genes are strongly expressed in pollen grains and roots. Compared to the abundant expression of BnaProDH1, the overall expression of BnaProDH2 is low except in roots and senescent leaves. The BnaProDH1 paralogs showed different levels of expression with BnaA&C.ProDH1.a the most strongly expressed and BnaA&C.ProDH1.c the least. The promoters of two BnaProDH1 and two BnaProDH2 genes were fused with uidA reporter gene (GUS) to characterize organ and tissue expression profiles in transformed B. napus plants. The transformants with promoters from different genes showed contrasting patterns of GUS activity, which corresponded to the spatial expression of their respective transcripts. ProDHs probably have non-redundant functions in different organs and at different phenological stages. In terms of molecular evolution, all BnaProDH sequences appear to have undergone strong purifying selection and some copies are becoming subfunctionalized. This detailed description of oilseed rape ProDH genes provides new elements to investigate the function of proline metabolism in plant development.
Epigenetic mechanisms of peptidergic regulation of gene expression during aging of human cells.
Ashapkin, V V; Linkova, N S; Khavinson, V Kh; Vanyushin, B F
2015-03-01
Expression levels of genes encoding specific transcription factors and other functionally important proteins vary upon aging of pancreatic and bronchial epithelium cell cultures. The peptides KEDW and AEDL tissue-specifically affect gene expression in pancreatic and bronchial cell cultures, respectively. It is established in this work that the DNA methylation patterns of the PDX1, PAX6, NGN3, NKX2-1, and SCGB1A1 gene promoter regions change upon aging in pancreatic and bronchial cell cultures in correlation with variations in their expression levels. Thus, stable changes in gene expression upon aging of cell cultures could be caused by changes in their promoter methylation patterns. The methylation patterns of the PAX4 gene in pancreatic cells as well as those of the FOXA1, SCGB3A2, and SFTPA1 genes in bronchial cells do not change upon aging and are unaffected by peptides, whereas their expression levels change in both cases. The promoter region of the FOXA2 gene in pancreatic cells contains a small number of methylated CpG sites, their methylation levels being affected by cell culture aging and KEDW, though without any correlation with gene expression levels. The promoter region of the FOXA2 gene is completely unmethylated in bronchial cells irrespective of cell culture age and AEDL action. Changes in promoter methylation might be the cause of age- and peptide-induced variations in expression levels of the PDX1, PAX6, and NGN3 genes in pancreatic cells and NKX2-1 and SCGB1A1 genes in bronchial cells. Expression levels of the PAX4 and FOXA2 genes in pancreatic cells and FOXA1, FOXA2, SCGB3A2, and SFTPA1 genes in bronchial cells seem to be controlled by some other mechanisms.
Reyes-Velasco, Jacobo; Card, Daren C; Andrew, Audra L; Shaney, Kyle J; Adams, Richard H; Schield, Drew R; Casewell, Nicholas R; Mackessy, Stephen P; Castoe, Todd A
2015-01-01
Snake venom gene evolution has been studied intensively over the past several decades, yet most previous studies have lacked the context of complete snake genomes and the full context of gene expression across diverse snake tissues. We took a novel approach to studying snake venom evolution by leveraging the complete genome of the Burmese python, including information from tissue-specific patterns of gene expression. We identified the orthologs of snake venom genes in the python genome, and conducted detailed analysis of gene expression of these venom homologs to identify patterns that differ between snake venom gene families and all other genes. We found that venom gene homologs in the python are expressed in many different tissues outside of oral glands, which illustrates the pitfalls of using transcriptomic data alone to define "venom toxins." We hypothesize that the python may represent an ancestral state prior to major venom development, which is supported by our finding that the expansion of venom gene families is largely restricted to highly venomous caenophidian snakes. Therefore, the python provides insight into biases in which genes were recruited for snake venom systems. Python venom homologs are generally expressed at lower levels, have higher variance among tissues, and are expressed in fewer organs compared with all other python genes. We propose a model for the evolution of snake venoms in which venom genes are recruited preferentially from genes with particular expression profile characteristics, which facilitate a nearly neutral transition toward specialized venom system expression. © The Author 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Barsalobres-Cavallari, Carla F; Severino, Fábio E; Maluf, Mirian P; Maia, Ivan G
2009-01-01
Background Quantitative data from gene expression experiments are often normalized by transcription levels of reference or housekeeping genes. An inherent assumption for their use is that the expression of these genes is highly uniform in living organisms during various phases of development, in different cell types and under diverse environmental conditions. To date, the validation of reference genes in plants has received very little attention and suitable reference genes have not been defined for a great number of crop species including Coffea arabica. The aim of the research reported herein was to compare the relative expression of a set of potential reference genes across different types of tissue/organ samples of coffee. We also validated the expression profiles of the selected reference genes at various stages of development and under a specific biotic stress. Results The expression levels of five frequently used housekeeping genes (reference genes), namely alcohol dehydrogenase (adh), 14-3-3, polyubiquitin (poly), β-actin (actin) and glyceraldehyde-3-phosphate dehydrogenase (gapdh) was assessed by quantitative real-time RT-PCR over a set of five tissue/organ samples (root, stem, leaf, flower, and fruits) of Coffea arabica plants. In addition to these commonly used internal controls, three other genes encoding a cysteine proteinase (cys), a caffeine synthase (ccs) and the 60S ribosomal protein L7 (rpl7) were also tested. Their stability and suitability as reference genes were validated by geNorm, NormFinder and BestKeeper programs. The obtained results revealed significantly variable expression levels of all reference genes analyzed, with the exception of gapdh, which showed no significant changes in expression among the investigated experimental conditions. Conclusion Our data suggests that the expression of housekeeping genes is not completely stable in coffee. Based on our results, gapdh, followed by 14-3-3 and rpl7 were found to be homogeneously expressed and are therefore adequate for normalization purposes, showing equivalent transcript levels in different tissue/organ samples. Gapdh is therefore the recommended reference gene for measuring gene expression in Coffea arabica. Its use will enable more accurate and reliable normalization of tissue/organ-specific gene expression studies in this important cherry crop plant. PMID:19126214
2013-01-01
Background To understand the carcinogenesis caused by accumulated genetic and epigenetic alterations and seek novel biomarkers for various cancers, studying differentially expressed genes between cancerous and normal tissues is crucial. In the study, two cDNA libraries of lung cancer were constructed and screened for identification of differentially expressed genes. Methods Two cDNA libraries of differentially expressed genes were constructed using lung adenocarcinoma tissue and adjacent nonmalignant lung tissue by suppression subtractive hybridization. The data of the cDNA libraries were then analyzed and compared using bioinformatics analysis. Levels of mRNA and protein were measured by quantitative real-time polymerase chain reaction (q-RT-PCR) and western blot respectively, as well as expression and localization of proteins were determined by immunostaining. Gene functions were investigated using proliferation and migration assays after gene silencing and gene over-expression. Results Two libraries of differentially expressed genes were obtained. The forward-subtracted library (FSL) and the reverse-subtracted library (RSL) contained 177 and 59 genes, respectively. Bioinformatic analysis demonstrated that these genes were involved in a wide range of cellular functions. The vast majority of these genes were newly identified to be abnormally expressed in lung cancer. In the first stage of the screening for 16 genes, we compared lung cancer tissues with their adjacent non-malignant tissues at the mRNA level, and found six genes (ERGIC3, DDR1, HSP90B1, SDC1, RPSA, and LPCAT1) from the FSL were significantly up-regulated while two genes (GPX3 and TIMP3) from the RSL were significantly down-regulated (P < 0.05). The ERGIC3 protein was also over-expressed in lung cancer tissues and cultured cells, and expression of ERGIC3 was correlated with the differentiated degree and histological type of lung cancer. The up-regulation of ERGIC3 could promote cellular migration and proliferation in vitro. Conclusions The two libraries of differentially expressed genes may provide the basis for new insights or clues for finding novel lung cancer-related genes; several genes were newly found in lung cancer with ERGIC3 seeming a novel lung cancer-related gene. ERGIC3 may play an active role in the development and progression of lung cancer. PMID:23374247
NRIP enhances HPV gene expression via interaction with either GR or E2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Szu-Wei; Lu, Pei-Yu; Guo, Jih-Huong
We previously identified a gene, nuclear receptor-interaction protein (NRIP), which functions as a transcription cofactor in glucocorticoid receptor (GR) and human papillomavirus E2 (HPV E2)-driven gene expression. Here, we comprehensively evaluated the role of NRIP in HPV-16 gene expression. NRIP acts as a transcription cofactor to enhance GR-regulated HPV-16 gene expression in the presence of hormone. NRIP also can form complex with E2 that caused NRIP-induced HPV gene expression via E2-binding sites in a hormone-independent manner. Furthermore, NRIP can associate with GR and E2 to form tri-protein complex to activate HPV gene expression via GRE, not the E2-binding site, inmore » a hormone-dependent manner. These results indicate that NRIP and GR are viral E2-binding proteins and that NRIP regulates HPV gene expression via GRE and/or E2 binding site in the HPV promoter in a hormone-dependent or independent manner, respectively.« less
Hung, Fei-Hung; Chiu, Hung-Wen
2015-01-01
Gene expression profiles differ in different diseases. Even if diseases are at the same stage, such diseases exhibit different gene expressions, not to mention the different subtypes at a single lesion site. Distinguishing different disease subtypes at a single lesion site is difficult. In early cases, subtypes were initially distinguished by doctors. Subsequently, further differences were found through pathological experiments. For example, a brain tumor can be classified according to its origin, its cell-type origin, or the tumor site. Because of the advancements in bioinformatics and the techniques for accumulating gene expressions, researchers can use gene expression data to classify disease subtypes. Because the operation of a biopathway is closely related to the disease mechanism, the application of gene expression profiles for clustering disease subtypes is insufficient. In this study, we collected gene expression data of healthy and four myelodysplastic syndrome subtypes and applied a method that integrated protein-protein interaction and gene expression data to identify different patterns of disease subtypes. We hope it is efficient for the classification of disease subtypes in adventure.
Duan, Fenghai; Xu, Ye
2017-01-01
To analyze a microarray experiment to identify the genes with expressions varying after the diagnosis of breast cancer. A total of 44 928 probe sets in an Affymetrix microarray data publicly available on Gene Expression Omnibus from 249 patients with breast cancer were analyzed by the nonparametric multivariate adaptive splines. Then, the identified genes with turning points were grouped by K-means clustering, and their network relationship was subsequently analyzed by the Ingenuity Pathway Analysis. In total, 1640 probe sets (genes) were reliably identified to have turning points along with the age at diagnosis in their expression profiling, of which 927 expressed lower after turning points and 713 expressed higher after the turning points. K-means clustered them into 3 groups with turning points centering at 54, 62.5, and 72, respectively. The pathway analysis showed that the identified genes were actively involved in various cancer-related functions or networks. In this article, we applied the nonparametric multivariate adaptive splines method to a publicly available gene expression data and successfully identified genes with expressions varying before and after breast cancer diagnosis.
PanGEA: identification of allele specific gene expression using the 454 technology.
Kofler, Robert; Teixeira Torres, Tatiana; Lelley, Tamas; Schlötterer, Christian
2009-05-14
Next generation sequencing technologies hold great potential for many biological questions. While mainly used for genomic sequencing, they are also very promising for gene expression profiling. Sequencing of cDNA does not only provide an estimate of the absolute expression level, it can also be used for the identification of allele specific gene expression. We developed PanGEA, a tool which enables a fast and user-friendly analysis of allele specific gene expression using the 454 technology. PanGEA allows mapping of 454-ESTs to genes or whole genomes, displaying gene expression profiles, identification of SNPs and the quantification of allele specific gene expression. The intuitive GUI of PanGEA facilitates a flexible and interactive analysis of the data. PanGEA additionally implements a modification of the Smith-Waterman algorithm which deals with incorrect estimates of homopolymer length as occuring in the 454 technology To our knowledge, PanGEA is the first tool which facilitates the identification of allele specific gene expression. PanGEA is distributed under the Mozilla Public License and available at: http://www.kofler.or.at/bioinformatics/PanGEA
PanGEA: Identification of allele specific gene expression using the 454 technology
Kofler, Robert; Teixeira Torres, Tatiana; Lelley, Tamas; Schlötterer, Christian
2009-01-01
Background Next generation sequencing technologies hold great potential for many biological questions. While mainly used for genomic sequencing, they are also very promising for gene expression profiling. Sequencing of cDNA does not only provide an estimate of the absolute expression level, it can also be used for the identification of allele specific gene expression. Results We developed PanGEA, a tool which enables a fast and user-friendly analysis of allele specific gene expression using the 454 technology. PanGEA allows mapping of 454-ESTs to genes or whole genomes, displaying gene expression profiles, identification of SNPs and the quantification of allele specific gene expression. The intuitive GUI of PanGEA facilitates a flexible and interactive analysis of the data. PanGEA additionally implements a modification of the Smith-Waterman algorithm which deals with incorrect estimates of homopolymer length as occuring in the 454 technology Conclusion To our knowledge, PanGEA is the first tool which facilitates the identification of allele specific gene expression. PanGEA is distributed under the Mozilla Public License and available at: PMID:19442283
HOXB homeobox gene expression in cervical carcinoma.
López, R; Garrido, E; Piña, P; Hidalgo, A; Lazos, M; Ochoa, R; Salcedo, M
2006-01-01
The homeobox (HOX) genes are a family of transcription factors that bind to specific DNA sequences in target genes regulating gene expression. Thirty-nine HOX genes have been mapped in four conserved clusters: A, B, C, and D; they act as master genes regulating the identity of body segments along the anteroposterior axis of the embryo. The role played by HOX genes in adult cell differentiation is unclear to date, but growing evidence suggests that they may play an important role in the development of cancer. To study the role played by HOX genes in cervical cancer, in the present work, we analyzed the expression of HOXB genes and the localization of their transcripts in human cervical tissues. Reverse transcription-polymerase chain reaction analysis and nonradioactive RNA in situ hybridization were used to detect HOXB expression in 11 normal cervical tissues and 17 cervical carcinomas. It was determined that HOXB1, B3, B5, B6, B7, B8, and B9 genes are expressed in normal adult cervical epithelium and squamous cervical carcinomas. Interestingly, HOXB2, HOXB4, and HOXB13 gene expression was found only in tumor tissues. Our findings suggest that the new expression of HOXB2, HOXB4, and B13 genes is involved in cervical cancer.
Vazquez, Miguel; Nogales-Cadenas, Ruben; Arroyo, Javier; Botías, Pedro; García, Raul; Carazo, Jose M; Tirado, Francisco; Pascual-Montano, Alberto; Carmona-Saez, Pedro
2010-07-01
The enormous amount of data available in public gene expression repositories such as Gene Expression Omnibus (GEO) offers an inestimable resource to explore gene expression programs across several organisms and conditions. This information can be used to discover experiments that induce similar or opposite gene expression patterns to a given query, which in turn may lead to the discovery of new relationships among diseases, drugs or pathways, as well as the generation of new hypotheses. In this work, we present MARQ, a web-based application that allows researchers to compare a query set of genes, e.g. a set of over- and under-expressed genes, against a signature database built from GEO datasets for different organisms and platforms. MARQ offers an easy-to-use and integrated environment to mine GEO, in order to identify conditions that induce similar or opposite gene expression patterns to a given experimental condition. MARQ also includes additional functionalities for the exploration of the results, including a meta-analysis pipeline to find genes that are differentially expressed across different experiments. The application is freely available at http://marq.dacya.ucm.es.
Akbari, Ali; Ghoshal, Subhasis
2014-09-15
Bioremediation is a potentially cost-effective solution for petroleum contamination in cold region sites. This study investigates the extent of biodegradation of petroleum hydrocarbons (C16-C34) in a pilot-scale biopile experiment conducted at 15°C for periods up to 385 days, with a clayey soil, from a crude oil-impacted site in northern Canada. Although several studies on bioremediation of petroleum hydrocarbon-contaminated soils from cold region sites have been reported for coarse-textured, sandy soils, there are limited studies of bioremediation of petroleum contamination in fine-textured, clayey soils. Our results indicate that aeration and moisture addition was sufficient for achieving 47% biodegradation and an endpoint of 530 mg/kg for non-volatile (C16-C34) petroleum hydrocarbons. Nutrient amendment with 95 mg-N/kg showed no significant effect on biodegradation compared to a control system without nutrient but similar moisture content. In contrast, in a biopile amended with 1340 mg-N/kg, no statistically significant biodegradation of non-volatile fraction was detected. Terminal Restriction Fragment Length Polymorphism (T-RFLP) analyses of alkB and 16S rRNA genes revealed that inhibition of hydrocarbon biodegradation was associated with a lack of change in microbial community composition. Overall, our data suggests that biopiles are feasible for attaining the bioremediation endpoint in clayey soils. Despite the significantly lower biodegradation rate of 0.009 day(-1) in biopile tank compared to 0.11 day(-1) in slurry bioreactors for C16-C34 hydrocarbons, the biodegradation extents for this fraction were comparable in these two systems. Copyright © 2014 Elsevier B.V. All rights reserved.
Hinchcliff, Monique; Huang, Chiang-Ching; Wood, Tammara A.; Mahoney, J. Matthew; Martyanov, Viktor; Bhattacharyya, Swati; Tamaki, Zenshiro; Lee, Jungwha; Carns, Mary; Podlusky, Sofia; Sirajuddin, Arlene; Shah, Sanjiv J; Chang, Rowland W.; Lafyatis, Robert; Varga, John; Whitfield, Michael L.
2013-01-01
Heterogeneity in systemic sclerosis/SSc confounds clinical trials. We previously identified ‘intrinsic’ gene expression subsets by analysis of SSc skin. Here we test the hypotheses that skin gene expression signatures including intrinsic subset are associated with skin score/MRSS improvement during mycophenolate mofetil (MMF) treatment. Gene expression and intrinsic subset assignment were measured in 12 SSc patients’ biopsies and ten controls at baseline, and from serial biopsies of one cyclophosphamide-treated patient, and nine MMF-treated patients. Gene expression changes during treatment were determined using paired t-tests corrected for multiple hypothesis testing. MRSS improved in four of seven MMF-treated patients classified as the inflammatory intrinsic subset. Three patients without MRSS improvement were classified as normal-like or fibroproliferative intrinsic subsets. 321 genes (FDR <5%) were differentially expressed at baseline between patients with and without MRSS improvement during treatment. Expression of 571 genes (FDR <10%) changed between pre- and post-MMF treatment biopsies for patients demonstrating MRSS improvement. Gene expression changes in skin are only seen in patients with MRSS improvement. Baseline gene expression in skin, including intrinsic subset assignment, may identify SSc patients whose MRSS will improve during MMF treatment, suggesting that gene expression in skin may allow targeted treatment in SSc. PMID:23677167
Sex-specific gene expression during asexual development of Neurospora crassa.
Wang, Zheng; Kin, Koryu; López-Giráldez, Francesc; Johannesson, Hanna; Townsend, Jeffrey P
2012-07-01
The impact of loci that determine sexual identity upon the asexual, dominant stage of fungal life history has been well studied. To investigate their impact, expression differences between strains of different mating type during asexual development were assayed, with RNA sampled from otherwise largely isogenic mat A and mat a strains of Neurospora crassa at early, middle, and late clonal stages of development. We observed significant differences in overall gene expression between mating types across clonal development, especially at late development stages. The expression levels of mating-type genes and pheromone genes were assayed by reverse transcription and quantitative PCR, revealing expression of pheromone and receptor genes in strains of both mating types in all development stages, and revealing that mating type (mat) genes were increasingly expressed over the course of asexual development. Interestingly, among differentially expressed genes, the mat A genotype more frequently exhibited a higher expression level than mat a, and demonstrated greater transcriptional regulatory dynamism. Significant up-regulation of expression was observed for many late light-responsive genes at late asexual development stages. Further investigation of the impact of light and the roles of light response genes in asexual development of both mating types are warranted. Copyright © 2012 Elsevier Inc. All rights reserved.
Tian, Honglai; Guan, Donghui; Li, Jianmin
2018-06-01
Osteosarcoma (OS), the most common malignant bone tumor, accounts for the heavy healthy threat in the period of children and adolescents. OS occurrence usually correlates with early metastasis and high death rate. This study aimed to better understand the mechanism of OS metastasis.Based on Gene Expression Omnibus (GEO) database, we downloaded 4 expression profile data sets associated with OS metastasis, and selected differential expressed genes. Weighted gene co-expression network analysis (WGCNA) approach allowed us to investigate the most OS metastasis-correlated module. Gene Ontology functional and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were used to give annotation of selected OS metastasis-associated genes.We select 897 differential expressed genes from OS metastasis and OS non-metastasis groups. Based on these selected genes, WGCNA further explored 142 genes included in the most OS metastasis-correlated module. Gene Ontology functional and KEGG pathway enrichment analyses showed that significantly OS metastasis-associated genes were involved in pathway correlated with insulin-like growth factor binding.Our research figured out several potential molecules participating in metastasis process and factors acting as biomarker. With this study, we could better explore the mechanism of OS metastasis and further discover more therapy targets.
Integrative approaches for large-scale transcriptome-wide association studies
Gusev, Alexander; Ko, Arthur; Shi, Huwenbo; Bhatia, Gaurav; Chung, Wonil; Penninx, Brenda W J H; Jansen, Rick; de Geus, Eco JC; Boomsma, Dorret I; Wright, Fred A; Sullivan, Patrick F; Nikkola, Elina; Alvarez, Marcus; Civelek, Mete; Lusis, Aldons J.; Lehtimäki, Terho; Raitoharju, Emma; Kähönen, Mika; Seppälä, Ilkka; Raitakari, Olli T.; Kuusisto, Johanna; Laakso, Markku; Price, Alkes L.; Pajukanta, Päivi; Pasaniuc, Bogdan
2016-01-01
Many genetic variants influence complex traits by modulating gene expression, thus altering the abundance levels of one or multiple proteins. Here, we introduce a powerful strategy that integrates gene expression measurements with summary association statistics from large-scale genome-wide association studies (GWAS) to identify genes whose cis-regulated expression is associated to complex traits. We leverage expression imputation to perform a transcriptome wide association scan (TWAS) to identify significant expression-trait associations. We applied our approaches to expression data from blood and adipose tissue measured in ~3,000 individuals overall. We imputed gene expression into GWAS data from over 900,000 phenotype measurements to identify 69 novel genes significantly associated to obesity-related traits (BMI, lipids, and height). Many of the novel genes are associated with relevant phenotypes in the Hybrid Mouse Diversity Panel. Our results showcase the power of integrating genotype, gene expression and phenotype to gain insights into the genetic basis of complex traits. PMID:26854917
Ishii, Jun; Kondo, Takashi; Makino, Harumi; Ogura, Akira; Matsuda, Fumio; Kondo, Akihiko
2014-05-01
Yeast has the potential to be used in bulk-scale fermentative production of fuels and chemicals due to its tolerance for low pH and robustness for autolysis. However, expression of multiple external genes in one host yeast strain is considerably labor-intensive due to the lack of polycistronic transcription. To promote the metabolic engineering of yeast, we generated systematic and convenient genetic engineering tools to express multiple genes in Saccharomyces cerevisiae. We constructed a series of multi-copy and integration vector sets for concurrently expressing two or three genes in S. cerevisiae by embedding three classical promoters. The comparative expression capabilities of the constructed vectors were monitored with green fluorescent protein, and the concurrent expression of genes was monitored with three different fluorescent proteins. Our multiple gene expression tool will be helpful to the advanced construction of genetically engineered yeast strains in a variety of research fields other than metabolic engineering. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.
Regulation of the X Chromosome in the Germline and Soma of Drosophila melanogaster Males.
Argyridou, Eliza; Parsch, John
2018-05-04
During the evolution of heteromorphic sex chromosomes, the sex-specific Y chromosome degenerates, while the X chromosome evolves new mechanisms of regulation. Using bioinformatic and experimental approaches, we investigate the expression of the X chromosome in Drosophila melanogaster . We observe nearly complete X chromosome dosage compensation in male somatic tissues, but not in testis. The X chromosome contains disproportionately fewer genes with high expression in testis than the autosomes, even after accounting for the lack of dosage compensation, which suggests that another mechanism suppresses their expression in the male germline. This is consistent with studies of reporter genes and transposed genes, which find that the same gene has higher expression when autosomal than when X-linked. Using a new reporter gene that is expressed in both testis and somatic tissues, we find that the suppression of X-linked gene expression is limited to genes with high expression in testis and that the extent of the suppression is positively correlated with expression level.
Ito, Yoichiro; Yamanishi, Mamoru; Ikeuchi, Akinori; Imamura, Chie; Matsuyama, Takashi
2015-01-01
Combinatorial screening used together with a broad library of gene expression cassettes is expected to produce a powerful tool for the optimization of the simultaneous expression of multiple enzymes. Recently, we proposed a highly tunable protein expression system that utilized multiple genome-integrated target genes to fine-tune enzyme expression in yeast cells. This tunable system included a library of expression cassettes each composed of three gene-expression control elements that in different combinations produced a wide range of protein expression levels. In this study, four gene expression cassettes with graded protein expression levels were applied to the expression of three cellulases: cellobiohydrolase 1, cellobiohydrolase 2, and endoglucanase 2. After combinatorial screening for transgenic yeasts simultaneously secreting these three cellulases, we obtained strains with higher cellulase expressions than a strain harboring three cellulase-expression constructs within one high-performance gene expression cassette. These results show that our method will be of broad use throughout the field of metabolic engineering. PMID:26692026
Chang, Tzu-Hao; Wu, Shih-Lin; Wang, Wei-Jen; Horng, Jorng-Tzong; Chang, Cheng-Wei
2014-01-01
Microarrays are widely used to assess gene expressions. Most microarray studies focus primarily on identifying differential gene expressions between conditions (e.g., cancer versus normal cells), for discovering the major factors that cause diseases. Because previous studies have not identified the correlations of differential gene expression between conditions, crucial but abnormal regulations that cause diseases might have been disregarded. This paper proposes an approach for discovering the condition-specific correlations of gene expressions within biological pathways. Because analyzing gene expression correlations is time consuming, an Apache Hadoop cloud computing platform was implemented. Three microarray data sets of breast cancer were collected from the Gene Expression Omnibus, and pathway information from the Kyoto Encyclopedia of Genes and Genomes was applied for discovering meaningful biological correlations. The results showed that adopting the Hadoop platform considerably decreased the computation time. Several correlations of differential gene expressions were discovered between the relapse and nonrelapse breast cancer samples, and most of them were involved in cancer regulation and cancer-related pathways. The results showed that breast cancer recurrence might be highly associated with the abnormal regulations of these gene pairs, rather than with their individual expression levels. The proposed method was computationally efficient and reliable, and stable results were obtained when different data sets were used. The proposed method is effective in identifying meaningful biological regulation patterns between conditions.
A deep auto-encoder model for gene expression prediction.
Xie, Rui; Wen, Jia; Quitadamo, Andrew; Cheng, Jianlin; Shi, Xinghua
2017-11-17
Gene expression is a key intermediate level that genotypes lead to a particular trait. Gene expression is affected by various factors including genotypes of genetic variants. With an aim of delineating the genetic impact on gene expression, we build a deep auto-encoder model to assess how good genetic variants will contribute to gene expression changes. This new deep learning model is a regression-based predictive model based on the MultiLayer Perceptron and Stacked Denoising Auto-encoder (MLP-SAE). The model is trained using a stacked denoising auto-encoder for feature selection and a multilayer perceptron framework for backpropagation. We further improve the model by introducing dropout to prevent overfitting and improve performance. To demonstrate the usage of this model, we apply MLP-SAE to a real genomic datasets with genotypes and gene expression profiles measured in yeast. Our results show that the MLP-SAE model with dropout outperforms other models including Lasso, Random Forests and the MLP-SAE model without dropout. Using the MLP-SAE model with dropout, we show that gene expression quantifications predicted by the model solely based on genotypes, align well with true gene expression patterns. We provide a deep auto-encoder model for predicting gene expression from SNP genotypes. This study demonstrates that deep learning is appropriate for tackling another genomic problem, i.e., building predictive models to understand genotypes' contribution to gene expression. With the emerging availability of richer genomic data, we anticipate that deep learning models play a bigger role in modeling and interpreting genomics.
Dittmar, W James; McIver, Lauren; Michalak, Pawel; Garner, Harold R; Valdez, Gregorio
2014-07-01
The wealth of publicly available gene expression and genomic data provides unique opportunities for computational inference to discover groups of genes that function to control specific cellular processes. Such genes are likely to have co-evolved and be expressed in the same tissues and cells. Unfortunately, the expertise and computational resources required to compare tens of genomes and gene expression data sets make this type of analysis difficult for the average end-user. Here, we describe the implementation of a web server that predicts genes involved in affecting specific cellular processes together with a gene of interest. We termed the server 'EvoCor', to denote that it detects functional relationships among genes through evolutionary analysis and gene expression correlation. This web server integrates profiles of sequence divergence derived by a Hidden Markov Model (HMM) and tissue-wide gene expression patterns to determine putative functional linkages between pairs of genes. This server is easy to use and freely available at http://pilot-hmm.vbi.vt.edu/. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
Wang, Jianxin; Chen, Bo; Wang, Yaqun; Wang, Ningtao; Garbey, Marc; Tran-Son-Tay, Roger; Berceli, Scott A.; Wu, Rongling
2013-01-01
The capacity of an organism to respond to its environment is facilitated by the environmentally induced alteration of gene and protein expression, i.e. expression plasticity. The reconstruction of gene regulatory networks based on expression plasticity can gain not only new insights into the causality of transcriptional and cellular processes but also the complex regulatory mechanisms that underlie biological function and adaptation. We describe an approach for network inference by integrating expression plasticity into Shannon’s mutual information. Beyond Pearson correlation, mutual information can capture non-linear dependencies and topology sparseness. The approach measures the network of dependencies of genes expressed in different environments, allowing the environment-induced plasticity of gene dependencies to be tested in unprecedented details. The approach is also able to characterize the extent to which the same genes trigger different amounts of expression in response to environmental changes. We demonstrated the usefulness of this approach through analysing gene expression data from a rabbit vein graft study that includes two distinct blood flow environments. The proposed approach provides a powerful tool for the modelling and analysis of dynamic regulatory networks using gene expression data from distinct environments. PMID:23470995
Compensation for intracellular environment in expression levels of mammalian circadian clock genes
Matsumura, Ritsuko; Okamoto, Akihiko; Node, Koichi; Akashi, Makoto
2014-01-01
The circadian clock is driven by transcriptional oscillation of clock genes in almost all body cells. To investigate the effect of cell type-specific intracellular environment on the circadian machinery, we examined gene expression profiles in five peripheral tissues. As expected, the phase relationship between expression rhythms of nine clock genes was similar in all tissues examined. We also compared relative expression levels of clock genes among tissues, and unexpectedly found that quantitative variation remained within an approximately three-fold range, which was substantially smaller than that of metabolic housekeeping genes. Interestingly, circadian gene expression was little affected even when fibroblasts were cultured with different concentrations of serum. Together, these findings support a hypothesis that expression levels of clock genes are quantitatively compensated for the intracellular environment, such as redox potential and metabolite composition. However, more comprehensive studies are required to reach definitive conclusions. PMID:24504324
Zhang, Qingzhou; Yang, Bo; Chen, Xujiao; Xu, Jing; Mei, Changlin; Mao, Zhiguo
2014-01-01
We present a bioinformatics database named Renal Gene Expression Database (RGED), which contains comprehensive gene expression data sets from renal disease research. The web-based interface of RGED allows users to query the gene expression profiles in various kidney-related samples, including renal cell lines, human kidney tissues and murine model kidneys. Researchers can explore certain gene profiles, the relationships between genes of interests and identify biomarkers or even drug targets in kidney diseases. The aim of this work is to provide a user-friendly utility for the renal disease research community to query expression profiles of genes of their own interest without the requirement of advanced computational skills. Availability and implementation: Website is implemented in PHP, R, MySQL and Nginx and freely available from http://rged.wall-eva.net. Database URL: http://rged.wall-eva.net PMID:25252782
Zhang, Qingzhou; Yang, Bo; Chen, Xujiao; Xu, Jing; Mei, Changlin; Mao, Zhiguo
2014-01-01
We present a bioinformatics database named Renal Gene Expression Database (RGED), which contains comprehensive gene expression data sets from renal disease research. The web-based interface of RGED allows users to query the gene expression profiles in various kidney-related samples, including renal cell lines, human kidney tissues and murine model kidneys. Researchers can explore certain gene profiles, the relationships between genes of interests and identify biomarkers or even drug targets in kidney diseases. The aim of this work is to provide a user-friendly utility for the renal disease research community to query expression profiles of genes of their own interest without the requirement of advanced computational skills. Website is implemented in PHP, R, MySQL and Nginx and freely available from http://rged.wall-eva.net. http://rged.wall-eva.net. © The Author(s) 2014. Published by Oxford University Press.
Validation of Reference Genes in mRNA Expression Analysis Applied to the Study of Asthma.
Segundo-Val, Ignacio San; Sanz-Lozano, Catalina S
2016-01-01
The quantitative Polymerase Chain Reaction is the most used technique for the study of gene expression. To correct putative experimental errors of this technique is necessary normalizing the expression results of the gene of interest with the obtained for reference genes. Here, we describe an example of the process to select reference genes. In this particular case, we select reference genes for expression studies in the peripheral blood mononuclear cells of asthmatic patients.
Jiang, Tingbo; Zhou, Boru; Luo, Meng; Abbas, Hamed K.; Kemerait, Robert; Lee, Robert Dewey; Scully, Brian T.; Guo, Baozhu
2011-01-01
This research examined the expression patterns of 94 stress-related genes in seven maize inbred lines with differential expressions of resistance to aflatoxin contamination. The objective was to develop a set of genes/probes associated with resistance to A. flavus and/or aflatoxin contamination. Ninety four genes were selected from previous gene expression studies with abiotic stress to test the differential expression in maize lines, A638, B73, Lo964, Lo1016, Mo17, Mp313E, and Tex6, using real-time RT-PCR. Based on the relative-expression levels, the seven maize inbred lines clustered into two different groups. One group included B73, Lo1016 and Mo17, which had higher levels of aflatoxin contamination and lower levels of overall gene expression. The second group which included Tex6, Mp313E, Lo964 and A638 had lower levels of aflatoxin contamination and higher overall levels of gene expressions. A total of six “cross-talking” genes were identified between the two groups, which are highly expressed in the resistant Group 2 but down-regulated in susceptible Group 1. When further subjected to drought stress, Tex6 expressed more genes up-regulated and B73 has fewer genes up-regulated. The transcript patterns and interactions measured in these experiments indicate that the resistant mechanism is an interconnected process involving many gene products and transcriptional regulators, as well as various host interactions with environmental factors, particularly, drought and high temperature. PMID:22069724
Haram, Kerstyn M; Peltier, Heidi J; Lu, Bin; Bhasin, Manoj; Otu, Hasan H; Choy, Bob; Regan, Meredith; Libermann, Towia A; Latham, Gary J; Sanda, Martin G; Arredouani, Mohamed S
2008-10-01
Translation of preclinical studies into effective human cancer therapy is hampered by the lack of defined molecular expression patterns in mouse models that correspond to the human counterpart. We sought to generate an open source TRAMP mouse microarray dataset and to use this array to identify differentially expressed genes from human prostate cancer (PCa) that have concordant expression in TRAMP tumors, and thereby represent lead targets for preclinical therapy development. We performed microarrays on total RNA extracted and amplified from eight TRAMP tumors and nine normal prostates. A subset of differentially expressed genes was validated by QRT-PCR. Differentially expressed TRAMP genes were analyzed for concordant expression in publicly available human prostate array datasets and a subset of resulting genes was analyzed by QRT-PCR. Cross-referencing differentially expressed TRAMP genes to public human prostate array datasets revealed 66 genes with concordant expression in mouse and human PCa; 56 between metastases and normal and 10 between primary tumor and normal tissues. Of these 10 genes, two, Sox4 and Tubb2a, were validated by QRT-PCR. Our analysis also revealed various dysregulations in major biologic pathways in the TRAMP prostates. We report a TRAMP microarray dataset of which a gene subset was validated by QRT-PCR with expression patterns consistent with previous gene-specific TRAMP studies. Concordance analysis between TRAMP and human PCa associated genes supports the utility of the model and suggests several novel molecular targets for preclinical therapy.
Gene expression analysis predicts insect venom anaphylaxis in indolent systemic mastocytosis.
Niedoszytko, M; Bruinenberg, M; van Doormaal, J J; de Monchy, J G R; Nedoszytko, B; Koppelman, G H; Nawijn, M C; Wijmenga, C; Jassem, E; Elberink, J N G Oude
2011-05-01
Anaphylaxis to insect venom (Hymenoptera) is most severe in patients with mastocytosis and may even lead to death. However, not all patients with mastocytosis suffer from anaphylaxis. The aim of the study was to analyze differences in gene expression between patients with indolent systemic mastocytosis (ISM) and a history of insect venom anaphylaxis (IVA) compared to those patients without a history of anaphylaxis, and to determine the predictive use of gene expression profiling. Whole-genome gene expression analysis was performed in peripheral blood cells. Twenty-two adults with ISM were included: 12 with a history of IVA and 10 without a history of anaphylaxis of any kind. Significant differences in single gene expression corrected for multiple testing were found for 104 transcripts (P < 0.05). Gene ontology analysis revealed that the differentially expressed genes were involved in pathways responsible for the development of cancer and focal and cell adhesion suggesting that the expression of genes related to the differentiation state of cells is higher in patients with a history of anaphylaxis. Based on the gene expression profiles, a naïve Bayes prediction model was built identifying patients with IVA. In ISM, gene expression profiles are different between patients with a history of IVA and those without. These findings might reflect a more pronounced mast cells dysfunction in patients without a history of anaphylaxis. Gene expression profiling might be a useful tool to predict the risk of anaphylaxis on insect venom in patients with ISM. Prospective studies are needed to substantiate any conclusions. © 2010 John Wiley & Sons A/S.
Eticha, Dejene; Zahn, Marc; Bremer, Melanie; Yang, Zhongbao; Rangel, Andrés F.; Rao, Idupulapati M.; Horst, Walter J.
2010-01-01
Background and Aims Aluminium (Al) resistance in common bean is known to be due to exudation of citrate from the root after a lag phase, indicating the induction of gene transcription and protein synthesis. The aims of this study were to identify Al-induced differentially expressed genes and to analyse the expression of candidate genes conferring Al resistance in bean. Methods The suppression subtractive hybridization (SSH) method was used to identify differentially expressed genes in an Al-resistant bean genotype (‘Quimbaya’) during the induction period. Using quantitative real-time PCR the expression patterns of selected genes were compared between an Al-resistant and an Al-sensitive genotype (‘VAX 1’) treated with Al for up to 24 h. Key Results Short-term Al treatment resulted in up-regulation of stress-induced genes and down-regulation of genes involved in metabolism. However, the expressions of genes encoding enzymes involved in citrate metabolism were not significantly affected by Al. Al treatment dramatically increased the expression of common bean expressed sequence tags belonging to the citrate transporter gene family MATE (multidrug and toxin extrusion family protein) in both the Al-resistant and -sensitive genotype in close agreement with Al-induced citrate exudation. Conclusions The expression of a citrate transporter MATE gene is crucial for citrate exudation in common bean. However, although the expression of the citrate transporter is a prerequisite for citrate exudation, genotypic Al resistance in common bean particularly depends on the capacity to sustain the synthesis of citrate for maintaining the cytosolic citrate pool that enables exudation. PMID:20237115
Dowd, Patrick F; Johnson, Eric T
2015-05-01
Like other forms of maize, popcorn is subject to increased levels of contamination by a variety of different mycotoxins under stress conditions, although levels generally are less than dent maize under comparable stress. Gene array analysis was used to determine expression differences of disease resistance-associated genes in milk stage kernels from commercial popcorn fields over 3 years. Relatively lower expression of resistance gene types was noted in years with higher temperatures and lower rainfall, which was consistent with prior results for many previously identified resistance response-associated genes. The lower rates of expression occurred for genes such as chitinases, protease inhibitors, and peroxidases; enzymes involved in the synthesis of cell wall barriers and secondary metabolites; and regulatory proteins. However, expression of several specific resistance genes previously associated with mycotoxins, such as aflatoxin in dent maize, was not affected. Insect damage altered the spectrum of resistance gene expression differences compared to undamaged ears. Correlation analyses showed expression differences of some previously reported resistance genes that were highly associated with mycotoxin levels and included glucanases, protease inhibitors, peroxidases, and thionins.
Jiang, Z; Gui, S; Zhang, Y
2011-05-01
Nonfunctioning pituitary adenomas (NFPAs) are relatively common, accounting for 30% of all pituitary adenomas; however, their pathogenesis remains enigmatic. To explore the possible pathogenesis of NFPAs, we used fiber-optic BeadArray to examine gene expression in 5 NFPAs compared with 3 normal pituitaries. 4 differentially expressed genes were chosen randomly for validation by reverse transcriptase-real time quantitative polymerase chain reaction (RT-qPCR). We then analyzed the differentially expressed gene profile with Kyoto Encyclopedia of Genes and Genomes (KEGG). The array analysis indentified significant increases in the expression of 1,402 genes and 383 expressed sequence tags (ESTs), and decreases in 1,697 genes and 113 ESTs in the NFPAs. Bioinformatic and pathway analysis showed that the genes HIGD1B, FAM5C, PMAIP1 and the pathway cell-cycle regulation may play an important role in tumorigenesis and progression of NFPAs. Our data suggest fiber-optic BeadArray combined with pathway analysis of differential gene expression profile appears to be a valid approach for investigating the pathogenesis of tumors. © Georg Thieme Verlag KG Stuttgart · New York.
Asgari, Yazdan; Khosravi, Pegah; Zabihinpour, Zahra; Habibi, Mahnaz
2018-02-19
Genome-scale metabolic models have provided valuable resources for exploring changes in metabolism under normal and cancer conditions. However, metabolism itself is strongly linked to gene expression, so integration of gene expression data into metabolic models might improve the detection of genes involved in the control of tumor progression. Herein, we considered gene expression data as extra constraints to enhance the predictive powers of metabolic models. We reconstructed genome-scale metabolic models for lung and prostate, under normal and cancer conditions to detect the major genes associated with critical subsystems during tumor development. Furthermore, we utilized gene expression data in combination with an information theory-based approach to reconstruct co-expression networks of the human lung and prostate in both cohorts. Our results revealed 19 genes as candidate biomarkers for lung and prostate cancer cells. This study also revealed that the development of a complementary approach (integration of gene expression and metabolic profiles) could lead to proposing novel biomarkers and suggesting renovated cancer treatment strategies which have not been possible to detect using either of the methods alone.
The Effect of Gestational Age on Angiogenic Gene Expression in the Rat Placenta
Vaswani, Kanchan; Hum, Melissa Wen-Ching; Chan, Hsiu-Wen; Ryan, Jennifer; Wood-Bradley, Ryan J.; Nitert, Marloes Dekker; Mitchell, Murray D.; Armitage, James A.; Rice, Gregory E.
2013-01-01
The placenta plays a central role in determining the outcome of pregnancy. It undergoes changes during gestation as the fetus develops and as demands for energy substrate transfer and gas exchange increase. The molecular mechanisms that coordinate these changes have yet to be fully elucidated. The study performed a large scale screen of the transcriptome of the rat placenta throughout mid-late gestation (E14.25–E20) with emphasis on characterizing gestational age associated changes in the expression of genes invoved in angiogenic pathways. Sprague Dawley dams were sacrificed at E14.25, E15.25, E17.25 and E20 (n = 6 per group) and RNA was isolated from one placenta per dam. Changes in placental gene expression were identifed using Illumina Rat Ref-12 Expression BeadChip Microarrays. Differentially expressed genes (>2-fold change, <1% false discovery rate, FDR) were functionally categorised by gene ontology pathway analysis. A subset of differentially expressed genes identified by microarrays were confirmed using Real-Time qPCR. The expression of thirty one genes involved in the angiogenic pathway was shown to change over time, using microarray analysis (22 genes displayed increased and 9 gene decreased expression). Five genes (4 up regulated: Cd36, Mmp14, Rhob and Angpt4 and 1 down regulated: Foxm1) involved in angiogenesis and blood vessel morphogenesis were subjected to further validation. qPCR confirmed late gestational increased expression of Cd36, Mmp14, Rhob and Angpt4 and a decrease in expression of Foxm1 before labour onset (P<0.0001). The observed acute, pre-labour changes in the expression of the 31 genes during gestation warrant further investigation to elucidate their role in pregnancy. PMID:24391823
NASA Technical Reports Server (NTRS)
Miracle, A. L.; Anderson, M. K.; Litman, R. T.; Walsh, C. J.; Luer, C. A.; Rothenberg, E. V.; Litman, G. W.
2001-01-01
Cartilaginous fish express canonical B and T cell recognition genes, but their lymphoid organs and lymphocyte development have been poorly defined. Here, the expression of Ig, TCR, recombination-activating gene (Rag)-1 and terminal deoxynucleosidase (TdT) genes has been used to identify roles of various lymphoid tissues throughout development in the cartilaginous fish, Raja eglanteria (clearnose skate). In embryogenesis, Ig and TCR genes are sharply up-regulated at 8 weeks of development. At this stage TCR and TdT expression is limited to the thymus; later, TCR gene expression appears in peripheral sites in hatchlings and adults, suggesting that the thymus is a source of T cells as in mammals. B cell gene expression indicates more complex roles for the spleen and two special organs of cartilaginous fish-the Leydig and epigonal (gonad-associated) organs. In the adult, the Leydig organ is the site of the highest IgM and IgX expression. However, the spleen is the first site of IgM expression, while IgX is expressed first in gonad, liver, Leydig and even thymus. Distinctive spatiotemporal patterns of Ig light chain gene expression also are seen. A subset of Ig genes is pre-rearranged in the germline of the cartilaginous fish, making expression possible without rearrangement. To assess whether this allows differential developmental regulation, IgM and IgX heavy chain cDNA sequences from specific tissues and developmental stages have been compared with known germline-joined genomic sequences. Both non-productively rearranged genes and germline-joined genes are transcribed in the embryo and hatchling, but not in the adult.
Ali, Shahin S; Melnick, Rachel L; Crozier, Jayne; Phillips-Mora, Wilberth; Strem, Mary D; Shao, Jonathan; Zhang, Dapeng; Sicher, Richard; Meinhardt, Lyndel; Bailey, Bryan A
2014-09-01
An understanding of the tolerance mechanisms of Theobroma cacao used against Moniliophthora roreri, the causal agent of frosty pod rot, is important for the generation of stable disease-tolerant clones. A comparative view was obtained of transcript populations of infected pods from two susceptible and two tolerant clones using RNA sequence (RNA-Seq) analysis. A total of 3009 transcripts showed differential expression among clones. KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analysis of differentially expressed genes indicated shifts in 152 different metabolic pathways between the tolerant and susceptible clones. Real-time quantitative reverse transcription polymerase chain reaction (real-time qRT-PCR) analyses of 36 genes verified the differential expression. Regression analysis validated a uniform progression in gene expression in association with infection levels and fungal loads in the susceptible clones. Expression patterns observed in the susceptible clones diverged in tolerant clones, with many genes showing higher expression at a low level of infection and fungal load. Principal coordinate analyses of real-time qRT-PCR data separated the gene expression patterns between susceptible and tolerant clones for pods showing malformation. Although some genes were constitutively differentially expressed between clones, most results suggested that defence responses were induced at low fungal load in the tolerant clones. Several elicitor-responsive genes were highly expressed in tolerant clones, suggesting rapid recognition of the pathogen and induction of defence genes. Expression patterns suggested that the jasmonic acid-ethylene- and/or salicylic acid-mediated defence pathways were activated in the tolerant clones, being enhanced by reduced brassinosteroid (BR) biosynthesis and catabolic inactivation of both BR and abscisic acids. Finally, several genes associated with hypersensitive response-like cell death were also induced in tolerant clones. © 2014 BSPP AND JOHN WILEY & SONS LTD.
Basse, Astrid L; Dixen, Karen; Yadav, Rachita; Tygesen, Malin P; Qvortrup, Klaus; Kristiansen, Karsten; Quistorff, Bjørn; Gupta, Ramneek; Wang, Jun; Hansen, Jacob B
2015-03-19
Large mammals are capable of thermoregulation shortly after birth due to the presence of brown adipose tissue (BAT). The majority of BAT disappears after birth and is replaced by white adipose tissue (WAT). We analyzed the postnatal transformation of adipose in sheep with a time course study of the perirenal adipose depot. We observed changes in tissue morphology, gene expression and metabolism within the first two weeks of postnatal life consistent with the expected transition from BAT to WAT. The transformation was characterized by massively decreased mitochondrial abundance and down-regulation of gene expression related to mitochondrial function and oxidative phosphorylation. Global gene expression profiling demonstrated that the time points grouped into three phases: a brown adipose phase, a transition phase and a white adipose phase. Between the brown adipose and the transition phase 170 genes were differentially expressed, and 717 genes were differentially expressed between the transition and the white adipose phase. Thirty-eight genes were shared among the two sets of differentially expressed genes. We identified a number of regulated transcription factors, including NR1H3, MYC, KLF4, ESR1, RELA and BCL6, which were linked to the overall changes in gene expression during the adipose tissue remodeling. Finally, the perirenal adipose tissue expressed both brown and brite/beige adipocyte marker genes at birth, the expression of which changed substantially over time. Using global gene expression profiling of the postnatal BAT to WAT transformation in sheep, we provide novel insight into adipose tissue plasticity in a large mammal, including identification of novel transcriptional components linked to adipose tissue remodeling. Moreover, our data set provides a useful resource for further studies in adipose tissue plasticity.
Wang, Xiao-Min; Hamza, May; Wu, Tai-Xia; Dionne, Raymond A.
2012-01-01
Tissue injury initiates a cascade of inflammatory mediators and hyperalgesic substances including prostaglandins, cytokines and chemokines. Using microarray and qRT-PCR gene expression analyses, the present study evaluated changes in gene expression of a cascade of cytokines following acute inflammation and the correlation between the changes in the gene expression level and pain intensity in the oral surgery clinical model of acute inflammation. Tissue injury resulted in a significant up-regulation in the gene expression of Interleukin-6 (IL-6; 63.3-fold), IL-8 (8.1-fold), chemokine (C-C motif) ligand 2 (CCL2; 8.9-fold), chemokine (C-X-C motif) ligand 1 (CXCL1; 30.5-fold), chemokine (C-X-C motif) ligand 2 (CXCL2; 26-fold) and annexin A1 (ANXA1; 12-fold). The up-regulation of IL-6 gene expression was significantly correlated to the up-regulation on the gene expression of IL-8, CCL2, CXCL1 and CXCL2. Interestingly, the tissue injury induced up-regulation of IL-6 gene expression, IL-8 and CCL2 were positively correlated to pain intensity at 3 hours post-surgery, the onset of acute inflammatory pain. However, ketorolac treatment did not have a significant effect on the gene expression of IL-6, IL-8, CCL2, CXCL2 and ANXA1 at the same time point of acute inflammation. These results demonstrate that up-regulation of IL-6, IL-8 and CCL2 gene expression contributes to the development of acute inflammation and inflammatory pain. The lack of effect for ketorolac on the expression of these gene products may be related to the ceiling analgesic effects of non-steroidal anti-inflammatory drugs. PMID:19233564
Jiang, Zhiquan; Gui, Songbo; Zhang, Yazhuo
2010-09-01
Growth-hormone-secreting pituitary adenomas (GHomas) account for approximately 20% of all pituitary neoplasms. However, the pathogenesis of GHomas remains to be elucidated. To explore the possible pathogenesis of GHomas, we used bead-based fiber-optic arrays to examine the gene expression in five GHomas and compared them to three healthy pituitaries. Four differentially expressed genes were chosen randomly for validation by quantitative real-time reverse transcription-polymerase chain reaction. We then performed pathway analysis on the identified differentially expressed genes using the Kyoto Encyclopedia of Genes and Genomes. Array analysis showed significant increases in the expression of 353 genes and 206 expressed sequence tags (ESTs) and decreases in 565 genes and 29 ESTs. Bioinformatic analysis showed that the genes HIGD1B, HOXB2, ANGPT2, HPGD and BTG2 may play an important role in the tumorigenesis and progression of GHomas. Pathway analysis showed that the wingless-type signaling pathway and extracellular-matrix receptor interactions may play a key role in the tumorigenesis and progression of GHomas. Our data suggested that there are numerous aberrantly expressed genes and pathways involved in the pathogenesis of GHomas. Bead-based fiber-optic arrays combined with pathway analysis of differentially expressed genes appear to be a valid method for investigating the pathogenesis of tumors.
JIANG, ZHIQUAN; GUI, SONGBO; ZHANG, YAZHUO
2010-01-01
Growth-hormone-secreting pituitary adenomas (GHomas) account for approximately 20% of all pituitary neoplasms. However, the pathogenesis of GHomas remains to be elucidated. To explore the possible pathogenesis of GHomas, we used bead-based fiber-optic arrays to examine the gene expression in five GHomas and compared them to three healthy pituitaries. Four differentially expressed genes were chosen randomly for validation by quantitative real-time reverse transcription-polymerase chain reaction. We then performed pathway analysis on the identified differentially expressed genes using the Kyoto Encyclopedia of Genes and Genomes. Array analysis showed significant increases in the expression of 353 genes and 206 expressed sequence tags (ESTs) and decreases in 565 genes and 29 ESTs. Bioinformatic analysis showed that the genes HIGD1B, HOXB2, ANGPT2, HPGD and BTG2 may play an important role in the tumorigenesis and progression of GHomas. Pathway analysis showed that the wingless-type signaling pathway and extracellular-matrix receptor interactions may play a key role in the tumorigenesis and progression of GHomas. Our data suggested that there are numerous aberrantly expressed genes and pathways involved in the pathogenesis of GHomas. Bead-based fiber-optic arrays combined with pathway analysis of differentially expressed genes appear to be a valid method for investigating the pathogenesis of tumors. PMID:22993617
Rrp1b, a New Candidate Susceptibility Gene for Breast Cancer Progression and Metastasis
Crawford, Nigel P. S; Qian, Xiaolan; Ziogas, Argyrios; Papageorge, Alex G; Boersma, Brenda J; Walker, Renard C; Lukes, Luanne; Rowe, William L; Zhang, Jinghui; Ambs, Stefan; Lowy, Douglas R; Anton-Culver, Hoda; Hunter, Kent W
2007-01-01
A novel candidate metastasis modifier, ribosomal RNA processing 1 homolog B (Rrp1b), was identified through two independent approaches. First, yeast two-hybrid, immunoprecipitation, and functional assays demonstrated a physical and functional interaction between Rrp1b and the previous identified metastasis modifier Sipa1. In parallel, using mouse and human metastasis gene expression data it was observed that extracellular matrix (ECM) genes are common components of metastasis predictive signatures, suggesting that ECM genes are either important markers or causal factors in metastasis. To investigate the relationship between ECM genes and poor prognosis in breast cancer, expression quantitative trait locus analysis of polyoma middle-T transgene-induced mammary tumor was performed. ECM gene expression was found to be consistently associated with Rrp1b expression. In vitro expression of Rrp1b significantly altered ECM gene expression, tumor growth, and dissemination in metastasis assays. Furthermore, a gene signature induced by ectopic expression of Rrp1b in tumor cells predicted survival in a human breast cancer gene expression dataset. Finally, constitutional polymorphism within RRP1B was found to be significantly associated with tumor progression in two independent breast cancer cohorts. These data suggest that RRP1B may be a novel susceptibility gene for breast cancer progression and metastasis. PMID:18081427
Werler, Steffi; Poplinski, Andreas; Gromoll, Jörg; Wistuba, Joachim
2011-06-01
We hypothesized that patients with Klinefelter's syndrome (KS) not only undergo X inactivation, but also that genes escape from inactivation. Their transcripts would constitute a significant difference, as male metabolism is not adapted to a 'female-like' gene dosage. We evaluated the expression of selected X-linked genes in our 41, XX(Y)* male mice to determine whether these genes escape inactivation and whether tissue-specific differences occur. Correct X inactivation was identified by Xist expression. Relative expression of X-linked genes was examined in liver, kidney and brain tissue by real-time PCR in adult XX(Y)* and XY* males and XX females. Expression of genes known to escape X inactivation was analysed. Relative mRNA levels of Pgk1 (control, X inactivated), and the genes Eif2s3x, Kdm5c, Ddx3x and Kdm6a escaping from X inactivation were quantified from liver, kidney and brain. Pgk1 mRNA expression showed no difference, confirming correct X inactivation. In kidney and liver, XX(Y)* males resembled the female expression pattern in all four candidate genes and were distinguishable from XY* males. Contrastingly, in brain tissue XX(Y)* males expressed all four genes higher than male and female controls. Altered expression of genes escaping X inactivation probably contributes directly to the XX(Y)* phenotype. © 2011 The Author(s)/Acta Paediatrica © 2011 Foundation Acta Paediatrica.
[Preliminary analysis of retinal gene expression profile of diabetic rat].
Mei, Yan; Zhou, Hong-ying; Xiang, Tao; Lu, You-guang; Li, Ai-dong; Tang, En-jie; Yang, Hui-jun
2005-10-01
Establishing the retinal gene expression profiles of non-diabetic rat and diabetic rat and comparing the profiles in order to analyze the possible genes related with diabetic retinopathy. The whole retinal transcriptional fragments of non-diabetic rat and 8-week diabetic rat were obtained by restriction fragments differential display-PCR (RFDD-PCR). Bioinformatic analysis of retinal gene expression was performed using soft wares, including Fragment Analysis. After comparison of the expression profiles, the related gene fragments of diabetic retinopathy were initially selected as the target gene of further approach. A total of 3639 significant fragments were obtained. By means of more than 3-fold contrast of fluorescent intensity as the differential expression standard, the authors got 840 differential fragments, accounting for 23.08% of the expressed numbers and including 5 visual related genes, 13 excitatory neruotransmitter genes and 3 inhibitory neurotransmitter genes. At the 8th week, the expression of Rhodopsin kinase, beta-arrestin, Phosducinìrod photoreceptor cGMP-gated channel and Rpe65 as well as iGlu R1-4 were down-regulated. mGluRs and GABA-Rs were all up-regulated, whereas the expression of GlyR was unchanged. These results prompt again that the changes in retinal nervous layer of rat have occurred at an early stage of diabetes. The genes expression pattern of visual related genes and excitatory and inhibitory neurotransmitters in rat diabetic retina have been involved in neuro-dysfunctions of diabetic retina.
ROTH, STEPHEN M.; FERRELL, ROBERT E.; PETERS, DAVID G.; METTER, E. JEFFREY; HURLEY, BEN F.; ROGERS, MARC A.
2010-01-01
The purpose of this study was to determine the influence of age, sex, and strength training (ST) on large-scale gene expression patterns in vastus lateralis muscle biopsies using high-density cDNA microarrays and quantitative PCR. Muscle samples from sedentary young (20–30 yr) and older (65–75 yr) men and women (5 per group) were obtained before and after a 9-wk unilateral heavy resistance ST program. RNA was hybridized to cDNA filter microarrays representing ~4,000 known human genes and comparisons were made among arrays to determine differential gene expression as a result of age and sex differences, and/or response to ST. Sex had the strongest influence on muscle gene expression, with differential expression (>1.7-fold) observed for ~200 genes between men and women (~75% with higher expression in men). Age contributed to differential expression as well, as ~50 genes were identified as differentially expressed (>1.7-fold) in relation to age, representing structural, metabolic, and regulatory gene classes. Sixty-nine genes were identified as being differentially expressed (>1.7-fold) in all groups in response to ST, and the majority of these were downregulated. Quantitative PCR was employed to validate expression levels for caldesmon, SWI/SNF (BAF60b), and four-and-a-half LIM domains 1. These significant differences suggest that in the analysis of skeletal muscle gene expression issues of sex, age, and habitual physical activity must be addressed, with sex being the most critical variable. PMID:12209020
Determining Physical Mechanisms of Gene Expression Regulation from Single Cell Gene Expression Data.
Ezer, Daphne; Moignard, Victoria; Göttgens, Berthold; Adryan, Boris
2016-08-01
Many genes are expressed in bursts, which can contribute to cell-to-cell heterogeneity. It is now possible to measure this heterogeneity with high throughput single cell gene expression assays (single cell qPCR and RNA-seq). These experimental approaches generate gene expression distributions which can be used to estimate the kinetic parameters of gene expression bursting, namely the rate that genes turn on, the rate that genes turn off, and the rate of transcription. We construct a complete pipeline for the analysis of single cell qPCR data that uses the mathematics behind bursty expression to develop more accurate and robust algorithms for analyzing the origin of heterogeneity in experimental samples, specifically an algorithm for clustering cells by their bursting behavior (Simulated Annealing for Bursty Expression Clustering, SABEC) and a statistical tool for comparing the kinetic parameters of bursty expression across populations of cells (Estimation of Parameter changes in Kinetics, EPiK). We applied these methods to hematopoiesis, including a new single cell dataset in which transcription factors (TFs) involved in the earliest branchpoint of blood differentiation were individually up- and down-regulated. We could identify two unique sub-populations within a seemingly homogenous group of hematopoietic stem cells. In addition, we could predict regulatory mechanisms controlling the expression levels of eighteen key hematopoietic transcription factors throughout differentiation. Detailed information about gene regulatory mechanisms can therefore be obtained simply from high throughput single cell gene expression data, which should be widely applicable given the rapid expansion of single cell genomics.
Global gene expression analysis of apple fruit development from the floral bud to ripe fruit
Janssen, Bart J; Thodey, Kate; Schaffer, Robert J; Alba, Rob; Balakrishnan, Lena; Bishop, Rebecca; Bowen, Judith H; Crowhurst, Ross N; Gleave, Andrew P; Ledger, Susan; McArtney, Steve; Pichler, Franz B; Snowden, Kimberley C; Ward, Shayna
2008-01-01
Background Apple fruit develop over a period of 150 days from anthesis to fully ripe. An array representing approximately 13000 genes (15726 oligonucleotides of 45–55 bases) designed from apple ESTs has been used to study gene expression over eight time points during fruit development. This analysis of gene expression lays the groundwork for a molecular understanding of fruit growth and development in apple. Results Using ANOVA analysis of the microarray data, 1955 genes showed significant changes in expression over this time course. Expression of genes is coordinated with four major patterns of expression observed: high in floral buds; high during cell division; high when starch levels and cell expansion rates peak; and high during ripening. Functional analysis associated cell cycle genes with early fruit development and three core cell cycle genes are significantly up-regulated in the early stages of fruit development. Starch metabolic genes were associated with changes in starch levels during fruit development. Comparison with microarrays of ethylene-treated apple fruit identified a group of ethylene induced genes also induced in normal fruit ripening. Comparison with fruit development microarrays in tomato has been used to identify 16 genes for which expression patterns are similar in apple and tomato and these genes may play fundamental roles in fruit development. The early phase of cell division and tissue specification that occurs in the first 35 days after pollination has been associated with up-regulation of a cluster of genes that includes core cell cycle genes. Conclusion Gene expression in apple fruit is coordinated with specific developmental stages. The array results are reproducible and comparisons with experiments in other species has been used to identify genes that may play a fundamental role in fruit development. PMID:18279528
Global gene expression analysis of apple fruit development from the floral bud to ripe fruit.
Janssen, Bart J; Thodey, Kate; Schaffer, Robert J; Alba, Rob; Balakrishnan, Lena; Bishop, Rebecca; Bowen, Judith H; Crowhurst, Ross N; Gleave, Andrew P; Ledger, Susan; McArtney, Steve; Pichler, Franz B; Snowden, Kimberley C; Ward, Shayna
2008-02-17
Apple fruit develop over a period of 150 days from anthesis to fully ripe. An array representing approximately 13000 genes (15726 oligonucleotides of 45-55 bases) designed from apple ESTs has been used to study gene expression over eight time points during fruit development. This analysis of gene expression lays the groundwork for a molecular understanding of fruit growth and development in apple. Using ANOVA analysis of the microarray data, 1955 genes showed significant changes in expression over this time course. Expression of genes is coordinated with four major patterns of expression observed: high in floral buds; high during cell division; high when starch levels and cell expansion rates peak; and high during ripening. Functional analysis associated cell cycle genes with early fruit development and three core cell cycle genes are significantly up-regulated in the early stages of fruit development. Starch metabolic genes were associated with changes in starch levels during fruit development. Comparison with microarrays of ethylene-treated apple fruit identified a group of ethylene induced genes also induced in normal fruit ripening. Comparison with fruit development microarrays in tomato has been used to identify 16 genes for which expression patterns are similar in apple and tomato and these genes may play fundamental roles in fruit development. The early phase of cell division and tissue specification that occurs in the first 35 days after pollination has been associated with up-regulation of a cluster of genes that includes core cell cycle genes. Gene expression in apple fruit is coordinated with specific developmental stages. The array results are reproducible and comparisons with experiments in other species has been used to identify genes that may play a fundamental role in fruit development.
Quiapim, Andréa C.; Brito, Michael S.; Bernardes, Luciano A.S.; daSilva, Idalete; Malavazi, Iran; DePaoli, Henrique C.; Molfetta-Machado, Jeanne B.; Giuliatti, Silvana; Goldman, Gustavo H.; Goldman, Maria Helena S.
2009-01-01
The success of plant reproduction depends on pollen-pistil interactions occurring at the stigma/style. These interactions vary depending on the stigma type: wet or dry. Tobacco (Nicotiana tabacum) represents a model of wet stigma, and its stigmas/styles express genes to accomplish the appropriate functions. For a large-scale study of gene expression during tobacco pistil development and preparation for pollination, we generated 11,216 high-quality expressed sequence tags (ESTs) from stigmas/styles and created the TOBEST database. These ESTs were assembled in 6,177 clusters, from which 52.1% are pistil transcripts/genes of unknown function. The 21 clusters with the highest number of ESTs (putative higher expression levels) correspond to genes associated with defense mechanisms or pollen-pistil interactions. The database analysis unraveled tobacco sequences homologous to the Arabidopsis (Arabidopsis thaliana) genes involved in specifying pistil identity or determining normal pistil morphology and function. Additionally, 782 independent clusters were examined by macroarray, revealing 46 stigma/style preferentially expressed genes. Real-time reverse transcription-polymerase chain reaction experiments validated the pistil-preferential expression for nine out of 10 genes tested. A search for these 46 genes in the Arabidopsis pistil data sets demonstrated that only 11 sequences, with putative equivalent molecular functions, are expressed in this dry stigma species. The reverse search for the Arabidopsis pistil genes in the TOBEST exposed a partial overlap between these dry and wet stigma transcriptomes. The TOBEST represents the most extensive survey of gene expression in the stigmas/styles of wet stigma plants, and our results indicate that wet and dry stigmas/styles express common as well as distinct genes in preparation for the pollination process. PMID:19052150
Shared Gene Expression Alterations in Nasal and Bronchial Epithelium for Lung Cancer Detection.
2017-07-01
We previously derived and validated a bronchial epithelial gene expression biomarker to detect lung cancer in current and former smokers. Given that bronchial and nasal epithelial gene expression are similarly altered by cigarette smoke exposure, we sought to determine if cancer-associated gene expression might also be detectable in the more readily accessible nasal epithelium. Nasal epithelial brushings were prospectively collected from current and former smokers undergoing diagnostic evaluation for pulmonary lesions suspicious for lung cancer in the AEGIS-1 (n = 375) and AEGIS-2 (n = 130) clinical trials and gene expression profiled using microarrays. All statistical tests were two-sided. We identified 535 genes that were differentially expressed in the nasal epithelium of AEGIS-1 patients diagnosed with lung cancer vs those with benign disease after one year of follow-up ( P < .001). Using bronchial gene expression data from the AEGIS-1 patients, we found statistically significant concordant cancer-associated gene expression alterations between the two airway sites ( P < .001). Differentially expressed genes in the nose were enriched for genes associated with the regulation of apoptosis and immune system signaling. A nasal lung cancer classifier derived in the AEGIS-1 cohort that combined clinical factors (age, smoking status, time since quit, mass size) and nasal gene expression (30 genes) had statistically significantly higher area under the curve (0.81; 95% confidence interval [CI] = 0.74 to 0.89, P = .01) and sensitivity (0.91; 95% CI = 0.81 to 0.97, P = .03) than a clinical-factor only model in independent samples from the AEGIS-2 cohort. These results support that the airway epithelial field of lung cancer-associated injury in ever smokers extends to the nose and demonstrates the potential of using nasal gene expression as a noninvasive biomarker for lung cancer detection. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Ponnuvel, Kangayam M; Murthy, Geetha N; Awasthi, Arvind K; Rao, Guruprasad; Vijayaprakash, Nanjappa B
2010-11-01
Quantification of the differential expression of metabolic enzyme and heat-shock protein genes (Hsp) during early embryogenesis in diapause and non-diapause eggs of the silkworm B. mori was carried out by semi-quantitative RT-PCR. Data analysis revealed that, the phosphofructokinase (PFK) expression started at a higher level in the early stage (6 h after oviposition) in non-diapause eggs, while in diapause induced eggs, it started at a lower level. However, the PFK gene expression in diapause eggs was comparatively higher than in non-diapause eggs. PFK facilitates use of carbohydrate reserves. The lower level of PFK gene expression in the early stage of diapause induced eggs but comparatively higher level of expression than in non-diapause eggs is due to enzyme inactivation via protein phosphorylation during early embryogenesis followed by de-phosphorylation in later stage. The sorbitol dehydrogenase-2 (SDH-2) gene was down regulated in diapause induced eggs up to 24 h and its expression levels in diapause induced eggs coincided with that of PFK gene at 48h in non-diapause eggs. During carbohydrate metabolism, there is an initial temporary accumulation of sorbitol which acts as protectant. The down regulation of SDH-2 gene during the first 24 hours in diapause induced eggs was due to the requirement of sorbitol as protectant. However, since the diapause process culminates by 48 h, the SDH-2 gene expression increased and coincided with that of PFK gene expression. The trehalase (Tre) gene expression was at a lower level in diapause induced eggs compared to non-diapausing eggs. The induction of Tre activity is to regulate uptake and use of sugar by the tissues. The non-diapause eggs revealed maximum expression of GPase gene with major fluctuations as well as an overall higher expression compared to diapause induced eggs. The diapause process requires less energy source which reflects lower activity of the gene. Heat shock protein (Hsp) genes (Hsp20.4, 40, 70, and 90) revealed differential levels of expression in both the eggs at all stages of embryonic development. The present study thus provides an overview of the differential expression levels of metabolic enzyme and Hsp genes in non-diapause and diapause induced eggs of multivoltine silkworm B. mori within 48 h after oviposition, confirming the major role of in early embryogenesis.
Pre-gastrula expression of zebrafish extraembryonic genes
2010-01-01
Background Many species form extraembryonic tissues during embryogenesis, such as the placenta of humans and other viviparous mammals. Extraembryonic tissues have various roles in protecting, nourishing and patterning embryos. Prior to gastrulation in zebrafish, the yolk syncytial layer - an extraembryonic nuclear syncytium - produces signals that induce mesoderm and endoderm formation. Mesoderm and endoderm precursor cells are situated in the embryonic margin, an external ring of cells along the embryo-yolk interface. The yolk syncytial layer initially forms below the margin, in a domain called the external yolk syncytial layer (E-YSL). Results We hypothesize that key components of the yolk syncytial layer's mesoderm and endoderm inducing activity are expressed as mRNAs in the E-YSL. To identify genes expressed in the E-YSL, we used microarrays to compare the transcription profiles of intact pre-gastrula embryos with pre-gastrula embryonic cells that we had separated from the yolk and yolk syncytial layer. This identified a cohort of genes with enriched expression in intact embryos. Here we describe our whole mount in situ hybridization analysis of sixty-eight of them. This includes ten genes with E-YSL expression (camsap1l1, gata3, znf503, hnf1ba, slc26a1, slc40a1, gata6, gpr137bb, otop1 and cebpa), four genes with expression in the enveloping layer (EVL), a superficial epithelium that protects the embryo (zgc:136817, zgc:152778, slc14a2 and elovl6l), three EVL genes whose expression is transiently confined to the animal pole (elovl6l, zgc:136359 and clica), and six genes with transient maternal expression (mtf1, wu:fj59f04, mospd2, rftn2, arrdc1a and pho). We also assessed the requirement of Nodal signaling for the expression of selected genes in the E-YSL, EVL and margin. Margin expression was Nodal dependent for all genes we tested, including the concentrated margin expression of an EVL gene: zgc:110712. All other instances of EVL and E-YSL expression that we tested were Nodal independent. Conclusion We have devised an effective strategy for enriching and identifying genes expressed in the E-YSL of pre-gastrula embryos. To our surprise, maternal genes and genes expressed in the EVL were also enriched by this strategy. A number of these genes are promising candidates for future functional studies on early embryonic patterning. PMID:20423468
Laubinger, Sascha; Zeller, Georg; Henz, Stefan R; Sachsenberg, Timo; Widmer, Christian K; Naouar, Naïra; Vuylsteke, Marnik; Schölkopf, Bernhard; Rätsch, Gunnar; Weigel, Detlef
2008-01-01
Gene expression maps for model organisms, including Arabidopsis thaliana, have typically been created using gene-centric expression arrays. Here, we describe a comprehensive expression atlas, Arabidopsis thaliana Tiling Array Express (At-TAX), which is based on whole-genome tiling arrays. We demonstrate that tiling arrays are accurate tools for gene expression analysis and identified more than 1,000 unannotated transcribed regions. Visualizations of gene expression estimates, transcribed regions, and tiling probe measurements are accessible online at the At-TAX homepage. PMID:18613972
A gene expression resource generated by genome-wide lacZ profiling in the mouse
Tuck, Elizabeth; Estabel, Jeanne; Oellrich, Anika; Maguire, Anna Karin; Adissu, Hibret A.; Souter, Luke; Siragher, Emma; Lillistone, Charlotte; Green, Angela L.; Wardle-Jones, Hannah; Carragher, Damian M.; Karp, Natasha A.; Smedley, Damian; Adams, Niels C.; Bussell, James N.; Adams, David J.; Ramírez-Solis, Ramiro; Steel, Karen P.; Galli, Antonella; White, Jacqueline K.
2015-01-01
ABSTRACT Knowledge of the expression profile of a gene is a critical piece of information required to build an understanding of the normal and essential functions of that gene and any role it may play in the development or progression of disease. High-throughput, large-scale efforts are on-going internationally to characterise reporter-tagged knockout mouse lines. As part of that effort, we report an open access adult mouse expression resource, in which the expression profile of 424 genes has been assessed in up to 47 different organs, tissues and sub-structures using a lacZ reporter gene. Many specific and informative expression patterns were noted. Expression was most commonly observed in the testis and brain and was most restricted in white adipose tissue and mammary gland. Over half of the assessed genes presented with an absent or localised expression pattern (categorised as 0-10 positive structures). A link between complexity of expression profile and viability of homozygous null animals was observed; inactivation of genes expressed in ≥21 structures was more likely to result in reduced viability by postnatal day 14 compared with more restricted expression profiles. For validation purposes, this mouse expression resource was compared with Bgee, a federated composite of RNA-based expression data sets. Strong agreement was observed, indicating a high degree of specificity in our data. Furthermore, there were 1207 observations of expression of a particular gene in an anatomical structure where Bgee had no data, indicating a large amount of novelty in our data set. Examples of expression data corroborating and extending genotype-phenotype associations and supporting disease gene candidacy are presented to demonstrate the potential of this powerful resource. PMID:26398943
Voels, Brent; Wang, Liping; Sens, Donald A; Garrett, Scott H; Zhang, Ke; Somji, Seema
2017-05-25
The 3rd isoform of the metallothionein (MT3) gene family has been shown to be overexpressed in most ductal breast cancers. A previous study has shown that the stable transfection of MCF-7 cells with the MT3 gene inhibits cell growth. The goal of the present study was to determine the role of the unique C-terminal and N-terminal sequences of MT3 on phenotypic properties and gene expression profiles of MCF-7 cells. MCF-7 cells were transfected with various metallothionein gene constructs which contain the insertion or the removal of the unique MT3 C- and N-terminal domains. Global gene expression analysis was performed on the MCF-7 cells containing the various constructs and the expression of the unique C- and N- terminal domains of MT3 was correlated to phenotypic properties of the cells. The results of the present study demonstrate that the C-terminal sequence of MT3, in the absence of the N-terminal sequence, induces dome formation in MCF-7 cells, which in cell cultures is the phenotypic manifestation of a cell's ability to perform vectorial active transport. Global gene expression analysis demonstrated that the increased expression of the GAGE gene family correlated with dome formation. Expression of the C-terminal domain induced GAGE gene expression, whereas the N-terminal domain inhibited GAGE gene expression and that the effect of the N-terminal domain inhibition was dominant over the C-terminal domain of MT3. Transfection with the metallothionein 1E gene increased the expression of GAGE genes. In addition, both the C- and the N-terminal sequences of the MT3 gene had growth inhibitory properties, which correlated to an increased expression of the interferon alpha-inducible protein 6. Our study shows that the C-terminal domain of MT3 confers dome formation in MCF-7 cells and the presence of this domain induces expression of the GAGE family of genes. The differential effects of MT3 and metallothionein 1E on the expression of GAGE genes suggests unique roles of these genes in the development and progression of breast cancer. The finding that interferon alpha-inducible protein 6 expression is associated with the ability of MT3 to inhibit growth needs further investigation.
Teste, Marie-Ange; Duquenne, Manon; François, Jean M; Parrou, Jean-Luc
2009-01-01
Background Real-time RT-PCR is the recommended method for quantitative gene expression analysis. A compulsory step is the selection of good reference genes for normalization. A few genes often referred to as HouseKeeping Genes (HSK), such as ACT1, RDN18 or PDA1 are among the most commonly used, as their expression is assumed to remain unchanged over a wide range of conditions. Since this assumption is very unlikely, a geometric averaging of multiple, carefully selected internal control genes is now strongly recommended for normalization to avoid this problem of expression variation of single reference genes. The aim of this work was to search for a set of reference genes for reliable gene expression analysis in Saccharomyces cerevisiae. Results From public microarray datasets, we selected potential reference genes whose expression remained apparently invariable during long-term growth on glucose. Using the algorithm geNorm, ALG9, TAF10, TFC1 and UBC6 turned out to be genes whose expression remained stable, independent of the growth conditions and the strain backgrounds tested in this study. We then showed that the geometric averaging of any subset of three genes among the six most stable genes resulted in very similar normalized data, which contrasted with inconsistent results among various biological samples when the normalization was performed with ACT1. Normalization with multiple selected genes was therefore applied to transcriptional analysis of genes involved in glycogen metabolism. We determined an induction ratio of 100-fold for GPH1 and 20-fold for GSY2 between the exponential phase and the diauxic shift on glucose. There was no induction of these two genes at this transition phase on galactose, although in both cases, the kinetics of glycogen accumulation was similar. In contrast, SGA1 expression was independent of the carbon source and increased by 3-fold in stationary phase. Conclusion In this work, we provided a set of genes that are suitable reference genes for quantitative gene expression analysis by real-time RT-PCR in yeast biological samples covering a large panel of physiological states. In contrast, we invalidated and discourage the use of ACT1 as well as other commonly used reference genes (PDA1, TDH3, RDN18, etc) as internal controls for quantitative gene expression analysis in yeast. PMID:19874630
Teste, Marie-Ange; Duquenne, Manon; François, Jean M; Parrou, Jean-Luc
2009-10-30
Real-time RT-PCR is the recommended method for quantitative gene expression analysis. A compulsory step is the selection of good reference genes for normalization. A few genes often referred to as HouseKeeping Genes (HSK), such as ACT1, RDN18 or PDA1 are among the most commonly used, as their expression is assumed to remain unchanged over a wide range of conditions. Since this assumption is very unlikely, a geometric averaging of multiple, carefully selected internal control genes is now strongly recommended for normalization to avoid this problem of expression variation of single reference genes. The aim of this work was to search for a set of reference genes for reliable gene expression analysis in Saccharomyces cerevisiae. From public microarray datasets, we selected potential reference genes whose expression remained apparently invariable during long-term growth on glucose. Using the algorithm geNorm, ALG9, TAF10, TFC1 and UBC6 turned out to be genes whose expression remained stable, independent of the growth conditions and the strain backgrounds tested in this study. We then showed that the geometric averaging of any subset of three genes among the six most stable genes resulted in very similar normalized data, which contrasted with inconsistent results among various biological samples when the normalization was performed with ACT1. Normalization with multiple selected genes was therefore applied to transcriptional analysis of genes involved in glycogen metabolism. We determined an induction ratio of 100-fold for GPH1 and 20-fold for GSY2 between the exponential phase and the diauxic shift on glucose. There was no induction of these two genes at this transition phase on galactose, although in both cases, the kinetics of glycogen accumulation was similar. In contrast, SGA1 expression was independent of the carbon source and increased by 3-fold in stationary phase. In this work, we provided a set of genes that are suitable reference genes for quantitative gene expression analysis by real-time RT-PCR in yeast biological samples covering a large panel of physiological states. In contrast, we invalidated and discourage the use of ACT1 as well as other commonly used reference genes (PDA1, TDH3, RDN18, etc) as internal controls for quantitative gene expression analysis in yeast.
Zha, Xianfeng; Yin, Qingsong; Tan, Huo; Wang, Chunyan; Chen, Shaohua; Yang, Lijian; Li, Bo; Wu, Xiuli; Li, Yangqiu
2013-05-01
Antigen-specific, T-cell receptor (TCR)-modified cytotoxic T lymphocytes (CTLs) that target tumors are an attractive strategy for specific adoptive immunotherapy. Little is known about whether there are any alterations in the gene expression profile after TCR gene transduction in T cells. We constructed TCR gene-redirected CTLs with specificity for diffuse large B-cell lymphoma (DLBCL)-associated antigens to elucidate the gene expression profiles of TCR gene-redirected T-cells, and we further analyzed the gene expression profile pattern of these redirected T-cells by Affymetrix microarrays. The resulting data were analyzed using Bioconductor software, a two-fold cut-off expression change was applied together with anti-correlation of the profile ratios to render the microarray analysis set. The fold change of all genes was calculated by comparing the three TCR gene-modified T-cells and a negative control counterpart. The gene pathways were analyzed using Bioconductor and Kyoto Encyclopedia of Genes and Genomes. Identical genes whose fold change was greater than or equal to 2.0 in all three TCR gene-redirected T-cell groups in comparison with the negative control were identified as the differentially expressed genes. The differentially expressed genes were comprised of 33 up-regulated genes and 1 down-regulated gene including JUNB, FOS, TNF, INF-γ, DUSP2, IL-1B, CXCL1, CXCL2, CXCL9, CCL2, CCL4, and CCL8. These genes are mainly involved in the TCR signaling, mitogen-activated protein kinase signaling, and cytokine-cytokine receptor interaction pathways. In conclusion, we characterized the gene expression profile of DLBCL-specific TCR gene-redirected T-cells. The changes corresponded to an up-regulation in the differentiation and proliferation of the T-cells. These data may help to explain some of the characteristics of the redirected T-cells.
Tsubota, Takuya; Tomita, Shuichiro; Uchino, Keiro; Kimoto, Mai; Takiya, Shigeharu; Kajiwara, Hideyuki; Yamazaki, Toshimasa; Sezutsu, Hideki
2016-01-01
Hox genes play a pivotal role in the determination of anteroposterior axis specificity during bilaterian animal development. They do so by acting as a master control and regulating the expression of genes important for development. Recently, however, we showed that Hox genes can also function in terminally differentiated tissue of the lepidopteran Bombyx mori. In this species, Antennapedia (Antp) regulates expression of sericin-1, a major silk protein gene, in the silk gland. Here, we investigated whether Antp can regulate expression of multiple genes in this tissue. By means of proteomic, RT-PCR, and in situ hybridization analyses, we demonstrate that misexpression of Antp in the posterior silk gland induced ectopic expression of major silk protein genes such as sericin-3, fhxh4, and fhxh5. These genes are normally expressed specifically in the middle silk gland as is Antp. Therefore, the evidence strongly suggests that Antp activates these silk protein genes in the middle silk gland. The putative sericin-1 activator complex (middle silk gland-intermolt-specific complex) can bind to the upstream regions of these genes, suggesting that Antp directly activates their expression. We also found that the pattern of gene expression was well conserved between B. mori and the wild species Bombyx mandarina, indicating that the gene regulation mechanism identified here is an evolutionarily conserved mechanism and not an artifact of the domestication of B. mori. We suggest that Hox genes have a role as a master control in terminally differentiated tissues, possibly acting as a primary regulator for a range of physiological processes. PMID:26814126
Grath, Sonja; Parsch, John
2012-01-01
Sex-biased gene expression (i.e., the differential expression of genes between males and females) is common among sexually reproducing species. However, genes often differ in their sex-bias classification or degree of sex bias between species. There is also an unequal distribution of sex-biased genes (especially male-biased genes) between the X chromosome and the autosomes. We used whole-genome expression data and evolutionary rate estimates for two different Drosophilid lineages, melanogaster and obscura, spanning an evolutionary time scale of around 50 Myr to investigate the influence of sex-biased gene expression and chromosomal location on the rate of molecular evolution. In both lineages, the rate of protein evolution correlated positively with the male/female expression ratio. Genes with highly male-biased expression, genes expressed specifically in male reproductive tissues, and genes with conserved male-biased expression over long evolutionary time scales showed the fastest rates of evolution. An analysis of sex-biased gene evolution in both lineages revealed evidence for a “fast-X” effect in which the rate of evolution was greater for X-linked than for autosomal genes. This pattern was particularly pronounced for male-biased genes. Genes located on the obscura “neo-X” chromosome, which originated from a recent X-autosome fusion, showed rates of evolution that were intermediate between genes located on the ancestral X-chromosome and the autosomes. This suggests that the shift to X-linkage led to an increase in the rate of molecular evolution. PMID:22321769
Alteration of gene expression and DNA methylation in drug-resistant gastric cancer.
Maeda, Osamu; Ando, Takafumi; Ohmiya, Naoki; Ishiguro, Kazuhiro; Watanabe, Osamu; Miyahara, Ryoji; Hibi, Yoko; Nagai, Taku; Yamada, Kiyofumi; Goto, Hidemi
2014-04-01
The mechanisms of drug resistance in cancer are not fully elucidated. To study the drug resistance of gastric cancer, we analyzed gene expression and DNA methylation profiles of 5-fluorouracil (5-FU)- and cisplatin (CDDP)-resistant gastric cancer cells and biopsy specimens. Drug-resistant gastric cancer cells were established with culture for >10 months in a medium containing 5-FU or CDDP. Endoscopic biopsy specimens were obtained from gastric cancer patients who underwent chemotherapy with oral fluoropyrimidine S-1 and CDDP. Gene expression and DNA methylation analyses were performed using microarray, and validated using real-time PCR and pyrosequencing, respectively. Out of 17,933 genes, 541 genes commonly increased and 569 genes decreased in both 5-FU- and CDDP-resistant AGS cells. Genes with expression changed by drugs were related to GO term 'extracellular region' and 'p53 signaling pathway' in both 5-FU- and CDDP-treated cells. Expression of 15 genes including KLK13 increased and 12 genes including ETV7 decreased, in both drug-resistant cells and biopsy specimens of two patients after chemotherapy. Out of 10,365 genes evaluated with both expression microarray and methylation microarray, 74 genes were hypermethylated and downregulated, or hypomethylated and upregulated in either 5-FU-resistant or CDDP-resistant cells. Of these genes, expression of 21 genes including FSCN1, CPT1C and NOTCH3, increased from treatment with a demethylating agent. There are alterations of gene expression and DNA methylation in drug-resistant gastric cancer; they may be related to mechanisms of drug resistance and may be useful as biomarkers of gastric cancer drug sensitivity.
Divergent and nonuniform gene expression patterns in mouse brain
Morris, John A.; Royall, Joshua J.; Bertagnolli, Darren; Boe, Andrew F.; Burnell, Josh J.; Byrnes, Emi J.; Copeland, Cathy; Desta, Tsega; Fischer, Shanna R.; Goldy, Jeff; Glattfelder, Katie J.; Kidney, Jolene M.; Lemon, Tracy; Orta, Geralyn J.; Parry, Sheana E.; Pathak, Sayan D.; Pearson, Owen C.; Reding, Melissa; Shapouri, Sheila; Smith, Kimberly A.; Soden, Chad; Solan, Beth M.; Weller, John; Takahashi, Joseph S.; Overly, Caroline C.; Lein, Ed S.; Hawrylycz, Michael J.; Hohmann, John G.; Jones, Allan R.
2010-01-01
Considerable progress has been made in understanding variations in gene sequence and expression level associated with phenotype, yet how genetic diversity translates into complex phenotypic differences remains poorly understood. Here, we examine the relationship between genetic background and spatial patterns of gene expression across seven strains of mice, providing the most extensive cellular-resolution comparative analysis of gene expression in the mammalian brain to date. Using comprehensive brainwide anatomic coverage (more than 200 brain regions), we applied in situ hybridization to analyze the spatial expression patterns of 49 genes encoding well-known pharmaceutical drug targets. Remarkably, over 50% of the genes examined showed interstrain expression variation. In addition, the variability was nonuniformly distributed across strain and neuroanatomic region, suggesting certain organizing principles. First, the degree of expression variance among strains mirrors genealogic relationships. Second, expression pattern differences were concentrated in higher-order brain regions such as the cortex and hippocampus. Divergence in gene expression patterns across the brain could contribute significantly to variations in behavior and responses to neuroactive drugs in laboratory mouse strains and may help to explain individual differences in human responsiveness to neuroactive drugs. PMID:20956311
Spatial expression of Hox cluster genes in the ontogeny of a sea urchin
NASA Technical Reports Server (NTRS)
Arenas-Mena, C.; Cameron, A. R.; Davidson, E. H.
2000-01-01
The Hox cluster of the sea urchin Strongylocentrous purpuratus contains ten genes in a 500 kb span of the genome. Only two of these genes are expressed during embryogenesis, while all of eight genes tested are expressed during development of the adult body plan in the larval stage. We report the spatial expression during larval development of the five 'posterior' genes of the cluster: SpHox7, SpHox8, SpHox9/10, SpHox11/13a and SpHox11/13b. The five genes exhibit a dynamic, largely mesodermal program of expression. Only SpHox7 displays extensive expression within the pentameral rudiment itself. A spatially sequential and colinear arrangement of expression domains is found in the somatocoels, the paired posterior mesodermal structures that will become the adult perivisceral coeloms. No such sequential expression pattern is observed in endodermal, epidermal or neural tissues of either the larva or the presumptive juvenile sea urchin. The spatial expression patterns of the Hox genes illuminate the evolutionary process by which the pentameral echinoderm body plan emerged from a bilateral ancestor.
Diotel, Nicolas; Rodriguez Viales, Rebecca; Armant, Olivier; März, Martin; Ferg, Marco; Rastegar, Sepand; Strähle, Uwe
2015-01-01
The zebrafish has become a model to study adult vertebrate neurogenesis. In particular, the adult telencephalon has been an intensely studied structure in the zebrafish brain. Differential expression of transcriptional regulators (TRs) is a key feature of development and tissue homeostasis. Here we report an expression map of 1,202 TR genes in the telencephalon of adult zebrafish. Our results are summarized in a database with search and clustering functions to identify genes expressed in particular regions of the telencephalon. We classified 562 genes into 13 distinct patterns, including genes expressed in the proliferative zone. The remaining 640 genes displayed unique and complex patterns of expression and could thus not be grouped into distinct classes. The neurogenic ventricular regions express overlapping but distinct sets of TR genes, suggesting regional differences in the neurogenic niches in the telencephalon. In summary, the small telencephalon of the zebrafish shows a remarkable complexity in TR gene expression. The adult zebrafish telencephalon has become a model to study neurogenesis. We established the expression pattern of more than 1200 transcription regulators (TR) in the adult telencephalon. The neurogenic regions express overlapping but distinct sets of TR genes suggesting regional differences in the neurogenic potential. J. Comp. Neurol. 523:1202–1221, 2015. © 2015 Wiley Periodicals, Inc. PMID:25556858
Diotel, Nicolas; Rodriguez Viales, Rebecca; Armant, Olivier; März, Martin; Ferg, Marco; Rastegar, Sepand; Strähle, Uwe
2015-06-01
The zebrafish has become a model to study adult vertebrate neurogenesis. In particular, the adult telencephalon has been an intensely studied structure in the zebrafish brain. Differential expression of transcriptional regulators (TRs) is a key feature of development and tissue homeostasis. Here we report an expression map of 1,202 TR genes in the telencephalon of adult zebrafish. Our results are summarized in a database with search and clustering functions to identify genes expressed in particular regions of the telencephalon. We classified 562 genes into 13 distinct patterns, including genes expressed in the proliferative zone. The remaining 640 genes displayed unique and complex patterns of expression and could thus not be grouped into distinct classes. The neurogenic ventricular regions express overlapping but distinct sets of TR genes, suggesting regional differences in the neurogenic niches in the telencephalon. In summary, the small telencephalon of the zebrafish shows a remarkable complexity in TR gene expression. The adult zebrafish telencephalon has become a model to study neurogenesis. We established the expression pattern of more than 1200 transcription regulators (TR) in the adult telencephalon. The neurogenic regions express overlapping but distinct sets of TR genes suggesting regional differences in the neurogenic potential. © 2015 Wiley Periodicals, Inc.
Expression of Msx genes in regenerating and developing limbs of axolotl.
Koshiba, K; Kuroiwa, A; Yamamoto, H; Tamura, K; Ide, H
1998-12-15
Msx genes, homeobox-containing genes, have been isolated as homologues of the Drosophila msh gene and are thought to play important roles in the development of chick or mouse limb buds. We isolated two Msx genes, Msx1 and Msx2, from regenerating blastemas of axolotl limbs and examined their expression patterns using Northern blot and whole mount in situ hybridization during regeneration and development. Northern blot analysis revealed that the expression level of both Msx genes increased during limb regeneration. The Msx2 expression level increased in the blastema at the early bud stage, and Msx1 expression level increased at the late bud stage. Whole mount in situ hybridization revealed that Msx2 was expressed in the distal mesenchyme and Msx1 in the entire mesenchyme of the blastema at the late bud stage. In the developing limb bud, Msx1 was expressed in the entire mesenchyme, while Msx2 was expressed in the distal and peripheral mesenchyme. The expression patterns of Msx genes in the blastemas and limb buds of the axolotl were different from those reported for chick or mouse limb buds. These expression patterns of axolotl Msx genes are discussed in relation to the blastema or limb bud morphology and their possible roles in limb patterning.
A comparison of brain gene expression levels in domesticated and wild animals.
Albert, Frank W; Somel, Mehmet; Carneiro, Miguel; Aximu-Petri, Ayinuer; Halbwax, Michel; Thalmann, Olaf; Blanco-Aguiar, Jose A; Plyusnina, Irina Z; Trut, Lyudmila; Villafuerte, Rafael; Ferrand, Nuno; Kaiser, Sylvia; Jensen, Per; Pääbo, Svante
2012-09-01
Domestication has led to similar changes in morphology and behavior in several animal species, raising the question whether similarities between different domestication events also exist at the molecular level. We used mRNA sequencing to analyze genome-wide gene expression patterns in brain frontal cortex in three pairs of domesticated and wild species (dogs and wolves, pigs and wild boars, and domesticated and wild rabbits). We compared the expression differences with those between domesticated guinea pigs and a distant wild relative (Cavia aperea) as well as between two lines of rats selected for tameness or aggression towards humans. There were few gene expression differences between domesticated and wild dogs, pigs, and rabbits (30-75 genes (less than 1%) of expressed genes were differentially expressed), while guinea pigs and C. aperea differed more strongly. Almost no overlap was found between the genes with differential expression in the different domestication events. In addition, joint analyses of all domesticated and wild samples provided only suggestive evidence for the existence of a small group of genes that changed their expression in a similar fashion in different domesticated species. The most extreme of these shared expression changes include up-regulation in domesticates of SOX6 and PROM1, two modulators of brain development. There was almost no overlap between gene expression in domesticated animals and the tame and aggressive rats. However, two of the genes with the strongest expression differences between the rats (DLL3 and DHDH) were located in a genomic region associated with tameness and aggression, suggesting a role in influencing tameness. In summary, the majority of brain gene expression changes in domesticated animals are specific to the given domestication event, suggesting that the causative variants of behavioral domestication traits may likewise be different.
A Comparison of Brain Gene Expression Levels in Domesticated and Wild Animals
Albert, Frank W.; Somel, Mehmet; Carneiro, Miguel; Aximu-Petri, Ayinuer; Halbwax, Michel; Thalmann, Olaf; Blanco-Aguiar, Jose A.; Trut, Lyudmila; Villafuerte, Rafael; Ferrand, Nuno; Kaiser, Sylvia; Jensen, Per; Pääbo, Svante
2012-01-01
Domestication has led to similar changes in morphology and behavior in several animal species, raising the question whether similarities between different domestication events also exist at the molecular level. We used mRNA sequencing to analyze genome-wide gene expression patterns in brain frontal cortex in three pairs of domesticated and wild species (dogs and wolves, pigs and wild boars, and domesticated and wild rabbits). We compared the expression differences with those between domesticated guinea pigs and a distant wild relative (Cavia aperea) as well as between two lines of rats selected for tameness or aggression towards humans. There were few gene expression differences between domesticated and wild dogs, pigs, and rabbits (30–75 genes (less than 1%) of expressed genes were differentially expressed), while guinea pigs and C. aperea differed more strongly. Almost no overlap was found between the genes with differential expression in the different domestication events. In addition, joint analyses of all domesticated and wild samples provided only suggestive evidence for the existence of a small group of genes that changed their expression in a similar fashion in different domesticated species. The most extreme of these shared expression changes include up-regulation in domesticates of SOX6 and PROM1, two modulators of brain development. There was almost no overlap between gene expression in domesticated animals and the tame and aggressive rats. However, two of the genes with the strongest expression differences between the rats (DLL3 and DHDH) were located in a genomic region associated with tameness and aggression, suggesting a role in influencing tameness. In summary, the majority of brain gene expression changes in domesticated animals are specific to the given domestication event, suggesting that the causative variants of behavioral domestication traits may likewise be different. PMID:23028369
Regulatory divergence between parental alleles determines gene expression patterns in hybrids.
Combes, Marie-Christine; Hueber, Yann; Dereeper, Alexis; Rialle, Stéphanie; Herrera, Juan-Carlos; Lashermes, Philippe
2015-03-29
Both hybridization and allopolyploidization generate novel phenotypes by conciliating divergent genomes and regulatory networks in the same cellular context. To understand the rewiring of gene expression in hybrids, the total expression of 21,025 genes and the allele-specific expression of over 11,000 genes were quantified in interspecific hybrids and their parental species, Coffea canephora and Coffea eugenioides using RNA-seq technology. Between parental species, cis- and trans-regulatory divergences affected around 32% and 35% of analyzed genes, respectively, with nearly 17% of them showing both. The relative importance of trans-regulatory divergences between both species could be related to their low genetic divergence and perennial habit. In hybrids, among divergently expressed genes between parental species and hybrids, 77% was expressed like one parent (expression level dominance), including 65% like C. eugenioides. Gene expression was shown to result from the expression of both alleles affected by intertwined parental trans-regulatory factors. A strong impact of C. eugenioides trans-regulatory factors on the upregulation of C. canephora alleles was revealed. The gene expression patterns appeared determined by complex combinations of cis- and trans-regulatory divergences. In particular, the observed biased expression level dominance seemed to be derived from the asymmetric effects of trans-regulatory parental factors on regulation of alleles. More generally, this study illustrates the effects of divergent trans-regulatory parental factors on the gene expression pattern in hybrids. The characteristics of the transcriptional response to hybridization appear to be determined by the compatibility of gene regulatory networks and therefore depend on genetic divergences between the parental species and their evolutionary history. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Sheikh, Nadeem; Dudas, Jozsef; Ramadori, Giuliano
2007-07-01
In the present study, turpentine oil was injected in the hind limb muscle of the rat to stimulate an acute-phase response (APR). The changes in the gene expression of cytokines and proteins known to be involved in the iron regulatory pathway were then studied in the liver and in extra-hepatic tissue. In addition to the strong upregulation of interleukin-6 (IL-6) and IL-1 beta observed in the inflamed muscle, an upregulation of the genes for IL1-beta and tumor necrosis factor-alpha, but not IL-6, were detectable in the liver. Hepatic Hepc gene expression increased to a maximum at 6 h after the onset of APR. An upregulation of transferrin, transferrin receptor 1 (TfR1), TfR2, ferritin-H, iron responsive element binding protein-1 (IRP1), IRP2 and divalent metal transporter gene expression was also found. Hemojuvelin (Hjv)-, ferroportin 1-, Dcytb-, hemochromatosis-gene- and hephaestin gene expression was downregulated. Hepcidin (Hepc) gene expression was not only detectable in extra-hepatic tissues such as heart, small intestine, colon, spleen and kidney but it was also upregulated under acute-phase conditions, with the Hjv gene being regulated antagonistically. Fpn-1 gene expression was downregulated significantly in heart, colon and spleen. Most of the genes of the known proteins involved in iron metabolism are expressed not only in the liver but also in extra-hepatic tissues. Under acute-phase conditions, acute-phase cytokines (eg IL-6) may modulate the gene expression of such proteins not only in the liver but also in other organs.
A high resolution atlas of gene expression in the domestic sheep (Ovis aries)
Farquhar, Iseabail L.; Young, Rachel; Lefevre, Lucas; Pridans, Clare; Tsang, Hiu G.; Afrasiabi, Cyrus; Watson, Mick; Whitelaw, C. Bruce; Freeman, Tom C.; Archibald, Alan L.; Hume, David A.
2017-01-01
Sheep are a key source of meat, milk and fibre for the global livestock sector, and an important biomedical model. Global analysis of gene expression across multiple tissues has aided genome annotation and supported functional annotation of mammalian genes. We present a large-scale RNA-Seq dataset representing all the major organ systems from adult sheep and from several juvenile, neonatal and prenatal developmental time points. The Ovis aries reference genome (Oar v3.1) includes 27,504 genes (20,921 protein coding), of which 25,350 (19,921 protein coding) had detectable expression in at least one tissue in the sheep gene expression atlas dataset. Network-based cluster analysis of this dataset grouped genes according to their expression pattern. The principle of ‘guilt by association’ was used to infer the function of uncharacterised genes from their co-expression with genes of known function. We describe the overall transcriptional signatures present in the sheep gene expression atlas and assign those signatures, where possible, to specific cell populations or pathways. The findings are related to innate immunity by focusing on clusters with an immune signature, and to the advantages of cross-breeding by examining the patterns of genes exhibiting the greatest expression differences between purebred and crossbred animals. This high-resolution gene expression atlas for sheep is, to our knowledge, the largest transcriptomic dataset from any livestock species to date. It provides a resource to improve the annotation of the current reference genome for sheep, presenting a model transcriptome for ruminants and insight into gene, cell and tissue function at multiple developmental stages. PMID:28915238
A high resolution atlas of gene expression in the domestic sheep (Ovis aries).
Clark, Emily L; Bush, Stephen J; McCulloch, Mary E B; Farquhar, Iseabail L; Young, Rachel; Lefevre, Lucas; Pridans, Clare; Tsang, Hiu G; Wu, Chunlei; Afrasiabi, Cyrus; Watson, Mick; Whitelaw, C Bruce; Freeman, Tom C; Summers, Kim M; Archibald, Alan L; Hume, David A
2017-09-01
Sheep are a key source of meat, milk and fibre for the global livestock sector, and an important biomedical model. Global analysis of gene expression across multiple tissues has aided genome annotation and supported functional annotation of mammalian genes. We present a large-scale RNA-Seq dataset representing all the major organ systems from adult sheep and from several juvenile, neonatal and prenatal developmental time points. The Ovis aries reference genome (Oar v3.1) includes 27,504 genes (20,921 protein coding), of which 25,350 (19,921 protein coding) had detectable expression in at least one tissue in the sheep gene expression atlas dataset. Network-based cluster analysis of this dataset grouped genes according to their expression pattern. The principle of 'guilt by association' was used to infer the function of uncharacterised genes from their co-expression with genes of known function. We describe the overall transcriptional signatures present in the sheep gene expression atlas and assign those signatures, where possible, to specific cell populations or pathways. The findings are related to innate immunity by focusing on clusters with an immune signature, and to the advantages of cross-breeding by examining the patterns of genes exhibiting the greatest expression differences between purebred and crossbred animals. This high-resolution gene expression atlas for sheep is, to our knowledge, the largest transcriptomic dataset from any livestock species to date. It provides a resource to improve the annotation of the current reference genome for sheep, presenting a model transcriptome for ruminants and insight into gene, cell and tissue function at multiple developmental stages.
Rethinking cell-cycle-dependent gene expression in Schizosaccharomyces pombe.
Cooper, Stephen
2017-11-01
Three studies of gene expression during the division cycle of Schizosaccharomyces pombe led to the proposal that a large number of genes are expressed at particular times during the S. pombe cell cycle. Yet only a small fraction of genes proposed to be expressed in a cell-cycle-dependent manner are reproducible in all three published studies. In addition to reproducibility problems, questions about expression amplitudes, cell-cycle timing of expression, synchronization artifacts, and the problem with methods for synchronizing cells must be considered. These problems and complications prompt the idea that caution should be used before accepting the conclusion that there are a large number of genes expressed in a cell-cycle-dependent manner in S. pombe.
Kato, Yoko; Li, Xiangping; Amarnath, Dasari; Ushizawa, Koichi; Hashizume, Kazuyoshi; Tokunaga, Tomoyuki; Taniguchi, Masanori; Tsunoda, Yukio
2007-01-01
Placental abnormalities are the main factor in the high incidence of somatic cell clone abnormalities. The expression of several trophoblast cell-specific molecules is enhanced during gestational days 7 to 14. To determine the possible genes whose expression patterns might reflect calf normality, we first compared the gene expression profiles on day 15 between in vitro-fertilized (IVF) embryos and two types of somatic cell nuclear-transferred embryos with either a high (FNT) or low (CNT) incidence of neonatal abnormalities using a cDNA microarray containing 16 of 21 placenta-specific genes developed from tissues collected across gestation. To identify significant genes from the screening of day 15 embryos, genes with a less than two-fold difference in expression between IVF and CNT embryos, and those with a greater than two-fold difference between IVF and FNT and between CNT and FNT were considered to contribute to clone abnormalities. These two comparisons revealed 18 down-regulated and 18 upregulated genes of the 1722 genes examined. We then examined the expression levels of 10 genes with known functions in eight-cell and blastocyst-stage embryos by real-time PCR. The mRNA expression pattern of interferon (IFN)-tau, a trophectoderm-related gene, differed between IVF, CNT, and FNT eight-cell embryos; few or none of the IVF or CNT eight-cell embryos expressed IFN-tau mRNA, but all eight-cell FNT embryos expressed IFN-tau. IFN-tau mRNA expression was significantly higher in IVF blastocysts, however, than in nuclear-transferred blastocysts. Average IFN-tau mRNA expression in FNT blastocysts was not different from that in CNT blastocysts, due to one CNT blastocyst with high expression. The precise relation between early expression of IFN-tau mRNA and inferior developmental potential in cloned embryos should be examined further.
Chen, Minghui; Xu, Yanwen; Miao, Benyu; Zhao, Hui; Luo, Lu; Shi, Huijuan; Zhou, Canquan
2016-09-10
Previous studies have shown that circadian genes might be involved in the development of polycystic ovarian syndrome (PCOS). Hyperandrogenism is a hallmark feature of PCOS. However, the effect of hyperandrogenism on circadian gene expression in human granulosa cells is unknown, and the general expression pattern of circadian genes in the human ovary is unclear. Expression of the circadian proteins CLOCK and PER2 in human ovaries was observed by immunohistochemistry. The mRNA expression patterns of the circadian genes CLOCK, PER2, and BMAL1, and the steroidogenesis-related genes STAR, CYP11A1, HSD3B2, and CYP19A1 in cultured human luteinized granulosa cells were analyzed over the course of 48 h after testosterone treatment by quantitative polymerase chain reaction. Immunostaining of CLOCK and PER2 protein was detected in the granulosa cells of dominant antral follicles but was absent in the primordial, primary, or preantral follicles of human ovaries. After testosterone stimulation, expression of PER2 showed an oscillating pattern, with two peaks occurring at the 24th and 44th hours; expression of CLOCK increased significantly to the peak at the 24th hour, whereas expression of BMAL1 did not change significantly over time in human luteinized granulosa cells. Among the four steroidogenesis-related genes evaluated, only STAR displayed an oscillating expression pattern with two peaks occurring at the 24th and 40th hours after testosterone stimulation. Circadian genes are expressed in the dominant antral follicles of the human ovary. Oscillating expression of the circadian gene PER2 can be induced by testosterone in human granulosa cells in vitro. Expression of STAR also displayed an oscillating pattern after testosterone stimulation. Our results indicate a potential relationship between the circadian clock and steroidogenesis in the human ovary, and demonstrate the effect of testosterone on circadian gene expression in granulosa cells.
Positive Selection Underlies Faster-Z Evolution of Gene Expression in Birds.
Dean, Rebecca; Harrison, Peter W; Wright, Alison E; Zimmer, Fabian; Mank, Judith E
2015-10-01
The elevated rate of evolution for genes on sex chromosomes compared with autosomes (Fast-X or Fast-Z evolution) can result either from positive selection in the heterogametic sex or from nonadaptive consequences of reduced relative effective population size. Recent work in birds suggests that Fast-Z of coding sequence is primarily due to relaxed purifying selection resulting from reduced relative effective population size. However, gene sequence and gene expression are often subject to distinct evolutionary pressures; therefore, we tested for Fast-Z in gene expression using next-generation RNA-sequencing data from multiple avian species. Similar to studies of Fast-Z in coding sequence, we recover clear signatures of Fast-Z in gene expression; however, in contrast to coding sequence, our data indicate that Fast-Z in expression is due to positive selection acting primarily in females. In the soma, where gene expression is highly correlated between the sexes, we detected Fast-Z in both sexes, although at a higher rate in females, suggesting that many positively selected expression changes in females are also expressed in males. In the gonad, where intersexual correlations in expression are much lower, we detected Fast-Z for female gene expression, but crucially, not males. This suggests that a large amount of expression variation is sex-specific in its effects within the gonad. Taken together, our results indicate that Fast-Z evolution of gene expression is the product of positive selection acting on recessive beneficial alleles in the heterogametic sex. More broadly, our analysis suggests that the adaptive potential of Z chromosome gene expression may be much greater than that of gene sequence, results which have important implications for the role of sex chromosomes in speciation and sexual selection. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Modeling Bi-modality Improves Characterization of Cell Cycle on Gene Expression in Single Cells
Danaher, Patrick; Finak, Greg; Krouse, Michael; Wang, Alice; Webster, Philippa; Beechem, Joseph; Gottardo, Raphael
2014-01-01
Advances in high-throughput, single cell gene expression are allowing interrogation of cell heterogeneity. However, there is concern that the cell cycle phase of a cell might bias characterizations of gene expression at the single-cell level. We assess the effect of cell cycle phase on gene expression in single cells by measuring 333 genes in 930 cells across three phases and three cell lines. We determine each cell's phase non-invasively without chemical arrest and use it as a covariate in tests of differential expression. We observe bi-modal gene expression, a previously-described phenomenon, wherein the expression of otherwise abundant genes is either strongly positive, or undetectable within individual cells. This bi-modality is likely both biologically and technically driven. Irrespective of its source, we show that it should be modeled to draw accurate inferences from single cell expression experiments. To this end, we propose a semi-continuous modeling framework based on the generalized linear model, and use it to characterize genes with consistent cell cycle effects across three cell lines. Our new computational framework improves the detection of previously characterized cell-cycle genes compared to approaches that do not account for the bi-modality of single-cell data. We use our semi-continuous modelling framework to estimate single cell gene co-expression networks. These networks suggest that in addition to having phase-dependent shifts in expression (when averaged over many cells), some, but not all, canonical cell cycle genes tend to be co-expressed in groups in single cells. We estimate the amount of single cell expression variability attributable to the cell cycle. We find that the cell cycle explains only 5%–17% of expression variability, suggesting that the cell cycle will not tend to be a large nuisance factor in analysis of the single cell transcriptome. PMID:25032992
Furihata, Hazuka Y; Suenaga, Kazuya; Kawanabe, Takahiro; Yoshida, Takanori; Kawabe, Akira
2016-10-13
PRC2 genes were analyzed for their number of gene duplications, d N /d S ratios and expression patterns among Brassicaceae and Gramineae species. Although both amino acid sequences and copy number of the PRC2 genes were generally well conserved in both Brassicaceae and Gramineae species, we observed that some rapidly evolving genes experienced duplications and expression pattern changes. After multiple duplication events, all but one or two of the duplicated copies tend to be silenced. Silenced copies were reactivated in the endosperm and showed ectopic expression in developing seeds. The results indicated that rapid evolution of some PRC2 genes is initially caused by a relaxation of selective constraint following the gene duplication events. Several loci could become maternally expressed imprinted genes and acquired functional roles in the endosperm.
Zhang, Jinfeng; Zhao, Wenjuan; Fu, Rong; Fu, Chenglin; Wang, Lingxia; Liu, Huainian; Li, Shuangcheng; Deng, Qiming; Wang, Shiquan; Zhu, Jun; Liang, Yueyang; Li, Ping; Zheng, Aiping
2018-05-05
Rhizoctonia solani causes rice sheath blight, an important disease affecting the growth of rice (Oryza sativa L.). Attempts to control the disease have met with little success. Based on transcriptional profiling, we previously identified more than 11,947 common differentially expressed genes (TPM > 10) between the rice genotypes TeQing and Lemont. In the current study, we extended these findings by focusing on an analysis of gene co-expression in response to R. solani AG1 IA and identified gene modules within the networks through weighted gene co-expression network analysis (WGCNA). We compared the different genes assigned to each module and the biological interpretations of gene co-expression networks at early and later modules in the two rice genotypes to reveal differential responses to AG1 IA. Our results show that different changes occurred in the two rice genotypes and that the modules in the two groups contain a number of candidate genes possibly involved in pathogenesis, such as the VQ protein. Furthermore, these gene co-expression networks provide comprehensive transcriptional information regarding gene expression in rice in response to AG1 IA. The co-expression networks derived from our data offer ideas for follow-up experimentation that will help advance our understanding of the translational regulation of rice gene expression changes in response to AG1 IA.
Huang, Yong; Chen, Yabing; Sun, Huan; Lan, Daoliang
2016-01-01
Intestinal epithelial cells, which serve as the first physical barrier to protect intestinal tract from external antigens, have an important role in the local innate immunity. Screening of reference genes that have stable expression levels after viral infection in porcine intestinal epithelial cells is critical for ensuring the reliability of the expression analysis on anti-infection genes in porcine intestinal epithelial cells. In this study, nine common reference genes in pigs, including ACTB, B2M, GAPDH, HMBS, SDHA, HPRT1, TBP, YWHAZ, and RPL32, were chosen as the candidate reference genes. Porcine sapelovirus (PSV) was used as a model virus to infect porcine intestinal epithelial cell line (IPEC-J2). The expression stability of the nine genes was assessed by the geNorm, NormFinder, and BestKeeper software. Moreover, RefFinder program was used to evaluate the analytical results of above three softwares, and a relative expression experiment of selected target gene was used to verify the analysis results. The comprehensive results indicated that the gene combination of TBP and RPL32 has the most stable expression, which could be considered as an appropriate reference gene for research on gene expression after PSV infection in IPEC-J2cells. The results provided essential data for expression analysis of anti-infection genes in porcine intestinal epithelial cells.
Dynamic gene expression changes precede dioxin-induced liver pathogenesis in medaka fish.
Volz, David C; Hinton, David E; Law, J McHugh; Kullman, Seth W
2006-02-01
A major challenge for environmental genomics is linking gene expression to cellular toxicity and morphological alteration. Herein, we address complexities related to hepatic gene expression responses after a single injection of the aryl hydrocarbon receptor (AHR) agonist 2,3,7,8-tetrachlorodibenzo-p-dioxin (dioxin) and illustrate an initial stress response followed by cytologic and adaptive changes in the teleost fish medaka. Using a custom 175-gene array, we find that overall hepatic gene expression and histological changes are strongly dependent on dose and time. The most pronounced dioxin-induced gene expression changes occurred early and preceded morphologic alteration in the liver. Following a systematic search for putative Ah response elements (AHREs) (5'-CACGCA-3') within 2000 bp upstream of the predicted transcriptional start site, the majority (87%) of genes screened in this study did not contain an AHRE, suggesting that gene expression was not solely dependent on AHRE-mediated transcription. Moreover, in the highest dosage, we observed gene expression changes associated with adaptation that persisted for almost two weeks, including induction of a gene putatively identified as ependymin that may function in hepatic injury repair. These data suggest that the cellular response to dioxin involves both AHRE- and non-AHRE-mediated transcription, and that coupling gene expression profiling with analysis of morphologic pathogenesis is essential for establishing temporal relationships between transcriptional changes, toxicity, and adaptation to hepatic injury.
Magnetic field-controlled gene expression in encapsulated cells
Ortner, Viktoria; Kaspar, Cornelius; Halter, Christian; Töllner, Lars; Mykhaylyk, Olga; Walzer, Johann; Günzburg, Walter H.; Dangerfield, John A.; Hohenadl, Christine; Czerny, Thomas
2012-01-01
Cell and gene therapies have an enormous range of potential applications, but as for most other therapies, dosing is a critical issue, which makes regulated gene expression a prerequisite for advanced strategies. Several inducible expression systems have been established, which mainly rely on small molecules as inducers, such as hormones or antibiotics. The application of these inducers is difficult to control and the effects on gene regulation are slow. Here we describe a novel system for induction of gene expression in encapsulated cells. This involves the modification of cells to express potential therapeutic genes under the control of a heat inducible promoter and the co-encapsulation of these cells with magnetic nanoparticles. These nanoparticles produce heat when subjected to an alternating magnetic field; the elevated temperatures in the capsules then induce gene expression. In the present study we define the parameters of such systems and provide proof-of-principle using reporter gene constructs. The fine-tuned heating of nanoparticles in the magnetic field allows regulation of gene expression from the outside over a broad range and within short time. Such a system has great potential for advancement of cell and gene therapy approaches. PMID:22197778
Chapman, Joanne R; Waldenström, Jonas
2015-01-01
The choice of reference genes that are stably expressed amongst treatment groups is a crucial step in real-time quantitative PCR gene expression studies. Recent guidelines have specified that a minimum of two validated reference genes should be used for normalisation. However, a quantitative review of the literature showed that the average number of reference genes used across all studies was 1.2. Thus, the vast majority of studies continue to use a single gene, with β-actin (ACTB) and/or glyceraldehyde 3-phosphate dehydrogenase (GAPDH) being commonly selected in studies of vertebrate gene expression. Few studies (15%) tested a panel of potential reference genes for stability of expression before using them to normalise data. Amongst studies specifically testing reference gene stability, few found ACTB or GAPDH to be optimal, whereby these genes were significantly less likely to be chosen when larger panels of potential reference genes were screened. Fewer reference genes were tested for stability in non-model organisms, presumably owing to a dearth of available primers in less well characterised species. Furthermore, the experimental conditions under which real-time quantitative PCR analyses were conducted had a large influence on the choice of reference genes, whereby different studies of rat brain tissue showed different reference genes to be the most stable. These results highlight the importance of validating the choice of normalising reference genes before conducting gene expression studies.
Bone-related gene profiles in developing calvaria.
Cho, Je-Yoel; Lee, Won-Bong; Kim, Hyun-Jung; Mi Woo, Kyung; Baek, Jeong-Hwa; Choi, Je-Yong; Hur, Cheol-Gu; Ryoo, Hyun-Mo
2006-05-10
Generating a comprehensive understanding of osteogenesis-related gene profiles is very important in the development of new treatments for osteopenic conditions. Developing calvaria undergoes a typical intramembranous bone-forming process. To identify genes associated with osteoblast differentiation, we isolated total RNAs from parietal bones, that represent active osteoblasts, and sutural mesenchyme, that represents osteoprogenitor cells, and comprehensively analyzed their gene expression profiles using an oligo-based Affymetrix microarray chip containing 22,690 probes. About 2100 genes with "Present" calls had more than 2-fold higher expression in bone compared to sutures while 73 of these genes had more than 8-fold expression. Some of these genes are already known to be bone-related biomarkers: VitD receptor, bone sialoprotein, osteocalcin, osteopontin, MMP13, etc. Eight genes were selected and subjected to confirmation by quantitative real-time RT-PCR analyses. All the genes tested showed higher expression in bones, ranging from 5- to 140-fold. Several of these genes are ESTs while others are already known but their functions in osteogenesis were not previously known. Most genes of the BMP and FGF families probed in the Genechip analysis were more highly expressed in bone tissues compared to suture. All differentially-expressed Runx and Dlx family genes also showed higher expression in bone. These results imply that our data is valid and can be used as a good standard for the mining of osteogenesis-related genes.
2017-01-01
Real-time quantitative PCR (qPCR) is the most reliable and accurate technique for analyses of gene expression. Endogenous reference genes are being used to normalize qPCR data even though their expression may vary under different conditions and in different tissues. Nonetheless, verification of expression of reference genes in selected studied tissue is essential in order to accurately assess the level of expression of target genes of interest. Therefore, in this study, we attempted to examine six commonly used reference genes in order to identify the gene being expressed most constantly under the influence of testosterone in the kidneys and hypothalamus. The reference genes include glyceraldehyde-3-phosphate dehydrogenase (GAPDH), actin beta (ACTB), beta-2 microglobulin (B2m), hypoxanthine phosphoribosyltransferase 1 (HPRT), peptidylprolylisomerase A (Ppia) and hydroxymethylbilane synthase (Hmbs). The cycle threshold (Ct) value for each gene was determined and data obtained were analyzed using the software programs NormFinder, geNorm, BestKeeper, and rank aggregation. Results showed that Hmbs and Ppia genes were the most stably expressed in the hypothalamus. Meanwhile, in kidneys, Hmbs and GAPDH appeared to be the most constant genes. In conclusion, variations in expression levels of reference genes occur in kidneys and hypothalamus under similar conditions; thus, it is important to verify reference gene levels in these tissues prior to commencing any studies. PMID:28591185
Ram, Chet; Koramutla, Murali Krishna; Bhattacharya, Ramcharan
2017-07-01
Brassica juncea is a chief oil yielding crop in many parts of the world including India. With advancement of molecular techniques, RT-qPCR based study of gene-expression has become an integral part of experimentations in crop breeding. In RT-qPCR, use of appropriate reference gene(s) is pivotal. The virtue of the reference genes, being constant in expression throughout the experimental treatments, needs to be validated case by case. Appropriate reference gene(s) for normalization of gene-expression data in B. juncea during the biotic stress of aphid infestation is not known. In the present investigation, 11 reference genes identified from microarray database of Arabidopsis-aphid interaction at a cut off FDR ≤0.1, along with two known reference genes of B. juncea, were analyzed for their expression stability upon aphid infestation. These included 6 frequently used and 5 newly identified reference genes. Ranking orders of the reference genes in terms of expression stability were calculated using advanced statistical approaches such as geNorm, NormFinder, delta Ct and BestKeeper. The analysis suggested CAC, TUA and DUF179 as the most suitable reference genes. Further, normalization of the gene-expression data of STP4 and PR1 by the most and the least stable reference gene, respectively has demonstrated importance and applicability of the recommended reference genes in aphid infested samples of B. juncea. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Wang, Hong; Bi, Yongyi; Tao, Ning; Wang, Chunhong
2005-08-01
To detect the differential expression of cell signal transduction genes associated with benzene poisoning, and to explore the pathogenic mechanisms of blood system damage induced by benzene. Peripheral white blood cell gene expression profile of 7 benzene poisoning patients, including one aplastic anemia, was determined by cDNA microarray. Seven chips from normal workers were served as controls. Cluster analysis of gene expression profile was performed. Among the 4265 target genes, 176 genes associated with cell signal transduction were differentially expressed. 35 up-regulated genes including PTPRC, STAT4, IFITM1 etc were found in at least 6 pieces of microarray; 45 down-regulated genes including ARHB, PPP3CB, CDC37 etc were found in at least 5 pieces of microarray. cDNA microarray technology is an effective technique for screening the differentially expressed genes of cell signal transduction. Disorder in cell signal transduction may play certain role in the pathogenic mechanism of benzene poisoning.
Novosadova, E V; Manuilova, E S; Arsen'eva, E L; Khaidarova, N V; Dolotov, O V; Inozemtseva, L S; Kozachenkov, K Yu; Tarantul, V Z; Grivennikov, I A
2005-07-01
The effects of pub gene on proliferation and initial stages of differentiation of embryonic mouse stem cells were studied in vitro. To this end we used enhanced expression of human pub gene (hpub) and suppression of expression of mouse endogenous pub gene with RNA-interference in embryonic stem cells. Proliferative activity of genetically modified polyclonal lines of the embryonic stem cells transfected with plasmids carrying expressing hpub gene or plasmids generating small interference RNA to this gene did not differ from that of the control cells. Inhibition of expression of endogenous pub gene in embryonic stem cells using small interference RNA 2-fold decreased the formation of embryoid bodies, at the same time additional expression of exogenous hpub gene almost 2-fold increased their number in comparison with the control. It was hypothesized that pub gene participates in early stages of differentiation of embryonic stem cells leading to the formation of embryoid bodies.
Disruption of DNA methylation-dependent long gene repression in Rett syndrome
Gabel, Harrison W.; Kinde, Benyam Z.; Stroud, Hume; Gilbert, Caitlin S.; Harmin, David A.; Kastan, Nathaniel R.; Hemberg, Martin; Ebert, Daniel H.; Greenberg, Michael E.
2015-01-01
Disruption of the MECP2 gene leads to Rett syndrome (RTT), a severe neurological disorder with features of autism1. MECP2 encodes a methyl-DNA-binding protein2 that has been proposed to function as a transcriptional repressor, but despite numerous studies examining neuronal gene expression in Mecp2 mutants, no clear model has emerged for how MeCP2 regulates transcription3–9. Here we identify a genome-wide length-dependent increase in gene expression in MeCP2 mutant mouse models and human RTT brains. We present evidence that MeCP2 represses gene expression by binding to methylated CA sites within long genes, and that in neurons lacking MeCP2, decreasing the expression of long genes attenuates RTT-associated cellular deficits. In addition, we find that long genes as a population are enriched for neuronal functions and selectively expressed in the brain. These findings suggest that mutations in MeCP2 may cause neurological dysfunction by specifically disrupting long gene expression in the brain. PMID:25762136
Hook, Sharon E.; Skillman, Ann D.; Small, Jack A.; Schultz, Irvin R.
2008-01-01
The increased availability and use of DNA microarrays has allowed the characterization of gene expression patterns associated with exposure to different toxicants. An important question is whether toxicant induced changes in gene expression in fish are sufficiently diverse to allow for identification of specific modes of action and/or specific contaminants. In theory, each class of toxicant may generate a gene expression profile unique to its mode of toxic action. In this study, isogenic (cloned) rainbow trout Oncorhynchus mykiss were exposed to sublethal levels of a series of model toxicants with varying modes of action, including ethynylestradiol (xeno-estrogen), 2,2,4,4′-tetrabromodiphenyl ether (BDE-47, thyroid active), diquat (oxidant stressor), chromium VI, and benzo[a]pyrene (BaP) for a period of 1–3 weeks. An additional experiment measured trenbolone (anabolic steroid; model androgen) induced gene expression changes in sexually mature female trout. Following exposure, fish were euthanized, livers removed and RNA extracted. Fluorescently labeled cDNA were generated and hybridized against a commercially available Atlantic Salmon/Trout array (GRASP project, University of Victoria) spotted with 16,000 cDNA’s. The slides were scanned to measure abundance of a given transcript in each sample relative to controls. Data were analyzed via Genespring (Silicon Genetics) to identify a list of up- and downregulated genes, as well as to determine gene clustering patterns that can be used as “expression signatures”. The results indicate each toxicant exposure caused between 64 and 222 genes to be significantly altered in expression. Most genes exhibiting altered expression responded to only one of the toxicants and relatively few were co-expressed in multiple treatments. For example, BaP and Diquat, both of which exert toxicity via oxidative stress, upregulated 28 of the same genes, of over 100 genes altered by either treatment. Other genes associated with steroidogenesis, p450 and estrogen responsive genes appear to be useful for selectively identifying toxicant mode of action in fish, suggesting a link between gene expression profile and mode of toxicity. Our array results showed good agreement with quantitative real time polymerase chain reaction (qRT PCR), which demonstrates that the arrays are an accurate measure of gene expression. The specificity of the gene expression profile in response to a model toxicant, the link between genes with altered expression and mode of toxic action, and the consistency between array and qRT PCR results all suggest that cDNA microarrays have the potential to screen environmental contaminants for biomarkers and mode of toxic action. PMID:16488489
Hook, Sharon E; Skillman, Ann D; Small, Jack A; Schultz, Irvin R
2006-05-25
The increased availability and use of DNA microarrays has allowed the characterization of gene expression patterns associated with exposure to different toxicants. An important question is whether toxicant induced changes in gene expression in fish are sufficiently diverse to allow for identification of specific modes of action and/or specific contaminants. In theory, each class of toxicant may generate a gene expression profile unique to its mode of toxic action. In this study, isogenic (cloned) rainbow trout Oncorhynchus mykiss were exposed to sublethal levels of a series of model toxicants with varying modes of action, including ethynylestradiol (xeno-estrogen), 2,2,4,4'-tetrabromodiphenyl ether (BDE-47, thyroid active), diquat (oxidant stressor), chromium VI, and benzo[a]pyrene (BaP) for a period of 1-3 weeks. An additional experiment measured trenbolone (anabolic steroid; model androgen) induced gene expression changes in sexually mature female trout. Following exposure, fish were euthanized, livers removed and RNA extracted. Fluorescently labeled cDNA were generated and hybridized against a commercially available Atlantic Salmon/Trout array (GRASP project, University of Victoria) spotted with 16,000 cDNA's. The slides were scanned to measure abundance of a given transcript in each sample relative to controls. Data were analyzed via Genespring (Silicon Genetics) to identify a list of up- and downregulated genes, as well as to determine gene clustering patterns that can be used as "expression signatures". The results indicate each toxicant exposure caused between 64 and 222 genes to be significantly altered in expression. Most genes exhibiting altered expression responded to only one of the toxicants and relatively few were co-expressed in multiple treatments. For example, BaP and Diquat, both of which exert toxicity via oxidative stress, upregulated 28 of the same genes, of over 100 genes altered by either treatment. Other genes associated with steroidogenesis, p450 and estrogen responsive genes appear to be useful for selectively identifying toxicant mode of action in fish, suggesting a link between gene expression profile and mode of toxicity. Our array results showed good agreement with quantitative real time polymerase chain reaction (qRT PCR), which demonstrates that the arrays are an accurate measure of gene expression. The specificity of the gene expression profile in response to a model toxicant, the link between genes with altered expression and mode of toxic action, and the consistency between array and qRT PCR results all suggest that cDNA microarrays have the potential to screen environmental contaminants for biomarkers and mode of toxic action.
Andino, Gladys K; Gribskov, Michael; Anderson, Denis L; Evans, Jay D; Hunt, Greg J
2016-11-16
Varroa mites are widely considered the biggest honey bee health problem worldwide. Until recently, Varroa jacobsoni has been found to live and reproduce only in Asian honey bee (Apis cerana) colonies, while V. destructor successfully reproduces in both A. cerana and A. mellifera colonies. However, we have identified an island population of V. jacobsoni that is highly destructive to A. mellifera, the primary species used for pollination and honey production. The ability of these populations of mites to cross the host species boundary potentially represents an enormous threat to apiculture, and is presumably due to genetic variation that exists among populations of V. jacobsoni that influences gene expression and reproductive status. In this work, we investigate differences in gene expression between populations of V. jacobsoni reproducing on A. cerana and those either reproducing or not capable of reproducing on A. mellifera, in order to gain insight into differences that allow V. jacobsoni to overcome its normal species tropism. We sequenced and assembled a de novo transcriptome of V. jacobsoni. We also performed a differential gene expression analysis contrasting biological replicates of V. jacobsoni populations that differ in their ability to reproduce on A. mellifera. Using the edgeR, EBSeq and DESeq R packages for differential gene expression analysis, we found 287 differentially expressed genes (FDR ≤ 0.05), of which 91% were up regulated in mites reproducing on A. mellifera. In addition, mites found reproducing on A. mellifera showed substantially more variation in expression among replicates. We searched for orthologous genes in public databases and were able to associate 100 of these 287 differentially expressed genes with a functional description. There is differential gene expression between the two mite groups, with more variation in gene expression among mites that were able to reproduce on A. mellifera. A small set of genes showed reduced expression in mites on the A. mellifera host, including putative transcription factors and digestive tract developmental genes. The vast majority of differentially expressed genes were up-regulated in this host. This gene set showed enrichment for genes associated with mitochondrial respiratory function and apoptosis, suggesting that mites on this host may be experiencing higher stress, and may be less optimally adapted to parasitize it. Some genes involved in reproduction and oogenesis were also overexpressed, which should be further studied in regards to this host shift.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pena-Castillo, Lourdes; Mercer, Ryan; Gurinovich, Anastasia
2014-08-28
The genus Rhodobacter contains purple nonsulfur bacteria found mostly in freshwater environments. Representative strains of two Rhodobacter species, R. capsulatus and R. sphaeroides, have had their genomes fully sequenced and both have been the subject of transcriptional profiling studies. Gene co-expression networks can be used to identify modules of genes with similar expression profiles. Functional analysis of gene modules can then associate co-expressed genes with biological pathways, and network statistics can determine the degree of module preservation in related networks. In this paper, we constructed an R. capsulatus gene co-expression network, performed functional analysis of identified gene modules, and investigatedmore » preservation of these modules in R. capsulatus proteomics data and in R. sphaeroides transcriptomics data. Results: The analysis identified 40 gene co-expression modules in R. capsulatus. Investigation of the module gene contents and expression profiles revealed patterns that were validated based on previous studies supporting the biological relevance of these modules. We identified two R. capsulatus gene modules preserved in the protein abundance data. We also identified several gene modules preserved between both Rhodobacter species, which indicate that these cellular processes are conserved between the species and are candidates for functional information transfer between species. Many gene modules were non-preserved, providing insight into processes that differentiate the two species. In addition, using Local Network Similarity (LNS), a recently proposed metric for expression divergence, we assessed the expression conservation of between-species pairs of orthologs, and within-species gene-protein expression profiles. Conclusions: Our analyses provide new sources of information for functional annotation in R. capsulatus because uncharacterized genes in modules are now connected with groups of genes that constitute a joint functional annotation. We identified R. capsulatus modules enriched with genes for ribosomal proteins, porphyrin and bacteriochlorophyll anabolism, and biosynthesis of secondary metabolites to be preserved in R. sphaeroides whereas modules related to RcGTA production and signalling showed lack of preservation in R. sphaeroides. In addition, we demonstrated that network statistics may also be applied within-species to identify congruence between mRNA expression and protein abundance data for which simple correlation measurements have previously had mixed results.« less
Kaur, Surleen; Archer, Kellie J; Devi, M Gouri; Kriplani, Alka; Strauss, Jerome F; Singh, Rita
2012-10-01
Polycystic ovary syndrome (PCOS) is a heterogeneous, genetically complex, endocrine disorder of uncertain etiology in women. Our aim was to compare the gene expression profiles in stimulated granulosa cells of PCOS women with and without insulin resistance vs. matched controls. This study included 12 normal ovulatory women (controls), 12 women with PCOS without evidence for insulin resistance (PCOS non-IR), and 16 women with insulin resistance (PCOS-IR) undergoing in vitro fertilization. Granulosa cell gene expression profiling was accomplished using Affymetrix Human Genome-U133 arrays. Differentially expressed genes were classified according to gene ontology using ingenuity pathway analysis tools. Microarray results for selected genes were confirmed by real-time quantitative PCR. A total of 211 genes were differentially expressed in PCOS non-IR and PCOS-IR granulosa cells (fold change≥1.5; P≤0.001) vs. matched controls. Diabetes mellitus and inflammation genes were significantly increased in PCOS-IR patients. Real-time quantitative PCR confirmed higher expression of NCF2 (2.13-fold), TCF7L2 (1.92-fold), and SERPINA1 (5.35-fold). Increased expression of inflammation genes ITGAX (3.68-fold) and TAB2 (1.86-fold) was confirmed in PCOS non-IR. Different cardiometabolic disease genes were differentially expressed in the two groups. Decreased expression of CAV1 (-3.58-fold) in PCOS non-IR and SPARC (-1.88-fold) in PCOS-IR was confirmed. Differential expression of genes involved in TGF-β signaling (IGF2R, increased; and HAS2, decreased), and oxidative stress (TXNIP, increased) was confirmed in both groups. Microarray analysis demonstrated differential expression of genes linked to diabetes mellitus, inflammation, cardiovascular diseases, and infertility in the granulosa cells of PCOS women with and without insulin resistance. Because these dysregulated genes are also involved in oxidative stress, lipid metabolism, and insulin signaling, we hypothesize that these genes may be involved in follicular growth arrest and metabolic disorders associated with the different phenotypes of PCOS.
Hoffman, Robert W; Merrill, Joan T; Alarcón-Riquelme, Marta M E; Petri, Michelle; Dow, Ernst R; Nantz, Eric; Nisenbaum, Laura K; Schroeder, Krista M; Komocsar, Wendy J; Perumal, Narayanan B; Linnik, Matthew D; Airey, David C; Liu, Yushi; Rocha, Guilherme V; Higgs, Richard E
2017-03-01
To characterize baseline gene expression and pharmacodynamically induced changes in whole blood gene expression in 1,760 systemic lupus erythematosus (SLE) patients from 2 phase III, 52-week, randomized, placebo-controlled, double-blind studies in which patients were treated with the BAFF-blocking IgG4 monoclonal antibody tabalumab. Patient samples were obtained from SLE patients from the ILLUMINATE-1 and ILLUMINATE-2 studies, and control samples were obtained from healthy donors. Blood was collected in Tempus tubes at baseline, week 16, and week 52. RNA was analyzed using Affymetrix Human Transcriptome Array 2.0 and NanoString. At baseline, expression of the interferon (IFN) response gene was elevated in patients compared with controls, with 75% of patients being positive for this IFN response gene signature. There was, however, substantial heterogeneity of IFN response gene expression and complex relationships among gene networks. The IFN response gene signature was a predictor of time to disease flare, independent of anti-double-stranded DNA (anti-dsDNA) antibody and C3 and C4 levels, and overall disease activity. Pharmacodynamically induced changes in gene expression following tabalumab treatment were extensive, occurring predominantly in B cell-related and immunoglobulin genes, and were consistent with other pharmacodynamic changes including anti-dsDNA antibody, C3, and immunoglobulin levels. SLE patients demonstrated increased expression of an IFN response gene signature (75% of patients had an elevated IFN response gene signature) at baseline in ILLUMINATE-1 and ILLUMINATE-2. Substantial heterogeneity of gene expression was detected among individual patients and in gene networks. The IFN response gene signature was an independent risk factor for future disease flares. Pharmacodynamic changes in gene expression were consistent with the mechanism of BAFF blockade by tabalumab. © 2016, American College of Rheumatology.
Kim, Jaehee; Ogden, Robert Todd; Kim, Haseong
2013-10-18
Time course gene expression experiments are an increasingly popular method for exploring biological processes. Temporal gene expression profiles provide an important characterization of gene function, as biological systems are both developmental and dynamic. With such data it is possible to study gene expression changes over time and thereby to detect differential genes. Much of the early work on analyzing time series expression data relied on methods developed originally for static data and thus there is a need for improved methodology. Since time series expression is a temporal process, its unique features such as autocorrelation between successive points should be incorporated into the analysis. This work aims to identify genes that show different gene expression profiles across time. We propose a statistical procedure to discover gene groups with similar profiles using a nonparametric representation that accounts for the autocorrelation in the data. In particular, we first represent each profile in terms of a Fourier basis, and then we screen out genes that are not differentially expressed based on the Fourier coefficients. Finally, we cluster the remaining gene profiles using a model-based approach in the Fourier domain. We evaluate the screening results in terms of sensitivity, specificity, FDR and FNR, compare with the Gaussian process regression screening in a simulation study and illustrate the results by application to yeast cell-cycle microarray expression data with alpha-factor synchronization.The key elements of the proposed methodology: (i) representation of gene profiles in the Fourier domain; (ii) automatic screening of genes based on the Fourier coefficients and taking into account autocorrelation in the data, while controlling the false discovery rate (FDR); (iii) model-based clustering of the remaining gene profiles. Using this method, we identified a set of cell-cycle-regulated time-course yeast genes. The proposed method is general and can be potentially used to identify genes which have the same patterns or biological processes, and help facing the present and forthcoming challenges of data analysis in functional genomics.
Influence of TRAIL gene on biomechanical properties of the human leukemic cell line Jurkat.
Yao, Weijuan; Chen, Kai; Wang, Xinjuan; Xie, Lide; Wen, Zongyao; Yan, Zongyi; Chien, Shu
2002-12-01
We cloned the cDNA fragment of human TNF-related apoptosis inducing ligand (TRAIL) into RevTet-On, a Tet-regulated and high-level gene expression system. Making use of the TRAIL gene expression system in Jurkat as a cell model, we studied the influence of TRAIL gene on the biomechanics properties of Jurkat through measuring changes of cellular biomechanics properties before and after the TRAIL gene expression, which was induced by adding tetracycline derivative doxycycline (Dox). The results indicated that the TRAIL gene expression led to significant changes in cellular biomechanics properties. The osmotic fragility increased and the cell stiffness increased after the expression of TRAIL gene. Thus, the apoptosis-inducing TRAIL gene caused significant changes in the biomechanics properties of Jurkat cells.
Sääf, Annika M.; Tengvall-Linder, Maria; Chang, Howard Y.; Adler, Adam S.; Wahlgren, Carl-Fredrik; Scheynius, Annika; Nordenskjöld, Magnus; Bradley, Maria
2008-01-01
Background Atopic eczema (AE) is a common chronic inflammatory skin disorder. In order to dissect the genetic background several linkage and genetic association studies have been performed. Yet very little is known about specific genes involved in this complex skin disease, and the underlying molecular mechanisms are not fully understood. Methodology/Findings We used human DNA microarrays to identify a molecular picture of the programmed responses of the human genome to AE. The transcriptional program was analyzed in skin biopsy samples from lesional and patch-tested skin from AE patients sensitized to Malassezia sympodialis (M. sympodialis), and corresponding biopsies from healthy individuals. The most notable feature of the global gene-expression pattern observed in AE skin was a reciprocal expression of induced inflammatory genes and repressed lipid metabolism genes. The overall transcriptional response in M. sympodialis patch-tested AE skin was similar to the gene-expression signature identified in lesional AE skin. In the constellation of genes differentially expressed in AE skin compared to healthy control skin, we have identified several potential susceptibility genes that may play a critical role in the pathological condition of AE. Many of these genes, including genes with a role in immune responses, lipid homeostasis, and epidermal differentiation, are localized on chromosomal regions previously linked to AE. Conclusions/Significance Through genome-wide expression profiling, we were able to discover a distinct reciprocal expression pattern of induced inflammatory genes and repressed lipid metabolism genes in skin from AE patients. We found a significant enrichment of differentially expressed genes in AE with cytobands associated to the disease, and furthermore new chromosomal regions were found that could potentially guide future region-specific linkage mapping in AE. The full data set is available at http://microarray-pubs.stanford.edu/eczema. PMID:19107207
Zervou, S; Wang, Y-F; Laiho, A; Gyenesei, A; Kytömäki, L; Hermann, R; Abouna, S; Epstein, D; Pelengaris, S; Khan, M
2010-12-01
Irreversible arterial damage due to early effects of hypo- or hyperglycaemia could account for the limited success of glucose-lowering treatments in preventing cardiovascular disease (CVD) events. We hypothesised that even brief hypo- or hyperglycaemia could adversely affect arterial gene expression and that these changes, moreover, might not be fully reversible. By controlled activation of a 'switchable' c-Myc transgene in beta cells, adult pIns-c-MycER(TAM) mice were rendered transiently hypo- and then hyperglycaemic, after which they were allowed to recover for up to 3 months. Immediate and sequential changes in aortic global gene expression from normal glycaemia through hypo- and hyperglycaemia to recovery were assessed. Gene expression was compared with that of normoglycaemic transgenic and tamoxifen-treated wild-type controls. Overall, expression of 95 genes was significantly affected by moderate hypoglycaemia (glucose down to 2.5 mmol/l), whereas over 769 genes were affected by hyperglycaemia. Genes and pathways activated included several involved in atherogenic processes, such as inflammation and arterial calcification. Although expression of many genes recovered to initial pre-exposure levels when hyperglycaemia was corrected (74.9%), in one in four genes this did not occur. Quantitative reverse transcriptase PCR and immunohistochemistry verified the gene expression patterns of key molecules, as shown by global gene arrays. Short-term exposure to hyperglycaemia can cause deleterious and persistent changes in arterial gene expression in vivo. Brief hypoglycaemia also adversely affects gene expression, although less substantially. Together, these results suggest that early correction of hyperglycaemia and avoidance of hypoglycaemia may both be necessary to avoid excess CVD risk in diabetes.
DNA-Demethylase Regulated Genes Show Methylation-Independent Spatiotemporal Expression Patterns
Schumann, Ulrike; Lee, Joanne; Kazan, Kemal; Ayliffe, Michael; Wang, Ming-Bo
2017-01-01
Recent research has indicated that a subset of defense-related genes is downregulated in the Arabidopsis DNA demethylase triple mutant rdd (ros1 dml2 dml3) resulting in increased susceptibility to the fungal pathogen Fusarium oxysporum. In rdd plants these downregulated genes contain hypermethylated transposable element sequences (TE) in their promoters, suggesting that this methylation represses gene expression in the mutant and that these sequences are actively demethylated in wild-type plants to maintain gene expression. In this study, the tissue-specific and pathogen-inducible expression patterns of rdd-downregulated genes were investigated and the individual role of ROS1, DML2, and DML3 demethylases in these spatiotemporal regulation patterns was determined. Large differences in defense gene expression were observed between pathogen-infected and uninfected tissues and between root and shoot tissues in both WT and rdd plants, however, only subtle changes in promoter TE methylation patterns occurred. Therefore, while TE hypermethylation caused decreased gene expression in rdd plants it did not dramatically effect spatiotemporal gene regulation, suggesting that this latter regulation is largely methylation independent. Analysis of ros1-3, dml2-1, and dml3-1 single gene mutant lines showed that promoter TE hypermethylation and defense-related gene repression was predominantly, but not exclusively, due to loss of ROS1 activity. These data demonstrate that DNA demethylation of TE sequences, largely by ROS1, promotes defense-related gene expression but does not control spatiotemporal expression in Arabidopsis. Summary: Ros1-mediated DNA demethylation of promoter transposable elements is essential for activation of defense-related gene expression in response to fungal infection in Arabidopsis thaliana. PMID:28894455
Noise in gene expression is coupled to growth rate.
Keren, Leeat; van Dijk, David; Weingarten-Gabbay, Shira; Davidi, Dan; Jona, Ghil; Weinberger, Adina; Milo, Ron; Segal, Eran
2015-12-01
Genetically identical cells exposed to the same environment display variability in gene expression (noise), with important consequences for the fidelity of cellular regulation and biological function. Although population average gene expression is tightly coupled to growth rate, the effects of changes in environmental conditions on expression variability are not known. Here, we measure the single-cell expression distributions of approximately 900 Saccharomyces cerevisiae promoters across four environmental conditions using flow cytometry, and find that gene expression noise is tightly coupled to the environment and is generally higher at lower growth rates. Nutrient-poor conditions, which support lower growth rates, display elevated levels of noise for most promoters, regardless of their specific expression values. We present a simple model of noise in expression that results from having an asynchronous population, with cells at different cell-cycle stages, and with different partitioning of the cells between the stages at different growth rates. This model predicts non-monotonic global changes in noise at different growth rates as well as overall higher variability in expression for cell-cycle-regulated genes in all conditions. The consistency between this model and our data, as well as with noise measurements of cells growing in a chemostat at well-defined growth rates, suggests that cell-cycle heterogeneity is a major contributor to gene expression noise. Finally, we identify gene and promoter features that play a role in gene expression noise across conditions. Our results show the existence of growth-related global changes in gene expression noise and suggest their potential phenotypic implications. © 2015 Keren et al.; Published by Cold Spring Harbor Laboratory Press.
Noise in gene expression is coupled to growth rate
Keren, Leeat; van Dijk, David; Weingarten-Gabbay, Shira; Davidi, Dan; Jona, Ghil; Weinberger, Adina; Milo, Ron; Segal, Eran
2015-01-01
Genetically identical cells exposed to the same environment display variability in gene expression (noise), with important consequences for the fidelity of cellular regulation and biological function. Although population average gene expression is tightly coupled to growth rate, the effects of changes in environmental conditions on expression variability are not known. Here, we measure the single-cell expression distributions of approximately 900 Saccharomyces cerevisiae promoters across four environmental conditions using flow cytometry, and find that gene expression noise is tightly coupled to the environment and is generally higher at lower growth rates. Nutrient-poor conditions, which support lower growth rates, display elevated levels of noise for most promoters, regardless of their specific expression values. We present a simple model of noise in expression that results from having an asynchronous population, with cells at different cell-cycle stages, and with different partitioning of the cells between the stages at different growth rates. This model predicts non-monotonic global changes in noise at different growth rates as well as overall higher variability in expression for cell-cycle–regulated genes in all conditions. The consistency between this model and our data, as well as with noise measurements of cells growing in a chemostat at well-defined growth rates, suggests that cell-cycle heterogeneity is a major contributor to gene expression noise. Finally, we identify gene and promoter features that play a role in gene expression noise across conditions. Our results show the existence of growth-related global changes in gene expression noise and suggest their potential phenotypic implications. PMID:26355006
Beger, Carmela; Pierce, Leigh N.; Krüger, Martin; Marcusson, Eric G.; Robbins, Joan M.; Welcsh, Piri; Welch, Peter J.; Welte, Karl; King, Mary-Claire; Barber, Jack R.; Wong-Staal, Flossie
2001-01-01
Expression of the breast and ovarian cancer susceptibility gene BRCA1 is down-regulated in sporadic breast and ovarian cancer cases. Therefore, the identification of genes involved in the regulation of BRCA1 expression might lead to new insights into the pathogenesis and treatment of these tumors. In the present study, an “inverse genomics” approach based on a randomized ribozyme gene library was applied to identify cellular genes regulating BRCA1 expression. A ribozyme gene library with randomized target recognition sequences was introduced into human ovarian cancer-derived cells stably expressing a selectable marker [enhanced green fluorescence protein (EGFP)] under the control of the BRCA1 promoter. Cells in which BRCA1 expression was upregulated by particular ribozymes were selected through their concomitant increase in EGFP expression. The cellular target gene of one ribozyme was identified to be the dominant negative transcriptional regulator Id4. Modulation of Id4 expression resulted in inversely regulated expression of BRCA1. In addition, increase in Id4 expression was associated with the ability of cells to exhibit anchorage-independent growth, demonstrating the biological relevance of this gene. Our data suggest that Id4 is a crucial gene regulating BRCA1 expression and might therefore be important for the BRCA1 regulatory pathway involved in the pathogenesis of sporadic breast and ovarian cancer. PMID:11136250
Direct Introduction of Genes into Rats and Expression of the Genes
NASA Astrophysics Data System (ADS)
Benvenisty, Nissim; Reshef, Lea
1986-12-01
A method of introducing actively expressed genes into intact mammals is described. DNA precipitated with calcium phosphate has been injected intraperitoneally into newborn rats. The injected genes have been taken up and expressed by the animal tissues. To examine the generality of the method we have injected newborn rats with the chloramphenicol acetyltransferase prokaryotic gene fused with various viral and cellular gene promoters and the gene for hepatitis B surface antigen, and we observed appearance of chloramphenicol acetyltransferase activity and hepatitis B surface antigen in liver and spleen. In addition, administration of genes coding for hormones (insulin or growth hormone) resulted in their expression.
The complexity of gene expression dynamics revealed by permutation entropy
2010-01-01
Background High complexity is considered a hallmark of living systems. Here we investigate the complexity of temporal gene expression patterns using the concept of Permutation Entropy (PE) first introduced in dynamical systems theory. The analysis of gene expression data has so far focused primarily on the identification of differentially expressed genes, or on the elucidation of pathway and regulatory relationships. We aim to study gene expression time series data from the viewpoint of complexity. Results Applying the PE complexity metric to abiotic stress response time series data in Arabidopsis thaliana, genes involved in stress response and signaling were found to be associated with the highest complexity not only under stress, but surprisingly, also under reference, non-stress conditions. Genes with house-keeping functions exhibited lower PE complexity. Compared to reference conditions, the PE of temporal gene expression patterns generally increased upon stress exposure. High-complexity genes were found to have longer upstream intergenic regions and more cis-regulatory motifs in their promoter regions indicative of a more complex regulatory apparatus needed to orchestrate their expression, and to be associated with higher correlation network connectivity degree. Arabidopsis genes also present in other plant species were observed to exhibit decreased PE complexity compared to Arabidopsis specific genes. Conclusions We show that Permutation Entropy is a simple yet robust and powerful approach to identify temporal gene expression profiles of varying complexity that is equally applicable to other types of molecular profile data. PMID:21176199
Population Level Purifying Selection and Gene Expression Shape Subgenome Evolution in Maize.
Pophaly, Saurabh D; Tellier, Aurélien
2015-12-01
The maize ancestor experienced a recent whole-genome duplication (WGD) followed by gene erosion which generated two subgenomes, the dominant subgenome (maize1) experiencing fewer deletions than maize2. We take advantage of available extensive polymorphism and gene expression data in maize to study purifying selection and gene expression divergence between WGD retained paralog pairs. We first report a strong correlation in nucleotide diversity between duplicate pairs, except for upstream regions. We then show that maize1 genes are under stronger purifying selection than maize2. WGD retained genes have higher gene dosage and biased Gene Ontologies consistent with previous studies. The relative gene expression of paralogs across tissues demonstrates that 98% of duplicate pairs have either subfunctionalized in a tissuewise manner or have diverged consistently in their expression thereby preventing functional complementation. Tissuewise subfunctionalization seems to be a hallmark of transcription factors, whereas consistent repression occurs for macromolecular complexes. We show that dominant gene expression is a strong determinant of the strength of purifying selection, explaining the inferred stronger negative selection on maize1 genes. We propose a novel expression-based classification of duplicates which is more robust to explain observed polymorphism patterns than the subgenome location. Finally, upstream regions of repressed genes exhibit an enrichment in transposable elements which indicates a possible mechanism for expression divergence. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Microarray expression profiling in adhesion and normal peritoneal tissues.
Ambler, Dana R; Golden, Alicia M; Gell, Jennifer S; Saed, Ghassan M; Carey, David J; Diamond, Michael P
2012-05-01
To identify molecular markers associated with adhesion and normal peritoneal tissue using microarray expression profiling. Comparative study. University hospital. Five premenopausal women. Adhesion and normal peritoneal tissue samples were obtained from premenopausal women. Ribonucleic acid was extracted using standard protocols and processed for hybridization to Affymetrix Whole Transcript Human Gene Expression Chips. Microarray data were obtained from five different patients, each with adhesion tissue and normal peritoneal samples. Real-time polymerase chain reaction was performed for confirmation using standard protocols. Gene expression in postoperative adhesion and normal peritoneal tissues. A total of 1,263 genes were differentially expressed between adhesion and normal tissues. One hundred seventy-three genes were found to be up-regulated and 56 genes were down-regulated in the adhesion tissues compared with normal peritoneal tissues. The genes were sorted into functional categories according to Gene Ontology annotations. Twenty-six up-regulated genes and 11 down-regulated genes were identified with functions potentially relevant to the pathophysiology of postoperative adhesions. We evaluated and confirmed expression of 12 of these specific genes via polymerase chain reaction. The pathogenesis, natural history, and optimal treatment of postoperative adhesive disease remains unanswered. Microarray analysis of adhesions identified specific genes with increased and decreased expression when compared with normal peritoneum. Knowledge of these genes and ontologic pathways with altered expression provide targets for new therapies to treat patients who have or are at risk for postoperative adhesions. Copyright © 2012 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
Li, Meng-Yao; Song, Xiong; Wang, Feng; Xiong, Ai-Sheng
2016-01-01
Parsley, one of the most important vegetables in the Apiaceae family, is widely used in the food, medicinal, and cosmetic industries. Recent studies on parsley mainly focus on its chemical composition, and further research involving the analysis of the plant's gene functions and expressions is required. qPCR is a powerful method for detecting very low quantities of target transcript levels and is widely used to study gene expression. To ensure the accuracy of results, a suitable reference gene is necessary for expression normalization. In this study, four software, namely geNorm, NormFinder, BestKeeper, and RefFinder were used to evaluate the expression stabilities of eight candidate reference genes of parsley (GAPDH, ACTIN, eIF-4α, SAND, UBC, TIP41, EF-1α, and TUB) under various conditions, including abiotic stresses (heat, cold, salt, and drought) and hormone stimuli treatments (GA, SA, MeJA, and ABA). Results showed that EF-1α and TUB were the most stable genes for abiotic stresses, whereas EF-1α, GAPDH, and TUB were the top three choices for hormone stimuli treatments. Moreover, EF-1α and TUB were the most stable reference genes among all tested samples, and UBC was the least stable one. Expression analysis of PcDREB1 and PcDREB2 further verified that the selected stable reference genes were suitable for gene expression normalization. This study can guide the selection of suitable reference genes in gene expression in parsley. PMID:27746803
Li, Meng-Yao; Song, Xiong; Wang, Feng; Xiong, Ai-Sheng
2016-01-01
Parsley, one of the most important vegetables in the Apiaceae family, is widely used in the food, medicinal, and cosmetic industries. Recent studies on parsley mainly focus on its chemical composition, and further research involving the analysis of the plant's gene functions and expressions is required. qPCR is a powerful method for detecting very low quantities of target transcript levels and is widely used to study gene expression. To ensure the accuracy of results, a suitable reference gene is necessary for expression normalization. In this study, four software, namely geNorm, NormFinder, BestKeeper, and RefFinder were used to evaluate the expression stabilities of eight candidate reference genes of parsley ( GAPDH, ACTIN, eIF-4 α, SAND, UBC, TIP41, EF-1 α, and TUB ) under various conditions, including abiotic stresses (heat, cold, salt, and drought) and hormone stimuli treatments (GA, SA, MeJA, and ABA). Results showed that EF-1 α and TUB were the most stable genes for abiotic stresses, whereas EF-1 α, GAPDH , and TUB were the top three choices for hormone stimuli treatments. Moreover, EF-1 α and TUB were the most stable reference genes among all tested samples, and UBC was the least stable one. Expression analysis of PcDREB1 and PcDREB2 further verified that the selected stable reference genes were suitable for gene expression normalization. This study can guide the selection of suitable reference genes in gene expression in parsley.
Wang, Genhong; Chen, Yanfei; Zhang, Xiaoying; Bai, Bingchuan; Yan, Hao; Qin, Daoyuan; Xia, Qingyou
2018-06-01
The silkworm, Bombyx mori, is one of the world's most economically important insect. Surveying variations in gene expression among multiple tissue/organ samples will provide clues for gene function assignments and will be helpful for identifying genes related to economic traits or specific cellular processes. To ensure their accuracy, commonly used gene expression quantification methods require a set of stable reference genes for data normalization. In this study, 24 candidate reference genes were assessed in 10 tissue/organ samples of day 3 fifth-instar B. mori larvae using geNorm and NormFinder. The results revealed that, using the combination of the expression of BGIBMGA003186 and BGIBMGA008209 was the optimum choice for normalizing the expression data of the B. mori tissue/organ samples. The most stable gene, BGIBMGA003186, is recommended if just one reference gene is used. Moreover, the commonly used reference gene encoding cytoplasmic actin was the least appropriate reference gene of the samples investigated. The reliability of the selected reference genes was further confirmed by evaluating the expression profiles of two cathepsin genes. Our results may be useful for future studies involving the quantification of relative gene expression levels of different tissue/organ samples in B. mori. © 2018 Wiley Periodicals, Inc.
Selecting and validating reference genes for quantitative real-time PCR in Plutella xylostella (L.).
You, Yanchun; Xie, Miao; Vasseur, Liette; You, Minsheng
2018-05-01
Gene expression analysis provides important clues regarding gene functions, and quantitative real-time PCR (qRT-PCR) is a widely used method in gene expression studies. Reference genes are essential for normalizing and accurately assessing gene expression. In the present study, 16 candidate reference genes (ACTB, CyPA, EF1-α, GAPDH, HSP90, NDPk, RPL13a, RPL18, RPL19, RPL32, RPL4, RPL8, RPS13, RPS4, α-TUB, and β-TUB) from Plutella xylostella were selected to evaluate gene expression stability across different experimental conditions using five statistical algorithms (geNorm, NormFinder, Delta Ct, BestKeeper, and RefFinder). The results suggest that different reference genes or combinations of reference genes are suitable for normalization in gene expression studies of P. xylostella according to the different developmental stages, strains, tissues, and insecticide treatments. Based on the given experimental sets, the most stable reference genes were RPS4 across different developmental stages, RPL8 across different strains and tissues, and EF1-α across different insecticide treatments. A comprehensive and systematic assessment of potential reference genes for gene expression normalization is essential for post-genomic functional research in P. xylostella, a notorious pest with worldwide distribution and a high capacity to adapt and develop resistance to insecticides.
Muhammad, Izhar; Jing, Xiu-Qing; Shalmani, Abdullah; Ali, Muhammad; Yi, Shi; Gan, Peng-Fei; Li, Wen-Qiang; Liu, Wen-Ting; Chen, Kun-Ming
2018-05-12
The ferric reduction oxidase (FRO) gene family is involved in various biological processes widely found in plants and may play an essential role in metal homeostasis, tolerance and intricate signaling networks in response to a number of abiotic stresses. Our study describes the identification, characterization and evolutionary relationships of FRO genes families. Here, total 50 FRO genes in Plantae and 15 ‘FRO like’ genes in non-Plantae were retrieved from 16 different species. The entire FRO genes have been divided into seven clades according to close similarity in biological and functional behavior. Three conserved domains were common in FRO genes while in two FROs sub genome have an extra NADPH-Ox domain, separating the function of plant FROs. OsFRO1 and OsFRO7 genes were expressed constitutively in rice plant. Real-time RT-PCR analysis demonstrated that the expression of OsFRO1 was high in flag leaf, and OsFRO7 gene expression was maximum in leaf blade and flag leaf. Both genes showed vigorous expressions level in response to different abiotic and hormones treatments. Moreover, the expression of both genes was also substantial under heavy metal stresses. OsFRO1 gene expression was triggered following 6 h under Zn, Pb, Co and Ni treatments, whereas OsFRO7 gene expression under Fe, Pb and Ni after 12 h, Zn and Cr after 6 h, and Mn and Co after 3 h treatments. These findings suggest the possible involvement of both the genes under abiotic and metal stress and the regulation of phytohormones. Therefore, our current work may provide the foundation for further functional characterization of rice FRO genes family.
Minchenko, D O; Kharkova, A P; Tsymbal, D O; Karbovskyi, L L; Minchenko, O H
2015-10-01
The aim of the present study was to investigate the effect of inhibition of endoplasmic reticulum stress signaling mediated by IRE1/ERN1 (inositol-requiring enzyme 1/endoplasmic reticulum to nucleus signaling 1) on the expression of genes encoding different groups of insulin-like growth binding proteins (IGFBP6 and IGFBP7) and CCN family (IGFBP8/CTGF/CCN2, IGFBP9/NOV/CCN3, IGFBP10/CYR61/CCN1, WISP1/CCN4, and WISP2/CCN5) and its sensitivity to glucose deprivation in U87 glioma cells. The expression of IGFBP6, IGFBP7, IGFBP8, IGFBP9, IGFBP10, WISP1, and WISP2 genes was studied by qPCR in control U87 glioma cells (wild-type) and its subline with IRE1 signaling enzyme loss of function upon glucose deprivation. The expression of IGFBP8, IGFBP9, and WISP2 genes was up-regulated in control glioma cells upon glucose deprivation with most significant changes for IGFBP9 gene. At the same time, the expression of IGFBP6, IGFBP10, and WISP1 genes was resistant to glucose deprivation in these glioma cells, but the IGFBP7 gene expression was down-regulated. The inhibition of both enzymatic activities (kinase and endoribonuclease) of IRE1 in glioma cells modified the sensitivity of most studied gene expressions to glucose deprivation condition: introduced sensitivity of IGFBP10 and WISP1 genes to glucose deprivation, enhanced the effect of this deprivation on IGFBP7 and IGFBP9 gene expressions, and reduced this effect on WISP2 gene and induced suppressive effect of glucose deprivation on the expression of IGFBP8 gene. Furthermore, the inhibition of IRE1 strongly affected the expression of all studied genes in glioma cells upon regular growing condition in gene specific manner: up-regulated the expression levels of IGFBP7, IGFBP8, IGFBP10, WISP1, and WISP2 genes and down-regulated the IGFBP6 and IGFBP9 genes. The data of this investigation demonstrate that the expression of IGFBP7, IGFBP8, IGFBP9, and WISP2 genes are sensitive to glucose deprivation in U87 glioma cells and that inhibition of IRE1 signaling enzyme function may significantly affect the expression of all studied genes in the presence of glucose as well as modify the effect of glucose deprivation on the expression of most studied genes. These data also show that proteins encoded by these genes may participate in the regulation of metabolic and proliferative processes via IGF/INS receptors and possibly other signaling pathways as well, via IRE1 signaling, which is a central mediator of the unfolded protein response and an important component of the tumor growth and metabolic diseases.
IDENTIFICATION OF DIFFERENTIALLY EXPRESSED GENES IN THE KIDNEYS OF GROWTH HORMONE TRANSGENIC MICE
Coschigano, K.T.; Wetzel, A.N.; Obichere, N.; Sharma, A.; Lee, S.; Rasch, R.; Guigneaux, M.M.; Flyvbjerg, A.; Wood, T.G.; Kopchick, J.J.
2010-01-01
Objective Bovine growth hormone (bGH) transgenic mice develop severe kidney damage. This damage may be due, at least in part, to changes in gene expression. Identification of genes with altered expression in the bGH kidney may identify mechanisms leading to damage in this system that may also be relevant to other models of kidney damage. Design cDNA subtraction libraries, northern blot analyses, microarray analyses and real-time reverse transcription polymerase chain reaction (RT/PCR) assays were used to identify and verify specific genes exhibiting differential RNA expression between kidneys of bGH mice and their non-transgenic (NT) littermates. Results Immunoglobulins were the vast majority of genes identified by the cDNA subtractions and the microarray analyses as being up-regulated in bGH. Several glycoprotein genes and inflammation-related genes also showed increased RNA expression in the bGH kidney. In contrast, only a few genes were identified as being significantly down-regulated in the bGH kidney. The most notable decrease in RNA expression was for the gene encoding kidney androgen-regulated protein. Conclusions A number of genes were identified as being differentially expressed in the bGH kidney. Inclusion of two groups, immunoglobulins and inflammation-related genes, suggests a role of the immune system in bGH kidney damage. PMID:20655258
Creating and validating cis-regulatory maps of tissue-specific gene expression regulation
O'Connor, Timothy R.; Bailey, Timothy L.
2014-01-01
Predicting which genomic regions control the transcription of a given gene is a challenge. We present a novel computational approach for creating and validating maps that associate genomic regions (cis-regulatory modules–CRMs) with genes. The method infers regulatory relationships that explain gene expression observed in a test tissue using widely available genomic data for ‘other’ tissues. To predict the regulatory targets of a CRM, we use cross-tissue correlation between histone modifications present at the CRM and expression at genes within 1 Mbp of it. To validate cis-regulatory maps, we show that they yield more accurate models of gene expression than carefully constructed control maps. These gene expression models predict observed gene expression from transcription factor binding in the CRMs linked to that gene. We show that our maps are able to identify long-range regulatory interactions and improve substantially over maps linking genes and CRMs based on either the control maps or a ‘nearest neighbor’ heuristic. Our results also show that it is essential to include CRMs predicted in multiple tissues during map-building, that H3K27ac is the most informative histone modification, and that CAGE is the most informative measure of gene expression for creating cis-regulatory maps. PMID:25200088
Temporal course of gene expression during motor memory formation in primary motor cortex of rats.
Hertler, B; Buitrago, M M; Luft, A R; Hosp, J A
2016-12-01
Motor learning is associated with plastic reorganization of neural networks in primary motor cortex (M1) that depends on changes in gene expression. Here, we investigate the temporal profile of these changes during motor memory formation in response to a skilled reaching task in rats. mRNA-levels were measured 1h, 7h and 24h after the end of a training session using microarray technique. To assure learning specificity, trained animals were compared to a control group. In response to motor learning, genes are sequentially regulated with high time-point specificity and a shift from initial suppression to later activation. The majority of regulated genes can be linked to learning-related plasticity. In the gene-expression cascade following motor learning, three different steps can be defined: (1) an initial suppression of genes influencing gene transcription. (2) Expression of genes that support translation of mRNA in defined compartments. (3) Expression of genes that immediately mediates plastic changes. Gene expression peaks after 24h - this is a much slower time-course when compared to hippocampus-dependent learning, where peaks of gene-expression can be observed 6-12h after training ended. Copyright © 2016 Elsevier Inc. All rights reserved.
Temporal Changes in Gene Expression in Rainbow Trout Exposed to Ethynyl Estradiol*
Skillman, Ann D.; Small, Jack A.; Schultz, Irvin R.
2007-01-01
We examined changes in the genomic response during continuous exposure to the xenoestrogen ethynylestradiol. Isogenic rainbow trout Oncorhynchus mykiss were exposed to nominal concentrations of 100 ng/L ethynyl estradiol (EE2) for a period of three weeks. At fixed time points within the exposure, fish were euthanized, livers harvested and RNA extracted. Fluorescently labeled cDNA were generated and hybridized against a commercially available Salmonid array (GRASP project, University of Victoria, Canada) spotted with 16,000 cDNAs. The slides were scanned to measure abundance of a given transcript in each sample relative to controls. Data were analyzed via Genespring (Silicon Genetics) to identify a list of up and down regulated genes, and to determine gene clustering patterns that can be used as “expression signatures”. Gene ontology was determined using the annotation available from the GRASP website. Our analysis indicates each exposure time period generated specific gene expression profiles. Changes in gene expression were best understood by grouping genes by their gene expression profiles rather than examining fold change at a particular time point. Many of the genes commonly used as biomarkers of exposure to xenoestrogens were not induced initially and did not have gene expression profiles typical of the majority of genes with altered expression. PMID:17215170
Temporal changes in gene expression in rainbow trout exposed to ethynyl estradiol.
Hook, Sharon E; Skillman, Ann D; Small, Jack A; Schultz, Irvin R
2007-02-01
We examined changes in the genomic response during continuous exposure to the xenoestrogen ethynyl estradiol. Isogenic rainbow trout Oncorhynchus mykiss were exposed to nominal concentrations of 100 ng/L ethynyl estradiol (EE2) for a period of 3 weeks. At fixed time points within the exposure, fish were euthanized, livers harvested and RNA extracted. Fluorescently labeled cDNA were generated and hybridized against a commercially available Salmonid array (GRASP project, University of Victoria, Canada) spotted with 16,000 cDNAs. The slides were scanned to measure abundance of a given transcript in each sample relative to controls. Data were analyzed via Genespring (Silicon Genetics) to identify a list of up and down regulated genes, and to determine gene clustering patterns that can be used as "expression signatures". Gene ontology was determined using the annotation available from the GRASP website. Our analysis indicates each exposure time period generated specific gene expression profiles. Changes in gene expression were best understood by grouping genes by their gene expression profiles rather than examining fold change at a particular time point. Many of the genes commonly used as biomarkers of exposure to xenoestrogens were not induced initially and did not have gene expression profiles typical of the majority of genes with altered expression.
Huang, Yu-Juan; Zhou, Zai-wei; Xu, Miao; Ma, Qing-wen; Yan, Jing-bin; Wang, Jian-yi; Zhang, Quo-qin; Huang, Min; Bao, Liming
2015-03-01
Vasovagal syncope (VVS) causes accidental harm for susceptible patients. However, pathophysiology of this disorder remains largely unknown. In an effort to understanding of molecular mechanism for VVS, genome-wide gene expression profiling analyses were performed on VVS patients at syncope state. A total of 66 Type 1 VVS child patients and the same number healthy controls were enrolled in this study. Peripheral blood RNAs were isolated from all subjects, of which 10 RNA samples were randomly selected from each groups for gene expression profile analysis using Gene ST 1.0 arrays (Affymetrix). The results revealed that 103 genes were differently expressed between the patients and controls. Significantly, two G-proteins related genes, GPR174 and GNG2 that have not been related to VVS were among the differently expressed genes. The microarray results were confirmed by qRT-PCR in all the tested individuals. Ingenuity pathway analysis and gene ontology annotation study showed that the differently expressed genes are associated with stress response and apoptosis, suggesting that the alteration of some gene expression including G-proteins related genes is associated with VVS. This study provides new insight into the molecular mechanism of VVS and would be helpful to further identify new molecular biomarkers for the disease.
Selection of reference genes for expression studies with fish myogenic cell cultures.
Bower, Neil I; Johnston, Ian A
2009-08-10
Relatively few studies have used cell culture systems to investigate gene expression and the regulation of myogenesis in fish. To produce robust data from quantitative real-time PCR mRNA levels need to be normalised using internal reference genes which have stable expression across all experimental samples. We have investigated the expression of eight candidate genes to identify suitable reference genes for use in primary myogenic cell cultures from Atlantic salmon (Salmo salar L.). The software analysis packages geNorm, Normfinder and Best keeper were used to rank genes according to their stability across 42 samples during the course of myogenic differentiation. Initial results showed several of the candidate genes exhibited stable expression throughout myogenic culture while Sdha was identified as the least stable gene. Further analysis with geNorm, Normfinder and Bestkeeper identified Ef1alpha, Hprt1, Ppia and RNApolII as stably expressed. Comparison of data normalised with the geometric average obtained from combinations of any three of these genes showed no significant differences, indicating that any combination of these genes is valid. The geometric average of any three of Hprt1, Ef1alpha, Ppia and RNApolII is suitable for normalisation of gene expression data in primary myogenic cultures from Atlantic salmon.
Deciphering life history transcriptomes in different environments
Etges, William J.; Trotter, Meredith V.; de Oliveira, Cássia C.; Rajpurohit, Subhash; Gibbs, Allen G.; Tuljapurkar, Shripad
2014-01-01
We compared whole transcriptome variation in six preadult stages and seven adult female ages in two populations of cactophilic Drosophila mojavensis reared on two host plants in order to understand how differences in gene expression influence standing life history variation. We used Singular Value Decomposition (SVD) to identify dominant trajectories of life cycle gene expression variation, performed pair-wise comparisons of stage and age differences in gene expression across the life cycle, identified when genes exhibited maximum levels of life cycle gene expression, and assessed population and host cactus effects on gene expression. Life cycle SVD analysis returned four significant components of transcriptional variation, revealing functional enrichment of genes responsible for growth, metabolic function, sensory perception, neural function, translation and aging. Host cactus effects on female gene expression revealed population and stage specific differences, including significant host plant effects on larval metabolism and development, as well as adult neurotransmitter binding and courtship behavior gene expression levels. In 3 - 6 day old virgin females, significant up-regulation of genes associated with meiosis and oogenesis was accompanied by down-regulation of genes associated with somatic maintenance, evidence for a life history tradeoff. The transcriptome of D. mojavensis reared in natural environments throughout its life cycle revealed core developmental transitions and genome wide influences on life history variation in natural populations. PMID:25442828
Tan, Huiqing; Yi, Lijuan; Rote, Neal S.; Hurd, William W.
2012-01-01
Context: Progesterone promotes uterine relaxation during pregnancy and its withdrawal induces labor. Progesterone withdrawal in human parturition is mediated in part by changes in the relative levels of the nuclear progesterone receptor isoforms, PR-A and PR-B, in myometrial cells. Parturition also involves myometrial inflammation; however, the functional link between nuclear PR-mediated progesterone actions and inflammation in human myometrial cells is unclear. Objective: Our objective was to determine how PR-A and PR-B regulate progesterone action in human myometrial cells and specifically the expression of genes encoding contraction-associated proteins and proinflammatory mediators. Design: Effects of PR-A and PR-B on the capacity for progesterone to modulate gene expression was determined using an immortalized human myometrial cell line stably transfected with inducible PR-A and PR-B expression transgenes and conditioned to express various PR-A and PR-B levels. Gene expression was assessed by genome wide transcriptome analysis, quantitative RT-PCR and immunoblotting. Results: PR-A and PR-B were each transcriptionally active in response to progesterone and affected the expression of distinct gene cohorts. The capacity for progesterone to affect gene expression was dependent on the PR-A to PR-B ratio. This was especially apparent for the expression of proinflammatory genes. Progesterone decreased proinflammatory gene expression when the PR-A to PR-B ratio favored PR-B and increased proinflammatory gene expression when the ratio favored PR-A. Progesterone via PR-B increased expression of inhibitor-κBα, a repressor of the nuclear factor-κB transcription factor, and inhibited basal and lipopolysaccharide-induced proinflammatory gene expression. Both of those PR-B-mediated effects were inhibited by PR-A. Conclusions: Our data suggest that during most of human pregnancy, when myometrial cells are PR-B dominant, progesterone promotes myometrial quiescence through PR-B-mediated antiinflammatory actions. At parturition, the rise in PR-A expression promotes labor by inhibiting the antiinflammatory actions of PR-B and stimulating proinflammatory gene expression in response to progesterone. PMID:22419721
Tydén, Eva; Tjälve, Hans; Larsson, Pia
2014-10-08
Among the cytochrome P450 enzymes (CYP), families 1-3 constitute almost half of total CYPs in mammals and play a central role in metabolism of a wide range of pharmaceuticals. This study investigated gene and protein expression and cellular localisation of CYP1A, CYP2A, CYP2C, CYP2D and CYP2E in equine intestine and liver. Real-time polymerase chain reaction (RT-PCR) was used to analyse gene expression, western blot to examine protein expression and immunohistochemical analyses to investigate cellular localisation. CYP1A and CYP2C were the CYPs with the highest gene expression in the intestine and also showed considerable gene expression in the liver. CYP2E and CYP2A showed the highest gene expression in the liver. CYP2E showed moderate intestinal gene expression, whereas that of CYP2A was very low or undetectable. For CYP2D, rather low gene expression levels were found in both intestine and the liver. In the intestine, CYP gene expression levels, except for CYP2E, exhibited patterns resembling those of the proteins, indicating that intestinal protein expression of these CYPs is regulated at the transcriptional level. For CYP2E, the results showed that the intestinal gene expression did not correlate to any visible protein expression, indicating that intestinal protein expression of this CYP is regulated at the post-transcriptional level. Immunostaining of intestine tissue samples showed preferential CYP staining in enterocytes at the tips of intestinal villi in the small intestine. In the liver, all CYPs showed preferential localisation in the centrilobular hepatocytes. Overall, different gene expression profiles were displayed by the CYPs examined in equine intestine and liver. The CYPs present in the intestine may act in concert with those in the liver to affect the oral bioavailability and therapeutic efficiency of substrate drugs. In addition, they may play a role in first-pass metabolism of feed constituents and of herbal supplements used in equine practice.
The goal of this project is to use an eight-gene expression profile to define functional signatures for small molecules and natural products with heretofore undefined mechanism of action. Two genes in the eight gene set are used as internal controls and do not vary across gene expression array data collected from the public domain. The remaining six genes are found to vary independently across a large collection of publically available gene expression array datasets. Read the abstract
Mechanisms and consequences of widespread random monoallelic expression.
Chess, Andrew
2012-05-15
Although random monoallelic expression has been known for decades to affect genes on the X chromosome in female placental mammals, until a few years ago it was thought that there were few autosomal genes that were regulated in this manner. New tools for assaying gene expression genome-wide are now revealing that there are perhaps more genes that are subject to random monoallelic expression on mammalian autosomes than there are on the X chromosome and that these expression properties are achieved by diverse molecular mechanisms. This mode of expression has the potential to have an impact on natural selection and on the evolution of gene families.
Gong, Zu-Kang; Wang, Shuang-Jie; Huang, Yong-Qi; Zhao, Rui-Qiang; Zhu, Qi-Fang; Lin, Wen-Zhen
2014-12-01
RT-qPCR is a commonly used method for evaluating gene expression; however, its accuracy and reliability are dependent upon the choice of appropriate reference gene(s), and there is limited information available on suitable reference gene(s) that can be used in mouse testis at different stages. In this study, using the RT-qPCR method, we investigated the expression variations of six reference genes representing different functional classes (Actb, Gapdh, Ppia, Tbp, Rps29, Hprt1) in mice testis during embryonic and postnatal development. The expression stabilities of putative reference genes were evaluated using five algorithms: geNorm, NormFinder, Bestkeeper, the comparative delta C(t) method and integrated tool RefFinder. Analysis of the results showed that Ppia, Gapdh and Actb were identified as the most stable genes and the geometric mean of Ppia, Gapdh and Actb constitutes an appropriate normalization factor for gene expression studies. The mRNA expression of AT1 as a test gene of interest varied depending upon which of the reference gene(s) was used as an internal control(s). This study suggested that Ppia, Gapdh and Actb are suitable reference genes among the six genes used for RT-qPCR normalization and provide crucial information for transcriptional analyses in future studies of gene expression in the developing mouse testis.
Nephron segment-specific gene expression using AAV vectors.
Asico, Laureano D; Cuevas, Santiago; Ma, Xiaobo; Jose, Pedro A; Armando, Ines; Konkalmatt, Prasad R
2018-02-26
AAV9 vector provides efficient gene transfer in all segments of the renal nephron, with minimum expression in non-renal cells, when administered retrogradely via the ureter. It is important to restrict the transgene expression to the desired cell type within the kidney, so that the physiological endpoints represent the function of the transgene expressed in that specific cell type within kidney. We hypothesized that segment-specific gene expression within the kidney can be accomplished using the highly efficient AAV9 vectors carrying the promoters of genes that are expressed exclusively in the desired segment of the nephron in combination with administration by retrograde infusion into the kidney via the ureter. We constructed AAV vectors carrying eGFP under the control of: kidney-specific cadherin (KSPC) gene promoter for expression in the entire nephron; Na + /glucose co-transporter (SGLT2) gene promoter for expression in the S1 and S2 segments of the proximal tubule; sodium, potassium, 2 chloride co-transporter (NKCC2) gene promoter for expression in the thick ascending limb of Henle's loop (TALH); E-cadherin (ECAD) gene promoter for expression in the collecting duct (CD); and cytomegalovirus (CMV) early promoter that provides expression in most of the mammalian cells, as control. We tested the specificity of the promoter constructs in vitro for cell type-specific expression in mouse kidney cells in primary culture, followed by retrograde infusion of the AAV vectors via the ureter in the mouse. Our data show that AAV9 vector, in combination with the segment-specific promoters administered by retrograde infusion via the ureter, provides renal nephron segment-specific gene expression. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Glioma IL13Rα2 Is Associated with Mesenchymal Signature Gene Expression and Poor Patient Prognosis
Starr, Renate; Deng, Xutao; Badie, Behnam; Yuan, Yate-Ching; Forman, Stephen J.; Barish, Michael E.
2013-01-01
A major challenge for successful immunotherapy against glioma is the identification and characterization of validated targets. We have taken a bioinformatics approach towards understanding the biological context of IL-13 receptor α2 (IL13Rα2) expression in brain tumors, and its functional significance for patient survival. Querying multiple gene expression databases, we show that IL13Rα2 expression increases with glioma malignancy grade, and expression for high-grade tumors is bimodal, with approximately 58% of WHO grade IV gliomas over-expressing this receptor. By several measures, IL13Rα2 expression in patient samples and low-passage primary glioma lines most consistently correlates with the expression of signature genes defining mesenchymal subclass tumors and negatively correlates with proneural signature genes as defined by two studies. Positive associations were also noted with proliferative signature genes, whereas no consistent associations were found with either classical or neural signature genes. Probing the potential functional consequences of this mesenchymal association through IPA analysis suggests that IL13Rα2 expression is associated with activation of proinflammatory and immune pathways characteristic of mesenchymal subclass tumors. In addition, survival analyses indicate that IL13Rα2 over-expression is associated with poor patient prognosis, a single gene correlation ranking IL13Rα2 in the top ~1% of total gene expression probes with regard to survival association with WHO IV gliomas. This study better defines the functional consequences of IL13Rα2 expression by demonstrating association with mesenchymal signature gene expression and poor patient prognosis. It thus highlights the utility of IL13Rα2 as a therapeutic target, and helps define patient populations most likely to respond to immunotherapy in present and future clinical trials. PMID:24204956
Glioma IL13Rα2 is associated with mesenchymal signature gene expression and poor patient prognosis.
Brown, Christine E; Warden, Charles D; Starr, Renate; Deng, Xutao; Badie, Behnam; Yuan, Yate-Ching; Forman, Stephen J; Barish, Michael E
2013-01-01
A major challenge for successful immunotherapy against glioma is the identification and characterization of validated targets. We have taken a bioinformatics approach towards understanding the biological context of IL-13 receptor α2 (IL13Rα2) expression in brain tumors, and its functional significance for patient survival. Querying multiple gene expression databases, we show that IL13Rα2 expression increases with glioma malignancy grade, and expression for high-grade tumors is bimodal, with approximately 58% of WHO grade IV gliomas over-expressing this receptor. By several measures, IL13Rα2 expression in patient samples and low-passage primary glioma lines most consistently correlates with the expression of signature genes defining mesenchymal subclass tumors and negatively correlates with proneural signature genes as defined by two studies. Positive associations were also noted with proliferative signature genes, whereas no consistent associations were found with either classical or neural signature genes. Probing the potential functional consequences of this mesenchymal association through IPA analysis suggests that IL13Rα2 expression is associated with activation of proinflammatory and immune pathways characteristic of mesenchymal subclass tumors. In addition, survival analyses indicate that IL13Rα2 over-expression is associated with poor patient prognosis, a single gene correlation ranking IL13Rα2 in the top ~1% of total gene expression probes with regard to survival association with WHO IV gliomas. This study better defines the functional consequences of IL13Rα2 expression by demonstrating association with mesenchymal signature gene expression and poor patient prognosis. It thus highlights the utility of IL13Rα2 as a therapeutic target, and helps define patient populations most likely to respond to immunotherapy in present and future clinical trials.
Differentially expressed genes in the silk gland of silkworm (Bombyx mori) treated with TiO2 NPs.
Xue, Bin; Li, Fanchi; Hu, Jingsheng; Tian, Jianghai; Li, Jinxin; Cheng, Xiaoyu; Hu, Jiahuan; Li, Bing
2017-05-05
Silk gland is a silkworm organ where silk proteins are synthesized and secreted. Dietary supplement of TiO 2 nanoparticles (NPs) promotes silk protein synthesis in silkworms. In this study, digital gene expression (DGE) tag was used to analyze the gene expression profile of the posterior silk gland of silkworms that were fed with TiO 2 NPs. In total, 5,702,823 and 6,150,719 clean tags, 55,096 and 74,715 distinct tags were detected in TiO 2 NPs treated and control groups, respectively. Compared with the control, TiO 2 NPs treated silkworms showed 306 differentially expressed genes, including 137 upregulated genes and 169 downregulated genes. Of these differentially expressed genes, 106 genes were related to silk protein synthesis, among which 97 genes were upregulated and 9 genes were downregulated. Pathway mapping using the Kyoto Encyclopedia of Genes and Genomes (KEGG) showed that 20 pathways were significantly enriched in TiO 2 NPs treated silkworms, and the metabolic pathway-related genes were the most significantly enriched. The DGE results were verified by qRT-PCR analysis of eight differentially expressed genes. The DGE and qRT-PCR results were consistent for all three upregulated genes and three of the five downregulated genes, but the expression trends of the remaining two genes were different between qRT-PCR and DGE analysis. This study enhances our understanding of the mechanism of TiO 2 NPs promoted silk protein synthesis. Copyright © 2017 Elsevier B.V. All rights reserved.
RNAi targeting GPR4 influences HMEC-1 gene expression by microarray analysis
Ren, Juan; Zhang, Yuelang; Cai, Hui; Ma, Hongbing; Zhao, Dongli; Zhang, Xiaozhi; Li, Zongfang; Wang, Shufeng; Wang, Jiangsheng; Liu, Rui; Li, Yi; Qian, Jiansheng; Wei, Hongxia; Niu, Liying; Liu, Yan; Xiao, Lisha; Ding, Muyang; Jiang, Shiwen
2014-01-01
G-protein coupled receptor 4 (GPR4) belongs to a protein family comprised of 3 closely related G protein-coupled receptors. Recent studies have shown that GPR4 plays important roles in angiogenesis, proton sensing, and regulating tumor cells as an oncogenic gene. How GPR4 conducts its functions? Rare has been known. In order to detect the genes related to GPR4, microarray technology was employed. GPR4 is highly expressed in human vascular endothelial cell HMEC-1. Small interfering RNA against GPR4 was used to knockdown GPR4 expression in HMEC-1. Then RNA from the GPR4 knockdown cells and control cells were analyzed through genome microarray. Microarray results shown that among the whole genes and expressed sequence tags, 447 differentially expressed genes were identified, containing 318 up-regulated genes and 129 down-regulated genes. These genes whose expression dramatically changed may be involved in the GPR4 functions. These genes were related to cell apoptosis, cytoskeleton and signal transduction, cell proliferation, differentiation and cell-cycle regulation, gene transcription and translation and cell material and energy metabolism. PMID:24753754
Ikram, Sobia; Durandet, Monique; Vesa, Simona; Pereira, Serge; Guerche, Philippe; Bonhomme, Sandrine
2014-06-01
F-box protein genes family is one of the largest gene families in plants, with almost 700 predicted genes in the model plant Arabidopsis. F-box proteins are key components of the ubiquitin proteasome system that allows targeted protein degradation. Transcriptome analyses indicate that half of these F-box protein genes are found expressed in microspore and/or pollen, i.e., during male gametogenesis. To assess the role of F-box protein genes during this crucial developmental step, we selected 34 F-box protein genes recorded as highly and specifically expressed in pollen and isolated corresponding insertion mutants. We checked the expression level of each selected gene by RT-PCR and confirmed pollen expression for 25 genes, but specific expression for only 10 of the 34 F-box protein genes. In addition, we tested the expression level of selected F-box protein genes in 24 mutant lines and showed that 11 of them were null mutants. Transmission analysis of the mutations to the progeny showed that none of the single mutations was gametophytic lethal. These unaffected transmission efficiencies suggested leaky mutations or functional redundancy among F-box protein genes. Cytological observation of the gametophytes in the mutants confirmed these results. Combinations of mutations in F-box protein genes from the same subfamily did not lead to transmission defect either, further highlighting functional redundancy and/or a high proportion of pseudogenes among these F-box protein genes.
Kienle, Dirk; Katzenberger, Tiemo; Ott, German; Saupe, Doreen; Benner, Axel; Kohlhammer, Holger; Barth, Thomas F E; Höller, Sylvia; Kalla, Jörg; Rosenwald, Andreas; Müller-Hermelink, Hans Konrad; Möller, Peter; Lichter, Peter; Döhner, Hartmut; Stilgenbauer, Stephan
2007-07-01
There is evidence for a direct role of quantitative gene expression deregulation in mantle-cell lymphoma (MCL) pathogenesis. Our aim was to investigate gene expression associations with other pathogenic factors and the significance of gene expression in a multivariate survival analysis. Quantitative expression of 20 genes of potential relevance for MCL prognosis and pathogenesis were analyzed using real-time reverse transcriptase polymerase chain reaction and correlated with clinical and genetic factors, tumor morphology, and Ki-67 index in 65 MCL samples. Genomic losses at the loci of TP53, RB1, and P16 were associated with reduced transcript levels of the respective genes, indicating a gene-dosage effect as the pathomechanism. Analysis of gene expression correlations between the candidate genes revealed a separation into two clusters, one dominated by proliferation activators, another by proliferation inhibitors and regulators of apoptosis. Whereas only weak associations were identified between gene expression and clinical parameters or blastoid morphology, several genes were correlated closely with the Ki-67 index, including the short CCND1 variant (positive correlation) and RB1, ATM, P27, and BMI (negative correlation). In multivariate survival analysis, expression levels of MYC, MDM2, EZH2, and CCND1 were the strongest prognostic factors independently of tumor proliferation and clinical factors. These results indicate a pathogenic contribution of several gene transcript levels to the biology and clinical course of MCL. Genes can be differentiated into factors contributing to proliferation deregulation, either by enhancement or loss of inhibition, and proliferation-independent factors potentially contributing to MCL pathogenesis by apoptosis impairment.
Arita, Adriana; Muñoz, Alexandra; Chervona, Yana; Niu, Jingping; Qu, Qingshan; Zhao, Najuan; Ruan, Ye; Kiok, Kathrin; Kluz, Thomas; Sun, Hong; Clancy, Hailey A.; Shamy, Magdy; Costa, Max
2012-01-01
Background Occupational exposure to nickel (Ni) is associated with an increased risk of lung and nasal cancers. Ni compounds exhibit weak mutagenic activity, alter the cell’s epigenetic homeostasis, and activate signaling pathways. However, changes in gene expression associated with Ni exposure have only been investigated in vitro. This study was conducted in a Chinese population to determine whether occupational exposure to Ni was associated with differential gene expression profiles in the peripheral blood mononuclear cells (PBMCs) of Ni-refinery workers when compared to referents. Methods Eight Ni-refinery workers and ten referents were selected. PBMC RNA was extracted and gene expression profiling was performed using Affymetrix exon arrays. Differentially expressed genes between both groups were identified in a global analysis. Results There were a total of 2756 differentially expressed genes (DEG) in the Ni-refinery workers relative to the control subjects (FDR adjusted p<0.05) with 770 up-regulated genes and 1986 down-regulated genes. DNA repair and epigenetic genes were significantly overrepresented (p< 0.0002) among the DEG. Of 31 DNA repair genes, 29 were repressed in the high exposure group and two were overexpressed. Of the 16 epigenetic genes 12 were repressed in the high exposure group and 4 were overexpressed. Conclusions The results of this study indicate that occupational exposure to Ni is associated with alterations in gene expression profiles in PBMCs of subjects. Impact Gene expression may be useful in identifying patterns of deregulation that precede clinical identification of Ni-induced cancers. PMID:23195993
Beal, Andria P; Martin, F Douglas; Hale, Matthew C
2018-02-01
Sex-bias in gene expression is a widespread mechanism for controlling the development of phenotypes that differ between males and females. Most studies on sex-bias in gene expression have focused on species that exhibit traditional sex-roles (male-male competition and female parental care). By contrast the Syngnathid fishes (sea horses, pipefish, and sea dragons) are a group of organisms where many species exhibit male brooding and sex-role reversal (female-female competition for mates and paternal parental care), and little is known about how patterns of sex-bias in gene expression vary in species with sex-role reversal. Here we utilize RNA-seq technology to investigate patterns of sex-bias in gene expression in the brain tissue of the Gulf Pipefish (Syngnathus scovelli) a species that exhibits sex-role reversal. Gene expression analysis identified 73 sex-biased genes, 26 genes upregulated in females and 47 genes upregulated in males. Gene ontology analysis found 52 terms enriched for the sex-biased genes in a wide range of pathways suggesting that multiple functions and processes differ between the sexes. We focused on two areas of interest: sex steroids/hormones and circadian rhythms, both of which exhibited sex-bias in gene expression, and are known to influence sexual development in other species. Lastly, the work presented herein contributes to a growing body of genome data available for the Syngnathids, increasing our knowledge on patterns of gene expression in these unusual fishes. Copyright © 2017 Elsevier B.V. All rights reserved.
Jiang, Jinjin; Wang, Yue; Zhu, Bao; Fang, Tingting; Fang, Yujie; Wang, Youping
2015-01-27
Brassica includes many successfully cultivated crop species of polyploid origin, either by ancestral genome triplication or by hybridization between two diploid progenitors, displaying complex repetitive sequences and transposons. The U's triangle, which consists of three diploids and three amphidiploids, is optimal for the analysis of complicated genomes after polyploidization. Next-generation sequencing enables the transcriptome profiling of polyploids on a global scale. We examined the gene expression patterns of three diploids (Brassica rapa, B. nigra, and B. oleracea) and three amphidiploids (B. napus, B. juncea, and B. carinata) via digital gene expression analysis. In total, the libraries generated between 5.7 and 6.1 million raw reads, and the clean tags of each library were mapped to 18547-21995 genes of B. rapa genome. The unambiguous tag-mapped genes in the libraries were compared. Moreover, the majority of differentially expressed genes (DEGs) were explored among diploids as well as between diploids and amphidiploids. Gene ontological analysis was performed to functionally categorize these DEGs into different classes. The Kyoto Encyclopedia of Genes and Genomes analysis was performed to assign these DEGs into approximately 120 pathways, among which the metabolic pathway, biosynthesis of secondary metabolites, and peroxisomal pathway were enriched. The non-additive genes in Brassica amphidiploids were analyzed, and the results indicated that orthologous genes in polyploids are frequently expressed in a non-additive pattern. Methyltransferase genes showed differential expression pattern in Brassica species. Our results provided an understanding of the transcriptome complexity of natural Brassica species. The gene expression changes in diploids and allopolyploids may help elucidate the morphological and physiological differences among Brassica species.
Genomics of Mature and Immature Olfactory Sensory Neurons
Nickell, Melissa D.; Breheny, Patrick; Stromberg, Arnold J.; McClintock, Timothy S.
2014-01-01
The continuous replacement of neurons in the olfactory epithelium provides an advantageous model for investigating neuronal differentiation and maturation. By calculating the relative enrichment of every mRNA detected in samples of mature mouse olfactory sensory neurons (OSNs), immature OSNs, and the residual population of neighboring cell types, and then comparing these ratios against the known expression patterns of >300 genes, enrichment criteria that accurately predicted the OSN expression patterns of nearly all genes were determined. We identified 847 immature OSN-specific and 691 mature OSN-specific genes. The control of gene expression by chromatin modification and transcription factors, and neurite growth, protein transport, RNA processing, cholesterol biosynthesis, and apoptosis via death domain receptors, were overrepresented biological processes in immature OSNs. Ion transport (ion channels), presynaptic functions, and cilia-specific processes were overrepresented in mature OSNs. Processes overrepresented among the genes expressed by all OSNs were protein and ion transport, ER overload response, protein catabolism, and the electron transport chain. To more accurately represent gradations in mRNA abundance and identify all genes expressed in each cell type, classification methods were used to produce probabilities of expression in each cell type for every gene. These probabilities, which identified 9,300 genes expressed in OSNs, were 96% accurate at identifying genes expressed in OSNs and 86% accurate at discriminating genes specific to mature and immature OSNs. This OSN gene database not only predicts the genes responsible for the major biological processes active in OSNs, but also identifies thousands of never before studied genes that support OSN phenotypes. PMID:22252456
Goin, Dana E; Smed, Mette Kiel; Pachter, Lior; Purdom, Elizabeth; Nelson, J Lee; Kjærgaard, Hanne; Olsen, Jørn; Hetland, Merete Lund; Zoffmann, Vibeke; Ottesen, Bent; Jawaheer, Damini
2017-05-25
Little is known about gene expression changes induced by pregnancy in women with rheumatoid arthritis (RA) and healthy women because the few studies previously conducted did not have pre-pregnancy samples available as baseline. We have established a cohort of women with RA and healthy women followed prospectively from a pre-pregnancy baseline. In this study, we tested the hypothesis that pregnancy-induced changes in gene expression among women with RA who improve during pregnancy (pregDAS improved ) overlap substantially with changes observed among healthy women and differ from changes observed among women with RA who worsen during pregnancy (pregDAS worse ). Global gene expression profiles were generated by RNA sequencing (RNA-seq) from 11 women with RA and 5 healthy women before pregnancy (T0) and at the third trimester (T3). Among the women with RA, eight showed an improvement in disease activity by T3, whereas three worsened. Differential expression analysis was used to identify genes demonstrating significant changes in expression within each of the RA and healthy groups (T3 vs T0), as well as between the groups at each time point. Gene set enrichment was assessed in terms of Gene Ontology processes and protein networks. A total of 1296 genes were differentially expressed between T3 and T0 among the 8 pregDAS improved women, with 161 genes showing at least two-fold change (FC) in expression by T3. The majority (108 of 161 genes) were also differentially expressed among healthy women (q<0.05, FC≥2). Additionally, a small cluster of genes demonstrated contrasting changes in expression between the pregDAS improved and pregDAS worse groups, all of which were inducible by type I interferon (IFN). These IFN-inducible genes were over-expressed at T3 compared to the T0 baseline among the pregDAS improved women. In our pilot RNA-seq dataset, increased pregnancy-induced expression of type I IFN-inducible genes was observed among women with RA who improved during pregnancy, but not among women who worsened. These findings warrant further investigation into expression of these genes in RA pregnancy and their potential role in modulation of disease activity. These results are nevertheless preliminary and should be interpreted with caution until replicated in a larger sample.
Huis, Rudy; Hawkins, Simon; Neutelings, Godfrey
2010-04-19
Quantitative real-time PCR (qRT-PCR) is currently the most accurate method for detecting differential gene expression. Such an approach depends on the identification of uniformly expressed 'housekeeping genes' (HKGs). Extensive transcriptomic data mining and experimental validation in different model plants have shown that the reliability of these endogenous controls can be influenced by the plant species, growth conditions and organs/tissues examined. It is therefore important to identify the best reference genes to use in each biological system before using qRT-PCR to investigate differential gene expression. In this paper we evaluate different candidate HKGs for developmental transcriptomic studies in the economically-important flax fiber- and oil-crop (Linum usitatissimum L). Specific primers were designed in order to quantify the expression levels of 20 different potential housekeeping genes in flax roots, internal- and external-stem tissues, leaves and flowers at different developmental stages. After calculations of PCR efficiencies, 13 HKGs were retained and their expression stabilities evaluated by the computer algorithms geNorm and NormFinder. According to geNorm, 2 Transcriptional Elongation Factors (TEFs) and 1 Ubiquitin gene are necessary for normalizing gene expression when all studied samples are considered. However, only 2 TEFs are required for normalizing expression in stem tissues. In contrast, NormFinder identified glyceraldehyde-3-phosphate dehydrogenase (GADPH) as the most stably expressed gene when all samples were grouped together, as well as when samples were classed into different sub-groups.qRT-PCR was then used to investigate the relative expression levels of two splice variants of the flax LuMYB1 gene (homologue of AtMYB59). LuMYB1-1 and LuMYB1-2 were highly expressed in the internal stem tissues as compared to outer stem tissues and other samples. This result was confirmed with both geNorm-designated- and NormFinder-designated-reference genes. The use of 2 different statistical algorithms results in the identification of different combinations of flax HKGs for expression data normalization. Despite such differences, the use of geNorm-designated- and NormFinder-designated-reference genes enabled us to accurately compare the expression levels of a flax MYB gene in different organs and tissues. Our identification and validation of suitable flax HKGs will facilitate future developmental transcriptomic studies in this economically-important plant.
Dean, Caroline; Elzen, Peter van den; Tamaki, Stanley; Dunsmuir, Pamela; Bedbrook, John
1985-01-01
Of the eight nuclear genes in the plant multi-gene family which encodes the small subunit (rbcS) of Petunia (Mitchell) ribulose bisphosphate carboxylase, one rbcS gene accounts for 47% of the total rbcS gene expression in petunia leaf tissue. Expression of each of five other rbcS genes is detected at levels between 2 and 23% of the total rbcS expression in leaf tissue, while expression of the remaining two rbcS genes is not detected. There is considerable variation (500-fold) in the levels of total rbcS mRNA in six organs of petunia (leaves, sepals, petals, stems, roots and stigmas/anthers). One gene, SSU301, showed the highest levels of steady-state mRNA in each of the organs examined. We discuss the differences in the steady-state mRNA levels of the individual rbcS genes in relation to their gene structure, nucleotide sequence and genomic linkage. ImagesFig. 2.Fig. 3. PMID:16453647
Large clusters of co-expressed genes in the Drosophila genome.
Boutanaev, Alexander M; Kalmykova, Alla I; Shevelyov, Yuri Y; Nurminsky, Dmitry I
2002-12-12
Clustering of co-expressed, non-homologous genes on chromosomes implies their co-regulation. In lower eukaryotes, co-expressed genes are often found in pairs. Clustering of genes that share aspects of transcriptional regulation has also been reported in higher eukaryotes. To advance our understanding of the mode of coordinated gene regulation in multicellular organisms, we performed a genome-wide analysis of the chromosomal distribution of co-expressed genes in Drosophila. We identified a total of 1,661 testes-specific genes, one-third of which are clustered on chromosomes. The number of clusters of three or more genes is much higher than expected by chance. We observed a similar trend for genes upregulated in the embryo and in the adult head, although the expression pattern of individual genes cannot be predicted on the basis of chromosomal position alone. Our data suggest that the prevalent mechanism of transcriptional co-regulation in higher eukaryotes operates with extensive chromatin domains that comprise multiple genes.
Reconstructing directed gene regulatory network by only gene expression data.
Zhang, Lu; Feng, Xi Kang; Ng, Yen Kaow; Li, Shuai Cheng
2016-08-18
Accurately identifying gene regulatory network is an important task in understanding in vivo biological activities. The inference of such networks is often accomplished through the use of gene expression data. Many methods have been developed to evaluate gene expression dependencies between transcription factor and its target genes, and some methods also eliminate transitive interactions. The regulatory (or edge) direction is undetermined if the target gene is also a transcription factor. Some methods predict the regulatory directions in the gene regulatory networks by locating the eQTL single nucleotide polymorphism, or by observing the gene expression changes when knocking out/down the candidate transcript factors; regrettably, these additional data are usually unavailable, especially for the samples deriving from human tissues. In this study, we propose the Context Based Dependency Network (CBDN), a method that is able to infer gene regulatory networks with the regulatory directions from gene expression data only. To determine the regulatory direction, CBDN computes the influence of source to target by evaluating the magnitude changes of expression dependencies between the target gene and the others with conditioning on the source gene. CBDN extends the data processing inequality by involving the dependency direction to distinguish between direct and transitive relationship between genes. We also define two types of important regulators which can influence a majority of the genes in the network directly or indirectly. CBDN can detect both of these two types of important regulators by averaging the influence functions of candidate regulator to the other genes. In our experiments with simulated and real data, even with the regulatory direction taken into account, CBDN outperforms the state-of-the-art approaches for inferring gene regulatory network. CBDN identifies the important regulators in the predicted network: 1. TYROBP influences a batch of genes that are related to Alzheimer's disease; 2. ZNF329 and RB1 significantly regulate those 'mesenchymal' gene expression signature genes for brain tumors. By merely leveraging gene expression data, CBDN can efficiently infer the existence of gene-gene interactions as well as their regulatory directions. The constructed networks are helpful in the identification of important regulators for complex diseases.
Yu, Fang; Chen, Ming-Hui; Kuo, Lynn; Talbott, Heather; Davis, John S
2015-08-07
Recently, the Bayesian method becomes more popular for analyzing high dimensional gene expression data as it allows us to borrow information across different genes and provides powerful estimators for evaluating gene expression levels. It is crucial to develop a simple but efficient gene selection algorithm for detecting differentially expressed (DE) genes based on the Bayesian estimators. In this paper, by extending the two-criterion idea of Chen et al. (Chen M-H, Ibrahim JG, Chi Y-Y. A new class of mixture models for differential gene expression in DNA microarray data. J Stat Plan Inference. 2008;138:387-404), we propose two new gene selection algorithms for general Bayesian models and name these new methods as the confident difference criterion methods. One is based on the standardized differences between two mean expression values among genes; the other adds the differences between two variances to it. The proposed confident difference criterion methods first evaluate the posterior probability of a gene having different gene expressions between competitive samples and then declare a gene to be DE if the posterior probability is large. The theoretical connection between the proposed first method based on the means and the Bayes factor approach proposed by Yu et al. (Yu F, Chen M-H, Kuo L. Detecting differentially expressed genes using alibrated Bayes factors. Statistica Sinica. 2008;18:783-802) is established under the normal-normal-model with equal variances between two samples. The empirical performance of the proposed methods is examined and compared to those of several existing methods via several simulations. The results from these simulation studies show that the proposed confident difference criterion methods outperform the existing methods when comparing gene expressions across different conditions for both microarray studies and sequence-based high-throughput studies. A real dataset is used to further demonstrate the proposed methodology. In the real data application, the confident difference criterion methods successfully identified more clinically important DE genes than the other methods. The confident difference criterion method proposed in this paper provides a new efficient approach for both microarray studies and sequence-based high-throughput studies to identify differentially expressed genes.
Connahs, Heidi; Rhen, Turk; Simmons, Rebecca B
2016-03-31
Butterfly wing color patterns are an important model system for understanding the evolution and development of morphological diversity and animal pigmentation. Wing color patterns develop from a complex network composed of highly conserved patterning genes and pigmentation pathways. Patterning genes are involved in regulating pigment synthesis however the temporal expression dynamics of these interacting networks is poorly understood. Here, we employ next generation sequencing to examine expression patterns of the gene network underlying wing development in the nymphalid butterfly, Vanessa cardui. We identified 9, 376 differentially expressed transcripts during wing color pattern development, including genes involved in patterning, pigmentation and gene regulation. Differential expression of these genes was highest at the pre-ommochrome stage compared to early pupal and late melanin stages. Overall, an increasing number of genes were down-regulated during the progression of wing development. We observed dynamic expression patterns of a large number of pigment genes from the ommochrome, melanin and also pteridine pathways, including contrasting patterns of expression for paralogs of the yellow gene family. Surprisingly, many patterning genes previously associated with butterfly pattern elements were not significantly up-regulated at any time during pupation, although many other transcription factors were differentially expressed. Several genes involved in Notch signaling were significantly up-regulated during the pre-ommochrome stage including slow border cells, bunched and pebbles; the function of these genes in the development of butterfly wings is currently unknown. Many genes involved in ecdysone signaling were also significantly up-regulated during early pupal and late melanin stages and exhibited opposing patterns of expression relative to the ecdysone receptor. Finally, a comparison across four butterfly transcriptomes revealed 28 transcripts common to all four species that have no known homologs in other metazoans. This study provides a comprehensive list of differentially expressed transcripts during wing development, revealing potential candidate genes that may be involved in regulating butterfly wing patterns. Some differentially expressed genes have no known homologs possibly representing genes unique to butterflies. Results from this study also indicate that development of nymphalid wing patterns may arise not only from melanin and ommochrome pigments but also the pteridine pigment pathway.
Shen, Jiangshan J; Wang, Ting-You; Yang, Wanling
2017-11-02
Sex is an important but understudied factor in the genetics of human diseases. Analyses using a combination of gene expression data, ENCODE data, and evolutionary data of sex-biased gene expression in human tissues can give insight into the regulatory and evolutionary forces acting on sex-biased genes. In this study, we analyzed the differentially expressed genes between males and females. On the X chromosome, we used a novel method and investigated the status of genes that escape X-chromosome inactivation (escape genes), taking into account the clonality of lymphoblastoid cell lines (LCLs). To investigate the regulation of sex-biased differentially expressed genes (sDEG), we conducted pathway and transcription factor enrichment analyses on the sDEGs, as well as analyses on the genomic distribution of sDEGs. Evolutionary analyses were also conducted on both sDEGs and escape genes. Genome-wide, we characterized differential gene expression between sexes in 462 RNA-seq samples and identified 587 sex-biased genes, or 3.2% of the genes surveyed. On the X chromosome, sDEGs were distributed in evolutionary strata in a similar pattern as escape genes. We found a trend of negative correlation between the gene expression breadth and nonsynonymous over synonymous mutation (dN/dS) ratios, showing a possible pleiotropic constraint on evolution of genes. Genome-wide, nine transcription factors were found enriched in binding to the regions surrounding the transcription start sites of female-biased genes. Many pathways and protein domains were enriched in sex-biased genes, some of which hint at sex-biased physiological processes. These findings lend insight into the regulatory and evolutionary forces shaping sex-biased gene expression and their involvement in the physiological and pathological processes in human health and diseases.
Gianni, Luca; Zambetti, Milvia; Clark, Kim; Baker, Joffre; Cronin, Maureen; Wu, Jenny; Mariani, Gabriella; Rodriguez, Jaime; Carcangiu, Marialuisa; Watson, Drew; Valagussa, Pinuccia; Rouzier, Roman; Symmans, W Fraser; Ross, Jeffrey S; Hortobagyi, Gabriel N; Pusztai, Lajos; Shak, Steven
2005-10-10
We sought to identify gene expression markers that predict the likelihood of chemotherapy response. We also tested whether chemotherapy response is correlated with the 21-gene Recurrence Score assay that quantifies recurrence risk. Patients with locally advanced breast cancer received neoadjuvant paclitaxel and doxorubicin. RNA was extracted from the pretreatment formalin-fixed paraffin-embedded core biopsies. The expression of 384 genes was quantified using reverse transcriptase polymerase chain reaction and correlated with pathologic complete response (pCR). The performance of genes predicting for pCR was tested in patients from an independent neoadjuvant study where gene expression was obtained using DNA microarrays. Of 89 assessable patients (mean age, 49.9 years; mean tumor size, 6.4 cm), 11 (12%) had a pCR. Eighty-six genes correlated with pCR (unadjusted P < .05); pCR was more likely with higher expression of proliferation-related genes and immune-related genes, and with lower expression of estrogen receptor (ER) -related genes. In 82 independent patients treated with neoadjuvant paclitaxel and doxorubicin, DNA microarray data were available for 79 of the 86 genes. In univariate analysis, 24 genes correlated with pCR with P < .05 (false discovery, four genes) and 32 genes showed correlation with P < .1 (false discovery, eight genes). The Recurrence Score was positively associated with the likelihood of pCR (P = .005), suggesting that the patients who are at greatest recurrence risk are more likely to have chemotherapy benefit. Quantitative expression of ER-related genes, proliferation genes, and immune-related genes are strong predictors of pCR in women with locally advanced breast cancer receiving neoadjuvant anthracyclines and paclitaxel.
On the presence and role of human gene-body DNA methylation
Jjingo, Daudi; Conley, Andrew B.; Yi, Soojin V.; Lunyak, Victoria V.; Jordan, I. King
2012-01-01
DNA methylation of promoter sequences is a repressive epigenetic mark that down-regulates gene expression. However, DNA methylation is more prevalent within gene-bodies than seen for promoters, and gene-body methylation has been observed to be positively correlated with gene expression levels. This paradox remains unexplained, and accordingly the role of DNA methylation in gene-bodies is poorly understood. We addressed the presence and role of human gene-body DNA methylation using a meta-analysis of human genome-wide methylation, expression and chromatin data sets. Methylation is associated with transcribed regions as genic sequences have higher levels of methylation than intergenic or promoter sequences. We also find that the relationship between gene-body DNA methylation and expression levels is non-monotonic and bell-shaped. Mid-level expressed genes have the highest levels of gene-body methylation, whereas the most lowly and highly expressed sets of genes both have low levels of methylation. While gene-body methylation can be seen to efficiently repress the initiation of intragenic transcription, the vast majority of methylated sites within genes are not associated with intragenic promoters. In fact, highly expressed genes initiate the most intragenic transcription, which is inconsistent with the previously held notion that gene-body methylation serves to repress spurious intragenic transcription to allow for efficient transcriptional elongation. These observations lead us to propose a model to explain the presence of human gene-body methylation. This model holds that the repression of intragenic transcription by gene-body methylation is largely epiphenomenal, and suggests that gene-body methylation levels are predominantly shaped via the accessibility of the DNA to methylating enzyme complexes. PMID:22577155
Whitmore, S Scott; Braun, Terry A; Skeie, Jessica M; Haas, Christine M; Sohn, Elliott H; Stone, Edwin M; Scheetz, Todd E; Mullins, Robert F
2013-01-01
Age-related macular degeneration (AMD) is a major cause of blindness in developed countries. The molecular pathogenesis of early events in AMD is poorly understood. We investigated differential gene expression in samples of human retinal pigment epithelium (RPE) and choroid from early AMD and control maculas with exon-based arrays. Gene expression levels in nine human donor eyes with early AMD and nine control human donor eyes were assessed using Affymetrix Human Exon ST 1.0 arrays. Two controls did not pass quality control and were removed. Differentially expressed genes were annotated using the Database for Annotation, Visualization and Integrated Discovery (DAVID), and gene set enrichment analysis (GSEA) was performed on RPE-specific and endothelium-associated gene sets. The complement factor H (CFH) genotype was also assessed, and differential expression was analyzed regarding high AMD risk (YH/HH) and low AMD risk (YY) genotypes. Seventy-five genes were identified as differentially expressed (raw p value <0.01; ≥50% fold change, mean log2 expression level in AMD or control ≥ median of all average gene expression values); however, no genes were significant (adj. p value <0.01) after correction for multiple hypothesis testing. Of 52 genes with decreased expression in AMD (fold change <0.5; raw p value <0.01), 18 genes were identified by DAVID analysis as associated with vision or neurologic processes. The GSEA of the RPE-associated and endothelium-associated genes revealed a significant decrease in genes typically expressed by endothelial cells in the early AMD group compared to controls, consistent with previous histologic and proteomic studies. Analysis of the CFH genotype indicated decreased expression of ADAMTS9 in eyes with high-risk genotypes (fold change = -2.61; raw p value=0.0008). GSEA results suggest that RPE transcripts are preserved or elevated in early AMD, concomitant with loss of endothelial cell marker expression. These results are consistent with the notion that choroidal endothelial cell dropout or dedifferentiation occurs early in the pathogenesis of AMD.
2018-01-01
Objective The study investigated the biological functions and mechanisms for controlling cashmere growth of Liaoning cashmere goat by ovarian carcinoma immunoreactive antigen-like protein 2 (OCIAD2) and decorin (DCN) genes. Methods cDNA library of Liaoning cashmere goat was constructed in early stages. OCIAD2 and DCN genes related to cashmere growth were identified by homology analysis comparison. The expression location of OCIAD2 and DCN genes in primary and secondary hair follicles (SF) was performed using in situ hybridization. The expression of OCIAD2 and DCN genes in primary and SF was performed using real-time polymerase chain reaction (PCR). Results In situ hybridization revealed that OCIAD2 and DCN were expressed in the inner root sheath of Liaoning cashmere goat hair follicles. Real-time quantitative PCR showed that these genes were highly expressed in SF during anagen, while these genes were highly expressed in primary hair follicle in catagen phase. Melatonin (MT) inhibited the expression of OCIAD2 and promoted the expression of DCN. Insulin-like growth factors-1 (IGF-1) inhibited the expression of OCIAD2 and DCN, while fibroblast growth factors 5 (FGF5) promoted the expression of these genes. MT and IGF-1 promoted OCIAD2 synergistically, while MT and FGF5 inhibited the genes simultaneously. MT+IGF-1/MT+FGF5 inhibited DCN gene. RNAi technology showed that OCIAD2 expression was promoted, while that of DCN was inhibited. Conclusion Activation of bone morphogenetic protein (BMP) signaling pathway up-regulated OCIAD2 expression and stimulated SF to control cell proliferation. DCN gene affected hair follicle morphogenesis and periodic changes by promoting transforming growth factor-β (TGF-β) and BMP signaling pathways. OCIAD2 and DCN genes have opposite effects on TGF-β signaling pathway and inhibit each other to affect the hair growth. PMID:29514440
2012-01-01
Background Early liver development and the transcriptional transitions during hepatogenesis are well characterized. However, gene expression changes during the late postnatal/pre-pubertal to young adulthood period are less well understood, especially with regards to sex-specific gene expression. Methods Microarray analysis of male and female mouse liver was carried out at 3, 4, and 8 wk of age to elucidate developmental changes in gene expression from the late postnatal/pre-pubertal period to young adulthood. Results A large number of sex-biased and sex-independent genes showed significant changes during this developmental period. Notably, sex-independent genes involved in cell cycle, chromosome condensation, and DNA replication were down regulated from 3 wk to 8 wk, while genes associated with metal ion binding, ion transport and kinase activity were up regulated. A majority of genes showing sex differential expression in adult liver did not display sex differences prior to puberty, at which time extensive changes in sex-specific gene expression were seen, primarily in males. Thus, in male liver, 76% of male-specific genes were up regulated and 47% of female-specific genes were down regulated from 3 to 8 wk of age, whereas in female liver 67% of sex-specific genes showed no significant change in expression. In both sexes, genes up regulated from 3 to 8 wk were significantly enriched (p < E-76) in the set of genes positively regulated by the liver transcription factor HNF4α, as determined in a liver-specific HNF4α knockout mouse model, while genes down regulated during this developmental period showed significant enrichment (p < E-65) for negative regulation by HNF4α. Significant enrichment of the developmentally regulated genes in the set of genes subject to positive and negative regulation by pituitary hormone was also observed. Five sex-specific transcriptional regulators showed sex-specific expression at 4 wk (male-specific Ihh; female-specific Cdx4, Cux2, Tox, and Trim24) and may contribute to the developmental changes that lead to global acquisition of liver sex-specificity by 8 wk of age. Conclusions Overall, the observed changes in gene expression during postnatal liver development reflect the deceleration of liver growth and the induction of specialized liver functions, with widespread changes in sex-specific gene expression primarily occurring in male liver. PMID:22475005
Partitioning of functional gene expression data using principal points.
Kim, Jaehee; Kim, Haseong
2017-10-12
DNA microarrays offer motivation and hope for the simultaneous study of variations in multiple genes. Gene expression is a temporal process that allows variations in expression levels with a characterized gene function over a period of time. Temporal gene expression curves can be treated as functional data since they are considered as independent realizations of a stochastic process. This process requires appropriate models to identify patterns of gene functions. The partitioning of the functional data can find homogeneous subgroups of entities for the massive genes within the inherent biological networks. Therefor it can be a useful technique for the analysis of time-course gene expression data. We propose a new self-consistent partitioning method of functional coefficients for individual expression profiles based on the orthonormal basis system. A principal points based functional partitioning method is proposed for time-course gene expression data. The method explores the relationship between genes using Legendre coefficients as principal points to extract the features of gene functions. Our proposed method provides high connectivity in connectedness after clustering for simulated data and finds a significant subsets of genes with the increased connectivity. Our approach has comparative advantages that fewer coefficients are used from the functional data and self-consistency of principal points for partitioning. As real data applications, we are able to find partitioned genes through the gene expressions found in budding yeast data and Escherichia coli data. The proposed method benefitted from the use of principal points, dimension reduction, and choice of orthogonal basis system as well as provides appropriately connected genes in the resulting subsets. We illustrate our method by applying with each set of cell-cycle-regulated time-course yeast genes and E. coli genes. The proposed method is able to identify highly connected genes and to explore the complex dynamics of biological systems in functional genomics.
Homoeolog-specific transcriptional bias in allopolyploid wheat
2010-01-01
Background Interaction between parental genomes is accompanied by global changes in gene expression which, eventually, contributes to growth vigor and the broader phenotypic diversity of allopolyploid species. In order to gain a better understanding of the effects of allopolyploidization on the regulation of diverged gene networks, we performed a genome-wide analysis of homoeolog-specific gene expression in re-synthesized allohexaploid wheat created by the hybridization of a tetraploid derivative of hexaploid wheat with the diploid ancestor of the wheat D genome Ae. tauschii. Results Affymetrix wheat genome arrays were used for both the discovery of divergent homoeolog-specific mutations and analysis of homoeolog-specific gene expression in re-synthesized allohexaploid wheat. More than 34,000 detectable parent-specific features (PSF) distributed across the wheat genome were used to assess AB genome (could not differentiate A and B genome contributions) and D genome parental expression in the allopolyploid transcriptome. In re-synthesized polyploid 81% of PSFs detected mid-parent levels of gene expression, and only 19% of PSFs showed the evidence of non-additive expression. Non-additive expression in both AB and D genomes was strongly biased toward up-regulation of parental type of gene expression with only 6% and 11% of genes, respectively, being down-regulated. Of all the non-additive gene expression, 84% can be explained by differences in the parental genotypes used to make the allopolyploid. Homoeolog-specific co-regulation of several functional gene categories was found, particularly genes involved in photosynthesis and protein biosynthesis in wheat. Conclusions Here, we have demonstrated that the establishment of interactions between the diverged regulatory networks in allopolyploids is accompanied by massive homoeolog-specific up- and down-regulation of gene expression. This study provides insights into interactions between homoeologous genomes and their role in growth vigor, development, and fertility of allopolyploid species. PMID:20849627
Zubkov, Eugene A; Zorkina, Yana A; Orshanskaya, Elena V; Khlebnikova, Nadezhda N; Krupina, Natalia A; Chekhonin, Vladimir P
2017-01-01
Previous studies have shown the development of emotional and motivational disorders, such as anxiety-depression-like disorders with increased aggression in adolescent and adult Wistar rats, occurs after neonatal exposure to the dipeptidyl peptidase-IV (DPP-IV, EC 3.4.14.5) inhibitors diprotin A and sitagliptin (postnatal days 5-18). In this study, using real-time PCR, we evaluated changes in the gene expression of serine protease DPP-IV and prolyl endopeptidase (PREP, EC 3.4.21.26; dpp4 and prep genes), monoamine oxidase А (maoA) and B (maoB), and serotonin transporter (SERT; sert) in the brain structures from 3-month-old rats after postnatal action of DPP-IV inhibitors diprotin A and sitagliptin. Dpp4, sert, and maoB gene expression increased and maoA gene expression changed with a tendency to increase in the striatum of rats with neonatal sitagliptin action. The increase of maoA gene expression was also shown in the amygdala. An increase in prep gene expression was found in the striatum of rats with the neonatal action of diprotin A, and a decrease in maoB gene expression was observed in the amygdala. We detected a significant downward trend in sert gene expression in the frontal cortex and amygdala, as well as a tendency to increase in maoA gene expression in the hypothalamus. These findings suggest that changes in the expression of the abovementioned genes are associated with the development of anxiety and depression, with increased aggression caused by the neonatal action of diprotin A and sitagliptin. © 2018 S. Karger AG, Basel.
Kelly, MM; King, EM; Rider, CF; Gwozd, C; Holden, NS; Eddleston, J; Zuraw, B; Leigh, R; O'Byrne, PM; Newton, R
2012-01-01
BACKGROUND AND PURPOSE Inhaled corticosteroids (ICS) are the cornerstone of asthma pharmacotherapy and, acting via the glucocorticoid receptor (GR), reduce inflammatory gene expression. While this is often attributed to a direct inhibitory effect of the GR on inflammatory gene transcription, corticosteroids also induce the expression of anti-inflammatory genes in vitro. As there are no data to support this effect in asthmatic subjects taking ICS, we have assessed whether ICS induce anti-inflammatory gene expression in subjects with atopic asthma. EXPERIMENTAL APPROACH Bronchial biopsies from allergen-challenged atopic asthmatic subjects taking inhaled budesonide or placebo were subjected to gene expression analysis using real-time reverse transcriptase-PCR for the corticosteroid-inducible genes (official gene symbols with aliases in parentheses): TSC22D3 [glucocorticoid-induced leucine zipper (GILZ)], dual-specificity phosphatase-1 (MAPK phosphatase-1), both anti-inflammatory effectors, and FKBP5 [FK506-binding protein 51 (FKBP51)], a regulator of GR function. Cultured pulmonary epithelial and smooth muscle cells were also treated with corticosteroids before gene expression analysis. KEY RESULTS Compared with placebo, GILZ and FKBP51 mRNA expression was significantly elevated in budesonide-treated subjects. Budesonide also increased GILZ expression in human epithelial and smooth muscle cells in culture. Immunostaining of bronchial biopsies revealed GILZ expression in the airways epithelium and smooth muscle of asthmatic subjects. CONCLUSIONS AND IMPLICATIONS Expression of the corticosteroid-induced genes, GILZ and FKBP51, is up-regulated in the airways of allergen-challenged asthmatic subjects taking inhaled budesonide. Consequently, the biological effects of corticosteroid-induced genes should be considered when assessing the actions of ICS. Treatment modalities that increase or decrease GR-dependent transcription may correspondingly affect corticosteroid efficacy. PMID:21827450
Developing tTA Transgenic Rats for Inducible and Reversible Gene Expression
Zhou, Hongxia; Huang, Cao; Yang, Min; Landel, Carlisle P; Xia, Pedro Yuxing; Liu, Yong-Jian; Xia, Xu Gang
2009-01-01
To develop transgenic lines for conditional expression of desired genes in rats, we generated several lines of the transgenic rats carrying the tetracycline-controlled transactivator (tTA) gene. Using a vigorous, ubiquitous promoter to drive the tTA transgene, we obtained widespread expression of tTA in various tissues. Expression of tTA was sufficient to strongly activate its reporter gene, but was below the toxicity threshold. We examined the dynamics of Doxycycline (Dox)-regulated gene expression in transgenic rats. In the two transmittable lines, tTA-mediated activation of the reporter gene was fully subject to regulation by Dox. Dox dose-dependently suppressed tTA-activated gene expression. The washout time for the effects of Dox was dose-dependent. We tested a complex regime of Dox administration to determine the optimal effectiveness and washout duration. Dox was administered at a high dose (500 μg/ml in drinking water) for two days to reach the effective concentration, and then was given at a low dose (20 μg/ml) to maintain effectiveness. This regimen of Dox administration can achieve a quick switch between ON and OFF statuses of tTA-activated gene expression. In addition, administration of Dox to pregnant rats fully suppressed postnatal tTA-activated gene expression in their offspring. Sufficient levels of Dox are present in mother's milk to produce maximal efficacy in nursing neonates. Administration of Dox to pregnant or nursing rats can provide a continual suppression of tTA-dependent gene expression during embryonic and postnatal development. The tTA transgenic rat allows for inducible and reversible gene expression in the rat; this important tool will be valuable in the development of genetic rat models of human diseases. PMID:19214245
Santillo, Alessandra; Falvo, Sara; Di Fiore, Maria Maddalena; Chieffi Baccari, Gabriella
2017-05-15
The brain of amphibians contains all the key enzymes of steroidogenesis and has a high steroidogenic activity. In seasonally-breeding amphibian species brain steroid levels fluctuate synchronously with the reproductive cycle. Here we report a study of gene expression of StAR protein, key steroidogenic enzymes and sex hormone receptors in the telencephalon (T) and diencephalon-mesencephalon (D-M) of male and female reproductive and post-reproductive Pelophylax esculentus, a seasonally breeding anuran amphibian. Significant differences in gene expression were observed between (a) the reproductive and post-reproductive phase, (b) the two brain regions and (c) male and female frogs. During the reproductive phase, star gene expression increased in the male (both T and D-M) but not in the female brain. Seasonal fluctuations in expression levels of hsd3b1, hsd17b1, srd5a1 and cyp19a1 genes for neurosteroidogenic enzymes occurred in D-M region of both sexes, with the higher levels in reproductive period. Moreover, the D-M region generally showed higher levels of gene expression than the T region in both sexes. Gene expression was higher in females than males for most genes, suggesting higher neurosteroid production in female brain. Seasonal and sex-linked changes were also observed in gene expression for androgen (ar) and estrogen (esr1, esr2) receptors, with the males showing the highest ar levels in reproductive phase and the highest esr1 and esr2 levels in post-reproductive phase; in contrast, females showed the maximum expression for all three genes in reproductive phase. The results are the first evidence for seasonal changes and sexual dimorphism of gene expression of the neurosteroidogenic pathway in amphibians. Copyright © 2016 Elsevier Inc. All rights reserved.
Ivonne Wence-Chavez, Laura; Palomares-Chacon, Ulises; Pablo Flores-Gutierrez, Juan; Felipe Jave-Suarez, Luis; Del Carmen Aguilar-Lemarroy, Adriana; Barros-Nunez, Patricio; Esperanza Flores-Martinez, Silvia; Sanchez-Corona, Jose; Alejandra Rosales-Reynoso, Monica
2017-01-01
Several studies have shown a strong association between diabetes mellitus (DM) and increased risk of colorectal cancer (CRC). The fundamental mechanisms that support this association are not entirely understood; however, it is believed that hyperinsulinemia and hyperglycemia may be involved. Some proposed mechanisms include upregulation of mitogenic signaling pathways like MAPK, PI3K, mTOR, and WNT, which are involved in cell proliferation, growth, and cancer cell survival. The purpose of this study was to evaluate the gene expression profile and identify differently expressed genes involved in mitogenic pathways in CRC patients with and without DM. In this study, microarray analysis of gene expression followed by quantitative PCR (qPCR) was performed in cancer tissue from CRC patients with and without DM to identify the gene expression profiles and validate the differently expressed genes. Among the study groups, some differently expressed genes were identified. However, when bioinformatics clustering tools were used, a significant modulation of genes involved in the WNT pathway was evident. Therefore, we focused on genes participating in this pathway, such as WNT3A, LRP6, TCF7L2, and FRA-1. Validation of the expression levels of those genes by qPCR showed that CRC patients without type 2 diabetes mellitus (T2DM) expressed significantly more WNT3Ay LRP6, but less TCF7L2 and FRA-1 compared to controls, while in CRC patients with DM the expression levels of WNT3A, LRP6, TCF7L2, and FRA-1 were significantly higher compared to controls. Our results suggest that WNT/β-catenin pathway is upregulated in patients with CRC and DM, demonstrating its importance and involvement in both pathologies.
Gene length as a biological timer to establish temporal transcriptional regulation
Kirkconnell, Killeen S.; Magnuson, Brian; Paulsen, Michelle T.; Lu, Brian; Bedi, Karan; Ljungman, Mats
2017-01-01
ABSTRACT Transcriptional timing is inherently influenced by gene length, thus providing a mechanism for temporal regulation of gene expression. While gene size has been shown to be important for the expression timing of specific genes during early development, whether it plays a role in the timing of other global gene expression programs has not been extensively explored. Here, we investigate the role of gene length during the early transcriptional response of human fibroblasts to serum stimulation. Using the nascent sequencing techniques Bru-seq and BruUV-seq, we identified immediate genome-wide transcriptional changes following serum stimulation that were linked to rapid activation of enhancer elements. We identified 873 significantly induced and 209 significantly repressed genes. Variations in gene size allowed for a large group of genes to be simultaneously activated but produce full-length RNAs at different times. The median length of the group of serum-induced genes was significantly larger than the median length of all expressed genes, housekeeping genes, and serum-repressed genes. These gene length relationships were also observed in corresponding mouse orthologs, suggesting that relative gene size is evolutionarily conserved. The sizes of transcription factor and microRNA genes immediately induced after serum stimulation varied dramatically, setting up a cascade mechanism for temporal expression arising from a single activation event. The retention and expansion of large intronic sequences during evolution have likely played important roles in fine-tuning the temporal expression of target genes in various cellular response programs. PMID:28055303
Identification and function analysis of contrary genes in Dupuytren's contracture.
Ji, Xianglu; Tian, Feng; Tian, Lijie
2015-07-01
The present study aimed to analyze the expression of genes involved in Dupuytren's contracture (DC), using bioinformatic methods. The profile of GSE21221 was downloaded from the gene expression ominibus, which included six samples, derived from fibroblasts and six healthy control samples, derived from carpal-tunnel fibroblasts. A Distributed Intrusion Detection System was used in order to identify differentially expressed genes. The term contrary genes is proposed. Contrary genes were the genes that exhibited opposite expression patterns in the positive and negative groups, and likely exhibited opposite functions. These were identified using Coexpress software. Gene ontology (GO) function analysis was conducted for the contrary genes. A network of GO terms was constructed using the reduce and visualize gene ontology database. Significantly expressed genes (801) and contrary genes (98) were screened. A significant association was observed between Chitinase-3-like protein 1 and ten genes in the positive gene set. Positive regulation of transcription and the activation of nuclear factor-κB (NF-κB)-inducing kinase activity exhibited the highest degree values in the network of GO terms. In the present study, the expression of genes involved in the development of DC was analyzed, and the concept of contrary genes proposed. The genes identified in the present study are involved in the positive regulation of transcription and activation of NF-κB-inducing kinase activity. The contrary genes and GO terms identified in the present study may potentially be used for DC diagnosis and treatment.
Koul, Sweaty; Khandrika, Lakshmipathi; Meacham, Randall B.; Koul, Hari K.
2012-01-01
Nephrolithiasis is a multi-factorial disease which, in the majority of cases, involves the renal deposition of calcium oxalate. Oxalate is a metabolic end product excreted primarily by the kidney. Previous studies have shown that elevated levels of oxalate are detrimental to the renal epithelial cells; however, oxalate renal epithelial cell interactions are not completely understood. In this study, we utilized an unbiased approach of gene expression profiling using Affymetrix HG_U133_plus2 gene chips to understand the global gene expression changes in human renal epithelial cells [HK-2] after exposure to oxalate. We analyzed the expression of 47,000 transcripts and variants, including 38,500 well characterized human genes, in the HK2 cells after 4 hours and 24 hours of oxalate exposure. Gene expression was compared among replicates as per the Affymetrix statistical program. Gene expression among various groups was compared using various analytical tools, and differentially expressed genes were classified according to the Gene Ontology Functional Category. The results from this study show that oxalate exposure induces significant expression changes in many genes. We show for the first time that oxalate exposure induces as well as shuts off genes differentially. We found 750 up-regulated and 2276 down-regulated genes which have not been reported before. Our results also show that renal cells exposed to oxalate results in the regulation of genes that are associated with specific molecular function, biological processes, and other cellular components. In addition we have identified a set of 20 genes that is differentially regulated by oxalate irrespective of duration of exposure and may be useful in monitoring oxalate nephrotoxicity. Taken together our studies profile global gene expression changes and provide a unique insight into oxalate renal cell interactions and oxalate nephrotoxicity. PMID:23028475
Transcriptional profiles of bovine in vivo pre-implantation development.
Jiang, Zongliang; Sun, Jiangwen; Dong, Hong; Luo, Oscar; Zheng, Xinbao; Obergfell, Craig; Tang, Yong; Bi, Jinbo; O'Neill, Rachel; Ruan, Yijun; Chen, Jingbo; Tian, Xiuchun Cindy
2014-09-04
During mammalian pre-implantation embryonic development dramatic and orchestrated changes occur in gene transcription. The identification of the complete changes has not been possible until the development of the Next Generation Sequencing Technology. Here we report comprehensive transcriptome dynamics of single matured bovine oocytes and pre-implantation embryos developed in vivo. Surprisingly, more than half of the estimated 22,000 bovine genes, 11,488 to 12,729 involved in more than 100 pathways, is expressed in oocytes and early embryos. Despite the similarity in the total numbers of genes expressed across stages, the nature of the expressed genes is dramatically different. A total of 2,845 genes were differentially expressed among different stages, of which the largest change was observed between the 4- and 8-cell stages, demonstrating that the bovine embryonic genome is activated at this transition. Additionally, 774 genes were identified as only expressed/highly enriched in particular stages of development, suggesting their stage-specific roles in embryogenesis. Using weighted gene co-expression network analysis, we found 12 stage-specific modules of co-expressed genes that can be used to represent the corresponding stage of development. Furthermore, we identified conserved key members (or hub genes) of the bovine expressed gene networks. Their vast association with other embryonic genes suggests that they may have important regulatory roles in embryo development; yet, the majority of the hub genes are relatively unknown/under-studied in embryos. We also conducted the first comparison of embryonic expression profiles across three mammalian species, human, mouse and bovine, for which RNA-seq data are available. We found that the three species share more maternally deposited genes than embryonic genome activated genes. More importantly, there are more similarities in embryonic transcriptomes between bovine and humans than between humans and mice, demonstrating that bovine embryos are better models for human embryonic development. This study provides a comprehensive examination of gene activities in bovine embryos and identified little-known potential master regulators of pre-implantation development.
Transcription-dependent radial distribution of TCF7L2 regulated genes in chromosome territories.
Torabi, Keyvan; Wangsa, Darawalee; Ponsa, Immaculada; Brown, Markus; Bosch, Anna; Vila-Casadesús, Maria; Karpova, Tatiana S; Calvo, Maria; Castells, Antoni; Miró, Rosa; Ried, Thomas; Camps, Jordi
2017-10-01
Human chromosomes occupy distinct territories in the interphase nucleus. Such chromosome territories (CTs) are positioned according to gene density. Gene-rich CTs are generally located in the center of the nucleus, while gene-poor CTs are positioned more towards the nuclear periphery. However, the association between gene expression levels and the radial positioning of genes within the CT is still under debate. In the present study, we performed three-dimensional fluorescence in situ hybridization experiments in the colorectal cancer cell lines DLD-1 and LoVo using whole chromosome painting probes for chromosomes 8 and 11 and BAC clones targeting four genes with different expression levels assessed by gene expression arrays and RT-PCR. Our results confirmed that the two over-expressed genes, MYC on chromosome 8 and CCND1 on chromosome 11, are located significantly further away from the center of the CT compared to under-expressed genes on the same chromosomes, i.e., DLC1 and SCN3B. When CCND1 expression was reduced after silencing the major transcription factor of the WNT/β-catenin signaling pathway, TCF7L2, the gene was repositioned and mostly detected in the interior of the CT. Thus, we suggest a non-random distribution in which over-expressed genes are located more towards the periphery of the respective CTs.
Genome-wide prediction and analysis of human tissue-selective genes using microarray expression data
2013-01-01
Background Understanding how genes are expressed specifically in particular tissues is a fundamental question in developmental biology. Many tissue-specific genes are involved in the pathogenesis of complex human diseases. However, experimental identification of tissue-specific genes is time consuming and difficult. The accurate predictions of tissue-specific gene targets could provide useful information for biomarker development and drug target identification. Results In this study, we have developed a machine learning approach for predicting the human tissue-specific genes using microarray expression data. The lists of known tissue-specific genes for different tissues were collected from UniProt database, and the expression data retrieved from the previously compiled dataset according to the lists were used for input vector encoding. Random Forests (RFs) and Support Vector Machines (SVMs) were used to construct accurate classifiers. The RF classifiers were found to outperform SVM models for tissue-specific gene prediction. The results suggest that the candidate genes for brain or liver specific expression can provide valuable information for further experimental studies. Our approach was also applied for identifying tissue-selective gene targets for different types of tissues. Conclusions A machine learning approach has been developed for accurately identifying the candidate genes for tissue specific/selective expression. The approach provides an efficient way to select some interesting genes for developing new biomedical markers and improve our knowledge of tissue-specific expression. PMID:23369200
Discovering causal signaling pathways through gene-expression patterns
Parikh, Jignesh R.; Klinger, Bertram; Xia, Yu; Marto, Jarrod A.; Blüthgen, Nils
2010-01-01
High-throughput gene-expression studies result in lists of differentially expressed genes. Most current meta-analyses of these gene lists include searching for significant membership of the translated proteins in various signaling pathways. However, such membership enrichment algorithms do not provide insight into which pathways caused the genes to be differentially expressed in the first place. Here, we present an intuitive approach for discovering upstream signaling pathways responsible for regulating these differentially expressed genes. We identify consistently regulated signature genes specific for signal transduction pathways from a panel of single-pathway perturbation experiments. An algorithm that detects overrepresentation of these signature genes in a gene group of interest is used to infer the signaling pathway responsible for regulation. We expose our novel resource and algorithm through a web server called SPEED: Signaling Pathway Enrichment using Experimental Data sets. SPEED can be freely accessed at http://speed.sys-bio.net/. PMID:20494976
Dryselius, Rikard; Izutsu, Kaori; Honda, Takeshi; Iida, Tetsuya
2008-01-01
Background Replication of bacterial chromosomes increases copy numbers of genes located near origins of replication relative to genes located near termini. Such differential gene dosage depends on replication rate, doubling time and chromosome size. Although little explored, differential gene dosage may influence both gene expression and location. For vibrios, a diverse family of fast growing gammaproteobacteria, gene dosage may be particularly important as they harbor two chromosomes of different size. Results Here we examined replication dynamics and gene dosage effects for the separate chromosomes of three Vibrio species. We also investigated locations for specific gene types within the genome. The results showed consistently larger gene dosage differences for the large chromosome which also initiated replication long before the small. Accordingly, large chromosome gene expression levels were generally higher and showed an influence from gene dosage. This was reflected by a higher abundance of growth essential and growth contributing genes of which many locate near the origin of replication. In contrast, small chromosome gene expression levels were low and appeared independent of gene dosage. Also, species specific genes are highly abundant and an over-representation of genes involved in transcription could explain its gene dosage independent expression. Conclusion Here we establish a link between replication dynamics and differential gene dosage on one hand and gene expression levels and the location of specific gene types on the other. For vibrios, this relationship appears connected to a polarisation of genetic content between its chromosomes, which may both contribute to and be enhanced by an improved adaptive capacity. PMID:19032792
Máximo, Wesley P. F.; Zanetti, Ronald; Paiva, Luciano V.
2018-01-01
Although several ant species are important targets for the development of molecular control strategies, only a few studies focus on identifying and validating reference genes for quantitative reverse transcription polymerase chain reaction (RT-qPCR) data normalization. We provide here an extensive study to identify and validate suitable reference genes for gene expression analysis in the ant Atta sexdens, a threatening agricultural pest in South America. The optimal number of reference genes varies according to each sample and the result generated by RefFinder differed about which is the most suitable reference gene. Results suggest that the RPS16, NADH and SDHB genes were the best reference genes in the sample pool according to stability values. The SNF7 gene expression pattern was stable in all evaluated sample set. In contrast, when using less stable reference genes for normalization a large variability in SNF7 gene expression was recorded. There is no universal reference gene suitable for all conditions under analysis, since these genes can also participate in different cellular functions, thus requiring a systematic validation of possible reference genes for each specific condition. The choice of reference genes on SNF7 gene normalization confirmed that unstable reference genes might drastically change the expression profile analysis of target candidate genes. PMID:29419794
Regulatory network involving miRNAs and genes in serous ovarian carcinoma
Zhao, Haiyan; Xu, Hao; Xue, Luchen
2017-01-01
Serous ovarian carcinoma (SOC) is one of the most life-threatening types of gynecological malignancy, but the pathogenesis of SOC remains unknown. Previous studies have indicated that differentially expressed genes and microRNAs (miRNAs) serve important functions in SOC. However, genes and miRNAs are identified in a disperse form, and limited information is known about the regulatory association between miRNAs and genes in SOC. In the present study, three regulatory networks were hierarchically constructed, including a differentially-expressed network, a related network and a global network to reveal associations between each factor. In each network, there were three types of factors, which were genes, miRNAs and transcription factors that interact with each other. Focus was placed on the differentially-expressed network, in which all genes and miRNAs were differentially expressed and therefore may have affected the development of SOC. Following the comparison and analysis between the three networks, a number of signaling pathways which demonstrated differentially expressed elements were highlighted. Subsequently, the upstream and downstream elements of differentially expressed miRNAs and genes were listed, and a number of key elements (differentially expressed miRNAs, genes and TFs predicted using the P-match method) were analyzed. The differentially expressed network partially illuminated the pathogenesis of SOC. It was hypothesized that if there was no differential expression of miRNAs and genes, SOC may be prevented and treatment may be identified. The present study provided a theoretical foundation for gene therapy for SOC. PMID:29113276
de Jong, Simone; Boks, Marco P. M.; Fuller, Tova F.; Strengman, Eric; Janson, Esther; de Kovel, Carolien G. F.; Ori, Anil P. S.; Vi, Nancy; Mulder, Flip; Blom, Jan Dirk; Glenthøj, Birte; Schubart, Chris D.; Cahn, Wiepke; Kahn, René S.; Horvath, Steve; Ophoff, Roel A.
2012-01-01
Despite large-scale genome-wide association studies (GWAS), the underlying genes for schizophrenia are largely unknown. Additional approaches are therefore required to identify the genetic background of this disorder. Here we report findings from a large gene expression study in peripheral blood of schizophrenia patients and controls. We applied a systems biology approach to genome-wide expression data from whole blood of 92 medicated and 29 antipsychotic-free schizophrenia patients and 118 healthy controls. We show that gene expression profiling in whole blood can identify twelve large gene co-expression modules associated with schizophrenia. Several of these disease related modules are likely to reflect expression changes due to antipsychotic medication. However, two of the disease modules could be replicated in an independent second data set involving antipsychotic-free patients and controls. One of these robustly defined disease modules is significantly enriched with brain-expressed genes and with genetic variants that were implicated in a GWAS study, which could imply a causal role in schizophrenia etiology. The most highly connected intramodular hub gene in this module (ABCF1), is located in, and regulated by the major histocompatibility (MHC) complex, which is intriguing in light of the fact that common allelic variants from the MHC region have been implicated in schizophrenia. This suggests that the MHC increases schizophrenia susceptibility via altered gene expression of regulatory genes in this network. PMID:22761806
Nur77 coordinately regulates expression of genes linked to glucose metabolism in skeletal muscle.
Chao, Lily C; Zhang, Zidong; Pei, Liming; Saito, Tsugumichi; Tontonoz, Peter; Pilch, Paul F
2007-09-01
Innervation is important for normal metabolism in skeletal muscle, including insulin-sensitive glucose uptake. However, the transcription factors that transduce signals from the neuromuscular junction to the nucleus and affect changes in metabolic gene expression are not well defined. We demonstrate here that the orphan nuclear receptor Nur77 is a regulator of gene expression linked to glucose utilization in muscle. In vivo, Nur77 is preferentially expressed in glycolytic compared with oxidative muscle and is responsive to beta-adrenergic stimulation. Denervation of rat muscle compromises expression of Nur77 in parallel with that of numerous genes linked to glucose metabolism, including glucose transporter 4 and genes involved in glycolysis, glycogenolysis, and the glycerophosphate shuttle. Ectopic expression of Nur77, either in rat muscle or in C2C12 muscle cells, induces expression of a highly overlapping set of genes, including glucose transporter 4, muscle phosphofructokinase, and glycogen phosphorylase. Furthermore, selective knockdown of Nur77 in rat muscle by small hairpin RNA or genetic deletion of Nur77 in mice reduces the expression of a battery of genes involved in skeletal muscle glucose utilization in vivo. Finally, we show that Nur77 binds the promoter regions of multiple genes involved in glucose metabolism in muscle. These results identify Nur77 as a potential mediator of neuromuscular signaling in the control of metabolic gene expression.
Nur77 coordinately regulates expression of genes linked to glucose metabolism in skeletal muscle
Chao, Lily C.; Zhang, Zidong; Pei, Liming; Saito, Tsugumichi; Tontonoz, Peter; Pilch, Paul F.
2008-01-01
Innervation is important for normal metabolism in skeletal muscle, including insulin-sensitive glucose uptake. However, the transcription factors that transduce signals from the neuromuscular junction to the nucleus and affect changes in metabolic gene expression are not well defined. We demonstrate here that the orphan nuclear receptor Nur77 is a regulator of gene expression linked to glucose utilization in muscle. In vivo, Nur77 is preferentially expressed in glycolytic compared to oxidative muscle and is responsive to β-adrenergic stimulation. Denervation of rat muscle compromises expression of Nur77 in parallel with that of numerous genes linked to glucose metabolism, including GLUT4 and genes involved in glycolysis, glycogenolysis, and the glycerophosphate shuttle. Ectopic expression of Nur77, either in rat muscle or in C2C12 muscle cells, induces expression of a highly overlapping set of genes, including GLUT4, muscle phosphofructokinase, and glycogen phosphorylase. Furthermore, selective knockdown of Nur77 in rat muscle by shRNA or genetic deletion of Nur77 in mice reduces the expression of a battery of genes involved in skeletal muscle glucose utilization in vivo. Finally, we show that Nur77 binds the promoter regions of multiple innervation-dependent genes in muscle. These results identify Nur77 as a potential mediator of neuromuscular signaling in the control of metabolic gene expression. PMID:17550977
Saga, Yukika; Inamura, Tomoka; Shimada, Nao; Kawata, Takefumi
2016-05-01
STATa, a Dictyostelium homologue of metazoan signal transducer and activator of transcription, is important for the organizer function in the tip region of the migrating Dictyostelium slug. We previously showed that ecmF gene expression depends on STATa in prestalk A (pstA) cells, where STATa is activated. Deletion and site-directed mutagenesis analysis of the ecmF/lacZ fusion gene in wild-type and STATa null strains identified an imperfect inverted repeat sequence, ACAAATANTATTTGT, as a STATa-responsive element. An upstream sequence element was required for efficient expression in the rear region of pstA zone; an element downstream of the inverted repeat was necessary for sufficient prestalk expression during culmination. Band shift analyses using purified STATa protein detected no sequence-specific binding to those ecmF elements. The only verified upregulated target gene of STATa is cudA gene; CudA directly activates expL7 gene expression in prestalk cells. However, ecmF gene expression was almost unaffected in a cudA null mutant. Several previously reported putative STATa target genes were also expressed in cudA null mutant but were downregulated in STATa null mutant. Moreover, mybC, which encodes another transcription factor, belonged to this category, and ecmF expression was downregulated in a mybC null mutant. These findings demonstrate the existence of a genetic hierarchy for pstA-specific genes, which can be classified into two distinct STATa downstream pathways, CudA dependent and independent. The ecmF expression is indirectly upregulated by STATa in a CudA-independent activation manner but dependent on MybC, whose expression is positively regulated by STATa. © 2016 Japanese Society of Developmental Biologists.
Antonescu, Cristina R; Viale, Agnes; Sarran, Lisa; Tschernyavsky, Sylvia J; Gonen, Mithat; Segal, Neil H; Maki, Robert G; Socci, Nicholas D; DeMatteo, Ronald P; Besmer, Peter
2004-05-15
Gastrointestinal stromal tumors (GISTs) are specific KIT expressing and KIT-signaling driven mesenchymal tumors of the human digestive tract, many of which have KIT-activating mutations. Previous studies have found a relatively homogeneous gene expression profile in GIST, as compared with other histological types of sarcomas. Transcriptional heterogeneity within clinically or molecularly defined subsets of GISTs has not been previously reported. We tested the hypothesis that the gene expression profile in GISTs might be related to KIT genotype and possibly to other clinicopathological factors. An HG-U133A Affymetrix chip (22,000 genes) platform was used to determine the variability of gene expression in 28 KIT-expressing GIST samples from 24 patients. A control group of six intra-abdominal leiomyosarcomas was also included for comparison. Statistical analyses (t tests) were performed to identify discriminatory gene lists among various GIST subgroups. The levels of expression of various GIST subsets were also linked to a modified version of the growth factor/KIT signaling pathway to analyze differences at various steps in signal transduction. Genes involved in KIT signaling were differentially expressed among wild-type and mutant GISTs. High gene expression of potential drug targets, such as VEGF, MCSF, and BCL2 in the wild-type group, and Mesothelin in exon 9 GISTs were found. There was a striking difference in gene expression between stomach and small bowel GISTs. This finding was validated in four separate tumors, two gastric and two intestinal, from a patient with familial GIST with a germ-line KIT W557R substitution. GISTs have heterogeneous gene expression depending on KIT genotype and tumor location, which is seen at both the genomic level and the KIT signaling pathway in particular. These findings may explain their variable clinical behavior and response to therapy.
Sequential and combinatorial roles of maf family genes define proper lens development.
Reza, Hasan Mahmud; Urano, Atsuyo; Shimada, Naoko; Yasuda, Kunio
2007-01-16
Maf proteins have been shown to play pivotal roles in lens development in vertebrates. The developing chick lens expresses at least three large Maf proteins. However, the transcriptional relationship among the three large maf genes and their various roles in transactivating the downstream genes largely remain to be elucidated. Chick embryos were electroporated with wild-type L-maf, c-maf, and mafB by in ovo electroporation, and their effects on gene expression were determined by in situ hybridization using specific probes or by immunostaining. Endogenous gene expression was determined using nonelectroporated samples. A regulation mechanism exists among the members of maf family gene. An early-expressed member of this gene family typically stimulates the expression of later-expressed members. We also examined the regulation of various lens-expressing genes with a focus on the interaction between different Maf proteins. We found that the transcriptional ability of Maf proteins varies, even when the target is the same, in parallel with their discrete functions. L-Maf and c-Maf have no effect on E-cadherin expression, whereas MafB enhances its expression and thereby impedes lens vesicle formation. This study also revealed that Maf proteins can regulate the expression of gap junction genes, connexins, and their interacting partner, major intrinsic protein (MIP), during lens development. Misexpression of L-Maf and c-Maf induces ectopic expression of Cx43 and MIP; in contrast, MafB appears to have no effect on Cx43, but induces MIP significantly as evidenced from our gain-of-function experiments. Our results indicate that large Maf function is indispensable for chick lens initiation and development. In addition, L-Maf positively regulates most of the essential genes in this program and directs a series of molecular events leading to proper formation of the lens.
Mo, Delin; Zhu, Zhengmao; te Pas, Marinus F W; Li, Xinyun; Yang, Shulin; Wang, Heng; Wang, Huanling; Li, Kui
2008-06-30
In a previous screen to identify differentially expressed genes associated with embryonic development, the porcine PNAS-4 gene had been found. Considering differentially expressed genes in early stages of muscle development are potential candidate genes to improve meat quality and production efficiency, we determined how porcine PNAS-4 gene regulates meat production. Therefore, this gene has been sequenced, expression analyzed and associated with meat production traits. We cloned the full-length cDNA of porcine PNAS-4 gene encoding a protein of 194 amino acids which was expressed in the Golgi complex. This gene was mapped to chromosome 10, q11-16, in a region of conserved synteny with human chromosome 1 where the human homologous gene was localized. Real-time PCR revealed that PNAS-4 mRNA was widely expressed with highest expression levels in skeletal muscle followed by lymph, liver and other tissues, and showed a down-regulated expression pattern during prenatal development while a up-regulated expression pattern after weaning. Association analysis revealed that allele C of SNP A1813C was prevalent in Chinese indigenous breeds whereas A was dominant allele in Landrace and Large White, and the pigs with homozygous CC had a higher fat content than those of the pigs with other genotypes (P < 0.05). Porcine PNAS-4 protein tagged with green fluorescent protein accumulated in the Golgi complex, and its mRNA showed a widespread expression across many tissues and organs in pigs. It may be an important factor affecting the meat production efficiency, because its down-regulated expression pattern during early embryogenesis suggests involvement in increase of muscle fiber number. In addition, the SNP A1813C associated with fat traits might be a genetic marker for molecular-assisted selection in animal breeding.
Chakravarthy, Suma; Tuori, Robert P.; D'Ascenzo, Mark D.; Fobert, Pierre R.; Després, Charles; Martin, Gregory B.
2003-01-01
The tomato transcription factor Pti4, an ethylene-responsive factor (ERF), interacts physically with the disease resistance protein Pto and binds the GCC box cis element that is present in the promoters of many pathogenesis-related (PR) genes. We reported previously that Arabidopsis plants expressing Pti4 constitutively express several GCC box–containing PR genes and show reduced disease symptoms compared with wild-type plants after inoculation with Pseudomonas syringae pv tomato or Erysiphe orontii. To gain insight into how genome-wide gene expression is affected by Pti4, we used serial analysis of gene expression (SAGE) to compare transcripts in wild-type and Pti4-expressing Arabidopsis plants. SAGE provided quantitative measurements of >20,000 transcripts and identified the 50 most highly expressed genes in Arabidopsis vegetative tissues. Comparison of the profiles from wild-type and Pti4-expressing Arabidopsis plants revealed 78 differentially abundant transcripts encoding defense-related proteins, protein kinases, ribosomal proteins, transporters, and two transcription factors (TFs). Many of the genes identified were expressed differentially in wild-type Arabidopsis during infection by Pseudomonas syringae pv tomato, supporting a role for them in defense-related processes. Unexpectedly, the promoters of most Pti4-regulated genes did not have a GCC box. Chromatin immunoprecipitation experiments confirmed that Pti4 binds in vivo to promoters lacking this cis element. Potential binding sites for ERF, MYB, and GBF TFs were present in statistically significantly increased numbers in promoters regulated by Pti4. Thus, Pti4 appears to regulate gene expression directly by binding the GCC box and possibly a non-GCC box element and indirectly by either activating the expression of TF genes or interacting physically with other TFs. PMID:14630974
Silk gene expression of theridiid spiders: implications for male-specific silk use.
Correa-Garhwal, Sandra M; Chaw, R Crystal; Clarke, Thomas H; Ayoub, Nadia A; Hayashi, Cheryl Y
2017-06-01
Spiders (order Araneae) rely on their silks for essential tasks, such as dispersal, prey capture, and reproduction. Spider silks are largely composed of spidroins, members of a protein family that are synthesized in silk glands. As needed, silk stored in silk glands is extruded through spigots on the spinnerets. Nearly all studies of spider silks have been conducted on females; thus, little is known about male silk biology. To shed light on silk use by males, we compared silk gene expression profiles of mature males to those of females from three cob-web weaving species (Theridiidae). We de novo assembled species-specific male transcriptomes from Latrodectus hesperus, Latrodectus geometricus, and Steatoda grossa followed by differential gene expression analyses. Consistent with their complement of silk spigots, male theridiid spiders express appreciable amounts of aciniform, major ampullate, minor ampullate, and pyriform spidroin genes but not tubuliform spidroin genes. The relative expression levels of particular spidroin genes varied between sexes and species. Because mature males desert their prey-capture webs and become cursorial in their search for mates, we anticipated that major ampullate (dragline) spidroin genes would be the silk genes most highly expressed by males. Indeed, major ampullate spidroin genes had the highest expression in S. grossa males. However, minor ampullate spidroin genes were the most highly expressed spidroin genes in L. geometricus and L. hesperus males. Our expression profiling results suggest species-specific adaptive divergence of silk use by male theridiids. Copyright © 2017 The Authors. Published by Elsevier GmbH.. All rights reserved.
Wharfe, Michaela D; Wyrwoll, Caitlin S; Waddell, Brendan J; Mark, Peter J
2016-09-01
Maternal adaptations in lipid metabolism are crucial for pregnancy success due to the role of white adipose tissue as an energy store and the dynamic nature of energy needs across gestation. Because lipid metabolism is regulated by the rhythmic expression of clock genes, it was hypothesized that maternal metabolic adaptations involve changes in both adipose clock gene expression and the rhythmic expression of downstream metabolic genes. Maternal core body temperature (Tc) was investigated as a possible mechanism driving pregnancy-induced changes in clock gene expression. Gonadal adipose tissue and plasma were collected from C57BL/6J mice before and on days 6, 10, 14, and 18 of pregnancy (term 19 d) at 4-hour intervals across a 24-hour period. Adipose expression of clock genes and downstream metabolic genes were determined by quantitative RT-PCR, and Tc was measured by intraperitoneal temperature loggers. Adipose clock gene expression showed robust rhythmicity throughout pregnancy, but absolute levels varied substantially across gestation. Rhythmic expression of the metabolic genes Lipe, Pnpla2, and Lpl was clearly evident before pregnancy; however, this rhythmicity was lost with the onset of pregnancy. Tc rhythm was significantly altered by pregnancy, with a 65% decrease in amplitude by term and a 0.61°C decrease in mesor between days 6 and 18. These changes in Tc, however, did not appear to be linked to adipose clock gene expression across pregnancy. Overall, our data show marked adaptations in the adipose clock in pregnancy, with an apparent decoupling of adipose clock and lipolytic/lipogenic gene rhythms from early in gestation.
Digital gene expression for non-model organisms
Hong, Lewis Z.; Li, Jun; Schmidt-Küntzel, Anne; Warren, Wesley C.; Barsh, Gregory S.
2011-01-01
Next-generation sequencing technologies offer new approaches for global measurements of gene expression but are mostly limited to organisms for which a high-quality assembled reference genome sequence is available. We present a method for gene expression profiling called EDGE, or EcoP15I-tagged Digital Gene Expression, based on ultra-high-throughput sequencing of 27-bp cDNA fragments that uniquely tag the corresponding gene, thereby allowing direct quantification of transcript abundance. We show that EDGE is capable of assaying for expression in >99% of genes in the genome and achieves saturation after 6–8 million reads. EDGE exhibits very little technical noise, reveals a large (106) dynamic range of gene expression, and is particularly suited for quantification of transcript abundance in non-model organisms where a high-quality annotated genome is not available. In a direct comparison with RNA-seq, both methods provide similar assessments of relative transcript abundance, but EDGE does better at detecting gene expression differences for poorly expressed genes and does not exhibit transcript length bias. Applying EDGE to laboratory mice, we show that a loss-of-function mutation in the melanocortin 1 receptor (Mc1r), recognized as a Mendelian determinant of yellow hair color in many different mammals, also causes reduced expression of genes involved in the interferon response. To illustrate the application of EDGE to a non-model organism, we examine skin biopsy samples from a cheetah (Acinonyx jubatus) and identify genes likely to control differences in the color of spotted versus non-spotted regions. PMID:21844123