Science.gov

Sample records for alkene metathesis catalysts

  1. Highly efficient molybdenum-based catalysts for enantioselective alkene metathesis

    PubMed Central

    Malcolmson, Steven J.; Meek, Simon J.; Sattely, Elizabeth S.; Schrock, Richard R.; Hoveyda, Amir H.

    2009-01-01

    Discovery of efficient catalysts is one of the most compelling objectives of modern chemistry. Chiral catalysts are in particularly high demand, as they facilitate synthesis of enantiomerically enriched small molecules that are critical to developments in medicine, biology and materials science1. Especially noteworthy are catalysts that promote—with otherwise inaccessible efficiency and selectivity levels—reactions demonstrated to be of great utility in chemical synthesis. Here we report a class of chiral catalysts that initiate alkene metathesis1 with very high efficiency and enantioselectivity. Such attributes arise from structural fluxionality of the chiral catalysts and the central role that enhanced electronic factors have in the catalytic cycle. The new catalysts have a stereogenic metal centre and carry only monodentate ligands; the molybdenum-based complexes are prepared stereoselectively by a ligand exchange process involving an enantiomerically pure aryloxide, a class of ligands scarcely used in enantioselective catalysis2,3. We demonstrate the application of the new catalysts in an enantioselective synthesis of the Aspidosperma alkaloid, quebrachamine, through an alkene metathesis reaction that cannot be promoted by any of the previously reported chiral catalysts. PMID:19011612

  2. In tandem or alone: a remarkably selective transfer hydrogenation of alkenes catalyzed by ruthenium olefin metathesis catalysts.

    PubMed

    Zieliński, Grzegorz Krzysztof; Samojłowicz, Cezary; Wdowik, Tomasz; Grela, Karol

    2015-03-01

    A system for transfer hydrogenation of alkenes, composed of a ruthenium metathesis catalyst and HCOOH, is presented. This operationally simple system can be formed directly after a metathesis reaction to effect hydrogenation of the metathesis product in a single-pot. These hydrogenation conditions are applicable to a wide range of alkenes and offer remarkable selectivity. PMID:25586518

  3. In tandem or alone: a remarkably selective transfer hydrogenation of alkenes catalyzed by ruthenium olefin metathesis catalysts.

    PubMed

    Zieliński, Grzegorz Krzysztof; Samojłowicz, Cezary; Wdowik, Tomasz; Grela, Karol

    2015-03-01

    A system for transfer hydrogenation of alkenes, composed of a ruthenium metathesis catalyst and HCOOH, is presented. This operationally simple system can be formed directly after a metathesis reaction to effect hydrogenation of the metathesis product in a single-pot. These hydrogenation conditions are applicable to a wide range of alkenes and offer remarkable selectivity.

  4. Preference of Ruthenium-Based Metathesis Catalysts toward Z- and E-Alkenes as a Guide for Selective Reactions to Alkene Stereoisomers.

    PubMed

    Lee, Jihong; Kim, Kyung Hwan; Lee, Ok Suk; Choi, Tae-Lim; Lee, Hee-Seung; Ihee, Hyotcherl; Sohn, Jeong-Hun

    2016-09-01

    As a guide for selective reactions toward either Z- or E-alkene in a metathesis reaction, the relative preference of metathesis Ru catalysts for each stereoisomer was determined by a method using time-dependent fluorescence quenching. We found that Ru-1 prefers the Z-isomer over the E-isomer, whereas Ru-2 prefers the E-isomer over the Z-isomer. The Z/E-alkene preference of the catalysts precisely predicted the Z/E isomeric selectivity in the metathesis reactions of diene substrates possessing combinations of Z/E-alkenes. For the diene substrates, the rate order of the reactions using Ru-1 was Z,Z-1,6-diene > Z,E-1,6-diene > E,E-1,6-diene, while the completely opposite order of E,E-1,6-diene > Z,E-1,6-diene > Z,Z-1,6-diene was exhibited in the case of Ru-2.

  5. Preference of Ruthenium-Based Metathesis Catalysts toward Z- and E-Alkenes as a Guide for Selective Reactions to Alkene Stereoisomers.

    PubMed

    Lee, Jihong; Kim, Kyung Hwan; Lee, Ok Suk; Choi, Tae-Lim; Lee, Hee-Seung; Ihee, Hyotcherl; Sohn, Jeong-Hun

    2016-09-01

    As a guide for selective reactions toward either Z- or E-alkene in a metathesis reaction, the relative preference of metathesis Ru catalysts for each stereoisomer was determined by a method using time-dependent fluorescence quenching. We found that Ru-1 prefers the Z-isomer over the E-isomer, whereas Ru-2 prefers the E-isomer over the Z-isomer. The Z/E-alkene preference of the catalysts precisely predicted the Z/E isomeric selectivity in the metathesis reactions of diene substrates possessing combinations of Z/E-alkenes. For the diene substrates, the rate order of the reactions using Ru-1 was Z,Z-1,6-diene > Z,E-1,6-diene > E,E-1,6-diene, while the completely opposite order of E,E-1,6-diene > Z,E-1,6-diene > Z,Z-1,6-diene was exhibited in the case of Ru-2. PMID:27463964

  6. Does the rate of competing isomerisation during alkene metathesis depend on pre-catalyst initiation rate?

    PubMed

    Nelson, David J; Percy, Jonathan M

    2014-03-28

    Experimental studies of the ring-closing metathesis reaction of 1,8-nonadiene and the ROMP reaction of cycloheptene show that the rate of isomerisation is not correlated to the initiation rate of the pre-catalyst, and that the absence of phosphine leads to a greatly increased rate of isomerisation. A range of pre-catalysts and solvents were probed and it is proposed that the isomerisation is mediated by a ruthenium hydride complex; our results are consistent with the rate-determining formation of such a species, which might be trapped in situ by tricyclohexylphosphane.

  7. Synthesis of terminal alkenes from internal alkenes and ethylene via olefin metathesis

    DOEpatents

    Schrodi, Yann

    2015-09-22

    This invention relates generally to olefin metathesis, and more particularly relates to the synthesis of terminal alkenes from internal alkenes using a cross-metathesis reaction catalyzed by a selected olefin metathesis catalyst. In one embodiment of the invention, for example, a method is provided for synthesizing a terminal olefin, the method comprising contacting an olefinic substrate comprised of at least one internal olefin with ethylene, in the presence of a metathesis catalyst, wherein the catalyst is present in an amount that is less than about 1000 ppm relative to the olefinic substrate, and wherein the metathesis catalyst has the structure of formula (II) ##STR00001## wherein the various substituents are as defined herein. The invention has utility, for example, in the fields of catalysis, organic synthesis, and industrial chemistry.

  8. Synthesis of terminal alkenes from internal alkenes and ethylene via olefin metathesis

    DOEpatents

    Schrodi, Yann

    2011-11-29

    This invention relates generally to olefin metathesis, and more particularly relates to the synthesis of terminal alkenes from internal alkenes using a cross-metathesis reaction catalyzed by a selected olefin metathesis catalyst. In one embodiment of the invention, for example, a method is provided for synthesizing a terminal olefin, the method comprising contacting an olefinic substrate comprised of at least one internal olefin with ethylene, in the presence of a metathesis catalyst, wherein the catalyst is present in an amount that is less than about 1000 ppm relative to the olefinic substrate, and wherein the metathesis catalyst has the structure of formula (II) ##STR00001## wherein the various substituents are as defined herein. The invention has utility, for example, in the fields of catalysis, organic synthesis, and industrial chemistry.

  9. Synthesis of terminal alkenes from internal alkenes and ethylene via olefin metathesis

    DOEpatents

    Schrodi, Yann

    2013-07-09

    This invention relates generally to olefin metathesis, and more particularly relates to the synthesis of terminal alkenes from internal alkenes using a cross-metathesis reaction catalyzed by a selected olefin metathesis catalyst. In one embodiment of the invention, for example, a method is provided for synthesizing a terminal olefin, the method comprising contacting an olefinic substrate comprised of at least one internal olefin with ethylene, in the presence of a metathesis catalyst, wherein the catalyst is present in an amount that is less than about 1000 ppm relative to the olefinic substrate, and wherein the metathesis catalyst has the structure of formula (II) ##STR00001## wherein the various substituents are as defined herein. The invention has utility, for example, in the fields of catalysis, organic synthesis, and industrial chemistry.

  10. Synthesis of terminal alkenes from internal alkenes and ethylene via olefin metathesis

    DOEpatents

    Schrodi, Yann

    2016-02-09

    This invention relates generally to olefin metathesis, and more particularly relates to the synthesis of terminal alkenes from internal alkenes using a cross-metathesis reaction catalyzed by a selected olefin metathesis catalyst. In one embodiment of the invention, for example, a method is provided for synthesizing a terminal olefin, the method comprising contacting an olefinic substrate comprised of at least one internal olefin with ethylene, in the presence of a metathesis catalyst, wherein the catalyst is present in an amount that is less than about 1000 ppm relative to the olefinic substrate, and wherein the metathesis catalyst has the structure of formula (II) ##STR00001## wherein the various substituents are as defined herein. The invention has utility, for example, in the fields of catalysis, organic synthesis, and industrial chemistry.

  11. Increased functionality of methyl oleate using alkene metathesis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A series of alkene cross metathesis reactions were performed using a homogeneous ruthenium based catalyst. Using this technology, a variety of functional groups can be incorporated into the biobased starting material, methyl oleate. Trans-stilbene, styrene, methyl cinnamate and hexen-3-ol were all s...

  12. Catalytic Alkene Metathesis in Ionic Liquids

    NASA Astrophysics Data System (ADS)

    Fischmeister, Cédric

    Olefin metathesis has found a tremendous number of application in the past 25 years. Immobilisation of olefin metathesis (pre)catalysts in room temperature ionic liquids (RTILs) offers the opportunity to recover and reuse the catalyst and also to reduce the level of ruthenium (Ru) contaminants in the products.

  13. Tandem ring-closing metathesis/transfer hydrogenation: practical chemoselective hydrogenation of alkenes.

    PubMed

    Connolly, Timothy; Wang, Zhongyu; Walker, Michael A; McDonald, Ivar M; Peese, Kevin M

    2014-09-01

    An operationally simple chemoselective transfer hydrogenation of alkenes using ruthenium metathesis catalysts is presented. Of great practicality, the transfer hydrogenation reagents can be added directly to a metathesis reaction and effect hydrogenation of the product alkene in a single pot at ambient temperature without the need to seal the vessel to prevent hydrogen gas escape. The reduction is applicable to a range of alkenes and can be performed in the presence of aryl halides and benzyl groups, a notable weakness of Pd-catalyzed hydrogenations. Scope and mechanistic considerations are presented. PMID:25140991

  14. Tandem ring-closing metathesis/transfer hydrogenation: practical chemoselective hydrogenation of alkenes.

    PubMed

    Connolly, Timothy; Wang, Zhongyu; Walker, Michael A; McDonald, Ivar M; Peese, Kevin M

    2014-09-01

    An operationally simple chemoselective transfer hydrogenation of alkenes using ruthenium metathesis catalysts is presented. Of great practicality, the transfer hydrogenation reagents can be added directly to a metathesis reaction and effect hydrogenation of the product alkene in a single pot at ambient temperature without the need to seal the vessel to prevent hydrogen gas escape. The reduction is applicable to a range of alkenes and can be performed in the presence of aryl halides and benzyl groups, a notable weakness of Pd-catalyzed hydrogenations. Scope and mechanistic considerations are presented.

  15. Mesoporous Molecular Sieves Based Catalysts for Olefin Metathesis and Metathesis Polymerization

    NASA Astrophysics Data System (ADS)

    Balcar, Hynek; Čejka, Jiří

    Heterogeneous catalysts for olefin metathesis using different types of (i) siliceous mesoporous molecular sieves, and (ii) organized mesoporous alumina as supports are reported. The catalysts were prepared either by spreading of transition metal oxidic phase on the support surface or by immobilizing transition metal compounds (mostly organometallic) on the support. The activity of these catalysts in various types of metathesis reactions (i.e. alkene and diene metathesis, metathesis of unsaturated esters and ethers, RCM, ROMP and metathesis polymerization of alkynes) was described. The main advantages of these catalysts consist generally in their high activity and selectivity, easy separation of catalysts from reaction products and the preparation of products free of catalyst residue. The examples of pore size influence on the selectivity in metathesis reactions are also given.

  16. Alkene Metathesis and Renewable Materials: Selective Transformations of Plant Oils

    NASA Astrophysics Data System (ADS)

    Malacea, Raluca; Dixneuf, Pierre H.

    The olefin metathesis of natural oils and fats and their derivatives is the basis of clean catalytic reactions relevant to green chemistry processes and the production of generate useful chemicals from renewable raw materials. Three variants of alkene metathesis: self-metathesis, ethenolysis and cross-metathesis applied to plant oil derivatives will show new routes to fine chemicals, bifunctional products, polymer precursours and industry intermediates.

  17. Alkene Chemoselectivity in Ruthenium-Catalyzed Z-Selective Olefin Metathesis

    PubMed Central

    Cannon, Jeffrey S.

    2013-01-01

    Chelated ruthenium catalysts have achieved highly chemoselective olefin metathesis reactions. Terminal and internal Z olefins were selectively reacted in the presence of internal E olefins. Products were produced in good yield and high stereoselectivity for formation of a new Z olefin. No products of metathesis with the internal E olefin were observed. Chemoselectivity for terminal olefins was also observed over both sterically hindered and electronically deactivated alkenes. PMID:23832646

  18. Alkene metathesis - a tool for the synthesis of conjugated polymers.

    PubMed

    Bunz, Uwe H F; Mäker, Dominic; Porz, Michael

    2012-05-29

    Alkene metathesis is a superb methodology. We report the progress using alkene metathesis in the synthesis of polymeric organic semiconductors. Three classes of polymers have been synthesized using acyclic diene metathesis (ADMET) or ring opening metathesis polymerization (ROMP), viz., poly(acetylene)s (PA), poly(arylene-vinylene)s (PAV), and organometallic polymers. For PAs, ROMP of cyclooctatetraenes is best, whereas for PAV, both ADMET and indirect and direct ROMP are viable. Metathesis performs flawlessly with the correct monomers, as molybdenum and particularly the robust Ru carbenes demonstrate. When performing ROMP, one is often rewarded with structurally uniform polymers that can display very low polydispersities. Overall, metathesis is a powerful tool for the preparation of semiconducting polymers.

  19. Beyond catalyst deactivation: cross-metathesis involving olefins containing N-heteroaromatics

    PubMed Central

    Lafaye, Kevin; Bosset, Cyril; Nicolas, Lionel

    2015-01-01

    Summary Alkenes containing N-heteroaromatics are known to be poor partners in cross-metathesis reactions, probably due to catalyst deactivation caused by the presence of a nitrogen atom. However, some examples of ring-closing and cross-metathesis involving alkenes that incorporate N-heteroaromatics can be found in the literature. In addition, recent mechanistic studies have focused on the rationalization of nitrogen-induced catalysts deactivation. The purpose of this mini-review is to give a brief overview of successful metathesis reactions involving olefins containing N-heteroaromatics in order to delineate some guidelines for the use of these challenging substrates in metathesis reactions. PMID:26664645

  20. Beyond catalyst deactivation: cross-metathesis involving olefins containing N-heteroaromatics.

    PubMed

    Lafaye, Kevin; Bosset, Cyril; Nicolas, Lionel; Guérinot, Amandine; Cossy, Janine

    2015-01-01

    Alkenes containing N-heteroaromatics are known to be poor partners in cross-metathesis reactions, probably due to catalyst deactivation caused by the presence of a nitrogen atom. However, some examples of ring-closing and cross-metathesis involving alkenes that incorporate N-heteroaromatics can be found in the literature. In addition, recent mechanistic studies have focused on the rationalization of nitrogen-induced catalysts deactivation. The purpose of this mini-review is to give a brief overview of successful metathesis reactions involving olefins containing N-heteroaromatics in order to delineate some guidelines for the use of these challenging substrates in metathesis reactions.

  1. Beyond catalyst deactivation: cross-metathesis involving olefins containing N-heteroaromatics.

    PubMed

    Lafaye, Kevin; Bosset, Cyril; Nicolas, Lionel; Guérinot, Amandine; Cossy, Janine

    2015-01-01

    Alkenes containing N-heteroaromatics are known to be poor partners in cross-metathesis reactions, probably due to catalyst deactivation caused by the presence of a nitrogen atom. However, some examples of ring-closing and cross-metathesis involving alkenes that incorporate N-heteroaromatics can be found in the literature. In addition, recent mechanistic studies have focused on the rationalization of nitrogen-induced catalysts deactivation. The purpose of this mini-review is to give a brief overview of successful metathesis reactions involving olefins containing N-heteroaromatics in order to delineate some guidelines for the use of these challenging substrates in metathesis reactions. PMID:26664645

  2. Nitro-Grela-type complexes containing iodides – robust and selective catalysts for olefin metathesis under challenging conditions

    PubMed Central

    Tracz, Andrzej; Matczak, Mateusz; Urbaniak, Katarzyna

    2015-01-01

    Summary Iodide-containing nitro-Grela-type catalysts have been synthesized and applied to ring closing metathesis (RCM) and cross metathesis (CM) reactions. These new catalysts have exhibited improved efficiency in the transformation of sterically, non-demanding alkenes. Additional steric hindrance in the vicinity of ruthenium related to the presence of iodides ensures enhanced catalyst stability. The benefits are most apparent under challenging conditions, such as very low reaction concentrations, protic solvents or with the occurrence of impurities. PMID:26664602

  3. Nitro-Grela-type complexes containing iodides - robust and selective catalysts for olefin metathesis under challenging conditions.

    PubMed

    Tracz, Andrzej; Matczak, Mateusz; Urbaniak, Katarzyna; Skowerski, Krzysztof

    2015-01-01

    Iodide-containing nitro-Grela-type catalysts have been synthesized and applied to ring closing metathesis (RCM) and cross metathesis (CM) reactions. These new catalysts have exhibited improved efficiency in the transformation of sterically, non-demanding alkenes. Additional steric hindrance in the vicinity of ruthenium related to the presence of iodides ensures enhanced catalyst stability. The benefits are most apparent under challenging conditions, such as very low reaction concentrations, protic solvents or with the occurrence of impurities.

  4. Nitro-Grela-type complexes containing iodides - robust and selective catalysts for olefin metathesis under challenging conditions.

    PubMed

    Tracz, Andrzej; Matczak, Mateusz; Urbaniak, Katarzyna; Skowerski, Krzysztof

    2015-01-01

    Iodide-containing nitro-Grela-type catalysts have been synthesized and applied to ring closing metathesis (RCM) and cross metathesis (CM) reactions. These new catalysts have exhibited improved efficiency in the transformation of sterically, non-demanding alkenes. Additional steric hindrance in the vicinity of ruthenium related to the presence of iodides ensures enhanced catalyst stability. The benefits are most apparent under challenging conditions, such as very low reaction concentrations, protic solvents or with the occurrence of impurities. PMID:26664602

  5. What is the initiation step of the Grubbs-Hoveyda olefin metathesis catalyst?

    PubMed

    Ashworth, Ian W; Hillier, Ian H; Nelson, David J; Percy, Jonathan M; Vincent, Mark A

    2011-05-21

    Density function theory calculations reveal that the Grubbs-Hoveyda olefin metathesis pre-catalyst is activated by the formation of a complex in which the incoming alkene substrate and outgoing alkoxy ligand are both clearly associated with the ruthenium centre. The computed energies for reaction are in good agreement with the experimental values, reported here.

  6. Highly Selective Ruthenium Metathesis Catalysts for Ethenolysis

    PubMed Central

    Thomas, Renee M.; Keitz, Benjamin K.; Champagne, Timothy M.; Grubbs, Robert H.

    2011-01-01

    N-aryl, N-alkyl N-heterocyclic carbene (NHC) ruthenium metathesis catalysts are highly selective toward the ethenolysis of methyl oleate, giving selectivity as high as 95% for the kinetic, ethenolysis products over the thermodynamic, self-metathesis products. The examples described herein represent some of the most selective NHC-based ruthenium catalysts for ethenolysis reactions to date. Furthermore, many of these catalysts show unusual preference and stability toward propagating as a methylidene species, and provide good yields and turnover numbers (TONs) at relatively low catalyst loading (<500 ppm). A catalyst comparison showed that ruthenium complexes bearing sterically hindered NHC substituents afforded greater selectivity and stability, and exhibited longer catalyst lifetime during reactions. Comparative analysis of the catalyst preference for kinetic versus thermodynamic product formation was achieved via evaluation of their steady-state conversion in the cross-metathesis reaction of terminal olefins. These results coincided with the observed ethenolysis selectivities, in which the more selective catalysts reach a steady-state characterized by lower conversion to cross-metathesis products compared to less selective catalysts, which show higher conversion to cross-metathesis products. PMID:21510645

  7. Cationic Silica-Supported N-Heterocyclic Carbene Tungsten Oxo Alkylidene Sites: Highly Active and Stable Catalysts for Olefin Metathesis.

    PubMed

    Pucino, Margherita; Mougel, Victor; Schowner, Roman; Fedorov, Alexey; Buchmeiser, Michael R; Copéret, Christophe

    2016-03-18

    Designing supported alkene metathesis catalysts with high activity and stability is still a challenge, despite significant advances in the last years. Described herein is the combination of strong σ-donating N-heterocyclic carbene ligands with weak σ-donating surface silanolates and cationic tungsten sites leading to highly active and stable alkene metathesis catalysts. These well-defined silica-supported catalysts, [(≡SiO)W(=O)(=CHCMe2 Ph)(IMes)(OTf)] and [(≡SiO)W(=O)(=CHCMe2 Ph)(IMes)(+) ][B(Ar(F) )4 (-) ] [IMes=1,3-bis(2,4,6-trimethylphenyl)-imidazol-2-ylidene, B(Ar(F) )4 =B(3,5-(CF3 )2 C6 H3 )4 ] catalyze alkene metathesis, and the cationic species display unprecedented activity for a broad range of substrates, especially for terminal olefins with turnover numbers above 1.2 million for propene.

  8. Cationic Silica-Supported N-Heterocyclic Carbene Tungsten Oxo Alkylidene Sites: Highly Active and Stable Catalysts for Olefin Metathesis.

    PubMed

    Pucino, Margherita; Mougel, Victor; Schowner, Roman; Fedorov, Alexey; Buchmeiser, Michael R; Copéret, Christophe

    2016-03-18

    Designing supported alkene metathesis catalysts with high activity and stability is still a challenge, despite significant advances in the last years. Described herein is the combination of strong σ-donating N-heterocyclic carbene ligands with weak σ-donating surface silanolates and cationic tungsten sites leading to highly active and stable alkene metathesis catalysts. These well-defined silica-supported catalysts, [(≡SiO)W(=O)(=CHCMe2 Ph)(IMes)(OTf)] and [(≡SiO)W(=O)(=CHCMe2 Ph)(IMes)(+) ][B(Ar(F) )4 (-) ] [IMes=1,3-bis(2,4,6-trimethylphenyl)-imidazol-2-ylidene, B(Ar(F) )4 =B(3,5-(CF3 )2 C6 H3 )4 ] catalyze alkene metathesis, and the cationic species display unprecedented activity for a broad range of substrates, especially for terminal olefins with turnover numbers above 1.2 million for propene. PMID:26928967

  9. Recent applications in natural product synthesis of dihydrofuran and -pyran formation by ring-closing alkene metathesis.

    PubMed

    Jacques, Reece; Pal, Ritashree; Parker, Nicholas A; Sear, Claire E; Smith, Peter W; Ribaucourt, Aubert; Hodgson, David M

    2016-07-01

    In the past two decades, alkene metathesis has risen in prominence to become a significant synthetic strategy for alkene formation. Many total syntheses of natural products have used this transformation. We review the use, from 2003 to 2015, of ring-closing alkene metathesis (RCM) for the generation of dihydrofurans or -pyrans in natural product synthesis. The strategies used to assemble the RCM precursors and the subsequent use of the newly formed unsaturation will also be highlighted and placed in context. PMID:27108941

  10. Recent Applications of Alkene Metathesis in Fine Chemical Synthesis

    NASA Astrophysics Data System (ADS)

    Bicchielli, Dario; Borguet, Yannick; Delaude, Lionel; Demonceau, Albert; Dragutan, Ileana; Dragutan, Valerian; Jossifov, Christo; Kalinova, Radostina; Nicks, François; Sauvage, Xavier

    During the last decade or so, the emergence of the metathesis reaction in organic synthesis has revolutionised the strategies used for the construction of complex molecular structures. Olefin metathesis is indeed particularly suited for the construction of small open-chain molecules and macrocycles using crossmetathesis and ring-closing metathesis, respectively. These reactions serve, inter alia, as key steps in the synthesis of various agrochemicals and pharmaceuticals such as macrocyclic peptides, cyclic sulfonamides, novel macrolides, or insect pheromones. The present chapter is aiming at illustrating the great synthetic potential of metathesis reactions. Shortcomings, such as the control of olefin geometry and the unpredictable effect of substituents on the reacting olefins, will also be addressed. Examples to be presented include epothilones, amphidinolides, spirofungin A, and archazolid. Synthetic approaches involving silicon-tethered ring-closing metathesis, relay ring-closing metathesis, sequential reactions, domino as well as tandem metathesis reactions will also be illustrated.

  11. Ruthenium-Aryloxide Catalysts for Olefin Metathesis

    NASA Astrophysics Data System (ADS)

    Monfette, Sebastien; Blacquiere, Johanna M.; Conrad, Jay C.; Beach, Nicholas J.; Fogg, Deryn E.

    : Advances in design of ruthenium aryloxide catalysts for olefin metathesis are described. The target complexes are accessible on reaction of RuCl2(NHC)(py)2 (CHPh) (NHC - N-heterocyclic carbene) with electron-deficient, monodentate aryl- oxides, or aryloxides that yield small, rigid chelate rings. The best of these catalysts offer activity comparable to or greater than that of the parent chloride (Grubbs) systems in ring-closing metathesis (RCM). Preliminary studies of the electronic nature of the Ru-X bond suggest that the metal center is more electropositive in the aryloxide complexes than in the Grubbs systems.

  12. Thermally Stable, Latent Olefin Metathesis Catalysts

    PubMed Central

    Thomas, Renee M.; Fedorov, Alexey; Keitz, Benjamin K.

    2011-01-01

    Highly thermally stable N-aryl,N-alkyl N-heterocyclic carbene (NHC) ruthenium catalysts were designed and synthesized for latent olefin metathesis. These catalysts showed excellent latent behavior toward metathesis reactions, whereby the complexes were inactive at ambient temperature and initiated at elevated temperatures, a challenging property to achieve with second generation catalysts. A sterically hindered N-tert-butyl substituent on the NHC ligand of the ruthenium complex was found to induce latent behavior toward cross-metathesis reactions, and exchange of the chloride ligands for iodide ligands was necessary to attain latent behavior during ring-opening metathesis polymerization (ROMP). Iodide-based catalysts showed no reactivity toward ROMP of norbornene-derived monomers at 25 °C, and upon heating to 85 °C gave complete conversion of monomer to polymer in less than 2 hours. All of the complexes were very stable to air, moisture, and elevated temperatures up to at least 90 °C, and exhibited a long catalyst lifetime in solution at elevated temperatures. PMID:22282652

  13. Cross metathesis with hydroxamate and benzamide BOC-protected alkenes to access HDAC inhibitors and their biological evaluation highlighted intrinsic activity of BOC-protected dihydroxamates.

    PubMed

    Zwick, Vincent; Nurisso, Alessandra; Simões-Pires, Claudia; Bouchet, Samuel; Martinet, Nadine; Lehotzky, Attila; Ovadi, Judit; Cuendet, Muriel; Blanquart, Christophe; Bertrand, Philippe

    2016-01-01

    Conditions for the metathesis of alkenes in the convergent synthesis of HDAC inhibitors have been improved by continuous catalyst flow injection in the reaction media. Intermediate and target compounds obtained were tested for their ability to induce HDAC inhibition and tubulin acetylation, revealing the key role of the tert-butyloxycarbonyl (BOC) group for more HDAC6 selectivity. Molecular modelling added rationale for this BOC effect.

  14. Cross metathesis with hydroxamate and benzamide BOC-protected alkenes to access HDAC inhibitors and their biological evaluation highlighted intrinsic activity of BOC-protected dihydroxamates.

    PubMed

    Zwick, Vincent; Nurisso, Alessandra; Simões-Pires, Claudia; Bouchet, Samuel; Martinet, Nadine; Lehotzky, Attila; Ovadi, Judit; Cuendet, Muriel; Blanquart, Christophe; Bertrand, Philippe

    2016-01-01

    Conditions for the metathesis of alkenes in the convergent synthesis of HDAC inhibitors have been improved by continuous catalyst flow injection in the reaction media. Intermediate and target compounds obtained were tested for their ability to induce HDAC inhibition and tubulin acetylation, revealing the key role of the tert-butyloxycarbonyl (BOC) group for more HDAC6 selectivity. Molecular modelling added rationale for this BOC effect. PMID:26611919

  15. Cross-metathesis reaction of α- and β-vinyl C-glycosides with alkenes.

    PubMed

    Šnajdr, Ivan; Parkan, Kamil; Hessler, Filip; Kotora, Martin

    2015-01-01

    Cross-metathesis of α- and β-vinyl C-deoxyribosides and α-vinyl C-galactoside with various terminal alkenes under different conditions was studied. The cross-metathesis of the former proceeded with good yields of the corresponding products in ClCH2CH2Cl the latter required the presence of CuI in CH2Cl2 to achieve good yields of the products. A simple method for the preparation of α- and β-vinyl C-deoxyribosides was also developed. In addition, feasibility of deprotection and further transformations were briefly explored. PMID:26425194

  16. Allyl sulphides in olefin metathesis: catalyst considerations and traceless promotion of ring-closing metathesis.

    PubMed

    Edwards, Grant A; Culp, Phillip A; Chalker, Justin M

    2015-01-11

    Allyl sulphides are reactive substrates in ruthenium-catalysed olefin metathesis reactions, provided each substrate is matched with a suitable catalyst. A profile of catalyst activity is described, along with the first demonstration of allyl sulphides as traceless promoters in relayed ring-closing metathesis reactions. PMID:25410944

  17. Allyl sulphides in olefin metathesis: catalyst considerations and traceless promotion of ring-closing metathesis.

    PubMed

    Edwards, Grant A; Culp, Phillip A; Chalker, Justin M

    2015-01-11

    Allyl sulphides are reactive substrates in ruthenium-catalysed olefin metathesis reactions, provided each substrate is matched with a suitable catalyst. A profile of catalyst activity is described, along with the first demonstration of allyl sulphides as traceless promoters in relayed ring-closing metathesis reactions.

  18. The activation mechanism of Fe-based olefin metathesis catalysts

    NASA Astrophysics Data System (ADS)

    Poater, Albert; Pump, Eva; Vummaleti, Sai Vikrama Chaitanya; Cavallo, Luigi

    2014-08-01

    Density functional theory calculations have been used to describe the first turnover for olefin metathesis reaction of a homogenous Fe-based catalyst bearing a N-heterocyclic carbene ligand with methoxyethene as a substrate. Equal to conventional Ru-based catalysts, the activation of its Fe congener occurs through a dissociative mechanism, however with a more exothermic reaction energy profile. Predicted upper energy barriers were calculated to be on average ∼2 kcal/mol more beneficial for Fe catalyzed metathesis. Overall, this present computational study emphasises on advantages of Fe-based metathesis and gives a potential recipe for the design of an efficient Fe-based olefin metathesis catalysts.

  19. Chelated Ruthenium Catalysts for Z-Selective Olefin Metathesis

    PubMed Central

    Endo, Koji; Grubbs, Robert H.

    2011-01-01

    We report the development of ruthenium-based metathesis catalysts with chelating N-heterocyclic carbene (NHC) ligands which catalyze highly Z-selective olefin metathesis. A very simple and convenient synthetic procedure of such a catalyst has been developed. An intramolecular C-H bond activation of the NHC ligand, which is promoted by anion ligand substitution, forms the appropriate chelate for stereo- controlled olefin metathesis. PMID:21563826

  20. Tandem Ring-Opening-Ring-Closing Metathesis for Functional Metathesis Catalysts.

    PubMed

    Nagarkar, Amit A; Yasir, Mohammad; Crochet, Aurelien; Fromm, Katharina M; Kilbinger, Andreas F M

    2016-09-26

    Use of a tandem ring-opening-ring-closing metathesis (RORCM) strategy for the synthesis of functional metathesis catalysts is reported. Ring opening of 7-substituted norbornenes and subsequent ring-closing metathesis forming a thermodynamically stable 6-membered ring lead to a very efficient synthesis of new catalysts from commercially available Grubbs' catalysts. Hydroxy functionalized Grubbs' first- as well as third-generation catalysts have been synthesized. Mechanistic studies have been performed to elucidate the order of attack of the olefinic bonds. This strategy was also used to synthesize the ruthenium methylidene complex.

  1. Tandem Ring-Opening-Ring-Closing Metathesis for Functional Metathesis Catalysts.

    PubMed

    Nagarkar, Amit A; Yasir, Mohammad; Crochet, Aurelien; Fromm, Katharina M; Kilbinger, Andreas F M

    2016-09-26

    Use of a tandem ring-opening-ring-closing metathesis (RORCM) strategy for the synthesis of functional metathesis catalysts is reported. Ring opening of 7-substituted norbornenes and subsequent ring-closing metathesis forming a thermodynamically stable 6-membered ring lead to a very efficient synthesis of new catalysts from commercially available Grubbs' catalysts. Hydroxy functionalized Grubbs' first- as well as third-generation catalysts have been synthesized. Mechanistic studies have been performed to elucidate the order of attack of the olefinic bonds. This strategy was also used to synthesize the ruthenium methylidene complex. PMID:27592840

  2. Low Temperature Activation of Supported Metathesis Catalysts by Organosilicon Reducing Agents.

    PubMed

    Mougel, Victor; Chan, Ka-Wing; Siddiqi, Georges; Kawakita, Kento; Nagae, Haruki; Tsurugi, Hayato; Mashima, Kazushi; Safonova, Olga; Copéret, Christophe

    2016-08-24

    Alkene metathesis is a widely and increasingly used reaction in academia and industry because of its efficiency in terms of atom economy and its wide applicability. This reaction is notably responsible for the production of several million tons of propene annually. Such industrial processes rely on inexpensive silica-supported tungsten oxide catalysts, which operate at high temperatures (>350 °C), in contrast with the mild room temperature reaction conditions typically used with the corresponding molecular alkene metathesis homogeneous catalysts. This large difference in the temperature requirements is generally thought to arise from the difficulty in generating active sites (carbenes or metallacyclobutanes) in the classical metal oxide catalysts and prevents broader applicability, notably with functionalized substrates. We report here a low temperature activation process of well-defined metal oxo surface species using organosilicon reductants, which generate a large amount of active species at only 70 °C (0.6 active sites/W). This high activity at low temperature broadens the scope of these catalysts to functionalized substrates. This activation process can also be applied to classical industrial catalysts. We provide evidence for the formation of a metallacyclopentane intermediate and propose how the active species are formed.

  3. Low Temperature Activation of Supported Metathesis Catalysts by Organosilicon Reducing Agents

    PubMed Central

    2016-01-01

    Alkene metathesis is a widely and increasingly used reaction in academia and industry because of its efficiency in terms of atom economy and its wide applicability. This reaction is notably responsible for the production of several million tons of propene annually. Such industrial processes rely on inexpensive silica-supported tungsten oxide catalysts, which operate at high temperatures (>350 °C), in contrast with the mild room temperature reaction conditions typically used with the corresponding molecular alkene metathesis homogeneous catalysts. This large difference in the temperature requirements is generally thought to arise from the difficulty in generating active sites (carbenes or metallacyclobutanes) in the classical metal oxide catalysts and prevents broader applicability, notably with functionalized substrates. We report here a low temperature activation process of well-defined metal oxo surface species using organosilicon reductants, which generate a large amount of active species at only 70 °C (0.6 active sites/W). This high activity at low temperature broadens the scope of these catalysts to functionalized substrates. This activation process can also be applied to classical industrial catalysts. We provide evidence for the formation of a metallacyclopentane intermediate and propose how the active species are formed. PMID:27610418

  4. Low Temperature Activation of Supported Metathesis Catalysts by Organosilicon Reducing Agents.

    PubMed

    Mougel, Victor; Chan, Ka-Wing; Siddiqi, Georges; Kawakita, Kento; Nagae, Haruki; Tsurugi, Hayato; Mashima, Kazushi; Safonova, Olga; Copéret, Christophe

    2016-08-24

    Alkene metathesis is a widely and increasingly used reaction in academia and industry because of its efficiency in terms of atom economy and its wide applicability. This reaction is notably responsible for the production of several million tons of propene annually. Such industrial processes rely on inexpensive silica-supported tungsten oxide catalysts, which operate at high temperatures (>350 °C), in contrast with the mild room temperature reaction conditions typically used with the corresponding molecular alkene metathesis homogeneous catalysts. This large difference in the temperature requirements is generally thought to arise from the difficulty in generating active sites (carbenes or metallacyclobutanes) in the classical metal oxide catalysts and prevents broader applicability, notably with functionalized substrates. We report here a low temperature activation process of well-defined metal oxo surface species using organosilicon reductants, which generate a large amount of active species at only 70 °C (0.6 active sites/W). This high activity at low temperature broadens the scope of these catalysts to functionalized substrates. This activation process can also be applied to classical industrial catalysts. We provide evidence for the formation of a metallacyclopentane intermediate and propose how the active species are formed. PMID:27610418

  5. Low Temperature Activation of Supported Metathesis Catalysts by Organosilicon Reducing Agents

    PubMed Central

    2016-01-01

    Alkene metathesis is a widely and increasingly used reaction in academia and industry because of its efficiency in terms of atom economy and its wide applicability. This reaction is notably responsible for the production of several million tons of propene annually. Such industrial processes rely on inexpensive silica-supported tungsten oxide catalysts, which operate at high temperatures (>350 °C), in contrast with the mild room temperature reaction conditions typically used with the corresponding molecular alkene metathesis homogeneous catalysts. This large difference in the temperature requirements is generally thought to arise from the difficulty in generating active sites (carbenes or metallacyclobutanes) in the classical metal oxide catalysts and prevents broader applicability, notably with functionalized substrates. We report here a low temperature activation process of well-defined metal oxo surface species using organosilicon reductants, which generate a large amount of active species at only 70 °C (0.6 active sites/W). This high activity at low temperature broadens the scope of these catalysts to functionalized substrates. This activation process can also be applied to classical industrial catalysts. We provide evidence for the formation of a metallacyclopentane intermediate and propose how the active species are formed.

  6. Mesoporous Molecular Sieves as Supports for Metathesis Catalysts

    NASA Astrophysics Data System (ADS)

    Balcar, Hynek; Cejka, Jirí

    Mesoporous molecular sieves represent a new family of inorganic oxides with regular nanostructure, large surface areas, large void volumes, and narrow pore size distribution of mesopores. These materials offer new possibilities for designing highly active and selective catalysts for olefin metathesis and metathesis polymerization. Siliceous sieves MCM-41, MCM-48, SBA-15, and organized mesoporous alumina (OMA) were used as supports for preparation of new molybdenum and rhenium oxide catalysts, as well as for heterogenization of well-defined homogeneous catalysts.

  7. Cationic tungsten-oxo-alkylidene-N-heterocyclic carbene complexes: highly active olefin metathesis catalysts.

    PubMed

    Schowner, Roman; Frey, Wolfgang; Buchmeiser, Michael R

    2015-05-20

    The synthesis, structure, and olefin metathesis activity of the first neutral and cationic W-oxo-alkylidene-N-heterocyclic carbene (NHC) catalysts are reported. Neutral W-oxo-alkylidene-NHC catalysts can be prepared in up to 90% isolated yield. Depending on the ligands used, they possess either an octahedral (Oh) or trigonal bipyramidal ligand sphere. They can be activated with excess AlCl3 to form cationic olefin metathesis-active W-complexes; however, these readily convert into neutral chloro-complexes. Well-defined, stable cationic species can be prepared by stoichiometric substitution of one chloro ligand in the parent, neutral W-oxo-alkylidene-NHC complexes with Ag(MeCN)2B(Ar(F))4 or NaB(Ar(F))4; B(Ar(F))4 = B(3,5-(CF3)2-C6H3)4. They are highly active olefin metathesis catalysts, allowing for turnover numbers up to 10,000 in various olefin metathesis reactions including alkenes bearing nitrile, sec-amine, and thioether groups. PMID:25938340

  8. Cationic tungsten-oxo-alkylidene-N-heterocyclic carbene complexes: highly active olefin metathesis catalysts.

    PubMed

    Schowner, Roman; Frey, Wolfgang; Buchmeiser, Michael R

    2015-05-20

    The synthesis, structure, and olefin metathesis activity of the first neutral and cationic W-oxo-alkylidene-N-heterocyclic carbene (NHC) catalysts are reported. Neutral W-oxo-alkylidene-NHC catalysts can be prepared in up to 90% isolated yield. Depending on the ligands used, they possess either an octahedral (Oh) or trigonal bipyramidal ligand sphere. They can be activated with excess AlCl3 to form cationic olefin metathesis-active W-complexes; however, these readily convert into neutral chloro-complexes. Well-defined, stable cationic species can be prepared by stoichiometric substitution of one chloro ligand in the parent, neutral W-oxo-alkylidene-NHC complexes with Ag(MeCN)2B(Ar(F))4 or NaB(Ar(F))4; B(Ar(F))4 = B(3,5-(CF3)2-C6H3)4. They are highly active olefin metathesis catalysts, allowing for turnover numbers up to 10,000 in various olefin metathesis reactions including alkenes bearing nitrile, sec-amine, and thioether groups.

  9. Improved Ruthenium Catalysts for Z-Selective Olefin Metathesis

    PubMed Central

    Keitz, Benjamin K.; Endo, Koji; Patel, Paresma R.; Herbert, Myles B.; Grubbs, Robert H.

    2011-01-01

    Several new C-H activated ruthenium catalysts for Z-selective olefin metathesis have been synthesized. Both the carboxylate ligand and the aryl group of the N-heterocyclic carbene have been altered and the resulting catalysts were evaluated using a range of metathesis reactions. Substitution of bidentate with monodentate X-type ligands led to a severe attenuation of metathesis activity and selectivity, while minor differences were observed between bidentate ligands within the same family (e.g. carboxylates). The use of nitrato-type ligands, in place of carboxylates, afforded a significant improvement in metathesis activity and selectivity. With these catalysts, turnover numbers approaching 1000 were possible for a variety of cross-metathesis reactions, including the synthesis of industrially-relevant products. PMID:22097946

  10. Reactivation of a Ruthenium-Based Olefin Metathesis Catalyst

    PubMed Central

    Tabari, Daniel S.; Tolentino, Daniel R.; Schrodi, Yann

    2013-01-01

    1st Generation Hoveyda-Grubbs olefin metathesis catalyst was purposely decomposed in the presence of ethylene yielding inorganic species that are inactive in the ring-closing metathesis (RCM) of benchmark substrate diethyldiallyl malonate (DEDAM). The decomposed catalyst was treated with 1-(3,5-diisopropoxyphenyl)-1-phenylprop-2-yn-1-ol (3) to generate an olefin metathesis active ruthenium indenylidene-ether complex in 43 % yield. This complex was also prepared independently by reacting RuCl2(p-cymene)(PCy3) with organic precursor 3. The activity of the isolated reactivated catalyst in the RCM of DEDAM is similar to that of the independently prepared complex. PMID:23355756

  11. Reactivation of a Ruthenium-Based Olefin Metathesis Catalyst.

    PubMed

    Tabari, Daniel S; Tolentino, Daniel R; Schrodi, Yann

    2013-01-14

    1(st) Generation Hoveyda-Grubbs olefin metathesis catalyst was purposely decomposed in the presence of ethylene yielding inorganic species that are inactive in the ring-closing metathesis (RCM) of benchmark substrate diethyldiallyl malonate (DEDAM). The decomposed catalyst was treated with 1-(3,5-diisopropoxyphenyl)-1-phenylprop-2-yn-1-ol (3) to generate an olefin metathesis active ruthenium indenylidene-ether complex in 43 % yield. This complex was also prepared independently by reacting RuCl(2)(p-cymene)(PCy(3)) with organic precursor 3. The activity of the isolated reactivated catalyst in the RCM of DEDAM is similar to that of the independently prepared complex.

  12. Profluorescent substrates for the screening of olefin metathesis catalysts.

    PubMed

    Reuter, Raphael; Ward, Thomas R

    2015-01-01

    Herein we report on a 96-well plate assay based on the fluorescence resulting from the ring-closing metathesis of two profluorophoric substrates. To demonstrate the validity of the approach, four commercially available ruthenium-metathesis catalysts were evaluated in six different solvents. The results from the fluorescent assay agree well with HPLC conversions, validating the usefulness of the approach.

  13. Profluorescent substrates for the screening of olefin metathesis catalysts

    PubMed Central

    Reuter, Raphael

    2015-01-01

    Summary Herein we report on a 96-well plate assay based on the fluorescence resulting from the ring-closing metathesis of two profluorophoric substrates. To demonstrate the validity of the approach, four commercially available ruthenium-metathesis catalysts were evaluated in six different solvents. The results from the fluorescent assay agree well with HPLC conversions, validating the usefulness of the approach. PMID:26664607

  14. Profluorescent substrates for the screening of olefin metathesis catalysts.

    PubMed

    Reuter, Raphael; Ward, Thomas R

    2015-01-01

    Herein we report on a 96-well plate assay based on the fluorescence resulting from the ring-closing metathesis of two profluorophoric substrates. To demonstrate the validity of the approach, four commercially available ruthenium-metathesis catalysts were evaluated in six different solvents. The results from the fluorescent assay agree well with HPLC conversions, validating the usefulness of the approach. PMID:26664607

  15. Selective access to trisubstituted macrocyclic E- and Z-alkenes from the ring-closing metathesis of vinylsiloxanes.

    PubMed

    Wang, Yikai; Jimenez, Miguel; Sheehan, Patrick; Zhong, Cheng; Hung, Alvin W; Tam, Chun Pong; Young, Damian W

    2013-03-15

    Macrocyclic (E)-alkenylsiloxanes, obtained from E-selective ring-closing metathesis reactions, can be converted to the corresponding (Z)-alkenyl bromides and (E)-alkenyl iodides allowing access to both E- and Z-trisubstituted macrocyclic alkenes. The reaction conditions and substrate scope of these stereoselective transformations are explored.

  16. Building Indenylidene-Ruthenium Catalysts for Metathesis Transformations

    NASA Astrophysics Data System (ADS)

    Clavier, Hervé; Nolan, Steven P.

    Ruthenium-mediated olefin metathesis has emerged as an indispensable tool in organic synthesis for the formation carbon-carbon double bonds, attested by the large number of applications for natural product synthesis. Among the numerous catalysts developed to mediate olefin metathesis transformations, ruthenium-indenylidene complexes are robust and powerful pre-catalysts. The discovery of this catalyst category was slightly muddled due to a first mis-assignment of the compound structure. This report provides an overview of the synthetic routes for the construction of the indenylidene pattern in ruthenium complexes. The parameters relating to the indenylidene moiety construction will be discussed as well as the mechanism of this formation

  17. An Easily Accessed Nickel Nanoparticle Catalyst for Alkene Hydrosilylation with Tertiary Silanes.

    PubMed

    Buslov, Ivan; Song, Fang; Hu, Xile

    2016-09-26

    The first efficient and non-precious nanoparticle catalyst for alkene hydrosilylation with commercially relevant tertiary silanes has been developed. The nickel nanoparticle catalyst was prepared in situ from a simple nickel alkoxide precatalyst Ni(O(t) Bu)2 ⋅x KCl. The catalyst exhibits high activity for anti-Markovnikov hydrosilylation of unactivated terminal alkenes and isomerizing hydrosilylation of internal alkenes. The catalyst can be applied to synthesize a single terminal alkyl silane from a mixture of internal and terminal alkene isomers, and to remotely functionalize an internal alkene derived from a fatty acid. PMID:27612210

  18. Methods of producing epoxides from alkenes using a two-component catalyst system

    DOEpatents

    Kung, Mayfair C.; Kung, Harold H.; Jiang, Jian

    2013-07-09

    Methods for the epoxidation of alkenes are provided. The methods include the steps of exposing the alkene to a two-component catalyst system in an aqueous solution in the presence of carbon monoxide and molecular oxygen under conditions in which the alkene is epoxidized. The two-component catalyst system comprises a first catalyst that generates peroxides or peroxy intermediates during oxidation of CO with molecular oxygen and a second catalyst that catalyzes the epoxidation of the alkene using the peroxides or peroxy intermediates. A catalyst system composed of particles of suspended gold and titanium silicalite is one example of a suitable two-component catalyst system.

  19. Fast olefin metathesis at low catalyst loading.

    PubMed

    Peeck, Lars H; Savka, Roman D; Plenio, Herbert

    2012-10-01

    Reactions of the Grubbs 3rd generation complexes [RuCl(2)(NHC)(Ind)(Py)] (N-heterocyclic carbene (NHC)=1,3-bis(2,4,6-trimethylphenylimidazolin)-2-ylidene (SIMes), 1,3-bis(2,6-diisopropylphenylimidazolin)-2-ylidene (SIPr), or 1,3-bis(2,6-diisopropylphenylimidazol)-2-ylidene (IPr); Ind=3-phenylindenylid-1-ene, Py=pyridine) with 2-ethenyl-N-alkylaniline (alkyl=Me, Et) result in the formation of the new N-Grubbs-Hoveyda-type complexes 5 (NHC=SIMes, alkyl=Me), 6 (SIMes, Et), 7 (IPr, Me), 8 (SIPr, Me), and 9 (SIPr, Et) with N-chelating benzylidene ligands in yields of 50-75 %. Compared to their respective, conventional, O-Grubbs-Hoveyda complexes, the new complexes are characterized by fast catalyst activation, which translates into fast and efficient ring-closing metathesis (RCM) reactivity. Catalyst loadings of 15-150 ppm (0.0015-0.015 mol %) are sufficient for the conversion of a wide range of diolefinic substrates into the respective RCM products after 15 min at 50 °C in toluene; compounds 8 and 9 are the most catalytically active complexes. The use of complex 8 in RCM reactions enables the formation of N-protected 2,5-dihydropyrroles with turnover numbers (TONs) of up to 58,000 and turnover frequencies (TOFs) of up to 232,000 h(-1); the use of the N-protected 1,2,3,6-tetrahydropyridines proceeds with TONs of up to 37,000 and TOFs of up to 147,000 h(-1); and the use of the N-protected 2,3,6,7-tetrahydroazepines proceeds with TONs of up to 19,000 and TOFs of up to 76,000 h(-1), with yields for these reactions ranging from 83-92 %.

  20. Ruthenium olefin metathesis catalysts featuring unsymmetrical N-heterocyclic carbenes.

    PubMed

    Paradiso, Veronica; Bertolasi, Valerio; Costabile, Chiara; Grisi, Fabia

    2016-01-14

    New ruthenium Grubbs' and Hoveyda-Grubbs' second generation catalysts bearing N-alkyl/N-isopropylphenyl N-heterocyclic carbene (NHC) ligands with syn or anti backbone configuration were obtained and compared in model olefin metathesis reactions. Different catalytic efficiencies were observed depending on the size of the N-alkyl group (methyl or cyclohexyl) and on the backbone configuration. The presence of an N-cyclohexyl substituent determined the most significant reactivity differences between catalysts with syn or anti phenyl groups on the backbone. In particular, anti catalysts proved highly efficient, especially in the ring-closing metathesis (RCM) of encumbered diolefins, while syn catalysts showed low efficiency in the RCM of less hindered diolefins. This peculiar behavior, rationalized through DFT studies, was found to be related to the high propensity of these catalysts to give nonproductive metathesis events. Enantiopure anti catalysts were also tested in asymmetric metathesis reactions, where moderate enantioselectivities were observed. The steric and electronic properties of unsymmetrical NHCs with the N-cyclohexyl group were then evaluated using the corresponding rhodium complexes. While steric factors proved unimportant for both syn and anti NHCs, a major electron-donating character was found for the unsymmetrical NHC with anti phenyl substituents on the backbone.

  1. Ruthenium olefin metathesis catalysts featuring unsymmetrical N-heterocyclic carbenes.

    PubMed

    Paradiso, Veronica; Bertolasi, Valerio; Costabile, Chiara; Grisi, Fabia

    2016-01-14

    New ruthenium Grubbs' and Hoveyda-Grubbs' second generation catalysts bearing N-alkyl/N-isopropylphenyl N-heterocyclic carbene (NHC) ligands with syn or anti backbone configuration were obtained and compared in model olefin metathesis reactions. Different catalytic efficiencies were observed depending on the size of the N-alkyl group (methyl or cyclohexyl) and on the backbone configuration. The presence of an N-cyclohexyl substituent determined the most significant reactivity differences between catalysts with syn or anti phenyl groups on the backbone. In particular, anti catalysts proved highly efficient, especially in the ring-closing metathesis (RCM) of encumbered diolefins, while syn catalysts showed low efficiency in the RCM of less hindered diolefins. This peculiar behavior, rationalized through DFT studies, was found to be related to the high propensity of these catalysts to give nonproductive metathesis events. Enantiopure anti catalysts were also tested in asymmetric metathesis reactions, where moderate enantioselectivities were observed. The steric and electronic properties of unsymmetrical NHCs with the N-cyclohexyl group were then evaluated using the corresponding rhodium complexes. While steric factors proved unimportant for both syn and anti NHCs, a major electron-donating character was found for the unsymmetrical NHC with anti phenyl substituents on the backbone. PMID:26608162

  2. Catalyst system for the polymerization of alkenes to polyolefins

    DOEpatents

    Miller, Stephen A.; Bercaw, John E.

    2004-02-17

    The invention provides metallocene catalyst systems for the controlled polymerization of alkenes to a wide variety of polyolefins and olefin coplymers. Catalyst systems are provided that specifically produce isotactic, syndiotactic and steroblock polyolefins. The type of polymer produced can be controlled by varying the catalyst system, specifically by varying the ligand substituents. Such catalyst systems are particularly useful for the polymerization of polypropylene to give elastomeric polypropylenes. The invention also provides novel elastomeric polypropylene polymers characterized by dyad (m) tacticities of about 55% to about 65%, pentad (mmmm) tacticities of about 25% to about 35%, molecular weights (M.sub.W) in the range of about 50,000 to about 2,000,000, and have mmrm+rrmr peak is less than about 5%.

  3. Catalyst system for the polymerization of alkenes to polyolefins

    DOEpatents

    Miller, Stephen A.; Bercaw, John E.

    2002-01-01

    The invention provides metallocene catalyst systems for the controlled polymerization of alkenes to a wide variety of polyolefins and olefin coplymers. Catalyst systems are provided that specifically produce isotactic, syndiotactic and steroblock polyolefins. The type of polymer produced can be controlled by varying the catalyst system, specifically by varying the ligand substituents. Such catalyst systems are particularly useful for the polymerization of polypropylene to give elastomeric polypropylenes. The invention also provides novel elastomeric polypropylene polymers characterized by dyad (m) tacticities of about 55% to about 65%, pentad (mmmm) tacticities of about 25% to about 35%, molecular weights (M.sub.w)in the range of about 50,000 to about 2,000,000, and have mmrm+rrmr peak is less than about 5%.

  4. Low Catalyst Loadings in Olefin Metathesis: Synthesis of Nitrogen Heterocycles by Ring Closing Metathesis

    PubMed Central

    Kuhn, Kevin M.; Champagne, Timothy M.; Hong, Soon Hyeok; Wei, Wen-Hao; Nickel, Andrew; Lee, Choon Woo; Virgil, Scott C.; Grubbs, Robert H.; Pederson, Richard L.

    2010-01-01

    (eq 1) A series of ruthenium catalysts have been screened under ring closing metathesis (RCM) conditions to produce five-, six-, and seven-membered carbamate-protected cyclic amines. Many of these catalysts demonstrated excellent RCM activity and yields with as low as 500 ppm catalyst loadings. RCM of the five-membered carbamate-series could be run neat, the six-membered carbamate-series could be run at 1.0 M concentrations and the seven-membered carbamate-series worked best at 0.2 M to 0.05 M concentrations. PMID:20141172

  5. Low catalyst loadings in olefin metathesis: synthesis of nitrogen heterocycles by ring-closing metathesis.

    PubMed

    Kuhn, Kevin M; Champagne, Timothy M; Hong, Soon Hyeok; Wei, Wen-Hao; Nickel, Andrew; Lee, Choon Woo; Virgil, Scott C; Grubbs, Robert H; Pederson, Richard L

    2010-03-01

    A series of ruthenium catalysts have been screened under ring-closing metathesis (RCM) conditions to produce five-, six-, and seven-membered carbamate-protected cyclic amines. Many of these catalysts demonstrated excellent RCM activity and yields with as low as 500 ppm catalyst loadings. RCM of the five-membered carbamate series could be run neat, the six-membered carbamate series could be run at 1.0 M, and the seven-membered carbamate series worked best at 0.2-0.05 M.

  6. Phosphine-Free EWG-Activated Ruthenium Olefin Metathesis Catalysts

    NASA Astrophysics Data System (ADS)

    Grela, Karol; Szadkowska, Anna; Michrowska, Anna; Bieniek, Michal; Sashuk, Volodymyr

    Hoveyda-Grubbs catalyst has been successfully fine-tuned by us in order to increase its activity and applicability by the introduction of electron-withdrawing groups (EWGs) to diminish donor properties of the oxygen atom. As a result, the stable and easily accessible nitro-substituted Hoveyda-Grubbs catalyst has found a number of successful applications in various research and industrial laboratories. Some other EWG-activated Hoveyda-type catalysts are commercially available. The results described herewith demonstrate that the activity of ruthenium (Ru) metathesis catalysts can be enhanced by introduction of EWGs without detriment to catalysts stability. Equally noteworthy is the observation that different Ru catalysts turned out to be optimal for different applications. This shows that no single catalyst outperforms all others in all possible applications.

  7. Key processes in ruthenium-catalysed olefin metathesis.

    PubMed

    Nelson, David J; Manzini, Simone; Urbina-Blanco, César A; Nolan, Steven P

    2014-09-18

    While the fundamental series of [2+2]cycloadditions and retro[2+2]cycloadditions that make up the pathways of ruthenium-catalysed metathesis reactions is well-established, the exploration of mechanistic aspects of alkene metathesis continues. In this Feature Article, modern mechanistic studies of the alkene metathesis reaction, catalysed by well-defined ruthenium complexes, are discussed. Broadly, these concern the processes of pre-catalyst initiation, propagation and decomposition, which all have a considerable impact on the overall efficiency of metathesis reactions. PMID:24931143

  8. Key processes in ruthenium-catalysed olefin metathesis.

    PubMed

    Nelson, David J; Manzini, Simone; Urbina-Blanco, César A; Nolan, Steven P

    2014-09-18

    While the fundamental series of [2+2]cycloadditions and retro[2+2]cycloadditions that make up the pathways of ruthenium-catalysed metathesis reactions is well-established, the exploration of mechanistic aspects of alkene metathesis continues. In this Feature Article, modern mechanistic studies of the alkene metathesis reaction, catalysed by well-defined ruthenium complexes, are discussed. Broadly, these concern the processes of pre-catalyst initiation, propagation and decomposition, which all have a considerable impact on the overall efficiency of metathesis reactions.

  9. Ruthenium Olefin Metathesis Catalysts Bearing Carbohydrate-Based N-Heterocyclic Carbenes

    PubMed Central

    Keitz, Benjamin K.; Grubbs, Robert H.

    2010-01-01

    Ru-based olefin metathesis catalysts containing carbohydrate-derived NHCs from glucose and galactose were synthesized and characterized by NMR spectroscopy. 2D-NMR spectroscopy revealed the presence of Ru-C (benzylidene) rotamers at RT and the rate of rotation was measured using magnetization transfer and VT-NMR spectroscopy. The catalysts were found to be effective at ring-opening metathesis polymerization (ROMP), ring closing metathesis (RCM), cross metathesis (CM), and asymmetric ring opening cross metathesis (AROCM) and showed surprising selectivity in both CM and AROCM. PMID:21603126

  10. Regioselective chromatic orthogonality with light-activated metathesis catalysts.

    PubMed

    Levin, Efrat; Mavila, Sudheendran; Eivgi, Or; Tzur, Eyal; Lemcoff, N Gabriel

    2015-10-12

    The ability to selectively guide consecutive chemical processes towards a preferred pathway by using light of different frequencies is an appealing concept. Herein we describe the coupling of two photochemical reactions, one the photoisomerization and consequent activation of a sulfur-chelated latent olefin-metathesis catalyst at 350 nm, and the other the photocleavage of a silyl protecting group at 254 nm. Depending on the steric stress exerted by a photoremovable neighboring chemical substituent, we demonstrate the selective formation of either five- or six-membered-ring frameworks by light-triggered ring-closing metathesis. The orthogonality of these light-induced reactions allows the initiation of these processes independently and in interchangeable order, according to the wavelength of light used to promote them.

  11. Well-Defined and Robust Rhodium Catalysts for the Hydroacylation of Terminal and Internal Alkenes**

    PubMed Central

    Prades, Amparo; Fernández, Maitane; Pike, Sebastian D; Willis, Michael C; Weller, Andrew S

    2015-01-01

    A Rh-catalyst system based on the asymmetric ligand tBu2PCH2P(o-C6H4OMe)2 is reported that allows for the hydroacylation of challenging internal alkenes with β-substituted aldehydes. Mechanistic studies point to the stabilizing role of both excess alkene and the OMe-group. PMID:26069052

  12. A Ruthenium Catalyst for Olefin Metathesis Featuring an Anti-Bredt N-Heterocyclic Carbene Ligand

    PubMed Central

    Martin, David; Marx, Vanessa M.

    2016-01-01

    A ruthenium complex bearing an “anti-Bredt” N-heterocyclic carbene was synthesized, characterized and evaluated as a catalyst for olefin metathesis. Good conversions were observed at room temperature for the formation of di- and tri-substituted olefins by ring-closing metathesis. It also allowed for the ring-opening metathesis polymerization of cyclooctadiene, as well as for the cross-metathesis of cis-1,4-diacetoxy-2-butene with allyl-benzene, with enhanced Z/E kinetic selectivity over classical NHC-based catalysts. PMID:27594819

  13. The generation of efficient supported (Heterogeneous) olefin metathesis catalysts

    SciTech Connect

    Grubbs, Robert H

    2013-04-05

    Over the past decade, a new family of homogeneous metathesis catalysts has been developed that will tolerate most organic functionalities as well as water and air. These homogeneous catalysts are finding numerous applications in the pharmaceutical industry as well as in the production of functional polymers. In addition the catalysts are being used to convert seed oils into products that can substitute for those that are now made from petroleum products. Seed oils are unsaturated, contain double bonds, and are a ready source of linear hydrocarbon fragments that are specifically functionalized. To increase the number of applications in the area of biomaterial conversion to petrol chemicals, the activity and efficiency of the catalysts need to be as high as possible. The higher the efficiency of the catalysts, the lower the cost of the conversion and a larger number of practical applications become available. Active supported catalysts were prepared and tested in the conversion of seed oils and other important starting materials. The outcome of the work was successful and the technology has been transferred to a commercial operation to develop viable applications of the discovered systems. A biorefinery that converts seed oils is under construction in Indonesia. The catalysts developed in this study will be considered for the next generation of operations.

  14. Biopolymer-supported ionic-liquid-phase ruthenium catalysts for olefin metathesis.

    PubMed

    Clousier, Nathalie; Filippi, Alexandra; Borré, Etienne; Guibal, Eric; Crévisy, Christophe; Caijo, Fréderic; Mauduit, Marc; Dez, Isabelle; Gaumont, Annie-Claude

    2014-04-01

    Original ruthenium supported ionic liquid phase (SILP) catalysts based on alginates as supports were developed for olefin metathesis reactions. The marine biopolymer, which fulfills most of the requisite properties for a support such as widespread abundance, insolubility in the majority of organic solvents, a high affinity for ionic liquids, high chemical stability, biodegradability, low cost, and easy processing, was impregnated by [bmim][PF6 ] containing an ionically tagged ruthenium catalyst. These biosourced catalysts show promising performances in ring-closing metathesis (RCM) and cross-metathesis (CM) reactions, with a high level of recyclability and reusability combined with a good reactivity. PMID:24616203

  15. Biopolymer-supported ionic-liquid-phase ruthenium catalysts for olefin metathesis.

    PubMed

    Clousier, Nathalie; Filippi, Alexandra; Borré, Etienne; Guibal, Eric; Crévisy, Christophe; Caijo, Fréderic; Mauduit, Marc; Dez, Isabelle; Gaumont, Annie-Claude

    2014-04-01

    Original ruthenium supported ionic liquid phase (SILP) catalysts based on alginates as supports were developed for olefin metathesis reactions. The marine biopolymer, which fulfills most of the requisite properties for a support such as widespread abundance, insolubility in the majority of organic solvents, a high affinity for ionic liquids, high chemical stability, biodegradability, low cost, and easy processing, was impregnated by [bmim][PF6 ] containing an ionically tagged ruthenium catalyst. These biosourced catalysts show promising performances in ring-closing metathesis (RCM) and cross-metathesis (CM) reactions, with a high level of recyclability and reusability combined with a good reactivity.

  16. Design and Application of Latent Olefin Metathesis Catalysts Featuring S-Chelating Alkylidene Ligands

    NASA Astrophysics Data System (ADS)

    Szadkowska, Anna; Grela, Karol

    This review article is devoted to recent advances in the design and application of so-called “dormant” or “latent” ruthenium olefin metathesis catalysts bearing S-chelating alkylidene ligands. Selected ruthenium complexes containing S-donor ligands, which possess controllable initiation behaviour are presented. Applications of these complexes in olefin metathesis are described.

  17. The Discovery of Quinoxaline-Based Metathesis Catalysts from Synthesis of Grazoprevir (MK-5172).

    PubMed

    Williams, Michael J; Kong, Jongrock; Chung, Cheol K; Brunskill, Andrew; Campeau, Louis-Charles; McLaughlin, Mark

    2016-05-01

    Olefin metathesis (OM) is a reliable and practical synthetic methodology for challenging carbon-carbon bond formations. While existing catalysts can effect many of these transformations, the synthesis and development of new catalysts is essential to increase the application breadth of OM and to achieve improved catalyst activity. The unexpected initial discovery of a novel olefin metathesis catalyst derived from synthetic efforts toward the HCV therapeutic agent grazoprevir (MK-5172) is described. This initial finding has evolved into a class of tunable, shelf-stable ruthenium OM catalysts that are easily prepared and exhibit unique catalytic activity.

  18. The Discovery of Quinoxaline-Based Metathesis Catalysts from Synthesis of Grazoprevir (MK-5172).

    PubMed

    Williams, Michael J; Kong, Jongrock; Chung, Cheol K; Brunskill, Andrew; Campeau, Louis-Charles; McLaughlin, Mark

    2016-05-01

    Olefin metathesis (OM) is a reliable and practical synthetic methodology for challenging carbon-carbon bond formations. While existing catalysts can effect many of these transformations, the synthesis and development of new catalysts is essential to increase the application breadth of OM and to achieve improved catalyst activity. The unexpected initial discovery of a novel olefin metathesis catalyst derived from synthetic efforts toward the HCV therapeutic agent grazoprevir (MK-5172) is described. This initial finding has evolved into a class of tunable, shelf-stable ruthenium OM catalysts that are easily prepared and exhibit unique catalytic activity. PMID:27123552

  19. Ruthenium-based olefin metathesis catalysts bearing pH-responsive ligands: External control of catalyst solubility and activity

    NASA Astrophysics Data System (ADS)

    Balof, Shawna Lynn

    2011-12-01

    Sixteen novel, Ru-based olefin metathesis catalysts bearing pH responsive ligands were synthesized. The pH-responsive groups employed with these catalysts included dimethylamino (NMe2) modified NHC ligands as well as N-donor dimethylaminopyridine (DMAP) and 3-(o-pyridyl)propylidene ligands. These pH-responsive ligands provided the means by which the solubility and/or activity profiles of the catalysts produced could be controlled via acid addition. The main goal of this dissertation was to design catalyst systems capable of performing ring opening metathesis (ROMP) and ring closing metathesis (RCM) reactions in both organic and aqueous media. In an effort to quickly gain access to new catalyst structures, a template synthesis for functionalized NHC ligand precursors was designed, in addition to other strategies, to obtain ligand precursors with ancillary NMe2 groups. Kinetic studies for the catalysts produced from these precursors showed external control of catalyst solubility was afforded via protonation of the NMe2 groups of their NHC ligands. Additionally, this protonation afforded external control of catalyst propagation rates for several catalysts. This is the first known independent external control for the propagation rates of ROMP catalysts. The incorporation of pH-responsive N-donor ligands into catalyst structures also provided the means for the external control of metathesis activity, as the protonation of these ligands resulted in an increased initiation rate based on their fast and irreversible dissociation from the metal center. The enhanced external control makes these catalysts applicable to a wide range of applications, some of which have been explored by us and/or through collaboration. Three of the catalysts designed showed remarkable metathesis activity in aqueous media. These catalysts displayed comparable RCM activity in aqueous media to a class of water-soluble catalysts reported by Grubbs et al., considered to be the most active catalyst for

  20. Supported ruthenium-carbene catalyst on ionic magnetic nanoparticles for olefin metathesis.

    PubMed

    Chen, Shu-Wei; Zhang, Zhi-Cheng; Ma, Miaofeng; Zhong, Chong-Min; Lee, Sang-gi

    2014-10-01

    The Grubbs-Hoveyda ruthenium-carbene complex has been covalently immobilized on ionic magnetic nanoparticles utilizing an imidazolium salt linker. The supported catalyst exhibited excellent catalytic activity for ring-closing metathesis (RCM) and cross-metathesis (CM) in the presence of less than 1 mol % of ruthenium. The catalysts can easily be recovered magnetically and reused up to seven times with minimal leaching of ruthenium species. PMID:25215600

  1. Supported ruthenium-carbene catalyst on ionic magnetic nanoparticles for olefin metathesis.

    PubMed

    Chen, Shu-Wei; Zhang, Zhi-Cheng; Ma, Miaofeng; Zhong, Chong-Min; Lee, Sang-gi

    2014-10-01

    The Grubbs-Hoveyda ruthenium-carbene complex has been covalently immobilized on ionic magnetic nanoparticles utilizing an imidazolium salt linker. The supported catalyst exhibited excellent catalytic activity for ring-closing metathesis (RCM) and cross-metathesis (CM) in the presence of less than 1 mol % of ruthenium. The catalysts can easily be recovered magnetically and reused up to seven times with minimal leaching of ruthenium species.

  2. Olefin Metathesis in Homogeneous Aqueous Media Catalyzed by Conventional Ruthenium Catalysts

    PubMed Central

    Binder, Joseph B.; Blank, Jacqueline J.; Raines, Ronald T.

    2008-01-01

    Olefin metathesis in aqueous solvents is sought for applications in green chemistry and with the hydrophilic substrates of chemical biology, such as proteins and polysaccharides. Most demonstrations of metathesis in water, however, utilize exotic complexes. We have examined the performance of conventional catalysts in homogeneous water–organic mixtures, finding that the second-generation Hoveyda–Grubbs catalyst has extraordinary efficiency in aqueous dimethoxyethane and aqueous acetone. High (71–95%) conversions are achieved for ring-closing and cross metathesis of a variety of substrates in these solvent systems. PMID:17949009

  3. Axially chiral macrocyclic E-alkene bearing bisazole component formed by sequential C-H homocoupling and ring-closing metathesis.

    PubMed

    Nishio, Shotaro; Somete, Takashi; Sugie, Atsushi; Kobayashi, Tohru; Yaita, Tsuyoshi; Mori, Atsunori

    2012-05-18

    Clipping by ring-closing metathesis freezes rotation of a C-C bond to result in forming axial chirality. Treatment of bisbenzimidazole bearing an N-(3-butenyl) substituent with a Grubbs' catalyst undergoes ring-closing metathesis, in which the stereochemistry of the thus formed olefin was exclusively E-form. Analysis by HPLC with a chiral stationary column confirmed clear baseline separation of each enantiomer.

  4. A simple and facile Heck-type arylation of alkenes with diaryliodonium salts using magnetically recoverable Pd-catalyst

    EPA Science Inventory

    The Heck-type arylation of alkenes was achieved in aqueous polyethylene glycol using a magnetically recoverable heterogenized palladium catalyst employing diaryliodonium salts under ambient conditions. The benign reaction medium and the stability of the catalyst are the salient f...

  5. Simple and highly Z-selective ruthenium-based olefin metathesis catalyst.

    PubMed

    Occhipinti, Giovanni; Hansen, Fredrik R; Törnroos, Karl W; Jensen, Vidar R

    2013-03-01

    A one-step substitution of a single chloride anion of the Grubbs-Hoveyda second-generation catalyst with a 2,4,6-triphenylbenzenethiolate ligand resulted in an active olefin metathesis catalyst with remarkable Z selectivity, reaching 96% in metathesis homocoupling of terminal olefins. High turnover numbers (up to 2000 for homocoupling of 1-octene) were obtained along with sustained appreciable Z selectivity (>85%). Apart from the Z selectivity, many properties of the new catalyst, such as robustness toward oxygen and water as well as a tendency to isomerize substrates and react with internal olefin products, resemble those of the parent catalyst.

  6. Ruthenium-Vinylidene Complexes: An Efficient Class of Homogeneous Metathesis Catalysts

    NASA Astrophysics Data System (ADS)

    Dragutan, Ileana; Verpoort, Francis; Dragutan, Valerian; Drozdzak, Renata

    Several routes to access ruthenium (Ru)-vinylidene complexes are described, the majority of which employ alkynes and a Ru source as the starting materials. The successful application of Ru-vinylidenes as efficient pre-catalysts for the synthesis of carbocyclic and heterocyclic compounds by ring-closing metathesis (RCM) of αω, -dienes, and in the synthesis of polymers by ring-opening metathesis polymerization (ROMP) of cyclooctene, norbornene, 5-substituted norbornene, and dicyclopentadiene is fully illustrated. Relevant aspects concerning the activity and selectivity of this type of Ru complexes in metathesis reactions are highlighted.

  7. Z-Selective ethenolysis with a ruthenium metathesis catalyst: experiment and theory.

    PubMed

    Miyazaki, Hiroshi; Herbert, Myles B; Liu, Peng; Dong, Xiaofei; Xu, Xiufang; Keitz, Benjamin K; Ung, Thay; Mkrtumyan, Garik; Houk, K N; Grubbs, Robert H

    2013-04-17

    The Z-selective ethenolysis activity of chelated ruthenium metathesis catalysts was investigated with experiment and theory. A five-membered chelated catalyst that was successfully employed in Z-selective cross metathesis reactions has now been found to be highly active for Z-selective ethenolysis at low ethylene pressures, while tolerating a wide variety of functional groups. This phenomenon also affects its activity in cross metathesis reactions and prohibits crossover reactions of internal olefins via trisubstituted ruthenacyclobutane intermediates. In contrast, a related catalyst containing a six-membered chelated architecture is not active for ethenolysis and seems to react through different pathways more reminiscent of previous generations of ruthenium catalysts. Computational investigations of the effects of substitution on relevant transition states and ruthenacyclobutane intermediates revealed that the differences of activities are attributed to the steric repulsions of the anionic ligand with the chelating groups.

  8. Nobel Chemistry in the Laboratory: Synthesis of a Ruthenium Catalyst for Ring-Closing Olefin Metathesis--An Experiment for the Advanced Inorganic or Organic Laboratory

    ERIC Educational Resources Information Center

    Greco, George E.

    2007-01-01

    An experiment for the upper-level undergraduate laboratory is described in which students synthesize a ruthenium olefin metathesis catalyst, then use the catalyst to carry out the ring-closing metathesis of diethyl diallylmalonate. The olefin metathesis reaction was the subject of the 2005 Nobel Prize in chemistry. The catalyst chosen for this…

  9. Diphenylamido Precursors to Bisalkoxide Molybdenum Olefin Metathesis Catalysts

    PubMed Central

    Sinha, Amritanshu; Müller, Peter; Hoveyda, Amir H.

    2008-01-01

    We have found that Mo(NAr)(CHR′)(NPh2)2 (R′ = t-Bu or CMe2Ph) and Mo(NAr′)(CHCMe2Ph)(NPh2)2 (Ar = 2,6-i-Pr2C6H3; Ar′ = 2,6-Me2C6H3) can be prepared through addition of two equivalents of LiNPh2 to Mo(NR″)(CHR′)(OTf)2(dme) species (R″ = Ar or Ar′ dme = 1,2-dimethoxyethane), although yields are low. A high yield route consists of addition of LiNPh2 to bishexafluro-t-butoxide species. An X-ray structure of Mo(NAr)(CHCMe2Ph)(NPh2)2 reveals that the two diphenylamido groups are oriented in a manner that allows an 18 electron count to be achieved. The diphenylamido complexes react readily with t-BuOH and (CF3)2MeCOH, but not readily with the sterically demanding biphenol H2[Biphen] (Biphen2- = 3,3′-Di-t-butyl-5,5′,6,6′-tetramethyl-1,1′-Biphenyl-2,2′-diolate). The diphenylamido complexes do react with various 3,3′-disubstituted binaphthols to yield binaphtholate catalysts that can be prepared in situ and employed for a simple asymmetric ring-closing metathesis reaction. In several cases conversions and enantioselectivities were comparable to reactions in which isolated catalysts were employed. PMID:19030118

  10. Trifluoromethylchlorosulfonylation of alkenes: evidence for an inner-sphere mechanism by a copper phenanthroline photoredox catalyst.

    PubMed

    Bagal, Dattatraya B; Kachkovskyi, Georgiy; Knorn, Matthias; Rawner, Thomas; Bhanage, Bhalchandra M; Reiser, Oliver

    2015-06-01

    A visible-light-mediated procedure for the unprecedented trifluoromethylchlorosulfonylation of unactivated alkenes is presented. It uses [Cu(dap)2]Cl as catalyst, and contrasts with [Ru(bpy)3]Cl2, [Ir(ppy)2(dtbbpy)]PF6, or eosin Y that exclusively give rise to trifluoromethylchlorination of the same alkenes. It is assumed that [Cu(dap)2]Cl plays a dual role, that is, acting both as an electron transfer reagent as well as coordinating the reactants in the bond forming processes. PMID:25926329

  11. Linker-free, silica-bound olefin-metathesis catalysts: applications in heterogeneous catalysis.

    PubMed

    Cabrera, José; Padilla, Robin; Bru, Miriam; Lindner, Ronald; Kageyama, Takeharu; Wilckens, Kristina; Balof, Shawna L; Schanz, Hans-Jörg; Dehn, Richard; Teles, J Henrique; Deuerlein, Stephan; Müller, Kevin; Rominger, Frank; Limbach, Michael

    2012-11-12

    A set of heterogenized olefin-metathesis catalysts, which consisted of Ru complexes with the H(2)ITap ligand (1,3-bis(2',6'-dimethyl-4'dimethyl aminophenyl)-4,5-dihydroimidazol-2-ylidene) that had been adsorbed onto a silica support, has been prepared. These complexes showed strong binding to the solid support without the need for tethering groups on the complex or functionalized silica. The catalysts were tested in the ring-opening-ring-closing-metathesis (RO-RCM) of cyclooctene (COE) and the self-metathesis of methyl oleate under continuous-flow conditions. The best complexes showed a TON>4000, which surpasses the previously reported materials that were either based on the Grubbs-Hoveyda II complex on silica or on the classical heterogeneous Re(2)O(7)/B(2)O(3) catalyst.

  12. Z-selective cross metathesis with ruthenium catalysts: synthetic applications and mechanistic implications.

    PubMed

    Herbert, Myles B; Grubbs, Robert H

    2015-04-20

    Olefin cross metathesis is a particularly powerful transformation that has been exploited extensively for the formation of complex products. Until recently, however, constructing Z-olefins using this methodology was not possible. With the discovery and development of three families of ruthenium-based Z-selective catalysts, the formation of Z-olefins using metathesis is now not only possible but becoming increasingly prevalent in the literature. In particular, ruthenium complexes containing cyclometalated NHC architectures developed in our group have been shown to catalyze various cross metathesis reactions with high activity and, in most cases, near perfect selectivity for the Z-isomer. The types of cross metathesis reactions investigated thus far are presented here and explored in depth.

  13. A Light-Activated Olefin Metathesis Catalyst Equipped with a Chromatic Orthogonal Self-Destruct Function.

    PubMed

    Sutar, Revannath L; Levin, Efrat; Butilkov, Danielle; Goldberg, Israel; Reany, Ofer; Lemcoff, N Gabriel

    2016-01-11

    A sulfur-chelated photolatent ruthenium olefin metathesis catalyst has been equipped with supersilyl protecting groups on the N-heterocyclic carbene ligand. The silyl groups function as an irreversible chromatic kill switch, thus decomposing the catalyst when it is irradiated with 254 nm UV light. Therefore, different types of olefin metathesis reactions may be started by irradiation with 350 nm UV light and prevented by irradiation with shorter wavelengths. The possibility to induce and impede catalysis just by using light of different frequencies opens the pathway for stereolithographic applications and novel light-guided chemical sequences.

  14. A Light-Activated Olefin Metathesis Catalyst Equipped with a Chromatic Orthogonal Self-Destruct Function.

    PubMed

    Sutar, Revannath L; Levin, Efrat; Butilkov, Danielle; Goldberg, Israel; Reany, Ofer; Lemcoff, N Gabriel

    2016-01-11

    A sulfur-chelated photolatent ruthenium olefin metathesis catalyst has been equipped with supersilyl protecting groups on the N-heterocyclic carbene ligand. The silyl groups function as an irreversible chromatic kill switch, thus decomposing the catalyst when it is irradiated with 254 nm UV light. Therefore, different types of olefin metathesis reactions may be started by irradiation with 350 nm UV light and prevented by irradiation with shorter wavelengths. The possibility to induce and impede catalysis just by using light of different frequencies opens the pathway for stereolithographic applications and novel light-guided chemical sequences. PMID:26586469

  15. Role of Tricoordinate Al Sites in CH3ReO3/Al2O3 Olefin Metathesis Catalysts.

    PubMed

    Valla, Maxence; Wischert, Raphael; Comas-Vives, Aleix; Conley, Matthew P; Verel, René; Copéret, Christophe; Sautet, Philippe

    2016-06-01

    Re2O7 supported on γ-alumina is an alkene metathesis catalyst active at room temperature, compatible with functional groups, but the exact structures of the active sites are unknown. Using CH3ReO3/Al2O3 as a model for Re2O7/Al2O3, we show through a combination of reactivity studies, in situ solid-state NMR, and an extensive series of DFT calculations, that μ-methylene structures (Al-CH2-ReO3-Al) containing a Re═O bound to a tricoordinated Al (AlIII) and CH2 bound to a four-coordinated Al (AlIVb) are the precursors of the most active sites for olefin metathesis. The resting state of CH3ReO3/Al2O3 is a distribution of μ-methylene species formed by the activation of the C-H bond of CH3ReO3 on different surface Al-O sites. In situ reaction with ethylene results in the formation of Re metallacycle intermediates, which were studied in detail through a combination of solid-state NMR experiments, using labeled ethylene, and DFT calculations. In particular, we were able to distinguish between metallacycles in TBP (trigonal-bipyramidal) and SP (square-pyramidal) geometry, the latter being inactive and detrimental to catalytic activity. The SP sites are more likely to be formed on other Al sites (AlIVa/AlIVa). Experimentally, the activity of CH3ReO3/Al2O3 depends on the activation temperature of alumina; catalysts activated at or above 500 °C contain more active sites than those activated at 300 °C. We show that the dependence of catalytic activity on the Al2O3 activation temperature is related to the quantity of available AlIII-defect sites and adsorbed H2O.

  16. Role of Tricoordinate Al Sites in CH3ReO3/Al2O3 Olefin Metathesis Catalysts.

    PubMed

    Valla, Maxence; Wischert, Raphael; Comas-Vives, Aleix; Conley, Matthew P; Verel, René; Copéret, Christophe; Sautet, Philippe

    2016-06-01

    Re2O7 supported on γ-alumina is an alkene metathesis catalyst active at room temperature, compatible with functional groups, but the exact structures of the active sites are unknown. Using CH3ReO3/Al2O3 as a model for Re2O7/Al2O3, we show through a combination of reactivity studies, in situ solid-state NMR, and an extensive series of DFT calculations, that μ-methylene structures (Al-CH2-ReO3-Al) containing a Re═O bound to a tricoordinated Al (AlIII) and CH2 bound to a four-coordinated Al (AlIVb) are the precursors of the most active sites for olefin metathesis. The resting state of CH3ReO3/Al2O3 is a distribution of μ-methylene species formed by the activation of the C-H bond of CH3ReO3 on different surface Al-O sites. In situ reaction with ethylene results in the formation of Re metallacycle intermediates, which were studied in detail through a combination of solid-state NMR experiments, using labeled ethylene, and DFT calculations. In particular, we were able to distinguish between metallacycles in TBP (trigonal-bipyramidal) and SP (square-pyramidal) geometry, the latter being inactive and detrimental to catalytic activity. The SP sites are more likely to be formed on other Al sites (AlIVa/AlIVa). Experimentally, the activity of CH3ReO3/Al2O3 depends on the activation temperature of alumina; catalysts activated at or above 500 °C contain more active sites than those activated at 300 °C. We show that the dependence of catalytic activity on the Al2O3 activation temperature is related to the quantity of available AlIII-defect sites and adsorbed H2O. PMID:27140286

  17. Divergent Approach to a Family of Tyrosine-Derived Ru-Alkylidene Olefin Metathesis Catalysts.

    PubMed

    Gleeson, Ellen C; Wang, Zhen J; Jackson, W Roy; Robinson, Andrea J

    2015-07-17

    A simple and generic approach to access a new family of Ru-alkylidene olefin metathesis catalysts with specialized properties is reported. This strategy utilizes a late stage, utilitarian Hoveyda-type ligand derived from tyrosine, which can be accessed via a multigram-scale synthesis. Further functionalization allows the catalyst properties to be tuned, giving access to modified second-generation Hoveyda-Grubbs-type catalysts. This divergent synthetic approach can be used to access solid-supported catalysts and catalysts that function under solvent-free and aqueous conditions. PMID:26100533

  18. Divergent Approach to a Family of Tyrosine-Derived Ru-Alkylidene Olefin Metathesis Catalysts.

    PubMed

    Gleeson, Ellen C; Wang, Zhen J; Jackson, W Roy; Robinson, Andrea J

    2015-07-17

    A simple and generic approach to access a new family of Ru-alkylidene olefin metathesis catalysts with specialized properties is reported. This strategy utilizes a late stage, utilitarian Hoveyda-type ligand derived from tyrosine, which can be accessed via a multigram-scale synthesis. Further functionalization allows the catalyst properties to be tuned, giving access to modified second-generation Hoveyda-Grubbs-type catalysts. This divergent synthetic approach can be used to access solid-supported catalysts and catalysts that function under solvent-free and aqueous conditions.

  19. Kinetic Selectivity of Olefin Metathesis Catalysts Bearing Cyclic (Alkyl)(Amino)Carbenes

    PubMed Central

    Anderson, Donde R.; Ung, Thay; Mkrtumyan, Garik; Bertrand, Guy; Grubbs, Robert H.; Schrodi, Yann

    2008-01-01

    The evaluation of ruthenium olefin metathesis catalysts 4–6 bearing cyclic (alkyl)(amino)carbenes (CAACs) in the cross-metathesis of cis-1,4-diacetoxy-2-butene (7) with allylbenzene (8) and the ethenolysis of methyl oleate (11) is reported. Relative to most NHC-substituted complexes, CAAC-substituted catalysts exhibit lower E/Z ratios (3:1 at 70% conversion) in the cross-metathesis of 7 and 8. Additionally, complexes 4–6 demonstrate good selectivity for the formation of terminal olefins versus internal olefins in the ethenolysis of 11. Indeed, complex 6 achieved 35 000 TONs, the highest recorded to date. CAAC-substituted complexes exhibit markedly different kinetic selectivity than most NHC-substituted complexes. PMID:18584055

  20. Olefin Ring Closing Metathesis and Hydrosilylation Reaction in Aqueous Medium by Grubbs Second Generation Ruthenium Catalyst

    EPA Science Inventory

    The Grubbs second generation ruthenium catalyst was shown to catalyze various olefin ring closing metathesis and hydrosilylation reactions in aqueous medium. Reactions proceeded in pure water without any additives or co-solvents, in a short period of time. We found that inhomogen...

  1. Synthesis of macrocyclic natural products by catalyst-controlled stereoselective ring-closing metathesis.

    PubMed

    Yu, Miao; Wang, Chenbo; Kyle, Andrew F; Jakubec, Pavol; Dixon, Darren J; Schrock, Richard R; Hoveyda, Amir H

    2011-11-02

    Many natural products contain a C = C double bond through which various other derivatives can be prepared; the stereochemical identity of the alkene can be critical to the biological activities of such molecules. Catalytic ring-closing metathesis (RCM) is a widely used method for the synthesis of large unsaturated rings; however, cyclizations often proceed without control of alkene stereochemistry. This shortcoming is particularly costly when the cyclization reaction is performed after a long sequence of other chemical transformations. Here we outline a reliable, practical and general approach for the efficient and highly stereoselective synthesis of macrocyclic alkenes by catalytic RCM; transformations deliver up to 97% of the Z isomer owing to control induced by a tungsten-based alkylidene. Utility is demonstrated through the stereoselective preparation of epothilone C (refs 3-5) and nakadomarin A (ref. 6), the previously reported syntheses of which have been marred by late-stage, non-selective RCM. The tungsten alkylidene can be manipulated in air, delivering the products in useful yields with high stereoselectivity. As a result of efficient RCM and re-incorporation of side products into the catalytic cycle with minimal alkene isomerization, desired cyclizations proceed in preference to alternative pathways, even under relatively high substrate concentration.

  2. Intermolecular hydroaminoalkylation of alkenes and dienes using a titanium mono(formamidinate) catalyst.

    PubMed

    Dörfler, Jaika; Preuss, Till; Brahms, Christian; Scheuer, Dennis; Doye, Sven

    2015-07-21

    An easily accessible formamidinate ligand-bearing titanium complex initially synthesized by Eisen et al. is used as catalyst for intermolecular hydroaminoalkylation reactions of unactivated, sterically demanding 1,1- and 1,2-disubstituted alkenes and styrenes with secondary amines. The corresponding reactions, which have never been achieved with titanium catalysts before, take place with excellent regioselectivity (up to 99 : 1) and in addition, corresponding reactions of 1,3-butadienes with N-methylbenzylamine are also described for the first time.

  3. Catalyst-controlled stereoselective olefin metathesis as a principal strategy in multistep synthesis design: a concise route to (+)-neopeltolide.

    PubMed

    Yu, Miao; Schrock, Richard R; Hoveyda, Amir H

    2015-01-01

    Molybdenum-, tungsten-, and ruthenium-based complexes that control the stereochemical outcome of olefin metathesis reactions have been recently introduced. However, the complementary nature of these systems through their combined use in multistep complex molecule synthesis has not been illustrated. A concise diastereo- and enantioselective route that furnishes the anti-proliferative natural product neopeltolide is now disclosed. Catalytic transformations are employed to address every stereochemical issue. Among the featured processes are an enantioselective ring-opening/cross-metathesis promoted by a Mo monoaryloxide pyrrolide (MAP) complex and a macrocyclic ring-closing metathesis that affords a trisubstituted alkene and is catalyzed by a Mo bis(aryloxide) species. Furthermore, Z-selective cross-metathesis reactions, facilitated by Mo and Ru complexes, have been employed in the stereoselective synthesis of the acyclic dienyl moiety of the target molecule. PMID:25377347

  4. Catalyst-controlled stereoselective olefin metathesis as a principal strategy in multistep synthesis design: a concise route to (+)-neopeltolide.

    PubMed

    Yu, Miao; Schrock, Richard R; Hoveyda, Amir H

    2015-01-01

    Molybdenum-, tungsten-, and ruthenium-based complexes that control the stereochemical outcome of olefin metathesis reactions have been recently introduced. However, the complementary nature of these systems through their combined use in multistep complex molecule synthesis has not been illustrated. A concise diastereo- and enantioselective route that furnishes the anti-proliferative natural product neopeltolide is now disclosed. Catalytic transformations are employed to address every stereochemical issue. Among the featured processes are an enantioselective ring-opening/cross-metathesis promoted by a Mo monoaryloxide pyrrolide (MAP) complex and a macrocyclic ring-closing metathesis that affords a trisubstituted alkene and is catalyzed by a Mo bis(aryloxide) species. Furthermore, Z-selective cross-metathesis reactions, facilitated by Mo and Ru complexes, have been employed in the stereoselective synthesis of the acyclic dienyl moiety of the target molecule.

  5. Polymer - supported cobalt (II) catalysts for the oxidation of alkenes.

    PubMed

    Błaz, Edyta; Pielichowski, Jan

    2006-01-31

    Polymer-supported heterogeneous catalysts in a form of complexes of 8-hydroxy- quinoline with cobalt acetate were synthesized. Conjugated polymers - polyaniline (PANI), poly-o-toluidine (POT), poly-o-anisidine (POA) - were used as supports. Oxidation reactions of aliphatic and aromatic hydrocarbons were carried out in the presence of molecular oxygen at atmospheric pressure and epoxides or ketones were obtained as the main products with high selectivity.

  6. Efficient ring-closing metathesis of alkenyl bromides: the importance of protecting the catalyst during the olefin approach.

    PubMed

    Gatti, Michele; Drinkel, Emma; Wu, Linglin; Pusterla, Ivano; Gaggia, Fiona; Dorta, Reto

    2010-11-01

    We present the first productive ring-closing metathesis reaction that leads to the construction of cyclic alkenyl bromides. Efficient catalysis employing commercially available Grubbs II catalyst is possible through appropriate modification of the starting bromoalkene moiety.

  7. Efficient and selective formation of macrocyclic disubstituted Z alkenes by ring-closing metathesis (RCM) reactions catalyzed by Mo- or W-based monoaryloxide pyrrolide (MAP) complexes: applications to total syntheses of epilachnene, yuzu lactone, ambrettolide, epothilone C, and nakadomarin A.

    PubMed

    Wang, Chenbo; Yu, Miao; Kyle, Andrew F; Jakubec, Pavol; Dixon, Darren J; Schrock, Richard R; Hoveyda, Amir H

    2013-02-18

    The first broadly applicable set of protocols for efficient Z-selective formation of macrocyclic disubstituted alkenes through catalytic ring-closing metathesis (RCM) is described. Cyclizations are performed with 1.2-7.5 mol% of a Mo- or W-based monoaryloxide pyrrolide (MAP) complex at 22 °C and proceed to complete conversion typically within two hours. Utility is demonstrated by synthesis of representative macrocyclic alkenes, such as natural products yuzu lactone (13-membered ring: 73% Z) epilachnene (15-membered ring: 91% Z), ambrettolide (17-membered ring: 91% Z), an advanced precursor to epothilones C and A (16-membered ring: up to 97% Z), and nakadomarin A (15-membered ring: up to 97% Z). We show that catalytic Z-selective cyclizations can be performed efficiently on gram-scale with complex molecule starting materials and catalysts that can be handled in air. We elucidate several critical principles of the catalytic protocol: 1) The complementary nature of the Mo catalysts, which deliver high activity but can be more prone towards engendering post-RCM stereoisomerization, versus W variants, which furnish lower activity but are less inclined to cause loss of kinetic Z selectivity. 2) Reaction time is critical to retaining kinetic Z selectivity not only with MAP species but with the widely used Mo bis(hexafluoro-tert-butoxide) complex as well. 3) Polycyclic structures can be accessed without significant isomerization at the existing Z alkenes within the molecule.

  8. Structural assignment of a bis-cyclopentenyl-β-cyanohydrin formed via alkene metathesis from either a triene or a tetraene precursor.

    PubMed

    Andrews, Keith G; Frampton, Christopher S; Spivey, Alan C

    2013-11-01

    The identity of the major product of Ru-catalysed alkene metathesis of two polyene substrates has been determined using density functional theory (DFT) NMR prediction, a (1)H-(1)H Total Correlated Spectroscopy (TOCSY) NMR experiment and ultimately by single-crystal X-ray crystallography. The substrates were designed as those that would potentially allow expedient access to the trans-decalin skeleton of the natural product (-)-euonyminol, but the product was found to be a bis-cyclopentenyl-β-cyanohydrin [1-(1-hydroxycyclopent-3-en-1-yl)cyclopent-3-ene-1-carbonitrile, C11H13NO] rather than the trans-2,3,6,7-dehydrodecalin-β-cyanohydrin.

  9. From ruthenium olefin metathesis catalyst to (η5-3-phenylindenyl)hydrido complex via alcoholysis.

    PubMed

    Manzini, Simone; Nelson, David J; Lebl, Tomas; Poater, Albert; Cavallo, Luigi; Slawin, Alexandra M Z; Nolan, Steven P

    2014-02-28

    The synthesis and characterisation of [Ru(H)(η(5)-3-phenylindenyl)((i)Bu-Phoban)2] 4 is reported ((i)Bu-Phoban = 9-isobutyl-9-phosphabicyclo-[3.3.1]-nonane). 4 is obtained via alcoholysis of metathesis pre-catalyst M11, in a process that was previously thought to be limited to analogous complex [RuCl2(PPh3)2(3-phenylindenylidene)] (M10). PMID:24435451

  10. Ruthenium indenylidene "1(st) generation" olefin metathesis catalysts containing triisopropyl phosphite.

    PubMed

    Guidone, Stefano; Nahra, Fady; Slawin, Alexandra M Z; Cazin, Catherine S J

    2015-01-01

    The reaction of triisopropyl phosphite with phosphine-based indenylidene pre-catalysts affords "1(st) generation" cis-complexes. These have been used in olefin metathesis reactions. The cis-Ru species exhibit noticeable differences with the trans-Ru parent complexes in terms of structure, thermal stability and reactivity. Experimental data underline the importance of synergistic effects between phosphites and L-type ligands.

  11. From ruthenium olefin metathesis catalyst to (η5-3-phenylindenyl)hydrido complex via alcoholysis.

    PubMed

    Manzini, Simone; Nelson, David J; Lebl, Tomas; Poater, Albert; Cavallo, Luigi; Slawin, Alexandra M Z; Nolan, Steven P

    2014-02-28

    The synthesis and characterisation of [Ru(H)(η(5)-3-phenylindenyl)((i)Bu-Phoban)2] 4 is reported ((i)Bu-Phoban = 9-isobutyl-9-phosphabicyclo-[3.3.1]-nonane). 4 is obtained via alcoholysis of metathesis pre-catalyst M11, in a process that was previously thought to be limited to analogous complex [RuCl2(PPh3)2(3-phenylindenylidene)] (M10).

  12. Ruthenium indenylidene “1st generation” olefin metathesis catalysts containing triisopropyl phosphite

    PubMed Central

    Guidone, Stefano; Nahra, Fady; Slawin, Alexandra M Z

    2015-01-01

    Summary The reaction of triisopropyl phosphite with phosphine-based indenylidene pre-catalysts affords “1st generation” cis-complexes. These have been used in olefin metathesis reactions. The cis-Ru species exhibit noticeable differences with the trans-Ru parent complexes in terms of structure, thermal stability and reactivity. Experimental data underline the importance of synergistic effects between phosphites and L-type ligands. PMID:26425210

  13. Ring-opening metathesis polymer sphere-supported seco-porphyrazines: efficient and recyclable photooxygenation catalysts.

    PubMed

    Fuchter, Matthew J; Hoffman, Brian M; Barrett, Anthony G M

    2006-01-20

    [reaction: see text] Crossover Linstead macrocyclization of norbornenyl-tagged diaminomaleonitrile with dipropylmaleonitrile gave the corresponding magnesium diaminohexapropylporphyrazine, which was subsequently converted into its zinc seco-derivative. Polymerization gave the corresponding ROMPgel and ROMPsphere (ROMP = ring-opening metathesis polymer) reagents, the latter of which proved efficient as an immobilized catalyst for the sensitized production of singlet oxygen for the purification-minimized parallel synthesis of endoperoxides and ene adducts. PMID:16408985

  14. Ruthenium indenylidene "1(st) generation" olefin metathesis catalysts containing triisopropyl phosphite.

    PubMed

    Guidone, Stefano; Nahra, Fady; Slawin, Alexandra M Z; Cazin, Catherine S J

    2015-01-01

    The reaction of triisopropyl phosphite with phosphine-based indenylidene pre-catalysts affords "1(st) generation" cis-complexes. These have been used in olefin metathesis reactions. The cis-Ru species exhibit noticeable differences with the trans-Ru parent complexes in terms of structure, thermal stability and reactivity. Experimental data underline the importance of synergistic effects between phosphites and L-type ligands. PMID:26425210

  15. Ring-Opening Metathesis Activity of Ruthenium-Based Olefin Metathesis Catalyst Coordinated with 1,3-Bis(2,6-Diisopropylphenyl)-4,5-Dihydroimidazoline

    NASA Astrophysics Data System (ADS)

    Karabulut, Solmaz; Verpoort, Francis

    A 1,3-bis-(2,6-diisopropylphenyl)-4,5-dihydroimidazol-2-ylidene substituted ruthenium (Ru)-based complex (4) has been prepared starting from (PCy3)2(Cl)2Ru=CHPh (2). The catalytic performance of catalyst (4) is checked on ring-opening metathesis polymerization (ROMP) of the low strain monomer, cycloocta-1,5-diene (COD), and also compared with catalyst (2) and (3).

  16. Highly Active Chiral Ruthenium Catalysts for Asymmetric Ring-Closing Olefin Metathesis

    PubMed Central

    Funk, Timothy W.; Berlin, Jacob M.

    2008-01-01

    The synthesis of olefin metathesis catalysts containing chiral, monodentate N-heterocyclic carbenes and their application to asymmetric ring-closing metathesis (ARCM) is reported. These catalysts retain the high levels of reactivity found in the related achiral variants (1a and 1b). Using the parent chiral catalysts 2a and 2b and derivatives that contain steric bulk in the meta positions of the N-bound aryl rings (catalysts 3-5), five- through seven-membered rings were formed in up to 92% ee. The addition of sodium iodide to catalysts 2a-4a (to form 2b-4bin situ) caused a dramatic increase in enantioselectivity for many substrates. Catalyst 5a, which gave high enantiomeric excesses for certain substrates without the addition of NaI, could be used in loadings of ≤1 mol %. Mechanistic explanations for the large sodium iodide effect as well as possible mechanistic pathways leading to the observed products are discussed. PMID:16464082

  17. Magnetic Fe@g-C3N4: A Photoactive Catalyst for the Hydrogenation of Alkenes and Alkynes

    EPA Science Inventory

    A photoactive catalyst, Fe@g-C3N4, has been developed for the hydrogenation of alkenes and alkynes using hydrazine hydrate as a source of hydrogen. The magnetically separable Fe@g-C3N4 eliminates the use of high pressure hydrogenation and the reaction can be accomplished using vi...

  18. Origins of initiation rate differences in ruthenium olefin metathesis catalysts containing chelating benzylidenes.

    PubMed

    Engle, Keary M; Lu, Gang; Luo, Shao-Xiong; Henling, Lawrence M; Takase, Michael K; Liu, Peng; Houk, K N; Grubbs, Robert H

    2015-05-01

    A series of second-generation ruthenium olefin metathesis catalysts was investigated using a combination of reaction kinetics, X-ray crystallography, NMR spectroscopy, and DFT calculations in order to determine the relationship between the structure of the chelating o-alkoxybenzylidene and the observed initiation rate. Included in this series were previously reported catalysts containing a variety of benzylidene modifications as well as four new catalysts containing cyclopropoxy, neopentyloxy, 1-adamantyloxy, and 2-adamantyloxy groups. The initiation rates of this series of catalysts were determined using a UV/vis assay. All four new catalysts were observed to be faster-initiating than the corresponding isopropoxy control, and the 2-adamantyloxy catalyst was found to be among the fastest-initiating Hoveyda-type catalysts reported to date. Analysis of the X-ray crystal structures and computed energy-minimized structures of these catalysts revealed no correlation between the Ru-O bond length and Ru-O bond strength. On the other hand, the initiation rate was found to correlate strongly with the computed Ru-O bond strength. This latter finding enables both the rationalization and prediction of catalyst initiation through the calculation of a single thermodynamic parameter in which no assumptions about the mechanism of the initiation step are made. PMID:25897653

  19. Origins of initiation rate differences in ruthenium olefin metathesis catalysts containing chelating benzylidenes.

    PubMed

    Engle, Keary M; Lu, Gang; Luo, Shao-Xiong; Henling, Lawrence M; Takase, Michael K; Liu, Peng; Houk, K N; Grubbs, Robert H

    2015-05-01

    A series of second-generation ruthenium olefin metathesis catalysts was investigated using a combination of reaction kinetics, X-ray crystallography, NMR spectroscopy, and DFT calculations in order to determine the relationship between the structure of the chelating o-alkoxybenzylidene and the observed initiation rate. Included in this series were previously reported catalysts containing a variety of benzylidene modifications as well as four new catalysts containing cyclopropoxy, neopentyloxy, 1-adamantyloxy, and 2-adamantyloxy groups. The initiation rates of this series of catalysts were determined using a UV/vis assay. All four new catalysts were observed to be faster-initiating than the corresponding isopropoxy control, and the 2-adamantyloxy catalyst was found to be among the fastest-initiating Hoveyda-type catalysts reported to date. Analysis of the X-ray crystal structures and computed energy-minimized structures of these catalysts revealed no correlation between the Ru-O bond length and Ru-O bond strength. On the other hand, the initiation rate was found to correlate strongly with the computed Ru-O bond strength. This latter finding enables both the rationalization and prediction of catalyst initiation through the calculation of a single thermodynamic parameter in which no assumptions about the mechanism of the initiation step are made.

  20. Theory-assisted development of a robust and Z-selective olefin metathesis catalyst.

    PubMed

    Occhipinti, Giovanni; Koudriavtsev, Vitali; Törnroos, Karl W; Jensen, Vidar R

    2014-08-01

    DFT calculations have predicted a new, highly Z-selective ruthenium-based olefin metathesis catalyst that is considerably more robust than the recently reported (SIMes)(Cl)(RS)RuCH(o-OiPrC6H4) (3a, SIMes = 1,3-dimesityl-4,5-dihydroimidazol-2-ylidene, R = 2,4,6-triphenylbenzene) [J. Am. Chem. Soc., 2013, 135, 3331]. Replacing the chloride of 3a by an isocyanate ligand to give 5a was predicted to increase the stability of the complex considerably, at the same time moderately improving the Z-selectivity. Compound 5a is easily prepared in a two-step synthesis starting from the Hoveyda-Grubbs second-generation catalyst 3. In agreement with the calculations, the isocyanate-substituted 5a appears to be somewhat more Z-selective than the chloride analogue 3a. More importantly, 5a can be used in air, with unpurified and non-degassed substrates and solvents, and in the presence of acids. These are traits that are unprecedented among highly Z-selective olefin metathesis catalysts and also very promising with respect to applications of the new catalyst. PMID:24788021

  1. Theory-assisted development of a robust and Z-selective olefin metathesis catalyst.

    PubMed

    Occhipinti, Giovanni; Koudriavtsev, Vitali; Törnroos, Karl W; Jensen, Vidar R

    2014-08-01

    DFT calculations have predicted a new, highly Z-selective ruthenium-based olefin metathesis catalyst that is considerably more robust than the recently reported (SIMes)(Cl)(RS)RuCH(o-OiPrC6H4) (3a, SIMes = 1,3-dimesityl-4,5-dihydroimidazol-2-ylidene, R = 2,4,6-triphenylbenzene) [J. Am. Chem. Soc., 2013, 135, 3331]. Replacing the chloride of 3a by an isocyanate ligand to give 5a was predicted to increase the stability of the complex considerably, at the same time moderately improving the Z-selectivity. Compound 5a is easily prepared in a two-step synthesis starting from the Hoveyda-Grubbs second-generation catalyst 3. In agreement with the calculations, the isocyanate-substituted 5a appears to be somewhat more Z-selective than the chloride analogue 3a. More importantly, 5a can be used in air, with unpurified and non-degassed substrates and solvents, and in the presence of acids. These are traits that are unprecedented among highly Z-selective olefin metathesis catalysts and also very promising with respect to applications of the new catalyst.

  2. Poly(fluoroalkyl acrylate)-bound ruthenium carbene complex: a fluorous and recyclable catalyst for ring-closing olefin metathesis.

    PubMed

    Yao, Qingwei; Zhang, Yiliang

    2004-01-14

    The synthesis of a fluorous olefin metathesis catalyst derived from the Grubbs second-generation ruthenium carbene complex is described. The air stable fluorous polymer-bound ruthenium carbene complex 1 shows high reactivity in effecting the ring-closing metathesis of a broad spectrum of diene and enyne substrates leading to the formation of di-, tri-, and tetrasubstituted cyclic olefins in minimally fluorous solvent systems (PhCF3/CH2Cl2, 1:9-1:49 v/v). The catalyst can be readily separated from the reaction mixture by fluorous extraction with FC-72 and repeatedly reused. The practical advantage offered by the fluorous catalyst is demonstrated by its sequential use in up to five different metathesis reactions. PMID:14709066

  3. Poly(fluoroalkyl acrylate)-bound ruthenium carbene complex: a fluorous and recyclable catalyst for ring-closing olefin metathesis.

    PubMed

    Yao, Qingwei; Zhang, Yiliang

    2004-01-14

    The synthesis of a fluorous olefin metathesis catalyst derived from the Grubbs second-generation ruthenium carbene complex is described. The air stable fluorous polymer-bound ruthenium carbene complex 1 shows high reactivity in effecting the ring-closing metathesis of a broad spectrum of diene and enyne substrates leading to the formation of di-, tri-, and tetrasubstituted cyclic olefins in minimally fluorous solvent systems (PhCF3/CH2Cl2, 1:9-1:49 v/v). The catalyst can be readily separated from the reaction mixture by fluorous extraction with FC-72 and repeatedly reused. The practical advantage offered by the fluorous catalyst is demonstrated by its sequential use in up to five different metathesis reactions.

  4. Effective immobilisation of a metathesis catalyst bearing an ammonium-tagged NHC ligand on various solid supports

    PubMed Central

    Białecki, Jacek; Czarnocki, Stefan J; Żukowska, Karolina

    2016-01-01

    Summary An ammonium-tagged ruthenium complex, 8, was deposited on several widely available commercial solid materials such as silica gel, alumina, cotton, filter paper, iron powder or palladium on carbon. The resulting catalysts were tested in toluene or ethyl acetate, and found to afford metathesis products in high yield and with extremely low ruthenium contamination. Depending on the support used, immobilised catalyst 8 shows also additional traits, such as the possibility of being magnetically separated or the use for metathesis and subsequent reduction of the obtained double bond in one pot. PMID:26877803

  5. Effective immobilisation of a metathesis catalyst bearing an ammonium-tagged NHC ligand on various solid supports.

    PubMed

    Skowerski, Krzysztof; Białecki, Jacek; Czarnocki, Stefan J; Żukowska, Karolina; Grela, Karol

    2016-01-01

    An ammonium-tagged ruthenium complex, 8, was deposited on several widely available commercial solid materials such as silica gel, alumina, cotton, filter paper, iron powder or palladium on carbon. The resulting catalysts were tested in toluene or ethyl acetate, and found to afford metathesis products in high yield and with extremely low ruthenium contamination. Depending on the support used, immobilised catalyst 8 shows also additional traits, such as the possibility of being magnetically separated or the use for metathesis and subsequent reduction of the obtained double bond in one pot. PMID:26877803

  6. New approach to the air oxidation of alkenes employing metal nitro complexes as catalysts

    SciTech Connect

    Andrews, M.A.; Chang, T.C.T.; Cheng, C.W.F.; Kelley, K.P.

    1984-01-01

    Alkenes are stoichiometrically and, in the presence of air, catalytically oxidized by cis-bis(aceto-nitrile) chloronitropalladium(II). Oxidation of monosubstituted terminal alkenes and trans-cyclooctene yields the corresponding ketone, oxidation of cyclopentene and cyclohexene the corresponding allyl alcohol, and oxidation of bicyclic alkenes the corresponding epoxide, each with good selectivity for the respective product. Other alkenes give varying mixtures of the above products together with, in some cases, the ..cap alpha..,..beta..-unsaturated ketone. Vinyl ethers yield the corresponding ester while (trimethylsily)ethylene yields (trimethylsilyl)acetaldehyde. The selectivities are rationalized on the basis of ease of ..beta..-hydrogen elimination in observed intermediate heterometallacyclopentane complexes formed by nucleophilic attack of the nitro oxygen atom on the coordinated alkene in alkene nitro complexes. The general role of metallacycles in metal-mediated alkene oxidations and the advantages and disadvantages of intra-vs. intermolecular metal nitro catalyzed alkene oxidations are discussed. 50 references, 4 figures, 3 tables.

  7. Olefin Metathesis With Ruthenium-Arene Catalysts Bearing N-Heterocyclic Carbene Ligands

    NASA Astrophysics Data System (ADS)

    Delaude, Lionel; Demonceau, Albert

    In this chapter, we summarize the main results of our investigations on the ring-opening metathesis polymerization (ROMP) of cyclooctene catalyzed by various ruthenium (Ru)-arene complexes bearing imidazolin-2-ylidene, imidazolidin- 2-ylidene, or triazolin-5-ylidene ligands. Three major findings emerged from this study. First, we underscored the intervention of a photochemical activation step due to visible light illumination. Second, we established that the presence of an endocyclic double bond in the carbene ligand central heterocycle was not crucial to achieve high catalytic efficiencies. Third, we demonstrated that ortho-metallation of the N-heterocyclic carbene (NHC) ligand by the Ru center led to inactive catalysts.

  8. ``Greener Shade of Ruthenium'': New Concepts of Activation, Immobilization, and Recovery of Ruthenium Catalysts For Green Olefin Metathesis

    NASA Astrophysics Data System (ADS)

    Michrowska, Anna; Gulajski, Lukasz; Grela, Karol

    The results described herewith demonstrate that the activity of ruthenium (Ru) metathesis catalysts can be enhanced by introduction of electron-withdrawing groups (EWGs) without detriment to catalysts stability. This principle can be used not only to increase the catalyst activity, but also to alter its physical-chemical properties, such as solubility in given medium or affinity to silica gel. An example of novel immobilisation strategy, based on this concept is presented. The ammonium-tagged Hoveyda-type catalysts can be successfully applied in aqueous media as well as in ionic liquids (IL). Substitution of a benzylidene fragment can be used not only to immobilize the organometallic complex in such media, but also to increase its catalytic activity by electronic activation. The high stability and good application profiles of such modified catalysts in conjunction with their facile removal from organic products can be expected to offer new opportunities in green applications of olefin metathesis.

  9. New Enantiomerically Pure Alkylimido Mo-Based Complexes. Synthesis, Characterization, and Activity as Chiral Olefin Metathesis Catalysts

    PubMed Central

    Pilyugina, Tatiana S.; Schrock, Richard R.; Müller, Peter; Hoveyda, Amir H.

    2008-01-01

    Molybdenum olefin metathesis catalysts that contain aliphatic 1-phenylcyclohexylimido (NPhCy) and 2-phenyl-2-adamantylimido (NPhAd) groups and (S)-Biphen or (R)-Trip)(THF) ligands (Biphen = 3,3′-di-tert-butyl-5,5′,6,6′-tetramethyl-1,1′-biphenyl-2,2′-diolate; Trip = 3,3′-bis(2,4,6-triisopropylphenyl)-2,2′-binaphtholate) have been prepared. Their catalytic activity and enantioselectivity in desymmetrization reactions such as ring-closing metathesis of amines and lactams and ring-opening/cross-metathesis of substituted norborneols with styrene were compared to the results obtained with the only known alkylimido catalyst Mo(NAd)(CHCMe2Ph)[(S)-Biphen]. The activities and enantioselectivities provided by these new chiral complexes vary significantly, but in virtually all instances explored were not superior to the adamantylimido analogs. PMID:19079732

  10. Toward a simulation approach for alkene ring-closing metathesis: scope and limitations of a model for RCM.

    PubMed

    Nelson, David J; Carboni, Davide; Ashworth, Ian W; Percy, Jonathan M

    2011-10-21

    A published model for revealing solvent effects on the ring-closing metathesis (RCM) reaction of diethyl diallylmalonate 7 has been evaluated over a wider range of conditions, to assess its suitability for new applications. Unfortunately, the model is too flexible and the published rate constants do not agree with experimental studies in the literature. However, by fixing the values of important rate constants and restricting the concentration ranges studied, useful conclusions can be drawn about the relative rates of RCM of different substrates, precatalyst concentration can be simulated accurately and the effect of precatalyst loading can be anticipated. Progress has also been made toward applying the model to precatalyst evaluation, but further modifications to the model are necessary to achieve much broader aims.

  11. Reactivity and selectivity differences between catecholate and catechothiolate Ru complexes. Implications regarding design of stereoselective olefin metathesis catalysts.

    PubMed

    Khan, R Kashif M; Torker, Sebastian; Hoveyda, Amir H

    2014-10-15

    The origins of the unexpected finding that Ru catechothiolate complexes, in contrast to catecholate derivatives, promote exceptional Z-selective olefin metathesis reactions are elucidated. We show that species containing a catechothiolate ligand, unlike catecholates, preserve their structural integrity under commonly used reaction conditions. DFT calculations indicate that, whereas alkene coordination is the stereochemistry-determining step with catecholate complexes, it is through the metallacyclobutane formation that the identity of the major isomer is determined with catechothiolate systems. The present findings suggest that previous models for Z selectivity, largely based on steric differences, should be altered to incorporate electronic factors as well. PMID:25268949

  12. Reactivity and selectivity differences between catecholate and catechothiolate Ru complexes. Implications regarding design of stereoselective olefin metathesis catalysts.

    PubMed

    Khan, R Kashif M; Torker, Sebastian; Hoveyda, Amir H

    2014-10-15

    The origins of the unexpected finding that Ru catechothiolate complexes, in contrast to catecholate derivatives, promote exceptional Z-selective olefin metathesis reactions are elucidated. We show that species containing a catechothiolate ligand, unlike catecholates, preserve their structural integrity under commonly used reaction conditions. DFT calculations indicate that, whereas alkene coordination is the stereochemistry-determining step with catecholate complexes, it is through the metallacyclobutane formation that the identity of the major isomer is determined with catechothiolate systems. The present findings suggest that previous models for Z selectivity, largely based on steric differences, should be altered to incorporate electronic factors as well.

  13. Mono- and Bimetallic Ruthenium—Arene Catalysts for Olefin Metathesis: A Survey

    NASA Astrophysics Data System (ADS)

    Borguet, Yannick; Sauvage, Xavier; Demonceau, Albert; Delaude, Lionel

    In this chapter, we summarize the main achievements of our group toward the development of easily accessible, highly efficient ruthenium—arene catalyst precursors for olefin metathesis. Major advances in this field are presented chronologically, with an emphasis on catalyst design and mechanistic details. The first part of this survey focuses on monometallic complexes with the general formula RuCl2(p-cymene)(L), where L is a phosphine or N-heterocyclic carbene ancillary ligand. In the second part, we disclose recent developments in the synthesis and catalytic applications of homobimetallic ruthenium—arene complexes of generic formula (p-cymene)Ru(μ-Cl)3RuCl(η2-C2H4)(L) and their derivatives resulting from the substitution of the labile ethylene moiety with vinylidene, allenylidene, or indenylidene units

  14. Design and Stereoselective Preparation of a New Class of Chiral Olefin Metathesis Catalysts and Application to Enantioselective Synthesis of Quebrachamine: Catalyst Development Inspired by Natural Product Synthesis

    PubMed Central

    Sattely, Elizabeth S.; Meek, Simon J.; Malcolmson, Steven J.; Schrock, Richard R.; Hoveyda, Amir H.

    2010-01-01

    A total synthesis of the Aspidosperma alkaloid quebrachamine in racemic form is first described. A key catalytic ring-closing metathesis of an achiral triene is used to establish the all-carbon quaternary stereogenic center and the tetracyclic structure of the natural product; the catalytic transformation proceeds with reasonable efficiency through the use of existing achiral Ru or Mo catalysts. Ru- or Mo-based chiral olefin metathesis catalysts have proven to be inefficient and entirely nonselective in cases where the desired product is observed. In the present study, the synthesis route thus serves as a platform for the discovery of new olefin metathesis catalysts that allow for efficient completion of an enantioselective synthesis of quebrachamine. Accordingly, on the basis of mechanistic principles, stereogenic-at-Mo complexes bearing only monodentate ligands have been designed. The new catalysts provide significantly higher levels of activity than observed with the previously reported Ru- or Mo-based complexes. Enantiomerically enriched chiral alkylidenes are generated through diastereoselective reactions involving achiral Mo-based bispyrrolides and enantiomerically pure silyl-protected binaphthols. Such chiral catalysts initiate the key enantioselective ring-closing metathesis step in the total synthesis of quebrachamine efficiently (1 mol % loading, 22 °C, 1 h, >98% conversion, 84% yield) and with high selectivity (98:2 er, 96% ee). PMID:19113867

  15. Catalyst-Free Difunctionalization of Activated Alkenes in Water: Efficient Synthesis of β-Keto Sulfides and Sulfones.

    PubMed

    Wang, Huamin; Wang, Guangyu; Lu, Qingquan; Chiang, Chien-Wei; Peng, Pan; Zhou, Jiufu; Lei, Aiwen

    2016-10-01

    Difunctionalization of activated alkenes, a powerful strategy in chemical synthesis, has been accomplished for direct synthesis of a series of β-keto sulfides and β-keto sulfones. The transformation, mediated by O2 , proceeds smoothly in water and without any catalyst. Prominent advantages of this method include mild reaction conditions, purification simplicity, and gram-scale synthesis, underlining the practical utility of this methodology. PMID:27500979

  16. Olefin metathesis for effective polymer healing via dynamic exchange of strong carbon-carbon bonds

    SciTech Connect

    Guan, Zhibin; Lu, Yixuan

    2015-09-15

    A method of preparing a malleable and/or self-healing polymeric or composite material is provided. The method includes providing a polymeric or composite material comprising at least one alkene-containing polymer, combining the polymer with at least one homogeneous or heterogeneous transition metal olefin metathesis catalyst to form a polymeric or composite material, and performing an olefin metathesis reaction on the polymer so as to form reversible carbon-carbon double bonds in the polymer. Also provided is a method of healing a fractured surface of a polymeric material. The method includes bringing a fractured surface of a first polymeric material into contact with a second polymeric material, and performing an olefin metathesis reaction in the presence of a transition metal olefin metathesis catalyst such that the first polymeric material forms reversible carbon-carbon double bonds with the second polymeric material. Compositions comprising malleable and/or self-healing polymeric or composite material are also provided.

  17. Cobalt salophen complex supported on imidazole functionalized magnetic nanoparticles as a recoverable catalyst for oxidation of alkenes

    NASA Astrophysics Data System (ADS)

    Afshari, Mozhgan; Gorjizadeh, Maryam; Nazari, Simin; Naseh, Mohammad

    2014-08-01

    A new magnetically separable catalyst consisting of Co(II) salophen complex covalently supported on imidazole functionalized silica coated cobalt ferrite was prepared. The synthesized catalyst was characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), vibrating sample magnetometry (VSM), thermogravimetric analysis (TGA), inductively coupled plasma atomic emission spectroscopy (ICP-AES) and Fourier transform infrared (FT-IR). The immobilized catalyst was shown to be an efficient heterogeneous catalyst for the oxidation of some alkenes using hydrogen peroxide (H2O2) as oxidant. The catalyst could be easily and efficiently isolated from the final product solution by magnetic decantation and be reused for 5 consecutive reactions without showing any significant activity degradation.

  18. Catalyst-Controlled Stereoselective Olefin Metathesis as a Principal Strategy in Multi-Step Synthesis Design. A Concise Route to (+)-Neopeltolide**

    PubMed Central

    Yu, Miao; Schrock, Richard R.

    2014-01-01

    Mo-, W- and Ru-based complexes that control the stereochemical outcome of olefin metathesis reactions have been recently introduced. However, the complementary nature of these systems through their combined use in multistep complex molecule synthesis has not been illustrated. Here, we disclose a concise diastereo- and enantioselective route that furnishes the anti-proliferative natural product neopeltolide. Catalytic transformations are employed to address every stereochemical issue. Among the featured processes are an enantioselective ring-opening/cross-metathesis promoted by a Mo monopyrrolide aryloxide (MAP) complex and a macrocyclic ring-closing metathesis affording a trisubstituted alkene catalyzed by a Mo bis-aryloxide species. Furthermore, Z-selective cross-metathesis reactions, facilitated by Mo and Ru complexes, have been employed in stereoselective synthesis of the acyclic dienyl moiety of the target molecule. PMID:25377347

  19. The Influence of the Anionic Counter-Ion on the Activity of Ammonium Substituted Hoveyda-Type Olefin Metathesis Catalysts in Aqueous Media

    NASA Astrophysics Data System (ADS)

    Gułajski, Łukasz; Grela, Karol

    Polar olefin metathesis catalysts, bearing an ammonium group are presented. The electron withdrawing ammonium group not only activates the catalysts electronically, but at the same time makes the catalysts more hydrophilic. Catalysts can be therefore efficiently used not only in traditional media, such as methylene chloride and toluene, but also in technical-grade alcohols, alcohol— water mixtures and in neat water. Finally, in this overview the influence of the anionic counter-ion on the activity of ammonium substituted Hoveyda-type olefin metathesis catalysts in aqueous media is presented.

  20. Ruthenium carbenes supported on mesoporous silicas as highly active and selective hybrid catalysts for olefin metathesis reactions under continuous flow.

    PubMed

    Bru, Miriam; Dehn, Richard; Teles, J Henrique; Deuerlein, Stephan; Danz, Manuel; Müller, Imke B; Limbach, Michael

    2013-08-26

    In the search for a highly active and selective heterogenized metathesis catalyst, we systematically varied the pore geometry and size of various silica-based mesoporous (i.e., MCM-41, MCM-48, and SBA-15) and microporous (ZSM-5 and MWW) versus macroporous materials (D11-10 and Aerosil 200), besides other process parameters (temperature, dilution, and mean residence time). The activity and, especially, selectivity of such "linker-free" supports for ruthenium metathesis catalysts were evaluated in the cyclodimerization of cis-cyclooctene to form 1,9-cyclohexadecadiene, a valuable intermediate in the flavor and fragrance industry. The optimized material showed not only exceptionally high selectivity to the valuable product, but also turned out to be a truly heterogeneous catalyst with superior activity relative to the unsupported homogeneous complex. PMID:23852995

  1. Ruthenium carbenes supported on mesoporous silicas as highly active and selective hybrid catalysts for olefin metathesis reactions under continuous flow.

    PubMed

    Bru, Miriam; Dehn, Richard; Teles, J Henrique; Deuerlein, Stephan; Danz, Manuel; Müller, Imke B; Limbach, Michael

    2013-08-26

    In the search for a highly active and selective heterogenized metathesis catalyst, we systematically varied the pore geometry and size of various silica-based mesoporous (i.e., MCM-41, MCM-48, and SBA-15) and microporous (ZSM-5 and MWW) versus macroporous materials (D11-10 and Aerosil 200), besides other process parameters (temperature, dilution, and mean residence time). The activity and, especially, selectivity of such "linker-free" supports for ruthenium metathesis catalysts were evaluated in the cyclodimerization of cis-cyclooctene to form 1,9-cyclohexadecadiene, a valuable intermediate in the flavor and fragrance industry. The optimized material showed not only exceptionally high selectivity to the valuable product, but also turned out to be a truly heterogeneous catalyst with superior activity relative to the unsupported homogeneous complex.

  2. Correlation between functionality preference of Ru carbenes and exo/endo product selectivity for clarifying the mechanism of ring-closing enyne metathesis.

    PubMed

    Lee, Ok Suk; Kim, Kyung Hwan; Kim, Jinwoo; Kwon, Kuktae; Ok, Taedong; Ihee, Hyotcherl; Lee, Hee-Yoon; Sohn, Jeong-Hun

    2013-09-01

    Functionality preferences of metathesis Ru carbenes to various alkenes and alkynes with electronic and steric diversity were determined by using time-dependent fluorescence quenching. The functionality preferences depend not only on the properties of multiple bonds but also on the ligands on Ru. There was a good correlation between functionality preference and the metathesis reaction outcome. The correlation between functionality preference and exo/endo product ratio offers a solution to resolve the mechanistic issue related with alkene- vs alkyne-initiated pathway in ring-closing enyne metathesis. The correlation indicates the preference is likely to dictate the reaction pathway and eventually the outcome of the reaction. The Ru catalyst favoring alkyne over alkene provides more endo product, indicating that the reaction mainly initiates at the alkyne. By changing the substitution pattern, the preference can be reversed to give an exclusive exo product.

  3. Development of a Method for the Preparation of Ruthenium Indenylidene-Ether Olefin Metathesis Catalysts

    PubMed Central

    Jimenez, Leonel R.; Tolentino, Daniel R.; Gallon, Benjamin J.; Schrodi, Yann

    2012-01-01

    The reactions between several derivatives of 1-(3,5-dimethoxyphenyl)-prop-2-yn-1-ol and different ruthenium starting materials [i.e., RuCl2(PPh3)3 and RuCl2(pcymene)(L), where L is tricyclohexylphosphine di-t-butylmethylphosphine, dicyclohexylphenylphosphine, triisobutylphosphine, triisopropylphosphine, or tri-npropylphosphine] are described. Several of these reactions allow for the easy, in-situ and atom-economic preparation of olefin metathesis catalysts. Organic precursor 1-(3,5-dimethoxyphenyl)-1-phenyl-prop-2-yn-1-ol led to the formation of active ruthenium indenylidene-ether complexes, while 1-(3,5-dimethoxyphenyl)-prop-2-yn-1-ol and 1-(3,5-dimethoxyphenyl)-1-methyl-prop-2-yn-1-ol did not. It was also found that a bulky and strong σ-donor phosphine ligand was required to impart good catalytic activity to the new ruthenium complexes. PMID:22580400

  4. Organometallic chemistry: A new metathesis

    NASA Astrophysics Data System (ADS)

    Hennessy, Elisabeth T.; Jacobsen, Eric N.

    2016-08-01

    Carbonyls and alkenes, two of the most common functional groups in organic chemistry, generally do not react with one another. Now, a simple Lewis acid has been shown to catalyse metathesis between alkenes and ketones in a new carbonyl olefination reaction.

  5. Molybdenum Imido Alkylidene Metathesis Catalysts that Contain Electron Withdrawing Biphenolates or Binaphtholates

    PubMed Central

    Singh, Rojendra; Czekelius, Constantin; Schrock, Richard R.; Müller, Peter; Hoveyda, Amir H.

    2008-01-01

    We have prepared new Mo(NR)(CHCMe2Ph)(diolate) complexes (R = 2,6-i-Pr2C6H3, 2,6-Me2C6H3, 1-Adamantyl, or 2-CF3C6H4) that contain relatively electron-withdrawing binaphtholate (3,3′-bis-(9-anthracenyl), 3,3′-bispentafluorophenyl, or 3,3′-bis(3,5-bis(trifluoromethyl)phenyl) or biphenolate (3,3′-di-tert-butyl-5,5′-bistrifluoromethyl-6,6′-dimethyl-1,1′-biphenyl-2,2′-diolate) ligands. We also have prepared new monomeric Mo(NR)(CHCMe2Ph)(2,5-dimethylpyrrolide)2 complexes and have treated them with biphenols or binaphthols in order to prepare several Mo(NR)(CHCMe2Ph)(diolate) species. In one case the new Mo(NR)(CHCMe2Ph)(diolate) complexes could be prepared only through reaction of a binaphthol [3,3′-bis(pentafluorophenyl)binaphthol] with a bis(2,5-dimethylpyrrolide) complex. The pyrrolide approach can be employed either to isolate catalysts on a preparative scale or to generate catalysts in situ. Several simple preliminary ring-closing metathesis reactions show that the new complexes are catalytically competent. PMID:18953421

  6. Molybdenum Imido Alkylidene Metathesis Catalysts that Contain Electron Withdrawing Biphenolates or Binaphtholates.

    PubMed

    Singh, Rojendra; Czekelius, Constantin; Schrock, Richard R; Müller, Peter; Hoveyda, Amir H

    2007-01-01

    We have prepared new Mo(NR)(CHCMe(2)Ph)(diolate) complexes (R = 2,6-i-Pr(2)C(6)H(3), 2,6-Me(2)C(6)H(3), 1-Adamantyl, or 2-CF(3)C(6)H(4)) that contain relatively electron-withdrawing binaphtholate (3,3'-bis-(9-anthracenyl), 3,3'-bispentafluorophenyl, or 3,3'-bis(3,5-bis(trifluoromethyl)phenyl) or biphenolate (3,3'-di-tert-butyl-5,5'-bistrifluoromethyl-6,6'-dimethyl-1,1'-biphenyl-2,2'-diolate) ligands. We also have prepared new monomeric Mo(NR)(CHCMe(2)Ph)(2,5-dimethylpyrrolide)(2) complexes and have treated them with biphenols or binaphthols in order to prepare several Mo(NR)(CHCMe(2)Ph)(diolate) species. In one case the new Mo(NR)(CHCMe(2)Ph)(diolate) complexes could be prepared only through reaction of a binaphthol [3,3'-bis(pentafluorophenyl)binaphthol] with a bis(2,5-dimethylpyrrolide) complex. The pyrrolide approach can be employed either to isolate catalysts on a preparative scale or to generate catalysts in situ. Several simple preliminary ring-closing metathesis reactions show that the new complexes are catalytically competent. PMID:18953421

  7. Olefin Metathesis for Chemical Biology

    PubMed Central

    Binder, Joseph B; Raines, Ronald T

    2009-01-01

    Summary Chemical biology relies on effective synthetic chemistry for building molecules to probe and modulate biological function. Olefin metathesis in organic solvents is a valuable addition to this armamentarium, and developments during the previous decade are enabling metathesis in aqueous solvents for the manipulation of biomolecules. Functional group-tolerant ruthenium metathesis catalysts modified with charged moieties or hydrophilic polymers are soluble and active in water, enabling ring-opening metathesis polymerization, cross metathesis, and ring-closing metathesis. Alternatively, conventional hydrophobic ruthenium complexes catalyze a similar array of metathesis reactions in mixtures of water and organic solvents. This strategy has enabled cross metathesis on the surface of a protein. Continuing developments in catalyst design and methodology will popularize the bioorthogonal reactivity of metathesis. PMID:18935975

  8. Synthesis and polymerization of renewable 1,3-cyclohexadiene using metathesis, isomerization, and cascade reactions with late-metal catalysts.

    PubMed

    Mathers, Robert T; Shreve, Michael J; Meyler, Etan; Damodaran, Krishnan; Iwig, David F; Kelley, Diana J

    2011-09-01

    Synthesis and subsequent polymerization of renewable 1,3-cyclohexadiene (1,3-CHD) from plant oils is reported via metathesis and isomerization reactions. The metathesis reaction required no plant oil purification, minimal catalyst loading, no organic solvents, and simple product recovery by distillation. After treating soybean oil with a ruthenium metathesis catalyst, the resulting 1,4-cyclohexadiene (1,4-CHD) was isomerized with RuHCl(CO)(PPh3)3. The isomerization reaction was conducted for 1 h in neat 1,4-CHD with [1,4-CHD]/[RuHCl(CO)(PPh3)3] ratios as high as 5000. The isomerization and subsequent polymerization of the renewable 1,3-CHD was examined as a two-step sequence and as a one-step cascade reaction. The polymerization was catalyzed with nickel(II)acetylacetonate/methaluminoxane in neat monomer, hydrogenated d-limonene, and toluene. The resulting polymers were characterized by FTIR, DSC, and TGA. PMID:21648003

  9. In Silico Olefin Metathesis with Ru-Based Catalysts Containing N-Heterocyclic Carbenes Bearing C60 Fullerenes.

    PubMed

    Martínez, Juan Pablo; Vummaleti, Sai Vikrama Chaitanya; Falivene, Laura; Nolan, Steven P; Cavallo, Luigi; Solà, Miquel; Poater, Albert

    2016-05-01

    Density functional theory calculations have been used to explore the potential of Ru-based complexes with 1,3-bis(2,4,6-trimethylphenyl)imidazolin-2-ylidene (SIMes) ligand backbone (A) being modified in silico by the insertion of a C60 molecule (B and C), as olefin metathesis catalysts. To this end, we investigated the olefin metathesis reaction catalyzed by complexes A, B, and C using ethylene as the substrate, focusing mainly on the thermodynamic stability of all possible reaction intermediates. Our results suggest that complex B bearing an electron-withdrawing N-heterocyclic carbene improves the performance of unannulated complex A. The efficiency of complex B is only surpassed by complex A when the backbone of the N-heterocyclic carbene of complex A is substituted by two amino groups. The particular performance of complexes B and C has to be attributed to electronic factors, that is, the electronic-donating capacity of modified SIMes ligand rather than steric effects, because the latter are predicted to be almost identical for complexes B and C when compared to those of A. Overall, this study indicates that such Ru-based complexes B and C might have the potential to be effective olefin metathesis catalysts.

  10. In Silico Olefin Metathesis with Ru-Based Catalysts Containing N-Heterocyclic Carbenes Bearing C60 Fullerenes.

    PubMed

    Martínez, Juan Pablo; Vummaleti, Sai Vikrama Chaitanya; Falivene, Laura; Nolan, Steven P; Cavallo, Luigi; Solà, Miquel; Poater, Albert

    2016-05-01

    Density functional theory calculations have been used to explore the potential of Ru-based complexes with 1,3-bis(2,4,6-trimethylphenyl)imidazolin-2-ylidene (SIMes) ligand backbone (A) being modified in silico by the insertion of a C60 molecule (B and C), as olefin metathesis catalysts. To this end, we investigated the olefin metathesis reaction catalyzed by complexes A, B, and C using ethylene as the substrate, focusing mainly on the thermodynamic stability of all possible reaction intermediates. Our results suggest that complex B bearing an electron-withdrawing N-heterocyclic carbene improves the performance of unannulated complex A. The efficiency of complex B is only surpassed by complex A when the backbone of the N-heterocyclic carbene of complex A is substituted by two amino groups. The particular performance of complexes B and C has to be attributed to electronic factors, that is, the electronic-donating capacity of modified SIMes ligand rather than steric effects, because the latter are predicted to be almost identical for complexes B and C when compared to those of A. Overall, this study indicates that such Ru-based complexes B and C might have the potential to be effective olefin metathesis catalysts. PMID:27059290

  11. Evolution of copper(II) as a new alkene amination promoter and catalyst

    PubMed Central

    Chemler, Sherry R.

    2010-01-01

    Copper(II) carboxylates and chiral copper(II) triflate·bis(oxazoline) complexes promote and catalyze intramolecular alkene carboamination, diamination and aminooxygenation reactions, creating an array of nitrogen heterocycles. High diastereoselectivity and enantioselectivity can be achieved in these transformations. This account reviews the discovery and development of these useful and interesting reactions. PMID:21379363

  12. Grubbs-Hoveyda type catalysts bearing a dicationic N-heterocyclic carbene for biphasic olefin metathesis reactions in ionic liquids.

    PubMed

    Koy, Maximilian; Altmann, Hagen J; Autenrieth, Benjamin; Frey, Wolfgang; Buchmeiser, Michael R

    2015-01-01

    The novel dicationic metathesis catalyst [(RuCl2(H2ITapMe2)(=CH-2-(2-PrO)-C6H4))(2+) (OTf(-))2] (Ru-2, H2ITapMe2 = 1,3-bis(2',6'-dimethyl-4'-trimethylammoniumphenyl)-4,5-dihydroimidazol-2-ylidene, OTf(-) = CF3SO3 (-)) based on a dicationic N-heterocyclic carbene (NHC) ligand was prepared. The reactivity was tested in ring opening metathesis polymerization (ROMP) under biphasic conditions using a nonpolar organic solvent (toluene) and the ionic liquid (IL) 1-butyl-2,3-dimethylimidazolium tetrafluoroborate [BDMIM(+)][BF4 (-)]. The structure of Ru-2 was confirmed by single crystal X-ray analysis.

  13. Grubbs–Hoveyda type catalysts bearing a dicationic N-heterocyclic carbene for biphasic olefin metathesis reactions in ionic liquids

    PubMed Central

    Koy, Maximilian; Altmann, Hagen J; Autenrieth, Benjamin; Frey, Wolfgang

    2015-01-01

    Summary The novel dicationic metathesis catalyst [(RuCl2(H2ITapMe2)(=CH–2-(2-PrO)-C6H4))2+ (OTf−)2] (Ru-2, H2ITapMe2 = 1,3-bis(2’,6’-dimethyl-4’-trimethylammoniumphenyl)-4,5-dihydroimidazol-2-ylidene, OTf− = CF3SO3 −) based on a dicationic N-heterocyclic carbene (NHC) ligand was prepared. The reactivity was tested in ring opening metathesis polymerization (ROMP) under biphasic conditions using a nonpolar organic solvent (toluene) and the ionic liquid (IL) 1-butyl-2,3-dimethylimidazolium tetrafluoroborate [BDMIM+][BF4 −]. The structure of Ru-2 was confirmed by single crystal X-ray analysis. PMID:26664582

  14. Grubbs-Hoveyda type catalysts bearing a dicationic N-heterocyclic carbene for biphasic olefin metathesis reactions in ionic liquids.

    PubMed

    Koy, Maximilian; Altmann, Hagen J; Autenrieth, Benjamin; Frey, Wolfgang; Buchmeiser, Michael R

    2015-01-01

    The novel dicationic metathesis catalyst [(RuCl2(H2ITapMe2)(=CH-2-(2-PrO)-C6H4))(2+) (OTf(-))2] (Ru-2, H2ITapMe2 = 1,3-bis(2',6'-dimethyl-4'-trimethylammoniumphenyl)-4,5-dihydroimidazol-2-ylidene, OTf(-) = CF3SO3 (-)) based on a dicationic N-heterocyclic carbene (NHC) ligand was prepared. The reactivity was tested in ring opening metathesis polymerization (ROMP) under biphasic conditions using a nonpolar organic solvent (toluene) and the ionic liquid (IL) 1-butyl-2,3-dimethylimidazolium tetrafluoroborate [BDMIM(+)][BF4 (-)]. The structure of Ru-2 was confirmed by single crystal X-ray analysis. PMID:26664582

  15. Quantitatively analyzing metathesis catalyst activity and structural features in silica-supported tungsten imido-alkylidene complexes.

    PubMed

    Mougel, Victor; Santiago, Celine B; Zhizhko, Pavel A; Bess, Elizabeth N; Varga, Jeno; Frater, Georg; Sigman, Matthew S; Copéret, Christophe

    2015-05-27

    A broad series of fully characterized, well-defined silica-supported W metathesis catalysts with the general formula [(≡SiO)W(═NAr)(═CHCMe2R)(X)] (Ar = 2,6-iPr2C6H3 (AriPr), 2,6-Cl2C6H3 (ArCl), 2-CF3C6H4 (ArCF3), and C6F5 (ArF5); X = OC(CF3)3 (OtBuF9), OCMe(CF3)2 (OtBuF6), OtBu, OSi(OtBu)3, 2,5-dimethylpyrrolyl (Me2Pyr) and R = Me or Ph) was prepared by grafting bis-X substituted complexes [W(NAr)(═CHCMe2R)(X)2] on silica partially dehydroxylated at 700 °C (SiO2-(700)), and their activity was evaluated with the goal to obtain detailed structure-activity relationships. Quantitative influence of the ligand set on the activity (turnover frequency, TOF) in self-metathesis of cis-4-nonene was investigated using multivariate linear regression analysis tools. The TOF of these catalysts (activity) can be well predicted from simple steric and electronic parameters of the parent protonated ligands; it is described by the mutual contribution of the NBO charge of the nitrogen or the IR intensity of the symmetric N-H stretch of the ArNH2, corresponding to the imido ligand, together with the Sterimol B5 and pKa of HX, representing the X ligand. This quantitative and predictive structure-activity relationship analysis of well-defined heterogeneous catalysts shows that high activity is associated with the combination of X and NAr ligands of opposite electronic character and paves the way toward rational development of metathesis catalysts.

  16. Influence of Catalyst Structure and Reaction Conditions on Anti- vs. Syn-Aminopalladation Pathways in Pd-Catalyzed Alkene Carboamination Reactions of N-Allyl Sulfamides

    PubMed Central

    Fornwald, Ryan M.; Fritz, Jonathan A.

    2014-01-01

    The Pd-catalyzed coupling of N-allyl sulfamides with aryl and alkenyl triflates to afford cyclic sulfamide products is described. In contrast to other known Pd-catalyzed alkene carboamination reactions, these transformations may be selectively induced to occur by way of either anti- or syn-aminopalladation mechanistic pathways by modifying catalyst structure and reaction conditions. PMID:24938206

  17. Mechanochemical ruthenium-catalyzed olefin metathesis.

    PubMed

    Do, Jean-Louis; Mottillo, Cristina; Tan, Davin; Štrukil, Vjekoslav; Friščić, Tomislav

    2015-02-25

    We describe the development of a mechanochemical approach for Ru-catalyzed olefin metathesis, including cross-metathesis and ring-closing metathesis. The method uses commercially available catalysts to achieve high-yielding, rapid, room-temperature metathesis of solid or liquid olefins on a multigram scale using either no or only a catalytic amount of a liquid. PMID:25668586

  18. Mechanochemical ruthenium-catalyzed olefin metathesis.

    PubMed

    Do, Jean-Louis; Mottillo, Cristina; Tan, Davin; Štrukil, Vjekoslav; Friščić, Tomislav

    2015-02-25

    We describe the development of a mechanochemical approach for Ru-catalyzed olefin metathesis, including cross-metathesis and ring-closing metathesis. The method uses commercially available catalysts to achieve high-yielding, rapid, room-temperature metathesis of solid or liquid olefins on a multigram scale using either no or only a catalytic amount of a liquid.

  19. Moving from Classical Ru-NHC to Neutral or Charged Rh-NHC Based Catalysts in Olefin Metathesis.

    PubMed

    Poater, Albert

    2016-01-30

    Considering the versatility of oxidation states of rhodium together with the successful background of ruthenium-N-heterocyclic carbene based catalysts in olefin metathesis, it is envisaged the exchange of the ruthenium of the latter catalysts by rhodium, bearing an open-shell neutral rhodium center, or a +1 charged one. In the framework of in silico experiments, density functional theory (DFT) calculations have been used to plot the first catalytic cycle that as a first step includes the release of the phosphine. DFT is, in this case, the tool that allows the discovery of the less endergonic reaction profile from the precatalytic species for the neutral catalyst with respect to the corresponding ruthenium one; increasing the endergonic character when dealing with the charged system.

  20. Moving from Classical Ru-NHC to Neutral or Charged Rh-NHC Based Catalysts in Olefin Metathesis.

    PubMed

    Poater, Albert

    2016-01-01

    Considering the versatility of oxidation states of rhodium together with the successful background of ruthenium-N-heterocyclic carbene based catalysts in olefin metathesis, it is envisaged the exchange of the ruthenium of the latter catalysts by rhodium, bearing an open-shell neutral rhodium center, or a +1 charged one. In the framework of in silico experiments, density functional theory (DFT) calculations have been used to plot the first catalytic cycle that as a first step includes the release of the phosphine. DFT is, in this case, the tool that allows the discovery of the less endergonic reaction profile from the precatalytic species for the neutral catalyst with respect to the corresponding ruthenium one; increasing the endergonic character when dealing with the charged system. PMID:26840290

  1. Mechanistic studies of Hoveyda-Grubbs metathesis catalysts bearing S-, Br-, I-, and N-coordinating naphthalene ligands.

    PubMed

    Grudzień, Krzysztof; Żukowska, Karolina; Malińska, Maura; Woźniak, Krzysztof; Barbasiewicz, Michał

    2014-03-01

    Derivatives of the Hoveyda-Grubbs complex bearing S-, Br-, I-, and N-coordinating naphthalene ligands were synthesized and characterized with NMR and X-ray studies. Depending on the arrangement of the coordinating sites on the naphthalene core, the isomeric catalysts differ in activity in model metathesis reactions. In particular, complexes with the RuCH bond adjacent to the second aromatic ring of the ligand suffer from difficulties experienced on their preparation and initiation. The behavior most probably derives from steric hindrance around the double bond and repulsive intraligand interactions, which result in abnormal chemical shifts of benzylidene protons observed with (1) H NMR. Furthermore EXSY studies revealed that the halogen-chelated ruthenium complexes display an equilibrium, in which major cis-Cl2 structures are accompanied with small amounts of isomeric forms. In general, contents of the minor forms, measured at 80 °C, correlate with the observed activity trends of the catalysts, although some exceptions complicate the mechanistic picture. We assume that for the family of halogen-chelated metathesis catalysts the initiation mechanism starts with the cis-Cl2 ⇌trans-Cl2 isomerization, although further steps may become rate-limiting for selected systems.

  2. Methods for suppressing isomerization of olefin metathesis products

    SciTech Connect

    Firth, Bruce E.; Kirk, Sharon E.

    2015-10-27

    A method for suppressing isomerization of an olefin metathesis product produced in a metathesis reaction includes adding an isomerization suppression agent that includes nitric acid to a mixture that includes the olefin metathesis product and residual metathesis catalyst from the metathesis reaction under conditions that are sufficient to passivate at least a portion of the residual metathesis catalyst. Methods of refining a natural oil are described.

  3. Methods for suppressing isomerization of olefin metathesis products

    SciTech Connect

    Firth, Bruce E.; Kirk, Sharon E.; Gavaskar, Vasudeo S.

    2015-09-22

    A method for suppressing isomerization of an olefin metathesis product produced in a metathesis reaction includes adding an isomerization suppression agent to a mixture that includes the olefin metathesis product and residual metathesis catalyst from the metathesis reaction under conditions that are sufficient to passivate at least a portion of the residual metathesis catalyst. The isomerization suppression agent is phosphorous acid, a phosphorous acid ester, phosphinic acid, a phosphinic acid ester or combinations thereof. Methods of refining natural oils are described.

  4. Elucidating the Link between NMR Chemical Shifts and Electronic Structure in d(0) Olefin Metathesis Catalysts.

    PubMed

    Halbert, Stéphanie; Copéret, Christophe; Raynaud, Christophe; Eisenstein, Odile

    2016-02-24

    The nucleophilic carbon of d(0) Schrock alkylidene metathesis catalysts, [M] = CHR, display surprisingly low downfield chemical shift (δ(iso)) and large chemical shift anisotropy. State-of-the-art four-component relativistic calculations of the chemical shift tensors combined with a two-component analysis in terms of localized orbitals allow a molecular-level understanding of their orientations, the magnitude of their principal components (δ11 > δ22 > δ33) and associated δ(iso). This analysis reveals the dominating influence of the paramagnetic contribution yielding a highly deshielded alkylidene carbon. The largest paramagnetic contribution, which originates from the coupling of alkylidene σ(MC) and π*(MC) orbitals under the action of the magnetic field, is analogous to that resulting from coupling σ(CC) and π*(CC) in ethylene; thus, δ11 is in the MCH plane and is perpendicular to the MC internuclear direction. The higher value of carbon-13 δ(iso) in alkylidene complexes relative to ethylene is thus due to the smaller energy gap between σ(MC) and π*(MC) vs this between σ(CC) and π*(CC) in ethylene. This effect also explains why the highest value of δ(iso) is observed for Mo and the lowest for Ta, the values for W and Re being in between. In the presence of agostic interaction, the chemical shift tensor principal components orientation (δ22 or δ33 parallel or perpendicular to π(MX)) is influenced by the MCH angle because it determines the orientation of the alkylidene CHR fragment relative to the MC internuclear axis. The orbital analysis shows how the paramagnetic terms, understood with a localized bond model, determine the chemical shift tensor and thereby δ(iso). PMID:26787258

  5. Synthesis and study of olefin metathesis catalysts supported by redox-switchable diaminocarbene[3]ferrocenophanes.

    PubMed

    Varnado, C Daniel; Rosen, Evelyn L; Collins, Mary S; Lynch, Vincent M; Bielawski, Christopher W

    2013-09-28

    A redox-switchable ligand, N,N'-dimethyldiaminocarbene[3]ferrocenophane (5), was synthesized and incorporated into a series of Ir- and Ru-based complexes. Electrochemical and spectroscopic analyses of (5)Ir(CO)2Cl (15) revealed that 5 displayed a Tolman electronic parameter value of 2050 cm(-1) in the neutral state and 2061 cm(-1) upon oxidation. Moreover, inspection of X-ray crystallography data recorded for (5)Ir(cis,cis-1,5-cyclooctadiene)Cl (13) revealed that 5 was sterically less bulky (%V(Bur) = 28.4) than other known diaminocarbene[3]ferrocenophanes, which facilitated the synthesis of (5)(PPh3)Cl2Ru(3-phenylindenylid-1-ene) (18). Complex 18 exhibited quasi-reversible electrochemical processes at 0.79 and 0.98 V relative to SCE, which were assigned to the Fe and Ru centers in the complex, respectively, based on UV-vis and electron pair resonance spectroscopic measurements. Adding 2,3-dichloro-5,6-dicyanoquinone over the course of a ring-opening metathesis polymerization of cis,cis-1,5-cyclooctadiene catalyzed by 18 ([monomer]0/[18]0 = 2500) reduced the corresponding rate constant of the reaction by over an order of magnitude (pre-oxidation: k(obs) = 0.045 s(-1); post-oxidation: k(obs) = 0.0012 s(-1)). Subsequent reduction of the oxidized species using decamethylferrocene restored catalytic activity (post-reduction: k(obs) = up to 0.016 s(-1), depending on when the reductant was added). The difference in the polymerization rates was attributed to the relative donating ability of the redox-active ligand (i.e., strongly donating 5 versus weakly donating 5(+)) which ultimately governed the activity displayed by the corresponding catalyst. PMID:23884080

  6. Elucidating the Link between NMR Chemical Shifts and Electronic Structure in d(0) Olefin Metathesis Catalysts.

    PubMed

    Halbert, Stéphanie; Copéret, Christophe; Raynaud, Christophe; Eisenstein, Odile

    2016-02-24

    The nucleophilic carbon of d(0) Schrock alkylidene metathesis catalysts, [M] = CHR, display surprisingly low downfield chemical shift (δ(iso)) and large chemical shift anisotropy. State-of-the-art four-component relativistic calculations of the chemical shift tensors combined with a two-component analysis in terms of localized orbitals allow a molecular-level understanding of their orientations, the magnitude of their principal components (δ11 > δ22 > δ33) and associated δ(iso). This analysis reveals the dominating influence of the paramagnetic contribution yielding a highly deshielded alkylidene carbon. The largest paramagnetic contribution, which originates from the coupling of alkylidene σ(MC) and π*(MC) orbitals under the action of the magnetic field, is analogous to that resulting from coupling σ(CC) and π*(CC) in ethylene; thus, δ11 is in the MCH plane and is perpendicular to the MC internuclear direction. The higher value of carbon-13 δ(iso) in alkylidene complexes relative to ethylene is thus due to the smaller energy gap between σ(MC) and π*(MC) vs this between σ(CC) and π*(CC) in ethylene. This effect also explains why the highest value of δ(iso) is observed for Mo and the lowest for Ta, the values for W and Re being in between. In the presence of agostic interaction, the chemical shift tensor principal components orientation (δ22 or δ33 parallel or perpendicular to π(MX)) is influenced by the MCH angle because it determines the orientation of the alkylidene CHR fragment relative to the MC internuclear axis. The orbital analysis shows how the paramagnetic terms, understood with a localized bond model, determine the chemical shift tensor and thereby δ(iso).

  7. Synthesis and study of olefin metathesis catalysts supported by redox-switchable diaminocarbene[3]ferrocenophanes.

    PubMed

    Varnado, C Daniel; Rosen, Evelyn L; Collins, Mary S; Lynch, Vincent M; Bielawski, Christopher W

    2013-09-28

    A redox-switchable ligand, N,N'-dimethyldiaminocarbene[3]ferrocenophane (5), was synthesized and incorporated into a series of Ir- and Ru-based complexes. Electrochemical and spectroscopic analyses of (5)Ir(CO)2Cl (15) revealed that 5 displayed a Tolman electronic parameter value of 2050 cm(-1) in the neutral state and 2061 cm(-1) upon oxidation. Moreover, inspection of X-ray crystallography data recorded for (5)Ir(cis,cis-1,5-cyclooctadiene)Cl (13) revealed that 5 was sterically less bulky (%V(Bur) = 28.4) than other known diaminocarbene[3]ferrocenophanes, which facilitated the synthesis of (5)(PPh3)Cl2Ru(3-phenylindenylid-1-ene) (18). Complex 18 exhibited quasi-reversible electrochemical processes at 0.79 and 0.98 V relative to SCE, which were assigned to the Fe and Ru centers in the complex, respectively, based on UV-vis and electron pair resonance spectroscopic measurements. Adding 2,3-dichloro-5,6-dicyanoquinone over the course of a ring-opening metathesis polymerization of cis,cis-1,5-cyclooctadiene catalyzed by 18 ([monomer]0/[18]0 = 2500) reduced the corresponding rate constant of the reaction by over an order of magnitude (pre-oxidation: k(obs) = 0.045 s(-1); post-oxidation: k(obs) = 0.0012 s(-1)). Subsequent reduction of the oxidized species using decamethylferrocene restored catalytic activity (post-reduction: k(obs) = up to 0.016 s(-1), depending on when the reductant was added). The difference in the polymerization rates was attributed to the relative donating ability of the redox-active ligand (i.e., strongly donating 5 versus weakly donating 5(+)) which ultimately governed the activity displayed by the corresponding catalyst.

  8. Towards New Generations of Metathesis Metal-Carbene Pre-catalysts

    NASA Astrophysics Data System (ADS)

    Allaert, Bart; Dieltiens, Nicolai; Stevens, Chris; Drozdzak, Renata; Dragutan, Ileana; Dragutan, Valerian; Verpoort, Francis

    : A short general introduction combined with some historical milestones in the field of olefin metathesis is presented followed by an overview of recent representatives of metal carbene initiators. This paper attempts to relief the many superb contributions and overwhelming work invested in intelligent design and innovative synthesis in this area. Despites of recent advances there is still a great interest in the generation of new, better performing, and more environment friendly metathesis.

  9. Synergy between Two Metal Catalysts: A Highly Active Silica-Supported Bimetallic W/Zr Catalyst for Metathesis of n-Decane.

    PubMed

    Samantaray, Manoja K; Dey, Raju; Kavitake, Santosh; Abou-Hamad, Edy; Bendjeriou-Sedjerari, Anissa; Hamieh, Ali; Basset, Jean-Marie

    2016-07-13

    A well-defined, silica-supported bimetallic precatalyst [≡Si-O-W(Me)5≡Si-O-Zr(Np)3] (4) has been synthesized for the first time by successively grafting two organometallic complexes [W(Me)6 (1) followed by ZrNp4 (2)] on a single silica support. Surprisingly, multiple-quantum NMR characterization demonstrates that W and Zr species are in close proximity to each other. Hydrogenation of this bimetallic catalyst at room temperature showed the easy formation of zirconium hydride, probably facilitated by tungsten hydride which was formed at this temperature. This bimetallic W/Zr hydride precatalyst proved to be more efficient (TON = 1436) than the monometallic W hydride (TON = 650) in the metathesis of n-decane at 150 °C. This synergy between Zr and W suggests that the slow step of alkane metathesis is the C-H bond activation that occurs on Zr. The produced olefin resulting from a β-H elimination undergoes easy metathesis on W. PMID:27248839

  10. Olefin metathesis in air.

    PubMed

    Piola, Lorenzo; Nahra, Fady; Nolan, Steven P

    2015-01-01

    Since the discovery and now widespread use of olefin metathesis, the evolution of metathesis catalysts towards air stability has become an area of significant interest. In this fascinating area of study, beginning with early systems making use of high oxidation state early transition metal centers that required strict exclusion of water and air, advances have been made to render catalysts more stable and yet more functional group tolerant. This review summarizes the major developments concerning catalytic systems directed towards water and air tolerance.

  11. Probing Stereoselectivity in Ring-Opening Metathesis Polymerization Mediated by Cyclometalated Ruthenium-Based Catalysts: A Combined Experimental and Computational Study.

    PubMed

    Rosebrugh, L E; Ahmed, T S; Marx, V M; Hartung, J; Liu, P; López, J G; Houk, K N; Grubbs, R H

    2016-02-01

    The microstructures of polymers produced by ring-opening metathesis polymerization (ROMP) with cyclometalated Ru-carbene metathesis catalysts were investigated. A strong bias for a cis,syndiotactic microstructure with minimal head-to-tail bias was observed. In instances where trans errors were introduced, it was determined that these regions were also syndiotactic. Furthermore, hypothetical reaction intermediates and transition structures were analyzed computationally. Combined experimental and computational data support a reaction mechanism in which cis,syndio-selectivity is a result of stereogenic metal control, while microstructural errors are predominantly due to alkylidene isomerization via rotation about the Ru═C double bond. PMID:26726835

  12. Pulsed-Addition Ring-Opening Metathesis Polymerization: Catalyst-Economical Syntheses of Homopolymers and Block Copolymers

    PubMed Central

    Matson, John B.; Virgil, Scott C.

    2009-01-01

    Poly(tert-butyl ester norbornene imide) homopolymers and poly(tert-butyl ester norbornene imide-b-N-methyl oxanorbornene imide) copolymers were prepared by pulsed-addition ring-opening metathesis polymerization (PA-ROMP). PA-ROMP is a unique polymerization method that employs a symmetrical cis-olefin chain transfer agent (CTA) to simultaneously cap a living polymer chain and regenerate the ROMP initiator with high fidelity. Unlike traditional ROMP with chain transfer, the CTA reacts only with the living chain end, resulting in narrowly dispersed products. The regenerated initiator can then initiate polymerization of a subsequent batch of monomer, allowing for multiple polymer chains with controlled molecular weight and low polydispersity to be generated from one metal initiator. Using the fast-initiating ruthenium metathesis catalyst (H2IMes)(Cl)2(pyr)2RuCHPh and cis-4-octene as a CTA, the capabilities of PA-ROMP were investigated with a Symyx robotic system, which allowed for increased control and precision of injection volumes. The results from a detailed study of the time required to carry out the end-capping/initiator-regeneration step were used to design several experiments in which PA-ROMP was performed from one to ten cycles. After determining the rate of catalyst death, a single, low polydispersity polymer was prepared by adjusting the amount of monomer injected in each cycle, maintaining a constant monomer/catalyst ratio. Additionally, PA-ROMP was used to prepare nearly perfect block copolymers by quickly injecting a second monomer at a specific time interval after the first monomer injection, such that chain transfer had not yet occurred. Polymers were characterized by gel permeation chromatography with multi-angle laser light scattering. PMID:19215131

  13. A fast-initiating ionically tagged ruthenium complex: a robust supported pre-catalyst for batch-process and continuous-flow olefin metathesis.

    PubMed

    Borré, Etienne; Rouen, Mathieu; Laurent, Isabelle; Magrez, Magaly; Caijo, Fréderic; Crévisy, Christophe; Solodenko, Wladimir; Toupet, Loic; Frankfurter, René; Vogt, Carla; Kirschning, Andreas; Mauduit, Marc

    2012-12-14

    In this study, a new pyridinium-tagged Ru complex was designed and anchored onto sulfonated silica, thereby forming a robust and highly active supported olefin-metathesis pre-catalyst for applications under batch and continuous-flow conditions. The involvement of an oxazine-benzylidene ligand allowed the reactivity of the formed Ru pre-catalyst to be efficiently controlled through both steric and electronic activation. The oxazine scaffold facilitated the introduction of the pyridinium tag, thereby affording the corresponding cationic pre-catalyst in good yield. Excellent activities in ring-closing (RCM), cross (CM), and enyne metathesis were observed with only 0.5 mol % loading of the pre-catalyst. When this powerful pre-catalyst was immobilized onto a silica-based cationic-exchange resin, a versatile catalytically active material for batch reactions was generated that also served as fixed-bed material for flow reactors. This system could be reused at 1 mol % loading to afford metathesis products in high purity with very low ruthenium contamination under batch conditions (below 5 ppm). Scavenging procedures for both batch and flow processes were conducted, which led to a lowering of the ruthenium content to as little as one tenth of the original values.

  14. Alkene Isomerization Using a Solid Acid as Activator and Support for a Homogeneous Catalyst

    ERIC Educational Resources Information Center

    Seen, Andrew J.

    2004-01-01

    An upper-level undergraduate experiment that, in addition to introducing students to catalysis using an air sensitive transition-metal complex, introduces the use of a solid acid as an activator and support for the catalyst is developed. The increased stability acquired in the course of the process affords the opportunity to characterize the…

  15. Build/couple/pair strategy combining the Petasis 3-component reaction with Ru-catalyzed ring-closing metathesis and isomerization.

    PubMed

    Ascic, Erhad; Le Quement, Sebastian T; Ishoey, Mette; Daugaard, Mathilde; Nielsen, Thomas E

    2012-04-01

    A "build/couple/pair" pathway for the systematic synthesis of structurally diverse small molecules is presented. The Petasis 3-component reaction was used to synthesize anti-amino alcohols displaying pairwise reactive combinations of alkene moieties. Upon treatment with a ruthenium alkylidene-catalyst, these dienes selectively underwent ring-closing metathesis reactions to form 5- and 7-membered heterocycles and cyclic aminals via a tandem isomerization/N-alkyliminium cyclization sequence.

  16. Cracking and aromatization of C{sub 6}-C{sub 10} n-alkanes and n-alkenes on a zeolite-containing catalyst

    SciTech Connect

    Gairbekov, T.M.; Takaeva, M.I.; Khadzhiev, S.N.; Manovyan, A.K.

    1992-05-10

    Despite the extensive studies on catalysis on zeolites, the question of the mechanism of the reactions of cracking and aromatization of hydrocarbons is still debated. The classic Whitmore theory hypothesizes that cracking of alkanes and alkenes takes place through the formation of the same intermediate trivalent carbenium ions of the (C{sub n}H{sub 2n+1}){sup +} type. Ola`s protolytic mechanism hypothesizes nonclassic five- (four-)coordinated ions of the (C{sub n}H{sub 2n+3}){sup +} type for cracking of alkanes and classic carbenium ions for alkenes. When the classic mechanism occurs on zeolites, an analogous effect on the rate of the reactions of alkanes and alkenes with the molecular weight of the starting hydrocarbons and similar compositions of the products obtained should be predicted. The authors investigated the transformation of individual n-alkanes and n-1-alkenes of C{sub 6}-C{sub 10} composition in the presence of a catalyst synthesized by addition of 30 wt.% decationized ultrahigh-silicon zeolite of the ZSM type (Si/Al - 16) modified with 1 wt.% zinc on {gamma}-Al{sub 2}O{sub 3}. The experiment was conducted on a flow-type laboratory setup at 425{degrees}C in conditions of the minimum effect of diffusion factors with the method described in detail previously. 13 refs., 4 figs., 1 tab.

  17. Synthesis, characterization and insights into stable and well organized hexagonal mesoporous zinc-doped alumina as promising metathesis catalysts carrier.

    PubMed

    Abidli, Abdelnasser; Hamoudi, Safia; Belkacemi, Khaled

    2015-06-01

    A series of highly ordered hexagonal mesoporous alumina and zinc-modified mesoporous alumina samples are synthesized via a sol-gel method through an evaporation-induced self-assembly process using Pluronic F127 as nonionic templating agent and several aluminum precursors. The process was mediated using several carboxylic acids along with hydrochloric acid in ethanol. Successful impregnation of ZnCl2 was achieved while maintaining the ordered structure. The surface and textural properties of the materials were investigated. N2-physisorption analysis revealed a BET surface area of 394 m(2) g(-1) and a pore volume around 0.55 cm(3) g(-1). Moreover, small-angle XRD diffraction patterns highlighted the well-organized hexagonal structure even upon the incorporation of zinc chloride. The organized-structure arrangement was further confirmed by transmission electron microscopy (TEM) analysis. The Zn/Al composition of the final materials was confirmed by EDX and XPS analysis, and the zinc amount incorporated was analyzed by ICP. Furthermore, the surface modification with zinc chloride impregnation was analyzed by XPS, (1)H and (27)Al MAS-NMR and FTIR spectroscopic techniques. In addition, the effects of synthesis conditions and the mechanism of the mesostructure formation were explored. The catalytic activity of several methyltrioxorhenium (MTO)-based catalysts supported on these hexagonal mesoporous alumina materials was tested for methyl oleate self-metathesis. The results showed improved kinetics using hexagonal alumina in comparison to those using wormhole-like alumina counterparts. This behavior could be attributed to better mass transfer features of hexagonal mesoporous alumina. The prepared materials with desirable pore size and structure are suitable candidates as catalyst supports for metathesis of bulky functionalized olefins and other catalytic transformations due to their enhanced Lewis acidity and more uniform pore networks favoring enhanced and selective mass

  18. Iridium(I) complexes with anionic N-heterocyclic carbene ligands as catalysts for the hydrogenation of alkenes in nonpolar media.

    PubMed

    Kolychev, Eugene L; Kronig, Sabrina; Brandhorst, Kai; Freytag, Matthias; Jones, Peter G; Tamm, Matthias

    2013-08-21

    A series of lithium complexes of anionic N-heterocyclic carbenes that contain a weakly coordinating borate moiety (WCA-NHC) was prepared in one step from free N-heterocyclic carbenes by deprotonation with n-butyl lithium followed by borane addition. The reaction of the resulting lithium-carbene adducts with [M(COD)Cl]2 (M = Rh, Ir; COD = 1,5-cyclooctadiene) afforded zwitterionic rhodium(I) and iridium(I) complexes of the type [(WCA-NHC)M(COD)], in which the metal atoms exhibit an intramolecular interaction with the N-aryl groups of the carbene ligands. For M = Rh, the neutral complex [(WCA-NHC)Rh(CO)2] and the ate complex (NEt4)[(WCA-NHC)Rh(CO)2Cl] were prepared, with the latter allowing an assessment of the donor ability of the ligand by IR spectroscopy. The zwitterionic iridium-COD complexes were tested as catalysts for the homogeneous hydrogenation of alkenes, which can be performed in the presence of nonpolar solvents or in the neat alkene substrate. Thereby, the most active complex showed excellent stability and activity in hydrogenation of alkenes at low catalyst loadings (down to 10 ppm).

  19. Insights into the Mechanism of Tandem Alkene Hydroformylation over a Nanostructured Catalyst with Multiple Interfaces.

    PubMed

    Su, Ji; Xie, Chenlu; Chen, Chen; Yu, Yi; Kennedy, Griffin; Somorjai, Gabor A; Yang, Peidong

    2016-09-14

    The concept of tandem catalysis, where sequential reactions catalyzed by different interfaces in single nanostructure give desirable product selectively, has previously been applied effectively in the production of propanal from methanol (via carbon monoxide and hydrogen) and ethylene via tandem hydroformylation. However, the underlying mechanism leading to enhanced product selectivity has remained elusive due to the lack of stable, well-defined catalyst suitable for in-depth comprehensive study. Accordingly, we present the design and synthesis of a three-dimensional (3D) catalyst CeO2-Pt@mSiO2 with well-defined metal-oxide interfaces and stable architecture and investigate the selective conversion of ethylene to propanal via tandem hydroformylation. The effective production of aldehyde through the tandem hydroformylation was also observed on propylene and 1-butene. A thorough study of the CeO2-Pt@mSiO2 under different reaction and control conditions reveals that the ethylene present for the hydroformylation step slows down initial methanol decomposition, preventing the accumulation of hydrogen (H2) and favoring propanal formation to achieve up to 80% selectivity. The selectivity is also promoted by the fact that the reaction intermediates produced from methanol decomposition are poised to directly undergo hydroformylation upon migration from one catalytic interface to another. This synergistic effect between the two sequential reactions and the corresponding altered reaction pathway, compared to the single-step reaction, constitute the key advantages of this tandem catalysis. Ultimately, this in-depth study unravels the principles of tandem catalysis related to hydroformylation and represents a key step toward the rational design of new heterogeneous catalysts. PMID:27585650

  20. Ruthenium-catalyzed intramolecular metathesis of dienes and its application in the synthesis of bridged and spiro azabicycles

    NASA Astrophysics Data System (ADS)

    Kuznetsov, N. Yu; Bubnov, Yu N.

    2015-07-01

    The review presents a historical excursion into catalytic alkene metathesis, covering the problems of history of the discovery of this process, as well as investigations on the properties, structure and reactivity of the most popular ruthenium catalysts for metathesis, mechanism of their action and decomposition. The main part covers studies devoted to the syntheses of bridged azabicyclic and 1-azaspirocyclic compounds comprising the intramolecular metathesis of dienes as the key step. The formation of a bicyclic skeleton of a series of natural bridged (cocaine, ferruginine, calystegines, and anatoxin-a) and spiro (pinnaic acids, halichlorine, hystrionicotoxin, and cephalotaxine) azabicycles, as well as their analogues and compounds with larger rings is demonstrated. The methods for the synthesis of diene precursors and the conditions for final assembling of the bicyclic compounds are considered in detail. The generalization of the literature data allows one to efficiently carry out the mentioned process taking into account the most important features. The bibliography includes 129 references.

  1. Halide exchanged Hoveyda-type complexes in olefin metathesis

    PubMed Central

    Wappel, Julia; Urbina-Blanco, César A; Abbas, Mudassar; Albering, Jörg H; Saf, Robert; Nolan, Steven P

    2010-01-01

    Summary The aims of this contribution are to present a straightforward synthesis of 2nd generation Hoveyda-type olefin metathesis catalysts bearing bromo and iodo ligands, and to disclose the subtle influence of the different anionic co-ligands on the catalytic performance of the complexes in ring opening metathesis polymerisation, ring closing metathesis, enyne cycloisomerisation and cross metathesis reactions. PMID:21160566

  2. Preparation and characterization of active niobium, tantalum, and tungsten metathesis catalysts

    SciTech Connect

    Schrock, R.; Rocklage, S.; Wengrovius, J.; Rupprecht, G.; Fellmann, J.

    1980-03-01

    Complexes of the types M(CHCR/sub 3/)L/sub 2/X/sub 3/, M(CHCR/sub 3/)(OCR/sub 3/)/sub 2/LX, and WO(CHCR/sub 3/)L/sub 2/Cl/sub 2/, where M is Nb or Ta, R is methyl, L is a tertiary phosphine, and X is Cl or Br, showed good activities in metathesis of terminal olefins, including ethylene, propylene, styrene, 1-butene, and cis-2-pentene, at 25/sup 0/C in the presence of traces of AlCl/sub 3/.

  3. Heterogeneous Catalysis: The Horiuti-Polanyi Mechanism and Alkene Hydrogenation

    ERIC Educational Resources Information Center

    Mattson, Bruce; Foster, Wendy; Greimann, Jaclyn; Hoette, Trisha; Le, Nhu; Mirich, Anne; Wankum, Shanna; Cabri, Ann; Reichenbacher, Claire; Schwanke, Erika

    2013-01-01

    The hydrogenation of alkenes by heterogeneous catalysts has been studied for 80 years. The foundational mechanism was proposed by Horiuti and Polanyi in 1934 and consists of three steps: (i) alkene adsorption on the surface of the hydrogenated metal catalyst, (ii) hydrogen migration to the beta-carbon of the alkene with formation of a delta-bond…

  4. Solvent-free cyclization of linear dienes using olefin metathesis and the Thorpe-Ingold effect

    SciTech Connect

    Forbees, M.D.E.; Myers, T.L.; Maynard, H.D.; Schulz, G.R. ); Patton, J.T.; Smith, D.W. Jr.; Wagener, K.B. )

    1992-12-30

    The olefin metathesis reaction is of great synthetic utility in polymer chemistry. The recent development of ring-opening (ROMP) and acyclic diene (ADMET) metathesis polymerization reactions has opened new avenues for the synthesis of novel polymeric materials. Recently the authors used ADMET to synthesize several photochemically active poly(keto olefins) using the catalyst Mo(CHCMe[sub 2]Ph)(NAr)(OCMe(CF[sub 3])[sub 2])[sub 2] (Ar = 2,6-diisopropylphenyl) (1) developed by Schrock and co-workers in 1990. In the course of that work, they discovered that neat samples of highly substituted dienes will cyclize quantitatively via metathesis to give difunctional five- and seven-membered rings instead of the expected linear polymer. Examples of substituted diene cyclizations by metathesis even in the presence of a solvent are rare. Their systematic exploitation in organic synthesis has therefore been limited to two recent studies by Fu and Grubbs, who cyclized several substituted diene ethers, amines, and amides to unsaturated oxygen and nitrogen heterocycles. Cyclization of unsubstituted dienes in various solvents has been reported, but complete conversion occurred in only a few cases. Formation of cyclic alkene oligomers from back-biting during the ROMP reaction is also known. The reactions reported here are unusual in that they are intermolecular between catalyst and substrate, yet can give 100% yield of product solely from the monomer in the absence of solvent. 13 refs.

  5. Olefin metathesis in air

    PubMed Central

    Piola, Lorenzo; Nahra, Fady

    2015-01-01

    Summary Since the discovery and now widespread use of olefin metathesis, the evolution of metathesis catalysts towards air stability has become an area of significant interest. In this fascinating area of study, beginning with early systems making use of high oxidation state early transition metal centers that required strict exclusion of water and air, advances have been made to render catalysts more stable and yet more functional group tolerant. This review summarizes the major developments concerning catalytic systems directed towards water and air tolerance. PMID:26664625

  6. Olefin metathesis in air.

    PubMed

    Piola, Lorenzo; Nahra, Fady; Nolan, Steven P

    2015-01-01

    Since the discovery and now widespread use of olefin metathesis, the evolution of metathesis catalysts towards air stability has become an area of significant interest. In this fascinating area of study, beginning with early systems making use of high oxidation state early transition metal centers that required strict exclusion of water and air, advances have been made to render catalysts more stable and yet more functional group tolerant. This review summarizes the major developments concerning catalytic systems directed towards water and air tolerance. PMID:26664625

  7. Consequences of the electronic tuning of latent ruthenium-based olefin metathesis catalysts on their reactivity.

    PubMed

    Żukowska, Karolina; Pump, Eva; Pazio, Aleksandra E; Woźniak, Krzysztof; Cavallo, Luigi; Slugovc, Christian

    2015-01-01

    Two ruthenium olefin metathesis initiators featuring electronically modified quinoline-based chelating carbene ligands are introduced. Their reactivity in RCM and ROMP reactions was tested and the results were compared to those obtained with the parent unsubstituted compound. The studied complexes are very stable at high temperatures up to 140 °C. The placement of an electron-withdrawing functionality translates into an enhanced activity in RCM. While electronically modified precatalysts, which exist predominantly in the trans-dichloro configuration, gave mostly the RCM and a minor amount of the cycloisomerization product, the unmodified congener, which preferentially exists as its cis-dichloro isomer, shows a switched reactivity. The position of the equilibrium between the cis- and the trans-dichloro species was found to be the crucial factor governing the reactivity of the complexes.

  8. Consequences of the electronic tuning of latent ruthenium-based olefin metathesis catalysts on their reactivity

    PubMed Central

    Pump, Eva; Pazio, Aleksandra E; Woźniak, Krzysztof; Cavallo, Luigi

    2015-01-01

    Summary Two ruthenium olefin metathesis initiators featuring electronically modified quinoline-based chelating carbene ligands are introduced. Their reactivity in RCM and ROMP reactions was tested and the results were compared to those obtained with the parent unsubstituted compound. The studied complexes are very stable at high temperatures up to 140 °C. The placement of an electron-withdrawing functionality translates into an enhanced activity in RCM. While electronically modified precatalysts, which exist predominantly in the trans-dichloro configuration, gave mostly the RCM and a minor amount of the cycloisomerization product, the unmodified congener, which preferentially exists as its cis-dichloro isomer, shows a switched reactivity. The position of the equilibrium between the cis- and the trans-dichloro species was found to be the crucial factor governing the reactivity of the complexes. PMID:26425202

  9. Consequences of the electronic tuning of latent ruthenium-based olefin metathesis catalysts on their reactivity.

    PubMed

    Żukowska, Karolina; Pump, Eva; Pazio, Aleksandra E; Woźniak, Krzysztof; Cavallo, Luigi; Slugovc, Christian

    2015-01-01

    Two ruthenium olefin metathesis initiators featuring electronically modified quinoline-based chelating carbene ligands are introduced. Their reactivity in RCM and ROMP reactions was tested and the results were compared to those obtained with the parent unsubstituted compound. The studied complexes are very stable at high temperatures up to 140 °C. The placement of an electron-withdrawing functionality translates into an enhanced activity in RCM. While electronically modified precatalysts, which exist predominantly in the trans-dichloro configuration, gave mostly the RCM and a minor amount of the cycloisomerization product, the unmodified congener, which preferentially exists as its cis-dichloro isomer, shows a switched reactivity. The position of the equilibrium between the cis- and the trans-dichloro species was found to be the crucial factor governing the reactivity of the complexes. PMID:26425202

  10. Niobium-silica catalysts for the selective epoxidation of cyclic alkenes: the generation of the active site by grafting niobocene dichloride.

    PubMed

    Tiozzo, Cristina; Bisio, Chiara; Carniato, Fabio; Gallo, Alessandro; Scott, Susannah L; Psaro, Rinaldo; Guidotti, Matteo

    2013-08-28

    Niobium-containing silica materials obtained by deposition via liquid-phase grafting or dry impregnation of niobocene(iv) dichloride are active and selective catalysts in the epoxidation of alkenes in the presence of aqueous hydrogen peroxide. The generation of the catalytically-active Nb species was followed step-by-step, and investigated using a combined DR-UV-Vis, NIR, Raman, XRD, XANES and EXAFS analyses. At the end of the grafting procedure, the nature of the surface active species can be described as an oxo-Nb(v) site, tripodally grafted onto the silica surface in close proximity to other Nb(v) centres. The liquid-phase methodology provides a better dispersion of the metal sites onto the siliceous support than the dry-impregnation approach. The niobium-silica catalysts were then tested in the epoxidation of cyclohexene and 1-methylcyclohexene, as model substrates.

  11. From Resting State to the Steady State: Mechanistic Studies of Ene-Yne Metathesis Promoted by the Hoveyda Complex.

    PubMed

    Griffiths, Justin R; Keister, Jerome B; Diver, Steven T

    2016-04-27

    The kinetics of intermolecular ene-yne metathesis (EYM) with the Hoveyda precatalyst (Ru1) has been studied. For 1-hexene metathesis with 2-benzoyloxy-3-butyne, the experimental rate law was determined to be first-order in 1-hexene (0.3-4 M), first-order in initial catalyst concentration, and zero-order for the terminal alkyne. At low catalyst concentrations (0.1 mM), the rate of precatalyst initiation was observed by UV-vis and the alkyne disappearance was observed by in situ FT-IR. Comparison of the rate of precatalyst initiation and the rate of EYM shows that a low, steady-state concentration of active catalyst is rapidly produced. Application of steady-state conditions to the carbene intermediates provided a rate treatment that fit the experimental rate law. Starting from a ruthenium alkylidene complex, competition between 2-isopropoxystyrene and 1-hexene gave a mixture of 2-isopropoxyarylidene and pentylidene species, which were trappable by the Buchner reaction. By varying the relative concentration of these alkenes, 2-isopropoxystyrene was found to be 80 times more effective than 1-hexene in production of their respective Ru complexes. Buchner-trapping of the initiation of Ru1 with excess 1-hexene after 50% loss of Ru1 gave 99% of the Buchner-trapping product derived from precatalyst Ru1. For the initiation process, this shows that there is an alkene-dependent loss of precatalyst Ru1, but this does not directly produce the active catalyst. A faster initiating precatalyst for alkene metathesis gave similar rates of EYM. Buchner-trapping of ene-yne metathesis failed to deliver any products derived from Buchner insertion, consistent with rapid decomposition of carbene intermediates under ene-yne conditions. An internal alkyne, 1,4-diacetoxy-2-butyne, was found to obey a different rate law. Finally, the second-order rate constant for ene-yne metathesis was compared to that previously determined by the Grubbs second-generation carbene complex: Ru1 was found to

  12. New metathesis catalyst bearing chromanyl moieties at the N-heterocyclic carbene ligand

    PubMed Central

    Suchodolski, Szymon; Wojtkielewicz, Agnieszka; Morzycki, Jacek W

    2015-01-01

    Summary The synthesis of a new type of Hoveyda–Grubbs 2nd generation catalyst bearing a modified N-heterocyclic carbene ligands is reported. The new catalyst contains an NHC ligand symmetrically substituted with chromanyl moieties. The complex was tested in model CM and RCM reactions. It showed very high activity in CM reactions with electron-deficient α,β-unsaturated compounds even at 0 °C. It was also examined in more demanding systems such as conjugated dienes and polyenes. The catalyst is stable, storable and easy to purify. PMID:26877801

  13. New metathesis catalyst bearing chromanyl moieties at the N-heterocyclic carbene ligand.

    PubMed

    Hryniewicka, Agnieszka; Suchodolski, Szymon; Wojtkielewicz, Agnieszka; Morzycki, Jacek W; Witkowski, Stanisław

    2015-01-01

    The synthesis of a new type of Hoveyda-Grubbs 2(nd) generation catalyst bearing a modified N-heterocyclic carbene ligands is reported. The new catalyst contains an NHC ligand symmetrically substituted with chromanyl moieties. The complex was tested in model CM and RCM reactions. It showed very high activity in CM reactions with electron-deficient α,β-unsaturated compounds even at 0 °C. It was also examined in more demanding systems such as conjugated dienes and polyenes. The catalyst is stable, storable and easy to purify. PMID:26877801

  14. The Right Computational Recipe for Olefin Metathesis with Ru-Based Catalysts: The Whole Mechanism of Ring-Closing Olefin Metathesis.

    PubMed

    Poater, Albert; Pump, Eva; Vummaleti, Sai Vikrama Chaitanya; Cavallo, Luigi

    2014-10-14

    The initiation mechanism of ruthenium methylidene complexes was studied detailing mechanistic insights of all involved reaction steps within a classical olefin metathesis pathway. Computational studies reached a good agreement with the rarely available experimental data and even enabled to complement them. As a result, a highly accurate computational and rather cheap recipe is presented; M06/TZVP//BP86/SVP (PCM, P = 1354 atm).

  15. The Right Computational Recipe for Olefin Metathesis with Ru-Based Catalysts: The Whole Mechanism of Ring-Closing Olefin Metathesis.

    PubMed

    Poater, Albert; Pump, Eva; Vummaleti, Sai Vikrama Chaitanya; Cavallo, Luigi

    2014-10-14

    The initiation mechanism of ruthenium methylidene complexes was studied detailing mechanistic insights of all involved reaction steps within a classical olefin metathesis pathway. Computational studies reached a good agreement with the rarely available experimental data and even enabled to complement them. As a result, a highly accurate computational and rather cheap recipe is presented; M06/TZVP//BP86/SVP (PCM, P = 1354 atm). PMID:26588141

  16. Photolithographic olefin metathesis polymerization.

    PubMed

    Weitekamp, Raymond A; Atwater, Harry A; Grubbs, Robert H

    2013-11-13

    Patterning functional materials is a central challenge across many fields of science. The ability to lithographically fabricate micro- and nanostructures has been one of the most impactful technological breakthroughs of the last century. In part due to the complexity of the chemical processes in photoresists, there is a limited variety of materials that can currently be patterned by photolithography. We report a negative tone photoresist using a photoactivated olefin metathesis catalyst, which can be quickly prepared in a one-pot synthesis from commercially available starting materials. The resist is based on a ruthenium vinyl ether complex, widely regarded as inactive toward olefin metathesis. The combination of this photoactivated catalyst with the fidelity and functional group tolerance of ruthenium-mediated olefin metathesis enables a host of new possibilities for photopatterned materials. PMID:24171659

  17. Photolithographic olefin metathesis polymerization.

    PubMed

    Weitekamp, Raymond A; Atwater, Harry A; Grubbs, Robert H

    2013-11-13

    Patterning functional materials is a central challenge across many fields of science. The ability to lithographically fabricate micro- and nanostructures has been one of the most impactful technological breakthroughs of the last century. In part due to the complexity of the chemical processes in photoresists, there is a limited variety of materials that can currently be patterned by photolithography. We report a negative tone photoresist using a photoactivated olefin metathesis catalyst, which can be quickly prepared in a one-pot synthesis from commercially available starting materials. The resist is based on a ruthenium vinyl ether complex, widely regarded as inactive toward olefin metathesis. The combination of this photoactivated catalyst with the fidelity and functional group tolerance of ruthenium-mediated olefin metathesis enables a host of new possibilities for photopatterned materials.

  18. Olefin metathesis in nano-sized systems

    PubMed Central

    Diallo, Abdou K; Gatard, Sylvain; Liang, Liyuan; Ornelas, Cátia; Martinez, Victor; Méry, Denise; Ruiz, Jaime

    2011-01-01

    Summary The interplay between olefin metathesis and dendrimers and other nano systems is addressed in this mini review mostly based on the authors’ own contributions over the last decade. Two subjects are presented and discussed: (i) The catalysis of olefin metathesis by dendritic nano-catalysts via either covalent attachment (ROMP) or, more usefully, dendrimer encapsulation – ring closing metathesis (RCM), cross metathesis (CM), enyne metathesis reactions (EYM) – for reactions in water without a co-solvent and (ii) construction and functionalization of dendrimers by CM reactions. PMID:21286399

  19. A comprehensive study of olefin metathesis catalyzed by Ru-based catalysts.

    PubMed

    Poater, Albert; Cavallo, Luigi

    2015-01-01

    During a Ru-catalyzed reaction of an olefin with an alkylidene moiety that leads to a metallacycle intermediate, the cis insertion of the olefin can occur from two different directions, namely side and bottom with respect to the phosphine or N-heterocyclic ligand (NHC), depending on the first or second generation Grubbs catalyst. Here, DFT calculations unravel to which extent the bottom coordination of olefins with respect is favored over the side coordination through screening a wide range of catalysts, including first and second generation Grubbs catalysts as well as the subsequent Hoveyda derivatives. The equilibrium between bottom and side coordination is influenced by sterics, electronics, and polarity of the solvent. The side attack is favored for sterically less demanding NHC and/or alkylidene ligands. Moreover the generation of a 14-electron species is also discussed, with either pyridine or phosphine ligands to dissociate.

  20. A comprehensive study of olefin metathesis catalyzed by Ru-based catalysts

    PubMed Central

    2015-01-01

    Summary During a Ru-catalyzed reaction of an olefin with an alkylidene moiety that leads to a metallacycle intermediate, the cis insertion of the olefin can occur from two different directions, namely side and bottom with respect to the phosphine or N-heterocyclic ligand (NHC), depending on the first or second generation Grubbs catalyst. Here, DFT calculations unravel to which extent the bottom coordination of olefins with respect is favored over the side coordination through screening a wide range of catalysts, including first and second generation Grubbs catalysts as well as the subsequent Hoveyda derivatives. The equilibrium between bottom and side coordination is influenced by sterics, electronics, and polarity of the solvent. The side attack is favored for sterically less demanding NHC and/or alkylidene ligands. Moreover the generation of a 14-electron species is also discussed, with either pyridine or phosphine ligands to dissociate. PMID:26664596

  1. A comprehensive study of olefin metathesis catalyzed by Ru-based catalysts.

    PubMed

    Poater, Albert; Cavallo, Luigi

    2015-01-01

    During a Ru-catalyzed reaction of an olefin with an alkylidene moiety that leads to a metallacycle intermediate, the cis insertion of the olefin can occur from two different directions, namely side and bottom with respect to the phosphine or N-heterocyclic ligand (NHC), depending on the first or second generation Grubbs catalyst. Here, DFT calculations unravel to which extent the bottom coordination of olefins with respect is favored over the side coordination through screening a wide range of catalysts, including first and second generation Grubbs catalysts as well as the subsequent Hoveyda derivatives. The equilibrium between bottom and side coordination is influenced by sterics, electronics, and polarity of the solvent. The side attack is favored for sterically less demanding NHC and/or alkylidene ligands. Moreover the generation of a 14-electron species is also discussed, with either pyridine or phosphine ligands to dissociate. PMID:26664596

  2. Simple one-pot synthesis of Rh-Fe3O4 heterodimer nanocrystals and their applications to a magnetically recyclable catalyst for efficient and selective reduction of nitroarenes and alkenes.

    PubMed

    Jang, Youngjin; Kim, Seyoung; Jun, Samuel Woojoo; Kim, Byung Hyo; Hwang, Sunhwan; Song, In Kyu; Kim, B Moon; Hyeon, Taeghwan

    2011-03-28

    A simple synthesis of Rh-Fe(3)O(4) heterodimer nanocrystals was achieved by controlled one-pot thermolysis. The nanocrystals exhibited excellent activities for the selective reduction of nitroarenes and alkenes. Furthermore the nanocrystal catalyst could be easily separated by a magnet, and recycled eight times without losing the catalytic activity.

  3. Z-Selective Catalytic Olefin Cross-Metathesis

    PubMed Central

    Meek, Simon J.; O’Brien, Robert V.; Llaveria, Josep; Schrock, Richard R.; Hoveyda, Amir H.

    2011-01-01

    Alkenes are found in a great number of biologically active molecules and are employed in numerous transformations in organic chemistry. Many olefins exist as E or higher energy Z isomers. Catalytic procedures for stereoselective formation of alkenes are therefore valuable; nonetheless, methods for synthesis of 1,2-disubstituted Z olefins are scarce. Here we report catalytic Z-selective cross-metathesis reactions of terminal enol ethers, which have not been reported previously, and allylic amides, employed thus far only in E-selective processes; the corresponding disubstituted alkenes are formed in up to >98% Z selectivity and 97% yield. Transformations, promoted by catalysts that contain the highly abundant and inexpensive molybdenum, are amenable to gram scale operations. Use of reduced pressure is introduced as a simple and effective strategy for achieving high stereoselectivity. Utility is demonstrated by syntheses of anti-oxidant C18 (plasm)-16:0 (PC), found in electrically active tissues and implicated in Alzheimer’s disease, and the potent immunostimulant KRN7000. PMID:21430774

  4. Redox-switchable ring-closing metathesis: catalyst design, synthesis, and study.

    PubMed

    Arumugam, Kuppuswamy; Varnado, C Daniel; Sproules, Stephen; Lynch, Vincent M; Bielawski, Christopher W

    2013-08-12

    High yielding syntheses of 1-(ferrocenylmethyl)-3-mesitylimidazolium iodide (1) and 1-(ferrocenylmethyl)-3-mesitylimidazol-2-ylidene (2) were developed. Complexation of 2 to [{Ir(cod)Cl}2] (cod=cis,cis-1,5-cyclooctadiene) or [Ru(PCy3)Cl2(=CH-o-O-iPrC6H4)] (Cy=cyclohexyl) afforded 3 ([Ir(2)(cod)Cl]) and 5 ([Ru(2)Cl2(=CH-o-O-iPrC6H4)]), respectively. Complex 4 ([Ir(2)(CO)2Cl]) was obtained by bubbling carbon monoxide through a solution of 3 in CH2Cl2. Spectroelectrochemical IR analysis of 4 revealed that the oxidation of the ferrocene moiety in 2 significantly reduced the electron-donating ability of the N-heterocyclic carbene ligand (ΔTEP=9 cm(-1); TEP=Tolman electronic parameter). The oxidation of 5 with [Fe(η(5)-C5H4COMe)Cp][BF4] as well as the subsequent reduction of the corresponding product [5][BF4] with decamethylferrocene (Fc*) each proceeded in greater than 95% yield. Mössbauer, UV/Vis and EPR spectroscopy analysis confirmed that [5][BF4] contained a ferrocenium species, indicating that the iron center was selectively oxidized over the ruthenium center. Complexes 5 and [5][BF4] were found to catalyze the ring-closing metathesis (RCM) of diethyl diallylmalonate with observed pseudo-first-order rate constants (k(obs)) of 3.1×10(-4) and 1.2×10(-5) s(-1), respectively. By adding suitable oxidants or reductants over the course of a RCM reaction, complex 5 was switched between different states of catalytic activity. A second-generation N-heterocyclic carbene that featured a 1',2',3',4',5'- pentamethylferrocenyl moiety (10) was also prepared and metal complexes containing this ligand were found to undergo iron-centered oxidations at lower potentials than analogous complexes supported by 2 (0.30-0.36 V vs. 0.56-0.62 V, respectively). Redox switching experiments using [Ru(10)Cl2(=CH-o-O-iPrC6H4)] revealed that greater than 94% of the initial catalytic activity was restored after an oxidation-reduction cycle.

  5. Tandem ammonia borane dehydrogenation/alkene hydrogenation mediated by [Pd(NHC)(PR3)] (NHC = N-heterocyclic carbene) catalysts.

    PubMed

    Hartmann, Caroline E; Jurčík, Václav; Songis, Olivier; Cazin, Catherine S J

    2013-02-01

    [Pd(NHC)(PR(3))] complexes were shown to be active catalysts in the dehydrogenation of ammonia borane and the subsequent hydrogenation of unsaturated compounds at very low catalyst loadings (0.05 mol% for some substrates). PMID:23254388

  6. Switching on the Metathesis Activity of Re Oxo Alkylidene Surface Sites through a Tailor-Made Silica-Alumina Support.

    PubMed

    Valla, Maxence; Stadler, David; Mougel, Victor; Copéret, Christophe

    2016-01-18

    Re oxo alkylidene surface species are putative active sites in classical heterogeneous Re-based alkene-metathesis catalysts. However, the lack of evidence for such species questions their existence and/or relevance as reaction intermediates. Using Re(O)(=CH-CH=CPh2)(OtBuF6)3(THF), the corresponding well-defined Re oxo alkylidene surface species can be generated on both silica and silica-alumina supports. While inactive on the silica support, it displays very good activity, even for functionalized olefins, on the silica-alumina support. PMID:26756446

  7. A metathesis model for the dehydrogenative coupling of amines with alcohols and esters into carboxamides by Milstein's [Ru(PNN)(CO)(H)] catalysts.

    PubMed

    Hasanayn, Faraj; Harb, Hassan

    2014-08-18

    Milstein's [Ru(PNN)(CO)(H)] catalyst (1-Ru) is known to mediate the dehydrogenative coupling of alcohols into esters. When it is used in alcohol-amine mixtures it catalyzes carboxamide formation selectively over esters and imines. The given chemistry is generally accepted to follow metal-ligand cooperation (MLC) mechanisms involving hemiacetals and hemiaminals as intermediates. Using electronic structure DFT methods we investigate alternative, more direct OR/H and NHR/H metal/acyl metathesis routes to coupling that circumvent the intermediacy of the hemiacetal and the hemiaminal. The newly proposed mechanism involves formation of hemiacetaloxide and hemiaminaloxide ion-pairs by addition of an aldehyde (from metal-catalyzed alcohol dehydrogenation) to an octahedral ruthenium-alkoxide or ruthenium-amide intermediate (from alcohol or amine addition to 1-Ru), followed by simple rearrangement (slippage) within the intact ion-pairs to transfer a hydride from the hemiacetaloxide or hemiaminaloxide to the metal. We show that the computed potential energy surfaces that are sometimes invoked to support the MLC mechanism correspond to indirect routes to metathesis. Both the ion-pair and the MLC routes predict the dehydrogenative coupling of ethanol and methanol into methyl acetate to be kinetically much more favored than the kinetics of formation of N-methylacetamide from ethanol and methylamine. However, the calculations provide evidence for the accessibility of a low energy NHR/OR metathesis path that would amidate the ester into the experimentally observed thermodynamically more favored carboxamide product. In fact, 1-Ru is known to be a catalyst for ester amidation. PMID:25079590

  8. Methods of making organic compounds by metathesis

    SciTech Connect

    Abraham, Timothy W.; Kaido, Hiroki; Lee, Choon Woo; Pederson, Richard L.; Schrodi, Yann; Tupy, Michael John

    2015-09-01

    Described are methods of making organic compounds by metathesis chemistry. The methods of the invention are particularly useful for making industrially-important organic compounds beginning with starting compositions derived from renewable feedstocks, such as natural oils. The methods make use of a cross-metathesis step with an olefin compound to produce functionalized alkene intermediates having a pre-determined double bond position. Once isolated, the functionalized alkene intermediate can be self-metathesized or cross-metathesized (e.g., with a second functionalized alkene) to produce the desired organic compound or a precursor thereto. The method may be used to make bifunctional organic compounds, such as diacids, diesters, dicarboxylate salts, acid/esters, acid/amines, acid/alcohols, acid/aldehydes, acid/ketones, acid/halides, acid/nitriles, ester/amines, ester/alcohols, ester/aldehydes, ester/ketones, ester/halides, ester/nitriles, and the like.

  9. Chelating ruthenium phenolate complexes: synthesis, general catalytic activity, and applications in olefin metathesis polymerization.

    PubMed

    Kozłowska, Anna; Dranka, Maciej; Zachara, Janusz; Pump, Eva; Slugovc, Christian; Skowerski, Krzysztof; Grela, Karol

    2014-10-20

    Cyclic Ru-phenolates were synthesized, and these compounds were used as olefin metathesis catalysts. Investigation of their catalytic activity pointed out that, after activation with chemical agents, these catalysts promote ring-closing metathesis (RCM), enyne and cross-metathesis (CM) reactions, including butenolysis, with good results. Importantly, these latent catalysts are soluble in neat dicyclopentadiene (DCPD) and show good applicability in ring-opening metathesis polymeriyation (ROMP) of this monomer. PMID:25204738

  10. Chelating ruthenium phenolate complexes: synthesis, general catalytic activity, and applications in olefin metathesis polymerization.

    PubMed

    Kozłowska, Anna; Dranka, Maciej; Zachara, Janusz; Pump, Eva; Slugovc, Christian; Skowerski, Krzysztof; Grela, Karol

    2014-10-20

    Cyclic Ru-phenolates were synthesized, and these compounds were used as olefin metathesis catalysts. Investigation of their catalytic activity pointed out that, after activation with chemical agents, these catalysts promote ring-closing metathesis (RCM), enyne and cross-metathesis (CM) reactions, including butenolysis, with good results. Importantly, these latent catalysts are soluble in neat dicyclopentadiene (DCPD) and show good applicability in ring-opening metathesis polymeriyation (ROMP) of this monomer.

  11. Carboxylation of alkylboranes by N-heterocyclic carbene copper catalysts: synthesis of carboxylic acids from terminal alkenes and carbon dioxide.

    PubMed

    Ohishi, Takeshi; Zhang, Liang; Nishiura, Masayoshi; Hou, Zhaomin

    2011-08-22

    Caught in the act: N-Heterocyclic carbene copper(I) complexes (1; IPr=1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene) serve as an excellent catalyst for the carboxylation of alkylboranes (2; R=alkyl) with CO(2) to afford a variety of functionalized carboxylic acids (3) in high yields. A novel copper methoxide/alkylborane adduct (A) and its subsequent CO(2) insertion product (B) have been isolated and shown to be true active catalyst species. PMID:21739544

  12. Ring-opening metathesis polymerization with the second generation Hoveyda-Grubbs catalyst: an efficient approach toward high-purity functionalized macrocyclic oligo(cyclooctene)s.

    PubMed

    Blencowe, Anton; Qiao, Greg G

    2013-04-17

    Herein, we present a facile and general strategy to prepare functionalized macrocyclic oligo(cyclooctene)s (cOCOEs) in high purity and high yield by exploiting the ring-opening metathesis polymerization (ROMP) intramolecular backbiting process with the commercially available second generation Hoveyda-Grubbs (HG2) catalyst. In the first instance, ROMP of 5-acetyloxycyclooct-1-ene (ACOE) followed by efficient quenching and removal of the catalyst using an isocyanide derivative afforded macrocyclic oligo(5-acetyloxycyclooct-1-ene) (cOACOE) in high yield (95%), with a weight-average molecular weight (Mw) of 1.6 kDa and polydispersity index (PDI) of 1.6, as determined by gel permeation chromatography (GPC). The structure and purity of the macrocycles were confirmed by NMR spectroscopy and elemental analysis, which indicated the complete absence of end-groups. This was further supported by GPC-matrix assisted laser desorption ionization time-of-flight mass spectroscopy (GPC-MALDI ToF MS), which revealed the exclusive formation of macrocyclic derivatives composed of up to 45 repeat units. Complete removal of residual ruthenium from the macrocycles was confirmed by inductively coupled plasma atomic emission spectroscopy (ICP-AES). The same methodology was subsequently extended to the ROMP of 5-bromocyclooct-1-ene and 1,5-cyclooctadiene to prepare their macrocyclic derivatives, which were further derivatized to produce a library of functionalized macrocyclic oligo(cyclooctene)s. A comparative study using the second and third generation Grubbs catalysts in place of the HG2 catalyst for the polymerization of ACOE provided macrocycles contaminated with linear species, thus indicating that the bidendate benzylidene ligand of the Hoveyda-Grubbs catalyst plays an important role in the observed product distributions.

  13. Metal-Organic Frameworks Stabilize Solution-Inaccessible Cobalt Catalysts for Highly Efficient Broad-Scope Organic Transformations.

    PubMed

    Zhang, Teng; Manna, Kuntal; Lin, Wenbin

    2016-03-01

    New and active earth-abundant metal catalysts are critically needed to replace precious metal-based catalysts for sustainable production of commodity and fine chemicals. We report here the design of highly robust, active, and reusable cobalt-bipyridine- and cobalt-phenanthroline-based metal-organic framework (MOF) catalysts for alkene hydrogenation and hydroboration, aldehyde/ketone hydroboration, and arene C-H borylation. In alkene hydrogenation, the MOF catalysts tolerated a variety of functional groups and displayed unprecedentedly high turnover numbers of ∼2.5 × 10(6) and turnover frequencies of ∼1.1 × 10(5) h(-1). Structural, computational, and spectroscopic studies show that site isolation of the highly reactive (bpy)Co(THF)2 species in the MOFs prevents intermolecular deactivation and stabilizes solution-inaccessible catalysts for broad-scope organic transformations. Computational, spectroscopic, and kinetic evidence further support a hitherto unknown (bpy(•-))Co(I)(THF)2 ground state that coordinates to alkene and dihydrogen and then undergoing σ-complex-assisted metathesis to form (bpy)Co(alkyl)(H). Reductive elimination of alkane followed by alkene binding completes the catalytic cycle. MOFs thus provide a novel platform for discovering new base-metal molecular catalysts and exhibit enormous potential in sustainable chemical catalysis.

  14. Catalysis: The mechanics of metathesis

    NASA Astrophysics Data System (ADS)

    Love, Jennifer A.

    2010-07-01

    Olefin metathesis is a flexible and efficient method for making carbon-carbon bonds and has found widespread application in academia and industry. Now, a detailed mechanistic study looking at key catalytic intermediates offers new insight into this reaction, and may prove useful in the development of more active and selective catalysts.

  15. An S(N)Ar approach to sterically hindered ortho-alkoxybenzaldehydes for the synthesis of olefin metathesis catalysts.

    PubMed

    Engle, Keary M; Luo, Shao-Xiong; Grubbs, Robert H

    2015-04-17

    A three-step procedure has been developed for preparing ortho-alkoxybenzaldehydes from ortho-fluorobenzaldehydes that tolerates the use of sterically hindered sodium alkoxide nucleophiles. The protocol is modular and operationally convenient. The ortho-alkoxybenzaldehyde products can be converted in one additional step to ortho-alkoxystyrenes by a Wittig reaction. These styrenes are precursors to the chelating benzylidene moiety in a proposed series of novel ruthenium complexes for use in olefin metathesis. Chelation with three representative styrenes has been demonstrated. PMID:25826714

  16. An S(N)Ar approach to sterically hindered ortho-alkoxybenzaldehydes for the synthesis of olefin metathesis catalysts.

    PubMed

    Engle, Keary M; Luo, Shao-Xiong; Grubbs, Robert H

    2015-04-17

    A three-step procedure has been developed for preparing ortho-alkoxybenzaldehydes from ortho-fluorobenzaldehydes that tolerates the use of sterically hindered sodium alkoxide nucleophiles. The protocol is modular and operationally convenient. The ortho-alkoxybenzaldehyde products can be converted in one additional step to ortho-alkoxystyrenes by a Wittig reaction. These styrenes are precursors to the chelating benzylidene moiety in a proposed series of novel ruthenium complexes for use in olefin metathesis. Chelation with three representative styrenes has been demonstrated.

  17. Cationic bis-N-heterocyclic carbene (NHC) ruthenium complex: structure and application as latent catalyst in olefin metathesis.

    PubMed

    Rouen, Mathieu; Queval, Pierre; Falivene, Laura; Allard, Jessica; Toupet, Loïc; Crévisy, Christophe; Caijo, Frédéric; Baslé, Olivier; Cavallo, Luigi; Mauduit, Marc

    2014-10-13

    An unexpected cationic bis-N-heterocyclic carbene (NHC) benzylidene ether based ruthenium complex (2 a) was prepared through the double incorporation of an unsymmetrical unsaturated N-heterocyclic carbene (U2 -NHC) ligand that bore an N-substituted cyclododecyl side chain. The isolation and full characterization (including X-ray diffraction studies) of key synthetic intermediates along with theoretical calculations allowed us to understand the mechanism of the overall cationization process. Finally, the newly developed complex 2 a displayed interesting latent behavior during ring-closing metathesis, which could be "switched on" under acidic conditions. PMID:25212827

  18. Cationic bis-N-heterocyclic carbene (NHC) ruthenium complex: structure and application as latent catalyst in olefin metathesis.

    PubMed

    Rouen, Mathieu; Queval, Pierre; Falivene, Laura; Allard, Jessica; Toupet, Loïc; Crévisy, Christophe; Caijo, Frédéric; Baslé, Olivier; Cavallo, Luigi; Mauduit, Marc

    2014-10-13

    An unexpected cationic bis-N-heterocyclic carbene (NHC) benzylidene ether based ruthenium complex (2 a) was prepared through the double incorporation of an unsymmetrical unsaturated N-heterocyclic carbene (U2 -NHC) ligand that bore an N-substituted cyclododecyl side chain. The isolation and full characterization (including X-ray diffraction studies) of key synthetic intermediates along with theoretical calculations allowed us to understand the mechanism of the overall cationization process. Finally, the newly developed complex 2 a displayed interesting latent behavior during ring-closing metathesis, which could be "switched on" under acidic conditions.

  19. NOx analyser interefence from alkenes

    NASA Astrophysics Data System (ADS)

    Bloss, W. J.; Alam, M. S.; Lee, J. D.; Vazquez, M.; Munoz, A.; Rodenas, M.

    2012-04-01

    Nitrogen oxides (NO and NO2, collectively NOx) are critical intermediates in atmospheric chemistry. NOx abundance controls the levels of the primary atmospheric oxidants OH, NO3 and O3, and regulates the ozone production which results from the degradation of volatile organic compounds. NOx are also atmospheric pollutants in their own right, and NO2 is commonly included in air quality objectives and regulations. In addition to their role in controlling ozone formation, NOx levels affect the production of other pollutants such as the lachrymator PAN, and the nitrate component of secondary aerosol particles. Consequently, accurate measurement of nitrogen oxides in the atmosphere is of major importance for understanding our atmosphere. The most widely employed approach for the measurement of NOx is chemiluminescent detection of NO2* from the NO + O3 reaction, combined with NO2 reduction by either a heated catalyst or photoconvertor. The reaction between alkenes and ozone is also chemiluminescent; therefore alkenes may contribute to the measured NOx signal, depending upon the instrumental background subtraction cycle employed. This interference has been noted previously, and indeed the effect has been used to measure both alkenes and ozone in the atmosphere. Here we report the results of a systematic investigation of the response of a selection of NOx analysers, ranging from systems used for routine air quality monitoring to atmospheric research instrumentation, to a series of alkenes ranging from ethene to the biogenic monoterpenes, as a function of conditions (co-reactants, humidity). Experiments were performed in the European Photoreactor (EUPHORE) to ensure common calibration, a common sample for the monitors, and to unequivocally confirm the alkene (via FTIR) and NO2 (via DOAS) levels present. The instrument responses ranged from negligible levels up to 10 % depending upon the alkene present and conditions used. Such interferences may be of substantial importance

  20. The influence of anionic ligands on stereoisomerism of Ru carbenes and their importance to efficiency and selectivity of catalytic olefin metathesis reactions.

    PubMed

    Torker, Sebastian; Khan, R Kashif M; Hoveyda, Amir H

    2014-03-01

    Investigations detailed herein provide insight regarding the mechanism of stereochemical inversion of stereogenic-at-Ru carbene complexes through a nonolefin metathesis-based polytopal rearrangement pathway. Computational analyses (DFT) reveal that there are two key factors that generate sufficient energy barriers that are responsible for the possibility of isolation and characterization of high-energy, but kinetically stable, intermediates: (1) donor-donor interactions that involve the anionic ligands and the strongly electron donating carbene groups and (2) dipolar effects arising from the syn relationship between the anionic groups (iodide and phenoxide). We demonstrate that a Brønsted acid lowers barriers to facilitate isomerization, and that the positive influence of a proton source is the result of its ability to diminish the repulsive electronic interactions originating from the anionic ligands. The implications of the present studies regarding a more sophisticated knowledge of the role of anionic units on the efficiency of Ru-catalyzed olefin metathesis reactions are discussed. The electronic basis for the increased facility with which allylic alcohols participate in olefin metathesis processes will be presented as well. Finally, we illustrate how a better understanding of the role of anionic ligands has served as the basis for successful design of Ru-based Z-selective catalysts for alkene metathesis. PMID:24533571

  1. The influence of anionic ligands on stereoisomerism of Ru carbenes and their importance to efficiency and selectivity of catalytic olefin metathesis reactions.

    PubMed

    Torker, Sebastian; Khan, R Kashif M; Hoveyda, Amir H

    2014-03-01

    Investigations detailed herein provide insight regarding the mechanism of stereochemical inversion of stereogenic-at-Ru carbene complexes through a nonolefin metathesis-based polytopal rearrangement pathway. Computational analyses (DFT) reveal that there are two key factors that generate sufficient energy barriers that are responsible for the possibility of isolation and characterization of high-energy, but kinetically stable, intermediates: (1) donor-donor interactions that involve the anionic ligands and the strongly electron donating carbene groups and (2) dipolar effects arising from the syn relationship between the anionic groups (iodide and phenoxide). We demonstrate that a Brønsted acid lowers barriers to facilitate isomerization, and that the positive influence of a proton source is the result of its ability to diminish the repulsive electronic interactions originating from the anionic ligands. The implications of the present studies regarding a more sophisticated knowledge of the role of anionic units on the efficiency of Ru-catalyzed olefin metathesis reactions are discussed. The electronic basis for the increased facility with which allylic alcohols participate in olefin metathesis processes will be presented as well. Finally, we illustrate how a better understanding of the role of anionic ligands has served as the basis for successful design of Ru-based Z-selective catalysts for alkene metathesis.

  2. Hexacoordinate Ru-based olefin metathesis catalysts with pH-responsive N-heterocyclic carbene (NHC) and N-donor ligands for ROMP reactions in non-aqueous, aqueous and emulsion conditions.

    PubMed

    Balof, Shawna L; Nix, K Owen; Olliff, Matthew S; Roessler, Sarah E; Saha, Arpita; Müller, Kevin B; Behrens, Ulrich; Valente, Edward J; Schanz, Hans-Jörg

    2015-01-01

    Three new ruthenium alkylidene complexes (PCy3)Cl2(H2ITap)Ru=CHSPh (9), (DMAP)2Cl2(H2ITap)Ru=CHPh (11) and (DMAP)2Cl2(H2ITap)Ru=CHSPh (12) have been synthesized bearing the pH-responsive H2ITap ligand (H2ITap = 1,3-bis(2',6'-dimethyl-4'-dimethylaminophenyl)-4,5-dihydroimidazol-2-ylidene). Catalysts 11 and 12 are additionally ligated by two pH-responsive DMAP ligands. The crystal structure was solved for complex 12 by X-ray diffraction. In organic, neutral solution, the catalysts are capable of performing standard ring-opening metathesis polymerization (ROMP) and ring closing metathesis (RCM) reactions with standard substrates. The ROMP with complex 11 is accelerated in the presence of two equiv of H3PO4, but is reduced as soon as the acid amount increased. The metathesis of phenylthiomethylidene catalysts 9 and 12 is sluggish at room temperature, but their ROMP can be dramatically accelerated at 60 °C. Complexes 11 and 12 are soluble in aqueous acid. They display the ability to perform RCM of diallylmalonic acid (DAMA), however, their conversions are very low amounting only to few turnovers before decomposition. However, both catalysts exhibit outstanding performance in the ROMP of dicyclopentadiene (DCPD) and mixtures of DCPD with cyclooctene (COE) in acidic aqueous microemulsion. With loadings as low as 180 ppm, the catalysts afforded mostly quantitative conversions of these monomers while maintaining the size and shape of the droplets throughout the polymerization process. Furthermore, the coagulate content for all experiments stayed <2%. This represents an unprecedented efficiency in emulsion ROMP based on hydrophilic ruthenium alkylidene complexes.

  3. Hexacoordinate Ru-based olefin metathesis catalysts with pH-responsive N-heterocyclic carbene (NHC) and N-donor ligands for ROMP reactions in non-aqueous, aqueous and emulsion conditions

    PubMed Central

    Balof, Shawna L; Nix, K Owen; Olliff, Matthew S; Roessler, Sarah E; Saha, Arpita; Müller, Kevin B; Behrens, Ulrich; Valente, Edward J

    2015-01-01

    Summary Three new ruthenium alkylidene complexes (PCy3)Cl2(H2ITap)Ru=CHSPh (9), (DMAP)2Cl2(H2ITap)Ru=CHPh (11) and (DMAP)2Cl2(H2ITap)Ru=CHSPh (12) have been synthesized bearing the pH-responsive H2ITap ligand (H2ITap = 1,3-bis(2’,6’-dimethyl-4’-dimethylaminophenyl)-4,5-dihydroimidazol-2-ylidene). Catalysts 11 and 12 are additionally ligated by two pH-responsive DMAP ligands. The crystal structure was solved for complex 12 by X-ray diffraction. In organic, neutral solution, the catalysts are capable of performing standard ring-opening metathesis polymerization (ROMP) and ring closing metathesis (RCM) reactions with standard substrates. The ROMP with complex 11 is accelerated in the presence of two equiv of H3PO4, but is reduced as soon as the acid amount increased. The metathesis of phenylthiomethylidene catalysts 9 and 12 is sluggish at room temperature, but their ROMP can be dramatically accelerated at 60 °C. Complexes 11 and 12 are soluble in aqueous acid. They display the ability to perform RCM of diallylmalonic acid (DAMA), however, their conversions are very low amounting only to few turnovers before decomposition. However, both catalysts exhibit outstanding performance in the ROMP of dicyclopentadiene (DCPD) and mixtures of DCPD with cyclooctene (COE) in acidic aqueous microemulsion. With loadings as low as 180 ppm, the catalysts afforded mostly quantitative conversions of these monomers while maintaining the size and shape of the droplets throughout the polymerization process. Furthermore, the coagulate content for all experiments stayed <2%. This represents an unprecedented efficiency in emulsion ROMP based on hydrophilic ruthenium alkylidene complexes. PMID:26664616

  4. Hexacoordinate Ru-based olefin metathesis catalysts with pH-responsive N-heterocyclic carbene (NHC) and N-donor ligands for ROMP reactions in non-aqueous, aqueous and emulsion conditions.

    PubMed

    Balof, Shawna L; Nix, K Owen; Olliff, Matthew S; Roessler, Sarah E; Saha, Arpita; Müller, Kevin B; Behrens, Ulrich; Valente, Edward J; Schanz, Hans-Jörg

    2015-01-01

    Three new ruthenium alkylidene complexes (PCy3)Cl2(H2ITap)Ru=CHSPh (9), (DMAP)2Cl2(H2ITap)Ru=CHPh (11) and (DMAP)2Cl2(H2ITap)Ru=CHSPh (12) have been synthesized bearing the pH-responsive H2ITap ligand (H2ITap = 1,3-bis(2',6'-dimethyl-4'-dimethylaminophenyl)-4,5-dihydroimidazol-2-ylidene). Catalysts 11 and 12 are additionally ligated by two pH-responsive DMAP ligands. The crystal structure was solved for complex 12 by X-ray diffraction. In organic, neutral solution, the catalysts are capable of performing standard ring-opening metathesis polymerization (ROMP) and ring closing metathesis (RCM) reactions with standard substrates. The ROMP with complex 11 is accelerated in the presence of two equiv of H3PO4, but is reduced as soon as the acid amount increased. The metathesis of phenylthiomethylidene catalysts 9 and 12 is sluggish at room temperature, but their ROMP can be dramatically accelerated at 60 °C. Complexes 11 and 12 are soluble in aqueous acid. They display the ability to perform RCM of diallylmalonic acid (DAMA), however, their conversions are very low amounting only to few turnovers before decomposition. However, both catalysts exhibit outstanding performance in the ROMP of dicyclopentadiene (DCPD) and mixtures of DCPD with cyclooctene (COE) in acidic aqueous microemulsion. With loadings as low as 180 ppm, the catalysts afforded mostly quantitative conversions of these monomers while maintaining the size and shape of the droplets throughout the polymerization process. Furthermore, the coagulate content for all experiments stayed <2%. This represents an unprecedented efficiency in emulsion ROMP based on hydrophilic ruthenium alkylidene complexes. PMID:26664616

  5. Metathesis depolymerizable surfactants

    DOEpatents

    Jamison, Gregory M.; Wheeler, David R.; Loy, Douglas A.; Simmons, Blake A.; Long, Timothy M.; McElhanon, James R.; Rahimian, Kamyar; Staiger, Chad L.

    2008-04-15

    A class of surfactant molecules whose structure includes regularly spaced unsaturation in the tail group and thus, can be readily decomposed by ring-closing metathesis, and particularly by the action of a transition metal catalyst, to form small molecule products. These small molecules are designed to have increased volatility and/or enhanced solubility as compared to the original surfactant molecule and are thus easily removed by solvent extraction or vacuum extraction at low temperature. By producing easily removable decomposition products, the surfactant molecules become particularly desirable as template structures for preparing meso- and microstructural materials with tailored properties.

  6. Enantioselective olefin metathesis with cyclometalated ruthenium complexes.

    PubMed

    Hartung, John; Dornan, Peter K; Grubbs, Robert H

    2014-09-17

    The success of enantioselective olefin metathesis relies on the design of enantioenriched alkylidene complexes capable of transferring stereochemical information from the catalyst structure to the reactants. Cyclometalation of the NHC ligand has proven to be a successful strategy to incorporate stereogenic atoms into the catalyst structure. Enantioenriched complexes incorporating this design element catalyze highly Z- and enantioselective asymmetric ring opening/cross metathesis (AROCM) of norbornenes and cyclobutenes, and the difference in ring strain between these two substrates leads to different propagating species in the catalytic cycle. Asymmetric ring closing metathesis (ARCM) of a challenging class of prochiral trienes has also been achieved. The extent of reversibility and effect of reaction setup was also explored. Finally, promising levels of enantioselectivity in an unprecedented Z-selective asymmetric cross metathesis (ACM) of a prochiral 1,4-diene was demonstrated. PMID:25137310

  7. Tandem Catalysis Utilizing Olefin Metathesis Reactions.

    PubMed

    Zieliński, Grzegorz K; Grela, Karol

    2016-07-01

    Since olefin metathesis transformation has become a favored synthetic tool in organic synthesis, more and more distinct non-metathetical reactions of alkylidene ruthenium complexes have been developed. Depending on the conditions applied, the same olefin metathesis catalysts can efficiently promote isomerization reactions, hydrogenation of C=C double bonds, oxidation reactions, and many others. Importantly, these transformations can be carried out in tandem with olefin metathesis reactions. Through addition of one portion of a catalyst, a tandem process provides structurally advanced products from relatively simple substrates without the need for isolation of the intermediates. These aspects not only make tandem catalysis very attractive from a practical point of view, but also open new avenues in (retro)synthetic planning. However, in the literature, the term "tandem process" is sometimes used improperly to describe other types of multi-reaction sequences. In this Concept, a number of examples of tandem catalysis involving olefin metathesis are discussed with an emphasis on their synthetic value.

  8. Enantioselective olefin metathesis with cyclometalated ruthenium complexes.

    PubMed

    Hartung, John; Dornan, Peter K; Grubbs, Robert H

    2014-09-17

    The success of enantioselective olefin metathesis relies on the design of enantioenriched alkylidene complexes capable of transferring stereochemical information from the catalyst structure to the reactants. Cyclometalation of the NHC ligand has proven to be a successful strategy to incorporate stereogenic atoms into the catalyst structure. Enantioenriched complexes incorporating this design element catalyze highly Z- and enantioselective asymmetric ring opening/cross metathesis (AROCM) of norbornenes and cyclobutenes, and the difference in ring strain between these two substrates leads to different propagating species in the catalytic cycle. Asymmetric ring closing metathesis (ARCM) of a challenging class of prochiral trienes has also been achieved. The extent of reversibility and effect of reaction setup was also explored. Finally, promising levels of enantioselectivity in an unprecedented Z-selective asymmetric cross metathesis (ACM) of a prochiral 1,4-diene was demonstrated.

  9. Enantioselective Olefin Metathesis with Cyclometalated Ruthenium Complexes

    PubMed Central

    2015-01-01

    The success of enantioselective olefin metathesis relies on the design of enantioenriched alkylidene complexes capable of transferring stereochemical information from the catalyst structure to the reactants. Cyclometalation of the NHC ligand has proven to be a successful strategy to incorporate stereogenic atoms into the catalyst structure. Enantioenriched complexes incorporating this design element catalyze highly Z- and enantioselective asymmetric ring opening/cross metathesis (AROCM) of norbornenes and cyclobutenes, and the difference in ring strain between these two substrates leads to different propagating species in the catalytic cycle. Asymmetric ring closing metathesis (ARCM) of a challenging class of prochiral trienes has also been achieved. The extent of reversibility and effect of reaction setup was also explored. Finally, promising levels of enantioselectivity in an unprecedented Z-selective asymmetric cross metathesis (ACM) of a prochiral 1,4-diene was demonstrated. PMID:25137310

  10. FeCl3 -Catalyzed Ring-Closing Carbonyl-Olefin Metathesis.

    PubMed

    Ma, Lina; Li, Wenjuan; Xi, Hui; Bai, Xiaohui; Ma, Enlu; Yan, Xiaoyu; Li, Zhiping

    2016-08-22

    Exploiting catalytic carbonyl-olefin metathesis is an ongoing challenge in organic synthesis. Reported herein is an FeCl3 -catalyzed ring-closing carbonyl-olefin metathesis. The protocol allows access to a range of carbo-/heterocyclic alkenes with good efficiency and excellent trans diastereoselectivity. The methodology presents one of the rare examples of catalytic ring-closing carbonyl-olefin metathesis. This process is proposed to take place by FeCl3 -catalyzed oxetane formation followed by retro-ring-opening to deliver metathesis products.

  11. FeCl3 -Catalyzed Ring-Closing Carbonyl-Olefin Metathesis.

    PubMed

    Ma, Lina; Li, Wenjuan; Xi, Hui; Bai, Xiaohui; Ma, Enlu; Yan, Xiaoyu; Li, Zhiping

    2016-08-22

    Exploiting catalytic carbonyl-olefin metathesis is an ongoing challenge in organic synthesis. Reported herein is an FeCl3 -catalyzed ring-closing carbonyl-olefin metathesis. The protocol allows access to a range of carbo-/heterocyclic alkenes with good efficiency and excellent trans diastereoselectivity. The methodology presents one of the rare examples of catalytic ring-closing carbonyl-olefin metathesis. This process is proposed to take place by FeCl3 -catalyzed oxetane formation followed by retro-ring-opening to deliver metathesis products. PMID:27431372

  12. Comparing Ru and Fe-catalyzed olefin metathesis.

    PubMed

    Poater, Albert; Chaitanya Vummaleti, Sai Vikrama; Pump, Eva; Cavallo, Luigi

    2014-08-01

    Density functional theory calculations have been used to explore the potential of Fe-based complexes with an N-heterocyclic carbene ligand, as olefin metathesis catalysts. Apart from a less endothermic reaction energy profile, a small reduction in the predicted upper energy barriers (≈ 2 kcal mol(-1)) is calculated in the Fe catalyzed profile with respect to the Ru catalysed profile. Overall, this study indicates that Fe-based catalysts have the potential to be very effective olefin metathesis catalysts.

  13. NHC Backbone Configuration in Ruthenium-Catalyzed Olefin Metathesis.

    PubMed

    Paradiso, Veronica; Costabile, Chiara; Grisi, Fabia

    2016-01-20

    The catalytic properties of olefin metathesis ruthenium complexes bearing N-heterocyclic carbene ligands with stereogenic centers on the backbone are described. Differences in catalytic behavior depending on the backbone configurations of symmetrical and unsymmetrical NHCs are discussed. In addition, an overview on asymmetric olefin metathesis promoted by chiral catalysts bearing C₂-symmetric and C₁-symmetric NHCs is provided.

  14. Ruthenium-catalyzed tandem olefin metathesis-oxidations.

    PubMed

    Scholte, Andrew A; An, Mi Hyun; Snapper, Marc L

    2006-10-12

    [reaction: see text] The utility of Grubbs' 2nd generation metathesis catalyst has been expanded by the development of two tandem olefin metathesis/oxidation protocols. These ruthenium-catalyzed processes provide cis-diols or alpha-hydroxy ketones from simple olefinic starting materials.

  15. NHC Backbone Configuration in Ruthenium-Catalyzed Olefin Metathesis.

    PubMed

    Paradiso, Veronica; Costabile, Chiara; Grisi, Fabia

    2016-01-01

    The catalytic properties of olefin metathesis ruthenium complexes bearing N-heterocyclic carbene ligands with stereogenic centers on the backbone are described. Differences in catalytic behavior depending on the backbone configurations of symmetrical and unsymmetrical NHCs are discussed. In addition, an overview on asymmetric olefin metathesis promoted by chiral catalysts bearing C₂-symmetric and C₁-symmetric NHCs is provided. PMID:26805793

  16. The doping effect of fluorinated aromatic hydrocarbon solvents on the performance of common olefin metathesis catalysts: application in the preparation of biologically active compounds.

    PubMed

    Samojłowicz, Cezary; Bieniek, Michał; Zarecki, Andrzej; Kadyrov, Renat; Grela, Karol

    2008-12-21

    Aromatic fluorinated hydrocarbons, used as solvents for olefin metathesis reactions, catalysed by standard commercially available Ru precatalysts, allow substantially higher yields to be obtained, especially of challenging substrates, including natural and biologically active compounds.

  17. Chemoselective single-site Earth-abundant metal catalysts at metal-organic framework nodes.

    PubMed

    Manna, Kuntal; Ji, Pengfei; Lin, Zekai; Greene, Francis X; Urban, Ania; Thacker, Nathan C; Lin, Wenbin

    2016-01-01

    Earth-abundant metal catalysts are critically needed for sustainable chemical synthesis. Here we report a simple, cheap and effective strategy of producing novel earth-abundant metal catalysts at metal-organic framework (MOF) nodes for broad-scope organic transformations. The straightforward metalation of MOF secondary building units (SBUs) with cobalt and iron salts affords highly active and reusable single-site solid catalysts for a range of organic reactions, including chemoselective borylation, silylation and amination of benzylic C-H bonds, as well as hydrogenation and hydroboration of alkenes and ketones. Our structural, spectroscopic and kinetic studies suggest that chemoselective organic transformations occur on site-isolated, electron-deficient and coordinatively unsaturated metal centres at the SBUs via σ-bond metathesis pathways and as a result of the steric environment around the catalytic site. MOFs thus provide a novel platform for the development of highly active and affordable base metal catalysts for the sustainable synthesis of fine chemicals.

  18. Chemoselective single-site Earth-abundant metal catalysts at metal-organic framework nodes

    NASA Astrophysics Data System (ADS)

    Manna, Kuntal; Ji, Pengfei; Lin, Zekai; Greene, Francis X.; Urban, Ania; Thacker, Nathan C.; Lin, Wenbin

    2016-08-01

    Earth-abundant metal catalysts are critically needed for sustainable chemical synthesis. Here we report a simple, cheap and effective strategy of producing novel earth-abundant metal catalysts at metal-organic framework (MOF) nodes for broad-scope organic transformations. The straightforward metalation of MOF secondary building units (SBUs) with cobalt and iron salts affords highly active and reusable single-site solid catalysts for a range of organic reactions, including chemoselective borylation, silylation and amination of benzylic C-H bonds, as well as hydrogenation and hydroboration of alkenes and ketones. Our structural, spectroscopic and kinetic studies suggest that chemoselective organic transformations occur on site-isolated, electron-deficient and coordinatively unsaturated metal centres at the SBUs via σ-bond metathesis pathways and as a result of the steric environment around the catalytic site. MOFs thus provide a novel platform for the development of highly active and affordable base metal catalysts for the sustainable synthesis of fine chemicals.

  19. Chemical Imaging of Catalyst Deactivation during the Conversion of Renewables at the Single Particle Level: The Etherification of Biomass-based Polyols with Alkenes over H-Beta Zeolites

    SciTech Connect

    A Parvulescu; D Mores; E Stavitski; C Teodorescu; P Bruijnicx; R Klein Gebbing; B Weckhuysen

    2011-12-31

    The etherification of biomass-based alcohols with various linear {alpha}-olefins under solvent-free conditions was followed in a space- and time-resolved manner on 9 {micro}m large H-Beta zeolite crystals by confocal fluorescence microscopy. This allowed us to visualize the interaction with the substrate and distribution of the coke products into the catalyst at the level of an individual zeolite crystal during the etherification process. The spectroscopic information obtained on the micrometer-scale zeolite was in line with the results obtained with bulk characterization techniques and further confirmed by the catalytic results obtained both for micrometer-scale and nanoscale zeolites. This allowed us to explain the influence of the substrate type (glycerol, glycols, and alkenes) and zeolite properties (Si/Al ratio and particle size) on the etherification activity. The etherification of the biomass-based alcohols takes place mainly on the external surface of the zeolite particles. The gradual blockage of the external surface of the zeolite results in a partial or total loss of etherification activity. The deactivation could be attributed to olefin oligomerization. The high conversions obtained in the etherification of 1,2-propylene glycol with long linear alkenes (up to 80%) and the pronounced deactivation of the zeolite observed in the etherification of glycerol with long linear alkenes (max. 20% conversion) were explained by the spectroscopic measurements and is due to differences in the adsorption, i.e., in the center of the zeolite particle for glycerol and on the external surface in the case of glycols.

  20. Ring-closing metathesis reactions of bis(enynes): selectivity and surprises.

    PubMed

    Wallace, Debra J; Reamer, Robert A

    2014-06-20

    A study of the ring-closing metathesis reactions of two bis(enynes) is presented. These substrates, which contain two alkenes and two alkynes, as well as a resident stereocenter, can potentially generate metathesis products resulting from many reaction pathways. In this contribution we present our results on these reactions, show how small changes in reaction conditions can lead to different product ratios, and attempt to provide a rationale for the outcomes.

  1. Single-Site Cobalt Catalysts at New Zr8(μ2-O)8(μ2-OH)4 Metal-Organic Framework Nodes for Highly Active Hydrogenation of Alkenes, Imines, Carbonyls, and Heterocycles.

    PubMed

    Ji, Pengfei; Manna, Kuntal; Lin, Zekai; Urban, Ania; Greene, Francis X; Lan, Guangxu; Lin, Wenbin

    2016-09-21

    We report here the synthesis of robust and porous metal-organic frameworks (MOFs), M-MTBC (M = Zr or Hf), constructed from the tetrahedral linker methane-tetrakis(p-biphenylcarboxylate) (MTBC) and two types of secondary building units (SBUs): cubic M8(μ2-O)8(μ2-OH)4 and octahedral M6(μ3-O)4(μ3-OH)4. While the M6-SBU is isostructural with the 12-connected octahedral SBUs of UiO-type MOFs, the M8-SBU is composed of eight M(IV) ions in a cubic fashion linked by eight μ2-oxo and four μ2-OH groups. The metalation of Zr-MTBC SBUs with CoCl2, followed by treatment with NaBEt3H, afforded highly active and reusable solid Zr-MTBC-CoH catalysts for the hydrogenation of alkenes, imines, carbonyls, and heterocycles. Zr-MTBC-CoH was impressively tolerant of a range of functional groups and displayed high activity in the hydrogenation of tri- and tetra-substituted alkenes with TON > 8000 for the hydrogenation of 2,3-dimethyl-2-butene. Our structural and spectroscopic studies show that site isolation of and open environments around the cobalt-hydride catalytic species at Zr8-SBUs are responsible for high catalytic activity in the hydrogenation of a wide range of challenging substrates. MOFs thus provide a novel platform for discovering and studying new single-site base-metal solid catalysts with enormous potential for sustainable chemical synthesis. PMID:27598720

  2. Copper-Catalyzed Oxyboration of Unactivated Alkenes.

    PubMed

    Itoh, Taisuke; Matsueda, Takumi; Shimizu, Yohei; Kanai, Motomu

    2015-11-01

    The first regiodivergent oxyboration of unactivated terminal alkenes is reported, using copper alkoxide as a catalyst, bis(pinacolato)diboron [(Bpin)2 ] as a boron source, and (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO) as an oxygen source. The reaction is compatible with various functional groups. Two regioisomers are selectively produced by selecting the appropriate ligands on copper. The products may be used as a linchpin precursor for various other functionalizations, and net processes such as carbooxygenation, aminooxygenation, and dioxygenation of alkenes can be achieved after C-B bond transformations. Mechanistic studies indicate that the reaction involves the following steps: 1) Transmetalation between CuOtBu and (Bpin)2 to generate a borylcopper species; 2) regiodivergent borylcupration of alkenes; 3) oxidation of the thus-generated C-Cu bond to give an alkyl radical; 4) trapping of the resulting alkyl radical by TEMPO. PMID:26376774

  3. Target Specific Tactics in Olefin Metathesis: Synthetic Approach to cis-syn-cis-Triquinanes and -Propellanes.

    PubMed

    Kotha, Sambasivarao; Aswar, Vikas R

    2016-04-15

    A concise and simple synthetic approach to cis-syn-cis-triquinanes and -propellanes has been demonstrated via olefin metathesis starting with exo-nadic anhydride. This approach involves a ring-opening and ring-closing metathesis sequence of norbornene derivatives using Grubb's catalyst. Early-stage diallylation of norbornene derivatives is demonstrated followed by ring-closing metathesis that delivers propellanes exclusively. Surprisingly, ring-opening metathesis, late-stage diallylation, followed by ring-closing metathesis delivers triquinane as well as propellane derivatives.

  4. Target Specific Tactics in Olefin Metathesis: Synthetic Approach to cis-syn-cis-Triquinanes and -Propellanes.

    PubMed

    Kotha, Sambasivarao; Aswar, Vikas R

    2016-04-15

    A concise and simple synthetic approach to cis-syn-cis-triquinanes and -propellanes has been demonstrated via olefin metathesis starting with exo-nadic anhydride. This approach involves a ring-opening and ring-closing metathesis sequence of norbornene derivatives using Grubb's catalyst. Early-stage diallylation of norbornene derivatives is demonstrated followed by ring-closing metathesis that delivers propellanes exclusively. Surprisingly, ring-opening metathesis, late-stage diallylation, followed by ring-closing metathesis delivers triquinane as well as propellane derivatives. PMID:27050839

  5. Complex polycyclic scaffolds by metathesis rearrangement of Himbert arene/allene cycloadducts.

    PubMed

    Lam, Jonathan K; Schmidt, Yvonne; Vanderwal, Christopher D

    2012-11-01

    The intramolecular arene/allene cycloaddition first described 30 years ago by Himbert and Henn permits rapid access to strained polycyclic compounds. Alkene metathesis processes cleanly rearrange appropriately substituted cycloadducts into complex, functional-group-rich polycyclic lactams of potential utility for natural product synthesis and medicinal chemistry.

  6. Comparing Ru and Fe-catalyzed olefin metathesis.

    PubMed

    Poater, Albert; Chaitanya Vummaleti, Sai Vikrama; Pump, Eva; Cavallo, Luigi

    2014-08-01

    Density functional theory calculations have been used to explore the potential of Fe-based complexes with an N-heterocyclic carbene ligand, as olefin metathesis catalysts. Apart from a less endothermic reaction energy profile, a small reduction in the predicted upper energy barriers (≈ 2 kcal mol(-1)) is calculated in the Fe catalyzed profile with respect to the Ru catalysed profile. Overall, this study indicates that Fe-based catalysts have the potential to be very effective olefin metathesis catalysts. PMID:24821502

  7. Cationic ruthenium alkylidene catalysts bearing phosphine ligands.

    PubMed

    Endo, Koji; Grubbs, Robert H

    2016-02-28

    The discovery of highly active catalysts and the success of ionic liquid immobilized systems have accelerated attention to a new class of cationic metathesis catalysts. We herein report the facile syntheses of cationic ruthenium catalysts bearing bulky phosphine ligands. Simple ligand exchange using silver(i) salts of non-coordinating or weakly coordinating anions provided either PPh3 or chelating Ph2P(CH2)nPPh2 (n = 2 or 3) ligated cationic catalysts. The structures of these newly reported catalysts feature unique geometries caused by ligation of the bulky phosphine ligands. Their activities and selectivities in standard metathesis reactions were also investigated. These cationic ruthenium alkylidene catalysts reported here showed moderate activity and very similar stereoselectivity when compared to the second generation ruthenium dichloride catalyst in ring-closing metathesis, cross metathesis, and ring-opening metathesis polymerization assays.

  8. Protonolysis of a Ruthenium-Carbene Bond and Applications in Olefin Metathesis

    PubMed Central

    Keitz, Benjamin K.; Bouffard, Jean; Bertrand, Guy; Grubbs, Robert H.

    2011-01-01

    The synthesis of a ruthenium complex containing an N-heterocylic carbene (NHC) and a mesoionic carbene (MIC) is described wherein addition of a Brønsted acid results in protonolysis of the Ru-MIC bond to generate an extremely active metathesis catalyst. Mechanistic studies implicate a rate-determining protonation step to generate the metathesis active species. The NHC/MIC catalyst was found to have activity exceeding current commercial ruthenium catalysts. PMID:21574621

  9. Alkane metathesis by tandem alkane-dehydrogenation-olefin-metathesis catalysis and related chemistry.

    PubMed

    Haibach, Michael C; Kundu, Sabuj; Brookhart, Maurice; Goldman, Alan S

    2012-06-19

    Methods for the conversion of both renewable and non-petroleum fossil carbon sources to transportation fuels that are both efficient and economically viable could greatly enhance global security and prosperity. Currently, the major route to convert natural gas and coal to liquids is Fischer-Tropsch catalysis, which is potentially applicable to any source of synthesis gas including biomass and nonconventional fossil carbon sources. The major desired products of Fischer-Tropsch catalysis are n-alkanes that contain 9-19 carbons; they comprise a clean-burning and high combustion quality diesel, jet, and marine fuel. However, Fischer-Tropsch catalysis also results in significant yields of the much less valuable C(3) to C(8)n-alkanes; these are also present in large quantities in oil and gas reserves (natural gas liquids) and can be produced from the direct reduction of carbohydrates. Therefore, methods that could disproportionate medium-weight (C(3)-C(8)) n-alkanes into heavy and light n-alkanes offer great potential value as global demand for fuel increases and petroleum reserves decrease. This Account describes systems that we have developed for alkane metathesis based on the tandem operation of catalysts for alkane dehydrogenation and olefin metathesis. As dehydrogenation catalysts, we used pincer-ligated iridium complexes, and we initially investigated Schrock-type Mo or W alkylidene complexes as olefin metathesis catalysts. The interoperability of the catalysts typically represents a major challenge in tandem catalysis. In our systems, the rate of alkane dehydrogenation generally limits the overall reaction rate, whereas the lifetime of the alkylidene complexes at the relatively high temperatures required to obtain practical dehydrogenation rates (ca. 125 -200 °C) limits the total turnover numbers. Accordingly, we have focused on the development and use of more active dehydrogenation catalysts and more stable olefin-metathesis catalysts. We have used thermally

  10. New library of aminosulfonyl-tagged Hoveyda–Grubbs type complexes: Synthesis, kinetic studies and activity in olefin metathesis transformations

    PubMed Central

    Borré, Etienne; Caijo, Frederic

    2010-01-01

    Summary Seven novel Hoveyda–Grubbs precatalysts bearing an aminosulfonyl function are reported. Kinetic studies indicate an activity enhancement compared to Hoveyda’s precatalyst. A selection of these catalysts was investigated with various substrates in ring-closing metathesis of dienes or enynes and cross metathesis. The results demonstrate that these catalysts show a good tolerance to various chemical functions. PMID:21165173

  11. Intermolecular Hydropyridylation of Unactivated Alkenes.

    PubMed

    Ma, Xiaoshen; Herzon, Seth B

    2016-07-20

    A general method for the hydropyridylation of unactivated alkenes is described. The transformation connects metal-mediated hydrogen atom transfer to alkenes and Minisci addition reactions. The reaction proceeds under mild conditions with high site-selectivities and allows for the construction of tertiary and quaternary centers from simple alkene starting materials. PMID:27384921

  12. Tandem Catalysis Utilizing Olefin Metathesis Reactions.

    PubMed

    Zieliński, Grzegorz K; Grela, Karol

    2016-07-01

    Since olefin metathesis transformation has become a favored synthetic tool in organic synthesis, more and more distinct non-metathetical reactions of alkylidene ruthenium complexes have been developed. Depending on the conditions applied, the same olefin metathesis catalysts can efficiently promote isomerization reactions, hydrogenation of C=C double bonds, oxidation reactions, and many others. Importantly, these transformations can be carried out in tandem with olefin metathesis reactions. Through addition of one portion of a catalyst, a tandem process provides structurally advanced products from relatively simple substrates without the need for isolation of the intermediates. These aspects not only make tandem catalysis very attractive from a practical point of view, but also open new avenues in (retro)synthetic planning. However, in the literature, the term "tandem process" is sometimes used improperly to describe other types of multi-reaction sequences. In this Concept, a number of examples of tandem catalysis involving olefin metathesis are discussed with an emphasis on their synthetic value. PMID:27203528

  13. Copper-Catalyzed Intramolecular Oxidative Amination of Unactivated Internal Alkenes.

    PubMed

    Xiong, Peng; Xu, Fan; Qian, Xiang-Yang; Yohannes, Yared; Song, Jinshuai; Lu, Xin; Xu, Hai-Chao

    2016-03-18

    A copper-catalyzed oxidative amination of unactivated internal alkenes has been developed. The Wacker-type oxidative alkene amination reaction is traditionally catalyzed by a palladium through a mechanism involving aminopalladation and β-hydride elimination. Replacing the precious and scarce palladium with a cheap and abundant copper for this transformation has been challenging because of the difficulty associated with the aminocupration of internal alkenes. The combination of a simple copper salt, without additional ligand, as the catalyst and Dess-Martin periodinane as the oxidant, promotes efficiently the oxidative amination of allylic carbamates and ureas bearing di- and trisubstituted alkenes leading to oxazolidinones and imidazolidinones. Preliminary mechanistic studies suggested a hybrid radical-organometallic mechanism involving an amidyl radical cyclization to form the key C-N bond.

  14. Osmium-catalyzed vicinal oxyamination of alkenes by N-(4-toluenesulfonyloxy)carbamates.

    PubMed

    Masruri; Willis, Anthony C; McLeod, Malcolm D

    2012-10-01

    N-(4-toluenesulfonyloxy)carbamates based on a range of common amine protecting groups serve as preformed nitrogen sources in the intermolecular osmium-catalyzed oxyamination reaction of a variety of mono-, di-, and trisubstituted alkenes. The reactions occur with low catalyst loadings and good yields and afford high regioselectivity for unsymmetrically substituted alkenes.

  15. Catalytic, stereospecific syn-dichlorination of alkenes

    NASA Astrophysics Data System (ADS)

    Cresswell, Alexander J.; Eey, Stanley T.-C.; Denmark, Scott E.

    2015-02-01

    As some of the oldest organic chemical reactions known, the ionic additions of elemental halogens such as bromine and chlorine to alkenes are prototypical examples of stereospecific reactions, typically delivering vicinal dihalides resulting from anti-addition. Although the invention of enantioselective variants is an ongoing challenge, the ability to overturn the intrinsic anti-diastereospecificity of these transformations is also a largely unsolved problem. Here, we describe the first catalytic, syn-stereospecific dichlorination of alkenes, employing a group transfer catalyst based on a redox-active main group element (selenium). With diphenyl diselenide (PhSeSePh) (5 mol%) as the pre-catalyst, benzyltriethylammonium chloride (BnEt3NCl) as the chloride source and an N-fluoropyridinium salt as the oxidant, a wide variety of functionalized cyclic and acyclic 1,2-disubstituted alkenes, including simple allylic alcohols, deliver syn-dichlorides with exquisite stereocontrol. This methodology is expected to find applications in streamlining the synthesis of polychlorinated natural products such as the chlorosulfolipids.

  16. Catalytic, Stereospecific Syn-Dichlorination of Alkenes

    PubMed Central

    Cresswell, Alexander J.; Eey, Stanley T.-C.; Denmark, Scott E.

    2015-01-01

    As some of the oldest organic chemical reactions known, the ionic additions of elemental halogens such as bromine and chlorine to alkenes are prototypical examples of stereospecific reactions, typically delivering vicinal dihalides resulting from anti-addition. Whilst the invention of enantioselective variants is an ongoing challenge, the ability to overturn the intrinsic anti-diastereospecificity of these transformations is also a largely unsolved problem. In this Article, we describe the first catalytic, syn-stereospecific dichlorination of alkenes, employing a group transfer catalyst based on a redox-active main group element (i.e., selenium). Thus, with diphenyl diselenide (PhSeSePh) (5 mol %) as the pre-catalyst, benzyltriethylammonium chloride (BnEt3NCl) as the chloride source, and an N-fluoropyridinium salt as the oxidant, a wide variety of functionalized cyclic and acyclic 1,2-disubstituted alkenes, including simple allylic alcohols, deliver syn-dichlorides with exquisite stereocontrol. This methodology is expected to find applications in streamlining the synthesis of polychlorinated natural products such as the chlorosulfolipids. PMID:25615668

  17. Tandem Olefin Metathesis/Oxidative Cyclization: Synthesis of Tetrahydrofuran Diols from Simple Olefins.

    PubMed

    Dornan, Peter K; Lee, Daniel; Grubbs, Robert H

    2016-05-25

    A tandem olefin metathesis/oxidative cyclization has been developed to synthesize 2,5-disubstituted tetrahydrofuran (THF) diols in a stereocontrolled fashion from simple olefin precursors. The ruthenium metathesis catalyst is converted into an oxidation catalyst in the second step and is thus responsible for both catalytic steps. The stereochemistry of the 1,5-diene intermediate can be controlled through the choice of catalyst and the type of metathesis conducted. This olefin stereochemistry then controls the THF diol stereochemistry through a highly stereospecific oxidative cyclization.

  18. Tandem Olefin Metathesis/Oxidative Cyclization: Synthesis of Tetrahydrofuran Diols from Simple Olefins.

    PubMed

    Dornan, Peter K; Lee, Daniel; Grubbs, Robert H

    2016-05-25

    A tandem olefin metathesis/oxidative cyclization has been developed to synthesize 2,5-disubstituted tetrahydrofuran (THF) diols in a stereocontrolled fashion from simple olefin precursors. The ruthenium metathesis catalyst is converted into an oxidation catalyst in the second step and is thus responsible for both catalytic steps. The stereochemistry of the 1,5-diene intermediate can be controlled through the choice of catalyst and the type of metathesis conducted. This olefin stereochemistry then controls the THF diol stereochemistry through a highly stereospecific oxidative cyclization. PMID:27133576

  19. Alkene epoxidations catalysed by Mo(VI) supported on imidazole-containing polymers I. Synthesis, characterisation, and activity of catalysts in the epoxidation of cyclohexene

    SciTech Connect

    Miller, M.M.; Sherrington, D.C.

    1995-04-01

    Polystyrene resins functionalised with hydroxylpropyl aminomethyl pyridine, pyridyl imidazole, and carboxybenzimidazole, polyglycidyl methacrylate resins functionalised with aminomethyl pyridine and pyridyl imidazole, and polybenzimidazole resin have all been loaded with Mo(VI). The resulting polymer metal complexes have been activated by treatment with t-butylhydroperoxide, then used as catalysts in the liquid-phase epoxidation of cyclohexene using t-butylhydroperoxide. Polymers containing the imidazole group were particularly active, and unlike the other species did not require preactivation to induce high activity. The complexes formed with the imidazole-containing polymers appear to be monometallic species, whereas the other polymer ligands yield oxybridged bimetallic species. This accounts for the major difference in activity recorded. Possible structures for the catalysts are proposed based on information in the literature. 30 refs., 10 figs., 6 tabs.

  20. Iron(III)-Catalyzed Ring-Closing Carbonyl-Olefin Metathesis.

    PubMed

    Saá, Carlos

    2016-09-01

    Recent developments in catalytic carbonyl-olefin metathesis are summarized in this Highlight. Schindler and co-workers have reported that the environmentally benign FeCl3 catalyst promotes ring-closing carbonyl-olefin metathesis (RCCOM) in high yield under very mild conditions.

  1. Synthesis of Long Chain Unsaturated-alpha,omega-Dicarboxylic Acids from Renewable Materials via Olefin Metathesis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The self-metathesis reaction of soy, rapeseed, tall, and linseed oil fatty acids was investigated for the synthesis of symmetrical long-chain unsaturated-alpha,omega-dicarboxylic acids. The metathesis reactions were carried out in the presence of a Grubbs catalyst under solvent-free conditions at a...

  2. Iron(III)-Catalyzed Ring-Closing Carbonyl-Olefin Metathesis.

    PubMed

    Saá, Carlos

    2016-09-01

    Recent developments in catalytic carbonyl-olefin metathesis are summarized in this Highlight. Schindler and co-workers have reported that the environmentally benign FeCl3 catalyst promotes ring-closing carbonyl-olefin metathesis (RCCOM) in high yield under very mild conditions. PMID:27491787

  3. Predicting the enantioselectivity of the copper-catalysed cyclopropanation of alkenes by using quantitative quadrant-diagram representations of the catalysts.

    PubMed

    Aguado-Ullate, Sonia; Urbano-Cuadrado, Manuel; Villalba, Isabel; Pires, Elísabet; García, José I; Bo, Carles; Carbó, Jorge J

    2012-10-29

    We present a new methodology to predict the enantioselectivity of asymmetric catalysis based on quantitative quadrant-diagram representations of the catalysts and quantitative structure-selectivity relationship (QSSR) modelling. To account for quadrant occupation, we used two types of molecular steric descriptors: the Taft-Charton steric parameter (ν(Charton)) and the distance-weighted volume (V(W) ). By assigning the value of the steric descriptors to each of the positions of the quadrant diagram, we generated the independent variables to build the multidimensional QSSR models. The methodology was applied to predict the enantioselectivity in the cyclopropanation of styrene catalysed by copper complexes. The dataset comprised 30 chiral ligands belonging to four different oxazoline-based ligand families: bis- (Box), azabis- (AzaBox), quinolinyl- (Quinox) and pyridyl-oxazoline (Pyox). In the first-order approximation, we generated QSSR models with good predictive ability (r(2) =0.89 and q(2) =0.88). The derived stereochemical model indicated that placing very large groups at two diagonal quadrants and leaving free the other two might be enough to obtain an enantioselective catalyst. Fitting the data to a higher-order polynomial, which included crossterms between the descriptors of the quadrants, resulted in an improvement of the predicting ability of the QSSR model (r(2) =0.96 and q(2) =0.93). This suggests that the relationship between the steric hindrance and the enantioselectivity is non-linear, and that bulky substituents in diagonal quadrants operate synergistically. We believe that the quantitative quadrant-diagram-based QSSR modelling is a further conceptual tool that can be used to predict the selectivity of chiral catalysts and other aspects of catalytic performance. PMID:22987760

  4. Computational study of productive and non-productive cycles in fluoroalkene metathesis

    PubMed Central

    Rybáčková, Markéta; Hošek, Jan; Šimůnek, Ondřej; Kolaříková, Viola

    2015-01-01

    Summary A detailed DFT study of the mechanism of metathesis of fluoroethene, 1-fluoroethene, 1,1-difluoroethene, cis- and trans-1,2-difluoroethene, tetrafluoroethene and chlorotrifluoroethene catalysed with the Hoveyda–Grubbs 2nd generation catalyst was performed. It revealed that a successful metathesis of hydrofluoroethenes is hampered by a high preference for a non-productive catalytic cycle proceeding through a ruthenacyclobutane intermediate bearing fluorines in positions 2 and 4. Moreover, the calculations showed that the cross-metathesis of perfluoro- or perhaloalkenes should be a feasible process and that the metathesis is not very sensitive to stereochemical issues. PMID:26664636

  5. Cross metathesis of unsaturated epoxides for the synthesis of polyfunctional building blocks

    PubMed Central

    Abderrezak, Meriem K; Šichová, Kristýna; Dominguez-Boblett, Nancy; Dupé, Antoine; Kabouche, Zahia; Bruneau, Christian

    2015-01-01

    Summary The cross metathesis of 1,2-epoxy-5-hexene (1) with methyl acrylate and acrylonitrile was investigated as an entry to the synthesis of polyfunctional compounds. The resulting cross metathesis products were hydrogenated in a tandem fashion employing the residual ruthenium from the metathesis step as the hydrogenation catalyst. Interestingly, the epoxide ring remained unreactive toward this hydrogenation method. The saturated compound resulting from the cross metathesis of 1 with methyl acrylate was transformed by means of nucleophilic ring-opening of the epoxide to furnish a diol, an alkoxy alcohol and an amino alcohol in high yields. PMID:26664605

  6. Alkanes and alkenes conversion to high octane gasoline

    SciTech Connect

    Harandi, M.N.; Owen, H.

    1989-07-25

    This patent describes a process for the conversion of lower alkane and alkene hydrocarbons to high octane gasoline. It comprises: contacting a hydrocarbon feedstock comprising lower alkanes and alkenes with a fluidized bed of acidic, shape selective metallosiliate catalyst in a first conversion zone under high temperature alkane conversion conditions wherein the feedstock contains an amount of lower alkene sufficient to provide an exotherm sufficient to maintain near isothermal reaction conditions whereby an effluent stream is produced comprising higher aliphatic hydrocarbons rich in aromatics; contacting the effluent stream with a fluidized bed of acidic, medium pore metallosilicate catalyst in a second conversion zone at moderate temperature under oligonerization and alkylation conditions whereby a C/sub 5/ + gasoline boiling range product is produced rich in alkylated aromatics.

  7. From a decomposition product to an efficient and versatile catalyst: the [Ru(η5-indenyl)(PPh3)2Cl] story.

    PubMed

    Manzini, Simone; Fernández-Salas, José A; Nolan, Steven P

    2014-10-21

    One of the most important challenges in catalyst design is the synthesis of stable promoters without compromising their activity. For this reason, it is important to understand the factors leading to decomposition of such catalysts, especially if side-products negatively affect the activity and selectivity of the starting complex. In this context, the understanding of termination and decomposition processes in olefin metathesis is receiving significant attention from the scientific community. For example, the decomposition of ruthenium olefin metathesis precatalysts in alcohol solutions can occur during either the catalyst synthesis or the metathesis process, and such decomposition has been found to be common for Grubbs-type precatalysts. These decomposition products are usually hydridocarbonyl complexes, which are well-known to be active in several transformations such as hydrogenation, terminal alkene isomerization, and C-H activation chemistry. The reactivity of these side products can be unwanted, and it is therefore important to understand how to avoid them and maybe also important to keep an open mind and think of ways to use these in other catalytic reactions. A showcase of these decomposition studies is reported in this Account. These reports analyze the stability of ruthenium phenylindenylidene complexes, highly active olefin metathesis precatalysts, in basic alcohol solutions. Several different decomposition processes can occur under these conditions depending on the starting complex and the alcohol used. These indenylidene-bearing metathesis complexes display a completely different behavior compared with that of other metathesis precatalysts and show an alternative competitive alcoholysis pathway, where rather than forming the expected hydrido carbonyl complexes, the indenylidene fragment is transformed into a η(1)-indenyl, which then rearranges to its η(5)-indenyl form. In particular, [RuCl(η(5)-(3-phenylindenylidene)(PPh3)2] has been found to be

  8. Nickel-catalysed cyclopropanation of electron-deficient alkenes with diiodomethane and diethylzinc.

    PubMed

    Xu, Jin; Samsuri, Nazurah Binte; Duong, Hung A

    2016-02-25

    In the presence of a nickel catalyst, the cyclopropanation of electron-deficient alkenes with diiodomethane and diethylzinc is drastically accelerated. A wide range of cyclopropyl ketones, esters and amides can be accessed under these conditions. PMID:26879514

  9. Iron(III)-catalysed carbonyl–olefin metathesis

    NASA Astrophysics Data System (ADS)

    Ludwig, Jacob R.; Zimmerman, Paul M.; Gianino, Joseph B.; Schindler, Corinna S.

    2016-05-01

    The olefin metathesis reaction of two unsaturated substrates is one of the most powerful carbon–carbon-bond-forming reactions in organic chemistry. Specifically, the catalytic olefin metathesis reaction has led to profound developments in the synthesis of molecules relevant to the petroleum, materials, agricultural and pharmaceutical industries. These reactions are characterized by their use of discrete metal alkylidene catalysts that operate via a well-established mechanism. While the corresponding carbonyl–olefin metathesis reaction can also be used to construct carbon–carbon bonds, currently available methods are scarce and severely hampered by either harsh reaction conditions or the required use of stoichiometric transition metals as reagents. To date, no general protocol for catalytic carbonyl–olefin metathesis has been reported. Here we demonstrate a catalytic carbonyl–olefin ring-closing metathesis reaction that uses iron, an Earth-abundant and environmentally benign transition metal, as a catalyst. This transformation accommodates a variety of substrates and is distinguished by its operational simplicity, mild reaction conditions, high functional-group tolerance, and amenability to gram-scale synthesis. We anticipate that these characteristics, coupled with the efficiency of this reaction, will allow for further advances in areas that have historically been enhanced by olefin metathesis.

  10. Iron(III)-catalysed carbonyl-olefin metathesis.

    PubMed

    Ludwig, Jacob R; Zimmerman, Paul M; Gianino, Joseph B; Schindler, Corinna S

    2016-04-27

    The olefin metathesis reaction of two unsaturated substrates is one of the most powerful carbon-carbon-bond-forming reactions in organic chemistry. Specifically, the catalytic olefin metathesis reaction has led to profound developments in the synthesis of molecules relevant to the petroleum, materials, agricultural and pharmaceutical industries. These reactions are characterized by their use of discrete metal alkylidene catalysts that operate via a well-established mechanism. While the corresponding carbonyl-olefin metathesis reaction can also be used to construct carbon-carbon bonds, currently available methods are scarce and severely hampered by either harsh reaction conditions or the required use of stoichiometric transition metals as reagents. To date, no general protocol for catalytic carbonyl-olefin metathesis has been reported. Here we demonstrate a catalytic carbonyl-olefin ring-closing metathesis reaction that uses iron, an Earth-abundant and environmentally benign transition metal, as a catalyst. This transformation accommodates a variety of substrates and is distinguished by its operational simplicity, mild reaction conditions, high functional-group tolerance, and amenability to gram-scale synthesis. We anticipate that these characteristics, coupled with the efficiency of this reaction, will allow for further advances in areas that have historically been enhanced by olefin metathesis.

  11. Iron(III)-catalysed carbonyl-olefin metathesis

    NASA Astrophysics Data System (ADS)

    Ludwig, Jacob R.; Zimmerman, Paul M.; Gianino, Joseph B.; Schindler, Corinna S.

    2016-05-01

    The olefin metathesis reaction of two unsaturated substrates is one of the most powerful carbon-carbon-bond-forming reactions in organic chemistry. Specifically, the catalytic olefin metathesis reaction has led to profound developments in the synthesis of molecules relevant to the petroleum, materials, agricultural and pharmaceutical industries. These reactions are characterized by their use of discrete metal alkylidene catalysts that operate via a well-established mechanism. While the corresponding carbonyl-olefin metathesis reaction can also be used to construct carbon-carbon bonds, currently available methods are scarce and severely hampered by either harsh reaction conditions or the required use of stoichiometric transition metals as reagents. To date, no general protocol for catalytic carbonyl-olefin metathesis has been reported. Here we demonstrate a catalytic carbonyl-olefin ring-closing metathesis reaction that uses iron, an Earth-abundant and environmentally benign transition metal, as a catalyst. This transformation accommodates a variety of substrates and is distinguished by its operational simplicity, mild reaction conditions, high functional-group tolerance, and amenability to gram-scale synthesis. We anticipate that these characteristics, coupled with the efficiency of this reaction, will allow for further advances in areas that have historically been enhanced by olefin metathesis.

  12. Iron(III)-catalysed carbonyl-olefin metathesis.

    PubMed

    Ludwig, Jacob R; Zimmerman, Paul M; Gianino, Joseph B; Schindler, Corinna S

    2016-05-19

    The olefin metathesis reaction of two unsaturated substrates is one of the most powerful carbon-carbon-bond-forming reactions in organic chemistry. Specifically, the catalytic olefin metathesis reaction has led to profound developments in the synthesis of molecules relevant to the petroleum, materials, agricultural and pharmaceutical industries. These reactions are characterized by their use of discrete metal alkylidene catalysts that operate via a well-established mechanism. While the corresponding carbonyl-olefin metathesis reaction can also be used to construct carbon-carbon bonds, currently available methods are scarce and severely hampered by either harsh reaction conditions or the required use of stoichiometric transition metals as reagents. To date, no general protocol for catalytic carbonyl-olefin metathesis has been reported. Here we demonstrate a catalytic carbonyl-olefin ring-closing metathesis reaction that uses iron, an Earth-abundant and environmentally benign transition metal, as a catalyst. This transformation accommodates a variety of substrates and is distinguished by its operational simplicity, mild reaction conditions, high functional-group tolerance, and amenability to gram-scale synthesis. We anticipate that these characteristics, coupled with the efficiency of this reaction, will allow for further advances in areas that have historically been enhanced by olefin metathesis. PMID:27120158

  13. An Efficient Synthesis of (±)-Grandisol Featuring 1,5-Enyne Metathesis

    PubMed Central

    Graham, Thomas J. A.; Gray, Erin E.; Burgess, James M.; Goess, Brian C.

    2009-01-01

    An eight step synthesis of (±)-grandisol features a key sequence involving a high-yielding, microwave-assisted enyne metathesis to yield a 1-alkenylcyclobutene that is semihydrogenated to yield a silyl-protected grandisol. Metathesis catalyst screens revealed an intriguing trend whereby substrate conversion correlated strongly with the identity of the ligands on the catalyst. In addition, new reactivity of 1-alkenylcyclobutenes toward hydrogenation is described. PMID:19957923

  14. Olefin Metathesis Reaction in Water and in Air Improved by Supramolecular Additives.

    PubMed

    Tomasek, Jasmine; Seßler, Miriam; Gröger, Harald; Schatz, Jürgen

    2015-10-21

    A range of water-immiscible commercially available Grubbs-type precatalysts can be used in ring-closing olefin metathesis reaction in high yields. The synthetic transformation is possible in pure water under ambient conditions. Sulfocalixarenes can help to boost the reactivity of the metathesis reaction by catalyst activation, improved mass transfer, and solubility of reactants in the aqueous reaction media. Additionally, the use of supramolecular additives allows lower catalyst loadings, but still high activity in pure water under aerobic conditions.

  15. High Trans Kinetic Selectivity in Ruthenium-Based Olefin Cross-Metathesis through Stereoretention.

    PubMed

    Johns, Adam M; Ahmed, Tonia S; Jackson, Bradford W; Grubbs, Robert H; Pederson, Richard L

    2016-02-19

    The first kinetically controlled, highly trans-selective (>98%) olefin cross-metathesis reaction is demonstrated using Ru-based catalysts. Reactions with either trans or cis olefins afford products with highly trans or cis stereochemistry, respectively. This E-selective olefin cross-metathesis is shown to occur between two trans olefins and between a trans olefin and a terminal olefin. Additionally, new stereoretentive catalysts have been synthesized for improved reactivity.

  16. High Trans Kinetic Selectivity in Ruthenium-Based Olefin Cross-Metathesis through Stereoretention.

    PubMed

    Johns, Adam M; Ahmed, Tonia S; Jackson, Bradford W; Grubbs, Robert H; Pederson, Richard L

    2016-02-19

    The first kinetically controlled, highly trans-selective (>98%) olefin cross-metathesis reaction is demonstrated using Ru-based catalysts. Reactions with either trans or cis olefins afford products with highly trans or cis stereochemistry, respectively. This E-selective olefin cross-metathesis is shown to occur between two trans olefins and between a trans olefin and a terminal olefin. Additionally, new stereoretentive catalysts have been synthesized for improved reactivity. PMID:26840878

  17. Combinatorial screening of an in situ generated library of tungsten oxyhalide and imido complexes for olefin metathesis.

    PubMed

    Romer, Duane R; Sussman, Victor J; Burdett, Ken; Chen, Yu; Miller, Kami J

    2014-10-13

    A series of substituted tungsten(VI) halides with general formula WECl4 (E = O or -NR (imido)) were screened via a high throughput study to identify potential new olefin metathesis catalysts. The tungsten species were treated with a series of aluminum alkyl activators and modifier ligands to generate active catalyst species in situ. Ring-opening metathesis polymerization (ROMP) of cyclooctene was used as a primary screen to identify potential metathesis catalysts and active catalysts were subjected to a secondary screen to evaluate tolerance toward polar functional groups. Several combinations from the high throughput campaign yielded active metathesis catalysts for the ROMP of cyclooctene. However, none of the catalysts examined in this study exhibited any evidence of significant polar functional group tolerance as determined by the results of the secondary cyclooctene/butyl acetate screen. PMID:25184682

  18. Combinatorial screening of an in situ generated library of tungsten oxyhalide and imido complexes for olefin metathesis.

    PubMed

    Romer, Duane R; Sussman, Victor J; Burdett, Ken; Chen, Yu; Miller, Kami J

    2014-10-13

    A series of substituted tungsten(VI) halides with general formula WECl4 (E = O or -NR (imido)) were screened via a high throughput study to identify potential new olefin metathesis catalysts. The tungsten species were treated with a series of aluminum alkyl activators and modifier ligands to generate active catalyst species in situ. Ring-opening metathesis polymerization (ROMP) of cyclooctene was used as a primary screen to identify potential metathesis catalysts and active catalysts were subjected to a secondary screen to evaluate tolerance toward polar functional groups. Several combinations from the high throughput campaign yielded active metathesis catalysts for the ROMP of cyclooctene. However, none of the catalysts examined in this study exhibited any evidence of significant polar functional group tolerance as determined by the results of the secondary cyclooctene/butyl acetate screen.

  19. Group 11 Metal Compounds with Tripodal Bis(imidazole) Thioether Ligands. Applications as Catalysts in the Oxidation of Alkenes and as Antimicrobial Agents

    PubMed Central

    Liu, Fangwei; Anis, Reema; Hwang, Eunmi; Ovalle, Rafael; Varela-Ramírez, Armando; Aguilera, Renato J.; Contel, María

    2011-01-01

    New group 11 metal complexes have been prepared using the previously described tripodal bis(imidazole) thioether ligand (N-methyl-4,5-diphenyl-2-imidazolyl)2C(OMe)C(CH3)2S(tert-Bu) ({BITOMe,StBu}, 2). The pincer ligand offers a N2S donor atom set that can be used to coordinate the group 11 metals in different oxidation states [AuI, AuIII, AgI, CuI and CuII]. Thus the new compounds [Au{BITOMe,StBu}Cl][AuCl4]2 (3), [Au{BITOMe,StBu}Cl] (4), [Ag{BITOMe,StBu}X] (X = OSO2CF3 − 5, PF6 − 6) and [Cu{BITOMe,StBu}Cl2] (7) have been synthesized from reaction of 2 with the appropriate metal precursors, and characterized in solution. While attempting characterization in the solid state of 3, single crystals of the neutral dinuclear mixed AuIII-AuI species [Au2{BITOMe,S}Cl3] (8) were obtained and its crystal structure was determined by X-ray diffraction studies. The structure shows a AuIII center coordinated to the pincer ligand through one N and the S atom. The soft AuI center coordinates to the ligand through the same S atom that has lost the tert-butyl group, thus becoming a thiolate ligand. The short distance between the AuI–AuIII atoms (3.383 Å) may indicate a weak metal-metal interaction. Complexes 2–7 and the previously described CuI compound [Cu{BITOMe,StBu}]PF6 (9) have been evaluated in the oxidation of biphenyl ethylene with tert-butyl hydrogen peroxide (TBHP) as the oxidant. Results have shown that the AuI and AgI complexes 4 and 6 (at 10 mol % loading) are the more active catalysts in this oxidative cleavage. The antimicrobial activity of compounds 2–5, 7 and 9 against Gram-positive and Gram-negative bacteria and yeast has also been evaluated. The new gold and silver compounds display moderate to high antibacterial activity, while the copper derivatives are mostly inactive. The gold and silver complexes were also potent against fungi. Their cytotoxic properties have been analyzed in vitro utilizing HeLa human cervical carcinoma cells. The compounds

  20. Studies on reactions of ozone with alkenes.

    PubMed

    Protczak, Agnieszka; Trzeszczynski, Jerzy

    2002-01-01

    In the last years, a continuous increase of the O3 concentration has been recorded in the lower atmospheric layers. Photochemical reactions with NO(x), CO and organic compounds are the main sources of O3 in the troposphere. In this work, an attempt was made to determine the impact of alkenes on the O3 concentration in the troposphere. A study on the gas-phase reactions of 03 with 1-hexene, 1-heptene and 1-nonene was made. The reactions were carried out at room temperature under atmospheric pressure. Ozone was formed by the ultraviolet radiation emitted by a mercury lamp, in order to simulate the atmospheric conditions. The changes with time in the concentration of O3, 1-alkenes and formed aldehydes were investigated. Qualitative and quantitative analyses were done by means of the gas chromatography and colorimetry. The following products were identified: pentanal from 1-hexene; hexanal from 1-heptene; oktanal from 1-nonene. For each of the reactions, HCHO was also determined as a product. The reaction rate constants were calculated and obtained in units of 10(-17) cm(-3) molecule(-1) s(-1): 1.94-0.99 for 1-hexene, 5.54-4.51 for 1-heptene and 1.54-0.76 for 1-nonene. Based on the results obtained, an explanation of O3 concentration variations in the planetary boundary layer can be given. Last year a considerable increase of O3 concentration on the roads of Western Europe was recorded. This increase could have resulted from the decrease of alkene concentration in the air due to common use of the catalytic converters in cars. The unsaturated hydrocarbons rapidly oxidize on the catalyst. In Eastern Europe, where the amount of cars equipped with catalytic converters is smaller than in Western Europe, the alkene content in the exhaust fumes results in a decrease of the O3 concentration in the troposphere.

  1. Synthesis of Z-alkenes from Rh(I)-catalyzed olefin isomerization of β,γ-unsaturated ketones.

    PubMed

    Zhuo, Lian-Gang; Yao, Zhong-Ke; Yu, Zhi-Xiang

    2013-09-20

    Developing olefin isomerization reactions to reach kinetically controlled Z-alkenes is challenging because formation of trans-alkenes is thermodynamically favored under the traditional catalytic conditions using acids, bases, or transition metals as the catalysts. A new synthesis of Z-alkenes from Rh(I)-catalyzed olefin isomerization of β,γ-unsaturated ketones to α,β-unsaturated ketones was developed, providing an easy and efficient way to access various Z-enones.

  2. Z-Selective olefin metathesis on peptides: investigation of side-chain influence, preorganization, and guidelines in substrate selection.

    PubMed

    Mangold, Shane L; O'Leary, Daniel J; Grubbs, Robert H

    2014-09-01

    Olefin metathesis has emerged as a promising strategy for modulating the stability and activity of biologically relevant compounds; however, the ability to control olefin geometry in the product remains a challenge. Recent advances in the design of cyclometalated ruthenium catalysts has led to new strategies for achieving such control with high fidelity and Z selectivity, but the scope and limitations of these catalysts on substrates bearing multiple functionalities, including peptides, remained unexplored. Herein, we report an assessment of various factors that contribute to both productive and nonproductive Z-selective metathesis on peptides. The influence of sterics, side-chain identity, and preorganization through peptide secondary structure are explored by homodimerization, cross metathesis, and ring-closing metathesis. Our results indicate that the amino acid side chain and identity of the olefin profoundly influence the activity of cyclometalated ruthenium catalysts in Z-selective metathesis. The criteria set forth for achieving high conversion and Z selectivity are highlighted by cross metathesis and ring-closing metathesis on diverse peptide substrates. The principles outlined in this report are important not only for expanding the scope of Z-selective olefin metathesis to peptides but also for applying stereoselective olefin metathesis in general synthetic endeavors. PMID:25102124

  3. Z-Selective olefin metathesis on peptides: investigation of side-chain influence, preorganization, and guidelines in substrate selection.

    PubMed

    Mangold, Shane L; O'Leary, Daniel J; Grubbs, Robert H

    2014-09-01

    Olefin metathesis has emerged as a promising strategy for modulating the stability and activity of biologically relevant compounds; however, the ability to control olefin geometry in the product remains a challenge. Recent advances in the design of cyclometalated ruthenium catalysts has led to new strategies for achieving such control with high fidelity and Z selectivity, but the scope and limitations of these catalysts on substrates bearing multiple functionalities, including peptides, remained unexplored. Herein, we report an assessment of various factors that contribute to both productive and nonproductive Z-selective metathesis on peptides. The influence of sterics, side-chain identity, and preorganization through peptide secondary structure are explored by homodimerization, cross metathesis, and ring-closing metathesis. Our results indicate that the amino acid side chain and identity of the olefin profoundly influence the activity of cyclometalated ruthenium catalysts in Z-selective metathesis. The criteria set forth for achieving high conversion and Z selectivity are highlighted by cross metathesis and ring-closing metathesis on diverse peptide substrates. The principles outlined in this report are important not only for expanding the scope of Z-selective olefin metathesis to peptides but also for applying stereoselective olefin metathesis in general synthetic endeavors.

  4. Z-Selective Olefin Metathesis on Peptides: Investigation of Side-Chain Influence, Preorganization, and Guidelines in Substrate Selection

    PubMed Central

    2015-01-01

    Olefin metathesis has emerged as a promising strategy for modulating the stability and activity of biologically relevant compounds; however, the ability to control olefin geometry in the product remains a challenge. Recent advances in the design of cyclometalated ruthenium catalysts has led to new strategies for achieving such control with high fidelity and Z selectivity, but the scope and limitations of these catalysts on substrates bearing multiple functionalities, including peptides, remained unexplored. Herein, we report an assessment of various factors that contribute to both productive and nonproductive Z-selective metathesis on peptides. The influence of sterics, side-chain identity, and preorganization through peptide secondary structure are explored by homodimerization, cross metathesis, and ring-closing metathesis. Our results indicate that the amino acid side chain and identity of the olefin profoundly influence the activity of cyclometalated ruthenium catalysts in Z-selective metathesis. The criteria set forth for achieving high conversion and Z selectivity are highlighted by cross metathesis and ring-closing metathesis on diverse peptide substrates. The principles outlined in this report are important not only for expanding the scope of Z-selective olefin metathesis to peptides but also for applying stereoselective olefin metathesis in general synthetic endeavors. PMID:25102124

  5. Ring-closing metathesis in aqueous micellar medium.

    PubMed

    Laville, Lionel; Charnay, Clarence; Lamaty, Frédéric; Martinez, Jean; Colacino, Evelina

    2012-01-16

    Underwater exploration: The ring-closing metathesis of N,N-diallyltosylamine (DATs) and diallyldiethyl malonate has been studied in aqueous micellar medium, at room temperature, in the presence of four different gemini cationic surfactants and various ruthenium catalysts. For the first time, the adsorption mechanisms and the reaction steps involved in this heterogeneous catalytic process were elucidated.

  6. Ruthenium-catalyzed tandem cross-metathesis/Wittig olefination: generation of conjugated dienoic esters from terminal olefins.

    PubMed

    Murelli, Ryan P; Snapper, Marc L

    2007-04-26

    [reaction: see text] In the presence of ruthenium-based olefin metathesis catalysts and triphenylphosphine, alpha,beta-unsaturated aldehydes can be olefinated with diazoacetates. This ruthenium-catalyzed transformation has been employed in tandem with olefin cross-metathesis to convert terminal olefins into 1,3-dienoic esters in a single operation.

  7. A biocompatible alkene hydrogenation merges organic synthesis with microbial metabolism.

    PubMed

    Sirasani, Gopal; Tong, Liuchuan; Balskus, Emily P

    2014-07-21

    Organic chemists and metabolic engineers use orthogonal technologies to construct essential small molecules such as pharmaceuticals and commodity chemicals. While chemists have leveraged the unique capabilities of biological catalysts for small-molecule production, metabolic engineers have not likewise integrated reactions from organic synthesis with the metabolism of living organisms. Reported herein is a method for alkene hydrogenation which utilizes a palladium catalyst and hydrogen gas generated directly by a living microorganism. This biocompatible transformation, which requires both catalyst and microbe, and can be used on a preparative scale, represents a new strategy for chemical synthesis that combines organic chemistry and metabolic engineering.

  8. A Biocompatible Alkene Hydrogenation Merges Organic Synthesis with Microbial Metabolism**

    PubMed Central

    Sirasani, Gopal; Tong, Liuchuan; Balskus, Emily P.

    2014-01-01

    Organic chemists and metabolic engineers use largely orthogonal technologies to construct essential small molecules like pharmaceuticals and commodity chemicals. While chemists have leveraged the unique capabilities of biological catalysts for small molecule production, metabolic engineers have not likewise integrated reactions from organic synthesis with the metabolism of living organisms. Here we report a method for alkene hydrogenation that utilizes a palladium catalyst and hydrogen gas generated directly by a living microorganism. This biocompatible transformation, which requires both catalyst and microbe and can be used on a preparative scale, represents a new strategy for chemical synthesis that combines organic chemistry and metabolic engineering. PMID:24916924

  9. Ru complexes of Hoveyda-Grubbs type immobilized on lamellar zeolites: activity in olefin metathesis reactions.

    PubMed

    Balcar, Hynek; Žilková, Naděžda; Kubů, Martin; Mazur, Michal; Bastl, Zdeněk; Čejka, Jiří

    2015-01-01

    Hoveyda-Grubbs type catalysts with cationic tags on NHC ligands were linker-free immobilized on the surface of lamellar zeolitic supports (MCM-22, MCM-56, MCM-36) and on mesoporous molecular sieves SBA-15. The activity of prepared hybrid catalysts was tested in olefin metathesis reactions: the activity in ring-closing metathesis of citronellene and N,N-diallyltrifluoroacetamide decreased in the order of support MCM-22 ≈ MCM-56 > SBA-15 > MCM-36; the hybrid catalyst based on SBA-15 was found the most active in self-metathesis of methyl oleate. All catalysts were reusable and exhibited low Ru leaching (<1% of Ru content). XPS analysis revealed that during immobilization ion exchange between Hoveyda-Grubbs type catalyst and zeolitic support occurred in the case of Cl(-) counter anion; in contrast, PF6 (-) counter anion underwent partial decomposition.

  10. Ru complexes of Hoveyda–Grubbs type immobilized on lamellar zeolites: activity in olefin metathesis reactions

    PubMed Central

    Žilková, Naděžda; Kubů, Martin; Mazur, Michal; Bastl, Zdeněk; Čejka, Jiří

    2015-01-01

    Summary Hoveyda–Grubbs type catalysts with cationic tags on NHC ligands were linker-free immobilized on the surface of lamellar zeolitic supports (MCM-22, MCM-56, MCM-36) and on mesoporous molecular sieves SBA-15. The activity of prepared hybrid catalysts was tested in olefin metathesis reactions: the activity in ring-closing metathesis of citronellene and N,N-diallyltrifluoroacetamide decreased in the order of support MCM-22 ≈ MCM-56 > SBA-15 > MCM-36; the hybrid catalyst based on SBA-15 was found the most active in self-metathesis of methyl oleate. All catalysts were reusable and exhibited low Ru leaching (<1% of Ru content). XPS analysis revealed that during immobilization ion exchange between Hoveyda–Grubbs type catalyst and zeolitic support occurred in the case of Cl− counter anion; in contrast, PF6 − counter anion underwent partial decomposition. PMID:26664629

  11. Ru complexes of Hoveyda-Grubbs type immobilized on lamellar zeolites: activity in olefin metathesis reactions.

    PubMed

    Balcar, Hynek; Žilková, Naděžda; Kubů, Martin; Mazur, Michal; Bastl, Zdeněk; Čejka, Jiří

    2015-01-01

    Hoveyda-Grubbs type catalysts with cationic tags on NHC ligands were linker-free immobilized on the surface of lamellar zeolitic supports (MCM-22, MCM-56, MCM-36) and on mesoporous molecular sieves SBA-15. The activity of prepared hybrid catalysts was tested in olefin metathesis reactions: the activity in ring-closing metathesis of citronellene and N,N-diallyltrifluoroacetamide decreased in the order of support MCM-22 ≈ MCM-56 > SBA-15 > MCM-36; the hybrid catalyst based on SBA-15 was found the most active in self-metathesis of methyl oleate. All catalysts were reusable and exhibited low Ru leaching (<1% of Ru content). XPS analysis revealed that during immobilization ion exchange between Hoveyda-Grubbs type catalyst and zeolitic support occurred in the case of Cl(-) counter anion; in contrast, PF6 (-) counter anion underwent partial decomposition. PMID:26664629

  12. Tandem isomerization-decarboxylation for converting alkenoic fatty acids into alkenes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We report a facile Ru-catalyzed route to alkenes from alkenoic fatty acids via a readily accessible pre-catalyst [Ru(CO)2RCO2]n. The catalyst apparently functions in a tandem mode by dynamically isomerizing the positions of double bonds in an aliphatic chain and, subsequently, decarboxylating specif...

  13. Structure-activity relationships in group 3 metal catalysts for asymmetric intramolecular alkene hydroamination. An investigation of ligands based on the axially chiral 1,1'-binaphthyl-2,2'-diamine motif.

    PubMed

    Lovick, Helena M; An, Duk K; Livinghouse, Thomas S

    2011-08-14

    From a series of N,N'-disubstituted-1,1'-binaphthyl-2,2'-diamines, several group 3 metal complexes were synthesized via an in situ procedure. These chiral complexes were subsequently applied to catalysis of intramolecular alkene hydroamination. Significant structure-activity relationships were observed, most notably a reversal of stereoselectivity for cyclopentyl versus diphenylmethyl substituents. PMID:21709913

  14. Probing the Mechanism of the Double C—H (De)Activation Route of a Ru-Based Olefin Metathesis Catalyst

    NASA Astrophysics Data System (ADS)

    Poater, Albert; Cavallo, Luigi

    A theoretical study of a double C—H activation mechanism that deactivates a family of second generation Ru-based catalysts is presented. DFT calculations are used to rationalize the complex mechanistic pathway from the starting precatalyst to the experimentally characterized decomposition products. In particular, we show that all the intermediates proposed by Grubbs and coworkers are indeed possible intermediates in the deactivation pathway, although the sequence of steps is somewhat different

  15. Microanalysis of Alkenes by Ozonolysis

    ERIC Educational Resources Information Center

    Luibrand, R. T.; Vollmer, J. J.

    1975-01-01

    Describes an undergraduate laboratory experiment in which the position of the double bond in an alkene is determined by identifying its ozonolysis products. This experiment can also be used to introduce the technique of gas chromatography. (MLH)

  16. Catalytic Selenium-Promoted Intermolecular Friedel-Crafts Alkylation with Simple Alkenes.

    PubMed

    Tang, E; Zhao, Yinjiao; Li, Wen; Wang, Weilin; Zhang, Meng; Dai, Xin

    2016-03-01

    A method for conducting selenium-promoted intermolecular Friedel-Crafts (F-C) alkylation reactions has been developed with simple alkenes using trimethylsilyl trifluoromethanesulfonate as a catalyst and N-phenylselenophthalimide as an efficient selenium source. Electron-rich arenes smoothly underwent F-C alkylation with a variety of alkenes to afford alkylated products in good yield and with high regioselectivity and diastereoselectivity. The regioselectivity and stereoselectivity of arenes and alkenes as well as a preliminary mechanism of the F-C alkylation reaction are discussed. PMID:26882088

  17. Photoredox-Catalyzed Stereoselective Conversion of Alkynes into Tetrasubstituted Trifluoromethylated Alkenes.

    PubMed

    Tomita, Ren; Koike, Takashi; Akita, Munetaka

    2015-10-26

    A regio- and stereoselective synthesis of trifluoromethylated alkenes bearing four different substituents has been developed. Stereocontrolled sulfonyloxytrifluoromethylation of unsymmetric internal alkynes with an electrophilic CF3 reagent, namely the triflate salt of the Yagupol'skii-Umemoto reagent, in the presence of an Ir photoredox catalyst under visible-light irradiation afforded trifluoromethylalkenyl triflates with well-predictable stereochemistry resulting from anti addition of the trifluoromethyl and triflate groups. Subsequent palladium-catalyzed cross-couplings led to tetrasubstituted trifluoromethylated alkenes in a highly stereoselective manner. The present method is the first example of a facile one-pot synthesis of tetrasubstituted trifluoromethylated alkenes from simple alkynes.

  18. Side-chain modification and "grafting onto" via olefin cross-metathesis.

    PubMed

    de Espinosa, Lucas Montero; Kempe, Kristian; Schubert, Ulrich S; Hoogenboom, Richard; Meier, Michael A R

    2012-12-13

    Olefin cross-metathesis is introduced as a versatile polymer side-chain modification technique. The reaction of a poly(2-oxazoline) featuring terminal double bonds in the side chains with a variety of functional acrylates has been successfully performed in the presence of Hoveyda-Grubbs second-generation catalyst. Self-metathesis, which would lead to polymer-polymer coupling, can be avoided by using an excess of the cross-metathesis partner and a catalyst loading of 5 mol%. The results suggest that bulky acrylates reduce chain-chain coupling due to self-metathesis. Moreover, different functional groups such as alkyl chains, hydroxyl, and allyl acetate groups, as well as an oligomeric poly(ethylene glycol) and a perfluorinated alkyl chain have been grafted with quantitative conversions.

  19. Regioselective, Asymmetric Formal Hydroamination of Unactivated Internal Alkenes.

    PubMed

    Xi, Yumeng; Butcher, Trevor W; Zhang, Jing; Hartwig, John F

    2016-01-11

    We report the regioselective and enantioselective formal hydroamination of unsymmetrical internal alkenes catalyzed by a copper catalyst ligated by DTBM-SEGPHOS. The regioselectivity of the reaction is controlled by the electronic effects of ether, ester, and sulfonamide groups in the homoallylic position. The observed selectivity underscores the influence of inductive effects of remote substituents on the selectivity of catalytic processes occurring at hydrocarbyl groups, and the method provides direct access to various 1,3-aminoalcohol derivatives with high enantioselectivity. PMID:26592363

  20. Aromatizing olefin metathesis by ligand isolation inside a metal-organic framework.

    PubMed

    Vermeulen, Nicolaas A; Karagiaridi, Olga; Sarjeant, Amy A; Stern, Charlotte L; Hupp, Joseph T; Farha, Omar K; Stoddart, J Fraser

    2013-10-01

    The aromatizing ring-closing metathesis has been shown to take place inside an extended porous framework. Employing a combination of solvent-assisted linker exchange and postsynthesis modification using olefin metathesis, the noninterpenetrated SALEM-14 was formed and converted catalytically into PAH-MOF-1 with polycyclic aromatic hydrocarbon (PAH) pillars. The metal-organic framework in SALEM-14 prevents "intermolecular" olefin metathesis from occurring between the pillars in the presence of the first generation Hoveyda-Grubbs catalyst, while favoring the production of a PAH, which can be released from the framework under acidic conditions in dimethylsulfoxide. PMID:24047342

  1. Preparation of alkenyl cyclopropanes through a ruthenium-catalyzed tandem enyne metathesis-cyclopropanation sequence.

    PubMed

    Kim, Byung Gyu; Snapper, Marc L

    2006-01-11

    Acyclic enynes undergo a tandem enyne metathesis/cyclopropanation sequence in the presence of Grubbs' 1st generation metathesis catalyst and diazo compounds. In practice, the acyclic substrates in the presence of the ruthenium alkylidene first undergo a ring-closing enyne metathesis to generate cyclic 1,3-dienes; then upon addition of a diazo compound, these products are cyclopropanated selectively at the more accessible olefin. Overall, the reaction sequence converts acyclic enynes into vinyl cyclopropanes in single operation through two unique ruthenium-catalyzed transformations.

  2. Aromatizing olefin metathesis by ligand isolation inside a metal-organic framework.

    PubMed

    Vermeulen, Nicolaas A; Karagiaridi, Olga; Sarjeant, Amy A; Stern, Charlotte L; Hupp, Joseph T; Farha, Omar K; Stoddart, J Fraser

    2013-10-01

    The aromatizing ring-closing metathesis has been shown to take place inside an extended porous framework. Employing a combination of solvent-assisted linker exchange and postsynthesis modification using olefin metathesis, the noninterpenetrated SALEM-14 was formed and converted catalytically into PAH-MOF-1 with polycyclic aromatic hydrocarbon (PAH) pillars. The metal-organic framework in SALEM-14 prevents "intermolecular" olefin metathesis from occurring between the pillars in the presence of the first generation Hoveyda-Grubbs catalyst, while favoring the production of a PAH, which can be released from the framework under acidic conditions in dimethylsulfoxide.

  3. Desymmetrization of 7-azabicycloalkenes by tandem olefin metathesis for the preparation of natural product scaffolds

    PubMed Central

    Maison, Wolfgang; Büchert, Marina; Deppermann, Nina

    2007-01-01

    Background Tandem olefin metathesis sequences are known to be versatile for the generation of natural product scaffolds and have also been used for ring opening of strained carbo- and heterocycles. In this paper we demonstrate the potential of these reactions for the desymmetrization of 7-azabicycloalkenes. Results We have established efficient protocols for the desymmetrization of different 7-azabicycloalkenes by intra- and intermolecular tandem metathesis sequences with ruthenium based catalysts. Conclusion Desymmetrization of 7-azabicycloalkenes by olefin metathesis is an efficient process for the preparation of common natural product scaffolds such as pyrrolidines, indolizidines and isoindoles. PMID:18088413

  4. The Effects of NHC-Backbone Substitution on Efficiency in Ruthenium-based Olefin Metathesis

    PubMed Central

    Kuhn, Kevin M.; Bourg, Jean-Baptiste; Chung, Cheol K.; Virgil, Scott C.; Grubbs, Robert H.

    2009-01-01

    A series of ruthenium olefin metathesis catalysts bearing N-heterocyclic carbene (NHC) ligands with varying degrees of backbone and N-aryl substitution have been prepared. These complexes show greater resistance to decomposition through C–H activation of the N-aryl group, resulting in increased catalyst lifetimes. This work has utilized robotic technology to examine the activity and stability of each catalyst in metathesis, providing insights into the relationship between ligand architecture and enhanced efficiency. The development of this robotic methodology has also shown that, under optimized conditions, catalyst loadings as low as 25 ppm can lead to 100% conversion in the ring-closing metathesis of diethyl diallylmalonate. PMID:19351207

  5. Macrocyclic olefin metathesis at high concentrations by using a phase-separation strategy.

    PubMed

    Raymond, Michaël; Holtz-Mulholland, Michael; Collins, Shawn K

    2014-09-26

    Macrocyclic olefin metathesis has seen advances in the areas of stereochemistry, chemoselectivity, and catalyst stability, but strategies aimed at controlling dilution effects in macrocyclizations are rare. Herein, a protocol to promote macrocyclic olefin metathesis, one of the most common synthetic tools used to prepare macrocycles, at relatively high concentrations (up to 60 mM) is described by exploitation of a phase-separation strategy. A variety of macrocyclic skeletons could be prepared having either different alkyl, aryl, or amino acids spacers.

  6. Synthesis of alkenyl boronates from allyl-substituted aromatics using an olefin cross-metathesis protocol.

    PubMed

    Hemelaere, Rémy; Carreaux, François; Carboni, Bertrand

    2013-07-01

    An efficient synthesis of 3-aryl-1-propenyl boronates from pinacol vinyl boronic ester and allyl-substituted aromatics by cross metathesis is reported. Although the allylbenzene derivatives are prone to isomerization reaction under metathesis conditions, we found that some ruthenium catalysts are effective for this methodology. This strategy thus provides an interesting alternative approach to alkyne hydroboration, leading to the preparation of unknown compounds. Moreover, the boron substituent can be replaced by various functional groups in good yields.

  7. Homobimetallic Ruthenium-N-Heterocyclic Carbene Complexes For Olefin Metathesis

    NASA Astrophysics Data System (ADS)

    Sauvage, Xavier; Demonceau, Albert; Delaude, Lionel

    In this chapter, the synthesis and catalytic activity towards olefin metathesis of homobimetallic ruthenium (Ru)-alkylidene, -cyclodiene or -arene complexes bearing phosphine or N-heterocyclic carbene (NHC) ligands are reviewed. Emphasis is placed on the last category of bimetallic compounds. Three representatives of this new type of molecular scaffold were investigated. Thus, [(p-cymene)Ru(m-Cl)3RuCl (h2-C2H4)(L)] complexes with L = PCy3 (15a), IMes (16a), or IMesCl2 (16b) were prepared. They served as catalyst precursors for cross-metathesis (CM) of various styrene derivatives. These experiments revealed the outstanding aptitude of complex 16a (and to a lesser extent of 16b) to catalyze olefin metathesis reactions. Contrary to monometallic Ru-arene complexes of the [RuCl2(p-cymene)(L)] type, the new homobimetallic species did not require the addition of a diazo compound nor visible light illumination to initiate the ring-opening metathesis of norbornene or cyclooctene. When diethyl 2,2-diallylmalonate and N,N-diallyltosylamide were exposed to 16a,b, a mixture of cycloisomerization and ring-closing metathesis (RCM) products was obtained in a nonselective way. Addition of phenylacetylene enhanced the metathetical activity while completely repressing the cycloisomerization process.

  8. Epoxidation catalyst and process

    DOEpatents

    Linic, Suljo; Christopher, Phillip

    2010-10-26

    Disclosed herein is a catalytic method of converting alkenes to epoxides. This method generally includes reacting alkenes with oxygen in the presence of a specific silver catalyst under conditions suitable to produce a yield of the epoxides. The specific silver catalyst is a silver nanocrystal having a plurality of surface planes, a substantial portion of which is defined by Miller indices of (100). The reaction is performed by charging a suitable reactor with this silver catalyst and then feeding the reactants to the reactor under conditions to carry out the reaction. The reaction may be performed in batch, or as a continuous process that employs a recycle of any unreacted alkenes. The specific silver catalyst has unexpectedly high selectivity for epoxide products. Consequently, this general method (and its various embodiments) will result in extraordinarily high epoxide yields heretofore unattainable.

  9. Olefin Metathesis Mediated By: - Schiff Base Ru-Alkylidenes -Ru-Alkylidenes Bearing Unsymmetrical NH Ligands

    NASA Astrophysics Data System (ADS)

    Monsaert, Stijn; Voort, Pascal Van Der; Ledoux, Nele; Allaert, Bart; Drozdzak, Renata; Verpoort, Francis

    The classic Grubbs second-generation complex 2 was modified through 1. The introduction of a bidentate Schiff base ligand 2. Changes in the amino side groups of the NHC ligand Representative olefin metathesis test reactions show the effects induced by the ligand modifications and demonstrate some interesting new properties of the described catalysts. catalysts.

  10. Enhanced Olefin Cross Metathesis Reactions: The Copper Iodide Effect

    PubMed Central

    Voigtritter, Karl; Ghorai, Subir

    2011-01-01

    Copper iodide has been shown to be an effective co-catalyst for the olefin cross metathesis reaction. In particular, it has both a catalyst stabilizing effect due to iodide ion, as well as copper(I)-based phosphine-scavenging properties that apply to use of the Grubbs-2 catalyst. A variety of Michael acceptors and olefinic partners can be cross-coupled under mild conditions in refluxing diethyl ether that avoid chlorinated solvents. This effect has also been applied to chemistry in water at room temperature using the new surfactant TPGS-750-M. PMID:21528868

  11. Step-economical access to valuable Weinreb amide 2,5-disubstituted pyrrolidines by a sequential one-pot two-directional cross-metathesis/cyclizing aza-Michael process.

    PubMed

    Boufroura, Hamza; Mauduit, Marc; Drège, Emmanuelle; Joseph, Delphine

    2013-03-15

    Double cross-metathesis of 1,5-hexadiene with a variety of electron-deficient alkenes including the reluctant Weinreb acrylamide has been successfully accomplished. It was found that the process is quite general, and microwave irradiation effectively accelerates cross-coupling metathesis. This promotes a very versatile and high yielding methodology for the synthesis of symmetric Michael acceptors, which can be transformed into 2,5-disubstituted pyrrolidines through a sequential one-pot two-directional cross-metathesis/ring-closing double aza-Michael process.

  12. Simple activation by acid of latent Ru-NHC-based metathesis initiators bearing 8-quinolinolate co-ligands

    PubMed Central

    Wappel, Julia; Fischer, Roland C; Cavallo, Luigi; Slugovc, Christian

    2016-01-01

    Summary A straightforward synthesis utilizing the ring-opening metathesis polymerization (ROMP) reaction is described for acid-triggered N,O-chelating ruthenium-based pre-catalysts bearing one or two 8-quinolinolate ligands. The innovative pre-catalysts were tested regarding their behavior in ROMP and especially for their use in the synthesis of poly(dicyclopentadiene) (pDCPD). Bearing either the common phosphine leaving ligand in the first and second Grubbs olefin metathesis catalysts, or the Ru–O bond cleavage for the next Hoveyda-type catalysts, this work is a step forward towards the control of polymer functionalization and living or switchable polymerizations. PMID:26877818

  13. Simple activation by acid of latent Ru-NHC-based metathesis initiators bearing 8-quinolinolate co-ligands.

    PubMed

    Wappel, Julia; Fischer, Roland C; Cavallo, Luigi; Slugovc, Christian; Poater, Albert

    2016-01-01

    A straightforward synthesis utilizing the ring-opening metathesis polymerization (ROMP) reaction is described for acid-triggered N,O-chelating ruthenium-based pre-catalysts bearing one or two 8-quinolinolate ligands. The innovative pre-catalysts were tested regarding their behavior in ROMP and especially for their use in the synthesis of poly(dicyclopentadiene) (pDCPD). Bearing either the common phosphine leaving ligand in the first and second Grubbs olefin metathesis catalysts, or the Ru-O bond cleavage for the next Hoveyda-type catalysts, this work is a step forward towards the control of polymer functionalization and living or switchable polymerizations. PMID:26877818

  14. Chemoselective single-site Earth-abundant metal catalysts at metal-organic framework nodes.

    PubMed

    Manna, Kuntal; Ji, Pengfei; Lin, Zekai; Greene, Francis X; Urban, Ania; Thacker, Nathan C; Lin, Wenbin

    2016-01-01

    Earth-abundant metal catalysts are critically needed for sustainable chemical synthesis. Here we report a simple, cheap and effective strategy of producing novel earth-abundant metal catalysts at metal-organic framework (MOF) nodes for broad-scope organic transformations. The straightforward metalation of MOF secondary building units (SBUs) with cobalt and iron salts affords highly active and reusable single-site solid catalysts for a range of organic reactions, including chemoselective borylation, silylation and amination of benzylic C-H bonds, as well as hydrogenation and hydroboration of alkenes and ketones. Our structural, spectroscopic and kinetic studies suggest that chemoselective organic transformations occur on site-isolated, electron-deficient and coordinatively unsaturated metal centres at the SBUs via σ-bond metathesis pathways and as a result of the steric environment around the catalytic site. MOFs thus provide a novel platform for the development of highly active and affordable base metal catalysts for the sustainable synthesis of fine chemicals. PMID:27574182

  15. Chemoselective single-site Earth-abundant metal catalysts at metal–organic framework nodes

    PubMed Central

    Manna, Kuntal; Ji, Pengfei; Lin, Zekai; Greene, Francis X.; Urban, Ania; Thacker, Nathan C.; Lin, Wenbin

    2016-01-01

    Earth-abundant metal catalysts are critically needed for sustainable chemical synthesis. Here we report a simple, cheap and effective strategy of producing novel earth-abundant metal catalysts at metal–organic framework (MOF) nodes for broad-scope organic transformations. The straightforward metalation of MOF secondary building units (SBUs) with cobalt and iron salts affords highly active and reusable single-site solid catalysts for a range of organic reactions, including chemoselective borylation, silylation and amination of benzylic C–H bonds, as well as hydrogenation and hydroboration of alkenes and ketones. Our structural, spectroscopic and kinetic studies suggest that chemoselective organic transformations occur on site-isolated, electron-deficient and coordinatively unsaturated metal centres at the SBUs via σ-bond metathesis pathways and as a result of the steric environment around the catalytic site. MOFs thus provide a novel platform for the development of highly active and affordable base metal catalysts for the sustainable synthesis of fine chemicals. PMID:27574182

  16. Prosodically Driven Metathesis in Mutsun

    ERIC Educational Resources Information Center

    Butler, Lynnika

    2013-01-01

    Among the many ways in which sounds alternate in the world's languages, changes in the order of sounds (metathesis) are relatively rare. Mutsun, a Southern Costanoan language of California which was documented extensively before the death of its last speaker in 1930, displays three patterns of synchronic consonant-vowel (CV) metathesis. Two of…

  17. Bulky N-Phosphino-Functionalized N-Heterocyclic Carbene Ligands: Synthesis, Ruthenium Coordination Chemistry, and Ruthenium Alkylidene Complexes for Olefin Metathesis.

    PubMed

    Brown, Christopher C; Rominger, Frank; Limbach, Michael; Hofmann, Peter

    2015-11-01

    Ruthenium chemistry and applications in catalytic olefin metathesis based on N-phosphino-functionalized N-heterocyclic carbene ligands (NHCPs) are presented. Alkyl NHCP Ru coordination chemistry is described, and access to several potential synthetic precursors for ruthenium alkylidene complexes is outlined, incorporating both trimethylsilyl and phenyl alkylidenes. The Ru alkylidene complexes are evaluated as potential olefin metathesis catalysts and were shown to behave in a latent fashion. They displayed catalytic activity at elevated temperatures for both ring closing metathesis and ring opening metathesis polymerization.

  18. Bulky N-Phosphino-Functionalized N-Heterocyclic Carbene Ligands: Synthesis, Ruthenium Coordination Chemistry, and Ruthenium Alkylidene Complexes for Olefin Metathesis.

    PubMed

    Brown, Christopher C; Rominger, Frank; Limbach, Michael; Hofmann, Peter

    2015-11-01

    Ruthenium chemistry and applications in catalytic olefin metathesis based on N-phosphino-functionalized N-heterocyclic carbene ligands (NHCPs) are presented. Alkyl NHCP Ru coordination chemistry is described, and access to several potential synthetic precursors for ruthenium alkylidene complexes is outlined, incorporating both trimethylsilyl and phenyl alkylidenes. The Ru alkylidene complexes are evaluated as potential olefin metathesis catalysts and were shown to behave in a latent fashion. They displayed catalytic activity at elevated temperatures for both ring closing metathesis and ring opening metathesis polymerization. PMID:26479425

  19. Pharmacophore mapping in the laulimalide series: total synthesis of a vinylogue for a late-stage metathesis diversification strategy.

    PubMed

    Wender, Paul A; Hilinski, Michael K; Skaanderup, Philip R; Soldermann, Nicolas G; Mooberry, Susan L

    2006-08-31

    An efficient synthesis of the macrocyclic core of laulimalide with a pendant vinyl group at C20 is described, allowing for late-stage introduction of various side chains through a selective and efficient cross metathesis diversification step. Representative analogues reported herein are the first to contain modifications to only the side chain dihydropyran of laulimalide and des-epoxy laulimalide. This step-economical strategy enables the rapid synthesis of new analogues using alkenes as an inexpensive, abundantly available diversification feedstock.

  20. The arene–alkene photocycloaddition

    PubMed Central

    Streit, Ursula

    2011-01-01

    Summary In the presence of an alkene, three different modes of photocycloaddition with benzene derivatives can occur; the [2 + 2] or ortho, the [3 + 2] or meta, and the [4 + 2] or para photocycloaddition. This short review aims to demonstrate the synthetic power of these photocycloadditions. PMID:21647263

  1. Catalyst system comprising a first catalyst system tethered to a supported catalyst

    DOEpatents

    Angelici, Robert J.; Gao, Hanrong

    1998-08-04

    The present invention provides new catalyst formats which comprise a supported catalyst tethered to a second and different catalyst by a suitable tethering ligand. A preferred system comprises a heterogeneous supported metal catalyst tethered to a homogeneous catalyst. This combination of homogeneous and heterogeneous catalysts has a sufficient lifetime and unusually high catalytic activity in arene hydrogenations, and potentially many other reactions as well, including, but not limited to hydroformylation, hydrosilation, olefin oxidation, isomerization, hydrocyanation, olefin metathesis, olefin polymerization, carbonylation, enantioselective catalysis and photoduplication. These catalysts are easily separated from the products, and can be reused repeatedly, making these systems very economical.

  2. Catalyst system comprising a first catalyst system tethered to a supported catalyst

    DOEpatents

    Angelici, R.J.; Gao, H.

    1998-08-04

    The present invention provides new catalyst formats which comprise a supported catalyst tethered to a second and different catalyst by a suitable tethering ligand. A preferred system comprises a heterogeneous supported metal catalyst tethered to a homogeneous catalyst. This combination of homogeneous and heterogeneous catalysts has a sufficient lifetime and unusually high catalytic activity in arene hydrogenations, and potentially many other reactions as well, including, but not limited to hydroformylation, hydrosilication, olefin oxidation, isomerization, hydrocyanidation, olefin metathesis, olefin polymerization, carbonylation, enantioselective catalysis and photoduplication. These catalysts are easily separated from the products, and can be reused repeatedly, making these systems very economical. 2 figs.

  3. Oxidations of alkenes and lignin model compounds in aqueous dispersions

    SciTech Connect

    Zhu, Weiming.

    1991-01-01

    The objective was to develop methods to oxidize water-immiscible alkenes and lignin model compounds with polymer colloid supported transition metal catalysts. The oxidations of organic compounds were carried out in aqueous phase with several water-soluble oxidants and dioxygen. Cationic polymer latexes were prepared by the emulsion copolymerization of vinylbenzyl chloride, divinylbenzene, and vinyl octadecyl ether, or styrene, or n-decyl methacrylate, and the subsequent quaternization of copolymers with trimethylamine. The latex particles were 44 nm to 71 nm in diameter. The latex bound Mn porphyrin catalysts were formed with MnTSPP [TSPP = meso-tetrakis(2,6-dichloro-3-sulfonatophenyl)porphyrin], which catalyzed the oxidation of cyclohexene, cycloocetene, allylbenzene, and 1-octene by sodium hypochlorite (NaOCl) and potassium peroxymonosulfate (KHSO[sub 5]). The latex bound porphyrin catalysts showed higher activity than MnTSPP in solution. Oxidations of 3,4-dimethoxybenzyl alcohol (DMBA), 4-hydroxy-3-methoxytoluene (HMT), and 3,4-dimethoxytoluene (DMT) were performed with either dioxygen or hydrogen peroxide and CoPcTS (PcTS = tetrasulfonatophthalocyanine), FePcTS, CuPcTS, NiPcTS, FeTCPP [TCPP = meso-tetrakis(4-carboxyphenyl)porphyrin], and MnTSPP. CoPcTS catalyzed the autoxidation of DMBA and HMT at 70-85[degrees]C and pH [ge] 8. All catalysts were active for the oxidation of DMBA, HMT, and DMT with H[sub 2]O[sub 2]. Aqueous solutions of KHSO[sub 5] oxidized water-immiscible alkenes at room temperature in the absence of organic solvent. The acidic pH [le] 1.7 solutions of commercial 2KHSO[sub 5][center dot]K[sub 2]SO[sub 4] in water produced diols from all reactive alkenes except cyclooctene. Adjustment of initial pH to [ge]6.7 with NaHCO[sub 3] enabled selective epoxidations.

  4. Sunflower-based Feedstocks in Nonfood Applications: Perspectives from Olefin Metathesis

    PubMed Central

    Marvey, Bassie B.

    2008-01-01

    Sunflower (Helianthus annuus L.) oil remains under-utilised albeit one of the major seed oils produced world-wide. Moreover, the high oleic sunflower varieties make the oil attractive for applications requiring high temperature processes and those targeting the C=C double bond functionality. Herein an overview of the recent developments in olefin metathesis of sunflower-based feedstocks is presented. The improved performance of olefin metathesis catalysts leading to high turnover numbers, high selectivity and catalyst recyclability, opens new opportunities for tailoring sunflower-based feedstocks into products required for possible new niche market applications. Promising results in biofuel, biopolymers, fragrances and fine chemicals applications have been reported. PMID:19325810

  5. Olefin Metathesis Reaction in Water and in Air Improved by Supramolecular Additives.

    PubMed

    Tomasek, Jasmine; Seßler, Miriam; Gröger, Harald; Schatz, Jürgen

    2015-01-01

    A range of water-immiscible commercially available Grubbs-type precatalysts can be used in ring-closing olefin metathesis reaction in high yields. The synthetic transformation is possible in pure water under ambient conditions. Sulfocalixarenes can help to boost the reactivity of the metathesis reaction by catalyst activation, improved mass transfer, and solubility of reactants in the aqueous reaction media. Additionally, the use of supramolecular additives allows lower catalyst loadings, but still high activity in pure water under aerobic conditions. PMID:26506329

  6. Tandem enyne metathesis-Diels-Alder reaction for construction of natural product frameworks.

    PubMed

    Rosillo, Marta; Domínguez, Gema; Casarrubios, Luis; Amador, Ulises; Pérez-Castells, Javier

    2004-03-19

    Enynes connected through aromatic rings are used as substrates for metathesis reactions. The reactivity of three ruthenium carbene complexes is compared. The resulting 1,3-dienes are suitable precursors of polycyclic structures via a Diels-Alder process. Some domino RCM-Diels-Alder reactions are performed, suggesting a possible beneficial effect of the ruthenium catalyst in the cycloaddition process. Other examples require Lewis acid cocatalyst. When applied to aromatic ynamines or enamines, a new synthesis of vinylindoles is achieved. Monitorization of several metathesis reactions with NMR shows the different behavior for ruthenium catalysts. New carbenic species are detected in some reactions with an important dependence on the solvent used.

  7. Recent advances in the ruthenium-catalyzed hydroarylation of alkynes with aromatics: synthesis of trisubstituted alkenes.

    PubMed

    Manikandan, Rajendran; Jeganmohan, Masilamani

    2015-11-14

    The hydroarylation of alkynes with substituted aromatics in the presence of a metal catalyst via chelation-assisted C-H bond activation is a powerful method to synthesize trisubstituted alkenes. Chelation-assisted C-H bond activation can be done by two ways: (a) an oxidative addition pathway and (b) a deprotonation pathway. Generally, a mixture of cis and trans stereoisomeric as well as regioisomeric trisubstituted alkenes was observed in an oxidative addition pathway. In the deprotonation pathway, the hydroarylation reaction can be done in a highly regio- and stereoselective manner, and enables preparation of the expected trisubstituted alkenes in a highly selective manner. Generally, ruthenium, rhodium and cobalt complexes are used as catalysts in the reaction. In this review, a ruthenium-catalyzed hydroarylation of alkynes with substituted aromatics is covered completely. The hydroarylation reaction of alkynes with amide, azole, carbamate, phosphine oxide, amine, acetyl, sulfoxide and sulphur directed aromatics is discussed.

  8. Upgrading light hydrocarbons via tandem catalysis: a dual homogeneous Ta/Ir system for alkane/alkene coupling.

    PubMed

    Leitch, David C; Lam, Yan Choi; Labinger, Jay A; Bercaw, John E

    2013-07-17

    Light alkanes and alkenes are abundant but are underutilized as energy carriers because of their high volatility and low energy density. A tandem catalytic approach for the coupling of alkanes and alkenes has been developed in order to upgrade these light hydrocarbons into heavier fuel molecules. This process involves alkane dehydrogenation by a pincer-ligated iridium complex and alkene dimerization by a Cp*TaCl2(alkene) catalyst. These two homogeneous catalysts operate with up to 60/30 cooperative turnovers (Ir/Ta) in the dimerization of 1-hexene/n-heptane, giving C13/C14 products in 40% yield. This dual system can also effect the catalytic dimerization of n-heptane (neohexene as the H2 acceptor) with cooperative turnover numbers of 22/3 (Ir/Ta).

  9. Light-induced olefin metathesis

    PubMed Central

    Vidavsky, Yuval

    2010-01-01

    Summary Light activation is a most desirable property for catalysis control. Among the many catalytic processes that may be activated by light, olefin metathesis stands out as both academically motivating and practically useful. Starting from early tungsten heterogeneous photoinitiated metathesis, up to modern ruthenium methods based on complex photoisomerisation or indirect photoactivation, this survey of the relevant literature summarises past and present developments in the use of light to expedite olefin ring-closing, ring-opening polymerisation and cross-metathesis reactions. PMID:21160912

  10. Novel chiral (salen)Mn(III) complexes containing a calix[4]arene unit in 1,3-alternate conformation as catalysts for enantioselective epoxidation reactions of (Z)-aryl alkenes.

    PubMed

    Bonaccorso, Carmela; Brancatelli, Giovanna; Ballistreri, Francesco P; Geremia, Silvano; Pappalardo, Andrea; Tomaselli, Gaetano A; Toscano, Rosa M; Sciotto, Domenico

    2014-02-01

    Two new chiral calix[4]arene-salen ligands 1a,b, based on calix[4]arene platforms in 1,3-alternate conformation, have been prepared by a new general synthetic pathway. Their Mn(III) complexes, 3a,b have shown fairly good efficiency in the asymmetric epoxidation of styrene and substituted styrenes, whereas excellent catalytic activity and selectivity were observed with rigid bicyclic alkenes, namely 1,2-dihydro-naphthalene and substituted 2,2'-dimethyl-chromene. The higher catalytic properties of 3a may be ascribed to the more rigid and inherently chiral structure as proved by molecular modelling, NMR spectroscopy and X-ray data of the similarly structured UO2 complexes 2a,b.

  11. Highly Z-Selective Metathesis Homocoupling of Terminal Olefins

    PubMed Central

    Jiang, Annie J.; Zhao, Yu; Schrock, Richard R.; Hoveyda, Amir H.

    2009-01-01

    Mo and W MonoAryloxide-Pyrrolide (MAP) olefin metathesis catalysts can couple terminal olefins to give as high as >98% Z-products in moderate to high yields with as little as 0.2% catalyst. Results are reported for 1-hexene, 1-octene, allylbenzene, allyltrimethylsilane, methyl-10-undecenoate, methyl-9-decenoate, allylB(pinacolate), allylOBenzyl, allylNHTosyl, and allylNHPh. It is proposed that high Z-selectivity is achieved because a large aryloxide only allows metallacyclobutanes to form that contain adjacent cis substituents and because isomerization of Z-product to E-product can be slow in that same steric environment. PMID:19919135

  12. Efficient alkene epoxidation catalyzed by molybdenyl acetylacetonate supported on aminated UiO-66 metal−organic framework

    SciTech Connect

    Kardanpour, Reihaneh; Tangestaninejad, Shahram; Mirkhani, Valiollah; Moghadam, Majid; Mohammadpoor-Baltork, Iraj; Zadehahmadi, Farnaz

    2015-03-15

    Metal–organic frameworks (MOFs) containing Mo Schiff base complexes were prepared by post-synthesis method and applied as efficient catalysts in the epoxidation of alkenes with tert-BuOOH. In this manner, UiO-66-NH{sub 2} (UiO=University of Oslo) MOF was reacted with salicylaldehyde and thiophene-2-carbaldehyde to produce bidentate Schiff bases. Then, the Schiff base ligands were used for immobilization of molybdenyl acetylacetonate. These new catalysts were characterized by FT-IR, UV–vis spectroscopic techniques, X-ray diffraction (XRD), BET, inductively coupled plasma atomic emission spectroscopy (ICP-AES) and field emission scanning electron microscopy (FE-SEM). These catalytic systems showed excellent activity in the epoxidation of alkenes such as cyclic and linear ones with tert-butyl hydroperoxide (TBHP) in 1,2-dichloroethane, and reused several times without any appreciable loss of their activity. - Graphical abstract: Efficient alkene epoxidation with TBHP catalyzed by heterogeneous and reusable molybdenum base catalysts is reported. - Highlights: • UiO-66-NH{sub 2} was modified with salicylaldehyde and thiophene-2-carbaldehyde. • The Schiff base groups were used for immobilization of MoO{sub 2}(acac){sub 2}. • The heterogeneous catalysts were prepared. • The prepared catalysts were used for epoxidation of alkenes. • Compared to other catalyst, our catalysts were more efficient and forceful.

  13. Nickel-Catalyzed Coupling Reactions of Alkenes

    PubMed Central

    Ng, Sze-Sze; Ho, Chun-Yu; Schleicher, Kristin D.; Jamison, Timothy F.

    2011-01-01

    Several reactions of simple, unactivated alkenes with electrophiles under nickel(0) catalysis are discussed. The coupling of olefins with aldehydes and silyl triflates provides allylic or homoallylic alcohol derivatives, depending on the supporting ligands and, to a lesser extent, the substrates employed. Reaction of alkenes with isocyanates yields N-alkyl acrylamides. In these methods, alkenes act as the functional equivalents of alkenyl- and allylmetal reagents. PMID:21814295

  14. Metathesis process for preparing an alpha, omega-functionalized olefin

    DOEpatents

    Burdett, Kenneth A.; Mokhtarzadeh, Morteza; Timmers, Francis J.

    2010-10-12

    A cross-metathesis process for preparing an .alpha.,.omega.-functionalized olefin, such as methyl 9-decenoate, and an .alpha.-olefin having three or more carbon atoms, such as 1-decene. The process involves contacting in a first reaction zone an .alpha.-functionalized internal olefin, such as methyl oleate, and an .alpha.-olefinic monomer having three or more carbon atoms, such as 1-decene, with a first metathesis catalyst to prepare an effluent stream containing the .alpha.,.omega.-functionalized olefin, such as methyl 9-decenoate, an unfunctionalized internal olefin, such as 9-octadecene, unconverted reactant olefins, and optionally, an .alpha.,.omega.-difunctionalized internal olefinic dimer, such as dimethyl 9-octadecen-1,18-dioate; separating said effluent streams; then contacting in a second reaction zone the unfunctionalized internal olefin with ethylene in the presence of a second metathesis catalyst to obtain a second product effluent containing the .alpha.-olefinic monomer having three or more carbon atoms; and cycling a portion of the .alpha.-olefinic monomer stream(s) to the first zone.

  15. Catalytic Enantioselective Functionalization of Unactivated Terminal Alkenes.

    PubMed

    Coombs, John R; Morken, James P

    2016-02-18

    Terminal alkenes are readily available functional groups which appear in α-olefins produced by the chemical industry, and they appear in the products of many contemporary synthetic reactions. While the organic transformations that apply to alkenes are amongst the most studied reactions in all of chemical synthesis, the number of reactions that apply to nonactivated terminal alkenes in a catalytic enantioselective fashion is small in number. This Minireview highlights the cases where stereocontrol in catalytic reactions of 1-alkenes is high enough to be useful for asymmetric synthesis. PMID:26764019

  16. Catalytic Enantioselective Functionalization of Unactivated Terminal Alkenes.

    PubMed

    Coombs, John R; Morken, James P

    2016-02-18

    Terminal alkenes are readily available functional groups which appear in α-olefins produced by the chemical industry, and they appear in the products of many contemporary synthetic reactions. While the organic transformations that apply to alkenes are amongst the most studied reactions in all of chemical synthesis, the number of reactions that apply to nonactivated terminal alkenes in a catalytic enantioselective fashion is small in number. This Minireview highlights the cases where stereocontrol in catalytic reactions of 1-alkenes is high enough to be useful for asymmetric synthesis.

  17. Isomerizing olefin metathesis as a strategy to access defined distributions of unsaturated compounds from fatty acids.

    PubMed

    Ohlmann, Dominik M; Tschauder, Nicole; Stockis, Jean-Pierre; Goossen, Käthe; Dierker, Markus; Goossen, Lukas J

    2012-08-22

    The dimeric palladium(I) complex [Pd(μ-Br)(t)Bu(3)P](2) was found to possess unique activity for the catalytic double-bond migration within unsaturated compounds. This isomerization catalyst is fully compatible with state-of-the-art olefin metathesis catalysts. In the presence of bifunctional catalyst systems consisting of [Pd(μ-Br)(t)Bu(3)P](2) and NHC-indylidene ruthenium complexes, unsaturated compounds are continuously converted into equilibrium mixtures of double-bond isomers, which concurrently undergo catalytic olefin metathesis. Using such highly active catalyst systems, the isomerizing olefin metathesis becomes an efficient way to access defined distributions of unsaturated compounds from olefinic substrates. Computational models were designed to predict the outcome of such reactions. The synthetic utility of isomerizing metatheses is demonstrated by various new applications. Thus, the isomerizing self-metathesis of oleic and other fatty acids and esters provides olefins along with unsaturated mono- and dicarboxylates in distributions with adjustable widths. The cross-metathesis of two olefins with different chain lengths leads to regular distributions with a mean chain length that depends on the chain length of both starting materials and their ratio. The cross-metathesis of oleic acid with ethylene serves to access olefin blends with mean chain lengths below 18 carbons, while its analogous reaction with hex-3-enedioic acid gives unsaturated dicarboxylic acids with adjustable mean chain lengths as major products. Overall, the concept of isomerizing metatheses promises to open up new synthetic opportunities for the incorporation of oleochemicals as renewable feedstocks into the chemical value chain.

  18. A ring closing metathesis strategy for carbapyranosides of xylose and arabinose.

    PubMed

    Mattis, Clayton E; Mootoo, David R

    2016-04-29

    The synthesis of β-carba-xylo and arabino pyranosides of cholestanol is described. The synthetic strategy, which is analogous to the Postema approach to C-glycosides, centers on the ring closing metathesis of an enol ether-alkene precursor to give a cyclic enol ether that is elaborated to a carba-pyranoside via hydroboration-oxidation on the olefin. The method, which is attractive for its modularity and stereoselectivity, may find wider applications to carba-hexopyranosides and other complex cycloalkyl ether frameworks.

  19. A ring closing metathesis strategy for carbapyranosides of xylose and arabinose.

    PubMed

    Mattis, Clayton E; Mootoo, David R

    2016-06-24

    The synthesis of β-carba-xylo and arabino pyranosides of cholestanol is described. The synthetic strategy, which is analogous to the Postema approach to C-glycosides, centers on the ring closing metathesis of an enol ether-alkene precursor to give a cyclic enol ether that is elaborated to a carba-pyranoside via hydroboration-oxidation on the olefin. The method, which is attractive for its modularity and stereoselectivity, may find wider applications to carba-hexopyranosides and other complex cycloalkyl ether frameworks.

  20. A ring closing metathesis strategy for carbapyranosides of xylose and arabinose.

    PubMed

    Mattis, Clayton E; Mootoo, David R

    2016-04-29

    The synthesis of β-carba-xylo and arabino pyranosides of cholestanol is described. The synthetic strategy, which is analogous to the Postema approach to C-glycosides, centers on the ring closing metathesis of an enol ether-alkene precursor to give a cyclic enol ether that is elaborated to a carba-pyranoside via hydroboration-oxidation on the olefin. The method, which is attractive for its modularity and stereoselectivity, may find wider applications to carba-hexopyranosides and other complex cycloalkyl ether frameworks. PMID:27035910

  1. A ring closing metathesis strategy for carbapyranosides of xylose and arabinose.

    PubMed

    Mattis, Clayton E; Mootoo, David R

    2016-06-24

    The synthesis of β-carba-xylo and arabino pyranosides of cholestanol is described. The synthetic strategy, which is analogous to the Postema approach to C-glycosides, centers on the ring closing metathesis of an enol ether-alkene precursor to give a cyclic enol ether that is elaborated to a carba-pyranoside via hydroboration-oxidation on the olefin. The method, which is attractive for its modularity and stereoselectivity, may find wider applications to carba-hexopyranosides and other complex cycloalkyl ether frameworks. PMID:27236269

  2. Synthesis of interlocked molecules by olefin metathesis

    NASA Astrophysics Data System (ADS)

    Clark, Paul Gregory

    A large body of work in the Grubbs group has focused on the development of functional-group tolerant ruthenium alkylidene catalysts that perform a number of olefin metathesis reactions. These catalysts have seen application in a wide range of fields, including classic total synthesis as well as polymer and materials chemistry. One particular family of compounds, interlocked molecules, has benefitted greatly from these advances in catalyst stability and activity. This thesis describes several elusive and challenging interlocked architectures whose syntheses have been realized through the utilization of different types of ruthenium-catalyzed olefin metathesis reactions. Ring-closing olefin metathesis has enabled the synthesis of a [c2]daisy-chain dimer with the ammonium binding site near the cap of the dimer. A deprotonated DCD possessing such a structural attribute will more forcefully seek to restore coordinating interactions upon reprotonation, enhancing its utility as a synthetic molecular actuator. Dimer functionalization facilitated incorporation into linear polymers, with a 48% size increase of an unbound, extended analogue of the polymer demonstrating slippage of the dimer units. Ongoing work is directed at further materials studies, in particular, exploring the synthesis of macroscopic networks containing the DCD units and analyzing the correlation between molecular-scale extension-contraction manipulations and resulting macro-scale changes. A "clipping" approach to a polycatenated cyclic polymer, a structure that resembles a molecular "charm bracelet", has been described. The use of ring-opening metathesis polymerization of a carbamate monomer in the presence of a chain transfer agent allowed for the synthesis of a linear polymer that was subsequently functionalized and cyclized to the corresponding cyclic analogue. This cyclic polymer was characterized through a variety of techniques, and subjected to further functionalization reactions, affording a cyclic

  3. Kinetically controlled E-selective catalytic olefin metathesis.

    PubMed

    Nguyen, Thach T; Koh, Ming Joo; Shen, Xiao; Romiti, Filippo; Schrock, Richard R; Hoveyda, Amir H

    2016-04-29

    A major shortcoming in olefin metathesis, a chemical process that is central to research in several branches of chemistry, is the lack of efficient methods that kinetically favor E isomers in the product distribution. Here we show that kinetically E-selective cross-metathesis reactions may be designed to generate thermodynamically disfavored alkenyl chlorides and fluorides in high yield and with exceptional stereoselectivity. With 1.0 to 5.0 mole % of a molybdenum-based catalyst, which may be delivered in the form of air- and moisture-stable paraffin pellets, reactions typically proceed to completion within 4 hours at ambient temperature. Many isomerically pure E-alkenyl chlorides, applicable to catalytic cross-coupling transformations and found in biologically active entities, thus become easily and directly accessible. Similarly, E-alkenyl fluorides can be synthesized from simpler compounds or more complex molecules.

  4. Kinetically controlled E-selective catalytic olefin metathesis.

    PubMed

    Nguyen, Thach T; Koh, Ming Joo; Shen, Xiao; Romiti, Filippo; Schrock, Richard R; Hoveyda, Amir H

    2016-04-29

    A major shortcoming in olefin metathesis, a chemical process that is central to research in several branches of chemistry, is the lack of efficient methods that kinetically favor E isomers in the product distribution. Here we show that kinetically E-selective cross-metathesis reactions may be designed to generate thermodynamically disfavored alkenyl chlorides and fluorides in high yield and with exceptional stereoselectivity. With 1.0 to 5.0 mole % of a molybdenum-based catalyst, which may be delivered in the form of air- and moisture-stable paraffin pellets, reactions typically proceed to completion within 4 hours at ambient temperature. Many isomerically pure E-alkenyl chlorides, applicable to catalytic cross-coupling transformations and found in biologically active entities, thus become easily and directly accessible. Similarly, E-alkenyl fluorides can be synthesized from simpler compounds or more complex molecules. PMID:27126041

  5. Ring-Closing Metathesis: An Advanced Guided-Inquiry Experiment for the Organic Laboratory

    ERIC Educational Resources Information Center

    Schepmann, Hala G.; Mynderse, Michelle

    2010-01-01

    The design and implementation of an advanced guided-inquiry experiment for the organic laboratory is described. Grubbs's second-generation catalyst is used to effect the ring-closing metathesis of diethyl diallylmalonate. The reaction is carried out under an inert atmosphere at room temperature and monitored by argentic TLC. The crude reaction is…

  6. Amino acids as chiral anionic ligands for ruthenium based asymmetric olefin metathesis.

    PubMed

    Ivry, Elisa; Ben-Asuly, Amos; Goldberg, Israel; Lemcoff, N Gabriel

    2015-03-01

    Several amino acid ligands were introduced into the Hoveyda-Grubbs 2nd generation complex by a facile anionic ligand exchange. The chiral pre-catalysts obtained displayed enantioselectivity in asymmetric ring-closing and ring-opening cross-metathesis reactions. Reduction of the lability of the carboxylate ligands was found to be cardinal for improving the observed enantiomeric product enrichment. PMID:25656548

  7. Olefin cross-metathesis for the synthesis of alkenyl acyclonucleoside phosphonates.

    PubMed

    Bessières, Maxime; De Schutter, Coralie; Roy, Vincent; Agofoglio, Luigi A

    2014-01-01

    The detailed synthetic protocol for the straightforward, efficient synthesis of various alkenyl acyclonucleosides, including challenging trisubstituted alkenyl acyclonucleoside phosphonates, is described. The key step of those syntheses is an olefin cross-metathesis reaction between two olefins selected based on their reactivity using well-defined ruthenium alkylidene catalysts. PMID:25501590

  8. Amino acids as chiral anionic ligands for ruthenium based asymmetric olefin metathesis.

    PubMed

    Ivry, Elisa; Ben-Asuly, Amos; Goldberg, Israel; Lemcoff, N Gabriel

    2015-03-01

    Several amino acid ligands were introduced into the Hoveyda-Grubbs 2nd generation complex by a facile anionic ligand exchange. The chiral pre-catalysts obtained displayed enantioselectivity in asymmetric ring-closing and ring-opening cross-metathesis reactions. Reduction of the lability of the carboxylate ligands was found to be cardinal for improving the observed enantiomeric product enrichment.

  9. Olefin cross-metathesis for the synthesis of alkenyl acyclonucleoside phosphonates.

    PubMed

    Bessières, Maxime; De Schutter, Coralie; Roy, Vincent; Agofoglio, Luigi A

    2014-12-12

    The detailed synthetic protocol for the straightforward, efficient synthesis of various alkenyl acyclonucleosides, including challenging trisubstituted alkenyl acyclonucleoside phosphonates, is described. The key step of those syntheses is an olefin cross-metathesis reaction between two olefins selected based on their reactivity using well-defined ruthenium alkylidene catalysts.

  10. Synthesis of dibenzoheteropines of group 13-16 elements via ring-closing metathesis.

    PubMed

    Matsuda, Takanori; Sato, Shinya

    2013-04-01

    The ring-closing metathesis (RCM) of bis(2-vinylphenyl)silanes in the presence of the second-generation Hoveyda-Grubbs catalyst in toluene at 100 °C afforded dibenzo[b,f]silepines in excellent yields. Other dibenzoheteropines of group 13-16 elements were also prepared via the RCM of the corresponding heteroatom-tethered dienes.

  11. A General Approach to Catalytic Alkene Anti-Markovnikov Hydrofunctionalization Reactions via Acridinium Photoredox Catalysis.

    PubMed

    Margrey, Kaila A; Nicewicz, David A

    2016-09-20

    The development of methods for anti-Markovnikov alkene hydrofunctionalization has been a focal point of catalysis research for several decades. The vast majority of work on the control of regioselectivity for this reaction class has hinged on transition metal catalyst activation of olefin substrates. While progress has been realized, there are significant limitations to this approach, and a general solution for catalysis of anti-Markovnikov hydrofunctionalization reactions of olefins does not presently exist. In the past several years, this research lab has focused on alkene activation by single electron oxidation using organic photoredox catalysts to facilitate anti-Markovnikov hydrofunctionalization. By accessing reactive cation radical intermediates, we have realized a truly general approach to anti-Markovnikov olefin hydrofunctionalization reactions. We have identified a dual organic catalyst system consisting of an acridinium photooxidant, first reported by Fukuzumi, and a redox-active hydrogen atom donor that accomplishes a wide range of hydrofunctionalization reactions with complete anti-Markovnikov regiocontrol. This method relies on single electron oxidation of the alkene to reverse its polarity and results in the opposite regioselectivity for hydrofunctionalization. In 2012, we disclosed the anti-Markovnikov hydroetherification of alkenols employing an acridinium photocatalyst and a hydrogen atom donor that proceeds via interwoven polar and radical steps. This general catalyst system has enabled several important reactions in this area, including anti-Markovnikov alkene hydroacetoxylation, hydrolactonization, hydroamination, and hydrotrifluoromethylation reactions. More recently, we have also delineated conditions for intermolecular anti-Markovnikov hydroamination reactions of alkenes using either triflamide or nitrogen-containing heteroaromatic compounds such as pyrazole, indazole, imidazole, and 1,2,3-triazole. Further development led to a method for

  12. Oxidative Allylic Esterification of Alkenes by Cooperative Selenium-Catalysis Using Air as the Sole Oxidant.

    PubMed

    Ortgies, Stefan; Depken, Christian; Breder, Alexander

    2016-06-17

    A new metal-free catalysis protocol for the oxidative coupling of nonactivated alkenes with simple carboxylic acids has been established. This method is predicated on the cooperative interaction of a diselane and a photoredox catalyst, which allows for the use of ambient air or pure O2 as the terminal oxidant. Under the title conditions, a range of both functionalized and nonfunctionalized alkenes can be readily converted into the corresponding allylic ester products with good yields (up to 89%) and excellent regioselectivity as well as good functional group tolerance.

  13. A General Approach to Catalytic Alkene Anti-Markovnikov Hydrofunctionalization Reactions via Acridinium Photoredox Catalysis.

    PubMed

    Margrey, Kaila A; Nicewicz, David A

    2016-09-20

    The development of methods for anti-Markovnikov alkene hydrofunctionalization has been a focal point of catalysis research for several decades. The vast majority of work on the control of regioselectivity for this reaction class has hinged on transition metal catalyst activation of olefin substrates. While progress has been realized, there are significant limitations to this approach, and a general solution for catalysis of anti-Markovnikov hydrofunctionalization reactions of olefins does not presently exist. In the past several years, this research lab has focused on alkene activation by single electron oxidation using organic photoredox catalysts to facilitate anti-Markovnikov hydrofunctionalization. By accessing reactive cation radical intermediates, we have realized a truly general approach to anti-Markovnikov olefin hydrofunctionalization reactions. We have identified a dual organic catalyst system consisting of an acridinium photooxidant, first reported by Fukuzumi, and a redox-active hydrogen atom donor that accomplishes a wide range of hydrofunctionalization reactions with complete anti-Markovnikov regiocontrol. This method relies on single electron oxidation of the alkene to reverse its polarity and results in the opposite regioselectivity for hydrofunctionalization. In 2012, we disclosed the anti-Markovnikov hydroetherification of alkenols employing an acridinium photocatalyst and a hydrogen atom donor that proceeds via interwoven polar and radical steps. This general catalyst system has enabled several important reactions in this area, including anti-Markovnikov alkene hydroacetoxylation, hydrolactonization, hydroamination, and hydrotrifluoromethylation reactions. More recently, we have also delineated conditions for intermolecular anti-Markovnikov hydroamination reactions of alkenes using either triflamide or nitrogen-containing heteroaromatic compounds such as pyrazole, indazole, imidazole, and 1,2,3-triazole. Further development led to a method for

  14. Oxidative Allylic Esterification of Alkenes by Cooperative Selenium-Catalysis Using Air as the Sole Oxidant.

    PubMed

    Ortgies, Stefan; Depken, Christian; Breder, Alexander

    2016-06-17

    A new metal-free catalysis protocol for the oxidative coupling of nonactivated alkenes with simple carboxylic acids has been established. This method is predicated on the cooperative interaction of a diselane and a photoredox catalyst, which allows for the use of ambient air or pure O2 as the terminal oxidant. Under the title conditions, a range of both functionalized and nonfunctionalized alkenes can be readily converted into the corresponding allylic ester products with good yields (up to 89%) and excellent regioselectivity as well as good functional group tolerance. PMID:27257803

  15. Perfluoroalkylation of Unactivated Alkenes with Acid Anhydrides as the Perfluoroalkyl Source.

    PubMed

    Kawamura, Shintaro; Sodeoka, Mikiko

    2016-07-18

    An efficient perfluoroalkylation of unactivated alkenes with perfluoro acid anhydrides was developed. Copper salts play a crucial role as a catalyst to achieve allylic perfluoroalkylation with the in situ generated bis(perfluoroacyl) peroxides. Furthermore, carboperfluoroalkylation of alkene bearing an aromatic ring at an appropriate position on the carbon side chain was found to proceed under metal-free conditions to afford carbocycles or heterocycles bearing a perfluoroalkyl group. This method, which makes use of readily available perfluoroalkyl sources, offers a convenient and powerful tool for introducing a perfluoroalkyl group onto an sp(3) carbon to construct synthetically useful skeletons. PMID:27254318

  16. Multiple Olefin Metathesis Polymerization That Combines All Three Olefin Metathesis Transformations: Ring-Opening, Ring-Closing, and Cross Metathesis.

    PubMed

    Lee, Ho-Keun; Bang, Ki-Taek; Hess, Andreas; Grubbs, Robert H; Choi, Tae-Lim

    2015-07-29

    We demonstrated tandem ring-opening/ring-closing metathesis (RO/RCM) polymerization of monomers containing two cyclopentene moieties and postmodification via insertion polymerization. In this system, well-defined polymers were efficiently formed by tandem cascade RO/RCM reaction pathway. Furthermore, these polymers could be transformed to new A,B-alternating copolymers via a sequential cross metathesis reaction with a diacrylate. Additionally, we demonstrated the concept of multiple olefin metathesis polymerization in which the dicyclopentene and diacrylate monomers underwent all three olefin metathesis transformations (ring-opening, ring-closing, and cross metathesis) in one shot to produce A,B-alternating copolymer. PMID:26185967

  17. Multiple Olefin Metathesis Polymerization That Combines All Three Olefin Metathesis Transformations: Ring-Opening, Ring-Closing, and Cross Metathesis.

    PubMed

    Lee, Ho-Keun; Bang, Ki-Taek; Hess, Andreas; Grubbs, Robert H; Choi, Tae-Lim

    2015-07-29

    We demonstrated tandem ring-opening/ring-closing metathesis (RO/RCM) polymerization of monomers containing two cyclopentene moieties and postmodification via insertion polymerization. In this system, well-defined polymers were efficiently formed by tandem cascade RO/RCM reaction pathway. Furthermore, these polymers could be transformed to new A,B-alternating copolymers via a sequential cross metathesis reaction with a diacrylate. Additionally, we demonstrated the concept of multiple olefin metathesis polymerization in which the dicyclopentene and diacrylate monomers underwent all three olefin metathesis transformations (ring-opening, ring-closing, and cross metathesis) in one shot to produce A,B-alternating copolymer.

  18. Towards preparative-scale, biocatalytic alkene reductions.

    PubMed

    Bougioukou, Despina J; Walton, Adam Z; Stewart, Jon D

    2010-12-01

    Simple strategies for using alkene reductase enzymes to produce gram-scale quantities of both (R)- and (S)-citronellal have been developed. The methodology is easily accessible to non-specialist laboratories, allowing alkene reductases to be added to the toolbox of routine synthetic transformations.

  19. Mechanistic interpretation of selective catalytic hydrogenation and isomerization of alkenes and dienes by ligand deactivated Pd nanoparticles

    NASA Astrophysics Data System (ADS)

    Zhu, Jie S.; Shon, Young-Seok

    2015-10-01

    Unsupported thiolate-capped palladium nanoparticle catalysts are found to be highly substrate-selective for alkene hydrogenation and isomerization. Steric and poisoning effects from thiolate ligands on the nanoparticle surface control reactivity and selectivity by influencing alkene adsorption and directing either di-σ or mono-σ bond formation. The presence of overlapping p orbitals and α protons in alkenes greatly influences the catalytic properties of deactivated palladium nanoparticles leading to easily predictable hydrogenation or isomerization products.Unsupported thiolate-capped palladium nanoparticle catalysts are found to be highly substrate-selective for alkene hydrogenation and isomerization. Steric and poisoning effects from thiolate ligands on the nanoparticle surface control reactivity and selectivity by influencing alkene adsorption and directing either di-σ or mono-σ bond formation. The presence of overlapping p orbitals and α protons in alkenes greatly influences the catalytic properties of deactivated palladium nanoparticles leading to easily predictable hydrogenation or isomerization products. Electronic supplementary information (ESI) available: Supplementary figures, methods, materials, and characterization data. See DOI: 10.1039/c5nr05090a

  20. Ruthenium Vinyl Carbene Intermediates in Enyne Metathesis

    PubMed Central

    Diver, Steven T.

    2009-01-01

    This review provides an overview of ruthenium vinyl carbene reactivity as it relates to enyne metathesis. Methods for the synthesis of metathesis-active and metathesis-inactive complexes are also summarized. Some of the early hypotheses about vinyl carbene intermediates in enyne metatheses were tested in the arena of synthetic chemistry and subsequently led to mechanistic studies. In these two areas, studies from the author's labs are described. There are still many unresolved questions in enyne metathesis that trace back to vinyl carbene reactivity. Hopefully this review will stimulate further investigation into vinyl carbene reactivity which should further refine our understanding of catalytic enyne metathesis. PMID:19590747

  1. A bis-calixarene from olefin metathesis

    PubMed Central

    Hailu, Shimelis T.; Butcher, Ray J.; Hudrlik, Paul F.; Hudrlik, Anne M.

    2012-01-01

    A ring-closing olefin metathesis reaction of tetra­kis­(all­yl­oxy)calix[4]arene gave the bis­ calixarene, (15E,40E,60E)-65,74-bis­(prop-2-en-1-yl­oxy)-13,18,38,43,58,63-hexa­oxado­deca­cyclo­[28.26.8.720,36.111,45.151,55.05,57.07,12.019,24.026,64.032,37.044,49.168,72]tetra­hepta­conta-1,3,5(57),7,9,11,15,19(24),20,22,26,28,30(64),32,34,36,40,44(49),45,47,51,53,55(65),60,68,70,72(74)-hepta­cosa­ene, C74H68O8. It is a cage formed from two calix[4]arene units joined by butenyl groups at three of the O atoms on the narrow rim. The fourth O atom on each calixarene unit is joined with an allyl group. Each of the calix[4]arene units has a flattened cone conformation in which the all­yloxy-substituted aryl group and the opposite aryl group are close together and almost parallel [dihedral angle between planes = 1.09 (11)°], and the other two aryl groups are splayed outward [dihedral angle between planes = 79.53 (11)°]. No guest mol­ecule (e.g. solvent) was observed within the cage. The alkene C atoms of one of the links between the calixarene moieties are disordered over two orientations with occupancies of 0.533 (9) and 0.467 (9). PMID:22719604

  2. A bis-calixarene from olefin metathesis.

    PubMed

    Hailu, Shimelis T; Butcher, Ray J; Hudrlik, Paul F; Hudrlik, Anne M

    2012-06-01

    A ring-closing olefin metathesis reaction of tetra-kis-(all-yl-oxy)calix[4]arene gave the bis- calixarene, (15E,40E,60E)-65,74-bis-(prop-2-en-1-yl-oxy)-13,18,38,43,58,63-hexa-oxado-deca-cyclo-[28.26.8.7(20,36).1(11,45).1(51,55).0(5,57).0(7,12).0(19,24).0(26,64).0(32,37).0(44,49).1(68,72)]tetra-hepta-conta-1,3,5(57),7,9,11,15,19(24),20,22,26,28,30(64),32,34,36,40,44(49),45,47,51,53,55(65),60,68,70,72(74)-hepta-cosa-ene, C(74)H(68)O(8). It is a cage formed from two calix[4]arene units joined by butenyl groups at three of the O atoms on the narrow rim. The fourth O atom on each calixarene unit is joined with an allyl group. Each of the calix[4]arene units has a flattened cone conformation in which the all-yloxy-substituted aryl group and the opposite aryl group are close together and almost parallel [dihedral angle between planes = 1.09 (11)°], and the other two aryl groups are splayed outward [dihedral angle between planes = 79.53 (11)°]. No guest mol-ecule (e.g. solvent) was observed within the cage. The alkene C atoms of one of the links between the calixarene moieties are disordered over two orientations with occupancies of 0.533 (9) and 0.467 (9).

  3. Alkene Cleavage Catalysed by Heme and Nonheme Enzymes: Reaction Mechanisms and Biocatalytic Applications

    PubMed Central

    Mutti, Francesco G.

    2012-01-01

    The oxidative cleavage of alkenes is classically performed by chemical methods, although they display several drawbacks. Ozonolysis requires harsh conditions (−78°C, for a safe process) and reducing reagents in a molar amount, whereas the use of poisonous heavy metals such as Cr, Os, or Ru as catalysts is additionally plagued by low yield and selectivity. Conversely, heme and nonheme enzymes can catalyse the oxidative alkene cleavage at ambient temperature and atmospheric pressure in an aqueous buffer, showing excellent chemo- and regioselectivities in certain cases. This paper focuses on the alkene cleavage catalysed by iron cofactor-dependent enzymes encompassing the reaction mechanisms (in case where it is known) and the application of these enzymes in biocatalysis. PMID:22811656

  4. The allylic chalcogen effect in olefin metathesis

    PubMed Central

    Lin, Yuya A

    2010-01-01

    Summary Olefin metathesis has emerged as a powerful tool in organic synthesis. The activating effect of an allylic hydroxy group in metathesis has been known for more than 10 years, and many organic chemists have taken advantage of this positive influence for efficient synthesis of natural products. Recently, the discovery of the rate enhancement by allyl sulfides in aqueous cross-metathesis has allowed the first examples of such a reaction on proteins. This led to a new benchmark in substrate complexity for cross-metathesis and expanded the potential of olefin metathesis for other applications in chemical biology. The enhanced reactivity of allyl sulfide, along with earlier reports of a similar effect by allylic hydroxy groups, suggests that allyl chalcogens generally play an important role in modulating the rate of olefin metathesis. In this review, we discuss the effect of allylic chalcogens in olefin metathesis and highlight its most recent applications in synthetic chemistry and protein modifications. PMID:21283554

  5. Magnetic Carbon Supported Palladium Nanoparticles: An Efficient and Sustainable Catalyst for Hydrogenation Reactions

    EPA Science Inventory

    Magnetic carbon supported Pd catalyst has been synthesized via in situ generation of nanoferrites and incorporation of carbon from renewable cellulose via calcination; the catalyst can be used for the hydrogenation of alkenes and reduction of aryl nitro compounds.

  6. Macrocyclic olefin metathesis at high concentrations by using a phase-separation strategy.

    PubMed

    Raymond, Michaël; Holtz-Mulholland, Michael; Collins, Shawn K

    2014-09-26

    Macrocyclic olefin metathesis has seen advances in the areas of stereochemistry, chemoselectivity, and catalyst stability, but strategies aimed at controlling dilution effects in macrocyclizations are rare. Herein, a protocol to promote macrocyclic olefin metathesis, one of the most common synthetic tools used to prepare macrocycles, at relatively high concentrations (up to 60 mM) is described by exploitation of a phase-separation strategy. A variety of macrocyclic skeletons could be prepared having either different alkyl, aryl, or amino acids spacers. PMID:25145960

  7. A Thermo- and Photo-Switchable Ruthenium Initiator For Olefin Metathesis.

    PubMed

    Sashuk, Volodymyr; Danylyuk, Oksana

    2016-05-01

    A ruthenium carbene complex bearing azobenzene functionality is reported. The complex exists in the form of two isomers differing by the size of the chelate ring. Both isomers were isolated by applying kinetic or thermodynamic control during the synthesis and characterized by X-ray diffraction analysis. The isomerization of the complex was studied by UV/Vis spectroscopy. The stable isomer was tested as a catalyst in olefin metathesis. The complex was activated at about 100 °C to promote ring-closing and ring-opening polymerization metathesis reactions. The activation took place also at room temperature under middle ultraviolet radiation.

  8. A Thermo- and Photo-Switchable Ruthenium Initiator For Olefin Metathesis.

    PubMed

    Sashuk, Volodymyr; Danylyuk, Oksana

    2016-05-01

    A ruthenium carbene complex bearing azobenzene functionality is reported. The complex exists in the form of two isomers differing by the size of the chelate ring. Both isomers were isolated by applying kinetic or thermodynamic control during the synthesis and characterized by X-ray diffraction analysis. The isomerization of the complex was studied by UV/Vis spectroscopy. The stable isomer was tested as a catalyst in olefin metathesis. The complex was activated at about 100 °C to promote ring-closing and ring-opening polymerization metathesis reactions. The activation took place also at room temperature under middle ultraviolet radiation. PMID:27004928

  9. The Origin of Anti-Markovnikov Regioselectivity in Alkene Hydroamination Reactions Catalyzed by [Rh(DPEphos)](.).

    PubMed

    Couce-Rios, Almudena; Lledós, Agustí; Ujaque, Gregori

    2016-06-27

    The development of regioselective anti-Markovnikov alkene's hydroamination is a long-standing goal in catalysis. The [Rh(COD)(DPEphos)](+) complex is the most general and regioselective group 9 catalyst for such a process. The reaction mechanism for intermolecular hydroamination of alkenes catalyzed by [Rh(DPEphos)](+) complex is analyzed by means of DFT calculations. Hydroamination (alkene vs. amine activation routes) as well as oxidative amination pathways are analyzed. According to the computational results the operating mechanism can be generally described by alkene coordination, amine nucleophilic addition, proton transfer through the metal center and reductive elimination steps. The mechanism for the formation of the oxidative amination side product goes via a β-elimination after the nucleophilic addition and metal center protonation steps. The origin of the regioselectivity for the addition process (Markovnikov vs. anti-Markovnikov additions) is shown to be not charge but orbitally driven. Remarkably, η(2) to η(1) slippage degree on the alkene coordination mode is directly related to the regioselective outcome.

  10. The Origin of Anti-Markovnikov Regioselectivity in Alkene Hydroamination Reactions Catalyzed by [Rh(DPEphos)](.).

    PubMed

    Couce-Rios, Almudena; Lledós, Agustí; Ujaque, Gregori

    2016-06-27

    The development of regioselective anti-Markovnikov alkene's hydroamination is a long-standing goal in catalysis. The [Rh(COD)(DPEphos)](+) complex is the most general and regioselective group 9 catalyst for such a process. The reaction mechanism for intermolecular hydroamination of alkenes catalyzed by [Rh(DPEphos)](+) complex is analyzed by means of DFT calculations. Hydroamination (alkene vs. amine activation routes) as well as oxidative amination pathways are analyzed. According to the computational results the operating mechanism can be generally described by alkene coordination, amine nucleophilic addition, proton transfer through the metal center and reductive elimination steps. The mechanism for the formation of the oxidative amination side product goes via a β-elimination after the nucleophilic addition and metal center protonation steps. The origin of the regioselectivity for the addition process (Markovnikov vs. anti-Markovnikov additions) is shown to be not charge but orbitally driven. Remarkably, η(2) to η(1) slippage degree on the alkene coordination mode is directly related to the regioselective outcome. PMID:27226329

  11. Remote functionalization through alkene isomerization.

    PubMed

    Vasseur, Alexandre; Bruffaerts, Jeffrey; Marek, Ilan

    2016-03-01

    Exploiting the reactivity of one functional group within a molecule to generate a reaction at a different position is an ongoing challenge in organic synthesis. Effective remote functionalization protocols have the potential to provide access to almost any derivatives but are difficult to achieve. The difficulty is more pronounced for acyclic systems where flexible alkyl chains are present between the initiating functional group and the desired reactive centres. In this Review, we discuss the concept of remote functionalization of alkenes using metal complexes, leading to a selective reaction at a position distal to the initial double bond. We aim to show the vast opportunity provided by this growing field through selected and representative examples. Our aim is to demonstrate that using a double bond as a chemical handle, metal-assisted long-distance activation could be used as a powerful synthetic strategy. PMID:26892551

  12. Remote functionalization through alkene isomerization

    NASA Astrophysics Data System (ADS)

    Vasseur, Alexandre; Bruffaerts, Jeffrey; Marek, Ilan

    2016-03-01

    Exploiting the reactivity of one functional group within a molecule to generate a reaction at a different position is an ongoing challenge in organic synthesis. Effective remote functionalization protocols have the potential to provide access to almost any derivatives but are difficult to achieve. The difficulty is more pronounced for acyclic systems where flexible alkyl chains are present between the initiating functional group and the desired reactive centres. In this Review, we discuss the concept of remote functionalization of alkenes using metal complexes, leading to a selective reaction at a position distal to the initial double bond. We aim to show the vast opportunity provided by this growing field through selected and representative examples. Our aim is to demonstrate that using a double bond as a chemical handle, metal-assisted long-distance activation could be used as a powerful synthetic strategy.

  13. Remote functionalization through alkene isomerization.

    PubMed

    Vasseur, Alexandre; Bruffaerts, Jeffrey; Marek, Ilan

    2016-03-01

    Exploiting the reactivity of one functional group within a molecule to generate a reaction at a different position is an ongoing challenge in organic synthesis. Effective remote functionalization protocols have the potential to provide access to almost any derivatives but are difficult to achieve. The difficulty is more pronounced for acyclic systems where flexible alkyl chains are present between the initiating functional group and the desired reactive centres. In this Review, we discuss the concept of remote functionalization of alkenes using metal complexes, leading to a selective reaction at a position distal to the initial double bond. We aim to show the vast opportunity provided by this growing field through selected and representative examples. Our aim is to demonstrate that using a double bond as a chemical handle, metal-assisted long-distance activation could be used as a powerful synthetic strategy.

  14. Electrochemical intramolecular aminooxygenation of unactivated alkenes.

    PubMed

    Xu, Fan; Zhu, Lin; Zhu, Shaobin; Yan, Xiaomei; Xu, Hai-Chao

    2014-09-26

    An electrochemical approach to the intramolecular aminooxygenation of unactivated alkenes has been developed. This process is based on the addition of nitrogen-centered radicals, generated through electrochemical oxidation, to alkenes followed by trapping of the cyclized radical intermediate with 2,2,6,6-tetramethylpiperidine-N-oxyl radical (TEMPO). Difunctionalization of a variety of alkenes with easily available carbamates/amides and TEMPO affords aminooxygenation products in high yields and with excellent trans selectivity for cyclic systems (d.r. up to>20:1). The approach provides a much-needed complementary route to existing cis-selective methods.

  15. Catalytic synthesis of n-alkyl arenes through alkyl group cross-metathesis.

    PubMed

    Dobereiner, Graham E; Yuan, Jian; Schrock, Richard R; Goldman, Alan S; Hackenberg, Jason D

    2013-08-28

    n-Alkyl arenes were prepared in a one-pot tandem dehydrogenation/olefin metathesis/hydrogenation sequence directly from alkanes and ethylbenzene. Excellent selectivity was observed when ((tBu)PCP)IrH2 was paired with tungsten monoaryloxide pyrrolide complexes such as W(NAr)(C3H6)(pyr)(OHIPT) (1a) [Ar = 2,6-i-Pr2C6H3; pyr = pyrrolide; OHIPT = 2,6-(2,4,6-i-Pr3C6H2)2C6H3O]. Complex 1a was also especially active in n-octane self-metathesis, providing the highest product concentrations reported to date. The thermal stability of selected olefin metathesis catalysts allowed elevated temperatures and extended reaction times to be employed. PMID:23909821

  16. Well-defined silica-supported zirconium-imido complexes mediated heterogeneous imine metathesis.

    PubMed

    Hamzaoui, Bilel; Pelletier, Jérémie D A; Abou-Hamad, Edy; Basset, Jean-Marie

    2016-03-28

    Upon prolonged thermal exposure under vacuum, a well-defined single-site surface species [([triple bond, length as m-dash]Si-O-)Zr(NEt2)3] () evolves into an ethylimido complex [([triple bond, length as m-dash]Si-O-)Zr([double bond, length as m-dash]NEt)NEt2] (). Reactions of with an imine substrate result in imido/imine ([double bond, length as m-dash]NRi, R: Et, Ph) exchange (metathesis) with the formation of [([triple bond, length as m-dash]Si-O-)Zr([double bond, length as m-dash]NPh)NEt2] (). Compounds and effectively catalyze imine/imine cross-metathesis and are thus considered as the first heterogeneous catalysts active for imine metathesis. PMID:26903397

  17. Application of olefin metathesis in the synthesis of steroids.

    PubMed

    Morzycki, Jacek W

    2011-01-01

    Over the past decade, ruthenium-mediated metathesis transformations, including cross-metathesis, ring-closing metathesis, enyne metathesis, ring-opening metathesis polymerization, and also tandem processes, belong to the most intensively studied reactions. Many applications of olefin metathesis in the synthesis of natural products have been recently described. Also in the field of steroid chemistry new methods of total synthesis and hemisynthesis based on metathesis reactions have been elaborated. Various biologically active compounds, e.g. vitamin D and hormone analogues, steroid dimers and macrocycles, etc. have been prepared using a variety of olefin-metathesis protocols.

  18. Synthesis of linear [5]catenanes via olefin metathesis dimerization of pseudorotaxanes composed of a [2]catenane and a secondary ammonium salt.

    PubMed

    Iwamoto, Hajime; Tafuku, Shinji; Sato, Yoshihiko; Takizawa, Wataru; Katagiri, Wataru; Tayama, Eiji; Hasegawa, Eietsu; Fukazawa, Yoshimasa; Haino, Takeharu

    2016-01-01

    [5]Catenanes were synthesized by olefin metathesis dimerization. The reaction of pseudorotaxanes, which were derived from a [2]catenane and one equivalent of an ammonium salt bearing two terminal olefins in dichloromethane, with a catalytic amount of Grubbs catalyst afforded linear [5]catenanes in 12% yield. Intermolecular and intramolecular olefin metathesis reactions were controlled by the length of the alkyl chain of the ammonium salts.

  19. Synthesis of linear [5]catenanes via olefin metathesis dimerization of pseudorotaxanes composed of a [2]catenane and a secondary ammonium salt.

    PubMed

    Iwamoto, Hajime; Tafuku, Shinji; Sato, Yoshihiko; Takizawa, Wataru; Katagiri, Wataru; Tayama, Eiji; Hasegawa, Eietsu; Fukazawa, Yoshimasa; Haino, Takeharu

    2016-01-01

    [5]Catenanes were synthesized by olefin metathesis dimerization. The reaction of pseudorotaxanes, which were derived from a [2]catenane and one equivalent of an ammonium salt bearing two terminal olefins in dichloromethane, with a catalytic amount of Grubbs catalyst afforded linear [5]catenanes in 12% yield. Intermolecular and intramolecular olefin metathesis reactions were controlled by the length of the alkyl chain of the ammonium salts. PMID:26515104

  20. Alkene anti-Dihydroxylation with Malonoyl Peroxides.

    PubMed

    Alamillo-Ferrer, Carla; Davidson, Stuart C; Rawling, Michael J; Theodoulou, Natalie H; Campbell, Matthew; Humphreys, Philip G; Kennedy, Alan R; Tomkinson, Nicholas C O

    2015-10-16

    Malonoyl peroxide 1, prepared in a single step from the commercially available diacid, is an effective reagent for the anti-dihydroxylation of alkenes. Reaction of 1 with an alkene in the presence of acetic acid at 40 °C followed by alkaline hydrolysis leads to the corresponding diol (35-92%) with up to 13:1 anti-selectivity. A mechanism consistent with experimental findings is proposed that accounts for the selectivity observed. PMID:26425839

  1. Olefin metathesis reaction on GaN (0 0 0 1) surfaces

    NASA Astrophysics Data System (ADS)

    Makowski, Matthew S.; Zemlyanov, Dmitry Y.; Ivanisevic, Albena

    2011-03-01

    Proof-of-concept reactions were performed on GaN (0 0 0 1) surfaces to demonstrate surface termination with desired chemical groups using an olefin cross-metathesis reaction. To prepare the GaN surfaces for olefin metathesis, the surfaces were hydrogen terminated with hydrogen plasma, chlorine terminated with phosphorous pentachloride, and then terminated with an alkene group via a Grignard reaction. The olefin metathesis reaction then bound 7-bromo-1-heptene. The modified surfaces were characterized by X-ray photoelectron spectroscopy (XPS), atomic force microscopy, and water contact angle measurements following each step in the reaction scheme. The XPS data was used to qualitatively identify surface chemical species and to quantitatively determine molecular surface coverage. The bromine atom in 7-bromo-1-heptene served as a heteroatom for identification with XPS. The reaction scheme resulted in GaN substrates with a surface coverage of 0.10 monolayers and excellent stability towards oxidation when exposed to oxygen plasma.

  2. Selective partial hydrogenation of alkynes to (Z)-alkenes with ionic liquid-doped nickel nanocatalysts at near ambient conditions.

    PubMed

    Konnerth, Hannelore; Prechtl, Martin H G

    2016-07-12

    A selective hydrogenation method for forming (Z)-alkenes from alkynes has been developed using a catalyst system of cheap Ni-NPs in a nitrile functionalised imidazolium based ionic liquid (IL) operating under very mild reaction conditions of 30-50 °C and 1-4 bar H2 pressure.

  3. A Cu/Pd Cooperative Catalysis for Enantioselective Allylboration of Alkenes.

    PubMed

    Jia, Tao; Cao, Peng; Wang, Bing; Lou, Yazhou; Yin, Xuemei; Wang, Min; Liao, Jian

    2015-11-01

    A cooperative Cu/Pd-catalyzed asymmetric three-component reaction of styrenes, B2(pin)2, and allyl carbonates was reported. This reaction, in the presence of chiral CuOAc/SOP and achiral Pd(dppf)Cl2 catalysts, occurs smoothly with high enantioselectivities (up to 97% ee) . The allylboration products, which contain alkene (or diene) unite and alkylboron group, are easily functionalized. The utility of this protocol was demonstrated through the synthesis of an antipsychotic drug, (-)-preclamol. PMID:26458555

  4. Branch-Selective Alkene Hydroarylation by Cooperative Destabilization: Iridium-Catalyzed ortho-Alkylation of Acetanilides.

    PubMed

    Crisenza, Giacomo E M; Sokolova, Olga O; Bower, John F

    2015-12-01

    An iridium(I) catalyst system, modified with the wide-bite-angle and electron-deficient bisphosphine d(F) ppb (1,4-bis(di(pentafluorophenyl)phosphino)butane) promotes highly branch-selective hydroarylation reactions between diverse acetanilides and aryl- or alkyl-substituted alkenes. This provides direct and ortho-selective access to synthetically challenging anilines, and addresses long-standing issues associated with related Friedel-Crafts alkylations. PMID:26490739

  5. Branch-Selective Alkene Hydroarylation by Cooperative Destabilization: Iridium-Catalyzed ortho-Alkylation of Acetanilides

    PubMed Central

    Crisenza, Giacomo E M; Sokolova, Olga O; Bower, John F

    2015-01-01

    An iridium(I) catalyst system, modified with the wide-bite-angle and electron-deficient bisphosphine dFppb (1,4-bis(di(pentafluorophenyl)phosphino)butane) promotes highly branch-selective hydroarylation reactions between diverse acetanilides and aryl- or alkyl-substituted alkenes. This provides direct and ortho-selective access to synthetically challenging anilines, and addresses long-standing issues associated with related Friedel–Crafts alkylations. PMID:26490739

  6. Mechanistic Studies of Wacker-Type Intramolecular Aerobic Oxidative Amination of Alkenes Catalyzed by Pd(OAc)2/Pyridine

    PubMed Central

    Ye, Xuan; Liu, Guosheng; Popp, Brian V.; Stahl, Shannon S.

    2011-01-01

    Wacker-type oxidative cyclization reactions have been the subject of extensive research for several decades, but few systematic mechanistic studies of these reactions have been reported. The present study features experimental and DFT computational studies of Pd(OAc)2/pyridine-catalyzed intramolecular aerobic oxidative amination of alkenes. The data support a stepwise catalytic mechanism that consists of (1) steady-state formation of a PdII-amidate-alkene chelate with release of one equivalent of pyridine and AcOH from the catalyst center, (2) alkene insertion into a Pd–N bond, (3) reversible β-hydride elimination, (4) irreversible reductive elimination of AcOH, and (5) aerobic oxidation of palladium(0) to regenerate the active trans-Pd(OAc)2(py)2 catalyst. Evidence is obtained for two energetically viable pathways for the key C–N bond-forming step, featuring a pyridine-ligated and a pyridine-dissociated PdII species. Analysis of natural charges and bond lengths of the alkene-insertion transition state suggest that this reaction is best described as an intramolecular nucleophilic attack of the amidate ligand on the coordinated alkene. PMID:21250706

  7. Synthesis and characterization of supported heteropolymolybdate nanoparticles between silicate layers of Bentonite with enhanced catalytic activity for epoxidation of alkenes

    SciTech Connect

    Salavati, Hossein; Rasouli, Nahid

    2011-11-15

    Highlights: {yields} The PVMo and nanocomposite catalyst (PVMo/Bentonite) as catalyst for epoxidation of alkenes. {yields} The composite catalyst showed higher catalytic activity than parent heteropolymolybdate (PVMo). {yields}The use of ultrasonic irradiation increased the conversions and reduced the reaction times. {yields} The H{sub 2}O{sub 2} is a green and eco-friendly oxidant in this catalytic system. -- Abstract: A new heterogeneous catalyst (PVMo/Bentonite) consisting of vanadium substituted heteropolymolybdate with Keggin-type structure Na{sub 5}[PV{sub 2}Mo{sub 10}O{sub 40}].14H{sub 2}O (PVMo) supported between silicate layers of bentonite has been synthesized by impregnation method and characterized using X-ray diffraction, Fourier-transformed infrared spectroscopy, scanning electron microscopy, UV-vis diffuse reflectance spectroscopy, transmission electron microscopy and elemental analysis. X-ray diffraction and scanning electron microscopy analysis indicated that PVMo was finely dispersed into layers of bentonite as support. The PVMo/Bentonite used as an efficient heterogeneous catalyst for epoxidation of alkenes. Various cyclic and linear alkenes were oxidized into the corresponding epoxides in high yields and selectivity with 30% aqueous H{sub 2}O{sub 2}. The catalyst was reused several times, without observable loss of activity and selectivity. The obtained results showed that the catalytic activity of the PVMo/Bentonite was higher than that of pure heteropolyanion (PVMo).

  8. Catalytic Enantioselective Olefin Metathesis in Natural Product Synthesis. Chiral Metal-Based Complexes that Deliver High Enantioselectivity and More

    PubMed Central

    Malcolmson, Steven J.; Meek, Simon J.; Zhugralin, Adil R.

    2012-01-01

    Chiral olefin metathesis catalysts enable chemists to access enantiomerically enriched small molecules with high efficiency; synthesis schemes involving such complexes can be substantially more concise than those that would involve enantiomerically pure substrates and achiral Mo alkylidenes or Ru-based carbenes. The scope of research towards design and development of chiral catalysts is not limited to discovery of complexes that are merely the chiral versions of the related achiral variants. A chiral olefin metathesis catalyst, in addition to furnishing products of high enantiomeric purity, can offer levels of efficiency, product selectivity and/or olefin stereoselectivity that are unavailable through the achiral variants. Such positive attributes of chiral catalysts (whether utilized in racemic or enantiomerically enriched form) should be considered as general, applicable to other classes of transformations. PMID:19967680

  9. Microwave-Assisted Olefin Metathesis

    NASA Astrophysics Data System (ADS)

    Nicks, François; Borguet, Yannick; Sauvage, Xavier; Bicchielli, Dario; Delfosse, Sébastien; Delaude, Lionel; Demonceau, Albert

    Since the first reports on the use of microwave irradiation to accelerate organic chemical transformations, a plethora of papers have been published in this field. In most examples, microwave heating has been shown to dramatically reduce reaction times, increase product yields, and enhance product purity by reducing unwanted side reactions compared to conventional heating methods. The present contribution aims at illustrating the advantages of this technology in olefin metathesis and, when data are available, at comparing microwave-heated and conventionally heated experiments

  10. Regioselective aerobic oxidative Heck reactions with electronically unbiased alkenes: efficient access to α-alkyl vinylarenes.

    PubMed

    Zheng, Changwu; Stahl, Shannon S

    2015-08-18

    Branched-selective oxidative Heck coupling reactions have been developed between arylboronic acids and electronically unbiased terminal alkenes. The reactions exhibit high catalyst-controlled regioselectivity favoring the less common branched isomer. The reactions employ a catalyst composed of Pd(TFA)2/dmphen (TFA = trifluoroacetate, dmphen = 2,9-dimethyl-1,10-phenanthroline) and proceed efficiently at 45-60 °C under 1 atm of O2 without requiring other additives. A broad array of functional groups, including aryl halide, allyl silane and carboxylic acids are tolerated.

  11. Catalytic living ring-opening metathesis polymerization

    NASA Astrophysics Data System (ADS)

    Nagarkar, Amit A.; Kilbinger, Andreas F. M.

    2015-09-01

    In living ring-opening metathesis polymerization (ROMP), a transition-metal-carbene complex polymerizes ring-strained olefins with very good control of the molecular weight of the resulting polymers. Because one molecule of the initiator is required for each polymer chain, however, this type of polymerization is expensive for widespread use. We have now designed a chain-transfer agent (CTA) capable of reducing the required amount of metal complex while still maintaining full control over the living polymerization process. This new method introduces a degenerative transfer process to ROMP. We demonstrate that substituted cyclohexene rings are good CTAs, and thereby preserve the ‘living’ character of the polymerization using catalytic quantities of the metal complex. The resulting polymers show characteristics of a living polymerization, namely narrow molecular-weight distribution, controlled molecular weights and block copolymer formation. This new technique provides access to well-defined polymers for industrial, biomedical and academic use at a fraction of the current costs and significantly reduced levels of residual ruthenium catalyst.

  12. High-Performance Isocyanide Scavengers for Use in Low-Waste Purification of Olefin Metathesis Products

    PubMed Central

    Szczepaniak, Grzegorz; Urbaniak, Katarzyna; Wierzbicka, Celina; Kosiński, Krzysztof; Skowerski, Krzysztof; Grela, Karol

    2015-01-01

    Three isocyanides containing a tertiary nitrogen atom were investigated for use as small-molecule ruthenium scavenging agents in the workup of olefin metathesis reactions. The proposed compounds are odorless, easy to obtain, and highly effective in removing metal residues, sometimes bringing the metal content below 0.0015 ppm. The most successful of the tested compounds, II, performs very well, even with challenging polar products. The performance of these scavengers is compared and contrasted with other known techniques, such as silica gel filtration and the use of self-scavenging catalysts. As a result, a new hybrid purification method is devised, which gives better results than using either a self-scavenging catalyst or a scavenger alone. Additionally, isocyanide II is shown to be a deactivating (reaction quenching) agent for olefin metathesis and superior to ethyl vinyl ether. PMID:26556779

  13. High-Performance Isocyanide Scavengers for Use in Low-Waste Purification of Olefin Metathesis Products.

    PubMed

    Szczepaniak, Grzegorz; Urbaniak, Katarzyna; Wierzbicka, Celina; Kosiński, Krzysztof; Skowerski, Krzysztof; Grela, Karol

    2015-12-21

    Three isocyanides containing a tertiary nitrogen atom were investigated for use as small-molecule ruthenium scavenging agents in the workup of olefin metathesis reactions. The proposed compounds are odorless, easy to obtain, and highly effective in removing metal residues, sometimes bringing the metal content below 0.0015 ppm. The most successful of the tested compounds, II, performs very well, even with challenging polar products. The performance of these scavengers is compared and contrasted with other known techniques, such as silica gel filtration and the use of self-scavenging catalysts. As a result, a new hybrid purification method is devised, which gives better results than using either a self-scavenging catalyst or a scavenger alone. Additionally, isocyanide II is shown to be a deactivating (reaction quenching) agent for olefin metathesis and superior to ethyl vinyl ether.

  14. Synthesis and structure of large difluoromethylene containing alicycles by ring closing metathesis (RCM).

    PubMed

    Skibiński, Maciej; Urbina-Blanco, César A; Slawin, Alexandra M Z; Nolan, Steven P; O'Hagan, David

    2013-12-21

    Cyclotetra- and cyclohexa-decane ring systems were prepared with CF2 groups spaced 1,4- and 1,6- for tetradecanes together with 1,5- and 1,6- for hexadecanes. These alicyclic systems were assembled by ring closing metathesis reactions of long terminal diolefins. Ring cyclisation by RCM was promoted by the introduction of the dithiane motif, using a sulfur compatible metathesis catalyst. This gave rise to macrocyclic E-cycloalkanes, which were hydrogenated also using a sulfur compatible catalyst. Finally the dithianes emerged as appropriate precursor motifs for the introduction of difluoromethylene groups. X-Ray structures revealed that the resultant rings have the CF2 groups located only at corner positions and that these groups dictated the overall macrocyclic ring conformations.

  15. High-Performance Isocyanide Scavengers for Use in Low-Waste Purification of Olefin Metathesis Products.

    PubMed

    Szczepaniak, Grzegorz; Urbaniak, Katarzyna; Wierzbicka, Celina; Kosiński, Krzysztof; Skowerski, Krzysztof; Grela, Karol

    2015-12-21

    Three isocyanides containing a tertiary nitrogen atom were investigated for use as small-molecule ruthenium scavenging agents in the workup of olefin metathesis reactions. The proposed compounds are odorless, easy to obtain, and highly effective in removing metal residues, sometimes bringing the metal content below 0.0015 ppm. The most successful of the tested compounds, II, performs very well, even with challenging polar products. The performance of these scavengers is compared and contrasted with other known techniques, such as silica gel filtration and the use of self-scavenging catalysts. As a result, a new hybrid purification method is devised, which gives better results than using either a self-scavenging catalyst or a scavenger alone. Additionally, isocyanide II is shown to be a deactivating (reaction quenching) agent for olefin metathesis and superior to ethyl vinyl ether. PMID:26556779

  16. Initiation stage of alkene metathesis: Insights from natural bond orbital and charge decomposition analyses

    NASA Astrophysics Data System (ADS)

    Paredes-Gil, Katherine; Jaque, Pablo

    2015-01-01

    The Rusbnd PR3 bonds of 1-2(a-b)-PC, Rudbnd CHPh bonds of 1a-b, 2-Inact/Act and 1a-b, 2-RCB were analyzed by charge decomposition (CDA) and natural bond orbital (NBO). We have found that the dissociation step of the Rusbnd PR3 bond is driven by charge transfer, while the RCB by polarization effects. Furthermore, the π(Cipso)-π*(Rudbnd C) interaction was associated with delocalization effects in the benzylidene ring. Likewise, the nature of the rotameric changes in the carbene was studied through the resonance stabilization energy (ENLW). 2 presented a lower ΔENLW (Inactive → Active) than 1a-b, which confirms that the delocalization effects are related to a low carbene rotameric energy.

  17. Rapid assembly of structurally defined and highly functionalized conjugated dienes via tethered enyne metathesis.

    PubMed

    Yao, Q

    2001-06-28

    [reaction: see text] Conjugated dienes are versatile building blocks in organic synthesis, and the development of new methods for their synthesis remains an important topic in modern synthetic organic chemistry. We describe here an expedient synthesis of highly functionalized conjugated dienes through sequential silicon-tethered ring-closing enyne metathesis mediated by Grubbs' Ru carbene catalysts and Tamao oxidation. Notable attributes of this methodology include short synthetic manipulations and the structural complexity it confers on the resulting diene moiety. PMID:11418051

  18. Rapid assembly of structurally defined and highly functionalized conjugated dienes via tethered enyne metathesis.

    PubMed

    Yao, Q

    2001-06-28

    [reaction: see text] Conjugated dienes are versatile building blocks in organic synthesis, and the development of new methods for their synthesis remains an important topic in modern synthetic organic chemistry. We describe here an expedient synthesis of highly functionalized conjugated dienes through sequential silicon-tethered ring-closing enyne metathesis mediated by Grubbs' Ru carbene catalysts and Tamao oxidation. Notable attributes of this methodology include short synthetic manipulations and the structural complexity it confers on the resulting diene moiety.

  19. Stereoselective Synthesis of Ezetimibe via Cross-Metathesis of Homoallylalcohols and α-Methylidene-β-Lactams.

    PubMed

    Humpl, Marek; Tauchman, Jiří; Topolovčan, Nikola; Kretschmer, Jan; Hessler, Filip; Císařová, Ivana; Kotora, Martin; Veselý, Jan

    2016-09-01

    Ru-catalyzed cross-metathesis (CM) reaction between β-arylated α-methylidene-β-lactams and terminal olefins was developed. The CM reaction is effectively catalyzed with Hoveyda-Grubbs second-generation catalyst affording corresponding α-alkylidene-β-aryl-β-lactams in good isolated yields (41-83%) with exclusive Z-selectivity. The developed protocol was successfully applied for stereoselective preparation of Ezetimibe, the commercial cholesterol absorption inhibitor. PMID:27494518

  20. 40 CFR 721.10508 - Alkene substituted Bis phenol (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Alkene substituted Bis phenol (generic... Specific Chemical Substances § 721.10508 Alkene substituted Bis phenol (generic). (a) Chemical substance... alkene substituted bis phenol (PMN P-07-161) is subject to reporting under this section for...

  1. 40 CFR 721.10508 - Alkene substituted Bis phenol (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Alkene substituted Bis phenol (generic... Specific Chemical Substances § 721.10508 Alkene substituted Bis phenol (generic). (a) Chemical substance... alkene substituted bis phenol (PMN P-07-161) is subject to reporting under this section for...

  2. Cross-metathesis of polynorbornene with polyoctenamer: a kinetic study.

    PubMed

    Denisova, Yulia I; Gringolts, Maria L; Peregudov, Alexander S; Krentsel, Liya B; Litmanovich, Ekaterina A; Litmanovich, Arkadiy D; Finkelshtein, Eugene Sh; Kudryavtsev, Yaroslav V

    2015-01-01

    The cross-metathesis of polynorbornene and polyoctenamer in d-chloroform mediated by the 1(st) generation Grubbs' catalyst Cl2(PCy3)2Ru=CHPh is studied by monitoring the kinetics of carbene transformation and evolution of the dyad composition of polymer chains with in situ (1)H and ex situ (13)C NMR spectroscopy. The results are interpreted in terms of a simple kinetic two-stage model. At the first stage of the reaction all Ru-benzylidene carbenes are transformed into Ru-polyoctenamers within an hour, while the polymer molar mass is considerably decreased. The second stage actually including interpolymeric reactions proceeds much slower and takes one day or more to achieve a random copolymer of norbornene and cyclooctene. Its rate is limited by the interaction of polyoctenamer-bound carbenes with polynorbornene units, which is hampered, presumably due to steric reasons. Polynorbornene-bound carbenes are detected in very low concentrations throughout the whole process thus indicating their higher reactivity, as compared with the polyoctenamer-bound ones. Macroscopic homogeneity of the reacting media is proved by dynamic light scattering from solutions containing the polymer mixture and its components. In general, the studied process can be considered as a new way to unsaturated multiblock statistical copolymers. Their structure can be controlled by the amount of catalyst, mixture composition, and reaction time. It is remarkable that this goal can be achieved with a catalyst that is not suitable for ring-opening metathesis copolymerization of norbornene and cis-cyclooctene because of their substantially different monomer reactivities. PMID:26664599

  3. Cross-metathesis of polynorbornene with polyoctenamer: a kinetic study.

    PubMed

    Denisova, Yulia I; Gringolts, Maria L; Peregudov, Alexander S; Krentsel, Liya B; Litmanovich, Ekaterina A; Litmanovich, Arkadiy D; Finkelshtein, Eugene Sh; Kudryavtsev, Yaroslav V

    2015-01-01

    The cross-metathesis of polynorbornene and polyoctenamer in d-chloroform mediated by the 1(st) generation Grubbs' catalyst Cl2(PCy3)2Ru=CHPh is studied by monitoring the kinetics of carbene transformation and evolution of the dyad composition of polymer chains with in situ (1)H and ex situ (13)C NMR spectroscopy. The results are interpreted in terms of a simple kinetic two-stage model. At the first stage of the reaction all Ru-benzylidene carbenes are transformed into Ru-polyoctenamers within an hour, while the polymer molar mass is considerably decreased. The second stage actually including interpolymeric reactions proceeds much slower and takes one day or more to achieve a random copolymer of norbornene and cyclooctene. Its rate is limited by the interaction of polyoctenamer-bound carbenes with polynorbornene units, which is hampered, presumably due to steric reasons. Polynorbornene-bound carbenes are detected in very low concentrations throughout the whole process thus indicating their higher reactivity, as compared with the polyoctenamer-bound ones. Macroscopic homogeneity of the reacting media is proved by dynamic light scattering from solutions containing the polymer mixture and its components. In general, the studied process can be considered as a new way to unsaturated multiblock statistical copolymers. Their structure can be controlled by the amount of catalyst, mixture composition, and reaction time. It is remarkable that this goal can be achieved with a catalyst that is not suitable for ring-opening metathesis copolymerization of norbornene and cis-cyclooctene because of their substantially different monomer reactivities.

  4. Cross-metathesis of polynorbornene with polyoctenamer: a kinetic study

    PubMed Central

    Denisova, Yulia I; Gringolts, Maria L; Peregudov, Alexander S; Krentsel, Liya B; Litmanovich, Ekaterina A; Litmanovich, Arkadiy D; Finkelshtein, Eugene Sh

    2015-01-01

    Summary The cross-metathesis of polynorbornene and polyoctenamer in d-chloroform mediated by the 1st generation Grubbs’ catalyst Cl2(PCy3)2Ru=CHPh is studied by monitoring the kinetics of carbene transformation and evolution of the dyad composition of polymer chains with in situ 1H and ex situ 13C NMR spectroscopy. The results are interpreted in terms of a simple kinetic two-stage model. At the first stage of the reaction all Ru-benzylidene carbenes are transformed into Ru-polyoctenamers within an hour, while the polymer molar mass is considerably decreased. The second stage actually including interpolymeric reactions proceeds much slower and takes one day or more to achieve a random copolymer of norbornene and cyclooctene. Its rate is limited by the interaction of polyoctenamer-bound carbenes with polynorbornene units, which is hampered, presumably due to steric reasons. Polynorbornene-bound carbenes are detected in very low concentrations throughout the whole process thus indicating their higher reactivity, as compared with the polyoctenamer-bound ones. Macroscopic homogeneity of the reacting media is proved by dynamic light scattering from solutions containing the polymer mixture and its components. In general, the studied process can be considered as a new way to unsaturated multiblock statistical copolymers. Their structure can be controlled by the amount of catalyst, mixture composition, and reaction time. It is remarkable that this goal can be achieved with a catalyst that is not suitable for ring-opening metathesis copolymerization of norbornene and cis-cyclooctene because of their substantially different monomer reactivities. PMID:26664599

  5. Candle and candle wax containing metathesis and metathesis-like products

    DOEpatents

    Murphy, Timothy A; Tupy, Michael J; Abraham, Timothy W; Shafer, Andy

    2014-12-16

    A wax comprises a metathesis product and/or a product that resembles, at least in part, a product which may be formed from a metathesis reaction. The wax may be used to form articles for example, candles (container candles, votive candles, and/or a pillar candles), crayons, fire logs or tarts. The wax commonly includes other components in addition to the metathesis product.

  6. Candle and candle wax containing metathesis and metathesis-like products

    SciTech Connect

    Murphy, Timothy A; Tupy, Michael J; Abraham, Timothy W; Shafer, Andy

    2014-04-01

    A wax comprises a metathesis product and/or a product that resembles, at least in part, a product which may be formed from a metathesis reaction. The wax may be used to form articles, for example, candles (container candles, votive candles, and/or a pillar candles), crayons, fire logs, or tarts. The wax commonly includes other components in addition to the metathesis product.

  7. [C. E. Alken (1909-1986) and the Alken-Prize].

    PubMed

    Konert, J

    2016-06-01

    C. E. Alken is regarded as the Nestor of German urology post World War II. His development path is given in brief and his specific contributions to the emancipation of the field are pointed out. In 1948 he received a teaching assignment in urology at Saarland State University Homburg, where in 1952, a Chair of Urology was established, and in 1958 he received the Ordinariat. The "Alken-Prize" which was named after him, is also presented.

  8. Alkene epoxidation employing metal nitro complexes

    DOEpatents

    Andrews, M.A.; Cheng, C.W.; Kelley, K.P.

    1982-07-15

    Process for converting alkenes to form epoxides utilizes transition metal nitro complexes of the formula: M(RCN)/sub 2/XNO/sub 2/ wherein M is palladium or platinum, R is an alkyl or aryl group containing up to 12 carbon atoms, and X is a monoanionic, monodentate ligand such as chlorine, optionally in the presence of molecular oxygen.

  9. Olefin cross-metathesis as a source of polysaccharide derivatives: cellulose ω-carboxyalkanoates.

    PubMed

    Meng, Xiangtao; Matson, John B; Edgar, Kevin J

    2014-01-13

    Cross-metathesis has been shown for the first time to be a useful method for the synthesis of polysaccharide derivatives, focusing herein on preparation of cellulose ω-carboxyalkanoates. Commercially available cellulose esters were first acylated with 10-undecenoyl chloride, providing esters with olefin-terminated side chains. Subsequent cross-metathesis of these terminal olefin moieties with acrylic acid was performed in solvents including acrylic acid, THF, and CH2Cl2. Complete conversion to discrete, soluble cross-metathesis products was achieved by using the Hoveyda-Grubbs second generation ruthenium catalyst and an excess of acrylic acid. Oligomerization during storage, caused by a free radical mechanism, was observed and successfully suppressed by the addition of a free radical scavenger (BHT). Furthermore, the cross-metathesis products exhibited glass transition temperatures (Tg) that were at least 50 °C higher than ambient temperature, supporting the potential for application of these polymers as amorphous solid dispersion matrices for enhancing drug aqueous solubility. PMID:24328072

  10. Olefin cross-metathesis as a source of polysaccharide derivatives: cellulose ω-carboxyalkanoates.

    PubMed

    Meng, Xiangtao; Matson, John B; Edgar, Kevin J

    2014-01-13

    Cross-metathesis has been shown for the first time to be a useful method for the synthesis of polysaccharide derivatives, focusing herein on preparation of cellulose ω-carboxyalkanoates. Commercially available cellulose esters were first acylated with 10-undecenoyl chloride, providing esters with olefin-terminated side chains. Subsequent cross-metathesis of these terminal olefin moieties with acrylic acid was performed in solvents including acrylic acid, THF, and CH2Cl2. Complete conversion to discrete, soluble cross-metathesis products was achieved by using the Hoveyda-Grubbs second generation ruthenium catalyst and an excess of acrylic acid. Oligomerization during storage, caused by a free radical mechanism, was observed and successfully suppressed by the addition of a free radical scavenger (BHT). Furthermore, the cross-metathesis products exhibited glass transition temperatures (Tg) that were at least 50 °C higher than ambient temperature, supporting the potential for application of these polymers as amorphous solid dispersion matrices for enhancing drug aqueous solubility.

  11. Catalytic asymmetric carbon-carbon bond formation using alkenes as alkylmetal equivalents.

    PubMed

    Maksymowicz, Rebecca M; Roth, Philippe M C; Fletcher, Stephen P

    2012-08-01

    Catalytic asymmetric conjugate addition reactions with organometallic reagents are powerful reactions in synthetic chemistry. Procedures that use non-stabilized carbanions have been developed extensively, but these suffer from a number of limitations that prevent their use in many situations. Here, we report that alkylmetal species generated in situ from alkenes can be used in highly enantioselective 1,4-addition initiated by a copper catalyst. Using alkenes as starting materials is desirable because they are readily available and have favourable properties when compared to pre-made organometallics. High levels of enantioselectivity are observed at room temperature in a range of solvents, and the reaction tolerates functional groups that are not compatible with comparable methods-a necessary prerequisite for efficient and protecting-group-free strategies for synthesis. PMID:22824897

  12. Catalytic asymmetric carbon-carbon bond formation using alkenes as alkylmetal equivalents

    NASA Astrophysics Data System (ADS)

    Maksymowicz, Rebecca M.; Roth, Philippe M. C.; Fletcher, Stephen P.

    2012-08-01

    Catalytic asymmetric conjugate addition reactions with organometallic reagents are powerful reactions in synthetic chemistry. Procedures that use non-stabilized carbanions have been developed extensively, but these suffer from a number of limitations that prevent their use in many situations. Here, we report that alkylmetal species generated in situ from alkenes can be used in highly enantioselective 1,4-addition initiated by a copper catalyst. Using alkenes as starting materials is desirable because they are readily available and have favourable properties when compared to pre-made organometallics. High levels of enantioselectivity are observed at room temperature in a range of solvents, and the reaction tolerates functional groups that are not compatible with comparable methods—a necessary prerequisite for efficient and protecting-group-free strategies for synthesis.

  13. An expedient route to substituted furans via olefin cross-metathesis

    PubMed Central

    Donohoe, Timothy J.; Bower, John F.

    2010-01-01

    The olefin cross-metathesis (CM) reaction is used extensively in organic chemistry and represents a powerful method for the selective synthesis of differentially substituted alkene products. Surprisingly, efforts to integrate this remarkable process into strategies for aromatic and heteroaromatic construction have not been reported. Such structures represent key elements of the majority of small molecule drug compounds; methods for the controlled preparation of highly substituted derivatives are essential to medicinal chemistry. Here we show that the olefin CM reaction, in combination with an acid cocatalyst or subsequent Heck arylation, provides a concise and flexible entry to 2,5-di- or 2,3,5-tri-substituted furans. These cascade processes portend further opportunities for the regiocontrolled preparation of other highly substituted aromatic and heteroaromatic classes. PMID:20142508

  14. The Olefin Metathesis Reactions in Dendrimers

    NASA Astrophysics Data System (ADS)

    Astruc, Didier

    Dendrimers containing terminal olefins or ruthenium-benzylidene terminal groups undergo olefin metathesis reactions (RCM and ROMP types), and essentially results from our group are reviewed here. Dendrimers have been loaded at their periphery with ruthenium-chelating bis-phosphines, which leads to the formation of dendrimer-cored stars by ring-opening-metathesis polymerization (ROMP). CpFe+-induced perallylation of polymethylaromatics (Cp = η5-C5H5) followed by ring-closing metathesis (RCM) and/or cross metathesis (CM) leads to poly-ring, cage, oligomeric and polymeric architectures. In the presence of acrylic acid or metha-crylate, stereospecific CM inhibits oligomerization, and dendritic olefins yield polyacid dendrimers. Finally, cros-metahesis reactions with dendronic acrylate allow dendritic construction and growth.

  15. Nanoporous poly(lactide) by olefin metathesis degradation.

    PubMed

    Bertrand, Arthur; Hillmyer, Marc A

    2013-07-31

    We describe an approach to ordered nanoporous poly(lactide) that relies on self-assembly of poly(butadiene)-poly(lactide) (PB-PLA) diblock copolymers followed by selective degradation of PB using olefin metathesis. The block copolymers were obtained by a combination of anionic and ring-opening transesterification polymerizations. The molar mass of each block was tailored to target materials with either a lamellar or cylindrical microphase-separated morphology. Orientation of these nanoscale domains was induced in thin films and monolithic samples through solvent annealing and mechanical deformation, respectively. Selective degradation of PB was achieved by immersing the samples in a solution of Grubbs first-generation catalyst in cyclohexane, a nonsolvent for PLA. Successful elimination of PB was confirmed by size-exclusion chromatography and (1)H NMR spectroscopy. Direct imaging of the resulting nanoporous PLA was obtained by scanning electron microscopy. PMID:23869876

  16. Nanoporous poly(lactide) by olefin metathesis degradation.

    PubMed

    Bertrand, Arthur; Hillmyer, Marc A

    2013-07-31

    We describe an approach to ordered nanoporous poly(lactide) that relies on self-assembly of poly(butadiene)-poly(lactide) (PB-PLA) diblock copolymers followed by selective degradation of PB using olefin metathesis. The block copolymers were obtained by a combination of anionic and ring-opening transesterification polymerizations. The molar mass of each block was tailored to target materials with either a lamellar or cylindrical microphase-separated morphology. Orientation of these nanoscale domains was induced in thin films and monolithic samples through solvent annealing and mechanical deformation, respectively. Selective degradation of PB was achieved by immersing the samples in a solution of Grubbs first-generation catalyst in cyclohexane, a nonsolvent for PLA. Successful elimination of PB was confirmed by size-exclusion chromatography and (1)H NMR spectroscopy. Direct imaging of the resulting nanoporous PLA was obtained by scanning electron microscopy.

  17. Efficient alkene epoxidation catalyzed by molybdenyl acetylacetonate supported on aminated UiO-66 metal-organic framework

    NASA Astrophysics Data System (ADS)

    Kardanpour, Reihaneh; Tangestaninejad, Shahram; Mirkhani, Valiollah; Moghadam, Majid; Mohammadpoor-Baltork, Iraj; Zadehahmadi, Farnaz

    2015-03-01

    Metal-organic frameworks (MOFs) containing Mo Schiff base complexes were prepared by post-synthesis method and applied as efficient catalysts in the epoxidation of alkenes with tert-BuOOH. In this manner, UiO-66-NH2 (UiO=University of Oslo) MOF was reacted with salicylaldehyde and thiophene-2-carbaldehyde to produce bidentate Schiff bases. Then, the Schiff base ligands were used for immobilization of molybdenyl acetylacetonate. These new catalysts were characterized by FT-IR, UV-vis spectroscopic techniques, X-ray diffraction (XRD), BET, inductively coupled plasma atomic emission spectroscopy (ICP-AES) and field emission scanning electron microscopy (FE-SEM). These catalytic systems showed excellent activity in the epoxidation of alkenes such as cyclic and linear ones with tert-butyl hydroperoxide (TBHP) in 1,2-dichloroethane, and reused several times without any appreciable loss of their activity.

  18. Methods for direct alkene diamination, new & old

    PubMed Central

    de Jong, Sam; Nosal, Daniel G.; Wardrop, Duncan J.

    2012-01-01

    The 1,2-diamine moiety is a ubiquitous structural motif present in a wealth of natural products, including non-proteinogenic amino acids and numerous alkaloids, as well as in pharmaceutical agents, chiral ligands and organic reagents. The biological activity associated with many of these systems and their chemical utility in general has ensured that the development of methods for their preparation is of critical importance. While a wide range of strategies for the preparation of 1,2-diamines have been established, the diamination of alkenes offers a particularly direct and efficient means of accessing these systems. The purpose of this review is to provide an overview of all methods of direct alkene diamination, metal-mediated or otherwise. PMID:22888177

  19. High-value alcohols and higher-oxidation-state compounds by catalytic Z-selective cross-metathesis

    NASA Astrophysics Data System (ADS)

    Koh, Ming Joo; Khan, R. Kashif M.; Torker, Sebastian; Yu, Miao; Mikus, Malte S.; Hoveyda, Amir H.

    2015-01-01

    Olefin metathesis catalysts provide access to molecules that are indispensable to physicians and researchers in the life sciences. A persisting problem, however, is the dearth of chemical transformations that directly generate acyclic Z allylic alcohols, including products that contain a hindered neighbouring substituent or reactive functional units such as a phenol, an aldehyde, or a carboxylic acid. Here we present an electronically modified ruthenium-disulfide catalyst that is effective in generating such high-value compounds by cross-metathesis. The ruthenium complex is prepared from a commercially available precursor and an easily generated air-stable zinc catechothiolate. Transformations typically proceed with 5.0 mole per cent of the complex and an inexpensive reaction partner in 4-8 hours under ambient conditions; products are obtained in up to 80 per cent yield and 98:2 Z:E diastereoselectivity. The use of this catalyst is demonstrated in the synthesis of the naturally occurring anti-tumour agent neopeltolide and in a single-step stereoselective gram-scale conversion of a renewable feedstock (oleic acid) to an anti-fungal agent. In this conversion, the new catalyst promotes cross-metathesis more efficiently than the commonly used dichloro-ruthenium complexes, indicating that its utility may extend beyond Z-selective processes.

  20. Recent applications of ring-rearrangement metathesis in organic synthesis

    PubMed Central

    Meshram, Milind; Khedkar, Priti; Banerjee, Shaibal; Deodhar, Deepak

    2015-01-01

    Summary Ring-rearrangement metathesis (RRM) involves multiple metathesis processes such as ring-opening metathesis (ROM)/ring-closing metathesis (RCM) in a one-pot operation to generate complex targets. RRM delivers complex frameworks that are difficult to assemble by conventional methods. The noteworthy point about this type of protocol is multi-bond formation and it is an atom economic process. In this review, we have covered literature that appeared during the last seven years (2008–2014). PMID:26664603

  1. Recent applications of ring-rearrangement metathesis in organic synthesis.

    PubMed

    Kotha, Sambasivarao; Meshram, Milind; Khedkar, Priti; Banerjee, Shaibal; Deodhar, Deepak

    2015-01-01

    Ring-rearrangement metathesis (RRM) involves multiple metathesis processes such as ring-opening metathesis (ROM)/ring-closing metathesis (RCM) in a one-pot operation to generate complex targets. RRM delivers complex frameworks that are difficult to assemble by conventional methods. The noteworthy point about this type of protocol is multi-bond formation and it is an atom economic process. In this review, we have covered literature that appeared during the last seven years (2008-2014).

  2. Recent applications of ring-rearrangement metathesis in organic synthesis.

    PubMed

    Kotha, Sambasivarao; Meshram, Milind; Khedkar, Priti; Banerjee, Shaibal; Deodhar, Deepak

    2015-01-01

    Ring-rearrangement metathesis (RRM) involves multiple metathesis processes such as ring-opening metathesis (ROM)/ring-closing metathesis (RCM) in a one-pot operation to generate complex targets. RRM delivers complex frameworks that are difficult to assemble by conventional methods. The noteworthy point about this type of protocol is multi-bond formation and it is an atom economic process. In this review, we have covered literature that appeared during the last seven years (2008-2014). PMID:26664603

  3. The activation mechanism of Ru-indenylidene complexes in olefin metathesis.

    PubMed

    Urbina-Blanco, César A; Poater, Albert; Lebl, Tomas; Manzini, Simone; Slawin, Alexandra M Z; Cavallo, Luigi; Nolan, Steven P

    2013-05-01

    Olefin metathesis is a powerful tool for the formation of carbon-carbon double bonds. Several families of well-defined ruthenium (Ru) catalysts have been developed during the past 20 years; however, the reaction mechanism for all such complexes was assumed to be the same. In the present study, the initiation mechanism of Ru-indenylidene complexes was examined and compared with that of benzylidene counterparts. It was discovered that not all indenylidene complexes followed the same mechanism, highlighting the importance of steric and electronic properties of so-called spectator ligands, and that there is no single mechanism for the Ru-based olefin metathesis reaction. The experimental findings are supported quantitatively by DFT calculations.

  4. A new type of self-supported, polymeric Ru-carbene complex for homogeneous catalysis and heterogeneous recovery: synthesis and catalytic activities for ring-closing metathesis.

    PubMed

    Chen, Shu-Wei; Kim, Ju Hyun; Shin, Hyunik; Lee, Sang-Gi

    2008-08-01

    A novel 2nd generation Grubbs-type catalyst tethering an isopropoxystyrene has been synthesized and automatically polymerized in solution to form a self-supported polymeric Ru-carbene complex, which catalyzed ring-closing metathesis homogeneously, but was recovered heterogeneously.

  5. Regioselective and Stereospecific Copper-Catalyzed Deoxygenation of Epoxides to Alkenes.

    PubMed

    Yu, Jingxun; Zhou, Yu; Lin, Zhenyang; Tong, Rongbiao

    2016-09-16

    Two copper salts (Cu(CF3CO2)2 and IMesCuCl) were identified as earth-abundant, inexpensive, but effective metal catalysts together with diazo malonate for chemo-/regioselective and stereospecific deoxygenation of various epoxides with tolerance of common functional groups (alkene, ketone, ester, p-methoxybenzyl, benzyl, tert-butyldimethylsilyl, and triisopropylsilyl). In particular, the unprecedented regioselectivity allowed for the first time monodeoxygenation of diepoxides to alkenyl epoxides. Density functional theory mechanistic studies showed that the deoxygenation occurred by collapsing the free ylide, unfavoring the possible intuitive pathway via cycloreversion of possible oxetane. PMID:27596225

  6. Enantioselective CuH-catalyzed anti-Markovnikov hydroamination of 1,1-disubstituted alkenes.

    PubMed

    Zhu, Shaolin; Buchwald, Stephen L

    2014-11-12

    Enantioselective synthesis of β-chiral amines has been achieved via copper-catalyzed hydroamination of 1,1-disubstituted alkenes with hydroxylamine esters in the presence of a hydrosilane. This mild process affords a range of structurally diverse β-chiral amines, including β-deuterated amines, in excellent yields with high enantioselectivities. Furthermore, catalyst loading as low as 0.4 mol% could be employed to deliver product in undiminished yield and selectivity, demonstrating the practicality of this method for large-scale synthesis. PMID:25339089

  7. Efficient copper-catalyzed direct intramolecular aminotrifluoromethylation of unactivated alkenes with diverse nitrogen-based nucleophiles.

    PubMed

    Lin, Jin-Shun; Xiong, Ya-Ping; Ma, Can-Liang; Zhao, Li-Jiao; Tan, Bin; Liu, Xin-Yuan

    2014-01-27

    A mild, convenient, and step-economical intramolecular aminotrifluoromethylation of unactivated alkenes with a variety of electronically distinct, nitrogen-based nucleophiles in the presence of a simple copper salt catalyst, in the absence of extra ligands, is described. Many different nitrogen-based nucleophiles (e.g., basic primary aliphatic and aromatic amines, sulfonamides, carbamates, and ureas) can be employed in this new aminotrifluoromethylation reaction. The aminotrifluoromethylation process allows straightforward access to diversely substituted CF3-containing pyrrolidines or indolines, in good to excellent yields, through a direct difunctionalization strategy from the respective acyclic starting materials. Mechanistic studies were conducted and a plausible mechanism was proposed. PMID:24458913

  8. Mechanistic Analysis and Optimization of the Copper-Catalyzed Enantioselective Intramolecular Alkene Aminooxygenation

    PubMed Central

    Paderes, Monissa C.; Keister, Jerome B.; Chemler, Sherry R.

    2013-01-01

    The catalytic asymmetric aminooxygenation of alkenes provides an efficient and straightforward approach to prepare chiral vicinal amino alcohols. We have reported a copper(II)-catalyzed enantioselective intramolecular alkene aminooxygenation, using (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO) as the oxygen source, which results in the synthesis of chiral indolines and pyrrolidines. Herein we disclose that kinetics studies indicate the reaction is first order both in substrate and the [Cu(R,R)-Ph-bis(oxazoline)]OTf2 catalyst, and zero order in TEMPO. Furthermore, kinetic isotope effect studies support that the cis aminocupration step, the addition of N-Cu across the alkene, is the rate-limiting step. Subsequent formation of a carbon radical intermediate, and direct carbon radical trapping with TEMPO is the indicated mechanism for the C-O bond formation as suggested by a deuterium labeling experiment. A ligand screen revealed that C(4)-phenyl substitution on the bis(oxazoline) is optimal for high asymmetric induction. The size of the substrate’s N-sulfonyl group also influences the enantioselectivity of the reaction. The preparative scale catalytic aminooxygenation reaction (gram scale) was demonstrated and an unexpected dependence on reaction temperature was uncovered on the larger scale reaction. PMID:23244027

  9. Mechanistic analysis and optimization of the copper-catalyzed enantioselective intramolecular alkene aminooxygenation.

    PubMed

    Paderes, Monissa C; Keister, Jerome B; Chemler, Sherry R

    2013-01-18

    The catalytic asymmetric aminooxygenation of alkenes provides an efficient and straightforward approach to prepare chiral vicinal amino alcohols. We have reported a copper(II)-catalyzed enantioselective intramolecular alkene aminooxygenation, using (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO) as the oxygen source, which results in the synthesis of chiral indolines and pyrrolidines. Herein we disclose that kinetics studies indicate the reaction is first order both in substrate and the [Cu(R,R)-Ph-bis(oxazoline)]OTf(2) catalyst and zero order in TEMPO. Furthermore, kinetic isotope effect studies support that the cis-aminocupration step, the addition of N-Cu across the alkene, is the rate-limiting step. Subsequent formation of a carbon radical intermediate and direct carbon radical trapping with TEMPO is the indicated mechanism for the C-O bond formation as suggested by a deuterium labeling experiment. A ligand screen revealed that C(4)-phenyl substitution on the bis(oxazoline) is optimal for high asymmetric induction. The size of the substrate's N-sulfonyl group also influences the enantioselectivity of the reaction. The preparative-scale catalytic aminooxygenation reaction (gram scale) was demonstrated, and an unexpected dependence on reaction temperature was uncovered on the larger scale reaction. PMID:23244027

  10. Copper(I)-induced amplification of a [2]catenane in a virtual dynamic library of macrocyclic alkenes.

    PubMed

    Berrocal, José Augusto; Nieuwenhuizen, Marko M L; Mandolini, Luigi; Meijer, E W; Di Stefano, Stefano

    2014-08-28

    Olefin cross-metathesis of diluted dichloromethane solutions (≤0.15 M) of the 28-membered macrocyclic alkene C1, featuring a 1,10-phenanthroline moiety in the backbone, as well as of catenand 1, composed of two identical interlocked C1 units, generates families of noninterlocked oligomers Ci. The composition of the libraries is strongly dependent on the monomer concentration, but independent of whether C1 or 1 is used as feedstock, as expected for truly equilibrated systems. Accordingly, the limiting value 0.022 M approached by the equilibrium concentration of C1 when the total monomer concentration approaches the critical value, as predicted by the Jacobson-Stockmayer theory, provides a reliable estimate of the thermodynamically effective molarity. Catenand 1 behaves as a virtual component of the dynamic libraries, in that there is no detectable trace of its presence in the equilibrated mixtures, but becomes the major component - in the form of its copper(I) complex - when olefin cross-metathesis is carried out in the presence of a copper(I) salt.

  11. Trifluoromethylation of alkenes by visible light photoredox catalysis.

    PubMed

    Iqbal, Naeem; Choi, Sungkyu; Kim, Eunjin; Cho, Eun Jin

    2012-12-21

    A method for trifluoromethylation of alkenes has been developed employing visible light photoredox catalysis with CF(3)I, Ru(Phen)(3)Cl(2), and DBU. This process works especially well for terminal alkenes to give alkenyl-CF(3) products with only E-stereochemistry. The mild reaction conditions enable the trifluoromethylation of a range of alkenes that bear various functional groups. PMID:23167602

  12. [C. E. Alken (1909-1986) and the Alken-Prize].

    PubMed

    Konert, J

    2016-06-01

    C. E. Alken is regarded as the Nestor of German urology post World War II. His development path is given in brief and his specific contributions to the emancipation of the field are pointed out. In 1948 he received a teaching assignment in urology at Saarland State University Homburg, where in 1952, a Chair of Urology was established, and in 1958 he received the Ordinariat. The "Alken-Prize" which was named after him, is also presented. PMID:27160773

  13. Neutral and Cationic Molybdenum Imido Alkylidene N-Heterocyclic Carbene Complexes: Reactivity in Selected Olefin Metathesis Reactions and Immobilization on Silica.

    PubMed

    Sen, Suman; Schowner, Roman; Imbrich, Dominik A; Frey, Wolfgang; Hunger, Michael; Buchmeiser, Michael R

    2015-09-21

    The synthesis and single-crystal X-ray structures of the novel molybdenum imido alkylidene N-heterocyclic carbene complexes [Mo(N-2,6-Me2C6H3)(IMesH2)(CHCMe2Ph)(OTf)2] (3), [Mo(N-2,6-Me2C6H3)(IMes)(CHCMe2Ph)(OTf)2] (4), [Mo(N-2,6-Me2C6H3)(IMesH2)(CHCMe2Ph)(OTf){OCH(CF3)2}] (5), [Mo(N-2,6-Me2C6H3)(CH3CN)(IMesH2)(CHCMe2Ph)(OTf)](+)BArF(-) (6), [Mo(N-2,6-Cl2C6H3)(IMesH2)(CHCMe3)(OTf)2] (7) and [Mo(N-2,6-Cl2C6H3)(IMes)(CHCMe3)(OTf)2] (8) are reported (IMesH2=1,3-dimesitylimidazolidin-2-ylidene, IMes=1,3-dimesitylimidazolin-2-ylidene, BArF(-)=tetrakis-[3,5-bis(trifluoromethyl)phenyl] borate, OTf=CF3SO3(-)). Also, silica-immobilized versions I1 and I2 were prepared. Catalysts 3-8, I1 and I2 were used in homo-, cross-, and ring-closing metathesis (RCM) reactions and in the cyclopolymerization of α,ω-diynes. In the RCM of α,ω-dienes, in the homometathesis of 1-alkenes, and in the ethenolysis of cyclooctene, turnover numbers (TONs) up to 100,000, 210,000 and 30,000, respectively, were achieved. With I1 and I2, virtually Mo-free products were obtained (<3 ppm Mo). With 1,6-hepta- and 1,7-octadiynes, catalysts 3, 4, and 5 allowed for the regioselective cyclopolymerization of 4,4-bis(ethoxycarbonyl)-1,6-heptadiyne, 4,4-bis(hydroxymethyl)-1,6-heptadiyne, 4,4-bis[(3,5-diethoxybenzoyloxy)methyl]-1,6-heptadiyne, 4,4,5,5-tetrakis(ethoxycarbonyl)-1,7-octadiyne, and 1,6-heptadiyne-4-carboxylic acid, underlining the high functional-group tolerance of these novel Group 6 metal alkylidenes. PMID:26249141

  14. Neutral and Cationic Molybdenum Imido Alkylidene N-Heterocyclic Carbene Complexes: Reactivity in Selected Olefin Metathesis Reactions and Immobilization on Silica.

    PubMed

    Sen, Suman; Schowner, Roman; Imbrich, Dominik A; Frey, Wolfgang; Hunger, Michael; Buchmeiser, Michael R

    2015-09-21

    The synthesis and single-crystal X-ray structures of the novel molybdenum imido alkylidene N-heterocyclic carbene complexes [Mo(N-2,6-Me2C6H3)(IMesH2)(CHCMe2Ph)(OTf)2] (3), [Mo(N-2,6-Me2C6H3)(IMes)(CHCMe2Ph)(OTf)2] (4), [Mo(N-2,6-Me2C6H3)(IMesH2)(CHCMe2Ph)(OTf){OCH(CF3)2}] (5), [Mo(N-2,6-Me2C6H3)(CH3CN)(IMesH2)(CHCMe2Ph)(OTf)](+)BArF(-) (6), [Mo(N-2,6-Cl2C6H3)(IMesH2)(CHCMe3)(OTf)2] (7) and [Mo(N-2,6-Cl2C6H3)(IMes)(CHCMe3)(OTf)2] (8) are reported (IMesH2=1,3-dimesitylimidazolidin-2-ylidene, IMes=1,3-dimesitylimidazolin-2-ylidene, BArF(-)=tetrakis-[3,5-bis(trifluoromethyl)phenyl] borate, OTf=CF3SO3(-)). Also, silica-immobilized versions I1 and I2 were prepared. Catalysts 3-8, I1 and I2 were used in homo-, cross-, and ring-closing metathesis (RCM) reactions and in the cyclopolymerization of α,ω-diynes. In the RCM of α,ω-dienes, in the homometathesis of 1-alkenes, and in the ethenolysis of cyclooctene, turnover numbers (TONs) up to 100,000, 210,000 and 30,000, respectively, were achieved. With I1 and I2, virtually Mo-free products were obtained (<3 ppm Mo). With 1,6-hepta- and 1,7-octadiynes, catalysts 3, 4, and 5 allowed for the regioselective cyclopolymerization of 4,4-bis(ethoxycarbonyl)-1,6-heptadiyne, 4,4-bis(hydroxymethyl)-1,6-heptadiyne, 4,4-bis[(3,5-diethoxybenzoyloxy)methyl]-1,6-heptadiyne, 4,4,5,5-tetrakis(ethoxycarbonyl)-1,7-octadiyne, and 1,6-heptadiyne-4-carboxylic acid, underlining the high functional-group tolerance of these novel Group 6 metal alkylidenes.

  15. Solid-supported cross-metathesis and a formal alkane metathesis for the generation of biologically relevant molecules.

    PubMed

    Méndez, Luciana; Mata, Ernesto G

    2015-02-01

    Solid-phase synthetic strategies toward the generation of libraries of biologically relevant molecules were developed using olefin cross-metathesis as a key step. It is remarkably the formal alkane metathesis based on a one-pot, microwave-assisted, ruthenium-catalyzed cross-metathesis and reduction to obtain Csp3-Csp3 linkages.

  16. Asymmetric synthesis from terminal alkenes by diboration/cross-coupling cascades

    PubMed Central

    Mlynarski, Scott N.; Schuster, Christopher H.; Morken, James P.

    2013-01-01

    Amongst prospective starting materials for organic synthesis, terminal (monosubstituted) alkenes are ideal. In the form of α-olefins, they are manufactured on enormous scale and they are the core product features from many organic chemical reactions. While their latent reactivity can easily enable hydrocarbon chain extension, alkenes also have the attractive feature of being stable in the presence of many acids, bases, oxidants and reductants. In spite of these impressive attributes, relatively few catalytic enantioselective transformations have been developed that transform aliphatic α-olefins in >90% ee and, with the exception of site-controlled isotactic polymerization of α-olefins,1 none of these processes result in chain-extending C-C bond formation to the terminal carbon.2, 3, 4, 5, 6 Herein, we describe a strategy that directly addresses this gap in synthetic methodology and present a single-flask catalytic enantioselective conversion of terminal alkenes into a range of chiral products. These reactions are enabled by an unusual neighboring group participation effect that accelerates Pd-catalyzed cross-coupling of 1,2-bis(boronates) relative to nonfunctionalized alkyl boronate analogs. In tandem with enantioselective diboration, this reactivity feature connects abundant alkene starting materials to a diverse array of chiral products. Importantly with respect to synthesis utility, the tandem diboration/cross-coupling reaction (DCC reaction) generally provides products in high yield and high selectivity (>95:5 enantiomer ratio), employs low loadings (1–2 mol %) of commercially available catalysts and reagents, it offers an expansive substrate scope, and can address a broad range of alcohol and amine synthesis targets, many of which cannot be easily addressed with current technology. PMID:24352229

  17. Nitrenium ions and trivalent boron ligands as analogues of N-heterocyclic carbenes in olefin metathesis: a computational study.

    PubMed

    Pazio, A; Woźniak, K; Grela, K; Trzaskowski, B

    2015-12-14

    We used the density functional theory to evaluate the suitability of nitrenium ions and trivalent boron ligands as analogues of N-heterocyclic carbenes in ruthenium-based metathesis catalysts. We demonstrate that these analogues induce only minor structural changes in Hoveyda-Grubbs-like precatalysts, but have major impact on precatalyst initiation. Nitrenium ion-modified precatalysts are characterized by a weak Ru-N bond resulting in a relatively strong Ru-O bond and large free energy barriers for initiation, making them good candidates for efficient latent Ru-based catalysts. On the other hand the trivalent boron ligand, bearing a formal -1 charge, binds strongly to the ruthenium ion, weakening the Ru-O bond and facilitating its dissociation, to promote fast reaction initiation. We show that the calculated bond dissociation energy of the Ru-C/N/B bond may serve as an accurate indicator of the Ru-O bond strength and the rate of metathesis initiation.

  18. Chemo- and regioselective homogeneous rhodium-catalyzed hydroamidomethylation of terminal alkenes to N-alkylamides.

    PubMed

    Raoufmoghaddam, Saeed; Drent, Eite; Bouwman, Elisabeth

    2013-09-01

    A rhodium/xantphos homogeneous catalyst system has been developed for direct chemo- and regioselective mono-N-alkylation of primary amides with 1-alkenes and syngas through catalytic hydroamidomethylation with 1-pentene and acetamide as model substrates. For appropriate catalyst performance, it appears to be essential that catalytic amounts of a strong acid promoter, such as p-toluenesulfonic acid (HOTs), as well as larger amounts of a weakly acidic protic promoter, particularly hexafluoroisopropyl alcohol (HOR(F) ) are applied. Apart from the product N-1-hexylacetamide, the isomeric unsaturated intermediates, hexanol and higher mass byproducts, as well as the corresponding isomeric branched products, can be formed. Under optimized conditions, almost full alkene conversion can be achieved with more than 80% selectivity to the product N-1-hexylamide. Interestingly, in the presence of a relatively high concentration of HOR(F) , the same catalyst system shows a remarkably high selectivity for the formation of hexanol from 1-pentene with syngas, thus presenting a unique example of a selective rhodium-catalyzed hydroformylation-hydrogenation tandem reaction under mild conditions. Time-dependent product formation during hydroamidomethylation batch experiments provides evidence for aldehyde and unsaturated intermediates; this clearly indicates the three-step hydroformylation/condensation/hydrogenation reaction sequence that takes place in hydroamidomethylation. One likely role of the weakly acidic protic promoter, HOR(F) , in combination with the strong acid HOTs, is to establish a dual-functionality rhodium catalyst system comprised of a neutral rhodium(I) hydroformylation catalyst species and a cationic rhodium(III) complex capable of selectively reducing the imide and/or ene-amide intermediates that are in a dynamic, acid-catalyzed condensation equilibrium with the aldehyde and amide in a syngas environment.

  19. Selective Formation of a Trisubstituted Alkene Motif by trans-Hydrostannation/Stille Coupling: Application to the Total Synthesis and Late-Stage Modification of 5,6-Dihydrocineromycin B.

    PubMed

    Rummelt, Stephan M; Preindl, Johannes; Sommer, Heiko; Fürstner, Alois

    2015-05-18

    Countless natural products of polyketide origin have an E-configured 2-methyl-but-2-en-1-ol substructure. An unconventional entry into this important motif was developed as part of a concise total synthesis of 5,6-dihydrocineromycin B. The choice of this particular target was inspired by a recent study, which suggested that the cineromycin family of antibiotics might have overlooked lead qualities, although our biodata do not necessarily support this view. The new approach consists of a sequence of alkyne metathesis followed by a hydroxy-directed trans-hydrostannation and a largely unprecedented methyl-Stille coupling. The excellent yield and remarkable selectivity with which the signature trisubstituted alkene site of the target was procured is noteworthy considering the rather poor outcome of a classical ring-closing metathesis reaction. Moreover, the unorthodox ruthenium-catalyzed trans-hydrostannation is shown to be a versatile handle for diversity-oriented synthesis.

  20. Tetrahydroxydiboron-Mediated Palladium-Catalyzed Transfer Hydrogenation and Deuteriation of Alkenes and Alkynes Using Water as the Stoichiometric H or D Atom Donor.

    PubMed

    Cummings, Steven P; Le, Thanh-Ngoc; Fernandez, Gilberto E; Quiambao, Lorenzo G; Stokes, Benjamin J

    2016-05-18

    There are few examples of catalytic transfer hydrogenations of simple alkenes and alkynes that use water as a stoichiometric H or D atom donor. We have found that diboron reagents efficiently mediate the transfer of H or D atoms from water directly onto unsaturated C-C bonds using a palladium catalyst. This reaction is conducted on a broad variety of alkenes and alkynes at ambient temperature, and boric acid is the sole byproduct. Mechanistic experiments suggest that this reaction is made possible by a hydrogen atom transfer from water that generates a Pd-hydride intermediate. Importantly, complete deuterium incorporation from stoichiometric D2O has also been achieved. PMID:27135185

  1. Remarkable steric effect in palladium-catalyzed Grignard coupling: region- and stereoselective monoalkylation and -arylation of 1,1-dichloro-1-alkenes

    SciTech Connect

    Minato, A.; Suzuki, K.; Tamao, K.

    1987-02-18

    Functionalized carbon chain elongation has been a central concern in transition-metal complex catalyzed carbon-carbon bond-forming reactions. As part of their continued studies on the palladium-phosphine complex catalyzed selective monoalkylation of organic polyhalides, they report here the first success in the regio- and stereoselective monoalkylation and -arylation of 1,1-dichloro-1-alkenes by Grignard or organozinc reagents in the presence of (PdCl/sub 2/(dppb)), dppb = Ph/sub 2/P(CH/sub 2/)/sub 4/PPh/sub 2/, as a catalyst to produce 1-substituted (Z)-1-chloro-1-alkenes.

  2. Design and synthesis of fused polycycles via Diels–Alder reaction and ring-rearrangement metathesis as key steps

    PubMed Central

    Ravikumar, Ongolu

    2015-01-01

    Summary Atom efficient processes such as the Diels–Alder reaction (DA) and the ring-rearrangement metathesis (RRM) have been used to design new polycycles. In this regard, ruthenium alkylidene catalysts are effective in realizing the RRM of bis-norbornene derivatives prepared by DA reaction and Grignard addition. Here, fused polycycles are assembled which are difficult to produce by conventional synthetic routes. PMID:26425184

  3. Latent ruthenium–indenylidene catalysts bearing a N-heterocyclic carbene and a bidentate picolinate ligand

    PubMed Central

    Schmid, Thibault E; Modicom, Florian; Dumas, Adrien; Borré, Etienne; Toupet, Loic

    2015-01-01

    Summary A silver-free methodology was developed for the synthesis of unprecedented N-heterocyclic carbene ruthenium indenylidene complexes bearing a bidentate picolinate ligand. The highly stable (SIPr)(picolinate)RuCl(indenylidene) complex 4a (SIPr = 1,3-bis(2-6-diisopropylphenyl)imidazolidin-2-ylidene) demonstrated excellent latent behaviour in ring closing metathesis (RCM) reaction and could be activated in the presence of a Brønsted acid. The versatility of the catalyst 4a was subsequently demonstrated in RCM, cross-metathesis (CM) and enyne metathesis reactions. PMID:26425213

  4. Latent ruthenium-indenylidene catalysts bearing a N-heterocyclic carbene and a bidentate picolinate ligand.

    PubMed

    Schmid, Thibault E; Modicom, Florian; Dumas, Adrien; Borré, Etienne; Toupet, Loic; Baslé, Olivier; Mauduit, Marc

    2015-01-01

    A silver-free methodology was developed for the synthesis of unprecedented N-heterocyclic carbene ruthenium indenylidene complexes bearing a bidentate picolinate ligand. The highly stable (SIPr)(picolinate)RuCl(indenylidene) complex 4a (SIPr = 1,3-bis(2-6-diisopropylphenyl)imidazolidin-2-ylidene) demonstrated excellent latent behaviour in ring closing metathesis (RCM) reaction and could be activated in the presence of a Brønsted acid. The versatility of the catalyst 4a was subsequently demonstrated in RCM, cross-metathesis (CM) and enyne metathesis reactions. PMID:26425213

  5. Ligand-Controlled Regiodivergent Copper-Catalyzed Alkylboration of Alkenes.

    PubMed

    Su, Wei; Gong, Tian-Jun; Lu, Xi; Xu, Meng-Yu; Yu, Chu-Guo; Xu, Zheng-Yang; Yu, Hai-Zhu; Xiao, Bin; Fu, Yao

    2015-10-26

    A novel copper-catalyzed regiodivergent alkylboration of alkenes with bis(pinacolato)diboron and alkyl halides has been developed. The regioselectivity of the alkylboration was controlled by subtle differences in the ligand structure. The reaction thus enables the practical, regiodivergent synthesis of two different alkyl boronic esters with complex structures from a single alkene. PMID:26338141

  6. A highly catalytic and selective conversion of carboxylic acids to 1-alkenes of one less carbon atom

    SciTech Connect

    Miller, J.A.; Nelson, J.A.; Byrne, M.P. )

    1993-01-01

    An equimolar mixture of a carboxylic acid and acetic anhydride produces a reagent combination that undergoes a highly efficient decarbonylation/dehydration at 250[degrees]C using either Pd- or Rh-based catalyst systems, affording excellent yields of the corresponding 1-alkenes and one less carbon atom. The stoichiometric and catalytic decarbonylation of aliphatic aldehydes and acid chlorides to alkanes and alkenes, respectively, by transition-metal complexes are well-known and synthetically useful transformations. Relatively little, however, has been reported concerning the analogous decarbonylation/dehydration of aliphatic carboxylic acids to olefins, with generally poor results achieved in terms of catalyst efficiency and selectivity toward terminal olefin formation in the product. For example, the decarbonylation/dehydration of stearic acid to heptadecane using a Rh-based catalyst was reported to proceed with a maximum catalyst turnover number (TON; moles of olefin product formed per mole of catalyst used) of ca. 250, with selectivities toward 1-heptadecene formation typically below 50%. Interestingly, results were presented in this work which suggested that the decarbonylation of stearic acid proceeded via intermediate formation of stearic anhydride. Use of a preformed, symmetrical anhydride is not desirable from an economic or synthetic viewpoint, particularly since its decarbonylation should result in the formation of equal amounts of olefin and carboxylic acid coproducts. The authors now report here that the use of a carboxylic acid substrate as an equimolar mixture with acetic anhydride (Ac[sub 2]O) produces a mixed anhydride system which undergoes an extremely facile decarbonylation reaction to provide a general and highly selective route to the corresponding 1-alkenes of one less carbon atom. 19 refs., 1 tab.

  7. Directed evolution of artificial metalloenzymes for in vivo metathesis

    NASA Astrophysics Data System (ADS)

    Jeschek, Markus; Reuter, Raphael; Heinisch, Tillmann; Trindler, Christian; Klehr, Juliane; Panke, Sven; Ward, Thomas R.

    2016-09-01

    The field of biocatalysis has advanced from harnessing natural enzymes to using directed evolution to obtain new biocatalysts with tailor-made functions. Several tools have recently been developed to expand the natural enzymatic repertoire with abiotic reactions. For example, artificial metalloenzymes, which combine the versatile reaction scope of transition metals with the beneficial catalytic features of enzymes, offer an attractive means to engineer new reactions. Three complementary strategies exist: repurposing natural metalloenzymes for abiotic transformations; in silico metalloenzyme (re-)design; and incorporation of abiotic cofactors into proteins. The third strategy offers the opportunity to design a wide variety of artificial metalloenzymes for non-natural reactions. However, many metal cofactors are inhibited by cellular components and therefore require purification of the scaffold protein. This limits the throughput of genetic optimization schemes applied to artificial metalloenzymes and their applicability in vivo to expand natural metabolism. Here we report the compartmentalization and in vivo evolution of an artificial metalloenzyme for olefin metathesis, which represents an archetypal organometallic reaction without equivalent in nature. Building on previous work on an artificial metallohydrolase, we exploit the periplasm of Escherichia coli as a reaction compartment for the ‘metathase’ because it offers an auspicious environment for artificial metalloenzymes, mainly owing to low concentrations of inhibitors such as glutathione, which has recently been identified as a major inhibitor. This strategy facilitated the assembly of a functional metathase in vivo and its directed evolution with substantially increased throughput compared to conventional approaches that rely on purified protein variants. The evolved metathase compares favourably with commercial catalysts, shows activity for different metathesis substrates and can be further evolved in

  8. Platinum-catalyzed intramolecular hydrohydrazination: evidence for alkene insertion into a Pt-N bond.

    PubMed

    Hoover, Jessica M; Dipasquale, Antonio; Mayer, James M; Michael, Forrest E

    2010-04-14

    Dicationic (bpy)Pt(II) complexes were found to catalyze the intramolecular hydrohydrazination of alkenes. Reaction optimization revealed Pt(bpy)Cl(2) (10 mol %) and AgOTf (20 mol %) in DMF-d(7) to be an effective catalyst system for the conversion of substituted hydrazides to five- and six-membered N-amino lactams (N-amino = N-acetamido at 120 degrees C, N-phthalimido at 80 degrees C, (-)OTf = trifluoromethanesulfonate). Of the four possible regioisomeric products, only the product of 5-exo cyclization at the proximal nitrogen is formed, without reaction at the distal nitrogen or 6-endo cyclization. The resting states were found to be a 2:1 Pt-amidate complex (25, for N-acetamido) of the deprotonated hydrazide and a Pt-alkyl complex of the cyclized pyrrolidinone (20 for N-phthalimido). Both complexes are catalytically competent. Catalysis using 25 as the precatalyst shows no rate dependence on added acid (HOTf) or base (2,6-lutidine). The available mechanistic data are all consistent with a mechanism involving N-H activation of the hydrazide, followed by insertion of the alkene into the Pt-N bond, and finally protonation of the resulting cyclized alkyl complex by hydrazide to release the hydrohydrazination product and regenerate the active Pt-amidate catalyst. PMID:20334376

  9. Mechanistic Insight into the Photoredox Catalysis of Anti-Markovnikov Alkene Hydrofunctionalization Reactions

    PubMed Central

    2015-01-01

    We describe our efforts to understand the key mechanistic aspects of the previously reported alkene hydrofunctionalization reactions using 9-mesityl-10-methylacridinium (Mes-Acr+) as a photoredox catalyst. Importantly, we are able to detect alkene cation radical intermediates, and confirm that phenylthiyl radical is capable of oxidizing the persistent acridinyl radical in a fast process that unites the catalytic activity of the photoredox and hydrogen atom transfer (HAT) manifolds. Additionally, we present evidence that diphenyl disulfide ((PhS)2) operates on a common catalytic cycle with thiophenol (PhSH) by way of photolytic cleaveage of the disulfide bond. Transition structure analysis of the HAT step using DFT reveals that the activation barrier for H atom donation from PhSH is significantly lower than 2-phenylmalononitrile (PMN) due to structural reorganization. In the early stages of the reaction, Mes-Acr+ is observed to engage in off-cycle adduct formation, presumably as buildup of PhS− becomes significant. The kinetic differences between PhSH and (PhS)2 as HAT catalysts indicate that the proton transfer step may have significant rate limiting influence. PMID:25390821

  10. Tritium labelled alkenes via the Shapiro reaction

    SciTech Connect

    Saljoughian, Manouchehr; Morimoto, Hiromi; Than, Chit; Williams, P.G.

    1995-12-31

    The authors report a simple synthesis of a variety of tritiated alkenes with high specific activity. The labelling steps involved in situ generation of the vinyllithium derivatives of the intermediate trisylhydrazone at low temperature, followed by quenching with high specific activity Tritiated water as an electrophile to generate the final tritiated alkenes. Several ketonic precursors with cyclopentanone and cyclohexanone rings, {alpha},{beta}-unsaturated and large ring cyclic ketones were selected and the corresponding trisylhydrazone derivatives were prepared. The Shapiro reaction conditions were optimized to work at a millimolar scale using deuteriated water as the electrophile. The successful reaction conditions were finally applied to the tritiation reactions. The chemical and radiochemical purity, and the specific radioactivity of the reaction products were determined by radio-hplc, gas chromatography and liquid scintillation counting as well as tritium NMR spectroscopy. The stereochemistry and specificity of tritium labelling was also established with tritium NMR spectroscopy. Application of different organolithium bases and the reaction mechanisms will be discussed.

  11. Tandem ring-opening/ring-closing metathesis polymerization: relationship between monomer structure and reactivity.

    PubMed

    Park, Hyeon; Lee, Ho-Keun; Choi, Tae-Lim

    2013-07-24

    Monomers containing either cycloalkenes with low ring strain or 1-alkynes are poor monomers for olefin metathesis polymerization. Ironically, keeping two inactive functional groups in proximity within one molecule can make it an excellent monomer for metathesis polymerization. Recently, we demonstrated that monomer 1 having cyclohexene and propargyl moieties underwent rapid tandem ring-opening/ring-closing metathesis (RO/RCM) polymerization via relay-type mechanism. Furthermore, living polymerization was achieved when a third-generation Grubbs catalyst was used. Here, we present a full account on this tandem polymerization by investigating how various structural modifications of the monomers affected the reactivity of the tandem polymerization. We observed that changing the ring size of the cycloalkene moieties, the length of the alkynes, and linker units influenced not only the polymerization rates but also the reactivities of Diels-Alder reaction, which is a post-modification reaction of the resulting polymers. Also, the mechanism of tandem polymerization was studied by conducting end-group analysis using (1)H NMR analysis, thereby concluding that the polymerization occurred by the alkyne-first pathway. With this mechanistic conclusion, factors responsible for the dramatic structure-reactivity relationship were proposed. Lastly, tandem RO/RCM polymerization of monomers containing sterically challenging trisubstituted cycloalkenes was successfully carried out to give polymer repeat units having tetrasubstituted cycloalkenes.

  12. Organic chemistry: No double bond left behind

    NASA Astrophysics Data System (ADS)

    Sarlah, David

    2016-03-01

    Alkenyl halides are some of the most useful building blocks for synthesizing small organic molecules. A catalyst has now allowed their direct preparation from widely available alkenes using the cross-metathesis reaction. See Article p.459

  13. Ring-Closing and Cross-Metathesis with Artificial Metalloenzymes Created by Covalent Active Site-Directed Hybridization of a Lipase.

    PubMed

    Basauri-Molina, Manuel; Verhoeven, Dide G A; van Schaik, Arnoldus J; Kleijn, Henk; Klein Gebbink, Robertus J M

    2015-10-26

    A series of Grubbs-type catalysts that contain lipase-inhibiting phosphoester functionalities have been synthesized and reacted with the lipase cutinase, which leads to artificial metalloenzymes for olefin metathesis. The resulting hybrids comprise the organometallic fragment that is covalently bound to the active amino acid residue of the enzyme host in an orthogonal orientation. Differences in reactivity as well as accessibility of the active site by the functionalized inhibitor became evident through variation of the anchoring motif and substituents on the N-heterocyclic carbene ligand. Such observations led to the design of a hybrid that is active in the ring-closing metathesis and the cross-metathesis of N,N-diallyl-p-toluenesulfonamide and allylbenzene, respectively, the latter being the first example of its kind in the field of artificial metalloenzymes.

  14. Stereoselective access to Z and E macrocycles by ruthenium-catalyzed Z-selective ring-closing metathesis and ethenolysis.

    PubMed

    Marx, Vanessa M; Herbert, Myles B; Keitz, Benjamin K; Grubbs, Robert H

    2013-01-01

    The first report of Z-selective macrocyclizations using a ruthenium-based metathesis catalyst is described. The selectivity for Z macrocycles is consistently high for a diverse set of substrates with a variety of functional groups and ring sizes. The same catalyst was also employed for the Z-selective ethenolysis of a mixture of E and Z macrocycles, providing the pure E isomer. Notably, an ethylene pressure of only 1 atm was required. These methodologies were successfully applied to the construction of several olfactory macrocycles as well as the formal total synthesis of the cytotoxic alkaloid motuporamine C.

  15. Bioconjugation with strained alkenes and alkynes.

    PubMed

    Debets, Marjoke F; van Berkel, Sander S; Dommerholt, Jan; Dirks, A Ton J; Rutjes, Floris P J T; van Delft, Floris L

    2011-09-20

    The structural complexity of molecules isolated from biological sources has always served as an inspiration for organic chemists. Since the first synthesis of a natural product, urea, chemists have been challenged to prepare exact copies of natural structures in the laboratory. As a result, a broad repertoire of synthetic transformations has been developed over the years. It is now feasible to synthesize organic molecules of enormous complexity, and also molecules with less structural complexity but prodigious societal impact, such as nylon, TNT, polystyrene, statins, estradiol, XTC, and many more. Unfortunately, only a few chemical transformations are so mild and precise that they can be used to selectively modify biochemical structures, such as proteins or nucleic acids; these are the so-called bioconjugation strategies. Even more challenging is to apply a chemical reaction on or in living cells or whole organisms; these are the so-called bioorthogonal reactions. These fields of research are of particular importance because they not only pose a worthy challenge for chemists but also offer unprecedented possibilities for studying biological systems, especially in areas in which traditional biochemistry and molecular biology tools fall short. Recent years have seen tremendous growth in the chemical biology toolbox. In particular, a rapidly increasing number of bioorthogonal reactions has been developed based on chemistry involving strained alkenes or strained alkynes. Such strained unsaturated systems have the unique ability to undergo (3 + 2) and (4 + 2) cycloadditions with a diverse set of complementary reaction partners. Accordingly, chemistry centered around strain-promoted cycloadditions has been exploited to precisely modify biopolymers, ranging from nucleic acids to proteins to glycans. In this Account, we describe progress in bioconjugation centered around cycloadditions of these strained unsaturated systems. Being among the first to recognize the utility

  16. Optically Pure, Structural, and Fluorescent Analogues of a Dimeric Y4 Receptor Agonist Derived by an Olefin Metathesis Approach.

    PubMed

    Liu, Mengjie; Mountford, Simon J; Richardson, Rachel R; Groenen, Marleen; Holliday, Nicholas D; Thompson, Philip E

    2016-07-14

    The dimeric peptide 1 (BVD-74D, as a diastereomeric mixture) is a potent and selective neuropeptide Y Y4 receptor agonist. It represents a valuable candidate in developing traceable ligands for pharmacological studies of Y4 receptors and as a lead compound for antiobesity drugs. Its optically pure stereoisomers along with analogues and fluorescently labeled variants were prepared by exploiting alkene metathesis reactions. The (2R,7R)-diaminosuberoyl containing peptide, (R,R)-1, had markedly higher affinity and agonist efficacy than its (S,S)-counterpart. Furthermore, the sulfo-Cy5 labeled (R,R)-14 retained high agonist potency as a novel fluorescent ligand for imaging Y4 receptors.

  17. Optically Pure, Structural, and Fluorescent Analogues of a Dimeric Y4 Receptor Agonist Derived by an Olefin Metathesis Approach.

    PubMed

    Liu, Mengjie; Mountford, Simon J; Richardson, Rachel R; Groenen, Marleen; Holliday, Nicholas D; Thompson, Philip E

    2016-07-14

    The dimeric peptide 1 (BVD-74D, as a diastereomeric mixture) is a potent and selective neuropeptide Y Y4 receptor agonist. It represents a valuable candidate in developing traceable ligands for pharmacological studies of Y4 receptors and as a lead compound for antiobesity drugs. Its optically pure stereoisomers along with analogues and fluorescently labeled variants were prepared by exploiting alkene metathesis reactions. The (2R,7R)-diaminosuberoyl containing peptide, (R,R)-1, had markedly higher affinity and agonist efficacy than its (S,S)-counterpart. Furthermore, the sulfo-Cy5 labeled (R,R)-14 retained high agonist potency as a novel fluorescent ligand for imaging Y4 receptors. PMID:27295337

  18. Size-Dependent Catalytic Activity of Palladium Nanoparticles Fabricated in Porous Organic Polymers for Alkene Hydrogenation at Room Temperature.

    PubMed

    Mondal, John; Trinh, Quang Thang; Jana, Avijit; Ng, Wilson Kwok Hung; Borah, Parijat; Hirao, Hajime; Zhao, Yanli

    2016-06-22

    Ultrafine palladium nanoparticles (Pd NPs) with 8 and 3 nm sizes were effectively fabricated in triazine functionalized porous organic polymer (POP) TRIA that was developed by nonaqueous polymerization of 2,4,6-triallyoxy-1,3,5-triazine. The Pd NPs encapsulated POP (Pd-POP) was fully characterized using several techniques. Further studies revealed an excellent capability of Pd-POP for catalytic transfer hydrogenation of alkenes at room temperature with superior catalytic performance and high selectivity of desired products. Highly flammable H2 gas balloon at high pressure and temperature used in conventional hydrogenation reactions was not needed in the present synthetic system. Catalytic activity is strongly dependent on the size of encapsulated Pd NPs in the POP. The Pd-POP catalyst with Pd NPs of 8 nm in diameter exhibited higher catalytic activity for alkene hydrogenation as compared with the Pd-POP catalyst encapsulating 3 nm Pd NPs. Computational studies were undertaken to gain insights into different catalytic activities of these two Pd-POP catalysts. High reusability and stability as well as no Pd leaching of these Pd-POP catalysts make them highly applicable for hydrogenation reactions at room temperature. PMID:27258184

  19. Catalytic reversible alkene-nitrile interconversion through controllable transfer hydrocyanation.

    PubMed

    Fang, Xianjie; Yu, Peng; Morandi, Bill

    2016-02-19

    Nitriles and alkenes are important synthetic intermediates with complementary reactivity that play a central role in the preparation of materials, pharmaceuticals, cosmetics, and agrochemicals. Here, we report a nickel-catalyzed transfer hydrocyanation reaction between a wide range (60 examples) of alkyl nitriles and alkenes. This strategy not only overcomes the toxicity challenge posed by the use of HCN in traditional approaches, but also encompasses distinct chemical advances, including retro-hydrocyanation and anti-Markovnikov regioselectivity. In a broader context, this work highlights an approach to the reversible hydrofunctionalization of alkenes through thermodynamically controlled transfer reactions to circumvent the use of volatile and hazardous reagents in the laboratory. PMID:26912891

  20. Dipyrrolyl Precursors to Bisalkoxide Molybdenum Olefin Metathesis Catalysts

    PubMed Central

    Hock, Adam; Schrock, Richard R.; Hoveyda, Amir H.

    2008-01-01

    Addition of two equivalents of lithium pyrrolide to Mo(NR)(CHCMe2R')(OTf)2(DME) (OTf = OSO2CF3; R = 2,6-i-Pr2C6H3, 1-adamantyl, or 2,6-Br2-4-MeC6H2; R' = Me or Ph) produces Mo(NR)(CHCMe2R')(NC4H4)2 complexes in good yield. All compounds can be recrystallized readily from toluene or mixtures of pentane and ether and are sensitive to air and moisture. An X-ray structure of a 2,6-diisopropylphenylimido species shows it to be an unsymmetric dimer, {Mo(NAr)(syn-CHCMe2Ph)(η5-NC4H4)(η1-NC4H4)}{Mo(NAr)(syn-CHCMe2Ph)(η1-NC4H4)2}, in which the nitrogen in the η5-pyrrolyl bound to one Mo behaves as a donor to the other Mo. All complexes are fluxional on the NMR time scale at room temperature, with one symmetric species being observed on the NMR time scale at 50 °C in toluene-d8. The dimers react with PMe3 (at Mo) or B(C6F5)3 (at a η5-NC4H4 nitrogen) to give monomeric products in high yield. They also react rapidly with two equivalents of monoalcohols (e.g., Me3COH or (CF3)2MeCOH) or one equivalent of a biphenol or binaphthol to give two equivalents of pyrrole and bisalkoxide or diolate complexes in ~100% yield. PMID:17165793

  1. N-Heterocyclic Carbene Complexes in Olefin Metathesis

    NASA Astrophysics Data System (ADS)

    Luan, Xinjun; Dorta, Reto; Leitgeb, Anita; Slugovc, Christian; Tiede, Sascha; Blechert, Siegfried

    Olefin metathesis is now a synthetic tool found ubiquitously in various fields involving synthesis. Of its many variations, three are prominently used: (1) catalytic ring closing metathesis (RCM) is an extremely powerful method for the construction of carbon-carbon double bonds in organic chemistry; (2) ring opening metathesis polymerisation (ROMP) where polymers are formed by use of the energy released from cyclic strain; and (3) cross metathesis (CM) where non-cyclic partners are coupled through C-C double bond formation. These important transformations and variations on these themes mediated by second generation ruthenium complexes bearing a NHC ligand will be presented in the following sections.

  2. Binary and Ternary Catalytic Systems for Olefin Metathesis Based on MoCl5/SiO2

    NASA Astrophysics Data System (ADS)

    Bykov, Victor I.; Belyaev, Boris A.; Butenko, Tamara A.; Finkelshtein, Eugene Sh.

    Kinetics of α-olefin metathesis in the presence of binary (MoCl5/ SiO2-Me4Sn) and ternary catalytic systems (MoCl5/SiO2-Me4Sn-ECl4, E = Si or Ge) was studied. Specifically, kinetics and reactivity of 1-decene, 1-octene, and 1-hexene in the metathesis reaction at 27°C and 50°C in the presence of MoCl5/ SiO2-SnMe4 were examined and evaluated in detail. It was shown that experimental data comply well with the simple kinetic equation for the rate of formation of symmetrical olefins with allowance for the reverse reaction and catalyst deactivation: r = left( {k_1 \\cdot c_α - k_{ - 1} \\cdot c_s } right) \\cdot e^{ - k_d \\cdot tilde n_{tot} } . The coefficients for this equation were determined, and it was shown that these α-olefins had practically the same reactivity. It was found that reactivation in the course of metathesis took place due to the addition of a third component (silicon tetrachloride or germanium tetrachloride in combination with tetramethyltin) to a partially deactivated catalyst. The number of active centers was determined (5-6% of the amount of Mo) and the mechanisms of formation, deactivation, and reactivation were proposed for the binary and ternary catalytic systems. The role of individual components of the catalytic systems was revealed.

  3. Magnetic and dendritic catalysts.

    PubMed

    Wang, Dong; Deraedt, Christophe; Ruiz, Jaime; Astruc, Didier

    2015-07-21

    The recovery and reuse of catalysts is a major challenge in the development of sustainable chemical processes. Two methods at the frontier between homogeneous and heterogeneous catalysis have recently emerged for addressing this problem: loading the catalyst onto a dendrimer or onto a magnetic nanoparticle. In this Account, we describe representative examples of these two methods, primarily from our research group, and compare them. We then describe new chemistry that combines the benefits of these two methods of catalysis. Classic dendritic catalysis has involved either attaching the catalyst covalently at the branch termini or within the dendrimer core. We have used chelating pyridyltriazole ligands to insolubilize catalysts at the termini of dendrimers, providing an efficient, recyclable heterogeneous catalysts. With the addition of dendritic unimolecular micelles olefin metathesis reactions catalyzed by commercial Grubbs-type ruthenium-benzylidene complexes in water required unusually low amounts of catalyst. When such dendritic micelles include intradendritic ligands, both the micellar effect and ligand acceleration promote faster catalysis in water. With these types of catalysts, we could carry out azide alkyne cycloaddition ("click") chemistry with only ppm amounts of CuSO4·5H2O and sodium ascorbate under ambient conditions. Alternatively we can attach catalysts to the surface of superparamagnetic iron oxide nanoparticles (SPIONs), essentially magnetite (Fe3O4) or maghemite (γ-Fe2O3), offering the opportunity to recover the catalysts using magnets. Taking advantage of the merits of both of these strategies, we and others have developed a new generation of recyclable catalysts: dendritic magnetically recoverable catalysts. In particular, some of our catalysts with a γ-Fe2O3@SiO2 core and 1,2,3-triazole tethers and loaded with Pd nanoparticles generate strong positive dendritic effects with respect to ligand loading, catalyst loading, catalytic activity and

  4. Ruthenium-Catalyzed Cross-Coupling of Maleimides with Alkenes.

    PubMed

    Morita, Tomohiro; Akita, Mitsutoshi; Satoh, Tetsuya; Kakiuchi, Fumitoshi; Miura, Masahiro

    2016-09-16

    The cross-coupling of maleimides with electron-deficient alkenes such as acrylates proceeds smoothly under ruthenium catalysis. This unique C-C coupling provides a simple, straightforward synthetic method for preparing alkylidene succinimide derivatives. PMID:27571229

  5. Catalytic, Stereoselective Dihalogenation of Alkenes: Challenges and Opportunities.

    PubMed

    Cresswell, Alexander J; Eey, Stanley T-C; Denmark, Scott E

    2015-12-21

    Although recent years have witnessed significant advances in the development of catalytic, enantioselective halofunctionalizations of alkenes, the related dihalogenation of olefins to afford enantioenriched vicinal dihalide products remains comparatively underdeveloped. However, the growing number of complex natural products bearing halogen atoms at stereogenic centers has underscored this critical gap in the synthetic chemist's arsenal. This Review highlights the selectivity challenges inherent in the design of enantioselective dihalogenation processes, and formulates a mechanism-based classification of alkene dihalogenations, including those that may circumvent the "classical" haliranium (or alkene-dihalogen π-complex) intermediates. A variety of metal and main group halide reagents that have been used for the dichlorination or dibromination of alkenes are discussed, and the proposed mechanisms of these transformations are critically evaluated.

  6. Synthesis and structural characterization of the individual diastereoisomers of a cross-stapled alkene-bridged nisin DE-ring mimic.

    PubMed

    Slootweg, Jack C; Kemmink, Johan; Liskamp, Rob M J; Rijkers, Dirk T S

    2013-11-21

    Herein, we describe the synthesis, structural characterization, and synthetic use as an advanced intermediate of a cross-stapled alkene-bridged hexapeptide to mimic the DE-ring of the lantibiotic nisin. The linear precursor was cyclized by ring-closing metathesis to give the correctly folded bicyclic hexapeptide in a single step, and the four individual diastereoisomers were isolated, structurally assigned and characterized by HPLC, NMR and MS, respectively. The bicyclic hexapeptide was used as a versatile advanced synthon and was modified at its C- and N-terminus, among others, with an azide moiety to access a building block suitable for Cu(I)-catalyzed alkyne-azide cycloaddition-based ligation reactions. PMID:24081149

  7. Alkene dihydroxylation with malonoyl peroxides: catalysis using fluorinated alcohols.

    PubMed

    Picon, Sylvain; Rawling, Michael; Campbell, Matthew; Tomkinson, Nicholas C O

    2012-12-21

    The effect of fluorinated alcohols on the dihydroxylation of alkenes using cyclopropyl malonoyl peroxide is described. Addition of perfluoro-tert-butyl alcohol to a toluene solution of alkene and peroxide increases the rate of product formation and the stereoselectivity observed, providing a simple and effective method for acceleration of this important class of reaction. Basic hydrolysis of the crude reaction mixture provides access to syn-diols in high yield and stereoselectivity.

  8. Hydroaminations of alkenes: a radical, revised, and expanded version.

    PubMed

    Villa, Matteo; Jacobi von Wangelin, Axel

    2015-10-01

    Radical changes: The applicability of alkene hydroamination has recently been significantly expanded by the development of radical variants that are based on initial hydrogen atom transfer to the alkene. This Highlight assesses the current state of the art, focusing on an iron-catalyzed reaction that utilizes stable nitroarenes as the electrophilic N component and is based on the dual catalytic activation of both starting materials.

  9. Stereoselective synthesis of macrocyclic peptides via a dual olefin metathesis and ethenolysis approach

    PubMed Central

    Mangold, Shane L.

    2015-01-01

    Macrocyclic compounds occupy an important chemical space between small molecules and biologics and are prevalent in many natural products and pharmaceuticals. The growing interest in macrocycles has been fueled, in part, by the design of novel synthetic methods to these compounds. One appealing strategy is ring-closing metathesis (RCM) that seeks to construct macrocycles from acyclic diene precursors using defined transition-metal alkylidene catalysts. Despite its broad utility, RCM generally gives rise to a mixture of E- and Z-olefin isomers that can hinder efforts for the large-scale production and isolation of such complex molecules. To address this issue, we aimed to develop methods that can selectively enrich macrocycles in E- or Z-olefin isomers using an RCM/ethenolysis strategy. The utility of this methodology was demonstrated in the stereoselective formation of macrocyclic peptides, a class of compounds that have gained prominence as therapeutics in drug discovery. Herein, we report an assessment of various factors that promote catalyst-directed RCM and ethenolysis on a variety of peptide substrates by varying the olefin type, peptide sequence, and placement of the olefin in macrocycle formation. These methods allow for control over olefin geometry in peptides, facilitating their isolation and characterization. The studies outlined in this report seek to expand the scope of stereoselective olefin metathesis in general RCM. PMID:26509000

  10. Synthesis of amide-functionalized cellulose esters by olefin cross-metathesis.

    PubMed

    Meng, Xiangtao; Edgar, Kevin J

    2015-11-01

    Cellulose esters with amide functionalities were synthesized by cross-metathesis (CM) reaction of terminally olefinic esters with different acrylamides, catalyzed by Hoveyda-Grubbs 2nd generation catalyst. Chelation by amides of the catalyst ruthenium center caused low conversions using conventional solvents. The effects of both solvent and structure of acrylamide on reaction conversion were investigated. While the inherent tendency of acrylamides to chelate Ru is governed by the acrylamide N-substituents, employing acetic acid as a solvent significantly improved the conversion of certain acrylamides, from 50% to up to 99%. Homogeneous hydrogenation using p-toluenesulfonyl hydrazide successfully eliminated the α,β-unsaturation of the CM products to give stable amide-functionalized cellulose esters. The amide-functionalized product showed higher Tg than its starting terminally olefinic counterpart, which may have resulted from strong hydrogen bonding interactions of the amide functional groups.

  11. Synthesis of amide-functionalized cellulose esters by olefin cross-metathesis.

    PubMed

    Meng, Xiangtao; Edgar, Kevin J

    2015-11-01

    Cellulose esters with amide functionalities were synthesized by cross-metathesis (CM) reaction of terminally olefinic esters with different acrylamides, catalyzed by Hoveyda-Grubbs 2nd generation catalyst. Chelation by amides of the catalyst ruthenium center caused low conversions using conventional solvents. The effects of both solvent and structure of acrylamide on reaction conversion were investigated. While the inherent tendency of acrylamides to chelate Ru is governed by the acrylamide N-substituents, employing acetic acid as a solvent significantly improved the conversion of certain acrylamides, from 50% to up to 99%. Homogeneous hydrogenation using p-toluenesulfonyl hydrazide successfully eliminated the α,β-unsaturation of the CM products to give stable amide-functionalized cellulose esters. The amide-functionalized product showed higher Tg than its starting terminally olefinic counterpart, which may have resulted from strong hydrogen bonding interactions of the amide functional groups. PMID:26256383

  12. Activation of Cycloolefin Metathesis by Ultrasonic Irradiation

    NASA Astrophysics Data System (ADS)

    Dragutan, Ileana; Dragutan, Valerian; Filip, Petru; Demonceau, Albert

    The present research focuses on the impact of power ultrasound on the synthesis of the tungsten-based metathesis catalytic system WCl6/Me4Sn and its activity in ring-opening metathesis polymerization of cyclooctene and cyclododecene. As compared to corresponding silent ROMP reactions with this mild catalytic system, altered reaction kinetics and different product selectivity have been found. Rate acceleration and an enhancement of oligomer formation have been clearly evidenced. The demonstrated possibility of employing technical grade solvents in ROMP induced by WCl6/Me4Sn is a further gain of the ultrasound strategy. Under the right conditions, ultrasound may thus promote greener, more cost effective and sustainable metathetic procedures.

  13. Fischer–Tropsch Synthesis: Characterization Rb Promoted Iron Catalyst

    SciTech Connect

    Sarkar,A.; Jacobs, G.; Ji, Y.; Hamdeh, H.; Davis, B.

    2008-01-01

    Rubidium promoted iron Fischer-Tropsch synthesis (FTS) catalysts were prepared with two Rb/Fe atomic ratios (1.44/100 and 5/100) using rubidium nitrate and rubidium carbonate as rubidium precursors. Results of catalytic activity and deactivation studies in a CSTR revealed that rubidium promoted catalysts result in a steady conversion with a lower deactivation rate than that of the corresponding unpromoted catalyst although the initial activity of the promoted catalyst was almost half that of the unpromoted catalyst. Rubidium promotion results in lower methane production, and higher CO2, alkene and 1-alkene fraction in FTS products. M{umlt o}ssbauer spectroscopic measurements of CO activated and working catalyst samples indicated that the composition of the iron carbide phase formed after carbidization was -Fe5 C2 for both promoted and unpromoted catalysts. However, in the case of the rubidium promoted catalyst, '-Fe2.2C became the predominant carbidic phase as FTS continued and the overall catalyst composition remained carbidic in nature. In contrast, the carbide content of the unpromoted catalyst was found to decline very quickly as a function of synthesis time. Results of XANES and EXAFS measurements suggested that rubidium was present in the oxidized state and that the compound most prevalent in the active catalyst samples closely resembled that of rubidium carbonate.

  14. Cobalt-Catalyzed [2π + 2π] Cycloadditions of Alkenes: Scope, Mechanism, and Elucidation of Electronic Structure of Catalytic Intermediates.

    PubMed

    Schmidt, Valerie A; Hoyt, Jordan M; Margulieux, Grant W; Chirik, Paul J

    2015-06-24

    Aryl-substituted bis(imino)pyridine cobalt dinitrogen compounds, ((R)PDI)CoN2, are effective precatalysts for the intramolecular [2π + 2π] cycloaddition of α,ω-dienes to yield the corresponding bicyclo[3.2.0]heptane derivatives. The reactions proceed under mild thermal conditions with unactivated alkenes, tolerating both amine and ether functional groups. The overall second order rate law for the reaction, first order with respect to both the cobalt precatalyst and the substrate, in combination with electron paramagnetic resonance (EPR) spectroscopic studies established the catalyst resting state as dependent on the identity of the precatalyst and diene substrate. Planar S = ½ κ(3)-bis(imino)pyridine cobalt alkene and tetrahedral κ(2)-bis(imino)pyridine cobalt diene complexes were observed by EPR spectroscopy and in the latter case structurally characterized. The hemilabile chelate facilitates conversion of a principally ligand-based singly occupied molecular orbital (SOMO) in the cobalt dinitrogen and alkene compounds to a metal-based SOMO in the diene intermediates, promoting C-C bond-forming oxidative cyclization. Structure-activity relationships on bis(imino)pyridine substitution were also established with 2,4,6-tricyclopentyl-substituted aryl groups, resulting in optimized catalytic [2π + 2π] cycloaddition. The cyclopentyl groups provide a sufficiently open metal coordination sphere that encourages substrate coordination while remaining large enough to promote a challenging, turnover-limiting C(sp(3))-C(sp(3)) reductive elimination. PMID:26030841

  15. Cobalt-Catalyzed [2π + 2π] Cycloadditions of Alkenes: Scope, Mechanism, and Elucidation of Electronic Structure of Catalytic Intermediates.

    PubMed

    Schmidt, Valerie A; Hoyt, Jordan M; Margulieux, Grant W; Chirik, Paul J

    2015-06-24

    Aryl-substituted bis(imino)pyridine cobalt dinitrogen compounds, ((R)PDI)CoN2, are effective precatalysts for the intramolecular [2π + 2π] cycloaddition of α,ω-dienes to yield the corresponding bicyclo[3.2.0]heptane derivatives. The reactions proceed under mild thermal conditions with unactivated alkenes, tolerating both amine and ether functional groups. The overall second order rate law for the reaction, first order with respect to both the cobalt precatalyst and the substrate, in combination with electron paramagnetic resonance (EPR) spectroscopic studies established the catalyst resting state as dependent on the identity of the precatalyst and diene substrate. Planar S = ½ κ(3)-bis(imino)pyridine cobalt alkene and tetrahedral κ(2)-bis(imino)pyridine cobalt diene complexes were observed by EPR spectroscopy and in the latter case structurally characterized. The hemilabile chelate facilitates conversion of a principally ligand-based singly occupied molecular orbital (SOMO) in the cobalt dinitrogen and alkene compounds to a metal-based SOMO in the diene intermediates, promoting C-C bond-forming oxidative cyclization. Structure-activity relationships on bis(imino)pyridine substitution were also established with 2,4,6-tricyclopentyl-substituted aryl groups, resulting in optimized catalytic [2π + 2π] cycloaddition. The cyclopentyl groups provide a sufficiently open metal coordination sphere that encourages substrate coordination while remaining large enough to promote a challenging, turnover-limiting C(sp(3))-C(sp(3)) reductive elimination.

  16. Iron-copper cooperative catalysis in the reactions of alkyl Grignard reagents: exchange reaction with alkenes and carbometalation of alkynes.

    PubMed

    Shirakawa, Eiji; Ikeda, Daiji; Masui, Seiji; Yoshida, Masatoshi; Hayashi, Tamio

    2012-01-11

    Iron-copper cooperative catalysis is shown to be effective for an alkene-Grignard exchange reaction and alkylmagnesiation of alkynes. The Grignard exchange between terminal alkenes (RCH═CH(2)) and cyclopentylmagnesium bromide was catalyzed by FeCl(3) (2.5 mol %) and CuBr (5 mol %) in combination with PBu(3) (10 mol %) to give RCH(2)CH(2)MgBr in high yields. 1-Alkyl Grignard reagents add to alkynes in the presence of a catalyst system consisting of Fe(acac)(3), CuBr, PBu(3), and N,N,N',N'-tetramethylethylenediamine to give β-alkylvinyl Grignard reagents. The exchange reaction and carbometalation take place on iron, whereas copper assists with the exchange of organic groups between organoiron and organomagnesium species through transmetalation with these species. Sequential reactions consisting of the alkene-Grignard exchange and the alkylmagnesiation of alkynes were successfully conducted by adding an alkyne to a mixture of the first reaction. Isomerization of Grignard reagents from 2-alkyl to 1-alkyl catalyzed by Fe-Cu also is applicable as the first 1-alkyl Grignard formation step. PMID:22128888

  17. Product Control in Alkene Trifluoromethylation: Hydrotrifluoromethylation, Vinylic Trifluoromethylation, and Iodotrifluoromethylation using Togni Reagent

    PubMed Central

    Egami, Hiromichi; Usui, Yoshihiko; Kawamura, Shintaro; Nagashima, Sayoko; Sodeoka, Mikiko

    2015-01-01

    Hydrotrifluoromethylation, vinylic trifluoromethylation, and iodotrifluoromethylation of simple alkenes have been achieved by using Togni reagent in the absence of any transition metal catalyst. These reactions were readily controllable by selection of appropriate salts and solvents. The addition of K2CO3 afforded the hydrotrifluoromethylation product, with DMF acting not only as a solvent, but also as the hydrogen source. In contrast, the use of tetra-n-butylammonium iodide (TBAI) in 1,4-dioxane resulted in vinylic trifluoromethylation, while the use of KI afforded the iodotrifluoromethylation product. The vinylic trifluoromethylation product was obtained by treatment of the iodotrifluoromethylation product with ammonium 2-iodobenzoate, indicating that it was formed through an elimination reaction of the in-situ-generated iodotrifluoromethylation product, and the solubility of the resulting 2-iodobenzoate salt plays a key role in the product switching. A radical-clock experiment showed that these reactions proceed via radical intermediates. PMID:25960034

  18. Thermoset polymers via ring opening metathesis polymerization of functionalized oils

    DOEpatents

    Larock, Richard C; Henna, Phillip H; Kessier, Michael R

    2012-11-27

    The invention provides a method for producing a thermosetting resin from renewable oils, the method comprising supplying renewable oil molecules containing strained ring alkene moieties; reacting the alkene moieties with cyclic alkenes to create a polymer; and repeating the above two steps until the resin having desired characteristics are obtained. Also provided is a thermoset resin comprising functionalized renewable oil polymerized with a co-monomer.

  19. Determining the Impact of Ligand and Alkene Substituents on Bonding in Gold(I)-Alkene Complexes Supported by N-Heterocyclic Carbenes: A Computational Study.

    PubMed

    York, John T

    2016-08-01

    The nature of the gold(I)-alkene bond in [(NHC)Au(alkene)](+) complexes (where NHC is the N-heterocyclic carbene 1,3-bis(2,6-dimethylphenyl)imidazole-2-ylidine and its derivatives) has been studied using density functional theory. By utilization of a series of electron-withdrawing and electron-donating substituents ranging from -NO2 to -NH2, an examination of substituent effects has been undertaken with 4-substituted NHC ligands, monosubstituted ethylene derivatives, and 4-substituted styrene derivatives. Natural population, natural bond orbital (NBO), molecular orbital, and bond energy decomposition analysis (EDA) methods have been used to quantify a number of important parameters, including the charge of the coordinated alkenes and the magnitude of alkene→[(NHC)Au](+) and [(NHC)Au](+)→alkene electron donation. EDA methods have also been used to quantify the strength of the [(NHC)Au](+)-(alkene) bond and the impact of both ligand and alkene substitution on different components of the interaction, including polarization, orbital, electrostatic, and Pauli repulsive contributions. Finally, molecular orbital analysis has been used to understand the activation of the alkenes in terms of orbital composition and stabilization within the [(NHC)Au(alkene)](+) complexes relative to the free alkenes. These results provide important insight into the fundamental nature of gold(I)-alkene bonding and the impact of both ligand and alkene substitution on the electronic structure of these complexes. PMID:27455390

  20. Determining the Impact of Ligand and Alkene Substituents on Bonding in Gold(I)-Alkene Complexes Supported by N-Heterocyclic Carbenes: A Computational Study.

    PubMed

    York, John T

    2016-08-01

    The nature of the gold(I)-alkene bond in [(NHC)Au(alkene)](+) complexes (where NHC is the N-heterocyclic carbene 1,3-bis(2,6-dimethylphenyl)imidazole-2-ylidine and its derivatives) has been studied using density functional theory. By utilization of a series of electron-withdrawing and electron-donating substituents ranging from -NO2 to -NH2, an examination of substituent effects has been undertaken with 4-substituted NHC ligands, monosubstituted ethylene derivatives, and 4-substituted styrene derivatives. Natural population, natural bond orbital (NBO), molecular orbital, and bond energy decomposition analysis (EDA) methods have been used to quantify a number of important parameters, including the charge of the coordinated alkenes and the magnitude of alkene→[(NHC)Au](+) and [(NHC)Au](+)→alkene electron donation. EDA methods have also been used to quantify the strength of the [(NHC)Au](+)-(alkene) bond and the impact of both ligand and alkene substitution on different components of the interaction, including polarization, orbital, electrostatic, and Pauli repulsive contributions. Finally, molecular orbital analysis has been used to understand the activation of the alkenes in terms of orbital composition and stabilization within the [(NHC)Au(alkene)](+) complexes relative to the free alkenes. These results provide important insight into the fundamental nature of gold(I)-alkene bonding and the impact of both ligand and alkene substitution on the electronic structure of these complexes.

  1. Activation of Ene-Diamido Samarium Methoxide with Hydrosilane for Selectively Catalytic Hydrosilylation of Alkenes and Polymerization of Styrene: an Experimental and Theoretical Mechanistic Study.

    PubMed

    Li, Jianfeng; Zhao, Chaoyue; Liu, Jinxi; Huang, Hanmin; Wang, Fengxin; Xu, Xiufang; Cui, Chunming

    2016-09-01

    Samarium methoxide incorporating the ene-diamido ligand L(DME)Sm(μ-OMe)2Sm(DME)L (1; L = [DipNC(Me)C(Me)NDip](2-), Dip = 2,6-iPr2C6H3, and DME = 1,2-dimethoxyethane) has been prepared and structurally characterized. Complex 1 catalyzed the syndiospecific polymerization of styrene upon activation with phenylsilane and regioselective hydrosilylation of styrenes and nonactivated terminal alkenes. Unprecedented regioselectivity (>99.0%) for both types of alkenes has been achieved with the formation of Markovnikov and anti-Markovnikov products in high yields, respectively, whereas the polymerization of styrene resulted in the formation of syndiotactic silyl-capped oligostyrenes. The kinetic experiments and density functional theory calculations strongly support a samarium hydride intermediate generated by σ-bond metathesis of the Sm-OMe bond in 1 with PhSiH3. In addition, the observed regioselectvity for hydrosilylation and polymerization is consistent with the calculated energy profiles, which suggests that the bulky ene-diamido ligand and samarium hydride intermediate have important roles for regio- and stereoselectivity. PMID:27547859

  2. Intramolecular Alkene Aminocarbonylation Using Concerted Cycloadditions of Amino-Isocyanates.

    PubMed

    Ivanovich, Ryan A; Clavette, Christian; Vincent-Rocan, Jean-François; Roveda, Jean-Grégoire; Gorelsky, Serge I; Beauchemin, André M

    2016-06-01

    The ubiquity of nitrogen heterocycles in biologically active molecules challenges synthetic chemists to develop a variety of tools for their construction. While developing metal-free hydroamination reactions of hydrazine derivatives, it was discovered that carbazates and semicarbazides can also lead to alkene aminocarbonylation products if nitrogen-substituted isocyanates (N-isocyanates) are formed in situ as reactive intermediates. At first this reaction required high temperatures (150-200 °C), and issues included competing hydroamination and N-isocyanate dimerization pathways. Herein, improved conditions for concerted intramolecular alkene aminocarbonylation with N-isocyanates are reported. The use of βN-benzyl carbazate precursors allows the effective minimization of N-isocyanate dimerization. Diminished dimerization leads to higher yields of alkene aminocarbonylation products, to reactivity at lower temperatures, and to an improved scope for a reaction sequence involving alkene aminocarbonylation followed by 1,2-migration of the benzyl group. Furthermore, fine-tuning of the blocking (masking) group on the N-isocyanate precursor, and reaction conditions relying on base catalysis for N-isocyanate formation from simpler precursors resulted in room temperature reactivity, consequently minimizing the competing hydroamination pathway. Collectively, this work highlights that controlled reactivity of aminoisocyanates is possible, and provides a broadly applicable alkene aminocarbonylation approach to heterocycles possessing the β-aminocarbonyl motif. PMID:27112602

  3. Intramolecular Alkene Aminocarbonylation Using Concerted Cycloadditions of Amino-Isocyanates.

    PubMed

    Ivanovich, Ryan A; Clavette, Christian; Vincent-Rocan, Jean-François; Roveda, Jean-Grégoire; Gorelsky, Serge I; Beauchemin, André M

    2016-06-01

    The ubiquity of nitrogen heterocycles in biologically active molecules challenges synthetic chemists to develop a variety of tools for their construction. While developing metal-free hydroamination reactions of hydrazine derivatives, it was discovered that carbazates and semicarbazides can also lead to alkene aminocarbonylation products if nitrogen-substituted isocyanates (N-isocyanates) are formed in situ as reactive intermediates. At first this reaction required high temperatures (150-200 °C), and issues included competing hydroamination and N-isocyanate dimerization pathways. Herein, improved conditions for concerted intramolecular alkene aminocarbonylation with N-isocyanates are reported. The use of βN-benzyl carbazate precursors allows the effective minimization of N-isocyanate dimerization. Diminished dimerization leads to higher yields of alkene aminocarbonylation products, to reactivity at lower temperatures, and to an improved scope for a reaction sequence involving alkene aminocarbonylation followed by 1,2-migration of the benzyl group. Furthermore, fine-tuning of the blocking (masking) group on the N-isocyanate precursor, and reaction conditions relying on base catalysis for N-isocyanate formation from simpler precursors resulted in room temperature reactivity, consequently minimizing the competing hydroamination pathway. Collectively, this work highlights that controlled reactivity of aminoisocyanates is possible, and provides a broadly applicable alkene aminocarbonylation approach to heterocycles possessing the β-aminocarbonyl motif.

  4. Combinatorial metabolic engineering of Saccharomyces cerevisiae for terminal alkene production.

    PubMed

    Chen, Binbin; Lee, Dong-Yup; Chang, Matthew Wook

    2015-09-01

    Biological production of terminal alkenes has garnered a significant interest due to their industrial applications such as lubricants, detergents and fuels. Here, we engineered the yeast Saccharomyces cerevisiae to produce terminal alkenes via a one-step fatty acid decarboxylation pathway and improved the alkene production using combinatorial engineering strategies. In brief, we first characterized eight fatty acid decarboxylases to enable and enhance alkene production. We then increased the production titer 7-fold by improving the availability of the precursor fatty acids. We additionally increased the titer about 5-fold through genetic cofactor engineering and gene expression tuning in rich medium. Lastly, we further improved the titer 1.8-fold to 3.7 mg/L by optimizing the culturing conditions in bioreactors. This study represents the first report of terminal alkene biosynthesis in S. cerevisiae, and the abovementioned combinatorial engineering approaches collectively increased the titer 67.4-fold. We envision that these approaches could provide insights into devising engineering strategies to improve the production of fatty acid-derived biochemicals in S. cerevisiae.

  5. Synthesis of Orthogonally Reactive FK506 Derivatives via Olefin Cross Metathesis

    PubMed Central

    Marinec, Paul S.; Evans, Christopher G.; Gibbons, Garrett S.; Tarnowski, Malloree A.; Overbeek, Daniel L.; Gestwicki, Jason E.

    2009-01-01

    Chemical inducers of dimerization (CIDs) are employed in a wide range of biological applications, to control protein localization, modulate protein-protein interactions and improve drug lifetimes. These bifunctional chemical probes are assembled from two synthetic modules, which each provide affinity for a distinct protein target. FK506 and its derivatives are often employed as modules in the syntheses of these bifunctional constructs, owing to the abundance and favorable distribution of their target, FK506-binding protein (FKBP). However, the structural complexity of FK506 necessitates multi-step syntheses and/or multiple protection-deprotection schemes prior to installation into CIDs. In this work, we describe an efficient, one-step synthesis of FK506 derivatives through a selective, microwave-accelerated, cross metathesis diversification step of the C39 terminal alkene. Using this approach, FK506 is modified with an array of functional groups, including primary amines and carboxylic acids, which make the resulting derivatives suitable for the modular assembly of CIDs. To illustrate this idea, we report the synthesis of a heterobifunctional HIV protease inhibitor. PMID:19643614

  6. Catenation through a Combination of Radical Templation and Ring-Closing Metathesis.

    PubMed

    Gibbs-Hall, Ian C; Vermeulen, Nicolaas A; Dale, Edward J; Henkelis, James J; Blackburn, Anthea K; Barnes, Jonathan C; Stoddart, J Fraser

    2015-12-23

    Synthesis of an electrochemically addressable [2]catenane has been achieved following formation by templation of a [2]pseudorotaxane employing radically enhanced molecular recognition between the bisradical dication obtained on reduction of the tetracationic cyclophane, cyclobis(paraquat-p-phenylene), and the radical cation generated on reduction of a viologen disubstituted with p-xylylene units, both carrying tetraethylene glycol chains terminated by allyl groups. This inclusion complex was subjected to olefin ring-closing metathesis, which was observed to proceed under reduced conditions, to mechanically interlock the two components. Upon oxidation, Coulombic repulsion between the positively charged and mechanically interlocked components results in the adoption of a co-conformation where the newly formed alkene resides inside the cavity of the tetracationic cyclophane. (1)H NMR spectroscopic analysis of this hexacationic [2]catenane shows a dramatic upfield shift of the resonances associated with the olefinic and allylic protons as a result of them residing inside the tetracationic component. Further analysis shows high diastereoselectivity during catenation, as only a single (Z)-isomer is formed.

  7. Catenation through a Combination of Radical Templation and Ring-Closing Metathesis.

    PubMed

    Gibbs-Hall, Ian C; Vermeulen, Nicolaas A; Dale, Edward J; Henkelis, James J; Blackburn, Anthea K; Barnes, Jonathan C; Stoddart, J Fraser

    2015-12-23

    Synthesis of an electrochemically addressable [2]catenane has been achieved following formation by templation of a [2]pseudorotaxane employing radically enhanced molecular recognition between the bisradical dication obtained on reduction of the tetracationic cyclophane, cyclobis(paraquat-p-phenylene), and the radical cation generated on reduction of a viologen disubstituted with p-xylylene units, both carrying tetraethylene glycol chains terminated by allyl groups. This inclusion complex was subjected to olefin ring-closing metathesis, which was observed to proceed under reduced conditions, to mechanically interlock the two components. Upon oxidation, Coulombic repulsion between the positively charged and mechanically interlocked components results in the adoption of a co-conformation where the newly formed alkene resides inside the cavity of the tetracationic cyclophane. (1)H NMR spectroscopic analysis of this hexacationic [2]catenane shows a dramatic upfield shift of the resonances associated with the olefinic and allylic protons as a result of them residing inside the tetracationic component. Further analysis shows high diastereoselectivity during catenation, as only a single (Z)-isomer is formed. PMID:26654320

  8. An osmium(III)/osmium(V) redox couple generating Os(V)(O)(OH) center for cis-1,2-dihydroxylation of alkenes with H2O2: Os complex with a nitrogen-based tetradentate ligand.

    PubMed

    Sugimoto, Hideki; Kitayama, Kazuhiro; Mori, Seiji; Itoh, Shinobu

    2012-11-21

    For the synthesis of the 1,2-diols, cis-1,2-dihydroxylation of alkenes catalyzed by osmium(VIII) tetroxide (OsO(4)) is a powerful method. However, OsO(4) is quite toxic due to its highly volatile and sublimable nature. Thus, the development of alternative catalysts for cis-1,2-dihydroxylation of alkenes is highly challenging. Our approach involves the use of a nitrogen-based tetradentate ligand, tris(2-pyridylmethyl)amine (tpa), for an osmium center to develop a new osmium catalyst and hydrogen peroxide (H(2)O(2)) as a cheap and environmentally benign oxidant. The new Os-tpa complex acts as a very efficient turnover catalyst for syn-selective dihydroxylation of various alkenes (turnover number ∼1000) in aqueous media, and H(2)O(2) oxidant is formally incorporated into the products quantitatively (100% atom efficiency). The reaction intermediates involved in the catalytic cycle have been isolated and characterized crystallographically as [Os(III)(OH)(H(2)O)(tpa)](2+) and [Os(V)(O)(OH)(tpa)](2+) complexes. The observed syn-selectivity, structural characteristics of the intermediates, and kinetic studies have suggested a concerted [3 + 2]-cycloaddition mechanism between [Os(V)(O)(OH)(tpa)](2+) and alkenes, which is strongly supported by DFT calculations.

  9. Osmium(III) and osmium(V) complexes bearing a macrocyclic ligand: a simple and efficient catalytic system for cis-dihydroxylation of alkenes with hydrogen peroxide.

    PubMed

    Sugimoto, Hideki; Ashikari, Kenji; Itoh, Shinobu

    2013-09-01

    A simple protocol that uses [Os(III)(OH)(H2O)(L-N4Me2)](PF6)2 (1; L-N4Me2 = N,N'-dimethyl-2,11-diaza[3.3](2,6)pyridinophane) as a catalyst and H2O2 as a terminal oxidant for efficient cis-1,2-dihydroxylation of alkenes is presented. Unfunctionalized (or aliphatic) alkenes and alkenes/styrenes containing electron-withdrawing groups are selectively oxidized to the corresponding vicinal diols in good to excellent yields (46-99 %). In the catalytic reactions, the stoichiometry of alkene:H2O2 is 1:1, and thus the oxidant efficiency is very high. For the dihydroxylation of cyclohexene, the catalytic amount of 1 can be reduced to 0.01 mol % to achieve a very high turnover number of 5500. The active oxidant is identified as the Os(V)(O)(OH) species (2), which is formed via the hydroperoxide adduct, an Os(III)(OOH) species. The active oxidant 2 is successfully isolated and crystallographically characterized.

  10. Subnanometer-sized Pt/Sn alloy cluster catalysts for the dehydrogenation of linear alkanes.

    PubMed

    Hauser, Andreas W; Gomes, Joseph; Bajdich, Michal; Head-Gordon, Martin; Bell, Alexis T

    2013-12-21

    The reaction pathways for the dehydrogenation of ethane, propane, and butane, over Pt are analyzed using density functional theory (DFT). Pt nanoparticles are represented by a tetrahedral Pt4 cluster. The objectives of this work were to establish which step is rate limiting and which one controls the selectivity for forming alkenes as opposed to causing further dehydrogenation of adsorbed alkenes to produce precursors responsible for catalyst deactivation due to coking. Further objectives of this work are to identify the role of adsorbed hydrogen, derived from H2 fed together with the alkane, on the reaction pathway, and the role of replacing one of the four Pt atoms by a Sn atom. A comparison of Gibbs free energies shows that in all cases the rate-determining step is cleavage of a C-H bond upon alkane adsorption. The selectivity to alkene formation versus precursors to coking is dictated by the relative magnitudes of the activation energies for alkene desorption and dehydrogenation of the adsorbed alkene. The presence of an adsorbed H atom on the cluster facilitates alkene desorption relative to dehydrogenation of the adsorbed alkene. Substitution of a Sn atom in the cluster to produce a Pt3Sn cluster leads to a downward shift of the potential energy surface for the reaction and causes an increase of the activity of the catalyst as suggested by recent experiments due to the lower net activation barrier for the rate limiting step. However, the introduction of Sn does not alter the relative activation barriers for gas-phase alkene formation versus loss of hydrogen from the adsorbed alkene, the process leading to the formation of coke precursors. PMID:24196250

  11. Characterization and Dynamics of Substituted Ruthenacyclobutanes Relevant to the Olefin Cross-Metathesis Reaction

    PubMed Central

    Blake, Garrett; VanderVelde, David G.; Grubbs, Robert H.

    2011-01-01

    The reaction of the phosphonium alkylidene [(H2IMes)RuCl2=CHP(Cy)3)]+ BF4– with propene, 1-butene, and 1-hexene at –45 °C affords various substituted, metathesis-active ruthenacycles. These metallacycles were found to equilibrate over extended reaction times in response to decreases in ethylene concentrations, which favored increased populations of α-monosubstituted and α,α’-disubstituted (both cis and trans) ruthenacycles. On an NMR timescale, rapid chemical exchange was found to preferentially occur between the β-hydrogens of the cis and trans stereoisomers prior to olefin exchange. Exchange on an NMR timescale was also observed between the α- and β-methylene groups of the monosubstituted ruthenacycle (H2IMes)Cl2Ru(CHRCH2CH2) (R = CH3, CH2CH3, (CH2)3CH3). EXSY NMR experiments at –87 °C were used to determine the activation energies for both of these exchange processes. In addition, new methods have been developed for the direct preparation of metathesis-active ruthenacyclobutanes via the protonolysis of dichloro(1,3-bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene)(benzylidene) bis(pyridine)ruthenium(II) and its 3-bromopyridine analog. Using either trifluoroacetic acid or silica-bound toluenesulfonic acid as the proton source, the ethylene-derived ruthenacyclobutane (H2IMes)Cl2Ru(CH2CH2CH2) was observed in up to 98% yield via NMR at –40 °C. On the basis of these studies, mechanisms accounting for the positional and stereochemical exchange within ruthenacyclobutanes are proposed, as well as the implications of these dynamics towards olefin metathesis catalyst and reaction design are described. PMID:21452876

  12. Intramolecular Aminocyanation of Alkenes via N–CN Bond Cleavage**

    PubMed Central

    Pan, Zhongda; Pound, Sarah M.; Rondla, Naveen R.; Douglas, Christopher J.

    2014-01-01

    A metal-free, Lewis acid-promoted intramolecular aminocyanation of alkenes was developed. B(C6F5)3 activates N-sulfonyl cyanamides, leading an formal cleavage of the N-CN bonds in conjunction with vicinal addition of sulfonamide and nitrile groups across an alkene. This method enables atom-economical access to indolines and tetrahydroquinolines in excellent yields, and provides a complementary strategy for regioselective alkene difunctionalizations with sulfonamide and nitrile groups. Labeling experiments with 13C suggest a fully intramolecular cyclization pattern due to lack of label scrambling in double crossover experiments. Catalysis with Lewis acid is realized and the reaction can be conducted under air. PMID:24719371

  13. Biogenic Emissions of Light Alkenes from a Coniferous Forest

    NASA Astrophysics Data System (ADS)

    Rhew, R. C.; Turnipseed, A. A.; Martinez, L.; Shen, S.; De Gouw, J. A.; Warneke, C.; Koss, A.; Lerner, B. M.; Miller, B. R.; Smith, J. N.; Guenther, A. B.

    2014-12-01

    Alkenes are reactive hydrocarbons that play important roles in the photochemical production of tropospheric ozone and in the formation of secondary organic aerosols. The light alkenes (C2-C4) originate from both biogenic and anthropogenic sources and include C2H4 (ethene), C3H6 (propene) and C4H8 (1-butene, 2-butene, 2-methylpropene). Light alkenes are used widely as chemical feedstocks because their double bond makes them versatile for industrial reactions. Their biogenic sources are poorly characterized, with most global emissions estimates relying on laboratory-based studies; net ecosystem emissions have been measured at only one site thus far. Here we report net ecosystem fluxes of light alkenes and isoprene from a semi-arid ponderosa pine forest in the Rocky Mountains of Colorado, USA. Canopy scale fluxes were measured using relaxed eddy accumulation (REA) techniques on the 28-meter NCAR tower in the Manitou Experimental Forest Observatory. Updrafts and downdrafts were determined by sonic anemometry and segregated into 'up' and 'down' reservoirs over the course of an hour. Samples were then measured on two separate automated gas chromatographs (GCs). The first GC measured light hydrocarbons (C2-C6 alkanes and C2-C5 alkenes) by flame ionization detection (FID). The second GC measured halocarbons (methyl chloride, CFC-12, and HCFC-22) by electron capture detection (ECD). Additional air measurements from the top of the tower included hydrocarbons and their oxidation products by Proton Transfer Reaction Mass Spectrometry (PTR-MS). Three field intensives were conducted during the summer of 2014. The REA flux measurements showed that ethene, propene and the butene emissions have significant diurnal cycles, with maximum emissions at midday. The light alkenes contribute significantly to the overall biogenic source of reactive hydrocarbons and have a temporal variability that may be associated with physical and biological parameters. These ecosystem scale measurements

  14. The mechanism for iron-catalyzed alkene isomerization in solution

    SciTech Connect

    Sawyer, Karma R.; Glascoe, Elizabeth A.; Cahoon, James F.; Schlegel, Jacob P.; Harris, Charles B.

    2008-05-27

    Here we report nano- through microsecond time-resolved IR experiments of iron-catalyzed alkene isomerization in room-temperature solution. We have monitored the photochemistry of a model system, Fe(CO){sub 4}({eta}{sup 2}-1-hexene), in neat 1-hexene solution. UV-photolysis of the starting material leads to the dissociation of a single CO to form Fe(CO){sub 3}({eta}{sup 2}-1-hexene), in a singlet spin state. This CO loss complex shows a dramatic selectivity to form an allyl hydride, HFe(CO){sub 3}({eta}{sup 3}-C{sub 6}H{sub 11}), via an internal C-H bond-cleavage reaction in 5-25 ns. We find no evidence for the coordination of an alkene molecule from the bath to the CO loss complex, but do observe coordination to the allyl hydride, indicating that it is the key intermediate in the isomerization mechanism. Coordination of the alkene ligand to the allyl hydride leads to the formation of the bis-alkene isomers, Fe(CO){sub 3}({eta}{sup 2}-1-hexene)({eta}{sup 2}-2-hexene) and Fe(CO){sub 3}({eta}{sup 2}-1-hexene){sub 2}. Because of the thermodynamic stability of Fe(CO){sub 3}({eta}{sup 2}-1-hexene)({eta}{sup 2}-2-hexene) over Fe(CO){sub 3}({eta}{sup 2}-1-hexene){sub 2} (ca. 12 kcal/mol), nearly 100% of the alkene population will be 2-alkene. The results presented herein provide the first direct evidence for this mechanism in solution and suggest modifications to the currently accepted mechanism.

  15. Heteroatom-free arene-cobalt and arene-iron catalysts for hydrogenations.

    PubMed

    Gärtner, Dominik; Welther, Alice; Rad, Babak Rezaei; Wolf, Robert; Jacobi von Wangelin, Axel

    2014-04-01

    75 years after the discovery of hydroformylation, cobalt catalysts are now undergoing a renaissance in hydrogenation reactions. We have evaluated arene metalates in which the low-valent metal species is--conceptually different from heteroatom-based ligands--stabilized by π coordination to hydrocarbons. Potassium bis(anthracene)cobaltate 1 and -ferrate 2 can be viewed as synthetic precursors of quasi-"naked" anionic metal species; their aggregation is effectively impeded by (labile) coordination to the various π acceptors present in the hydrogenation reactions of unsaturated molecules (alkenes, arenes, carbonyl compounds). Kinetic studies, NMR spectroscopy, and poisoning studies of alkene hydrogenations support the formation of a homogeneous catalyst derived from 1 which is stabilized by the coordination of alkenes. This catalyst concept complements the use of complexes with heteroatom donor ligands for reductive processes. PMID:24616276

  16. Olefin metathesis over UV-irradiated silica

    NASA Astrophysics Data System (ADS)

    Tanaka, Tsunehiro; Matsuo, Shigehiro; Maeda, Takashi; Yoshida, Hisao; Funabiki, Takuzo; Yoshida, Satohiro

    1997-11-01

    Photoirradiated silica evacuated at temperatures higher than 800 K was found to be active for olefin metathesis reactions. The analysis of products shows that the metalacyclobutane intermediate is likely. The instantaneous response of the reaction to the irradiation and the activity change with various UV filter showed that the reaction is induced by UV-excitation of silica. The correlation between the evacuation temperature and the activity showed that the surface free from water molecules plays a role in the reaction and the removal of isolated OH groups strongly relates to the generation of active sites.

  17. New osmium-based reagent for the dihydroxylation of alkenes.

    PubMed

    Donohoe, Timothy J; Harris, Robert M; Butterworth, Sam; Burrows, Jeremy N; Cowley, Andrew; Parker, Jeremy S

    2006-06-01

    The cis dihydroxylation of alkenes is most efficiently accomplished by reaction with osmium tetroxide. Recently, the expense and toxicity of osmium tetroxide have led to a number of attempts to harness alternative osmium-based reagents, including microencapsulation and solid support techniques. We describe here the development of a new nonvolatile, stable, and recoverable osmium-based reagent devised for the stoichiometric cis dihydroxylation of alkenes. Although attempts to make this new dihydroxylation work with catalytic amounts of this reagent were unsuccessful, we did develop a sensitive test for free osmium tetroxide leached from the reagent in situ: this test may well have uses in probing future applications of derivatized osmium reagents.

  18. Alkenes with antioxidative activities from Murraya koenigii (L.) Spreng.

    PubMed

    Ma, Qin-Ge; Xu, Kun; Sang, Zhi-Pei; Wei, Rong-Rui; Liu, Wen-Min; Su, Ya-Lun; Yang, Jian-Bo; Wang, Ai-Guo; Ji, Teng-Fei; Li, Lu-Jun

    2016-02-01

    Four new alkenes (1-4), and six known alkenes (5-12) were isolated from Murraya koenigii (L.) Spreng. Their structures were elucidated on the basis of spectroscopic analyses and references. Compounds (1-12) were evaluated for antioxidative activities. Among them, compounds 1, 2, 4, and 7 exhibited significant antioxidative activities using 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay with IC50=21.4-49.5 μM. The known compounds (5-12) were isolated from this plant for the first time.

  19. Covalent attachment of 1-alkenes to oxidized platinum surfaces.

    PubMed

    Alonso, Jose Maria; Fabre, Bruno; Trilling, Anke K; Scheres, Luc; Franssen, Maurice C R; Zuilhof, Han

    2015-03-10

    We report the formation of covalently bound alkyl layers onto oxidized Pt (PtOx) substrates by reaction with 1-alkenes as a novel way to bind organic molecules to metal surfaces. The organic layers were characterized by static contact angle, infrared reflection absorption spectroscopy (IRRAS), X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM). The grafted alkyl layers display a hydrolytic stability that is comparable to that of alkyl thiols on Au. PtOx-alkene attachment is compatible with terminal ester moieties enabling further anchoring of functional groups, such as redox-active ferrocene, and thus has great potential to extend monolayer chemistry on noble metals.

  20. Cycloalkyl-based unsymmetrical unsaturated (U₂)-NHC ligands: flexibility and dissymmetry in ruthenium-catalysed olefin metathesis.

    PubMed

    Rouen, Mathieu; Borré, Etienne; Falivene, Laura; Toupet, Loic; Berthod, Mikaël; Cavallo, Luigi; Olivier-Bourbigou, Hélène; Mauduit, Marc

    2014-05-21

    Air-stable Ru-indenylidene and Hoveyda-type complexes bearing new unsymmetrical unsaturated N-heterocyclic carbene (U2-NHC) ligands combining a mesityl unit and a flexible cycloalkyl moiety as N-substituents were synthesised. Structural features, chemical stabilities and catalytic profiles in olefin metathesis of this new library of cycloalkyl-based U2-NHC Ru complexes were studied and compared with their unsymmetrical saturated NHC-Ru homologues as well as a set of commercially available Ru-catalysts bearing either symmetrical SIMes or IMes NHC ligands. PMID:24647372