Science.gov

Sample records for alkenone-derived sea surface

  1. Understanding Abrupt, Natural Climate Variability Post-Industrial Revolution from the Subtropical Eastern Pacific: A Novel High Resolution Alkenone-derived Sea Surface Temperature Record

    NASA Astrophysics Data System (ADS)

    Kelly, C. S.; O'Mara, N. A.; Herbert, T.; Abella-Gutiérrez, J. L.; Herguera, J. C.

    2015-12-01

    Despite the ocean's importance in global biogeochemical feedbacks and heat storage, there is still a paucity of decadally-resolved sea surface temperature (SST) records to complement lacustrine and dendrological records of recent paleoclimate. Natural climate variability on multidecadal timescales is dominated by internal ocean circulation dynamics and feedbacks, and it is therefore imperative to employ marine proxies to reconstruct high resolution climate change. The timescales of this ocean-induced natural climate variability can be broken down into a few characteristic climate modes. Pressing questions about these modes include their stationarity in frequency and amplitude over time, in addition to the hypothesis that anthropogenic climate change has altered their behavior in comparison to natural variability. To pursue these questions, we must discern and analyze suitable climate archives in regions where modes of interest dominate modern climate variability. The region of Baja California, Mexico exhibits exceptional teleconnection to the El Niño Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO). Local, dramatic effects of ENSO and PDO on the marine biology and economy underline the importance of regional paleoclimate records from the Baja peninsula. Here, we present a high-resolution alkenone-derived SST reconstruction from the Industrial Revolution through the year 2000 by analysis of laminated box and Kasten sediment cores at Site PCM 00-78 (25.18°N, 112.66°W) in the subtropical eastern Pacific at a depth of 540 meters. Our SST record corresponds with NOAA extended reconstructed sea surface temperature, providing a robust basis for organic geochemical marine climatic reconstructions on timescales usually accessible only through speleothems, coral density bands, tree rings, and the like. Accordingly, based on this comparison to the historical data we expect our SST record may provide a more robust record of inter and multidecadal

  2. Changes of coastal upwelling systems in the Atlantic, Indian and Pacific oceans recorded from alkenone-derived sea surface temperatures and other multiproxy information

    NASA Astrophysics Data System (ADS)

    El Ouahabi, Anuar; Martrat, Belen; Lopez, Jordi F.; Grimalt, Joan O.

    2014-05-01

    Upwelling regions have received limited attention in paleoceanography, particularly for what concerns their changes at high temporal resolution. Furthermore, they have generally been considered independently. The lack of integrated studies of the evolution of the main coastal upwelling systems has limited the present degree of understanding of the links between global ocean dynamics and intensity and geographic distribution of these highly productive sites. In the present study, an integrated assessment of sea surface temperature (SST) records based on literature available alkenone-data on the upwelling regions of North-West Africa, North-West Arabian Sea, Namibia and Peru encompassing the last 25 kyr is reported. Additionally, in order to consider the complex effects of regional processes literature-available multiproxy data (marine, ice cores and speleothems records; PIG2LIG-4FUTURE database; Geophysical Research Abstracts Vol. 14, EGU2012-13825) has also been used to constrain upwelling features. This approach has allowed the description of high resolution temporal and spatial upwelling patterns and the interdependences between ocean dynamics and upwelling shifts. The spatio-temporal SST-upwelling patterns during the deglaciation-Holocene stage have been discussed. Suitable proxies for the upwelling and advection processes, such as CaCO3, TOC and Opal, Nd and carbon isotopes, respectively have been studied. Temporal snapshots at approximately at 22 ka, 15 ka, 12 ka, 8 ka, and 5 ka BP have been identified. These transitions illustrate flips between contrasting states. Major environmental and climatic changes have been observed before and after this type of transition, e.g. the one at 5 ka BP. These observations provide interesting clues on mechanisms, location of forcings and sustainers. The high temporal resolution records examined provide good constraints on the timing and magnitude of oceanic processes related with upwelling change and therefore an assessment

  3. Freshwater impacts recorded in tetraunsaturated alkenones and alkenone sea surface temperatures from the Okhotsk Sea across millennial-scale cycles

    NASA Astrophysics Data System (ADS)

    Harada, Naomi; Sato, Miyako; Sakamoto, Tatsuhiko

    2008-09-01

    We present records of phytoplankton-produced alkenones down a long piston core, which reveal changes of sea surface temperature (SST) and sea surface salinity (SSS) in the southwestern Okhotsk Sea over the past 120 ka. Between 20 and 60 ka B.P., alkenone-derived temperatures typically increased by 6°C-8°C from periods corresponding, within a few hundred years, to stadials to those corresponding to interstadials recorded in Greenland ice cores. The abundance of C37:4 alkenone relative to total C37 alkenones (percent C37:4), a possible proxy for salinity, indicated that during most low SSS was associated with high SST. The warm freshwater events might be related to (1) a decline in the supply of saline water entering the Okhotsk Sea through the Soya Strait; (2) strengthening of the freshwater supply from the Amur River and precipitation over the Okhotsk Sea, associated mainly with increased Asian summer monsoon activity; and (3) the effect of melting sea ice. These findings increase our understanding of the close linkage between high and low latitudes in relation to climate change and the synchronicity of climate changes within a few centuries between the Pacific and the Atlantic sides of the Northern Hemisphere.

  4. Reevaluation of mid-Pliocene North Atlantic sea surface temperatures

    USGS Publications Warehouse

    Robinson, Marci M.; Dowsett, Harry J.; Dwyer, Gary S.; Lawrence, Kira T.

    2008-01-01

    Multiproxy temperature estimation requires careful attention to biological, chemical, physical, temporal, and calibration differences of each proxy and paleothermometry method. We evaluated mid-Pliocene sea surface temperature (SST) estimates from multiple proxies at Deep Sea Drilling Project Holes 552A, 609B, 607, and 606, transecting the North Atlantic Drift. SST estimates derived from faunal assemblages, foraminifer Mg/Ca, and alkenone unsaturation indices showed strong agreement at Holes 552A, 607, and 606 once differences in calibration, depth, and seasonality were addressed. Abundant extinct species and/or an unrecognized productivity signal in the faunal assemblage at Hole 609B resulted in exaggerated faunal-based SST estimates but did not affect alkenone-derived or Mg/Ca–derived estimates. Multiproxy mid-Pliocene North Atlantic SST estimates corroborate previous studies documenting high-latitude mid-Pliocene warmth and refine previous faunal-based estimates affected by environmental factors other than temperature. Multiproxy investigations will aid SST estimation in high-latitude areas sensitive to climate change and currently underrepresented in SST reconstructions.

  5. Holocene coastal sea surface temperature changes in the northern South China Sea

    NASA Astrophysics Data System (ADS)

    Zhu, K.; Kong, D.; Wei, G.; Liu, Z.

    2016-12-01

    Holocene sea surface temperature (SST) changes in the northern South China Sea (SCS) coastal region are affected by complex factors. Previous studies have identified a long-term cooling trend, attributed to coastal mixing and intensified East Asian Winter Monsoon (EAWM), yet spatial patterns of coastal cooling along the southern China are still not well established. Here we reconstructed a Holocene Sea Surface Temperature (SST) record, derived from long-chain alkenone unsaturation index - UK'37, in the northern SCS. Our result reveals that a gentle cooling trend dominates the mid-late Holocene. The gradual warming trend occurring during the early Holocene might have resulted from the rising sea level or the rebound of "8.2 ka cold event". Besides, the C37-content also shows an extremely-low level before 8 ka. Later, both alkenone-derived SST and C37-content reach their highest levels during approximately 7-4.5 ka, corresponding to the Holocene Climate Optimum (HCO). Consistent with previous studies, the long-term cooling trend identified in coastal regions, but not offshore ones, presumably indicates intensified EAWM toward present. Further, during the late Holocene, coastal SST changes in the northern SCS show heterogeneous responses to global climatic conditions. In the Mirs Bay, SST was warmer during the Little Ice Age (LIA) than the Medieval Warm Period (WMP) and the current warm period, interpreted as reflecting intensified coastal mixing, due to strengthened East Asian Summer Monsoon (EASM) during warmer periods. However, SST records at other coastal sites, as well as offshore regions, show fluctuations consistent with global/northern hemisphere temperature changes, suggesting that these regions are less influenced by the EASM-induced coastal mixing, probably with the aid of Pearl River freshwater input.

  6. Sea surface temperature variability of the Peru-Chile Current during the previous four interglacials

    NASA Astrophysics Data System (ADS)

    Caniupan, M.; Martinez-Mendez, G.; Lamy, F.; Hebbeln, D.; Mohtadi, M.

    2012-12-01

    There are several periods during the Quaternary that were characterized by warmer than present climate and higher sea level that serve as an analogue for future global warming scenarios. These include the Marine isotope Stage (MIS) 5.5, MIS 9.3, and MIS 11.3. Little is known about past sea surface temperatures (SST) during these intervals in the Southern Hemisphere, particularly in the Southeast Pacific. Here, we present a new alkenone-derived SST record from marine sediment core GeoB15016 located beneath the Peru-Chile Current (PCC). The PCC plays a critical role in the Southern Hemisphere surface circulation as it connects the low and high latitudes by transporting sub-polar water masses and thus, a high-latitude climate signal towards the tropics. Core GeoB15016 was recovered with the sea floor drill rig MARUM-MeBo at 956 m water depth off northern Chile (27°29.48'S; 71°07.58'W). We analyzed the uppermost ca 25 meters composite depth that extend back to ~400,000 years ago. Our record is the first Chilean margin record extending back to MIS 11. The stratigraphy is well constrained by correlating benthic oxygen isotope data to the global Lisiecki-Raymo stack. Glacial-interglacial SST amplitudes are in the order of 6°C. During MIS 5, 7, 9 and 11, the record reaches SST maxima of ca. 3°C warmer than present annual mean SST in this area. Our results suggest a substantial warming of the PCC over past interglacials that may reflect reduced advection of subantarctic surface water from the south and/or enhanced tropical influence and/or decreased upwelling intensity.

  7. Sea surface temperature variability of the Peru-Chile Current during the previous ten interglacials

    NASA Astrophysics Data System (ADS)

    Caniupan, M.; Martinez-Mendez, G.; Lamy, F.; Hebbeln, D.; Mohtadi, M.; Pantoja, S.

    2014-12-01

    There are several interglacial periods during the Quaternary that were characterized by climates warmer than present and higher sea level and thus may serve as analogues for future global warming scenarios. These include Marine Isotope Stages (MIS) 5e, 9c and 11c. Little is known about past sea surface temperatures (SST) during these warm intervals in the Southern Hemisphere, particularly along the Peru-Chile Current (PCC) which plays a critical role in the Southern Hemisphere surface circulation as it connects the low and high latitudes by transporting sub-polar water masses and thus, a high-latitude climate signal towards the tropics. Here, we present new high-resolution alkenone-derived SST records from marine sediment cores located beneath the PCC. Core GeoB15016 was recovered from off northern Chile (27.5°S; 71.1°W) with the seafloor drill rig MARUM-MeBo. We analyzed the ca. 60 meters composite depth complemented by gravity core GeoB3375-1 (27.5°S; 71.3°W) for the upper part to generate a continuous record that extends back to 970 ka BP. Our record is the first continuous SST reconstruction from the Chilean margin extending back to MIS 25. SST varies between ~8°C and ~20°C over the past ~970 ka. Glacial-interglacial SST amplitudes are in the order of 6°C (see Groeneveld's et al. contribution for Mg/Ca-derived Glacial SST estimations). During MIS 5e, 7e, 9c and 11c, the record reaches SST maxima which are ca. 3ºC warmer than present annual mean SST in the area. Our results suggest a substantial warming of the PCC over past interglacials that may reflect reduced advection of subantarctic surface water from the south and/or enhanced tropical influence from the north.

  8. Deglacial Sea-Surface Temperatures off New Zealand

    NASA Astrophysics Data System (ADS)

    Sachs, J. P.; Manighetti, B.

    2002-12-01

    Glacial geologic and geochronologic data from New Zealand indicate a re-advance of mountain glaciers synchronous with the Younger Dryas (YD) Chron. Yet pollen studies do not support any appreciable cooling at this time, suggesting that the glacial advances may have resulted from enhanced precipitation rather than decreased temperature. A paucity of detailed marine climate records from the region leave an uncertain picture of deglacial climate change in the vicinity of New Zealand. The question remains open whether abrupt deglacial climate changes so prominent in the North Atlantic region involved the southwest Pacific Ocean. Here we present a detailed record of deglacial and Holocene sea-surface temperatures (SSTs) off the north island of New Zealand using the alkenone paleotemperature technique and show evidence for cooling synchronous with the Younger Dryas Chron. Core MD97-2121 was recovered in 2314 m of water at 40°S, 178°E, southeast of Hawke Bay, New Zealand. The 35-m core contains a continuous record of sedimentation spanning the last 136 kyr. Age control for the deglacial period and the Holocene is provided by 26 radiocarbon dates on planktonic foraminifera and tephra layers. Exceptional rates of sedimentation averaging 36 cm/kyr during the last 25 kyr are maintained by large fluxes of terrigenous detritus from New Zealand resulting from pronounced seismicity, volcanism and continental weathering. Presently the site is under the influence of the southward-flowing East Cape Current, which transports 10-25 Sv of warm, salty, subtropical water. The northward flowing Wairarapa Coastal Current flows just west of the core site and transports 1.6 Sv of cool, low-salinity water derived from Australasian Subantarctic Water via the Southland Current. Although a relatively minor influence today, this cool, fresh current system may have influenced SSTs over the core site at times in the past. Late Holocene alkenone-derived SSTs of 17 deg C are consistent with atlas

  9. Evolution of Interhemispheric Sea-Surface Temperature Contrast in the Tropical Atlantic During Termination I

    NASA Astrophysics Data System (ADS)

    Kim, J.

    2001-12-01

    Meteorological and oceanographic studies show that interannual and decadal variability in tropical Atlantic sea-surface temperature (SST) strongly influences the climates over northeast Brazil, sub-Saharan Africa, as well as the Central American and Caribbean regions. In this context, it is worthwhile to reconstruct spatial temperature patterns for the longer-term tropical Atlantic SST history. In this study, a high-resolution alkenone-derived SST record from the subtropical eastern South Atlantic (core GeoB 1023-5) is compared with one from the tropical western North Atlantic (core M35003-4). This comparison reveals synchronous SST variations between both near equatorial Atlantic regions during the Heinrich Event 1 (H1) (18-15.5 cal kyr B.P.), but dipole-like SST variations during the Younger Dryas (YD) (13-11.5 cal kyr B.P.). To assess the relationship of SST variations between both regions, we calculated SST differences between cores GeoB 1023-5 and M35003-4, and compared it with the coccolithophorid Florisphaera profunda abundance record from the equatorial eastern Atlantic (core RC24-08) as an indicator of variations in intensity of south-easterly trade winds [McIntyre and Molfino, 1996]. This comparison suggests that synchronous warming in both regions during the H1 can be attributed to a reduced northward heat transport from the warm equatorial Atlantic to the cold high-latitude North Atlantic linked to the slowdown of thermohaline circulation overturning during cold events under full glacial conditions. However, dipole-like SST variations during the YD is probably more associated with strengthened south-easterly trade winds, which led to a strong upwelling-related cooling in the eastern South Atlantic region and concurrently enhanced advection of warm subtropical South Atlantic waters to the tropical western Atlantic during that time. Accordingly, a coupled oceanic-atmospheric process created a warm pool in the tropical western Atlantic and thus a dipole

  10. Surface Force Strategy: Return to Sea Control

    DTIC Science & Technology

    2016-01-01

    trategy orce urfaceS F S Return to Sea Control Surface Force Strategy Return to Sea Control 14 Return to Sea Control Return to Sea Control A quarter...Responding to the call to “strengthen naval power at and from the sea,” the U.S. Naval Surface Force submits this “Surface Force Strategy .” The... strategy describes the return to sea control and implementation of Distributed Lethality as an operational and organizational principle for achieving

  11. Sea Surface Salinity

    NASA Image and Video Library

    The heat of the sun also forces evaporation at the ocean's surface, which puts water vapor into the atmosphere but leaves minerals and salts behind, keeping the ocean salty. The salinity of the oce...

  12. Assessment of Plio-Pleistocene Sea Surface Temperature Evolution Across Ocean Basins, Hemispheres, and Latitudes

    NASA Astrophysics Data System (ADS)

    Peterson, L.; Lawrence, K. T.; Mauriello, H.; Wilson, J.; Holte, L.

    2015-12-01

    New sea surface temperature (SST) records from the southern Pacific and southern Atlantic Oceans allow assessment of similarities and differences in climate evolution across ocean basins, hemispheres, and latitudes over the last 5 million years. Our high-resolution, alkenone-derived SST records from ODP Sites 1088 (South Atlantic, 41°S) and 1125 (South Pacific, 42°S) share strong structural similarities. When compared with SST records from the mid-latitudes of the northern hemisphere, these records provide compelling evidence for broadly hemispherically symmetrical open-ocean temperature evolution in both ocean basins as tropical warm pools contracted over the Plio-Pleistocene. This symmetry in temperature evolution occurs despite strong asymmetries in the development of the cryosphere over this interval, which was marked by extensive northern hemisphere ice sheet growth. Parallel SST evolution across ocean basins and hemispheres suggests that on longterm (>105 yr) timescales, many regions of the world ocean are more sensitive to the global energy budget than to local or regional climate dynamics, although important exceptions include coastal upwelling zone SSTs, high latitude SSTs, and benthic δ18O. Our analysis further reveals that throughout the last 5 Ma, temperature evolution in the extra-tropical Pacific of both hemispheres is very similar to the evolution of SST in the eastern equatorial Pacific upwelling zone, revealing tight coupling between the growth of meridional and equatorial Pacific zonal temperature gradients over this interval as both the extra-tropics and the eastern equatorial Pacific cold tongue underwent cooling. Finally, while long term temperature evolution is broadly consistent across latitudes and ocean basins throughout the entire Plio-Pleistocene, we see evidence that climate coupling on orbital timescales strengthened significantly at 2.7 Ma, at which point obliquity-band coherence emerges among diverse SST records. We attribute this

  13. Plio-Pleistocene Sea Surface Temperature Variability As Measured by Different Proxies - A Cautionary Tale

    NASA Astrophysics Data System (ADS)

    Lawrence, K. T.; Woodard, S. C.; Castañeda, I. S.; deMenocal, P. B.; Peterson, L.; Rosenthal, Y.; Bochner, L.; Gorbey, D. B.; Mauriello, H.

    2016-12-01

    Conflicting interpretations from the application of different sea surface temperature (SST) proxies seeking to characterize past climate conditions of the same region have given rise to a number of controversies about key elements of Pliocene climate. Thus, a detailed look at whether or not different temperature proxies yield consistent results is warranted. Here, we examine Pliocene climate variability at the orbital scale reporting new alkenone-derived SST estimates from ODP Site 1088 (South Atlantic) and ODP Site 846 (Eastern Equatorial Pacific). Using these novel datasets and previously published records from a variety of different sites in a variety of localities, we further examine the consistency of Plio-Pleistocene SST variability and orbital signatures from faunal, Mg/Ca, and TEX86 SST records relative to Uk'37 SST records. We find that many companion SST records produce very similar mean trends and standard deviations as well as absolute temperature estimates that are generally within error of each other. Our analysis also suggests that many companion records, with a few notable exceptions, capture the same dominant Milankovitch periodicities and produce phase estimates relative to benthic oxygen isotope estimates that are within error of each other. However, marked structural differences occur between different proxy records on glacial-interglacial timescales in Uk'37 versus Mg/Ca comparisons and some Uk'37 versus TEX86 comparisons. Therefore, the temperature estimates of individual glacial-interglacial cycles may vary significantly when a specific time slice is explored. Our preliminary investigation suggests that whether or not climate records derived from different paleothermometers yield consistent results depends on the timescale being explored and the study site, which reflects key factors such as seasonality, ecology, and diagenetic regime. Additional work that explores the underlying causes of the differences observed among proxies and uses a

  14. Sea Surface Height 1993 - 2011

    NASA Image and Video Library

    This animation depicts year-to-year variability in sea surface height, and chronicles two decades of El Niño and La Niña events. It was created using NASA ocean altimetry data from 1993 to 2011, ...

  15. Seasonality in sea surface salinity and relating sea surface variables

    NASA Astrophysics Data System (ADS)

    Nonaka, M.; Hosoda, S.; Schneider, N.

    2016-12-01

    With accumulation of salinity observational data by Argo floats, it becomes possible to investigate salinity variability on seasonal to interannual time scales. While we know that there is strong seasonality in sea surface temperature (SST), seasonality in sea surface salinity (SSS) is not known well. Based on gridded Argo and other observational data and atmospheric reanalysis data, we examine global distribution of SSS seasonality using 12-month lagged auto-correlation map. In contrast to SST, which shows clear seasonality except for the tropical oceans especially in the Pacific, seasonality of SSS is not clear in large part of the global ocean except for tropics in the eastern Atlantic, the eastern Pacific, and the western Indian Oceans. Meanwhile the distribution depends on data products to some extent. Consistent with the limited seasonality, forcing field for SSS, i.e., precipitation-evaporation, Ekman transport, and geostrophic current advection also show limited seasonality except for the tropical oceans.

  16. MODIS Global Sea Surface Temperature

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Every day the Moderate-resolution Imaging Spectroradiometer (MODIS) measures sea surface temperature over the entire globe with high accuracy. This false-color image shows a one-month composite for May 2001. Red and yellow indicates warmer temperatures, green is an intermediate value, while blues and then purples are progressively colder values. The new MODIS sea surface temperature product will be particularly useful in studies of temperature anomalies, such as El Nino, as well as research into how air-sea interactions drive changes in weather and climate patterns. In the high resolution image, notice the amazing detail in some of the regional current patterns. For instance, notice the cold water currents that move from Antarctica northward along South America's west coast. These cold, deep waters upwell along an equatorial swath around and to the west of the Galapagos Islands. Note the warm, wide currents of the Gulf Stream moving up the United States' east coast, carrying Caribbean warmth toward Newfoundland and across the Atlantic toward Western Europe. Note the warm tongue of water extending from Africa's east coast to well south of the Cape of Good Hope. MODIS was launched in December 1999 aboard NASA's Terra satellite. For more details on this and other MODIS data products, please see NASA Unveils Spectacular Suite of New Global Data Products from MODIS. Image courtesy MODIS Ocean Group, NASA GSFC, and the University of Miami

  17. MODIS Global Sea Surface Temperature

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Every day the Moderate-resolution Imaging Spectroradiometer (MODIS) measures sea surface temperature over the entire globe with high accuracy. This false-color image shows a one-month composite for May 2001. Red and yellow indicates warmer temperatures, green is an intermediate value, while blues and then purples are progressively colder values. The new MODIS sea surface temperature product will be particularly useful in studies of temperature anomalies, such as El Nino, as well as research into how air-sea interactions drive changes in weather and climate patterns. In the high resolution image, notice the amazing detail in some of the regional current patterns. For instance, notice the cold water currents that move from Antarctica northward along South America's west coast. These cold, deep waters upwell along an equatorial swath around and to the west of the Galapagos Islands. Note the warm, wide currents of the Gulf Stream moving up the United States' east coast, carrying Caribbean warmth toward Newfoundland and across the Atlantic toward Western Europe. Note the warm tongue of water extending from Africa's east coast to well south of the Cape of Good Hope. MODIS was launched in December 1999 aboard NASA's Terra satellite. For more details on this and other MODIS data products, please see NASA Unveils Spectacular Suite of New Global Data Products from MODIS. Image courtesy MODIS Ocean Group, NASA GSFC, and the University of Miami

  18. Physicochemical Studies of the Sea Surface Microlayer.

    PubMed

    Zhengbin; Liansheng; Zhijian; Jun; Haibing

    1998-08-15

    The sea surface microlayer and its thickness are theoretically analyzed. A multiple-layer model of the sea surface microlayer is proposed. Through in situ and laboratory imitation experiments using glass plate, rotating drum, screen, and funnel samplers, the relationships between pH, surface tension, the concentrations of dissolved trace metals Cu and Pb, phosphate, and particulate and sampling thicknesses are carefully investigated. The apparent sampling thickness of the sea surface microlayer is determined to be 50 +/- 10 µm, which is basically consistent with the mean thickness of the liquid boundary film in the models of gas exchange across the sea surface. Copyright 1998 Academic Press.

  19. Variability of the Arabian Sea upwelling and intensity of the oxygen minimum zone over the late Pleistocene and Holocene

    NASA Astrophysics Data System (ADS)

    Gaye, Birgit; Böll, Anna; Rixen, Tim; Emeis, Kay-Christian; Ramaswamy, Venkitasubramani

    2016-04-01

    The northern Arabian Sea is one of the main oceanic regions with a permanent low oxygen layer at intermediate water depth that results in water column denitrification. While glacial/interglacial variations in the Arabian Sea oxygen minimum zone (OMZ) are relatively well studied, little is known about the spatial and temporal extent of mid-water oxygen throughout the Holocene. We compared alkenone derived sea surface temperatures of the last 25 kyrs from a core in the northern Arabian Sea with a core from the monsoonal upwelling area off Oman. The difference between the two temperature reconstructions indicates that monsoonal upwelling occurred during warm interstadials and during the entire Holocene. δ15N curves show that denitrification also matched with monsoonal upwelling. Comparison of δ15N records from different locations in the Arabian Sea reveal a Holocene shift in the location of the core OMZ from the northwestern (early Holocene) to the northeastern Arabian Sea (late Holocene). This shift was caused by (i) spatial differences in oxygen demand, caused by changes in SW- and NE-monsoon intensities and associated productivity changes, as well as (ii) changes in mid-water ventilation facilitated by sea level rise and inflow of Persian Gulf and Red Sea Water leading and changes of ventilation by Indian Ocean Central Water .

  20. Analysis of sea level and sea surface temperature changes in the Black Sea

    NASA Astrophysics Data System (ADS)

    Betul Avsar, Nevin; Jin, Shuanggen; Kutoglu, Hakan; Erol, Bihter

    2016-07-01

    The Black Sea is a nearly closed sea with limited interaction with the Mediterranean Sea through the Turkish Straits. Measurement of sea level change will provide constraints on the water mass balance and thermal expansion of seawaters in response to climate change. In this paper, sea level changes in the Black Sea are investigated between January 1993 and December 2014 using multi-mission satellite altimetry data and sea surface temperature (SST) data. Here, the daily Maps of Sea Level Anomaly (MSLA) gridded with a 1/8°x1/8° spatial resolution from AVISO and the NOAA 1/4° daily Optimum Interpolation Sea Surface Temperature (OISST) Anomaly data set are used. The annual cycles of sea level and sea surface temperature changes reach the maximum values in November and January, respectively. The trend is 3.16±0.77 mm/yr for sea level change and -0.06±0.01°C/yr for sea surface temperature during the same 22-year period. The observed sea level rise is highly correlated with sea surface warming for the same time periods. In addition, the geographical distribution of the rates of the Black Sea level and SST changes between January 1993 and December 2014 are further analyzed, showing a good agreement in the eastern Black Sea. The rates of sea level rise and sea surface warming are larger in the eastern part than in the western part except in the northwestern Black Sea. Finally, the temporal correlation between sea level and SST time series are presented based on the Empirical Orthogonal Function (EOF) analysis.

  1. Sea Surface Salinity : Research Challenges and Opportunities

    NASA Technical Reports Server (NTRS)

    Halpern, David; Lagerloef, Gary; Font, Jordi

    2012-01-01

    Sea surface salinity (SSS) can be important in regulating sea surface temperature (SST). Two technological breakthrough satellite SSS missions, Aquarius and Soil Moisture and Ocean Salinity (SMOS), are currently producing high-quality SSS data. This paper provides an overview of the importance of SSS for weather and climate applications and describes the Aquarius and SMOS missions. The newness of adequately sampled SSS data prompted a first-time at-sea field campaign devoted to improved understanding of SSS variations.

  2. Sea Surface Salinity : Research Challenges and Opportunities

    NASA Technical Reports Server (NTRS)

    Halpern, David; Lagerloef, Gary; Font, Jordi

    2012-01-01

    Sea surface salinity (SSS) can be important in regulating sea surface temperature (SST). Two technological breakthrough satellite SSS missions, Aquarius and Soil Moisture and Ocean Salinity (SMOS), are currently producing high-quality SSS data. This paper provides an overview of the importance of SSS for weather and climate applications and describes the Aquarius and SMOS missions. The newness of adequately sampled SSS data prompted a first-time at-sea field campaign devoted to improved understanding of SSS variations.

  3. Highly variable Pliocene sea surface conditions in the Norwegian Sea

    NASA Astrophysics Data System (ADS)

    Bachem, Paul E.; Risebrobakken, Bjørg; De Schepper, Stijn; McClymont, Erin L.

    2017-09-01

    The Pliocene was a time of global warmth with small sporadic glaciations, which transitioned towards the larger-scale Pleistocene glacial-interglacial variability. Here, we present high-resolution records of sea surface temperature (SST) and ice-rafted debris (IRD) in the Norwegian Sea from 5.32 to 3.14 Ma, providing evidence that the Pliocene surface conditions of the Norwegian Sea underwent a series of transitions in response to orbital forcing and gateway changes. Average SSTs are 2 °C above the regional Holocene mean, with notable variability on millennial to orbital timescales. Both gradual changes and threshold effects are proposed for the progression of regional climate towards the Late Pliocene intensification of Northern Hemisphere glaciation. Cooling from 4.5 to 4.3 Ma may be linked to the onset of poleward flow through the Bering Strait. This cooling was further intensified by a period of cool summers due to weak obliquity forcing. A 7 °C warming of the Norwegian Sea at 4.0 Ma suggests a major increase in northward heat transport from the North Atlantic, leading to an enhanced zonal SST gradient in the Nordic Seas, which may be linked to the expansion of sea ice in the Arctic and Nordic Seas. A warm Norwegian Sea and enhanced zonal temperature gradient between 4.0 and 3.6 Ma may have been a priming factor for increased glaciation around the Nordic Seas due to enhanced evaporation and precipitation at high northern latitudes.

  4. Aquarius Observations of Sea Surface Salinity

    NASA Image and Video Library

    This visualization shows changes in global sea surface salinity, as measured by NASA’s Aquarius instrument aboard the Aquarius/SAC-D spacecraft, from December 2011 through December 2012. Red repr...

  5. Air-sea interactions in sea surface temperature frontal region

    NASA Astrophysics Data System (ADS)

    Pianezze, Joris; Redelsperger, Jean-Luc; Ardhuin, Fabrice; Reynaud, Thierry; Marié, Louis; Bouin, Marie-Noelle; Garnier, Valerie

    2015-04-01

    Representation of air-sea exchanges in coastal, regional and global models represent a challenge firstly due to the small scale of acting turbulent processes comparatively to the resolved scales of these models. Beyond this subgrid parameterization issue, a comprehensive understanding of air-sea interactions at the turbulent process scales is still lacking. Many successful efforts are dedicated to measure the energy and mass exchanges between atmosphere and ocean, including the effect of surface waves. In comparison less efforts are brought to understand the interactions between the atmospheric boundary layer and the oceanic mixing layer. In this regard, we are developing research mainly based on ideal and realistic numerical simulations which resolve very small scales (horizontal resolutions from 1 to 100 meters) in using grid nesting technics and coupled ocean-wave-atmosphere models. As a first step, the impact of marked gradients in sea surface temperatures (SST) on air-sea exchanges has been explored through realistic numerical simulations at 100m horizontal resolution. Results from simulations of a case observed during the FROMVAR experiment will be shown. The talk will mainly focus on the marked impact of SST front on the atmospheric boundary layer (stability and winds), the air-sea exchanges and surface parameters (rugosity, drag coefficient) Results will be also shown on the strong impact on the simulated atmosphere of small scale variability of SST field.

  6. Microwave Radiometric Measurement of Sea Surface Salinity.

    DTIC Science & Technology

    1984-04-01

    potential problems of polution and urban water sup- plies. Although salinity can be measured from a surface vessel, economic consider- ations advocate...Washington, DC 20350 Commander Naval Sea System Commandaa ComAinder ATTN: Mr. C. Smith, NAVSEA 63R* Nval Air Development Center "’-’. "Washington, DC...20362 ATTN: Mr. R. Bollard, Code 2062% .’* Warminster, PA 18974 • .’.Commander CNaval Sea System CommandCoimCander Headquarters Naval Air Systems

  7. Precise orbit computation and sea surface modeling

    NASA Technical Reports Server (NTRS)

    Wakker, Karel F.; Ambrosius, B. A. C.; Rummel, R.; Vermaat, E.; Deruijter, W. P. M.; Vandermade, J. W.; Zimmerman, J. T. F.

    1991-01-01

    The research project described below is part of a long-term program at Delft University of Technology aiming at the application of European Remote Sensing satellite (ERS-1) and TOPEX/POSEIDON altimeter measurements for geophysical purposes. This program started in 1980 with the processing of Seasat laser range and altimeter height measurements and concentrates today on the analysis of Geosat altimeter data. The objectives of the TOPEX/POSEIDON research project are the tracking of the satellite by the Dutch mobile laser tracking system MTLRS-2, the computation of precise TOPEX/POSEIDON orbits, the analysis of the spatial and temporal distribution of the orbit errors, the improvement of ERS-1 orbits through the information obtained from the altimeter crossover difference residuals for crossing ERS-1 and TOPEX/POSEIDON tracks, the combination of ERS-1 and TOPEX/POSEIDON altimeter data into a single high-precision data set, and the application of this data set to model the sea surface. The latter application will focus on the determination of detailed regional mean sea surfaces, sea surface variability, ocean topography, and ocean currents in the North Atlantic, the North Sea, the seas around Indonesia, the West Pacific, and the oceans around South Africa.

  8. Precise orbit computation and sea surface modeling

    NASA Technical Reports Server (NTRS)

    Wakker, Karel F.; Ambrosius, B. A. C.; Rummel, R.; Vermaat, E.; Deruijter, W. P. M.; Vandermade, J. W.; Zimmerman, J. T. F.

    1991-01-01

    The research project described below is part of a long-term program at Delft University of Technology aiming at the application of European Remote Sensing satellite (ERS-1) and TOPEX/POSEIDON altimeter measurements for geophysical purposes. This program started in 1980 with the processing of Seasat laser range and altimeter height measurements and concentrates today on the analysis of Geosat altimeter data. The objectives of the TOPEX/POSEIDON research project are the tracking of the satellite by the Dutch mobile laser tracking system MTLRS-2, the computation of precise TOPEX/POSEIDON orbits, the analysis of the spatial and temporal distribution of the orbit errors, the improvement of ERS-1 orbits through the information obtained from the altimeter crossover difference residuals for crossing ERS-1 and TOPEX/POSEIDON tracks, the combination of ERS-1 and TOPEX/POSEIDON altimeter data into a single high-precision data set, and the application of this data set to model the sea surface. The latter application will focus on the determination of detailed regional mean sea surfaces, sea surface variability, ocean topography, and ocean currents in the North Atlantic, the North Sea, the seas around Indonesia, the West Pacific, and the oceans around South Africa.

  9. Sea-surface salinity: the missing measurement

    NASA Astrophysics Data System (ADS)

    Stocker, Erich F.; Koblinsky, Chester

    2003-04-01

    Even the youngest child knows that the sea is salty. Yet, routine, global information about the degree of saltiness and the distribution of the salinity is not available. Indeed, the sea surface salinity measurement is a key missing measurement in global change research. Salinity influences circulation and links the ocean to global change and the water-cycle. Space-based remote sensing of important global change ocean parameters such as sea-surface temperature and water-cycle parameters such as precipitation have been available to the research community but a space-based global sensing of salinity has been missing. In July 2002, the National Aeronautical and Space Administration (NASA) announced that the Aquarius mission, focused on the global measurement of sea surface salinity, is one of the missions approved under its ESSP-3 program. Aquarius will begin a risk-reduction phase during 2003. Aquarius will carry a multi-beam 1.4 GHz (L-band) radiometer used for retrieving salinity. It also will carry a 1.2 GHz (L-band) scatterometer used for measuring surface roughness. Aquarius is tentatively scheduled for a 2006 launch into an 8-day Sun-synchronous orbit. Aquarius key science data product will be a monthly, global surface salinity map at 100 km resolution with an accuracy of 0.2 practical salinity units. Aquarius will have a 3 year operational period. Among other things, global salinity data will permit estimates of sea surface density, or buoyancy, that drives the ocean's three-dimensional circulation.

  10. Surface Drifter Study - Beaufort Sea, Alaska.

    DTIC Science & Technology

    1982-07-01

    34._ MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A I. REPORT NO: CG- C-33-82 C SURFACE DRIFTER STUDY - BEAUFORT SEA, ALASKA Ivan M. Lissauer ...6.Pefo~rmenq O, latzm, n Code _. Performing Orqanozat.on Report No. 7. AuANr’s) Ivan M. Lissauer 1 R Matthpwq CGRRDC 14/82 9. Pdfom4ing Oregaization...Springfield, Virginia. 63p. Hufford, G.L., I.M. Lissauer and J.P. Welsh, 1976. Movement of spilled oil over the Beaufort Sea Shelf - A forecast. United

  11. Satellite monitoring of sea surface pollution

    NASA Technical Reports Server (NTRS)

    Fielder, G.; Telfer, D. J. (Principal Investigator)

    1979-01-01

    The author has identified the following significant results. Image processing techniques developed are well adapted to the exploration and isolation of local areas which exhibit small temperature differences between themselves and their surroundings. In the worst case of imagery of small areal extent of sea surface having no coastal boundary in the area, there is yet no method of distinguishing unambiguously an oil spill from fog, cloud, the effect produced by shallow sediments, or the effects of naturally occuring thermal fronts. In the case of uniform slicks of liquid North Sea oil in still air, laboratory simulation experiments show that, for oil thicknesses in excess of 1 or 2 mm, there is, under equilibrium conditions, little dependence of oil surface temperature on the thickness of the oil layer. The surface temperature of oil is consistently higher than that of water, the difference being about 1 K at low values of relative humidity, but tending to increase as the relative humidity increases.

  12. Late Pliocene Sea Surface Temperature contrast in the Benguela upwelling as recorded by foraminiferal Mg/Ca and alkenones

    NASA Astrophysics Data System (ADS)

    Leduc, G.; Garbe-Schoenberg, C.; Regenberg, M.; Schneider, R. R.

    2011-12-01

    Alkenone-based sea surface temperature (SST) in the Benguela region reveal quite warm and stable conditions between ~3.0 and 2.0 Ma, coinciding with a period of very high diatom production as revealed by mass accumulation rates (MAR) of biogenic opal (Marlow et al., 2000, Science; Etourneau et al., 2009, Geology). Such a pattern is difficult to believe with the general perception that high diatom productivity results from strong coastal upwelling associated with pronounced Surface Ocean cooling. Therefore we assessed whether different paleothermometers from the same sedimentary archive (i.e. ODP site 1082) provide different results for the Namibian upwelling system by performing a comparison between alkenone-derived temperatures and those from the planktonic foraminifera Globigerinoides bulloides, a species known to proliferate in upwelling regions. We used laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) for multiple in situ determination of Mg/Ca in single tests of G. bulloides. These measurements allow monitoring of contaminant phases linked to Mg-rich clays (monitored by Al/Ca) and Mn-rich foraminiferal tests, which contain substantial high Mg (monitored by Mn/Ca) (Pena et al., 2005, G-cubed). Moreover, using LA-ICP-MS measurements for Mg/Ca ratios on single specimens allows estimating the range of seasonal or vertical temperature variability by considering the intra-sample variance in the SST estimated from different specimens and/or different chambers within the same specimen. When compared to the Pliocene alkenone SST record, the Mg/Ca-ratios imply SSTs colder by ~10°C. A similar contrast in SST estimates between these two proxies was reported for the last 20 ka in the same region (Farmer et al., 2005, Paleoceanography). Such discrepancy can be reconciled by assuming that the two SST proxies are either strongly skewed towards warm (non-upwelling) and cold (upwelling) conditions for alkenones and Mg/Ca SST, respectively, or by the

  13. Biogeochemical patchiness at the sea surface

    NASA Astrophysics Data System (ADS)

    Mahadevan, A.; Campbell, J. W.

    2002-10-01

    The surface distributions of many tracers in the ocean are highly correlated in time and space on meso (~100 km) and smaller scales (Figure 1). However, their characteristic scales of variability differ. Some variables like sea surface chlorophyll (Chl) are very fine-scaled or patchy, while others like sea surface temperature (SST) are not. We characterize the patchiness of a distribution quantitatively by the dependence of the variance V on the length scale L as V ~ Lp; smaller p corresponds to greater patchiness. Using scaling and a numerical model we show that patchiness, p, varies with the characteristic response time τ of the tracer to processes that alter its concentration in the upper ocean as p ~ log τ. This suggests that sea surface Chl is more patchy (has smaller p) than SST at mesoscales because the characteristic time scale of phytoplankton growth in response to the availability of nutrients is less than that for the equilibration of temperature in response to heat fluxes. Similarly, sea surface dissolved oxygen (O2) exhibits more fine-scaled variability than total dissolved inorganic carbon (TCO2) because O2 equilibrates with the atmosphere much more rapidly than TCO2. Tracers that are more patchy require higher resolution to model and sample; the sampling or model grid spacing required scales as exp(-1/log τ). The quantitative relationship between p and τ can be used to relate various biogeochemical distributions, particularly to those that are remotely sensed, and to deduce biogeochemical response times of various tracers or plankton species from the characteristics of their distributions in space or time.

  14. Surface roughness of Titan's hydrocarbon seas

    NASA Astrophysics Data System (ADS)

    Grima, Cyril; Mastrogiuseppe, Marco; Hayes, Alexander G.; Wall, Stephen D.; Lorenz, Ralph D.; Hofgartner, Jason D.; Stiles, Bryan; Elachi, Charles; Cassini Radar Team

    2017-09-01

    We derive fields of solutions for the surface properties (roughness and permittivity) of the liquid hydrocarbon bodies Ligeia, Kraken and Punga Mare on Titan by applying the Radar Statistical Reconnaissance (RSR) technique to the Cassini RADAR observations in altimeter mode during the northern early summer. At the time of observation, Kraken and Ligeia were confined within root-mean-square heights of 1.5-2.5 mm (similar to wave heights of 6-10 mm), correlation lengths of 45-115 mm, and corresponding to effective slopes of 1.1-2.4°. The latter extends up to 3.6-4.9° if the rougher Punga is included. The lower bound of those ranges has to be considered if the composition of the seas is methane-dominant. These are the first measurements to simultaneously constrain both the vertical and horizontal roughness parameters of Titan's seas from the same observations. Our results are representative for the global properties of the sea-scaled portion of the studied tracks and suggest that quiet surfaces are a dominant trend over the seas during the northern early summer. Fields of rougher textures, if existent, might develop mainly over local patches and/or might not be sustained over significant periods of time.

  15. [Multiple scattering of visible and infrared light by sea fog over wind driving rough sea surface].

    PubMed

    Sun, Xian-Ming; Wang, Hai-Hua; Lei, Cheng-Xin; Shen, Jin

    2013-08-01

    The present paper is concerned with computing the multiple scattering characteristics of a sea fog-sea surface couple system within this context. The single scattering characteristics of sea fog were studied by Mie theory, and the multiple scattering of sunlight by single sea fog layer was studied by radiative transfer theory. The reflection function of a statistically rough ocean surface was obtained using the standard Kirchhoff formulation, with shadowing effects taken into account. The reflection properties of the combined sea fog and ocean surface were obtained employing the adding method, and the results indicated that the reflected light intensity of sea fog increased with the sea background.

  16. Late Holocene SST and primary productivity variations in the northeastern Arabian Sea as a recorder for winter monsoon variability

    NASA Astrophysics Data System (ADS)

    Böll, Anna; Gaye, Birgit; Lückge, Andreas

    2014-05-01

    Variability in the oceanic environment of the Arabian Sea region is strongly influenced by the seasonal monsoon cycle of alternating wind directions. Strong south-westerly winds during the summer monsoon induce upwelling of nutrient rich waters along the coast off Somalia, Oman and southwest India, which result in high rates of primary production. In the northeastern Arabian Sea off Pakistan on the other hand, primary production and sea surface temperatures are linked to northeast monsoonal winds that cool the sea surface and drive convective mixing and high surface ocean productivity during the winter season. In this study, we analyzed alkenone-derived sea surface temperature (SST) variations and proxies of primary productivity (organic carbon and δ15N) in a well-laminated sediment core from the Pakistan continental margin to establish the first high-resolution record of winter monsoon variability for the late Holocene. Over the last 2400 years reconstructed SST in the northeastern Arabian Sea decreased whereas productivity increased, imaging a long-term trend of northeast monsoon strengthening in response to insolation-induced southward migration of the Intertropical Convergence Zone. The comparison of our winter monsoon record with records of summer monsoon intensity suggests that summer and winter monsoon strength was essentially anti-correlated over the late Holocene throughout the Asian monsoon system. In addition, SST variations recorded off Pakistan match very well with Northern Hemisphere temperature records supporting the growing body of evidence that Asian climate is linked to Northern Hemisphere climate change. It reveals a consistent pattern of increased summer monsoon activity in the northeastern Arabian Sea during northern hemispheric warm periods (Medieval Warm Period, Roman Warm Period) and strengthened winter monsoon activity during hemispheric colder periods (Little Ice Age).

  17. Surface drifters measuring sea water salinity

    NASA Astrophysics Data System (ADS)

    Reverdin, Gilles; Centurioni, Luca; Sena-Martins, Meike; Garcia-Ladona, Emilio; Ballabrera, Joaquim; Salvador, Joaquin; Sommer, Anna; Boutin, Jacqueline

    2017-04-01

    Surface drifters have been introduced in the early 1990s by P.P. Niiler to measure the salinity of the near-surface water as well as its temperature. First, they were deployed to document large scale advection of surface salinity fronts, such as during TOGA-COARE (1991). More recently, salinity drifter data were used for three purposes: 1 - provide in situ data coverage for validation of sea surface (SSS) products, such as provided by band-L microwave radiometry from satellite missions, Aquarius, SMOS, SMAP 2 - provide data for better understanding upper ocean response to air-sea interactions, such as during rainfall, or near-surface warming during low wind events 3 - provide estimates of surface advection of salinity features and their contribution to ocean freshwater budget We will review the drifters that have been deployed and where data were collected, the challenges encountered in correcting the data, ongoing plans and future developments. A comparison of salinity data of more than 60 SVP drifters to SMOS and Aquarius SSS fields in the North Atlantic subtropical gyre illustrates the potential for validating products from satellite missions over more than a year (SPURS-1 2012-2013 experiment). Data collocated during tropical rain events illustrate a short-term response of near-surface salinity and temperature that can be quantified, although we lack precise collocated wind data. It is rather consistent with independently-derived surface salinity response to rain based on SMOS salinity retrievals, and model estimations. An extreme case of close to 10 psu near-surface salinity drop due to rainfall is presented. Recent salinity drifter deployments in the rainy region of the eastern Pacific ITCZ (SPURS-2 2016 experiment) illustrate the small time and space scale variability associated with freshwater lenses in this region. Some data from a new tag (surpact) will be presented with simultaneous estimates of sea state, rain rate, temperature and salinity during rain

  18. Air-sea fluxes and surface layer turbulence around a sea surface temperature front

    NASA Technical Reports Server (NTRS)

    Friehe, C. A.; Shaw, W. J.; Davidson, K. L.; Rogers, D. P.; Large, W. G.; Stage, S. A.; Crescenti, G. H.; Khalsa, S. J. S.; Greenhut, G. K.; Li, F.

    1991-01-01

    The observed effects of sharp changes in sea surface temperature (SST) on the air-sea fluxes, surface roughness, and the turbulence structure in the surface layer and the marine atmospheric boundary layer are discussed. In situ flux and turbulence observations were carried out from three aircraft and two ships within the FASINEX framework. Three other aircraft used remote sensors to measure waves, microwave backscatter, and lidar signatures of cloud tops. Descriptions of the techniques, intercomparison of aircraft and ship flux data, and use of different methods for analyzing the fluxes from the aircraft data are described. Changing synoptic weather on three successive days yielded cases of wind direction both approximately parallel and perpendicular to a surface temperature front. For the wind perpendicular to the front, wind over both cold-to-warm and warm-to-cold surface temperatures occurred. Model results consistent with the observations suggest that an internal boundary layer forms at the SST.

  19. A Critical Summary of Sea Surface Heat Exchange Equations.

    DTIC Science & Technology

    SOLAR RADIATION, SEA WATER), (*SEA WATER, HEAT TRANSFER), (* HEAT TRANSFER, MATHEMATICAL ANALYSIS), SURFACE PROPERTIES, THERMAL PROPERTIES, ALBEDO... HEAT FLUX, EVAPORATION, CONVECTION(ATMOSPHERIC), BOUNDARY LAYER, CLOUD COVER, WIND, VELOCITY.

  20. Plastics on the Sargasso sea surface.

    PubMed

    Carpenter, E J; Smith, K L

    1972-03-17

    Plastic particles, in concentrations averaging 3500 pieces and 290 grams per square kilometer, are widespread in the western Sargasso Sea. Pieces are brittle, apparently due to the weathering of the plasticizers, and many are in a pellet shape about 0.25 to 0.5 centimeters in diameter. The particles are surfaces for the attachment of diatoms and hydroids. Increasing production of plastics, combined with present waste-disposal practices, will undoubtedly lead to increases in the concentration of these particles. Plastics could be a source of some of the polychlorinated biphenyls recently observed in oceanic organisms.

  1. Sea Surface Temperature and Vegetation Index

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This is a composite MODIS image showing the 'green wave' of spring in North America and sea surface temperature in the ocean, collected over an 8-day period during the first week in April 2000. On land, the darker green pixels show where the most green foliage is being produced due to photosynthetic activity. Yellows on land show where there is little or no productivity and red is a boundary zone. In the ocean, orange and yellows show warmer waters and blues show colder values.

  2. Sea Surface Temperature and Vegetation Index

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This is a composite MODIS image showing the 'green wave' of spring in North America and sea surface temperature in the ocean, collected over an 8-day period during the first week in April 2000. On land, the darker green pixels show where the most green foliage is being produced due to photosynthetic activity. Yellows on land show where there is little or no productivity and red is a boundary zone. In the ocean, orange and yellows show warmer waters and blues show colder values.

  3. A global monthly sea surface temperature climatology

    NASA Technical Reports Server (NTRS)

    Shea, Dennis J.; Trenberth, Kevin E.; Reynolds, Richard W.

    1992-01-01

    The paper presents a new global 2 deg x 2 deg monthly sea surface temperature (SST) climatology, referred here to as the Shea-Trenberth-Reynolds (STR) climatology, which was derived by modifying a 1950-1979-based SST climatology from the Climate Analysis Center (CAC), by using data from the Comprehensive Ocean-Atmosphere Data Set to improve the SST estimates in the regions of the Kuroshio and the Gulf Stream. A comparison of the STR climatology with the Alexander and Mobley SST climatology showed that the STR climatology is warmer in the Northern Hemisphere, and colder poleward of 45 deg S.

  4. A global monthly sea surface temperature climatology

    NASA Technical Reports Server (NTRS)

    Shea, Dennis J.; Trenberth, Kevin E.; Reynolds, Richard W.

    1992-01-01

    The paper presents a new global 2 deg x 2 deg monthly sea surface temperature (SST) climatology, referred here to as the Shea-Trenberth-Reynolds (STR) climatology, which was derived by modifying a 1950-1979-based SST climatology from the Climate Analysis Center (CAC), by using data from the Comprehensive Ocean-Atmosphere Data Set to improve the SST estimates in the regions of the Kuroshio and the Gulf Stream. A comparison of the STR climatology with the Alexander and Mobley SST climatology showed that the STR climatology is warmer in the Northern Hemisphere, and colder poleward of 45 deg S.

  5. Sea Surface Temperature from EUMETSAT Including Sentinel-3 SLSTR

    NASA Astrophysics Data System (ADS)

    O'Carroll, Anne; Bonekamp, Hans; Montagner, Francois; Santacesaria, Vincenzo; Tomazic, Igor

    2015-12-01

    The paper gives an overview of sea surface temperature (SST) activities at EUMETSAT including information on SST planned from the Sea and Land Surface Temperature Radiometer (SLSTR). Operational oceanography activities within the Marine Applications group at EUMETSAT continue with a focus on SST, sea surface winds, sea-ice products, radiative fluxes, significant wave height and sea surface topography. These are achieved through the mandatory, optional and third-party programmes, and for some products with the EUMETSAT Ocean and Sea-Ice Satellite Application Facility (OSI SAF). Progress towards products from sea-ice surface temperature, ocean colour products, turbidity and aerosol optical depth over water continue. Information on oceanography products from EUMETSAT can be found through the product navigator (http://navigator.eumetsat.int). EUMETSAT have been collaborating with ESA for a number of years on the development of SST for SLSTR.

  6. Modern average global sea-surface temperature

    USGS Publications Warehouse

    Schweitzer, Peter N.

    1993-01-01

    The data contained in this data set are derived from the NOAA Advanced Very High Resolution Radiometer Multichannel Sea Surface Temperature data (AVHRR MCSST), which are obtainable from the Distributed Active Archive Center at the Jet Propulsion Laboratory (JPL) in Pasadena, Calif. The JPL tapes contain weekly images of SST from October 1981 through December 1990 in nine regions of the world ocean: North Atlantic, Eastern North Atlantic, South Atlantic, Agulhas, Indian, Southeast Pacific, Southwest Pacific, Northeast Pacific, and Northwest Pacific. This data set represents the results of calculations carried out on the NOAA data and also contains the source code of the programs that made the calculations. The objective was to derive the average sea-surface temperature of each month and week throughout the whole 10-year series, meaning, for example, that data from January of each year would be averaged together. The result is 12 monthly and 52 weekly images for each of the oceanic regions. Averaging the images in this way tends to reduce the number of grid cells that lack valid data and to suppress interannual variability.

  7. PRISM3 Pliocene Sea surface Temperature Reconstruction

    NASA Astrophysics Data System (ADS)

    Dowsett, H.; Robinson, M.; Foley, K.; Caballero, R.

    2008-12-01

    The Pliocene Research, Interpretation and Synoptic Mapping (PRISM) Project provides a conceptual model and synoptic view of the earth during a considerably warmer than modern (2-3°C warmer global mean annual temperature) interval (mid-Piacenzian Age, Pliocene Epoch; ~3.3 to 3.0 Ma) through reconstruction of sea-surface temperature (SST) and other paleoenvironmental parameters. The PRISM3 SST fields include new equatorial Pacific and subpolar - polar North Atlantic components based upon multiproxy (faunal, alkenone and Mg/Ca) temperature analyses from new sites. These data are presented in 12 interpolated global fields with 2° spatial resolution representing monthly SST estimates. Results show a reduced longitudinal temperature gradient across the equatorial Pacific and extension of warm North Atlantic surface conditions into the eastern regions of the Arctic Ocean near Spitzbergen. These data are part of the PRISM3 paleoenvironmental reconstruction designed in part to provide climate modeling groups with new SST and alternative land cover reconstructions, 3-dimensional deep ocean temperature, topography and sea level. The PRISM3 reconstruction is the primary data source for the new Pliocene Climate Model Intercomparison Project (PlioMIP).

  8. Statistical Seasonal Sea Surface based Prediction Model

    NASA Astrophysics Data System (ADS)

    Suarez, Roberto; Rodriguez-Fonseca, Belen; Diouf, Ibrahima

    2014-05-01

    The interannual variability of the sea surface temperature (SST) plays a key role in the strongly seasonal rainfall regime on the West African region. The predictability of the seasonal cycle of rainfall is a field widely discussed by the scientific community, with results that fail to be satisfactory due to the difficulty of dynamical models to reproduce the behavior of the Inter Tropical Convergence Zone (ITCZ). To tackle this problem, a statistical model based on oceanic predictors has been developed at the Universidad Complutense of Madrid (UCM) with the aim to complement and enhance the predictability of the West African Monsoon (WAM) as an alternative to the coupled models. The model, called S4CAST (SST-based Statistical Seasonal Forecast) is based on discriminant analysis techniques, specifically the Maximum Covariance Analysis (MCA) and Canonical Correlation Analysis (CCA). Beyond the application of the model to the prediciton of rainfall in West Africa, its use extends to a range of different oceanic, atmospheric and helth related parameters influenced by the temperature of the sea surface as a defining factor of variability.

  9. Interferometric measurements of sea surface temperature and emissivity

    NASA Astrophysics Data System (ADS)

    Fiedler, Lars; Bakan, Stephan

    1997-09-01

    A new multispectral method to derive sea surface emissivity and temperature by using interferometer measurements of the near surface upwelling radiation in the infrared window region is presented. As reflected sky radiation adds substantial spectral variability to the otherwise spectrally smooth surface radiation, an appropriate estimate of surface emissivity allows the measured upwelling radiation to be corrected for the reflected sky component. The remaining radiation, together with the estimated surface emissivity, yields an estimate of the sea surface temperature. Measurements from an ocean pier in the Baltic Sea in October 1995 indicate an accuracy of about 0.1 K for the sea surface temperature thus derived. A strong sea surface skin effect of about 0.6 K is found in that particular case.

  10. Sea surface wind stress in stratified atmospheric flow

    SciTech Connect

    Myrhaug, D.; Slaattelid, O.H.

    1996-12-31

    The paper presents the wind shear stress on the sea surface as well as the velocity profile in stably stratified atmospheric boundary layer flow over wind waves by using similarity theory. For a given geostrophic velocity, Coriolis parameter, spectral peak period and stratification parameter the sea surface shear stress is determined. Further, the direction of the sea surface shear stress and the velocity profile are given. Parameterizations of the results are also presented. Finally, the engineering relevance of the results is discussed.

  11. Estimating the Ocean Flow Field From Combined Sea Surface Temperature and Sea Surface Height Data

    NASA Technical Reports Server (NTRS)

    Stammer, Detlef

    2000-01-01

    The primary focus of this project was on the estimation of the three-dimensional, absolute and time-evolving general circulation of the global ocean from a combined analysis of remotely sensed fields of sea surface temperature (SST) and sea surface height (SSH). The synthesis of those two fields was performed with other relevant physical data, and appropriate dynamical ocean models with emphasis on constraining ocean general circulation models by a combination of both SST and SSH data. This effort is directly related to an attempt to describe the mechanisms which give rise to observed SST and its variability on seasonal and inter-annual timescales, its relation to ocean-atmosphere interaction, and the dynamical coupling between the ocean mixed layer and the deep interior ocean. This is one of the fundamental climate related questions being pursued currently under the CLIVAR Program. Because of the strong turbulent mixing associated with atmospheric fluxes of momentum, heat and freshwater through the sea surface, the ocean forms a shallow surface boundary layer, the mixed layer which is largely homogeneous in its constituents. The relation between the temperature of the remotely sensed "skin" and the bulk of the mixed layer is largely understood (Reynolds and Smith 1994; Emery et al., 1995). However, because the surface mixed layer is effectively decoupled from the underlying ocean dynamics, an interpretation of satellite SST observations in isolation and in direct use for dynamical studies is very difficult. As a result, the impact of SST data on the understanding of ocean variability.

  12. Shelf sea current profile measurements from the sea surface to the sea bed in autumn

    SciTech Connect

    Howarth, M.J.; Glorioso, P.D.

    1995-09-01

    Current profile measurements were obtained during the autumnal breakdown of stratification at a site in the northern North Sea where the tidal currents were weak and the water depth moderate (120 m). During the two month deployment period a succession of storms passed over the site, including one extreme event. An ADCP in a sea bed frame, a conventional current meter string and some near surface current meters were amongst the instruments deployed. The ADCP data were of high quality although the frame moved during the severest storm because of wave effects at the sea bed. Its depth coverage was from 14 to 94 m above the sea bed in 8 m cells. Comparison with the current meter string showed that the ADCP`s speeds were 20% too high (reason unknown), and that its directions were rotated by 7{degree} (perhaps due to the arrangement of the bottom frame). The value of the ADCP data at tidal, inertial and low frequencies is demonstrated and of the top cell as a reference point for the estimation of near surface shear, which was confined at most to the top 25 m. Wind-driven currents measured at 2 m depth were 0.75% of the wind speed and in a direction 25{degree} to the right of the wind.

  13. Satellite Sensed Skin Sea Surface Temperature

    NASA Technical Reports Server (NTRS)

    Donlon, Craig

    1997-01-01

    Quantitative predictions of spatial and temporal changes the global climate rely heavily on the use of computer models. Unfortunately, such models cannot provide the basis for climate prediction because key physical processes are inadequately treated. Consequently, fine tuning procedures are often used to optimize the fit between model output and observational data and the validation of climate models using observations is essential if model based predictions of climate change are to be treated with any degree of confidence. Satellite Sea Surface Temperature (SST) observations provide high spatial and temporal resolution data which is extremely well suited to the initialization, definition of boundary conditions and, validation of climate models. In the case of coupled ocean-atmosphere models, the SST (or more correctly the 'Skin' SST (SSST)) is a fundamental diagnostic variable to consider in the validation process. Daily global SST maps derived from satellite sensors also provide adequate data for the detection of global patterns of change which, unlike any other SST data set, repeatedly extend into the southern hemisphere extra-tropical regions. Such data are essential to the success of the spatial 'fingerprint' technique, which seeks to establish a north-south asymmetry where warming is suppressed in the high latitude Southern Ocean. Some estimates suggest that there is a greater than 80% chance of directly detecting significant change (97.5 % confidence level) after 10-12 years of consistent global observations of mean sea surface temperature. However, these latter statements should be qualified with the assumption that a negligible drift in the observing system exists and that biases between individual instruments required to derive a long term data set are small. Given that current estimates for the magnitude of global warming of 0.015 K yr(sup -1) - 0.025 K yr(sup -1), satellite SST data sets need to be both accurate and stable if such a warming trend is to

  14. Satellite-derived sea surface temperature: Introduction

    NASA Technical Reports Server (NTRS)

    Njoku, E. G.

    1983-01-01

    Satellites now play an increasing role in systematic monitoring of the global oceans. Measurements of sea surface temperature (SST) are of primary importance in understanding heat storage and transport within the ocean and cross the ocean-atmosphere boundary. In some regions, local changes in SST of only 1 to 2 C have major effects on global climate and weather patterns. The satellite measurements provide a data base complementary to the (sometimes) accurate but sparsely-distributed point measurements available from ships and buoys. The demands placed on satellite sensors are stringent. Accuracies of better than 1 C are required and are often desired to a few tenths of a degree. Furthermore, measurement accuracies must be stable spatially and temporally in order for satellite data to be used with confidence in models of air-sea interaction and climate. There now exists a need to evaluate objectively the performance of the latest generation of sensors under a sufficient variety of environmental conditions to indicate present accuracies, deficiencies, and potential for improvement.

  15. Middle Pliocene sea surface temperature variability

    USGS Publications Warehouse

    Dowsett, H.J.; Chandler, M.A.; Cronin, T. M.; Dwyer, G.S.

    2005-01-01

    Estimates of sea surface temperature (SST) based upon foraminifer, diatom, and ostracod assemblages from ocean cores reveal a warm phase of the Pliocene between about 3.3 and 3.0 Ma. Pollen records and plant megafossils, although not as well dated, show evidence for a warmer climate at about the same time. Increased greenhouse forcing and altered ocean heat transport are the leading candidates for the underlying cause of Pliocene global warmth. Despite being a period of global warmth, this interval encompasses considerable variability. Two new SST reconstructions are presented that are designed to provide a climatological error bar for warm peak phases of the Pliocene and to document the spatial distribution and magnitude of SST variability within the mid-Pliocene warm period. These data suggest long-term stability of low-latitude SST and document greater variability in regions of maximum warming. Copyright 2005 by the American Geophysical Union.

  16. Surface current observatons--Beaufort Sea, 1972

    USGS Publications Warehouse

    Barnes, Peter; Garlow, Richard

    1975-01-01

    Sediment transport via water and ice in the Beaufort Sea off northern Alaska is related to the movement of the surficial waters. As development proceeds along the north slope of alaska, a knowledge of the potential drift trajectories of water, ice, sediment and pollutants will be needed. In an attempt to better define the probable paths and rates of transport, 4200 surface drift cards were dropped during the U.S. Coast Guard WEBSEC cruise of August and September, 1972. The results of this release are the subject of this report. Because the data presented here will be used primarily by those interested in solving problems of transport, the emphasis has been placed on data presentation rather than a detailed analysis of the circulation. (Sinha-OEIS)

  17. Recent advance in Mean Sea Surface estimates

    NASA Astrophysics Data System (ADS)

    Pujol, M. I.; Gerald, D.; Claire, D.; Raynal, M.; Faugere, Y.; Picot, N.; Guillot, A.

    2016-12-01

    Gridded Mean Sea Surface (MSS) estimate is an important issue for precise SLA computation along geodetic orbits. Previous studies emphasized that the error from MSS models older than Jason-1 GM was substantial: on average more than 10 to 15% of the SLA variance for wavelengths ranging from 30 to 150 km. Other MSS have been released this last 2 years, and they use geodetic missions such as CryoSat-2 and Jason-1 GM which strongly contribute to improve their resolution and accuracy.We evaluate in this paper the improvements of the recent MSS. This study, mainly based on spectral approach allows us to quantify the errors at various wavelengths. The use of new missions (e.g. SARAL-DP/AltiKa; Sentinel-3A) with low instrumental noise measurement levels (Ka, SAR) opens new perspectives to understand the MSS errors and improve MSS estimate for wavelengths lower than 100km.

  18. Sea surface temperatures from VAS MSI data

    NASA Technical Reports Server (NTRS)

    Bates, J. J.

    1984-01-01

    A procedure is developed for estimating sea surface temperatures from multispectral image data acquired from the VISSR atmospheric sounder on the geostationary GOES satellites. Theoretical regression equations for two and three infrared window channels are empirically tuned using clear field of view satellite radiances matched with reports of SST from NOAA fixed environmental buoys. The empirical regression equations are then used to produce daily regional analyses of SST. Monthly mean SST's for the western North Atlantic and the eastern equatorial Pacific during March and July 1982 were produced for use in the SST Intercomparison Workshop Series. Workshop results showed VAS SST's have a scatter of 0.8-1.0 C and a slight warm bias with respect to the other measurements of SST. The VAS SST's show no discernible bias in the region of El Chichon volcanic aerosol cloud.

  19. A multispectral method of determining sea surface temperatures

    NASA Technical Reports Server (NTRS)

    Shenk, W. E.

    1972-01-01

    A multispectral method for determining sea surface temperatures is discussed. The specifications of the equipment and the atmospheric conditions required for successful multispectral data acquisition are described. Examples of data obtained in the North Atlantic Ocean are presented. The differences between the actual sea surface temperatures and the equivalent blackbody temperatures as determined by a radiometer are plotted.

  20. Spectral sea surface reflectance of skylight.

    PubMed

    Zhang, Xiaodong; He, Shuangyan; Shabani, Afshin; Zhai, Peng-Wang; Du, Keping

    2017-02-20

    In examining the dependence of the sea surface reflectance of skylight ρs on sky conditions, wind speed, solar zenith angle, and viewing geometry, Mobley [Appl. Opt.38, 7442 (1999).10.1364/AO.38.007442] assumed ρs is independent of wavelength. Lee et al. [Opt. Express18, 26313 (2010).10.1364/OE.18.026313] showed experimentally that ρs does vary spectrally due to the spectral difference of sky radiance coming from different directions, which was ignored in Mobley's study. We simulated ρs from 350 nm to 1000 nm by explicitly accounting for spectral variations of skylight distribution and Fresnel reflectance. Furthermore, we separated sun glint from sky glint because of significant differences in magnitude, spectrum and polarization state between direct sun light and skylight light. The results confirm that spectral variation of ρs(λ) mainly arises from the spectral distribution of skylight and would vary from slightly blueish due to normal dispersion of the refractive index of water, to neutral and then to reddish with increasing wind speeds and decreasing solar zenith angles. Polarization moderately increases sky glint by 8 - 20% at 400 nm but only by 0 - 10% at 1000 nm. Sun glint is inherently reddish and becomes significant (>10% of sky glint) when the sun is at the zenith with moderate winds or when the sea is roughened (wind speeds > 10 m s-1) with solar zenith angles < 20°. We recommend a two-step procedure by first correcting the glint due to direct sun light, which is unpolarized, followed by removing the glint due to diffused and polarized skylight. The simulated ρs(λ) as a function of wind speeds, sun angles and aerosol concentrations for currently recommended sensor-sun geometry, i.e., zenith angle = 40° and azimuthal angle relative to the sun = 45°, is available upon request.

  1. Surface exchange between the Weddell and Scotia Seas

    NASA Astrophysics Data System (ADS)

    Thompson, Andrew F.; Youngs, Madeleine K.

    2013-11-01

    Within Drake Passage, the southern flank of the Antarctic Circumpolar Current (ACC) hosts the ventilation of deep water, the injection of Antarctic shelf waters and interactions between westward and eastward boundary currents. This exchange is explored through the trajectories of forty surface drifters released in January 2012 in the northwestern Weddell Sea. The drifters detail Lagrangian transport pathways between the eastern Antarctic Peninsula and sites of elevated chlorophyll in the Scotia Sea. ACC frontal currents, in particular the Southern ACC Front, act as dynamical transport barriers to the drifters and influence surface chlorophyll distributions, indicating that ACC fronts partition Weddell source waters in the Scotia Sea. Interannual fluctuations in surface chlorophyll in the south Scotia Sea and the northern Weddell Sea covary. This suggests that Scotia Sea ecosystem dynamics are linked to water properties injected from the tip of the Antarctic Peninsula and respond to Weddell Gyre circulation changes.

  2. Satellite monitoring of sea surface pollution. [North and Irish Seas

    NASA Technical Reports Server (NTRS)

    Fielder, G.; Hall, T. S. (Principal Investigator); Telfer, D. J.; Wilson, L.; Fryer, R. J.

    1980-01-01

    Thermal IR data from NASA's Heat Capacity Mapping Mission were used in a study of the feasibility of detecting oil spills in the seas around the UK. The period of observation covered the years 1978/9, in which there were no major spills in the area. A video processor capable of generating false color renderings of any satellite image from eight density levels was used in the synoptic search for spills. Other laboratory equipment, and associated analyses, were used to study the thermal behavior of oil spills on water. Oil spills may appear to be warmer or cooler that the surrounding sea, depending on numerous factors.

  3. Estimating the Ocean Flow Field from Combined Sea Surface Temperature and Sea Surface Height Data

    NASA Technical Reports Server (NTRS)

    Stammer, Detlef; Lindstrom, Eric (Technical Monitor)

    2002-01-01

    This project was part of a previous grant at MIT that was moved over to the Scripps Institution of Oceanography (SIO) together with the principal investigator. The final report provided here is concerned only with the work performed at SIO since January 2000. The primary focus of this project was the study of the three-dimensional, absolute and time-evolving general circulation of the global ocean from a combined analysis of remotely sensed fields of sea surface temperature (SST) and sea surface height (SSH). The synthesis of those two fields was performed with other relevant physical data, and appropriate dynamical ocean models with emphasis on constraining ocean general circulation models by a combination of both SST and SSH data. The central goal of the project was to improve our understanding and modeling of the relationship between the SST and its variability to internal ocean dynamics, and the overlying atmosphere, and to explore the relative roles of air-sea fluxes and internal ocean dynamics in establishing anomalies in SST on annual and longer time scales. An understanding of those problems will feed into the general discussion on how SST anomalies vary with time and the extend to which they interact with the atmosphere.

  4. Jason-3 Produces First Global Map of Sea Surface Height

    NASA Image and Video Library

    2016-03-16

    The U.S./European Jason-3 satellite has produced its first map of sea surface height, which corresponds well to data from its predecessor, Jason-2. Higher-than-normal sea levels are red; lower-than-normal sea levels are blue. El Niño is visible as the red blob in the eastern equatorial Pacific. Extending the timeline of ocean surface topography measurements begun by the Topex/Poseidon and Jason 1 and 2 satellites, Jason 3 will make highly detailed measurements of sea-level on Earth to gain insight into ocean circulation and climate change. http://photojournal.jpl.nasa.gov/catalog/PIA20532

  5. Stratospheric Impact of Varying Sea Surface Temperatures

    NASA Technical Reports Server (NTRS)

    Newman, Paul A.; Nash, Eric R.; Nielsen, Jon E.; Waugh, Darryn; Pawson, Steven

    2004-01-01

    The Finite-Volume General Circulation Model (FVGCM) has been run in 50 year simulations with the: 1) 1949-1999 Hadley Centre sea surface temperatures (SST), and 2) a fixed annual cycle of SSTs. In this presentation we first show that the 1949-1999 FVGCM simulation produces a very credible stratosphere in comparison to an NCEP/NCAR reanalysis climatology. In particular, the northern hemisphere has numerous major and minor stratospheric warming, while the southern hemisphere has only a few over the 50-year simulation. During the northern hemisphere winter, temperatures are both warmer in the lower stratosphere and the polar vortex is weaker than is found in the mid-winter southern hemisphere. Mean temperature differences in the lower stratosphere are shown to be small (less than 2 K), and planetary wave forcing is found to be very consistent with the climatology. We then will show the differences between our varying SST simulation and the fixed SST simulation in both the dynamics and in two parameterized trace gases (ozone and methane). In general, differences are found to be small, with subtle changes in planetary wave forcing that lead to reduced temperatures in the SH and increased temperatures in the NH.

  6. Regional Long-Term Sea Level and Sea Surface Temperature Characteristics from Satellite Observations

    NASA Astrophysics Data System (ADS)

    Andersen, O. B.; Knudsen, P.; Beckley, B.

    2006-07-01

    For a the large portion of the world's population liv ing in coastal zones forecasts of long- term sea lev el change is importan t for a var iety of environmen tal and socio- economic r easons. Satellite altimetry offers a unique opportunity for improving our knowledge about glob al and r egional sea level change on bo th global and reg ional scale. Joint TOPEX/PO SEIDON(T/P) +JASON-1 sea level observations and Reyno lds AVH RR sea surface temperature observ ations over th e most recen t 12 years hav e qualitativ ely been used to study regional correlations between long-term changes in sea level and sea surface temper ature. Long-term is here tak en to be lin ear signals in the 12-year time per iod Consistent in creases in both sea level and sea surface temp eratures ar e found in large parts of the world's oceans over this per iod. In the Indian Ocean and particularly th e Pacif ic Ocean , the trends in both sea level and temper ature are domin ated by the larg e changes associated w ith th e El N iño Southern Oscillation (ENSO) . Co mparison with similar trend estimates u sing only 8 years of satellite data shows the incr eased decoupling with ENSO and th e imp act of inter-annual variability on sea lev el tr end estimates.

  7. Comparisons between Patterns of Sea-Surface Temperature and Sub-Surface Parameters in the Western Tasman Sea.

    DTIC Science & Technology

    1982-07-01

    EXTERNAL) No. 5/82 COMPARISONS BETWEEN PATTERNS OF SEA -SURFACE TEMPERATURE AND SUB-SURFACE PARAMETERS IN THE WESTERN TASMAN SEA (U) BY DTIC P. J. Ep~~3...PARAMETERS IN THE WESTERN TASMAN SEA (U) P.J.NULHARNAccession For P.J MLHERNNTIS GRA&I L and DTIC TAB L.J. HAMILTON Unannou ed QJustification...emperature, temperature at 250m, mixed-layer depth and dynamic height f the western Tasman Sea . Data are from ship cruises and aerial su a. It is shown by

  8. Bay of Bengal Surface and Thermocline and the Arabian Sea

    DTIC Science & Technology

    2015-09-30

    oceanographic processes that exchange low salinity surface and upper thermocline water of the Bay of Bengal with the salty Arabian Sea and tropical Indian Ocean...low salinity Bay of Bengal water and the saline water of the Arabian Sea; 3. Quantifying the connectivity of Bay of Bengal and to the Arabian Sea to...region displays a surprising large range of temperature and salinity , both regionally and within a complex mesoscale field, representing a balance between

  9. An alternative to reduction of surface pressure to sea level

    NASA Technical Reports Server (NTRS)

    Deardorff, J. W.

    1982-01-01

    The pitfalls of the present method of reducing surface pressure to sea level are reviewed, and an alternative, adjusted pressure, P, is proposed. P is obtained from solution of a Poisson equation over a continental region, using the simplest boundary condition along the perimeter or coastline where P equals the sea level pressure. The use of P would avoid the empiricisms and disadvantages of pressure reduction to sea level, and would produce surface pressure charts which depict the true geostrophic wind at the surface.

  10. Sea-ice and surface water circulation, Alaskan continental shelf

    NASA Technical Reports Server (NTRS)

    Wright, F. F.; Sharma, G. D.; Burns, J. J. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Over 1500 water samples from surface and from standard hydrographic depths were collected during June and July 1973 from Bering Sea and Gulf of Alaska. The measurement of temperature, salinity, and productivity indicated that various distinct water masses cover the Bering Sea Shelf. The suspended load in surface waters will be correlated with the ERTS-1 imagery as it becomes available to delineate the surface water circulation. The movement of ice floes in the Bering Strait and Bering Sea indicated that movement of ice varies considerably and may depend on wind stress as well as ocean currents.

  11. Fouling-resistant surfaces of tropical sea stars.

    PubMed

    Guenther, Jana; Walker-Smith, Genefor; Warén, Anders; De Nys, Rocky

    2007-01-01

    Qualitative evidence suggests sea stars are free of fouling organisms; however the presence of fouling-resistant surfaces of sea stars has not previously been documented. Field surveys were conducted in northern Queensland, Australia, during the wet and dry seasons and several tropical sea star species were examined for surface-associated micro- and macro-organisms. Mean bacterial abundances on seven sea star species were approximately 10(4) to 10(5) cells cm(-2) during both seasons. There were no consistent trends in bacterial abundances with season, species and aboral positions on sea star arms. No common generalist fouling organisms, such as algae, barnacles, serpulid polychaetes, bryozoans and ascidians, were found on any specimens of 12 sea star species. However, low numbers of parasitic and commensal macro-organisms were found on six sea star species. The gastropods Parvioris fulvescens, Asterolamia hians, Thyca (Granulithyca) nardoafrianti and Thyca crystallina were found exclusively on the sea stars Archaster typicus, Astropecten indicus, Nardoa pauciforis and Linckia laevigata, respectively. The shrimp Periclimenes soror was only found on Acanthaster planci, and the polychaete Ophiodromus sp. on A. typicus. The copepods Stellicola illgi and Paramolgus sp. were only found on L. laevigata and Echinaster luzonicus, respectively. As no common generalist fouling organisms were discovered, sea stars offer an excellent model to investigate the mechanisms driving fouling-resistant surfaces and the selective settlement of specialist invertebrates.

  12. The distribution of iodide at the sea surface.

    PubMed

    Chance, Rosie; Baker, Alex R; Carpenter, Lucy; Jickells, Tim D

    2014-08-01

    Recent studies have highlighted the impact of sea surface iodide concentrations on the deposition of ozone to the sea surface and the sea to air flux of reactive iodine. The use of models to predict this flux demands accurate, spatially distributed sea surface iodide concentrations, but to date, the observational data required to support this is sparse and mostly arises from independent studies conducted on small geographical and temporal scales. We have compiled the available measurements of sea surface iodide to produce a data set spanning latitudes from 69°S to 66°N, which reveals a coherent, large scale distribution pattern, with highest concentrations observed in tropical waters. Relationships between iodide concentration and more readily available parameters (chlorophyll, nitrate, sea surface temperature, salinity, mixed layer depth) are evaluated as tools to predict iodide concentration. Of the variables tested, sea surface temperature is the strongest predictor of iodide concentration. Nitrate was also strongly inversely associated with iodide concentration, but chlorophyll-a was not.

  13. Direct Sea Surface Height Data Assimilation

    NASA Astrophysics Data System (ADS)

    Helber, R. W.; Smith, S. R.; Jacobs, G. A.; Barron, C. N.; Townsend, T. L.

    2016-02-01

    New methods are developed for assimilating satellite sea surface height anomaly (SSHA) and velocity observations into a numerical ocean model of the Gulf of Mexico. Vertical correlations, derived from historical ocean profiles of temperature (T) and salinity (S), are used to relate T and S to geopotential (G) by integrating the specific volume anomaly vertical structure. The resulting vertical correlations (of T & T, T & S, T & G, S & S, etc.) are then used to assimilate SSHA and velocity observations by creating increments of subsurface T, S, and velocity. Velocity is related to G using the geostrophic relation. Since satellite derived SSHA observations are the most important data stream used to improve numerical ocean forecasts, this presentation will focus on SSHA data assimilation. The Naval Research Laboratory traditionally employs a method where SSHA data is used to create ocean synthetic subsurface profiles of T and S, which are then assimilated as observations in an ocean forecasting system. The latest version has a one-dimensional variational scheme based on historically observed ocean vertical correlations for T and S globally at ½ degree resolution. The new method uses these correlations directly within the 3DVAR Navy Coupled Ocean Data Assimilation system, without making synthetics. The results from both assimilation methods will be compared and discussed. The velocities from these assimilation methods are validated relative to the 295 drifters deployed in July 2012 in the north-eastern Gulf of Mexico as part of the Gulf of Mexico Grand Lagrangian Deployment (GLAD). This system will also utilized velocity data from the upcoming drifter deployment of the LAgrangian Submesoscale ExpeRiment (LASER).

  14. Mean sea level and sea surface variability of northwest pacific ocean and eastern China seas from Geosat altimetry

    NASA Astrophysics Data System (ADS)

    Chen, Ge; He, Ming-Xia; Masatoshi, Akiyama; Yasuhiro, Sugimori; Jun, Suwa

    1994-06-01

    Collinear analysis technique is widely used for determining sea surface variability with Geosat altimeter data from its Exact Repeat Mission (ERM). But most of the researches have been only on global scale or in oceans deeper than 2000 m. In shallow shelf waters this method is hampered by the inaccuracy of ocean tide data supplied with Geosat Geophysical Data Records (GDRs). This work uses a modified collinear analysis technique characterized by simultaneous separation of mean sea level and ocean tide with the least squares method, to compute sea surface variability in the Northwest Pacific Ocean and eastern China Seas. The mean sea level map obtained contains not only bathymetric but also dynamic features such as amphidromes, indicating considerable improvement over previous works. Our sea surface variability maps show clearly the main current system, the well-known Zhejiang coastal upwelling, and a northern East China Sea meso-scale eddy in good agreement with satellite sea surface temperature (SST) observation and historical in situ measurement. These all suggest that meaningful and reliable oceanographic results can still be achieved in shallow shelf waters from Geosat altimetry as long as proper data processing techniques are applied.

  15. Improving the Bulk Formula for Sea-Surface Fluxes

    DTIC Science & Technology

    2011-03-14

    weak SST heterogeneity. J. Geophys. Res, 115, D11103,doi:10.1029/2009JD013161. Vickers D and L. Mahrt 2010: Sea-surface roughness lengths in the midlatitude coastal zone. Quart. J. Roy. Meterol. Soc. 136, 1089 -1093.

  16. Satellite altimetry in sea ice regions - detecting open water for estimating sea surface heights

    NASA Astrophysics Data System (ADS)

    Müller, Felix L.; Dettmering, Denise; Bosch, Wolfgang

    2017-04-01

    The Greenland Sea and the Farm Strait are transporting sea ice from the central Arctic ocean southwards. They are covered by a dynamic changing sea ice layer with significant influences on the Earth climate system. Between the sea ice there exist various sized open water areas known as leads, straight lined open water areas, and polynyas exhibiting a circular shape. Identifying these leads by satellite altimetry enables the extraction of sea surface height information. Analyzing the radar echoes, also called waveforms, provides information on the surface backscatter characteristics. For example waveforms reflected by calm water have a very narrow and single-peaked shape. Waveforms reflected by sea ice show more variability due to diffuse scattering. Here we analyze altimeter waveforms from different conventional pulse-limited satellite altimeters to separate open water and sea ice waveforms. An unsupervised classification approach employing partitional clustering algorithms such as K-medoids and memory-based classification methods such as K-nearest neighbor is used. The classification is based on six parameters derived from the waveform's shape, for example the maximum power or the peak's width. The open-water detection is quantitatively compared to SAR images processed while accounting for sea ice motion. The classification results are used to derive information about the temporal evolution of sea ice extent and sea surface heights. They allow to provide evidence on climate change relevant influences as for example Arctic sea level rise due to enhanced melting rates of Greenland's glaciers and an increasing fresh water influx into the Arctic ocean. Additionally, the sea ice cover extent analyzed over a long-time period provides an important indicator for a globally changing climate system.

  17. Decadal trends in Red Sea maximum surface temperature.

    PubMed

    Chaidez, V; Dreano, D; Agusti, S; Duarte, C M; Hoteit, I

    2017-08-15

    Ocean warming is a major consequence of climate change, with the surface of the ocean having warmed by 0.11 °C decade(-1) over the last 50 years and is estimated to continue to warm by an additional 0.6 - 2.0 °C before the end of the century(1). However, there is considerable variability in the rates experienced by different ocean regions, so understanding regional trends is important to inform on possible stresses for marine organisms, particularly in warm seas where organisms may be already operating in the high end of their thermal tolerance. Although the Red Sea is one of the warmest ecosystems on earth, its historical warming trends and thermal evolution remain largely understudied. We characterized the Red Sea's thermal regimes at the basin scale, with a focus on the spatial distribution and changes over time of sea surface temperature maxima, using remotely sensed sea surface temperature data from 1982 - 2015. The overall rate of warming for the Red Sea is 0.17 ± 0.07 °C decade(-1), while the northern Red Sea is warming between 0.40 and 0.45 °C decade(-1), all exceeding the global rate. Our findings show that the Red Sea is fast warming, which may in the future challenge its organisms and communities.

  18. Estimation of Sea Surface Wave Spectra Using Acoustic Tomography.

    DTIC Science & Technology

    1987-09-01

    develops a new technique for estimating quasi- homogeneous and quasi-stationary sea surface wave frequency-direction spectra using acoustic tomog...problems for the homogeneous and quasi- homogeneous frequency-direction spectrum are introduced. The theory is ap- plied tosynthetic data which simulate...thesis introduces a technique that estimates the quasi-stationary and quasi- homogeneous sea surface wave frequency-direction spectrum from the spectra of

  19. Sea surface temperature of the coastal zones of France

    NASA Technical Reports Server (NTRS)

    Deschamps, P. Y.; Crepon, M.; Monget, J. M.; Verger, F. (Principal Investigator); Frouin, R.; Cassanet, J.; Wald, L.

    1980-01-01

    The various thermal gradients in the coastal zones of France were mapped with regard to natural phenomena and man made thermal effluents. The mesoscale thermal features of the English Channel, the Bay of Biscay, and the northwestern Mediterranean Sea were also studied. The evolution of the thermal gradients generated by the main estuaries of the French coastal zones was investigated along with the modeling of diurnal heating of the sea surface and its influence on the oceanic surface layers.

  20. Observation of Sea Ice Surface Thermal States Under Cloud Cover

    NASA Technical Reports Server (NTRS)

    Nghiem, S. V.; Perovich, D. K.; Gow, A. J.; Kwok, R.; Barber, D. G.; Comiso, J. C.; Zukor, Dorothy J. (Technical Monitor)

    2001-01-01

    Clouds interfere with the distribution of short-wave and long-wave radiations over sea ice, and thereby strongly affect the surface energy balance in polar regions. To evaluate the overall effects of clouds on climatic feedback processes in the atmosphere-ice-ocean system, the challenge is to observe sea ice surface thermal states under both clear sky and cloudy conditions. From laboratory experiments, we show that C-band radar (transparent to clouds) backscatter is very sensitive to the surface temperature of first-year sea ice. The effect of sea ice surface temperature on the magnitude of backscatter change depends on the thermal regimes of sea ice thermodynamic states. For the temperature range above the mirabilite (Na2SO4.10H20) crystallization point (-8.2 C), C-band data show sea ice backscatter changes by 8-10 dB for incident angles from 20 to 35 deg at both horizontal and vertical polarizations. For temperatures below the mirabilite point but above the crystallization point of MgCl2.8H2O (-18.0 C), relatively strong backwater changes between 4-6 dB are observed. These backscatter changes correspond to approximately 8 C change in temperature for both cases. The backscattering mechanism is related to the temperature which determines the thermodynamic distribution of brine volume in the sea ice surface layer. The backscatter is positively correlated to temperature and the process is reversible with thermodynamic variations such as diurnal insolation effects. From two different dates in May 1993 with clear and overcast conditions determined by the Advanced Very High Resolution Radiometer (AVHRR), concurrent Earth Resources Satellite 1 (ERS-1) C-band ice observed with increases in backscatter over first-year sea ice, and verified by increases in in-situ sea ice surface temperatures measured at the Collaborative-Interdisciplinary Cryosphere Experiment (C-ICE) site.

  1. Deep Coherent Vortices and Their Sea Surface Expressions

    NASA Astrophysics Data System (ADS)

    Ienna, Federico; Bashmachnikov, Igor; Dias, Joaquim; Peliz, Alvaro

    2017-04-01

    Mediterranean Water eddies, known as Meddies, are an important dynamic process occurring at depths of 1000-meters in the Northeast Atlantic Ocean. Meddies occur as a direct result of the Mediterranean Outflow exiting through the Gibraltar Strait, and represent a prevalent mechanism that can be found extensively throughout the ocean. Moreover, Meddy cores are known to produce measurable expressions at the sea surface in the form of rotating coherent vortices, not only affecting the sea surface from beneath, but also allowing for the possibility to remotely study these deep phenomena through data gathered at the sea surface. While many past studies have focused on the properties of Meddy cores, only a handful of studies focus on the physical characteristics and behavior of the surface expressions produced. Are Meddy surface expressions different from other like vortices that dominate the physical ocean surface? What are the relationships between deep and surface mechanisms, and do any feedbacks exist? To shed light on these questions, we investigate the relationship between Meddies and their sea-surface expressions through observations using in-situ float and drifter profiles and satellite altimetry. A total of 782 Meddy cores were examined in the Northeast Atlantic using temperature and salinity data obtained by CTD and Argo during the Mecanismos de transporte e de dispersão da Água Mediterrânica no Atlântico Nordeste (MEDTRANS) project, and their corresponding sea-level expressions were geo-temporally matched in satellite altimetry data. We report several statistical properties of the sea-surface expressions of Meddies, including their mean diameter and vertical magnitude, and compare the properties of their surface features to the underlying Meddy cores. We investigate how the deep core affects the surface, and whether surface expressions may in return yield information about the underlying cores. Additionally, we examine the variability of the surface

  2. Arctic Sea Ice Classification and Mapping for Surface Albedo Parameterization in Sea Ice Modeling

    NASA Astrophysics Data System (ADS)

    Nghiem, S. V.; Clemente-Colón, P.; Perovich, D. K.; Polashenski, C.; Simpson, W. R.; Rigor, I. G.; Woods, J. E.; Nguyen, D. T.; Neumann, G.

    2016-12-01

    A regime shift of Arctic sea ice from predominantly perennial sea ice (multi-year ice or MYI) to seasonal sea ice (first-year ice or FYI) has occurred in recent decades. This shift has profoundly altered the proportional composition of different sea ice classes and the surface albedo distribution pertaining to each sea ice class. Such changes impacts physical, chemical, and biological processes in the Arctic atmosphere-ice-ocean system. The drastic changes upset the traditional geophysical representation of surface albedo of the Arctic sea ice cover in current models. A critical science issue is that these profound changes must be rigorously and systematically observed and characterized to enable a transformative re-parameterization of key model inputs, such as ice surface albedo, to ice-ocean-atmosphere climate modeling in order to obtain re-analyses that accurately reproduce Arctic changes and also to improve sea ice and weather forecast models. Addressing this challenge is a strategy identified by the National Research Council study on "Seasonal to Decadal Predictions of Arctic Sea Ice - Challenges and Strategies" to replicate the new Arctic reality. We review results of albedo characteristics associated with different sea ice classes such as FYI and MYI. Then we demonstrate the capability for sea ice classification and mapping using algorithms developed by the Jet Propulsion Laboratory and by the U.S. National Ice Center for use with multi-sourced satellite radar data at L, C, and Ku bands. Results obtained with independent algorithms for different radar frequencies consistently identify sea ice classes and thereby cross-verify the sea ice classification methods. Moreover, field observations obtained from buoy webcams and along an extensive trek across Elson Lagoon and a sector of the Beaufort Sea during the BRomine, Ozone, and Mercury EXperiment (BROMEX) in March 2012 are used to validate satellite products of sea ice classes. This research enables the mapping

  3. Impact of sea surface temperature on satellite retrieval of sea surface salinity

    NASA Astrophysics Data System (ADS)

    Jin, Xuchen; Zhu, Qiankun; He, Xianqiang; Chen, Peng; Wang, Difeng; Hao, Zengzhou; Huang, Haiqing

    2016-10-01

    Currently, global sea surface salinity (SSS) can be retrieved by the satellite microwave radiometer onboard the satellite, such as the Soil Moisture and Ocean Salinity(SMOS) and the Aqurius. SMOS is an Earth Explorer Opportunity Mission from the European Space Agency(ESA). It was launched at a sun-synchronous orbit in 2009 and one of the payloads is called MIRAS(Microwave Imaging Radiometer using Aperture Synthesis), which is the first interferometric microwave radiometer designed for observing SSS at L-band(1.41 GHz).The foundation of the salinity retrieval by microwave radiometer is that the sea surface radiance at L-band has the most suitable sensitivity with the variation of the salinity. It is well known that the sensitivity of brightness temperatures(TB) to SSS depends on the sea surface temperature (SST), but the quantitative impact of the SST on the satellite retrieval of the SSS is still poorly known. In this study, we investigate the impact of the SST on the accuracy of salinity retrieval from the SMOS. First of all, The dielectric constant model proposed by Klein and Swift has been used to estimate the vertically and horizontally polarized brightness temperatures(TV and TH) of a smooth sea water surface at L-band and derive the derivatives of TV and TH as a function of SSS to show the relative sensitivity at 45° incident angle. Then, we use the GAM(generalized additive model) method to evaluate the association between the satellite-measured brightness temperature and in-situ SSS at different SST. Moreover, the satellite-derived SSS from the SMOS is validated using the ARGO data to assess the RMSE(root mean squared error). We compare the SMOS SSS and ARGO SSS over two regions of Pacific ocean far from land and ice under different SST. The RMSE of retrieved SSS at different SST have been estimated. Our results showed that SST is one of the most significant factors affecting the accuracy of SSS retrieval. The satellite-measured brightness temperature has a

  4. Satellite-derived sea surface height and sea surface wind data fusion for spilled oil tracking

    NASA Astrophysics Data System (ADS)

    Kozai, Katsutoshi

    2003-12-01

    An attempt is made to estimate the trajectory of the spilled oil from the sunken tanker Nakhodka occurred on January 2, 1997 in the Japan Sea by fusing two microwave sensor data, namely ERS-2 altimeter and ADEOS/NSCAT scatterometer data. In this study 'fusion' is defined as the method of more reliable prediction for the trajectory of spilled oil than before. Geostrophic current vectors are derived from ERS-2 altimeter and wind-induced drift vectors are derived from ADEOS/NSCAT scatterometer data These two different satellite-derived vectors are 'fused' together in the surface current model to estimate and evaluate the trajectory of spilled oil from the sunken tanker Nakhodka. The distribution of component of spill vector is mostly accounted for by the distribution of geostrophic velocity component during the study period with some discrepancies during March, 1997.

  5. The impact of land and sea surface variations on the Delaware sea breeze at local scales

    NASA Astrophysics Data System (ADS)

    Hughes, Christopher P.

    The summertime climate of coastal Delaware is greatly influenced by the intensity, frequency, and location of the local sea breeze circulation. Sea breeze induced changes in temperature, humidity, wind speed, and precipitation influence many aspects of Delaware's economy by affecting tourism, farming, air pollution density, energy usage, and the strength, and persistence of Delaware's wind resource. The sea breeze front can develop offshore or along the coastline and often creates a near surface thermal gradient in excess of 5°C. The purpose of this dissertation is to investigate the dynamics of the Delaware sea breeze with a focus on the immediate coastline using observed and modeled components, both at high resolutions (~200m). The Weather Research and Forecasting model (version 3.5) was employed over southern Delaware with 5 domains (4 levels of nesting), with resolutions ranging from 18km to 222m, for June 2013 to investigate the sensitivity of the sea breeze to land and sea surface variations. The land surface was modified in the model to improve the resolution, which led to the addition of land surface along the coastline and accounted for recent urban development. Nine-day composites of satellite sea surface temperatures were ingested into the model and an in-house SST forcing dataset was developed to account for spatial SST variation within the inland bays. Simulations, which include the modified land surface, introduce a distinct secondary atmospheric circulation across the coastline of Rehoboth Bay when synoptic offshore wind flow is weak. Model runs using high spatial- and temporal-resolution satellite sea surface temperatures over the ocean indicate that the sea breeze landfall time is sensitive to the SST when the circulation develops offshore. During the summer of 2013 a field campaign was conducted in the coastal locations of Rehoboth Beach, DE and Cape Henlopen, DE. At each location, a series of eleven small, autonomous thermo-sensors (i

  6. Simulated sea surface temperature and heat fluxes in different climates of the Baltic Sea.

    PubMed

    Döscher, Ralf; Meier, H E Markus

    2004-06-01

    The physical state of the Baltic Sea in possible future climates is approached by numerical model experiments with a regional coupled ocean-atmosphere model driven by different global simulations. Scenarios and recent climate simulations are compared to estimate changes. The sea surface is clearly warmer by 2.9 degrees C in the ensemble mean. The horizontal pattern of average annual mean warming can largely be explained in terms of ice-cover reduction. The transfer of heat from the atmosphere to the Baltic Sea shows a changed seasonal cycle: a reduced heat loss in fall, increased heat uptake in spring, and reduced heat uptake in summer. The interannual variability of surface temperature is generally increased. This is associated with a smoothed frequency distribution in northern basins. The overall heat budget shows increased solar radiation to the sea surface, which is balanced by changes of the other heat flux components.

  7. Surface and sub-surface multi-proxy reconstruction of middle to late Holocene palaeoceanographic changes in Disko Bugt, West Greenland

    NASA Astrophysics Data System (ADS)

    Moros, Matthias; Lloyd, Jeremy M.; Perner, Kerstin; Krawczyk, Diana; Blanz, Thomas; de Vernal, Anne; Ouellet-Bernier, Marie-Michele; Kuijpers, Antoon; Jennings, Anne E.; Witkowski, Andrzej; Schneider, Ralph; Jansen, Eystein

    2016-01-01

    We present new surface water proxy records of meltwater production (alkenone derived), relative sea surface temperature (diatom, alkenones) and sea ice (diatoms) changes from the Disko Bugt area off central West Greenland. We combine these new surface water reconstructions with published proxy records (benthic foraminifera - bottom water proxy; dinocyst assemblages - surface water proxy), along with atmospheric temperature from Greenland ice core and Greenland lake records. This multi-proxy approach allows us to reconstruct centennial scale middle to late Holocene palaeoenvironmental evolution of Disko Bugt and the Western Greenland coastal region with more detail than previously available. Combining surface and bottom water proxies identifies the coupling between ocean circulation (West Greenland Current conditions), the atmosphere and the Greenland Ice Sheet. Centennial to millennial scale changes in the wider North Atlantic region were accompanied by variations in the West Greenland Current (WGC). During periods of relatively warm WGC, increased surface air temperature over western Greenland led to ice sheet retreat and significant meltwater flux. In contrast, during periods of cold WGC, atmospheric cooling resulted in glacier advances. We also identify potential linkages between the palaeoceanography of the Disko Bugt region and key changes in the history of human occupation. Cooler oceanographic conditions at 3.5 ka BP support the view that the Saqqaq culture left Disko Bugt due to deteriorating climatic conditions. The cause of the disappearance of the Dorset culture is unclear, but the new data presented here indicate that it may be linked to a significant increase in meltwater flux, which caused cold and unstable coastal conditions at ca. 2 ka BP. The subsequent settlement of the Norse occurred at the same time as climatic amelioration during the Medieval Climate Anomaly and their disappearance may be related to harsher conditions at the beginning of the

  8. Changing surface water conditions for the last 500 ka in the Southeast Atlantic:Tracking Agulhas leakage using UK37' and δD

    NASA Astrophysics Data System (ADS)

    Petrick, Benjamin; McClymont, Erin; van der Meer, Marcel; Marret, Fabienne

    2015-04-01

    The Southeast Atlantic Ocean is an important component of global ocean circulation, as it includes heat and salt transfer into the Atlantic through Agulhas Leakage. Here, we reconstruct sea surface temperatures (SSTs) and sea surface salinity from Ocean Drilling Program (ODP) Site 1087 in the Southeast Atlantic to investigate surface ocean circulation patterns during the late Pleistocene (0-500 ka). The alkenone-derived U37K'index and assemblages of dinoflagellate cysts are used to reconstruct SSTs. The hydrogen isotope composition of the alkenones (δDalkenone) is used to reconstruct changes in sea-surface salinity. The greatest amplitude of SST warming precedes decreases in benthic δ18O and therefore occurs early in the transition from glacials to interglacials. The timing of the early warming is consistent with previously published foraminifera reconstructions from the same site (Caley et al., 2012). However, δDalkenone decreases at the start of interglacials, suggesting that sea surface salinity increased earlier than the deglacial warmings, and indicating that the pattern of Agulhas leakage is more complex than suggested by SST proxies alone. Furthermore, the δDalkenonevalues indicate a strong salinity increases occurred before both MIS 11 and MIS 1, which are both periods where there is evidence of connection between increased Agulhas Leakage and a stronger Atlantic meridional overturning circulation (AMOC). Finally, the ODP site 1087 record shows an overall trend of increasing SSTs and δDalkenone towards the present day, suggesting that Agulhas leakage has strengthened since 500 ka, which may have impacted the intensity of the AMOC. Caley, T., Giraudeau, J., Malaize, B., Rossignol, L., Pierre, C., 2012. Agulhas leakage as a key process in the modes of Quaternary climate changes. Proc. Natl. Acad. Sci. 109, 6835-6839. doi:10.1073/pnas.1115545109

  9. Fine-resolution simulation of surface current and sea ice in the Arctic Mediterranean Seas

    NASA Astrophysics Data System (ADS)

    Liu, Xiying; Zhang, Xuehong; Yu, Rucong; Liu, Hailong; Li, Wei

    2007-04-01

    A fine-resolution model is developed for ocean circulation simulation in the National Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Chinese Academy of Sciences, and is applied to simulate surface current and sea ice variations in the Arctic Mediterranean Seas. A dynamic sea ice model in elastic-viscous-plastic rheology and a thermodynamic sea ice model are employed. A 200-year simulation is performed and a dimatological average of a 10-year period (141st 150th) is presented with focus on sea ice concentration and surface current variations in the Arctic Mediterranean Seas. The model is able to simulate well the East Greenland Current, Beaufort Gyre and the Transpolar Drift, but the simulated West Spitsbergen Current is small and weak. In the March climatology, the sea ice coverage can be simulated well except for a bit more ice in east of Spitsbergen Island. The result is also good for the September scenario except for less ice concentration east of Greenland and greater ice concentration near the ice margin. The extra ice east of Spitsbergen Island is caused by sea ice current convergence forced by atmospheric wind stress.

  10. Holocene surface ocean temperatures in the Labrador Sea

    NASA Astrophysics Data System (ADS)

    Schneider, R. R.; Blanz, T.

    2016-12-01

    The Labrador Sea is a marginal sea in subpolar regions considered important for North Atlantic overturning circulation. It is surrounded by large land masses partly covered by glaciers and continental ice sheets that have and will strongly influence the freshwater/saltwater balance at the surface and thus, next to cooling and freezing processes in winter, control the formation of deep water masses that have strong impact on the deep Western Atlantic return flow in the North Atlantic thermohaline circulation. Reconstructions of centennial to millenial scale climate variability during the Holocene have also documented this complex interaction between inflow of relatively warm surface waters south of Greenland, mixing with meltwater intrusions from land, ice-berg calving and seasonal sea-ice coverage, leading to pronounced changes in the Labrador Current that fuels its surface and deeper water masses into the North Atlantic current systems. However, linking modern observations and historical times series with past records on Labrador Sea climate variability has been hampered by the lack of robust quantitative paleothermometers. Therefore, after re-calibrating the ketone unsaturation index of C37 long-chain hydrocarbon molecules in the temperature range between 0 and 10° C by comparing index values from recent surface sediments with ambient temperatures and salinities from the Greenland and Labrador Margins, we generated Holocene time series of surface temperatures and meltwater events. While sea surface temperatures in the eastern Labrador Sea, Westgreenland Current, have varied between 2 and 10°C, with higher meltwater intrusions leading to cooling in fjords, first results from the western Labrador Sea, Labrador Current, point to on average much colder surface temperatures between -1 and 5° C for the Labrador Basin outflow. This general E-W temperature difference in surface waters manifests the occurence of the modern surface temperature gradient, and thus a

  11. Remote sensing of the sea surface by millimeterwave SAR

    NASA Astrophysics Data System (ADS)

    Essen, H.; Fuchs, H.-H.; Pagels, A.

    2006-09-01

    On several occasions the sea surface has been measured with the mmW radar MEMPHIS in SAR geometry. This research was mainly aimed to investigate the ability of SAR for imaging of disturbances of the water surface at mm-wave radar bands and to gather data on the statistical properties of sea clutter. It can be suspected, that the probability density functions for the reflectivity of sea clutter is as well dependent on the radar wavelength as on resolution, as different scattering processes may significantly contribute. While most of the available millimeterwave data have been collected with a resolution of 75 cm, improvements of the MEMPHIS radar now allow a resolution of about 20 cm. The paper describes the measurement set-up, the evaluation methods and discusses the influence of resolution and radar frequency on sea clutter characteristics as found during the experiments.

  12. The PRISM palaeoclimate reconstruction and Pliocene sea-surface temperature

    USGS Publications Warehouse

    Dowsett, H.J.; ,

    2007-01-01

    In this paper, I present a summary of the Pliocene Research, Interpretation and Synoptic Mapping (PRISM) palaeoenvironmental reconstruction, with emphasis on its historical development and range of boundary condition datasets. Sea-surface temperature (SST), sea level, sea ice, land cover (vegetation and ice) and topography are discussed as well as many of the assumptions required to create an integrated global-scale reconstruction. New multiproxy research shows good general agreement on the magnitude of mid-Pliocene SST warming. Future directions, including maximum and minimum SST analyses and deep ocean temperature estimates aimed at a full three-dimensional reconstruction, are presented. ?? The Micropalaeontological Society 2007.

  13. Ring discretization of the wave spectrum for sea surface simulation.

    PubMed

    Varela, Jose Miguel; Guedes Soares, Carlos

    2014-01-01

    Although interactive computer-generated ocean scenes based on real wave spectra are impressively realistic, they usually don't exhibit the original sea state's statistical properties. This might be unacceptable for applications in which the sea surface height field's correctness is important, such as 3D ship simulators for training professionals. Researchers have developed a discretization of the wave spectrum that obtains a sea state statistically more equivalent to the original. This method can also improve the scene's visual realism and real-time performance.

  14. Comparison of TOPEX sea surface heights and tide gauge sea levels

    NASA Technical Reports Server (NTRS)

    Mitchum, Gary T.

    1994-01-01

    TOPEX sea surface height data from the first 300 days of the mission are compared to sea level data from 71 tide gauges. The initial comparison uses sea surface height data processed according to standard procedures as defined in the users handbook. It is found that the median correlations for island and for coastal tide gauges are 0.53 and 0.42, respectively. The analogous root mean square (RMS) differences between the two data sets are 7.9 and 10.4 cm. The comparisons improve significantly when a 60-day harmonic is fit to the differences and removed. This period captures aliased M(sub 2) and S(sub 2) tidal energy that is not removed by the tide model. Making this correction and smoothing the sea surface height data over 25-km along-track segments results in median correlations of 0.58 and 0.46 for the islands and coastal stations, and median RMS differences of 5.8 and 7.7 cm, respectively. Removing once per revolution signals from the sea surface heights results in degraded comparisons with the sea levels. It is also found that a number of stations have poor comparisons due to propagating signals that introduce temporal lags between the altimeter and tide gauge time series. A final comparison is made by eliminating stations where this propagation effect is large, discarding two stations that are suspected to have problems with the sea level data, smoothing over 10-day intervals, and restricting attention to islands gauges. This results in a set of 552 data pairs that have a correlation of 0.66 and a RMS difference of 4.3 cm. The conclusion is that on timescales longer than about 10 days the RMS sea surface height errors are less than or of the order of several centimeters.

  15. Improved measurements of mean sea surface velocity in the Nordic Seas from synthetic aperture radar

    NASA Astrophysics Data System (ADS)

    Wergeland Hansen, Morten; Johnsen, Harald; Engen, Geir; Øie Nilsen, Jan Even

    2017-04-01

    The warm and saline surface Atlantic Water (AW) flowing into the Nordic Seas across the Greenland-Scotland ridge transports heat into the Arctic, maintaining the ice-free oceans and regulating sea-ice extent. The AW influences the region's relatively mild climate and is the northern branch of the global thermohaline overturning circulation. Heat loss in the Norwegian Sea is key for both heat transport and deep water formation. In general, the ocean currents in the Nordic Seas and the North Atlantic Ocean is a complex system of topographically steered barotropic and baroclinic currents of which the wind stress and its variability is a driver of major importance. The synthetic aperture radar (SAR) Doppler centroid shift has been demonstrated to contain geophysical information about sea surface wind, waves and current at an accuracy of 5 Hz and pixel spacing of 3.5 - 9 × 8 km2. This corresponds to a horizontal surface velocity of about 20 cm/s at 35° incidence angle. The ESA Prodex ISAR project aims to implement new and improved SAR Doppler shift processing routines to enable reprocessing of the wide swath acquisitions available from the Envisat ASAR archive (2002-2012) at higher resolution and better accuracy than previously obtained, allowing combined use with Sentinel-1 and Radarsat-2 retrievals to build timeseries of the sea surface velocity in the Nordic Seas. Estimation of the geophysical Doppler shift from new SAR Doppler centroid shift retrievals will be demonstrated, addressing key issues relating to geometric (satellite orbit and attitude) and electronic (antenna mis-pointing) contributions and corrections. Geophysical Doppler shift retrievals from one month of data in January 2010 and the inverted surface velocity in the Nordic Seas are then addressed and compared to other direct and indirect estimates of the upper ocean current, in particular those obtained in the ESA GlobCurrent project.

  16. An atlas of monthly mean distributions of GEOSAT sea surface height, SSMI surface wind speed, AVHRR/2 sea surface temperature, and ECMWF surface wind components during 1988

    NASA Technical Reports Server (NTRS)

    Halpern, D.; Zlotnicki, V.; Newman, J.; Brown, O.; Wentz, F.

    1991-01-01

    Monthly mean global distributions for 1988 are presented with a common color scale and geographical map. Distributions are included for sea surface height variation estimated from GEOSAT; surface wind speed estimated from the Special Sensor Microwave Imager on the Defense Meteorological Satellite Program spacecraft; sea surface temperature estimated from the Advanced Very High Resolution Radiometer on NOAA spacecrafts; and the Cartesian components of the 10m height wind vector computed by the European Center for Medium Range Weather Forecasting. Charts of monthly mean value, sampling distribution, and standard deviation value are displayed. Annual mean distributions are displayed.

  17. Land- and sea-surface impacts on local coastal breezes

    NASA Astrophysics Data System (ADS)

    Veron, D. E.; Hughes, C.; Gilchrist, J.; Lodise, J.; Goldman, W.

    2014-12-01

    The state of Delaware has seen significant increases in population along the coastline in the past three decades. With this increase in population have come changes to the land surface, as forest and farmland has been converted to residential and commercial purposes, causing changes in the surface roughness, temperature, and land-atmosphere fluxes. There is also a semi-permanent upwelling center in the spring and summer outside the Delaware Bay mouth that significantly changes the structure of the sea surface temperature both inside and outside the Bay. Through a series of high resolution modeling and observational studies, we have determined that in cases of strong synoptic forcing, the impact of the land-surface on the boundary layer properties can be advected offshore, creating a false coastline and modifying the location and timing of the sea breeze circulation. In cases of weak synoptic forcing, the influence of the upwelling and the tidal circulation of the Delaware Bay waters can greatly change the location, strength, and penetration of the sea breeze. Understanding the importance of local variability in the surface-atmosphere interactions on the sea breeze can lead to improved prediction of sea breeze onset, penetration, and duration which is important for monitoring air quality and developing offshore wind power production.

  18. Changes in Sea Surface Temperature and North Atlantic Hurricane Activities

    NASA Astrophysics Data System (ADS)

    Nazari, R.; Mahani, S.; Khanbilvardi, R.

    2006-05-01

    People of United States from Maine to Texas in the years 1995 to 2005 experienced the highest level of North Atlantic hurricane activity in the reliable collected data and reports in compare with the generally low activity of the previous two decays (1970 to 1994). The greater activity might be a consequence of instantaneous changes in North Atlantic Sea Surface Temperature (SST) and air temperature. This thermal energy of increased Sea Surface Temperature (warm water) is known as tropical cyclone heat potential (TCHP) partly powers a hurricane and has been called hurricane fuel. In primary steps of this research we are trying to examine the association of variation of Sea Surface Temperature (SST), Sea Surface Height (SSH) and air temperature in the past decades with changes in hurricane number, duration and intensity. Preliminary analysis demonstrated that there is correlation between global warming and the occurrence of hurricanes because of the anticipated enhancement of energy available to the storms due to higher sea surface temperatures. The goal is to characterize and specify significant factors on tropical storms to improve the capability of predicting a hurricane and its damages to human lives and the economy. This information can be used to advise strategies for warning and also minimizing the magnitude of hurricane destruction, damages, and life losses.

  19. Satellite-derived sea surface height and sea surface wind data fusion for spilled oil tracking

    NASA Astrophysics Data System (ADS)

    Kozai, K.

    Data fusion is defined as a framework with the purpose of obtaining information of 'greater quality'. Within the framework tools are expressed for the alliance of data originating from different sources. The exact definition of 'greater quality' is stated in this context as more reliable prediction for the trajectory of spilled oil from two different microwave sensor data, namely ERS-2 altimeter and ADEOS/NSCAT scatterometer data. An example is presented in the case of trajectory of bow section and associated oil upwelling from the sunken tanker Nakhodka occurred from January to June in 1997 in Japan Sea. Spill distance is defined as a horizontal distance from the oil upwelling point to the location of sunken Nakhodka and a spill direction is defined as an angle made by the geographic north and the line corresponding to the spill distance. Geostrophic current vectors are derived from ERS-2 altimeter and wind-induced current vectors are derived from ADEOS/NSCAT scatterometer data. These two different satellite-derived vectors are 'fused' together in the surface current model to estimate and evaluate the trajectory of bow section and associated oil upwelling from the sunken tanker Nakhodka. Result of comparison between the estimated and the observed trajectory of bow section indicates that the estimated trajectory is agreed well with the observed one in the first half of drift period, while in the latter half of drift period the estimated trajectory is not agreed well with the observed one, which may be attributable to changes of wind directions within 24 hours from the satellite overpasses. Moreover the comparison between spill vector and 'fused' surface current vector shows the good correspondence in terms of direction when in situ wind accelerates the surface current vector, while the comparison between the twos shows the bad correspondence when the temporal changes of wind vector occurs.

  20. Holocene hydrological and sea surface temperature changes in the northern coast of the South China Sea

    NASA Astrophysics Data System (ADS)

    Wu, Mong-Sin; Zong, Yongqiang; Mok, Ka-Man; Cheung, Ka-Ming; Xiong, Haixian; Huang, Guangqing

    2017-03-01

    In order to reconstruct the Holocene environmental history of a coastal site in the northern South China Sea, this study analysed the organic carbon isotope ratios (δ13Corg) and alkenone unsaturation ratios (UK‧37) from a 36.5 m-long sediment core drilled at seabed in the mouth region of the Pearl River estuary and generated a coupled hydrological and temperature record. This record reveals changes of monsoon-induced sediment discharge and sea surface temperature of the Holocene in four stages. In Stage I, the site was under fluvial conditions prior to postglacial marine transgression. Stage II saw an increase of sea surface temperature from c. 23.0 °C to 27.0 °C, associated with a strengthened summer monsoon from c. 10,350 to 8900 cal. years BP. This was also a period of rapid sea-level rise and marine transgression, during which the sea inundated the palaeo-incised channel, i.e. the lower part of the T-shape accommodation space created by the rising sea. In these 1500 years, fluvial discharge was strong and concentrated within the channel, and the high sedimentation rate (11.8 mm/year) was very close to the rate of sea-level rise. In the subsequent 2000 years (Stage III) sea level continued to rise and the sea flooded the broad seabed above the palaeo-incised channel, resulted in fluvial discharge spreading thinly across the wide accommodation space and a much reduced sedimentation rate (1.8 mm/year). Sea surface temperature in this stage reached 27.3 °C initially, but dropped sharply to 26.1 °C towards c. 8200 cal. years BP. The final stage covers the last 7000 years, and the site was under a stable sea level. Sedimentation in this stage varied a little, but averaged at 1.8 mm/year. Whilst fluvial discharge and sea surface temperature didn't change much, two short periods of hydrological and temperature change were observed, which are related to the climatic cooling events of c. 4200 cal. years ago and the Little Ice Age.

  1. The interannual oscillation of sea surface temperature in the South China Sea

    SciTech Connect

    Zhou Faxiu; Yu Shenyu; Fu Gang; Wang Dongxiao

    1994-12-31

    The South China Sea (SCS) is located in the area of the Asia monsoons and is a quasi-closed deep basin near the tropical western Pacific. The sea surface temperature anomalies (SSTA) in the South China Sea have an influence on the precipitation in flood season in the South China. The anomalies of the Asia monsoons have great effect on SST in the SCS. This paper aims at finding the features of the interannual oscillation of SST and discussing the mechanism of the SST oscillation in the SCS.

  2. Macrofauna under sea ice and in the open surface layer of the Lazarev Sea, Southern Ocean

    NASA Astrophysics Data System (ADS)

    Flores, Hauke; van Franeker, Jan-Andries; Cisewski, Boris; Leach, Harry; Van de Putte, Anton P.; Meesters, Erik (H. W. G.); Bathmann, Ulrich; Wolff, Wim J.

    2011-10-01

    A new fishing gear was used to sample the macrozooplankton and micronekton community in the surface layer (0-2 m) under ice and in open water, the Surface and Under Ice Trawl (SUIT). In total, 57 quantitative hauls were conducted in the Lazarev Sea (Southern Ocean) during 3 different seasons (autumn 2004, winter 2006, summer 2007/2008). At least 46 species from eight phyla were caught in all 3 seasons combined. Biomass density was dominated by Antarctic krill Euphausia superba. The average biomass density was highest under the winter sea ice and lowest under the young ice in autumn. In summer, macrozooplankton biomass was dominated by ctenophores in open water and by Antarctic krill under ice. The community composition varied significantly among seasons, and according to the presence of sea ice. The response of the community composition to the presence of sea ice was influenced by species that were significantly more abundant in open water than under ice ( Cyllopus lucasii, Hyperiella dilatata), only seasonally abundant under ice ( Clione antarctica), or significantly associated with sea ice ( Eusirus laticarpus). A number of abundant species showed distinct diel patterns in the surface occurrence both under ice and in open water, indicating that the surface layer serves as a foraging ground predominantly at night. Our results emphasize the potential of a number of non-euphausiid macrozooplankton and micronekton species to act as energy transmitters between the production of sea ice biota and the pelagic food web. By providing a regional-scale quantitative record of macrofauna under Antarctic sea ice covering 3 seasons, this study adds new and direct evidence that the ice-water interface layer is a major functional node in the ecosystem of the Antarctic seasonal sea ice zone.

  3. Interannual Variability of Sea Surface Height over the Black Sea: Relation to Climatic Patterns

    DTIC Science & Technology

    2008-01-01

    eastern and western basins, reflecting variations in the corresponding gyres. A joint examination of SSH and sea surface temperature (SST) indicates...available altimeter data. SSH variability reveals distinct maxima in the eastern and western basins, reflecting variations in the corresponding gyres. A...change resulted from variations in thermocline or mixed layer depth. One important factor is to determine whether sea level varia- tions are mainly

  4. Calving seismicity from iceberg-sea surface interactions

    USGS Publications Warehouse

    Bartholomaus, T.C.; Larsen, C.F.; O'Neel, S.; West, M.E.

    2012-01-01

    Iceberg calving is known to release substantial seismic energy, but little is known about the specific mechanisms that produce calving icequakes. At Yahtse Glacier, a tidewater glacier on the Gulf of Alaska, we draw upon a local network of seismometers and focus on 80 hours of concurrent, direct observation of the terminus to show that calving is the dominant source of seismicity. To elucidate seismogenic mechanisms, we synchronized video and seismograms to reveal that the majority of seismic energy is produced during iceberg interactions with the sea surface. Icequake peak amplitudes coincide with the emergence of high velocity jets of water and ice from the fjord after the complete submergence of falling icebergs below sea level. These icequakes have dominant frequencies between 1 and 3 Hz. Detachment of an iceberg from the terminus produces comparatively weak seismic waves at frequencies between 5 and 20 Hz. Our observations allow us to suggest that the most powerful sources of calving icequakes at Yahtse Glacier include iceberg-sea surface impact, deceleration under the influence of drag and buoyancy, and cavitation. Numerical simulations of seismogenesis during iceberg-sea surface interactions support our observational evidence. Our new understanding of iceberg-sea surface interactions allows us to reattribute the sources of calving seismicity identified in earlier studies and offer guidance for the future use of seismology in monitoring iceberg calving.

  5. Long-term changes in sea surface temperatures

    SciTech Connect

    Parker, D.E.

    1994-12-31

    Historical observations of sea surface temperature since 1856 have been improved by applying corrections to compensate for the predominant use of uninsulated or partly insulated buckets until the Second World War. There are large gaps in coverage in the late nineteenth century and around the two world wars, but a range of statistical techniques suggest that these gaps do not severely prejudice estimates of global and regional climatic change. Nonetheless, to improve the analysis on smaller scales, many unused historical data are to be digitized and incorporated. For recent years, satellite-based sea surface temperatures have improved the coverage, after adjustments for their biases relative to in situ data. An initial version of a nominally globally complete sea ice and interpolated sea surface temperature data set, beginning in 1871, has been created for use in numerical simulations of recent climate. Long time series of corrected regional, hemispheric, and global sea surface temperatures are mostly consistent with corresponding night marine air temperature series, and confirm the regionally specific climatic changes portrayed in the Scientific Assessments of the intergovernmental Panel on Climate Change. The observations also show an El Nino-like oscillation on bidecadal and longer time scales.

  6. Optimisation of sea surface current retrieval using a maximum cross correlation technique on modelled sea surface temperature

    NASA Astrophysics Data System (ADS)

    Heuzé, Céline; Eriksson, Leif; Carvajal, Gisela

    2017-04-01

    Using sea surface temperature from satellite images to retrieve sea surface currents is not a new idea, but so far its operational near-real time implementation has not been possible. Validation studies are too region-specific or uncertain, due to the errors induced by the images themselves. Moreover, the sensitivity of the most common retrieval method, the maximum cross correlation, to the three parameters that have to be set is unknown. Using model outputs instead of satellite images, biases induced by this method are assessed here, for four different seas of Western Europe, and the best of nine settings and eight temporal resolutions are determined. For all regions, tracking a small 5 km pattern from the first image over a large 30 km region around its original location on a second image, separated from the first image by 6 to 9 hours returned the most accurate results. Moreover, for all regions, the problem is not inaccurate results but missing results, where the velocity is too low to be picked by the retrieval. The results are consistent both with limitations caused by ocean surface current dynamics and with the available satellite technology, indicating that automated sea surface current retrieval from sea surface temperature images is feasible now, for search and rescue operations, pollution confinement or even for more energy efficient and comfortable ship navigation.

  7. Sea ice concentration temporal variability over the Weddell Sea and its relationship with tropical sea surface temperature

    USGS Publications Warehouse

    Barreira, S.; Compagnucci, R.

    2007-01-01

    Principal Components Analysis (PCA) in S-Mode (correlation between temporal series) was performed on sea ice monthly anomalies, in order to investigate which are the main temporal patterns, where are the homogenous areas located and how are they related to the sea surface temperature (SST). This analysis provides 9 patterns (4 in the Amundsen and Bellingshausen Seas and 5 in the Weddell Sea) that represent the most important temporal features that dominated sea ice concentration anomalies (SICA) variability in the Weddell, Amundsen and Bellingshausen Seas over the 1979-2000 period. Monthly Polar Gridded Sea Ice Concentrations data set derived from satellite information generated by NASA Team algorithm and acquired from the National Snow and Ice Data Center (NSIDC) were used. Monthly means SST are provided by the National Center for Environmental Prediction reanalysis. The first temporal pattern series obtained by PCA has its homogeneous area located at the external region of the Weddell and Bellingshausen Seas and Drake Passage, mostly north of 60°S. The second region is centered in 30°W and located at the southeast of the Weddell. The third area is localized east of 30°W and north of 60°S. South of the first area, the fourth PC series has its homogenous region, between 30° and 60°W. The last area is centered at 0° W and south of 60°S. Correlation charts between the five Principal Components series and SST were performed. Positive correlations over the Tropical Pacific Ocean were found for the five PCs when SST series preceded SICA PC series. The sign of the correlation could relate the occurrence of an El Niño/Southern Oscillation (ENSO) warm (cold) event with posterior positive (negative) anomalies of sea ice concentration over the Weddell Sea.

  8. Sea surface temperature of the coastal zones of France

    NASA Technical Reports Server (NTRS)

    Deschamps, P. Y.; Crepon, M.; Monget, J. M.; Verger, F. (Principal Investigator); Frouin, R.; Cassanet, J.; Wald, L.

    1982-01-01

    Thermal gradients in French coastal zones for the period of one year were mapped in order to enable a coherent study of certain oceanic features detectable by the variations in the sea surface temperature field and their evolution in time. The phenomena examined were mesoscale thermal features in the English Channel, the Bay of Biscay, and the northwestern Mediterranean; thermal gradients generated by French estuary systems; and diurnal heating in the sea surface layer. The investigation was based on Heat Capacity Mapping Mission imagery.

  9. Determination of sea surface temperatures from microwave and IR data

    NASA Technical Reports Server (NTRS)

    Rangaswamy, S.; Grover, J.

    1982-01-01

    Microwave measurements from the Nimbus 7 SMMR were used to derive the atmospheric precipitable water, which was then used to obtain the atmospheric correction for use with AVHRR thermal IR measurements to obtain sea surface temperature (SST). The resulting SST's were compared with the NOAA operational sea surface temperature measurements, and the two sets of measurements were found to be in reasonable agreement. The average residuals between the two sets of measurements was 0.15 K with the NOAA operational SST's being slightly greater.

  10. Biological control of surface temperature in the Arabian Sea

    NASA Technical Reports Server (NTRS)

    Sathyendranath, Shubha; Gouveia, Albert D.; Shetye, Satish R.; Ravindran, P.; Platt, Trevor

    1991-01-01

    In the Arabian Sea, the southwest monsoon promotes seasonal upwelling of deep water, which supplies nutrients to the surface layer and leads to a marked increase in phytoplankton growth. Remotely sensed data on ocean color are used here to show that the resulting distribution of phytoplankton exerts a controlling influence on the seasonal evolution of sea surface temperature. This results in a corresponding modification of ocean-atmosphere heat exchange on regional and seasonal scales. It is shown that this biological mechanism may provide an important regulating influence on ocean-atmosphere interactions.

  11. Sea level: measuring the bounding surfaces of the ocean

    PubMed Central

    Tamisiea, Mark E.; Hughes, Chris W.; Williams, Simon D. P.; Bingley, Richard M.

    2014-01-01

    The practical need to understand sea level along the coasts, such as for safe navigation given the spatially variable tides, has resulted in tide gauge observations having the distinction of being some of the longest instrumental ocean records. Archives of these records, along with geological constraints, have allowed us to identify the century-scale rise in global sea level. Additional data sources, particularly satellite altimetry missions, have helped us to better identify the rates and causes of sea-level rise and the mechanisms leading to spatial variability in the observed rates. Analysis of all of the data reveals the need for long-term and stable observation systems to assess accurately the regional changes as well as to improve our ability to estimate future changes in sea level. While information from many scientific disciplines is needed to understand sea-level change, this review focuses on contributions from geodesy and the role of the ocean's bounding surfaces: the sea surface and the Earth's crust. PMID:25157196

  12. Sea level: measuring the bounding surfaces of the ocean.

    PubMed

    Tamisiea, Mark E; Hughes, Chris W; Williams, Simon D P; Bingley, Richard M

    2014-09-28

    The practical need to understand sea level along the coasts, such as for safe navigation given the spatially variable tides, has resulted in tide gauge observations having the distinction of being some of the longest instrumental ocean records. Archives of these records, along with geological constraints, have allowed us to identify the century-scale rise in global sea level. Additional data sources, particularly satellite altimetry missions, have helped us to better identify the rates and causes of sea-level rise and the mechanisms leading to spatial variability in the observed rates. Analysis of all of the data reveals the need for long-term and stable observation systems to assess accurately the regional changes as well as to improve our ability to estimate future changes in sea level. While information from many scientific disciplines is needed to understand sea-level change, this review focuses on contributions from geodesy and the role of the ocean's bounding surfaces: the sea surface and the Earth's crust.

  13. Archaeal diversity in surface sediments of the South China Sea

    NASA Astrophysics Data System (ADS)

    Wang, P.; Wei, Y.; Zhang, C.

    2010-12-01

    The South China Sea is one of the largest marginal seas on Earth and known to be one of the global hot spots of biodiversity. Yet, little is known about the abundance, diversity, and distribution of archaea in it. In this study the diversity and distribution of archaea in the surface sediments of the South China Sea were investigated. The samples were collected from seven sites from south to north of the sea with water depths ranging from 1455 m to 3697 m. Phylogenetic analysis revealed that the relative abundances of Euryarchaeota and Crenarchaeota species (OTUs at 2% cutoff) varied from site to site (Eury: 19.4%-67.6%, Cren: 32.4%-80.6%); however, they were about equal in species distribution (46.9% and 53.1%, respectively) for the total seven archaeal clone libraries. The Crenarchaeota predominates in MD05-2902 and MD05-2904 (80.6% and 70.4%); the Euryarchaeota predominates in MD05-2894 (67.6%). The archaeal groups MGI, MBGB, MCG and SAGMEG were dominant in most of the surface samples. MBGE was only dominant in MD05-2894 (64.7%). Overall, these results indicate that the community structures of archaea vary considerably in the surface sediments of the South China Sea.

  14. Assessment of Sea Surface Temperature and Sea Ice Initial Conditions on Coupled Model Forecasts

    NASA Astrophysics Data System (ADS)

    Intrieri, J. M.; Solomon, A.; Persson, O. P. G.; Capotondi, A.; LaFontaine, F.; Jedlovec, G.

    2016-12-01

    We present weather-scale (0-10 day) sea ice forecast validation and skill results from an experimental coupled ice-ocean-atmosphere model during the fall freeze-up periods for 2015 and 2016. The model is a mesoscale, coupled atmosphere-ice-ocean mixed-layer model, termed RASM-ESRL, that was developed from the larger-scale Regional Arctic System Model (RASM) architecture. The atmospheric component of RASM-ESRL consists of the Weather Research and Forecasting (WRF) model, the sea-ice component is the Los Alamos CICE model, and the ocean model is POP. Experimental 5-day forecasts were run daily with RASM-ESRL from July through mid-November in 2015 and 2016. Our project focuses on how the modeled sea ice evolution compares to observed physical processes including atmospheric forcing of sea ice movement, melt, and freeze-up through energy fluxes. Model hindcast output is validated against buoy observations, satellite measurements, and concurrent in situ flux observations made from the R/V Sikuliaq in the fall of 2015. Model skill in predicting atmospheric state variables, wind and boundary layer structures, synoptic features, cloud microphysical and ocean properties will be discussed. We will show results of using different initializations of ocean sea surface temperature and sea ice extent and the impacts on sea ice edge prediction.

  15. Sea surface microplastics in Slovenian part of the Northern Adriatic.

    PubMed

    Gajšt, Tamara; Bizjak, Tine; Palatinus, Andreja; Liubartseva, Svitlana; Kržan, Andrej

    2016-12-15

    Plastics are the most common material of marine litter and have become a global pollution concern. They are persistent in the environment where they gradually degrade into increasingly smaller particles-microplastics (MP). Our study presents results of sea-surface monitoring for MP in the Slovenian part of the Trieste Bay in the Northern Adriatic Sea. In 17 trawls conducted over a 20-month period we found a high average concentration of 406×10(3)MPparticles/km(2). Over 80% of the particles were identified as polyethylene. The significant variability of MP concentrations obtained on different sampling dates is explained by use of surface current maps and a recently developed Markov chain marine litter distribution model for the Adriatic Sea.

  16. Prediction of sea surface temperatures in the western Mediterranean Sea by neural networks using satellite observations

    NASA Astrophysics Data System (ADS)

    Garcia-Gorriz, Elisa; Garcia-Sanchez, Joan

    2007-06-01

    We use artificial neural networks (ANNs) to predict sea surface temperatures (SSTs) in the western Mediterranean Sea. The ANNs are trained with meteorological variables as input and concurrent satellite-derived SSTs as target. The trained ANNs predict well both the seasonal and the interannual variability of SST in that region. We also reproduce the impact of the heat wave that occurred during the summer of 2003 on the SSTs of the western Mediterranean Sea. The ANN technique allows us to predict SST maps in the western Alboran Sea for time coordinates before SST satellite availability. The presence and later partial collapse of the western Alboran gyre throughout 1980 is detected with good agreement by both the ANN predictions and the concurrent results from a 3-D circulation model. The same methodology is used to reconstruct incomplete SST satellite images.

  17. Tidal mixing signatures in the Indonesian seas from high-resolution sea surface temperature data

    NASA Astrophysics Data System (ADS)

    Ray, Richard D.; Susanto, R. Dwi

    2016-08-01

    The presence of significant tidal mixing in the Indonesian seas is well established from both observations and numerical modeling. One indicator is a clear spring-neap cycle in satellite sea surface temperature (SST) measurements, as first shown by Ffield and Gordon. Their early results are here updated with SST data of considerably higher spatial and temporal resolution. The largest fortnightly signals are found to be localized to relatively small straits, channels, and sills, while the deep basin of the Banda Sea displays little significant signal. A broader region of somewhat enhanced signal surrounds the Seram Sea. The high resolution of the modern SST data is especially critical for mapping the complex fortnightly signals that arise in, and especially south of, the major straits of the Lesser Sunda Island chain.

  18. The Aquarius Mission: Sea Surface Salinity from Space

    NASA Technical Reports Server (NTRS)

    Koblinsky, Chester; Chao, Y.; deCharon, A.; Edelstein, W.; Hildebrand, P.; Lagerloef, G.; LeVine, D.; Pellerano, F.; Rahmat-Samii, Y.; Ruf, C.

    2001-01-01

    Aquarius is a new satellite mission concept to study the impact of the global water cycle on the ocean, including the response of the ocean to buoyancy forcing and the subsequent feedback of the ocean on the climate. The measurement objective of Aquarius is sea surface salinity, which reflects the concentration of freshwater at the ocean surface. Salinity affects the dielectric constant of sea water and, consequently, the radiometric emission of the sea surface to space. Rudimentary space observations with an L-band radiometer were first made from Skylab in the mid-70s and numerous aircraft missions of increasing quality and improved technology have been conducted since then. Technology is now available to carry out a global mission, which includes both an accurate L band (1.413 Ghz) radiometer and radar system in space and a global array of in situ observations for calibration and validation, in order to address key NASA Earth Science Enterprise questions about the global cycling of water and the response of the ocean circulation to climate change. The key scientific objectives of Aquarius examine the cycling of water at the ocean's surface, the response of the ocean circulation to buoyancy forcing, and the impact of buoyancy forcing on the ocean's thermal feedback to the climate. Global surface salinity will also improve our ability to model the surface solubility chemistry needed to estimate the air-sea exchange of CO2. In order to meet these science objectives, the NASA Salinity Sea Ice Working Group over the past three years has concluded that the mission measurement goals should be better than 0.2 practical salinity units (psu) accuracy, 100 km resolution, and weekly to revisits. The Aquarius mission proposes to meet these measurement requirements through a real aperture dual-polarized L band radiometer and radar system. This system can achieve the less than 0.1 K radiometric temperature measurement accuracy that is required. A 3 m antenna at approx. 600km

  19. Lithospheric structure of South China Sea from surface wave tomography

    NASA Astrophysics Data System (ADS)

    Chen, L.; Xue, M.; Le, K.; Yang, T.

    2011-12-01

    The South China Sea is one of the marginal seas of the West Pacific where the Eurasian Plate, Philippine Sea Plate, Pacific Plate and Indo-Australian Plate interact. In this study we give a 3D shear wave velocity structure of South China Sea using surface wave tomographic methods. We use earthquakes distributed on the periphery of the South China Sea and collect the earthquake data from 48 stations (IRIS stations, CDSN stations and four stations deployed in Vietnam by Tongji University) with rays up to ~ 3000. We first calculate the group velocity dispersion curves of fundamental mode for Rayleigh waves with periods from 14 sec to 130 sec using the multiple filter technique. After getting the dispersion curve between each station-to-source pair, we conduct an inversion to get group velocity at each grid point in the rectangular region of 14° s - 34° N and 86° E - 134° E with different grid spacing of 2° × 2° and 1° × 1°. This process is done by the fast marching method as the forward step and then subspace inversion step followed. When we get the group velocity of each grid point for corresponding periods, we can extract a dispersion curve for that point. Through the surface wave inversion which uses Knopoff's calculation method for layered medium as the forward step and the damped least square method as the inversion step followed, we can get an iterative model which carries the information of shear wave velocity and layer depth for each grid point. Finally we put all the shear wave velocity structures of all points together to obtain the three-dimensional shear wave structures. With checkboard tests indicating good resolution, we find that higher group velocities persistently show up in South China Sea Basin, West Philippine Sea Basin, and Celebes Sea Basin from periods of 20 sec to 60 sec, which reflect structures down to 20 - 60 km deep. Similar high shear velocity features also show up in depth slices from 30 km to 60 km. These high shear velocity

  20. Sea-surface and deep-magnetic data at Vavilov Seamount, Tyrrhenian Sea

    NASA Astrophysics Data System (ADS)

    Muccini, Filippo; Cocchi, Luca; Locritani, Marina; Carmisciano, Cosmo

    2016-04-01

    Sea surface and deep magnetic data were acquired at Vavilov seamount, in the Tyrrhenian sea. Vavilov seamount is located in the central portion of the homonymous Vavilov basin. The seamount stands about 2800 meters above the seafloor at 3600 meters depth, with the top at about 800 meters below the sea level. Oceanization of the basin occurred during the Late Miocene-Early Pliocene. The magnetic data were collected in 2011 on board the Nave Ammiraglio Magnaghi by using a Marine Magnetics Seaspy magnetometer. The sea surface magnetic survey was realized with two different grids: the first regional one, with 13 parallel lines about 43 Km long, 3 Km spaced (104° N oriented) and 6 tie control lines about 40 Km long, 5 Km spaced (014° N oriented). The second one was realized to better define the volcanic structure of the seamount, and was achieved by acquiring 12 magnetic parallel lines (104° N), 18 Km long and 1 Km spaced. The deep magnetic data were collected by towing a magnetic sensor coupled with a L3 sidescan sonar Klein 3000. A set of 5 parallel lines were acquired in correspondence of the bathymetric top of the seamount with the sensor flying at about constant depth of 700 meters. These data represents the first near-bottom magnetic data collected for Vavilov seamount and it allows comparison between sea-surface and deep magnetic data.

  1. Skylab earth resources experiment package /EREP/ - Sea surface topography experiment

    NASA Technical Reports Server (NTRS)

    Vonbun, F. O.; Marsh, J. G.; Mcgoogan, J. T.; Leitao, C. D.; Vincent, S.; Wells, W. T.

    1976-01-01

    The S-193 Skylab radar altimeter was operated in a round-the-world pass on Jan. 31, 1974. The main purpose of this experiment was to test and 'measure' the variation of the sea surface topography using the Goddard Space Flight Center (GSFC) geoid model as a reference. This model is based upon 430,000 satellite and 25,000 ground gravity observations. Variations of the sea surface on the order of -40 to +60 m were observed along this pass. The 'computed' and 'measured' sea surfaces have an rms agreement on the order of 7 m. This is quite satisfactory, considering that this was the first time the sea surface has been observed directly over a distance of nearly 35,000 km and compared to a computed model. The Skylab orbit for this global pass was computed using the Goddard Earth Model (GEM 6) and S-band radar tracking data, resulting in an orbital height uncertainty of better than 5 m over one orbital period.

  2. Loki Patera as the Surface of a Magma Sea

    NASA Technical Reports Server (NTRS)

    Matson, D. L.; Davies, A. G.; Veeder, G. J.; Rathbun, J. A.; Johnson, T. V.

    2004-01-01

    Inspired by the finding of Schubert et al that Io's figure is consistent with a hydrostatic shape, we explore the consequences of modeling Loki Patera as the surface of a large magma sea. This model is attractive because of its sheer simplicity and its usefulness in interpreting and predicting observations. Here, we report on that work.

  3. Loki Patera as the Surface of a Magma Sea

    NASA Technical Reports Server (NTRS)

    Matson, D. L.; Davies, A. G.; Veeder, G. J.; Rathbun, J. A.; Johnson, T. V.

    2004-01-01

    Inspired by the finding of Schubert et al that Io's figure is consistent with a hydrostatic shape, we explore the consequences of modeling Loki Patera as the surface of a large magma sea. This model is attractive because of its sheer simplicity and its usefulness in interpreting and predicting observations. Here, we report on that work.

  4. Sea Surface Salinity: The Next Remote Sensing Challenge

    NASA Technical Reports Server (NTRS)

    Lagerloef, Gary S. E.; Swift, Calvin T.; LeVine, David M.

    1995-01-01

    A brief history of salinity remote sensing is presented. The role of sea surface salinity (SSS) in the far north Atlantic and the influence of salinity variations on upper ocean dynamics in the tropics are described. An assessment of the present state of the technology of the SSS satellite remote sensing is given.

  5. Mean Sea Surface (mss) Model Determination for Malaysian Seas Using Multi-Mission Satellite Altimeter

    NASA Astrophysics Data System (ADS)

    Yahaya, N. A. Z.; Musa, T. A.; Omar, K. M.; Din, A. H. M.; Omar, A. H.; Tugi, A.; Yazid, N. M.; Abdullah, N. M.; Wahab, M. I. A.

    2016-09-01

    The advancement of satellite altimeter technology has generated many evolutions to oceanographic and geophysical studies. A multi-mission satellite altimeter consists with TOPEX, Jason-1 and Jason-2, ERS-2, Envisat-1, CryoSat-2 and Saral are extracted in this study and has been processed using Radar Altimeter Database System (RADS) for the period of January 2005 to December 2015 to produce the sea surface height (hereinafter referred to SSH). The monthly climatology data from SSH is generated and averaged to understand the variation of SSH during monsoon season. Then, SSH data are required to determine the localised and new mean sea surface (MSS). The differences between Localised MSS and DTU13 MSS Global Model is plotted with root mean square error value is 2.217 metres. The localised MSS is important towards several applications for instance, as a reference for sea level variation, bathymetry prediction and derivation of mean dynamic topography.

  6. Temporal and spatial variability of the sea surface salinity in the Nordic Seas

    NASA Astrophysics Data System (ADS)

    Furevik, Tore; Bentsen, Mats; Drange, Helge; Johannessen, Johnny A.; Korablev, Alexander

    2002-12-01

    In this paper, the temporal and spatial variability of the sea surface salinity (SSS) in the Nordic Seas is investigated. The data include a Russian hydrographical database for the Nordic Seas and daily to weekly observations of salinity at Ocean Weather Station Mike (OWSM) (located at 66°N, 2°E in the Norwegian Sea). In addition, output from a medium-resolution version of the Miami Isopycnic Coordinate Ocean Model (MICOM), forced with daily National Center for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis data, is used to complement the analysis of the temporal and spatial fields constructed from the observational data sets. The Nordic Seas show a strong seasonal variability in the vertical density stratification and the mixed layer (ML) depth, with a weak stratification and a several hundred meters deep ML during winter and a well-defined shallow ML confined to the upper few tens of meters during summer. The seasonal variability strongly influences the strength of the high-frequency variability and to what extent subsurface anomalies are isolated from the surface. High-frequency variability has been investigated in terms of standard deviation of daily SSS, calculated for the different months of the year. From observations at OWSM, typical winter values range from 0.03 to 0.04 psu and summer values range from 0.06 to 0.07 psu. Results from the model simulation show that highest variability is found in frontal areas and in areas with strong stratification and lowest variability in the less stratified areas in the central Norwegian Sea and south of Iceland. Investigation of the interannual variability over the last 50 years shows a marked freshening of the Atlantic Water in the Norwegian and Greenland Seas. Moreover, the strength of the southern sector of the Polar front, as defined by the 34.8-35.0 psu isohalines along the western boundary of the inflowing Atlantic Water, undergoes significant interannual variability

  7. Assimilation of sea surface temperature, sea ice concentration and sea ice drift in a model of the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Barth, Alexander; Canter, Martin; Van Schaeybroeck, Bert; Vannitsem, Stéphane; Massonnet, François; Zunz, Violette; Mathiot, Pierre; Alvera-Azcárate, Aida; Beckers, Jean-Marie

    2015-09-01

    Current ocean models have relatively large errors and biases in the Southern Ocean. The aim of this study is to provide a reanalysis from 1985 to 2006 assimilating sea surface temperature, sea ice concentration and sea ice drift. In the following it is also shown how surface winds in the Southern Ocean can be improved using sea ice drift estimated from infrared radiometers. Such satellite observations are available since the late seventies and have the potential to improve the wind forcing before more direct measurements of winds over the ocean are available using scatterometry in the late nineties. The model results are compared to the assimilated data and to independent measurements (the World Ocean Database 2009 and the mean dynamic topography based on observations). The overall improvement of the assimilation is quantified, in particular the impact of the assimilation on the representation of the polar front is discussed. Finally a method to identify model errors in the Antarctic sea ice area is proposed based on Model Output Statistics techniques using a series of potential predictors. This approach provides new directions for model improvements.

  8. Assimilation of sea surface temperature, sea ice concentration and sea ice drift in a model of the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Barth, Alexander; Canter, Martin; Van Schaeybroeck, Bert; Vannitsem, Stéphane; Massonnet, François; Zunz, Violette; Mathiot, Pierre; Alvera-Azcárate, Aida; Beckers, Jean-Marie

    2015-04-01

    Current ocean models have relatively large errors and biases in the Southern Ocean. The aim of this study is to provide a reanalysis from 1985 to 2006 assimilating sea surface temperature, sea ice concentration and sea ice drift. In the following it is also shown how surface winds in the Southern Ocean can be improved using sea ice drift estimated from infrared radiometers. Such satellite observations are available since the late seventies and have the potential to improve the wind forcing before more direct measurements of winds over the ocean are available using scatterometry in the late nineties. The model results are compared to the assimilated data and to independent measurements (the World Ocean Database 2009 and the mean dynamic topography based on observations). The overall improvement of the assimilation is quantified, in particular the impact of the assimilation on the representation of the polar front is discussed. Finally a method to identify model errors in the Antarctic sea ice area is proposed based on Model Output Statistics techniques using a series of potential predictors. This approach provides new directions for model improvements.

  9. SeaRover: An Emerging Technology for Sea Surface Sensor Networks

    NASA Astrophysics Data System (ADS)

    Fong, T.; Kudela, R.; Curcio, J.; Davidson, K.; Darling, D.; Kirkwood, B.

    2005-12-01

    Introduction - SeaRover is envisioned as an autonomous surface vehicle (ASV) for coastal operations. It is intended to lower the cost of existing marine survey applications while enabling new science missions. The current conceptual design is a small vehicle with hull and propulsion system optimized to eliminate cavitation and EM noise. SeaRover will make significant advances over existing platforms by providing longer duration science missions, better positioning and mission control, larger power budgets for instrumentation and significantly lower operational costs than existing vehicles. Science Enabled by SeaRover - SeaRover's unique design and autonomous capability provides several advantages compared to traditional autonomous underwater vehicles (AUV's) and crewed surface vessels: (1) Near surface sampling: SeaRover can sample within the top 1-2 meters. This is difficult to do with crewed vessels because of draft and perturbations from the hull. (2) Adaptive monitoring of dynamic events: SeaRover will be capable of intelligent decision making, as well as real-time remote control. This will enable highly-responsive autonomous tracking of moving phenomena (e.g., algal bloom). (3) Long term monitoring: SeaRover can be deployed for extended periods of time, allowing it to be used for longitudinal baseline studies. SeaRover will represent an advance over existing platforms in terms of: (1) Mobility: operational range from 10-1000 km, GPS accuracy, trajectory control with meter precision, and launch in hours. (2) Duration: from days up to months. (3) Payload and Power: accommodate approximately 100 kg for a 6m hull. Its surface design will allow access to wind and sun energy. (4) Communication: radio, wireless, satellite, direct data return. (5) Operational Cost: target costs are $2K/day (24 hour operation), with no onboard operator. (6) Recovery/Reusability: autonomous return to safe harbor provides sample return and on-base maintenance. Large science and power

  10. An Arctic Sea Surface Temperature Climate Data Record

    NASA Astrophysics Data System (ADS)

    Høyer, Jacob L.; Howe, Eva; Tonboe, Rasmus; Dybkjaer, Gorm

    2013-12-01

    Daily fields of gap-free sea surface temperature observations from 1982 to 2010 have been constructed using the DMI_OI processing method, satellite SST observations from the ARC and Pathfinder projects, together with OSI-SAF sea ice reanalysis and ICOADS 2.5 observations. A thorough validation of the data set shows the overall performance with biases within 0.1 oC and standard deviations about 0.6oC. The spatial and temporal validation shows small biases, with no apparent structures, except within the Marginal Ice Zone. Examples on regional SST time series are given, where the decadal warming is evident.

  11. Atmospheric response to variations in sea surface temperature

    NASA Technical Reports Server (NTRS)

    Spar, J.; Atlas, R.

    1974-01-01

    An extended range prediction experiment was performed with the GISS atmospheric model on a global data to test the sensitivity of the model to sea surface temperature (SST) variation over a two-week forecast period. The use of an initial observed SST field in place of the climatological monthly mean sea temperatures for surface flux calculations in the model was found to have a significant effect on the predicted precipitation over the ocean, with enhanced convection computed over areas where moderately large warm SST anomalies are found. However, there was no detectable positive effect of the SST anomaly field on forecast quality. The influence of the SST anomalies on the daily predicted fields of pressure and geopotential is relatively insignificant up to about one week compared with the growth of prediction error, and is no greater over a two-week period than that resulting from random errors in the initial meteorological state. The 14-day average fields of sea level pressure and 500-mb height predicted by the model, appear to be similarly insensitive to anomalies of sea surface temperature.

  12. Estimates of sea surface temperature in the Coral Sea at the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Anderson, D. M.; Prell, W. L.; Barratt, N. J.

    1989-12-01

    The CLIMAP [1981] reconstruction of the Coral Sea found relatively little cooling (2°C) in the low latitudes (10°S) but a warming off Australia at about 25°S. The small low-latitude changes are of interest because terrestrial pollen and snowline data from the New Guinea highlands imply that surface temperatures may have been 6° to 9°C colder at the last glacial maximum (LGM). The purpose of this paper is to evaluate these conclusions on the basis of additional core sites, new oxygen isotope stratigraphy, and new sea surface temperature (SST) estimates using the modern analog technique (MAT). In the northern Coral Sea, planktonic foraminifer assemblages consist of tropical-subtropical species that show little change over the past 20 kyr. Quantitative estimates of SST using the modern analog technique (MAT) confirm the CLIMAP [1981] conclusion that little or no temperature change occurred in this tropical region at the LGM, thus reinforcing the conflict with terrestrial evidence. In the southern region (25°S), two cores indicate that foraminifer faunas became more subtropical at the LGM. The MAT estimates for the LGM are 3° to 4°C colder than modern, producing a steeper thermal gradient in the southern Coral Sea. These data remove the warm SST anomaly along the eastern coast of Australia and indicate that during the LGM, cool high- latitude waters were displaced northward along the coast of Australia into the southern Coral Sea.

  13. Sea surface temperature and salinity seasonal changes in the western Solomon and Bismarck Seas

    NASA Astrophysics Data System (ADS)

    Delcroix, Thierry; Radenac, Marie-Hélène; Cravatte, Sophie; Alory, Gaël.; Gourdeau, Lionel; Léger, Fabien; Singh, Awnesh; Varillon, David

    2014-04-01

    We analyze mean and seasonal change of Sea Surface Temperature (SST) and Salinity (SSS) in the Solomon and Bismarck Seas, using 1977-2009 in situ data collected from Voluntary Observing Ships. Covariability of these two variables with surface wind, altimeter-derived and model-derived horizontal currents, precipitation, and Sepik River discharge are examined. SST and SSS show large annual oscillations in the Solomon Sea, with the coldest and saltiest waters occurring in July/August mainly due to horizontal advection. In contrast, they show large semiannual oscillations in the Bismarck Sea. There, the coldest and saltiest waters happen in January/February, when the northwest monsoon winds drive coastal upwelling, and in July/August, when the New Guinea Coastal Current advects cold and high-salinity waters from the Solomon Sea through Vitiaz Strait. The low SSS values observed in April/May, stuck between the January/February and July/August SSS maxima, are further enhanced by the Sepik River discharge annual maximum. A high-resolution model strengthens the conclusions we derive from observations. The impacts of ENSO on SST and SSS are also discussed with, for instance, saltier-than-average and fresher-than-average waters during the 2002-2003 El Niño and 2007-2008 La Niña, respectively.

  14. Sea surface temperature modelling in the Sea of Iroise: assessment of boundary conditions

    NASA Astrophysics Data System (ADS)

    Guillou, Nicolas; Chapalain, Georges; Duvieilbourg, Eric

    2013-07-01

    The present study investigates the sensitivity of the COupled Hydrodynamical-Ecological model for REgioNal and Shelf seas (COHERENS) to predict sea surface temperature (SST) patterns in the Sea of Iroise (western end of French Brittany) in relation to the spatial and temporal resolutions of open boundary conditions (OBCs). Two sources of daily operational OBCs of temperature are considered, derived from (1) the Mercator Global Ocean and (2) the Iberian Biscay Irish analysis and forecasting systems delivering predictions at spatial resolutions of 1/12° and 1/36°, respectively. Coastal model performance is evaluated by comparing SST predictions with recently available field data collected (1) along the route of a vessel travelling between the coast and the isle of Ushant and (2) at two offshore stations. The comparison is extended to SST spatial distribution derived from remote-sensing observations. The influence of OBC spatial resolution is exhibited in the north-eastern area of the Sea of Iroise in relation to the intrusion of cold surface waters. OBC temporal resolution is found to have a lower impact advocating for the implementation of climatological temperature forcings to predict major SST patterns in the Sea of Iroise.

  15. On model differences and skill in predicting sea surface temperature in the Nordic and Barents Seas

    NASA Astrophysics Data System (ADS)

    Langehaug, H. R.; Matei, D.; Eldevik, T.; Lohmann, K.; Gao, Y.

    2017-02-01

    The Nordic Seas and the Barents Sea is the Atlantic Ocean's gateway to the Arctic Ocean, and the Gulf Stream's northern extension brings large amounts of heat into this region and modulates climate in northwestern Europe. We have investigated the predictive skill of initialized hindcast simulations performed with three state-of-the-art climate prediction models within the CMIP5-framework, focusing on sea surface temperature (SST) in the Nordic Seas and Barents Sea, but also on sea ice extent, and the subpolar North Atlantic upstream. The hindcasts are compared with observation-based SST for the period 1961-2010. All models have significant predictive skill in specific regions at certain lead times. However, among the three models there is little consistency concerning which regions that display predictive skill and at what lead times. For instance, in the eastern Nordic Seas, only one model has significant skill in predicting observed SST variability at longer lead times (7-10 years). This region is of particular promise in terms of predictability, as observed thermohaline anomalies progress from the subpolar North Atlantic to the Fram Strait within the time frame of a couple of years. In the same model, predictive skill appears to move northward along a similar route as forecast time progresses. We attribute this to the northward advection of SST anomalies, contributing to skill at longer lead times in the eastern Nordic Seas. The skill at these lead times in particular beats that of persistence forecast, again indicating the potential role of ocean circulation as a source for skill. Furthermore, we discuss possible explanations for the difference in skill among models, such as different model resolutions, initialization techniques, and model climatologies and variance.

  16. Polarized reflectance and transmittance properties of windblown sea surfaces.

    PubMed

    Mobley, Curtis D

    2015-05-20

    Generation of random sea surfaces using wave variance spectra and Fourier transforms is formulated in a way that guarantees conservation of wave energy and fully resolves wave height and slope variances. Monte Carlo polarized ray tracing, which accounts for multiple scattering between light rays and wave facets, is used to compute effective Mueller matrices for reflection and transmission of air- or water-incident polarized radiance. Irradiance reflectances computed using a Rayleigh sky radiance distribution, sea surfaces generated with Cox-Munk statistics, and unpolarized ray tracing differ by 10%-18% compared with values computed using elevation- and slope-resolving surfaces and polarized ray tracing. Radiance reflectance factors, as used to estimate water-leaving radiance from measured upwelling and sky radiances, are shown to depend on sky polarization, and improved values are given.

  17. Sea surface determination from space: The GSFC geoid

    NASA Technical Reports Server (NTRS)

    Vonbun, F. O.; Mcgoogan, J.; Marsh, J.; Lerch, F. J.

    1975-01-01

    The determination of the sea surface/geoid and its relative variation were investigated and results of the altimeter experiment on Skylab to test the geoid are discussed. The spaceborne altimeter on Skylab revealed that the sea surface of the world's oceans can be measured with an accuracy in the meter range. Surface variations are discussed as they relate to those computed from satellite orbital dynamics and ground based gravity data. The GSFC geoid was constructed from about 400,000 satellite tracking data (range, range rate, angles) and about 20,000 ground gravity observations. One of the last experiments on Skylab was to measure and/or test this geoid over almost one orbit. It was found that the computed water surface deviates between 5 to 20 m from the measured one. Further outlined are the influence of orbital errors on the sea surface, and numerical examples are given based upon real tracking data. Orbital height error estimates were computed for geodetic type satellites and are found to be in the order of 0.2 to 5 meters.

  18. Comparison of satellite and airborne sensor data on sea surface temperature and suspended solid distribution

    NASA Astrophysics Data System (ADS)

    Nishimura, Y.; Saito, K.; Hayakawa, S.; Narigasawa, K.

    1992-07-01

    Sea surface temperature and suspended solid were observed simultaneously by LANDSAT TM, NOAA AVHRR and airborne MSS. The authors compared the following items through the data, i.e., 1) Sea surface temperature, 2) Suspended solid in the sea water, 3) Monitoring ability on ocean environment. It was found that distribution patterns of sea surface temperature and suspended solid in the Ariake Sea obtained from LANDSAT TM are similar with those from airborne MSS in a scale of 1:300,000. Sea surface temperature estimated from NOAA AVHRR data indicates a fact of an ocean environment of the Ariake Sea and the around sea area. It is concluded that the TM data can be used for the monitoring of sea environment. The NOAA AVHRR data is useful for the estimation of sea surface temperature with the airborne MSS data.

  19. Influence of surface kinematics on air-sea heat flux

    NASA Astrophysics Data System (ADS)

    Veron, Fabrice; Melville, Ken

    2004-11-01

    The top few meters of the oceanic boundary layer play a critical role in the transfers of momentum, gas, mass and heat between the atmosphere and the ocean. These exchanges must necessarily transfer through the surface, and presumably, the rates at which they do are influence by the dynamics of the surface layer. Heat flux in particular is regulated by the thin surface thermal layer which, at most, is only a few millimeter thick. We are specifically interested in the influence of small coherent structures of the surface turbulence on the heat flux. Using active and passive infrared imaging, we measured the evolution the surface velocity and temperature fields over small areas of a few square meters. High-resolution surface Eulerian velocity fields using cross-correlation techniques (PIV) are obtained. Using active marking of the surface with an infrared CO2 laser, we have not only shown that it is possible to directly recover the Langrangian surface velocity, but also, by marking appropriate patterns on the surface we have been able to measure the shear strain, vorticity, and surface divergence. With the penetration depth of infrared radiation at these wavelengths being a few microns, these techniques appear to be quite apt for direct measurements of ocean surface turbulence. We have also found that the flux of heat through the surface appears to be influenced by the surface wave field. We will discuss the results in the context of air sea heat flux and ocean surface turbulence.

  20. Remote sensing the sea surface CO2 of the Baltic Sea using the SOMLO methodology

    NASA Astrophysics Data System (ADS)

    Parard, G.; Charantonis, A. A.; Rutgerson, A.

    2015-06-01

    Studies of coastal seas in Europe have noted the high variability of the CO2 system. This high variability, generated by the complex mechanisms driving the CO2 fluxes, complicates the accurate estimation of these mechanisms. This is particularly pronounced in the Baltic Sea, where the mechanisms driving the fluxes have not been characterized in as much detail as in the open oceans. In addition, the joint availability of in situ measurements of CO2 and of sea-surface satellite data is limited in the area. In this paper, we used the SOMLO (self-organizing multiple linear output; Sasse et al., 2013) methodology, which combines two existing methods (i.e. self-organizing maps and multiple linear regression) to estimate the ocean surface partial pressure of CO2 (pCO2) in the Baltic Sea from the remotely sensed sea surface temperature, chlorophyll, coloured dissolved organic matter, net primary production, and mixed-layer depth. The outputs of this research have a horizontal resolution of 4 km and cover the 1998-2011 period. These outputs give a monthly map of the Baltic Sea at a very fine spatial resolution. The reconstructed pCO2 values over the validation data set have a correlation of 0.93 with the in situ measurements and a root mean square error of 36 μatm. Removing any of the satellite parameters degraded this reconstructed CO2 flux, so we chose to supply any missing data using statistical imputation. The pCO2 maps produced using this method also provide a confidence level of the reconstruction at each grid point. The results obtained are encouraging given the sparsity of available data, and we expect to be able to produce even more accurate reconstructions in coming years, given the predicted acquisition of new data.

  1. Holocene Sea Surface Conditions in the Nordic Seas According to Dinocyst Assemblages

    NASA Astrophysics Data System (ADS)

    Van Nieuwenhove, N.; Baumann, A.; Bonnet, S.; Matthiessen, J. J.; de Vernal, A.; Bauch, H. A.; Hillaire-Marcel, C.

    2014-12-01

    The Holocene evolution of the upper ocean in the Nordic Seas is assessed based on the qualitative and quantitative evaluation of 16 dinoflagellate cyst (dinocyst) records retrieved from the warm and saline Atlantic Domain in the east, across the seasonally sea-ice covered Arctic Domain, to the Arctic-outflow influenced Polar Domain in the west. First signs of interglacial conditions are observed from ~11.5 ka BP onwards in the Atlantic Domain, and expanded time-transgressively westward, with deglacial processes appearing to have persisted ~2 kyr longer in the west. No clear peak warming can be observed in the dinocyst data during the interval that is generally considered to correspond to the Holocene climatic optimum, and the disparity between the dinocyst and other phytoplankton records suggests a pronounced seasonality at that time. A slightly freshened upper ocean appears to have facilitated seasonal sea ice formation even at the Vøring Plateau. Despite the strongly contrasting environmental conditions across the Nordic Seas, a basin-wide uniform change in the assemblage compositions is seen between ~7 and 6.1 ka BP, and appears to be linked to the establishment of the modern surface circulation pattern. Potential density estimates for the surface water close to modern convection sites reveals values that would imply an increased likeliness of dense enough surface waters to permit sinking from that time onwards. The changes in the Nordic Seas appear to follow a similar reorganisation in the Labrador Sea and the onset of strong winter convection there. Finally, a gradual eastward expansion of the Arctic Domain can be observed from ~4.5 ka BP onwards, with a delayed consequent reaction of the Atlantic-sourced water inflow at the Vøring Plateau showing a slight recovery of cool taxa from ~2.4 ka BP onwards.

  2. Relationship Between Sea Surface Salinity from L-Band Radiometer and Optical Features in the East China Sea

    DTIC Science & Technology

    2014-01-01

    band Radiometer and Optical Features in the East China Sea 6. AUTHOR(S) Bumjun Kil , Derek Burrage, Joel Wesson and Stephan Howden 7. PERFORMING...between sea surface salinity from L-band radiometer and optical features in the East China Sea Bumjun Kil *^ Derek Burrage’’, Joel Wesson’’ and Stephan

  3. Observations on electromagnetic bias in radar altimeter sea surface measurements

    NASA Technical Reports Server (NTRS)

    Walsh, Edward J.; Jackson, Frederick C.; Uliana, Enzo A.; Swift, Robert N.

    1989-01-01

    Because the relative radar cross section of the sea surface increases below mean sea level and decreases above it, the range measurements of satellite radar altimeters are biased toward the wave troughs. Published and unpublished direct measurements of this electromagnetic (EM) bias are examined as well as the predictions of theoretical developments. The EM bias is predominantly a function of the radar frequency used, averaging 1.2 percent of the wave height of Ka band and 3.3 percent of the wave height at X band. The airborne measurements present a consistent picture of the variation of the relative radar cross section as a function of deviation from mean sea level. A technique to measure EM bias at the Ku and C band operating frequencies of the Topex satellite altimeter is described.

  4. Sea ice and surface water circulation, Alaskan continental shelf

    NASA Technical Reports Server (NTRS)

    Wright, F. F. (Principal Investigator); Sharma, G. D.; Burns, J. J.

    1973-01-01

    The author has identified the following significant results. Sediments contributed by the Copper River in the Gulf of Alaska are carried westward along the shore as a distinct plume. Oceanic water relatively poor in suspended material appears to intrude near Montague Island, and turbid water between Middleton Island and Kayak Island is the result of Ekman between transport. An anticlockwise surface water circulation is observed in this region. Ground truth data indicate striking similarity with ERTS-1 imagery obtained on October 12, 1972. Observations of ERTS-1 imagery reveal that various characteristics and distribution of sea ice in the Arctic Ocean can be easily studied. Formation of different types of sea ice and their movement is quite discrenible. Sea ice moves parallel to the cost in near shore areas and to the northerly direction away from the coast.

  5. Interdecadal variability of the sea surface height around Japan

    NASA Astrophysics Data System (ADS)

    Yasuda, Tamaki; Sakurai, Keizo

    2006-01-01

    The variability of the sea surface height (SSH) around Japan during 1960-2002 was investigated using an ocean general circulation model. The first EOF mode of the simulated SSH change has bidecadal variability and exhibits simultaneous variations around Japan that are in good agreement with the observed sea level changes along the Japanese coast. The variability is caused primarily by the meridional shift of the boundary between the subtropical and subpolar gyres due to shifting of the westerlies over the central North Pacific. The second mode of SSH change indicates a north-south dipole structure around Japan, that results from a change in the strength of the subtropical gyre due to a change in the magnitude of the westerlies. The rising (descending) trend of the sea level observed in the western (eastern) part of Japan in the past 40 years is determined by the increasing trend of the westerlies.

  6. Covariation of Mesoscale Ocean Color and Sea-Surface Temperature Patterns in the Sargasso Sea

    NASA Technical Reports Server (NTRS)

    McGillicuddy, Dennis J., Jr.; Kosnyrev, V. K.; Ryan, J. P.; Yoder, J. A.

    2001-01-01

    During the lifetime of the Coastal Zone Color Scanner, there were 21 instances in which both satellite-derived ocean color and sea-surface temperature are simultaneously available over large areas of the Sargasso Sea. These images reveal close correspondence between mesoscale structures observed in temperature and pigment fields. In general, higher (lower) pigment biomass occurs in mesoscale features consisting of cold (warm) temperature anomalies. This relationship is consistent with the idea that upward displacement of isopycnals at the base of the euphotic zone by mesoscale eddies is an important mechanism of nutrient supply in the region.

  7. Covariation of Mesoscale Ocean Color and Sea-Surface Temperature Patterns in the Sargasso Sea

    NASA Technical Reports Server (NTRS)

    McGillicuddy, D. J.; Kosnyrev, V. K.; Ryan, J. P.; Yoder, J. A.

    2001-01-01

    During the lifetime of the Coastal Zone Color Scanner, there were 21 instances in which both satellite-derived ocean color and sea-surface temperature are simultaneously available over large areas of the Sargasso Sea. These images reveal close correspondence between mesoscale structures observed in temperature and pigment fields. In general, higher (lower) pigment biomass occurs in mesoscale features consisting of cold (warm) temperature anomalies. This relationship is consistent with the idea that upward displacement of isopycnals at the base of the euphotic zone by mesoscale eddies is an important mechanism of nutrient supply in the region.

  8. Feasibility Study Of Sea Surface Currents Measurements With Doppler Scatterometers

    NASA Astrophysics Data System (ADS)

    Fabry, P.; Recchia, A.; de Kloe, J.; Stoffelen, A.; Husson, R.; Collard, F.; Chapron, B.; Mouche, A.; Enjolras, V.; Johannessen, J.; Lin, C. C.; Fois, F.

    2013-12-01

    We present the activity carried out in the framework of the ESA GSP study called "Feasibility Investigation of Global Ocean Surface Current Mapping using ERS, MetOp and QuikScat Wind Scatterometer” (DOPSCAT). The study was aimed at assessing the potential of scatterometer instruments for sea surface current vector retrieval under the strong requirements of preserving both the swath and the surface wind vector estimation performances offered by the existing scatterometers. The paper describes the main results obtained during the DOPSCAT study and provides some recommendations for this new instrument concept.

  9. Geoid Profiles in the Baltic Sea Determined Using GPS and Sea Level Surface

    NASA Astrophysics Data System (ADS)

    Jürgenson, Harli; Liibusk, Aive; Ellmann, Artu

    2008-12-01

    The idea was to compare the geoid of sea areas by an independent method, like GPS levelling, on the mainland. On the earth surface we can compare the gravimetric geoid with GPS levelling to get an accuracy estimation and tilt information. On the sea we can do it by the GPS methodology and eliminating the current water tilt corrections and the sea surface topography effect. A modern GPS device on board a ferry can store data every second and determine heights with an accuracy of a few centimetres (using the kinematic method with the postprocessing of data obtained from several base stations close to the ferry line). As a result, it is possible to observe the current water level's relative profile in reference to the ellipsoid. Some areas close to Estonia, such as the eastern part of the Gulf of Finland, are not completely covered by gravity measurements. The Baltic Sea has been measured using airborne gravimetry with the accuracy of about 2 mGal. Therefore, the gravimetric geoid is not fully reliable for the region either. If we take into account the tilt of the water level at the moment of measurement, we can observe the relative change of the geoid using an independent methodology, which serves as a comparison to the gravimetric geoid solution. The main problem during the measurement campaign, of course, was how to eliminate a water tilt. Water placement in relation to level surface is a very complex issue; special studies of that were conducted as well.

  10. Mean Sea Surface and Variability of the Gulf of Mexico Using Geosat Altimetry Data

    DTIC Science & Technology

    1990-03-15

    Geosat Exact Repeat Mission (ERM) altimetric measurements of the sea surface height in the Gulf of Mexico are used to determine the mean sea surface... Gulf of Mexico . Keywords: Altimetry; Mesoscale oceanography; Ocean forecasting; Reprints.

  11. Interannual variations of surface winds over China marginal seas

    NASA Astrophysics Data System (ADS)

    Sun, Che; Yan, Xiaomei

    2012-11-01

    In a study of surface monsoon winds over the China marginal seas, Sun et al. (2012) use singular value decomposition method to identify regional dominant modes and analyze their interdecadal variability. This paper continues to evaluate the interannual variability of each dominant mode and its relation to various atmospheric, oceanic and land factors. The findings include: 1) The intensity of the winter monsoon over the East China Sea is highly correlated with the Siberian High intensity and anti-correlated with the latitudinal position of the Aleutian Low as well as the rainfall in eastern China, Korean Peninsula and Japan; 2) The western Pacific subtropical high is significantly correlated with the summer monsoon intensity over the East China Sea and anti-correlated with the summer monsoon over the South China Sea; 3) The winter monsoon in a broad zonal belt through the Luzon Strait is dominated by the ENSO signal, strengthening in the La Niña phase and weakening in the El Niño phase. This inverse relation exhibits interdecadal shift with a period of weak correlation in the 1980s; 4) Analysis of tidal records validates the interdecadal weakening of the East Asian summer monsoon and reveals an atmospheric bridge that conveys the ENSO signal into the South China Sea via the winter monsoon.

  12. O2 absorption for measurements of sea surface air pressure

    NASA Astrophysics Data System (ADS)

    Lin, B.; Hu, Y.

    2006-12-01

    Currently, sea surface air pressure measurements can only be obtained from in situ observations including buoy and dropsonde measurements, which are sparse in spatial coverage and expensive to implement. There are no operational remote sensing methods available even in experimental stages. The study considers use absorption features of microwave radiative transfer, especially the differential O2 absorption for active microwave systems working at 50-56 GHz bands, to fill the observational gap. The numerical simulation results for homogeneous sea surface backgrounds show that the rms errors of the instantaneous surface pressure estimates can be as low as 4 mb. This considered active system will have great potential for weather observations and other meteorological applications, especially for forecasts of hurricanes. Case studies show that with the remotely sensed sea surface barometric pressure data, the errors of hurricane center pressure, the most important indicator of hurricane intensity, in weather prediction models would reduce from about 48 mb to about 1.5 mb. The increased accuracy is about 1/3 of whole range of possible variations of hurricane center pressure. The uncertainties in the weather model predicted landfall positions or tracks of hurricanes also shrink greatly from ~350 km to within 100 km.

  13. Sea surface wind streaks in spaceborne synthetic aperture radar imagery

    NASA Astrophysics Data System (ADS)

    Zhao, Yuan; Li, Xiao-Ming; Sha, Jin

    2016-09-01

    Wind streaks are often observed in Synthetic aperture radar (SAR) images. They are used to determine the sea surface wind direction for sea surface wind field retrievals. It is generally understood that visible wind streaks are caused by roll vortices in the marine atmospheric boundary layer. In this study, 227 X-band spaceborne SAR images of TerraSAR-X and TanDEM-X acquired from the three FiNO platforms in the North Sea and Baltic Sea were thoroughly analyzed for a comprehensive understanding of the manifestation of wind streaks in SAR images. Approximately 48.0% of the 227 SAR images displayed wind streaks, among which 67.3%, 20.0%, and 12.7% occurred under unstable, neutral, and stable atmospheric conditions, respectively. The proportions indicate that wind streaks are more likely to be generated from thermal convection. Further investigations suggest that the inflection point and the wind shear may be essential for the appearance of wind streaks in SAR images under stable atmospheric conditions.

  14. Sea surface temperature anomalies, planetary waves, and air-sea feedback in the middle latitudes

    NASA Technical Reports Server (NTRS)

    Frankignoul, C.

    1985-01-01

    Current analytical models for large-scale air-sea interactions in the middle latitudes are reviewed in terms of known sea-surface temperature (SST) anomalies. The scales and strength of different atmospheric forcing mechanisms are discussed, along with the damping and feedback processes controlling the evolution of the SST. Difficulties with effective SST modeling are described in terms of the techniques and results of case studies, numerical simulations of mixed-layer variability and statistical modeling. The relationship between SST and diabatic heating anomalies is considered and a linear model is developed for the response of the stationary atmosphere to the air-sea feedback. The results obtained with linear wave models are compared with the linear model results. Finally, sample data are presented from experiments with general circulation models into which specific SST anomaly data for the middle latitudes were introduced.

  15. Sea surface salinity and temperature seasonal changes in the Solomon and Bismarck Seas

    NASA Astrophysics Data System (ADS)

    Delcroix, Thierry; Radenac, Marie-Helene; Cravatte, Sophie; Gourdeau, Lionel; Alory, Gael

    2014-05-01

    Small SST and SSS (an indicator of iron-rich Papua New Guinea river outflows) changes in the Solomon and Bismarck Seas may be transported to the equatorial Pacific and have strong climatic and biological impacts. We analyze mean and seasonal change of SST and SSS in the Solomon and Bismarck Seas, using 1977-2009 in situ data collected from Voluntary Observing Ships. Co-variability of these two variables with surface wind, altimeter-derived current anomalies, precipitation, and Sepik river discharge is examined. SST and SSS show large annual oscillations in the Solomon Sea, with the coldest and saltiest waters occurring in July/August mainly due to horizontal advection. In contrast, they show large semi-annual oscillations in the Bismarck Sea. There, the coldest and saltiest waters happen in January/February, when the northwest monsoon winds drive coastal upwelling, and in July/August, when the New Guinea Coastal Current advects cold and high-salinity waters from the Solomon Sea through Vitiaz Strait. The low SSS values observed in April/May, stuck between the two SSS maxima, are further enhanced by the Sepik river discharge annual maximum. A high-resolution model strengthens the conclusions we derive from observations. The impacts of ENSO on SST and SSS are also discussed.

  16. Correlation and coherence analysis between sea surface temperature and altimetric sea level anomaly data

    NASA Astrophysics Data System (ADS)

    Zbylut-Górska, Maria; Kosek, Wiesław; Wnęk, Agnieszka; Młocek, Wojciech; Rutkowska, Agnieszka; Popiński, Waldemar; Niedzielski, Tomasz

    2016-04-01

    One of the main causes of the sea level variations is the steric effect caused by changes of local sea surface temperature (SST). To show how the altimetric Sea Level Anomaly (SLA) data are related to the SST data, correlation coefficients between them as a function of geographic location were computed. The analysis showed a high positive correlation (about 0.7), especially in the Northern and South-Eastern parts of the Pacific Ocean and a large part of the Atlantic Ocean. There is a negative correlation of about 0.5 in the South-East part of Indian Ocean, on the Arafura Sea and the Red Sea. In addition the time-frequency coherence and semblance functions between the SLA and SST data were calculated using Fourier transform band pass filter. The maps of such coherence and semblance functions in frequency bands corresponding to the annual oscillation and its integer multiplicities were computed. The most imporntat contribution to the correlation coefficient values has the annual oscillation in the SST and SLA data.

  17. Simulation of Earthquake-Generated Sea-Surface Deformation

    NASA Astrophysics Data System (ADS)

    Vogl, Chris; Leveque, Randy

    2016-11-01

    Earthquake-generated tsunamis can carry with them a powerful, destructive force. One of the most well-known, recent examples is the tsunami generated by the Tohoku earthquake, which was responsible for the nuclear disaster in Fukushima. Tsunami simulation and forecasting, a necessary element of emergency procedure planning and execution, is typically done using the shallow-water equations. A typical initial condition is that using the Okada solution for a homogeneous, elastic half-space. This work focuses on simulating earthquake-generated sea-surface deformations that are more true to the physics of the materials involved. In particular, a water layer is added on top of the half-space that models the seabed. Sea-surface deformations are then simulated using the Clawpack hyperbolic PDE package. Results from considering the water layer both as linearly elastic and as "nearly incompressible" are compared to that of the Okada solution.

  18. Satellite-Derived Sea Surface Temperature: Workshop 1

    NASA Technical Reports Server (NTRS)

    Njoku, E. G.

    1983-01-01

    Satellite measurements of sea surface temperature are now possible using a variety of sensors. The present accuracies of these methods are in the range of 0.5 to 2.0 C. This makes them potentially useful for synoptic studies of ocean currents and for global monitoring of climatological anomalies. To improve confidence in the satellite data, objective evaluations of sensor accuracies are necessary, and the conditions under which these accuracies degrade need to be understood. The Scanning Multichannel Microwave Radiometer (SMMR) on the Nimbus-7 satellite was studied. Sea surface temperatures, derived from November 1979 SMMR data, were compared globally against ship measurements and climatology, using facilities of the JPL Pilot Ocean Data System. Methods for improved data analysis and plans for additional workshops to incorporate data from other sensors were discussed.

  19. Satellite-Derived Sea Surface Temperature: Workshop-2

    NASA Technical Reports Server (NTRS)

    Njoku, E. G.

    1984-01-01

    Global accuracies and error characteristics of presently orbiting satellite sensors are examined. The workshops are intended to lead to a better understanding of present capabilities for sea surface temperature measurement and to improve measurement concepts for the future. Data from the Advanced Very High Resolution Radiometer AVHRR and Scanning Multichannel Microwave Radiometer is emphasized. Some data from the High Resolution Infrared Sounder HIRS and AVHRR are also examined. Comparisons of satellite data with ship and eXpendable BathyThermograph XBT measurement show standard deviations in the range 0.5 to 1.3 C with biases of less than 0.4 C, depending on the sensor, ocean region, and spatial/temporal averaging. The Sea Surface Temperature SST anomaly maps show good agreement in some cases, but a number of sensor related problems are identified.

  20. Estimation of the sea surface's two-scale backscatter parameters

    NASA Technical Reports Server (NTRS)

    Wentz, F. J.

    1978-01-01

    The relationship between the sea-surface normalized radar cross section and the friction velocity vector is determined using a parametric two-scale scattering model. The model parameters are found from a nonlinear maximum likelihood estimation. The estimation is based on aircraft scatterometer measurements and the sea-surface anemometer measurements collected during the JONSWAP '75 experiment. The estimates of the ten model parameters converge to realistic values that are in good agreement with the available oceanographic data. The rms discrepancy between the model and the cross section measurements is 0.7 db, which is the rms sum of a 0.3 db average measurement error and a 0.6 db modeling error.

  1. Unravelling air-sea interactions driven by photochemistry in the sea-surface microlayer

    NASA Astrophysics Data System (ADS)

    George, Christian; Alpert, Peter; Tinel, Liselotte; Rossignol, Stéphanie; Perrier, Sébastien; Bernard, Francois; Ciuraru, Raluca; Hayeck, Nathalie

    2016-04-01

    Interfaces are ubiquitous in the environment, and in addition many atmospheric key processes, such as gas deposition, aerosol and cloud formation are, at one stage or the other, strongly impacted by physical- and chemical processes occurring at interfaces. Unfortunately, these processes have only been suggested and discussed but never fully addressed because they were beyond reach. We suggest now that photochemistry or photosensitized reactions exist at interfaces, and we will present and discuss their possible atmospheric implications. Obviously, one of the largest interface is the sea-surface microlayer (SML), which is a region lying at the uppermost tens to hundreds of micrometres of the water surface, with physical, chemical and biological properties that differ from those of the underlying sub-surface water. Organic film formation at the sea surface is made possible in the presence of an excess of surface-active material. Hydrophobic surfactant films are typically believed to play the role of a physical barrier to air-sea exchanges, especially at low wind speed. We will show that dissolved organic matter (DOM) can trigger photochemistry at the air-sea interface, releasing unsaturated, functionalized volatile organic compounds (VOCs), including isoprene,... acting as precursors for the formation of organic aerosols, that were thought, up to now, to be solely of biological origin! In addition, we suggest that when arranged at an air/water interface, hydrophobic surfactant can have weak chemical interactions among them, which can trigger the absorption of sunlight and can consequently induce photochemistry at such interfaces. A major question arises from such observations, namely: can the existence of such weak intra- or intermolecular interactions and the subsequent photochemistry be generalized to many other atmospheric objects such as aerosols? This topic will be presented and discussed.

  2. Feasibility of microwave holography for imaging the sea surface

    NASA Technical Reports Server (NTRS)

    Wells, W.

    1972-01-01

    The possibility of imaging the sea surface in three dimensions by means of microwave holography from a low-flying aircraft is considered. Data cover a brief feasibility study and a review of some computer experiments in which it was demonstrated that it is possible to compute three-dimensional images of objects from raw holographic data recorded on magnetic tape. These experiments used synthetic data.

  3. Japanese Whaling Ships' Sea Surface Temperatures 1946-84.

    NASA Astrophysics Data System (ADS)

    Mierzejewska, Anna W.; Wu, Zhongxiang; Newell, Reginald E.; Miyashita, Tomio

    1997-03-01

    Japanese whaling ship data, a homogeneous dataset mainly covering the southern high-latitude oceans, may be used to fill in gaps in recent sea surface temperature datasets, contributing a fair number of additional observations in this area. The Japanese whaling ship data are treated separately here for the period 1946-84, and they show no significant temperature changes during this period in the main fishing region of 60°-70°S or in the west Pacific warm pool.

  4. Mercury speciation in surface waters of the north sea

    NASA Astrophysics Data System (ADS)

    Coquery, M.; Cossa, D.

    Mercury speciation was determined in samples of surface waters of the North Sea. Seventeen stations were visited including coastal waters off the Thames, Humber, Scheldt, Rhine, Ems, Weser and Elbe estuaries. Mercury concentrations measured in the present study are significantly lower than previous estimates for the North Sea, but they are similar to concentrations recently determined in other coastal environments. Concentrations of total dissolved mercury ranged from 0.9 to 4.8 pM with 0.4 to 1.8 pM as dissolved reactive mercury, representing on average about 30% of the total dissolved mercury. Particulate mercury constituted between 13 and 82% of the total mercury (dissolved and particulate) depending on the distribution of suspended particulate matter, with the highest proportions found near the coasts in the southern North Sea. The mercury content of the seawater particles varied between 116 and 484 ng·g -1 with 6% on average as particulate monomethylmercury. A longitudinal profile was completed in the outer estuary of the Elbe river; mercury concentrations reached 16.4 pM for dissolved mercury and 595 pM for particulate mercury in the low salinity region, indicating that the Elbe estuary is contaminated with mercury. This is similar to the contamination measured recently in the Scheldt estuary. The net input of mercury from the Elbe river to the North Sea was estimated at 0.43 kmol·a -1 for dissolved mercury and 4.24 kmol·a -1 for particulate mercury. The mercury concentrations measured in the Elbe estuary are used to estimate the total mercury input from freshwaters to the North Sea. It is comparable to direct atmospheric inputs to the North Sea.

  5. Middle Pliocene sea surface temperatures: A global reconstruction

    USGS Publications Warehouse

    Dowsett, H.; Barron, J.; Poore, R.

    1996-01-01

    Identification and analyses of Pliocene marine microfossils from 64 globally distributed stratigraphic sequences have been used to produce a middle Pliocene sea surface temperature reconstruction of the Earth. This reconstruction shows little or no change from current conditions in low latitude regions and significant warming of the ocean surface at mid and higher latitudes of both hemispheres. This pattern of warming is consistent with terrestrial records and suggests a combination of enhanced meridional ocean heat transport and enhanced greenhouse effect were responsible for the middle Pliocene warmth.

  6. AIRS Sea Surface Temperature and Pacific Decadal Oscillation

    NASA Astrophysics Data System (ADS)

    Chen, L. L.

    2015-12-01

    Atmospheric Infrared Sounder (AIRS) has been providing necessary measurements for long term atmospheric and surface processes aboard NASA' s Aqua polar orbiter since May 2002. Here, we use time series of AIRS sea surface temperature (SST) anomalies to show the time evolution of Pacific Decadal Oscillation (PDO) in the Gulf of Alaska (lon:-144.5, lat:54.5) from 2003 to 2014. PDO is connected to the first mode of North Pacific SST variability and is tele-connected to ENSO in the tropics. Further analysis of AIRS data can provide clarification of Pacific climate variability.

  7. Organic polar pollutants in surface waters of inland seas.

    PubMed

    Orlikowska, Anna; Fisch, Kathrin; Schulz-Bull, Detlef E

    2015-12-30

    Available data about contamination by polar substances are mostly reported for rivers and near-shore waters and only limited studies exists about their occurrence in marine waters. We present concentrations and distribution of several polar pesticides and UV-filters in surface waters of three inland seas, the Baltic, Black and Mediterranean Sea. Many of the investigated compounds were below detection limits, however, those found in off-shore waters raise a concern about their persistence and possible adverse effect on the ecosystem. Despite a longstanding EU-wide ban we were able to detect atrazine in the Mediterranean and the Baltic Sea. Concentrations in the Black Sea were substantially higher. Runoff from agricultural and urban areas was the main transport route to marine ecosystems for investigated compounds, though irgarol in Mediterranean waters was attributed to intense maritime traffic. 2-Phenylbenzimidazole-5-sulfonic acid was the only UV-filter detected in marine waters, while benzophenone-4 was observed in the estuaries. Occurrence of UV-filters was seasonal.

  8. SMOS sea surface salinity maps of the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Gabarro, Carolina; Olmedo, Estrella; Turiel, Antonio; Ballabrera-Poy, Joaquim; Martinez, Justino; Portabella, Marcos

    2016-04-01

    Salinity and temperature gradients drive the thermohaline circulation of the oceans, and play a key role in the ocean-atmosphere coupling. The strong and direct interactions between the ocean and the cryosphere (primarily through sea ice and ice shelves) is also a key ingredient of the thermohaline circulation. The ESA's Soil Moisture and Ocean Salinity (SMOS) mission, launched in 2009, has the objective measuring soil moisture over the continents and sea surface salinity over the oceans. Although the mission was originally conceived for hydrological and oceanographic studies [1], SMOS is also making inroads in the cryospheric monitoring. SMOS carries an innovative L-band (1.4 GHz, or 21-cm wavelength), passive interferometric radiometer (the so-called MIRAS) that measures the electromagnetic radiation emitted by the Earth's surface, at about 50 km spatial resolution wide swath (1200-km), and with a 3-day revisit time at the equator, but a more frequent one at the poles. Although the SMOS radiometer operating frequency offers almost the maximum sensitivity of the brightness temperature (TB) to sea surface salinity (SSS) variations, this is rather low, , i.e.,: 90% of ocean SSS values span a range of brightness temperatures of only 5K at L-band. This sensitivity is particularly low in cold waters. This implies that the SSS retrieval requires high radiometric performance. Since the SMOS launch, SSS Level 3 maps have been distributed by several expert laboratories including the Barcelona Expert Centre (BEC). However, since the TB sensitivity to SSS decreases with decreasing sea surface temperature (SST), large retrieval errors had been reported when retrieving salinity values at latitudes above 50⁰N. Two new processing algorithms, recently developed at BEC, have led to a considerable improvement of the SMOS data, allowing for the first time to derive SSS maps in cold waters. The first one is to empirically characterize and correct the systematic biases with six

  9. Ciguatera fish poisoning and sea surface temperatures in the Caribbean Sea and the West Indies.

    PubMed

    Tester, Patricia A; Feldman, Rebecca L; Nau, Amy W; Kibler, Steven R; Wayne Litaker, R

    2010-10-01

    Ciguatera fish poisoning (CFP) is a circumtropical disease caused by ingestion of a variety of reef fish that bioaccumulate algal toxins. Distribution and abundance of the organisms that produce these toxins, chiefly dinoflagellates of the genus Gambierdiscus, are reported to correlate positively with water temperature. Consequently, there is growing concern that increasing temperatures associated with climate change could increase the incidence of CFP. This concern prompted experiments on the growth rates of six Gambierdiscus species at temperatures between 18 degrees C and 33 degrees C and the examination of sea surface temperatures in the Caribbean and West Indies for areas that could sustain rapid Gambierdiscus growth rates year-round. The thermal optimum for five of six Gambierdiscus species tested was >/=29 degrees C. Long-term SST data from the southern Gulf of Mexico indicate the number of days with sea surface temperatures >/=29 degrees C has nearly doubled (44 to 86) in the last three decades. To determine how the sea surface temperatures and Gambierdiscus growth data correlate with CFP incidences in the Caribbean, a literature review and a uniform, region-wide survey (1996-2006) of CFP cases were conducted. The highest CFP incidence rates were in the eastern Caribbean where water temperatures are warmest and least variable.

  10. Microwave emission measurements of sea surface roughness, soil moisture, and sea ice structure

    NASA Technical Reports Server (NTRS)

    Gloersen, P.; Wilheit, T. T.; Schmugge, T. J.

    1972-01-01

    In order to demonstrate the feasibility of the microwave radiometers to be carried aboard the Nimbus 5 and 6 satellites and proposed for one of the earth observatory satellites, remote measurements of microwave radiation at wavelengths ranging from 0.8 to 21 cm have been made of a variety of the earth's surfaces from the NASA CV-990 A/C. Brightness temperatures of sea water surfaces of varying roughness, of terrain with varying soil moisture, and of sea ice of varying structure were observed. In each case, around truth information was available for correlation with the microwave brightness temperature. The utility of passive microwave radiometry in determining ocean surface wind speeds, at least for values higher than 7 meters/second has been demonstrated. In addition, it was shown that radiometric signatures can be used to determine soil moisture in unvegetated terrain to within five percentage points by weight. Finally, it was demonstrated that first year thick, multi-year, and first year thin sea ice can be distinguished by observing their differing microwave emissivities at various wavelengths.

  11. Chemical characterization of dissolved organic compounds from coastal sea surface microlayers (Baltic Sea, Germany).

    PubMed

    van Pinxteren, Manuela; Müller, Conny; Iinuma, Yoshiteru; Stolle, Christian; Herrmann, Hartmut

    2012-10-02

    The physicochemical properties of the sea surface microlayer (SML), i.e. the boundary layer between the air and the sea, and its impact on air-sea exchange processes have been investigated for decades. However, a detailed description about these processes remains incomplete. In order to obtain a better chemical characterization of the SML, in a case study three pairs of SML and corresponding bulk water samples were taken in the southern Baltic Sea. The samples were analyzed for dissolved organic carbon and dissolved total nitrogen, as well as for several organic nitrogen containing compounds and carbohydrates, namely aliphatic amines, dissolved free amino acids, dissolved free monosaccharides, sugar alcohols, and monosaccharide anhydrates. Therefore, reasonable analytical procedures with respect to desalting and enrichment were established. All aliphatic amines and the majority of the investigated amino acids (11 out of 18) were found in the samples with average concentrations between 53 ng L(-1) and 1574 ng L(-1). The concentrations of carbohydrates were slightly higher, averaging 2900 ng L(-1). Calculation of the enrichment factor (EF) between the sea surface microlayer and the bulk water showed that dissolved total nitrogen was more enriched (EF: 1.1 and 1.2) in the SML than dissolved organic carbon (EF: 1.0 and 1.1). The nitrogen containing organic compounds were generally found to be enriched in the SML (EF: 1.9-9.2), whereas dissolved carbohydrates were not enriched or even depleted (EF: 0.7-1.2). Although the investigated compounds contributed on average only 0.3% to the dissolved organic carbon and 0.4% to the total dissolved nitrogen fraction, these results underline the importance of single compound analysis to determine SML structure, function, and its potential for a transfer of compounds into the atmosphere.

  12. Microwave Imager Measures Sea Surface Temperature Through Clouds

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This image was acquired over Tropical Atlantic and U.S. East Coast regions on Aug. 22 - Sept. 23, 1998. Cloud data were collected by the Geostationary Operational Environmental Satellite (GOES). Sea Surface Temperature (SST) data were collected aboard the NASA/NASDA Tropical Rainfall Measuring Mission (TRMM) satellite by The TRMM Microwave Imager (TMI). TMI is the first satellite microwave sensor capable of accurately measuring sea surface temperature through clouds, as shown in this scene. For years scientists have known there is a strong correlation between sea surface temperature and the intensity of hurricanes. But one of the major stumbling blocks for forecasters has been the precise measurement of those temperatures when a storm begins to form. In this scene, clouds have been made translucent to allow an unobstructed view of the surface. Notice Hurricane Bonnie approaching the Carolina Coast (upper left) and Hurricane Danielle following roughly in its path (lower right). The ocean surface has been falsely colored to show a map of water temperature--dark blues are around 75oF, light blues are about 80oF, greens are about 85oF, and yellows are roughly 90oF. A hurricane gathers energy from warm waters found at tropical latitudes. In this image we see Hurricane Bonnie cross the Atlantic, leaving a cooler trail of water in its wake. As Hurricane Danielle followed in Bonnie's path, the wind speed of the second storm dropped markedly, as available energy to fuel the storm dropped off. But when Danielle left Bonnie's wake, wind speeds increased due to temperature increases in surface water around the storm. As a hurricane churns up the ocean, it's central vortex draws surface heat and water into the storm. That suction at the surface causes an upwelling of deep water. At depth, tropical ocean waters are significantly colder than water found near the surface. As they're pulled up to meet the storm, those colder waters essentially leave a footprint in the storm's wake

  13. Microwave Imager Measures Sea Surface Temperature Through Clouds

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This image was acquired over Tropical Atlantic and U.S. East Coast regions on Aug. 22 - Sept. 23, 1998. Cloud data were collected by the Geostationary Operational Environmental Satellite (GOES). Sea Surface Temperature (SST) data were collected aboard the NASA/NASDA Tropical Rainfall Measuring Mission (TRMM) satellite by The TRMM Microwave Imager (TMI). TMI is the first satellite microwave sensor capable of accurately measuring sea surface temperature through clouds, as shown in this scene. For years scientists have known there is a strong correlation between sea surface temperature and the intensity of hurricanes. But one of the major stumbling blocks for forecasters has been the precise measurement of those temperatures when a storm begins to form. In this scene, clouds have been made translucent to allow an unobstructed view of the surface. Notice Hurricane Bonnie approaching the Carolina Coast (upper left) and Hurricane Danielle following roughly in its path (lower right). The ocean surface has been falsely colored to show a map of water temperature--dark blues are around 75oF, light blues are about 80oF, greens are about 85oF, and yellows are roughly 90oF. A hurricane gathers energy from warm waters found at tropical latitudes. In this image we see Hurricane Bonnie cross the Atlantic, leaving a cooler trail of water in its wake. As Hurricane Danielle followed in Bonnie's path, the wind speed of the second storm dropped markedly, as available energy to fuel the storm dropped off. But when Danielle left Bonnie's wake, wind speeds increased due to temperature increases in surface water around the storm. As a hurricane churns up the ocean, it's central vortex draws surface heat and water into the storm. That suction at the surface causes an upwelling of deep water. At depth, tropical ocean waters are significantly colder than water found near the surface. As they're pulled up to meet the storm, those colder waters essentially leave a footprint in the storm's wake

  14. Analysis and Modelling of Sea-Surface Doppler Spectra

    NASA Astrophysics Data System (ADS)

    Fois, F.; Hoogeboom, P.; Le Chevalier, F.; Stoffelen, A.

    2012-12-01

    The modelling of the Doppler spectrum of a time-varying ocean surface has gained considerable attention in the last decades. Knowledge of how the evolution of the ocean surface wave spectrum affects the scattered electromagnetic field is essential for a quantitative understanding of the properties of the measured microwave Doppler spectra. Complicated hydrodynamics, influencing the motion of the ocean surface waves, make this understanding significantly difficult. Non linear hydrodynamics couple the motion of the large and small waves and, consequently, change statistical characteristics and shapes of the surface-wave components. These hydrodynamic surface interactions are not included in the simplest linear sea-surface model, which assumes that each surface harmonic propagates according to the dispersion relation typical of water waves. In the past decades, Bass [1968] and Barrick [1972] used a surface perturbation theory to predict the Doppler spectra; Valenzuela and Laing [1970], instead, obtained similar results by using a composite surface model. Later, Doppler spectra were studied by Thompson [1989], who computed the spectra using a time-dependent composite model. Zavorotny and Voronovich [1998] made use of an approximate "two-scale" surface model based on a directional wave spectrum. However, currently available analytical scattering models are unreliable at high incidence angles and do not provide a full-polarimetric information. Exact numerical simulations of microwave scattering from time-varying ocean-like surfaces are highly recommended to eliminate concerns on the applicability of approximate models and to provide a validation tool for approximate scattering theories. A more realistic model, that accounts for hydrodynamic surface interactions, is the non-linear model for surface waves by Creamer et ali [1989]. Rino et ali [ 1991] were the first to use the Creamer model to simulate the Doppler spectra from dynamically evolving surface realizations

  15. Seasonal variability of the Red Sea, from GRACE time-variable gravity and altimeter sea surface height measurements

    NASA Astrophysics Data System (ADS)

    Wahr, John; Smeed, David; Leuliette, Eric; Swenson, Sean

    2014-05-01

    Seasonal variability of sea surface height and mass within the Red Sea, occurs mostly through the exchange of heat with the atmosphere and wind-driven inflow and outflow of water through the strait of Bab el Mandab that opens into the Gulf of Aden to the south. The seasonal effects of precipitation and evaporation, of water exchange through the Suez Canal to the north, and of runoff from the adjacent land, are all small. The flow through the Bab el Mandab involves a net mass transfer into the Red Sea during the winter and a net transfer out during the summer. But that flow has a multi-layer pattern, so that in the summer there is actually an influx of cool water at intermediate (~100 m) depths. Thus, summer water in the southern Red Sea is warmer near the surface due to higher air temperatures, but cooler at intermediate depths (especially in the far south). Summer water in the northern Red Sea experiences warming by air-sea exchange only. The temperature profile affects the water density, which impacts the sea surface height but has no effect on vertically integrated mass. Here, we study this seasonal cycle by combining GRACE time-variable mass estimates, altimeter (Jason-1, Jason-2, and Envisat) measurements of sea surface height, and steric sea surface height contributions derived from depth-dependent, climatological values of temperature and salinity obtained from the World Ocean Atlas. We find good consistency, particularly in the northern Red Sea, between these three data types. Among the general characteristics of our results are: (1) the mass contributions to seasonal SSHT variations are much larger than the steric contributions; (2) the mass signal is largest in winter, consistent with winds pushing water into the Red Sea through the Strait of Bab el Mandab in winter, and out during the summer; and (3) the steric signal is largest in summer, consistent with summer sea surface warming.

  16. An empirically derived inorganic sea spray source function incorporating sea surface temperature

    NASA Astrophysics Data System (ADS)

    Salter, M. E.; Zieger, P.; Acosta Navarro, J. C.; Grythe, H.; Kirkevåg, A.; Rosati, B.; Riipinen, I.; Nilsson, E. D.

    2015-10-01

    We have developed an inorganic sea spray source function that is based upon state-of-the-art measurements of sea spray aerosol production using a temperature-controlled plunging jet sea spray aerosol chamber. The size-resolved particle production was measured between 0.01 and 10 μm dry diameter. Particle production decreased non-linearly with increasing seawater temperature (between -1 and 30 °C) similar to previous findings. In addition, we observed that the particle effective radius, as well as the particle surface, particle volume and particle mass, increased with increasing seawater temperature due to increased production of particles with dry diameters greater than 1 μm. By combining these measurements with the volume of air entrained by the plunging jet we have determined the size-resolved particle flux as a function of air entrainment. Through the use of existing parameterisations of air entrainment as a function of wind speed, we were subsequently able to scale our laboratory measurements of particle production to wind speed. By scaling in this way we avoid some of the difficulties associated with defining the "white area" of the laboratory whitecap - a contentious issue when relating laboratory measurements of particle production to oceanic whitecaps using the more frequently applied whitecap method. The here-derived inorganic sea spray source function was implemented in a Lagrangian particle dispersion model (FLEXPART - FLEXible PARTicle dispersion model). An estimated annual global flux of inorganic sea spray aerosol of 5.9 ± 0.2 Pg yr-1 was derived that is close to the median of estimates from the same model using a wide range of existing sea spray source functions. When using the source function derived here, the model also showed good skill in predicting measurements of Na+ concentration at a number of field sites further underlining the validity of our source function. In a final step, the sensitivity of a large-scale model (NorESM - the

  17. Late Cretaceous (late Campanian-Maastrichtian) sea-surface temperature record of the Boreal Chalk Sea

    NASA Astrophysics Data System (ADS)

    Thibault, Nicolas; Harlou, Rikke; Schovsbo, Niels H.; Stemmerik, Lars; Surlyk, Finn

    2016-02-01

    The last 8 Myr of the Cretaceous greenhouse interval were characterized by a progressive global cooling with superimposed cool/warm fluctuations. The mechanisms responsible for these climatic fluctuations remain a source of debate that can only be resolved through multi-disciplinary studies and better time constraints. For the first time, we present a record of very high-resolution (ca. 4.5 kyr) sea-surface temperature (SST) changes from the Boreal epicontinental Chalk Sea (Stevns-1 core, Denmark), tied to an astronomical timescale of the late Campanian-Maastrichtian (74 to 66 Ma). Well-preserved bulk stable isotope trends and calcareous nannofossil palaeoecological patterns from the fully cored Stevns-1 borehole show marked changes in SSTs. These variations correlate with deep-water records of climate change from the tropical South Atlantic and Pacific oceans but differ greatly from the climate variations of the North Atlantic. We demonstrate that the onset and end of the early Maastrichtian cooling and of the large negative Campanian-Maastrichtian boundary carbon isotope excursion are coincident in the Chalk Sea. The direct link between SSTs and δ13C variations in the Chalk Sea reassesses long-term glacio-eustasy as the potential driver of carbon isotope and climatic variations in the Maastrichtian.

  18. Late Cretaceous (Late Campanian-Maastrichtian) sea surface temperature record of the Boreal Chalk Sea

    NASA Astrophysics Data System (ADS)

    Thibault, N.; Harlou, R.; Schovsbo, N. H.; Stemmerik, L.; Surlyk, F.

    2015-11-01

    The last 8 Myr of the Cretaceous greenhouse interval were characterized by a progressive global cooling with superimposed cool/warm fluctuations. The mechanisms responsible for these climatic fluctuations remain a source of debate that can only be resolved through multi-disciplinary studies and better time constraints. For the first time, we present a record of very high-resolution (ca. 4.5 kyr) sea-surface temperature (SST) changes from the Boreal epicontinental Chalk Sea (Stevns-1 core, Denmark), tied to an astronomical time scale of the late Campanian-Maastrichtian (74 to 66 Myr). Well-preserved bulk stable isotope trends and calcareous nannofossil palaeoecological patterns from the fully cored Stevns-1 borehole show marked changes in SSTs. These variations correlate with deep-water records of climate change from the tropical South Atlantic and Pacific oceans but differ greatly from the climate variations of the North Atlantic. We demonstrate that the onset and end of the early Maastrichtian cooling and of the large negative Campanian-Maastrichtian boundary carbon isotope excursion are coincident in the Chalk Sea. The direct link between SSTs and δ13C variations in the Chalk Sea reassesses long-term glacio-eustasy as the potential driver of carbon isotope and climatic variations in the Maastrichtian.

  19. Sea-surface altimetry airborne observations using synoptic GNSS reflectometry at the Baltic Sea

    NASA Astrophysics Data System (ADS)

    Ribó, Serni; Fabra, Fran; Cardellach, Estel; Li, Weiqiang; Rius, Antonio; Praks, Jaan; Rouhe, Erkka; Seppänen, Jaakko; Martín-Neira, Manuel

    2016-04-01

    Recent GNSS-R (Global Navigation Satellite System-Reflections) observations over the Baltic Sea have been taken using the SPIR (Software PARIS Interferometric Receiver) from an airborne platform at 3 km altitude. This newly developed instrument is capable of acquiring GNSS signals transmitted by multiple satellites simultaneously that have been reflected of the sea-surface. Reflections are usually gathered in off-nadir configuration using the instrument's beam-forming capabilities, which results in an increase of the instrument's swath. In this way, this technique opens the door to densify in space and time sea-altimetry observations to enhance future mesoscale and sub-mesoscale ocean altimetry. The altimetric observations collected during the Baltic Sea campaign have been analysed in terms of their power spectral densities. We consider the sequence of observations as an ergodic process that has contributions from the actual true altimetry as well as the observation noise. In this way it is possible to relate the expected ground resolution of the observations with the obtainable altimetric uncertainty. Results will be presented.

  20. Analysis of characteristics in the sea surface temperature variability in the East/Japan Sea

    NASA Astrophysics Data System (ADS)

    Yeh, Sang-Wook; Park, Young-Gyu; Min, HongSik; Kim, Cheol-Ho; Lee, Jae-Hak

    2010-06-01

    We examine the characteristics of sea surface temperature (SST) variability in the East/Japan Sea (EJS) for the period of 1891-2005 using 1°×1° latitude and longitude resolution datasets from the Japan Meteorological Agency and the Hadley Centre. A significant warming trend that manifests itself more strongly over the southern part of the sea is observed. In addition, it is found in the EJS that warming during the boreal winter is more significant than that during the summer. The EJS SST index, obtained from the time series of monthly SST anomaly averaged over the western half of the EJS, where large SST anomaly standard deviation is observed, has a primary spectral density at a frequency longer than a decade and a secondary peak at the annual frequency band. The variability of the low-frequency EJS SST, which is mostly explained by that during winter, is characterized by significant warming from the early 1940s to the late 1940s and from the mid-1980s to the present. Between the two warming periods, the EJS SST variability is dominated by decadal fluctuations. Finally, we discuss possible mechanisms of the low frequency EJS SST variability in conjunction with atmospheric variability. When the northwesterly winter monsoon becomes weaker (stronger), less (greater) amount of cold air is advected to the EJS. Sensible heat loss from the sea to the air becomes smaller (greater) producing a warm (cold) SST anomaly.

  1. Interannual Trends in Southern Ocean Sea Surface Temperatures and Sea Level from Remote Sensing Data

    NASA Astrophysics Data System (ADS)

    Lebedev, S. A.

    As is shown in last years researches climate changes in Antarctic result in interannual increase trend of surface air temperature and decrease of ice thickness These tendencies are must try in the Southern Ocean hydrological regime For that next remote sensing data AVHRR MCSST data and satellite altimetry data merged data of mission ERS TOPEX Poseidon Jason-1 ENVISAT GFO-1 are used to this task which give information about sea surface temperature SST and sea level anomaly SLA correspondingly According to obtained results SST has positive trend more 0 01 oC yr for 23-yr record 1982-2005 within 300-1000 km northward Antarctic coast However on average for the Southern Ocean SST have negative trend about -0 018 -0 035 oC yr In area of Pacific-Antarctic Ridge and of southern part of Mid Atlantic Ridge decrease rate is more than -0 075 oC yr SLA increases in all area of the Southern Ocean and has average rate about 0 024 -0 026 cm yr for 12-yr record 1993-2005 Around Antarctic SST rate good correspond with the trend analysis of surface air temperature of 8722 0 042 - 0 067oC yr inferred from the satellite 20-yr record Comiso 2000 Nevertheless the observed cooling is intriguing especially since it is compatible with the observed trend in the sea ice cover In the sea ice regions the northernmost positions of the ice edge are shown to be influenced by alternating warm and cold anomalies around the continent This work was partly supported by the Russian Fund of Basic Research Grant 06-05-65061

  2. Remote sensing algorithm for sea surface CO2 in the Baltic Sea

    NASA Astrophysics Data System (ADS)

    Parard, G.; Charantonis, A. A.; Rutgerson, A.

    2014-08-01

    Studies of coastal seas in Europe have brought forth the high variability in the CO2 system. This high variability, generated by the complex mechanisms driving the CO2 fluxes makes their accurate estimation an arduous task. This is more pronounced in the Baltic Sea, where the mechanisms driving the fluxes have not been as highly detailed as in the open oceans. In adition, the joint availability of in-situ measurements of CO2 and of sea-surface satellite data is limited in the area. In this paper, a combination of two existing methods (Self-Organizing-Maps and Multiple Linear regression) is used to estimate ocean surface pCO2 in the Baltic Sea from remotely sensed surface temperature, chlorophyll, coloured dissolved organic matter, net primary production and mixed layer depth. The outputs of this research have an horizontal resolution of 4 km, and cover the period from 1998 to 2011. The reconstructed pCO2 values over the validation data set have a correlation of 0.93 with the in-situ measurements, and a root mean square error is of 38 μatm. The removal of any of the satellite parameters degraded this reconstruction of the CO2 flux, and we chose therefore to complete any missing data through statistical imputation. The CO2 maps produced by this method also provide a confidence level of the reconstruction at each grid point. The results obtained are encouraging given the sparsity of available data and we expect to be able to produce even more accurate reconstructions in the coming years, in view of the predicted acquisitions of new data.

  3. Decadally-resolved sea surface temperature and salinity records of the East Sea (Japan Sea) over the last 2000 years

    NASA Astrophysics Data System (ADS)

    Lee, K. E.; Park, W.; Rhee, T. S.

    2013-12-01

    The East Asia monsoon is an important component of Earth's climate system, yet its dynamical processes are not sufficiently understood. Previous studies indicate a strong coupling between monsoon circulation and northern hemisphere climate change on interannual to decadal time scales. However, our understanding of monsoon variability and teleconnections to high- and low-latitude mechanisms on longer time scale remains insufficient. In this study, decadally-resolved continuous sea surface temperature and salinity records over the last 2000 years from alkenone and planktonic foraminiferal oxygen isotope ratio analyses of East Sea (Japan Sea) marine sediments have been reconstructed to investigate East Asia monsoon variability. The results show that during the Medieval Climate Anomaly, East Asia was characterized by surface warming with a strengthened summer monsoon. Summer monsoon-related precipitation increased and pluvials possibly dominated in the region at that time. On the other hand, Asia monsoon failure and severe drought is characteristic of the Little Ice Age. Comparisons of the records with other paleoclimate records indicate a possible connection between changes in the mid-latitude East Asia monsoon, Arctic Oscillation (AO)/North Atlantic Oscillation (NAO), and Pacific Decadal Oscillation (PDO) over the period.

  4. Sea surface and remotely sensed temperatures off Cape Mendocino, California

    NASA Technical Reports Server (NTRS)

    Breaker, L. C.; Arvesen, J. C.; Frydenlund, D.; Myers, J. S.; Short, K.

    1985-01-01

    During September 3 to 5, 1979, a multisensor oceanographic experiment was conducted off Cape Mendocino, California. The purpose of this experiment was to validate the use of remote sensing techniques over an area along the U.S. west coast where coasted upwelling is known to be intense. Remotely sensed mutlispectral data, including thermal infrared imagery, were collected above an upwelling feature off Cape Mendocino. Data were acquired from the TIRNOS-N and NOAA-6 polar orbiting satellites, the NASA Ames Research Center's high altitude U-2 aircraft, and a U.S. Coast Guard C-130 aircraft. Supporting surface truth data over the same feature were collected aboard the National Oceanic and Atmospheric Administration (NOAA) ship, OCEANOGRAPHER. Atmospheric soundings were also taken aboard the ship. The results indicate that shipboard measurements of sea surface temperatures can be reproduction within 1 C or better through remote observation of absolute infrared radiance values (whether measured aboard the NOAA polar orbiting satellite, the U-2 aircraft, or the Coast Guard aircraft) by using appropriate atmospheric corrections. Also, the patterns of sea surface temperature which were derived independently from the various remote platforms provide a consistent interpretation of the surface temperature field.

  5. Spatial heterogeneity of ocean surface boundary conditions under sea ice

    NASA Astrophysics Data System (ADS)

    Barthélemy, Antoine; Fichefet, Thierry; Goosse, Hugues

    2016-06-01

    The high heterogeneity of sea ice properties implies that its effects on the ocean are spatially variable at horizontal scales as small as a few meters. Previous studies have shown that taking this variability into account in models could be required to simulate adequately mixed layer processes and the upper ocean temperature and salinity structures. Although many advanced sea ice models include a subgrid-scale ice thickness distribution, potentially providing heterogeneous surface boundary conditions, the information is lost in the coupling with a unique ocean grid cell underneath. The present paper provides a thorough examination of boundary conditions at the ocean surface in the NEMO-LIM model, which can be used as a guideline for studies implementing subgrid-scale ocean vertical mixing schemes. Freshwater, salt, solar heat and non-solar heat fluxes are examined, as well as the norm of the surface stress. All of the thermohaline fluxes vary considerably between the open water and ice fractions of grid cells. To a lesser extent, this is also the case for the surface stress. Moreover, the salt fluxes in both hemispheres and the solar heat fluxes in the Arctic show a dependence on the ice thickness category, with more intense fluxes for thinner ice, which promotes further subgrid-scale heterogeneity. Our analysis also points out biases in the simulated open water fraction and in the ice thickness distribution, which should be investigated in more details in order to ensure that the latter is used to the best advantage.

  6. Sea surface conditions remotely sensed by upward-looking ADCPs

    SciTech Connect

    Visbeck, M.; Fischer, J.

    1995-02-01

    Surface data obtained from 153-kHz acoustic Doppler current profilers (ADCPs) deployed in the Greenland Sea at about 350-m depth during the winter of 1988/89 were investigated under several aspects. First a method is described to improve the instrument depth measurements using the binned backscattered energy profile near the surface. The accuracy of the depth estimates is found to be significantly better than 0.5 m. Further, improvements of wind speed estimates were found by using the ambient noise in the 150-kHz band in favor of the surface backscattered energy as suggested by Schott. Limitations of the ambient sound method at low wind speeds are presented when thermal noise overwhelms the wind-induced noise. Finally, a method to detect the presence of sea ice above ADCP is presented by cross correlating the surface backscatter strength and the magnitudes of all Doppler velocity components. The resulting time series of ice concentration are in overall good agreement with Special Sensor Microwave/Imager (SSM/I) estimates but allow for higher temporal resolution. Further, in the vicinity of the ice edge, enhanced high-frequency ambient noise in the 150-kHz band was observed.

  7. Radar optimization for sea surface and geodetic measurements

    NASA Technical Reports Server (NTRS)

    Harger, R. O.

    1974-01-01

    The efficient estimation of geoid and sea state parameters is discussed, and the optimum processing structures, including maximum likelihood estimators, and their accuracy limits are given for a model. The model accounts for random surface reflectivity, sea height, and additive noise, and allows for arbitrary radar system parameters, based on the assumption the received signal is a sample function of a normal random process. The integral equation associated with the Gaussian signal in Gaussian noise inference problem was solved. It is shown that the optimum processing is generally a mixture of coherent and incoherent integrations which may be viewed as a weighted summation of received power of the match-filtered received data. When estimates are correlated, the strongest correlation appears between geoid and asymmetry estimates, and between wave height standard deviation and reflectivity estimates.

  8. Multisensor monitoring of sea surface state of the coastal zone

    NASA Astrophysics Data System (ADS)

    Lavrova, Olga; Mityagina, Marina; Bocharova, Tatina

    Results of many-year monitoring of the state of coastal zone based on a multisensor approach are presented. The monitoring is aimed at solving the following tasks: operational mapping of parameters characterizing the state and pollution (coastal, ship and biogenic) of water; analysis of meteorological state and its effect on the drift and spread of pollutants; study of coastal circulation patterns and their impact on the drift and spread of pollutants; deriving typical pollution distribution patterns in the coastal zone.Processing and analysis is performed using data in visual, infrared and microwave ranges from ERS-2 SAR, Envisat ASAR/MERIS, Terra and Aqua MODIS and NOAA AVHRR instruments. These are complimented with ground data from meteorological stations on the shore and results of satellite data processing of previous periods. The main regions of interest are the Russian sectors of the Black and Azov Seas, southeastern part of the Baltic Sea, and northern and central regions of the Caspian Sea. Adjacent coasts are extremely populated and have well-developed industry, agriculture and rapidly growing tourist sectors. The necessity of constant monitoring of the sea state there is obvious.The monitoring activities allow us to accumulate extensive material for the study of hydrodynamic processes in the regions, in particular water circulation. Detailing the occurrence, evolution and drift of smalland meso-scale vortex structures is crucial for the knowledge of the mechanisms determining mixing and circulation processes in the coastal zone. These mechanisms play an important role in ecological, hydrodynamic and meteorological status of a coastal zone. Special attention is paid to the sea surface state in the Kerch Strait, where a tanker catastrophe took place on November 11, 2007 causing a spillage of over 1.5 thousand tons of heavy oil. The Kerch Strait is characterized by a complex current system with current directions changing to their opposites depending on

  9. Albatrosses as Ocean Samplers of Sea Surface Temperature

    NASA Astrophysics Data System (ADS)

    Shaffer, S. A.; Kappes, M.; Tremblay, Y.; Costa, D. P.; Weber, R.; Weimerskirch, H.

    2006-12-01

    Albatrosses are unique ocean voyagers because they range so widely and travel at speeds exceeding 90 km per hour. Because they can integrate vast areas of open-ocean, albatrosses are ideal ocean samplers. Between 2003 and 2005 breeding seasons, 21 Laysan and 15 black-footed albatrosses (body mass 2.5 to 3.5 kg) were equipped with 6 g leg-mounted geolocation archival data loggers at Tern Island, French Frigate Shoals, Northwest Hawaiian Islands. The tags sampled environmental temperatures every 480 or 540 s and provided a single location per day for the duration of deployment. Whenever an albatross landed on the sea surface to feed or rest, the tag sampled sea surface temperature (SST). After nearly one year of deployment, 31 albatrosses were recaptured and 29 tags provided complete records. A total of 377,455 SST readings were obtained over 7,360 bird-days at sea. Given the location errors in the geolocation methodology (200 km) and the lack of temporal resolution (1 location per day), the SST measurements can only be used to characterize broad-scale correlates between albatross distribution and the ocean environment. However, in February 2006, we deployed 45 g GPS data loggers on 10 breeding albatrosses for 2-4 day deployments. The GPS loggers were attached to feathers on the albatrosses backs, they sampled every 10 s, and were accurate to within 10 m. One albatross was also equipped with the same leg-mounted archival tag that sampled SST every 8 s. This albatross collected 6,289 SST measurements with complementary GPS quality locations in 3 days at sea. These results highlight the efficacy of albatrosses as ocean samplers. Given that Laysan and black- footed albatrosses range throughout the North Pacific Ocean, it is conceivable that these seabirds could someday become sentinels of changing oceanic conditions. Moreover, these technologies provide exciting new information about the oceanic habitats of North Pacific albatrosses.

  10. Microwave Remote Sensing Modeling of Ocean Surface Salinity and Winds Using an Empirical Sea Surface Spectrum

    NASA Technical Reports Server (NTRS)

    Yueh, Simon H.

    2004-01-01

    Active and passive microwave remote sensing techniques have been investigated for the remote sensing of ocean surface wind and salinity. We revised an ocean surface spectrum using the CMOD-5 geophysical model function (GMF) for the European Remote Sensing (ERS) C-band scatterometer and the Ku-band GMF for the NASA SeaWinds scatterometer. The predictions of microwave brightness temperatures from this model agree well with satellite, aircraft and tower-based microwave radiometer data. This suggests that the impact of surface roughness on microwave brightness temperatures and radar scattering coefficients of sea surfaces can be consistently characterized by a roughness spectrum, providing physical basis for using combined active and passive remote sensing techniques for ocean surface wind and salinity remote sensing.

  11. Modern Tasman Sea surface reservoir ages from deep-sea black corals

    NASA Astrophysics Data System (ADS)

    Komugabe, Aimée F.; Fallon, Stewart J.; Thresher, Ronald E.; Eggins, Stephen M.

    2014-01-01

    Marine reservoir ages are a key element in calculating and constraining uncertainty in radiocarbon age estimates and are also essential to better understand regional ocean circulation. In this study, we present a new method to reconstruct long-term, high-resolution sea surface reservoir ages based on analysis of the organic skeleton of deep-sea (560 m) black coral (Anthozoa, Antipatharia). Our results confirm that antipatharians are extremely slow growing (typical radial growth rate for a South Pacific specimen around 0.03 mm/yr). Coupled uranium series and radiocarbon measurements were made on black coral collected live from the Norfolk Ridge (north Tasman Sea) to provide the first modern reservoir ages for this region. At the Norfolk Ridge, the average reservoir age between 1790 AD and 1900 AD was ∼330 years. This was followed by a steep decrease over time of about 70 years to 1950 AD (our most modern value). This indicates an increase in surface ocean ventilation of water masses in this region. These results are consistent with observational studies for the early twentieth century, which suggest significant changes in regional circulation of the southwest pacific.

  12. Measuring sea surface height with a GNSS-Wave Glider

    NASA Astrophysics Data System (ADS)

    Morales Maqueda, Miguel Angel; Penna, Nigel T.; Foden, Peter R.; Martin, Ian; Cipollini, Paolo; Williams, Simon D.; Pugh, Jeff P.

    2017-04-01

    A GNSS-Wave Glider is a novel technique to measure sea surface height autonomously using the Global Navigation Satellite System (GNSS). It consists of an unmanned surface vehicle manufactured by Liquid Robotics, a Wave Glider, and a geodetic-grade GNSS antenna-receiver system, with the antenna installed on a mast on the vehicle's deck. The Wave Glider uses the differential wave motion through the water column for propulsion, thus guaranteeing an, in principle, indefinite autonomy. Solar energy is collected to power all on-board instrumentation, including the GNSS system. The GNSS-Wave Glider was first tested in Loch Ness in 2013, demonstrating that the technology is capable of mapping geoid heights within the loch with an accuracy of a few centimetres. The trial in Loch Ness did not conclusively confirm the reliability of the technique because, during the tests, the state of the water surface was much more benign than would normally be expect in the open ocean. We now report on a first deployment of a GNSS-Wave Glider in the North Sea. The deployment took place in August 2016 and lasted thirteen days, during which the vehicle covered a distance of about 350 nautical miles in the north western North Sea off Great Britain. During the experiment, the GNSS-Wave Glider experienced sea states between 1 (0-0.1 m wave heights) and 5 (2.5-4 m wave heights). The GNSS-Wave Glider data, recorded at 5 Hz frequency, were analysed using a post-processed kinematic GPS-GLONASS precise point positioning (PPP) approach, which were quality controlled using double difference GPS kinematic processing with respect to onshore reference stations. Filtered with a 900 s moving-average window, the PPP heights reveal geoid patterns in the survey area that are very similar to the EGM2008 geoid model, thus demonstrating the potential use of a GNSS-Wave Glider for marine geoid determination. The residual of subtracting the modelled or measured marine geoid from the PPP signal combines information

  13. Possible instability of the Fermi sea against surface plasma oscillations.

    PubMed

    Deng, Hai-Yao

    2017-09-21

    We derive a generic formalism for studying the energy conversion processes in bounded metals. Using this formalism we show that in the collision-less limit the Fermi sea of metals should experience an instability against surface plasma oscillations, which opens for the latter an intrinsic self-amplification channel. The origin of the instability is clarified as arising from novel effects resulting from the translation symetry breaking due to the very presence of surface. The amplification rate of this channel is analytically evaluated on the basis of energy conservation and the effects of losses are discussed. In particular, the unique role played by the surface in energy conversion is unveiled. In contrast with common wisdom and in line with observations, Landau damping is shown always overcompensated and therefore poses no serious issues in sub-wavelength plasmonics. © 2017 IOP Publishing Ltd.

  14. Radar studies of the sea surface - An introduction

    NASA Technical Reports Server (NTRS)

    Stewart, R. H.

    1981-01-01

    A variety of different radars have been used to observe the sea surface. The instruments include scatterometers to measure wind velocity, altimeters to measure wind speed and wave height, synthetic aperture radars (SAR) to map the radar reflectivity of the surface in order to see ocean surface waves and other phenomena, and two-frequency radars to measure ocean wavelength. The present investigation is concerned with the accuracy of the measurements of particular oceanic variables, improved means of calculating these variables, and a comparison of the relative similarities and differences among the various radars. Wind speed can be measured to useful accuracy from space using scatterometers such as that on Seasat. Significant wave heights can be measured to useful accuracy from space using altimeters, the present accuracy being + or - 10% for altimeters such as that on Seasat.

  15. South Atlantic sea surface temperature anomalies and air-sea interactions: stochastic models

    NASA Astrophysics Data System (ADS)

    Dobrovolski, S. G.

    1994-09-01

    Data on the South Atlantic monthly sea surface temperature anomalies (SSTA) are analysed using the maximum-entropy method. It is shown that the Markov first-order process can describe, to a first approximation, SSTA series. The region of maximum SSTA values coincides with the zone of maximum residual white noise values (sub-Antarctic hydrological front). The theory of dynamic-stochastic climate models is applied to estimate the variability of South Atlantic SSTA and air-sea interactions. The Adem model is used as a deterministic block of the dynamic-stochastic model. Experiments show satisfactorily the SSTA intensification in the sub-Antarctic front zone, with appropriate standard deviations, and demonstrate the leading role of the abnormal drift currents in these processes.

  16. Homogenization methods for the Sea Surface Temperature Data over the South China Seas

    NASA Astrophysics Data System (ADS)

    Wang, G. S.; Hou, M.; Li, Y.; Wang, H.; Fan, W. J.; Liu, K. X.; Gao, J.; Li, C.

    2017-01-01

    Based on the metadata, Monthly Sea Surface Temperature (SST) series from nine marine stations over the South China Sea (SCS) are homogeneity detection and correction by Penalized Maximum T Test (PMT) method. The reference stations are developed using surrounding meteorological stations. Correction results show that: (1) The homogeneity detection and correction of marine observation stations should be based on the metadata, meanwhile, fully consider the influence of regional climate change factors. (2) Correlation analysis found that, the air temperature series from the surrounding meteorological stations is currently the optimal reference series. (3) The marine stations has 1∼2 change points average, among them, changes of instrumentation and changes of location environment has great impact on the discontinuities. (4) The trend of the SST over SCS have a more pronounced warming trend during the past 52 years. Correction results indicate that the homogenization research in the SCS has an important meaning for the study of the SCS coast SST changes and climate change.

  17. Retrieval of eddy dynamics from SMOS sea surface salinity measurements in the Algerian Basin (Mediterranean Sea)

    NASA Astrophysics Data System (ADS)

    Isern-Fontanet, Jordi; Olmedo, Estrella; Turiel, Antonio; Ballabrera-Poy, Joaquim; García-Ladona, Emilio

    2016-06-01

    The circulation in the Algerian Basin is characterized by the presence of fresh-core eddies that propagate along the coast or at distances between 100 and 200 km from the coast. Enhancements in the processing of the Soil Moisture and Ocean Salinity (SMOS) data have allowed to produce, for the first time, satellite sea surface salinity (SSS) maps in the Mediterranean Sea that capture the signature of Algerian eddies. SMOS data can be used to track them for long periods of time, especially during winter. SMOS SSS maps are well correlated with in situ measurements although the former has a smaller dynamical range. Despite this limitation, SMOS SSS maps capture the key dynamics of Algerian eddies allowing to retrieve velocities from SSS with the correct sign of vorticity.

  18. Seasonality of biological feedbacks on sea surface temperature variations in the Arabian Sea: The role of mixing and upwelling

    NASA Astrophysics Data System (ADS)

    Ma, Jinfeng; Liu, Hailong; Lin, Pengfei; Zhan, Haigang

    2014-11-01

    The effects of biological heating on upper-ocean temperature and circulation in the Arabian Sea are investigated using an ocean general circulation model. We find that the change of sea surface temperature (SST) is not only dependent on the variation of chlorophyll concentration, but also the dynamic processes, e.g., mixing and upwelling. Biological heating can warm the SST in the north Arabian Sea during spring and the central Arabian Sea during autumn when the mixed layer depth is shallow. However, the situation is quite different during winter and summer. Although the chlorophyll concentration is high in the north Arabian Sea during winter and in the western Arabian Sea during summer, the SSTs become significantly cool instead of warm. The heat budget analyses indicate that the cold SSTs result from both the strong convective mixing during the winter and the strong upwelling during the summer, which bring the cold water below the mixed layer to the surface.

  19. Surface Heat Budgets and Sea Surface Temperature in the Pacific Warm Pool During TOGA COARE

    NASA Technical Reports Server (NTRS)

    Chou, Shu-Hsien; Zhao, Wenzhong; Chou, Ming-Dah

    1998-01-01

    The daily mean heat and momentum fluxes at the surface derived from the SSM/I and Japan's GMS radiance measurements are used to study the temporal and spatial variability of the surface energy budgets and their relationship to the sea surface temperature during the COARE intensive observing period (IOP). For the three time legs observed during the IOP, the retrieved surface fluxes compare reasonably well with those from the IMET buoy, RV Moana Wave, and RV Wecoma. The characteristics of surface heat and momentum fluxes are very different between the southern and northern warm pool. In the southern warm pool, the net surface heat flux is dominated by solar radiation which is, in turn, modulated by the two Madden-Julian oscillations. The surface winds are generally weak, leading to a shallow ocean mixed layer. The solar radiation penetrating through the bottom of the mixed layer is significant, and the change in the sea surface temperature during the IOP does not follow the net surface heat flux. In the northern warm pool, the northeasterly trade wind is strong and undergoes strong seasonal variation. The variation of the net surface heat flux is dominated by evaporation. The two westerly wind bursts associated with the Madden-Julian oscillations seem to have little effect on the net surface heat flux. The ocean mixed layer is deep, and the solar radiation penetrating through the bottom of the mixed layer is small. As opposed to the southern warm pool, the trend of the sea surface temperature in the northern warm pool during the IOP is in agreement with the variation of the net heat flux at the surface.

  20. Simulations of The Extreme Precipitation Event Enhanced by Sea Surface Temperature Anomaly over the Black Sea

    NASA Astrophysics Data System (ADS)

    Hakan Doǧan, Onur; Önol, Barış

    2016-04-01

    Istanbul Technical University, Aeronautics and Astronautics Faculty, Meteorological Engineering, Istanbul, Turkey In this study, we examined the extreme precipitation case over the Eastern Black Sea region of Turkey by using regional climate model, RegCM4. The flood caused by excessive rain in August 26, 2010 killed 12 people and the landslides in Rize province have damaged many buildings. The station based two days total precipitation exceeds 200 mm. One of the usual suspects for this extreme event is positive anomaly of sea surface temperature (SST) over the Black Sea where the significant warming trend is clear in the last three decades. In August 2010, the monthly mean SST is higher than 3 °C with respect to the period of 1981-2010. We designed three sensitivity simulations with RegCM4 to define the effects of the Black Sea as a moisture source. The simulation domain with 10-km horizontal resolution covers all the countries bordering the Black Sea and simulation period is defined for entire August 2010. It is also noted that the spatial variability of the precipitation produced by the reference simulation (Sim-0) is consistent with the TRMM data. In terms of analysis of the sensitivity to SST, we forced the simulations by subtracting 1 °C (Sim-1), 2 °C (Sim-2) and 3 °C (Sim-3) from the ERA-Interim 6-hourly SST data (considering only the Black Sea). The sensitivity simulations indicate that daily total precipitation for all these simulations gradually decreased based on the reference simulation (Sim-0). 3-hourly maximum precipitation rates for Sim-0, Sim-1, Sim-2 and Sim-3 are 32, 25, 13 and 10.5 mm respectively over the hotspot region. Despite the fact that the simulations signal points out the same direction, degradation of the precipitation intensity does not indicate the same magnitude for all simulations. It is revealed that 2 °C (Sim-2) threshold is critical for SST sensitivity. We also calculated the humidity differences from the simulation and these

  1. Radio emission of sea surface at centimeter wavelengths and is fluctuations

    NASA Technical Reports Server (NTRS)

    Tseytlin, N. M.; Shutko, A. M.; Zhislin, G. M.

    1981-01-01

    The eigen thermal radio emission of the sea was examined as well as the agitated surface of the sea when the reflection (scattering) is similar in nature to diffused scattering. The contribution of this emission to the total emission of the sea is practically constant in time, and the time fluctuations of the radio emissions of the sea are basically determined only by a change in the eigen emission of the sea, connected with the agitation.

  2. Estimation of subsurface thermal structure using sea surface height and sea surface temperature

    NASA Technical Reports Server (NTRS)

    Kang, Yong Q. (Inventor); Jo, Young-Heon (Inventor); Yan, Xiao-Hai (Inventor)

    2012-01-01

    A method of determining a subsurface temperature in a body of water is disclosed. The method includes obtaining surface temperature anomaly data and surface height anomaly data of the body of water for a region of interest, and also obtaining subsurface temperature anomaly data for the region of interest at a plurality of depths. The method further includes regressing the obtained surface temperature anomaly data and surface height anomaly data for the region of interest with the obtained subsurface temperature anomaly data for the plurality of depths to generate regression coefficients, estimating a subsurface temperature at one or more other depths for the region of interest based on the generated regression coefficients and outputting the estimated subsurface temperature at the one or more other depths. Using the estimated subsurface temperature, signal propagation times and trajectories of marine life in the body of water are determined.

  3. Internal gravity wave contributions to global sea surface variability

    NASA Astrophysics Data System (ADS)

    Savage, A.; Arbic, B. K.; Richman, J. G.; Shriver, J. F.; Buijsman, M. C.; Zamudio, L.; Wallcraft, A. J.; Sharma, H.

    2016-02-01

    High-resolution (1/12th and 1/25th degree) 41-layer simulations of the HYbrid Coordinate Ocean Model (HYCOM), forced by both atmospheric fields and the astronomical tidal potential, are used to construct global maps of sea-surface height (SSH). The HYCOM output has been separated into steric, non-steric, and total sea-surface height and the maps display variance in subtidal, tidal, and supertidal bands. Two of the global maps are of particular interest in planning for the upcoming Surface Water and Ocean Topography (SWOT) wide-swath satellite altimeter mission; (1) a map of the nonstationary tidal signal (estimated after removing the stationary tidal signal via harmonic analysis), and (2) a map of the steric supertidal contributions, which are dominated by the internal gravity wave continuum. Both of these maps display signals of order 1 cm2, the target accuracy for the SWOT mission. Therefore, both non-stationary internal tides and non-tidal internal gravity waves are likely to be important sources of "noise" that must be accurately removed before examination of lower-frequency phenomena can take place.

  4. Pacific Sea Level Rise Patterns and Global Surface Temperature Variability

    NASA Astrophysics Data System (ADS)

    Yin, J.; Peyser, C.; Landerer, F. W.; Cole, J. E.

    2016-12-01

    During 1998-2012, climate change and sea level rise (SLR) exhibit two notable features: a slowdown of global surface warming (hiatus) and a rapid SLR in the tropical western Pacific. To quantify their relationship, we analyse the long-term control simulations of 38 climate models. We find a significant and robust correlation between the east-west contrast of dynamic sea level (DSL) in the Pacific and global mean surface temperature (GST) variability on both interannual and decadal time scales. Based on linear regression of the multi-model ensemble mean, the anomalously fast SLR in the western tropical Pacific observed during 1998-2012 indicates suppression of a potential global surface warming of 0.16o±0.06oC. In contrast, the Pacific contributed 0.29o±0.10oC to the significant interannual GST increase in 1997/98. The Pacific DSL anomalies observed in 2015 suggest that the strong El Niño in 2015/16 could lead to a 0.21o±0.07oC GST jump.

  5. Pacific sea level rise patterns and global surface temperature variability

    NASA Astrophysics Data System (ADS)

    Peyser, Cheryl E.; Yin, Jianjun; Landerer, Felix W.; Cole, Julia E.

    2016-08-01

    During 1998-2012, climate change and sea level rise (SLR) exhibit two notable features: a slowdown of global surface warming (hiatus) and a rapid SLR in the tropical western Pacific. To quantify their relationship, we analyze the long-term control simulations of 38 climate models. We find a significant and robust correlation between the east-west contrast of dynamic sea level (DSL) in the Pacific and global mean surface temperature (GST) variability on both interannual and decadal time scales. Based on linear regression of the multimodel ensemble mean, the anomalously fast SLR in the western tropical Pacific observed during 1998-2012 indicates suppression of a potential global surface warming of 0.16° ± 0.06°C. In contrast, the Pacific contributed 0.29° ± 0.10°C to the significant interannual GST increase in 1997/1998. The Pacific DSL anomalies observed in 2015 suggest that the strong El Niño in 2015/2016 could lead to a 0.21° ± 0.07°C GST jump.

  6. Joint variability of global runoff and global sea surface temperatures

    USGS Publications Warehouse

    McCabe, G.J.; Wolock, D.M.

    2008-01-01

    Global land surface runoff and sea surface temperatures (SST) are analyzed to identify the primary modes of variability of these hydroclimatic data for the period 1905-2002. A monthly water-balance model first is used with global monthly temperature and precipitation data to compute time series of annual gridded runoff for the analysis period. The annual runoff time series data are combined with gridded annual sea surface temperature data, and the combined dataset is subjected to a principal components analysis (PCA) to identify the primary modes of variability. The first three components from the PCA explain 29% of the total variability in the combined runoff/SST dataset. The first component explains 15% of the total variance and primarily represents long-term trends in the data. The long-term trends in SSTs are evident as warming in all of the oceans. The associated long-term trends in runoff suggest increasing flows for parts of North America, South America, Eurasia, and Australia; decreasing runoff is most notable in western Africa. The second principal component explains 9% of the total variance and reflects variability of the El Ni??o-Southern Oscillation (ENSO) and its associated influence on global annual runoff patterns. The third component explains 5% of the total variance and indicates a response of global annual runoff to variability in North Aflantic SSTs. The association between runoff and North Atlantic SSTs may explain an apparent steplike change in runoff that occurred around 1970 for a number of continental regions.

  7. Sea Surface Temperature and Vegetation Index from MODIS

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This is a composite MODIS image showing the 'green wave' of spring in North America and sea surface temperature in the ocean, collected over an 8-day period during the first week in April 2000. On land, the darker green pixels show where the most green foliage is being produced due to photosynthetic activity. Yellows on land show where there is little or no productivity and red is a boundary zone. In the ocean, orange and yellows show warmer waters and blues show colder values. (MODIS Data Type: MODIS-PFM)

  8. Sea Surface Temperature and Vegetation Index from MODIS

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This is a composite MODIS image showing the 'green wave' of spring in North America and sea surface temperature in the ocean, collected over an 8-day period during the first week in April 2000. On land, the darker green pixels show where the most green foliage is being produced due to photosynthetic activity. Yellows on land show where there is little or no productivity and red is a boundary zone. In the ocean, orange and yellows show warmer waters and blues show colder values. (MODIS Data Type: MODIS-PFM)

  9. Spherical harmonic expansion of the Levitus Sea surface topography

    NASA Technical Reports Server (NTRS)

    Engelis, Theodossios

    1987-01-01

    Prior information for the stationary sea surface topography (SST) may be needed in altimetric solutions that intend to simultaneously improve the gravity field and determine the SST. For this purpose the oceanographically derived SST estimates are represented by a spherical harmonic expansion. The spherical harmonic coefficients are computed from a least squares adjustment of the data covering the majority of the oceanic regions of the world. Several tests are made to determine the optimum maximum degree of solution and the best configuration of the geometry of the data in order to obtain a solution that fits the data and also provides a good spectral representation of the SST.

  10. ENSO related sea surface salinity variability in the equatorial Pacific

    NASA Astrophysics Data System (ADS)

    Qu, T.

    2016-12-01

    Recently available satellite and Argo data have shown coherent, large-scale sea surface salinity (SSS) variability in the equatorial Pacific. Based on this variability, several SSS indices of El Nino have been introduced by previous studies. Combining results from an ocean general circulation model with available satellite and in-situ observations, this study investigates the SSS variability and its associated SSS indices in the equatorial Pacific. The ocean's role and in particular the vertical entrainment of subtropical waters in this variability are discussed, which suggests that the SSS variability in the equatorial Pacific may play some active role in ENSO evolution.

  11. Seasonal sea surface and sea ice signal in the fjords of Eastern Greenland from CryoSat-2 SARin altimetry

    NASA Astrophysics Data System (ADS)

    Abulaitijiang, Adili; Baltazar Andersen, Ole; Stenseng, Lars

    2014-05-01

    Cryosat-2 offers the first ever possibility to perform coastal altimetric studies using SAR-Interferometry. This enabled qualified measurements of sea surface height (SST) in the fjords in Greenland. Scoresbysund fjord on the east coast of Greenland is the largest fjord in the world which is also covered by CryoSat-2 SAR-In mask making it a good test region. Also, the tide gauge operated by DTU Space is sitting in Scoresbysund bay, which provides solid ground-based sea level variation records throughout the year. We perform an investigation into sea surface height variation since the start of the Cryosat-2 mission using SAR-In L1B data processed with baseline B processing. We have employed a new develop method for projecting all SAR-In observations in the Fjord onto a centerline up the Fjord. Hereby we can make solid estimates of the annual and (semi-) annual signal in sea level/sea ice freeboard within the Fjord. These seasonal height variations enable us to derive sea ice freeboard changes in the fjord from satellite altimetry. Derived sea level and sea-ice freeboard can be validated by comparison with the tide gauge observations for sea level and output from the Microwave Radiometer derived observations of sea ice freeboard developed at the Danish Meteorological Institute.

  12. Fine-Resolution Satellite-Based Daily Sea Surface Temperatures over the Global Ocean

    DTIC Science & Technology

    2007-05-01

    MODAS with latitudinal extent limited to ±80. Note that only the RTG product includes SST in the Caspian Sea and the Sea of Azov . The plot masks SST...Fine-resolution satellite-based daily sea surface temperatures over the global ocean A. B. Kara1 and C. N. Barron1 Received 18 November 2006; revised...13 February 2007; accepted 27 February 2007; published 22 May 2007. [1] The accuracy and relative merits of two sets of daily global sea surface

  13. Accuracy of Sea Surface Topography with GPS Scattered Signals

    NASA Astrophysics Data System (ADS)

    Zuffada, C.; Zavorotny, V. U.; Lowe, S.

    2001-12-01

    The concept of using GPS reflected signals for ocean and land remote sensing is based on the use of one airborne (or space-based) GPS receiver working simultaneously with a constellation of several signal-transmitting GPS satellites. This would offer an advantage in terms of spatial coverage compared to a conventional monostatic radar system and possibly allow new scientific applications to be pursued. However, the limited power of GPS transmitters and a relatively low surface cross section would require either large receiving antennas or longer integration times to optimize the signal-to-noise ratio. Analogously to the case of a conventional radar altimeter, the reflected GPS signal acquired by the receiver is the average power versus time (a range measurement) and generally represents the contributions from surfaces which scatter incoherently. This waveform is derived as a function of viewing geometry, system parameters, surface roughness and dielectric properties of underlying covers. This work investigates the spatial-temporal coherence properties and statistics of the measured reflected GPS signal that describes variability from one sample to another. This information is needed to choose an optimal strategy for a successful signal processing. We examine the above-mentioned properties of the modeled received power as a function of surface state and scattering geometry. Its impact on the accuracy of sea surface topography, both from airborne and orbital platforms is addressed. A characterization of error and expected spatial resolution in relation to existing instruments is discussed. Furthermore, in examining the coherence time, we analyze the spectral behavior of the reflected signal versus sea state parameters, such as wind vector. In addition, we compare the predictions with data available from recent airplane measurements taken in the Pacific Ocean off the coast of Southern California obtaining preliminary validations of our models.

  14. The influence of global sea surface temperature variability on the large-scale land surface temperature

    NASA Astrophysics Data System (ADS)

    Tyrrell, Nicholas L.; Dommenget, Dietmar; Frauen, Claudia; Wales, Scott; Rezny, Mike

    2015-04-01

    In global warming scenarios, global land surface temperatures () warm with greater amplitude than sea surface temperatures (SSTs), leading to a land/sea warming contrast even in equilibrium. Similarly, the interannual variability of is larger than the covariant interannual SST variability, leading to a land/sea contrast in natural variability. This work investigates the land/sea contrast in natural variability based on global observations, coupled general circulation model simulations and idealised atmospheric general circulation model simulations with different SST forcings. The land/sea temperature contrast in interannual variability is found to exist in observations and models to a varying extent in global, tropical and extra-tropical bands. There is agreement between models and observations in the tropics but not the extra-tropics. Causality in the land-sea relationship is explored with modelling experiments forced with prescribed SSTs, where an amplification of the imposed SST variability is seen over land. The amplification of to tropical SST anomalies is due to the enhanced upper level atmospheric warming that corresponds with tropical moist convection over oceans leading to upper level temperature variations that are larger in amplitude than the source SST anomalies. This mechanism is similar to that proposed for explaining the equilibrium global warming land/sea warming contrast. The link of the to the dominant mode of tropical and global interannual climate variability, the El Niño Southern Oscillation (ENSO), is found to be an indirect and delayed connection. ENSO SST variability affects the oceans outside the tropical Pacific, which in turn leads to a further, amplified and delayed response of.

  15. The mean sea surface height and geoid along the Geosat subtrack from Bermuda to Cape Cod

    NASA Technical Reports Server (NTRS)

    Kelly, Kathryn A.; Joyce, Terrence M.; Schubert, David M.; Caruso, Michael J.

    1991-01-01

    The mean sea-surface height and the gravitational geoid are presently estimated via near-surface velocity changes and concurrent sea-level changes along an ascending Geosat subtrack. The velocity measurements were made on three traverses, within ten days, of a Geosat subtrack, by means of an acoustic Doppler current profiler (ADCP). The mean sea-surface height was estimated as the difference between the instantaneous sea-surface height from ADCP and the Geosat residual sea level. In order to minimize mesoscale errors in the estimate, the along-track geoid estimate was computed as the difference between mean sea-level height from the Geosat Exact Repeat Mission and an estimate of the mean sea-surface height.

  16. The mean sea surface height and geoid along the Geosat subtrack from Bermuda to Cape Cod

    NASA Technical Reports Server (NTRS)

    Kelly, Kathryn A.; Joyce, Terrence M.; Schubert, David M.; Caruso, Michael J.

    1991-01-01

    The mean sea-surface height and the gravitational geoid are presently estimated via near-surface velocity changes and concurrent sea-level changes along an ascending Geosat subtrack. The velocity measurements were made on three traverses, within ten days, of a Geosat subtrack, by means of an acoustic Doppler current profiler (ADCP). The mean sea-surface height was estimated as the difference between the instantaneous sea-surface height from ADCP and the Geosat residual sea level. In order to minimize mesoscale errors in the estimate, the along-track geoid estimate was computed as the difference between mean sea-level height from the Geosat Exact Repeat Mission and an estimate of the mean sea-surface height.

  17. Understanding and predicting changes in North Atlantic Sea Surface Temperature

    NASA Astrophysics Data System (ADS)

    Yeager, S. G.

    The mechanisms associated with sea surface temperature variability in the North Atlantic are explored using observation-based reconstructions of the historical surface states of the atmosphere and ocean as well as simulations run with the Community Earth System Model, version 1 (CESM1). The relationship between air-sea heat flux and SST between 1948 and 2009 yields evidence of a positive heat flux feedback at work in the subpolar gyre region on quasi-decadal timescales. Warming of the high latitude Atlantic precedes an atmospheric response which resembles a negative NAO state. The historical flux data set is used to estimate temporal variations in North Atlantic deep water formation which suggest that NAO variations drove strong decadal changes in thermohaline circulation strength in the last half century. Model simulations corroborate the observation-based inferences that substantial changes in the strength of the Atlantic Meridional Overturning Circulation (AMOC) ensued as a result of NAO-driven water mass perturbations, and that changes in the large-scale ocean circulation played a significant role in modulating North Atlantic SST. Surface forcing perturbation experiments show that the simulated low-frequency AMOC variability is mainly driven by turbulent buoyancy forcing over the Labrador Sea region, and that the decadal ocean variability, in uncoupled experiments, derives from low-frequency variability in the overlying atmospheric state. Surface momentum forcing accounts for most of the interannual variability in AMOC at all latitudes, and also most of the decadal AMOC variability south of the Equator. We show that the latter relates to the trend in wind stress forcing of the Southern Ocean, but that Southern Ocean forcing explains very little of the North Atlantic signal. The sea surface height in the Labrador Sea is identified as a strongly buoyancy-forced observable which supports its use as a monitor of AMOC strength. The dynamics which characterize the

  18. Sea surface Ka-band radar cross-section from field observations in the Black Sea

    NASA Astrophysics Data System (ADS)

    Yurovsky, Yury; Kudryavtsev, Vladimir; Grodsky, Semyon; Chapron, Bertrand

    2016-04-01

    An interest in Ka-band radar backscattering from the ocean surface is growing due to better spatial resolution and more accurate Doppler anomaly estimate. But, available empirical models of Ka-band cross-section are quite scarce and sometime controversial. Here we present multi-year (2009-2015) field measurements of Ka-band co-polarized (VV and HH) sea surface normalized radar cross-section (NRCS) from research platform in the Black sea collected in a wide range of observation and sea state conditions. The data are fitted by polynomial function of incidence angle, azimuth and wind speed with accounting for measured radar antenna pattern. This empirical NRCS is compared with published Ka- and Ku-band data. Our Ka-band NRCS is close to Ku-band, but is 5-7 dB higher than 'pioneer' measurements by Masuko et al. (1986). Following the two-scale Bragg paradigm, the NRCS is split into polarized (Bragg) and non-polarized components and analyzed in terms of polarization ratio (VV/HH) and polarization difference (VV-HH) to estimate wave spectra at the Bragg wave number. Non-polarized component dominates at low incidence angles <30° due to specular reflection from regular surface. At larger incidence angles, the relative non-polarized contribution decreases, but grows again at HH-polarization approaching 0.7-0.8 at 65° for 10 m/s wind speed, suggesting that backscattering from breaking waves dominates HH NRCS at low grazing angles. At high incidence angles (>60°) NRCS azimuth dependency is unimodal (upwind peak) for HH and bimodal (with up- and downwind peaks) for VV polarization. This again can be attributed to different backscattering mechanisms for VV and HH polarizations. With decreasing of incidence angle, up- to downwind ratio tends to 1, and under light wind conditions (4-6 m/s) can be less than 1. The same situation is observed for polarization difference, which reflects Bragg backscattering properties only. This effect can be explained by enhanced roughness on

  19. Spatio-temporal variability in sea surface temperatures for the Yellow Sea based on MODIS dataset

    NASA Astrophysics Data System (ADS)

    Liu, Chunli; Sun, Qiwei; Xing, Qianguo; Liang, Zhenlin; Deng, Yue; Zhu, Lixin

    2017-03-01

    The spatio-temporal variabilities in sea surface temperature (SST) were analyzed using a time series of MODIS datasets for four separate regions in the Yellow Sea (YS) that were located along a north-south axis. The space variant temporal anomaly was further decomposed using an empirical orthogonal function (EOF) for estimating spatially distributed SST. The monthly SSTs showed similar temporal patterns in each region, which ranged from 2.4°C to 28.4°C in the study years 2011 to 2013, with seasonal cycles being stronger at the higher latitudes and weaker at the lower latitudes. Spatially, although there were no significant differences among the four regions ( p < 0.05) in any year, the geographical distribution of SST was characterized by an obvious gradient whereby SST decreased along the north-south axis. The monthly thermal difference among regions was largest in winter since the SST in the southeast was mainly affected by the Yellow Sea Warm Currents. The EOF1 mode accounted for 56% of the total spatial variance and exhibited a warming signal during the study period. The EOF2 mode accounted for 8% of the total variance and indicated the warm current features in the YS. The EOF3 mode accounted for 6% of the total variance and indicated the topographical features. The methodology used in this study demonstrated the spatio-temporal variabilities in the YS.

  20. Spatio-temporal variability in sea surface temperatures for the Yellow Sea based on MODIS dataset

    NASA Astrophysics Data System (ADS)

    Liu, Chunli; Sun, Qiwei; Xing, Qianguo; Liang, Zhenlin; Deng, Yue; Zhu, Lixin

    2017-02-01

    The spatio-temporal variabilities in sea surface temperature (SST) were analyzed using a time series of MODIS datasets for four separate regions in the Yellow Sea (YS) that were located along a north-south axis. The space variant temporal anomaly was further decomposed using an empirical orthogonal function (EOF) for estimating spatially distributed SST. The monthly SSTs showed similar temporal patterns in each region, which ranged from 2.4°C to 28.4°C in the study years 2011 to 2013, with seasonal cycles being stronger at the higher latitudes and weaker at the lower latitudes. Spatially, although there were no significant differences among the four regions (p < 0.05) in any year, the geographical distribution of SST was characterized by an obvious gradient whereby SST decreased along the north-south axis. The monthly thermal difference among regions was largest in winter since the SST in the southeast was mainly affected by the Yellow Sea Warm Currents. The EOF1 mode accounted for 56% of the total spatial variance and exhibited a warming signal during the study period. The EOF2 mode accounted for 8% of the total variance and indicated the warm current features in the YS. The EOF3 mode accounted for 6% of the total variance and indicated the topographical features. The methodology used in this study demonstrated the spatio-temporal variabilities in the YS.

  1. Attributing extreme precipitation in the Black Sea region to sea surface warming

    NASA Astrophysics Data System (ADS)

    Meredith, Edmund; Semenov, Vladimir; Maraun, Douglas; Park, Wonsun; Chernokulsky, Alexander

    2016-04-01

    Higher sea surface temperatures (SSTs) warm and moisten the overlying atmosphere, increasing the low-level atmospheric instability, the moisture available to precipitating systems and, hence, the potential for intense convective systems. Both the Mediterranean and Black Sea regions have seen a steady increase in summertime SSTs since the early 1980s, by over 2 K in places. This raises the question of how this SST increase has affected convective precipitation extremes in the region, and through which mechanisms any effects are manifested. In particular, the Black Sea town of Krymsk suffered an unprecedented precipitation extreme in July 2012, which may have been influenced by Black Sea warming, causing over 170 deaths. To address this question, we adopt two distinct modelling approaches to event attribution and compare their relative merits. In the first, we use the traditional probabilistic event attribution approach involving global climate model ensembles representative of the present and a counterfactual past climate where regional SSTs have not increased. In the second, we use the conditional event attribution approach, taking the 2012 Krymsk precipitation extreme as a showcase example. Under the second approach, we carry out ensemble sensitivity experiments of the Krymsk event at convection-permitting resolution with the WRF regional model, and test the sensitivity of the event to a range of SST forcings. Both experiments show the crucial role of recent Black Sea warming in amplifying the 2012 Krymsk precipitation extreme. In the conditional event attribution approach, though, the explicit simulation of convective processes provides detailed insight into the physical mechanisms behind the extremeness of the event, revealing the dominant role of dynamical (i.e. static stability and vertical motions) over thermodynamical (i.e. increased atmospheric moisture) changes. Additionally, the wide range of SST states tested in the regional setup, which would be

  2. Mean sea surface and gravity investigations using TOPEX/Poseidon altimeter data

    NASA Technical Reports Server (NTRS)

    Rapp, Richard H.

    1991-01-01

    From a broad point of view, we will be concerned with studying global ocean circulation patterns on the basis of ocean surface determinations with geoid undulation information. In addition, we will study local variations of the gravity field implied by the altimeter data. These general goals are reflected in the title of our investigation. To meet our general goal, we have defined a number of specific objectives: (1) sea surface topography representation; (2) mean sea surface determination; (3) development of local geoid models; (4) mean sea surface comparisons; (5) sea surface topographic files; and (6) gravity anomaly determination.

  3. Simulation of infrared emissivity and reflectivity of oil films on sea surfaces

    NASA Astrophysics Data System (ADS)

    Pinel, Nicolas; Monnier, Goulven; Sergievskaya, Irina; Bourlier, Christophe

    2015-10-01

    In this paper, an efficient sea surface generation is described for the fast and realistic simulation of the infrared emissivity and reflectivity of clean and contaminated seas. The clean sea surface is modelled by the Elfouhaily et al. spectrum model. For describing the surface damping due to the oil film at the sea surface, the model of local balance (MLB) is used. Thus, these surface models are used as the basis for calculating the emissivity and reflectivity. The numerical efficient computation is tested by comparison with the reference statistical computation for its validation.

  4. Chlorinated hydrocarbons in the Sargasso sea atmosphere and surface water.

    PubMed

    Bidleman, T F; Olney, C E

    1974-02-08

    Polychlorinated biphenyls (PCB), DDT, and chlordane concentrations were measured in air sampled from a tower on the south shore of Bermuda and in Sargasso Sea surface water approximately 80 to 320 kilometers south of Bermuda. The atmospheric chlorinated hydrocarbons appeared to be gaseous, and the DDT concentration was two orders of magnitude higher than previously reported particulate values. The PCB and DDT were enriched in the surface microlayer (150 micrometers) relative to their concentrations in water at a depth of 30 centimeters. Atmospheric residence times for PCB and DDT of 40 to 50 days, calculated from the concentrations in the air and water, are 20 times shorter than values previously estimated for DDT from rainfall and DDT production data.

  5. Assessing recent warming using instrumentally homogeneous sea surface temperature records

    PubMed Central

    Hausfather, Zeke; Cowtan, Kevin; Clarke, David C.; Jacobs, Peter; Richardson, Mark; Rohde, Robert

    2017-01-01

    Sea surface temperature (SST) records are subject to potential biases due to changing instrumentation and measurement practices. Significant differences exist between commonly used composite SST reconstructions from the National Oceanic and Atmospheric Administration’s Extended Reconstruction Sea Surface Temperature (ERSST), the Hadley Centre SST data set (HadSST3), and the Japanese Meteorological Agency’s Centennial Observation-Based Estimates of SSTs (COBE-SST) from 2003 to the present. The update from ERSST version 3b to version 4 resulted in an increase in the operational SST trend estimate during the last 19 years from 0.07° to 0.12°C per decade, indicating a higher rate of warming in recent years. We show that ERSST version 4 trends generally agree with largely independent, near-global, and instrumentally homogeneous SST measurements from floating buoys, Argo floats, and radiometer-based satellite measurements that have been developed and deployed during the past two decades. We find a large cooling bias in ERSST version 3b and smaller but significant cooling biases in HadSST3 and COBE-SST from 2003 to the present, with respect to most series examined. These results suggest that reported rates of SST warming in recent years have been underestimated in these three data sets. PMID:28070556

  6. Emerita analoga recruit populations and correlations with sea surface temperature

    NASA Astrophysics Data System (ADS)

    Pettway, J.; Quan, H.; Juarez, F.; Vicencio, M.; Ng, N.; Careers in Science Intern Program

    2010-12-01

    The Careers in Science program at the California Academy of Sciences is a science internship for students from groups traditionally under-represented in the sciences. Starting in 2003, interns have participated in the Farallones Marine Sanctuary Association's LiMPETS Sandy Beach Monitoring program, assessing populations of Emerita analoga, the Pacific mole crab. E. analoga, an inhabitant of intertidal swash zones along the coast from Alaska to Baja California, is an important species in the sandy beach intertidal food web. Weekly, during the months of June, July and August, a group of interns go to stairwell 18 of San Francisco’s Ocean Beach in Golden Gate National Recreational Area to systematically collect live E. analoga samples and data. Along a 50 meter sampling area, five transects with ten samples in the swash zone are taken and recorded. Collected E. analoga are sexed (male, female, female w/eggs, and recruit) and measured for carapace size. Newly settled E. analoga (recruit) populations have declined in recent years. However, beginning in 2009, recruit populations began to increase in number, particularly in 2010. Our group hypothesized that this increase in recruitment is correlated with increased sea surface temperature. It has been reported that some planktonic animals become more abundant in warmer waters after a major temperature shift. After examining the data, we did not find a correlation between sea surface temperature and recruit populations, leading us to further questions on the cause of this increase in E. analoga recruits.

  7. Calibration plan for the sea and land surface temperature radiometer

    NASA Astrophysics Data System (ADS)

    Smith, David L.; Nightingale, Tim J.; Mortimer, Hugh; Middleton, Kevin; Edeson, Ruben; Cox, Caroline V.; Mutlow, Chris T.; Maddison, Brian J.

    2013-10-01

    The Sea and Land Surface Temperature Radiometer (SLSTR) to be flown on ESA's Sentinel-3 mission is a multichannel scanning radiometer that will continue the 21-year datasets of the Along Track Scanning Radiometer (ATSR) series. As its name implies, measurements from SLSTR will be used to retrieve global sea surface temperatures to an uncertainty of <0.3K traced to international standards. To achieve these low uncertainties requires an end to end instrument calibration strategy that includes pre-launch calibration at subsystem and instrument level, on-board calibration systems and sustained post launch activities. The authors describe the preparations for the pre-launch calibration activities including the spectral response, instrument level alignment tests, solar and infrared radiometric calibration. A purpose built calibration rig has been designed and built at RAL space that will accommodate the SLSTR instrument, infrared calibration sources and alignment equipment. The calibration rig has been commissioned and results of these tests will be presented. Finally the authors will present the planning for the on-orbit monitoring and calibration activities to ensure that calibration is maintained. These activities include vicarious calibration techniques that have been developed through previous missions, and the deployment of ship-borne radiometers.

  8. An Improved Estimation of COMS-based Sea Surface Temperature

    NASA Astrophysics Data System (ADS)

    Huh, M.; Seo, M.; Han, K. S.; Shin, J.; Shin, I.

    2016-12-01

    The objective of this paper is to implement retrieving Sea Surface Temperature (SST) using geostationary satellite of Korea, Communication, Ocean and Meteorological Satellite/Meteorological Imager (COMS/MI). In this study, IR channels of COMS are corrected using the Global Space-Based Inter-Calibration System (GSICS) that produces consistent accuracy of thermal infrared (IR) channels of satellite measurements. The new retrieval method is adopted the Multi-Channel Sea Surface Temperature (MCSST) `split-window' algorithm with First Guess and the quality controlled in-situ buoy data are used the reference data. The new MCSST_FG results are showed that RMSE is 0.85 ºC in day time (0.747 ºC in night time) by comparison with 0.92 ºC (0.827 ºC in night time) of MCSST which is the current operational retrieval method. We found the regional biases are reduced on MCSST_FG algorithm though, there are the skewness and outliers in the analysis of differences retrieved SST and in-situ. It is significant efforts reprocessing and improvement of the satellite COMS SST that expects the COMS SST is made use of thematic climate data record such as Global essential climate variables.

  9. A model of the tropical Pacific sea surface temperature climatology

    NASA Technical Reports Server (NTRS)

    Seager, Richard; Zebiak, Stephen E.; Cane, Mark A.

    1988-01-01

    A model for the climatological mean sea surface temperature (SST) of the tropical Pacific Ocean is developed. The upper ocean response is computed using a time dependent, linear, reduced gravity model, with the addition of a constant depth frictional surface layer. The full three-dimensional temperature equation and a surface heat flux parameterization that requires specification of only wind speed and total cloud cover are used to evaluate the SST. Specification of atmospheric parameters, such as air temperature and humidity, over which the ocean has direct influence, is avoided. The model simulates the major features of the observed tropical Pacific SST. The seasonal evolution of these features is generally captured by the model. Analysis of the results demonstrates the control the ocean has over the surface heat flux from ocean to atmosphere and the crucial role that dynamics play in determining the mean SST in the equatorial Pacific. The sensitivity of the model to perturbations in the surface heat flux, cloud cover specification, diffusivity, and mixed layer depth is discussed.

  10. A model of the tropical Pacific sea surface temperature climatology

    NASA Technical Reports Server (NTRS)

    Seager, Richard; Zebiak, Stephen E.; Cane, Mark A.

    1988-01-01

    A model for the climatological mean sea surface temperature (SST) of the tropical Pacific Ocean is developed. The upper ocean response is computed using a time dependent, linear, reduced gravity model, with the addition of a constant depth frictional surface layer. The full three-dimensional temperature equation and a surface heat flux parameterization that requires specification of only wind speed and total cloud cover are used to evaluate the SST. Specification of atmospheric parameters, such as air temperature and humidity, over which the ocean has direct influence, is avoided. The model simulates the major features of the observed tropical Pacific SST. The seasonal evolution of these features is generally captured by the model. Analysis of the results demonstrates the control the ocean has over the surface heat flux from ocean to atmosphere and the crucial role that dynamics play in determining the mean SST in the equatorial Pacific. The sensitivity of the model to perturbations in the surface heat flux, cloud cover specification, diffusivity, and mixed layer depth is discussed.

  11. Monitoring the sea surface with a short pulse radar

    NASA Technical Reports Server (NTRS)

    Le Vine, D. M.

    1974-01-01

    A solution is presented for the scattering of short pulses from a stochastic, corrugated surface relative to the sea for the case of a narrow-beam transmitting antenna pointing near nadir. The spectrum of the received power and its time history are calculated and this solution is used to show that a measure of the variance of the surface ordinant can be obtained from the backscattered power. Included explicitly in the analysis is the finite nature of the source and the role of the small-scale wave structure (capillary wave range). It is shown that when sufficiently short pulses are transmitted, one can obtain a measure of the variance of the large scale surface ordinant from either the temporal spacing of the peaks in the returned power or from the envelope of the spectrum of the received power. Assuming an appropriate model for the statistics and spectrum of the surface ordinate, the variance can be used to compute the wind speed and the significant wave height of the surface.

  12. Hourly to Decadal variability of sea surface carbon parameters in the north western Mediteranean Sea

    NASA Astrophysics Data System (ADS)

    Boutin, Jacqueline; Merlivat, Liliane; Antoine, David; Beaumont, Laurence; Golbol, Melek; Velluci, Vincenzo

    2017-04-01

    Sea surface CO2 fugacity, fCO2, is recorded hourly in the north western Mediterranean Sea since 2013 by two CARIOCA (Carbon Interface Ocean Atmosphere) sensors installed on the BOUSSOLE (Buoy for the acquisition of long term optical time series, http://www.obs-vlfr.fr/Boussole/html/project/introduction.php) mooring at 3m and 10m depth. fCO2 exhibits a large seasonal cycle, about 150 microatm peak to peak, very consistent with earlier CARIOCA measurements taken in 1995-1999 at the DYFAMED site (located 6km apart from the BOUSSOLE mooring) (Hood and Merlivat, JMR, 2001; Copin-Montegut et al., Mar. Chem., 2004): this seasonal cycle is driven primarily by intense mixing in Winter, biological uptake during Spring and warming during Summer. Interannual variability of these processes leads to interannual variability of monthly mean fCO2 that can reach more than 20 microatm. The short term variability (1 hour to 1 week) is large, especially during Summer 2014 (more than 40 microatm) due to a very strong vertical stratification and to the influence of internal waves. The hourly CARIOCA measurements allow to correctly filter out the high frequency variability while the three year long time series allow to smooth out interannual variability. Hence, for the first time, we get a precise estimate of the change of fCO2 in surface waters within 20 years. Over the 1995-2015 interval, we estimate an increase of fCO2 computed at a constant temperature of 13˚ C equal to 1.8 microatm per year. Given the alkalinity/salinity relationship in this region, we estimate mean annual rates of change of -0.0023+/-0.0001 pH unit and of +1.47+/-0.03 μmol kg-1 for pH and DIC respectively. These results give a quantitative estimate of the penetration of anthropogenic carbon in the surface waters of the northwestern Mediterranean Sea, about 80% via air-sea exchange and 20% via transport of carbon from the Atlantic across the Strait of Gibraltar as suggested by Palmieri et al (BG, 2015). We estimate

  13. A multiproxy reconstruction of Hebridean Shelf Sea spring sea surface temperatures from 1805-2010 (Invited)

    NASA Astrophysics Data System (ADS)

    Reynolds, D.; Butler, P.; Williams, S.; Scourse, J. D.; Richardson, C.; Wanamaker, A. D.; Austin, W.; Cage, A.; Sayer, M.

    2013-12-01

    We present a multiproxy reconstruction of Hebridean shelf sea (Tiree Passage; NW Scotland) spring sea surface temperatures (SSTs) for the period AD 1805-2010. The reconstruction is based on growth increment series from the first absolutely dated annually-resolved multi-centennial Glycymeris glycymeris bivalve mollusc sclerochronology and is coupled with previously published stable oxygen isotopes (δ18O) from benthic foraminifera sampled from a dated sediment core from nearby Loch Sunart. The independent series contain significant correlations with SSTs across complementary frequency domains. The low frequency component of the sedimentary archive was combined with the mid and high frequency components of the G. glycymeris chronology indices to create a single multiproxy series. Split calibration-verification statistics (reduction of error, RE, coefficient of efficiency, CE, and R2) indicate that the multiproxy record, calibrated to local instrumental sea surface temperatures, contains significant precision and skill at reconstructing spring SSTs (RE=0.59, CE=0.26, R2=0.54). These data demonstrate that bivalve sclerochronologies, when combined with low frequency proxies such as sediment archives, can facilitate statistically robust reconstructions of palaeoceanographic variability over the late Holocene for hydrographically-significant regions of the temperate marine system previously void of annually-resolved archives. The reconstructed SSTs contain a general warming trend of 0.60 ×0.14oC per century. Only four years in the reconstructed period (1999, 2000, 2002 and 2003) exceed temperatures greater than two standard deviations higher than the reconstructed mean SST (9.03oC), whilst just three years in the first half of the 19th century (1835, 1838 and 1840) fall more than 2σ below the reconstructed mean (6.80oC).

  14. Combining Satellite Altimetry, Tide Gauge Observations and an Oceanographic Model to Derive the Baltic Sea Mean Sea Surface Topography

    NASA Astrophysics Data System (ADS)

    Novotny, K.; Liebsch, G.; Lehmann, A.; Dietrich, R.

    2006-07-01

    Sea-level variability the Baltic Sea is dominated by meteorologically forced fluctuations with large seasonal and interannual variations. In addition to the observations of satellite altimeters, a high-resolution oceanographic model of the Baltic Sea provides sea level heights that largely reflect the high-frequency sea surface variations. This different information can be combined in such a way that the variance of the altimetric sea level heights can be substantially reduced. The resulting reduced altim eter time series form the basis for the estimation of mean sea surface heights. The application of a geoid model yields the mean sea surface topography (MSSTop). A high spatial resolution of the resulting MSSTop is achieved by the combination of different altimetric missions. Observations of ERS-2 and GFO are tied to the observations of TOPEX by minimizing the crossover point differences. This also provides information about the relative biases between the different altimeter missions. The final MSSTop can be estimated with an accuracy of 3 to 5 cm.

  15. Modelling explicit tides in the Indonesian seas: An important process for surface sea water properties.

    PubMed

    Nugroho, Dwiyoga; Koch-Larrouy, Ariane; Gaspar, Philippe; Lyard, Florent; Reffray, Guillaume; Tranchant, Benoit

    2017-06-16

    Very intense internal tides take place in Indonesian seas. They dissipate and affect the vertical distribution of temperature and currents, which in turn influence the survival rates and transports of most planktonic organisms at the base of the whole marine ecosystem. This study uses the INDESO physical model to characterize the internal tides spatio-temporal patterns in the Indonesian Seas. The model reproduced internal tide dissipation in agreement with previous fine structure and microstructure observed in-situ in the sites of generation. The model also produced similar water mass transformation as the previous parameterization of Koch-Larrouy et al. (2007), and show good agreement with observations. The resulting cooling at the surface is 0.3°C, with maxima of 0.8°C at the location of internal tides energy, with stronger cooling in austral winter. The cycle of spring tides and neap tides modulates this impact by 0.1°C to 0.3°C. These results suggest that mixing due to internal tides might also upwell nutrients at the surface at a frequency similar to the tidal frequencies. Implications for biogeochemical modelling are important. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Assessing the potential for dimethylsulfide enrichment at the sea surface and its influence on air-sea flux

    NASA Astrophysics Data System (ADS)

    Walker, Carolyn F.; Harvey, Mike J.; Smith, Murray J.; Bell, Thomas G.; Saltzman, Eric S.; Marriner, Andrew S.; McGregor, John A.; Law, Cliff S.

    2016-09-01

    The flux of dimethylsulfide (DMS) to the atmosphere is generally inferred using water sampled at or below 2 m depth, thereby excluding any concentration anomalies at the air-sea interface. Two independent techniques were used to assess the potential for near-surface DMS enrichment to influence DMS emissions and also identify the factors influencing enrichment. DMS measurements in productive frontal waters over the Chatham Rise, east of New Zealand, did not identify any significant gradients between 0.01 and 6 m in sub-surface seawater, whereas DMS enrichment in the sea-surface microlayer was variable, with a mean enrichment factor (EF; the concentration ratio between DMS in the sea-surface microlayer and in sub-surface water) of 1.7. Physical and biological factors influenced sea-surface microlayer DMS concentration, with high enrichment (EF > 1.3) only recorded in a dinoflagellate-dominated bloom, and associated with low to medium wind speeds and near-surface temperature gradients. On occasion, high DMS enrichment preceded periods when the air-sea DMS flux, measured by eddy covariance, exceeded the flux calculated using National Oceanic and Atmospheric Administration (NOAA) Coupled-Ocean Atmospheric Response Experiment (COARE) parameterized gas transfer velocities and measured sub-surface seawater DMS concentrations. The results of these two independent approaches suggest that air-sea emissions may be influenced by near-surface DMS production under certain conditions, and highlight the need for further study to constrain the magnitude and mechanisms of DMS production in the sea-surface microlayer.

  17. Global monthly sea surface nitrate fields estimated from remotely sensed sea surface temperature, chlorophyll, and modeled mixed layer depth

    NASA Astrophysics Data System (ADS)

    Arteaga, Lionel; Pahlow, Markus; Oschlies, Andreas

    2015-02-01

    Information about oceanic nitrate is crucial for making inferences about marine biological production and the efficiency of the biological carbon pump. While there are no optical properties that allow direct estimation of inorganic nitrogen, its correlation with other biogeochemical variables may permit its inference from satellite data. Here we report a new method for estimating monthly mean surface nitrate concentrations employing local multiple linear regressions on a global 1° by 1° resolution grid, using satellite-derived sea surface temperature, chlorophyll, and modeled mixed layer depth. Our method is able to reproduce the interannual variability of independent in situ nitrate observations at the Bermuda Atlantic Time Series, the Hawaii Ocean Time series, the California coast, and the southern New Zealand region. Our new method is shown to be more accurate than previous algorithms and thus can provide improved information on temporal and spatial nutrient variations beyond the climatological mean at regional and global scales.

  18. Interannual variability in stratiform cloudiness and sea surface temperature

    SciTech Connect

    Norris, J.R.; Leovy, C.B.

    1994-12-01

    Marine stratiform cloudiness (MSC)(stratus, stratocumulus, and fog) is widespread over subtropical oceans west of the continents and over midlatitude oceans during summer, the season when MSC has maximum influence on surface downward radiation and is most influenced by boundary-layer processes. Long-term datasets of cloudiness and sea surface teperature (SST) from surface observations from 1952 to 1981 are used to examine interannual variations in MSC and SST. Linear correlations of anomalies in seasonal MSC amount with seasonal SST anomalies are negative and significant in midlatitude and eastern subtropical oceans, especially during summer. Significant negative correlations between SST and nimbostratus and nonprecipitating midlevel cloudiness are also observed at midlatitudes during summer, suggesting that summer storm tracks shift from year to year following year-to-year meridional shifts in the SST gradient. Over the 30-yr period, there are significant upward trends in MSC amount over the northern midlatitude oceans and a significant downward trend off the coast of California. The highest correlations and trends occur where gradients in MSC and SST are strongest. During summer, correlations between SST and MSC anomalies peak at zero lag in midlatitudes where warm advection prevails, but SST lags MSC in subtropical regions where cold advection predominates. This difference is attributed to a tendency for anomalies in latent heat flux to compensate anomalies in surface downward radiation in warm advection regions but not in cold advection regions.

  19. Space-based observation of chlorophyll, sea surface temperature, nitrate, and sea surface height anomaly over the Bay of Bengal and Arabian Sea

    NASA Astrophysics Data System (ADS)

    Sarangi, R. K.; Devi, K. Nanthini

    2017-01-01

    Monthly chlorophyll and sea surface temperature (SST) images were generated using MODIS-Aqua data sets during 2014 and 2015 in the Bay of Bengal and Arabian Sea. The in situ data-based nitrate algorithm was used to generate nitrate images by using the satellite-derived chlorophyll and SST images. To link ocean productivity with the sea surface features and sea level anomaly, the Indo-French altimeter mission SARAL-ALTIKA-derived sea surface height anomaly (SSHa) data sets were processed and maps were generated. The monthly average chlorophyll concentration ranged from 0.001 to 3.0 mg m-3, SST ranged from 24 to 32 °C, nitrate concentration ranged from 0.01 to 6.0 μM, and overall SSH anomaly ranged from -52 to +40 cm. Nitrate concentration was observed to be high (3-5 μM) during December-January, possibly due to convective eddies and winter cooling as well as atmospheric aerosols and dust inducing ocean productivity. The nitrate concentration was observed to be associated more with chlorophyll than SST, as nitrate inherently enhances the ocean chlorophyll and productivity, acting as proxy. The SSH anomaly showed irregular features and depicting few eddies, upwelling, and ocean circulation features. The low SSHa was mostly due to high chlorophyll concentration. It was observed that the low SST (∼24-26 °C) is attributed to high chlorophyll concentration (1.5-3.0 mg m-3) over the study area. The lag phase and enhancement in chlorophyll mean during September was due to the decrease in average SST during August. The SSHa showed seasonal trend over the study area during the monsoon period with observation of negative anomaly. Arabian Sea was found to have more negative SSH anomaly monthly mean values than Bay of Bengal. The impact and interrelationship of SSHa indicated better relationship with chlorophyll than with nitrate and SST, as observed from multiple regression analysis. The analysis of variance (ANOVA) results between the 2-year monthly data showed that the

  20. Sea-surface bioproductivity changes in the Northwest Pacific over the last 25 kyr

    NASA Astrophysics Data System (ADS)

    Ovsepyan, E. A.; Ivanova, E. V.; Murdmaa, L. O.; Alekhina, G. N.

    2014-07-01

    The sea-surface bioproductivity changes over the last 25 kyr were inferred from published data on 30 sediment cores from the open Northwest Pacific (NWP), Sea of Okhotsk, Bering Sea and Sea of Japan accounting for the glacioeustatic sea-level changes. A novel method was developed to compare the variations of several independent productivity proxies relative to the present-day values. During the Last Glacial Maximum, the bioproductivity in the Sea of Okhotsk and the western Bering Sea (BS) was lower than at present, whereas the southern and southeastern Bering Sea and the open NWP are characterized by enhanced bioproductivity. During the early deglacial stage, an increase in bioproductivity was estimated only for the southeastern Bering Sea. High and fairly high bioproductivity was estimated for Heinrich 1 in the open NWP, above the Umnak Plateau and on the Shirshov and Bowers Ridges in the Bering Sea. The high productivity in the Bering Sea, Sea of Okhotsk and NWP during the Bølling/Allerød was caused by the global warming and enhanced nutrient supply by meltwater from the continent. During the Early Holocene, high productivity was estimated for almost the entire NWP. The Late Holocene sea-surface bioproductivity was generally lower than that of the Early Holocene. Proposed factors that have controlled the sea-surface bioproductivity during the last 25 kyr include: the location of the sea ice margin, the river runoff, gradual flooding of the Bering Sea and the Sea of Okhotsk shelf areas, the water mass exchange between the marginal seas and the open NWP, the eolian supply and the deep vertical mixing of the water column.

  1. Persistence of Rainfall Imprint on SMOS Sea Surface Salinity

    NASA Astrophysics Data System (ADS)

    Boutin, Jacqueline; Reverdin, Gilles; Martin, Nicolas

    2015-04-01

    The Soil Moisture and Ocean Salinity (SMOS) satellite mission monitors sea surface salinity (SSS) over the global ocean for more than 5 years. In previous studies, Boutin et al. (2014) have shown a clear freshening of SMOS SSS under rain cells of about -0.14pss/mm/hr at moderate wind speed (3-12m/s). This order of magnitude is compatible with in situ drifters observations taken at 45cm depth while SMOS SSS are at about 1cm depth and at a mean spatial resolution of 43km. Using Aquarius satellite SSS, Meissner and Wentz (2014) found a SSS decrease under rain cells of -0.12pss/mm/hr at 7 m/s wind speed, consistent with SMOS estimate considering the lower spatial resolution of Aquarius SSS (about 150km); Santos-Garcia et al. (2014) found an influence of the rain history preceding by a few hours the Aquarius measurement. In most cases, drifters observations also suggest that about half of the freshening observed locally disappears after one hour, likely because of mixing with surrounding waters. In this presentation, we will investigate the temporal and spatial evolution of SMOS SSS after a rain event. Rainfall information will be either derived from SSM/Is measurements (during periods when three SSM/Is satellites provide adequate sampling before and simultaneous to SMOS measurements) or from the NOAA CMORPH products. In order to separate instantaneous from historical effects, we distinguish two cases: 1) rainfall occurs at less than 30mn from SMOS observation but no rain occurred before; 2) rainfall occurred previous to SMOS observation (up to 3 hours before) but has stopped at least 30mn before SMOS acquisition. In addition to looking at the temporal evolution of SMOS SSS under the rain cell, since both vertical mixing and horizontal stirring may occur, we also investigate the size of the fresh SSS region relative to the size of the rain cell. Boutin, J., N. Martin, G. Reverdin, S. Morisset, X. Yin, L. Centurioni, and N. Reul (2014), Sea surface salinity under rain

  2. Modeling of Wind Direction Signals in Polarimetric Sea Surface Brightness Temperatures

    NASA Technical Reports Server (NTRS)

    Yueh, S. H.

    1995-01-01

    Sea surface brightness temperatures are the radiometric power measure of blackbody radiation from sea water. This radiation is the electromagnetic waves excited by the random thermal motion of charged particles in the sea water. The energy transmitted through the air- water interface produces a scattering of electromagnetic waves into the atmosphere. Polarimetric microwave emissions are investigated.

  3. Modeling of Wind Direction Signals in Polarimetric Sea Surface Brightness Temperatures

    NASA Technical Reports Server (NTRS)

    Yueh, S. H.

    1995-01-01

    Sea surface brightness temperatures are the radiometric power measure of blackbody radiation from sea water. This radiation is the electromagnetic waves excited by the random thermal motion of charged particles in the sea water. The energy transmitted through the air- water interface produces a scattering of electromagnetic waves into the atmosphere. Polarimetric microwave emissions are investigated.

  4. Doppler shifts of radar return from the sea surface

    NASA Astrophysics Data System (ADS)

    Ermakov, S. A.; Kapustin, I. A.; Molkov, A. A.; Sergievskaya, I. A.; Shomina, O. V.

    2016-10-01

    Investigation of the Doppler shift of radar return from the sea surface is very important for better understanding of capabilities of exploitation of microwave radar for measuring velocities of marine currents. Here new field experiments carried out from a Platform on the Black Sea with a coherent X-band scatterometer, and a Doppler multifrequency (X- /C-/S-band) dual-polarized radar recently designed at IAP RAS are discussed. It is shown that the radar return contains both Bragg (polarized) and non polarized scattering components, presumably giving different contributions to radar Doppler shifts. Radar Doppler shifts were estimated using two different definitions as a) a frequency of the "centre of gravity" of an instantaneous radar return spectrum (ASIS) averaged over periods of dominant wind waves and b) the "centre of gravity" of the averaged over dominant wave periods spectrum (SAS). The ASIS and SAS values for both VV and HH-polarizations are shown to be different due to effects of radar backscatter modulation by dominant (long) wind waves. The radar Modulation Transfer Function (MTF) has been analyzed from experimental data and difference between SAS- and ASIS-values has been satisfactory explained using the measured MTF-values. It is obtained that experimental values of ASIS can be satisfactory described by the Bragg model despite the significant contribution of NP component to the radar backscatter. A physical explanation of the effect is given.

  5. Bistatic electromagnetic scattering and detection of pollutant on a sea surface

    NASA Astrophysics Data System (ADS)

    Ghanmi, Helmi; Khenchaf, Ali; Comblet, Fabrice

    2015-01-01

    We present the study and analysis of the variations of the bistatic electromagnetic (EM) signature of the sea surface contaminated by pollutants. Therefore, we start with the numerical analyses of the pollutant effect on the geometrical and physical characteristics of sea surface. Then, we evaluate the EM scattering coefficients of the clean and polluted sea surfaces observed in bistatic configuration by using the numerical forward-backward method. The obtained numerical results of the EM scattering coefficients are studied and given as a function of various parameters: sea state, wind velocity, type of pollutant (sea surface polluted by oil emulsion and sea surface covered by oil layer), incidence and scattering angles, frequencies bands (C, X, and Ku), and radar polarization.

  6. Bistatic scattering from a contaminated sea surface observed in C, X, and Ku bands

    NASA Astrophysics Data System (ADS)

    Ghanmi, H.; Khenchaf, A.; Comblet, F.

    2014-10-01

    The aim of the work presented in this paper focuses on the study and analysis of variations of the bistatic electromagnetic signature of the sea surface contaminated by pollutants. Therefore, we will start the numerical analyses of the pollutant effect on the geometrical and physical characteristics of sea surface. Then, we will evaluate the electromagnetic (EM) scattering coefficients of the clean and polluted sea surface observed in bistatic configuration by using the numerical Forward-Backward Method (FBM). The obtained numerical results of the electromagnetic scattering coefficients are studied and given as a function of various parameters: sea state, wind velocity, type of pollutant (sea surface polluted by oil emulsion, and sea surface covered by oil layer), incidence and scattering angles, frequencies bands (C, X and Ku) and radar polarization.

  7. Sea surface temperature and sea ice variability in the subpolar North Atlantic from explosive volcanism of the late thirteenth century

    NASA Astrophysics Data System (ADS)

    Sicre, M.-A.; Khodri, M.; Mignot, J.; Eiríksson, J.; Knudsen, K.-L.; Ezat, U.; Closset, I.; Nogues, P.; Massé, G.

    2013-10-01

    this study, we use IP25 and alkenone biomarker proxies to document the subdecadal variations of sea ice and sea surface temperature in the subpolar North Atlantic induced by the decadally paced explosive tropical volcanic eruptions of the second half of the thirteenth century. The short- and long-term evolutions of both variables were investigated by cross analysis with a simulation of the IPSL-CM5A LR model. Our results show short-term ocean cooling and sea ice expansion in response to each volcanic eruption. They also highlight that the long response time of the ocean leads to cumulative surface cooling and subsurface heat buildup due to sea ice capping. As volcanic forcing relaxes, the surface ocean rapidly warms, likely amplified by subsurface heat, and remains almost ice free for several decades.

  8. The effects of sea surface temperature gradients on surface turbulent fluxes

    NASA Astrophysics Data System (ADS)

    Steffen, John

    A positive correlation between sea surface temperature (SST) and wind stress perturbation near strong SST gradients (DeltaSST) has been observed in different parts of the world ocean, such as the Gulf Stream in the North Atlantic and the Kuroshio Extension east of Japan. These changes in winds and SSTs can modify near-surface stability, surface stress, and latent and sensible heat fluxes. In general, these small scale processes are poorly modeled in Numerical Weather Prediction (NWP) and climate models. Failure to account for these air--sea interactions produces inaccurate values of turbulent fluxes, and therefore a misrepresentation of the energy, moisture, and momentum budgets. Our goal is to determine the change in these surface turbulent fluxes due to overlooking the correlated variability in winds, SSTs, and related variables. To model these air--sea interactions, a flux model was forced with and without SST--induced changes to the surface wind fields. The SST modification to the wind fields is based on a baroclinic argument as implemented by the University of Washington Planetary Boundary-Layer (UWPBL) model. Other input parameters include 2-m air temperature, 2-m dew point temperature, surface pressure (all from ERA--interim), and Reynolds Daily Optimum Interpolation Sea Surface Temperature (OISST). Flux model runs are performed every 6 hours starting in December 2002 and ending in November 2003. From these model outputs, seasonal, monthly, and daily means of the difference between DeltaSST and no DeltaSST effects on sensible heat flux (SHF), latent heat flux (LHF), and surface stress are calculated. Since the greatest impacts occur during the winter season, six additional December-January-February (DJF) seasons were analyzed for 1987--1990 and 1999--2002. The greatest differences in surface turbulent fluxes are concentrated near strong SST fronts associated with the Gulf Stream and Kuroshio Extension. On average, 2002---2003 DJF seasonal differences in SHF

  9. Satellite-Derived Sea Surface Temperature: Workshop 3

    NASA Technical Reports Server (NTRS)

    1985-01-01

    This is the third of a series of three workshops, sponsored by the National Aeronautics and Space Administration, to investigate the state of the art in global sea surface temperature measurements from space. Three workshops were necessary to process and analyze sufficient data from which to draw conclusions on the accuracy and reliability of the satellite measurements. In this workshop, the final two (out of a total of four) months of satellite and in situ data chosen for study were processed and evaluated. Results from the AVHRR, HIRS, SMMR, and VAS sensors, in comparison with in situ data from ships, XBTs, and buoys, confirmed satellite rms accuracies in the 0.5 to 1.0 C range, but with variable biases. These accuracies may degrade under adverse conditions for specific sensors. A variety of color maps, plots, and statistical tables are provided for detailed study of the individual sensor SST measurements.

  10. Sensitivity of tropical cyclone intensity to sea surface temperature

    SciTech Connect

    Evans, J.L. )

    1993-06-01

    Increased occurrence of more intense tropical storms intruding further poleward has been foreshadowed as one of the potential consequences of global warming. This scenario is based almost entirely on the general circulation model predictions of warmer sea surface temperature (SST) with increasing levels of atmospheric CO[sub 2] and some theories of tropical cyclone intensification that support the notion of more intense systems with warmer SST. Whether storms are able to achieve this theoretically determined more intense state depends on whether the temperature of the underlying water is the dominant factor in tropical cyclone intensification. An examination of the historical data record in a number of ocean basins is used to identify the relative importance of SST in the tropical cyclone intensification process. The results reveal that SST alone is an inadequate predictor of tropical cyclone intensity. Other factors known to affect tropical cyclone frequency and intensity are discussed. 16 refs., 6 figs., 3 tabs.

  11. Sea-surface temperature chart enhancement in frontal zones

    NASA Astrophysics Data System (ADS)

    Aleksanin, A. I.; Kim, V.

    2016-12-01

    Infrared and microwave satellite images used for sea-surface temperature (SST) retrieval often have distortions such as noise and blurring of thermal front lines that decrease the quality of SST charts. In order to solve this problem, it is proposed to use an approach based on the Mumford-Shah model that approximates an image with a piecewise smooth function. In order to combine the advantages of the proposed approach and conventional methods for noise filtering and image restoration it is proposed to divide images into flat and frontal zones and process them separately. The SST quality is enhanced by the use of edge-preserving noise filtering and restoration algorithms. The latter use the features of radiometers and different stages of the SST construction procedure to improve their accuracy. The images obtained using the MTSAT/VISSR, METEOR-M/MSU-MR, and AQUA/AMSR-E radiometers are used for testing the developed approach.

  12. Tropical cyclone rainfall area controlled by relative sea surface temperature

    PubMed Central

    Lin, Yanluan; Zhao, Ming; Zhang, Minghua

    2015-01-01

    Tropical cyclone rainfall rates have been projected to increase in a warmer climate. The area coverage of tropical cyclones influences their impact on human lives, yet little is known about how tropical cyclone rainfall area will change in the future. Here, using satellite data and global atmospheric model simulations, we show that tropical cyclone rainfall area is controlled primarily by its environmental sea surface temperature (SST) relative to the tropical mean SST (that is, the relative SST), while rainfall rate increases with increasing absolute SST. Our result is consistent with previous numerical simulations that indicated tight relationships between tropical cyclone size and mid-tropospheric relative humidity. Global statistics of tropical cyclone rainfall area are not expected to change markedly under a warmer climate provided that SST change is relatively uniform, implying that increases in total rainfall will be confined to similar size domains with higher rainfall rates. PMID:25761457

  13. Correcting biases in ICOADS sea surface temperature measurements

    NASA Astrophysics Data System (ADS)

    Chan, D.; Huybers, P. J.

    2016-12-01

    Sea-surface temperature (SSTs) estimates based on the International Comprehensive Ocean-Atmosphere Data Set (ICOADS) combine records across various measurement types that must be corrected for biases. For example, bucket measurements are known to be colder relative to engine room intake (ERI) measurements. Here, to further examine biases amongst ERI, bucket, and buoy measurements, we examine the data according to groups of ships that can be distinctly identified within the ICOADS dataset. Bias corrections are estimated according to classes of data for each season based on collocated records using a multiple linear regression approach. Accurate inter-comparison also benefits from accounting for diurnal variability for each measurement type. Results are compared with existing bias correction estimates.

  14. Change point detection of the Persian Gulf sea surface temperature

    NASA Astrophysics Data System (ADS)

    Shirvani, A.

    2017-01-01

    In this study, the Student's t parametric and Mann-Whitney nonparametric change point models (CPMs) were applied to detect change point in the annual Persian Gulf sea surface temperature anomalies (PGSSTA) time series for the period 1951-2013. The PGSSTA time series, which were serially correlated, were transformed to produce an uncorrelated pre-whitened time series. The pre-whitened PGSSTA time series were utilized as the input file of change point models. Both the applied parametric and nonparametric CPMs estimated the change point in the PGSSTA in 1992. The PGSSTA follow the normal distribution up to 1992 and thereafter, but with a different mean value after year 1992. The estimated slope of linear trend in PGSSTA time series for the period 1951-1992 was negative; however, that was positive after the detected change point. Unlike the PGSSTA, the applied CPMs suggested no change point in the Niño3.4SSTA time series.

  15. Enhancing the Arctic Mean Sea Surface and Mean Dynamic Topography with CryoSat-2 Data

    NASA Astrophysics Data System (ADS)

    Stenseng, Lars; Andersen, Ole B.; Knudsen, Per

    2014-05-01

    A reliable mean sea surface (MSS) is essential to derive a good mean dynamic topography (MDT) and for the estimation of short and long-term changes in the sea surface. The lack of satellite radar altimetry observations above 82 degrees latitude means that existing mean sea surface models have been unreliable in the Arctic Ocean. We here present the latest DTU mean sea surface and mean dynamic topography models that includes CryoSat-2 data to improve the reliability in the Arctic Ocean. In an attempt to extrapolate across the gap above 82 degrees latitude the previously models included ICESat data, gravimetrical geoids, ocean circulation models and various combinations hereof. Unfortunately cloud cover and the short periods of operation has a negative effect on the number of ICESat sea surface observations. DTU13MSS and DTU13MDT are the new generation of state of the art global high-resolution models that includes CryoSat-2 data to extend the satellite radar altimetry coverage up to 88 degrees latitude. Furthermore the SAR and SARin capability of CryoSat-2 dramatically increases the amount of useable sea surface returns in sea-ice covered areas compared to conventional radar altimeters like ENVISAT and ERS-1/2. With the inclusion of CryoSat-2 data the new mean sea surface is improved by more than 20 cm above 82 degrees latitude compared with the previous generation of mean sea surfaces.

  16. The Relationship Between Sea Breeze Forcing and HF Radar-Derived Surface Currents in Monterey Bay

    DTIC Science & Technology

    2014-06-01

    BETWEEN SEA BREEZE FORCING AND HF RADAR-DERIVED SURFACE CURRENTS IN MONTEREY BAY by Emre Tukenmez June 2014 Thesis Advisor: Jeffrey D...2014 3. REPORT TYPE AND DATES COVERED Master’s Thesis 4. TITLE AND SUBTITLE THE RELATIONSHIP BETWEEN SEA BREEZE FORCING AND HF RADAR- DERIVED...importance of sea breeze , only Hendrickson and MacMahan’s research has been done to determine sea breeze effects in Monterey Bay; other than that not

  17. Impacts of Freshwater on the Seasonal Variations of Surface Salinity in the Caspian Sea

    DTIC Science & Technology

    2010-01-01

    surface salinity and circulation in the Caspian Sea A. Birol Karaa, Alan J. Wallcraft3*, E.Joseph Metzgera, Murat Gunduz5 * Oceanography Division...term climatic effects are of particular importance in the Caspian Sea as well. For example, Rodinov(1994) relates variations in sea level to cycles...much finer horizontal resolution products is of particular importance. In addition, the general circulation in the Caspian Sea is reported to be

  18. Surface buoyant plumes from melting icebergs in the Labrador Sea

    NASA Astrophysics Data System (ADS)

    Yankovsky, Alexander E.; Yashayaev, Igor

    2014-09-01

    Canada's Department of Fisheries and Oceans (DFO) conducts annual surveys in the Labrador Sea along the repeat hydrography line AR7W. The occupation of the AR7W line in May 2013 was followed by the experiment aimed at resolving the imprint of melting drifting icebergs on the upper layer thermohaline characteristics in the Labrador Sea. We present high-resolution observations around two icebergs conducted with the towed undulating platform Moving Vessel Profiler (MVP). The first iceberg drifted in relatively warm water of Atlantic origin (~2.5-3.1 °C) off Greenland, while the second iceberg was on the Labrador shelf in cold water below 0 °C. Both icebergs had a lengthscale of O(100 m). In both cases surface buoyant plumes fed by melt water and attached to the iceberg were observed. The plumes were evident in the anomalous thermohaline characteristics of the seawater. Their density anomalies were sufficiently strong to produce visible frontal structures, which imply a development of the intrinsic dynamics associated with a plume. The first plume formed over a time interval of ~10 h, while the second plume formed over several days and extended for more than 1 km (tenfold the iceberg's size). Strong vertical displacements of the pycnocline were observed near the second iceberg. They are interpreted as the internal wave wake. This interpretation is based on the temporal scale of these oscillations (local buoyancy frequency), as well as on the spatial orientation of these waves with respect to the iceberg drift relative to the pycnocline. The observed internal waves partially overlapped with the plume and affected its structure. The saline seawater splashing by swell contributed to the surface melting of the icebergs. Scaling analysis of the second plume suggests that it could be in the “rotational” dynamic regime with recirculating anticyclonic flow.

  19. Sea Surface Salinity signature of tropical Atlantic interannual modes

    NASA Astrophysics Data System (ADS)

    Awo, Mesmin; Alory, Gael; Da-Allada, Casimir; Jouanno, Julien; Delcroix, Thierry; Baloitcha, Ezinvi

    2017-04-01

    Interannual climate variability in the tropical Atlantic is dominated by two internal modes: an equatorial and a meridional mode. The equatorial mode is partly responsible for sea surface temperature (SST) anomalies observed in boreal summer in the Gulf of Guinea. The meridional mode peaks in boreal spring as an inter-hemispheric SST fluctuation. Previous studies show that these modes affect the migration of the inter tropical convergence zone which drives regional precipitation. In this study, we extracted the Sea Surface Salinity (SSS) signature of these modes from in situ data. The results indicate strong SSS anomalies in the equatorial, north west and south east tropical Atlantic related to the equatorial mode. Moreover, the results also indicate the existence of a meridional SSS dipole in the equatorial region, strong SSS anomalies in north and south tropical Atlantic and in runoff regions, related to the meridional mode. Using a mixed-layer salt budget in a realistic model, we investigated the oceanic and/or atmospheric processes responsible for this signature: For the equatorial mode, both fresh water flux and horizontal advection explain the observed signature in the north equatorial region, but in the south equatorial region, the signature is explained by the combined contribution of total (horizontal and vertical) advection and vertical diffusion. For the meridional mode, changes in fresh water flux explain the observed equatorial dipole while the signature in runoff regions is explained by the total advection. In the north west and south east tropical Atlantic, only horizontal advection is important for explaining the signature of these two modes.

  20. Investigation of Sea Surface Temperature (SST) anomalies over Cyprus area

    NASA Astrophysics Data System (ADS)

    Georgiou, Andreas; Akçit, Nuhcan

    2016-08-01

    The temperature of the sea surface has been identified as an important parameter of the natural environment, governing processes that occur in the upper ocean. This paper focuses on the analysis of the Sea Surface Temperature (SST) anomalies at the greater area of Cyprus. For that, SST data derived from MODerate-resolution Imaging Spectroradiometer (MODIS) instrument on board both Aqua and Terra sun synchronous satellites were used. A four year period was chosen as a first approach to address and describe this phenomenon. Geographical Information Systems (GIS) has been used as an integrated platform of analysis and presentation in addition of the support of MATLAB®. The methodology consists of five steps: (i) Collection of MODIS SST imagery, (ii) Development of the digital geo-database; (iii) Model and run the methodology in GIS as a script; (iv) Calculation of SST anomalies; and (v) Visualization of the results. The SST anomaly values have presented a symmetric distribution over the study area with an increase trend through the years of analysis. The calculated monthly and annual average SST anomalies (ASST) make more obvious this trend, with negative and positive SST changes to be distributed over the study area. In terms of seasons, the same increase trend presented during spring, summer, autumn and winter with 2013 to be the year with maximum ASST observed values. Innovative aspects comprise of straightforward integration and modeling of available tools, providing a versatile platform of analysis and semi-automation of the operation. In addition, the fine resolution maps that extracted from the analysis with a wide spatial coverage, allows the detail representation of SST and ASST respectively in the region.

  1. Detecting Global Hydrological Cycle Intensification in Sea Surface Salinity

    NASA Astrophysics Data System (ADS)

    Poague, J.; Stine, A.

    2016-12-01

    Global warming is expected to intensify the global hydrological cycle, but significant regional differences exist in the predicted response. The proposed zonal mean thermodynamic response is enhanced horizontal moisture transport associated with increased saturation vapor pressure, which in turn drives additional net precipitation in the tropics and at high latitudes and additional net evaporation in the subtropics. Sea surface salinity (SSS) anomalies are forced from above by changes in evaporation minus precipitation (E-P) and thus will respond to changes in the global hydrological cycle, opening the possibility of using historical SSS anomalies to diagnose the response of the hydrological cycle to warming. We estimate zonal mean SSS trends in the Atlantic and Pacific ocean basins from 1955-2015 to test whether historical changes in the global hydrological cycle are consistent with a primarily thermodynamic response. Motivated by this observation, we calculate the sensitivity of basin zonal-mean SSS anomalies to sea surface temperature (SST) forcing as a function of timescale to diagnose and estimate the signal-to-noise ratio of the purely thermodynamic signal as a function of timescale. High-frequency variability in SSS anomalies is likely to be influenced by variability in atmospheric circulation, complicating the attribution of the link between basin zonal-mean SSS anomalies and global SST anomalies. We therefore estimate the basin zonal mean SSS anomaly response to the major modes of large-scale dynamic variability. We find a strong correlation between detrended zonal-mean SSS anomalies and the Pacific-North American index (R=0.71,P<0.01) in the Pacific Ocean. We interpret the relationship between zonal mean SSS anomalies and temperature in terms of the relative contribution of thermodynamic and dynamic processes.

  2. Sources of polyfluoroalkyl compounds in the North Sea, Baltic Sea and Norwegian Sea: Evidence from their spatial distribution in surface water.

    PubMed

    Ahrens, Lutz; Gerwinski, Wolfgang; Theobald, Norbert; Ebinghaus, Ralf

    2010-02-01

    The spatial distribution of 15 polyfluoroalkyl compounds (PFCs) in surface water was investigated in the North Sea, Baltic Sea and Norwegian Sea. In addition, an interlaboratory comparison of the sampling techniques and analysis was conducted. Highest concentration in the North Sea was found near the coast, whereas the summation operatorPFC concentration decreased rapidly from 18.4 to 0.07 ng l(-1) towards the open North Sea. The river Elbe could identify as a local input source for PFCs into the North Sea, whereas perfluorobutanoic acid (PFBA) was transported into the sampling area with the easterly current. In contrast to the North Sea, the distribution of PFCs in the Baltic Sea was relatively homogenous, where diffuse sources dominated. In general, the composition profile was influenced from local sources caused by human activities, whereas atmospheric depositions of here analysed PFCs were negligible, but it could have possibly an influence on low contaminated sites like the open North Sea or Norwegian Sea.

  3. Hyperbaric biofilms on engineering surfaces formed in the deep sea.

    PubMed

    Meier, Alexandra; Tsaloglou, Nefeli-Maria; Mowlem, Matthew C; Keevil, C William; Connelly, Douglas P

    2013-01-01

    Biofouling is a major problem for long-term deployment of sensors in the marine environment. This study showed that significant biofilm formation occurred on a variety of artificial materials (glass, copper, Delrin(™) and poly-methyl methacrylate [PMMA]) deployed for 10 days at a depth of 4700 m in the Cayman Trough. Biofilm surface coverage was used as an indicator of biomass. The lowest biofilm coverage was on copper and PMMA. Molecular analyses indicated that bacteria dominated the biofilms found on copper, Delrin(™) and PMMA with 75, 55 and 73% coverage, respectively. Archea (66%) were dominant on the glass surface simulating interior sensor conditions, whereas Eukarya comprised the highest percentage of microflora (75%) on the glass simulating the exterior of sensors. Analysis of Denaturing Gradient Gel Electrophoresis profiles indicated that copper and Delrin(™) shared the same community diversity, which was not the case for glass and PMMA, or between PMMA and copper/Delrin(™). Sequence alignment matches belonged exclusively to uncultivable microorganisms, most of which were not further classified. One extracted sequence found on glass was associated with Cowellia sp., while another extracted from the PMMA surface was associated with a bacterium in the Alterominidaceae, both γ-proteobacteria. The results demonstrate the necessity of understanding biofilm formation in the deep sea and the potential need for mitigation strategies for any kind of long-term deployment of remote sensors in the marine environment.

  4. Seasonal sea surface temperature anomaly prediction for coastal ecosystems

    NASA Astrophysics Data System (ADS)

    Stock, Charles A.; Pegion, Kathy; Vecchi, Gabriel A.; Alexander, Michael A.; Tommasi, Desiree; Bond, Nicholas A.; Fratantoni, Paula S.; Gudgel, Richard G.; Kristiansen, Trond; O'Brien, Todd D.; Xue, Yan; Yang, Xiasong

    2015-09-01

    Sea surface temperature (SST) anomalies are often both leading indicators and important drivers of marine resource fluctuations. Assessment of the skill of SST anomaly forecasts within coastal ecosystems accounting for the majority of global fish yields, however, has been minimal. This reflects coarse global forecast system resolution and past emphasis on the predictability of ocean basin-scale SST variations. This paper assesses monthly to inter-annual SST anomaly predictions in coastal "Large Marine Ecosystems" (LMEs). We begin with an analysis of 7 well-observed LMEs adjacent to the United States and then examine how mechanisms responsible for prediction skill in these systems are reflected in predictions for LMEs globally. Historical SST anomaly estimates from the 1/4° daily Optimal Interpolation Sea Surface Temperature reanalysis (OISST.v2) were first found to be highly consistent with in-situ measurements for 6 of the 7 U.S. LMEs. Thirty years of retrospective forecasts from climate forecast systems developed at NOAA's Geophysical Fluid Dynamics Laboratory (CM2.5-FLOR) and the National Center for Environmental Prediction (CFSv2) were then assessed against OISST.v2. Forecast skill varied widely by LME, initialization month, and lead but there were many cases of high skill that also exceeded that of a persistence forecast, some at leads greater than 6 months. Mechanisms underlying skill above persistence included accurate simulation of (a) seasonal transitions between less predictable locally generated and more predictable basin-scale SST variability; (b) seasonal transitions between different basin-scale influences; (c) propagation of SST anomalies across seasons through sea ice; and (d) re-emergence of previous anomalies upon the breakdown of summer stratification. Globally, significant skill above persistence across many tropical systems arises via mechanisms (a) and (b). Combinations of all four mechanisms contribute to less prevalent but nonetheless

  5. The mean sea surface height and geoid along the Geosat subtrack from Bermuda to Cape Cod

    NASA Astrophysics Data System (ADS)

    Kelly, Kathryn A.; Joyce, Terrence M.; Schubert, David M.; Caruso, Michael J.

    1991-07-01

    Measurements of near-surface velocity and concurrent sea level along an ascending Geosat subtrack were used to estimate the mean sea surface height and the Earth's gravitational geoid. Velocity measurements were made on three traverses of a Geosat subtrack within 10 days, using an acoustic Doppler current profiler (ADCP). A small bias in the ADCP velocity was removed by considering a mass balance for two pairs of triangles for which expendable bathythermograph measurements were also made. Because of the large curvature of the Gulf Stream, the gradient wind balance was used to estimate the cross-track component of geostrophic velocity from the ADCP vectors; this component was then integrated to obtain the sea surface height profile. The mean sea surface height was estimated as the difference between the instantaneous sea surface height from ADCP and the Geosat residual sea level, with mesoscale errors reduced by low-pass filtering. The error estimates were divided into a bias, tilt, and mesoscale residual; the bias was ignored because profiles were only determined within a constant of integration. The calculated mean sea surface height estimate agreed with an independent estimate of the mean sea surface height from Geosat, obtained by modeling the Gulf Stream as a Gaussian jet, within the expected errors in the estimates: the tilt error was 0.10 m, and the mesoscale error was 0.044 m. To minimize mesoscale errors in the estimate, the alongtrack geoid estimate was computed as the difference between the mean sea level from the Geosat Exact Repeat Mission and an estimate of the mean sea surface height, rather than as the difference between instantaneous profiles of sea level and sea surface height. In the critical region near the Gulf Stream the estimated error reduction using this method was about 0.07 m. Differences between the geoid estimate and a gravimetric geoid were not within the expected errors: the rms mesoscale difference was 0.24 m rms.

  6. Hydraulic exchange between a coral reef and surface sea water

    SciTech Connect

    Tribble, G.W.; Sansone, F.J.; Li, Yuan-Hui

    1992-10-01

    Hydraulic exchange between overlying sea water and the internal structure of a patch reef in Kaneohe Bay, Oahu, Hawaii, was studied with an array of wells, 1, 2, and 4 m deep. Two natural chemical tracers, radon, and salinity, were used to calculate the exchange rate between surface sea water and reef interstitial waters. Dissolved radon concentrations are substantially higher in interstitial waters than is surface water. The degree of radon enrichment is quantitatively related to the time elapsed since interstitial water had equilibrated with the atmosphere. Residence time estimates are 1-40 days, with deeper wells having slower exchange. The average residence time for 1-m-deep wells was 2.1 days. A rainstorm-induced dilution of the salinity of Kaneohe Bay provides the second tracer. Samples of surface and reef interstitial waters following this salinity perturbation are used to calculate an average residence time of 2.6 days at a depth of 1 m and 42 days at a depth of 2 m. Three types of physical forces thought to cause exchange between surface and interstitial water are considered by measurement of the forcing functions and reef permeability. Hydraulic conductivities are about 50 m/d, with lower values near the seaward side of the reef. Most exchange seems to be caused by high-frequency, wave-driven oscillatory pumping and by unidirectional hydraulic head gradients (of uncertain origin) that are stable for at least 3-4 days. Wave-driven mixing is probably more important shallower in the reef, whereas head-driven flow may dominate deeper in the reef. Tidal pumping does not seem to contribute to exchange. All methods indicate that exchange in the upper part of Checker Reef is primarily through vertical exchange. The best estimate for the residence time of water at a depth of 1 m is 2 days. Water at depths of 204 m probably has a residence time of weeks to months. 49 refs., 8 figs., 6 tabs.

  7. MODIS Sea-Surface Temperature retrieval by Optimal Estimation

    NASA Astrophysics Data System (ADS)

    Szczodrak, G.; Minnett, P. J.

    2016-12-01

    We employ Optimal Estimation approach to retrieve Sea Surface Temperature (SST) from the measurements of the Moderate Resolution Imaging Spectroradiometer (MODIS). The Optimal Estimation (OE) approach uses a prior knowledge or estimation of the state of a system as an input of a forward model to simulate `observations' (known as prior observations) and seeks to minimize the difference between these simulated observation and actual measurements in the space of the state variables. In our case of SST estimation from MODIS observations the system is the ocean surface and the atmosphere between the ocean surface and the satellite. Following previous research (Merchant et al., 2008 and 2009) we introduced a reduced state consisting of variables to which the channel brightness temperatures are expected to be most sensitive, SST and the total column water vapor (TCWV). The actual observations are brightness temperature measurements in MODIS channels with center wavelengths of 11 and 12 microns. The prior knowledge of the state of the atmosphere comes from the European Center for Medium Range Weather Forecast interim reanalysis fields (ECMWF, Dee et al., 2011) for the atmospheric variables and from Reynolds high resolution sea surface temperature analysis fields (Reynolds et al., 2007) for the SST. The forward model in our case is the Line-by-Line Radiative Transfer Model (LBLRTM) of Clough et al., 2005. Our a priori data set consists of 38400 data points for each month of 2009 representing the state of atmosphere and ocean with 0.5 × 0.5 resolution on the 1st and 16th day of the month at two times a day 00Z and 12Z. We performed LBLRTM simulation for all a priori state data resulting in top of atmosphere infrared spectra. The simulated spectra were integrated with the MODIS 4, 11 and 12 micron channels relative spectral response functions and thus a set of MODIS channels brightness temperatures corresponding to the a priori states was obtained. These simulated brightness

  8. Relationships between near-surface plankton concentrations, hydrography, and satellite-measured sea surface temperature

    NASA Technical Reports Server (NTRS)

    Thomas, A. C.; Emery, W. J.

    1988-01-01

    Sea surface temperatures (SSTs) mapped by IR satellite images and in situ hydrographic measurements off the west coast of British Columbia for early-winter and midsummer periods were correlated with in situ measurements of surface chlorophyll and zooplankton concentration. Correlations between winter log(e) transformed zooplankton concentrations and SSTs demonstrated that IR satellite imagery could explain 49 percent of the sampled zooplankton concentration variance. A least-squares-fit nonlinear equation showed that satellite-measured SST patterns explained 72 percent of the log(e) transformed chlorophyll variance. However, summer zooplankton concentrations were not consistently related to satellite temperature patterns.

  9. Relationships between near-surface plankton concentrations, hydrography, and satellite-measured sea surface temperature

    NASA Technical Reports Server (NTRS)

    Thomas, A. C.; Emery, W. J.

    1988-01-01

    Sea surface temperatures (SSTs) mapped by IR satellite images and in situ hydrographic measurements off the west coast of British Columbia for early-winter and midsummer periods were correlated with in situ measurements of surface chlorophyll and zooplankton concentration. Correlations between winter log(e) transformed zooplankton concentrations and SSTs demonstrated that IR satellite imagery could explain 49 percent of the sampled zooplankton concentration variance. A least-squares-fit nonlinear equation showed that satellite-measured SST patterns explained 72 percent of the log(e) transformed chlorophyll variance. However, summer zooplankton concentrations were not consistently related to satellite temperature patterns.

  10. A case study of sea breeze blocking regulated by sea surface temperature along the English south coast

    NASA Astrophysics Data System (ADS)

    Sweeney, J. K.; Chagnon, J. M.; Gray, S. L.

    2013-09-01

    The sensitivity of sea breeze structure to sea surface temperature (SST) and coastal orography is investigated in convection-permitting Met Office Unified Model simulations of a case study along the south coast of England. Changes in SST of 1 K are shown to significantly modify the structure of the sea breeze. On the day of the case study the sea breeze was partially blocked by coastal orography, particularly within Lyme Bay. The extent to which the flow is blocked depends strongly on the static stability of the marine boundary layer. In experiments with colder SST, the marine boundary layer is more stable, and the degree of blocking is more pronounced. The implications of prescribing fixed SST from climatology in numerical weather prediction model forecasts of the sea breeze are discussed.

  11. Biofilm-like properties of the sea surface and predicted effects on air-sea CO2 exchange

    NASA Astrophysics Data System (ADS)

    Wurl, Oliver; Stolle, Christian; Van Thuoc, Chu; The Thu, Pham; Mari, Xavier

    2016-05-01

    Because the sea surface controls various interactions between the ocean and the atmosphere, it has a profound function for marine biogeochemistry and climate regulation. The sea surface is the gateway for the exchange of climate-relevant gases, heat and particles. Thus, in order to determine how the ocean and the atmosphere interact and respond to environmental changes on a global scale, the characterization and understanding of the sea surface are essential. The uppermost part of the water column is defined as the sea-surface microlayer and experiences strong spatial and temporal dynamics, mainly due to meteorological forcing. Wave-damped areas at the sea surface are caused by the accumulation of surface-active organic material and are defined as slicks. Natural slicks are observed frequently but their biogeochemical properties are poorly understood. In the present study, we found up to 40 times more transparent exopolymer particles (TEP), the foundation of any biofilm, in slicks compared to the underlying bulk water at multiple stations in the North Pacific, South China Sea, and Baltic Sea. We found a significant lower enrichment of TEP (up to 6) in non-slick sea surfaces compared to its underlying bulk water. Moreover, slicks were characterized by a large microbial biomass, another shared feature with conventional biofilms on solid surfaces. Compared to non-slick samples (avg. pairwise similarity of 70%), the community composition of bacteria in slicks was increasingly (avg. pairwise similarity of 45%) different from bulk water communities, indicating that the TEP-matrix creates specific environments for its inhabitants. We, therefore, conclude that slicks can feature biofilm-like properties with the excessive accumulation of particles and microbes. We also assessed the potential distribution and frequency of slick-formation in coastal and oceanic regions, and their effect on air-sea CO2 exchange based on literature data. We estimate that slicks can reduce CO2

  12. Analyses of global sea surface temperature 1856-1991

    NASA Astrophysics Data System (ADS)

    Kaplan, Alexey; Cane, Mark A.; Kushnir, Yochanan; Clement, Amy C.; Blumenthal, M. Benno; Rajagopalan, Balaji

    1998-08-01

    Global analyses of monthly sea surface temperature (SST) anomalies from 1856 to 1991 are produced using three statistically based methods: optimal smoothing (OS), the Kaiman filter (KF) and optimal interpolation (OI). Each of these is accompanied by estimates of the error covariance of the analyzed fields. The spatial covariance function these methods require is estimated from the available data; the timemarching model is a first-order autoregressive model again estimated from data. The data input for the analyses are monthly anomalies from the United Kingdom Meteorological Office historical sea surface temperature data set (MOHSST5) [Parker et al., 1994] of the Global Ocean Surface Temperature Atlas (GOSTA) [Bottomley et al., 1990]. These analyses are compared with each other, with GOSTA, and with an analysis generated by projection (P) onto a set of empirical orthogonal functions (as in Smith et al. [1996]). In theory, the quality of the analyses should rank in the order OS, KF, OI, P, and GOSTA. It is found that the first four give comparable results in the data-rich periods (1951-1991), but at times when data is sparse the first three differ significantly from P and GOSTA. At these times the latter two often have extreme and fluctuating values, prima facie evidence of error. The statistical schemes are also verified against data not used in any of the analyses (proxy records derived from corals and air temperature records from coastal and island stations). We also present evidence that the analysis error estimates are indeed indicative of the quality of the products. At most times the OS and KF products are close to the OI product, but at times of especially poor coverage their use of information from other times is advantageous. The methods appear to reconstruct the major features of the global SST field from very sparse data. Comparison with other indications of the El Niño-Southern Oscillation cycle show that the analyses provide usable information on

  13. Horizontal advection, diffusion and plankton spectra at the sea surface.

    NASA Astrophysics Data System (ADS)

    Bracco, A.; Clayton, S.; Pasquero, C.

    2009-04-01

    Plankton patchiness is ubiquitous in the oceans, and various physical and biological processes have been proposed as its generating mechanisms. However, a coherent statement on the problem is missing, due to both a small number of suitable observations and to an incomplete understanding of the properties of reactive tracers in turbulent media. Abraham (1998) suggested that horizontal advection may be the dominant process behind the observed distributions of phytoplankton and zooplankton, acting to mix tracers with longer reaction times (Rt) down to smaller scales. Conversely, Mahadevan and Campbell (2002) attributed the relative distributions of sea surface temperature and phytoplankton to small scale upwelling, where tracers with longer Rt are able to homogenize more than those with shorter reaction times. Neither of the above mechanisms can explain simultaneously the (relative) spectral slopes of temperature, phytoplankton and zooplankton. Here, with a simple advection model and a large suite of numerical experiments, we concentrate on some of the physical processes influencing the relative distributions of tracers at the ocean surface, and we investigate: 1) the impact of the spatial scale of tracer supply; 2) the role played by coherent eddies on the distribution of tracers with different Rt; 3) the role of diffusion (so far neglected). We show that diffusion determines the distribution of temperature, regardless of the nature of the forcing. We also find that coherent structures together with differential diffusion of tracers with different Rt impact the tracer distributions. This may help in understanding the highly variable nature of observed plankton spectra.

  14. Sea, ice and surface water circulation, Alaskan continental shelf

    NASA Technical Reports Server (NTRS)

    Sharma, G. D.; Wright, F. F.; Burns, J. J. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. ERTS-1 imagery has been extremely useful in understanding the tidal water movements in a large estuary such as Cook Inlet. As more imagery obtained during various tidal stages become available it appears that complex and fast changing micro-circulation patterns develop in various regions of Cook Inlet during each advancing and receding tide. More ERTS-1 synoptic imagery is needed to fully understand the effect of the approach of tidal front on the water movements in the various regions through the estuary. The conventional onboard ship data gathered during various cruises although revealed the overall circulation pattern in Cook Inlet but failed to show micro-subgyres which develop in various regions during each tide which are discernible on ther ERTS-1 imagery. Suspended load distribution in the Bering Sea during summer varies significantly. In areas of phytoplankton bloom and at the river mouths the suspended load is higher than the 1 mg/1 which is found over most areas. The influence of major rivers on temperature, salinity, and suspended load in surface water as well as at shallow depth is apparent. On the Bering shelf a strong pycnocline generally at depth 10-20 m is formed by surface fresh water flow which retains sediment in suspension over extended periods.

  15. Variability and Uncertainty in Satellite Sea-surface Salinity Observations

    NASA Astrophysics Data System (ADS)

    Bayler, E. J.; Ren, L.

    2016-02-01

    When employing satellite sea-surface salinity (SSS) observations in studies of observed and modeled ocean variability and change, assessments must consider the variability and uncertainty contained within the satellite SSS data that may or may not reflect physical processes. Coherent temporal and spatial structures exists in the differences between the ascending (south to north) and descending (north to south) nodes of both NASA's Aquarius mission and ESA's Soil Moisture - Ocean Salinity (SMOS) mission, introducing non-physical variability into the data. When examining "simultaneous" match-ups of both Aquarius and SMOS satellite observations with Argo float in situ observations (triple match-up), the Aquarius and SMOS data exhibit different temporal and spatial variabilities with respect to the in situ data, as well as with respect to each other. While physical differences will exist between the skin salinity (approximately 1cm) observed by the satellites and the near-surface salinity (approximately 5 m) observed by Argo floats, when using satellite SSS observations, non-physical variability may intrude into assessments of ocean salinity variability.

  16. Is the Aquarius sea surface salinity variability representative?

    NASA Astrophysics Data System (ADS)

    Carton, J.; Grodsky, S.

    2016-12-01

    The leading mode of the Aquarius monthly anomalous sea surface salinity (SSS) is evaluated within the 50S-50N belt, where SSS retrieval accuracy is higher. This mode accounts for about 18% of the variance and resembles a pattern of the ENSO-induced anomalous rainfall. The leading mode of SSS variability deducted from a longer JAMSTEC analysis also accounts for about 17% of the variance and has very similar spatial pattern and almost a perfect correspondence of its temporal principal component to the SOI index. In that sense, the Aquarius SSS variability at low and middle latitudes is representative of SSS variability that may be obtained from longer records. This is explained by the fact that during the Aquarius period (2011-2015), the SOI index changed significantly from La Nina toward El Nino state, thus spanning a significant range of its characteristic variations. Multivariate EOF analysis of anomalous SSS and SST suggests that ENSO-induced shift in the tropical Pacific rainfall produces negatively correlated variability of temperature and salinity, which are expected if the anomalous surface flux (stronger rainfall coincident with less downward radiation) drives the system. But, anomalous SSS and SST are positively correlated in some areas including the northwestern Atlantic shelf (north of the Gulfstream) and the Pacific sector adjusting to the California peninsula. This positive correlation is indicative of an advection driven regime that is analyzed separately.

  17. Reconciling Glacial Snow Lines With Tropical Sea Surface Temperatures

    NASA Astrophysics Data System (ADS)

    Lorenz, S. J.; Lohmann, G.

    Reconstructions of tropical snow lines during the last glacial maximum (LGM) 21,000 years ago are incompatible with the sea surface temperature (SST) reconstructions of the CLIMAP project, when assuming present day atmospheric lapse rates (e.g. Pe- teet and Rind 1985). Since proxy data for the vertical structure of the atmosphere during glacial times do not exist, numerical experiments with an atmospheric gen- eral circulation model for glacial and interglacial climates have been performed. Our model experiments reveal that slightly cooler tropical SSTs relative to the ones by CLIMAP (1981) are sufficient to simulate proper glacial freezing temperature levels. The depression of tropical snow lines in our LGM experiment can be attributed to two effects: Less moisture content provides an increased environmental lapse rate in the free atmosphere. This effect is strongest in the tropical middle troposphere where we observe an additional two degrees cooling. Secondly, the surface temperature near tropical glaciers is further cooled by a longer duration of snow cover. Our model result provides a consistent view of the last glacial maximum climate with much colder tem- peratures than today in the tropical mountains in concordance with moderate lowering of tropical SSTs.

  18. Long-Range Correlations of Global Sea Surface Temperature.

    PubMed

    Jiang, Lei; Zhao, Xia; Wang, Lu

    2016-01-01

    Scaling behaviors of the global monthly sea surface temperature (SST) derived from 1870-2009 average monthly data sets of Hadley Centre Sea Ice and SST (HadISST) are investigated employing detrended fluctuation analysis (DFA). The global SST fluctuations are found to be strong positively long-range correlated at all pertinent time-intervals. The value of scaling exponent is larger in the tropics than those in the intermediate latitudes of the northern and southern hemispheres. DFA leads to the scaling exponent α = 0.87 over the globe (60°S~60°N), northern hemisphere (0°N~60°N), and southern hemisphere (0°S~60°S), α = 0.84 over the intermediate latitude of southern hemisphere (30°S~60°S), α = 0.81 over the intermediate latitude of northern hemisphere (30°N~60°N) and α = 0.90 over the tropics 30°S~30°N [fluctuation F(s) ~ sα], which the fluctuations of monthly SST anomaly display long-term correlated behaviors. Furthermore, the larger the standard deviation is, the smaller long-range correlations (LRCs) of SST in the corresponding regions, especially in three distinct upwelling areas. After the standard deviation is taken into account, an index χ = α * σ is introduced to obtain the spatial distributions of χ. There exists an obvious change of global SST in central east and northern Pacific and the northwest Atlantic. This may be as a clue on predictability of climate and ocean variabilities.

  19. The exploration technology and application of sea surface wave

    NASA Astrophysics Data System (ADS)

    Wang, Y.

    2016-12-01

    In order to investigate the seismic velocity structure of the shallow sediments in the Bohai Sea of China, we conduct a shear-wave velocity inversion of the surface wave dispersion data from a survey of 12 ocean bottom seismometers (OBS) and 377 shots of a 9000 inch3 air gun. With OBS station spacing of 5 km and air gun shot spacing of 190 m, high-quality Rayleigh wave data were recorded by the OBSs within 0.4 5 km offset. Rayleigh wave phase velocity dispersion for the fundamental mode and first overtone in the frequency band of 0.9 3.0 Hz were retrieved with the phase-shift method and inverted for the shear-wave velocity structure of the shallow sediments with a damped iterative least-square algorithm. Pseudo 2-D shear-wave velocity profiles with depth to 400 m show coherent features of relatively weak lateral velocity variation. The uncertainty in shear-wave velocity structure was also estimated based on the pseudo 2-D profiles from 6 trial inversions with different initial models, which suggest a velocity uncertainty < 30 m/s for most parts of the 2-D profiles. The layered structure with little lateral variation may be attributable to the continuous sedimentary environment in the Cenozoic sedimentary basin of the Bohai Bay basin. The shear-wave velocity of 200 300 m/s in the top 100 m of the Bohai Sea floor may provide important information for offshore site response studies in earthquake engineering. Furthermore, the very low shear-wave velocity structure (200 700 m/s) down to 400 m depth could produce a significant travel time delay of 1 s in the S wave arrivals, which needs to be considered to avoid serious bias in S wave traveltime tomographic models.

  20. Long-Range Correlations of Global Sea Surface Temperature

    PubMed Central

    Jiang, Lei; Zhao, Xia; Wang, Lu

    2016-01-01

    Scaling behaviors of the global monthly sea surface temperature (SST) derived from 1870–2009 average monthly data sets of Hadley Centre Sea Ice and SST (HadISST) are investigated employing detrended fluctuation analysis (DFA). The global SST fluctuations are found to be strong positively long-range correlated at all pertinent time-intervals. The value of scaling exponent is larger in the tropics than those in the intermediate latitudes of the northern and southern hemispheres. DFA leads to the scaling exponent α = 0.87 over the globe (60°S~60°N), northern hemisphere (0°N~60°N), and southern hemisphere (0°S~60°S), α = 0.84 over the intermediate latitude of southern hemisphere (30°S~60°S), α = 0.81 over the intermediate latitude of northern hemisphere (30°N~60°N) and α = 0.90 over the tropics 30°S~30°N [fluctuation F(s) ~ sα], which the fluctuations of monthly SST anomaly display long-term correlated behaviors. Furthermore, the larger the standard deviation is, the smaller long-range correlations (LRCs) of SST in the corresponding regions, especially in three distinct upwelling areas. After the standard deviation is taken into account, an index χ = α * σ is introduced to obtain the spatial distributions of χ. There exists an obvious change of global SST in central east and northern Pacific and the northwest Atlantic. This may be as a clue on predictability of climate and ocean variabilities. PMID:27100397

  1. Remotely sensed seasonality in the spatial distribution of sea-surface suspended particulate matter in the southern North Sea

    NASA Astrophysics Data System (ADS)

    Eleveld, Marieke A.; Pasterkamp, Reinold; van der Woerd, Hendrik J.; Pietrzak, Julie D.

    2008-10-01

    An algorithm is presented for estimating near-surface SPM concentrations in the turbid Case 2 waters of the southern North Sea. The single band algorithm, named POWERS, was derived by parameterising Gordon's approximation of the radiative transfer model with measurements of Belgian and Dutch inherent optical properties. The algorithm was used to calculate near-surface SPM concentration from 491 SeaWiFS datasets for 2001. It was shown to be a robust algorithm for estimating SPM in the southern North Sea. Regression of annual geometric mean SPM concentration derived from remote sensing (SPM rs), against in situ (SPM is) data from 19 Dutch monitoring stations was highly significant with an r2 of 0.87. Further comparison and statistical testing against independent datasets for 2000 confirmed the consistency of this relationship. Moreover, time series of SPM rs concentrations derived from the POWERS algorithm, were shown to follow the same temporal trends as individual SPM is data recorded during 2001. Composites of annual, winter and summer SPM rs for 2001 highlight the three dominant water masses in the southern North Sea, as well as their winter-fall and spring-summer variability. The results indicate that wind induced wave action and mixing cause high surface SPM signals in winter in regions where the water column becomes well mixed, whereas in summer stratification leads to a lower SPM surface signal. The presented algorithm gives accurate near-surface SPM concentrations and could easily be adapted for other water masses and seas.

  2. Snow melt on sea ice surfaces as determined from passive microwave satellite data

    NASA Technical Reports Server (NTRS)

    Anderson, Mark R.

    1987-01-01

    SMMR data for the year 1979, 1980 and 1984 have been analyzed to determine the variability in the onset of melt for the Arctic seasonal sea ice zone. The results show melt commencing in either the Kara/Barents Seas or Chukchi Sea and progressing zonally towards the central Asian coast (Laptev Sea). Individual regions had interannual variations in melt onset in the 10-20 day range. To determine whether daily changes occur in the sea ice surface melt, the SMMR 18 and 37 GHz brightness temperature data are analyzed at day/night/twilight periods. Brightness temperatures illustrate diurnal variations in most regions during melt. In the East Siberian Sea, however, daily variations are observed in 1979, throughout the analysis period, well before any melt would usually have commenced. Understanding microwave responses to changing surface conditions during melt will perhaps give additional information about energy budgets during the winter to summer transition of sea ice.

  3. Global monitoring of Sea Surface Salinity with Aquarius

    NASA Technical Reports Server (NTRS)

    Lagerloef, G. S. E.; LeVine, D. M.; Chao, Yi; Colomb, R.; Nollmann, I.

    2005-01-01

    Aquarius is a microwave remote sensing system designed to obtain global maps of the surface salinity field of the oceans from space. It will be flown on the Aquarius/SAC-D mission, a partnership between the USA (NASA) and Argentina (CONAE) with launch scheduled for late in 2008. The objective of Aquarius is to monitor the seasonal and interannual variation of the large scale features of the surface salinity field in the open ocean. This will provide data to address scientific questions associated with ocean circulation and its impact on climate. For example, salinity is needed to understand the large scale thermohaline circulation, driven by buoyancy, which moves large masses of water and heat around the globe. Of the two variables that determine buoyancy (salinity and temperature), temperature is already being monitored. Salinity is the missing variable needed to understand this circulation. Salinity also has an important role in energy exchange between the ocean and atmosphere, for example in the development of fresh water lenses (buoyant water that forms stable layers and insulates water below from the atmosphere) which alter the air-sea coupling. Aquarius is a combination radiometer and scatterometer (radar) operating at L-band (1.413 GHz for the radiometer and 1.26 GHz for the scatterometer). The primary instrument,for measuring salinity is the radiometer which is able to detect salinity because of the modulation salinity produces on the thermal emission from sea water. This change is detectable at the long wavelength end of the microwave spectrum. The scatterometer will provide a correction for surface roughness (waves) which is one of the greatest unknowns in the retrieval. The sensor will be in a sun-synchronous orbit at about 650 km with equatorial crossings of 6am/6pm. The antenna for these two instruments is a 3 meter offset fed reflector with three feeds arranged in pushbroom fashion looking away from the sun toward the shadow side of the orbit to

  4. Mapping photosynthetically available radiation at the sea surface using GOCI

    NASA Astrophysics Data System (ADS)

    Choi, Jongkuk; Kim, Jihye; Yang, Hyun; Moon, Jeong-Eon; Frouin, Robert

    2016-04-01

    Photosynthetically available radiation (PAR) controls the composition of marine ecosystem by affecting the growth of phytoplankton, thus estimating PAR at the ocean surface accurately is important to understand the marine ecological environment. Although many studies have been attempted to estimate PAR employing ocean colour satellite data since 2003, previous studies using data from the polar orbit systems had spatial and temporal limitations to estimate accurate daily PAR. Here, we estimate daily PAR from Geostationary Ocean Colour Imager (GOCI) which collects data eight times a day at an hour interval in daytime and compare it with in-situ measurement and MODIS-based daily PAR. The algorithm we developed in this study, employed GOCI visible bands (centred at (412, 443, 490, 555, 660, 680 nm) which belongs to the range of PAR by calculating albedo at the layer of clouds and the sea surface to estimate daily PAR. The resultant value was validated by comparing the in-situ measurements acquired from an ocean research station, Socheongcho between February and May 2015, which showed a similar pattern with somewhat GOCI-base PAR's overestimations. The comparison with the results from MODIS, a polar orbit system showed that a good agreement with each other was illustrated at clear sky conditions, while MODIS showed some over- or underestimations at cloudy conditions with irregular patterns. This study shows that GOCI can estimate effectively the daily PAR with its advantages of acquiring data more frequently than other polar orbit ocean colour satellites by reducing the uncertainties induced by insufficient images to map the daily PAR at ocean surface.

  5. Aquarius: A Mission to Monitor Sea Surface Salinity from Space

    NASA Technical Reports Server (NTRS)

    LeVine, D. M.; Lagerloef, G. S. E.; Pellerano, F.; Yueh, S.; Colomb, R.

    2006-01-01

    Aquarius is a combination radiometer and scatterometer (radar) operating at L-band (1.413 GHz for the radiometer and 1.26 GHz for the scatterometer). The primary instrument for measuring salinity is the radiometer. The scatterometer will provide a correction for surface roughness (waves) which is one of the largest potential sources of error in the retrieval. Unique features of the sensor are the large reflector (2.5 meter offset fed reflector with three feeds), polarimetric operation, and the tight thermal control. The three feeds produce three beams arranged to image in pushbroom fashion looking to the side of the orbit away from the sun to avoid sunglint. Polarimetric operation is included to assist in correcting for Faraday rotation which can be important at L-band. The tight thermal control is necessary to meet stability requirements (less than 0.12K drift over 7 days) which have been imposed to assist in meeting the science requirements for the retrieval of surface salinity (0.2 psu). The sensor will be in a sun-synchronous orbit at about 650 km with equatorial crossings of 6ad6pm (ascending at 6 pm). The objective is to monitor the seasonal and interannual variation of the large scale features of the surface salinity field in the open ocean. To accomplish this, the measurement goals are a spatial resolution of 100 km and retrieval accuracy of 0.2 psu globally on a monthly basis. Aquarius is being developed by NASA and is a partnership between JPL and the Goddard Space Flight Center. The SAC-D mission is being developed by CONAE and will include the spacecraft and several additional instruments, including visible and infrared cameras and a microwave radiometer to monitor rain and wind velocity over the oceans, and sea ice.

  6. Estimation of Sea Surface Temperature (SST) Using Marine Seismic Data

    NASA Astrophysics Data System (ADS)

    Sinha, Satish Kumar; Dewangan, Pawan; Sain, Kalachand

    2016-04-01

    Not much attention is given to direct wave arrivals in marine seismic data that are acquired for petroleum exploration and prospecting. These direct arrivals are usually muted out in routine seismic data processing. In the present study, we process these direct arrivals to accurately estimate soundspeed in near-surface seawater and invert for sea surface temperature. The established empirical equation describing the relationships among temperature, salinity, pressure and soundspeed is used for the inversion. We also discuss processing techniques, such as first-break picking and cross-correlation for the estimation of soundspeed, that are well known among petroleum-industry geophysicists. The accuracy of the methods is directly linked to the data quality and signal processing. The novelty in our approach is in the data conditioning, which consists essentially of spectral balancing based on a wavelet transform that compensates for spherical spreading and increases the signal-to-noise ( S/ N) ratio. The 2D seismic data used in this paper are from the offshore Krishna-Godavari Basin east of India. We observe a significantly higher soundspeed of 1545 m/s for near-surface water than the commonly used value of ~1500 m/s. The estimated temperature (from velocity) is about 30 °C. Interestingly, the estimated temperature matches well with the temperature recorded in the CTD profile acquired in the study area during the month of May, the month corresponding to the acquisition of seismic data. Furthermore, the estimated temperatures during different times of data acquisition correlate well with the expected diurnal variation in temperature.

  7. Aquarius: A Mission to Monitor Sea Surface Salinity from Space

    NASA Technical Reports Server (NTRS)

    LeVine, D. M.; Lagerloef, G. S. E.; Pellerano, F.; Yueh, S.; Colomb, R.

    2006-01-01

    Aquarius is a combination radiometer and scatterometer (radar) operating at L-band (1.413 GHz for the radiometer and 1.26 GHz for the scatterometer). The primary instrument for measuring salinity is the radiometer. The scatterometer will provide a correction for surface roughness (waves) which is one of the largest potential sources of error in the retrieval. Unique features of the sensor are the large reflector (2.5 meter offset fed reflector with three feeds), polarimetric operation, and the tight thermal control. The three feeds produce three beams arranged to image in pushbroom fashion looking to the side of the orbit away from the sun to avoid sunglint. Polarimetric operation is included to assist in correcting for Faraday rotation which can be important at L-band. The tight thermal control is necessary to meet stability requirements (less than 0.12K drift over 7 days) which have been imposed to assist in meeting the science requirements for the retrieval of surface salinity (0.2 psu). The sensor will be in a sun-synchronous orbit at about 650 km with equatorial crossings of 6ad6pm (ascending at 6 pm). The objective is to monitor the seasonal and interannual variation of the large scale features of the surface salinity field in the open ocean. To accomplish this, the measurement goals are a spatial resolution of 100 km and retrieval accuracy of 0.2 psu globally on a monthly basis. Aquarius is being developed by NASA and is a partnership between JPL and the Goddard Space Flight Center. The SAC-D mission is being developed by CONAE and will include the spacecraft and several additional instruments, including visible and infrared cameras and a microwave radiometer to monitor rain and wind velocity over the oceans, and sea ice.

  8. Sea surface height relations from mesoscale to submesoscale

    NASA Astrophysics Data System (ADS)

    Jacobs, G. A.

    2016-02-01

    The Surface Water / Ocean Topography (SWOT) mission will change our perceptions of the ocean, and this can be shown by examining how sea surface height (SSH) has been used in the past, the processes expected to be observed by SWOT and the different dynamical relations. This motivates understanding the implication of the SWOT data in the domain of previously unresolved ocean features. Historically, because of the relatively sparse spatial sampling, SSH observations have been related to mesoscale eddy circulations in the ocean. To first order, mesoscale eddies are in geostrophic and hydrostatic balance. This understanding has enabled mesoscale ocean predictions from global scales such as the Global Ocean Forecast System (GOFS) to the reloctable forecast system (RELO) to the coupled ocean / atmosphere mesoscale prediction system (COAMPS). SWOT will reveal submesoscale eddies that are not in geostrophic balance, and their vertical extent is mainly in the mixed layer rather than to the deep thermocline. High resolution model experiments are used to estimate relationships between the surface height signatures and subsurface structures due to mesoscale and submesoscale eddies, both of which produce clear expressions in the mixed layer depth (figure below). The results from a 1 km resolution ocean model covering the Gulf of Mexico provide the 3D structure representing both mesoscale and submesoscale to begin to understand the correlations throughout the water column. The initial examinations provide insight to the relation between SSH and its spatial gradients to the underlying temperature, salinity and velocity structure within the mixed layer and at the deeper thermocline depths. The model-derived SSH correlations at the thermocline depth and within the mixed layer can lend insight to horizontal length scales to classify mesoscale and submesocale features.

  9. Gaussian beam reflection characteristics on 2D randomly rough sea surface influenced by incident laser parameters

    NASA Astrophysics Data System (ADS)

    Zhang, Shuang; Zhang, Xiaohui; Sun, Chunsheng

    2014-12-01

    Laser reflection characteristics from the two-dimensional randomly rough sea surface are affected by the sea state, weather conditions, the incident laser parameters and other factors. All of the factors could not be artificially changed except the incident laser parameters. Therefore, the research of the relationship between laser reflection characteristics from 2-D randomly rough sea surface and incident laser parameters will give support to laser detection on the sea surface. This paper deals with the simulated calculation of the Gaussian beam reflection characteristics from the 2-D randomly rough sea surface with different incident laser parameters. In this paper, the 2-D rough sea surface is simulated with fractal method, after which the sea surface is divided into a lot of small planes, the width or length of which is much greater than the wavelength of the incident laser. Then the geometrical optics method is used to calculate the Gaussian beam reflection from 2-D randomly and rough sea surface. After that, the Gaussian beam reflection characteristics varies different incident laser parameters are numerical calculated. Finally, the detailed discussion of some factors including the divergence angle and the incident angle of the Gaussian beam which have influences on reflection properties is given.

  10. Mean sea surface and geoid gradient comparisons with TOPEX altimeter data

    NASA Technical Reports Server (NTRS)

    Rapp, Richard H.; Yi, Yuchan; Wang, Yan Ming

    1994-01-01

    Cycles 4 to 54 of TOPEX data have been analyzed through comparisons with the mean sea surface given on the disturbed geophysical data record (GDR). Two inverted barometer correction procedures were considered for the data reduction. One used a constant atmospheric pressure for all data while the one adopted for use, for most computations, introduced a cycle average pressure. The maximum difference between the two estimates was 3.0 cm with a clear annual signal. With the modified correction the TOPEX sea surface was compared to The Ohio State University (OSU) mean sea surface, given on the GDR, to estimate three translations ( delta x = -2.3 cm; delta y = 25.0 cm; delta z = -0.3 cm) and a bias (43.3 cm) between the two surfaces. The only significant translation is delta y which indicates the reference frame of the TOPEX system differs from that used in the OSU mean sea surface system. The bias between the TOPEX mean sea surface and the OSU mean sea surface was used to estimate an equatorial radius of 6,378,136.55 m based on an 18-cm biased estimate of the TOPEX altimeter. Examination of the average difference, by cycle, between the TOPEX sea surface and the OSU mean sea surface suggested a bias change of 3.1 +/- 2.2 mm/yr with a positive sign indicating the average ocean surface is rising or the altimeter measured distance is decreasing. Models were implemented that solved directly for a bias, bias rate annual/semiannual, and tide correction terms. The computations indicated that a simultaneous solution for this bias, bias rate, and annual/semiannual terms gave the most accurate results. Nonsimultaneous solutions led to slightly different bias rate values. The root mean square difference between the TOPEX sea surface and OSU sea surface, after translation and bias correction, was +/- 17 cm for a typical cycle. Some locations were indentified where the difference could reach 2.3 cm and were repeated over several cycles indicating errors in the mean sea surface. Most

  11. Mean sea surface and geoid gradient comparisons with TOPEX altimeter data

    NASA Technical Reports Server (NTRS)

    Rapp, Richard H.; Yi, Yuchan; Wang, Yan Ming

    1994-01-01

    Cycles 4 to 54 of TOPEX data have been analyzed through comparisons with the mean sea surface given on the disturbed geophysical data record (GDR). Two inverted barometer correction procedures were considered for the data reduction. One used a constant atmospheric pressure for all data while the one adopted for use, for most computations, introduced a cycle average pressure. The maximum difference between the two estimates was 3.0 cm with a clear annual signal. With the modified correction the TOPEX sea surface was compared to The Ohio State University (OSU) mean sea surface, given on the GDR, to estimate three translations ( delta x = -2.3 cm; delta y = 25.0 cm; delta z = -0.3 cm) and a bias (43.3 cm) between the two surfaces. The only significant translation is delta y which indicates the reference frame of the TOPEX system differs from that used in the OSU mean sea surface system. The bias between the TOPEX mean sea surface and the OSU mean sea surface was used to estimate an equatorial radius of 6,378,136.55 m based on an 18-cm biased estimate of the TOPEX altimeter. Examination of the average difference, by cycle, between the TOPEX sea surface and the OSU mean sea surface suggested a bias change of 3.1 +/- 2.2 mm/yr with a positive sign indicating the average ocean surface is rising or the altimeter measured distance is decreasing. Models were implemented that solved directly for a bias, bias rate annual/semiannual, and tide correction terms. The computations indicated that a simultaneous solution for this bias, bias rate, and annual/semiannual terms gave the most accurate results. Nonsimultaneous solutions led to slightly different bias rate values. The root mean square difference between the TOPEX sea surface and OSU sea surface, after translation and bias correction, was +/- 17 cm for a typical cycle. Some locations were indentified where the difference could reach 2.3 cm and were repeated over several cycles indicating errors in the mean sea surface. Most

  12. Sea level and turbidity controls on mangrove soil surface elevation change

    NASA Astrophysics Data System (ADS)

    Lovelock, Catherine E.; Adame, Maria Fernanda; Bennion, Vicki; Hayes, Matthew; Reef, Ruth; Santini, Nadia; Cahoon, Donald R.

    2015-02-01

    Increases in sea level are a threat to seaward fringing mangrove forests if levels of inundation exceed the physiological tolerance of the trees; however, tidal wetlands can keep pace with sea level rise if soil surface elevations can increase at the same pace as sea level rise. Sediment accretion on the soil surface and belowground production of roots are proposed to increase with increasing sea level, enabling intertidal habitats to maintain their position relative to mean sea level, but there are few tests of these predictions in mangrove forests. Here we used variation in sea level and the availability of sediments caused by seasonal and inter-annual variation in the intensity of La Nina-El Nino to assess the effects of increasing sea level on surface elevation gains and contributing processes (accretion on the surface, subsidence and root growth) in mangrove forests. We found that soil surface elevation increased with mean sea level (which varied over 250 mm during the study) and with turbidity at sites where fine sediment in the water column is abundant. In contrast, where sediments were sandy, rates of surface elevation gain were high, but not significantly related to variation in turbidity, and were likely to be influenced by other factors that deliver sand to the mangrove forest. Root growth was not linked to soil surface elevation gains, although it was associated with reduced shallow subsidence, and therefore may contribute to the capacity of mangroves to keep pace with sea level rise. Our results indicate both surface (sedimentation) and subsurface (root growth) processes can influence mangrove capacity to keep pace with sea level rise within the same geographic location, and that current models of tidal marsh responses to sea level rise capture the major feature of the response of mangroves where fine, but not coarse, sediments are abundant.

  13. Sea level and turbidity controls on mangrove soil surface elevation change

    USGS Publications Warehouse

    Lovelock, Catherine E.; Fernanda Adame, Maria; Bennion, Vicki; Hayes, Matthew; Reef, Ruth; Santini, Nadia; Cahoon, Donald R.

    2015-01-01

    Increases in sea level are a threat to seaward fringing mangrove forests if levels of inundation exceed the physiological tolerance of the trees; however, tidal wetlands can keep pace with sea level rise if soil surface elevations can increase at the same pace as sea level rise. Sediment accretion on the soil surface and belowground production of roots are proposed to increase with increasing sea level, enabling intertidal habitats to maintain their position relative to mean sea level, but there are few tests of these predictions in mangrove forests. Here we used variation in sea level and the availability of sediments caused by seasonal and inter-annual variation in the intensity of La Nina-El Nino to assess the effects of increasing sea level on surface elevation gains and contributing processes (accretion on the surface, subsidence and root growth) in mangrove forests. We found that soil surface elevation increased with mean sea level (which varied over 250 mm during the study) and with turbidity at sites where fine sediment in the water column is abundant. In contrast, where sediments were sandy, rates of surface elevation gain were high, but not significantly related to variation in turbidity, and were likely to be influenced by other factors that deliver sand to the mangrove forest. Root growth was not linked to soil surface elevation gains, although it was associated with reduced shallow subsidence, and therefore may contribute to the capacity of mangroves to keep pace with sea level rise. Our results indicate both surface (sedimentation) and subsurface (root growth) processes can influence mangrove capacity to keep pace with sea level rise within the same geographic location, and that current models of tidal marsh responses to sea level rise capture the major feature of the response of mangroves where fine, but not coarse, sediments are abundant.

  14. Sea Spray Effects on Surface Heat and Moisture Fluxes

    DTIC Science & Technology

    2016-06-07

    have also contributed to the recent ONR “whitepaper” that describes an initiative for comprehensive research on coupled air and sea boundary layers...transferring heat and moisture across the air -sea interface, especially in high winds. Ultimately, we hope to develop simple parameterizations for...these air -sea fluxes for use in large-scale models, especially those simulating tropical and extra-tropical storms. OBJECTIVES The ultimate goal of this

  15. Fine-Resolution Satellite-Based Sea Surface Temperatures over the Global Ocean

    DTIC Science & Technology

    2007-05-22

    sea -ice the Sea of Azov . The plot masks SST in the Great Lakes that coverage. may otherwise included in RTG. [7] These differences between MODAS and...and relative merits of two sets of daily global sea surface temperature (SST) analyses are examined and compared. The 1/81 Modular Ocean Data Analysis...10.1029/2006JC004021, 2007 ore FuN Awtle Fine-resolution satellite-based daily sea surface f!Tr7 1 UTION STATENT-T!T A temperatures over the global

  16. SeaWIFS Postlaunch Technical Report Series. Volume 13; The SeaWiFS Photometer Revision for Incident Surface Measurement (SeaPRISM) Field Commissioning

    NASA Technical Reports Server (NTRS)

    Hooker, Stanford B. (Editor); Zibordi, Giuseppe; Berthon, Jean-Francois; Bailey, Sean W.; Pietras, Christophe M.; Firestone, Elaine R. (Editor)

    2000-01-01

    This report documents the scientific activities that took place at the Acqua Alta Oceanographic Tower (AAOT) in the northern Adriatic Sea off the coast of Italy from 2-6 August 1999. The ultimate objective of the field campaign was to evaluate the capabilities of a new instrument called the SeaWiFS Photometer Revision for Incident Surface Measurements (SeaPRISM). SeaPRISM is based on a CE-318 sun photometer made by CIMEL Electronique (Paris, France). The CE-318 is an automated, robotic system which measures the direct sun irradiance plus the sky radiance in the sun plane and in the almucantar plane. The data are transmitted over a satellite link, and this remote operation capability has made the device very useful for atmospheric measurements. The revision to the CE-318 that makes the instrument potentially useful for SeaWiFS calibration and validation activities is to include a capability for measuring the radiance leaving the sea surface in wavelengths suitable for the determination of chlorophyll a concentration. The initial evaluation of this new capability involved above- and in-water measurement protocols. An intercomparison of the water-leaving radiances derived from SeaPRISM and an in-water system showed the overall spectral agreement was approximately 8.6%, but the blue-green channels intercompared at the 5% level. A blue-green band ratio comparison was at the 4% level.

  17. Effect of the accumulation of polycyclic aromatic hydrocarbons in the sea surface microlayer on their coastal air-sea exchanges

    NASA Astrophysics Data System (ADS)

    Guitart, C.; García-Flor, N.; Miquel, J. C.; Fowler, S. W.; Albaigés, J.

    2010-01-01

    Several measurements of polycyclic aromatic hydrocarbons (PAHs) in coastal marine compartments (viz. atmosphere, sea surface microlayer, subsurface seawater, sinking particles and sediments), made nearly simultaneously at two stations in the north-eastern Mediterranean, were used to estimate the transport fluxes of individual and total PAHs through the air-seawater-sediment system. Diffusive air-sea exchange fluxes were estimated using both subsurface water (SSW) and sea surface microlayer (SML) concentrations. The air-SML fluxes ranged from 411 to 12,292 ng m - 2 d - 1 (absorption) and from - 506 to -13,746 ng m - 2 d - 1 (volatilisation) for total PAHs (Σ15). Air-seawater column transport of particle-associated PAHs was estimated from the analysis of particulate atmospheric and sediment interceptor trap materials. Air-sea particle deposition fluxes of total PAHs ranged from 13 to 114 ng m - 2 d - 1 and seawater particle settling fluxes (upper 5 m water column) ranged from 184 to 323 ng m - 2 d - 1 . The results of this study indicate that both the magnitude and the direction of the calculated air-sea diffusive fluxes change when PAH concentrations in the SML are considered. As a result, PAHs accumulation in the SML could produce the so-called "flux capping effect". However, the high variability in the coastal air-sea PAHs flux estimations, mainly due to the parameters uncertainty, requires further experimental approaches, including improvement of parameterisations.

  18. Processes controlling surface, bottom and lateral melt of Arctic sea ice in a state of the art sea ice model

    NASA Astrophysics Data System (ADS)

    Tsamados, Michel; Feltham, Daniel; Petty, Alek; Schroder, David; Flocco, Daniela

    2015-04-01

    We present a modelling study of processes controlling the summer melt and disintegration of the Arctic sea ice cover. The CPOM sea ice model is a branch of the Los Alamos community code CICE, version 5.0, that includes recently developed new physics of halodynamics, melt ponds, anisotropic rheology, and the impact of sea ice topography on air-ice and ice-ocean flux exchange coefficients (momentum, sensible heat, latent heat). The CPOM model is modified to include a prognostic mixed layer and a three equation boundary condition for the salt and heat flux at the ice-ocean interface. The study focuses on the relative roles of lateral melt, basal melt and surface melt. Lateral melt is calculated based on a parameterized variable average floe perimeter and is modified to account for an observed power law floe size distribution. Basal melt is sensitive to the seasonal cycle of temperature, salinity and depth of the prognostic mixed layer as well as to the boundary condition at the ice-ocean interface. Surface melt utilises a model of melt ponds on sea ice and is also affected by halodynamics in the ice interior. This study assesses the seasonal and inter-annual model response of the Arctic sea ice cover to prescribed atmospheric and oceanic forcing in a stand-alone setting. Because it quantifies the relative importance of several new physical mechanisms in driving the summer melt of the sea ice this work can serve as a guide for future research priorities.

  19. Sea surface salinity fronts in the Tropical Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Ruiz-Etcheverry, L.; Maximenko, N. A.; Melnichenko, O.

    2016-12-01

    Marine fronts are narrow boundaries that separate water masses of different properties. These fronts are caused by various forcing and believed to be an important component of the coupled ocean-atmosphere system, particularly in the tropical oceans. In this study, we use sea surface salinity (SSS) observations from Aquarius satellite to investigate the spatial structure and temporal variability of SSS fronts in the tropical Atlantic. A number of frontal features have been identified. The mean magnitude of the SSS gradient is maximum near the mouth of the Congo River (0.3-0.4 psu/100km). Relative maxima are also observed in the Inter Tropical Convergence Zone (ITCZ), the Gulf of Guinea, and the mouth of the Amazon River. The pattern of the magnitude of the SSS anomaly gradient revealed that the interaction between river plumes and saltier interior water is complex and highly variable during the three-year observation period. The variability of the magnitude of the density anomaly gradient computed from Aquarius SSS and Reynolds SST is also discussed. Images of the ocean color are utilized to trace the movement of the Congo and Amazon River plumes and compare them with the magnitude of the SSS gradient. Additionally, we analyze de circulation associated with the Amazon plume with altimetry data, and the vertical structure and its changes in time through Argo profiles.

  20. Analysis of variability of tropical Pacific sea surface temperatures

    NASA Astrophysics Data System (ADS)

    Davies, Georgina; Cressie, Noel

    2016-11-01

    Sea surface temperature (SST) in the Pacific Ocean is a key component of many global climate models and the El Niño-Southern Oscillation (ENSO) phenomenon. We shall analyse SST for the period November 1981-December 2014. To study the temporal variability of the ENSO phenomenon, we have selected a subregion of the tropical Pacific Ocean, namely the Niño 3.4 region, as it is thought to be the area where SST anomalies indicate most clearly ENSO's influence on the global atmosphere. SST anomalies, obtained by subtracting the appropriate monthly averages from the data, are the focus of the majority of previous analyses of the Pacific and other oceans' SSTs. Preliminary data analysis showed that not only Niño 3.4 spatial means but also Niño 3.4 spatial variances varied with month of the year. In this article, we conduct an analysis of the raw SST data and introduce diagnostic plots (here, plots of variability vs. central tendency). These plots show strong negative dependence between the spatial standard deviation and the spatial mean. Outliers are present, so we consider robust regression to obtain intercept and slope estimates for the 12 individual months and for all-months-combined. Based on this mean-standard deviation relationship, we define a variance-stabilizing transformation. On the transformed scale, we describe the Niño 3.4 SST time series with a statistical model that is linear, heteroskedastic, and dynamical.

  1. Use of new satellite sea surface temperature observations in OSTIA

    NASA Astrophysics Data System (ADS)

    Fiedler, Emma; Mao, Chongyuan; Good, Simon

    2017-04-01

    OSTIA is the Met Office's Operational SST (Sea Surface Temperature) and Ice Analysis system, which produces L4 (globally complete, gridded) analyses on a daily basis. The product is made freely available through CMEMS (Copernicus Marine Environment Monitoring Service). Additional satellite SST datasets have been assimilated into the OSTIA analysis operationally from 15 March 2016. These datasets are ACSPO VIIRS L3U from NOAA/NESDIS/STAR and AMSR2 L2P from REMSS (Remote Sensing Systems). This has led to a sizable improvement in the RMS error of the OSTIA analysis compared to independent Argo observations. Test runs assimilating ACSPO VIIRS and REMSS AMSR2 observations separately have indicated that the total improvement is due to the action of both datasets together rather than one or the other. In addition, ACSPO VIIRS replaced MetOp-A AVHRR as the reference satellite dataset used in OSTIA on 6 November 2016. The reference satellite data, in addition to in situ observations, are used for bias correction of the other satellite data types used in the analysis. The change to using VIIRS as a reference has led to notable improvements in regional biases for OSTIA compared to Argo, drifters and other satellite SST datasets, particularly in the high latitudes. Methods will be described and validation results shown in this presentation.

  2. Perfluoroalkyl acids in surface sediments of the East China Sea.

    PubMed

    Wang, Qian-Wen; Yang, Gui-Peng; Zhang, Ze-Ming; Jian, Shan

    2017-08-05

    The occurrence of 17 target PFAA analytes was determined in surface sediments (n = 37) of the East China Sea and potential influencing factors were examined. ΣPFAAs ranged from 0.41 ng/g dw to 3.06 ng/g dw, with perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) as the most abundant perfluorocarboxylic acid and perfluoroalkyl sulfonate, respectively. PFAAs in the sediments were strongly influenced by terrigenous input. Analysis of the relationship between dynamic influence factors and PFAA concentrations showed that the characteristics of PFAA distribution were rather complex. ΣPFAA concentrations and TOC were positively correlated (p < 0.0001). Circumfluence also influenced the whole PFAA distribution and seasonal variation. In addition, correlation analysis suggested that log Koc values increased with increasing perfluoroalkyl chain length. Given the rapid economic development of eastern coastal cities of China, the environmental hazards of land source pollution cannot be ignored. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Use of VAS multispectral data for sea surface temperature determination

    NASA Technical Reports Server (NTRS)

    Bates, J.

    1983-01-01

    The Visible Infrared Spin Scan Radiometer Atmospheric Sounder (VAS) is a radiometer possessing eight visible channel detectors and six thermal detectors that sense infrared radiation in 12 spectral bands. Housed in the GOES satellite, VAS spins in a west to east direction at 100 rpm and achieves spatial coverage at resolutions of 1 km in the visible and 7 or 14 km in the infrared by stepping a scan mirror in a north to south direction. Designed for multipurpose applications, the VAS can be operated in two different modes: (1) a multi-spectral imaging (MSI) mode, and (2) a dwell sounding (DS) mode. The MSI mode of operation is used for sea surface temperature (SST) determination. Currently, a full-disk MSI image for SST determination is received every hour, 18 hours a day during weekdays. This MSI mode of operation for SST consists of data obtained from wavelengths centered at 3.9 microns (channel 12), 11.6 microns (channel 8), and 12.6 microns (channel 7) as well as visible data.

  4. A study of six operational sea surface temperature analyses

    SciTech Connect

    Folland, C.K.; Gordon, M.; Parker, D.E. ); Reynolds, R.W. )

    1993-01-01

    This study results from recommendations made by a 1984 WMO Expert Committee on Ocean-Atmosphere Interaction Relevant to Long-Range Forecasting. The committee suggested that comparisons be carried out between monthly sea surface temperature (SST) analyses routinely made in several different countries in near real time. Emphasis was placed on the improvement of such analyses for use in operational long-range forecasting, especially for initializing dynamical long-range forecasting models. Six different monthly averaged SST analyses have been compared. The extent to which the analyses agree on several space scales and for regions covering the global oceans is shown, together with estimates of the magnitude of various types of errors. Independent estimates of SST obtained from expendable bathythermographs indicate that the monthly mean Meteorological Office (UKMO), Climate Analysis Center (CAC) in situ, and CAC blended analyses showed small differences (biases) from the expendable bathythermograph data. The differences were near to or below the margins of statistical significance over the Northern Hemisphere and the Southern Hemisphere tropics. Apparent negative biases in the analyses were noted, however, in the extratropical Southern Hemisphere. The authors finish with a discussion of recent improvements to the accuracy and scope of SST analyses for both long-range forecasting and climate studies. These improvements include an integrated analysis of ice limit, in situ and satellite SST data, and the developing use of optimum interpolation as a method of SST analysis. 43 refs., 8 figs., 3 tabs.

  5. The Effect of Ocean Currents on Sea Surface Temperature Anomalies

    NASA Technical Reports Server (NTRS)

    Stammer, Detlef; Leeuwenburgh, Olwijn

    2000-01-01

    We investigate regional and global-scale correlations between observed anomalies in sea surface temperature and height. A strong agreement between the two fields is found over a broad range of latitudes for different ocean basins. Both time-longitude plots and wavenumber-frequency spectra suggest an advective forcing of SST anomalies by a first-mode baroclinic wave field on spatial scales down to 400 km and time scales as short as 1 month. Even though the magnitude of the mean background temperature gradient is determining for the effectiveness of the forcing, there is no obvious seasonality that can be detected in the amplitudes of SST anomalies. Instead, individual wave signatures in the SST can in some cases be followed over periods of two years. The phase relationship between SST and SSH anomalies is dependent upon frequency and wavenumber and displays a clear decrease of the phase lag toward higher latitudes where the two fields come into phase at low frequencies. Estimates of the damping coefficient are larger than generally obtained for a purely atmospheric feedback. From a global frequency spectrum a damping time scale of 2-3 month was found. Regionally results are very variable and range from 1 month near strong currents to 10 month at low latitudes and in the sub-polar North Atlantic. Strong agreement is found between the first global EOF modes of 10 day averaged and spatially smoothed SST and SSH grids. The accompanying time series display low frequency oscillations in both fields.

  6. Indian Ocean Sea Surface Temperatures during the mid-Piacenzian

    NASA Astrophysics Data System (ADS)

    Stoll, D. K.; Robinson, M. M.; Dowsett, H. J.

    2010-12-01

    Mid-Pliocene (~3.3 to 3.0 Ma) climate is being reconstructed as part of the U.S. Geological Survey’s Pliocene Research, Interpretation, and Synoptic Mapping (PRISM) Project. The Pliocene sea surface temperature (SST) dataset is an integral piece of PRISM’s climate reconstruction and continually evolves over time as additional data are added and refined. The Indian Ocean has in the past been a region lacking PRISM SST data coverage, while it is also a region marked with interesting climate phenomena (e.g., the Indian Ocean Dipole). Questions over the existence of these modern oceanographic elements during the mid-Piacenzian have led to increased interest in the Indian Ocean. New data analyzed by PRISM provides insight on what Indian Ocean circulation and SST may have been like ~3 million years ago. Using planktic foraminifera sampled and analyzed from Indian Ocean ODP Sites 709, 716, 754, 758, and 763, PRISM is developing new mid-Pliocene SST estimates to better understand this region’s paleoceanography.

  7. Ultra Stable Microwave Radiometers for Future Sea Surface Salinity Missions

    NASA Technical Reports Server (NTRS)

    Wilson, William J.; Tanner, Alan B.; Pellerano, Fernando A.; Horgan, Kevin A.

    2005-01-01

    The NASA Earth Science System Pathfinder (ESSP) mission Aquarius will measure global sea surface salinity with 100-km spatial resolution every 8 days with an average monthly salinity accuracy of 0.2 psu (parts per thousand). This requires an L-band low-noise radiometer with the long-term calibration stability of less than 0.1 K over 8 days. This three-year research program on ultra stable radiometers has addressed the radiometer requirements and configuration necessary to achieve this objective for Aquarius and future ocean salinity missions. The system configuration and component performance have been evaluated with radiometer testbeds at both JPL and GSFC. The research has addressed several areas including component characterization as a function of temperature, a procedure for the measurement and correction for radiometer system non-linearity, noise diode calibration versus temperature, low noise amplifier performance over voltage, and temperature control requirements to achieve the required stability. A breadboard radiometer, utilizing microstrip-based technologies, has been built to demonstrate this long-term stability. This report also presents the results of the radiometer test program, a detailed radiometer noise model, and details of the operational switching sequence optimization that can be used to achieve the low noise and stability requirements. Many of the results of this research have been incorporated into the Aquarius radiometer design and will allow this instrument to achieve its goals.

  8. The relationship between sea surface temperature and chlorophyll concentration of phytoplanktons in the Black Sea using remote sensing techniques.

    PubMed

    Kavak, Mehmet Tahir; Karadogan, Sabri

    2012-04-01

    Present work investigated the relationship between Chlorophyll (Chl), of phytoplankton biomass, and sea surface temperature (SST) of the Black Sea, using Sea-viewing Wide Field-of-view Sensor (SeaWiFS) and Advanced Very High Resolution Radiometer (AVHRR) satellite imagery. Satellite derived data could provide information on the amount of sea life present (Brown algae, called kelp, proliferate, supporting new species of sea life, including otters, fish, and various invertebrates) in a given area throughout the world. SST from AVHRR from 1993 to 2008 showed seasonal, annual and interannual variability of temperature, monthly variability Chl from SeaWiFS from 1997 to 2009 has also been investigated. Chl showed two high peaks for the year 1999 and 2008. The correlation between SST and Chl for the same time has been found to be 60%. Correlation was significant at p<0.05. The information could also be useful in connection with studies of global changes in temperature and what effect they could have on the total abundance of marine life.

  9. Sea surface temperature and torrential rains in the Valencia region: modelling the role of recharge areas

    NASA Astrophysics Data System (ADS)

    Pastor, Francisco J.

    2016-04-01

    Heavy rain events are frequently recorded in the Western Mediterranean causing economic and human losses. A main factor in the development of torrential rains is ocean-atmosphere exchange of heat and moisture that can destabilize air masses travelling over the sea. The study of air mass trajectories previous to the rain event permits the identification of sea areas that could probably contribute to the development or intensification of rainfall. From a Mediterranean sea surface temperature climatology, its spatio-temporal distribution patterns have been studied showing two main distribution modes in winter and summer and transitional regimes in spring and autumn. Hence, three heavy precipitation events, for such winter and summer sea temperature regimes and for fall transition, affecting the Valencia region have been selected to study the effect of sea surface temperature in torrential rains. Simulations with perturbed sea surface temperature in different areas along the air mass path were run to compare results with unperturbed simulation. The variation of sea surface temperature in certain areas caused significant changes in model accumulated values and its spatial distribution. Therefore, the existence of areas that at a greater extent favour air-sea interaction leading to the development of torrential rainfall in the Valencia region is shown. This methodology could be extended to other Mediterranean regions to look for such potential recharge areas. The identification of sea areas that contribute to the development or intensification of heavy rain events in the Mediterranean countries could be a useful prognosis and/or monitoring tool.

  10. EM Bias-Correction for Ice Thickness and Surface Roughness Retrievals over Rough Deformed Sea Ice

    NASA Astrophysics Data System (ADS)

    Li, L.; Gaiser, P. W.; Allard, R.; Posey, P. G.; Hebert, D. A.; Richter-Menge, J.; Polashenski, C. M.

    2016-12-01

    The very rough ridge sea ice accounts for significant percentage of total ice areas and even larger percentage of total volume. The commonly used Radar altimeter surface detection techniques are empirical in nature and work well only over level/smooth sea ice. Rough sea ice surfaces can modify the return waveforms, resulting in significant Electromagnetic (EM) bias in the estimated surface elevations, and thus large errors in the ice thickness retrievals. To understand and quantify such sea ice surface roughness effects, a combined EM rough surface and volume scattering model was developed to simulate radar returns from the rough sea ice `layer cake' structure. A waveform matching technique was also developed to fit observed waveforms to a physically-based waveform model and subsequently correct the roughness induced EM bias in the estimated freeboard. This new EM Bias Corrected (EMBC) algorithm was able to better retrieve surface elevations and estimate the surface roughness parameter simultaneously. In situ data from multi-instrument airborne and ground campaigns were used to validate the ice thickness and surface roughness retrievals. For the surface roughness retrievals, we applied this EMBC algorithm to co-incident LiDAR/Radar measurements collected during a Cryosat-2 under-flight by the NASA IceBridge missions. Results show that not only does the waveform model fit very well to the measured radar waveform, but also the roughness parameters derived independently from the LiDAR and radar data agree very well for both level and deformed sea ice. For sea ice thickness retrievals, validation based on in-situ data from the coordinated CRREL/NRL field campaign demonstrates that the physically-based EMBC algorithm performs fundamentally better than the empirical algorithm over very rough deformed sea ice, suggesting that sea ice surface roughness effects can be modeled and corrected based solely on the radar return waveforms.

  11. Holocene Sea Surface and Subsurface Water Mass Variability Reconstructed from Temperature and Sea-ice Proxies in Fram Strait

    NASA Astrophysics Data System (ADS)

    Werner, Kirstin; Spielhagen, Robert F.; Müller, Juliane; Husum, Katrine; Kandiano, Evgenia S.; Polyak, Leonid

    2016-04-01

    In two high-resolution sediment cores from the West Spitsbergen continental margin we investigated planktic foraminiferal, biomarker and dinocyst proxy data in order to reconstruct surface and subsurface water mass variability during the Holocene. The two study sites are today influenced by northward flowing warm and saline Atlantic Water. Both foraminiferal and dinocyst (de Vernal et al., 2013) temperature reconstructions indicate a less-stratified, ice-free, nutrient-rich summer surface ocean with strong Atlantic Water advection between 10.6 and 8.5 cal ka BP, likely related to maximum July insolation during the early Holocene. Sea surface to subsurface water temperatures of up to 6°C prevailed until ca 5 cal ka BP. A weakened contribution of Atlantic Water is found when subsurface temperatures strongly decreased with minimum values between ca 4 and 3 cal ka BP. High planktic foraminifer shell fragmentation and increased oxygen isotope values of the subpolar planktic foraminifer species Turborotalita quinqueloba as well as increasing concentrations of the sea ice biomarker IP25 further indicate cool conditions. Indices associated with IP25 as well as dinocyst data suggest a sustained cooling and consequently sea-ice increase during the late Holocene. However, planktic foraminiferal data indicate a slight return of stronger subsurface influx of Atlantic Water since ca 3 cal ka BP. The observed decoupling of cooling surface and warming subsurface waters during the later Holocene might be attributed to a strong pycnocline layer separating cold sea-ice fed surface waters from enhanced subsurface Atlantic Water advection. Reference: de Vernal, A., Hillaire-Marcel, C., Rochon, A., Fréchette, B., Henry, M., Solignac, S., Bonnet, S., 2013. Dinocyst-based reconstructions of sea ice cover concentration during the Holocene in the Arctic Ocean, the northern North Atlantic Ocean and its adjacent seas. Quaternary Science Reviews 79, 111-121.

  12. Arctic Sea Salt Aerosol from Blowing Snow and Sea Ice Surfaces - a Missing Natural Source in Winter

    NASA Astrophysics Data System (ADS)

    Frey, M. M.; Norris, S. J.; Brooks, I. M.; Nishimura, K.; Jones, A. E.

    2015-12-01

    Atmospheric particles in the polar regions consist mostly of sea salt aerosol (SSA). SSA plays an important role in regional climate change through influencing the surface energy balance either directly or indirectly via cloud formation. SSA irradiated by sunlight also releases very reactive halogen radicals, which control concentrations of ozone, a pollutant and greenhouse gas. However, models under-predict SSA concentrations in the Arctic during winter pointing to a missing source. It has been recently suggested that salty blowing snow above sea ice, which is evaporating, to be that source as it may produce more SSA than equivalent areas of open ocean. Participation in the 'Norwegian Young Sea Ice Cruise (N-ICE 2015)' on board the research vessel `Lance' allowed to test this hypothesis in the Arctic sea ice zone during winter. Measurements were carried out from the ship frozen into the pack ice North of 80º N during February to March 2015. Observations at ground level (0.1-2 m) and from the ship's crows nest (30 m) included number concentrations and size spectra of SSA (diameter range 0.3-10 μm) as well as snow particles (diameter range 50-500 μm). During and after blowing snow events significant SSA production was observed. In the aerosol and snow phase sulfate is fractionated with respect to sea water, which confirms sea ice surfaces and salty snow, and not the open ocean, to be the dominant source of airborne SSA. Aerosol shows depletion in bromide with respect to sea water, especially after sunrise, indicating photochemically driven release of bromine. We discuss the SSA source strength from blowing snow in light of environmental conditions (wind speed, atmospheric turbulence, temperature and snow salinity) and recommend improved model parameterisations to estimate regional aerosol production. N-ICE 2015 results are then compared to a similar study carried out previously in the Weddell Sea during the Antarctic winter.

  13. The impact of the Indonesian Throughflow and tidal mixing on the summertime sea surface temperature in the western Indonesian Seas

    NASA Astrophysics Data System (ADS)

    Kida, Shinichiro; Wijffels, Susan

    2012-09-01

    A numerical model is used to investigate how the Indonesian Throughflow and tidal mixing are affecting the seasonal cycle of the sea surface temperature (SST) in the Indonesian Seas. The SST in these seas is considered to play a major role on the development of the Australian Summer Monsoon. Based on a quantitative assessment of the heat budget, the Indonesian Throughflow is found to affect the SST in the western Indonesian Seas primarily during Austral summer. The Throughflow advects the warm water from the Pacific and maintains the warm SST when the Northwestern Monsoonal wind induces coastal upwelling along the northern side of the Nusa Tenggara and cools the SST. Such balance is supported by observations. The hydrographic sections show the isotherms tilting upward toward the northern coast of the Nusa Tenggara when satellite observations show slight decrease of the SST in the region. Tidal mixing is found to cool the SST during summer the most. This is because the Northwest Monsoonal wind induces coastal upwelling near where strong tidal mixing above seamount occurs and brings the tidally well-mixed upper thermocline water to the surface. The surface Ekman flow also spreads this cool water around the Banda Sea where tidal mixing does not occur. The impact of tidal mixing on the SST is also found to come largely from that occurring above seamounts. The impact of tidal mixing on the continental shelves is limited to shelf-breaks because cold subsurface water is necessary for enhanced vertical mixing to cool the SST.

  14. Monsoon variability in the northeastern Arabian Sea on orbital- and millennial scale during the past 200,000 years

    NASA Astrophysics Data System (ADS)

    Lückge, Andreas; Groeneveld, Jeroen; Steinke, Stephan; Mohtadi, Mahyar; Westerhold, Thomas; Schulz, Hartmut

    2016-04-01

    The Dansgaard-Oeschger oscillations and Heinrich events described in the Greenland ice cores and in North Atlantic and Western Mediterranean sediments are also expressed in the climate of the tropics, for example, as documented in Arabian Sea sediments. However, little is known about these fluctuations beyond the reach of the Greenland ice cores. Here, we present high-resolution geochemical, sedimentological as well as micropaleontological data from two cores (SO130-283KL, 987m water depth and SO130-289KL, 571m) off the coast of Pakistan, extending the monsoon record on orbital and millennial scales to the past 200,000 years. The stable oxygen isotope record of the surface-dwelling planktonic foraminifer G. ruber shows a strong correspondence to Greenland ice core δ18O, whereas the deepwater δ18O signal of benthic foraminifera (U. peregrina and G. affinis) reflects patterns recorded in ice cores from Antarctica. Strong shifts in benthic δ18O during stadials/Heinrich events are interpreted to show frequent advances of oxygen-rich intermediate water masses into the Arabian Sea originating from the southern ocean. Alkenone-derived SSTs varied between 23 and 28° C. Highest temperatures were encountered during interglacial MIS 5. Rapid SST changes of 2° C magnitude on millennial scale are overlain by long-term SST fluctuations. Interstadials (of glacial phases) and the cold phases of interglacials are characterized by sediments enriched in organic carbon (up to 4 % TOC) whereas sediments with low TOC contents (< 1 % TOC) appear during stadials and Heinrich events. Shifts at climate transitions, such as onsets of interstadials, were coeval with changes in productivity-related and anoxia-indicating proxies. Interstadial inorganic elemental data consistently show that enhanced fluxes of terrestrial-derived sediments are paralleled by productivity maxima, and are characterized by an increased fluvial contribution from the Indus River. In contrast, stadials are

  15. Electromagnetic backscattering from one-dimensional drifting fractal sea surface II: Electromagnetic backscattering model

    NASA Astrophysics Data System (ADS)

    Tao, Xie; William, Perrie; Shang-Zhuo, Zhao; He, Fang; Wen-Jin, Yu; Yi-Jun, He

    2016-07-01

    Sea surface current has a significant influence on electromagnetic (EM) backscattering signals and may constitute a dominant synthetic aperture radar (SAR) imaging mechanism. An effective EM backscattering model for a one-dimensional drifting fractal sea surface is presented in this paper. This model is used to simulate EM backscattering signals from the drifting sea surface. Numerical results show that ocean currents have a significant influence on EM backscattering signals from the sea surface. The normalized radar cross section (NRCS) discrepancies between the model for a coupled wave-current fractal sea surface and the model for an uncoupled fractal sea surface increase with the increase of incidence angle, as well as with increasing ocean currents. Ocean currents that are parallel to the direction of the wave can weaken the EM backscattering signal intensity, while the EM backscattering signal is intensified by ocean currents propagating oppositely to the wave direction. The model presented in this paper can be used to study the SAR imaging mechanism for a drifting sea surface. Project supported by the National Natural Science Foundation of China (Grant No. 41276187), the Global Change Research Program of China (Grant No. 2015CB953901), the Priority Academic Program Development of Jiangsu Higher Education Institutions, China, the Program for the Innovation Research and Entrepreneurship Team in Jiangsu Province, China, the Canadian Program on Energy Research and Development, and the Canadian World Class Tanker Safety Service Program.

  16. Modeling optical contrast for thin organic films on the sea surface

    NASA Astrophysics Data System (ADS)

    Shmirko, K. A.; Konstantinov, O. G.; Kul'chin, Yu. N.; Stolyarchuk, S. Yu.; Pavlov, A. N.; Korenskii, M. Yu.

    2017-05-01

    A continuation of the work dedicated to the study of slicks and film formations on the sea surface is presented. A vector model for the calculation of reflected radiation by the wavy sea surface with respect to the contribution of upwelling radiation from under the sea surface (the second type of waters) is described briefly in [5]. This work contains an analysis of numerical calculations according to the developed procedure and the search for optimal conditions of slick detection. The best conditions for detecting slicks on the sea surface are reached when a P-polarization component of reflected radiation is recorded. In this case, the value of contrast between a slick and a clean surface is 30% higher on average than in recording a contrast without using a polarization filter and is 50% higher than in the case of recording a contrast with a filter oriented to the maximum transmission of S polarization component of reflected radiation. It is shown that, under clear sky conditions, the optimal condition for recording slicks on a sea surface is videotaping in the plane of solar vertical at viewing angles sliding towards the sea surface and when a polarization filter that identifies the P polarization component of sea radiation is used. In contrast, under overcast sky conditions, it is best to perform observations in the plane that has a wind velocity vector.

  17. Relationship between clouds and sea surface temperatures in the western tropical Pacific

    NASA Technical Reports Server (NTRS)

    Arking, Albert; Ziskin, Daniel

    1994-01-01

    Analysis of four years of earth radiation budget, cloud, and sea surface temperature data confirms that cloud parameters change dramatically when and where sea surface temperatures increase above approximately 300K. These results are based upon monthly mean values within 2.5 deg x 2.5 deg grid points over the 'warm pool' region of the western tropical Pacific. The question of whether sea surface temperatures are influenced, in turn, by the radiative effects of these clouds (Ramanathan and Collins) is less clear. Such a feedback, if it exists, is weak. The reason why clouds might have so little influence, despite large changes in their longwave and shortwave radiative effects, might be that the sea surface responds to both the longwave heating and the shortwave cooling effects of clouds, and the two effects nearly cancel. There are strong correlations between the rate of change of sea surface temperature and any of the radiation budget parameters that are highly correlated with the incident solar flux-implying that season and latitude are the critical factors determining sea surface temperatures. With the seasonal or both seasonal and latitudinal variations removed, the rate of change of sea surface temperature shows no correlation with cloud-related parameters in the western tropical Pacific.

  18. Polarimetric Doppler spectrum of backscattered echoes from nonlinear sea surface damped by natural slicks

    NASA Astrophysics Data System (ADS)

    Yang, Pengju; Guo, Lixin

    2016-11-01

    Based on the Lombardini et al. model that can predict the hydrodynamic damping of rough sea surfaces in the presence of monomolecular slicks and the "choppy wave" model (CWM) that can describe the nonlinear interactions between ocean waves, the modeling of time-varying nonlinear sea surfaces damped by natural or organic sea slicks is presented in this paper. The polarimetric scattering model of second-order small-slope approximation (SSA-II) with tapered wave incidence is utilized for evaluating co- and cross-polarized backscattered echoes from clean and contaminated CWM nonlinear sea surfaces. The influence of natural sea slicks on Doppler shift and spectral bandwidth of radar sea echoes is investigated in detail by comparing the polarimetric Doppler spectra of contaminated sea surfaces with those of clean sea surfaces. A narrowing of Doppler spectra in the presence of oil slicks is observed for both co- and cross-polarization, which is qualitatively consistent with wave-tank measurements. Simulation results also show that the Doppler shifts in slicks can increase or decrease, depending on incidence angles and polarizations.

  19. Terrestrial basking sea turtles are responding to spatio-temporal sea surface temperature patterns

    PubMed Central

    Van Houtan, Kyle S.; Halley, John M.; Marks, Wendy

    2015-01-01

    Naturalists as early as Darwin observed terrestrial basking in green turtles (Chelonia mydas), but the distribution and environmental influences of this behaviour are poorly understood. Here, we examined 6 years of daily basking surveys in Hawaii and compared them with the phenology of local sea surface temperatures (SST). Data and models indicated basking peaks when SST is coolest, and we found this timeline consistent with bone stress markings. Next, we assessed the decadal SST profiles for the 11 global green turtle populations. Basking generally occurs when winter SST falls below 23°C. From 1990 to 2014, the SST for these populations warmed an average 0.04°C yr−1 (range 0.01–0.09°C yr−1); roughly three times the observed global average over this period. Owing to projected future warming at basking sites, we estimated terrestrial basking in green turtles may cease globally by 2100. To predict and manage for future climate change, we encourage a more detailed understanding for how climate influences organismal biology. PMID:25589483

  20. Terrestrial basking sea turtles are responding to spatio-temporal sea surface temperature patterns.

    PubMed

    Van Houtan, Kyle S; Halley, John M; Marks, Wendy

    2015-01-01

    Naturalists as early as Darwin observed terrestrial basking in green turtles (Chelonia mydas), but the distribution and environmental influences of this behaviour are poorly understood. Here, we examined 6 years of daily basking surveys in Hawaii and compared them with the phenology of local sea surface temperatures (SST). Data and models indicated basking peaks when SST is coolest, and we found this timeline consistent with bone stress markings. Next, we assessed the decadal SST profiles for the 11 global green turtle populations. Basking generally occurs when winter SST falls below 23°C. From 1990 to 2014, the SST for these populations warmed an average 0.04°C yr(-1) (range 0.01-0.09°C yr(-1)); roughly three times the observed global average over this period. Owing to projected future warming at basking sites, we estimated terrestrial basking in green turtles may cease globally by 2100. To predict and manage for future climate change, we encourage a more detailed understanding for how climate influences organismal biology. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  1. Black sea surface temperature anomaly on 5th August 1998 and the ozone layer thickness

    NASA Astrophysics Data System (ADS)

    Manev, A.; Palazov, K.; Raykov, St.; Ivanov, V.

    2003-04-01

    BLACK SEA SURFACE TEMPERATURE ANOMALY ON 5th AUGUST 1998 AND THE OZONE LAYER THICKNESS A. Manev , K. Palazov , St. Raykov, V. Ivanov Solar Terrestrial Influences Laboratory, Bulgarian Academy of Sciences amanev@abv.bg This paper focuses on the peculiarities of the Black Sea surface temperature anomaly on 05.08.1998. Researching the daily temperature changes in a number of control fields in the course of 8-10 years, we have found hidden correlations and anomalous deviations in the sea surface temperatures on a global scale. Research proves the statistical reliability of the temperature anomaly on the entire Black Sea surface registered on 04.-05.08.1998. In the course of six days around these dates the temperatures are up to 2°C higher than the maximum temperatures in this period in the other seven years. A more detailed analysis of the dynamics of the anomaly required the investigation of five Black Sea surface characteristic zones of 75x75 km. The analysis covers the period 20 days - 10 days before and 10 days after the anomaly. Investigations aimed at interpreting the reasons for the anomalous heating of the surface waters. We have tried to analyze the correlation between sea surface temperature and the global ozone above the Black Sea by using simultaneously data from the two satellite systems NOAA and TOMS. Methods of processing and comparing the data from the two satellite systems are described. The correlation coefficients values for the five characteristic zones are very high and close, which proves that the character of the correlation ozone - sea surface temperature is the same for the entire Black Sea surface. Despite the high correlation coefficient, we have proved that causality between the two phenomena at the time of the anomaly does not exit.

  2. Velocity Vector Fields from Sea Surface Temperature Images Using Multiresolution

    NASA Astrophysics Data System (ADS)

    Tonsmann, G.; Tyler, J. M.; Walker, N. D.; Wiseman, W.; Rouse, L. J.

    2001-12-01

    This paper presents a new method for the estimation of oceanic surface velocity vector fields using multiresolution. Wavelet analysis is used to achieve multiresolution. The new method requires two sea surface temperature (SST) satellite images of the same region taken within a known time interval. Wavelet analysis is performed on both images to decompose them into sub-images of decreasing resolution levels. These sub-images are organized into two quadtrees, one for each SST image. The method compares equivalent sub-images between quadtrees to produce vector fields to represent local displacements of features within the images. Comparisons are performed by maximization of cross correlation of regions in the sub-images. The vector fields are smoothed to eliminate noise and to produce coherent vector fields at each resolution level. Vector fields at levels of higher resolution are used as refinements to vector fields at lower resolution levels. Operational parameters for the new method were optimized. It was determined that wavelet filters with smaller support were best for analysis and smoothing. Validation of the methodology was performed with SST images of the Gulf of Mexico from NOAA satellites during the period October 1993 through July 1994. Image pairs within this set were selected with a time interval of 24 hours between them to minimize biases in SST values that may be introduced by the day-night cycle and to filter out the effects of the diurnal tide, which dominates in the Gulf of Mexico. Comparisons with daily average velocities calculated from drifters from the Surface Current and Lagrangian-drift Program I (SCULP-I) were also performed. Agreement with drifter data was partially achieved. Some discrepancies were discovered in featureless image regions where cross correlation calculations produce unreliable results. The discrepancies could also be explained by differences in the features captured in the satellite images and the factors that influence

  3. Interaction Between Surface Heat Budgets, Sea Surface Temperature and Deep Convection in the Tropical Western Pacific

    NASA Technical Reports Server (NTRS)

    Chou, Shu-Hsien; Chou, Ming-Dah; Lin, Po-Hsiung; Starr, David OC. (Technical Monitor)

    2002-01-01

    The surface heat budgets, sea surface temperature (SST), clouds and winds in the tropical western Pacific are analyzed and compared for the periods April-June 1998 and 1999. The spring of 1998 is in the later phase of a strong El Nino, whereas the spring of 1999 is in a period of a La Nina. The surface shortwave (SW) and longwave (LW) radiative fluxes are retrieved from Japanese Geostationary Meteorological Satellite radiance measurements, while the surface turbulent fluxes (latent and sensible heat) are derived from SSM/I-Inferred surface air humidity and winds. The SST and sea-air temperature differences are taken from NCEP/NCAR reanalysis. Deep convection is inferred from the outgoing longwave radiation of NOAA's polar-orbiting satellites. The longitudinal shift in maximum SST, deep convection and winds during El Nino and La Nina have a large impact on the spatial distribution of surface heating. Changes in clouds between these two periods have a large impact on the monthly-mean radiative heating, exceeding 60 W m(exp -2) over large oceanic regions. Similarly, the differences in wind speeds and SST have a large impact on the latent cooling, exceeding 40 W m(exp -2) over large oceanic areas. However, the maximum impacts on radiative and latent heat fluxes occur in different regions. The regions of maximum impact on radiative fluxes coincide with the regions of maximum change in clouds, whereas regions of maximum impact on turbulent heat fluxes coincide with the regions of maximum change in trade winds. The time-evolution of SST in relation to that of surface heat fluxes and winds are investigated and compared between the two El Nino and La Nina periods. In regions where wind speeds (or wind stresses) are large, the change in SST agrees well with the change in the net surface heating, indicating a deep ocean mixed layer associated with strong trade winds. On the other hand, in regions where radiative fluxes are large, the change in SST does not agree well with the

  4. Interaction Between Surface Heat Budgets, Sea Surface Temperature and Deep Convection in the Tropical Western Pacific

    NASA Technical Reports Server (NTRS)

    Chou, Shu-Hsien; Chou, Ming-Dah; Lin, Po-Hsiung; Starr, David OC. (Technical Monitor)

    2002-01-01

    The surface heat budgets, sea surface temperature (SST), clouds and winds in the tropical western Pacific are analyzed and compared for the periods April-June 1998 and 1999. The spring of 1998 is in the later phase of a strong El Nino, whereas the spring of 1999 is in a period of a La Nina. The surface shortwave (SW) and longwave (LW) radiative fluxes are retrieved from Japanese Geostationary Meteorological Satellite radiance measurements, while the surface turbulent fluxes (latent and sensible heat) are derived from SSM/I-Inferred surface air humidity and winds. The SST and sea-air temperature differences are taken from NCEP/NCAR reanalysis. Deep convection is inferred from the outgoing longwave radiation of NOAA's polar-orbiting satellites. The longitudinal shift in maximum SST, deep convection and winds during El Nino and La Nina have a large impact on the spatial distribution of surface heating. Changes in clouds between these two periods have a large impact on the monthly-mean radiative heating, exceeding 60 W m(exp -2) over large oceanic regions. Similarly, the differences in wind speeds and SST have a large impact on the latent cooling, exceeding 40 W m(exp -2) over large oceanic areas. However, the maximum impacts on radiative and latent heat fluxes occur in different regions. The regions of maximum impact on radiative fluxes coincide with the regions of maximum change in clouds, whereas regions of maximum impact on turbulent heat fluxes coincide with the regions of maximum change in trade winds. The time-evolution of SST in relation to that of surface heat fluxes and winds are investigated and compared between the two El Nino and La Nina periods. In regions where wind speeds (or wind stresses) are large, the change in SST agrees well with the change in the net surface heating, indicating a deep ocean mixed layer associated with strong trade winds. On the other hand, in regions where radiative fluxes are large, the change in SST does not agree well with the

  5. Saltier sea surface water conditions recorded by multiple mid-Holocene corals in the northern South China Sea

    NASA Astrophysics Data System (ADS)

    Guo, Yangrui; Deng, Wenfeng; Chen, Xuefei; Wei, Gangjian; Yu, Kefu; Zhao, Jian-xin

    2016-08-01

    The typical features of the mid-Holocene can be used to better understand present-day climate conditions and the potential trends of future climate change. The surface conditions, including sea surface temperature (SST) and sea surface salinity (SSS), of the South China Sea (SCS) are largely controlled by the East Asian monsoon system. Surface water conditions reconstructed from coral proxies can be used to study the evolution of the East Asian monsoon during the mid-Holocene. However, there are some discrepancies among existing coral-based studies regarding whether the mid-Holocene sea surface water was much saltier than the present day surface waters. Based on paired Sr/Ca and δ18O of modern and three fossil corals, this paper reconstructs the patterns of seasonal variation in SSS during the mid-Holocene in the northern SCS. The Δδ18O records (a proxy for SSS) derived from the three fossil corals were all heavier than that from the modern coral, which suggests the presence of more saline surface waters during the mid-Holocene in the northern SCS. These results are consistent with previous studies based on records reconstructed from coral and foraminifera, as well as from numerical simulations. Reduced rainfall caused by the strengthened Asian Monsoon and/or the northward shift of the intertropical convergence zone during the mid-Holocene would explain the increased salinity of the surface waters of the northern SCS. The findings presented here clarify the discrepancies among previous studies and confirm the existence of saltier surface waters in the northern SCS during the mid-Holocene.

  6. Surface and basal sea ice melt from autonomous buoy arrays during the 2014 sea ice retreat in the Beaufort/Chukchi Seas

    NASA Astrophysics Data System (ADS)

    Maksym, T. L.; Wilkinson, J.; Hwang, P. B.

    2014-12-01

    As the Arctic continues its transition to a seasonal ice cover, the nature and role of the processes driving sea ice retreat are expected to change. Key questions revolve around how the coupling between dynamics and thermodynamic processes and potential changes in the role of melt ponds contribute to an accelerated seasonal ice retreat. To address these issues, 44 autonomous platforms were deployed in four arrays in the Beaufort Sea in March, 2014, with an additional array deployed in August in the Chukchi Sea to monitor the evolution of ice conditions during the seasonal sea ice retreat. Each "5-dice" array included four or five co-sited ice mass balance buoys (IMB) and wave buoys with digital cameras, and one automatic weather station (AWS) at the array center. The sensors on these buoys, combined with satellite imagery monitoring the large-scale evolution of the ice cover, provide a near-complete history of the processes involved in the seasonal melt of sea ice. We present a preliminary analysis of the contributions of several key processes to the seasonal ice decay. The evolution of surface ponding was observed at several sites with differing ice types and surface morphologies. The records of surface melt and ice thickness demonstrate a key role of ice type in driving the evolution of the ice cover. Analysis of the surface forcing and estimates of solar energy partitioning between the surface and upper ocean is compared to the surface and basal mass balance from the IMBs. The role of ice divergence and deformation in driving sea ice decay - in particular its role in accelerating thermodynamic melt processes - is discussed.

  7. Airborne Spectral Measurements of Surface-Atmosphere Anisotropy for Arctic Sea Ice and Tundra

    NASA Technical Reports Server (NTRS)

    Arnold, G. Thomas; Tsay, Si-Chee; King, Michael D.; Li, Jason Y.; Soulen, Peter F.

    1999-01-01

    Angular distributions of spectral reflectance for four common arctic surfaces: snow-covered sea ice, melt-season sea ice, snow-covered tundra, and tundra shortly after snowmelt were measured using an aircraft based, high angular resolution (1-degree) multispectral radiometer. Results indicate bidirectional reflectance is higher for snow-covered sea ice than melt-season sea ice at all wavelengths between 0.47 and 2.3 pm, with the difference increasing with wavelength. Bidirectional reflectance of snow-covered tundra is higher than for snow-free tundra for measurements less than 1.64 pm, with the difference decreasing with wavelength. Bidirectional reflectance patterns of all measured surfaces show maximum reflectance in the forward scattering direction of the principal plane, with identifiable specular reflection for the melt-season sea ice and snow-free tundra cases. The snow-free tundra had the most significant backscatter, and the melt-season sea ice the least. For sea ice, bidirectional reflectance changes due to snowmelt were more significant than differences among the different types of melt-season sea ice. Also the spectral-hemispherical (plane) albedo of each measured arctic surface was computed. Comparing measured nadir reflectance to albedo for sea ice and snow-covered tundra shows albedo underestimated 5-40%, with the largest bias at wavelengths beyond 1 pm. For snow-free tundra, nadir reflectance underestimates plane albedo by about 30-50%.

  8. Trends and variability in the sea surface height, sea surface temperature and wind stress curl in the South Atlantic ocean

    NASA Astrophysics Data System (ADS)

    Porto da Silveira, Isabel; Ponzi Pezzi, Luciano; Buss de Souza, Ronald; Sennéchael, Nathalie; Provost, Christine

    2013-04-01

    Altimetry sea level anomalies (SLA), sea surface temperatures anomalies (SSTA) and wind stress curl (WSC) were analyzed and had their trends calculated and their variability studied for the South Atlantic ocean using the last 19 years of SALTO/DUACS altimeter data, ERSST data and ERA-INTERIM data. All data had their temporal resolution adjusted to the one of altimeter data. The trends were calculated between January, 1st 1993 and December, 31th 2011. The stronger and positive SLA trends occurred in the region of the Zapiola Ridge (14 mm/year) and in some places in the Drake Passage (10 mm/year). Negative trends were observed in the Southern part of Argentinian basin (-4 mm/year), next to the Confluence Brazil Malvinas (-8 mm/year) and to the southwest of the African coast (-6 mm/year). The SST trends were positive North of 40°S, and negative south of 60°S. They were also negative along the Argentinean continental slope along the path of the Malvinas Current. The WSC trend was also negative along the Argentine continental slope. In the Southeast Atlantic, the WSC trend had a zonal distribution with alternate signs. To understand the processes responsible for the trend patterns in the South Atlantic ocean, the high and the low frequencies were obtained applying successively a 25 week band pass filter followed by a 37 week band pass filter. The percentage of explained variance by the high frequency, low frequency and seasonal signals (hf/lf/ss) were compared for SLA, SSTA and WSC. The variance of SLA in the Southwestern Atlantic was explained by the proportion of (80%, 15%,5%), except along the Argentinean continental slope (15%, 50%, 35%), the inner part of the ZR (10%,65%,25%). The central part of the South Atlantic showed dominant low frequency variance (proportions of 15%, 80% and 5% (hf/lf/ss), respectively). The SSTA variance was dominated by the high frequency in the Uruguayan coast, around ZR, in the Drake Passage and in the Agulhas Leakage (60-80%), low

  9. Prediction of daily sea surface temperature using efficient neural networks

    NASA Astrophysics Data System (ADS)

    Patil, Kalpesh; Deo, Makaranad Chintamani

    2017-02-01

    Short-term prediction of sea surface temperature (SST) is commonly achieved through numerical models. Numerical approaches are more suitable for use over a large spatial domain than in a specific site because of the difficulties involved in resolving various physical sub-processes at local levels. Therefore, for a given location, a data-driven approach such as neural networks may provide a better alternative. The application of neural networks, however, needs a large experimentation in their architecture, training methods, and formation of appropriate input-output pairs. A network trained in this manner can provide more attractive results if the advances in network architecture are additionally considered. With this in mind, we propose the use of wavelet neural networks (WNNs) for prediction of daily SST values. The prediction of daily SST values was carried out using WNN over 5 days into the future at six different locations in the Indian Ocean. First, the accuracy of site-specific SST values predicted by a numerical model, ROMS, was assessed against the in situ records. The result pointed out the necessity for alternative approaches. First, traditional networks were tried and after noticing their poor performance, WNN was used. This approach produced attractive forecasts when judged through various error statistics. When all locations were viewed together, the mean absolute error was within 0.18 to 0.32 °C for a 5-day-ahead forecast. The WNN approach was thus found to add value to the numerical method of SST prediction when location-specific information is desired.

  10. Atlantic Sea Surface Temperatures and Tropical Cyclone Formation.

    NASA Astrophysics Data System (ADS)

    Shapiro, Lloyd J.; Goldenberg, Stanley B.

    1998-04-01

    It has long been accepted that interannual fluctuations in sea surface temperature (SST) in the Atlantic are associated with fluctuations in seasonal Atlantic basin tropical cyclone frequency. To isolate the physical mechanism responsible for this relationship, a singular value decomposition (SVD) is used to establish the dominant covarying modes of tropospheric wind shear and SST as well as horizontal SST gradients. The dominant SVD mode of covarying vertical shear and SST gradients, which comprises equatorially confined near-zonal vertical wind shear fluctuations across the Atlantic basin, is highly correlated with both equatorial eastern Pacific SST anomalies (associated with El Niño) and West African Sahel rainfall. While this mode is strongly related to tropical storm, hurricanes, and major hurricane frequency in the Atlantic, it is not associated with any appreciable Atlantic SST signal.By contrast, the second SVD mode of covarying vertical shear and horizontal SST gradient variability, which is effectively uncorrelated with the dominant mode, is associated with SST fluctuations concentrated in the main tropical cyclone development region between 10° and 20°N. This mode is significantly correlated with tropical storm and hurricane frequency but not with major hurricane frequency. Statistical tests confirm the robustness of the mode, and lag correlations and physical reasoning demonstrate that the SST anomalies are not due to the developing tropical cyclones themselves. Anomalies of SST and vertical shear during years where the mode has substantial amplitude confirm the resemblance of the individual fields to the modal structure, as well as the association of hurricane development with the warmer SSTs. Although SSTs are of secondary importance to vertical shear in modulating hurricane formation, explaining only 10% of the interannual variability in hurricane frequency over the 50% explained by vertical shear, the results support the conclusion that warmer

  11. Eliminating bias in satellite retrievals of sea surface temperature

    NASA Astrophysics Data System (ADS)

    Merchant, Christopher John

    Sea surface temperature (SST) is a critical parameter for climate research, and needs to be measured with an absolute accuracy of ~0.3 K (average over ~100 km scale on a weekly to monthly time scale) and with a long term stability of 0.1 K per decade. These stringent requirements present a formidable challenge to satellite based SST measurement. The most promising satellite radiometer is the ATSR (and successors), but bias and spurious trends have arisen in the ATSR SST retrieval process. Eliminating such retrieval bias is the focus of this thesis. SSTs derived from the ATSR using the prelaunch retrieval scheme are biased by up to -1.5 K by stratospheric aerosol from the eruption of Mount Pinatubo shortly before launch. An "aerosol-robust" retrieval scheme is derived which has no detectable aerosol- related bias. Another bias of up to 0.5 K arising from a deficiency of the radiative transfer model used to develop the prelaunch retrieval scheme is resolved by implementing an updated parameterisation of water vapour continuum absorption. The new SSTs are shown to have an accuracy better than 0.3 K (error in a single retrieval over a -20 km spatial scale) and to be robust to aerosol effects, by a validation exercise against buoys measuring SST in situ. The validation data consist of 620 satellite-buoy coincidences in the tropical Pacific between September 1991 and May 1992, a region and period associated with high loadings of stratospheric aerosol and tropospheric water vapour. This is the first validation exercise to correct for the effects of the difference between bulk SSTs (measured by buoys) and skin SSTs (measured radiometrically). The factor now limiting accuracy is residual cloud contamination. The new retrieval scheme has been adopted for the reprocessing of all archived ATSR data to SST.

  12. Evaluating drivers of Pleistocene eastern tropical Pacific sea surface temperature

    NASA Astrophysics Data System (ADS)

    Dyez, K. A.; Ravelo, A. C.; Mix, A. C.

    2016-08-01

    Sea surface temperature (SST) of the eastern equatorial Pacific is a key component of tropical oceanic and atmospheric circulation with global teleconnections. Forcing factors such as local and high-latitude insolation changes, ice sheet size and albedo feedbacks, and greenhouse gas radiation have been proposed as controls of long-term eastern tropical Pacific SST, though the precise role each mechanism plays is not fully known on glacial-interglacial or longer timescales. Here proposed mechanisms are evaluated by comparing orbital-scale records of eastern Pacific SST with forcing variability over the past 1.5 Ma. The primary SST records are a compilation of new and existing data from Ocean Drilling Program Site 1239 at the northeastern margin of the modern eastern Pacific cold tongue and Site 846 SST within the cold tongue. Using time series analysis, we test previously proposed mechanisms for control of long-term tropical SST change and SST gradients in the eastern Pacific. We find that within statistical uncertainties, in the precession band eastern Pacific SST is consistent with direct forcing by equatorial radiation changes in the tropical cold season (summer-fall) rather than inversely correlated as previously suggested. In the obliquity band high-latitude solar forcing leads or is in phase with eastern equatorial Pacific SST, while in the eccentricity band atmospheric greenhouse gas concentrations are closely associated with cold tongue SST. Pleistocene eastern Pacific SST gradients indicate that the gradient on the northern margin of the cold tongue strengthened through the mid-Pleistocene transition, a result compatible with the cold tongue becoming more focused at ~900-650 ka.

  13. Prediction of daily sea surface temperature using efficient neural networks

    NASA Astrophysics Data System (ADS)

    Patil, Kalpesh; Deo, Makaranad Chintamani

    2017-04-01

    Short-term prediction of sea surface temperature (SST) is commonly achieved through numerical models. Numerical approaches are more suitable for use over a large spatial domain than in a specific site because of the difficulties involved in resolving various physical sub-processes at local levels. Therefore, for a given location, a data-driven approach such as neural networks may provide a better alternative. The application of neural networks, however, needs a large experimentation in their architecture, training methods, and formation of appropriate input-output pairs. A network trained in this manner can provide more attractive results if the advances in network architecture are additionally considered. With this in mind, we propose the use of wavelet neural networks (WNNs) for prediction of daily SST values. The prediction of daily SST values was carried out using WNN over 5 days into the future at six different locations in the Indian Ocean. First, the accuracy of site-specific SST values predicted by a numerical model, ROMS, was assessed against the in situ records. The result pointed out the necessity for alternative approaches. First, traditional networks were tried and after noticing their poor performance, WNN was used. This approach produced attractive forecasts when judged through various error statistics. When all locations were viewed together, the mean absolute error was within 0.18 to 0.32 °C for a 5-day-ahead forecast. The WNN approach was thus found to add value to the numerical method of SST prediction when location-specific information is desired.

  14. Indian Ocean sea surface salinity variations in a coupled model

    NASA Astrophysics Data System (ADS)

    Vinayachandran, P. N.; Nanjundiah, Ravi S.

    2009-08-01

    The variability of the sea surface salinity (SSS) in the Indian Ocean is studied using a 100-year control simulation of the Community Climate System Model (CCSM 2.0). The monsoon-driven seasonal SSS pattern in the Indian Ocean, marked by low salinity in the east and high salinity in the west, is captured by the model. The model overestimates runoff into the Bay of Bengal due to higher rainfall over the Himalayan-Tibetan regions which drain into the Bay of Bengal through Ganga-Brahmaputra rivers. The outflow of low-salinity water from the Bay of Bengal is too strong in the model. Consequently, the model Indian Ocean SSS is about 1 less than that seen in the climatology. The seasonal Indian Ocean salt balance obtained from the model is consistent with the analysis from climatological data sets. During summer, the large freshwater input into the Bay of Bengal and its redistribution decide the spatial pattern of salinity tendency. During winter, horizontal advection is the dominant contributor to the tendency term. The interannual variability of the SSS in the Indian Ocean is about five times larger than that in coupled model simulations of the North Atlantic Ocean. Regions of large interannual standard deviations are located near river mouths in the Bay of Bengal and in the eastern equatorial Indian Ocean. Both freshwater input into the ocean and advection of this anomalous flux are responsible for the generation of these anomalies. The model simulates 20 significant Indian Ocean Dipole (IOD) events and during IOD years large salinity anomalies appear in the equatorial Indian Ocean. The anomalies exist as two zonal bands: negative salinity anomalies to the north of the equator and positive to the south. The SSS anomalies for the years in which IOD is not present and for ENSO years are much weaker than during IOD years. Significant interannual SSS anomalies appear in the Indian Ocean only during IOD years.

  15. Data-Model Comparison of Pliocene Sea Surface Temperature

    NASA Astrophysics Data System (ADS)

    Dowsett, H. J.; Foley, K.; Robinson, M. M.; Bloemers, J. T.

    2013-12-01

    The mid-Piacenzian (late Pliocene) climate represents the most geologically recent interval of long-term average warmth and shares similarities with the climate projected for the end of the 21st century. As such, its fossil and sedimentary record represents a natural experiment from which we can gain insight into potential climate change impacts, enabling more informed policy decisions for mitigation and adaptation. We present the first systematic comparison of Pliocene sea surface temperatures (SST) between an ensemble of eight climate model simulations produced as part of PlioMIP (Pliocene Model Intercomparison Project) and the PRISM (Pliocene Research, Interpretation and Synoptic Mapping) Project mean annual SST field. Our results highlight key regional (mid- to high latitude North Atlantic and tropics) and dynamic (upwelling) situations where there is discord between reconstructed SST and the PlioMIP simulations. These differences can lead to improved strategies for both experimental design and temporal refinement of the palaeoenvironmental reconstruction. Scatter plot of multi-model-mean anomalies (squares) and PRISM3 data anomalies (large blue circles) by latitude. Vertical bars on data anomalies represent the variability of warm climate phase within the time-slab at each locality. Small colored circles represent individual model anomalies and show the spread of model estimates about the multi-model-mean. While not directly comparable in terms of the development of the means nor the meaning of variability, this plot provides a first order comparison of the anomalies. Encircled areas are a, PRISM low latitude sites outside of upwelling areas; b, North Atlantic coastal sequences and Mediterranean sites; c, large anomaly PRISM sites from the northern hemisphere. Numbers identify Ocean Drilling Program sites.

  16. Sahel Precipitation Variability and Global Sea Surface Temperature Forcing

    NASA Astrophysics Data System (ADS)

    Bach, D. E.; Kushnir, Y.; Seager, R.; Goddard, L.; Giannini, A.

    2003-12-01

    In the last 50 years or so, the Sahel region in sub-Saharan Africa has experienced two multi-decadal wet and dry periods separated by a relatively sharp transition. The onset of the dry episode in the Sahel is associated with the start of a significant warming trend in Southern Hemisphere sea surface temperatures (SST) that persisted well into the late 1990's. It has been stipulated, based on general circulation model (GCM) experiments, that the SST rise in the southern ocean basins is the predominant driver of rainfall patterns over the Sahel. Here we support this notion by comparing the observed rate of change in Southern Hemisphere SST with that of Sahel summertime rainfall. We examine the variations in each ocean basin separately and find that the drought pattern is most prominently associated with SST changes in the Indian Ocean, which display maximum warming rates simultaneously with the wet to dry shift in the Sahel. We provide further support to the role of the Indian Ocean using results from GCM integrations forced with observed Indian Ocean SST values and climatological values elsewhere, which effectively recreate the dry Sahel rainfall pattern. While the variations in equatorial Pacific SST associated with El Ni¤o have been found to have an effect on Sahel rainfall during the summer months, their influence does not appear to be significantly connected with the prolonged drought episode. The dry period was accentuated by two severe droughts in the early 1970's and 1980s, which generated very different repercussions for the Sahelian people. The first drought resulted in widespread famine and death while the second more severe drought in 1983-84 generated very few casualties. The political and socioeconomic assessment of these episodes suggests that the extensive loss of life was due to inefficient transportation of supplies to the starving populations. International aid organizations initiated famine protection programs following the 1970's drought that

  17. Sea surface temperature associations with the Indian summer monsoon

    NASA Astrophysics Data System (ADS)

    Terray, P.; Delecluse, P.; Labattu, S.; Terray, L.

    2003-04-01

    This paper uses recent gridded data and Atmospheric General Circulation Model (AGCM) simulations in order to assess the relationships between interannual variability of the Indian Summer Monsoon (ISM) and Sea Surface Temperature (SST) anomaly patterns over the Indian and Pacific oceans. Interannual variability of ISM rainfall and dynamical indices for the traditional summer monsoon season (June-September) are strongly influenced by rainfall and circulation anomalies observed during August and September, or the Late Indian Summer Monsoon (LISM). Southern Indian Ocean SST acts as a major boundary forcing for the LISM system. Strong (weak) LISMs are preceded by significant positive (negative) SST anomalies in the southeastern subtropical Indian Ocean, off Australia. These SST anomalies are highly persistent and affect the northwestward translation of the Mascarene high from austral to boreal summer. The southeastward (northwestward) shift of this subtropical high associated with cold (warm) SST anomalies off Australia causes a weakening (strengthening) of the whole monsoon circulation through a modulation of the local Hadley cell during the LISM. Furthermore, it is suggested that the Mascarene high interacts with the underlying SST anomalies through a positive dynamical feedback mechanism, maintaining its anomalous position during the LISM. Southeastern Indian Ocean SST anomalies during boreal winter are mainly linked to subtropical Indian Ocean dipole events, studied by Behera and Yamagata (2001), and to the El Niño-Southern Oscillation phenomenon. An El Niño event and the associated warm SST anomalies over the southeastern Indian Ocean during boreal winter may play a key role in the development of a strong ISM by strengthening the local Hadley circulation during the LISM. On the other hand, a developing La Niña event in boreal summer may also enhance the east-west Walker circulation and the monsoon.

  18. Sampling Errors in Satellite-derived Infrared Sea Surface Temperatures

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Minnett, P. J.

    2014-12-01

    Sea Surface Temperature (SST) measured from satellites has been playing a crucial role in understanding geophysical phenomena. Generating SST Climate Data Records (CDRs) is considered to be the one that imposes the most stringent requirements on data accuracy. For infrared SSTs, sampling uncertainties caused by cloud presence and persistence generate errors. In addition, for sensors with narrow swaths, the swath gap will act as another sampling error source. This study is concerned with quantifying and understanding such sampling errors, which are important for SST CDR generation and for a wide range of satellite SST users. In order to quantify these errors, a reference Level 4 SST field (Multi-scale Ultra-high Resolution SST) is sampled by using realistic swath and cloud masks of Moderate Resolution Imaging Spectroradiometer (MODIS) and Advanced Along Track Scanning Radiometer (AATSR). Global and regional SST uncertainties are studied by assessing the sampling error at different temporal and spatial resolutions (7 spatial resolutions from 4 kilometers to 5.0° at the equator and 5 temporal resolutions from daily to monthly). Global annual and seasonal mean sampling errors are large in the high latitude regions, especially the Arctic, and have geographical distributions that are most likely related to stratus clouds occurrence and persistence. The region between 30°N and 30°S has smaller errors compared to higher latitudes, except for the Tropical Instability Wave area, where persistent negative errors are found. Important differences in sampling errors are also found between the broad and narrow swath scan patterns and between day and night fields. This is the first time that realistic magnitudes of the sampling errors are quantified. Future improvement in the accuracy of SST products will benefit from this quantification.

  19. Methane excess in Arctic surface water-triggered by sea ice formation and melting.

    PubMed

    Damm, E; Rudels, B; Schauer, U; Mau, S; Dieckmann, G

    2015-11-10

    Arctic amplification of global warming has led to increased summer sea ice retreat, which influences gas exchange between the Arctic Ocean and the atmosphere where sea ice previously acted as a physical barrier. Indeed, recently observed enhanced atmospheric methane concentrations in Arctic regions with fractional sea-ice cover point to unexpected feedbacks in cycling of methane. We report on methane excess in sea ice-influenced water masses in the interior Arctic Ocean and provide evidence that sea ice is a potential source. We show that methane release from sea ice into the ocean occurs via brine drainage during freezing and melting i.e. in winter and spring. In summer under a fractional sea ice cover, reduced turbulence restricts gas transfer, then seawater acts as buffer in which methane remains entrained. However, in autumn and winter surface convection initiates pronounced efflux of methane from the ice covered ocean to the atmosphere. Our results demonstrate that sea ice-sourced methane cycles seasonally between sea ice, sea-ice-influenced seawater and the atmosphere, while the deeper ocean remains decoupled. Freshening due to summer sea ice retreat will enhance this decoupling, which restricts the capacity of the deeper Arctic Ocean to act as a sink for this greenhouse gas.

  20. Methane excess in Arctic surface water- triggered by sea ice formation and melting

    PubMed Central

    Damm, E.; Rudels, B.; Schauer, U.; Mau, S.; Dieckmann, G.

    2015-01-01

    Arctic amplification of global warming has led to increased summer sea ice retreat, which influences gas exchange between the Arctic Ocean and the atmosphere where sea ice previously acted as a physical barrier. Indeed, recently observed enhanced atmospheric methane concentrations in Arctic regions with fractional sea-ice cover point to unexpected feedbacks in cycling of methane. We report on methane excess in sea ice-influenced water masses in the interior Arctic Ocean and provide evidence that sea ice is a potential source. We show that methane release from sea ice into the ocean occurs via brine drainage during freezing and melting i.e. in winter and spring. In summer under a fractional sea ice cover, reduced turbulence restricts gas transfer, then seawater acts as buffer in which methane remains entrained. However, in autumn and winter surface convection initiates pronounced efflux of methane from the ice covered ocean to the atmosphere. Our results demonstrate that sea ice-sourced methane cycles seasonally between sea ice, sea-ice-influenced seawater and the atmosphere, while the deeper ocean remains decoupled. Freshening due to summer sea ice retreat will enhance this decoupling, which restricts the capacity of the deeper Arctic Ocean to act as a sink for this greenhouse gas. PMID:26553610

  1. A case study of sea breeze blocking regulated by sea surface temperature along the English south coast

    NASA Astrophysics Data System (ADS)

    Sweeney, J. K.; Chagnon, J. M.; Gray, S. L.

    2014-05-01

    The sensitivity of sea breeze structure to sea surface temperature (SST) and coastal orography is investigated in convection-permitting Met Office Unified Model simulations of a case study along the south coast of England. Changes in SST of 1 K are shown to significantly modify the structure of the sea breeze immediately offshore. On the day of the case study, the sea breeze was partially blocked by coastal orography, particularly within Lyme Bay. The extent to which the flow is blocked depends strongly on the static stability of the marine boundary layer. In experiments with colder SST, the marine boundary layer is more stable, and the degree of blocking is more pronounced. Although a colder SST would also imply a larger land-sea temperature contrast and hence a stronger onshore wind - an effect which alone would discourage blocking - the increased static stability exerts a dominant control over whether blocking takes place. The implications of prescribing fixed SST from climatology in numerical weather prediction model forecasts of the sea breeze are discussed.

  2. Holocene seasonal sea-surface temperature variations in the southern Adriatic Sea inferred from a multiproxy approach

    NASA Astrophysics Data System (ADS)

    Sangiorgi, Francesca; Capotondi, Lucilla; Combourieu Nebout, Nathalie; Vigliotti, Luigi; Brinkhuis, Henk; Giunta, Simona; Lotter, Andrè F.; Morigi, Caterina; Negri, Alessandra; Reichart, Gert-Jan

    2003-12-01

    Holocene cooling events have been reconstructed for the southern Adriatic Sea (central Mediterranean) by means of analyses of organic walled dinoflagellate cysts, planktonic foraminifera, oxygen isotopes, calcareous nanoplankton, alkenones and pollen from a sediment core. Two cooling events have been detected, during which sea-surface temperatures (SSTs) were ca. 2°C lower. Unravelling the SST signal into dominant seasonal components suggests maximum winter cooling of 2°C at around 6.0 ka, whereas the cooling at ca. 3.0 ka might be the result of a spring temperature cooling of 2-3°C. The events, lasting several hundred years, are apparently synchronous with those in the Aegean Sea, where they have been related to known cooling events from the Greenland ice-core record. A distinct interruption in Adriatic Sea sapropel S1 is not clearly accompanied by a local drop in winter temperatures, but seems to be forced by ventilation, which probably occurred earlier in the Aegean Sea and was subsequently transmitted to the Adriatic Sea. Copyright

  3. Subpolar gyre and radiative forcings moderate sea surface temperatures of the Norwegian Sea during the mid-Piacenzian

    NASA Astrophysics Data System (ADS)

    Bachem, Paul; Risebrobakken, Bjørg; McClymont, Erin

    2016-04-01

    The mid-Piacenzian age (ca. 3.3-3.0 Ma) of the Pliocene epoch has been proposed as a possible reference for future warm climate states. We have developed a new set of orbital-resolution alkenone-based sea surface temperature (SST) and ice rafted debris (IRD) records from the Norwegian Sea. SSTs in the Norwegian Sea were 2-3°C warmer in the mid-Piacenzian compared to the Holocene average. There is notable orbital-scale SST variability with a range of 4°C. The most likely cause of the average long-term warmth is a higher atmospheric CO2 concentration. A correlation of SST variability with the presence of Greenland-sourced IRD suggests a common climate forcing acting across the Nordic Seas region. The orbital-scale variability was in part caused by interplay of obliquity and precession, as low SSTs coincide with times of low northern summer insolation. Changes of the SST gradient between the Norwegian Sea and North Atlantic sites suggest that the subpolar gyre was at least of comparable strength as during the Holocene. The North Atlantic Current (NAC) influence on the Norwegian Sea SSTs does not appear to have been stronger than during the Holocene.

  4. Dynamics of sea surface temperature and organic burial off equatorial west Africa (ODP Site 959) across the Late Miocene/early Pliocene climate transition

    NASA Astrophysics Data System (ADS)

    Eniola, Olunbunmi; Wagner, Thomas; McClymont, Erin

    2010-05-01

    The late Miocene-early Pliocene (11 to 3.5 Ma) was a period of major transition in global climate and ocean circulation that had irreversible consequences for atmospheric and ocean circulation leading to global cooling, northern hemisphere glaciations and modern climate conditions. Long term cooling contributed to a change in global vegetation from C3 plants to C4 plants. Norris (1998) and Wagner (2000) proposed from bulk 18O foraminifera and TOC records covering the Miocene-Pliocene transition at ODP Site 959 off Ivory Coast/Ghana the initial onset of modern atmospheric circulation and linked continental upwelling off tropical West Africa in response to the emplacement of the ITCZ into its modern position at that time. In this project, we aim to investigate the nature of the observed TOC cycles and its relationships to continental climate, vegetation change and surface ocean dynamics at centennial time scale resolution. To infer variations in SST and supply of continental organic matter (OM) we have started to obtain bulk and molecular data including TOC, alkenone-derived SST and leaf wax n-alkanes. The results show TOC to be generally low, between 0.1 and 0.7 %, and highly variable at cm-scale ( 2.5-5 kyr) resolution. Alkenones (C37:2 and C37:3) were ubiquitously identified. U37K based SST estimates ranging from 25-28°C indicate fluctuations of about 3°C within the range of modern day conditions. Long chain odd numbered n-alkanes C27-33 were also identified, with leaf wax concentration peaking at C31 at 25?g/TOC. The evidence for leaf waxes in the sediments argues for wind driven deposition from terrestrial sources. The high amplitude record of the TOC confirms a distinct cycle pattern that is probably related to orbital precession. Time frequency analyses of the TOC records by depth support the existence of two domi-nant periods related to eccentricity and precessional cycles at approximately the 92cm, 52cm and 42cm corresponding to 100kyrs, 19kyrs and 23kyrs

  5. A Sea-Surface Radiation Data Set for Climate Applications in the Tropical Western Pacific and South China Sea

    NASA Technical Reports Server (NTRS)

    Chou, Ming-Dah; Chan, Pui-King; Yan, Michael M.-H.

    2000-01-01

    The sea-surface shortwave and longwave radiative fluxes have been retrieved from the radiances measured by Japan's Geostationary Meteorological Satellite 5. The surface radiation data set covers the domain 40S-40N and 90E-170W. The temporal resolution is 1 day, and the spatial resolution is 0.5 deg x 0.5 deg latitude-longitude. The retrieved surface radiation have been validated with the radiometric measurements at the Atmospheric Radiation Measuring (ARM) site on Manus island in the equatorial western Pacific for a period of 15 months. It has also been validated with the measurements at the radiation site on Dungsha island in the South China Sea during the South China Sea Monsoon Experiment (SCSMEX) Intensive Observing Period (May and June 1998). The data set is used to study the effect of El Nino and East Asian Summer monsoon on the heating of the ocean in the tropical western Pacific and the South China Sea. Interannual variations of clouds associated with El Nino and the East Asian Summer monsoon have a large impact on the radiative heating of the ocean. It has been found that the magnitude of the interannual variation of the seasonal mean surface radiative heating exceeds 40 W/sq m over large areas. Together with the Clouds and the Earth's Radiant Energy System (CERES) shortwave fluxes at top of the atmosphere and the radiative transfer calculations of clear-sky fluxes, this surface radiation data set is also used to study the impact of clouds on the solar heating of the atmosphere. It is found that clouds enhance the atmospheric solar heating by approx. 20 W/sq m in the tropical western Pacific and the South China Sea. This result is important for evaluating the accuracy of solar flux calculations in clear and cloudy atmospheres.

  6. Enhanced Arctic Mean Sea Surface and Mean Dynamic Topography including retracked CryoSat-2 Data

    NASA Astrophysics Data System (ADS)

    Andersen, O. B.; Jain, M.; Stenseng, L.; Knudsen, P.

    2014-12-01

    A reliable mean sea surface (MSS) is essential to derive a good mean dynamic topography (MDT) and for the estimation of short and long-term changes in the sea surface. The lack of satellite radar altimetry observations above 82 degrees latitude means that existing mean sea surface models have been unreliable in the Arctic Ocean. We here present the latest DTU mean sea surface and mean dynamic topography models combining conventional altimetry with retracked CryoSat-2 data to improve the reliability in the Arctic Ocean. For the derivation of a mean dynamic topography the ESA GOCE derived geoid model have been used to constrain the longer wavelength. We present the retracking of C2 SAR data using various retrackes and how we have been able to combine data from various retrackers under various sea ice conditions. DTU13MSS and DTU13MDT are the newest state of the art global high-resolution models including CryoSat-2 data to extend the satellite radar altimetry coverage up to 88 degrees latitude and through combination with a GOCE geoid model completes coverage all the way to the North Pole. Furthermore the SAR and SARin capability of CryoSat-2 dramatically increases the amount of useable sea surface returns in sea-ice covered areas compared to conventional radar altimeters like ENVISAT and ERS-1/2. With the inclusion of CryoSat-2 data the new mean sea surface is improved by more than 20 cm above 82 degrees latitude compared with the previous generation of mean sea surfaces.

  7. Effect of surface mesoscale eddies on deep-sea currents and mixing in the northeastern South China Sea

    NASA Astrophysics Data System (ADS)

    Zhang, Yanwei; Liu, Zhifei; Zhao, Yulong; Li, Jianru; Liang, Xinfeng

    2015-12-01

    Recent studies suggest that deep-reaching surface-generated eddies result in anomalous current velocities in the deep sea, and ultimately lead to energy transfer from mesoscale to small-scale motions. Here we examine the influence of mesoscale eddies on deep-sea subinertial and near-inertial currents, and on possible enhanced oceanic mixing in the deep South China Sea (SCS). We analyzed current velocity data for nearly a full water column. Data were obtained using acoustic Doppler current profilers and recording current meters on a deep-sea mooring system at a depth of 2100 m in the northeastern SCS from October 2012 to May 2013. A highly nonlinear southwestward-propagating anticyclonic eddy was detected via a resolved sea-surface-level anomaly. This eddy induced pronounced subinertial currents with a characteristic time scale of 1-2 months and a maximum velocity of up to 0.2 m s-1 at the subsurface and 0.1 m s-1 at great depth. Near-inertial energy co-occurring with subinertial flows showed a distinctive vertical propagation trend during strong subinertial oscillations in the deep sea. During periods of strong subinertial and near-inertial kinetic energy, estimates of diapycnal diffusivity in the deep ocean showed approximately 10-fold enhancement, with a mean value of 1.2×10-3 m2 s-1 compared to the background value of 1.4×10-4 m2 s-1. The results provide observational evidence of the effect of surface-observed mesoscale motions on benthic currents and ocean mixing in the deep SCS.

  8. Photosynthetically available radiation on surface of the Black Sea based on ocean color data

    NASA Astrophysics Data System (ADS)

    Suslin, V. V.; Korolev, S. N.; Kucheryaviy, A. A.; Churilova, T. Ya.; Krivenko, O. V.

    2015-11-01

    Long term (1996 - 2014) averaged annual dynamics of daily photosynthetically available radiation (PAR) incident on the surface of the Black Sea have been estimated for different degree of sky coverage by the cloudiness. To this aim PAR standard product of color scanners (OCTS, SeaWiFS, MODIS-Aqua/Terra) has been processed. The processing method was based on the assumption that temporal PAR dynamics over one day corresponded to PAR spatial variability in the Black Sea area scanned by satellite instruments during one overpass. PAR data could be applied for different researches of the Black Sea ecosystem, which is related to photo-physiological processes.

  9. Surface microtopographies of tropical sea stars: lack of an efficient physical defence mechanism against fouling.

    PubMed

    Guenther, Jana; De Nys, Rocky

    2007-01-01

    The role of surface topography as a defence against fouling in tropical sea stars was investigated. The sea stars Linckia laevigata, Fromia indica, Cryptasterina pentagona and Archaster typicus are not fouled and have paxillae (modified ossicles with a median vertical pillar) on their aboral surfaces, which varied in diameter, height and distance depending on species and position on the aboral surface, providing unique and complex surface microtopographies for each species. The surfaces of the sea stars L. laevigata, F. indica and A. typicus were moderately wettable, with their mean seawater contact angles, calculated from captive bubble measurements, being 60.1 degrees, 70.3 degrees and 57.3 degrees, respectively. The seawater contact angle of C. pentagona could not be measured. To evaluate the effectiveness of the surface microtopographies in deterring the settlement of fouling organisms, field experiments with resin replicas of the four sea star species were conducted at three sites around Townsville, Australia, for 8 weeks during the dry and wet seasons. The fouling community and total fouling cover did not differ significantly between replicas of L. laevigata, F. indica, C. pentagona, A. typicus and control surfaces at any site during the dry season. Significant differences between fouling communities on the replicas of the sea stars and control surfaces were detected at two sites during the wet season. However, these differences were transitory, and the total fouling cover did not differ significantly between replicas of sea stars and control surfaces at two of the three sites. In contrast to recent literature on the effects of biofouling control by natural surfaces in the marine environment, the surface microtopographies of tropical sea stars alone were not effective in deterring the settlement and growth of fouling organisms.

  10. Texture as a visual cueing element in computer image generation. I. Representation of the sea surface

    SciTech Connect

    Bookout, G.; Sinacori, J.

    1993-01-01

    The objective of this paper is to advance hypotheses about texture as a visual cueing medium in simulation and to provide guidelines for data base modelers in the use of computer image generator resources to provide effective visual cues for simulation purposes. The emphasis is on a texture decoration of the earth's surface data base in order to support low-level flight, i.e., flight at elevations above the surface of 500 feet or less. The appearance of the surface of the sea is the focus of this paper. The physics of the sea's appearance are discussed and guidelines are given for its representation for sea states from 0 (calm) to 5 (fresh breeze of 17-21 knots and sixfoot waves, peak-to-trough). The viewpoints considered vary from 500 feet above the mean sea surface to an altitude just above the wave crests. 7 refs.

  11. Moderate-Resolution Sea Surface Temperature Data for the Nearshore North Pacific

    EPA Science Inventory

    Coastal sea surface temperature (SST) is an important environmental characteristic defining habitat suitability for nearshore marine and estuarine organisms. The purpose of this publication is to provide access to an easy-to-use coastal SST dataset for ecologists, biogeographers...

  12. A Climatology of Monthly Mean Sea Surface Temperatures for the Gulf of Mexico,

    DTIC Science & Technology

    1978-01-01

    This report presents monthly mean sea surface temperatures for the Gulf of Mexico in one degree quadrangles. It also includes a short discussion of the temperature data and the ocean currents in the Gulf of Mexico .

  13. Global measurements of sea surface temperature, wind speed and atmospheric water content from satellite microwave radiometry

    NASA Technical Reports Server (NTRS)

    Njoku, E. G.; Swanson, L.

    1983-01-01

    The Scanning Multichannel Microwave Radiometer (SMMR) was launched on the Seasat and Nimbus 7 satellites in 1978. The SMMR has the ability to measure sea surface temperature and wind speed with the aid of microwaves. In addition, the instrument was designed to measure water vapor and cloud liquid water with better spatial resolution than previous microwave radiometers, and to make sea-ice measurements with higher precision. A description is presented of the results of global analyses of sea surface temperature, wind speed, water vapor, and cloud liquid water, taking into account data provided by the SMMR on the Seasat satellite. It is found that the SMMR data show good self-consistency, and can usefully measure global distributions of sea surface temperatures, surface winds, water vapor, and cloud liquid water.

  14. Global measurements of sea surface temperature, wind speed and atmospheric water content from satellite microwave radiometry

    NASA Technical Reports Server (NTRS)

    Njoku, E. G.; Swanson, L.

    1983-01-01

    The Scanning Multichannel Microwave Radiometer (SMMR) was launched on the Seasat and Nimbus 7 satellites in 1978. The SMMR has the ability to measure sea surface temperature and wind speed with the aid of microwaves. In addition, the instrument was designed to measure water vapor and cloud liquid water with better spatial resolution than previous microwave radiometers, and to make sea-ice measurements with higher precision. A description is presented of the results of global analyses of sea surface temperature, wind speed, water vapor, and cloud liquid water, taking into account data provided by the SMMR on the Seasat satellite. It is found that the SMMR data show good self-consistency, and can usefully measure global distributions of sea surface temperatures, surface winds, water vapor, and cloud liquid water.

  15. Moderate-Resolution Sea Surface Temperature Data for the Nearshore North Pacific

    EPA Science Inventory

    Coastal sea surface temperature (SST) is an important environmental characteristic defining habitat suitability for nearshore marine and estuarine organisms. The purpose of this publication is to provide access to an easy-to-use coastal SST dataset for ecologists, biogeographers...

  16. Moderate-resolution sea surface temperature data for the Arctic Ocean Ecoregions

    EPA Science Inventory

    Sea surface temperature (SST) is an important environmental characteristic in determining the suitability and sustainability of habitats for marine organisms. Of particular interest is the fate of the Arctic Ocean, which provides critical habitat to commercially important fish (M...

  17. Moderate-resolution sea surface temperature data for the Arctic Ocean Ecoregions

    EPA Science Inventory

    Sea surface temperature (SST) is an important environmental characteristic in determining the suitability and sustainability of habitats for marine organisms. Of particular interest is the fate of the Arctic Ocean, which provides critical habitat to commercially important fish (M...

  18. Impact of Atlantic sea surface temperatures on the warmest global surface air temperature of 1998

    NASA Astrophysics Data System (ADS)

    Lu, Riyu

    2005-03-01

    The year 1998 is the warmest year in the record of instrumental measurements. In this study, an atmospheric general circulation model is used to investigate the role of sea surface temperatures (SSTs) in this warmth, with a focus on the role of the Atlantic Ocean. The model forced with the observed global SSTs captures the main features of land surface air temperature anomalies in 1998. A sensitivity experiment shows that in comparison with the global SST anomalies, the Atlantic SST anomalies can explain 35% of the global mean surface air temperature (GMAT) anomaly, and 57% of the land surface air temperature anomaly in 1998. The mechanisms through which the Atlantic Ocean influences the GMAT are likely different from season to season. Possible detailed mechanisms involve the impact of SST anomalies on local convection in the tropical Atlantic region, the consequent excitation of a Rossby wave response that propagates into the North Atlantic and the Eurasian continent in winter and spring, and the consequent changes in tropical Walker circulation in summer and autumn that induce changes in convection over the tropical Pacific. This in turn affects climate in Asia and Australia. The important role of the Atlantic Ocean suggests that attention should be paid not only to the tropical Pacific Ocean, but also to the tropical Atlantic Ocean in understanding the GMAT variability and its predictability.

  19. The effect of monomolecular surface films on the microwave brightness temperature of the sea surface

    NASA Technical Reports Server (NTRS)

    Alpers, W.; Blume, H.-J. C.; Garrett, W. D.; Huehnerfuss, H.

    1982-01-01

    It is pointed out that monomolecular surface films of biological origin are often encountered on the ocean surface, especially in coastal regions. The thicknesses of the monomolecular films are of the order of 3 x 10 to the -9th m. Huehnerfuss et al. (1978, 1981) have shown that monomolecular surface films damp surface waves quite strongly in the centimeter to decimeter wavelength regime. Other effects caused by films are related to the reduction of the gas exchange at the air-sea interface and the decrease of the wind stress. The present investigation is concerned with experiments which reveal an unexpectedly large response of the microwave brightness temperature to a monomolecular oleyl alcohol slick at 1.43 GHz. Brightness temperature is a function of the complex dielectric constant of thy upper layer of the ocean. During six overflights over an ocean area covered with an artificial monomolecular alcohol film, a large decrease of the brightness temperature at the L-band was measured, while at the S-band almost no decrease was observed.

  20. Tropical sea surface temperature variability near the Oligocene - Miocene boundary

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Pagani, M.

    2010-12-01

    The Oligocene/Miocene (O-M) boundary is characterized by a period of rapid and intense glaciation labeled Mi-1 at ~ 23.1 Ma. An abrupt 1.5‰ increase in the benthic foraminifera oxygen isotope composition that characterizes Mi-1 may indicate a (1) significant deep-water temperature decrease; (2) major ice-sheet expansion, or the combination of both. Current coarse Mg/Ca-based temperature estimations for the early Miocene suggests that deep-ocean temperatures were ~2°C warmer than Today [1, 2]. However, Mg/Ca based temperatures can also be influenced by changes in the carbonate ion concentration, vital effects, and diagenesis. In particular, recent evidence from mid-ocean ridge flank carbonate veins shows dramatic seawater Mg/Ca ratio changes during the Neogene (Mg/Ca from ~2.2 to 5.3, [3]), which further challenges the application of Mg/Ca thermometry. Owing to poor temperature constraints, current ice volume estimations for the late Oligocene/early Miocene range from 125% of the present-day East Antarctic Ice Sheet (EAIS) to a nearly complete collapse of the Antarctic glaciers [4]. Here we present tropical sea surface temperatures (SSTs) records based on TEX86 and alkenone UK37 near the O-M boundary. Sediment samples from Ocean Drilling Program (ODP) Site 926 in the Ceara Rise (tropical Atlantic) and Site 1148 in the South China Sea (tropical Pacific) were subject to lipid extraction, separation, gas chromatography, and liquid chromatography-mass spectrometry analysis. TEX86-based SST indicates that the tropics were ~3-4°C warmer than today and relatively stable during Mi-1. This suggests that ice-sheet dynamics, rather than temperature, might be responsible for the observed oxygen isotope changes during the O-M boundary. Further, O-M boundary averaged temperatures recorded at site 926 is ~ 0.5°C higher relative to the late Eocene from site 925 (a nearby site [5]). Given late Oligocene benthic δ18O that suggests at least 1‰ enrichment relative to the late

  1. Characterizing sea ice surface morphology using high-resolution IceBridge data

    NASA Astrophysics Data System (ADS)

    Petty, Alek; Farrell, Sinead; Newman, Thomas; Kurtz, Nathan; Richter-Menge, Jacqueline; Tsamados, Michel; Feltham, Daniel

    2015-04-01

    Sea ice pressure ridges form when ice floes collide while drifting under the combined forces of atmospheric drag, oceanic drag and ice-ice interaction. Sea ice ridges, in-turn, affect the resultant form drag on the sea ice cover and thus impact the fluxes of momentum and heat between the atmosphere and ocean. Here we present initial results of a new sea ice ridge detection approach that utilizes high resolution, three-dimensional ice/snow surface elevation data from the NASA Operation IceBridge Airborne Topographic Mapper (ATM) laser altimeter merged with coincident high-resolution imagery from the Digital Mapping System (DMS). We derive novel information regarding sea ice deformation across a variety of ice types and regimes. Statistical information regarding sea ice ridges (height/frequency/orientation) and floe edges (freeboard height) are presented for several IceBridge flight lines. These novel characterizations of sea ice surface morphology will be used to validate and inform drag parameterizations in state-of-the-art sea ice models. Furthermore, they will advance our ability to quantify uncertainties introduced by pressure ridges in the estimation of sea ice freeboard/thickness from airborne and satellite altimeters.

  2. Characterizing sea ice surface morphology using high-resolution IceBridge data

    NASA Astrophysics Data System (ADS)

    Petty, A.; Farrell, S. L.; Newman, T.; Kurtz, N. T.; Richter-Menge, J.; Tsamados, M.; Feltham, D. L.

    2014-12-01

    Sea ice pressure ridges form when ice floes collide while drifting under the combined forces of atmospheric drag, oceanic drag and ice-ice interaction. Sea ice ridges, in-turn, affect the resultant form drag on the sea ice cover and thus impact the fluxes of momentum and heat between the atmosphere and ocean. Here we present initial results of a new sea ice ridge detection approach that utilizes high resolution, three-dimensional ice/snow surface elevation data from the NASA Operation IceBridge Airborne Topographic Mapper (ATM) laser altimeter merged with coincident high-resolution imagery from the Digital Mapping System (DMS). We derive novel information regarding sea ice deformation across a variety of ice types and regimes. Statistical information regarding sea ice ridges (height/frequency/orientation) and floe edges (freeboard height) are presented for several IceBridge flight lines. These novel characterizations of sea ice surface morphology will be used to validate and inform drag parameterizations in state-of-the-art sea ice models. Furthermore, they will advance our ability to quantify uncertainties introduced by pressure ridges in the estimation of sea ice freeboard/thickness from airborne and satellite altimeters.

  3. Physically-based Ice Thickness and Surface Roughness Retrievals over Rough Deformed Sea Ice

    NASA Astrophysics Data System (ADS)

    Li, Li; Gaiser, Peter; Allard, Richard; Posey, Pamela; Hebert, David; Richter-Menge, Jacqueline; Polashenski, Christopher; Claffey, Keran

    2016-04-01

    The observations of sea ice thickness and ice surface roughness are critical for our understanding of the state of the changing Arctic. Currently, the Radar and/or LiDAR data of sea ice freeboard are used to infer sea ice thickness via isostasy. The underlying assumption is that the LiDAR signal returns at the air/snow interface and radar signal at the snow/ice interface. The elevations of these interfaces are determined based on LiDAR/Radar return waveforms. However, the commonly used threshold-based surface detection techniques are empirical in nature and work well only over level/smooth sea ice. Rough sea ice surfaces can modify the return waveforms, resulting in significant Electromagnetic (EM) bias in the estimated surface elevations, and thus large errors in the ice thickness retrievals. To understand and quantify such sea ice surface roughness effects, a combined EM rough surface and volume scattering model was developed to simulate radar returns from the rough sea ice 'layer cake' structure. A waveform matching technique was also developed to fit observed waveforms to a physically-based waveform model and subsequently correct the roughness induced EM bias in the estimated freeboard. This new EM Bias Corrected (EMBC) algorithm was able to better retrieve surface elevations and estimate the surface roughness parameter simultaneously. Both the ice thickness and surface roughness retrievals are validated using in-situ data. For the surface roughness retrievals, we applied this EMBC algorithm to co-incident LiDAR/Radar measurements collected during a Cryosat-2 under-flight by the NASA IceBridge missions. Results show that not only does the waveform model fit very well to the measured radar waveform, but also the roughness parameters derived independently from the LiDAR and radar data agree very well for both level and deformed sea ice. For sea ice thickness retrievals, validation based on in-situ data from the coordinated CRREL/NRL field campaign demonstrates

  4. Distribution and pollution assessment of heavy metals in surface sediments in the Yellow Sea.

    PubMed

    Jiang, Xin; Teng, Ankang; Xu, Wenzhe; Liu, Xiaoshou

    2014-06-15

    Heavy metal concentrations in surface sediments at 56 stations during two cruises in the Yellow Sea in summer and winter, 2011 were analyzed by inductively coupled plasma-mass spectrometry. The pollution status was assessed via the Geoaccumulation index and Hankanson potential ecological risk index. Higher concentrations of heavy metals (except for Mn) were found in the central Southern Yellow Sea and the western Northern Yellow Sea. The higher contents of Mn were much closer to Shandong Peninsula. Correlation analyses indicated that Pb, Cu, Fe, Ni, Zn and Co probably had the same origin and were controlled by grain size and total organic carbon. Pollution assessment showed that most areas of the Yellow Sea were not or lowly contaminated with the exception of the northwest and south parts of the Southern Yellow Sea showing Cd-contamination. The pollution status of the Yellow Sea in summer was worse than that in winter.

  5. Expansion of divergent SEA domains in cell surface proteins and nucleoporin 54.

    PubMed

    Pei, Jimin; Grishin, Nick V

    2017-03-01

    SEA (sea urchin sperm protein, enterokinase, agrin) domains, many of which possess autoproteolysis activity, have been found in a number of cell surface and secreted proteins. Despite high sequence divergence, SEA domains were also proposed to be present in dystroglycan based on a conserved autoproteolysis motif and receptor-type protein phosphatase IA-2 based on structural similarity. The presence of a SEA domain adjacent to the transmembrane segment appears to be a recurring theme in quite a number of type I transmembrane proteins on the cell surface, such as MUC1, dystroglycan, IA-2, and Notch receptors. By comparative sequence and structural analyses, we identified dystroglycan-like proteins with SEA domains in Capsaspora owczarzaki of the Filasterea group, one of the closest single-cell relatives of metazoans. We also detected novel and divergent SEA domains in a variety of cell surface proteins such as EpCAM, α/ε-sarcoglycan, PTPRR, collectrin/Tmem27, amnionless, CD34, KIAA0319, fibrocystin-like protein, and a number of cadherins. While these proteins are mostly from metazoans or their single cell relatives such as choanoflagellates and Filasterea, fibrocystin-like proteins with SEA domains were found in several other eukaryotic lineages including green algae, Alveolata, Euglenozoa, and Haptophyta, suggesting an ancient evolutionary origin. In addition, the intracellular protein Nucleoporin 54 (Nup54) acquired a divergent SEA domain in choanoflagellates and metazoans. © 2016 The Protein Society.

  6. Surface diurnal warming in the East China Sea derived from satellite remote sensing

    NASA Astrophysics Data System (ADS)

    Song, Dan; Duan, Zhigang; Zhai, Fangguo; He, Qiqi

    2017-09-01

    Process of sea surface diurnal warming has drawn a lot of attention in recent years, but that occurs in shelf seas was rarely addressed. In the present work, surface diurnal warming strength in the East China Sea was calculated by the sea surface temperature (SST) data derived from the MODIS sensors carried by the satellites Aqua and Terra. Due to transit time difference, both the number of valid data and the surface diurnal warming strength computed by the MODIS-Aqua data are relatively larger than Terra. Therefore, the 10-year MODIS-Aqua data from 2005 to 2014 were used to analyze the monthly variability of the surface diurnal warming. Generally, the surface diurnal warming in the East China sea is stronger in summer and autumn but weaker in winter and spring, while it shows different peaks in different regions. Large events with ΔT≥5 K have also been discussed. They were found mainly in coastal area, especially near the Changjiang (Yangtze) River estuary. And there exists a high-incidence period from April to July. Furthermore, the relationship between surface diurnal warming and wind speed was discussed. Larger diurnal warming mainly lies in areas with low wind speed. And its possibility decreases with the increase of wind speed. Events with ΔT≥2.5 K rarely occur when wind speed is over 12 m/s. Study on surface diurnal warming in the East China Sea may help to understand the daily scale air-sea interaction in the shelf seas. A potential application might be in the marine weather forecasts by numerical models. Its impact on the coastal eco-system and the activities of marine organisms can also be pursued.

  7. Impacts of Freshwater on the Seasonal Variations of Surface Salinity and Circulation in the Caspian Sea

    DTIC Science & Technology

    2010-01-01

    ERA-40), the surface circulation from all simulations is mostly identical. This also indicates that the change in the forcing (i.e., P–E and rivers...Author’s personal copy Impacts of freshwater on the seasonal variations of surface salinity and circulation in the Caspian Sea A. Birol Kara a, Alan...addition to heat and momentum fluxes. Long-term climatic effects are of particular importance in the Caspian Sea as well. For example, Rodinov (1994

  8. Impact of surface roughness on L-band emissivity of the sea ice

    NASA Astrophysics Data System (ADS)

    Miernecki, M.; Kaleschke, L.; Hendricks, S.; Søbjærg, S. S.

    2015-12-01

    In March 2014 a joint experiment IRO2/SMOSice was carried out in the Barents Sea. R/V Lance equipped with meteorological instruments, electromagnetic sea ice thickness probe and engine monitoring instruments, was performing a series of tests in different ice conditions in order to validate the ice route optimization (IRO) system, advising on his route through pack ice. In parallel cal/val activities for sea ice thickness product obtained from SMOS (Soil Moisture and Ocean Salinity mission) L-band radiometer were carried out. Apart from helicopter towing the EMbird thickness probe, Polar 5 aircraft was serving the area during the experiment with L-band radiometer EMIRAD2 and Airborne Laser Scanner (ALS) as primary instruments. Sea ice Thickness algorithm using SMOS brightness temperature developed at University of Hamburg, provides daily maps of thin sea ice (up to 0.5-1 m) in polar regions with resolution of 35-50 km. So far the retrieval method was not taking into account surface roughness, assuming that sea ice is a specular surface. Roughness is a stochastic process that can be characterized by standard deviation of surface height σ and by shape of the autocorrelation function R to estimate it's vertical and horizontal scales respectively. Interactions of electromagnetic radiation with the surface of the medium are dependent on R and σ and they scales with respect to the incident wavelength. During SMOSice the radiometer was observing sea ice surface at two incidence angles 0 and 40 degrees and simultaneously the surface elevation was scanned with ALS with ground resolution of ~ 0.25 m. This configuration allowed us to calculate σ and R from power spectral densities of surface elevation profiles and quantify the effect of surface roughness on the emissivity of the sea ice. First results indicate that Gaussian autocorrelation function is suitable for deformed ice, for other ice types exponential function is the best fit.

  9. Evaluation of model simulated and MODIS-Aqua retrieved sea surface chlorophyll in the eastern Arabian Sea

    NASA Astrophysics Data System (ADS)

    Chakraborty, Kunal; Gupta, Anubhav; Lotliker, Aneesh A.; Tilstone, Gavin

    2016-11-01

    In this study we assess the accuracy of sea surface Chlorophyll-a (Chla) retrieved from satellite (MODIS-Aqua), using standard OC3M algorithm, and from a Regional Ocean Modelling System (ROMS) biophysical model against in situ data, measured in surface waters of the eastern Arabian Sea, from April 2009 to December 2012. MODIS-Aqua OC3M Chla concentrations showed a high correlation with the in situ data with slope close to unity and low root mean square error. In comparison, the ROMS model underestimated Chla, though the correlation was significant indicating that the model is capable of reproducing the trend in in situ Chla. Time Series trends in Chla were examined against wind driven Upwelling Indices (UIW) from April 2009 to December 2012 in north-eastern (Gujarat) and south-eastern (Kochi) coastal waters of the Arabian Sea. The annual peak in Chla along the Kochi coast during the summer monsoon was adequately captured by the model. It is well known that the peak in surface Chla along the Kochi and Gujarat coasts during the summer monsoon is the result of coastal upwelling, which the ROMS model was able to reproduce accurately. The maximum surface Chla along the Gujarat coast during the winter monsoon is due to convective mixing, which was also significantly captured by ROMS biophysical model. There was a lag of approximately one week between the maximum surface Chla and the peak in the Upwelling Index.

  10. The Impact of Horizontal Sea Surface Temperature Gradients on Long Island Sound Sea Breezes

    NASA Astrophysics Data System (ADS)

    Sinsky, E.; Lombardo, K.; Edson, J. B.; Whitney, M. M.

    2016-02-01

    Sea breeze is a mesoscale process that requires accurate estimates of land-sea temperature gradients for realistic forecasts. These forecasts are of interest to the oceanography community due to its influence on upwelling and estuarine circulation. Accurate representation of the SST is an important component to these forecasts. Specifically, the importance of properly represented horizontal SST gradients offshore of complex coastlines should be emphasized. A more realistic numerical representation of the horizontal SST field is expected to improve sea breeze forecasts. This work explores how horizontal SST gradients impact the dynamics of sea breeze circulations. The 8 July and 21 August 2013 sea breeze events are simulated using the Weather and Research Forecasting (WRF) model in the Long Island Sound (LIS) region. All simulations are initialized using the 32km North American Regional Reanalysis (NARR) for atmospheric conditions. To illustrate the impact of SST resolution on sea breeze forecasts, sensitivity experiments are performed varying the SST product used to initialize the model. The control experiment uses a spatially uniform SST of 22˚C. This will be compared to simulations initialized with the NARR 32km spatially varying SST (moderate SST gradient) and those initialized with the 1km G1SST (strong SST gradient). Comparing the moderate SST gradient experiment to the control during the 21 August event, the SST is 0.75˚C cooler in eastern LIS and 0.75˚C warmer in western LIS. This creates a stronger and weaker land-sea 2m temperature gradient in eastern and western LIS, respectively, compared to the control. As a result, the sea breeze front in the moderate SST experiment propagates more slowly inland in the western part of the domain and more quickly inland in the eastern part of the domain. Similar patterns are observed comparing the strong SST gradient experiment to the control, though the deviations from the control are greater.

  11. Numerical calculation and characteristic analysis of multiple-beam laser reflection on random and rough sea surface

    NASA Astrophysics Data System (ADS)

    Zhang, Shuang; Zhang, Xiaohui; Sun, Chunsheng

    2015-10-01

    Laser reflection characteristics from the random and rough sea surface are significant for laser detection on the sea surface, and most investigations of which used single-beam laser. However, the single-beam laser spot covers a small area on the sea surface, so that the detection result is influenced seriously by fluctuant sea surface. The application of multiple-beam laser would help to increase the efficiency of laser detection on the sea surface. In this paper, the multiple beams are generated by a single Gaussian beam with the beam splitter. Therefore, all the beams are Gaussian beams and have the same divergence angle with different incident angles and distances. This paper investigates the multiple-beam laser characteristics from the random rough sea surface with geometrical optics method. At first, the fractal method is used to simulate random and rough sea surface. Based on the fractal rough sea surface, the reflection characteristics of each laser beam are calculated with Gaussian beam reflection model on two-dimensional random and rough sea surface, which is derived with geometrical optics method. And then, synthesizing all of the single beam laser reflection characteristics, the multiple-beam laser characteristics from the random rough sea surface can be obtained. With this method, laser reflection characteristics from sea surface of different laser beams are numerical calculated and the comparative analysis of the results is given. Finally, the discussion of some parameters have affections on multiple-beam laser characteristics is also given.

  12. Characterization of Sea Lettuce Surface Functional Groups by Potentiometric Titrations

    NASA Astrophysics Data System (ADS)

    Ebling, A. M.; Schijf, J.

    2008-12-01

    In pursuit of our ultimate goal to better understand the prodigious capacity of the marine macroalga Ulva lactuca (sea lettuce) for adsorbing a broad range of dissolved trace metals from seawater, we performed an initial characterization of its surface functional groups. Specifically, the number of distinct functional groups as well as their individual bulk concentrations and acid dissociation constants (pKas) were determined by potentiometric titrations in NaCl solutions of various ionic strengths (I = 0.01-5.0 M), under inert nitrogen atmosphere at 25°C. Depending on the ionic strength, Ulva samples were manually titrated down to pH 2 or 3 with 1 N HCl and then up to pH 10 with 1 N NaOH in steps of 0.1-0.2 units, continuously monitoring pH with a glass combination electrode. Titrations of a dehydrated Ulva standard reference material (BCR-279) were compared with fresh Ulva tissue cultured in our laboratory. A titration in filtered natural seawater was also compared with one in an NaCl solution of equal ionic strength. Equilibrium constants for the ionization of water in NaCl solutions as a function of ionic strength were obtained from the literature. Fits to the titration data ([H]T vs. pH) were performed with the FITEQL4.0 computer code using non-electrostatic 3-, 4-, and 5-site models, either by fixing ionic strength at its experimental value or by allowing it to be extrapolated to zero, while considering all functional group pKas and bulk concentrations as adjustable parameters. Since pKas and bulk concentrations were found to be strongly correlated, the latter were also fixed in some cases to further constrain the pKas. Whereas these calculations are currently ongoing, preliminary results point to three, possibly four, functional groups with pKas of about 4.1, 6.3, and 9.5 at I = 0. Bulk concentrations of the three groups are very similar, about 5-6×10-4 mol/g based on dry weight, which suggests that all are homogeneously distributed over the surface and

  13. Antarctic Sea Ice Thickness From Surface Elevation: A Multi-Sensor Approach

    NASA Astrophysics Data System (ADS)

    Necsoiu, M.; Lewis, M. J.; Parra, J.; Ackley, S. F.; Weissling, B.; Hwang, B.

    2011-12-01

    Sea ice is an important component of the climate system affecting ocean-atmospheric interactions and global energy balance. The assessment of sea ice thickness using satellite and airborne laser altimetry is largely dependent upon isostatic buoyancy relationships between snow, ice, slush and ocean water. The use of these relationships in estimating sea ice thickness is complicated by a number of factors including spatial resolution, changing sea level reference, varying snow and ice density, and snow-ice interface flooding. Previous work has suggested that the effects of these factors can be reduced using a multi-sensor approach. The X-band backscatter from TerraSAR-X (TSX) is sensitive to surface roughness, snow and ice properties, and the presence of wet snow. The combined use of TSX for sea ice characterization and laser altimetry has the potential to provide more accurate estimates of sea ice thickness. In this study, we examine the feasibility of using TSX dual-polarized backscatter data to determine ice characteristics in the Bellingshausen and Amundsen Sea in the Antarctic region. Actual surface sea ice characteristics were derived from sea ice station measurements during the J.C. Ross (ICEBell) and Oden Southern Ocean (OSO) expeditions during the austral summer of 2010-11. Data from ice mass-balance buoys emplaced during the two cruises continued through summer melt and bridged the transition into fall freeze up conditions in the snow pack and ice cover. Shannon entropy derived from TSX, measures the statistical disorder of a medium illuminated by the radar, being a sum of two contributions related to intensity and the degree of polarization. A geostatistical approach is employed to correlate measured surface properties and sea ice freeboard with TSX-derived Shannon entropy. The floes are subsequently classified based on Shannon entropy and used in an empirically-based buoyancy model to estimate sea ice thickness. This approach is then compared with

  14. Verification of Geosat sea surface topography in the Gulf Stream extension with surface drifting buoys and hydrographic measurements

    NASA Astrophysics Data System (ADS)

    Willebrand, J.; KäSe, R. H.; Stammer, D.; Hinrichsen, H.-H.; Krauss, W.

    1990-03-01

    Altimeter data from Geosat have been analyzed in the Gulf Stream extension area. Horizontal maps of the sea surface height anomaly relative to an annual mean for various 17-day intervals were constructed using an objective mapping procedure. The mean sea level was approximated by the dynamic topography from climatological hydrographic data. Geostrophic surface velocities derived from the composite maps (mean plus anomaly) are significantly correlated with surface drifter velocities observed during an oceanographie experiment in the spring of 1987. The drifter velocities contain much energy on scales less than 100 km which are not resolved in the altimetric maps. It is shown that the composite sea surface height also agrees well with ground verification from hydrographic data along sections in a triangle between the Azores, Newfoundland, and Bermuda, except in regions of high mean gradients.

  15. Productivity and sea surface temperature are correlated with the pelagic larval duration of damselfishes in the Red Sea.

    PubMed

    Robitzch, Vanessa S N; Lozano-Cortés, Diego; Kandler, Nora M; Salas, Eva; Berumen, Michael L

    2016-04-30

    We examined the variation of pelagic larval durations (PLDs) among three damselfishes, Dascyllus aruanus, D. marginatus, and D. trimaculatus, which live under the influence of an environmental gradient in the Red Sea. PLDs were significantly correlated with latitude, sea surface temperature (SST), and primary production (CHLA; chlorophyll a concentrations). We find a consistent decrease in PLDs with increasing SST and primary production (CHLA) towards the southern Red Sea among all species. This trend is likely related to higher food availability and increased metabolic rates in that region. We suggest that food availability is a potentially stronger driver of variation in PLD than temperature, especially in highly oligotrophic regions. Additionally, variations in PLDs were particularly high among specimens of D. marginatus, suggesting a stronger response to local environmental differences for endemic species. We also report the first average PLD for this species over a broad geographic range (19.82 ± 2.92 days). Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Dimensionality reduction and network inference for sea surface temperature data

    NASA Astrophysics Data System (ADS)

    Falasca, Fabrizio; Bracco, Annalisa; Nenes, Athanasios; Dovrolis, Constantine; Fountalis, Ilias

    2017-04-01

    Earth's climate is a complex dynamical system. The underlying components of the system interact with each other (in a linear or non linear way) on several spatial and time scales. Network science provides a set of tools to study the structure and dynamics of such systems. Here we propose an application of a novel network inference method, δ-MAPS, to investigate sea surface temperature (SST) fields in reanalyses and models. δ-MAPS first identifies the underlying components (domains) of the system, modeling them as spatially contiguous, potentially overlapping regions of highly correlated temporal activity, and then infers the weighted and potentially lagged interactions between them. The SST network is represented as a weighted and directed graph. Edge direction captures the temporal ordering of events, while edge weights capture the magnitude of the interaction between the domains. We focus on two reanalysis datasets (HadISST and COBE ) and on a dozen of runs of the CESM model (extracted from the so-called large ensemble). The networks are built using 45 years of data every 3 years for the total dataset temporal coverage (from 1871 to 2015 for HadISST, from 1891 to 2015 for COBE and from 1920 to 2100 for CESM members). We then explore similarities and differences between reanalyses and models in terms of the domains identified, the networks inferred and their time evolution. The spatial extent and shape of the identified domains is consistent between observations and models. According to our analysis the largest SST domain always corresponds to the El Niño Southern Oscillation (ENSO) while most of the other domains correspond to known climate modes. However, the network structure shows significant differences. For example, the unique role played by the South Tropical Atlantic in the observed network is not captured by any model run. Regarding the time evolution of the system we focus on the strength of ENSO: while we observe a positive trend for observations and

  17. ENSO signature in the SMOS sea surface salinity maps

    NASA Astrophysics Data System (ADS)

    Ballabrera, J.; Umbert, M.; Hoareau, N.; Turiel, A.; Font, J.

    2012-12-01

    Until recently, the role of salinity observations in the operational simulation and prediction of ENSO was neglected because of the historical lack of observations and because leading intermediate coupled models had significant predictive skill without directly accounting for salinity effects. In Ballabrera-Poy et al., (2002), the potential role of sea surface salinity (SSS) observations on the statistical predictions of ENSO was investigated. It was shown that, although SSS observations would play little role in statistical nowcasts of ENSO, they would provide a significant role in the 6-12 month predictions. The European Space Agency (ESA) Soil Moisture and Ocean Salinity (SMOS) Earth Explorer opportunity mission was launched on November 2, 2009, becoming the first satellite mission addressing the challenge of measuring SSS from space with the help of MIRAS (Microwave Imaging Radiometer with Aperture Synthesis), a novel two-dimensional interferometer operating at L-band (1.4 GHz). Although the L-band frequency is the optimal for ocean salinity measurements, the retrieval of SSS information requires special care because of the low sensitivity of the brightness temperature to SSS: from 0.2-0.8 K per salinity unit. Maps of 10-day averages of SSS in 1x1 degree boxes are distributed by the SMOS Barcelona Expert Centre on Radiometric Calibration and Ocean Salinity (SMOS-BEC, http://www.smos-bec.icm.csic.es). These maps are derived from the SMOS reprocessing campaign released to the SMOS user community in March 2011, and span the period from January 2010 through December 2011. The current accuracy of these SSS maps ranges from 0.2-0.4, depending on the ocean region being considered (Umbert et al., 2012). During the period of the reprocessing campaign, the equatorial Pacific has been in a quasi-continuous La Niña state. During the cold phases of ENSO, positive anomalies of SSS are expected with a largest anomalous values in the western warm-fresh pool. The anomalies

  18. Improving Streamflow Forecasts Using Predefined Sea Surface Temperature

    NASA Astrophysics Data System (ADS)

    Kalra, A.; Ahmad, S.

    2011-12-01

    With the increasing evidence of climate variability, water resources managers in the western United States are faced with greater challenges of developing long range streamflow forecast. This is further aggravated by the increases in climate extremes such as floods and drought caused by climate variability. Over the years, climatologists have identified several modes of climatic variability and their relationship with streamflow. These climate modes have the potential of being used as predictor in models for improving the streamflow lead time. With this as the motivation, the current research focuses on increasing the streamflow lead time using predefine climate indices. A data driven model i.e. Support Vector Machine (SVM) based on the statistical learning theory is used to predict annual streamflow volume 3-year in advance. The SVM model is a learning system that uses a hypothesis space of linear functions in a Kernel induced higher dimensional feature space, and is trained with a learning algorithm from the optimization theory. Annual oceanic-atmospheric indices, comprising of Pacific Decadal Oscillation (PDO), North Atlantic Oscillation (NAO), Atlantic Multidecadal Oscillation (AMO), El Niño-Southern Oscillations (ENSO), and a new Sea Surface Temperature (SST) data set of "Hondo" Region for a period of 1906-2005 are used to generate annual streamflow volumes. The SVM model is applied to three gages i.e. Cisco, Green River, and Lees Ferry in the Upper Colorado River Basin in the western United States. Based on the performance measures the model shows very good forecasts, and the forecast are in good agreement with measured streamflow volumes. Previous research has identified NAO and ENSO as main drivers for extending streamflow forecast lead-time in the UCRB. Inclusion of "Hondo Region" SST information further improve the model's forecasting ability. The overall results of this study revealed that the annual streamflow of the UCRB is significantly influenced by

  19. Sea Surface Temperature Forcing of the Late Indian Summer Monsoon

    NASA Astrophysics Data System (ADS)

    Terray, P.; Delecluse, P.; Labattu, S.; Terray, L.; Cassou, C.

    2002-12-01

    This paper uses recent historical data and Atmospheric General Circulation Model (AGCM) simulations in order to assess the relationships between interannual variability of the Indian Summer Monsoon (ISM) and Sea Surface Temperature (SST) anomaly patterns over the Indian and Pacific oceans. The focus is on the predictability of ISM rainfall and circulation, and its links to local (Indian Ocean) and remote (Pacific Ocean) SST forcing. Interannual variability of ISM rainfall and dynamical indices for the traditional summer monsoon season (June-September) are strongly influenced by rainfall and circulation anomalies observed during August and September, or the Late Indian Summer Monsoon (LISM). Anomalous monsoons are linked to well-defined LISM rainfall and large-scale circulation anomalies. The whole three-dimensional monsoon circulation, i.e., the east-west Walker and local Hadley circulations, fluctuates during the LISM of anomalous ISM years. LISM circulation is weakened and shifted eastward during weak ISM years. Therefore, we focus on the predictability of the LISM in this study. It is found that southern Indian Ocean SST acts as a major boundary forcing for the LISM system. Strong (weak) LISMs are preceded by significant positive (negative) SST anomalies in the southeastern subtropical Indian Ocean, off Australia. These SST anomalies are highly persistent and affect the northwestward translation of the Mascarene high from austral to boreal summer. The southeastward (northwestward) shift of this subtropical high associated with cold (warm) SST anomalies off Australia causes a weakening (strengthening) of the whole monsoon circulation through a modulation of the local Hadley cell during the LISM. Furthermore, it is suggested that the Mascarene high interacts with the underlying SST anomalies through a positive dynamical feedback mechanism, maintaining its anomalous position during the LISM. Southeastern Indian Ocean SST anomalies during boreal winter are mainly

  20. A 30-day forecast experiment with the GISS model and updated sea surface temperatures

    NASA Technical Reports Server (NTRS)

    Spar, J.; Atlas, R.; Kuo, E.

    1975-01-01

    The GISS model was used to compute two parallel global 30-day forecasts for the month January 1974. In one forecast, climatological January sea surface temperatures were used, while in the other observed sea temperatures were inserted and updated daily. A comparison of the two forecasts indicated no clear-cut beneficial effect of daily updating of sea surface temperatures. Despite the rapid decay of daily predictability, the model produced a 30-day mean forecast for January 1974 that was generally superior to persistence and climatology when evaluated over either the globe or the Northern Hemisphere, but not over smaller regions.

  1. An atlas of monthly mean distributions of SSMI surface wind speed, AVHRR/2 sea surface temperature, AMI surface wind velocity, TOPEX/POSEIDON sea surface height, and ECMWF surface wind velocity during 1993

    NASA Technical Reports Server (NTRS)

    Halpern, D.; Fu, L.; Knauss, W.; Pihos, G.; Brown, O.; Freilich, M.; Wentz, F.

    1995-01-01

    The following monthly mean global distributions for 1993 are presented with a common color scale and geographical map: 10-m height wind speed estimated from the Special Sensor Microwave Imager (SSMI) on a United States (U.S.) Air Force Defense Meteorological Satellite Program (DMSP) spacecraft; sea surface temperature estimated from the Advanced Very High Resolution Radiometer (AVHRR/2) on a U.S. National Oceanic and Atmospheric Administration (NOAA) satellite; 10-m height wind speed and direction estimated from the Active Microwave Instrument (AMI) on the European Space Agency (ESA) European Remote Sensing (ERS-1) satellite; sea surface height estimated from the joint U.S.-France Topography Experiment (TOPEX)/POSEIDON spacecraft; and 10-m height wind speed and direction produced by the European Center for Medium-Range Weather Forecasting (ECMWF). Charts of annual mean, monthly mean, and sampling distributions are displayed.

  2. Radiolarian ecology from plankton and surface sediments of the Sea of Okhotsk

    NASA Astrophysics Data System (ADS)

    Abelmann, A.; Nimmergut, A.

    2003-04-01

    The Sea of Okhotsk (SOk), a marginal sea of the North Pacific, is characterized by a unique climatic situation that leads to a hydrography, which is suggested to present a modern analogue to glacial high latitude conditions. The hydrographic pattern is related to the expansion of polar air masses over the Sea of Okhotsk during winter that cause the formation of sea ice, and by the presence of warm summer seasons, which leads to a strong warming of the upper sea surface. This results in a pronounced sea-surface stratification. In spite of the extended sea-ice cover during winter and strong summer sea-surface stratification, the SOk is one of the most productive areas of the world ocean and characterized by a specific productivity regime. Radiolarians are part of the biological system in the SOk and indicators to reconstruct changes in the past productivity and hydrographic regimes. Baseline for such reconstructions is the ecological information concerning the production and depth habitat of living radiolarians. In the frame of the German/Russian cooperation KOMEX (Kurile -- Okhotsk Sea Marine Experiment) we studied the spatial distribution pattern of radiolarians in the upper 1000 m of the water column in the SOk during spring and late summer as well as the radiolarian distribution in surface sediments. We show that these investigations allow a better understanding of the environmental conditions and the related production of key species and thus will lead to considerable improvement of the reconstruction of the paleoceanographic conditions in the Sea of Okhotsk and in glacial high-latitude oceans.

  3. Sea surface temperature and torrential rains in the Valencia region: modelling the role of recharge areas

    NASA Astrophysics Data System (ADS)

    Pastor, F.; Valiente, J. A.; Estrela, M. J.

    2015-02-01

    Heavy rain events are frequently recorded in the Western Mediterranean causing economic losses and even human casualties. The Western Mediterranean is a deep and almost closed sea surrounded by high mountain ranges and with little exchange of water with the Atlantic ocean. A main factor in the development of torrential rains are ocean-atmosphere exchanges of heat and moisture that can potentially destabilize air masses travelling over the sea. The study of air mass trajectories previous to the rain event permits the identification of sea areas that could probably contribute to the development or intensification of rainfall. From a previous Mediterranean sea surface temperature climatology, its spatio-temporal distribution patterns have been studied showing two main distribution modes in winter and summer and transitional regimes in spring and autumn. Hence, three heavy precipitation events, for such winter and summer sea temperature regimes and for fall transition, affecting the Valencia region have been selected to study the effect of sea surface temperature in torrential rains. Simulations with perturbed sea surface temperature in different areas along the air mass path were run to compare results with unperturbed simulation. The variation of sea surface temperature in certain areas caused significant changes in model accumulated values and its spatial distribution. Therefore, the existence of recharge areas where air-sea interaction favors the development of torrential rainfall in Valencia region has been shown. This methodology could be extended to the whole Mediterranean basin to look for such potential recharge areas. The identification of sea areas that contribute to the development or intensification of heavy rain events in the Mediterranean countries could be a useful prognosis and/or monitoring tool.

  4. Sea surface temperature and torrential rains in the Valencia region: modelling the role of recharge areas

    NASA Astrophysics Data System (ADS)

    Pastor, F.; Valiente, J. A.; Estrela, M. J.

    2015-07-01

    Heavy rain events are frequently recorded in the Western Mediterranean causing economic losses and even human casualties. The Western Mediterranean is a deep and almost closed sea surrounded by high mountain ranges and with little exchange of water with the Atlantic ocean. A main factor in the development of torrential rains is ocean-atmosphere exchanges of heat and moisture that can potentially destabilize air masses travelling over the sea. The study of air mass trajectories previous to the rain event permits the identification of sea areas that could probably contribute to the development or intensification of rainfall. From a previous Mediterranean sea surface temperature climatology, its spatio-temporal distribution patterns have been studied showing two main distribution modes in winter and summer and transitional regimes in spring and autumn. Hence, three heavy precipitation events, for such winter and summer sea temperature regimes and for fall transition, affecting the Valencia region have been selected to study the effect of sea surface temperature in torrential rains. Simulations with perturbed sea surface temperature in different areas along the air mass path were run to compare results with unperturbed simulation. The variation of sea surface temperature in certain areas caused significant changes in model accumulated values and its spatial distribution. Therefore, the existence of areas that at a greater extent favour air-sea interaction leading to the development of torrential rainfall in the Valencia region has been shown. This methodology could be extended to the whole Mediterranean basin to look for such potential recharge areas. The identification of sea areas that contribute to the development or intensification of heavy rain events in the Mediterranean countries could be a useful prognosis and/or monitoring tool.

  5. Large contribution of sea surface warming to recent increase in Atlantic hurricane activity.

    PubMed

    Saunders, Mark A; Lea, Adam S

    2008-01-31

    Atlantic hurricane activity has increased significantly since 1995 (refs 1-4), but the underlying causes of this increase remain uncertain. It is widely thought that rising Atlantic sea surface temperatures have had a role in this, but the magnitude of this contribution is not known. Here we quantify this contribution for storms that formed in the tropical North Atlantic, Caribbean Sea and Gulf of Mexico; these regions together account for most of the hurricanes that make landfall in the United States. We show that a statistical model based on two environmental variables--local sea surface temperature and an atmospheric wind field--can replicate a large proportion of the variance in tropical Atlantic hurricane frequency and activity between 1965 and 2005. We then remove the influence of the atmospheric wind field to assess the contribution of sea surface temperature. Our results indicate that the sensitivity of tropical Atlantic hurricane activity to August-September sea surface temperature over the period we consider is such that a 0.5 degrees C increase in sea surface temperature is associated with a approximately 40% increase in hurricane frequency and activity. The results also indicate that local sea surface warming was responsible for approximately 40% of the increase in hurricane activity relative to the 1950-2000 average between 1996 and 2005. Our analysis does not identify whether warming induced by greenhouse gases contributed to the increase in hurricane activity, but the ability of climate models to reproduce the observed relationship between hurricanes and sea surface temperature will serve as a useful means of assessing whether they are likely to provide reliable projections of future changes in Atlantic hurricane activity.

  6. Processes controlling surface, bottom and lateral melt of Arctic sea ice in a state of the art sea ice model.

    PubMed

    Tsamados, Michel; Feltham, Daniel; Petty, Alek; Schroeder, David; Flocco, Daniela

    2015-10-13

    We present a modelling study of processes controlling the summer melt of the Arctic sea ice cover. We perform a sensitivity study and focus our interest on the thermodynamics at the ice-atmosphere and ice-ocean interfaces. We use the Los Alamos community sea ice model CICE, and additionally implement and test three new parametrization schemes: (i) a prognostic mixed layer; (ii) a three equation boundary condition for the salt and heat flux at the ice-ocean interface; and (iii) a new lateral melt parametrization. Recent additions to the CICE model are also tested, including explicit melt ponds, a form drag parametrization and a halodynamic brine drainage scheme. The various sea ice parametrizations tested in this sensitivity study introduce a wide spread in the simulated sea ice characteristics. For each simulation, the total melt is decomposed into its surface, bottom and lateral melt components to assess the processes driving melt and how this varies regionally and temporally. Because this study quantifies the relative importance of several processes in driving the summer melt of sea ice, this work can serve as a guide for future research priorities. © 2015 The Author(s).

  7. Sea surface temperature variability in the Norwegian Sea during the late Pliocene linked to subpolar gyre strength and radiative forcing

    NASA Astrophysics Data System (ADS)

    Bachem, Paul E.; Risebrobakken, Bjørg; McClymont, Erin L.

    2016-07-01

    The mid-Piacenzian warm period (3.264-3.025 Ma) of the Pliocene epoch has been proposed as a possible reference for future warm climate states. However, there is significant disagreement over the magnitude of high latitude warming between data and models for this period of time, raising questions about the driving mechanisms and responsible feedbacks. We have developed a new set of orbital-resolution alkenone-based sea surface temperature (SST) and ice rafted debris (IRD) records from the Norwegian Sea spanning 3.264-3.14 Ma. The SSTs in the Norwegian Sea were 2-3 °C warmer than the Holocene average, likely caused by the radiative effect of higher atmospheric CO2 concentrations. There is notable obliquity-driven SST variability with a range of 4 °C, shown by evolutive spectra. The correlation of SST variability with the presence of IRD suggests a common climate forcing acting across the Nordic Seas region. Changes of the SST gradient between the Norwegian Sea and North Atlantic sites suggest that the subpolar gyre was at least as strong as during the Holocene, and that the northward heat transport by the North Atlantic Current was comparable.

  8. Surface Water and Mediterranean Outflow Water Variability During the Mid-Pleistocene Transition (Marine Isotope Stages 17-36) - the IODP Site U1387 record

    NASA Astrophysics Data System (ADS)

    Voelker, Antje; Salgueiro, Emilia; Rodrigues, Teresa; Padilha, Maria; Alberto, Ana; Loureiro, Isabel; Rebotim, Andreia; Jimenez-Espejo, Francisco J.; Bahr, Andre; Röhl, Ulla

    2015-04-01

    The Mediterranean Outflow Water (MOW) forms extensive contourite drift deposits along the Iberian margin, especially in the Gulf of Cadiz, and injects heat and salt into the intermediate depths of the North Atlantic that affect the overturning circulation. The sediments recovered during IODP Expedition 339 allow studying MOW's history throughout the Pleistocene and Pliocene and thus under varying climate forcing. Here we present centennial-to-millennial scale proxy records for surface water and MOW variations as recorded at IODP Site U1387 (558 m water depth), drilled into the Faro Drift, which is formed by the upper MOW core. We focus our study on the early to middle Pleistocene with special attention on the Mid-Pleistocene Transition (MPT) when the period of the dominant climate cycle changed from 41 kyr to 100 kyr. Surface water and MOW proxy records show millennial-scale stadial/ interstadial oscillations on top of the glacial/ interglacial cycles. Changes in the planktonic and benthic oxygen isotope records are tightly coupled highlighting the constant exchange (entrainment) between the (sub)surface waters and the MOW. Alkenone-derived sea-surface temperatures (SST) increased abruptly at the beginning of an interglacial stage (with the exception of MIS 35) and reached maxima of 21-23°C. During the glacial stages, the SST record reveals abrupt drops down to 10-11°C that lasted approximately 1 kyr, respectively, and remind of the SST minima recorded on the western Iberian margin during Heinrich and Heinrich-type ice-rafting events of the middle to late Pleistocene (e.g., Rodrigues et al., 2011 in Paleoceanography). Low benthic carbon isotope values during deglacial and peak interglacial periods, coinciding with insolation maxima, reveal a poorly ventilated upper MOW core and point to a causal link between MOW ventilation and sapropel formation in the Mediterranean Sea. Better ventilation was recorded during glacial and stadial intervals, often in association

  9. Last Glacial Maximum sea surface temperature and sea-ice extent in the Pacific sector of the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Benz, Verena; Esper, Oliver; Gersonde, Rainer; Lamy, Frank; Tiedemann, Ralf

    2016-08-01

    Sea surface temperatures and sea-ice extent are most critical variables to evaluate the Southern Ocean paleoceanographic evolution in relation to the development of the global carbon cycle, atmospheric CO2 and ocean-atmosphere circulation. Here we present diatom transfer function-based summer sea surface temperature (SSST) and winter sea-ice (WSI) estimates from the Pacific sector of the Southern Ocean to bridge a gap in information that has to date hampered a well-established reconstruction of the last glacial Southern Ocean at circum-Antarctic scale. We studied the Last Glacial Maximum (LGM) at the EPILOG time slice (19,000-23,000 calendar years before present) in 17 cores and consolidated our LGM picture of the Pacific sector taking into account published data from its warmer regions. Our data display a distinct east-west differentiation with a rather stable WSI edge north of the Pacific-Antarctic Ridge in the Ross Sea sector and a more variable WSI extent over the Amundsen Abyssal Plain. The zone of maximum cooling (>4 K) during the LGM is in the present Subantarctic Zone and bounded to its south by the 4 °C isotherm. The isotherm is in the SSST range prevailing at the modern Antarctic Polar Front, representing a circum-Antarctic feature, and marks the northern edge of the glacial Antarctic Circumpolar Current (ACC). The northward deflection of colder than modern surface waters along the South American continent led to a significant cooling of the glacial Humboldt Current surface waters (4-8 K), which affected the temperature regimes as far north as tropical latitudes. The glacial reduction of ACC temperatures may also have resulted in significant cooling in the Atlantic and Indian Southern Ocean, thus enhancing thermal differentiation of the Southern Ocean and Antarctic continental cooling. The comparison with numerical temperature and sea-ice simulations yields discrepancies, especially concerning the estimates of the sea-ice fields, but some simulations

  10. Multiresolution infrared optical properties for Gaussian sea surfaces: theoretical validation in the one-dimensional case.

    PubMed

    Fauqueux, Sandrine; Caillault, Karine; Simoneau, Pierre; Labarre, Luc

    2009-10-01

    The validation of the multiresolution model of sea surface infrared optical properties developed at ONERA is investigated in the one-dimensional case by comparison with a reference model, using a submillimeter discretization of the surface. Having expressed the optical properties, we detail the characteristics of each model. A set of numerical tests is made for various wind speeds, resolutions, and realizations of the sea surface. The tests show a good agreement between the results except for grazing angles, where the impact of multiple reflections and the effects of adjacent rough surfaces on shadow have to be investigated.

  11. Holocene sea subsurface and surface water masses in the Fram Strait - Comparisons of temperature and sea-ice reconstructions

    NASA Astrophysics Data System (ADS)

    Werner, Kirstin; Müller, Juliane; Husum, Katrine; Spielhagen, Robert F.; Kandiano, Evgenia S.; Polyak, Leonid

    2016-09-01

    Two high-resolution sediment cores from eastern Fram Strait have been investigated for sea subsurface and surface temperature variability during the Holocene (the past ca 12,000 years). The transfer function developed by Husum and Hald (2012) has been applied to sediment cores in order to reconstruct fluctuations of sea subsurface temperatures throughout the period. Additional biomarker and foraminiferal proxy data are used to elucidate variability between surface and subsurface water mass conditions, and to conclude on the Holocene climate and oceanographic variability on the West Spitsbergen continental margin. Results consistently reveal warm sea surface to subsurface temperatures of up to 6 °C until ca 5 cal ka BP, with maximum seawater temperatures around 10 cal ka BP, likely related to maximum July insolation occurring at that time. Maximum Atlantic Water (AW) advection occurred at surface and subsurface between 10.6 and 8.5 cal ka BP based on both foraminiferal and dinocyst temperature reconstructions. Probably, a less-stratified, ice-free, nutrient-rich surface ocean with strong AW advection prevailed in the eastern Fram Strait between 10 and 9 cal ka BP. Weakened AW contribution is found after ca 5 cal ka BP when subsurface temperatures strongly decrease with minimum values between ca 4 and 3 cal ka BP. Cold late Holocene conditions are furthermore supported by high planktic foraminifer shell fragmentation and high δ18O values of the subpolar planktic foraminifer species Turborotalita quinqueloba. While IP25-associated indices as well as dinocyst data suggest a sustained cooling due to a decrease in early summer insolation and consequently sea-ice increase since about 7 cal ka BP in surface waters, planktic foraminiferal data including stable isotopes indicate a slight return of stronger subsurface AW influx since ca 3 cal ka BP. The observed decoupling of surface and subsurface waters during the later Holocene is most likely attributed to a strong

  12. Surface roughness of sea ice in Fram Strait - A characteristic of the ice-atmosphere interface

    NASA Astrophysics Data System (ADS)

    Yearsley, W. A.; Herzfeld, U. C.; McDonald, B.; Wallin, B. F.; Maslanik, J. A.; Fladeland, M. M.; Long, D. G.; Crocker, R. I.

    2012-12-01

    Surface roughness is an important characteristic of the interface between the lower atmosphere and the sea ice. In this paper, we present observational and mathematical methods that yield surface roughness length at centimeter to kilometer scales along transects of several hundred kilometers in Fram Strait. During the Characterization of Arctic Sea Ice Experiment (CASIE, July-August 2009), centimeter-scale laser profilometer data and microASAR data were collected from unmanned aircraft, the SIERRA of NASA's Ames Research Center. After correction for altitude using GPS data, aerodynamic roughness length is derived using patial classification parameters and geometric surface properties. Statistical distributions of ridges in sea-ice are calculated. The roughness-based parameters have several uses in modeling energy flux between ocean, ice and boundary layer and in modeling ridging processes in sea ice.

  13. Lightning in the Mediterranean and its relation with sea-surface temperature

    NASA Astrophysics Data System (ADS)

    Kotroni, V.; Lagouvardos, K.

    2016-03-01

    Here we present the analysis of lightning activity over the Mediterranean, based on a 10 year long dataset (2005-2014) provided by the ZEUS long-range lightning detection system. The major hot-spots of lightning activity are identified, with a clear predominance during the warm period of the year over land in the vicinity of the major topographic features of the area. Special emphasis is also given on the discussion of the seasonal distribution of lightning. In addition, we investigate the relationship of lightning with sea-surface temperature, obtained by high-resolution satellite measurements and we conclude that the number of lightning strokes is positively correlated with the sea-surface temperature during autumn when also the maximum lightning activity over the sea is depicted. We suggest that higher sea surface temperature further destabilises the lower tropospheric layers, enhancing thus convection and therefore lightning.

  14. Experimental validation of the MODTRAN 5.3 sea surface radiance model using MIRAMER campaign measurements.

    PubMed

    Ross, Vincent; Dion, Denis; St-Germain, Daniel

    2012-05-01

    Radiometric images taken in mid-wave and long-wave infrared bands are used as a basis for validating a sea surface bidirectional reflectance distribution function (BRDF) being implemented into MODTRAN 5 (Berk et al. [Proc. SPIE5806, 662 (2005)]). The images were obtained during the MIRAMER campaign that took place in May 2008 in the Mediterranean Sea near Toulon, France. When atmosphere radiances are matched at the horizon to remove possible calibration offsets, the implementation of the BRDF in MODTRAN produces good sea surface radiance agreement, usually within 2% and at worst 4% from off-glint azimuthally averaged measurements. Simulations also compare quite favorably to glint measurements. The observed sea radiance deviations between model and measurements are not systematic, and are well within expected experimental uncertainties. This is largely attributed to proper radiative coupling between the surface and the atmosphere implemented using the DISORT multiple scattering algorithm.

  15. Trophic dynamics of deep-sea megabenthos are mediated by surface productivity.

    PubMed

    Tecchio, Samuele; van Oevelen, Dick; Soetaert, Karline; Navarro, Joan; Ramírez-Llodra, Eva

    2013-01-01

    Most deep-sea benthic ecosystems are food limited and, in the majority of cases, are driven by the organic matter falling from the surface or advected downslope. Species may adapt to this scarceness by applying a wide variety of responses, such as feeding specialisation, niche width variation, and reduction in metabolic rates. The Mediterranean Sea hosts a gradient of food availability at the deep seafloor over its wide longitudinal transect. In the Mediterranean, broad regional studies on trophic habits are almost absent, and the response of deep-sea benthos to different trophic conditions is still speculative. Here, we show that both primary and secondary production processes taking place at surface layers are key drivers of deep-sea food web structuring. By employing an innovative statistical tool, we interpreted bulk-tissue δ(13)C and δ(15)N isotope ratios in benthic megafauna, and associated surface and mesopelagic components from the 3 basins of the Mediterranean Sea at 3 different depths (1200, 2000, and 3000 m). The trophic niche width and the amplitude of primary carbon sources were positively correlated with both primary and secondary surface production indicators. Moreover, mesopelagic organic matter utilization processes showed an intermediate position between surface and deep benthic components. These results shed light on the understanding of deep-sea ecosystems functioning and, at the same time, they demand further investigation.

  16. Trophic Dynamics of Deep-Sea Megabenthos Are Mediated by Surface Productivity

    PubMed Central

    Tecchio, Samuele; van Oevelen, Dick; Soetaert, Karline; Navarro, Joan; Ramírez-Llodra, Eva

    2013-01-01

    Most deep-sea benthic ecosystems are food limited and, in the majority of cases, are driven by the organic matter falling from the surface or advected downslope. Species may adapt to this scarceness by applying a wide variety of responses, such as feeding specialisation, niche width variation, and reduction in metabolic rates. The Mediterranean Sea hosts a gradient of food availability at the deep seafloor over its wide longitudinal transect. In the Mediterranean, broad regional studies on trophic habits are almost absent, and the response of deep-sea benthos to different trophic conditions is still speculative. Here, we show that both primary and secondary production processes taking place at surface layers are key drivers of deep-sea food web structuring. By employing an innovative statistical tool, we interpreted bulk-tissue δ13C and δ15N isotope ratios in benthic megafauna, and associated surface and mesopelagic components from the 3 basins of the Mediterranean Sea at 3 different depths (1200, 2000, and 3000 m). The trophic niche width and the amplitude of primary carbon sources were positively correlated with both primary and secondary surface production indicators. Moreover, mesopelagic organic matter utilization processes showed an intermediate position between surface and deep benthic components. These results shed light on the understanding of deep-sea ecosystems functioning and, at the same time, they demand further investigation. PMID:23691098

  17. Sound scattering from rough bubbly ocean surface based on modified sea surface acoustic simulator and consideration of various incident angles and sub-surface bubbles' radii

    NASA Astrophysics Data System (ADS)

    Bolghasi, Alireza; Ghadimi, Parviz; Chekab, Mohammad A. Feizi

    2016-09-01

    The aim of the present study is to improve the capabilities and precision of a recently introduced Sea Surface Acoustic Simulator (SSAS) developed based on optimization of the Helmholtz-Kirchhoff-Fresnel (HKF) method. The improved acoustic simulator, hereby known as the Modified SSAS (MSSAS), is capable of determining sound scattering from the sea surface and includes an extended Hall-Novarini model and optimized HKF method. The extended Hall-Novarini model is used for considering the effects of sub-surface bubbles over a wider range of radii of sub-surface bubbles compared to the previous SSAS version. Furthermore, MSSAS has the capability of making a three-dimensional simulation of scattered sound from the rough bubbly sea surface with less error than that of the Critical Sea Tests (CST) experiments. Also, it presents scattered pressure levels from the rough bubbly sea surface based on various incident angles of sound. Wind speed, frequency, incident angle, and pressure level of the sound source are considered as input data, and scattered pressure levels and scattering coefficients are provided. Finally, different parametric studies were conducted on wind speeds, frequencies, and incident angles to indicate that MSSAS is quite capable of simulating sound scattering from the rough bubbly sea surface, according to the scattering mechanisms determined by Ogden and Erskine. Therefore, it is concluded that MSSAS is valid for both scattering mechanisms and the transition region between them that are defined by Ogden and Erskine.

  18. Distinct modes of winter arctic sea ice motion and their associations with surface wind variability

    NASA Astrophysics Data System (ADS)

    Wu, Bingyi; Johnson, Mark A.

    2010-03-01

    Using monthly mean sea ice velocity data obtained from the International Arctic Buoy Programme (IABP) for the period of 1979-1998 and the monthly mean NCEP/NCAR re-analysis dataset (1960-2002), we investigated the spatiotemporal evolution of the leading sea ice motion mode (based on a complex correlation matrix constructed of normalized sea ice motion velocity) and their association with sea level pressure (SLP) and the predominant modes of surface wind field variability. The results indicate that the leading winter sea ice motion mode’s spatial evolution is characterized by two alternating and distinct sea ice modes, or their linear combination. One mode (M1) shows a nearly closed cyclonic or anti-cyclonic circulation anomaly in the Arctic Basin and its marginal seas, resembling to a large extent the response of sea ice motion to the Arctic Oscillation (AO), as many previous studies have revealed. The other mode (M2) displays a coherent cyclonic or anti-cyclonic circulation anomaly with its center close to the Laptev Sea, which has not been identified in previous observational studies. In fact, M1 and M2 respectively reflect the responses of sea ice motion to two predominant modes of winter surface wind variability north of 70°N, which well correspond, with slight differences, to the first two modes of EOF analysis of winter monthly mean SLP north of 70°N. These slight differences in SLP anomalies lead to a difference of M2 from the response of sea ice motion to the dipole anomaly. Although the AO significantly influences sea ice motion, it is not crucial for the existence of M1. The new sea ice motion mode (M2) has the largest variance and clearly differs from the response of winter monthly mean sea ice motion to the dipole anomaly in SLP fields, and corresponding SLP anomalies also show differences compared to the dipole anomaly. This study indicates that in the Arctic Basin and its marginal seas, slight differences in SLP anomaly patterns can force

  19. Bay of Bengal Surface and Thermocline and the Arabian Sea

    DTIC Science & Technology

    2014-09-30

    the vigorous mesoscale. How BoB and the Arabian Sea interact with each other or with the zonally banded equatorial regimes, to form a quasi -steady...ITE; left panels). A significant velocity field is associated with the displaced isopycnals (right panels). The geostrophic current relative to 200

  20. A Computer Model for Bistatic Sea Surface Microwave Reflectivity

    DTIC Science & Technology

    2014-08-14

    Organization ( WMO ) and the related significant wave heights, rms wave height, and correlation distance. The autocorrelation function for the two...Slope WMO Sea State Significant Wave Height(m) Characteristics RMS Wave Height h (m) Correlation Distance T(m) RMS Wave Slope,  0

  1. Characterizing Surface Transport Barriers in the South China Sea

    DTIC Science & Technology

    2013-09-30

    location of submesoscale fronts in the South China Sea (SCS). OBJECTIVES The scientific objective is to test and develop novel methods, with a focus...transport prooperties of unsteady flows. Applications range from improved fundamental understanding of the relationship between submesoscale fronts

  2. Simulation of a polarized laser beam reflected at the sea surface: modeling and validation

    NASA Astrophysics Data System (ADS)

    Schwenger, Frédéric

    2015-05-01

    A 3-D simulation of the polarization-dependent reflection of a Gaussian shaped laser beam on the dynamic sea surface is presented. The simulation considers polarized or unpolarized laser sources and calculates the polarization states upon reflection at the sea surface. It is suitable for the radiance calculation of the scene in different spectral wavebands (e.g. near-infrared, SWIR, etc.) not including the camera degradations. The simulation also considers a bistatic configuration of laser source and receiver as well as different atmospheric conditions. In the SWIR, the detected total power of reflected laser light is compared with data collected in a field trial. Our computer simulation combines the 3-D simulation of a maritime scene (open sea/clear sky) with the simulation of polarized or unpolarized laser light reflected at the sea surface. The basic sea surface geometry is modeled by a composition of smooth wind driven gravity waves. To predict the input of a camera equipped with a linear polarizer, the polarized sea surface radiance must be calculated for the specific waveband. The s- and p-polarization states are calculated for the emitted sea surface radiance and the specularly reflected sky radiance to determine the total polarized sea surface radiance of each component. The states of polarization and the radiance of laser light specularly reflected at the wind-roughened sea surface are calculated by considering the s- and p- components of the electric field of laser light with respect to the specular plane of incidence. This is done by using the formalism of their coherence matrices according to E. Wolf [1]. Additionally, an analytical statistical sea surface BRDF (bidirectional reflectance distribution function) is considered for the reflection of laser light radiances. Validation of the simulation results is required to ensure model credibility and applicability to maritime laser applications. For validation purposes, field measurement data (images and

  3. Sea Surface Temperature Seesaw between the Subpolar North Atlantic and the Norwegian Sea during the Late Holocene

    NASA Astrophysics Data System (ADS)

    Miettinen, A.; Divine, D.; Koc, N.; Godtliebsen, F.; Hall, I. R.

    2012-12-01

    August sea surface temperature (aSST) record based on fossil diatom assemblages is generated from a 2800-year-long marine sediment core Rapid 21-COM from the Iceland Basin, in the northern subpolar North Atlantic. The record has a resolution of 2-10 years for interval 800-2004 AD representing the highest-resolution diatom SST reconstruction from the subpolar North Atlantic for this period, and 40 years for interval 800 BC-800 AD. The record is compared with the high-resolution aSST record from core CR948/2011 from the Vøring Plateau, in the Norwegian Sea, to explore the variability of the aSST gradient between these areas during the late Holocene. The aSST records show persistent opposite climate trends toward warming in the subpolar North Atlantic and cooling in the Norwegian Sea during the late Holocene. An apparent tendency to coherent antiphased aSST variations between the sites is also revealed for the shorter time scales implying an aSST seesaw between the northern subpolar North Atlantic and the Norwegian Sea to operate during the late Holocene. At the multicentennial scale of aSST variability of 600-900 years, the records are nearly in antiphase with warmer (colder) periods in the subpolar North Atlantic corresponding to the colder (warmer) periods in the Norwegian Sea. At the shorter time scale of 200-450 years, the records display a phase-locked behaviour with a tendency for the positive aSST anomalies in the Norwegian Sea to lead by ca. 30 years the negative aSST anomalies in the subpolar North Atlantic. This aSST seesaw might have had a strong effect on two major climate anomalies in the northwest Europe during the past Millennium: Medieval Warm Period (MWP) and the Little Ice Age (LIA). During the MWP warming of the sea surface in the Norwegian Sea occurred in parallel with cooling in the northern subpolar North Atlantic, whereas the opposite pattern emerged during the LIA. Coupled changes in aSST between the northern subpolar North Atlantic and the

  4. Intense deformation field at oceanic front inferred from directional sea surface roughness observations

    NASA Astrophysics Data System (ADS)

    Rascle, Nicolas; Molemaker, Jeroen; Marié, Louis; Nouguier, Frédéric; Chapron, Bertrand; Lund, Björn; Mouche, Alexis

    2017-06-01

    Fine-scale current gradients at the ocean surface can be observed by sea surface roughness. More specifically, directional surface roughness anomalies are related to the different horizontal current gradient components. This paper reports results from a dedicated experiment during the Lagrangian Submesoscale Experiment (LASER) drifter deployment. A very sharp front, 50 m wide, is detected simultaneously in drifter trajectories, sea surface temperature, and sea surface roughness. A new observational method is applied, using Sun glitter reflections during multiple airplane passes to reconstruct the multiangle roughness anomaly. This multiangle anomaly is consistent with wave-current interactions over a front, including both cross-front convergence and along-front shear with cyclonic vorticity. Qualitatively, results agree with drifters and X-band radar observations. Quantitatively, the sharpness of roughness anomaly suggests intense current gradients, 0.3 m s-1 over the 50 m wide front. This work opens new perspectives for monitoring intense oceanic fronts using drones or satellite constellations.

  5. Recent Southern Ocean surface cooling induced by sea-ice freshwater flux changes

    NASA Astrophysics Data System (ADS)

    Haumann, F. Alexander; Münnich, Matthias; Gruber, Nicolas

    2017-04-01

    Despite global warming, large areas of the Southern Ocean surface waters between the sea-ice edge and the Subantarctic Front have been cooling over recent decades. Yet, most global climate models simulate a warming of this region over this period. Here, we investigate the potential sources of the surface cooling by forcing a newly developed regional configuration of the Regional Ocean Modeling System (ROMS) for the Southern Ocean with atmospheric reanalysis data and with recent observation-based estimates of surface fluxes from sea ice and land ice for the period 1982 to 2008. We perform factorial sensitivity experiments in which we perturb either the surface freshwater fluxes or the surface wind stress according to the observed changes. We find that most of the surface cooling could be explained by increased northward freshwater transport by sea ice that freshens the open-ocean around the sea-ice edge in the model. The freshening increases the surface density stratification between the sea-ice edge and the Subantarctic Front that reduces mixing of warmer deep waters into the surface layer in winter. As a result, the surface ocean cools and the subsurface ocean warms significantly, especially in the Pacific sector where the largest sea-ice changes occurred. The spatial pattern of these simulated temperature changes agrees well with the satellite-observed trends and trends derived from ocean in-situ data, suggesting that the observed surface cooling occurs primarily due to an increased sea-ice freshwater flux. In contrast, the surface temperature weakly increases in response to the increased surface wind stress over this period. Overall, we find opposing tendencies induced by the surface wind stress changes and freshwater flux changes in the ocean hydrography. We conclude that the upwelling of deep waters in the Southern Ocean is highly sensitive to the freshwater transport to the sea-ice edge and that this process is a major driver of the observed recent cooling in

  6. Biweekly Sea Surface Temperature over the South China Sea and its association with the Western North Pacific Summer Monsoon

    NASA Astrophysics Data System (ADS)

    Vaid, B. H.

    2017-02-01

    The association of the biweekly intraseasonal (BWI) oscillation in the Sea Surface Temperature (SST) over the South China Sea (SCS) and the Western North Pacific Summer Monsoon is authenticated using version 4 the Tropical Rainfall Measuring Mission Microwave Imager data (SST and rain) and heat fluxes from Ocean Atmosphere Flux project data during 1998-2012. The results suggest that the SCS involves ocean-atmosphere coupling on biweekly timescales. The positive biweekly SST anomalies lead the rain anomalies over the SCS by 3 days, with a significant correlation coefficient ( r = 0.6, at 99 % significance levels) between the SST-rain anomalies. It is evident from lead/lag correlation between biweekly SST and zonal wind shear that warm ocean surface induced by wind shear may contribute to a favorable condition of the convective activity over the SCS. The present study suggests that ocean-to-atmospheric processes induced by the BWI oscillation in the SCS SST results in enhanced sea level pressure and surface shortwave radiation flux during the summer monsoon. Besides, it is observed that the SCS BWI oscillation in the changes of SST causes a feedback in the atmosphere by modifying the atmospheric instability. This suggests that the active/break biweekly cycle of the SST over the SCS is related by sea level pressure, surface heat fluxes and atmospheric instability. The potential findings here indicate that the biweekly SST over the SCS play an important role in the eastward and the southward propagation of the biweekly anomalies in the Western North Pacific.

  7. Dynamics of the atmospheric boundary layer response to ocean mesoscale sea surface temperatures

    NASA Astrophysics Data System (ADS)

    Schneider, Niklas; Taguchi, Bunmei; Nonaka, Masami; Kuwano-Yoshida, Akira; Nakamura, Hisashi

    2017-04-01

    A recent theory for the mid-latitude atmospheric response to ocean mesoscale sea surface temperature (SST) variations is tested in the Southern Ocean using an extended integration of an atmospheric general circulation model. The theory is based on a linearization of the steady state, atmospheric boundary-layer dynamics, and yields the atmospheric response as classical Ekman dynamics extended to include advection, and sea surface temperature induced changes of atmospheric mixing and hydrostatic pressure. The theory predicts the response at each horizontal wave number to be governed by spectral transfer function between sea surface temperature and boundary layer variables, that are dependent on large-scale winds and the formulation of boundary layer mixing. The general circulation model, AFES, is shown to reproduce observed regressions between surface wind stress and sea surface temperatures. These 'coupling coefficients' are explained by SST induced changes of the surface stability, that directly impact surface stress, and changes of the surface winds. Estimates of the spectral transfer function between the latter and surface temperature are consistent with the theory, and suggest that it faithfully captures the underlying physics.

  8. Simulation of laser beam reflection at the sea surface modeling and validation

    NASA Astrophysics Data System (ADS)

    Schwenger, Frédéric; Repasi, Endre

    2013-06-01

    A 3D simulation of the reflection of a Gaussian shaped laser beam on the dynamic sea surface is presented. The simulation is suitable for the pre-calculation of images for cameras operating in different spectral wavebands (visible, short wave infrared) for a bistatic configuration of laser source and receiver for different atmospheric conditions. In the visible waveband the calculated detected total power of reflected laser light from a 660nm laser source is compared with data collected in a field trial. Our computer simulation comprises the 3D simulation of a maritime scene (open sea/clear sky) and the simulation of laser beam reflected at the sea surface. The basic sea surface geometry is modeled by a composition of smooth wind driven gravity waves. To predict the view of a camera the sea surface radiance must be calculated for the specific waveband. Additionally, the radiances of laser light specularly reflected at the wind-roughened sea surface are modeled considering an analytical statistical sea surface BRDF (bidirectional reflectance distribution function). Validation of simulation results is prerequisite before applying the computer simulation to maritime laser applications. For validation purposes data (images and meteorological data) were selected from field measurements, using a 660nm cw-laser diode to produce laser beam reflection at the water surface and recording images by a TV camera. The validation is done by numerical comparison of measured total laser power extracted from recorded images with the corresponding simulation results. The results of the comparison are presented for different incident (zenith/azimuth) angles of the laser beam.

  9. The Sensitivity of African Easterly Waves to Eastern Tropical Atlantic Sea-Surface Temperatures

    NASA Technical Reports Server (NTRS)

    Druyan, Leonard M.; Fulakeza, Matthew

    2011-01-01

    The results of two regional atmospheric model simulations are compared to assess the influence of the eastern tropical Atlantic sea-surface temperature maximum on local precipitation, transient easterly waves and the West African summer monsoon. Both model simulations were initialized with reanalysis 2 data (US National Center for Environmental Prediction and Department of Energy) on 15 May 2006 and extended through 6 October 2006, forced by synchronous reanalysis 2 lateral boundary conditions introduced four times daily. One simulation uses 2006 reanalysis 2 sea-surface temperatures, also updated four times daily, while the second simulation considers ocean forcing absent the sea-surface temperature maximum, achieved here by subtracting 3 K at every ocean grid point between 0 and 15 N during the entire simulation. The simulation with 2006 sea-surface temperature forcing produces a realistic distribution of June-September mean precipitation and realistic westward propagating swaths of maximum rainfall, based on validation against Tropical Rainfall Measuring Mission (TRMM) estimates. The simulation without the sea-surface temperature maximum produces only 57% of the control June-September total precipitation over the eastern tropical Atlantic and about 83% of the Sahel precipitation. The simulation with warmer ocean temperatures generates generally stronger circulation, which in turn enhances precipitation by increasing moisture convergence. Some local precipitation enhancement is also attributed to lower vertical thermal stability above the warm water. The study shows that the eastern tropical Atlantic sea-surface temperature maximum enhances the strength of transient easterly waves and broadens the spatial extent of associated precipitation. However, large-scale circulation and its interaction with the African continent, and not sea-surface temperatures, control the timing and trajectories of the waves.

  10. The organic sea surface microlayer in the upwelling region off Peru and implications for air-sea exchange processes

    NASA Astrophysics Data System (ADS)

    Engel, A.; Galgani, L.

    2015-07-01

    The sea surface microlayer (SML) is at the very surface of the ocean, linking the hydrosphere with the atmosphere, and central to a range of global biogeochemical and climate-related processes. The presence and enrichment of organic compounds in the SML have been suggested to influence air-sea gas exchange processes as well as the emission of primary organic aerosols. Among these organic compounds, primarily of plankton origin, are dissolved exopolymers, specifically polysaccharides and proteins, and gel particles, such as Transparent Exopolymer Particles (TEP) and Coomassie Stainable Particles (CSP). These organic substances often accumulate in the surface ocean when plankton productivity is high. Here, we report results obtained in December 2012 during the SOPRAN Meteor 91 cruise to the highly productive, coastal upwelling regime off Peru. Samples were collected from the SML and from ~ 20 cm below, and were analyzed for polysaccharidic and proteinaceous compounds, gel particles, total and dissolved organic carbon, bacterial and phytoplankton abundance. Our study provides insight to the physical and biological control of organic matter enrichment in the SML, and discusses the potential role of organic matter in the SML for air-sea exchange processes.

  11. Control of lithosphere structure on surface deformation in the Central Barents Sea: insights from dynamical modeling

    NASA Astrophysics Data System (ADS)

    Gac, Sebastien; Faleide, Jan Inge

    2014-05-01

    The Barents Sea is located in the Northern European Arctic. The Eastern Barents Sea features one of the deepest sedimentary basins in the world whereas large parts of the Western Barents Sea is covered by a shallow sedimentary platform. Seismic tomography data (Levshin et al., 2007; Ritzmann and Faleide, 2009) show slower S-wave velocity in the upper mantle beneath the East Barents Sea compared to the West Barents Sea, indicating a steep deepening of the Lithosphere-Asthenosphere Boundary (LAB) in the Central Barents Sea from West to East. Additionally, the Central Barents Sea is marked by a South-North succession of regularly-spaced inverted structures (uplifted domes) such as the Fedinsky High and the Sentralbanken High. The origin of these inverted structures is under debate. The interpretation of recent seismic data in the Central Barents Sea suggests that part of the inversion is contemporaneous with the Late-Triassic-Early Jurassic westwards thrusting of Novaya Zemlya. This suggests that the origin of domes might be linked to compressional events on the eastern side of the Barents Sea. A 2D thermo-mechanical model of lithosphere shortening is used to explore the effect of LAB geometry on the surface deformation in the Central Barents Sea. The model is based on a Lagrangian finite element method (Gac et al., 2013). The model consists of a crust - mantle lithosphere characterized by non-linear temperature and pressure dependent visco-elastic-plastic rheologies. The mechanical model is coupled with a thermal model taking into account heat advection and diffusion. Sedimentation and gravity are also taken into account. Contractional boundary conditions are applied on vertical sides of the model resulting in buckling of the crust. Several models are run for different geometry of the LAB. Preliminary results are shown. 3D conceptual models are then proposed to explain the 3D distribution of inverted structures in the Central Barents Sea. REFERENCES: Gac, S

  12. Innovative eco-friendly bio- solvent for combating sea surface and sedimented oil pollution

    NASA Astrophysics Data System (ADS)

    Theodorou, Paraskevas

    2017-04-01

    The combating of oil spill at sea surface by chemical dispersants accelerates the evaporation and disperse the oil into the water column, where it is broken down by natural processes and/or is sedimented at the sea bottom, especially at near coastal shallow areas, ports and marinas. The usual methodology for cleaning the sedimented oil from the sea bottom is mainly carried out via excavation and dumping of the polluted sediment into deeper sea areas, where the contamination is transferred from one area to another. The eco-friendly bio-solvent MSL Aqua 250 is an innovative new solution based mainly on natural constituents. The action mechanism and the effectiveness of this eco-friendly solvent is based on the high surface tension process. Organic compounds, including hydrocarbons upon coming in contact with MSL Aqua 250 solvent generate a significant surface tension reaction, which is able to alter the organic compounds to liquid form and then to drastically evaporate it. The use of MSL Aqua 250 solvent, both at sea surface and at the bottom, has the following advantages compared to the dispersants: • Efficient solution without transferring the pollution from sea surface to the water column and to the bottom or disturbing the Aquatic Eco System. • Non-Toxic. • Environmentally friendly with a restoration of marine life in the Eco System. • Cost effective. The MSL Aqua 250 solvent has been tested in cooperation with the Cyprus Department of Fisheries and Marine Research and the Technological University of Cyprus and used during the years 2015 and 2016 in marinas and fishing shelters in Cyprus faced oil pollution, with high concentration in the sea water and at the sea bottom of chemical parameters (BOD5, COD, FOG, TKN, TP, TPH), with excellent results.

  13. Sensitivity of Greenland Ice Sheet surface mass balance to perturbations in sea surface temperature and sea ice cover: a study with the regional climate model MAR

    NASA Astrophysics Data System (ADS)

    Noël, B.; Fettweis, X.; van de Berg, W. J.; van den Broeke, M. R.; Erpicum, M.

    2014-10-01

    During recent summers (2007-2012), several surface melt records were broken over the Greenland Ice Sheet (GrIS). The extreme summer melt resulted in part from a persistent negative phase of the North Atlantic Oscillation (NAO), favoring warmer atmospheric conditions than normal over the GrIS. Simultaneously, large anomalies in sea ice cover (SIC) and sea surface temperature (SST) were observed in the North Atlantic, suggesting a possible connection. To assess the direct impact of 2007-2012 SIC and SST anomalies on GrIS surface mass balance (SMB), a set of sensitivity experiments was carried out with the regional climate model MAR forced by ERA-Interim. These simulations suggest that perturbations in SST and SIC in the seas surrounding Greenland do not considerably impact GrIS SMB, as a result of the katabatic wind blocking effect. These offshore-directed winds prevent oceanic near-surface air, influenced by SIC and SST anomalies, from penetrating far inland. Therefore, the ice sheet SMB response is restricted to coastal regions, where katabatic winds cease. A topic for further investigation is how anomalies in SIC and SST might have indirectly affected the surface melt by changing the general circulation in the North Atlantic region, hence favoring more frequent warm air advection towards the GrIS.

  14. Reconstructing Variations of Global Sea-Surface Temperature during the Last Interglaciation

    NASA Astrophysics Data System (ADS)

    Hoffman, J. S.; Clark, P. U.; He, F.; Parnell, A. C.

    2015-12-01

    The last interglaciation (LIG; ~130-116 ka) was the most recent period in Earth history with higher-than-present global sea level (≥6 m) under similar-to-preindustrial concentrations of atmospheric CO2, suggesting additional feedbacks related to albedo, insolation, and ocean circulation in generating the apparent climatic differences between the LIG and present Holocene. However, our understanding of how much warmer the LIG sea surface was relative to the present interglaciation remains uncertain, with current estimates suggesting from 0°C to 2°C warmer than late-20thcentury average global temperatures. Moreover, the timing, spatial expression, and amplitude of regional and global sea surface temperature variability related to other climate forcing during the LIG are poorly constrained, largely due to uncertainties in age control and proxy temperature reconstructions. An accurate characterization of global and regional temperature change during the LIG can serve as a benchmark for paleoclimate modeling intercomparison projects and help improve understanding of sea-level sensitivity to temperature change. We will present a global compilation (~100 published records) of sea surface temperature (SST) and other climate reconstructions spanning the LIG. Using a Monte Carlo-enabled cross-correlation maximization algorithm to climatostratigraphically align proxy records and then account for both the resulting chronologic and proxy calibration uncertainties with Bayesian statistical inference, our results quantify the spatial timing, amplitude, and uncertainty in estimates of global and regional sea surface temperature change during the LIG and its relation to potential forcings.

  15. Multi-Sensor Improved Sea Surface Temperature (MISST) for GODAE

    DTIC Science & Technology

    2008-01-01

    activities and are provided with state-of-the- art SST data products and analyses. OBJECTIVES To produce multi-sensor improved SSTs and successfully...sea level pressure. (SLP) B) The track forecast errors. NRL globally evaluated the existing operational MODAS AVHRR-only SST and RSS MW SST...the development of the NCODA SST, which blends IR and MW SSTs with in situ observations. The NCODA SST will replace the existing MODAS SST which

  16. Sea, ice and surface water circulation, Alaskan continental shelf

    NASA Technical Reports Server (NTRS)

    Wright, F. F.; Sharma, G. D.; Burns, J. J. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Salinity and temperature measurements in the Bering Sea indicate that the Yukon River outflow extends as far as 200 km from its mouth. The fresh water flow from the Yukon River flows north and east into Norton Sound. Various levels of suspended sediment concentration in waters have been successfully color coded using a VP-8 color density slicing image analyzer. The 70 mm negative transparencies have provided the best fit for the ground truth observations.

  17. The annual and interannual variabilities of precipitable water, surface wind speed, and sea surface temperature over the tropical Pacific

    NASA Technical Reports Server (NTRS)

    Liu, W. Timothy

    1989-01-01

    The Nimbus-7 Scanning Multichannel Microwave Radiometer (SSMR) provided simultaneous measurements of three geophysical parameters, each of which describing a certain aspect of the evolution of the 1982-1983 ENSO: the sea-surface temperature (T), precipitable water (W), and surface-wind speed (U). In this paper, values derived from the SSMR were compared with in situ measurements from ships, research buoys, and operational island stations in the tropical Pacific between January 1980 and October 1983, demonstrating the temporal and spatial coherence of the SSMR measurements. The results show that the variabilities of the surface convergence, sea surface temperature, and precipitable water are related. It was found that W anomalies were not always colocated with T anomalies, and that W anomalies were often associated with negative U anomalies, interpreted as surface convergence.

  18. Investigation on the GPS single scattering from a 2-D largescale sea surface

    NASA Astrophysics Data System (ADS)

    Wei, Yiwen; Guo, Lixin

    2014-05-01

    Global positioning system (GPS) signals reflected from the ocean surface can be used for various remote sensing purposes. In this paper, we develop a facet model to simulate the received GPS single from a 2-D largescale sea surface. In this model, the sea surface is envisaged as a two-scale profile on which the long waves are locally approximated by planar facets. The microscopic profile within a facet is assumed to be represented by a set of sinusoidal ripple patches. The complex reflective function of each modified facet is evaluated by a modified formula of the original Bass and Fuks' two-scale model, in which the phase factor of each facet is with the capillary wave modification. The scattering field and the bistatic scattering coefficient of facet model is derived in detail. With received GPS single, we give a detail analysis of the polarization property, the scattering property of GPS scattering signal over the sea surface.

  19. North Atlantic sea surface temperature, solar activity and the climate of Northern Fennoscandia

    NASA Astrophysics Data System (ADS)

    Ogurtsov, M.; Lindholm, M.; Jalkanen, R.; Veretenenko, S. V.

    2017-02-01

    Seven proxies of summer temperature in Northern Fennoscandia, sea surface temperature in the North Atlantic and solar activity were analyzed over AD 1567-1986. A stable and significant positive correlation between summer temperatures in Northern Fennoscandia and sea surface temperature in the North Atlantic is shown to exist during the entire time interval. In addition, a significant correlation between solar activity and (a) summer temperature in Northern Fennoscandia as well as (b) surface temperature in the North Atlantic was found during AD 1715-1986. Throughout 1567-1715 correlation is less significant and has an opposite sign. Thus we show that the variation of sea surface temperature in the North Atlantic could be a physical agent, which transferred solar influence on Northern Fennoscandian temperature at least during AD 1715-1986.

  20. Evaporation and Solar Irradiance as Regulators of Sea Surface Temparature in Annual and Interrannual Changes

    NASA Technical Reports Server (NTRS)

    Liu, W. Timothy

    1994-01-01

    After numerical studies showed that global climate is sensitive to small changes in sea surface temperature (Ts), considerabel effort has been devoted to examine the role of surface fluxes in changing upper ocean heat balance and Ts, particularly in the tropical Pacific where interannual signals, such as El Nino Southern Oscillation (ENSO), have major economic and ecological impacts.

  1. Investigation of electromagnetic backscattering from nearshore sea surfaces modulated by shoaling effect

    NASA Astrophysics Data System (ADS)

    Nie, D.; Zhang, M.; Li, J.

    2016-10-01

    The electromagnetic (EM) scattering features of radar scattered echoes from nearshore sea surfaces are investigated using the second-order small-slope approximation (SSA-II). The joint influences of wind fetch and water depth on the normalized radar cross section (NRCS) of and Doppler spectra for echoes from nearshore sea surfaces are mainly studied. The numerical results show that with a further increasing fetch, the excess of NRCS for small depth sea over that for deeper sea increases, and Doppler spectral features are also intensely influenced by nonlinear interactions between waves in the large wind fetch and small water depth marine environment. These both indicate that the effects of the finite depth are more prominent with increasing wind fetch, especially for HH polarization.

  2. On the effect of sea spray on the aerodynamic surface drag under severe winds

    NASA Astrophysics Data System (ADS)

    Troitskaya, Yuliya; Ezhova, Ekaterina; Soustova, Irina; Zilitinkevich, Sergej

    2016-05-01

    We investigate the effect of the sea spray on the air-sea momentum exchange during the entire "life cycle" of a droplet, torn off the crest of a steep surface wave, and its fall down to the water, in the framework of a model covering the following aspects of the phenomenon: (1) motion of heavy particle in the driving air flow (equations of motion); (2) structure of the wind field (wind velocity, wave-induced disturbances, turbulent fluctuations); (3) generation of the sea spray; and (4) statistics of droplets (size distribution, wind speed dependence). It is demonstrated that the sea spray in strong winds leads to an increase in the surface drag up to 40 % on the assumption that the velocity profile is neutral.

  3. Glacial-to-Holocene evolution of sea surface temperature and surface circulation in the subarctic northwest Pacific and the Western Bering Sea

    NASA Astrophysics Data System (ADS)

    Meyer, Vera D.; Max, Lars; Hefter, Jens; Tiedemann, Ralf; Mollenhauer, Gesine

    2016-07-01

    It has been proposed that North Pacific sea surface temperature (SST) evolution was intimately linked to North Atlantic climate oscillations during the last glacial-interglacial transition. However, during the early deglaciation and the Last Glacial Maximum, the SST development in the subarctic northwest Pacific and the Bering Sea is poorly constrained as most existing deglacial SST records are based on alkenone paleothermometry, which is limited prior to 15 ka B.P. in the subarctic North Pacific realm. By applying the TEXL86 temperature proxy we obtain glacial-Holocene-SST records for the marginal northwest Pacific and the Western Bering Sea. Our TEXL86-based records and existing alkenone data suggest that during the past 15.5 ka, SSTs in the northwest Pacific and the Western Bering Sea closely followed millennial-scale climate fluctuations known from Greenland ice cores, indicating rapid atmospheric teleconnections with abrupt climate changes in the North Atlantic. Our SST reconstructions indicate that in the Western Bering Sea SSTs drop significantly during Heinrich Stadial 1 (HS1), similar to the known North Atlantic climate history. In contrast, progressively rising SST in the northwest Pacific is different to the North Atlantic climate development during HS1. Similarities between the northwest Pacific SST and climate records from the Gulf of Alaska point to a stronger influence of Alaskan Stream waters connecting the eastern and western basin of the North Pacific during this time. During the Holocene, dissimilar climate trends point to reduced influence of the Alaskan Stream in the northwest Pacific.

  4. Surface Circulation in the Iroise Sea (W. Brittany) from High Resolution HF Radar Mapping

    DTIC Science & Technology

    2013-01-01

    2011 Keywords: HF radar Tidal current Residual flow Eddy field Iroise SeaThe data from two high-frequency radars (HFR) operating in the Iroise Sea are...previously available. Refined resolution enabled to iden- tify fine-scale structures of surface circulation, to quantify the variability of tidal currents...and the residual (time averaged) velocity field, and to explain spatial intermittence in polarization of the tidal current ellipses. The analyzed data

  5. Low-Frequency Surface Backscattering Strengths Measured in the Critical Sea Test Experiments

    DTIC Science & Technology

    2017-01-19

    Test Experiments January 19, 2017 Approved for public release; distribution is unlimited. RogeR C. gauss Joseph M. Fialkowski Acoustic Signal...LIMITATION OF ABSTRACT Low-Frequency Surface Backscattering Strengths Measured in the Critical Sea Test Experiments Roger C. Gauss1 and Joseph M...significantly- updated results from 55 broadband SUS SSS measurements in 6 Critical Sea Test (CST) experiments. Since the time of the previously

  6. Climate-scale sea surface height variability over the Northwest Atlantic slope

    NASA Astrophysics Data System (ADS)

    Han, Guoqi; Chen, Nancy; Yen Kuo, Chun; Shum, Ck; Ma, Zhimin

    2016-04-01

    The Northwest Atlantic continental slope features strong interactions among the western boundary currents of the subpolar and subtropical gyres, and thus the sea level variability over the slope may have important implications for the large-scale ocean circulation. In this study, temporal and spatial sea level variability in the Northwest Atlantic continental slope has been investigated based on a merged satellite altimetry dataset and a monthly temperature and salinity dataset. The altimetric results are compared with steric height anomalies calculated from the temperature and salinity dataset. The study shows significant interannual and decadal sea level variability and secular change, with prominent regional differences and seemingly varying linkages to large-scale atmospheric and oceanic variability in the North Atlantic. The interannual sea level variability in the western Labrador Sea is negatively correlated with the North Atlantic Oscillation primarily via the wintertime deep convection; whereas that over the Laurentian Fan is positively correlated with the North Atlantic Oscillation. The thermosteric height anomalies are negatively (positively) correlated with the winter NAO index in the Labrador Sea (Laurentian Fan); while the halosteric height anomalies show opposite. The along-slope differences in the interannual and decadal variations and the secular trend of the sea surface height anomalies is compatible with an important interior pathway of the Labrador Sea Intermediate Water toward the central North Atlantic Basin reported in literature.

  7. Impact of Typhoon-induced sea surface cooling on the track of next Typhoon

    NASA Astrophysics Data System (ADS)

    Ando, Y.; Horiguchi, M.; Kodera, K.; Tachibana, Y.; Yamazaki, K.

    2015-12-01

    Typhoons (TCs) MATMO, HALONG, and NAKRI (2014), which caused Japan catastrophic disaster, landed the western part of Japan. The TCs came to Japan one after another during late July to early August 2014. The tracks of these TCs were similar, i.e., the TCs followed the western edge of the subtropical northwestern Pacific high (SNPH). However, the tracks gradually reached to Japan, which were associated with weakening the westward expansion of the SNPH. It was found that the changes in westward expansion of the SNPH were associated with TC-induced sea surface cooling of previous Typhoon. It has previously been reported that TC-induced sea surface cooling is mainly caused by Ekman upwelling and vertical turbulent mixing. The TCs MATMO, HALONG, and NAKRI passed around the Philippines, and induced sea surface cooling of this area. The sea surface temperatures of this area are important for Pacific-Japan pattern, which was associated with the westward expansion of the SNPH. Consequently, previous Typhoon induced sea surface cooling around the Philippines, which weakening the westward expansion of the SNPH. Then, the tracks of next Typhoon were changed, and gradually reached to Japan.

  8. Copper in the sediment and sea surface microlayer near a fallowed, open-net fish farm.

    PubMed

    Loucks, Ronald H; Smith, Ruth E; Fisher, Clyde V; Fisher, E Brian

    2012-09-01

    Sediment and sea surface microlayer samples near an open-net salmon farm in Nova Scotia, were analysed for copper. Copper is a constituent of the feed and is an active ingredient of anti-foulants. The salmon farm was placed in fallow after 15 years of production. Sampling was pursued over 27 months. Elevated copper concentrations in the sediments indicated the farm site as a source. Bubble flotation due to gas-emitting sediments from eutrophication is a likely process for accumulating copper in the sea surface microlayer at enriched concentrations. Elevated and enriched concentrations in the sea surface microlayer over distance from the farm site led, as a result of wind-drift, to an enlarged farm footprint. The levels of copper in both sediments and sea surface microlayer exceeded guidelines for protection of marine life. Over the 27 months period, copper levels persisted in the sediments and decreased gradually in the sea surface microlayer. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Influence of ice thickness and surface properties on light transmission through Arctic sea ice.

    NASA Astrophysics Data System (ADS)

    Katlein, Christian; Arndt, Stefanie; Nicolaus, Marcel; Jakuba, Michael V.; Laney, Samuel; Elliott, Stephen; Whitcomb, Louis L.; McFarland, Christopher J.; Suman, Stefano; Gerdes, Rüdiger; Boetius, Antje; German, Christopher R.

    2015-04-01

    The observed changes in physical properties of sea ice such as decreased thickness and increased melt pond cover severely impact the energy balance of Arctic sea ice. Increased light transmission leads to increased deposition of solar energy and thus plays a crucial role for sea-ice-melt as well as for the amount and timing of under-ice primary production. Recent developments in underwater technology provide new opportunities to undertake challenging research at the largely inaccessible underside of sea ice. We measured spectral under-ice radiance and irradiance onboard the new Nereid Under-Ice (Nereid-UI) underwater robotic vehicle, during a cruise of the R/V Polarstern to 83°N 6°W in the Arctic Ocean in July 2014. Nereid-UI is a next generation hybrid remotely operated vehicle (H-ROV) designed for both remotely-piloted and autonomous surveys underneath fixed and moving sea ice. Here we present results from the first comprehensive scientific dive of Nereid-UI employing its interdisciplinary sensor suite. We combine under-ice optical measurements with three dimensional under-ice topography (multibeam sonar) and aerial images of the surface conditions. We investigate the influence of spatially varying ice-thickness and surface properties on the spatial variability of light transmittance on floe scale. Our results indicate that surface properties dominate the spatial distribution of the under-ice light field, while sea ice-thickness and snow-depth are most important for mean light levels.

  10. Reconstructing Holocene sea surface salinity changes in the Northern Aegean Sea: evidence from morphological variations of Emiliania huxleyi-coccoliths

    NASA Astrophysics Data System (ADS)

    Herrle, Jens O.; Gebühr, Christina; Bollmann, Jörg; Giesenberg, Annika; Kranzdorf, Philip

    2013-04-01

    The Aegean Sea is a key area for our understanding of the impact of changes in the hydrological cycle on ocean circulation in the Mediterranean Sea. The Aegean Sea appears to be very sensitive to climate changes in Europe because of its small volume and the position between high- and low-latitude climate regimes. Therefore, it is assumed to record environmental change, especially changes in sea surface water salinity (SSS) without a significant time lag with respect to the forcing process (Rohling et al., 2002). However, up to date, SSS cannot be easily reconstructed from geological archives because several assumptions need to be made that lead to a significant error of the salinity estimates (e.g. Rohling, 2000). Here, we present the first high resolution SSS reconstruction from a Holocene sediment core based on a recently developed transfer function using the morphological variation of Emiliania huxleyi coccoliths (Bollmann & Herrle 2007, Bollmann et al., 2009). The core is located in the northern Aegean Sea (eastern Mediterranean Basin) and covers the time period 3 -11ka ago. Sea surface water salinity in the Aegean Sea has varied in concert with temperature oscillations as recorded in Greenland ice cores (iGISP2 ice core δ18O record) with a periodicity of about 900 years (Schulz & Paull, 2002). Four major SSS events can be identified at about 3.9, 4.7, 6.4, 7.4, and 8.2 ka in the northern Aegean Sea that correlate with increases in GISP2 δ18O (Schulz & Paull, 2002) as well as decreasing percentages of tree pollen studied at the same core expect for 3.9 ka (Kotthoff et al., 2008). The most prominent salinity increase occurred during the short-lived 8.2 kyr cold event (e.g., Rohling & Pälike, 2005), which was most likely triggered by a melt-water related perturbation of the Atlantic Meridional Overturning and associated decrease of ocean heat transport to the North Atlantic. We suggest that the salinity fluctuations in the northern Aegean Sea are related to

  11. Surfactant-Associated Bacteria in the Sea Surface Microlayer and their Effect on Remote Sensing Technology

    NASA Astrophysics Data System (ADS)

    Kurata, N.; Vella, K.; Tartar, A.; Matt, S.; Shivji, M.; Perrie, W. A.; Soloviev, A.

    2012-12-01

    Synthetic aperture radar remote sensing captures various fine-scale features on the ocean surface such as coastal discharges, oil pollution, vessel traffic, algal blooms and sea slicks. Although numerous factors potentially affect the synthetic aperture radar imaging process, the influence of biogenic and anthropogenic surfactants has been suggested as one of the primary parameters, especially under relatively low wind conditions. Surfactants have a tendency to dampen the short gravity-capillary ocean waves causing the sea surface to smoothen, thus allowing the radar to detect areas of surfactants. Surfactants are found in sea slicks, which are the accumulation of organic material shaped as elongated bands on the ocean's surface. Sea slicks are often observable with the naked eye due to their glassy appearance and can also be seen on synthetic aperture radar images as dark scars. While the sources of surfactants can vary, some are known to be of marine bacteria origin. Countless numbers of marine bacteria are present in the oceanic environment, and their biogeochemical contributions cannot be overlooked. Not only does marine-bacteria produce surfactants, but they also play an important role in the transformation of surfactants. In this study, we profiled the surfactant-associated bacteria composition within the biogenic thin layer of the ocean surface more commonly referred as the sea surface microlayer. Bacterial samples were collected from the sea surface microlayer for comparative analysis from both within and outside of sea slick areas as well as the underlying subsurface water. The bacterial microlayer sampling coincided with synthetic aperture radar satellite, RADARSAT-2, overpasses to demonstrate the simultaneous in-situ measurements during a satellite image capture. The sea surface microlayer sampling method was designed to enable aseptic bacterial sampling. A 47 mm polycarbonate membrane was utilized at each sampling site to obtain a snapshot of the

  12. Sea Ice Remote Sensing Using Surface Reflected GPS Signals

    NASA Technical Reports Server (NTRS)

    Komjathy, Attila; Maslanik, James; Zavorotny, Valery U.; Axelrad, Penina; Katzberg, Stephen J.

    2000-01-01

    This paper describes a new research effort to extend the application of Global Positioning System (GPS) signal reflections, received by airborne instruments, to cryospheric remote sensing. Our experimental results indicate that reflected GPS signals have potential to provide information on the presence and condition of sea and freshwater ice as well as the freeze/thaw state of frozen ground. In this paper we show results from aircraft experiments over the ice pack near Barrow, Alaska indicating correlation between forward-scattered GPS returns and RADARSAT backscattered measurements.

  13. Parabolic equation modeling of high frequency acoustic transmission with an evolving sea surface.

    PubMed

    Senne, J; Song, A; Badiey, M; Smith, K B

    2012-09-01

    The present paper examines the temporal evolution of acoustic fields by modeling forward propagation subject to sea surface dynamics with time scales of less than a second to tens of seconds. A time-evolving rough sea surface model is combined with a rough surface formulation of a parabolic equation model for predicting time-varying acoustic fields. Surface waves are generated from surface wave spectra, and stepped in time using a Runge-Kutta integration technique applied to linear evolution equations. This evolving, range-dependent surface information is combined with other environmental parameters and input to the acoustic model, giving an approximation of the time-varying acoustic field. The wide-angle parabolic equation model manages the rough sea surfaces by molding them into the boundary conditions for calculations of the near-surface acoustic field. This merged acoustic model is validated using concurrently-collected acoustic and environmental information, including surface wave spectra. Data to model comparisons demonstrate that the model is able to approximate the ensemble-averaged acoustic intensity at ranges of about a kilometer for acoustic signals of around 15 kHz. Furthermore, the model is shown to capture variations due to surface fluctuations occurring over time scales of less than a second to tens of seconds.

  14. Distribution and enantiomeric profiles of organochlorine pesticides in surface sediments from the Bering Sea, Chukchi Sea and adjacent Arctic areas.

    PubMed

    Jin, Meiqing; Fu, Jie; Xue, Bin; Zhou, Shanshan; Zhang, Lina; Li, An

    2017-03-01

    The spatial distribution, compositional profiles, and enantiomer fractions (EFs) of organochlorine pesticides (OCPs), including hexachlorocyclohexanes (HCHs), dichlorodiphenyltrichloroethanes (DDTs), and chlordanes (CHLs), in the surface sediments in the Bering Sea, Chukchi Sea and adjacent areas were investigated. The total concentrations of DDTs, HCHs and CHLs varied from 0.64 to 3.17 ng/g dw, 0.19-0.65 ng/g dw, and 0.03-0.16 ng/g dw, respectively. No significant difference was observed between the Bering Sea and Chukchi Sea for most pollutants except for trans-CHL, ΣCHLs (sum of trans- and cis-chlordane) and p,p'-DDD. Concentration ratios (e.g., α-HCH/γ-HCH, o,p'-DDT/p,p'-DDT) indicated that the contamination in the studied areas may result from inputs from multiple sources (e.g., historical usage of technical HCHs as well as new input of dicofol). Chiral analysis showed great variation in the enantioselective degradation of OCPs, resulting in excess of (+)-enantiomer for α-HCH in thirty of the 32 detectable samples, preferential depletion of (-)-enantiomer for o,p'-DDT in nineteen of the 35 detectable samples, and nonracemic in most samples for trans- and cis-chlordane. The ecological risks of the individual OCPs as well as the mixture were assessed based on the calculation of toxic units (TUs), and the results showed the predominance of DDT and γ-HCH in the mixture toxicity of the sediment. Overall, the TUs of OCPs in sediments from both the Bering and Chukchi Seas are less than one, indicating low ecological risk potential.

  15. Seasonal and interannual patterns of sea surface temperature in Banda Sea as revealed by self-organizing map

    NASA Astrophysics Data System (ADS)

    Iskandar, Iskhaq

    2010-05-01

    Seasonal and interannual variations of sea surface temperature (SST) in the Banda Sea are studied for the period of January 1985 through December 2007. A neural network pattern recognition approach based on self-organizing map (SOM) has been applied to monthly SST from the Advanced Very High Resolution Radiometer (AVHRR) Oceans Pathfinder. The principal conclusions of this paper are outlined as follows. There are three different patterns associated with the variations in the monsoonal winds: the southeast and northwest monsoon patterns, and the monsoon-break patterns. The southeast monsoon pattern is characterized by low SST due to the prevailing southeasterly winds that drive Ekman upwelling. The northwest monsoon pattern, on the other hand, is one of high SST distributed uniformly in space. The monsoon-break pattern is a transitional pattern between the northwest and southeast monsoon patterns, which is characterized by moderate SST patterns. On interannual time-scale, the SST variations are significantly influenced by the El Niño-Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD) phenomena. Low SST is observed during El Niño and/or positive IOD events, while high SST appears during La Niña event. Low SST in the Banda Sea during positive IOD event is induced by upwelling Kelvin waves generated in the equatorial Indian Ocean which propagate along the southern coast of Sumatra and Java before entering the Banda Sea through the Lombok and Ombai Straits as well as through the Timor Passage. On the other hand, during El Niño (La Niña) events, upwelling (downwelling) Rossby waves associated with off-equatorial divergence (convergence) in response to the equatorial westerly (easterly) winds in the Pacific, partly scattered into the Indonesian archipelago which in turn induce cool (warm) SST in the Banda Sea.

  16. Chemical Mapping of the Sea-Surface Microlayer: A System for Measurement of Spatial and Temporal Variations in Composition

    DTIC Science & Technology

    2002-09-30

    surface elasticity. To be published in Surface Slicks and Remote Sensing of Air-Sea Interactions, M. Gade, G. Korenowski, J . Scott and N. Thomas...slick materials. To be published in Surface Slicks and Remote Sensing of Air-Sea Interactions, M. Gade, G. Korenowski, J . Scott and N. Thomas (eds), Springer-Verlag.

  17. A GIS Approach to Wind,SST(Sea Surface Temperature) and CHL(Chlorophyll) variations in the Caspian Sea

    NASA Astrophysics Data System (ADS)

    Mirkhalili, Seyedhamzeh

    2016-07-01

    Chlorophyll is an extremely important bio-molecule, critical in photosynthesis, which allows plants to absorb energy from light. At the base of the ocean food web are single-celled algae and other plant-like organisms known as Phytoplankton. Like plants on land, Phytoplankton use chlorophyll and other light-harvesting pigments to carry out photosynthesis. Where Phytoplankton grow depends on available sunlight, temperature, and nutrient levels. In this research a GIS Approach using ARCGIS software and QuikSCAT satellite data was applied to visualize WIND,SST(Sea Surface Temperature) and CHL(Chlorophyll) variations in the Caspian Sea.Results indicate that increase in chlorophyll concentration in coastal areas is primarily driven by terrestrial nutrients and does not imply that warmer SST will lead to an increase in chlorophyll concentration and consequently Phytoplankton abundance.

  18. Sea ice and surface water circulation, Alaskan Continental Shelf

    NASA Technical Reports Server (NTRS)

    Wright, F. F. (Principal Investigator); Sharma, G. D.; Burn, J. J.

    1973-01-01

    The author has identified the following significant results. The boundaries of land-fast ice, distribution of pack ice, and major polynya were studied in the vicinity of the Bering Strait. Movement of pack ice during 24 hours was determined by plotting the distinctly identifiable ice floes on ERTS-1 imagery obtained from two consecutive passes. Considerably large shallow area along the western Seward Peninsula just north of the Bering Strait is covered by land fast ice. This ice hinders the movement of ice formed in eastern Chukchi Sea southward through the Bering Strait. The movement of ice along the Russian coast is relatively faster. Plotting of some of the ice floes indicated movement of ice in excess of 30 km in and south of the Bering Strait between 6 and 7 March, 1973. North of the Bering Strait the movement approached 18 km. The movement of ice observed during March 6 and 7 considerably altered the distribution and extent of polynya. These features when continually plotted should be of considerable aid in navigation of ice breakers. The movement of ice will also help delineate the migration and distribution of sea mammals.

  19. Microwat : a new Earth Explorer mission proposal to measure the Sea surface Temperature and the Sea Ice Concentration

    NASA Astrophysics Data System (ADS)

    Prigent, Catherine; Aires, Filipe; Heygster, Georg

    2017-04-01

    Ocean surface characterization from satellites is required to understand, monitor and predict the general circulation of the ocean and atmosphere. With more than 70% global cloud coverage at any time, visible and infrared satellite observations only provide limited information. The polar regions are particularly vulnerable to the climate changes and are home to complex mesoscale mechanisms that are still poorly understood. They are also under very persis- tent cloudiness. Passive microwave observations can provide surface information such as Sea Surface Temperature (SST) and Sea Ice Concentration (SIC) regardless of the cloud cover, but up to now they were limited in spatial resolution. Here, we propose a passive microwave conically scanning imager, MICROWAT, in a polar orbit, for the retrieval of the SST and SIC, with a spatial resolution of 15km. It observes at 6 and 10GHz, with low-noise dual polarization receivers, and a foldable mesh antenna of 5m-diameter. Furthermore, MICROWAT will fly in tandem with MetOp-SG B to benefit from the synergy with scatterometers (SCA) and microwave imagers (MWI). MICROWAT will provide global SST estimates, twice daily, regardless of cloud cover, with an accuracy of 0.3K and a spatial resolution of 15km. The SIC will be derived with an accuracy of 3%. With its unprecedented "all weather" accurate SST and SIC at 15km, MICROWAT will provide the atmospheric and oceanic forecasting sys- tems with products compatible with their increasing spatial resolution and complexity, with impact for societal applications. It will also answer fundamental science questions related to the ocean, the atmosphere and their interactions. * Prigent, Aires, Bernardo, Orlhac, Goutoule, Roquet, & Donlon, Analysis of the potential and limitations of microwave radiometry for the retrieval of sea surface temperature: Definition

  20. Climate Variability in Coastal Ecosystems - Use of MODIS Land Surface and Sea Surface Temperature Observations

    NASA Astrophysics Data System (ADS)

    Chintalapati, S.; Lakshmi, V.

    2007-12-01

    The intertidal zone, with its complex blend of marine and terrestrial environments, is one of the intensively studied ecosystems, in understanding the effects of climate change on species abundance and distribution. As climatic conditions change, the geographic limits of the intertidal species will likely move towards more tolerable coastal conditions. Traditionally, understanding climate change effects through species physiologic response have involved use of in situ measurements and thermal engineering models. But these approaches are constrained by their data intensive requirements and may not be suitable for predicting change patterns relevant to large scale species distributions. Satellite remote sensing provides an alternate approach, given the regular global coverage at moderate spatial resolutions. The present study uses six years of land surface temperature (LST) and sea surface temperature (SST) data from MODIS/Terra instrument along various coastlines around the globe - East and West Coast US, Southern Africa, Northern Japan and New Zealand. Apart from the dominant annual cycle in LST and SST, the other seasonal cycles vary from dominant semi-annual cycles in lower latitudes to 1.5 and 2 year cycles at higher latitudes. The monthly anomalies show strong spatial structure at lower latitudes when compared to higher latitudes, with the exception of US east coast, where the spatial structure extended almost along the whole coastline, indicating strong regulation from the Gulf Stream. The patterns along different coast lines are consistent with the atmospheric and ocean circulation patterns existing at those regions. These results suggest that the climatology at the coastal regions can be adequately represented using satellite-based temperature data, thus enabling further research in understanding the effects of climate change on species abundance and distribution at larger scales.

  1. Near-Surface Circulation in the Solomon Sea Derived from Lagrangian Drifter Observations

    NASA Astrophysics Data System (ADS)

    Hristova, H. G.; Kessler, W. S.

    2010-12-01

    A low-latitude western boundary current in the Solomon Sea in the southwest Pacific Ocean carries waters from the subtropical gyre toward the tropics. Despite its importance as a major pathway connecting the subtropics to the equator, our knowledge about the Solomon Sea circulation remains incomplete and direct observations are sparse. Here, we use the Global Drifter Program (GDP) dataset to map out the near-surface circulation in the vicinity of the Solomon Sea. The analysis is based on pseudo-eulerian statistics computed from nearly 500 satellite-tracked drifting buoys drogued at 15m depth that have transited through the region during the 16-year period from 1994 to 2009. To the east of the Solomon Sea, the seasonally averaged velocity field outlines the changes in intensity and position of the main regional currents - the South Equatorial Current (SEC) and the South Equatorial CounterCurrent (SECC). Within the Solomon Sea, the drifters suggest a surface flow to the northwest that hugs the Papua New Guinea coast and exits equatorward through Vitiaz Strait. The flow is at its maximum during the austral winter, when the southeast monsoon winds are also at their strongest, while it is much weaker and undefined during the austral summer, reversing direction in the southeastern part of the basin at this time. The surface flow in Solomon Strait, the other major opening toward the equator, is to the southwest (into the sea) year around. Consistent with findings from altimetry data, the drifters single out the interior of the Solomon Sea as a region of enhanced eddy kinetic energy. The drifter-derived velocity field is compared with other observational climatologies, such as the CSIRO Atlas of the Regional Seas (CARS).

  2. Assessment of Sea Surface Temperatures in the Caribbean Sea Associated with Hurricane Tracks Using GOES-East Infrared Measurement

    NASA Astrophysics Data System (ADS)

    Comeaux, J. C.; Walker, N. D.; Haag, A.; Pino, J. V.

    2016-02-01

    A minimum sea surface temperature (SST) of 26° C is considered a requirement for hurricane generation and maintenance. Although the Caribbean Sea lies within the Western Hemisphere Warm Pool, notable north-south gradients in SST during summer often exist due to wind-induced cool water upwelling along the northern coast of South America. Our hypothesis is that the spatial extent and magnitude of cooling due to this upwelling process has an impact on the location of individual hurricane tracks. We propose that hurricanes will track further north when upwelling is strong and regionally extensive. We will investigate spatial SST variability within and across hurricane seasons in relationship to hurricane tracks. We will also investigate SST along the hurricane tracks. SSTs will be quantified using GOES-East weekly and monthly composites at a spatial resolution of 4x4 km and using the 4 micron channel, which is least affected by atmospheric water vapor attenuation.A minimum sea surface temperature (SST) of 26° C is considered a requirement for hurricane generation and maintenance. Although the Caribbean Sea lies within the Western Hemisphere Warm Pool, notable north-south gradients in SST during summer often exist due to wind-induced cool water upwelling along the northern coast of South America. Our hypothesis is that the spatial extent and magnitude of cooling due to this upwelling process has an impact on the location of individual hurricane tracks. We propose that hurricanes will track further north when upwelling is strong and regionally extensive. We will investigate spatial SST variability within and across hurricane seasons in relationship to hurricane tracks. We will also investigate SST along the hurricane tracks. SSTs will be quantified using GOES-East weekly and monthly composites at a spatial resolution of 4x4 km and using the 4 micron channel, which is least affected by atmospheric water vapor attenuation.

  3. Variability in the Atmosphere-Ocean System and Global Change: Insights via Sea Surface Temperature Analysis

    NASA Astrophysics Data System (ADS)

    Dickey, J. O.; de Viron, O.; Marcus, S. L.

    2003-12-01

    We have extended an earlier study [Dickey et al., GRL, 2003] of the sea surface temperature (SST) field to longer time span (1870 to 2002), using the newly available Global Sea Surface Temperature (HadISST 1.1), a set of SST data in monthly 1 degree area grids. In the previous study, poleward propagating atmospheric zonal wind anomalies were observed, originating at the equator and penetrating to high latitudes in both hemispheres on interannual, decadal and longer timescales. These patterns were shown to be linked to complementary oscillations in the sea surface temperature (SST) field. Results from these extended analyses will be presented and the increasing intensity of these interannual, decadal and multi-decadal variations will be examined for possible indications of Global Warming.

  4. Sea-surface temperature and salinity mapping from remote microwave radiometric measurements of brightness temperature

    NASA Technical Reports Server (NTRS)

    Hans-Juergen, C. B.; Kendall, B. M.; Fedors, J. C.

    1977-01-01

    A technique to measure remotely sea surface temperature and salinity was demonstrated with a dual frequency microwave radiometer system. Accuracies in temperature of 1 C and in salinity of part thousand for salinity greater than 5 parts per thousand were attained after correcting for the influence of extraterrestrial background radiation, atmospheric radiation and attenuation, sea-surface roughness, and antenna beamwidth. The radiometers, operating at 1.43 and 2.65 GHz, comprise a third-generation system using null balancing and feedback noise injection. Flight measurements from an aircraft at an altitude of 1.4 km over the lower Chesapeake Bay and coastal areas of the Atlantic Ocean resulted in contour maps of sea-surface temperature and salinity with a spatial resolution of 0.5 km.

  5. The impact of sea surface currents in wave power potential modeling

    NASA Astrophysics Data System (ADS)

    Zodiatis, George; Galanis, George; Kallos, George; Nikolaidis, Andreas; Kalogeri, Christina; Liakatas, Aristotelis; Stylianou, Stavros

    2015-11-01

    The impact of sea surface currents to the estimation and modeling of wave energy potential over an area of increased economic interest, the Eastern Mediterranean Sea, is investigated in this work. High-resolution atmospheric, wave, and circulation models, the latter downscaled from the regional Mediterranean Forecasting System (MFS) of the Copernicus marine service (former MyOcean regional MFS system), are utilized towards this goal. The modeled data are analyzed by means of a variety of statistical tools measuring the potential changes not only in the main wave characteristics, but also in the general distribution of the wave energy and the wave parameters that mainly affect it, when using sea surface currents as a forcing to the wave models. The obtained results prove that the impact of the sea surface currents is quite significant in wave energy-related modeling, as well as temporally and spatially dependent. These facts are revealing the necessity of the utilization of the sea surface currents characteristics in renewable energy studies in conjunction with their meteo-ocean forecasting counterparts.

  6. Simulated wind power off-shore using different parametrizations for the sea surface roughness

    NASA Astrophysics Data System (ADS)

    Frank, Helmut P.; Larsen, Søren E.; Højstrup, Jørgen

    2000-04-01

    The equation for the dependence of the Charnock constant on wave age proposed by Johnson et al. (Journal of Physical Oceanography 1998; 28: 1702 - 1716) is extended to include conditions of very young waves or short fetches. The effect on the simulated average wind speed and average wind power density off a straight east coast in Denmark is investigated by numerical simulations. Calculations are also performed employing the classical Charnock relation and a constant roughness of the sea. The formulations with variable sea surface roughness are combined with the equation for a smooth water surface for low winds. The wind climate is calculated with the Karlsruhe Atmospheric Mesoscale Model (KAMM) in 84 classes of the geostrophic wind. The difference between the fetch-dependent and the fetch-independent formulation is very small. Even a constant sea surface roughness yields good results near the coast. The influence of stratification, i.e. temperature differences between sea and land, is much more important than the fetch dependence of the sea surface roughness.

  7. Sea surface retracking and classification of CryoSat-2 altimetry observations in the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Stenseng, L.; Piccioni, G.; Andersen, O. B.; Knudsen, P.

    2015-12-01

    In this study we present the retracking and classification methods for CryoSat-2 SAR waveforms, developed for the determination of sea surface heights in the Arctic Ocean. The obtained sea surface heights (SSH) are used to decrease the gap in satellite observations from 82 degrees North to 88 degrees North in the DTU15 mean sea surface (MSS) and mean dynamic topography (MDT).Radar altimetry satellites has observed the sea surface for more than 25 years and thereby obtain data to determine accurate MSSs and estimate sea level trends related to climate changes. In combination with the improvements of global geoids it has furthermore provided an opportunity to improve the MDT related to ocean currents.After the launch of CryoSat-2 in 2010 the coverage was increased dramatically while the introduction of the synthetic aperture radar (SAR) and SAR interferometry (SARin) mode increased the amount of useful echoes in the Arctic Ocean. The new types of radar observation modes have been investigated and methods to retrack and classify the waveforms have been implemented in LARS the advanced retracking system (LARS). Finally the SSH observations obtained from CryoSat-2 with LARS is merged with previous satellite radar altimetry data to derive the DTU15 MSS.

  8. EUMETSAT and OSI-SAF Sea Surface Temperature: Recent results and future developments

    NASA Astrophysics Data System (ADS)

    O'Carroll, Anne; Le Borgne, Pierre

    2014-05-01

    The European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) delivers operational weather and climate-related satellite data, images and products throughout all day and year. EUMETSAT also has commitments to operational oceanography and atmospheric composition monitoring. Activities over the next twenty years include the continuation of the Mandatory Programmes (MSG, EPS) and future (MTG, EPS-SG), which all include ocean observations of Sea Surface Temperature. The EUMETSAT Ocean and Sea-ice (OSI) Satellite Application Facility (SAF) is lead by Meteo-France with a consortium of institutes from EUMETSAT member states, and provides reliable and timely operational services related to meteorology, oceanography and the marine environment. The OSI-SAF delivers level-2 Sea Surface Temperature products in GHRSST format from a range of EUMETSAT data including Metop AVHRR, IASI; and SEVIRI. EUMETSAT is participating in Copernicus Sentinel-3 in partnership with ESA, where EUMETSAT will operate the satellite and will serve the marine user community. The operational Sea Surface Temperature product delivered by EUMETSAT for Sentinel-3 SLSTR will be in GHRSST L2P format. On-going work towards access to relevant data from third-parties with the preparation of agreements with ISRO, SOA and JAXA, will give EUMETSAT access to an enhanced ocean products catalogue. The presentation will give an overview of activities relating to Sea Surface Temperature at EUMETSAT and the OSI-SAF, and their support to GHRSST, focusing on recent results and future developments.

  9. Phytoplankton assemblages and lipid biomarkers indicate sea-surface warming and sea-ice decline in the Ross Sea during Marine Isotope sub-Stage 5e

    NASA Astrophysics Data System (ADS)

    Hartman, Julian D.; Sangiorgi, Francesca; Peterse, Francien; Barcena, Maria A.; Albertazzi, Sonia; Asioli, Alessandra; Giglio, Federico; Langone, Leonardo; Tateo, Fabio; Trincardi, Fabio

    2016-04-01

    The Marine Isotope sub-Stage 5e (~ 125 - 119 kyrs BP), the last interglacial period before the present, is believed to have been globally warmer (~ 2°C) than today. Studying this time interval might therefore provide insights into near future climate state given the ongoing climate change and global temperature increase. Of particular interest are the expected changes in polar ice cover. One important aspect of the cryosphere is sea-ice, which influences albedo, deep and surface water currents, and phytoplankton production, and thus affects the global climate system. To investigate whether changes in sea-ice cover occurred in the Southern Ocean close to Antarctica during Marine Isotope sub-Stage 5e dinoflagellate and diatom assemblages have been analyzed in core AS05-10, drilled in the continental slope off the Drygalski basin (Ross Sea) at a water depth of 2377 m. The core was drilled within the frame of the PNRA 2009/A2.01 project, an Italian project with a multidisciplinary approach, and covers the interval from Present to Marine Isotope Stage (MIS) 7. The core stratigraphy is based on diatom bioevents and on the climate cyclicity provided by the variations of the diatom assemblages. For this study we focused on the interval from MIS7 to MIS5. A strong reduction of sea-ice-loving diatom taxa with respect to open water-loving diatom taxa is observed during MIS5. In general the production of phytoplankton increases at the base of MIS5 and then slowly decreases. Dinoflagellate cysts, particularly heterotrophic species, are abundant during MIS5e only. The sea surface temperature reconstruction based on the TEX86L, a proxy based on lipid biomarkers produced by Thaumarcheota, shows a 4°C temperature increase from MIS6 to MIS5e. A slightly smaller temperature increase is observed at the onset of MIS7, but this stage is barren of heterotrophic dinoflagellates. All proxies together seem to indicate that the retreat of the summer sea-ice in the Ross Sea during MIS5e was

  10. Wind-Driven Angular Dependence of Sea-Surface Reflectance Measured with an Airborne Doppler Lidar

    NASA Technical Reports Server (NTRS)

    Tratt, David M.; Menzies, Robert T.; Cutten, Dean R.

    1998-01-01

    The effects of wind-stress on the optical properties of the ocean surface have been studied for several decades. In particular, the classic study by Cox and Munk (1954) linking sea-surface wind field to wave slope statistics provides a phenomenology by which the sea-surface wind velocity can be estimated from direct measurement of the wave-modulated surface reflectance. A limited number of studies along these lines have been conducted using airborne or spaceborne lidar systems. In these instances, truthing was provided by in situ ship reports or satellite microwave remote sensing instruments (e.g., ERS scatterometer, SSM/I). During the second deployment of the MACAWS Doppler wind lidar in the summer of 1996 measurements of sea-surface reflectance as a function of azimuth- and nadir-viewing angles were acquired off the California coast. MACAWS data products include directly measured winds, as well as calibrated backscatter/reflectance profiles, thus enabling comparison of the winds inferred from sea-surface reflectance measurements with those deriving from the Doppler-processed direct line-of-sight (LOS) estimates. Additional validation data was extracted from the ERS and SSM/I satellite microwave sensor archives maintained by the JPL Physical Oceanography Distributed Active Archive Center (PO- DAAC).

  11. Analyzing the Effects of Climate Change on Sea Surface Temperature in Monitoring Coral Reef Health in the Florida Keys Using Sea Surface Temperature Data

    NASA Technical Reports Server (NTRS)

    Jones, Jason; Burbank, Renane; Billiot, Amanda; Schultz, Logan

    2011-01-01

    This presentation discusses use of 4 kilometer satellite-based sea surface temperature (SST) data to monitor and assess coral reef areas of the Florida Keys. There are growing concerns about the impacts of climate change on coral reef systems throughout the world. Satellite remote sensing technology is being used for monitoring coral reef areas with the goal of understanding the climatic and oceanic changes that can lead to coral bleaching events. Elevated SST is a well-documented cause of coral bleaching events. Some coral monitoring studies have used 50 km data from the Advanced Very High Resolution Radiometer (AVHRR) to study the relationships of sea surface temperature anomalies to bleaching events. In partnership with NOAA's Office of National Marine Sanctuaries and the University of South Florida's Institute for Marine Remote Sensing, this project utilized higher resolution SST data from the Terra's Moderate Resolution Imaging Spectroradiometer (MODIS) and AVHRR. SST data for 2000-2010 was employed to compute sea surface temperature anomalies within the study area. The 4 km SST anomaly products enabled visualization of SST levels for known coral bleaching events from 2000-2010.

  12. CALYPSO: a new HF RADAR network to monitor sea surface currents in the Malta-Sicily channel (Mediterranean sea)

    NASA Astrophysics Data System (ADS)

    Cosoli, S.; Ciraolo, G.; Drago, A.; Capodici, F.; Maltese, A.; Gauci, A.; Galea, A.; Azzopardi, J.; Buscaino, G.; Raffa, F.; Mazzola, S.; Sinatra, R.

    2016-12-01

    Located in one of the main shipping lanes in the Mediterranean Sea, and in a strategic region for oil extraction platforms, the Malta-Sicily channel is exposed to significant oil spill risks. Shipping and extraction activities constitute a major threat for marine areas of relevant ecological value in the area, and impacts of oil spills on the local ecosystems and the economic activities, including tourism and fisheries, can be dramatic. Damages would be even more devastating for the Maltese archipelago, where marine resources represent important economic assets. Additionally, North Africa coastal areas are also under threat, due to their proximity to the Malta-Sicily Channel. Prevention and mitigation measures, together with rapid-response and decision-making in case of emergency situations, are fundamental steps that help accomplishing the tasks of minimizing risks and reducing impacts to the various compartments. Thanks to state-of-art technology for the monitoring of sea-surface currents in real-time under all sea-state conditions, the CALYPSO network of High-Frequency Radars represents an essential and invaluable tool for the specific purpose. HF radars technology provide a unique tool to track surface currents in near-real time, and as such the dispersion of pollutants can be monitored and forecasted and their origin backtracked, for instance through data assimilation into ocean circulation models or through short-term data-driven statistical forecasts of ocean currents. The network is constituted of four SeaSonde systems that work in the 13.5MHz frequency band. The network is operative since August 2012 and has been extensively validated using a variety of independent platforms and devices, including current meter data and drifting buoys. The latter provided clear evidences of the reliability of the collected data as for tracking the drifting objects. Additionally, data have provided a new insight into the oceanographic characteristics of the region

  13. Influence of ice thickness and surface properties on light transmission through Arctic sea ice

    NASA Astrophysics Data System (ADS)

    Katlein, C.; Arndt, S.; Nicolaus, M.; Perovich, D. K.; Jakuba, M.; Suman, S.; Elliott, S.; Whitcomb, L. L.; McFarland, C.; Gerdes, R.; Boetius, A.

    2015-12-01

    The changes in physical properties of sea ice such as decreased thickness and increased melt pond cover observed over the last decades severely impact the energy budget of Arctic sea ice. Increased light transmission leads to increased deposition of solar energy in the upper ocean and thus plays a crucial role in the amount and timing of sea-ice-melt and under-ice primary production. Recent developments in underwater technology provide new opportunities to undertake challenging research at the largely inaccessible underside of sea ice. We measured spectral under-ice radiance and irradiance onboard the new Nereid Under-Ice (NUI) underwater robotic vehicle, during a cruise of the R/V Polarstern to 83°N 6°W in the Arctic Ocean in July 2014. NUI is a next generation hybrid remotely operated vehicle (H-ROV) designed for both remotely-piloted and autonomous surveys underneath land-fast and moving sea ice. Here we present results from one of the first comprehensive scientific dives of NUI employing its interdisciplinary sensor suite. We combine under-ice optical measurements with three-dimensional under-ice topography and aerial images of the surface conditions. We investigate the influence of spatially varying ice-thickness and surface properties during summer on the spatial variability of light transmittance. Results show that surface properties dominate the spatial distribution of the under-ice light field on small scales (<1000m²), while sea ice-thickness is the most important predictor for light transmission on larger scales. In addition, we suggest an algorithm to obtain histograms of light transmission from distributions of sea ice thickness and surface albedo.

  14. Annual variations in sea surface wind speed around Japan observed by ASCAT

    NASA Astrophysics Data System (ADS)

    Takeyama, Y.; Shimada, S.; Ohsawa, T.; Kozai, K.; Kogaki, T.

    2015-12-01

    Sea surface wind speeds and these statistics can be applied for many marine industrial activities. For example, the averaged wind speed is crucial information for a site selection of an offshore wind farm. It has widely been recognized that a total amount of the offshore wind generation is strongly depended on the annual average wind speeds. A advanced scatterometer (ASCAT), which is a kind of scatterometer aboard METOP-A and B, has observed sea surface wind speeds at the height of 10 m above the sea surface approximately twice a day using active microwaves. The annual average wind speed can be calculated from the observed wind speed. For an actual use of the annual average wind speed, generalities and representativeness of the wind speed must be clarified. To investigate annual variations in sea surface wind speed around Japan (120°E to 165°E, 19°N to 49°N), the annual average wind speeds and these standard deviations are calculated from 5 years of ASCAT observations from 2010 through 2014. It is found that there are some sea areas where standard deviations are relatively higher than their surroundings. Annual average wind speed maps indicate that the high standard deviation is caused by strong winds from Eurasia in the winter of 2011 in part of North Pacific Ocean and Sea of Okhotsk. Additionally standard deviations for only winter are also higher than for summer in those sea areas. Therefore the strong wind speed in the winter of a particular year can easily affect to the annual average wind speed. Meanwhile off the coast of Niigata and Hokkaido, there are also higher standard deviation areas than their surroundings. Differences between monthly maximum wind speeds for the winter and minimum wind speeds for the summer in these areas are larger and the large differences seem to be a cause of the high standard deviations.

  15. Influence of ice thickness and surface properties on light transmission through Arctic sea ice

    NASA Astrophysics Data System (ADS)

    Katlein, Christian; Arndt, Stefanie; Nicolaus, Marcel; Perovich, Donald K.; Jakuba, Michael V.; Suman, Stefano; Elliott, Stephen; Whitcomb, Louis L.; McFarland, Christopher J.; Gerdes, Rüdiger; Boetius, Antje; German, Christopher R.

    2015-09-01

    The observed changes in physical properties of sea ice such as decreased thickness and increased melt pond cover severely impact the energy budget of Arctic sea ice. Increased light transmission leads to increased deposition of solar energy in the upper ocean and thus plays a crucial role for amount and timing of sea-ice-melt and under-ice primary production. Recent developments in underwater technology provide new opportunities to study light transmission below the largely inaccessible underside of sea ice. We measured spectral under-ice radiance and irradiance using the new Nereid Under-Ice (NUI) underwater robotic vehicle, during a cruise of the R/V Polarstern to 83°N 6°W in the Arctic Ocean in July 2014. NUI is a next generation hybrid remotely operated vehicle (H-ROV) designed for both remotely piloted and autonomous surveys underneath land-fast and moving sea ice. Here we present results from one of the first comprehensive scientific dives of NUI employing its interdisciplinary sensor suite. We combine under-ice optical measurements with three dimensional under-ice topography (multibeam sonar) and aerial images of the surface conditions. We investigate the influence of spatially varying ice-thickness and surface properties on the spatial variability of light transmittance during summer. Our results show that surface properties such as melt ponds dominate the spatial distribution of the under-ice light field on small scales (<1000 m2), while sea ice-thickness is the most important predictor for light transmission on larger scales. In addition, we propose the use of an algorithm to obtain histograms of light transmission from distributions of sea ice thickness and surface albedo.

  16. Influence of ice thickness and surface properties on light transmission through Arctic sea ice.

    PubMed

    Katlein, Christian; Arndt, Stefanie; Nicolaus, Marcel; Perovich, Donald K; Jakuba, Michael V; Suman, Stefano; Elliott, Stephen; Whitcomb, Louis L; McFarland, Christopher J; Gerdes, Rüdiger; Boetius, Antje; German, Christopher R

    2015-09-01

    The observed changes in physical properties of sea ice such as decreased thickness and increased melt pond cover severely impact the energy budget of Arctic sea ice. Increased light transmission leads to increased deposition of solar energy in the upper ocean and thus plays a crucial role for amount and timing of sea-ice-melt and under-ice primary production. Recent developments in underwater technology provide new opportunities to study light transmission below the largely inaccessible underside of sea ice. We measured spectral under-ice radiance and irradiance using the new Nereid Under-Ice (NUI) underwater robotic vehicle, during a cruise of the R/V Polarstern to 83°N 6°W in the Arctic Ocean in July 2014. NUI is a next generation hybrid remotely operated vehicle (H-ROV) designed for both remotely piloted and autonomous surveys underneath land-fast and moving sea ice. Here we present results from one of the first comprehensive scientific dives of NUI employing its interdisciplinary sensor suite. We combine under-ice optical measurements with three dimensional under-ice topography (multibeam sonar) and aerial images of the surface conditions. We investigate the influence of spatially varying ice-thickness and surface properties on the spatial variability of light transmittance during summer. Our results show that surface properties such as melt ponds dominate the spatial distribution of the under-ice light field on small sca